PDP-11 FORTRAN-77
User’s Guide
Order No. AA-V194A-TK

August 1983

This document contains the information necessary to create, link,
and execute PDP-11 FORTRAN-77 programs on a PDP-11 proces-
sor. Programming information is provided for the
RSX-11M/M-PLUS, RSTS/E, and VAX/VMS operating systems.

SUPERSESSION/UPDATE INFORMATION: This is a new document
for this release.

OPERATING SYSTEM AND VERSION: RSX-11M V4.1
RSX-11M-PLUS V2.1
RSTS/E V8.0
VAX/VMS V3.2

SOFTWARE VERSION: FORTRAN-77 V5.0

digital equipment corporation - maynard, massachusetts

First Printing, August 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS Eﬂgﬂnan
DECwriter

ZK2389

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

PREFACE

SUMMARY

CHAPTER

CHAPTER

CONTENTS

OF TECHNICAL CHANGES

1 USING PDP-11 FORTRAN-77

OVERVIEW o e e o o e .
USING FORTRAN-77 ON RSX 11 SYSTEM o o .
RSX-11 File Specifications
Command Switches « . « .« .
Compiling a FORTRAN-77 Program with M

.
(=

Compiling with DCL
Compiler Switches
Task-Building a FORTRAN-77 Program .

Using the MCR Command TKB

Task Builder Options« .

Library Usage on RSX-11 Systems .

e

o o o o o o o o o o o
WWWWNNNDNODNDNDNDNDNDNDDNDDN -
e o o o o o o o o

N OV Uulbd WWN -

o o o
w N =

® o © o e o o o o o ° o
e o ® o © o o o ¢ o o o
® o ® o o o o o o o o o

Executing a FORTRAN-77 Program . .
Examples of FORTRAN-77 Command Sequence
USING FORTRAN-77 ON RSTS/E SYSTEMS
RSTS/E File Specifications « « . . .
Command Switches o o o o o« o e
Compiling a FORTRAN-77 Program on RSTS/E
Systems . . . e e e e s s e o . .
Task-Building a FORTRAN =77 Program on RSTS/E
Systems o o e o s .
Using the Task Bu11der on RSTS/E Systems
Task Builder Options ¢« ¢« o o .
Library Usage on RSTS/E Systems
Executing a FORTRAN-77 Program on RSTS/E
Systems . . o o e s e e e s e
Examples of FORTRAN -77 Job Command Sequences
Programming Considerations for RSTS/E Users
USING FORTRAN-77 ON VAX/VMS UNDER AME
VAX/VMS File Specifications
Command Switches ¢« . « . &
Compiling a FORTRAN-77 Program . . .
Task-Building a FORTRAN-77 Program .

[o e i el e el
L] . L] . . L]

« o
w N

—
.
w
.
[~

=
. L] L] .
WwWwww
e o o o
[S, 0 N
. . L]
w N -
. . .
. . . (]

~ O

Using the MCR Command TKB . . .
Task Builder Options
Library Usage on VAX/VMS Systems
Executing a FORTRAN-77 Program
Examples of FORTRAN-77 Command Sequence
OVERLAYS e o s e o o s e o o
Introduction to the Overlay Description
Language .« « ¢ ¢ ¢ o o o o o o o s o o o o o o
Building Overlaid FORTRAN-77 Programs
DEBUGGING A FORTRAN-77 PROGRAM .,« « « &

AU D DD WN
L] (] .
W N
. . Y L] 0 . . .

S

® o o o o o o & ° o
® o * o o o ¢ o o o o
® o o e 0 o o o o o o o o o

el e e e e

e o e o & o e o o ° o o o o

BSOSO DL DWW

.
-

-
L] .
.
)

[o) ¥}

FORTRAN-77 INPUT/OUTPUT

FORTRAN=-77 I/0 CONVENTIONS . &« & ¢ « « o o o o &
.1 Device and File Name Conventions
.2 Implied-Unit Number Conventions . . e o e
.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit

¢ o o o o o o

Page

xi

Xv

Il PHP =
| [
HFONOWUMD WN -

-

CHAPTER

CONTENTS

FILES AND RECORDS . .« ¢ ¢ ¢ & o o o o o &

.2.1 File Structure . .« « « o o o o o o o o =
.2.1.1 Sequential Organization
.2.1.2 Relative Organization
.2.1.3 Indexed Organization « « .
e2.2 Access to Records . ¢ ¢ « o o o o o o o
.2.2.1 Sequential Access . . . ¢ ¢ ¢ o o o
e2.2.2 Direct ACCESS &+ & o o o o o o o o o o«
«2.2.3 Keyed ACCESS & v ¢ o o o o o o o .
«2.3 Record Formats . ¢« « ¢ ¢ ¢ o o o o o o o
.2.3.1 Fixed-Length Records « « « . &
3.2 Variable-Length Records . e o e e .
.3.3 Segmented Records . . « . .

OPEN STATEMENT KEYWORDS
BLANK . . « « ¢ « &
BLOCKSIZE
BUFFERCOUNT
DISPOSE . « ¢ ¢ o o o o &
INITIALSIZE and EXTENDSIZE
KEY . ¢ ¢ ¢ ¢ o o &
ORGANIZATION
READONLY &
RECL (RECORDSIZE) .
RECORDTYPE . ¢« « ¢ « ¢ « « & o
SHARED . ¢ ¢ ¢ ¢ o o ¢ o o o o o o = .
USEROPEN e o o

BACKSPACE AND ENDFILE IMPLICATIONS

FORTRAN-77 I/0 USING FILE CONTROL SERVICES

1 OTS/FCS Record Transactions

2 OTS/FCS File Open Conventions

3 FCS Implications of FIND and REWIND . .

4 FCS File Sharing o e e

e o o o o
* o o o o
* o ¢ o
.
.
* o o o
o o o o

e o o o o o e o o o o o
o o o o
e e o o * o
e o ® o ® o ¢ o o o o o
® o o o & o o

.

.

e o o o o o
® o o o ° o o o o

HHRFOONOANUDSd WND -

N O

* o o o
* o o o
. e & o
.
e o o o

NDNONNNNODNDNONNDNNODNDNONNONNNODNNNDNODNNNNNNNDNDNNNNDNNDNONDNODNDNNDN

(RMS) . . . 3
2.6.1 OTS/RMS Record Transactions
2.6.2 OTS/RMS File Open Conventions . . .

2.6.3 RMS Implications of FIND, REWIND, UNLOCK
2.6.4 RMS File Sharing . . e o e e o o o s
2.6.5 Task Building with RMS e e e e s e o o e

w

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

FORTRAN-77 OBJECT TIME SYSTEM ., . .
FORTRAN-77 CALLING SEQUENCE CONVENTION
The Call Site « ¢« .+ .
Return . « « o ¢ o o « o
Return Value Transmission
Register Usage Conventions
Nonreentrant Example . . .
Reentrant Example
Null Arguments
PROGRAM SECTIONS e o o o e o
Compiled-Code PSECT Usage c e e e e e
FORTRAN COMMON and RSX-11 System Common
OTS PSECT Usage . « ¢ ¢ ¢ o o o o .
OTS AND RESIDENT (SHAREABLE) LIBRARIES o .
OTS ERROR PROCESSING . . + ¢ ¢« + + o
Recovering From OTS-Detected Errors
.1 Using ERR= and END= Transfers .
.2 Using the ERRSNS Subroutine .
.3 Using the ERRSET Subroutine .,
FORTRAN-77 COMPILER LISTING FORMAT
.1 Source Listing « « ¢« . .
.2 Generated Code Listing
3 Storage Map Listing « « « . .

e o o o
o« o
Noavies wN -
.
® e 0 o ¢ o ¢ o o

® o o o o o o o

.
.
.
.
.
.
.

« o o o o
e o o o o

e o ¢ o o o
© o o o o o
e o ¢ o o o
® e * o * o

WWWWWWwWwWwWwWwWwwwwwwwuwwwwww
AR

e o o o o

e ¢ o * o o

e ° o o o o o

e * o o o & o

iv

. L . e o o * 0 . .

.

@ o © o o o 6 o o o o o

e o

FORTRAN-77 I/0 USING RECORD MANAGEMENT SERVICES

.

® e & o * o o o o

e * o o o

e & o o o o

.

. * o .

e ©® o 0 o o o ¢ o o+ o

e o O o * o o

|
HOWWOWWWOOIIOANU L DWW

FTRONNODNODNNODNNODNDNONNDNONNDN
[}

m)f:v
—

LU
COoOVWOUNUUNUBWWNNNKF -

WWWWwWwwuwwwwwww
|

CONTENTS

3.7 VIRTUAL ARRAY OPTIONS . . . ¢« « « « o« o« o o« o« « 3-19
3.7.1 Limits on VIRTUAL Elements . . . « « « « « « « 3-19
3.7.1.1 VIRTUAL and DIMENSION Statements 3-20
3.7.1.2 Memory Allocation for VIRTUAL Arrays 3-20
3.7.1.3 Execution Time of Virtual Arrays 3-20
3.7.2 Converting a Program to VIRTUAL Array Usage . 3-20
CHAPTER 4 PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

4.1 INTRINSIC FUNCTIONS . o & o o o o o o e e e e e 4-1
4.1.1 Using EXTERNAL and INTRINSIC Statements e o .o . 4-1
4.1.2 Generic Function References + + + « o« 4=2
4.2 INTEGER*2 AND INTEGER*4 ., . . e . . 4-7
4.2.1 Representation and Relatlonshlp of INTEGER*Z

and INTEGER*4 Values ¢ « ¢ « ¢ o « o o 4-7
4.2.2 Integer Constant Typing « « ¢« « « . . 4-8
4.2.3 Octal Constant Typing . . + « « ¢« ¢« &« « « « « . 4-8
4.2.4 Integer-valued Intrinsic Functions 4-9
4.2.5 Implementation-Dependent Integer Typing . . . 4-10
4.3 BYTE (LOGICAL*1) DATA TYPE + ¢« « « « « « 4-10
4.4 ITERATION COUNT MODEL FOR DO LOOPS « . . 4-11
4.4.1 Cautions Concerning Program Interchange e o o 4-11
4.4.2 Iteration Count Computation e . . . 4-11
4.5 USING EQUIVALENCE WITH MIXED DATA TYPES e o o o 4-12
4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT . 4-13
4.7 ENTRY STATEMENT ARGUMENTS e e o e o o o o o o o 4-13

CHAPTER

(5}

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

CREATING EFFICIENT SOURCE PROGRAMS
1 PARAMETER Statement ., . . .
2 INCLUDE Statement .,
3 OPEN and CLOSE Statements .
4 INTEGER*2 and INTEGER*4 . .
COMPILER OPTIMIZATIONS e e e e
Characteristics of Optimized Programs
Compile-time Operations on Constants .
Source Program Blocks
Eliminating Common Subexpressions
Removing Invariant Computations From
RUN-TIME PROGRAMMING CONSIDERATIONS . . . + « &
FORTRAN-77 OPTIONAL CAPABILITIES « « « « 5-
Non-FPP Operation (FAPEIS.OBJ) ¢ ¢« &« « « « « 5
RSX-11S Support (F4P11S.0BJ) . . « « « & &« « o 5-11
Optional OTS Error Reporting (F4PNER.OBJ) . . 5-11
Short Error Text (SHORT.OBJ) e o o o o e o o 5-11
Intrinsic Function Name Mapping (F4PMAP.OLB) 5-11
Floating-point Output Conversion (F4PCVF.OBJ) 5-12
OTS Resident Library (F4PRES.MAC) e o« o o o« o 5-12
OTS Overlay Files . . ¢« ¢« & ¢« o« « e ¢ o o 5-12
RMS-11 LINK AND RUN-TIME CONSIDERATIONS e o o o 5-13
FCS LINK AND RUN-TIME CONSIDERATIONS 5-14

e o o o o o
e o o o o
e o * o o
.
.
.

