
PDP-11 FORTRAN-/77
Object Time System

Reference Manual

Order No. AA-V195A-TK

July 1983

This document describes the object modules that are selectively

linked with compiled PDP-11 FORTRAN-77 code by the appropri-

ate operating system’s Task Builder to produce an executable task.

SUPERSESSION/UPDATE INFORMATION: This is a new document for

this release.

OPERATING SYSTEM AND VERSION: RSX-11M V4.1

RSX-11M-PLUS V2.1

RSTS/E V8.0

VAX/VMS V3.2

SOFTWARE VERSION: FORTRAN-77 V5.0

digital equipment corporation - maynard, massachusetts

First Printing, July 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license,

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (c) 1983 by Digital Equipment Corporation
All Rights Reserved.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT

DECSYSTEM-20 PDT Logo

DECwriter a difgli}t}all
ZK2404

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)

In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road

In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORNERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation
P.O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital’s local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page

PREFACE vii

CHAPTER 1 OBJECT TIME SYSTEM OVERVIEW

1.1 TABLES, BUFFERS, AND IMPURE STORAGE-.- I1I-l

1.2 I/O PROCESSING ROUTINES 6 e © «© © «© «© « « Il

1.3 TASK CONTROL AND ERROR PROCESSING ROUTINES 1-2

1.4 MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES .. 1-2

1.5 COMPILED-—CODE SUPPORT ROUTINES « « « « « « 1-2

CHAPTER 2 CONVENTIONS AND STANDARDS

2.1 REGISTERS ... 6 « © « «© «© «© © © © © © © © © © « 2-1

22 CALLING SEQUENCES +o © «© © «© © © © © © © « 2-]

2.2.1 R5 Calls . 2. 26 © © © © © © © © © ee ew ew ww lw hw 2H]
2.2.2 PC CallS . 2. 2. 6 © © © © © © © © © © ee ew ew ew ew 23
2.2.3 R4 Calls . 2. 2. 6 © © © © © © © © we oe we ew le le ww 273

2.2.4 FO Calls . 2. 2. © «© © © © © © © © © © © © eo 8 ow ew 24
2.2.5 Special Call Conventions +. 6 © « © « « 2-5
2.3 LABELING CONVENTIONS ... 6 © © © © © © © © © © © 2-5

2.4 CONTEXT SAVE AND RESTORE 6 «© «© © «© © © © © 2-5

CHAPTER 3 ASSEMBLY LANGUAGE INTERFACES TO THE OTS

3.1 WRITING A FORTRAN MAIN PROGRAM IN ASSEMBLY

LANGUAGE . .. +. « © e« e« -» ° ° ° eo «© « « 3-]

3.2 LINKAGE TO THE FORTRAN IMPURE STORAGE AREA © © © « 3-2

CHAPTER 4 DATA STRUCTURES AND STORAGE

4.1 WORK AREA STORAGE DESCRIPTION oe eo ew e 4-)
4.2 LOGICAL UNIT CONTROL TABLE « «© © © «© « e« « 4-8

4.2.1 Common LUB Definitions oe 8 © eo ew ew ew 48

4.2.2 LUB Definitions for FCS-1l Support oe ew ew ew ew ew AMZ”
4.2.3 LUB Definitions for RMS-11l Support 4-10

CHAPTER 5 OVERVIEW OF FORTRAN INPUT/OUTPUT

5.1 COMPILED-CODE INTERFACE 6 © « «© © «© © © « 5-2
5.1.1 Initialization Processing + © «© « « 5-3
5.1.1.1 The Routines . . . 6. « «© © © © © «© © © © © © © 93
5.1.1.2 SINITIO ... 2. «© © © © © © © © © © © © © © « 56

5.1.2 List Element Transmission «+... « « « S-9
5.1.3 Termination Call . 2... «© © «© © «© © © © «© © « S10
5.2 DATA-FORMATTING LEVEL... . « © «© « © « «© « « 5S=-10

5.3 RECORD PROCESSING LEVEL... © 6 e ew ew ew hl wl wlCUOUMILMI
5.4 PRINT, TYPE, AND ACCEPT STATEMENTS AND LOGICAL

UNIT 0 2. « «© © © «© «© « Pe er ee eo hoa OS
5.5 OPEN AND CLOSE STATEMENTS ee eo a

5.6 OTHER INTERNAL SUPPORT ROUTINES S-15

5.6.1 SFCHNL, SGETFILE, and S$IOEXIT-. +. « S-15
5.6.2 Default File Open Processing -- SOPEN 5-16
5.6.3 Default File Close Processing -- SCLOSE . - 5-16
5.6.4 Direct Access Record Number Checking -- SCKRCN 5-16
5.6.5 Associated Variable Update -- S$ASVAR..... 5-17

iii

CHAPTER

CHAPTER

CHAPTER

N
D
N
N
A
A
A
A
A
A
A
A
A
A

AD

fon
)

e
e
e

8
©

©
©

©
©

©
6

a
a
n

o
r

uo

~~

e
e

e
e

e
e
e

e
6

e
e

¢
e

D
H
N
N
A
N
A
N
A
A
A
G
G
A
I
M
N
A
N
I
K
H
N
I
N

PS

BW

P
W
N

DY

Y
N

DN
DN

F
F

SN

W
U

®m

W
D

DN

N
N

N
D

F

e
®

S
N
S

S
S
S

SI
)

SJ

SS
)
S
S

SN

S
N
S

J
SI

S
I
I
N

S
N
S

S
~)

@
e

#6
}8
$¢

[o
n
)

UI

&
W
h
 F

O
W
M
D
D
O
O
A

DW

©
©

eo

e
e
e

fe

©
©

©
6

«
W
W
W
N
H
R

PR
P

R
E

He

e

N
e

Keyed I/O Specifier Checking -- $CKKEY
Register Save and Restore -- $SAVPx .
Register Save and Restore -- .SAVRI1.

FORTRAN FILE AND RECORD FORMATS. .

Sequential Organization Files .
Relative Organization Files ..
Indexed Organization Files ...

FCS-11 I/O SUPPORT

FCS-11 I/O CONTROL BLOCK... .

OPEN PROCESSING«
OPEN Statement Processing.
Default OPEN Processing. .
SOPENS Procedure«..

a
File Name Processing

FILE CLOSE PROCESSING
SEQUENTIAL I/O PROCESSING ..
DIRECT ACCESS I/O PROCESSING .
AUXILIARY I/O OPERATIONS ...
I/O-RELATED SUBROUTINES ... e

®
e

e
®

e
e

e
e

e
ry

e

e
e

RMS-11 I/O SUPPORT

RMS-11 I/O CONTROL BLOCKS
Dynamic Storage Allocation Control

OPEN PROCESSING 2... . «0 «© « «
OPEN Statement Processing ...
Default OPEN Processing
SOPENS Routine. . oe ee
USEROPEN Interface Specification

File Open Utility Routines...
FILE CLOSE PROCESSING

SEQUENTIAL I/O PROCESSING. .
Sequential Input (SGETS) .

Sequential Output (S$PUTS)

DIRECT ACCESS I/0 PROCESSING ...

Direct Input (SGETR)
Direct Output (S$PUTR and SPUTRI)
Direct Delete (SDELETE)
Direct Access Record Number Checking
Associated Variable Update (SASVAR)

KEYED I/O PROCESSING °

Keyed Input (S$GETK)
Keyed Output (SPUTS) °
Keyed Rewrite (S$UPDATE) © © © © ©

Keyed I/O Specifier Checking (S$CKKEY)

e
e

e
e

e
o
m
™

*
e

e
e

e
e

®
e

®
e

e
e

e
e

AUXILIARY I/O OPERATIONS .. .

I/O-RELATED SUBROUTINES .. .

FORMAT PROCESSING AND FORMAT CONVERSIONS

COMPILER FORMAT LANGUAGE . °

Format Code Byte
Format Code Parameters . °
Hollerith Formats ... °
Default Formats. °
Format Compiled Code Example °

FORMAT PROCESSING PSECTS ... °

FORMAT AND LIST-DIRECTED PROCESSORS .

S

e

e

e

e

e

e

e

Format Processor -- $FIO
List-Directed Input Processor -- $LST I

iv

Blocks

e
e

e
e

2
e

e
e

Q
s

e
6

e

wn

ee
©

«©
©

«©
@

e@
@

m
e

e
©

@

Q

e
©

©
©

©
©

«©
©
W
e
e

©
«@

T
A
A

a
A
a
a
a
a
n
e

l
f

KM

O
w
n
v
o
n
o
e
e
o
~
a
t
a
n
u
w
w
r
k

n
o
 !

h
m

C
O
W

O
D
D
O

D
W
D
®
W

®
CO

{
V
O
U
S

&
W
W

W
e

CHAPTER

CHAPTER

CHAPTER

e J

Cc

Cc

CO

CO

C
O
W

©
e

wo

@
A
y

A
U

W
eo

e
«
e
e

ee
©

©
©

©
@

@

O
W

P
W
N
H
O
N
N
N
N
N
N
N
 EF

W
O
W
U
W
W
U
W
O
W

H
O
O

O
O

\o

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.4.1
11.1.4.2
11.2

APPENDIX A

APPENDIX B

1
B.2

List-Directed Output Processor -- $LSTO

RUN-TIME FORMAT COMPILER -- FMTCV$. . « -»

INTEGER AND OCTAL CONVERSIONS .- «© «© « »

HEXADECIMAL AND NEW OCTAL CONVERSIONS . .

LOGICAL CONVERSIONS . . ° °

REAL, DOUBLE-PRECISION, AND " COMPLEX " CONVERSIONS

FORMAT CONVERSION ERROR PROCESSING ~« - © «+ © «© «*

ERROR PROCESSING AND EXECUTION CONTROL

TASK INITIALIZATION . «© «© «© © © © @ «

EXECUTION-TIME ERRORS ..- « «© «© «© © «

Trap Instruction Processing °° .

Error Control Byte Processing . .

Continuation Processing ... « «

W.IOEF Error Processinge -»

Floating-Point Processor Errors . .-

Error Message Processing . . - + « «

Message Construction Utilities ..

O

STOP AND PAUSE STATEMENT PROCESSING

USER INTERFACING TO ERROR PROCESSING

USER INTERFACING TO TERMINAL MESSAGE

EXECUTION CONTROL SUBROUTINES ..- + «© « «© © *

Cc

ac
)

ge)

om

|

OTHER COMPILED-CODE SUPPORT ROUTINES

ARITHMETIC OPERATIONS .. 6 © © «© «© @ e

Exponentiation .« « « « « «© © + © © © *

Complex Arithmetic Operations °

INTEGER*4 Arithmetic Operations

Stack Swap Operations SWPxyS .

Character Operations -»

ARRAY PROCESSING SUPPORT . -« «© © «© © © «© @ @

Adjustable Array Initialization -

Array Subscript Checking . . - « « « «© « »
e

e
®

e

e
e

@
e

e
e

e
e

®
e

e
e

e
e

®
e

e

Virtual Array Processing . .« «© « «6 «© « «

Notes on ADB Usage ... ++ + © © « « »

GO TO STATEMENT SUPPORT . . «6 «© © © © © © @

Computed GO TO Statement Support .
Assigned GO TO Statement Support .
Label List Argument Format

TRACEBACK CHAIN PROCESSING . ..« « -«

OTS SYSTEM GENERATION AND TAILORING

ASSEMBLY OPTIONS .. + « « « «

Operating System Options
File System Options+-. -«
EIS Instruction Set Option .
Special Assembly Options . . co 6 8

Double-Precision Arithmetic. Option

Floating-Point Format Conversion Option

OTS ASSEMBLY MACROS ..- + « © © © © # #« «

e
e

e
e

e

FORTRAN IMPURE AREA DEFINITIONS

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

RMS—-11 CONTROL BLOCK FORMATS e e e e e r e ° e °

w
o
w
o
w
W
U
M
U
U
W
U
M
W
W
W

W
W

O
O

1
en

en

ee
Y
A

A
U
P

P
P

W
W
W
D

D
E

re W

APPENDIX

APPENDIX

FIGURES

TABLES

C

m
R

R
r

O
D
N
N
D
A
H
A
U
N

SP

SP

P
W
W
W
D
Y
D
Y
D

B
e

W
N

F
©

e
2©
«

©
«©

©

@©

@
@

e
e

e
e

e
e

N
e

N
F

e
i

e
e

e
e

e
e

e
e

e
e

e

e
e

e
e

e

N
K

F&F

N
e

A
A
A
A
A
A
A
Q
N
Q
A
A
N
A
N
A
A
N
A
A
A
A
R
A
R
A
A
N
A
N
R
A

D

bo
t

ot

1
M
U
R
P
W
N
H
O
R
r
D
O
N
H
D
U

A
W
N
H

Fe
bd

oO
x~

)
OV

O
N
A
N

n
n

bp

&
b
P

P
P

HP
PP

Dd

i
{

m
e
d

OTS SIZE SUMMARY

MODULES ALWAYS PRESENT
FCS-11 Supporte «ewe

RMS-11 Support ee.
COMMON I/O SUPPORT...

FCS-11 Support
RMS-11 Support

SEQUENTIAL INPUT/OUTPUT
FCS-1l Support
RMS-ll Support

DIRECT INPUT/OUTPUT ..

FCS-11 Support
RMS-11 Support

KEYED INPUT/OUTPUT ...
RMS-11 Support ..

MISCELLANEOUS I/0 SUPPORT oe we ew
FCS-11 Supporte. 26 « eb
RMS-1l1l Support ° °

MISCELLANEOUS COMPILED- CODE SUPPORT
PROCESSOR-DEFINED FUNCTIONS ...
COMPILED-CODE ARITHMETIC SUPPORT (R4 CALLS) ..
COMPILED-CODE CHARACTER SUPPORT
SERVICE SUBROUTINES
OPTIONAL MODULES
RSX-11S SUBSET SUPPORT e e e e e e e e e ° e ° e

PROGRAM SECTION DESCRIPTIONS

The I/O Subsystem22e © we we wee
Format Code Form e e e e e e e e e e e e e e e e

Register Assignments for Subprogram Results (R5
Calls) a
Processor-Def ined Functions © © © © © © ew tw lw lt
Task Control Informatione.e..«e
I/O Control Informationee. °
Format Control Information .. o we we ew ew
Run-Time Format Control Information. co © © ew lel le
Error Control Information .. ° °
Error Message and Traceback Control. Information
Virtual Array Control Information .
Trap Routine Information
I/O Initialization Entries
I/O Initialization Symbols, .
I/O Initialization Argument Masks ...
I/O Initialization Routine Functions ..
Summary of Argument Blocks by Keyword .
Summary of OPEN Statement Keywords and F
Settings ° rr
FDBSET Argument Summary © © « ee
FAB/RAB Settings for OPEN Statement. co 0 oe ew
Compiled Format Codes60.e. wae

0 W
e
e

ee

ee

@©

«

@

vi

i
b
i
r
t
t
t
t
e
t

t
e
t

W
W
W
N
D

H
F

P
E
P

E
E

P
S
E

P
E
P
e
?
e

re

PP

PE
P

ee

O
D
O
Y
Y
T
A
N
M
M
N
U

DB

A
D

B®

B
W

W

P
P
P

E
e
e
s

o
u
 {

m
NO

!
r
o
i
d

W
H
A
I
H
D
W
O
N
Y
W
H
N

A
W

AN
D

B
O

G
U

de

eo

B
B

ND

PREFACE

MANUAL OBJECTIVES

This manual contains detailed information about the FORTRAN-77 Object

Time System (OTS) not contained in the PDP-11 FORTRAN-77 User's Guide.

The information is not needed for typical use of FORTRAN~77; however,

many users need to know more about the OTS for specialized

applications. This manual is especially helpful to programmers

interfacing MACRO-11 and FORTRAN routines to the OTS.

INTENDED AUDIENCE

This manual assumes that the readers know MACRO and FORTRAN and are

familiar with the information in the PDP-ll FORTRAN-77 User's Guide,

their operating system's executive reference manual and I/O operations

reference manual, and the RMS-11 MACRO~11 Reference Manual.

Internal OTS interfaces are not guaranteed to remain constant across

releases of FORTRAN-77. Calling the OTS the same way as the compiled

code is called and using the OTS named offsets ensure as much

release-to-release compatibility as possible.

STRUCTURE OF THIS DOCUMENT

This manual contains 11 chapters and four appendixes.

e Chapter 1, “Object Time System Overview," provides a

conceptual view of the structure of the OTS.

e Chapter 2, "Conventions and Standards," describes the calling

sequences and naming conventions used by FORTRAN-77.

e Chapter 3, “Assembly Language Interfaces to the oTs,"

describes how to write MACRO-11 programs that interface with

the OTS.

e Chapter 4, "Data Structures and Storage," describes the OTS

work area and logical unit control table.

e Chapter 5, “Overview of FORTRAN Input/Output," provides a

conceptual view of OTS I/0 processing and describes the 1/0

modules that are accessed by both the FCS=-11 and RMS~11 file

management systems.

e Chapter 6, "FCS-11 I/O Support," describes the FCS-1l1 file

management system operations that are used to implement

FORTRAN-77 I/O operations.

vii

Chapter 7, "RMS-11 I/O Support," describes the RMS-1l file
management system operations that are used to implement
FORTRAN~77 I/O operations.

Chapter 8, "Format Processing and Format Conversions,"
describes the internal form of format specifications, the
format processing algorithm, and_ the format conversion
routines.

Chapter 9, "Error Processing and Execution Control," discusses
execution control processing, the detection and processing of
run-time errors, and the generation of error messages.

Chapter 10, "Other Compiled=-Code Support Routines," describes
routines that support various arithmetic and housekeeping
operations required by the compiled code.

Chapter 11, "OTS System Generation and Tailoring," describes
the OTS installation options.

Appendix A, “FORTRAN Impure Area Definitions," shows’ the
layout of the OTS work area described in Chapter 4.

Appendix B, "FORTRAN Logical Unit Control Block Definitions,"
describes the data structures used in OTS I/O processing.

Appendix C, "OTS Size Summary," provides the approximate sizes
of all the OTS modules.

Appendix D, "Program Section Descriptions," describes the
program sections (PSECTs) used by the OTS.

ASSOCIATED DOCUMENTS

The following documents provide related information:

PDP-11 FORTRAN=-77 User's Guide

PDP-1] FORTRAN-77 Language Reference Manual

RMS-1l User's Guide

RMS-11 MACRO-11 Reference Manual

IAS/RSX-11 I/O Operations Reference Manual

CONVENTIONS USED IN THIS DOCUMENT

The manual follows these conventions:

Unless otherwise noted, numeric values are represented in
decimal notation. Values in MACRO-11 examples are in octal
notation.

Unless otherwise specified, all commands end with a carriage
return.

The name FORTRAN~77 in the manual refers to PDP~1]1 FORTRAN-77,
unless otherwise specified.

vili

CHAPTER 1

OBJECT TIME SYSTEM OVERVIEW

The FORTRAN-77 Object Time System (OTS) consists of assembly language
modules that complement the user's compiled code. Most OTS routines
are common to the RSX-11M/M=jPLUS and RSTS/E operating systems, and the
FCS-11 and RMS~11 file management systems. However, certain routines
are supported only by a specific operating system or file management
system. The FORTRAN~77 distribution kit allows you to configure
systems individually for each file management or operating system.

The OTS has five main parts:

1. Tables, buffers, and impure storage that the OTS routines
need

2. 1/0 processing routines

3. Task control and error-processing routines

4, Mathematical functions and system subroutines

5. Other compiled-code support routines

The rest of this chapter introduces each of these parts.

1.1 TABLES, BUFFERS, AND IMPURE STORAGE

The OTS uses data areas that include read-only constants, logical unit
control tables, various buffers, and the impure storage area. Chapter

4 describes these data areas.

1.2 I/O PROCESSING ROUTINES

The I/O processing routines are a collection of small modules. Only
those modules required by a given FORTRAN source program need to be
linked into the user's task.

Chapter 5 describes the I/O system design and the I/0 routines common
to the FCS-11 and RMS-11 file management systems. Chapter 6 discusses
FCS-ll~specific routines; Chapter 7 discusses RMS-ll=-specific
routines, and Chapter 8 contains information on format processing
routines.

OBJECT TIME SYSTEM OVERVIEW

1.3 TASK CONTROL AND ERROR PROCESSING ROUTINES

For every FORTRAN main program, the compiler inserts a call to ots
initialization. You can control program termination by using the
USEREX subroutine to set up a procedure that is called when a_ program
terminates.

When the OTS detects an error, it executes a TRAP instruction with the
error number in the low byte of the instruction. A service routine
within the error~processing modules handles floating-point processor
asynchronous traps.

There are two methods of error recovery: an 'ERR=' transfer within an
I/O statement, or a return to the error site for appropriate action.
A byte in the OTS impure storage determines which action to. take.
Each defined error number corresponds to an error control byte that
you can access using the FORTRAN~-callable subroutines ERRSET, ERRTST,
and ERRSNS.

For more information on these subroutines, see Chapter 9.

1.4 MATHEMATICAL FUNCTIONS AND SYSTEM SUBROUTINES

The FORTRAN-77 User's Guide describes how to use special names to call
mathematical routines from compiled code. These routines are commonly
known as processor=-defined functions. Appendix B of the User's Guide
describes the algorithms for these mathematical library routines.

Appendix D of the User's Guide describes the system subroutines.

1.5 COMPILED=CODE SUPPORT ROUTINES

These routines complement the compiled code by performing operations
too complicated or cumbersome to perform with in-line code, such as
array subscript checking, exponentiation, character assignment and
comparison operations, and complex arithmetic.

For more information on these routines, see Chapter 10.

CHAPTER 2

CONVENTIONS AND STANDARDS

FORTRAN=77 has specific procedural and naming conventions. The
following sections describe those conventions.

2-1 REGISTERS

The eight [processor general registers] are referenced as follows:

@e RO ~ R5 = Registers 0-5

e SP = Register 6

@ PC = Register 7

The six floating-point processor accumulators are referenced as FO-FS.

2.2 CALLING SEQUENCES

FORTRAN~77 compiled code uses the following four calling sequence
conventions to call components of the OTS:

1. RS Calls -- for all system subroutines, most
processor~defined functions, and all user-routine calls

2. PC Calls ~~ for I/O operations, system-dependent routines,
and character assignment and comparison operations

3. R4 Calls -= for out~-of~-line, stack~oriented arithmetic
routines and certain compiled=code support routines

4. FO Calls -~ for faster calls to certain processor~defined
functions

The sections that follow describe these calls.

2-2-1 R5 Calls

This calling sequence convention is the standard for PDP~11l
FORTRAN~77.

CONVENTIONS AND STANDARDS

Its basic form is:

;IN INSTRUCTION-SPACE

MOV #LIST,R5 ;Address of argument list to
sregister 5

JSR PC,SUB Call subroutine

;IN DATA~SPACE

LIST: ~-BYTE N,O ;Number of arguments
e-WORD ADR1 :First argument address

e-WORD ADRN ;N'th argument address

The argument list must reside in data-space and, except for label type
arguments, addresses in the list must also refer to data~space.

User programs should not reference the byte at address LIST+l. It is
reserved for future use by DIGITAL software; thus, references to it
could cause unpredictable results.

Control returns to the calling program by restoring (if necessary) the
Stack pointer (SP) to its value on entry and executing an RTS PC
instruction.

Function subprograms return a single result in the processor general
registers. The type of variable returned by the function determines
which registers receive the result. The variable types and their
associated register assignments are shown in Table 2-1.

Table 2-1: Register Assignments for Subprogram Results (R5 Calls)

If the
Result Type Is: The Result Is in:

INTEGER*2

LOGICAL*¥1 RO
LOGICAL*2

INTEGER*4 RO -~ Low~order result
LOGICAL*4 Rl -~ High-order result

REAL RO ~~ High-order result
Rl ~~ Low-order result

DOUBLE RO -~ Highest-order result
PRECISION Rl

R2
R3 ~~ Lowest-order result

COMPLEX RO -~ High-order real result
Rl ~- Low-order real result
R2 ~- High-order imaginary

result
R3 ~~ Low-order imaginary result

2~-2

CONVENTIONS AND STANDARDS

Calling programs use RO through R5 to save values needed after a
return from a subprogram. The argument list pointer value in register
R5 may not be valid after return. Calling programs must save. and
restore the floating-point registers they use, and they cannot assume
that the called routines will restore the floating-point status bits
I/L (integer/long integer) or F/D (floating/double precision).

An address of -1 (177777 octal) represents a null argument in-= an
argument list. It is used to ensure that using null arguments in
Subprograms that cannot handle them will result in an error when the
routine is called. The errors most likely to occur are illegal memory
references and word references to odd byte addresses.

For more information about this calling sequence convention, see _ the
PDP=1]1 FORTRAN-77 User's Guide.

2.2.2 PC Calls

PC calls are made with a JSR PC,xxx instruction. They pass all
arguments on the stack and return with the arguments deleted from the
Stack. There are no changes to registers RO-RS, FO-F5, or the Fpp
Status register.

PC calls are used for the following operations:

e All I/O statements except OPEN and CLOSE

e STOP, PAUSE, computed GO TO, and assigned GO TO statements

@e Character out-of-line support routines for assignment and
comparison

@ Array subscript checking, if enabled

Example:

The FORTRAN statement

REWIND 3

is compiled into the code

MOV #3,-(SP) ;Unit number
JSR PC, REWIS ;REWIND processor

2.2.3 R4 Calls

This convention is used for out-of-line, stack-oriented arithmetic
routines and other compiled=~code support. These routines receive
argument values on the stack, or a pointer to an argument value as an
in-line argument immediately following the call. They delete the
Stack arguments and return a value on the stack. This type of routine is called by a JSR R4,xxx instruction. R4 calls modify the FPP status
register and registers FO-F5 and RO~R4, but preserve RS. Chapter 10 describes the modules that use this convention.

2~3

CONVENTIONS AND STANDARDS

Example:

The FORTRAN statement

X=A**T

is compiled into the code

MOV A+2,-—(SP)

MOV A,~(SP)

JSR R4, PWRICS
eWORD I
MOV (SP)+,X
MOV (SP)+,X+2

;Push A

;Compute A**]T
:Address of I

sStore at X

2.2.4 FO Calls

Commonly used processor=defined functions use this convention. It
sets the FPP F/D status bit to the type of argument and loads the
argument into FO. A JSR PC,xxx instruction calls this routine. It
returns a result in FO and preserves the FPP F/D status bit, but does
not preserve registers RO-R5, F1l-F5, and the Fpp I/L status bit. The
functions that use FO calls are named S$xxxx, aS shown in Table 2-2.

Table 2-2: Processor=Defined Functions

Name Function

SSSIN Real sine
SSDSIN Double~precision sine

SSSORT Real square root
SSDSQR Double=precision square root

SSATAN Real arctangent
S$ SDATN Double~precision arctangent

$$COS Real cosine
SDCOS Double~precision cosine

SSALOG Real logarithm (base e)
SSDLOG Double=precision logarithm (base e)

SSALG1 Real logarithm (base 10)
SSDLG1 Double~precision logarithm (base 10)

SSEXP Real exponential (base e)
SSDEXP Double~precision exponential (base e)

SSTAN Real tangent
SSDTAN Double=precision tangent

2—4

CONVENTIONS AND STANDARDS

Example:

The FORTRAN statement

Y = SIN(X)

is compiled into the code

SETF ;set FPP mode

LDF X,FO
JSR PC,S$$SIN
STF FO,Y

2.2.5 Special Call Conventions

The following are exceptions to the four general calling conventions:

@ OPEN (OPENS) and CLOSE (CLOS$) statements’ use the R5

convention with a special argument list encoding.

@e Run-time format compilation (FMTCVS$) uses a PC call but
returns a stack result for use in a subsequent I/0
initialization call.