* o o o o o o
.

e o © o ® 4 o o o
e o o o o o o o o
.
.

QD WN -~

c
[e]
(¢]
el
2]
L]
L]

L[]
mwmmmtpwmmwmw
|
QOWVWUOWNdOUTUEBdWNNKF

e o e o o e e o e o o
* e o e & o o o
O WN -

.

cuouuoououuoouneunnoeoonoooooao,

YO DD DB DED B WNNNNNDNDFEF- -

CHAPTER USING CHARACTER DATA
CHARACTER SUBSTRINGS &« v ¢ « ¢ o o o o o o o &
CHARACTER CONSTANTS . ¢« ¢ o « o &
DECLARING CHARACTER DATA
INITIALIZING CHARACTER VARIABLES .
CHARACTER DATA EXAMPLES e o o o o
CHARACTER LIBRARY FUNCTIONS . . .

1 ICHAR Function . . . « ¢« « + o+ &

.2 INDEX Function « .+ . .

¢ o
| T T I
WWWwN —

e o e o
e ® o o o o
.
.
.
.

(=)}) le) o) We) We)Ne) We)) [«)}

.
.
AN

AN D WN -~

CONTENTS

LEN Function . o v ¢ ¢ ¢ o o o o o o o o o o o o
LGE, LGT, LLE, LLT Functions . « « ¢« ¢« o « o o &
CHARACTER I/0 v ¢ o o o o o o o o o o o o o o o o

A O O
|
o Oy O

7 USING INDEXED FILES
7.1 ACCESSING INDEXED FILES . « & ¢ « o o o o o o o o 1-1
7.2 CREATING AN INDEXED FILE . & &+ ¢ &+ ¢ o o o o o o o 1-1
7.3 CURRENT-RECORD AND NEXT-RECORD POINTERS 7-3
7.4 WRITING TO INDEXED FILES . . v ¢ &« o ¢ o o o o o o 71-3
7.4.1 Duplicate KeyS « o o o o o o o o o o o o o o o o 1-3
7.4.2 Omitting Alternate Keys .+ « « ¢ ¢ ¢ o o o o« « o 1-4
7.5 READING FROM INDEXED FILES . . ¢ ¢ « o & o o o « o 1-4
7.6 UPDATING RECORDS ¢« &« ¢ « o o o o o o o o o o o o o 1-5
7.7 DELETING RECORDS . ¢ ¢« ¢ o & o o o o o o o o o« o o 1-6
7.8 USING INTEGER KEYS . . ¢« ¢ ¢« « « & e e e .« o 7-6
7.9 ERROR CONDITIONS . ¢ v « o o o o o o o o o o o o o 1=7
APPENDIX A FORTRAN~-77 DATA REPRESENTATION

A INTEGER FORMATS . o « ¢ ¢ ¢ ¢ o o o o o o o o o o« A-1
A INTEGER*2 Format . . . ¢ « ¢ o o o o o o o o o« o« A-1
A INTEGER*4 Format . « « o« o o o o o o o o o o o o A-1
A FLOATING-POINT FORMATS . . ¢« ¢« « o o o o o« o « o« o« A-1
A REAL (REAL*4) Format (2-Word Floating Point) . . A-2
A DOUBLE-PRECISION (REAL*8) Format (4-Word

Floating Point) e e & e o o e e e e e e e s e o A-2
Aa2.3 COMPLEX Format A"'3
A.3 LOGICAL*1 (BYTE) FORMAT . . . « « « « o o o o« o« o A-3
A.4 LOGICAL FORMATS . . . e o o e o o s+ s e o o « o A-3
A.5 CHARACTER REPRESENTATION e o o o o o o o o o o o . A-4
A.6 HOLLERITH FORMAT . . . ¢ ¢ ¢ & o o« o o« o o o « « o« A-4
A.7 RADIX-50 FORMAT . . &« ¢ ¢ ¢ ¢ o o o o o o o« o« &« o« A=-5

APPENDIX B ALGORITHMS FOR APPROXIMATION PROCEDURES
REAL-VALUE PROCEDURES . . ¢« ¢ ¢ & « o ¢ o« o o o o B-1

ACOS -~ Real Floating-Point, Arc Cosine ., . . . B-1

DACOS -- Double-Precision Floating-Point Arc

Cosine . . + ¢ v o ¢ o o o & . e« o o o o o o B-1

ASIN -- Real Floating-Point Arc Slne e ¢ o o o o B=2

DASIN -~ Double-Precision Floating-Point Arc

Slne 3 . 3 B_2

ATAN -- Real Floatlng Point Arc Tangent B-2

ATAN2 -- Real Floating-Point Arc Tangent with

Two Parameters o o e e e o« + o B-3

DATAN -- Double- Prec1s1on Floatlng P01nt Arc

Tangent e o s e o o o o . « B-3

DATAN2 -- Double- Prec151on Floating-Point Arc

Tangent with Two Parameters . . . « « « o+ & . B-

ALOG10 -- Real Floating-Point Common Logarlthm B-

DLOG10 -- Double-Precision Floating-Point Common

Logarithm . . . e o o o o o o o s o o o s s B=-
B.1l.11 COS -- Real Floatlng Point Cosine
B.1.12 DCOS —-- Double-Precision Floating-Point Cosine .
B.1.13 EXP -- Real Floating-Point Exponential
B.1.14 DEXP -- Double-Precision Floating-Point

Exponential o« . e
B.1.15 COSH -- Real Floating-Point Hyperbol1c C051ne .
B.1.16 DCOSH -- Double Floating-Point Hyperbolic Cosine
B.1.17 SINH -- Real Floating-Point Hyperbolic Sine . .
B.1.18 DSINH -- Double-Precision Floating-Point

Hyperbolic Sine . . & ¢ ¢ v ¢« ¢ o o o o o « o &

vi

WWWNDNDNDNDNDDND

APPENDIX C

QOO0OO0O00000000n0
e o o e @
BB WWWNDNNDDNE

e o o o o o o

APPENDIX D

YOOI WU D WN -

o

—

vAviwlvivlvivlvivlvivivie)

-
[WEN)

D.1l4
D.15
D.16

APPENDIX E

mm
.
N -

CONTENTS

TANH -- Real Floating-Point Hyperbolic Tangent . B-6
DTANH -- Double-Precision Floating-Point
Hyperbolic Tangent B=-7
ALOG -- Real Floating-Point Natural Logarlthm . B=7
DLOG -- Double-Precision Floating-Point Natural
Logarithm « . « . & e e« o o s o o o o B=7
SIN -- Real Floating-Point Slne e e« « s+ o« o + o B-8
DSIN -- Double-Precision Floating-Point Sine . . B-9
SQRT -- Real Floating-Point Square Root B-9
DSQRT -- Double-Precision Floating-Point Square
ROOL & 4 « o o o o o o o o o o o o o o o« o« « « B-10
TAN -- Real Floating-Point Tangent B-1l1
DTAN -- Double-Precision Floating-Point Tangent B-11
COMPLEX-VALUED PROCEDURES ¢ « « « « o« « B-12
CSQRT -- Complex Square Root Function B-12
CSIN -- Complex Sine . « « « o ¢« o o« o o« « o o B-12
CCOS -- Complex Cosine . . + ¢« & « « ¢« « « « « B-12
CLOG -- Complex Logarithm « . « B-12
CEXP -- Complex Exponential B-13
RANDOM NUMBER GENERATORS . « « « ¢ + o & . B-13
RANDOM -- Uniform Pseudorandom Number Generator B-13

F4PRAN - Optional Uniform Pseudorandom Number
Generator . . 4 4+ 4 s s o o o o o o o o o o « B-14

DIAGNOSTIC MESSAGES

DIAGNOSTIC MESSAGE OVERVIEW . . . « « ¢« ¢« ¢ « +» o C-1
COMPILER DIAGNOSTIC MESSAGES « . « « « « « C-1
Source Program Diagnostic Messages C-1
Compiler-Fatal Diagnostic Messages C-14
Compiler Limits e« o« « o« . C-15
OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES e + o+ « . C-16

Object Time System Diagnostic Message Format . C-16
Object Time System Error Codes C-18

OPERATING SYSTEM AND FILE SYSTEM ERROR CODES . . C-28
Operating System Error Codes C$6-28
Summary of FCS-11 Error Codes « . . C-29
Summary of RMS-11 Error Codes « « « o C=31

SYSTEM SUBROUTINES

SYSTEM SUBROUTINE SUMMARY . « « ¢« ¢« « « o o o« o« » D-1

ASSIGN . ¢ ¢ ¢ o ¢ o o o o o o o o o o o« o o o o o« D=2

CLOSE '« ¢ « ¢ & o o o o o o o o o o o o o« o« o o« o« D=3

DATE ¢ ¢ ¢ o o « o o o o o o o o o o o o o o o o« o« D=3

IDATE ¢« ¢ ¢ o o o o o o o o o o o o o o o o o o o« D=3

ERRSET . o ¢ ¢ ¢ ¢ o o o o o s o o o o o o« o o o« « D-4

ERRSNS &« &« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« o« » D-4

ERRTST .+ & 4 o « « o o o o o o o o o o o« o o o &« « D=5

EXIT ¢ ¢ ¢ ¢ o o ¢ o o o o o o o o o o o o o« o« « o« D-6

USEREX ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o« o« « D-6

FDBSET . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o o« D=7

IRADS0 . . « o o e o e o s o e e o s o o o o o o Db-8

RADS50 '« & ¢ ¢ ¢ o ¢ o o o o o o o o o o« s o o « o D=8

RS50ASC . & & ¢ ¢ ¢ & o o o o o o s o o o o o« o« « « D=9

SECNDS . ¢ & & ¢ o ¢ ¢ o o o« o o o o o s o « o« o« « D=9

TIME . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ e o o o o o o« o o« « « « o D=10

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN
IV-PLUS

DO LOOP MINIMUM ITERATION COUNT . « « & « o « o o E-1
EXTERNAL STATEMENT . . & ¢ o ¢ ¢ ¢ o ¢ o o o o &

vii

APPENDIX F

mEmmmg e mmmm

NN N H e

.