@e Adjustable array initialization calls (MAK1$, MAK2$, MAKNS,

and MAKVS) use a PC call but preserve only R5.

e Traceback name initialization (@SNAMS$) uses a co~routine call.

e Virtual array processing ($VRTxy) uses a PC call that
preserves all registers except RO.

® Task initialization (S$OTI) uses a PC call that does not
preserve the registers.

e The intrinsic function INDEX uses the R5 convention, but’ the

addresses in the list point to 2-word (length, address)
descriptors of the argument.

See the corresponding module descriptions in other chapters for more
details on these special variants.

2.3 LABELING CONVENTIONS

The labels of OTS routines begin with a $ and are followed by the name
or acontraction of the name. All external entry point names contain
a $ as either the first or last character.

2.4 CONTEXT SAVE AND RESTORE

The calling sequence determines the OTS register context conventions.
See Section 2.2.

Internal OTS calls use various conventions. In general, the calling
routine saves those registers it requires. Registers not mentioned in
the OTS routine descriptons are saved.

CHAPTER 3

ASSEMBLY LANGUAGE INTERFACES TO THE OTS

Chapter 2 describes how the compiled code that is
program

also can write MACRO=-11 programs that interface with
FORTRAN-77 source

output from your
compilation interfaces with the OTS. You

the OTS. This
chapter summarizes how you can set up that interface.

3.1 WRITING A FORTRAN MAIN PROGRAM IN ASSEMBLY LANGUAGE

The following MACRO-11 code represents a
program:

START: :

JSR PC, OTIS

MOV #“R<IN.>,~-(SP)
MOV #°R<.MA>, R4
JSR R4, @SNAMS

JSR PC, EXITS
.GLOBL SOTSVA
~-GLOBL RCIS
~GLOBL LCIS
~GLOBL IcrI$
~GLOBL ORGSQS
-GLOBL ORGRLS
~GLOBL ORGIXS
~ END START

m
e

w
e

m
e

w
e

T
O

me

TO

MO

MH

We

BR
O

MQ

TW
O

hypothetical FORTRAN main

Initialize the OTS and file management
system

Last 3 letters of name in RADIX~50

First 3 letters of name in RADIX=-50

Initialize traceback chain if desired

Close files and exit
Link in the impure area
Floating point format conversions
Logical format conversions
Integer format conversions
RMS-11 sequential impure
RMS-1l1 relative impure
RMS~11 indexed impure

The call to OTIS initializes the FPP (SFPASS), the SST vector
(SVTKSS), and FCS-11 (FINITS$) or RMS-1ll (SINITIF).

The reference to SOTSVA

area.

loads the FORTRAN impure’ storage

ASSEMBLY LANGUAGE INTERFACES TO THE OTS

3. The references to the FORMAT conversion routines are needed
only if the desired conversion routine is required. (Note
that a FORTRAN subprogram that contains a FORMAT statement
contains the required FORMAT conversion references.)

4. The RMS~-11 impure storage references are needed only if
RMS-ll is the file system your program needs to process a
particular file organization.

3.2 LINKAGE TO THE FORTRAN IMPURE STORAGE AREA

The FORTRAN impure storage area defines a global symbol S$OTSVA, which
is referenced by the compiled code in FORTRAN main programs. Note
that subprograms do not reference this symbol. When the Task Builder
processes a reference to SOTSVA, it loads the FORTRAN impure area and
defines global symbol S$OTSV in the task that contains the address of
the symbol SOTSVA. All FORTRAN OTS routines obtain the address of the
impure area by referencing the location S$OTSV (see the discussion of
the SAOTS macro in Chapter 11).

3-2

CHAPTER 4

DATA STRUCTURES AND STORAGE

The OTS maintains two major areas of impure storage: the work area

and the logical unit control table. This chapter describes those two

areas.

4.1 WORK AREA STORAGE DESCRIPTION

The work area contains task~-specific data, such as address pointers,

and information about the currently active operation, such as a direct

access record number.

For example, the work area contains:

e Named offsets -~ The named offsets make up the first 120 words

of the work area and have names of the form W.xxxx OF XXXXXX.
There are both word and byte offsets, and some of the offsets
have an associated global symbol name.

@e QIO directive parameter block -- The 12-word QIO directive

parameter block (DPB) uses event flag 30 to send error

messages to terminals. On RSX-11M/M-PLUS and RSTS/E systems,
the DPB is used for all message output. The offset W.QIO
points to the DPB.

e Error message text buffer -- The buffer for the error text
message line is 70 bytes in RSX-11M/M=PLUS and RSTS/E. The
offsets W.ERLN (start address) and W.ERLE (end = address+l)

point to the buffer.

e Error control table -= The error control table is 128 bytes,

with one byte for each error. The error control table is an
impure data area that the error=-handling routines use _ and
manipulate. The task initialization routine OTIS copies a
prototype version of the table into this area. The offset
W.ERTB points to this table.

e Synchronous System Trap vector table -- The Synchronous System
Trap (SST) vector address table ($SST) contains an entry for

each defined SST. The offset W.SST points to this table.

@e Window block -= An 8-word address mapping window block is used
by the virtual array processing routines. The virtual array
initialization routine $VINIT initializes this window block.
The offset W.WDB points to this window block.

DATA STRUCTURES AND STORAGE

In this section, the named offsets are organized into functional

groups and described in Tables 4-1 through 4~8. The functional groups

and their corresponding tables are as follows:

Task control -- Table 4-1

I/O control == Table 4~2

Format control -=- Table 4-3

Run=time format control ~~ Table 4-4

Error control -~ Table 4<5

Error message and
traceback control -- Table 4-6

Virtual array control ~-~- Table 4-7

Trap routines -- Table 4-8

Table 4-1: Task Control Information

Global Description Global Name Default

Symbol

EXADDR Address of USEREX routine or 0

W.ACPT Logical unit number for ACCEPT SACCPT 5

Statements

W.BEND High addresst+l of the user
record buffer

W.BFAD Start address of the user record
buffer

W.BLEN Length of the user record 133
buffer; computed at task
initialization time and equal
to W.BEND ~ W.BFAD

W. DEV Start address of the logical unit
control table

W.DEVL For FCS-1l, the high address+]
of the logical unit control
table; for RMS-1l, the address

of the free storage

W.END Last word of named offsets

W.EXST Exit with status value

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4-1 (Cont.): Task Control Information

Global Description Global Name Default
Symbol

W.EXTK Size (in 64=-byte units) of SEXTKL 16
the task increment value for
use in the EXTK$ directive

W.FNML Maximum length of file name SMXFNL 80
strings nonblank characters

W.FPPF FP~1l1 flag byte; 0 if FP-11
present, 1 if not

W.LIMT Address of a .LIMIT directive
block

W.LNMP Number of valid negative unit 4
numbers

W.LUNS Number of valid logical units -NLUNS

W.MO Logical unit number for error -MOLUN
messages

W.PRNT Logical unit number for PRINT SPRINT 6
statement

W.READ Logical unit number for READ SREAD 1
statement

W.SKLM Task's current stack overflow

W.SST Limit address of the SST
table

W.TKLM Task current maximum virtual
address

W.TSKP Address of the special PSECT,

SSTSKP, containing task
parameters

W.TYPE Logical unit number for TYPE STYPE 5
statement

W.LUNO System logical unit number for SLUNO 0
FORTRAN logical unit 0

DATA STRUCTURES AND STORAGE

Table 4-2: I/O Control Information

Global Description
Symbol

BLBUF Address of next data byte in current I/0
record

COUNT Length of array in an I/O list

DENCWD Maximum number of I/O records or 0 if no limit

ENDEX Address of END= statement or 0

EOLBUF End addresst+l of current I/O record

ERREX Address of ERR= statement or 0

FILPTR Address of active I/O control block or 0

FMTCLN Value of SP on entry to I/O processing

ITEMSZ Size in bytes of current I/O list element

LNBUF Start address of current I/O record

RACNT Number of data bytes remaining in current I/0
record

RECIO Address of record=processing I/O routine (GET
or PUT)

UNCNT Number of data bytes remaining in record
segment

UNFLGS Segmented record control word

VARAD Address of current I/O list element or 0

W.EXJ Co-routine address of current I/O element

processing routine

W.FDB1 Pseudo I/O control block for ENCODE/DECODE and

internal files (word 1)

W.FDB2 Pseudo I/O control block for ENCODE/DECODE and

internal files (word 2)

W.FPST FP~1l status register at I/O entry

W.KDSC Character key descriptor address

W.KDTP Key data type byte

W.KMAT Key match criterion byte

W.KNUM Integer key value (2 words)

W.KREF Key~of-reference value

W.OPFL Count of errors during OPEN or CLOSE. statement
processing

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4-2 (Cont.): I/O Control Information

Global Description
Symbol

W.RECH High-order direct access record number

W.RECL Low~order direct access record number

W.UOPN USEROPEN procedure address or 0

W.VTYP Data type code of current I/O list element

Table 4-3: Format Control Information

Global Description
Symbol

D Decimal fraction width of current format item

DOLFLG Dollar sign format flag for the current I/0

record

FMTAD Address of current format byte

FMTLP Infinite format loop flag

FMTRET Address in format for format reversion

FSTK Base of l16-word stack for format parenthesis

nesting

FSTKP Address in FSTK of current nesting level

LENGTH Field width of current format item

PSCALE P format value

REPCNT Repeat count of current format item

TSPECP Highest address used in current I/O record

TYPE Current format code

W.CPXF Complex data item flag: l=real part; O=not
complex; -l=imaginary part

W.DFLT Current default format code or 0

W.ELEM Flag indicating data element has been
processed

W.LICB Base address of current list-directed data
value control block in previous versions of
PDP-11 FORTRAN IV=-PLUS

W.LICP Address in list-directed data value control block of
current data value

FORTRAN IV~PLUS
in previous versions of PDP-1l

(continued on next page)

DATA STRUCTURES AND STORAGE

Table 4~3 (Cont.): Format Control Information

Global Description
Symbol

W.NULL Flag indicating a slash separator character
was seen during list-directed input processing

W.PLIC Address in list-directed data value control
block of current data value

W.PNTY Variable format expression flag byte

W.R5 Saved R5 value for variable format expressions

W.SPBN The SP/SS, BN/BZ, and T format flags

Table 4-4: Run-Time Format Control Information

Global Description
Symbol

NOARG Number of arguments required by current format
code

NUMFLG Current numeric value

PARLVL Current[parenthesis] level

W.OBFH End address +1 of run-time format buffer

W.OBFL Start address of run-time format buffer

Table 4-5: Error Control Information

Global Description
Symbol

W.ECNT Task error limit count, global name: SERCNT

W.ERNM Last error number or 0

W.ERTB Start address of error control table

W.ERUN Logical unit number of last I/O error or 0

W.FERR Primary I/O error code of last I/O error or 0

W.FER1 Secondary I/O error code of last I/O error or
0 |

W.IOEF Special I/O error processing flag

W.PC PC value of SST and FP-1ll errors

W.QIO Address of error message QIO DPB

Table 4-6:

DATA STRUCTURES AND STORAGE

Error Message and Traceback

Control Information

Global Description

Symbol

W.ERLE End addresst+l of error message text buffer

W.ERLN Start address of error message text buffer

W.MOA1 MO first text segment address

‘WSMOA2 MO second text segment address

W.MOPR Address of MO parameter list

W.MOTC MO traceback count

W.MOTR MO traceback list head

W.MOTY Error message type byte: O=MO, 1=QI0

W.MOT2 MO itraceback current statement number

w.MOV1 MO first text segment length

W.MOV2 MO second text segment length

W.NAMC Traceback chain list head, global name: S$NAMC

W.QIO Address of error message QIO DPB

W.SEQC Traceback current statement number, global

name: S$SEQC

W.TKNP Address of task name in error message text

buffer

Table 4-7: Virtual Array Control Information

Global Description

Symbol

W.WDB Address of window block for mapping

W.WNHI Current high-window addresstl

W.WNLO Current low-window address

DATA STRUCTURES AND STORAGE

Table 4-8: Trap Routine Information

Global Routine Whose
Symbol Address Contained

W.ERXT SERXIT

W.ERLG SERRLG

W.FIN SEXIT

W.FPER SFPERR

W.NAM NAMS

W.IOXT SIOEXIT

W.RLME RLMEMS$

W.ROME RQMEMS

W.GSA RMSQLS$

4.2 LOGICAL UNIT CONTROL TABLE

The logical unit control table contains a block of Storage for each
logical unit allocated to the FORTRAN OTS. Each block contains all
the information that the OTS requires to perform I/O to the associated
unit.

All FORTRAN I/O is performed on logical units. Each logical unit has
a control block (LUB). The allocation and manipulation of the control
blocks depends on the file system in use: FCS~1l or RMS~1ll.

The sections that follow describe the LUB symbolic names and their
use. Appendix B contains the offset values for each symbolic name.

4.2.1 Common LUB Definitions

The first two words of each control block are status words (D.STAT and
D.STA2). Certain bits in those status words are defined the same way
in both the FCS=-11 and RMS=-11 file Systems in order to support common
I/O processing as much as possible.

The following bits in D.STAT are defined the same way in both file
systems:

DV. FAK partial control block for ENCODE/DECODE and internal
file usage

DV.FMP ~~ formatted logical unit

DV.FRE ~~ free format disallowed ("short field termination")

DV.OPN ~= open logical unit

DV.RW -~=- current operation type: 0= READ, 1= WRITE

DV.UFP ~~ unformatted logical unit

DATA STRUCTURES AND STORAGE

The following bit definition in D.STA2 is common to both file systems:

DV. BN ~~ BLANK = 'NULL' specified

4.2.2 LUB Definitions for FCS=-11 Support

Each logical unit has a LUB in the SSDEVT_ program section (PSECT).

There iS one LUB allocated: for each unit declared in the task builder

UNITS= statement (if the UNITS= parameter is not specified, the

default value is six logical units). Each LUB is a fixed-length block

consisting of an FCS-1l1 File Descriptor Block (FDB) and a 6-word

header for FORTRAN usage. At task initialization time, each LUB is

set to 0. A close operation also sets each LUB to 0.

Offsets of the form D.xxxx describe the FORTRAN header portion of the

LUB, as follows:

D.STAT ~- status word 1 (see below)

D.STA2 <- status word 2 (see below)

D.RCNM -- direct access record limit (low order)

D.RCN2 <~- direct access record limit (high order)

D.RCCT -~ record count for BACKSPACE (low order)

D.RCC2 ~-- record count for BACKSPACE (high order)

D.AVAD ~~ address of associated variable address or 0

D.RSIZ ~~ maximum record length

D.FDB -~- start of FCS-11 FDB

Several of the words have different uses depending upon. the kind of

I/O operation.

The FORTRAN header portion of the LUB contains two status words. The

bits in these status words have symbolic names of the form DV.xXxx.

These bits are defined as follows:

Status Bits for Word 1 (D.STAT)

Symbol Value Description

DV. FAK 20 Partial LUB for ENCODE/DECODE and_ internal

files

DV.FNB 4 File Name Block initialized

DV.DFD 10 Direct access unit

DV. FACC 40 File attributes byte of FDB (F.FACC) defined

DV.OPN 200 Unit open

DV. FMP 2000 Formatted unit

DV.UFP 4000 Unformatted unit

DV.ASGN 10000 File name defined

Symbol

DV.CLO

DV.FRE

DV. RW

DV.FIX

DV.VAR

DV.SEG

Status Bits

Symbol

DV.AI4

DV.CC

DV.SPL

DV.DEL

DV.SAV

DV.RDO

DV.UNK

DV.OLD

DV.NEW

DV.SCR

DV.APD

DV.RSZ

DV.BN

Value

20000

40000

100000

2

400

1000

for Word 2

Value

2

10

20

100000

Status Bits for Word 1 (D.STAT)

DATA STRUCTURES AND STORAGE

Description

Close in progress

Free format

termination)

prohibited

Input or output operation (0

Fixed~length records

Variable-length records

Segmented records

(D.STA2)

Associated variable is INTEGER*4 data type

Explicit carriage control specified

DISP

DISP

DISP =

Description

‘PRINT’ specified

"DELETE' specified

"SAVE' specified

READONLY specified

TYPE

TYPE

TYPE

TYPE

ACCESS

Explicit RECORDSIZE specified

BLANK

"UNKNOWN' specified

"OLD'

‘NEW

"SCRATCH'

"NULL!

"APPEND'

specified

specified

specified

specified

specified

LUB Definitions for RMS=-1ll Support

storage
allocated

information:

pool.
the

There

SSDEVT PSECT.
is a]

A LUB

Each open logical unit that uses RMS-1ll has a LUB,
-word pointer, or 0, to the LUB,

following

@ An RMS-11 Record Access Block (RAB)

e FORTRAN control information

@ Storage for the file specification string for use during error
reporting

4~10

1 = write)

contains

DATA STRUCTURES AND STORAGE

Allocation of the LUB occurs at the first reference to the logical

unit. Deallocation occurs at the close of the unit.

RMS-11 also requires additional control blocks: the File Access Block

(FAB), Extended Attributes Block (XAB), and the Name Block. The OTS

allocates these as required.

Offsets of the form D.xxxx describe the FORTRAN header portion of the

LUB, as follows:

D.STAT -~ status word 1 (bits defined below)

D.STA2 ~~ status word 2 (bits defined below)

D. LUN - logical unit number

D.NAMC <= length of name string

D.IFI -— RMS internal file identifier value

D.PFAB ~- pointer to FAB or 0

D.RSIZ ~- maximum record length

D.RCNM <- direct access record limit (word 1)

D.RCN2 -~ direct access record limit (word 2)

D.RCCT <= record count for BACKSPACE (word 1)

D.RCC2 ~= record count for BACKSPACE (word 2)

D.AVAD -=- address of associated variable or 0

D.STS -~- RMS status code

D.STV -- RMS secondary status code

D.RNUM <= current direct access record number (2 words)

D.SPAR ~~ spare word (reserved)

D.RAB ~~ start of RMS RAB

D.NAM «= start of file name string save area

Several of these words have different uses depending on the kind of

I/O operation.

The FORTRAN header portion of the LUB contains two status words. The

bits in these status words have symbolic names of the form DV.Xxx.

All unused bit positions are reserved. These bits are defined as

follows:

Status Bits for Word 1 (D.STAT)

Symbol Value Description

DV.SEQ 1 Sequential access

DV.DIR 2 Direct access

DV.KEY 4 Keyed access

4-11

DATA STRUCTURES AND STORAGE

Status Bits for Word 1 (D.STAT)

Symbol Value Description

DV.FIX 10 Fixed~Length records

DV. FAK 20 Partial LUB for ENCODE/DECODE and _ internal
files

DV.FACC 40 File access set by CALL FDBSET

DV.VAR 100 Variable~Length records

DV.OPN 200 Unit open

DV.FMP 2000 Formatted unit

DV.UFP 4000 Unformatted unit

DV.SEG 10000 segmented records

DV.CLO 20000 Close in progress

DV.FRE 40000 Free format prohibited (short field
termination)

DV.RW 100000 Input or output operation (0=read, l=write)

Status Bits for Word 2 (D.STA2)

Symbol Value Description

DV.SEQ 1 Sequential organization

DV.REL 2 Relative organization

DV.IDX 4 Indexed organization

DV.CC 10 Explicit carriage control specified

DV.SPL 20 DISP = 'PRINT' specified

DV.DEL 40 DISP = 'DELETE' specified

DV.AI4 100 Associated variable is INTEGER*4 data type

DV.RDO 400 READONLY specified

DV.UNK 1000 TYPE = ‘UNKNOWN! specified

DV.OLD 2000 TYPE = 'OLD' specified

DV.NEW 4000 TYPE = 'NEW' specified

DV.SCR 10000 TYPE = 'SCRATCH' specified

DV.APD 20000 ACCESS = 'APPEND' specified

DV.SAV 40000 DISP = 'SAVE' specified

DV.RSZ 200 Explicit RECORDSIZE specified

DV.BN 100000 BLANK = 'NULL' specified

DATA STRUCTURES AND STORAGE

An RMS-11 FAB is needed for file open and close operations. FORTRAN

allocates the FAB and additional control information. The LUB offset

D.PFAB points to this FAB.

The FORTRAN header portion contains eight words of control

information, including a 10-byte default file name string

'FOROnn.DAT', where nn is the logical unit number.

The information in the FORTRAN header portion is as follows:

F.STAT ~~ FAB status byte

F.KYCT == number of keys in the OPEN statement KEY parameter

F.PXAB -~ pointer to key definition XAB control block

F.SPAR =-- spare (word reserved for future use by DIGITAL)

F.DNAM ~~ start of default file name string

F.,FAB -— start of RMS FAB

FORTRAN uses XABs for key definitions when opening an _ indexed file.

The KEY parameter of the OPEN statement specifies the number of key

definition XABs to allocate. FORTRAN allocates a single large block

of memory for all key definition XABs, and FAB block offset F.PXAB

points to this block.

Each XAB in the block of key definition XABs contains two words

appended to the RMS XAB. These words contain FORTRAN information used

to check the key definitions of an existing file. The definition of

these words is as follows:

X.XAB ~=- start of RMS XAB

X. POS ~ start position of key specification

X.SIZ -- size of key specification

X.DTP data type of key specification

CHAPTER 5

OVERVIEW OF FORTRAN INPUT/OUTPUT

There are three kinds of OTS input/output (I/0) support modules:

e Those that are independent of a file system

e Those that use the FCS-11l file system

e Those that use the RMS-11]1 file system

This section describes some of the independent I/0 modules’ (see

Chapter 8 for the format-processing routines) and provides an overview
of the I/O subsystem. Chapter 6 describes the FCS-ll-specific modules
and Chapter 7 describes the RMS~ll=-specific modules.

FORTRAN I/O processing consists of three layers or levels:

@e Compiled-code interface

e Data formatting

@e Record processing

The compiled=-code interface level consists of the routines’ called
directly by the compiled code. The routines (listed in Table 5-1)
take the compiled-code arguments, transform them into OTS standard
form, and pass them to the data~formatting level.

The data~formatting level accepts the standard I/O arguments’) and
produces I/0 records as specified by the data elements and format
control. Then the records are passed to or received from the next
level ~~ the record=-processing level.

The record=-processing level interfaces with the file management
systems to read and write logical records. It is the only level
dependent on a particular file system.

Figure 5-1 illustrates the I/O subsystem.

OVERVIEW OF FORTRAN INPUT/OUTPUT

COMPILED COMPILED-CODE I/O STATEMENT
CODE READLN (1,X,ABC)

END

INIT INTEGER REAL STRING OF
l Xx ABC LIST

| | | |

CODE INTEGER REAL STRING END-OF-

INTERFACE INITIALIZE VALUE VALUE ee e ARRAY LIST
LEVEL TRANSMIT TRANSMIT TRANSMIT MARK

INTEGER
/ CONVERSIONS

DATA FORMAT PROCESSING BOOLEAN FORMATTING —
RECORD CONSTRUCTION CONVERSIONS LEVEL

\. REAL

CONVERSIONS

RECORD FCS-11 EL ORIENTED RECORD 1/0
PROCESSING FILE DEVICES FOR RECORD

LEVEL OPEN FCS-11 GET/PUT DEVICES - QIO

'

FCS-11 FCS-11 RSX-EXECUTIVE
ZK-229-81

Figure 5-1: The I/O Subsystem

5.1 COMPILED=CODE INTERFACE

The compiled=-code interface is the external interface for the OTS I/O
subsystem.

I/O statements produce three types of subroutine calls in the compiled
code:

Initialization calls -= set up the I/O system for the specific
I/O requested, open the specified logical unit if necessary,
and declare the I/O system to be active

Element transmission calls (if any) ~=- generate calls
OTS for entities in the I/O list

to the

Termination calls ~~ complete the I/0 and declare
the I/O system inactive

operation

OVERVIEW OF FORTRAN INPUT/OUTPUT

For example, the FORTRAN statements

DIMENSION A(10)

READ (2) I,A,B

are compiled into the following code:

MOV #2,-(SP) Unit number

JSR PC,ISUS s:Initialize READ

MOV #1,~-(SP) sAddress of I

JSR PC,IOAIS ;Transmit integer

MOV #ASADB,-~(SP) ;Address of array descriptor for A

JSR PC, IOAAS ;Transmit array A
MOV #B,-~(SP) ;Address of B

JSR PC, IOARS :;Transmit real
JSR PC,SEOLST >End~of-list

5.1.1 Initialization Processing

There is a separate initialization-processing routine for each
compiled FORTRAN I/O statement. These routines take the I/0
Statement-Specific arguments, construct a mask word describing the
arguments, and pass them to the I/O statement initialization module

SINITIO.

5e-l.1.1 The Routines - Table 5-1 lists the entry point names for the
initialization-processing routines, Each routine has two entry
points:

@® xXXXS$ ~~ for I/O statements that do not use END= or ERR=

@ XXXES ~- for I/O statements that do use END= or ERR=

Table 5-1: I/0 Initialization Entries

Entry

Name Arguments Function

ISFS u,f Sequential formatted input
ISFES u,f,e

ISus u Sequential unformattted input
ISUES u,e

IRFS$ u,r,f£ Direct formatted input
IRFES u,r,f,e

IRUS u,r Direct unformatted input
IRUES$ u,r,e

IKFS1 u,£,k,kr,km Character keyed formatted input
IKFES! u,f£,k,kr,km,e

1. These entries are supported only by RMS~11 versions.

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-1 (Cont.): I/O Initialization Entries

Entry

Name Arguments Function

rKus$+ u,k,kr,km Character keyed unformatted

IKUES 1 u,k,kr,km,e input

ILFSt u,f£,1,kr,km Integer keyed formatted input

ILFESt u,£,1,kr,km,e

ILus 1 u,l,kr,km Integer keyed unformatted input

ILUES! u,l,kr,km,e

OSFS$ u,f Sequential formatted output
OSFE$ u,f,e

OSUS u Sequential unformatted output
OSUES$ u,e

ORFS u,r,f Direct formatted output

ORFES u,r,f,e

ORUS$ u,YX Direct unformatted output
ORUES u,r,e

RsFS1 u,£ Formatted rewrite

RSFES2 u,£,e

Rsust u Unformatted rewrite
RSUES! u,e

ENFS c,f,a ENCODE

ENFES c,f,a,e

DEFS c,f,a DECODE

DEFES c,f,a,e

ISLS u List-directed input
ISLES$ u,e

OSLS u List-directed output
OSLES u,e

piss} u Sequential DELETE
pLsEst u,s

DLRSt u,X Direct DELETE
DLRESt u,r,e

FDRS u,© Direct FIND

FDRES u,r,e

ENDFS u ENDFILE

ENDFES u,s

REWIS u REWIND

REWIES u,s

1. These entries are supported only by RMS-1l versions.

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-1 (Cont.): I/0 Initialization Entries

Entry
Name Arguments Function

UNLKS 1 u UNLOCK

UNLKES u,Ss

DEFFS u,mr,rl,v,vt DEFINEFILE

IIFS d,f Internal file read

IIFES d,f,e

IIFAS adb,f

TIFAES adb,f,e

OIFS d,f Internal file write

OIFES d,f,e

OIFAS adb,f

OIFAES adb ,f,e

l. These entries are supported only by RMS~-11 versions.

Arguments:

u Logical unit number ~~ INTEGER*2 value.

r Direct access record number ~~ INTEGER*4 value.

£ Format specifier ~~ address of compiled format text.

k Character key specifier -- address of key descriptor, which

has the following form:

length of string

address of string <- ~~address of descriptor

Note that the address points to the second word of the

descriptor.

adb Address of the array descriptor block.

kr Key~of-reference number ~~ INTEGER*2 value; if no KEYID is

specified, a value of -1 is supplied.

e END=/ERR= specifier ~- address of END= label, followed by

address of ERR label. If one of the labels is missing, a 0

address is supplied for that label.

1 Integer key specifier -- INTEGER*4 value.

km Key match criterion ~- INTEGER*2 value encoded as follows:

0 -—- equal match

1 -- greater than or equal match

2 ~~ greater than match

a ENCODE/DECODE buffer -- address of buffer.

OVERVIEW OF FORTRAN INPUT/OUTPUT

Cc ENCODE/DECODE buffer ~~ INTEGER*2 value.

d Address of the character descriptor. The first word of the
descriptor contains the length of the string; the second
word contains the address of the string.

S ERR= statement label address.

mr Maximum direct access record number -- INTEGER*4 value.

rl Record length in 16-bit words -= INTEGER*2 value.

V Address of associated variable.

vf Associated variable data type flag -— INTEGER*2 value
encoded as follows:

0
~-l

INTEGER*2 data type
INTEGER*4 data type

NOTE

If a run=time format is specified, the
run-time format compiler FMTCVS$
overwrites the source address of the
run-time format array with the address
of the compiled format string.

5-1.1.2 SINITIO = The SINITIO routine performs specific functions
based on the arguments passed by the initialization-processing
routines described in Section 5.1.1.1. In addition, SINITIO paves the
way for the remaining levels of processing by storing the appropriate
data~formatting routine address in the impure area offset W.EXJ, and
the appropriate record~processing routine address in the impure area
offset RECIO.

As mentioned, the routines that pass arguments to SINITIO use a
bit-encoded mask to indicate what operations need to be performed.
When SINITIO is called, RO points to the stack arguments and Rl
contains the bit~encoded mask.

The symbols and argument masks used by the routines are described in
Tables 5-2 and 5-3, respectively. Table 5-4 describes the operations
SINITIO performs based on the bit settings.

Table 5-2: I/0 Initialization Symbols

Symbol Value Description

FL.ERR 100000 END=/ERR= present
FL. INB 40000 Internal files passed by ADB
FL.IND 20000 Internal files passed by descriptor
FL.ENC 11000 ENCODE/DECODE statement
FL.FMT 4200 Format present
FL.REC 2400 Direct access record number present FL. FMP 200 Formatted operation permitted
FL.WRT 140 WRITE operation (with implied OPEN) FL.RD 40 Read operation (with implied OPEN)

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5=2 (Cont.): I/O Initialization Symbols

Symbol Value Description

FL.EDA 10000 ENCODE/DECODE buffer address

FL. FMA 4000 Format address
FL.RNM 2000 Record number

FL.EDL 1000 ENCODE/DECODE buffer length
FL.DIR 400 Direct access
FL.OUT 100 Output operation
FL.OPN 40 OPEN required

FL. IGN 20 Ignore format and record type
checks

FL.KEY 10 Keyed access
FL.REW 4 REWRITE

FL.DEL 2 DELETE

FL.KIN l Integer key value

Table 5~3: I/0 Initialization Argument Masks

Mask Meaning

ISFS$ Sequential formatted input: FL.FMT+FL.RD
OSFS Sequential formatted output: FL.FMT+FL.WRT
ISUS Sequential unformatted input: FL.RD
Oosus Sequential unformatted output: FL.WRT
ISLS Sequential. list-directed input: FL.FMP+FL.RD
OSLS Sequential list-directed output: FL.FMP+FL.WRT
RSFS Sequential formatted rewrite: FL.FMT+FL.WRT+FL.REW

RSUS Sequential unformatted rewrite: FL.WRT+FL.REW
IRFS Direct formatted input: FL.FMT+FL.REC+FL.RD
ORFS Direct formatted output: FL.FMT+FL.REC+FL.WRT
IRUS Direct unformatted input: FL.REC+FL.RD
ORUS Direct unformatted output: FL.REC+FL.WRT
IKFS$ Character keyed formatted input: FL.KEY+FL.FMT+FL.RD
IKUS Character keyed unformatted input: FL.KEY+FL.RD
ILFS Integer keyed formatted input:

FL.KEY+FL.FMT+FL.RD+FL.KIN

ILUS Integer keyed unformatted input: FL.KEY+FL.RD+FL.KIN
ENFS ENCODE statement: FL.FMT+FL.ENC
DEFS$ DECODE statement: FL.FMT+FL.ENC
ENDFS ENDFILE statement: FL.WRT+FL.IGN
DLS$ Sequential delete: FL.WRT+FL.IGN+FL. DEL

DLRS Direct delete: FL.WRT+FL.REC+FL.IGN+FL. DEL
FDRS FIND statement: FL.RD+FL.REC+FL.IGN

ILFS$ Internal file read: FL.IND+FL.FMT
IIFAS Internal file read with address of ADB passed as the

Internal logical unit number:
FL. INB+FL. FMT

OIFS Internal file write: FL.IND+FL.FMT
OIFAS Internal file write with address of ADB passed as the

Internal logical unit specifier:
FL. INB+FL. FMT

NOTE

If the corresponding END=/ERR= -entry
point is called (for instance, ISFES$
rather than ISFS$), the argument mask
includes FL.ERR.

57

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-4: I/0 Initialization Routine Functions

Function Description

FL.DEL

FL.DIR

FL.KEY

FL.EDA

FL.EDL

FL.ERR

FL.FMA

FL.FMP

FL. IGN

FL.INB

If the file organization is sequential, issue OTS
error 55, DELETE statement error.

Compare the access mode of the I/O statement with the

access mode of the logical unit; issue OTS error 31
if the access mode does not match. Issue OTS error 26
if direct or keyed access is required but has not been
specified. Valid combinations are:

Direct access I/O -= direct access unit

Sequential access I/0 -- sequential or keyed
access unit

Keyed access I/0O ~~ keyed access unit

Save the ENCODE/DECODE buffer address in the impure

area offsets, LNBUF (Start address) and BLBUF (current

address).

Add the ENCODE/DECODE buffer length to the start

address to determine the end address of the buffer.

Save this value in impure area offset EOLBUF.

Save the END= address in impure area offset ENDEX, and
the ERR= address in impure area offset ERREX.

Save the format address in impure area offset FMTAD.

Compare formatting type specified with format type of
the logical unit. Mixed formatted and unformatted
operations are not permitted. Issue OTS error 31 if
the format types do not match.

Ignore the format checks for ENDFILE, FIND, and DELETE

Since both formatted and unformatted are permitted.
Ignore the record type check since record type depends
on format.

Save the format address in impure area offset FMTAD.
Save the internal logical unit address in the impure
area offsets LNBUF (Start address) and BLBUF (current
address). Add the bytes per element from offset A.BPE
in the array descriptor block to offset LNBUF to
determine the end address of the internal logical
unit. Save this value in impure area offset EOLBUF.
Divide the total size of the array in bytes (offset
A.SIZB in the ADB) by the bytes per element (offset
A.BPE) to determine the number of records and store
this value in the impure area offset DENCWD.

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-4 (Cont.): I/O Initialization Routine Functions

Function Description

FL.IND

FL.KEY

FL.KIN

FL.OPN

FL.OUT

FL.REW

FL.RNM

Save the format address in impure area offset FMTAD.

Save the internal logical unit address in the impure

area offsets LNBUF (Start address) and BLBUF (current

address). Add the length of the internal logical unit

specifier to offset LNBUF to determine the end address

of the internal logical unit. Save this value in

impure area offset EOLBUF.

Save the key value descriptor address in impure area

offset W.KDSC, the key~of-reference number in impure

area offset W.KREF, and the key match value in impure

area offset W.KMAT.

Save the integer key value in impure area offset

W.KNUM and W.KNUM+2. Set W.FDTP to integer.

If the logical unit is not yet open, open it using the

default open processor SOPEN.

Set the logical unit status to input or output as

appropriate. If output is specified and the logical

unit is declared read-only, issue OTS error 47.

If the file organization is sequential or relative,

issue error OTS 54, REWRITE statement error.

Save the direct access record number in impure = area

offsets W.RECL and W.RECH as an INTEGER*4 value.

5.1.2 List Element Transmission

The compiled code makes one data transmission call to the OTS for each

data item in the I/O list. The data transmission entry points are of

the form:

LoOats

Designates whether the argument is an address or a value; can be

A, for address, or V, for value.

The data type of the list element as follows:

Q
U
0
U
D
G
U
H

S
e
r

ww
 byte
Logical*2
Logical*4
Integer*2
Integer*4

real
double precision
complex

OVERVIEW OF FORTRAN INPUT/OUTPUT

There are additional entry points, used only for arguments that are
addresses, They are defined as follows:

IOAHS ~-= transmits a Hollerith constant (output only). The
argument is the address of the first byte of the
constant as an ASCIZ string.

IOAAS - transmits an entire array by name. The argument is the
address of the array descriptor block. For formatted
I/O, each array element is passed individually to the
data~formatting level. For unformatted I/O, the entire
array 1s passed as a single large data item.

IOAVAS ~ transmits an entire virtual array by name, The
argument is the address of the array descriptor block.

One entry is used for an argument that is two words
(length, address descriptor):

IOACHS transmits a character string. The argument is the
length of the character string and the address of the
first byte of the ASCII string.

The routines at each of these entry points set up impure area offsets
and then invoke the data~formatting level of processing at impure area
offset W.EXJ. The impure area offsets set up are as follows:

ITEMSZ -~ size in bytes of the data item.

VARAD ~~ address of the first byte of the data item, or 0 if at
end of list.

W.VTYP ~~ data type code of data item.

W.CPXF ~~ complex data type flag. Complex data items are passed
aS a pair of real values, W.CPXF=0 indicates a
noncomplex item; +1 indicates the real part of a
complex item; ~l indicates the imaginary part of a
complex item.

5.1.3 Termination Call

The routine at entry point EOLSTS is called to Specify the end of the
I/O list. No arguments are required.

5-2 DATA~FORMATTING LEVEL

The compiled~code interface level calls data~formatting routines to
transmit data between records and I/O list items, including any common
operations that are required.

For formatted I/O, there are three routines:

SFIO -=- format processor

SLSTI -= list~directed input processor

SSTO -~- list-directed output processor

These routines are called with no register arguments; on return all
registers are undefined.

OVERVIEW OF FORTRAN INPUT/OUTPUT

For unformatted I/0, since conversion is not needed, the appropriate
initialization modules maintain the transfer code as routines.

The data~formatting routines accept data item descriptions from the
impure area offsets ITEMSZ, VARAD, W.VTYP, and W.CPXF. On input, the
routines read the next field of the record and transfer data to the

item. On output, the data item value is transferred to the record.
The following impure area offsets describe the record being processed:

LNBUF -~ start of buffer address

BLBUF ~~ address of next data byte

EOLBUF ~~ end of buffer address

When a new record must be read, or an output record is full, the

record~processing routine specified by impure area offset RECIO is
called to process the record. On input, the old record is discarded,
a new record is read, and the impure area record description is
updated. On output, the record is written and a new buffer area is
set up.

5.3 RECORD PROCESSING LEVEL

The record=processing routines are called to transfer records to and
from the file system. The record~processing routines are:

SGETS -~ sequential input

SPUTS ~~ sequential output

SGETR -- direct input

SPUTR ~- direct output

SGETK =~ keyed input

SUPDATE ~~ rewrite

5-4 PRINT, TYPE, AND ACCEPT STATEMENTS AND LOGICAL UNIT 0

The PRINT, TYPE, and ACCEPT statements compile into equivalent READ
and WRITE statements using default unit numbers. Default unit numbers
are small negative integers, which $FCHNL maps through a table in
impure storage to actual unit numbers. This table also has global
names for each statement to allow modification of the mapping. The
global names are:

SPRINT for PRINT

STYPE for TYPE

SACCPT for ACCEPT

SREAD for READ

The unit number value is at impure area offset W.LNMP. The mapped
values are at offsets W.PRNT for PRINT, W.TYPE for TYPE, W.ACPT for
ACCEPT, and W.READ for READ, with no unit number.

OVERVIEW OF FORTRAN INPUT/OUTPUT

PRINT ~~ compiles into OSF$ with unit number = -1, maps to 6

TYPE “~~ compiles into OSFS$ with unit number = ~2, maps to 5

ACCEPT ~~ compiles into ISF$ with unit number = -3, maps to 5

READ -- compiles into ISFS$ with unit number ~4, maps to 1

If you specify logical unit 0, you must use the GBLPAT option of the
Task Builder to associate a valid logical unit number (1-99) with
global SLUNO. $FCHNL (see Section 5.6.1) uses the value of S$LUNO to
Change FORTRAN logical unit 0 to a valid System logical unit number.
If you attempt to use logical unit 0 without moving a valid number’ to
SLUNO, an error occurs.

5-5 OPEN AND CLOSE STATEMENTS

The OPEN and CLOSE source statements allow user Programs to control
the attributes and characteristics of files. The compiled code for
these statements uses the standard R5 calling sequence with a_ special
argument list encoding, as follows:

ARGLST: eWORD 2n

KEY1

KEYn

There is one argument for’ each keyword in the FORTRAN’ source
statement. Each argument consists of a 2=word block, formatted as
follows:

15 8 7 0

ARGTYPE KEYWRD ID

INFO

KEYWRD ID
The low-order byte of the first word contains the keyword
identification number associated with the keyword name in the
Source statement (see Table 5-5).

ARGTYPE
The high-order byte of the first word contains the argument type.
It is used in conjunction with the INFO word to identify the
keyword's value.

INFO
The second word is called the information word; its use depends
on the ARGTYPE value.

The possible ARGTYPE values are 1 through 7. The meanings of each
ARGTYPE are as follows:

ARGTYPE Value Meaning

1 The keyword's value is. an INTEGER*®2 constant
expression. The INFO word contains the value.

2 The keyword's value is an INTEGER*2 variable. The
INFO word contains the address of the variable.

OVERVIEW OF FORTRAN INPUT/OUTPUT

ARGTYPE Value Meaning

3 The keyword's value is an INTEGER*4 variable. The

INFO word contains the address of the variable.

4 The keyword's value is an alphanumeric literal

decodable by the compiler. The INFO word contains

the keyword's value encoded as a small integer.

5 The keyword's value is a variable, array, array

element, or character constant terminated by an

ASCII null character (zero-byte). The INFO word

contains the address of the start of the string.

6 The keyword's value is the address of an _ external
procedure. The INFO word contains the address.

7 The keyword's value is the address of a 2-word
descriptor. The first word of the descriptor
contains the length of the string; the second word
contains the address of the string. The INFO word
contains the address of the first word of the
descriptor.

A statement's keywords can be in any order, but there cannot be any

duplicates. Table 5-5 lists the keyword names, their associated

identification numbers, and the ARGTYPES permissible with each

keyword. The table also lists the literal values and associated

literal encoding possible for keywords whose ARGTYPES are 4.

Table 5-5: Summary of Argument Blocks by Keyword

Keyword Keyword Allowed Literal Literal
Name Number Argtypes Values Encoding

ACCESS 4 4 DIRECT 1
SEQUENTIAL 2

APPEND 3

KEYED 4

ASSOCIATEVARIABLE 17 2,3

BLANK 25 4 NULL 1

ZERO 2

BLOCKSIZE 18 1,2,3

BUFFERCOUNT 9 1,2,3

CARRIAGECONTROL 7 4 FORTRAN 1
LIST 2

NONE 3

CHARKEY + 23 1,2,3

1. KEY occurs one time and gives the number of key specifications.
KEY is followed by n pairs of CHARKEY or INTKEY keywords giving
the start and end positions of each key specification. The
pseudo-keywords CHARKEY and INTKEY denote the data type of the key
specification.

(continued on next page)

OVERVIEW OF FORTRAN INPUT/OUTPUT

Table 5-5 (Cont.): Summary of Argument Blocks by Keyword

Keyword Keyword Allowed Literal Literal
Name Number Argtypes2 Values Encoding

DISPOSE 2 4 SAVE 1]
DELETE 2
PRINT 3

ERR 3 aaa Label

address

EXTENDSIZE ll 1,2,3

FILE or NAME 14 5,7

FORM 5 4 FORMATTED l

UNFORMATTED 2

INETIALSIZE 10 1,2,3

INTKEY 1 24 1,2,3

KEY 1 22 1,2,3

MAXREC 16 1,2,3

NOS PANBLOCKS 12 --

ORGANIZATION 19 4 SEQUENTIAL 1
RELATIVE 2

INDEXED 3

READONLY 8 -—

RECORDSIZE or RECL 6 1,2,3

RECORDTY PE 20 4 FIXED 1

VARIABLE 2

SEGMENTED 3

SHARED 13 -

STATUS or TYPE 15 4 OLD l
NEW 2

SCRATCH 3
UNKNOWN 4

UNIT a 1,2,3

1. KEY occurs one time and gives the number of key specifications.
KEY is followed by n pairs of CHARKEY or INTKEFY keywords giving
the start and end positions of each key specification. The
pseudo~keywords CHARKEY and INTKEY denote the data type of the key
Specification.

2. The ARGTYPE field for the ERR= keyword contains the number of
bytes of temporary stack storage which must be deleted if an ERR=
transfer occurs.

OVERVIEW OF FORTRAN INPUT/OUTPUT

As an example, consider the following FORTRAN source statement:

OPEN (UNIT=I, ERR=99, NAME='A.DAT')

When it is compiled, the code (in part) looks like the following:

MOV ARGLST,R5 ;Address of arg list
JSR PC,OPENS ;Open the file

ARGLST: .WORD 6 ;3 args
~-BYTE 1,2 ;UNIT, ARGTYPE=2

~-WORD I sAddress of I

~BYTE 3,2 ;ERR, 2 bytes of stack temp
-WORD 99 ;Address of label
~-BYTE 14,5 ;NAME, ARGTYPE=5
-WORD STRING ;Address of string

STRING: .BYTE 101,56,104,101,124,0 ;'A.DAT'

5.6 OTHER INTERNAL SUPPORT ROUTINES

The following sections describe several other internal support
routines the OTS uses,

5.6.1 S$FCHNL, $GETFILE, and S$IOEXIT

The SFCHNL, SGETFILE, and SIOEXIT routines serve as the common

entrance and exit to the I/O system.

SFCHNL locates the LUB for a given logical unit number and issues’ an
error for invalid units. It is called with the logical unit number in
R2 and returns the address of the associated LUB in RO. The PSW C=bit
is used as an error flag on return: it is set if there is an error,
clear if there is not an error. On return, registers Rl and R2 are
undefined, R3 contains the impure area pointer, and R4 and R5 are
preserved.

SGETFILE executes a $FCHNL, sets the FILPTR impure area offset, and
checks the status of the unit. It is called the same way as S$FCHNL.
It does not return the C-bit error flag; however, its register
returns are identical to SFCHNL.

SIOEXIT restores the user-level status and register state and executes
the ERR= transfer. It is called with the ERR= transfer address in R4
and the work area pointer in R3.

OVERVIEW OF FORTRAN INPUT/OUTPUT

9-6.2 Default File Open Processing -=- SOPEN

A default open is the implicit opening of a logical unit due _ to
executing an I/O statement on a closed logical unit. If a READ or
FIND statement is executed, the default open is equivalent to the
following OPEN statement (unless a DEFINEFILE has been executed):

OPEN (UNIT=unit, TYPE='OLD', ORGANIZATION= "SEQUENTIAL', BLANK='ZERO',
FORM= “form of the I/O statement", ACCESS="SEQUENTIAL')

If a WRITE statement is executed, the default open is equivalent to
the following OPEN statement (unless a DEFINEFILE has been executed):

*

OPEN (UNIT=unit, TYPE='NEW', ORGANIZATION= "SEQUENTIAL', BLANK='ZERO',
FORM= "form of the I/O statement", ACCESS= '"SEQUENTIAL')

All other OPEN statement parameters assume their default values as
described in Chapters 6 and 7, respectively.

The default file open processor is called with RO pointing to the LUB
and R3 pointing to the impure area. On return, all registers are
preserved.

5.6.3 Default File Close Processing -~ S$CLOSE

The file close processor is invoked when any one of the _ following
occurs:

e A CLOSE statement is executed.

e A CALL CLOSE subroutine is executed.

e A program terminates.

e A file open fails.

The SCLOSE routine implements the DISPOSE= parameter set by the OPEN
Or CLOSE statement, and invokes the appropriate routine to close,
delete, or print the file.

This routine is called with the logical unit number in R2. On return,
RO, Rl, R2, and R4 are undefined; R3 points to the impure area; R5
is preserved; and the processor C-bit is set to indicate whether an
error occurred during the close operation.

5.6.4 Direct Access Record Number Checking -- $CKRCN

SCKRCN compares the current record number with the maximum record
number for the file. The current record number is stored at offsets
W.RECL (low order) and W.RECH (high order). The maximum record
number, if it exists, is at D.RCNM (low order) and D.RCN2 (high order)
in the LUB. If the record number is valid, it is returned in Rl (high
order) and R2 (low order). This routine is called with the LuB
address in RO, and the impure area pointer in R3. Registers R4 and RS
are preserved.

5-16

OVERVIEW OF FORTRAN INPUT/OUTPUT

5.6.5 Associated Variable Update -- SASVAR

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by one, and stored in the associate variable at the
address in D.AVAD in the LUB.

5.6.6 Keyed I/O Specifier Checking ~~ $CKKEY

SCKKEY verifies the key specification in a keyed I/O statement = and
Sets the proper control information in the LUB. This routine is
called with the LUB pointer in RO and the impure area pointer in R3.
Registers Rl and R2 are destroyed; all other registers are preserved.

5.6.7 Register Save and Restore -- SSAVPx

The $SAVPx routine provides the register save/restore and argument
processing support for implementing the OTS PC call convention (see
Section 2.2.2), which pushes all arguments on the stack, calls the OTS
routine by a JSR PC,xxx instruction, and returns with arguments
deleted and all context preserved. This register save/restore routine
is called by the OTS routine. It saves all registers on the stack,
sets RO to point to the call arguments, and co-jroutine calls the OTS
module. Upon return from the OTS routine, the register save/restore
routine restores the registers, deletes the stack arguments, and
returns to the original caller. Seven entry points are provided:
SSAVPO-SSAVP8 for routines with zero to eight argument words on_ the
Stack. For routines with more than eight arguments or with a variable
number of arguments, SSAVPO is called to save the registers; upon

return to the OTS module, RO contains the number of arguments and a
Jump to SSAVPC is executed at the completion of the OTS module, rather
than a return to the register restore portion of the SSAVPx routine.
For ERR= transfers, SSAVPx is jumped to with RO containing the
transfer address.

5.6.8 Register Save and Restore ~= .SAVR1

Several OTS routines call the FCS-11 register save co-routine .SAVRI1
to save and restore registers Rl through R5 in co-routine fashion.

5.7 FORTRAN FILE AND RECORD FORMATS

This section describes the file and record formats that are processed

by the FORTRAN I/O system.

5.7.1 Sequential Organization Files

You can process sequential files on all devices. Records may be fixed
length, variable length, or FORTRAN segmented. Fixed=length records
have no control information and are packed densely into blocks by the
file system. Variable=length records have a count field in front of
each record. For ANSI magnetic tape, the count field is a 4-=byte
decimal ASCII number. For all other devices, the count field is a
2-byte binary value.

OVERVIEW OF FORTRAN INPUT/OUTPUT

A segmented record is a single logical record consisting of one or
more variable-length records. Each variable-length record constitutes
a segment. Segmented records are useful when you want to write
exceptionally long records, and are used for unformatted sequential
files.

Because the size of a segmented record is unlimited, each
variable-length record in the segmented record contains’ control
information to indicate that it is one of the following:

e The first segment in the segmented record

e The last segment in the segmented record

e The only segment in the segmented record

@e None of the above

This control information is in the first two bytes of the record after
the count field. Only two bits of the first byte are used; all other
bits must be zero.

If both bits are set, the segment is the only segment in the record.
If only bit 0 is set, the segment is the first segment. If only bit 1
is set, the segment is the last segment. If neither bit is set, the
segment is not the first, last, or only segment in the record.

This control information is transparent to the user. program; it is
interpreted only by the FORTRAN I/O system. If unformatted sequential
files are to be processed in any other way, the files must be created
with either fixed~ or variable-length records.

The FORTRAN I/O system does not support system files or files with
variable fixed control (VFC) format records.

5.7.2 Relative Organization Files

You can process relative files only on disk devices. Records may be
fixed length or variable length. Each record has a control byte used
for deletion control. Variable-length records are actually stored in
fixed-length cells that are the size of the largest record, as
Specified by the RECORDSIZE parameter. Variable~length records also
contain a 2—byte binary count field that specifies the current length.

5.7.3 Indexed Organization Files

You can process indexed files only on disk devices. Records may be
fixed length or variable length. Each record has a control byte used
for deletion control. Variable=length records also have a 2~-byte
binary count field. Each record contains additional bytes of RMS~1l
control information. Additional RMS~11 control information is stored
for each bucket. Additional buckets are required for index areas,
alternate key areas, and RMS control information.

CHAPTER 6

FCS-11 I/O SUPPORT

This chapter discusses the FCS-ll-specific portions of the OTS. In
particular, it describes the explicit FCS operations used to implement
FORTRAN I/O operations.

The following register assignments are normally made within the 1/0
portion of the OTS:

@ RO =~ address of the FCS File Descriptor Block (FDB)

e Rl ~~ address of the Logical Unit Block (LUB)

@ R3 -- address of the work area

@ R2 and R4 ~~ scratch registers

A JSR PC,xxx instruction calls all routines except the co-routine
calls. R5 is generally preserved.

6.1 FCS=11 I/O CONTROL BLOCK

The FCS-11 I/O system associates a Single control block, called the
File Descriptor Block (FDB), with each open unit. The FDB is incorporated within the FORTRAN Logical Unit Block (LUB). See Section 4.2 and Appendix B for more information about the LUB. See the TAS/RSX-11 I/O Operations Reference Manual for more information on FCS data structures,

6.2 OPEN PROCESSING

Default file open processing and OPEN statement processing merge into
a single common routine, SOPENS (see Section 6.2.3), for a file open. SOPENS invokes the macro OFNBS, which performs all file open operations. If file name parsing logic is not required ~= that is, if FORTRAN default file names are used ~= the routines for file name parsing are not included in the task. Table 6-1 shows the OPEN Statement keywords, the possible values of the keywords, and the FDB Settings associated with the keyword values.

FCS-11 I/0 SUPPORT

Table 6-1: Summary of OPEN Statement Keywords and FDB Settings

Keyword
Name Value FDB Setting

ACCESS "DIRECT! Set FD.RAN in F.RACC

"SEQUENTIAL' -

"APPEND! Set FO.APD in F.FACC

ASSOC IATEVARIABLE V ~-

BLANK "NULL! -~

"ZERO! -

BLOCKSIZE n Set n in F.OVBS

BUFFERCOUNT n Set n in F.MBCT

CARRIAGECONTROL "FORTRAN! Set FD.FTN in F.RATT

‘LIST! Set FD.CR in F.RATT

"NONE !

DISPOSE "SAVE! Use CLOSES at file close

"DELETE! Call .DLFNB at file close

"PRINT! Call .PRINT at file close

ERR S -

EXTENDSIZE n Set n in F.ALOC

FILE or NAME f Call SFNBST

to set File Name
Block of FDB

FORM "FORMATTED! -

"UNFORMATTED'! -

INITIALSIZE n Set n in F.CNTG

MAXREC n ~

NOS PANBLOCKS ~ Set FD.BLK in F.RATT

READONLY - Set FO.RD in F.FACC

RECORDSIZE or RECL n Set n in F.RSIZ

SHARED ~ Set FA.SHR in F.FACC

STATUS or TYPE 'OLD' Use OPENSU
"NEW! Use OPENSW

"SCRATCH! Use OPNTSD

"UNKNOWN' Try OPENSU, if no such
file, then OPENSW

UNIT n Set n in F.LUN

RECORDTYPE "FIXED! Set R.FIX in F.RTYP
"VARIABLE! Set R.VAR in F.RTYP

"SEGMENTED' Set R.VAR in F.RTYP

USEROPEN Pp

Notes:

f is
n is

s is
v is

p is

FCS-11 I/O SUPPORT

an array, array element, variable, or character constant.

an integer expression.
an executable statement label.
an integer variable name.
an external procedure name.