APPENDIX G

G.1
G.2
G.2
G.2
G.2
G.2
G.2
G.3
G.3
G.3
G.3
G.3
G.3
G.4
APPENDIX H
INDEX
EXAMPLES
3-1
3-2
3-3
3-4
4-1
5-1
6-1
6-2
Cc-1
Cc-2
Cc-3

o o e o o o o
Noauvtbd WwN -

.
[N

« .
g Ww N+

CONTENTS

OPEN STATEMENT BLANK KEYWORD DEFAULT
OPEN STATEMENT STATUS KEYWORD DEFAULT
BLANK COMMON BLOCK PSECT (.$$$$.) e e e o e e .
X FORMAT EDIT DESCRIPTOR . « ¢ ¢ ¢ ¢ o o o o o &

COMPATIBILITY: PDP-11 FORTRAN-77, PDP-11 FORTRAN
VAX-11 FORTRAN

LANGUAGE DIFFERENCES . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o =«
Logical Tests . & v ¢ ¢ o o o o o o o o o o &«
Floating-Point Results « ¢ « ¢« « « o &
Logical Unit Numbers . . . « ¢ ¢ ¢ ¢ o« o o o =«
Assigned GO TO Label List . « « ¢ o o o « & &
DISPOSE = 'Print' Specification
Integer Computations
Default Record Buffer Size .

RUN-TIME SUPPORT DIFFERENCES . « « « ¢ ¢ ¢ o &
Unformatted Data Transfer .

Error Handling and Reporting« . .« .« « &

. e o

PDP-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD
(X3.9-1978) FORTRAN

STATEMENT EXTENSIONS . . o ¢ ¢ ¢ o o o o o o o &
STATEMENT SYNTAX EXTENSIONS . . « &« ¢ o« o o o &
Specification Statements . . « + + 4 ¢ ¢ ¢ o
Format Statements . . ¢ . ¢ & ¢ ¢ ¢ o o o o &
Control Statements
I/0 Statements . . + . .+ . o . . .
Miscellaneous Syntax Extensions .
KEYWORD AND KEYWORD VALUE EXTENSIONS
OPEN Statement Keyword Extensions
OPEN Statement Keyword Value Extensions . . .
CLOSE Statement Keyword Extensions
Close Statement Keyword Value Extensions .
READ Statement Keyword Extensions
LEXICAL EXTENSIONS . o ¢ ¢ o ¢ « o o o o & &

o o o o
.
.
.
.
.

SOFTWARE PERFORMANCE REPORTS

Call Sequence Conventions: Nonreentrant Example
Call Sequence Convention: Reentrant Example . .
Establishing a FORTRAN COMMON Area and Assembly
Language Subroutine ., . . . e e s e e e e e
Use of FORTRAN COMMON Area by Assembly Language
Subroutine L . L0 0 0 e 0 e e e e .
EQUIVALENCE Using Mixed Data TYypesS . « « + o + &
Effects of Optimization on Error Reporting . . .
Character Data Usage e e e e e e o e
Output Generated by Example Program e o o e o .
Sample Diagnostic Messages (Terminal Format) . .
Sample Diagnostic Messages (Listing Format) .
Sample of Object Time System Diagnostic Messages

viii

F-1
F-1
F-2
F-2
F-2
F-3
F-3
F-3
F-3
F-3
F-3

L

|

OC)OC)ODCl)C')OQOOOO
WWWWWNONNNNDN -

|

w w W
|
o] = w

=3
(o N KAk 2 X AN I
LI T T I
O WwN LBV

¢
[

CONTENTS

FIGURES

1-1 Preparing a FORTRAN-77 Program for Execution
1-2 Simple Overlay Structure « ¢« « . .
1-3 Overlay Structure . . ¢ ¢ ¢ o o o o o o o o
3-1 Storage Map Example . . ¢« ¢ ¢ ¢ ¢ o o o o &
Cc-1 Sample Diagnostic Messages (Terminal Format)
H-1 Software Performance Report (SPR) Form . . .

TABLES

RSX-11 File Specification Defaults
RSTS/E File Specification Defaults
VAX/VMS File Specification Defaults
FORTRAN Default Logical Device Assignments .

|

Implied Unit Numbers « « « « « .« .

Availability of File Organizations

Access Modes Per File Organization

RECL Value Limits ¢« ¢ « & ¢« + . .
Default RECL Values . . . « ¢ ¢ ¢ o ¢ o o« &
RMS File System Libraries « « « & &
Program Section Attributes . . . o e o e
Initial Error Control Bit Settlngs « o o o e
Generic and Intrinsic Functions
Compiler Limits . . ¢ ¢ & ¢ ¢« ¢« o« o o o o &
Default Logical Unit Numbers

|

LI T T T A |

mMAOBWWNNNNONNDNOND -
|
HHEHEENDEHEQOOUVMBWNRFE WD

ix

.
-
I~
|

Fwn

B WADWN N

e ¢ o o o
[

.
[

.

oo N

|
—

N NN

PREFACE

MANUAL OBJECTIVES

The purpose of this document is to help programmers create, link, and
execute PDP-11 FORTRAN-77 programs under the RSX-11M, RSX-11M-PLUS,
RSTS/E, and VAX/VMS (under AME) operating systems. These operating
systems must run on a machine with a Floating-Point Processor or a
floating-point microcode option.

The PDP-11 FORTRAN-77 language elements are described in the PDP-11
FORTRAN-77 Language Reference Manual.

INTENDED AUDIENCE

This manual is intended for programmers who have a working knowledge
of the fundamental elements and interrelationships of the FORTRAN
programming language; a detailed knowledge of the PDP-11 FORTRAN-77
version of FORTRAN is not essential. A detailed knowledge of the host
operating system also is not essential, but some familiarity with it
is recommended. Whenever a thorough understanding of a specific
aspect of an operating system is necessary, you are directed to the
appropriate manual for the required additional information.

STRUCTURE OF THIS DOCUMENT
This manual is organized as follows:

e Chapter 1 contains the information needed to compile, 1link,
and execute a PDP-11 FORTRAN-77 program on RSX-11M/M-PLUS,
RSTS/E, and VAX/VMS operating systems.

e Chapter 2 provides information about PDP-11 FORTRAN-77
input/output, including details on file characteristics,
record structure, and the wuse of certain OPEN statement
keywords.

e Chapter 3 describes the PDP-11 FORTRAN-77 run-time
environment, including the calling conventions, error
processing, and program section usage.

e Chapter 4 describes PDP-11 FORTRAN-77 implementation concepts,

with particular emphasis on data types, generic functions, DO
loops, and floating—-point data representation.

e Chapter 5 covers programming considerations relevant to
typical PDP-11 FORTRAN-77 applications.

Xi

PREFACE

Chapter 6 discusses the wuse of character data, including
character I/0 and the character library functions.

Chapter 7 discusses the use of indexed files and ISAM; an
extended example is included.

Appendixes A through G summarize internal data representation,
diagnostic messages, system-supplied functions, compatibility
between PDP-11 FORTRAN-77 and other DIGITAL FORTRAN
implementations, and language extensions incorporated in
PDP-11 FORTRAN-77. Appendix H covers the procedures for
reporting software problems.

ASSOCIATED DOCUMENTS

The following documents are relevant to FORTRAN-77 programming:

PDP-11 FORTRAN-77 Language Reference Manual

PDP-11 FORTRAN-77 Object Time System Reference Manual

PDP-11 FORTRAN-77 Installation Guide/Release Notes

RMS-11 User's Guide

RMS-11 MACRO Reference Manual

RSX-11M/M-PLUS Guide to Program Development

RSX-11M/M-PLUS Task Builder Manual

RSX-11M/M-PLUS Executive Reference Manual

RSTS/E System Manager's Guide

RSTS/E System User's Guide

RSTS/E Task Builder Reference Manual

RSTS/E Programmer's Utilities Manual

VAX-11/RSX-11M User's Guide

VAX-11/RSX-11 Programmer's Reference Manual

For a complete list of software documents, see the host operating
system documentation directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual:

Uppercase words and letters used in examples indicate that you
should type the word or letter exactly as shown.

Lowercase words and letters used in examples indicate that you
are to substitute a word or value of your choice.

Brackets ([]) indicate optional elements.

xii

PREFACE

Braces ({}) are used to enclose lists from which one element
is to be chosen.

Ellipses (...) indicate that the preceding item(s) can be
repeated one or more times.

RET represents a carriage return.

RSX-11 is wused as a generic term for the RSX-11M and
RSX-11M-PLUS operating systems.

xiii

SUMMARY OF TECHNICAL CHANGES

The PDP-11 FORTRAN-77 compiler has been modified to accommodate
Version 1.0 of the PDP-11 FORTRAN-77 Symbolic Debugger. You will
notice a new compile-time switch, /DB, that allows the compiler to
provide symbol table information to the debugger (if the debugger has
been installed).

Two other new compile-time switches, /EX and /OP, are documented here.
Unlike earlier versions, PDP-11 FORTRAN-77 V5.0 can run on VAX/VMS
under AME. Section 1.4 describes how to run FORTRAN-77 programs on
VAX/VMS.

All references to the IAS operating system have been deleted because
this system is no longer supported.

Xv

CHAPTER 1

USING PDP-11 FORTRAN-77

DIGITAL's PDP-11 FORTRAN-77 consists of two main parts:

e A FORTRAN-77 compiler, which translates a source program into
object code.

e A collection of routines (facilities and services) that a

program may need while it is executing. This collection of
routines is called the Object Time System (OTS).

PDP-11 FORTRAN-77 operates on the RS5X-11M, RSX-11M-PLUS, RSTS/E, and
VAX/VMS operating systems.

NOTE

Unless otherwise noted, the term
FORTRAN-77 is wused in this manual to
mean PDP-11 FORTRAN-77. Also, RSX-1l1 is

used as a generic term for the RSX-11M
and RSX-11M-PLUS operating systems.

1.1 OVERVIEW

To transform a PDP-11 FORTRAN-77 source program into an executing
task, you need to perform three steps:

1. Compile the program, to create a relocatable object module.

2. Task-build the program, to 1link the object module with
necessary external routines.

3. Execute the program (and debug it if necessary).

You compile a program by invoking the FORTRAN-77 compiler and
specifying the source files to be processed; then you task-build it
into an executable form called a task image by invoking your system's
Task Builder and specifying the object module to be processed.

Finally, you execute the task image by using the appropriate program
execution command for your system.

Figure 1-1 illustrates the process of transforming a FORTRAN-77 source
program into an executing task.

USING PDP-11 FORTRAN-77

LIBRARIES

SYSTEM
LIBRARIES

SOURCE
PROGRAM

OBJECT TASK TASK EXECUTING
COMPILER MODULE BUILDER IMAGE TASK

LISTING

ZK-241-81

Figure 1-1 Preparing a FORTRAN-77 Program for Execution

You invoke the compiler or the task builder by entering a command line
that specifies the desired function, the input files, the output
files, and any desired command options. Command lines are written in
one of the command languages (MCR, DCL, or CCL).

Input files and output files are specified in command lines by file
specifications. File specifications for RSX-11 and VAX/VMS system
programs differ from those for RSTS/E system programs.