6.2.1 OPEN Statement Processing

In OPEN statement processing, an argument list 1s searched and each
keyword is located ina prescribed order. All information required
for each keyword is available when that keyword is processed. - An
appropriate default is used for keywords not in the list. If any
errors occur during the search, the execution of the OPEN statement is
not attempted, the ERR= transfer is executed, and the LUB is zeroed.

The processing for each keyword is as follows:

ACCESS -- 'DIRECT' sets DV.DFD; ‘APPEND' sets DV.APD. If
DV.RDO is set and DV.APD is specified, an error occurs. If
DV.APD is not specified, the default is 'SEQUENTIAL'.

ASSOCIATEVARIABLE -- The variable address is stored at D.AVAD.

If the variable is type INTEGER*4, DV.AI4 is set.

BLANK -- 'NULL' sets DV.BN. Note that if the /F77 switch is

set and no BLANK= is’ specified, the compiler passes a
BLANK='NULL‘' parameter. 7

BLOCKSIZE -- The value specified is stored at F.OVBS. An

error occurs if the value is negative or greater than 32767.

BUFFERCOUNT -- The value specified is stored at F.MBCT. If
the value is less than -1l, or greater than 127, an error

occurs. Note that the actual number of buffers used depends
on which FCS verSion is used and on the number of buffers
available when the file is opened. A buffer count of -l means
the unit is opened in block mode (READS/WRITES) rather than
record mode (GETS/PUTS). In block mode, normal FORTRAN I/O is

not permitted but the user can perform asynchronous block mode
I/O using the FORTRAN special subroutines provided by the
operating system. Note that when you do block mode I/0, you
should either specify the Task Builder option MAXBUF =
recordsize or call the system subroutine ERRSET to avoid
run-time error 37 (inconsistent record length).

CARRIAGECONTROL -- If DV.CC is set 'FORTRAN' sets FD.FTN in

F.RATT, and 'LIST' sets FD.CR in F.RATT. If DV.CC is not set
and DV.FMP is specified, FD.FTN is the default.

DISPOSE -- 'SAVE' sets DV.SAV; ‘PRINT’ sets DV.SPL; and

"DELETE' sets DV.DEL. If DV.RDO is set, and DV.DEL or DV.SPL
is specified, an error occurs. If a DISPOSE value is not
specified and DV.SCR is set, '‘'DELETE' is the default;
otherwise, 'SAVE' is the default.

FCS=11 I/O SUPPORT

ERR ~~ The ERR= transfer address is obtained and the stack
adjustment value is saved in the work area at offset COUNT. The transfer address, if present, is stored at offset ERREX; if it is not present, ERREX is cleared.

EXTENDSIZE ~= The value specified is stored at F.ALOC. If it is positive, a contiguous extend is made; if it is negative, a noncontiguous extend is made. If the value is greater’ than
32767 or less than -~32767, an error occurs.

FILE or NAME ~~ If a file is specified, S$FNBST is called to initialize the file Name block and DV.ASGN 1S set. SFNBST returns an error if the string is incorrect.

FORM ~~ 'FORMATTED' sets DV.FMP; "UNFORMATTED' sets DV.UFP. If no value is specified and DV.DFD is set, DV.UFP is the default; otherwise, DV.FMP is the default.

INITIALIZE ~~ The value specified is stored at F.CNTG. If it
is positive, a contiguous allocation is made; if it is negative, a noncontiguous allocation is made. If the value is greater than 32767 or less than ~32767, an error occurs.

MAXREC ~~ The value specified is stored at D.RCNM and D.RCN2. If the value is negative, an error occurs.

NOSPANBLOCKS ~~ If this keyword is Specified, FD.BLK is set in
F.RATT.

READONLY -~ If this keyword is Present, DV.RDO is set.

RECORDSIZE or RECL == The value is stored at F.RSIZ. If it is negative or is larger than the user record buffer size (MAXBUF
value for TKB), an error occurs. If DV.UFP (unformatted) is Specified, the value is converted to bytes from storage units (four bytes per storage unit). If the value given does not equal the value for an existing file, an error occurs unless the system subroutine ERRSET has been called to set the continuation=type for error 37 (inconsistent record length) to a return continuation,

RECORDTYPE -~ 'FIXED' sets DV.FIX; "VARIABLE! sets DV.VAR; and 'SEGMENTED' sets DV.SEG.

The defaults are 'FIXED' for direct access; "VARIABLE' for formatted sequential access; and "SEGMENTED! for unformatted sequential access. For direct access, ‘VARIABLE! Or 'SEGMENTED' is an error; for formatted, 'SEGMENTED' is an error.

SHARED =~ If this keyword is Specified, FA.SHR is set in F.FACC.

STATUS or TYPE ~= If STATUS is not present, the default is "NEW. Note, however, that if the /F77 switch is set and no STATUS = parameter is Specified in the source code, the compiler passes a STATUS = "UNKNOWN! parameter. 'NEW' sets DV.NEW; "OLD' sets DV.OLD; "SCRATCH! sets DV.SCR; and "UNKNOWN' sets DV.UNK. If DV.RDO is set, and DV.SCR, DV.NEW,

FCS-11 I/0 SUPPORT

or DV.UNK is specified, an error occurs. If DV.APD is. set,
and DV.SCR or DV.NEW is specified, an error occurs. The file
access byte F.FACC is set up as follows:

DV.RDO ~~> FO.RD

DV.APD ~=> FO.APD

DV.SCR ~=> FO.WRT + FA.TMP

DV.NEW ~~> FO.WRT

DV.OLD ~=> FO.UPD

DV.UNK ~-=> FO.UPD

e UNIT -- The unit number is obtained and $FCHNL is called to
obtain the LUB pointer. Processing is aborted immediately if
there is no unit number, the unit number is invalid, or the
unit is already open.

@ USEROPEN -~ The external procedure name is saved at offset
W.UOPN for use by SOPENS.

6.2.2 Default OPEN Processing

If DV.FACC is not set, default OPEN processing performs the following
operations:

@e For input, it sets DV.OLD and FO.UPD.

e For output, it sets DV.NEW and FO.WRT.

Other fields and values may have been set by CALL ASSIGN, CALL FDBSET,
Or DEFINEFILE statements.

6.2.3 SOPENS Procedure

The SOPENS$ procedure opens the file and performs the checks” and
computations common to OPEN statement processing (6.2.1) and default
OPEN processing (6.2.2).

Before the file is opened, SOPENS performs the following operations:

e If no user file specification is provided (DV.ASGN is. not
set), the default File Name Block of the FDB is set up. The
routine $FLDEF is called to make the file name FOROnn.DAT (nn
is the logical unit number).

e If no directory is specified for the file, the FCS routine
-GTDID is called to set the default directory.

e If DvV.cc is not specified and the file is formatted, FD.FTN is
set in the F.RATT field of the FDB.

e The user record buffer description in the FDB, F.URBD, is
Initialized with the address’ specified by the impure area
offset W.BFAD and the length specified by W.BLEN.

FCS-11 I/O SUPPORT

e FD.PLC is set in the F.RACC field of the FDB to specify locate
mode I/O operations.

@ A record format is set as follows: If DV.FIX is set, R.FIX is
set in the F.RTYP field of the FDB; otherwise, R.VAR is set.

e If DV.DFD is set, FD.RAN is set in the F.RACC field of the FDB
to specify direct access.

e@ A record length is computed. If a user=Specified value is
available, that value is’ used; otherwise, one of the
following values is used:

133 for formatted files

128 for unformatted files of fixed-length records

126 for other unformatted files

If DV.FIX is set, the record length value is set in the F.RSIZ
field of the FDB.

If impure area offset W.UOPN is nonzero, the user's routine is called
to perform the FCS OPEN operation; otherwise, .OPFNB is called to
Open the file by file name block. If the open operation fails because
the file cannot be found, and DV.UNK is set, the operation is retried
with DV.NEW set, and FO.WRT set in the F.FACC field of the FDB.

After the file is open, the following operations are performed:

e DV.OPN is set to indicate that the file is open.

e The record format is checked for consistency; if the
user=specified record type does not match the file's record
format, an error occurs.

e The record length, D.RSIZ, is checked for consistency.

~ If the user-specified length does not match the file's
record length for fixed-length records, an error occurs,
If the error continuation bit Specifies "RETURN", the
user=specified length is used.

~ For variable-length records, the record length is set to
the maximum of the user-specified length and the file's
maximum size,

e The user record buffer description in the FDB, F.URBD, is
initialized with the address specified by the impure area
offset W.BFAD and the length specified by D.RSIZ.

e If D.RSIZ is larger than the user record buffer, aS specified
by impure area offset W.BLEN, a record size error occurs.

If any errors occur, either reported by the FCS or resulting from the consistency checks, the file is closed. If the file was just created,
it is deleted as well.

FCS-11 I/0 SUPPORT

6.2.4 USEROPEN Interface Specification

The USEROPEN parameter of the OPEN statement gives you a way to access
special FCS processing options not explicitly available in the FORTRAN
language. The value of the USEROPEN parameter is the name of a

user-written MACRO-11 routine that the OTS calls to open a file. To
use the special FCS processing options, you must do the following:

@e Using the MACRO-11 language, write a routine that opens’ the
file.

e In your FORTRAN program, include the statement:

EXTERNAL filename

where "filename" is the name of the MACRO~-11 routine you wrote
to open the file.

e In the OPEN statement in your FORTRAN program, include’ the
keyword parameter USEROPEN=filename, where, again, "filename"
is the name of your MACRO-1l routine.

Although the MACRO-11 routine is called by the OTS (not your FORTRAN
Program), you should write it as if it were being called by a FORTRAN
program. You must report the status of the open operation in RO. The
OTS invokes the routine as a standard FORTRAN function of one argument
uSing the standard FORTRAN calling convention:

ISTS = userprocedure (FDB)

FDB

The address of the FCS FDB for the logical unit.

ISTS

The INTEGER*2 error status to be returned. The value is expected
to be the F.ERR FCS completion status and to follow the FCS
conventions (positive numbers indicate success, negative numbers
failure). Note that the status is returned only to the OTS, not
to the FORTRAN program.

The following limits and constraints are imposed on the user-written
procedure:

e All FORTRAN processing is completed prior to the call.

e The FDB address specified is valid until the logical unit is
closed. Note, however, that you do not have access to the FDB
in the FORTRAN program. You can access the FDB in a MACRO-1l
program; the FDB address is at 2(R5).

The following sample FORTRAN program and user=open procedure specify
that an existing file of the same name should not be superseded by a
create operation:

EXTERNAL NOSUP
OPEN (UNIT = 1, USEROPEN=NOSUP, TYPE='NEW')

END

eMCALL OFNBS

NOSUP:: MOV 2(R5),RO ; Get FDB addr
BISB #FA.NSP,F.FACC (RO) ; Set no supercede
OFNBS$; Open the file
MOV F.ERR(RO).RO ; Return completion status
RETURN

FCS-11 I/O SUPPORT

6.2.5 File Name Processing

Two routines ~~ $FNBST and $FLDEF -- are used to process file name
strings and supply FORTRAN default file names.

The File Name Block Initialization module, S$FNBST, sets up the File
Name Block (FNB) of the LUB.

If there is a file name argument (the NAME keyword is used), S$FNBST is
called from the ASSIGN subroutine and uses the command. string
interpreter routines (.CSI1 and .CSI2) and the FCS~11l .PARSE logic to

construct the FNB. SFNBST is called with R3 containing the impure
area pointer, R2 containing the length of the name string, and Rl
pointing to the start of the string. Registers RO, Rl, and R2 are
destroyed; R3, R4, and R5 are preserved.

If no file name is provided, the Default File Name Generation module,

SFLDEF, is called to fill in the default file name. It stores the
default FORTRAN file name and file type in the FNB. On input, the
FORTRAN default file name is FOROnn.DAT, where nn is the unit number.
R3 points to the impure area. All registers are preserved.

The following FCS-11 utility routines are invoked during file name
processing:

@ The Default Directory Processing routine, .GTDID, is called by
SOPENS to obtain the default directory used in constructing
the File Name Block.

@ The File Name Block Processing routines, .PARSE, .CSI$l1, and
~-CSI$2, are called by S$FNBST when a user file specification is
to be used rather than the FORTRAN default file names.
Further information on these routines can be found in the
IAS/RSX I/O Operations Manual.

6.3 FILE CLOSE PROCESSING

File close processing is performed by the OTS routine S$CLOSE, which
uses the following FCS~-11 routines:

e The File Close Processing routine, CLOSES, to close files

e The File Deletion routine, .DLFNB, to delete files

e The File Printing routine, .PRINT, to print and optionally
delete files

The CLOSE source statement is compiled using an encoded argument list
Similar to that for the OPEN statement; however, only the UNIT, ERR,
and DISPOSE keywords are allowed. The processing used is also
similar: The argument list is searched for each allowed keyword and
appropriate actions are taken. If any errors. are encountered, the
CLOSE is not attempted and the LUB is NOT zeroed.

FCS-11 I/O SUPPORT

The processing for each keyword is described below, in order of
execution:

1. ERR -=- The ERR= transfer address is obtained and the stack

adjustment value is saved at offset COUNT. The address is

stored at offset ERREX, if present.

2. UNIT ~= The unit number is obtained, and SFCHNL is called to

obtain the LUB address. If no unit number is present, or if
an invalid unit number is specified, a fatal error occurs.

3. DISPOSE -= If not present, the existing disposition is used.
'"SAVE' sets DV.SAV; 'PRINT' sets DV.SPL; and 'DELETE' sets
DV.DEL. If DV.SCR is set, and DV.SPL or DV.SAV is specified,
an error occurs. If DV.RDO is set, and DV.SPL or DV.DEL is
specified, an error occurs.

6.4 SEQUENTIAL I/O PROCESSING

This section describes low-level OTS routines called by the I/0
statement processors and format processors to perform the actual calls
to FCS-11 for sequential record transfers, and to perform
miscellaneous utility tasks. The routines are called with the work
area address in R3.

The sequential input routine, S$GETS, does the following:

e Obtains the LUB pointer from offset FILPTR.

e Calls FCS macro GETSS to get a record. If FCS error IE.EOF is
returned, or an ENDFILE record is read, the END= transfer is
executed. If IE.EOF is returned and no END= transfer address

is given, an error occurs. Errors cause the ERR= transfer to
be executed.

@ Increments the record count in D.RCCT and D.RCC2.

e Returns the actual record length in Rl, and returns the’ start

address of the record in R2 (RO is undefined).

The Sequential Output routine, $PUTS, proceeds as follows:

e Obtains the LUB pointer from offset FILPTR

e Calls the PUTSS macro to output the record

@ Increments the record count in D.RCCT and D.RCC2

SPUTS is called with the record length in Rl. Registers RO, Rl, and
R2 are undefined upon return.

6.5 DIRECT ACCESS I/O PROCESSING

This section describes low-level OTS routines called by the I/0
Statement processors and format processors to perform the actual calls
to FCS for direct access’ record transfers, and to perform
miscellaneous utility tasks. The routines are called with the work
area address in R3.

FCS-11 I/0 SUPPORT

The Direct Access Input routine, $GETR, proceeds as follows:

@e Obtains the LUB pointer from offset FILPTR, and calls SCKRCN
to verify the record number and return it in Rl and R2

e Calls FCS macro GETSR to read the record

e Calls SASVAR to update the associated variable

Registers RO, Rl, and R2 are undefined.

The Direct Access Output routines, S$PUTR and S$PUTRI, proceed as
follows:

e SPUTRI is called to initialize a direct access write
operation.

@ Obtains the LUB pointer from offset FILPTR and calls $CKRCN to
verify the record number.

@e Stores the record number at F.RCNM and F.RCNM+2 in the FDB.

e Calls the FCS routine .POSRC to position the file to the
desired record. If FCS error IE.EOF is returned, it is
ignored. All other errors cause the ERR= transfer to be
executed.

e SPUTR is called to write the record.

e Obtains the LUB pointer from FILPTR.

@ Computes the number of unfilled bytes in the’ record. The
record is padded to the correct length with blanks for
formatted records and zero bytes for unformatted records.

e Calls the FCS macro PUTSR to write the record and SASVAR_ to
update the associate variable.

Registers RO, Rl, and R2 are undefined.

The Direct Access Record Number Checking routine, SCKRCN, verifies the
current record number by comparing it against the maximum record
number for the file. The current record number is stored at offsets
W.RECL (low-order) and W.RECH (high-order). The maximum record
number, if it exists, is at D.RCNM (low-order) and D.RCN2 (high-order)
in the LUB. The record number, if valid, is returned in Rl
(high-order) and R2 (low-order).

SCKRCN is called with the LUB address in RO, and the impure~area
pointer in R3. Registers R4 and R5 are preserved.

The Associated Variable Update routine, SASVAR, obtains the current
record number from offsets W.RECL and W.RECH, increments it by 1, and
Stores it in the associate variable at the address in D.AVAD in the
LUB. SASVAR is called with RO pointing to the FCS portion of the FDB.
Registers Rl and R2 are undefined.

6.6 AUXILIARY I/O OPERATIONS

This section identifies and explains the routines that perform the
Operations of the following FORTRAN source statements: BACKSPACE,
REWIND, ENDFILE, DEFINEFILE, and FIND.

FCS-11 I/O SUPPORT

BACKSPACE ~=- BKSPS

The unit number is obtained and SGETFILE is called to obtain’ the

LUB address. If the file is closed or is a direct access file,

the operation is ignored. If the file is opened for append, an
error occurs. A call to the FCS’ routine .POINT is made to

position the file at the beginning (virtual block 1, byte 0).
The record count is obtained from D.RCCT and D.RCC2 in the LUB.
The record count is decremented by 1, and n-l reads are
performed. Note that the count is the logical record count, and
therefore that multiple physical reads may be required for
unformatted segmented records.

REWIND <= REWIS

The unit number is obtained and S$GETFILE is called to obtain the
LUB address. If the file is closed or is a direct access file,

the operation is ignored. The append bit is cleared and _ the
record count D.RCCT and D.RCC2 is zeroed. A call to the FCS
routine .POINT is made to position the file at the beginning
(virtual block 1, byte 0).

ENDFILE ~= ENDFS

The unit number is obtained and SGETFILE is called to obtain the

LUB address. If the file is a direct access file, an error

occurs and the operation is ignored. If not open, the file is
opened by SOPEN (default open) for write. A l=byte record,
containing an octal 32 (CTRL/Z), is output to the file, using

SPUTS.

DEFINEFILE =~ DEFFS

FIND

6.7

This

The
User'

The unit number is obtained and SGETFILE is called to obtain the
LUB address, If the unit is open, an error occurs. The number
of records is stored at D.RCNM and D.RCN2 in the LUB. The
recordsize is converted to bytes and stored at F.RSIZ in the FDB.
The associated variable address is stored at D.AVAD, and DV.AI4
is set if the associated variable is Integer*4. DV.DFD and
DV.UFP are set. If DV.DFD was previously set, an error occurs.

If the number of records or record size is negative, an error
occurs,

~~ FINDS

The FIND statement is contained in the same module as that of the
DEFINEFILE statement. The argument mask for SINITIO is set to
FL.REC!FL.RD and SINITIO is called. The associated variable, if
present, is set to the record number. No FCS-11 call is
required.

I/O-RELATED SUBROUTINES

section describes the operation of three I/O-related subroutines.
subroutines are described in detail in the PDP~-11 FORTRAN-77
Ss Guide,

FCS-11 I/O SUPPORT

ASSIGN

The unit number is placed in R2 and SGETFILE is called to get the
LUB address. The file specification String address is placed in
Rl. If no string length is present, it is computed by scanning for a zero=byte. SFNBST is called to parse the file
Specification and set up the file name block in the FDB.

CLOSE

The unit number argument is moved to R2 and the OTS routine
SCLOSE is called to close the file.

FDBSET

The unit number is placed in R2 and $GETFILE is called to get the
LUB address. The first character of the access mode String is checked against the list, and the corresponding file access is
Stored at F.FACC in the’ FDpB. The argument processing is
Summarized in Table 6-2.

Table 6-2: FDBSET Argument Summary

Call FDBSET Arguments FDB Setting

Argument 1 =n set n in F.LUN

Argument 2 = 'READONLY' set FO.RD in F.FACC

= "NEW! set FO.WRT in F.FACC

= ‘OLD! cet FO.UPD in F.FACC

= "APPEND! set FO.APD in F.FACC

= ‘UNKNOWN! set FO.UPD in F.FACC; if no such
file, then set FO.WRT in F.FACC.

Argument 3 = 'SHARE! set FA.SHR in F.FACC

Argument 4 = n Set n in F.MBCT

Argument 5 = n set n in F.CNTG

Argument 6 = n set n in F.ALOC

Note:

n is an integer expression.

CHAPTER 7

RMS-11 I/O SUPPORT

This chapter discusses the RMS-ll-specific portions of the OTS. In

particular, it describes’ the explicit RMS-1l1 operations used to

implement FORTRAN I/O operations.

7.1 RMS-11 I/O CONTROL BLOCKS

RMS-1l uses two primary and several secondary control blocks’ to

control I/O operations. The primary control block for file functions

(open, close, and so forth) is’ the File Access’ Block (FAB). The

primary control block for record functions (read, write, and so forth)

is the Record Access’ Block (RAB). RMS-1l1 uses auxiliary control

blocks for file name parsing (NAM block) and _ indexed file key

specification (XAB blocks).

The FORTRAN I/O system uses a single Logical Unit Control Block (LUB)

to control I/0 for each logical unit. The LUB contains FORTRAN

control information, a RAB, and a_ file-name-string save area whose

size is specified by the impure area offset W.FNML. The RMS FAB, NAM,

and XAB control blocks are allocated and deallocated as needed.

Indexed file key specifications are processed by the OPEN statement

and are allocated as a Single block containing n key-definition XAB

control blocks. Each XAB has two extra words that contain position

and size values used for consistency checks for an existing file. The

file open processor S$OPEN$ uses an RMS NAM control block to obtain the

expanded file name string that is used for error reporting and file

deletion.

For more information about RMS-1l1l control blocks, see Section 4.2 and

Appendix B.

7.1.1 Dynamic Storage Allocation for Control Blocks

All OTS and RMS control blocks and I/0 buffers are dynamically

allocated and deallocated from a central storage pool. The size of

the pool is determined by the Task Builder option EXTTSK or the /INC

option of the INSTALL or RUN commands.

The storage is managed by two OTS procedures: RQMEMS, to allocate

Storage; and RLMEMS, to deallocate storage. RMS obtains storage from

the OTS by using the option $SETGSA, and the _ storage allocation

algorithm uses the operating system procedure SRQLCB. The OTS storage

pool listhead address is contained at offset W.DEVL. Best-fit

allocation is used.

RMS~-11 I/O SUPPORT

The three storage management procedures are:

@ ROQMEMS (allocate storage)

On input -- RO contains the size of the request,

On output -- RO contains the address of a successful
allocation. A C-bit error flag is
returned. All other registers are
preserved.

@e RLMEMS (deallocate Storage)

On input -- RO contains the address of the storage to
deallocate.

Rl contains the size of the storage.

On output -- RO and Rl are undefined; all other registers
are preserved.

@ RMSQLS (RMS-called GSA (get-space-available) routine to
request and release storage)

On input -- RO contains the address of an RMS pool
(ignored).

Rl contains the size of the block to allocate
or deallocate.

R2 contains 0 for allocation request; address
of the block if release request.

On output -- RO contains the address of a successful
request. A C-bit error flag is returned if
unsuccessful.

RMSQLS calls either RQMEMS or RLMEMS to process the request
or release.

7.2 OPEN PROCESSING

Default file open Processing and OPEN statement processing merge into a Single common routine, SOPENS (see Section 4.2.3), for a file open.

7.2.1 OPEN Statement Processing

Table 7-1 shows the OPEN statement keywords, the possible values of those keywords, and the RMS FAB and RAB Settings associated with those values,

RMS-11]1 I/O SUPPORT

Table 7-1: FAB/RAB Settings for OPEN Statement

Keyword Name Value FAB/RAB Setting

ACCESS '"DIRECT' -

'"SEQUENTIAL' -

"APPEND' RBSEOF in OSROP in RAB

ASSOCIATEVARIABLE Vv -

BLANK "NULL' -

"ZERO! -

BLOCKSIZE n Set n in OSBLS in FAB;

set (max (n, RECORDSIZE)

+511/512) in OS$BKS in FAB

and OSMBC in RAB

BUFFERCOUNT n Set n in OSMBF in RAB

CARRIAGECONTROL "FORTRAN ' Set FBSFTN in OSRAT in FAB
'LIST' Set FBSCR in OSRAT in FAB
"NONE! -

DISPOSE "SAVE! Use SCLOSE at file close

"DELETE! Use SERASE at file close

"PRINT! Use SCLOSE at file close

ERR S -

EXTENDSIZE n Set IABS(n) in OSDEQ in

FAB

FILE or NAME £ Call SFWBST to initialize

OSFNA and OSFNS in FAB

FORM "FORMATTED' _

"UNFORMATTED' If positive, set FBSCTG in

OSFOP in FAB;

INITIALSIZE n Set IABS(n) in OSALQ in

FAB.

KEY nl:n2 Set nl in O$SPOSO in XAB;

Set n2-nl+l in OSSIZO in

XAB; Set XBSSTG in OSDTP

in XAB; Set

in OSFLG in
primary key.

(continued

XBSCHG!XBSDUP

XAB if not

on next page)

Table 7-1 (Cont.):

RMS-11 I/O SUPPORT

FAB/RAB Settings for OPEN Statement

Keyword Name Value FAB/RAB Setting

KEYCNT n Allocate n XABS and set
address in OSXAB in FAB

Keyword Name Value FAB/RAB Setting

MAXREC n - (Depends on device type)

NOS PANBLOCKS - Set FBSBLK in OSRAT in FAB

ORGANI ZATION "SEQUENTIAL' Set FBSSEQ in OSORG in FAB

"RELATIVE! Set FBSREL in OSORG in FAB

"INDEXED! Set FBSIDX in OSORG in FAB

READONLY - Set FBSGET in OSFAC in FAB

RECORDSIZE or RECL n Set n in OSMRS in FAB if

needed

SHARED - Set FBSWRI in OSSHR in FAB

STATUS or TYPE ‘OLD' Use SOPEN

"NEW' Use SCREATE

"SCRATCH' Use SCREATE, set FBSTMD in
OSFOP in FAB

"UNKNOWN ' Try SOPEN. If no such
file, then SCREATE

UNIT n Set n in O$LCH in FAB

RECORDTYPE "FIXED' Set FBSFIX in OSRFM in FAB
"VARIABLE! Set FBSVAR in DSRFM in FAB

"SEGMENTED! Set FBSVAR in OSRPM in FAB

USEROPEN P -

Notes:

f is an array, array element, variable, or character constant.
n is an integer expression.
S is an executable statement label.
v is an integer variable name.
p is an external procedure name.

RMS-11 I/O SUPPORT

In basic OPEN statement processing, an argument list is searched and

each keyword is located in a_ prescribed order. All information

required by a given keyword is available when that keyword is

processed. An appropriate default is used for keywords not in the

list. If any errors occur during the search, the OPEN is not

attempted, the ERR= transfer is taken, and the LUB is released.

The processing for each keyword is described below.

e ACCESS -- The default access is 'SEQUENTIAL'. The FORTRAN LUB

fields are set as follows:

SEQUENTIAL -- DV.SEQ

DIRECT -- DV.DIR

APPEND ~- DV.SEQ and DV.APD

KEYED -- DV.KEY

If DV.RDO and DV.APD are set, an error occurs.

e ASSOCIATEVARIABLE -- The variable address is stored at D.AVAD.