Optional command inputs are specified with special command mnemonics
called switches. Switches are appended to command words and file
specifications.

To make entering a sequence of commands more efficient, especially
when a sequence 1is wused often, you can place the sequence in an

indirect command file and then simply type the file name of the
indirect command file, preceded by a@.

1.2 USING FORTRAN-77 ON RSX-11 SYSTEMS
This section contains information for the user who wants to compile,
task-build, and execute a PDP-11 FORTRAN-77 program on an RSX-11M or
RSX-11M-PLUS system. See Section 1.3 for information on using
FORTRAN-77 on RSTS/E systems.
Specifically, this section describes how to:

® Write RSX-11 file specifications

® Use command switches

® Use the FORTRAN-77 compiler to create an object module

® Use your system's Task Builder to create a task image

® Execute a task image

USING PDP-11 FORTRAN-77

1.2.1 RSX-11 File Specifications

For each RSX-11 system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

The format of a file specification for an RSX-11l system program is as
follows:

device:[g,m] filename.filetype;version

device
The device on which a file is stored or is to be written.
[g,m]

The user identification code (UIC) associated with the user file
directory containing the desired file. This code consists of a
group number (g) and a member number (m). Both g and m are octal
numbers. The default value for the UIC is the identification

code under which you logged in or where you set your default
directory.

filename

The file by its name. A filename value can be up to nine
characters long.

filetype

The kind of data in the file. A filetype value can be up to
three characters long.

version

The version of the file that is desired. Versions are identified
by an octal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is wusually required 1is the file
name. If you omit any other part of the file specification, a default
value is used. Table 1-1 summarizes the file specification default
values.

If you request compilation of a source program specified only by a

file name, the compiler searches for a file with the specified file
name that:

e Is stored on the default device
e Is cataloged under the current default UIC
e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
UIC is [200,200], and that you supply the following input or output
file specification to the compiler:

CIRCLE

USING PDP-11 FORTRAN-77

For input, the compiler searches device DKO in directory [200,200] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [200,200],
and assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [200,200] on DKO.

Table 1-1
RSX-11 File Specification Defaults

Optional Default Value

Element

device User's current default device

[g,m] User's current default UIC

filetype Depends on usage:
Command file CMD
Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder TSK
Input to RUN command TSK
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

l1.2.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs -- for example, to specify
that the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]
switch

A mnemonic that specifies a certain instruction to the compiler
or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus sign or the characters NO.
For example, /-SP or /NOSP prevents automatic spooling of a program
listing.

USING PDP-11 FORTRAN-77

1.2.3 Compiling a FORTRAN-77 Program with MCR

The PDP-11 FORTRAN-77 compiler is a system program that produces
relocatable object modules from FORTRAN-77 source code.

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

F77 [obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object-code output file. This file
specification may be omitted if no object file is desired. 1If it
is entered, only a file name value 1is required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

F77 FILE1=FILEl
F77 FILE1.OBJ=FILE1l
Note, however, that no listing file is created in either case.
list-file

The file specification of the listing output file. This file
specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is required; a file type
value of LST is assumed by default if no file type is specified.
Under RSX-11M, the 1listing file is saved on disk and
automatically spooled to the line printer.

infiles-1list

The list of input files that contain the source programs. In
many cases, this 1list contains only one file specification;
however, when there is more than one, you must separate the
individual specifications with commas. Only a file name is
normally required; a file type value of FTN is assumed if no

file type is specified.
For example, to compile three source programs called WINKN,

BLINKN, and NOD into an object module called SINGLE, you would
enter:

F77 SINGLE, SINGLE = WINKN, BLINKN, NOD
or, if you wish:
F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FTN,NOD.FTN

In addition, an F77 command line can contain one or more of the
compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

F77 GED

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is
installed, the compiler displays the following prompt:

F77>

USING PDP-11 FORTRAN-77

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands are entered. Each command 1line must
specify the appropriate input and output files for the program module
to be compiled, and any optional switches desired. You then type
CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, you can enter a
succession of commands as follows:

F77 @eT (From this point on, the compiler 1issues the F77>
prompt.)

F77>WINKN, WINKN/SP=WINKN
F77>BLINKN,BLINKN/SP=BLINKN
F77>NOD,NOD/SP=NOD

F77>"2

Note that the compiler types the F77> prompt each time you enter a
command until you type CTRL/Z ("Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKN, BLINKN/SP=BLINKN
NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>"2

are equivalent to the previous example.

1.2.3.1 Compiling with DCL - You invoke the FORTRAN-77 compiler with
the DCL command FORTRAN as follows:

FORTRAN [/qualifiers] infiles-=list

/qualifiers

Optionally included to control the output files and the compiler.
infiles-list

The list of input files that contain the source programs to be
concatenated and compiled.

The following DCL qualifiers have no MCR switch equivalents. The
remaining DCL qualifiers have effects that are equivalent to the
effects of the switches described in Section 1.2.4. Table 1-1A 1lists
the DCL qualifiers and their switch equivalents.

/F77

On systems supporting FORTRAN-77 and FORTRAN IV, the /F77
qualifier is used to specify FORTRAN-77.

/LIST[:filespec]

Produces a listing file using the file specification provided.

USING PDP-11 FORTRAN-77

Table 1-1A
DCL Qualifiers and Switch Equivalents

DCL Qualifier

Equivalent Switch

/ [NO]JCHECK
/CONTINUATIONS:n
/[NO]DEBUG
/[NO]DLINES
/[NOJEXTEND

/ [NO1F77
/IDENTIFICATION
/[NO]I4
/INO]JLIST:filespec
/ [NOJMACHINE CODE
/[NOJMAP

/[NO]JOBJECT:filespec

/[NO]JOPTIMIZE
/ [NO] SHAREABLE
/[NO]SOURCE
/ [NO]JSTANDARD [:arg]
ALL
NONE
SOURCE
SYNTAX
/ [NO]TRACEBACK: [arg]
ALL
BLOCKS
LINES
NAMES
NONE

/ [NO]WARNINGS

/WORK_FILES:n

/ [NO]CK

/CO:n

/[NO]DB

/ [NO]DE

/[NO]EX

/ [NO1F77

/1D

/[NO]I4

none

/LI:3

/LI:2

none

/ [NO]OP

/ [NOIRO

/LI:2

/[NO]ST:xxx
ALL
NONE
SOURCE
SYNTAX

/ [NO]TR:xxXx

ALL
BLOCKS
LINES
NAMES
NONE

/ [NO]WR

/WF:n

USING PDP-11 FORTRAN-77

/NOLIST
Does not produce a listing file.
/OBJECT[:filespec]

Produces an object file using the file specification provided.

/NOOBJECT

Does not produce an object file.

1.2.4 Compiler Switches

You use compiler switches to specify optional instructions to the
compiler or to specify special attributes for input or output files.
A compiler switch consists of a slash followed by a 2-character ASCII
name, and has two forms: a positive form and a negative form. If the
compiler switch designator is SW, for example, then:

/SW sets an action;
/NOSW or /-SW negates that action.

In addition, certain compiler switches may be followed by a value.
The permitted values are character strings, octal numbers, and decimal
numbers. The default radix for a numeric value is decimal. Decimal
values may end with a decimal point; octal values always begin with a
number sign (#). Some examples of valid compiler switches are:

/14

/TR :NAMES
/C0:25
/CO: 423

Some switches are appended to the F77 Command, others to the
specification for the input or output file to be affected by the
switch. Unless the /LA switch is set, all the switches 1listed below
are initialized to their default values before each compilation.

The compiler switches and their meanings are as follows:

Switch Description
/CK Specifies that array references are to be checked to
ensure that they are within the array address
boundaries specified. However, array upper bounds

checking 1is not performed for arrays that are dummy
arguments for which the 1last dimension bound is
specified as * or 1. For example:

DIMENSION B(0:10,0:%)
or
DIMENSION A(1)

The default setting is /NOCK.

/CO:n Specifies that the compiler accepts at least n
continuation 1lines. (You may have fewer than n
continuation lines.) The value of n may range from 0
to 99; the default value is 19. Note that each level
of nesting of an INCLUDE statement costs two
continuation lines.

1-7

Switch

/DB

/DE

/EX

/F77

/1D

/14

/LA

/LI:n

USING PDP-11 FORTRAN-77

Description

Specifies that the compiler is to provide symbol table
information for use by the PDP-11 FORTRAN-77 symbolic
debugger. When you use the /DB qualifier, you should
also use the /NOOP qualifier. The TKB switch /DA must
be specified when building a program task for
debugging.

The default setting is /NODB.

Requests compilation of lines with a D in column one.
These 1lines are treated as comment lines by the
default /NODE (see the PDP-11 FORTRAN-77 Language
Reference Manual for further information).

Specifies that the compiler compiles FORTRAN source
text that extends up to and includes column 132 of an
input record. If /EX 1is specified, then the ANSI
standard extension flagger invoked by the command
switch /ST:SOURCE issues an informational diagnostic

(one per record) for source lines extending beyond
column 72.

The default setting is INDEX.

Specifies an ANSI X3.9-1978 interpretation at compile
time of syntactic and semantic features that have a
different interpretation in PDP-11 FORTRAN IV-PLUS
V3.0. ©See Appendix E for a detailed discussion of the
incompatibilities between PDP-11 FORTRAN-77 and PDP-11
FORTRAN IV-PLUS. The default setting is /F77.

Types the FORTRAN-77 compiler identification and
version number on your terminal. /NOID is the default
setting.

Allocates two words for the default length of integer
and logical variables. Normally, single storage words
are the default allocation for all integer or 1logical
variables not given an explicit 1length definition
(such as INTEGER*2, LOGICAL*4). /NOI4 is the default
setting. See Section 4.2 for further information.

Causes the current switch settings to be retained
(latched) for subsequent compilations in MCR
interactive mode. Normally, switch settings are
restored to their default values before processing
each command line. This switch 1is convenient for
compiling a series of programs in MCR interactive mode
with the same switch settings. /NOLA is the default.

Specifies listing options. The value of n may range
from 0 to 3. The meaning of each value is as follows:

n=0 Minimal listing file: diagnostic messages
and program section summary only.

3
L}
[

Source listing and program section summary.

n=2 Source listing, program section summary, and
storage map (default).

n=3 Source listing, assembly code, program
section summary, and storage map.

Switch

/LI:n
(Cont.)

/0P

/RO

/SP

/ST:xXxx

USING PDP-11 FORTRAN-77

Description

The default setting is /LI:2. See Section 3.6 for a
detailed description of the 1listing format; also
refer to the PDP-11 FORTRAN-77 Object Time System
Reference Manual.

Directs the compiler to produce optimized code. The

negative form, /NOOP, 1is recommended when /DB is
specified.

The default setting is /OP.

Directs the compiler to specify pure code and pure
data sections as read-only in order to take advantage
of code sharing in multiuser tasks. See Section 3.3
for a description of program section attributes.
/NORO is the default.

Requests automatic spooling of the listing file. The
default is to spool (/SP).

Directs the compiler to look in your source code for
extensions to ANSI standard (X3.9-1978) FORTRAN at the

full-language level. If the compiler finds
extensions, it flags them and produces informational
diagnostics about them. (To receive informational

diagnostics, you must set the warning switch /WR.)

Although PDP-11 FORTRAN-77 conforms to the ANSI
FORTRAN standard at the subset level, the compiler
flags only those features that are extensions to the
full language. See Appendix G for a list of the
flagged extensions.

The /ST:xxx switch can take the following forms:

/ST Informational diagnostics for syntax
extensions

/ST:ALL Informational diagnostics for all
detected extensions

/ST :NONE No informational diagnostics

/ST:SOURCE Informational diagnostics for

lowercase letters and tab characters
in source code

/ST:SYNTAX Same as /ST
/NOST Same as /ST:NONE

The default value is /ST:NONE

See Section C.2 for a 1list of compiler diagnostic
messages.

USING PDP-11 FORTRAN-77

Switch Description

/TR:xxx Controls the amount of extra code 1included in the
compiled output for use by the OTS during error
traceback. This code is used in producing diagnostic
information and in identifying which statement in the
source program caused an error during execution.
/TR:xxx can have the following forms:

/TR Same as /TR:ALL.

/TR:ALL Error traceback information is
compiled for all source statements and
function and subroutine entries.

/TR:LINES Same as /TR:ALL.

/TR:BLOCKS Traceback information is compiled for
subroutine and function entries and
for selected source statements. The
source statements selected by the
compiler are 1initial statements in
sequences called blocks (see Section
5.2.3 for the definition of a block).

/TR:NAMES Traceback information is compiled only

for subroutine and function entries.
/TR:NONE No traceback information is produced.
/NOTR Same as /TR:NONE.

The default value is /TR:BLOCKS.

The setting /TR is generally advisable during program
development and testing. The default setting
/TR:BLOCKS is generally advisable for most programs in
regular use. The setting /NOTR may be used for
obtaining fast execution and minimal code, but it
provides no information to the OTS for diagnostic
message traceback.

/WF:n Determines the number of temporary disk work files
that should be used during compilation. From one to
three files can be used; the default value of n is 2.
Increasing the number of files increases the size of
the largest program that can be compiled, but may
decrease compilation speed.

/WR Enables compiler warning diagnostics (W-class
messages; see Section C.l1l.1). If /NOWR is set, no
warning messages are issued by the compiler. The

default is /WR.
The default settings of the compiler switches can be summarized as:

/NOCK/C0:19/NODB/NODE/NOEX/F77/NOID/NOI4/NOLA/LI: 2/0P/NORO/SP/NOST/TR:BLOCKS/WF:2/WR

1.2.5 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that 1links relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.2.5.1.

USING PDP-11 FORTRAN-77

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
system object library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object 1library or is separate object library
LB:{1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
separate library.

Two versions of the OTS I/0 support modules for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
supports sequential and direct access to sequential files. The other
version of the OTS I/0 support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access to
sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/0 support library is the default
on your system and where the other version of the I/O support library
is maintained, should you need it.

The FCS-11 file system is always contained in the system object
library (that 1is, in LB: [1,1]SYSLIB.OLB); the RMS-11 file system is
always contained in a separate object library (that is,
LB:[1,1]RMSLIB.OLB).

The Task Builder also resolves references to resident common blocks
and resident libraries; the task image produced, therefore, is ready
to be run under the operating system.

You can also use the Task Builder to build tasks with overlay
structures. For additional information about the Task Builder and

Task Builder options, refer to the Task Builder manual for your
operating system.

1.2.5.1 Using the MCR Command TKB - You use the MCR command TKB to
invoke the Task Builder.

The TKB command line has the format:
TKB [task-file]/FP[,map-file] = infiles-list
task-file

The file specification of the task-image output file. This file
specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is required; a
file type value of TSK is assumed if no file type is specified.

Therefore, the commands
TKB FILEl/FP=FILEl
and

TKB FILEl.TSK/FP=FILE1l

are equivalent. Note, however, that no map file 1is <created in
either case.

USING PDP-11 FORTRAN-77

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEF1l1lA).

NOTE

You must include the /FP switch when you
build a task; if you do not, the task
will exit with the FORTRAN run-time
message: "TASK INITIALIZATION FAILURE."
(Refer to Section 5.4.1 for the one
exception to this rule.)

/DA Specifies that the system debugging aid ODT 1is to be
included in the task.

/ID Specifies that the task use I- and D-space. You can
build an I- and D-space task on Versions 2.1 and later of
RSX-11M-PLUS; however, only FCS applications can be
built as I- and D-space tasks. If you use the /ID
switch, you cannot use PDP-11 FORTRAN-77 DEBUG to debug
your program.

The default FORTRAN-77 compiler does not support I- and
D-space. To turn on the I- and D-space support in the
FORTRAN-77 compiler, modify the following TKB option in
the Task-Build command file:

GBLPAT=FORTRN:DSPACE:0
to read:
GBLPAT=FORTRN:DSPACE:1

Then compile your program in the usual manner and use the
/ID switch when task building.

/MU Specifies that multiple versions of the task may be run

simultaneously. The read-only portions of the task are
shared.

map-file

The file specification of the map output file. This file
specification may be omitted if no task-image map file is
desired. If a specification is entered, only a file name Iis
required; a file type value of MAP is assumed if no file type is
specified. The map file is automatically spooled to the 1line
printer. On some operating systems, the map file is
automatically deleted after it is printed.

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to be
appended to the map file.

/SP Specifies that the map file is to be spooled to the 1line
printer.

USING PDP-11 FORTRAN-77

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. (This 1list may also contain compiled or assembled
libraries and modules that were written in a language other than
FORTRAN, such as MACRO.) In many cases, this list contains only
one file specification; however, when there 1is more than one
specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a 1library file.
See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.5.

For example, to build a task image for the object file SINGLE,
created in Section 1.2.3, when the FORTRAN-77 OTS is included in
the system object library (SYSLIB.OLB), you can enter:

TKB SINGLE/FP,SINGLE=SINGLE
or, if you wish:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Note that under RSX-11 the map file created by these commands is
both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a separate
library, this 1library must be explicitly specified in the Task
Builder command line. For example:

TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care that
object modules from other PDP-11 FORTRAN
compilers and OTS routines are not
accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-11 FORTRAN compilers must not be
combined in a single task.

If the default I/O0 support library on your system is RMS-11, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

TKB SINGLE/FP,SINGLE=SINGLE,LB:[l,l]F4POTS/LB,LB:[l,l]RMSLIB/LB

You can also use the TKB command in interactive mode, which permits

you

to enter multiple-line commands. To enter interactive mode, you

simply type:

TKB [ED

USING PDP-11 FORTRAN-77

The Task Builder then displays the following prompt:
TKB>

You may now enter a single command line that indentifies all the input
files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines as you need. When you have entered all your input files, you
must type a final 1line consisting of two slash characters (//),
followed by a carriage return (see Section 1.2.5.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.2.5.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double slash
described in Section 1.2.5.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per 1line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a single
slash (/) to signal no more options. The Task Builder then proceeds
to build the task and to produce any requested output. To exit
interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files
that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL = n

The number, in decimal, of files that can be opened
simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space 1is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

ASG -- You can assign logical unit numbers to physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

USING PDP-11 FORTRAN-77

dev

A physical device name.
n

A valid logical unit number.
m

A valid logical unit number.
The default device assignments are as follows:
ASG = SY0:1:2:3:4,T10:5,CL0O:6

You can build a cluster library for the FORTRAN-77 OTS on RSX-11M
v4.1l, RSX-11M-PLUS V2.1, and RSTS/E V8.0. Both the FCS and RMS
versions of the FORTRAN-77 OTS can be built as a cluster library. See
the Task Builder manual for your particular operating system for more
information on how to build a cluster library for the FORTRAN-77 OTS.

To use the FORTRAN-77 OTS cluster library, use the TKB option CLSTR as
shown in the following example:

TKB>PROG/FP=PROG,LB: [1,1]F4POTS/LB
TKB>/

ENTER OPTIONS:
TKB>CLSTR=F4PCLS,FCSCLS:RO (or RMSRE:RO
TKB>//

F4PCLS is the FORTRAN-77 OTS cluster library; FCSCLS 1is the FCS
cluster library.

To save space, you may link to several shared resident libraries by
sharing the same cluster, in the following way:

CLSTR=name,name,name:access[:apr]

name

The library's symbolic name.
access

Either RO for read-only or RW for read-write.
apr

An integer from 1 through 7 that specifies the first active page
register into which the resident library is to be linked.

The F77 resident library can now cluster with either the FCS or RMS
resident library, FCSCLS or RMSRES, respectively.

COMMON -- If a program is to reference a system global common block,
you must declare this intention by specifying:

COMMON = name:access[:apr]
name

The symbolic name associated with the system global common block.

USING PDP-11 FORTRAN-77

access

Either RO for read-only or RW for read/write.
apr

An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of

position-independent code. (FAPRES does not consist of
position-independent code.)

The FORTRAN COMMON block with the same name is used to reference the
data in the system global common.

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (see Section 1.2.6.).

For information on how to determine the amount of buffer space a
program may need, refer to the RMS-11 MACRO Reference Manual.

On RSTS/E systems, you can use the EXTTSK option to allocate up to 31K

words of memory to a task image (if you have the RSX Emulator in the
monitor and your default run-time system is RSX).

The EXTTSK option is more efficient than the ACTFIL option because:
e The amount of space can be more accurately specified.

e The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time System Reference Manual.

USING PDP-11 FORTRAN-77
GBLPAT -- To patch FORTRAN logical unit 0 to a wvalid system logical
unit, use the option
GBLPAT= main-prog:$LUNO:n
main-prog

The name of your main program segment.

n
A system logical unit number in the range 1 to 99. (see Section
2.1.3).

LIBR -- If a program is to reference a system-shared library, you must

specify:
LIBR = name:access[:apr]

name
The library's symbolic name.

access
Either RO for read-only or RW for read/write.

apr
An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of
position-independent code (PIC). (FAPRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.
MAXBUF -- The default maximum record size for input/output is set
at 133 (decimal) bytes. You can increase this record size by
entering:

MAXBUF = n
n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as follows,
to specify the size of the largest record you intend to process.
For formatted records:
MAXBUF = RECL
For unformatted records:

MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

1-17

USING PDP-11 FORTRAN-77

RESLIB -- If a program references a user-shared library, you must
specify:
RESLIB= file-spec/access[:apr]

file-spec

The file specification of the shared-library task image and
symbol-table files.

access

Either RO for read-only or RW for read/write,

apr
An integer from 1 to 7 that specifies the first Active Page
Register 1into which the resident library is to be linked. You
can specify apr only when the resident 1library consists of
position-independent code (PIC). (FAPRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.
UNITS -- The default number of logical wunits available to a
program is 6 (logical units 1 through 6, inclusive). You can set
this number smaller or larger at task-build time by entering:

UNITS = n
n

The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default
units available will increase task size. (On RSTS/E systems, you can
specify only up to 14 logical units: from 1 through 14.)