If the variable is type INTEGER*4, DV.AI4 is set.

e BLANK -- 'NULL' sets DV.BN. Note that if the /F77 switch is

set and no BLANK= is’ specified, the compiler passes a

BLANK='NULL' parameter.

e BLOCKSIZE -- The value specified sets the following values:

- The physical blocksize for sequential tape files.

- The multi-block count for sequential disk files.

—- The bucketsize for relative and indexed files.

The values set are as follows for a BLOCKSIZE value of n (n

must be positive and less than 32767):

- Set n in OSBLS in the FAB for magtape.

- Set (511+MAX(n,RECORDSIZE))/512 in OSBKS in the FAB for

bucketsize and in OSMBC in the RAB for multiblock count.

e BUFFERCOUNT -- The value specified is stored at OSMBF in the
RAB. If the value is negative or greater than 127, an error
occurs.

e CARRIAGECONTROL -- If specified, DV.CC is set. 'FORTRAN' sets

FBSFIN in OSRAT and 'LIST' sets FBSCR in OSRAT in the FAB. If

DV.CC is not set and DV.FMP is specified, FD.FTN is_ the

default.

e DISPOSE -- 'SAVE' sets’ DV.SAV; "PRINT' sets DV.SPL; and
'DELETE' sets DV.DEL. If DV.RDO is set, and DV.DEL or DV.SPL

is specified, an error occurs. If a DISPOSE value is not
specified and DV.SCR is set, ‘'DELETE' is the default;
otherwise, 'SAVE' is the default.

e ERR -- The ERR= transfer address is obtained and the stack
adjustment value is saved in the work area at offset COUNT.
The transfer address, if present, is stored at offset ERREX;

if it is not present, ERREX is cleared.

e EXTENDSIZE -- The absolute value specified is stored at OS$DEQ

in the FAB. If the value iS greater than 32767 or less than
-32767, an error occurs.

RMS-11 I/O SUPPORT

FILE or NAME -- If specified, $FNBST is called to initialize
the file name specification in the FAB. S$FNBST returns an
error if the string is incorrect.

FORM -- 'FORMATTED' sets DV.FMP, "UNFORMATTED' sets DV.UFP.

If not specified and DV.DIR or DV.KEY is set, then DV.UFP is
the default; otherwise, DV.FMP is the default.

INITIALSIZE -- The absolute value specified is stored at OSALQ

in the FAB. If the value was positive, FBSCTG is set in OS$FOP
in the FAB to indicate contiguous allocation.

KEY -- Each key entry is processed as follows:

- nl is set in OSPOSO of the XAB and X.POS in the FORTRAN

portion of the XAB.

- n2-nl+1l1 is set in OSSIZO of the XAB and xX.SIZ in the

FORTRAN portion of the XAB.

- An error occurs if nl is greater than 32767 or if n2-nl+l
is greater than 255.

KEYCOUNT -- n XABs are allocated as a Single control block.
The XABs are linked together, and the XABBLK address is stored
at OSXAB in the FAB and F.FXAB in the FORTRAN’ FABBLK. The
XABS are initialized with XBSSTG as the data type and XBSCHG
and XBSDUP as options for all but the primary key. An error
occurs if n is greater than 255 or negative.

MAXREC -- The value specified is stored at D.RCNM and D.RCN2.
If the value is negative, an error occurs.

NOSPANBLOCKS -- If specified, FBSBLK is set in OSRAT in the
FAB.

ORGANIZATION -- The default organization is ‘SEQUENTIAL’. The
FAB organization field is initialized, the LUB organization
field is initialized, and the file access field, OSFAC in the
FAB, is initialized as follows:

If DV.RDO is set, then FBSGET is set; otherwise:

SEQUENTIAL -- FBSGET! FBSPUT! FBSTRN

RELATIVE -- FBSGET! FBSPUT! FBSUPD! FBSDEL

INDEXED -- FBSGET! FBSPUT! FBSUPD! FBSDEL

READONLY -- If present, DV.RDO is set.

RECORDSIZE or RECL -- The value is stored at D.RSIZ. If the

value is negative or larger than the user record buffer size
(MAXBUF value), an error occurs. If DV.UFP (unformatted) is

Specified, the value is converted to bytes from storage units
(four bytes per storage unit). If the value given does not
equal the value for an existing file, an error occurs.

SHARED -- If specified, FBSWRI is set in OSSHR in the FAB.

RMS-11 I/O SUPPORT

e STATUS or TYPE -- If not present, the default is 'NEW'. Note,

however, that if the /F77 switch is- set and no STATUS =

parameter is specified in the source code, the compiler passes

a STATUS = 'UNKNOWN' parameter. 'NEW' sets DV.NEW, 'OLD' sets

DV.OLD, 'SCRATCH' sets DV.SCR, and "UNKNOWN' sets DV.UNK. If

DV.RDO is set and DV.SCR, DV.NEW, or DV.UNK is specified, an

error occurs. If DV.APD is set and DV.SCR or DV.NEW is

specified, an error occurs.

e UNIT -- The unit number is obtained and $FCHNL is called _ to

obtain the LUB pointer. Possible fatal errors include: no

unit number, invalid unit number, or unit already open. A FAB

is allocated and its address is stored in D.PFAB.

e USEROPEN -- The address of the procedure is saved at F.UOPN in

the FORTRAN portion of the FAB.

After all keywords are processed, SOPENS is called to perform the

actual file open. If successful, then the key specifications, if

present, are checked for consistency. The FAB and XAB control blocks

are released.

7.2.2 Default OPEN Processing

Default OPEN processing sets the following values and then calls

SOPENS:

e Sets organization to SEQUENTIAL; sets DV.SEQ and FBSSEQ in

OSORG in the FAB

e If DV.FACC is not set and the I/O statement is an input

operation, sets DV.OLD; otherwise, sets DV.NEW

Other fields and values may have been set by CALL ASSIGN, CALL FDBSET,

or DEFINEFILE statements.

7.2-3 SOPENS Routine

The SOPENS routine opens the file and performs the various checks’) and

computations common to OPEN statement processing (see Section 7.2.1)

and default OPEN processing (see Section 7.2.2).

Before file open, $OPENS$ performs the following operations:

e If no user file specification is provided, uses the default

file string for error reports

e If append access is not specified, sets FBSNEF in OSFOP in the

FAB to inhibit positioning to end-of-file for magnetic tape

files

e Sets the RMS record format to FBSFIX if DV.FIX is set;

otherwise, sets the record format to FBSVAR

RMS-11 I/O SUPPORT

@e Computes a record length as follows:

If a user-specified value is available, uses that value and
moves it to OSMRS in the FAB; otherwise, uses 133 for
formatted files, 128 for unformatted files with
fixed-length records, and 126 for unformatted files with
variable or segmented records; if DV.FIX or DV.REL is set,
sets record length in OSMRS in the FAB

e If DV.ccC is not specified, sets FBS$FTN in OSRAT in the FAB if
formatted

@® Saves the organization type for consistency checks

e Sets RBSLOC and RBSUIF in OSROP in the RAB to enable locate
mode I/O and to permit WRITE statements to update records in
relative files

e Sets OSUBF and OS$USZ in the RAB to reflect the user record
buffer as specified by impure area offsets W.BFAD and W.BLEN

@ Creates an RMS NAM block to obtain the expanded file name
String for error reports and file deletion

If impure area offset W.UOPN is nonzero, SOPEN$ calls the user's
routine to perform the RMS OPEN and CONNECT. If F.UOPN is not set,
SOPENS calls SCREATE, if DV.NEW is set, or SOPENS if DV.NEW is. not
set. If DV.UNK is set and SOPENS fails with error ERSFNF, SCREATE is
tried with DV.NEW set.

After the SCREATE or SOPEN routine is executed, the following
operations are performed:

e The expanded file name string from the NAM block is copied to
the LUB name string save area and the NAM block is deleted.

@ DV.OPN is set to indicate that the file is open.

e The file organization is checked for consistency.

e The record format is checked for consistency; if the
user-specified record type does not match the file's record
format, an error occurs.

@e The record length is checked for consistency as follows:

If the user-specified length does not match the file size,
an error occurs. If the default length is used, the value
is set to the maximum of the file and default values.

e The RMS SCONNECT operation is performed.

If any errors occur, either reported by RMS or as ae result of the
consistency checks, the file is closed. If DV.NEW is set, the file is
deleted as well.

RMS-11 I/O SUPPORT

7.2.4 USEROPEN Interface Specification

The USEROPEN parameter of the OPEN statement allows you to access

special RMS processing options not explicitly available in the FORTRAN

language. The value of the USEROPEN parameter is the name of a

user-written MACRO-ll routine that the OTS calls to open a file. To

use this facility, you must do the following:

e Using the MACRO-11 language, write a routine that opens’ the

file.

e In your FORTRAN program, include the statement

EXTERNAL filename

where "filename" is the name of the MACRO-11 routine you wrote

to open the file.

e In the OPEN statement in your FORTRAN program, include’ the

keyword parameter USEROPEN=filename, where, again, "filename"

is the name of your MACRO-11 routine.

Although the MACRO-11 routine is called by the OTS (not your FORTRAN

program), you should write it as if it were being called by a FORTRAN

program. You must report the status of the open operation in RO. The

OTS invokes the routine as a standard FORTRAN function of two

arguments using the standard FORTRAN calling convention:

ISTS= userprocedure (FAB,RAB)

FAB
The address of the RMS FAB for the logical unit.

RAB
The address of the RMS RAB for the logical unit.

ISTS
The error status to be returned. This value is expected to be

the RMS completion status (STS value) and follows’ the RMS

conventions (positive numbers indicate success and negative

numbers indicate failure.) Note that the status is returned only

to the OTS, not to the FORTRAN program.

The following limits and constraints are imposed on the user

procedure:

e All FORTRAN processing is completed prior to the call. All

nonzero fields containing addresses must be preserved so that

postprocessing will operate correctly and storage for control

blocks and scratch areas can be returned.

e If additional XABs are used, they must be included in the XAB

list at the front. XAB is the address of the RMS key access

block for the logical unit.

e All control blocks allocated by the procedure must be

deallocated as well. Only control blocks and_ storage

allocated by the OTS are deallocated by the OTS.

RMS-11 I/O SUPPORT

e The FAB address specified is not valid after the file open is
completed. The RAB address specified is valid until the
logical unit is closed. Care must be taken to ensure that an
invalid FAB address is not saved for later use.

e The user procedure must perform both the SCREATE/SOPEN
function and the SCONNECT function.

The following sample FORTRAN program and user-open procedure’ specify
that bucket fill numbers are to be used when records are inserted.

EXTERNAL USROPN
OPEN (UNIT=1, ORGANIZATION='INDEXED', ACCESS='KEYED',
1 USEROPEN=USROPN)

END

USROPN:: MOV 2(R5),R2 ;Get FAB pointer
MOV 4(R5),R1 ;Get RAB pointer
SOPEN R2 ;Open the file
MOV OSSTS (R2) ,RO ;Get error status
BLE 1$;Quit on error
BIS #RBSLOA, OSROP(R1) ;Use bucket fill numbers
SCONNECT R1 ;Connect the RAB
MOV OSSTS (R1) ,RO ;Get error status

1$: RETURN ;Return with status in RO

7.2.5 File Open Utility Routines

The following procedures are used internally as part of file open
processing:

FABRQS

Allocates and initializes a FORTRAN FAB block. The address of
the FAB is set in D.PFAB in the LUB and in OSFAB in the RAB. The
String FOROnn.DAT is set up as the default file name String by
initializing OSDNS and OSDNA in the FAB.

This procedure is called with the LUB pointer in RO. It returns
with the FAB pointer in Rl and all other registers preserved. A
C-bit error is returned if no Storage is available.

FABRLS

Deallocates a FAB. In addition, deallocates the XAB block
connected to the FAB through offset F.PXAB. LUB offset D.PFAB is
set to 0. This routine is called with the LUB pointer in RO.
All registers are preserved. If no FAB is currently allocated,
this routine has no effect.

SFNBST

Initializes the user file name Specification for the LUB at
offset FILPTR. The string is copied to the name string area of
the LUB. Scanning ceases when the user count is exhausted or an
ASCII null byte is scanned. The string is converted to
uppercase, and space characters are removed.

RMS-11 I/O SUPPORT

On input, this routine has the following register assignments:

e Rl -- address of file name string

e R2 -- length of string or 0

e R3 -- impure area pointer

On output, RO, Rl, and R2 are undefined; R3, R4, and RS are

preserved. A C-bit error is returned if the string does not fit
in the name string save area, or if the length of the string is
zero.

7.3 FILE CLOSE PROCESSING

File close processing is performed by the routine SCLOSE.

The following functions are performed:

@e SDISCONNECT is executed if OSISI in the RAB is nonzero.

e SCLOSE is executed.

e If DV.DEL is set, S$ERASE is’ executed. The file name

specification is taken from the name string Save area.

e If DV.SPL is set, no operation is performed.

The CLOSE statement is compiled using an encoded argument list similar
to that for the OPEN statement; only the UNIT, ERR, and DISPOSE

keywords are allowed. Processing is Similar to OPEN: the argument
list is searched for each allowed keyword and appropriate actions are
taken. If any errors are encountered, the CLOSE is not attempted and

the LUB is Not zeroed.

The processing for each keyword is described below:

e ERR -- The ERR= transfer address is obtained and the stack
adjustable value is saved at offset COUNT. The address is
Stored at offset ERREX, if present.

e UNIT -- The unit number is obtained and SFCHNL is called to

obtain the LUB address. If no unit number is present or an
invalid unit number is specified, a fatal error occurs.

e DISPOSE -- If not present, the existing disposition is used.
'"SAVE' sets DV.SAV, ‘'PRINT' sets DV.SPL, and 'DELETE' sets
DV.DEL. If DV.SCR is set and DV.SPL or DV.SAV is’ specified,
an error occurs. If DV.RDO is set, and DV.SPL or DV.DEL is
specified, an error occurs.

7.4 SEQUENTIAL I/O PROCESSING

This section describes low-level OTS routines called by tthe I/0
Statement processors and format processors to perform the actual calls
to RMS for sequential record transfers, and to perform miscellaneous
utility tasks. These routines are called with the work area address
in R3.

7-11

RMS-11 I/O SUPPORT

7.4.1 Sequential Input ($GETS)

The LUB pointer is obtained from offset FILPTR. The RMS SGET
operation is executed to get a= record. If RMS error ERSEOF is
returned or if an ENDFILE record is read, the END= transfer is made;
any other error transfers control to the ERR= address. The record
count at D.RCCT and D.RCC2 is incremented.

7.4.2 Sequential Output (S$PUTS)

The LUB pointer is obtained from the offset FILPTR. The RMS operation
SPUT is executed to output the record. If RMS error ERSNEF is
returned for a sequential organization file, the file is not
positioned at end-of-file and must be truncated before the record can
be written. This is done by performing RMS Sequential SFIND and
STRUNCATE operations before reexecuting the $PUT operation. If the
file contains fixed-length records, the record is padded with spaces
for formatted files and nulls for unformatted files. The record count
at D.RCCT and D.RCC2 is incremented. This routine is called with the
record length in Rl. On return, RO contains the LUB pointer; Rl and
R2 are undefined; and R3, R4, and R5 are preserved.

7.5 DIRECT ACCESS I/O PROCESSING

This section describes low-level OTS routines called by the I/0
Statement processors and format processors to perform the calls to
RMS-11 for direct access record transfer, and to perform miscellaneous
utility tasks. These routines are called with the impure area address
in R3. For sequential organization files, the RMS SSETRECN operation
1s executed to include the RMS routine that converts a relative record
number to an actual record file address.

7.5.1 Direct Input (SGETR)

This routine proceeds as follows:

e Obtains the LUB pointer from offset FILPTR

e Calls SCKRCN to verify the record number and set the KRF and
KSZ fields in the RAB

@® Executes the RMS SGET operation to read the record

e Calls SASVAR to update the associated variable

7.5.2 Direct Output (SPUTR and SPUTRI)

SPUTRI initializes a direct access write operation. It proceeds as
follows:

e Obtains the LUB pointer from offset FILPTR.

@e Calls $CKRCN to verify the record number and initialize the
KRF and KSZ fields of the RAB.

RMS-11 I/O SUPPORT

e For sequential files, executes SUPDATE to update an existing
record, or S$PUT to write a new record.

@e Executes an RMS SFIND operation to position the file to the
desired record. If RMS error ERSEOF is returned, the record
does not exist within the current file storage allocation. In
that case, the sequential $PUT operation automatically extends
the file to the correct size to accommodate the record.

SPUTR is called to write the record. It proceeds as follows:

e Obtains the LUB pointer from FILPTR

e If the file contains fixed-length records, pads the record
(with Spaces for formatted records and zero bytes for
unformatted records) to the correct length

e Calls SASVAR to update the associate variable

7.5.3 Direct Delete (S$DELETE)

The LUB pointer is obtained from offset FILPTR. The RMS SDELETE
operation is executed to delete the record.

7.5.4 Direct Access Record Number Checking ($CKRCN)

SCKRCN verifies the current record number by comparing it with the
maximum record number for the file. MThe current record number is
Stored at offsets W.RECL (low-order) and W.RECH (high-order). The
maximum record number, if it exists, is at D.RCNM (low-order) and
D.RCN2 (high-order) in the LUB, The record number, if valid, is
returned in Rl (high-order) and R2 (low-order). This routine is
called with the LUB address in RO. Registers R4 and R5 are preserved.

7.5.5 Associated Variable Update (SASVAR)

The current record number is obtained from offsets W.RECL and W.RECH,
incremented by 1 and stored in the associate variable at the address
in D.AVAD in the LUB. SASVAR is called with the LUB pointer in RO.
Registers Rl and R2 are undefined.

7.6 KEYED I/O PROCESSING

This section describes low-level OTS routines called by the I/O
Statement processors and format processors to perform the calls to RMS
for keyed record transfer, and to perform miscellaneous utility tasks.
These routines are called with the work area address in R3.

7.6.1 Keyed Input (S$GETK)

The LUB pointer is obtained from offset FILPTR, and S$CKKEY is’ called
to verify the validity of the key expression and initialize the KRF
and KSZ fields in the RAB. The RMS SGET operation is executed to read
the record. On output, RO contains the LUB pointer; Rl is undefined.

RMS-11 I/0 SUPPORT

7.6.2 Keyed Output ($PUTS)

Keyed output is performed identically to sequential output.

7.6.3 Keyed Rewrite (SUPDATE)

The LUB pointer is obtained from offset FILPTR. If the file contains
fixed-length records, the record is padded with spaces (for formatted
files) or nulls (for unformatted files). The RMS SUPDATE operation is
executed to update the record.

7.6.4 Keyed I/O Specifier Checking (SCKKEY)

SCKKEY verifies the key specification in a keyed I/O statement and
Sets the proper control information in the LUB. It is called with the
LUB pointer in RO and the impure area pointer in R3. Registers R1 and
R2 are destroyed; all other registers are preserved.

7.7 AUXILIARY I/O OPERATIONS

This section identifies and explains the routines that perform the
operations of the following FORTRAN statements: BACKSPACE, REWIND,
ENDFILE, UNLOCK, DEFINEFILE, FIND, and DELETE.

BACKSPACE -— BKSPS$

The unit number is obtained and SGETFILE is called to obtain the
LUB address. If the file is closed or is a direct access file,
the operation is ignored. If the file is opened for append, an
error occurs. An RMS SREWIND operation is executed to position
the file at its beginning. The record count is obtained from
D.RCCT and D.RCC2 in the LUB. The record count is decremented by
1, and then n-1 reads are performed. Note that the count is’ the
logical record count; hence, multiple physical reads may be
required for the unformatted segmented records.

REWIND -- REWIS

The unit number is obtained and SGETFILE is called to obtain the
LUB address. If the file is closed or is a direct access file,
the operation is ignored. The append bit is cleared and the
record count at D.RCCT and D.RCC2 is zeroed. An RMS SREWIND
operation is executed to position the file at its beginning.

ENDFILE -- ENDFS

SINITIO is called with argument mask FL.IGN + FL.WRT to open. the
file, if necessary, and prepare for the output operation. If the
file has relative or indexed organization, or contains
fixed-length records, an error occurs. A 1-byte record
containing octal 32 (CTRL/Z) is output to the file using S$PUTS.

UNLOCK -- UNLKS

The unit number is obtained and $GETFILE is called to obtain the
LUB address. If the file is closed, the operation is ignored.
An RMS SFREE operation is executed to unlock the currently locked
record bucket. If RMS error ERSRNL is returned, indicating that
no record was locked, the error is ignored.

RMS-11 I/O SUPPORT

DEFINEFILE -- DEFFS$

The unit number is obtained and SGETFILE is called to obtain’ the
LUB address. If the unit is open, an error occurs. A FAB is
allocated if one is not already present. The number of records
is stored at D.RCNM and D.RCN2 in the LUB. The record size is
converted to bytes and stored at D.RSIZ in the - LUB. The
associated variable address is stored at D.AVAD and DV.AI4 is set

if the associated variable is INTEGER*4. DV.DIR and DV.UFP are

set. If DV.DIR was previously set, or if the number of records
or record size is negative, an error occurs.

FIND -- FINDS

SINITIO is called with argument mask FL.RD+FL.REC+FL.IGN to open
the file, if necessary, and prepare’ for an input operation.
SCKRCN is called to initialize the RAB KRF and kKSZ fields and
verify the validity of the record number. The RMS’ SFIND
operation is executed to locate the record. SASVAR is called to
update the associated variable.

DELETE -- DLS$ and DLRS$

SINITIO is called to prepare for the I/O operation. The argument
mask is as follows:

Sequential DELETE: FL.WRT+FL.DEL+FL.IGN

Direct DELETE: FL.WRT+FL. DEL+FL.IGN+FL.REC

For sequential DELETE, RMS SDELETE is executed to delete the
record.

For direct DELETE, S$CKRCN is called to initialize the record
number. If the current record number equals the requested record

number, RMS SDELETE is executed to delete the current’ record

without unlocking it. If the operation fails with the error NO
CURRENT RECORD, then SGETR is called to locate and lock the
record, and RMS SDELETE is’ called to delete the record. The

SASVAR routine is called to update the associated variable.

7.8 I/O-RELATED SUBROUTINES

This section describes the operations of three I/O-related

subroutines. The subroutines are described in detail in the PDP-11l
FORTRAN-77 User's Guide.

ASSIGN

CLOSE

The unit number is placed in R2 and SGETFILE is called to get the
LUB address. A FAB is allocated if one is not present. The file
Specification string address is placed in Rl. If no length is
present, the string length is computed by scanning for a
zero-byte. SFNBST is called to store the file name string in the
LUB and set up the file name specification in the FAB.

The unit number argument is moved to R2 and the OTS” routine
SCLOSE is called to close the file.

FDBSET

RMS-11 I/O SUPPORT

The unit number is placed in R2 and S$GETFILE is called to get the
address. A FAB is allocated if one is not present. The

St character of the access mode String is checked against the
t, the corresponding file access fields are stored in the FAB

LUB
fir

lis
and

Par

Tf

in
in

in
in

LUB Status

DV.NEW

DV.OLD

DV.OLD!DV.RDO

DV.OLD!DV.APD

DV.OLD

DV.UNK

LUB, and DV.FACC is set in the LUB.

ameter Value OSFAC in the FAB

"NEW! FBSGET! FBSPUT! FBSUPD! FBSTRN

"OLD' FBSGET! FBSPUT! FBSUPD! FBSTRN

"READONLY ' FBSGET

"APPEND! FBSGET! FBSPUT! FBSUPD! FBSTRN

"MODIFY' FBSGET! FBSPUT! FBSUPD! FBSTRN

"UNKNOWN! FBSGET! FBSPUT! FBSUPD! FBSTRN

the third argument is 'SHARED', FBSWRI is set in the SHR field
the FAB. The fourth argument, if present, sets the MBF field

the RAB. The fifth argument, if present, sets the ALQO field
the FAB. The sixth argument, if present, sets the DEQ field

the FAB. The value is made positive.

CHAPTER 8

FORMAT PROCESSING AND FORMAT CONVERSIONS

This chapter discusses the internal form of format specifications, the
format processing algorithm, and the format conversion routines.

8.1 COMPILER FORMAT LANGUAGE

Format specifications are compiled into a standard internal form.
That form, which is illustrated in Figure 8-1, consists of a format
code byte followed by one to five bytes of optional format code
parameters.

bit 7 6 5 0 address

F [froma]
VFE MASK n+

REPEAT COUNT:N n+2

FIELD WIDTH:W n+3

DECIMAL PART:D n+4

EXPONENT FIELD:E n+5

ZK-230-81

Figure 8-l: Format Code Form

8.1.1 Format Code Byte

The format code byte consists of a 6-bit format code, a l1-bit Variable
Format Expression (VFE) flag, and a 1-bit repeat count flag.

The flags indicate whether the VFE mask and repeat count bytes are
included in the compiled code. If the VFE flag equals 0, no VFEs are
present in the format. If the VFE flag equals 1, VFES are present and
the compiled code includes a VFE mask byte followed by VFE addresses.
If the repeat count flag equals 0, the repeat count for the format
Specification is 1. If the repeat count flag equals 1, the repeat
count for the specification is greater than 1 or is a VFE, and the
repeat count byte is included in the compiled code.

Table 8-1 lists the decimal value of each 6-bit format code, gives its
Source code form, and indicates whether it uses the field width and
decimal part parameters.

FORMAT PROCESSING AND FORMAT CONVERSIONS

Table 8-1: Compiled Format Codes

Decimal Source Repeat
Code Form Count W D E Notes

0 - 3 -- —— - - = Format error, only O and 2
are used currently; O means

format syntax error; 2 means
format too large

4 (-— - - = Format reversion point
6 n (n-1 - = = Left paren. of repeat group
8) —— - -— = Right paren. of repeat group

10) -- - - - End of format

12 / -- - - =
14 $ -- - - -
16 : -- - - =
18 SP -- S - -
20 Q -- - - -
22 Tn -- n- -
24 nX n-1l - - = Previous PDP-11 FORTRAN

IV-PLUS behavior for nx
(Compiler does not generate
this code for nx; OTS still
includes routine for

26 nHcl...cn n-1l - - = compatibility) n not VFE;
or ‘'cl..cn' n characters follow

28 nAw n-1 Ww - - Standard conversions
30 nLw n-l w- -
32 n Ow n-l w- -
34 niIw n-1l w- -
36 nFw.d n-1l wd -
38 nEw.d n-1l wd -
40 nGw.d n-1 wd -

42 nDw.d n-1] wd -

44 nA n-1l - - = Default formats

46 nL n-1l - - -
48 nO n-1 - - -

50 nI n-1l - - -
52 nF n-l - = =
54 nE n-1 - - =

56 nG n-1l - - -
58 nD n-l - - =

5 S -- - - - New format descriptors
7 SP -- - - -
9 SS -- - - -

ll BN -- - - -

13 BZ -- - - -
15 TLn -- n- -

17 TRn or nx -- n- -
19 nZw n-1 w- -

21 nZ n-1l - - = Default Z format
23 nEw.dEe n-1 w doe E format descriptor with

exponent component
25 nGw.dEe n-1l wm o- G with e component
27 nOw.m n-l wm - O, Z, I with m component
29 nZw.m n-l w m -
31 nIw.m n-1 wm -

FORMAT PROCESSING AND FORMAT CONVERSIONS

8.1.2 Format Code Parameters

Up to five bytes of format code parameters may appear in the compiled
code for a format specification. The parameters are:

e VFE Mask Byte -- indicates whether the other format code
parameters are VFES or compiled constants. Bits 7, 6, and 5
are associated with the repeat count, field width, and decimal
part parameters, respectively. A bit setting of 1 means that
the associated parameter is a VFE; a0 setting means that the
associated parameter is a compiled constant.

e Repeat Count Byte -- contains the repeat count value when’ the
repeat count is not 1. This value is 1 less then the source

code value. It must be in the range 1 to 255.

e Field Width Byte -- contains the field width or tab position
in the range 1 to 255, or the scale factor in the range -128
to +127.