The default device and file name associated with a logical-unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
section. If you need more units than the six provided as the default,
you must enter the UNITS option before you make any assignments with
ASG.

1.2.5.3 Library Usage on RSX-11 Systems - There are two types of
RSX-11 1libraries, each of which consists of a collection of object
modules: relocatable and resident. A relocatable library is one that
the Task Builder can make a physical part of a task image. A resident
library is one that the Task Builder can make a logical part of a task
image but not a physical part; that is, the Task Builder can link it
to a task image but cannot copy it to a task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
specification of the file. If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a library

USING PDP-11 FORTRAN-77

specification, it includes in the task image being built those modules
in the specified 1library that contain definitions of any currently
undefined global symbols.

Resident Libraries -- Resident libraries are located in main memory
and are shareable: that is, a single copy of each library is used by
all tasks that refer to it. You gain access to a resident library by
using the LIBR or common option, as described in Section 1.2.5.2.

System Libraries -- Each RSX-1l1 system has a system relocatable
library and, in addition, has available to it four system resident
libraries.

The system relocatable library is as follows:
LB:[1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any wundefined global references remain after all of the
input files have been processed. If the definition of one of these
undefined global symbols 1is found, the appropriate object module is
included in the task being built.

Four system resident libraries may be available for wuse with MCR.
Consult your system manager to determine which of the following system
resident libraries are available on your system.

e FCSRES -- A shared library of commonly used FCS-11
input/output routines.

® RMSRES -- A shared library of RMS-11 input/output routines.

e F4PRES -- A shared library of FORTRAN-77 OTS routines. This

library may reference FCSRES.

These system resident libraries are linked to a task by using the Task
Builder option, as follows:

LIBR = FCSRES:RO

or
LIBR = RMSRES:RO
or
LIBR = F4PRES:RO
User Libraries -- Using the Librarian Utility, you can construct your

own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate 1library switch, as
described in preceding sections. Consult the IAS/RSX-11 Utilities
Procedures Manual for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable 1library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

TKB PROG/FP=PROG,MATRIXLIB/LB

USING PDP-11 FORTRAN-77

1.2.6 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec[/INC=n]

filespec

The file specification of the file containing the task image.

The number, in decimal, of words of additional buffer space to
allocate for the OTS and file-system buffers. (For information

on how to determine the proper size of n, refer to the RMS-11
Macro Reference Manual.)

You can end a task before its normal completion by typing CTRL-C ("C),
followed by the ABORT command, or you can end execution with a STOP
statement. When the STOP statement is executed, the OTS will type a

line with the task name and the contents of the display text following
STOP.

A task that terminates as a result of a CALL EXIT statement or of

reaching the end of the main program does not produce any output to
indicate that it is terminating.

1.2.7 Examples of FORTRAN-77 Command Sequences
For a FORTRAN-77 task consisting of:
e The main program MAIN.FTN
e The subroutine SUBR1.FTN
e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

F77 JOB,JOB= MAIN,SUBR1,UTILITY @
TKB JOB/FP=JOB,LB:[1,1]F4POTS/LB RED
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

e A system global common block named PARM

® An increase in the user record-buffer size

e Subroutines in the object module library MATLIB.OLB

e The FORTRAN-77 OTS in separate library LB:[1,1]F4POTS.OLB

® Array bounds checking in the compiled code

USING PDP-11 FORTRAN-77

you can use the following sequence of commands:

F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK

TKB

TKB>JOB/FP=J0OB,MATLIB/LB,LB: [1,1]F4POTS/LB
TKB>/

ENTER OPTIONS:

TKB>COMMON=PARM: RW

TKB>MAXBUF=256

TKB>//

RUN JOB

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB,JOB=MAIN,SUBR1,UTILITY/CK
and the file LINK.CMD contains:
JOB/FP=J0OB,MATLIB/LB,LB:[1,1]F4POTS/LB
/
COMMON=PARM: RW
MAXBUF=256
//
The following is now equivalent to the previous example:
F77 QCOMPILE

TKB @QLINK
RUN JOB

1.3 USING FORTRAN-77 ON RSTS/E SYSTEMS
This section contains information for the user who wants to compile,

task-build, and execute a FORTRAN-77 program on a RSTS/E system.
Specifically, it describes how to:

e Invoke the FORTRAN-77 compiler and the RSTS/E Task Builder
(with RUN commands or with Concise Command Language (CCL)
commands)

® Write RSTS/E file specifications

e Use command switches

e Use the FORTRAN-77 compiler

e Use the RSTS/E Task Builder

® Execute a task image

1.3.1 RSTS/E File Specifications

For each RSTS/E system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
the Task Builder) the output files to be produced.

1. Refer to the PDP-11 FORTRAN-77 Installation Guide for information
on how to install FORTRAN-77 as a CCL command.

1-21

USING PDP-11 FORTRAN-77

The format of a file specification for a RSTS/E system program is as
follows:

dev:[p,pn] filename.typ

dev
The device on which the file is stored or is to be written. You
designate the device type by specifying a 2-character device code
and, optionally, a unit number. You may also wuse a logical
device name consisting of one to six alphanumeric characters.
The device element must be followed by a colon.

[(p,pn]
The user account containing the requested file. This account
number consists of a project number and a programmer number, each
in decimal.

filename
One to six alphanumeric characters. There is no default value
for filename.

typ

One to three alphanumeric characters describing the type of data
in the file.

You need not explicitly state all the elements of a file specification
each time you compile, 1link, or execute a program. In most cases,
when you omit any part of a file specification, a default value is
used. Table 1-2 summarizes the applicable default values.

Table 1-2
RSTS/E File Specification Defaults

Optional Default Value

Element .

dev: SY

[p,pn] User's current default PPN (project number,

programmer number)

typ Depends on usage:
Command file CMD
Input to the FORTRAN-77 compiler FTN
Output from FORTRAN-77 compiler OBJ
Source listing from FORTRAN-77 compiler LST
Input to Task Builder OBJ
Output from Task Builder TSK
Map listing from Task Builder MAP
Library input to Task Builder OLB
Overlay description input to Task Builder ODL
Input to executing program DAT
Output from executing program DAT

Refer to the RSTS/E System User's Guide for a complete discussion on
RSTS/E file specifications.

USING PDP-11 FORTRAN-77

1.3.2 Command Switches

See Section 1.2.2.

Note that the DCL qualifier /STANDARD=NONE does not work on RSTS/E
systems.

1.3.3 Compiling a FORTRAN-77 Program on RSTS/E Systems

The FORTRAN-77 compiler is a system program that produces relocatable
object modules from FORTRAN-77 source code.

To invoke the FORTRAN-77 compiler, you type the command line:
RUN S$F77

Or, if the system manager has installed F77 as a CCL command, you can
type:

F77 @D

In either case, after you press the RETURN key, the compiler issues
the prompt

F77>

You respond to the F77> prompt by entering input and output file
specifications (see Table 1-2) as follows:

[obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object code file to be <created by
the compiler. If you do not give a file type 1in this
specification, .0OBJ is supplied as a default. This 1is the
default file type expected by the Task Builder when you link the
compiled object modules to make an executable file. If you do
not want an object file, omit this file specification from the
command line.

list-file

The file specification of the 1listing file created by the
compiler. If you do not include a file type 1in this
specification, the compiler supplies .LST as the default. If you
do not want a listing file, omit this file specification from the
command line. When you include a listing file name, the compiler
saves the 1listing file on disk; you can then print the listing
file using the RSTS/E QUE program after the compilation is done.
Refer to the RSTS/E System User's Guide for a description of the
QUE program. The following example shows how to create an object
file (OBJECT.OBJ) and a listing file (LISTF1.LST) on disk from an
input source file (INPUTF.FTN):

F77 OBJECT,LISTF1=INPUTF

If you specify a listing file without an object file, you must

precede the listing file with a comma to indicate the absence of
the object file. For example:

F77 ,LISTF1=INPUTF

USING PDP-11 FORTRAN-77

infiles-1list

A list of the file specifications of the files that contain the
FORTRAN-77 source programs. You can specify more than one input
source file in a command line; however, you generally specify
only one. When you have multiple specifications, separate them
with commas. If you do not provide a file type with this
specification, the compiler assumes a default file type of .FTN.
For example, to compile three source programs called FILE],
FILE2, and FILE3 into an object module called SINGLE, you enter:

F77 SINGLE,SINGLE=FILEl,FILE2,FILE3
You can also include the file types, as follows:
F77 SINGLE.OBJ,SINGLE.LST=FILEl.FTN,FILE2.FTN,FILE3.FTN
You may append to these file specifications any of the compiler

command switches 1listed and described in Section 1.2.4, except
the ones noted.

When the compilation is done, the compiler prints another F77> prompt.
You can perform as many compilations as you wish before you return to

system command level. To exit to the keyboard monitor, type CTRL/Z or
CTRL/C.

If F77 has been installed as a CCL command, you can type the entire
specification on one line, as follows:

F77 [obj-file] [,list-file] = infiles-1list

Again, you may include any of the switches listed in Section 1.2.4,
except the ones noted.

1.3.4 Task-Building a FORTRAN-77 Program on RSTS/E Systems

The Task Builder is a system program that 1links relocatable object
modules to form an executable task image. The RSTS/E Task Builder
Reference Manual describes the Task Builder in detall.

1.3.4.1 Using the Task Builder on RSTS/E Systems - You can load the

Task Builder into memory by typing a RUN command in the following
format:

RUN $TKB

Or, if your system manager has installed TKB as a CCL command, you can
type:

TKB EED
In either case, after you press the RETURN key, the Task Builder
prints the TKB> prompt. You then enter a command line to identify the
files to be used, as follows:

TKB>[task-file][,map-file] = infiles-list

USING PDP-11 FORTRAN-77

After you press the RETURN key, the Task Builder prints another TKB>
prompt. You then:

e Enter additional input files, if any.

e Type a line containing only two slashes(//) to tell the Task
Builder to create a task 1image and to exit with no TKB>
prompt.

e Press the RETURN key. (See Section 1.2.5.2 if you are
entering any Task Builder options.)

If TKB has been installed as a CCL command, and you want to perform
one task-build operation, you can type the whole request on one line,
as follows:

TKB [task-file] [,map-file] = infiles-1list

After you press the RETURN key, the Task Builder processes the command
line. It then returns you to the keyboard monitor.

The parameters task-file, map-file, and infiles-list use the standard
RSTS/E file specification format described in Table 1-2.

The elements in the Task Builder command line are as follows:

task-file

The file specification of the task-image output file created by
the Task Builder. If you do not provide a file type in the
task-file name, the Task Builder supplies .TSK as a default.
Therefore, the following commands are equivalent:

TKB FILE1l/FP=FILEl
TKB FILE1l.TSK/FP=FILEl

The task-file specification may be omitted if no task-image file
is desired.

map-file

The file specification of the map output file. The map file
contains information about the size and location of routines and
global symbols within the task image. If you do not provide a
file type in the map-file name, the Task Builder supplies .MAP as
a default. When you specify a file name, the Task Builder saves
the map output on disk. 1If you do not specify a task-image file
specification in the command line, you must precede the map-file
name with a comma to indicate the intended absence of the
specification. The map-file specification may be omitted if no
task-image map file is desired.

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. You can specify as many input files as can fit in 80
columns in the command line; however, you can place additional
input files on additional lines, as long as each specification is
contained wholly on one line (not split between or among lines).
When you specify multiple object files or libraries, separate
them with commas. If you do not give a file type, .OBJ is
assumed as a default. For input library files, you must specify
the /LB switch following the input file name.

USING PDP-11 FORTRAN-77

For example, to build a task image for the object-file SINGLE
Created in Section 1.3.3, when the FORTRAN-77 OTS is included in
the system object library (LB:SYSLIB.OLB), you enter:

TKB SINGLE/FP,SINGLE=SINGLE
Or, if you prefer to include the file types, you enter:
TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Both of these command 1lines save a copy of the map file
(SINGLE.MAP) on disk.

If a separate library contains the FORTRAN-77 OTS routines, you
must specify the library name in the Task Builder command line,
as shown in the following example:

TKB SINGLE/FP,SINGLE=SINGLE,LB:F4POTS/LB

If you are using RMS, you must explicitly include a reference to
the RMS 1library in the task-build command line. The previous
example would then become:

TKB SINGLE/FP,SINGLE=SINGLE,LB:F4POTS/LB,LB:RMSLIB/LB

When building a task image with object modules produced by
FORTRAN-77, you cannot 1include in the task object modules from
other PDP-11 compilers and OTS routines. Also, you must not
combine in a single task object modules created by different
PDP-11 compilers.

In addition, a Task Builder command 1line can contain switches
that specify optional file-controlling actions. For example,
when you attach the /DA (Debugging Aid) switch to the task image
file specification, the Task Builder automatically includes
system on-line debugging aid LB:ODT.OBJ in the task image. To
negate the /DA switch, you can type either /-DA or /NODA. See
Section 1.2.5.1 for the switches that apply to the RSTS/E Task
Builder; the RSTS/E Task Builder command switches are also
described in the RSTS/E Task Builder Manual.

NOTE

You must include the /FP switch when you
build a task. (Refer to Section 5.4.1
for the exception to this rule.) This
switch instructs the Task Builder to
reserve an area into which the
intermediate results of floating-point
computations can be placed when job

rescheduling occurs. If you omit the
/FP switch, you may receive unreliable
results.

1.3.4.2 Task Builder Options - See Section 1.2.5.2.

USING PDP-11 FORTRAN-77

1.3.4.3 Library Usage on RSTS/E Systems - A library can be
relocatable or resident. A relocatable library is one that the Task
Builder can make a physical part of a task image. A resident 1library
is one that the Task Builder can make a logical part -- but not a
physical part -- of a task image; that is, the Task Builder can link
it to the task image but cannot copy it into the task image.

Relocatable Libraries -- Relocatable 1libraries reside in files on
disk. From these 1libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by appending the switch /LB to the input file
specification of that file. If you do not include a file type with
the file name of such a file specification, the Task Builder assumes
.OLB as a default. When the Task Builder encounters a library file
specification, it includes in the task image being built those modules
in the 1library that contain definitions of any currently undefined
global symbols. The system relocatable library and user relocatable
libraries are described below.

Resident Libraries -- Resident libraries reside in memory, where they
are accessed, but not copied, by the tasks that need them. A task may
reference one or more resident libraries. You tell the task program
to access a resident library by specifying the LIBR or RESLIB option.
Section 1.2.5.2 describes these two options.

System Libraries -- RSTS/E has a system relocatable library called
LB:SYSLIB.OLB and, in addition, has available to it three system
resident libraries pertinent to FORTRAN-77.

The Task Builder searches the system relocatable 1library if any
undefined global references are left after it has processed all the
input files. 1If the Task Builder finds the definition of one of these
global symbols in the system relocatable library, it includes the
appropriate object module in the task.

Two system resident libraries may be available for use with RSTS/E:
e RMSRES - A resident library of RMS-11 input/output routines.
e FA4PRES - A shared library of FORTRAN-77 OTS routines.

Ask your system manager if these libraries are available to you; your
system might not have enough memory to support them.

One or two of the following Task Builder options may link the system
libraries to your task:

LIBR = RMSRES:RO
or
LIBR = F4PRES:RO
User Libraries -- Using the Librarian Utility, you can create your own

FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the /LB switch after the appropriate
library name. Refer to the RSTS/E Programmer's Utilities Manual for
more information on the Librarian Utility.

USING PDP-11 FORTRAN-77

You can access a user library by entering the following command line:
TKB PROG/FP=PROG,MTXLIB/LB,LB:F4POTS/LB

MTXLIB.OLB is a relocatable library containing matrix-handling

routines; PROG 1is the object file of a compiled FORTRAN-77 program

that calls the matrix routines.

If you choose RMS as your file management system, enter the following
command lines:

TKB PROG/FP=PROG,MTXLIB/LB,LB:F4POTS/LB,LB:RMSLIB/LB

If your file management system is RMS-11, you cannot use a FORTRAN-77
resident library.

1.3.5 Executing a FORTRAN-77 Program on RSTS/E Systems
To execute a task, you use a RUN command as follows:

RUN filespec
filespec

A file specification of the form described in Section 1.3.1.
Generally, you do not need to include all the elements in a file
specification. For example, to execute a task file (TASKO1.TSK)

located in your account on the public disk structure, you type:

RUN TASKO1l.TSK

The system assumes SY: as the default device and your account as the
default project-programmer number.

1.3.6 Examples of FORTRAN-77 Job Command Sequences
For a FORTRAN-77 task image consisting of:

e The main program MAIN.FTN

e The subroutine SUBRTN.FTN

® Several subprograms in the file SUBPRG.FTN

you can use the following sequence of commands for compiling,
task-building, and executing the image:

F77 JOB,JOB = MAIN,SUBRTN,SUBPRG
TKB JOB/FP = JOB
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

® A system global common block named PARAM
® An increase in the user record-buffer size

® Subroutines in the object-module library MATLIB.OLB

USING PDP-11 FORTRAN-77

The FORTRAN-77 OTS in separate library LB:F4POTS.OLB

Array bounds-checking in the compiled code

you use a sequence of commands as follows:

F77 J0OB,JOB=MAIN,SUBRTN,SUBPRG/CK

TKB
TKB>JOB/FP=JOB,MATLIB/LB,LB:F4POTS/LB @
TKB>/

ENTER OPTIONS:

TKB>COMMON=PARAM : RW

TKB>MAXBUF=256

TKB>//

RUN JOB

You can also run the above procedure using indirect command files.
For example, if the file COMPIL.CMD contains:

JOB,JOB=MAIN, SUBRTN, SUBPRG/CK

and the file LINK.CMD contains:

JOB/FP=J0OB,MATLIB/LB,LB:F4POTS/LB

/

COMMON=PARAM :RW
MAXBUF=256

//

then the following sequence is equivalent to the previous example:

F77 @COMPIL
TKB @QLINK
RUN JOB

1.3.7 Programming Considerations for RSTS/E Users

You should note the following programming considerations and
restrictions:

The RSX emulator restricts the use of the memory management
(PLAS) directives to resident libraries only; consequently,
the use of virtual arrays is not supported.

RSTS/E does not provide an interface for the set of FORTRAN-77
process-control routines or RSX system directives.

You cannot extend an existing contiguous file under RSTS/E;
you must instead allocate an adequate amount of space when you
create a contiguous file under RSTS/E.

A FORTRAN-77 program must load into no more than 28K words.
However, if the RSX emulator support has been added to the
system monitor, a program may extend to 31K words. In

addition, a program may use up to 32K words if resident
libraries are supported.

USING PDP-11 FORTRAN-77

e The UNITS option for TKB is restricted to the range 1-14 on
RSTS/E systems.

NOTE

You will not receive an error message
from the Task Builder if your program
exceeds 28K words. However, if your
program does surpass the prescribed
maximum size, you will receive the
run-time error message, "?Illegal byte
count for I/0."

e The OTS does not let you supersede an existing file. If you
do attempt to create a new file with the same name as that of
an existing file, you will receive error number 30: "Open
failure."

® A contiguous file cannot be extended on RSTS/E. The initial
size of a contiguous file is also the maximum size.

® You can read past EOF records on interactive devices.

e Refer to the RMS-11 User's Guide for a 1list of RSTS/E
restrictions on RMS-11.

1.4 USING FORTRAN-77 ON VAX/VMS UNDER AME

This section contains information for the user who wants to compile,

task-build, and execute a PDP-11 FORTRAN-77 program on a VAX/VMS
system.

Specifically, this section describes how to:
® Write VAX/VMS file specifications
® Use command switches
e Use the FORTRAN-77 compiler to create an object module
® Use your system's Task Builder to create a task image

® Execute a task image

For more information on using VAX/VMS AME, consult the VAX-11/RSX-11M
User's Guide and the VAX-11/RSX-11M Programmer's Reference Manual.

1.4.1 VAX/VMS File Specifications

For each VAX/VMS system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

USING PDP-11 FORTRAN-77

The format of a file specification for a VAX/VMS system program is as
follows:

device:[directory] filename.filetype;version
device

The device on which a file is stored or is to be written.
[directory]

The named directory containing the desired file.

filename

The file by its name. A filename value can be up to nine
characters long.

filetype

The kind of data in the file. A filetype wvalue can be up to
three characters long.

version

The version of the file that is desired. Versions are identified
by a decimal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is wusually required 1is the file
name. If you omit any other part of the file specification, a default

value is used. Table 1-3 summarizes the file specification default
values.

Table 1-3
VAX/VMS File Specification Defaults

Optional Default Value

Element

device User's current default device

[directory] User's current default directory

filetype Depends on usage:
Command file CMD
Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder EXE
Input to RUN command EXE
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

1-31

USING PDP-11 FORTRAN-77

If you request compilation of a source program specified only by a
file name, the compiler searches for a file with the specified file
name that:

® Is stored on the default device
e Is cataloged under the current default directory
e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
directory is [SMITH], and that vyou supply the following input or
output file specification to the compiler:

CIRCLE

For input, the compiler searches device DKO in directory [SMITH] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [SMITH], and
assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [SMITH] on DKO.

1.4.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs: for example, to specify that
the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]
switch

A mnemonic that specifies a certain instruction to the compiler
or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus sign or the characters NO.

For example, /-SP or /NOSP prevents automatic spooling of a program
listing.