@e Decimal Part Byte -- contains the decimal field width for the
floating-point conversion codes, in the range 0 to 255; or
contains the significant digit part for the I, 0, and 2

formats in the form Iw.m, Ow.m, or Zw.m.

e Exponent Field Width Byte -- contains the optional exponent
Field width value, in the range 0 to 255. The default value
is 2.

When the repeat count, field width, or decimal part is a VFE, the VFE
address begins on the next word boundary after the VFE mask byte. The
VFE is compiled as an unparameterized arithmetic statement function of
type INTEGER*2 and is called by the instruction JSR PC,XXX, with R5
pointing to the program unit argument list. The format interpreter
performs all range checking on the result.

8.1.3 Hollerith Formats

Quoted format strings (character constants) are compiled as Hollerith
constants. The characters to be transmitted are included in the
compiled code following the repeat count. The repeat count cannot be
a VFE.

8.1.4 Default Formats

Most format code field descriptors have default values that are
supplied if no numeric value is present. The defaults are determined
from the format code and the data type of the corresponding list
element, as follows:

Format Code Data Type Default Values of W, W.D, or W.DE

I I*2 7

I I*4 12
E,G R*4 15.7 (E=2)
E,G R*8 25.16 (E=2)
D,F R*4 15.7
D,F R*8 25.16
0,2 All W=MAX (7,MIN (255 (8*ELEM SIZE) /3+2))
L All 2
A All Number of bytes in the variable
X --- 1

8-3

FORMAT PROCESSING AND FORMAT CONVERSIONS

8.1.5 Format Compiled Code Example

This section gives an example of the code resulting from the
compilation of a FORMAT source statement.

The FORTRAN statement:

1 FORMAT (1X, F13.5, "ABCDE', <K>I10, 3 (2E15.7E4) /)

is compiled into the following:

el: ~-BYTE 21,1 ; 1X
-BYTE 44,15,5 ; F13.5

BYTE 232 ; Hollerith code

~-BYTE 4 ; Repeat count
-BYTE 101,102,103,104,105 ; '‘ABCDE!
BYTE 342 ; I format code
~BYTE 200 ; VFE mask
~WORD LSVFE ; VFE address

-BYTE 12 ; I10

~-BYTE 4 ; Reversion point
-BYTE 206,2 ; Left paren and repeat count
~-BYTE 227,1 ; E format code and repeat count
-BYTE 17,7,4 ; E15.7E4
~ BYTE 10 ; Right paren
~-BYTE 14 ; / code

~BYTE 12 ; End-of-format

LSVFE: MOV K,RO

RTS PC

8.2 FORMAT PROCESSING PSECTS

The OTS uses the following program sections (PSECTs) for format and
list-directed processing:

e SSFIOC -- contains the pure code of the format processor
(SFIO) and the list-directed processors (SLSTI and SLSTO)

@e SSFIOD -- contains pure data (constants and dispatch tables)
used by S$FIO, SLSTI, and S$LSTO

@ SSFIOI -- contains the code for integer conversions

e SSFIOL -- contains the code for logical conversions

@e SSFIOR -- contains the code for floating-point conversions

e SSFIOS -- contains the list-directed input constant storage
block

@e SSFIOZ -- contains the code for octal and hexadecimal
conversions

e SSFIO2 -- contains the addresses of the conversion routine
entry points

FORMAT PROCESSING AND FORMAT CONVERSIONS

Each module stores itS own entry point address in SSFIO2. The
processing routines pick up the addresses of the appropriate

conversion routines as needed (if that address is 0, an error occurs).
The PSECTs have the GBL attribute so that the Task Builder can
correctly build overlaid tasks.

None of the conversion routines reference the work area or any other
portion of the OTS. They preserve R5 and the FPP registers, and leave
all other registers undefined.

8.3 FORMAT AND LIST-DIRECTED PROCESSORS

The format and list-directed processors -- FIO, SLSTI, and S$LSTO --
operate as co-routines with the I/O transmisSion operators. They are
called at the end of I/O initialization, and process formats and list
items until called with offset VARAD equal to 0.

8.3.1 Format Processor -- $FIO

SFIO processes through the format, calling an internal routine ffor
each format code. It calls VFES as encountered, with all context
saved and R5 restored to the user code value. When $FIO encounters a

format requiring a list item, it calls the appropriate conversion
routines (except that 'A' format is handled within S$FIO) until no
elements remain in the list (offset VARAD = 0). For nested group
repeat specifications, SFIO uses a pushdown stack in the work area.
Offset FSTKP points to the current position; offset FSTK is the base
of the pushdown stack.

8.3.2 List-Directed Input Processor -- $LSTI

SLSTI lexically scans the external record, delimits a field of input
Characters, determines the data type of the field, and calls the

appropriate input conversion routine. It converts the resulting
internal data value to the appropriate type and moves it to the list

element. The currently active data value is stored at the address’ in
PSECT SSFIOS pointed to by the work area offset W.PLIC.

The parameters passed to the format conversion modules include the
buffer pointer, the actual field width as determined by the delimiter
scan, and, for floating-point conversions, a decimal part of 0 and
scale factor of 0.

8.3.3 List-Directed Output Processor -- S$LSTO

SLSTO accepts the list element and determines a format based on the

list element data type, as follows:

Data Type Format

BYTE I5

LOGICAL*2 L2

LOGICAL*4 L2

FORMAT PROCESSING AND FORMAT CONVERSIONS

Data Type Format

INTEGER*2 17

INTEGER*4 I12

REAL*4 1PG15.7

REAL *8 1PG25.16

COMPLEX*8 1X,'(',1PG14.7,',',1PG14.7,')'

CHARACTER#¥n nAl where n is the string length.

Hollerith

If the computed field length is longer than the number of remaining
characters in the record, $LSTO writes the current record and begins a
new record. Each item is contained in a single record except for
Character constants that are longer than a single record. S$LSTO
inserts a space at the front of each record for carriage control. The
record length is the record size specified in the RECORDSIZE parameter
of the OPEN statement. If no RECORDSIZE parameter is specified, the
default is 81 bytes, which yields 80 print positions.

8.4 RUN-TIME FORMAT COMPILER -- FMTCVS$

Format specifications stored in arrays are converted into the required
form during execution. This is done by the following:

1. Pushing the address of the array specification

2. Executing JSR PC,FMTCVS$

FMTCVS does not delete the stack argument; it replaces its value with
the address of the compiled format.

Object time formats are compiled into a buffer in the OTS, whose
length is controlled by the Task Builder option FMTBUF. The buffer's
address is stored at offset W.OBFL and its high address+l is stored at
W.OBFH. Offset FMTAD points to the current entry in the output format
buffer.

Within the FMTCVS processing routines:

e R5 points to the source characters.

e RO contains the current source bytes.

@® R2 contains any numeric value being accumulated.

e Offset NOARG indicates the number of expected arguments’ for
the code.

e Offset PARLVL specifies the parentheses depth encountered.

e Offset NUMFLG indicates whether a number is available in R2.

The module examines each source character. If the character is a
digit, a number is accumulated; if it is a number or a special
character, a dispatch is made to process the format code.

FORMAT PROCESSING AND FORMAT CONVERSIONS

If the buffer space is exhausted, FMTCV$ stores the FMTBIG format code

(2) in the first byte of the compiled format and returns an error. If

a format syntax error is detected, FMTCV$ stores the FMTBAD format

code (0) in the first byte and returns an error.

8.5 INTEGER AND OCTAL CONVERSIONS

For input, the routines called are OCI$ for octal conversions (F4P v3

version) and ICI$ for integer conversions. The calling sequence is:

1. Push the address of the input string.

2. Push the number of input characters (high bit of this word

indicates BN/BZ; 0O=BZ and 1=BN).

3. Call ICI$ (or OCIS).

The routines return a 2-word result on the stack in INTEGER*4 format.

The calling arguments are deleted. If an error occurs, the C-bit is

set and the value returned is 0. The floating-point conversions call

the routine at entry point $ECI to input the exponent field.

For output, the routines called are OCO$ for octal conversions

(previous PDP-11 FORTRAN IV-PLUS version), and Ico$ for integer

conversions. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3. Push the INTEGER*4 value.

4. Call IcO$ (or OCO$).

The return is made with the calling arguments deleted. If an error

occurs, the C-bit is set and the output field is filled with

asterisks.

Also for output, IMOS is called for integer conversions of the form
Iw.m. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word

indicates SP/SS; 0O=SS and 1=SP).

3. Push the INTEGER*4 value.

4. Push the least number of digits to be output.

5. Call IMOS.

NOTE

The OTS no longer uses the entry points
OCI$ and oOcO$ for octal conversions.
They are included for compatibility
purposes.

8-7

FORMAT PROCESSING AND FORMAT CONVERSIONS

8.6 HEXADECIMAL AND NEW OCTAL CONVERSIONS

The hexadecimal and new octal conversions apply to all data types in PDP-11 FORTRAN-77. The calling sequence uses descriptors instead of values on the stack. For input, the routines called. are ZCIS for hexadecimal conversions and NOCI$ for octal conversions. The calling
sequence is:

1. Push the address of the input string.

2. Push the number of input characters (high bit of this word
indicates BN/BZ; 0=BZ and 1=BN).

3. Push the variable address.

4. Push the variable length.

5. Call ZCI$ or NOCIS.

The return is made with the arguments deleted and the value loaded
into the variable whose address was given. If an error occurs, the C-bit is set and the value returned is 0.

For output, the routines called are ZMOS for hexadecimal conversions and OMOS for octal conversions. The calling sequence is:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this word
indicates SP/SS; 0=SS and 1=SP).

3. Push the least number of digits to be output (for Zw.m_ and
Ow.m).

4. Push the variable address.

5. Push the variable length.

6. Call ZMOS or OMOS,

The return is made with the arguments deleted. If an error occurs, the C-bit is set and the output field is filled with asterisks.

8.7 LOGICAL CONVERSIONS

The input logical conversion routine, LCI$, is called as follows:

1. Push the address of the input field.

2. Push the width of the input field.

3. Call LCIS.

LCI$ returns a l-word result on the stack: 0 for .FALSE and -1 for - TRUE. The calling arguments are deleted. If an error occurs, the C-bit is set and .FALSE is returned.

FORMAT PROCESSING AND FORMAT CONVERSIONS

The output logical conversion routine, LCO$, is called as follows:

1. Push the address of the output field.

2. Push the width of the output field.

3. Push the l-word logical value.

4. Call Lcos.

The return is made with the calling arguments deleted and the C-bit
cleared.

8.8 REAL, DOUBLE-PRECISION, AND COMPLEX CONVERSIONS

The input conversion routine, RCI$, is called for all formats (D, E,

F, and G format codes) as follows:

1. Push the address of the input field.

2. Push the width of the input field (high bit of this_ word
indicates BN/BZ; 0O=BZ and 1=BN).

3. Push the decimal part width.

4. Push the scale factor (P format).

5. Call RCIS.

RCI$S returns a 4-word, double-precision result on the_ stack. The
calling arguments are deleted. If an error occurs, the C-bit is set
and the value returned is 0.0. If an exponent subfield is
encountered, SECT is called in the integer input conversion routine to
handle the conversion.

The output conversion routines, DCO$, ECOS$, FCOS, and GCOS, are called
as follows:

1. Push the address of the output field.

2. Push the width of the output field (high bit of this’ word
indicates SP/SS; 0O=SS and 1=SP).

3. Push the decimal part width (high byte of this word contains
the value of e for forms Ew.dEe or Gw.dEe).

4. Push the scale factor.

5. Push the 4-word, double-precision value.

6. Call DCOS, ECOS, FCO$, or GCOS.

The return is made with the calling arguments deleted. If an error
occurs, the C-bit is set and the output field is filled with
asterisks.

The real, double-precision, and complex conversions are done in the
software; the FPP unit is not used.

The optional module provided, F4PCVF, is an FPP implementation that is
Significantly faster but slightly less accurate. The entire FPP state
is conserved.

8-9

FORMAT PROCESSING AND FORMAT CONVERSIONS

8.9 FORMAT CONVERSION ERROR PROCESSING

When a format conversion error occurs, both methods of error
continuation, ERR=transfer and return (see Section 9.2.2.1), are generally supported. The actions taken for these errors are as
follows:

Error 59 -- list-directed I/O syntax error
The result value is null (no change).

Error 61 -- format/variable type mismatch error
The value is used as is, without conversion.

Error 63 -- output conversion error
The field is filled with asterisks.

Error 64 -— input conversion error
The result value is 0, 0. or O.DO.

Error 68 -- variable format expression value error
A value of 1 is used for repeat count or field width;
a value of 0 is used for the decimal part or scale
factor.

For more information on format conversion error processing, see _ the
PDP-11 FORTRAN-77 User's Guide.

8-10

CHAPTER 9

ERROR PROCESSING AND EXECUTION CONTROL

This chapter discusses execution control processing, detecting and

processing run-time errors, and generating error messages.

9.1 TASK INITIALIZATION

The first instruction of every FORTRAN main program calls the OTS
initialization routine, as follows:

JSR PC,OTIS$

The following operations are performed:

e An SVTKSS executive directive initializes the synchronous trap

vector.

e SSTFPP is called to initialize the FP-11 floating-point

processor or the KEF1IA floating-point microcode option

(unless F4PEIS is used).

e The error control byte table is copied into impure storage.

e The number of available logical units is computed as_ the
minimum of the size of the device table program section
(PSECT) and the value of impure area offset W.LUNS. The

device table PSECT is set to zero.

e The user record buffer PSECT size is computed and stored at

impure area offset W.BLEN.

e Miscellaneous impure area offsets are set to zero.

e The task error count limit is set to 15.

e SVINIT is called to initialize the virtual array mapping
window if virtual arrays are used.

e If the FCS-11 files system is being used, FINITS is executed
to initialize FCS.

e If the RMS-1l file system is being used:

- The free storage pool size is determined using the task
. LIMIT directive, and the GPRTSS and GTSKSS-~ system
directives and free storage list head are initialized.

- An RMS-11 SSETGSA operation is executed to initialize the
RMS GSA storage allocation procedure.

ERROR PROCESSING AND EXECUTION CONTROL

9.2 EXECUTION-TIME ERRORS

The following sections describe the types of errors reported by the
OTS.

9.2.1 Trap Instruction Processing

The OTS uses TRAP instructions to report errors. FORTRAN error
numbers range from 1 through 120 (decimal). Not all numbers have a
definition; some are reserved for future error definitions. The
error number is in the low byte of the TRAP instruction. Internally,
it is 128 larger than the reported number; thus, error number 21 is
internally represented as 149, The first 128 TRAP values. are
available to users (see Section 9.4).

When a TRAP instruction is executed, the operating system transfers
control to the TRAP instruction Processor, $SST6, which checks the range of the error number. If that is valid, $SST6 calls SERRAA to do
the error analysis and reporting. If the error number is invalid,
SSST6 returns an error number 1.

SERRAA's processing is based on the contents of an error control byte
in impure storage. The error control byte is bit encoded. The bit
descriptions are:

EC.CON -- Continue.

EC.CNT -- Count.

EC.UER -- Use ERR= exit if 1; return if 0.

EC.LOG -- Log.

EC.INU -- This number defined for use.

EC.RTS -- Return continuation permitted.

EC.ERE -- ERR= continuation permitted.

The sign bit of the error control byte has no name. It is tested and
Cleared by the ERRTST system subroutine. When it is Clear, an error
has not occurred; when it is set, an error has occurred.

The standard bit combinations are:

Fatal

Errors: EC.FAT EC.INU + EC.LOG

I/O

Errors: EC.IO

EC.ERE
EC.INU + EC.CON + EC.CNT + EC.LOG + EC.UER +

Other

Errors: EC.NRM EC.INU + EC.CON + EC.CNT + EC.LOG + EC.RTS

ERROR PROCESSING AND EXECUTION CONTROL

9.2.2 Error Control Byte Processing

SERRAA obtains the error control byte from the OTS impure area. The
Sign bit is set. SERRAA examines other bits in the error control byte
and acts as follows:

e If the continue bit is cleared, the error report includes’ the
exit flag.

e If the count bit is set and no ERR=address exists, offset
W.ECNT is decremented. If W.ECNT is less than or equal to
zero, the report includes the exit flag.

e If the continue-type bit is set and no ERR= address exists,
the error report includes the exit flag.

e If the log bit is set, the error report includes the no-exit
flag. If the task exits, the message is always logged.

SERRAA calls SERRLG to log all terminal messages, both error’ reports,
and the messages from STOP and PAUSE statements.

9.2.2.1 Continuation Processing - Two types of continuation after an
error are supported:

e Transfer to an ERR= address. This type is used for most I/O
errors.

e Return to the source of the error. This type is generally
used for errors other than I/O errors.

9.2.2.2 W.IOEF Error Processing - For some I/O errors, it may be
better if the ERR= transfer is initiated by the I/O routine itself,
rather than by the error processor ($ERRAA). For example, when OPEN
Statement processing detects an error in a keyword, the transfer to
the ERR= address is delayed until all of the statement's keywords have
been examined.

Work area offset W.IOEF is used to obtain this special error
processing. The effects of W.IOEF's value are as follows:

e When it is 0, default processing is enabled.

@e When it is negative, default processing is performed except
that the ERR= transfer is not made; instead, control is
returned to the source of the error and the ERR= transfer can
be made from there.

e When it is positive, the return type of continuation is always
executed.

W.IOEF is initially zero and is reset to zero before exiting from a
routine that uses it. Regardless of the W.IOEF setting, if no ERR=
address exists, the task will exit.

ERROR PROCESSING AND EXECUTION CONTROL

9.2.3 Floating-Point Processor Errors

All Floating-Point Processor (FPP) errors are processed as
Asynchronous System Traps (AST) in routine SFPERR. When

divide-by-zero, overflow, or underflow occurs, zero is supplied as the
result of the operation that caused the trap. The AST procedure log
uses the TRAP instruction to issue the error report.

9.2.4 Error Message Processing

Error message construction and processing is performed by many small
routines. Message processing begins with a call to SERRLG, which
controls the flow of message processing, calling the appropriate
message utilities as _ required. SERRLG produces a 5-line error log
containing the following:

e On line 1, the task name and error number.

e On line 2, message text.

e On line 3, the value of the program counter at the time of the
error. This is found at offset W.PC.

e On line 4, the error count exceeded message. This is based on
the error limit count stored at offset W.ECNT.

@e On line 5, the I/O error data, which is based on the primary
error field of the LUB (referenced by offset W.FERR), followed
by the program unit traceback.

The log does not include any line that is inappropriate or
unavailable. On RSX-11M/M-PLUS and RSTS/E, messages are output by
issuing QIOs to the user's terminal.

For message construction, R3 points to the work area, R5 points to the
current position in the message text being constructed, and offset
W.ERLN points to the beginning of the error message buffer.

Offset W.MOTY is zero if the message output task (MO) is being’ used,
and nonzero if QIOs to the terminal are being performed.

SERRLG is also called to output messages from STOP and PAUSE
statements. It uses the values of RO and Rl to determine the type of
message being generated, as follows:

e If Rl is 0, the message is associated with a STOP or PAUSE
statement, and RO points to the message text block.

e If Rl is not 0, the message is an error message, and RO is -1
if the task is exiting and 0 if the task is continuing.

9.2.4.1 Message Construction Utilities - The following routines build
the error report text in the error text buffer. They operate the same
way whether messages are output by the message output task (MO) or
QIOs to the user's terminal.

ERROR PROCESSING AND EXECUTION CONTROL

Terminal QIO Perform a QIO of message to the user's terminal.
Compute the message length; set MO LUN number
(offset W.MO, global symbol .MOLUN) in the QIO

DPB. Issue the QIO. Wait for the QIO_ to
complete.

SATT -- Initialize R5 to error message buffer and store a
Carriage-return/line-feed (CR/LF) asthe first

two characters. Set R5 into offset W.MOAIL.

SERRNL -- Start a new line. Store a CR/LF in buffer.

SERRZA -- Perform a GTSKSS directive to obtain the task
name. Call SATT and S$RS0OAB to decode the
Radix-50 task name.

SBINAS ~- Convert a binary number to decimal ASCII.

SFILL -- Move ASCIZ text pointed to by Rl to error message
buffer pointed to by R5.

SR50AS,$RS50AB - Convert Radix-50 value to ASCII by calling $R50.

9.3 STOP AND PAUSE STATEMENT PROCESSING

STOP and PAUSE statements are compiled to calls as follows:

1. Push address of display (0 indicates no display).

2. Call statement-specific entry:

STOPS for STOP

PAUSS for PAUSE

All context is saved. SERRLG (see Section 9.2.4) is called to output
the message. STOP then jumps to SEXIT; PAUSE issues a SPNDS$S
directive and returns.

ERROR PROCESSING AND EXECUTION CONTROL

9.4 USER INTERFACING TO ERROR PROCESSING

The first 128 (0 to 127) trap codes are available to users. TRAP
instructions transfer control to the OTS error processor by means of a
System Synchronous Trap Table located in the OTS impure work area.
The first word of this table has the global symbol S$SST. You can use
coding similar to the following to intercept control:

;

; INITIALIZATION

INIT: MOV SSST+14,SST6 ;Save OTS TRAP addr
MOV #INTCEP, SSST+14 ;Put new addr in sst table

SST6: » WORD 0

; TRAP HANDLER

INTCEP: CMP #128.*2,@SP ;Low byte *2 of TRAP

;Instruction from executive
BHI 1$;Branch if user code
JMP @SST6 ;Goto ots

1S: cee ;User trap processing code

TST (SP)+ ;Discard extra word
;Trap number

RTI ;Exit interrupt

You can use similar techniques’ to intercept the other’ synchronous
traps.

9.5 USER INTERFACING TO TERMINAL MESSAGE OUTPUT

The error-reporting message facility enables users to write text to
their terminals without doing FORTRAN I/o. A message text block
Similar to that used for STOP and PAUSE statements is constructed as
follows. Rl equals 0; RO points to a 2-word message block. The
first word of the block contains the address of an ASCIZ String (ASCII
String terminated by a zero byte); the second word is 0. The text is
output by executing a JSR PC, S$ERRLG instruction.

Example:

The following prints 'HELLO' on the user terminal:

In FORTRAN:

CALL MSG ('HELLO')
END

IN MACRO-11

MSG:: CLR -(SP) 2nd word of message block
MOV 2(R5),-(SP) Address of ASCIZ text
MOV SP,RO RO points to message block
CLR Rl Signal non-error type message
JSR PC,SERRLG
CMP (SP)+, (SP)+
RTS PC
. END

Output the message
Delete message block
Return ™

e

G
e

TA
Q

W
e

W
E

W
e

W
e

The user text is preceded by the task name. Only a single line can be
output.

ERROR PROCESSING AND EXECUTION CONTROL

9.6 EXECUTION CONTROL SUBROUTINES

The following subroutines are described in detail in the PDP-11
FORTRAN-77 User's Guide:

ERRESET -- The error number specified by the user is extracted
and checked for validity. The logical arguments are extracted
and the appropriate bits in the error. control byte are
manipulated. If a limit count is’ provided, it is stored at
offset W.ECNT.

ERRSNS -- This routine is called with zero to four integer
arguments:

CALL ERRSNS (NUM, FERR, FERI1, UNIT)

The information saved from the latest error is returned as
follows:

offset W.ERNM into NUM

offset W.FERR into FERR

offset W.FER1 into FER]

offset W.ERUN into UNIT

These offsets are then zeroed.

ERRTST -- The error number is retrieved and checked for validity.
The sign bit of the error control byte is tested and cleared, and
the result is returned in the second argument.

EXIT -- Performs a jump to SEXIT.

USEREX -- Stores the argument address at work area offset EXADDR
for use during task termination.

CHAPTER 10

OTHER COMPILED-CODE SUPPORT ROUTINES

This chapter describes routines that support various arithmetic and
housekeeping operations required by the compiled code.

10.1 ARITHMETIC OPERATIONS

All the routines follow a common naming convention in which:

e The first two letters indicate the operation performed, as
follows:

AD -- addition

SB -- subtraction

ML -- multiplication

DV -- division

PW -- exponentiation

CM -- comparison

TS -- test for zero

NG -- negation

@ The next letter (next two, in the case of exponentiation)

indicates the data types of the arguments, as follows:

I -- Integer*2

J -- Integer*4

R -- real

D -- double Precision

C -- complex

10-1

OTHER COMPILED-CODE SUPPORT ROUTINES

@ The last letter indicates how to access either the Single
argument of a l-argument operation or the second (right hand)
argument of a 2-argument operation. For 2-argument
operations, the first (left hand) argument is always on the
Stack. The last letter can be one of the following:

S -- indicates the argument is at the top of the stack

C -- indicates that the following in-line word is the
address of the argument

P -- indicates that the following in-line word is the
offset in the parameter list (pointed to by R5) which
contains the address of the argument

All of these routines are called using the R4 convention described in
Chapter 2. In addition, they all delete their stack arguments, return
their result on the stack, and preserve the contents of general
register 5 (R5).

10.1.1 Exponentiation

The exponentiation routines are as follows:

Data Type

Routine Base Exponent Result

PWIIx$ I*2 I*2 I*2

PWIJx$ I*2 I*4 I*4

PWJIxS I*4 I*2 I*4

PWJJx$ I*4 I*4 I*4

PWRIxS R*4 I*2 R*4

PWRJx$ R*4 I*4 R*4

PWDIxS R*8 I*2 R*8

PWDJx$ R*8 I*4 : R*8

RWRRx$ R*4 R*4 R*4

PWRDx$ R*4 R*8 R*8

PWDRx$ R*8 R*4 R*8

PWDDx$ R*8 R*8 R*8

PWCIx$ C*8 I*2 C*8

PWCJxS C*8 I*4 C*8

PWCCx$ C*8 C*8 C*8

x is S, C, or P

10-2

OTHER COMPILED-CODE SUPPORT ROUTINES

NOTE

This table of routines shows only the
entry points called by the compiled
code; it is not a complete list of all

the supported forms of exponentiation.
For example, a base of complex and an
exponent of Real*4 is supported by
converting the Real*4 to a complex
number and calling the entry point that
Supports a base and exponent of complex.

For a complete list of the supported
forms of exponentiation, see the PDP-1l
FORTRAN-77 User's Guide.

10.1.2 Complex Arithmetic Operations

The following entries are used:

ADCx$ -- complex addition

SBCx$ -- complex subtraction

MLCx$ -- complex multiplication

DVCx$ -- complex division

TSCx$ -- complex test for zero

NGCxS -- complex negation

CMCx$ -- complex compare

x is S, C, or P

10.1.3 INTEGER*4 Arithmetic Operations

The following entries are used:

MLUx$ -—-- Multiplication

DVJIx$ -- Division

x is S, C, or P

10.1.4 Stack Swap Operations SWPxy$

These routines are used in conjunction with the out-of-line arithmetic
operation entries when the order of evaluation causes the _ two
arguments of the operation to be on the stack in reverse order. Entry
names are of the form:

SWPlrs

10-3

OTHER COMPILED-CODE SUPPORT ROUTINES

The number of words the left argument occupies: 1, 2, or 4

The number of words the right argument occupies: 1, 2, or 4.

The two arguments are swapped on the stack.

10.1.5 Character Operations

These routines are called using the PC convention described in Chapter
2, with the modification that a descriptor (length, address pair) is
pushed on the stack for each argument. The two character operations
are character assignment (entry point SCHASN) and character comparison
(entry point SCHCMP).

Character assignment is called as follows:

1. Push the length of the destination (in bytes).

2. Push the address of the first byte of the destination.

3. Push the length of the source (in bytes).

4. Push the address of the first byte of the source.

5. JSR PC,SCHASN.

On return, the stack arguments are deleted.

Character comparison is called as follows:

1. Push the length of the left side of the comparison operation
(in bytes).

2. Push the address of the first byte of the left side of the
comparison operation.

3. Push the length of the right side of the comparison operation
(in bytes).

4. Push the address of the right side of the comparison
operation (in bytes).

5. JSR PC,SCHCMP.

On return, the stack arguments are deleted and the condition codes are
set for an unsigned branch (C and Z bits of the PSW are valid).

10.2 ARRAY PROCESSING SUPPORT

An Array Descriptor Block (ADB) is a data structure the compiler
Provides to describe an array. FORTRAN-77 compiled code uses ADBs for
the following:

e Array subscript calculations for dummy argument arrays

e 1/0 calls that transmit an entire array

10-4

OTHER COMPILED-CODE SUPPORT ROUTINES

e Array subscript limit checking when specified by the compiler
/CK command switch

e Virtual array load and store operations

The compiler defines the constant parts of an ADB. The varying parts
are initialized when the subprogram that contains the array
declaration is executed.

The offsets within the ADB are as follows:

A.ASTR

A.ASUM

A.A0

A.CWRD

A.SIZB

A.PLYA

A.PLYV

A. PWRD

Actual base storage address (first element) or, for

virtual arrays, the 64-byte block number of the array
base in virtual storage.

Assumed size array flag bit in code word A.CWRD.

Zeroth-element address (address of A _ (0,0,0...0)).

This offset is ignored for virtual arrays.

Code word containing the number of dimensions, data
type, element size, and information denoting whether it
is an assumed size array:

Assumed Size Data Type Number of Element
Array Flag Dimensions Size

1 bit 4 bits 3 bits 8 bits

Number of bytes per array element (BPE). (Low byte of

A.CWRD.)

First dimension span. (Other dimensions follow A.D1
but are not named; that is, A.D1+2 is the second
dimension span.)

Total array size in bytes, A.SIZB = D1*D2*...Dn*BPE;
or, for virtual arrays, the number of elements in the

array.

Addressing polynomial evaluated for the first element,
polyA(L1,L2,...Ln).

Addressing polynomial evaluated for the first element
of a virtual array, pOlyA(L1,L2,...Ln).

Used for adjustable arrays. 2N l-bit fields denoting
an adjustable/non-adjustable bound. Encoding is
left-justified as follows:

Last upper bound. Other bounds are stored in front of
A.UN but are not named; that is, A.UN-2 is the last

lower bound, A.UN-4 is the next-to-last upper bound,
and so on.

10-5

OTHER COMPILED-CODE SUPPORT ROUTINES

The data type codes contained in A.CWRD are:

A.LGCl = LOGICAL*1 (BYTE)

A.LGC2 = LOGICAL*2

A.LGC4 = LOGICAL*4

-AJINT2 = INTEGER*2

A.INT4 = INTEGER*4

A.REA4 = REAL*4

A.REA8 = REAL*8 (DOUBLE PRECISION)

A.CMP8 = COMPLEX

A.CHAR = CHARACTER

A.HOLL = Hollerith

I/O transmissions also use these codes to denote the list item data
type.

The dimension spans (Di) for arrays are the sizes of each dimension:

Di = upper bound (Ui)-lower bound (Li) + 1

The compiled code uses dimension SpanS to determine the subscript
value. The ADB retains the upper and lower bounds for each array.
The bounds determine the size and Shape of arrays.

10.2.1 Adjustable Array Initialization

Four routines are used for initializing the contents of ADBs for dummy
argument adjustable arrays: MAKI1S$ for one-dimensional arrays, MAK2$
for two-dimensional arrays, MAKNS for arrayS with three to. seven
dimensions, and MAKVS for virtual arrays. Only R5 is preserved by
these routines. They are called as follows:

1. Push the dimension bounds for any nonconstant elements. onto
the Stack in order of their appearance in the array
declarator.

2. Push the base address of the dummy argument array passed in
the subprogram call.

3. Push the address of the array descriptor block onto the
stack.

4. Execute a call in the form of JSR PC, to one of the following
routines: MAK1S$, MAK2$, MAKNS, or MAKVS.

5- On return, the stack arguments are deleted.

10.2.2 Array Subscript Checking

If the compiler switch option /CK is in effect, each array reference
will be checked to verify that the array element address is within the
bounds established for the array by the array declarator.

10-6

OTHER COMPILED-CODE SUPPORT ROUTINES

The form of the call is:

1. Push the array element address onto the stack.

2. Push the address of the array descriptor block.

3. Execute a call in the form of JSR PC,ARYCKS.

This call preserves all registers.

10.2.3 Virtual Array Processing

Virtual array elements are processed by out-of-line calls in all
cases. The OTS call returns the mapped virtual address of the array
element. Either the value of the array element is loaded into a
register for use or a value is stored into the array element.

The form of the call is:

1. Push the address of the array descriptor block on the stack.

2. Move the indexing expression into RO.

3. Call the routine:

VRTxS$, if /-CK was specified

VRTxCS, if /CK was specified

where x is one of the following data type code letters:

B LOGICAL*1

L LOGICAL*¥2

M - LOGICAL*4

I - INTEGER*¥2

J - INTEGER*4

R - REAL*4

D —- REAL*8

C —- COMPLEX*8

4. On return, the stack argument is deleted, RO contains’ the
virtual address of the element, and all other registers are
preserved. |

10.2.4 Notes on ADB Usage

The following defines the array-addressing polynomial function, polyA,
for a three-dimensional array:

DIMENSION A(L1:U1,L2:U2,L3:U3)

polyA(I,J,K)=((K*D2+J) *D1+I) *BPE

A.AO is defined as A.ASTR - polyA(L1,L2,L3).

10-7

OTHER COMPILED-CODE SUPPORT ROUTINES

The address of an array element is then calculated as:

address of A(i,j,k)=A.ASTR+polyA(i,j,k) -polyA(L1,L2,L3)

=A.A0+polyA(i,j,k)

Array bounds checking consists of verifying that the array element
address is both of the following:

e Greater than or equal to the base address, A.ASTR

e Less than the high address+l, A.ASTR+A.SIZB

Note that only the complete subscript value is within the array;
individual dimensions are not checked against their corresponding
dimension bounds.

For example, the FORTRAN statements

SUBROUTINE X(A,N)

DIMENSION 1I(100), A(10:N-1,N)

cause the following ADBs to be created for I and A:

«WORD 310 ; A.SIZB

I.ADB: -WORD I ; A.ASTR

-WORD I-2 ; A.AO
-WORD 20402 ; A.CWRD

;No Di values since I is not
;an adjustable array

» WORD 12 ; Ll = 10
» WORD 0 ; Ul = N-]
-WORD 1 ; L2 = 1]
«WORD 0 ; U2 =N
-WORD 120000 ; A.PWRD

-WORD 0 ; A.SIZB
A.ADB: -WORD 0 ; A.ASTR

- WORD 0) ; A.AO
- WORD 31004 ; A.CWRD
- WORD 0 ; D1
~WORD 0 ; D2

10.3 GO TO STATEMENT SUPPORT

The following sections describe the code that results’ from the
compilation of FORTRAN-77 GO TO statements.

10.3.1 Computed GO TO Statement Support

A computed GO TO statement is compiled to a call as follows:

1. Push the address of the label list.

2. Convert the index expression value to INTEGER*2 (if needed)
and push it on the stack.

3. Execute a call in the form of JSR PC,CGOS.

10-8

OTHER COMPILED-CODE SUPPORT ROUTINES

4. On return, the stack arguments are deleted.

5. If the index value is less than 1 or greater than the number
of labels in the list, no transfer takes place and all
registers are preserved.

10.3.2 Assigned GO TO Statement Support

An assigned GO TO statement is compiled to a call as follows:

1. Push the assigned label address.

2. Push the address of the allowed label list.

3. Execute a call in the form of JSR PC,AGOS.

4. On return, the stack arguments are deleted.

5S. If the assigned label value is not in the list, no transfer

takes place and all registers are preserved.

10.3.3 Label List Argument Format

The label list for the assigned or computed GO TO statement has_ the
following form:

ADDR: ~WORD n

~WORD labell

~WORD labeln

10.4 TRACEBACK CHAIN PROCESSING

The traceback chain for error processing is a linked list constructed
dynamically on the run-time stack.

The work area contains the list head and the current statement number.

The list head is at offset W.NAMC, with global name SNAMC. The
Current statement number is at offset W.SEQC, with global name SSEOQC.

The list elements are 4-word blocks located on the stack in the
following form:

SNAMC -> pointer to next

statement number

program unit

name in RAD50

OTHER COMPILED-CODE SUPPORT ROUTINES

The list head points to the currently active program unit entry. This
entry contains the following items:

e The currently active program unit name in Radix-50

e The current statement number in the calling program at the
time of the call

@ A pointer to the calling program list block

Note that the statement number pertains to the program unit of the
NEXT list block, since the current program unit statement number is
maintained at the fixed global location S$SEQC.

If the compiler command option /TR:NAMES, /TR:BLOCKS, or /TR:ALL is
Specified, a call is made to link the program unit name into the OTS
name list used for producing the error traceback information. The
form of the call is:

1. Push the last three letters of the entry name (represented in
Radix-50) onto the stack.

2. Load the first three letters of the entry name into’ register
R4,.

3. Execute a call in the form of JSR R4,@SNAMS.

The current statement number, S$SEQC, is set to zero. The traceback
information is maintained on the execution stack. When the program
unit returns, it returns to the NAMS routine, which resets the Stack,
removes the name chain link, and returns control to the caller.

If /TR:NAMES is specified, the current statement number is not updated
(SSEQC remains zero).

If /TR:BLOCKS is specified, the current Statement number is
periodically updated by the compiler to contain the negative of the
Statement number, for instance, -21 for statement 21.

If /TR:LINES is specified, the current statement number is updated on
every statement, maintaining a positive number.

10-10

CHAPTER 11

OTS SYSTEM GENERATION AND TAILORING

The OTS is built during the installation process as described in the
PDP-11 FORTRAN-77 Installation Guide. The material in this chapter
gives a more detailed explanation of the installation options, as well
as information on building the OTS from sources.

11.1 ASSEMBLY OPTIONS

All assembly options are determined by the definition or nondefinition
of a symbol.

There are three operating system assembly options, three file system
assembly options, two hardware assembly options, and two special
assembly options. No two options affect the same module; thus,
options can be combined.

11.1.1 Operating System Options

The two operating system option symbols are RSXD for IAS, RSXM_ for
RSX-11M/M-PLUS and RSTS/E, and RSXS_ for RSX-11S. The following
modules are affected:

SOTV -- impure area allocation

SERRMO -- error report interface

SERRLOG -- error report construction

SERRPT -- error processor

The modules SERTXT and $SHORT are used only with RSX-11M/M-PLUS.

11.1.2 File System Options

The two versions of I/O Systems are maintained as_ separate sources,
but three assembly options are maintained. The assembly options are:

e FCS specifies FCS-1l version.

e RMS specifies RMS-1ll version.

@e Nothing specifies the RSX-11S subset.

li-1

OTS SYSTEM GENERATION AND TAILORING

11.1.3 EIS Instruction Set Option

The two hardware options are defined by the symbol FPP. If FPP is not
defined, then you can use the OTS on a PDP-11/45 or -11/40 with EIS,
provided no floating point computations are attempted.

The modules affected are:

SMLJI ~~ INTEGER*4 multiplication

SDVJ -- INTEGER*4 division

SJIMOD -- INTEGER*4 modulo

SFPPUTI -- FPP save/restore and initialization

11.1.4 Special Assembly Options

The following sections describe the two Special assembly options.

11.1.4.1 Double-Precision Arithmetic Option - The symbol F77DP is
used to assemble certain mathematical functions in double-precision
mode.

The modules affected are:

SASIN -- arc sine

SACOS -- arc cosine

STAN -- tangent

11.1.4.2 Floating-Point Format Conversion Option - The symbol FPP is
also used to define the floating-point output conversion module that
utilizes the FPP,

The module affected is:

SCONVR ~ floating-point format conversion

11-2

OTS SYSTEM GENERATION AND TAILORING

11.2 OTS ASSEMBLY MACROS

The OTS data base, PSECT attributes, and errors are defined at

assembly time by the following macros contained in the parameter file

F77.MAC:

e OTSWA Macro -- defines the work area offsets (see Appendix A).

e ERRDEF Macro -- defines the OTS errors, error control byte

control bits, and error message text.

e SAOTS Macro -- obtains the impure area pointer from location

SOTSV and places it in a register, usually R3.

e OTSSI Macro -- defines the OTS code PSECT SSOTSI.

e OTSSD Macro -- defines the OTS pure area PSECT S$SOTSD.

e ADBDEF Macro -- defines the array descriptor block offsets and

the data type codes. It is found in the parameter file

ADBDEF.MAC.

e FBLOCK Macro -- defines the LUB control block offsets for the

FCS or RMS versions of the I/O system. It is defined in the

parameter files FCS and RMS.

APPENDIX A

FORTRAN IMPURE AREA DEFINITIONS

octal offset global symbol

W.SEQC
0 SOTSVA, $SEQC

W.NAMC
2 $NAMC

W.LUNS
4 .NLUNS

W.MO
6 .MOLUN

W.BFAD
10

W.BLEN
12

W.BEND
14

LNBUF
16

W.QIO
20

W.DEV
22

RECIO
24

FMTAD
26

FILPTR
30

EOLBUF
32

FMTCLN
34

BLBUF
36

PSCALE
40

W.LICP/FSTKP
42

A W.LICB/FSTK/NOARG
44

PARLVL
46

NUMFLG
50

| 16 word scratch area

overflow word

FMTRET
106

VARAD
110

TSPECP
112

TYPE
114

UNFLGS/REPCNT
116

LENGTH
120

D
122

ITEMSZ
124

W.ELEM]| DOLFLG
126

COUNT
130

2K-231-81

FORTRAN IMPURE AREA DEFINITIONS

octal offset

132

134

136

174

200

230

232

W.UOPN/RACNT/UNCNT/FMTLP

DENCWD

W.PC

EXADDR

ENDEX

ERREX

W.ECNT

W.ERNM

W.LIMT

W.OPFL

W.ERLN

W.ERLE

W.TKNP

W.ERTB

W.FERR

W.FER1

W.SST

W.OBFL

W.OBFH

W.ERUN

W.FPST

W.EXJ

W.IOEF| W.PNTY

W.R5

W.VTYP

W.KNUM/W.RECL/W.KDSC

W.RECH

W.DFLT] W.FPPF

W.LNMP

W.PRNT

W.TYPE

W.ACPT

W.READ

global symbol

$ERCNT

$PRINT

$TYPE

$ACCPT

$READ

ZK-232-81

FORTRAN IMPURE AREA DEFINITIONS

octal offset . global symbol

W.MOPR

234

W.MOV1

236 SMOPRM

W.MOA1

240

W.MOV2

242

W.MOA2

244

W.MOTC

246

W.MOTR

250

W.MOT2

252

lwmory

254

W.DEVL

256

W.NULL W.CPXF

260

W.FDB1

262

W.FOB2

264

W.EXST

266

W.FNML

270 SMXFNL

W.WDB

272

W.SKLM

274

W.TKLM

276

W.TSKP

300

W.WNLO

302

W.WNHI

304

W.KREF

306

W.KDTP | W.KMAT

310

W.EXTK

312 SEXTKL

W.SPBN | W.LUNO

314

W.PLIC

316

W.TBST

320

W.TBFN

322

W.ERXT

324
W.ERLG

326

W.FIN

330

W.NAM

332

W.1OXT

334

W.RLME

336

W.RQME

340
W.GSA

342

W.END

344

ZK-233-81

APPENDIX B

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

B.1 FCS-11 LUB CONTROL BLOCK FORMAT

Status Bit Definition

offset

D.STAT
0

D.STA2
2

D.RCNM/D.RCCT
—-— eee ee CY 4

D.RCN2/D.RCC2
6

D.AVAD
8.

DRSIZ
10.

12= D.FDB

start of FCS-11

FDB ~

D.STAT - Word 1

DV.FIX

DV.FNB
DV. DFD

DV. FAK
DV.FACC =

DV.OPN
DV.VAR

DV.SEG
DV.FMP

Z2K-234-81

RECORD TYPE ='FIXED'
FILE NAME BLOCK INITIALIZED

DEFINE FILE DONE DIRECT ACCESS UNIT
PARTIAL FDB FLAG FOR ENCODE/DECODE
FILE ATTRIBUTES: QO - DEFAULT

1 - CALL FDBSET

UNIT OPEN MUST BE 200'S BIT

RECORDTYPE='VARIABLE'

RECORDTYPE='SEGMENTED'

FORMATTED ACCESSED UNIT

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

D.STAT - Word 1

DV.UFP

DV.ASGN

DV.CLO
DV.FRE

DV. RW

=4000
=10000

=20000
=40000
=100000

D.STA2 - Word 2

DV.AI4

DV.RSZ
DV.CC

DV.SPL
DV. DEL
DV.RDO

DV.UNK

DV.OLD
DV.NEW

DV.SCR
DV.APD

DV.SAV
DV.BN

=2

=4
=10
=20
=40
=400
=1000
=2000
=4000
=10000
=20000
=40000
=100000

UNFORMATTED ACCESSED UNIT

FILESPEC: O - USE DEFAULT

1 - FROM CALL ASSIGN
CLOSE IN PROGRESS

FREE FORMAT ALLOWED

CURRENT OPERATION: O -READ

1 - WRITE

DEFINEFTILE ASSOC VAR: 0O —- I*2

1 - I*4
EXPLICIT RECORDSIZE SPECIFIED

EXPLICIT CARRIAGE CONTROL SPECIFIED
DISPOSE = 'PRINT'

DISPOSE = 'DELETE'
READONLY

TYPE = ‘UNKNOWN'
TYPE = 'OLD'

TYPE = 'NEW'

TYPE = ‘SCRATCH'

ACCESS ='APPEND'
DISPOSE='SAVE'

BLANK = ‘NULL!

B.2 RMS-11

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

CONTROL BLOCK FORMATS

LUB FORMAT

offset

D.STAT

D.STA2

D.NAMC D.LUN

D.IF |

D.PFAB

D.RSIZ

D.RCNM/D.RCCT

D.RCN2/D.RCC2

D.AVAD
16.

D.STS
18.

D.STV
20.

D.RNUM
22.

24.

D.SPAR
26.

28. = D.RAB

RMS-11 RAB

length = RB$BLN

file specification save area

size = value of offset W.FNML

in the impure area

Status Bit Definitions

D.STAT - Word 1

DV.SEQ

DV.DIR
DV. KEY

DV.FIX

DV. FAK
DV.FACC =40

DV. VAR

DV.OPN

DV. FMP

D.NAM = D.RAB+RB$BLN

ZK-235-81

=] SEQUENTIAL ACCESS

=2 DIRECT ACCESS

=4 KEYED ACCESS
=10 FIXED LENGTH RECORDS

=20 PARTIAL FDB FLAG FOR ENCODE/DECODE
FILE ATTRIBUTES: 0 - DEFAULT

1 - CALL FDBSET

=100 VARIABLE LENGTH RECORDS

=200 UNIT OPEN MUST BE 200'S BIT
=2000 FORMATTED ACCESSED UNIT

B-3

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

D.STAT - Word 1

DV.UFP =4000 UNFORMATTED ACCESSED UNIT
DV.SEG =10000 SEGMENTED RECORDS (UNFORMATTED SEQ ONLY)
DV.CLO +=20000 CLOSE IN PROGRESS
DV.FRE =40000 FREE FORMAT ALLOWED
DV.RW =100000 CURRENT OPERATION: 0 -— READ

1 - WRITE

D.STA2 - Word 2

DV.SEQ = ORGANIZATION=SEQUENTIAL
DV.REL = ORGANI ZATION=RELATI VE
DV.IDX = ORGANI ZATION=INDEXED
DV.CC =10 EXPLICIT CARRIAGE CONTROL SPECIFIED
DV.SPL =20 DISPOSE = ‘PRINT!
DV.DEL =40 DISPOSE = ‘DELETE!
DV.AI4 =100 DEFINEFILE ASSOC VAR: 0 - I*2

1 - I*4
DV.RSZ =200 EXPLICIT RECORDSIZE SPECIFIED
DV.RDO =400 READONLY
DV.UNK =1000 TYPE = ‘UNKNOWN!
DV.OLD =2000 TYPE = 'OLD'
DV.NEW =4000 TYPE = 'NEW'
DV.SCR =10000 TYPE "SCRATCH!
DV.APD =20000 ACCESS='APPEND'
DV.SAV =40000 DISPOSE='SAVE'
DV.BN =100000 BLANK ='NULL'!

FORTRAN LOGICAL UNIT CONTROL BLOCK DEFINITIONS

FORTRAN FAB block definition
FORTRAN Key Definition XAB blocks

offset

F.KYCT | F.STAT
0

F.PXAB
2

F.SPAR
4

6 = F.DNAM

default file spec ‘“’FOROnn.DAT”
8.

10.

12.

14.

RMS-11
16. = F.FAB

~ FAB ~

length = FBSBLN

ZK-236-81

offset

RMS-11

~ XAB ~~

length = XB$KYL

X.POS XBSKYL

X.DTP | X.SIZ XBSKYL+Z

ZK-237-81

APPENDIX C

OTS SIZE SUMMARY

This appendix is a guide to the approximate sizes of all the modules

in the PDP-11 FORTRAN-77 OTS. Modules are grouped by related function

and identified by the TITLE, as shown in Task Builder storage

allocation maps. All object module sizes are shown in decimal words.

C.1 MODULES ALWAYS PRESENT

Module Name Module Size in
Decimal Words

SCLOSE Close files 44

SERRLO Error message construction 303

SERRMO Error message I/0 37/97

SERRPT Error control processing 252

SERTXT Error message text 1128/0

SFCHNL LUB processing 67

SFPERR FPP interrupt processor 54

SFPUTI FPP utilities 37

SOTI OTS initialization 84

SR50 Radix-50 to ASCII conversion 44

SSAVRG Register save co-routine 59

SVINIT Virtual array initialization 42

SOTV OTS Impure area (by PSECT)

SSAOTS Common work area 274

SSDEVT Logical unit control
table (Size=UNITS*54)

SSFSR1 FCS buffer area
(Si ze=ACTFIL*264) 1056

SSIOB1 I/O buffer
(Size=max (MAXBUF, 67)) 67

SSOBF1 Object time format buffer
(Size=max (FMTBUF, 32)) 32

SSFSR2 FCS impure area 75

SSOTSI Mixed OTSs trap 2

OTS SIZE SUMMARY

Module Name Module Size in
Decimal Words

SCLOSE Close files 98
SERRLO Error message construction 292/230
SERRMO Error message I/0 37/97
SERRPT Error control processing 249/259
SERTXT Error message text 1128/0
SFABUT FAB control block processing 87
SFCHNL LUB processing 101
SFPERR FPP interrupt processing 54
SFPUTI FPP utilities 37
SOTI OTS initialization 130
SR50 Radix-50 to ASCII conversion 44
SROLME Dynamic memory allocation 58
SSAVRG Register save co-routine 59
SVINIT Virtual array initialization 42

SOTV OTS Impure area (by PSECT)

SSAOTS Common work area 279
SSDEVT Logical unit control table

(Size=UNITS*1) 6
SSFSR1 Dynamic memory area

(Size=ACTFIL*(S.LUB+S.FAB+704) 1816
SSIOB1 I/O record buffer

(Size=max (MAXBUF, 66)) 66
SSOBF1 Run-Time format buffer

(Si ze=max (FMTBUF, 32)) 32
S$SDEVU Dynamic memory listhead 2
SSOTSI Mixed OTSS Trap 2

C.2 COMMON I/O SUPPORT

The following modules are common to all I/O operations.

Module Name Module Size in

Decimal Words

SCONVI Integer format conversions (1) 225
SCONVL Logical format conversions (1) 49
SCONVR Real format conversions (1) 680
SCONVZ Octal and hexadecimal format

converSions (2) 335
SFIO Format processor 1045
SFMTCV Run-time format compiler 532
SIOARY Array I/0 transmission 71
SIOELE I/O element transmission 164
SIOVAR Virtual array I/O transmission 94
SLSTI List-directed input processor 484
SLSTO List-directed output processor 282
LICSBS List-directed input constant Storage block (3) 129

(1) Loaded only if needed, or if list-directed or run-time format
processing is used.

(2) Loaded only if needed, or if run-time format processing is used.
(3) Loaded only if list-directed input processing is used.

OTS SIZE SUMMARY

Module Name

SFCSRM Dummy RMS-ll-only entries
SFNBST File specification processing
SINITI I/O statement initialization

SOPEN File open processing

C.2.2 RMS-11 Support

Module Name

SFNBST File specification processing
SINITIO I/O statement initialization

SOPEN File open processing

C.3 SEQUENTIAL INPUT/OUTPUT

Module Size in
Decimal Words

61
75

210
318

Module Size in
Decimal Words

43
309
381

The following modules are used for sequential access I/O.

C.3.1 FCS-11 Support

Module Name

SISU Sequential unformatted READ
SOSU Sequential unformatted WRITE
SISF Sequential formatted READ (1)
SOSF Sequential formatted WRITE (1)
SISL List-directed READ (1)

SOSL List-directed WRITE (1)
SGETS Get sequential record
SPUTS Put sequential record

(1) Requires format processing routines.

C.3.-2 RMS-11 Support

Module Name

SISU Sequential unformatted READ
SOSU Sequential unformatted WRITE
SISF Sequential formatted READ (1)
SOSF Sequential formatted WRITE (1)
SISL List-directed READ (1)

SOSL List-directed WRITE (1)
SGETS Get sequential record
SPUTS Put sequential record

(1) Requires format processing routines.

Module Size in
Decimal Words

Module Size in

Decimal Words

80
95
26
37
36
54
62
78

OTS SIZE SUMMARY

C.4 DIRECT INPUT/OUTPUT

The following modules are used for direct access I/O.

Module Name Module Size in
Decimal Words

SIRU Direct access unformatted READ 40
SORU Direct access unformatted WRITE 42
SIRF Direct access formatted READ (1) 29
SORF Direct access formatted WRITE (1) 43
SGETR Get direct access record 22
SPUTR Put direct access record 50
SCKRCN Check record number, update 40

associated variable
SDEFF DEFINEFILE and FIND statements 71

(1) Requires format processing routines.

C.4.2 RMS-11 Support

Module Name Module Size in
Decimal Words

SIRU Direct access unformatted READ 40
SORU Direct access unformatted WRITE 47
SIRF Direct access formatted READ(1) 29
SORF Direct access formatted WRITE(1) 43
SGETR Get direct access record 42
SPUTR Put direct access record 94
SCKRCN Check record number, update 50

associated variable
SDEFF DEFINEFILE statement 54
SFOR FIND statement 58
SDLR DELETE statement 62

(1) Requires format processing routines.

C.5 KEYED INPUT/OUTPUT

The following modules are used for keyed access I/O.

C.5.1 RMS-11 Support

Module Name Module Size in
Decimal Words

SIKF Formatted keyed READ (1) 68
SIKU Unformatted keyed READ 70
SCKKEY Key description setup 45
SDLS Sequential DELETE 44 SRSF Formatted REWRITE (1) 37
SRSU Unformatted REWRITE 43

(1) Requires format processing routines.

OTS SIZE SUMMARY

Module Size in
Decimal Words

Module Name

SUPDAT
SGETK

Update record
Get keyed record

C.6 MISCELLANEOUS I/O SUPPORT

Module Name

58
47

Module Size in
Decimal Words

SASSIG ASSIGN subroutine 41

SBACKS BACKSPACE statement 90

SCLSCA CLOSE subroutine 9

SCLSST CLOSE statement 150

SENCDE ENCODE/DECODE and internal file

statements (1) 143

SENDF ENDFILE statement 57

SFDBSET FDBSET subroutine 90

SOPNST OPEN statement 530

SREWIN REWIND statement 51

(1) Requires format processing routines.

C.6.2 RMS-11 Support

Module Name Module Size in

Decimal Words

SASSIGN ASSIGN subroutine 43

SBACKS BACKSPACE statement 100

SCLSCA CLOSE subroutine 9

SCLSST CLOSE statement 154

SENCDE ENCODE/DECODE and internal file

statements (1) 143

SENDF ENDFILE statement 40

SFDBSET FDBSET subroutine 98

SOPNST OPEN statement 709

SREWIN REWIND statement 59

SUNLOC UNLOCK statement 47

(1) Requires format processing routines.

C.7 MISCELLANEOUS COMPILED-CODE SUPPORT

Module Name Module Size in
Decimal Words

SAGO Assigned GO TO statement 12

SARYCK Array subscript checking 17

$CGO Computed GO TO statement 18

SMADB 1 1-Dimensional adjustable array 44

SMADB 2 2-Dimensional adjustable array 63

SMADBN N-Dimensional adjustable array 69

SMADBV Adjustable virtual array 62

SNAM Traceback chain processing 15

SSTPPA STOP/PAUSE statements 31

SVIRT Virtual array addressing 84

C-5

OTS SIZE SUMMARY

C.8 PROCESSOR-DEFINED FUNCTIONS

SABS
SACOS
SAIMAG
SAINT
SALOG
SAMIXO
SAMIX1

SAMOD
SANINT
SASIN
SATAN
SCABS
SCEXP
SCLOG
SCMPLX
SCONJG
SCOSH
SCSIN
SCSQRT
SDABS
SDACOS
SDASIN
SDATAN
SDBLE
SDCOSH
SDDIM
SDIM
SDINT
SDLOG
SDMIX1
$DMOD
SDPROD
SDSIGN
SDSIN
SEXP
SPCAL
-SFLOAT

SFLOTJ
SICHAR
SINDEX
SLEN
SLGE

SLGT

SLLE

SLLT

SI4FIX
SIABS
SIAND
SIDIM
SIEOR
SIFIX
SMOD
SINOT
SIOR

SISHFT

Module Name

Real absolute value

Arc cosine
Imaginary part
Real truncation
Real log
Real max/min,of integer*2
Max/min of reals

Real modulo
Real and double nearest integer
Arc sine

Arc tangent
Complex absolute value

Complex exponential
Complex logarithm
Complex from reals

Complex conjugate
Hyperbolic cosine
Complex sine

Complex square root

Double absolute value
Double arc cosine
Double arc sine

Double arc tangent
Double from real

Double hyperbolic cosine
Double positive difference
Positive difference
Double truncation
Double logarithm
Max/Min of doubles
Double modulo

Double product of reals
Double transfer of sign
Double Sine
Real exponential
Internal service entry
Integer*2 to real

Integer*4 to real
Character to integer conversion
Match a substring in a string
Length of a character element
Lexical greater than or equal to
character comparison

Lexical greater than character
comparison
Lexical less than or equal to
character comparison
Lexical less than character
comparison
Real to integer*4
Integer*2 absolute value
Integer*2 AND

Integer*2 positive difference
Integer*2 exclusive OR
Real to integer*2
Integer*2 modulo
Integer*2 NOT
Integer*2 inclusive OR
Integer*2 shift

Module Size in
Decimal Words

I
O

B
w
)

O
N
O

~]

©

SISIGN
SJABS
SJAND
SIDIM
SJEOR
SIMIX
SJIMOD
SINOT
SJOR
SISHFT
SISIGN
SMAXO
SMINO
SNINT
SREAL
SRJMIX
SSIGN
SSIN
SSINH
SDSINH
SSNGL
SSQRT
STAN
SDTAN
STANH
SDTANH

C.9 COMPILED-CODE ARITHMETIC SUPPORT (R4 CALLS)

SADC
SCMC
SDVC
SDVJ
SMLC
SMLJ
SNGC
SPWCC
SPWCJ
SPWDD
SPWII
SPWJIJ
SPWRI
SPWRR
SSWPXY
STSC

OTS SIZE SUMMARY

Module Name

Integer*2 transfer of sign
Integer*4 absolute value

Integer*4 AND

Integer*4 positive difference
Integer*4 exclusive OR
Integer*4 minimum and maximum
Integer*4 modulo
Integer*4 NOT
Integer*4 inclusive OR
Integer*4 shift
Integer*4 transfer of sign
Integer*2 maximum
Integer*2 minimum
Nearest integer
Real from complex
Real max/min of integer*4
Real transfer of sign
Real sine
Hyperbolic sine
Double hyperbolic sine
Real from double

square root
Real tangent

Double tangent
Hyperbolic tangent
Double hyperbolic tangent

Module Name

Add/subtract complex

Compare complex

Divide complex
Divide integer*4
Multiply complex

Multiply integer*4
Negate complex

Complex to complex exponentiation

Complex to integer exponentiation
Floating to floating exponentiation
Integer*2 to integer*2 exponentiation
Integer*4 to integer*4 exponentiation
Floating to integer exponentiation
Real to real exponentiation
Stack swap
Test complex

C.10 COMPILED-CODE CHARACTER SUPPORT

SCHASN
SCHCMP

Module Name

Character assignment
Character comparison

Module Size in
Decimal Words

12
lil
13
23
11
44
22

Module Size in
Decimal Words

Module Size in

Decimal Words

42
65

OTS SIZE SUMMARY

C.1l1 SERVICE SUBROUTINES

Module Name Module Size in
Decimal Words

SDATE DATE 68
SERRSE ERRSET 72
SERRSN ERRSNS 22
SERRTS ERRTST 22
SEXIT EXIT 13
SIDATE IDATE 29
SIRADS IDATE50 15
SR50AS R50ASC 6
SRAD50 RAD50 ll
SRAN RAN 19
SRANDO Random number generation 53
SRANDU RANDU 18
SSECND SECNDS 49
STIME TIME 41
SUSERE USEREX 11

C.12 OPTIONAL MODULES

Module Name Module Size in
Decimal Words

SCONVR Real format conversions(FPP version) 587
SF PPUT EIS version 7
SSHORT Null error message text 1
SERRLO Null error message logging 1
SMLJ EIS version 57
SDVJ EIS version 74
SJMOD EIS version 25

C.13 RSX-11S SUBSET SUPPORT

Module Name Module Size in
Decimal Words

SCLOSE Close files 2
SERRLO Error message construction 262
SERRMO Error message I/0 48
SERRPT Error control processing 228
SFCHNL LUB processing 63
SFCS11 Dummy ECS entry points 61
SGETS Sequential input 39
SINITIO I/O statement initialization 179
SISF Sequential formatted input (1) 26
SISL List-directed input (1) 41
SISU sequential unformatted input 57
SOSF Sequential formatted output (1) 37
SOSL List-directed output (1) 40
SOSU Sequential unformatted output 47
SOTI OTS initialization 68
SPUTS sequential output 27

(1) Requires format processing routines.

OTS SIZE SUMMARY

Module Name

SOTV OTS Impure Area (by PSECT)

SSAOTS
SSIOB]

SSOBF]1

SSOTSI

SNAMS

Common work area

I/O buffer
(Size=max (MAXBUF, 67))

Run-Time format buffer

(Size=max (FMTBUF, 32))
Mixed OTSs traps

Module Size in
Decimal Words

APPENDIX D

PROGRAM SECTION DESCRIPTIONS

This appendix describes the program sections (PSECTs) used by the OTS.
PSECTS are named segments of code or data. The attributes associated
with each PSECT direct the Task Builder when’ constructing an
executable task image.

SSOTSI -- OTS Instructions

This PSECT contains all of the executable code in the OTS except’ the

formatted and list-directed I/O processors. This PSECT has the
attributes: RO,I,CON,LCL.

SSOTSD - OTS Pure Data

This PSECT contains all of the read-only pure data in the OTS except
the formatted and list-directed I/O data. This PSECT contains

constants and dispatch tables used by the code in $SOTSI. It has’ the
attributes: RO,D,CON,LCL.

SSAOTS -- OTS Impure Storage

SSAOTS contains the FORTRAN work area impure storage associated with
each task. It must be contained in the task's root segment and is
pointed to by the contents of global symbol SOTSV. A detailed
description is contained in Appendix A. All references in this manual
to "the work area" or "the FORTRAN work area" apply to this PSECT,
which has the attributes: RW,D,CON.

SSDEVT -- Logical Unit Device Table

SSDEVT defines the FORTRAN logical unit device table. The entries in
this table are fixed-length FORTRAN LOGICAL UNIT BLOCKS (LUBS). A LUB

is composed of a File Control Services (FCS) FDB or an RMS’ RAB” and
FAB, and a header for use by FORTRAN. At task Start-up, the actual

number of LUBS available to the FORTRAN task is determined from the

size of SSDEVT. This area is pointed to by the value of offset W.DEV
in the work area. This PSECT has the attributes: RW,D,OVR.

PROGRAM SECTION DESCRIPTIONS

SSIOBl1 -- User Record Buffer

SSIOB1 defines the FORTRAN user’ record buffer. The length is
determined at task-build time by the MAXBUF keyword; the default
value is 133 (decimal) bytes. This area is pointed to by offsets
W.BFAD (start address) and W.BEND (end address+l) in the work area and

its length is computed at task initialization and stored at offset
W.BLEN in the work area. This PSECT has the attributes: RW,D,OVR.

SSOBF1 -- Object-Time Format Buffer

SSOBF1 defines the FORTRAN object time format buffer. The length is
determined at task-build time by the FMTBUF keyword; the default
value is 64 (decimal) bytes. This area is pointed to by offsets
W.OBFL (Start address) and W.OBFH (end address+l) in the work area.
This PSECT has the attributes: RW,D,OVR.

SSTSKP -- Task Information

SSTSKP contains five 2-byte fields that provide the oTS with
information about the task. The information is supplied by the Task
Builder.

Format Conversion PSECTs

The formatted and list-directed I/O processors minimize task size by
loading only those format conversion modules referenced by the user's
format specifications. Each module is in an independent PSECT and
places a pointer to itself in a special PSECT used as a dispatch
table. These PSECTs have the global (GBL) attribute to ensure that
this collection of modules will be placed in the lowest common segment
of an overlaid task.

The PSECTs are named as follows:

SSFIOC -- contains the format processor code and the
list-directed processor code

SSFIOD -- contains the format and list-directed processor pure
data

SSFIOI -- contains the integer conversions

SSFIOL -- contains the logical conversions

SSFIOR -- contains the floating-point conversions

SSFIOS -- contains the list-directed constant storage block

SSFIOZ -- contains the octal and hexadecimal conversions

SSFIO2 -- contains the conversion dispatch table

INDEX

ACCEPT statement, 4-2, 5-12

ACCESS, 5-13, 6-2, 7-2
SACOS, 11-2
ADB, 10-4
ADBDEF macro, 11-2

Adjustable array initialization,

10-5
Allocate storage (RQMEMS), 7-2

ALUNSS, 9-5
SAOTS macro, 11-2
SSAOTS, D-1l
Argument summary for FDBSET, 6-12

Arithmetic operations, 10-1

Array addressing polynomial

function, 10-5

Array descriptor block (ADB),

10-4
Array dimension spans, 10-6

Array processing support, 10-4

Array subscript checking, 10-6

SASIN, 11-2
Assembly macros for OTS, 11-3
Assembly options, l1-l
ASSIGN, 6-11, 7-15

ASSOCIATEVARIABLE, 5-13, 6-2, 7-2

Assumed size array flag, 10-5

SASVAR,
associate variable update,

5-6, 6-10, 7-13
Asynchronous system traps, 9-4

SATT, 9-5
Auxiliary I/O operations, 6-10,

7-13

BACKSPACE (BKSPS$), 6-11, 7-13
SBINAS, 9-5
BKSPS,

BACKSPACE, 6-ll, 7-13
BLOCKSIZE, 5-13, 6-2, 7-3
BUFFERCOUNT, 5-13, 6-2, 7-3

Calling sequence conventions,

FO calls, 2-4

PC calls, 2-3
R4 calls, 2-3

R5 calls, 2-1

Special, 2-5

CARRIAGECONTROL, 5-13, 6-2, 7-3

CHARKEY, 5-13

Checking direct access record

numbers, 6-10, 7-12

SCKKEY, 5-17, 7-13

SCKRCN, 5-16, 6-10, 7-12

CLOSE statement, 5-12, 6-12, 7-10,

7-15

Compiled code,
interface, 5-2

support routines, 1-2, 10-1

Compiled format language, 8-1

Complex arithmetic operations,

10-2
Complex conversions, 8-9

Continuation processing, 9-3

Control block formats,

FCS-11 LUB, B-l

RMS-1l1l, B-3

Conversion routine entry point

PSECT ($SF102), 8-5

SCONVR, 11-2
-CSIS$1, 6-8
~-CSIS2, 6-8
Current line number, 10-8

Data,

formatting, 5-10
storage, 4-1
transmission, 5-9

DCOS, 8-9

Deallocate storage (RLMEMS), 7-2

Decimal field width, 8-3

Default directory processing, 6-8

Default file close processing,

5-16

Default file name generation, 6-8

Default file open processing,
5-16

FCS-1l1l, 6-5

RMS-11, 7-7
Default formats, 8-3

Default unit numbers, 5-ll

DEFFS,
DEFINEFILE, 6-ll, 7-14

DEFINEFILE (DEFF$), 6-11, 7-14

SDELETE, 7-12
DELETE (DLS$ and DLRS$), 7-14

SDET, 9-5

SDETIC, 9-5
SSDEVI, D-l

SSDEVT PSECT,
FCS-ll, 4-9

Index-l

SSDEVT PSECT (Cont.)

RMS-1l1, 4-10

Direct access input,

SGETR, 6-10, 7-12
Direct access output,

SPUTR and SPUTRI, 6-10, 7-12
Direct access record number

checking,

SCKRCN, 5-16, 6-10, 7-13

Direct delete (S$DELETE), 7-13
SDISCONNECT, 7-11

DISPOSE, 5-14, 6-2, 7-3

~-DLFNB, 6-8

DLSS and DLRS, 7-15
Double precision,

arithmetic option, 11-2

conversions, 8-9
SDVJ, 11-2

Dynamic storage allocation for
control blocks, 7-1

ECOS, 8-9

EIS instruction set option, 11-2

Element transmission calls, 5-2,
5-9

ENCODE/DECODE, 4-4

ENDFILE (ENDFS), 6-11, 7-14
ENDFS,

ENDFILE, 6-11, 7-14

End of I/O list,

EOLSTS, 5-10

ERR, 5-14, 6-2, 7-3
SERRAA, 9-3

ERRDEF macro, 11-2

SERRLG, 9-3
SERRLOG, 11-1

SERRMO, 11-1

SERRNL, 9-5

SERRPT, 1l1l-1

Error control,

byte processing, 9-2
definition (ERRDEF), 11-2

offsets, 4-6

table, 4-1
Error message and traceback

control offsets, 4-7

Error message processing, 9-4
Error processing, 9-1

data structures, 9-2

routines, 1-2
user interface to, 9-6

Error processor (SERRPT), 1
Error recovery methods, 1-2
Error report construction

(SERRLOG), 11-1

Error report interface (SERRMO),
li-1l

Error site return error recovery,
1-2

1-1

INDEX

Error text message line, 4-1
ERRSET, 9-7

ERRSNS, 9-7

ERRTST, 9-7

SERRW1, 9-5

SERRZA, 9-5

ERR= error recovery, 1-2

Execution control, 9-1

Subroutines, 9-7

Execution-time errors, 9-2
EXIT, 9-7

SEXIT, 9-5

Exponent field width byte, 8-3
Exponentiation, 10-2
Extended Attributes Block (XAB),

7-1
EXTENDSIZE, 5-14, 6-2, 7-3
EXTKS directive, 4-3

SEXTKL global name, 4-3
EXTTSK, 7-1

FAB, 4-13, 7-1

FABRLS, 7-10

FABRQS, 7-10
FBLOCK macro, 11-2

SFCHNL, 5-15

FCOS, 8-9
FSC-1l,

file descriptor block (FDB) ,
4-9

I/O support, 6-1

logical unit block (LUB),

definitions, 4-8
header offsets, 4-9
Status bit definitions, 4-9

FCS-11 LUB control block format,
B-l

FDB (file descriptor block), 4-9,
4-1

FDBSET,

argument Summary, 6-12, 7-16
Field width byte, 8-3
File Access Block (FAB), 7-1
File close processing, 6-8, 7-1l

by default, 5-16
File Control Services-ll,

(FCS-11), 6-1

File deletion, 6-8
File descriptor block (FDB), 6-1
File formats, 5-17
File name block initialization,

6-8
File name processing, 6-8
File open processing by default,

5-16
FCS-1l1, 6-5

RMS-1l11, 7-7
File open utility routines, 7-10
File positioning (.POINT), 6-11

Index-2

File printing, 6-8
File system options, 11-1
SFILL, 9-5
SFIO routine, 5-10, 8-5

SSFIOC, 8-4
SSFIOD, 8
SSFIOI, 8-

SSFIOL, 8
SSFIOR, 8
SSFIO2, 8
SSFIOS, 8
SSFIOZ, 8
FIND (FIND$), 6-11, 7-15
SFLDEF, 6-8
Floating point,

conversion PSECT (SFIOR), 8-4
format conversion option, 11-2

processor,
accumulator naming conven-

tions, 2-l

errors, 9-4

FMTCVS,
run-time format compiler, 5-6,

8-6
SFNBST, 6-8, 7-10

FORM, 5-14, 6-2, 7-3
Format,

control offset, 4-5

conversion error processing,
8-10

conversion PSECTs, D-2
processing and conversion,

8-1
processing PSECTs, 8-4
processor ($FIO), 8-5

processor routine, 5-10
Formatted code byte, 8-l

SFPERR, 9-4

SFPPUTI, 11-2
FQ calling sequence conventions,

2-4

4
4
4

—4
5
4
5

GCO$, 8-9
Generating the OTS system, 11-1
SGETFILE, 5-15, 6-11
SGETK, 5-1ll, 7-13
SGETR,

direct access input, 5-1ll, 6-10,

7-12
SGETS,

sequential input, 5-ll, 6-9,

7-12
GO TO statement,

assigned, 10-9
computed, 10-8

GPRTSS, 9-1

-GTDID, 6-8
GTSKSS, 9-l

INDEX

Hexadecimal conversions, 8-8

Hollerith formats, 8-3

ICIS, 8-7

Impure area,
allocation (SOTV), 11-1

definitions, A-l

pointer (SAOTS), 11-2
Impure storage area,

linkage to, 3-2
logical unit control table,

4-1, 4-8

work area, 4-1
Indexed file organization, 5-18
Initialization calls, 5-2

INITIALSIZE, 5-14, 6-2, 7-3

SINITIF, 9-2

SINITIO, 5-3, 5-6

INSTALL command, 7-1

Integer and octal conversion
PSECT ($$FIOI), 8-4

Integer conversion (ICI$), 8-7
INTEGER4 arithmetic operations,

10-3
Internal support routines, 5-15
INTKEY, 5-14
IOAAS, 5-9
IOACHS 5-10

IOAHS, 5-9

IOAVAS, 5-9

SSIOB1, D-2
SIOEXIT, 5-15

I/O,
control offset, 4-2, 4-4

formatted, 5-10
initialization, 5-2

argument masks, 5-7

processing, 5-6
symbols, 5-6

processing structure, 5-1

related subroutines, 6-ll, 7-15

subsystem levels, 5-1

SJMOD, 11-2

KEYCNT, 7-3

Index-3

Keyed I/0 processing, 7-13
Keyed I/O specifier checking

(SCKKEY), 5-16, 7-13
Keyed input (SGETK), 7-14
Keyed output (SPUTS), 7-11
Keyed rewrite (SUPDATE), 7-14

Labeling conventions, 2-5
Label list argument format, 10-9
LCIS and LCOS, 8-8
~-LIMIT directive, 4-3
List-directed input processor

(SLSTI), 8-5
routines, 5-10

List-directed output processor
(SLSTO), 8-5

routines, 5-10
Logical conversion (LCIS and

INDEX

Named offsets (Cont.)

format control, 4-5
I/O control, 4-3
run-time format control, 4-6
task control, 4-2

virtual array control, 4-8
Naming conventions,

for processor general regis-
ters, 2-]

for floating point processor
accumulators, 2-1

-NLUNS global name, 4-3
NOSPANBLOCKS, 5-14, 6-2, 7-4

SSOBFl1, D-2

Object Time System,
definition, 1-1

Obtain storage (SSETGSA), 7-1
LCOS), 8-8 OCIS, 8-

Logical conversion PSECT Octal conversion (OCIS), 8-7
(SSFIOL), 8-4 OFNBS, 6-1

Log terminal messages (S$ERRLG), Open processing,
9-3 FCS-11, 6-1

SLSTI, 5-10, 5-5 RMS-11l, 7-2
SLSTO, 5-10, 8-5 OPEN statement, 5-12, 6-1, 7-2 LUB, 4-8 SOPENS procedure, 6-5, 7-7 Logical unit control table, 4-1, Operating system options, 11-1

4-8 ORGANIZATION, 5-14, 7-4
OTS,

assembly macros, 11-2
M size summary, C-l

System generation, 11-1
SSOTSD, D-1l

MAKNS, 10-5 SSOTSI, D-1
MAKVS, 10-5 SOTSVA,
MAK1S, 10-5 linkage to, 3-2
MAK2S, 10-5 OTSWA macro, 11-2 Mathematical routines, OTSSD macro, 11-2 called with special names, 1-2 OTSSI macro, 11-2 MAXREC, 5-14, 6-2, 7-4 SOTV, 11-1
Message construction utilities,

9-4
SMLJ, 11-2

P
-MOLUN global name, 4-3
SMXFNL global name, 4-3

PARSE, 6-8
PAUSE statement, 9-3, 9-5

SNAMC global name, 10-8
NAME, 6-2, 7-4

NAM block, 7-1
Name block, (NAM),
Named offsets,

error control, 4-6
error message and traceback

control, 4-7

7—1

PC calling sequence conventions,
2-3

-POINT,
file positioning, 6-11

PRINT statement, 4-3, 5-12
SPRINT, global name, 4-3
-PRINT, 6-8
Procedural conventions, 2-1
Processing error messages, 9-4
Processor-—defined functions,

called with special names, 2-1

Index-4

INDEX

Processor general registers,

naming conventions for, 2-1

Program section descriptions, D-l

Program termination control,

USEREX subroutine, 1-2

PSECT descriptions, D-l

Pure code PSECT (SSFIOC), 8-4

Pure data PSECT ($SFIOD), 8-4

SPUTI and SPUTR,
direct access output,

SPUTR, 5-11, 6-10, 7-12
SPUTS, 5-ll, 6-9, 7-12

6-10, 7-12

Q1O directive parameter block, 4-1

Quoted format strings, 8-3

RAB, 4-10, 7-1

RCI$, 8-9
READONLY, 5-14, 6-2, 7

READ statement, 4-3, 5-

SREAD global name, 4-3
Real conversions, 8-

SREAMO, 9-5

Record Access Block (RAB),

7-1
Record formats, 5-17

Record length, 5-17

Record Management Services-1l
(RMS-11), 7-l

Record processing
RECORDSIZE, 5-14,

RECORDTYPE, 5-14,

Register save and
2-5, 5-17

Relative file organization, 5-18

Repeat count byte, 8-3
Request and release storage

(RMSQLS), 7-2
Restore and save register con-

text, 2-5

REWIND (REWIS),
REWIS,

REWIND, O6-ll,

RLMEMS, 7-2
RMSQLS, 7-2
RMS-11 control block formats, B-2

RMS-11 Extended Attributes Block,

definitions, 4-13

RMS-11 File Access Block,

definitions, 4-13

RMS-11 I/O control blocks, 7-1

RMS-11 LUB,
definitions, 4-10
header offsets, 4-11

Status bit definitions,

9

4-10,

routines, 5-ll
6-2, 7-4
6-3, 7-4
restore,

6-ll, 7-14

7-14

4-11

RMS-11 Name Block,

RQMEMS, 7-2
RUN command, 7-1
Run-time format compiler

4-11

(FMTCVS), 5-6, 8-6

Run-time format control offset,

4-6

R4 calling sequence conventions,

2-3
R5 calling sequence conventions,

2-1

SR50AB, 9-5
SR50AS, 9-5

S

Save and restore register con-

text, 2-5

SSAVPx, 5-17
SSAVR1, 5-17
SSEQC, 10-8
Sequential file organization,

5-17
Sequential input,

SGETS, 6-9, 7-11

Sequential I/0 processing, 7-1l

Sequential output,
SPUTS, 6-9, 7-12

SSETGSA, 5-2, 9-2
SHARED, 5-14, 6-2, 7-4

Special calling sequence con-

ventions, 2-5

SPNDSS, 9-5

SSST,
synchronous system trap vector

table, 4-1, 9-5
SST table, 4-3
SSST6, 9-2
Stack swap operations, 10-3

STOP statement, 9-3, 9-5

Subroutine calls, 5-2

SVTKSS, 9-1
System generation, ll-l

System subroutines, 1-2
System synchronous trap table,

9-5
Synchronous system trap vector

table,

SSST, 4-1

T

STAN, 11-2
Task control,

offset, 4-2

Control routines, 1-2

Task initialization, 9-l
Task parameters PSECT,

SSTSKP, 4-3, D-2

Index-5

INDEX

Terminal message log (SERRLG), 9-3 V
Terminal message output, 9-5
Terminal QIO, 9-4
Termination calls, 1-2 Variable format expression (VFE),
Traceback chain, 10-9 8-1 .
TRAP instruction, 9-2 Variable type register assign-
/TR:ALL, 10-9 ments, 2-2
/TR:BLOCKS, 10-9 VFE, 8-1
/TR:NAMES, 10-9 mask byte, 8-3
SSTSKP PSECT, 4-3 implementation, 8-3
STYPE global name, 4-3 SVINIT, 4-1, 9-1
TYPE statement, 5-ll, 5-14, 6-2, Virtual array,

7-4 control offset, 4-8
initialization routine, 10-5
processing, 10-7

U

W

UNLKS, 7-14 ;

UNLOCK (UNLKS), 7-14 Window block, 4-1 . 5-3
SUPDATE, 5-11, 7-1 -IOEF error processing, 9-
USEREX, 9-7 ‘ : Work area offset definition

address of, 4-2 (OTSWA), 11-2
program termination control, 1-2

USEROPEN, 6-3, 7-4 x
Procedure address, 4-5

Utilities,
for message construction, 9-4
for message output task, 9-5

Index—6

PDP-11 FORTRAN-77

Object Time System

Reference Manual

AA-V195A-TK

READER’S’ COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[| Occasional programmer (experienced)

[-] User with little programming experience

[] Student programmer

[] Other (please specify)

Name Date

Organization

Street

City State Zip Code

or Country

— -— -— DoNot Tear- Fold Hereand Tape — —- —- —- —- ~—-~ —- —- —- —- —

dilgliltlall tl

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

—- — -— DoNotTear-FoldHere — — —- — — —~ —= —--—-—-—>—-->-->——-—

No Postage

Necessary

if Mailed in the

United States

Cu
t

Al
on

g
Do

tt
ed

Li

ne

	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	11-01
	11-02
	11-03
	11-04
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Z-01
	Z-02