1.4.3 Compiling a FORTRAN-77 Program

The PDP-11 FORTRAN-77 compiler 1is a system program that produces
relocatable object modules from FORTRAN-77 source code,

USING PDP-11 FORTRAN-77

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

MCR F77 [obj-file] [,list-file] = infiles-1list
obj-file

The file specification of the object code output file. This file
specification may be omitted if no object file is desired. If it
is entered, only a file name value 1is required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

MCR F77 FILE1l=FILEl
MCR F77 FILE1.OBJ=FILE1l
Note, however, that no listing file is created in either case.
list-file

The file specification of the listing output file. This file
specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is required; a file type
value of LST is assumed by default if no file type is specified.
The listing file is saved on disk.

infiles-list

The list of input files that contain the source programs. In
many cases, this 1list contains only one file specification;
however, when there is more than one, you must separate the
individual specifications with commas. Only a file name is

normally required; a file type value of FTN 1is assumed if no
file type is specified.

For example, to compile three source programs called WINKN,

BLINKN, and NOD 1into an object module called SINGLE, you would
enter:

MCR F77 SINGLE, SINGLE = WINKN, BLINKN, NOD
or, if you wish:
MCR F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN,BLINKN.FTN,NOD.FTN

In addition, an F77 command line can contain one or more of the
compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the

interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

MCR F77

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is
installed, the compiler displays the following prompt:

F77>

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands are entered. Each command 1line must
specify the appropriate input and output files for the program module
to be compiled, and any optional switches desired. You then type

1-33

USING PDP-11 FORTRAN-77

CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, you can enter a
succession of commands as follows:

MCR F77 (From this point on, the compiler issues the F77>
prompt.)

F77>WINKN,WINKN/SP=WINKN
F77>BLINKN,BLINKN/SP=BLINKN
F77>NOD, NOD/SP=NOD

F77>"2

Note that the compiler types the F77> prompt each time you enter a
command, until you type CTRL/Z ("Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKN, BLINKN/SP=BLINKN
NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>"2

are equivalent to the previous example.

1.4.4 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that 1inks relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.4.4.1.

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
system object library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object 1library or is separate object library
LB: [1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
separate library.

Two versions of the OTS I/0 support modules for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
supports sequential and direct access to sequential files. The other
version of the OTS I/O support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access to
sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/0 support library is the default

on your system and where the other version of the I/0 support library
is maintained, should you need it.

The FCS-11 file system is always contained in the system object
library (that is, in LB:[1,1]SYSLIB.OLB); the RMS-11 file system is
always contained in a separate object library (that is,
LB: [1,1]RMSLIB.OLB).

USING PDP-11 FORTRAN-77

The Task Builder also resolves references to resident common blocks
and resident libraries; the task image produced, therefore, is ready
to be run under the operating system.

You can also use the Task Builder to build tasks with overlay
structures.

1.4.4.1 Using the MCR Command TKB - You use the MCR command TKB to
invoke the Task Builder.

The TKB command line has the format:
MCR TKB [task-file]/FP[,map-file] = infiles-list

task-file

The file specification of the task-image output file. This file
specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is required; a

filetype wvalue of TSK 1is assumed if no filetype is specified.
Therefore, the commands:

MCR TKB FILE1/FP=FILEl

and
MCR TKB FILEl1.TSK/FP=FILE1l

are equivalent. Note, however, that no map file 1is created in
either case.

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEF1l1lA).

NOTE

You must include the /FP switch when you
build a task; 1if you do not, the task
will exit with the FORTRAN run-time
message: "TASK INITIALIZATION FAILURE."
(Refer to Section 5.4.1 for the one
exception to this rule.)

/DA Specifies that the system debugging aid ODT is to be
included in the task.

/MU Specifies that multiple versions of the task may be run

simultaneously. The read-only portions of the task are
shared.

map-file

The file specification of the map output file. This file
specification may be omitted if no task-image map file is
desired. 1If a specification is entered, only a file name |is
required; a file type value of MAP is assumed if no file type is
specified. The map file is automatically spooled to the 1line

printer. On some operating systems, the map file is
automatically deleted after it is printed.

USING PDP-11 FORTRAN-77

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to be
appended to the map file.

/SP Specifies that the map file is to be spooled to the 1line
printer.

infiles-1list

The list of input files that contain compiled FORTRAN-77 object
modules. (This 1list may also contain compiled or assembled
libraries and modules that were written in a language other than
FORTRAN, such as MACRO.) In many cases, this list contains only
one file specification; however, when there is more than one
specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a 1library file.
See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.4.

For example, to build a task image for the object £file SINGLE,
created in Section 1.4.3, when the FORTRAN-77 OTS is included in
the system object library (SYSLIB.OLB), you can enter:

MCR TKB SINGLE/FP,SINGLE=SINGLE
or, if you wish:
MCR TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE.OBJ

Note that under VAX/VMS AME the map file created by these
commands is both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a separate
library, this 1library must be explicitly specified in the Task
Builder command line. For example:

MCR TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care that
object modules from other PDP-11 FORTRAN
compilers and OTS routines are not
accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-11 FORTRAN compilers must not be
combined in a single task.

If the default I/0 support library on your system is RMS-11, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

MCR TKB SINGLE/FP,SINGLE=SINGLE,LB:[1,1]F4POTS/LB,LB:[1,1]1RMSLIB/LB

USING PDP-11 FORTRAN-77

You can also use the TKB command in interactive mode, which permits
you to enter multiple-line commands. To enter interactive mode, you
simply type:

MCR TKB
The Task Builder then displays the following prompt:
MCR TKB>

You may now enter a single command line that identifies all the input
files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines as you need. When you have entered all your input files, you
must type a final 1line consisting of two slash characters (//),
followed by a carriage return (see Section 1.4.4.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.4.4.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double slash
described 1in Section 1.4.4.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:
TKB>

At this point, you can enter as many Task Builder options as you need,
one option per 1line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a single
slash (/) to signal no more options. The Task Builder then proceeds
to build the task and to produce any requested output. To exit
interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files

that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL = n

The number, in decimal, of files that can be opened

simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space 1is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

USING PDP-11 FORTRAN-77

ASG -- You can assign logical unit numbers to physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

dev

A physical device name.
n

A valid logical unit number.
m

A valid logical unit number.
The default device assignments are as follows:
ASG = SY0:1:2:3:4,TI0:5,CL0:6

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (see Section 1.4.5.).

For information on how to determine the amount of buffer space a
program may need, refer to the RMS-11 MACRO Reference Manual.

The EXTTSK option is more efficient than the ACTFIL option because:
e The amount of space can be more accurately specified.

® The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time System Reference Manual.

USING PDP-11 FORTRAN-77
GBLPAT -- To patch FORTRAN logical unit 0 to a valid system 1logical
unit, use the option
GBLPAT= main-prog:$LUNO:n
main-prog

The name of your main program segment.

n
A system logical unit number in the range 1 to 99 (see Section
2.1.3).

MAXBUF -- The default maximum record size for input/output is set at

133 (decimal) bytes. You can increase this record size by entering:

MAXBUF = n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as follows,
to specify the size of the largest record you intend to process.

For formatted records:
MAXBUF = RECL

For unformatted reccords:
MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

UNITS -- The default number of logical units available to a program is

6 (logical wunits 1 through 6, inclusive). You can set this number
smaller or larger at task-build time by entering:

UNITS = n

The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default
units available will increase task size.

The default device and file name associated with a logical-unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
section. If you need more units than the six provided as the default,

you must enter the UNITS option before you make any assignments with
ASG.

USING PDP-11 FORTRAN-77

1.4.4.3 Library Usage on VAX/VMS Systems - There is only one type of
VAX/VMS 1library: relocatable. A relocatable library is a collection
of object modules that the Task Builder can make a physical part of a
task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these 1libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
specification of the file. 1If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a 1library
specification, it includes in the task image being built those modules
in the specified 1library that contain definitions of any currently
undefined global symbols.

System Libraries -- Each VAX/VMS system has a system relocatable
library, which follows:

LB:[1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any undefined global references remain after all the input
files have been processed. If the definition of one of these
undefined global symbols is found, the appropriate object module is
included in the task being built.

User Libraries -- Using the Librarian Utility, you can construct vyour
own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate library switch, as
described in preceding sections. Consult the VAX-11/RSX-11M User's
Guide for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

MCR TKB PROG/FP=PROG,MATRIXLIB/LB

1.4.5 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec
filespec

The file specification of the file containing the task image.
You can end a task before its normal completion by typing CTRL-C ("C).
You should not suspend task execution with a PAUSE statement under

VAX/VMS. There 1is no way to resume execution once the task has
paused.

In batch mode, the PAUSE statement types the display to the log file,
but the program does not pause.

A task that terminates as a result of a CALL EXIT statement or of
reaching the end of the main program does not produce any output to
indicate that it is terminating.

USING PDP-11 FORTRAN-77

1.4.6 Examples of FORTRAN-77 Command Sequences
For a FORTRAN-77 task consisting of:
e The main program MAIN.FTN
e The subroutine SUBR1.FTN
e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

MCR F77 JOB,JOB= MAIN,SUBR1,UTILITY
MCR TKB JOB/FP=JOB
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

® An increase in the user record-buffer size
e Subroutines in the object module library MATLIB.OLB
e The FORTRAN-77 OTS in separate library LB:[1,1]F4POTS.OLB
e Array bounds checking in the compiled code
you can use the following sequence of commands:

MCR F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK
MCR TKB
TKB>JOB/FP=JOB,MATLIB/LB,LB: [1,1]F4POTS/LB

TKB>/
ENTER OPTIONS:

TKB>MAXBUF=256

TKB>//
RUN JOB

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB,JOB=MAIN,SUBR]1,UTILITY/CK
and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB,LB:[1,1]F4POTS/LB
/

COMMON=PARM : RW

MAXBUF=256

//
The following is now equivalent to the previous example:
MCR F77 @QCOMPILE

MCR TKB @LINK
RUN JOB

1.5 OVERLAYS

The overlay facility provided by the Task Builder allows large
programs to be executed in relatively small areas of main memory. An
overlaid program is essentially a program that has been broken down

USING PDP-11 FORTRAN-77

into parts, or overlays, that are 1loaded into memory automatically
during program execution.

You construct an overlaid program by providing a single file as input
to the Task Builder. This file describes the structure of the
overlaid program and the actual input files and 1libraries. You
indicate an overlay file in TKB commands with the /MP qualifier on a
single input file. For example:

TKB A/FP = A/MP

No other input files need be specified. The default file type for an
overlay description file is ODL.

To specify the structure of an overlay, vyou use the Overlay
Description Language (ODL).

The following sections provide an introduction to the Task Builder
Overlay Description Language (ODL) and information about building
simple overlaid FORTRAN-77 programs. Consult your operating system's
Task Builder manual for more detailed information about overlays and
building overlaid programs; also see Section 2.6.5 for information on
task-building programs with RMS-11 using overlays.

1.5.1 1Introduction to the Overlay Description Language
You can build overlay structures using three ODL statements:
.ROOT specifies the tree structure of an overlay

.FCTR specifies a single branch of an overlay tree, called a
factor or segment

.END indicates the end of an overlay description

For example, suppose a FORTRAN-77 program consists of a main program
(MAIN.OBJ) that performs input and output and calls three subroutines:
One subroutine does preprocessing of the data (PRE.OBJ); one
subroutine does the main processing function of the program
(PROC.OBJ); and one subroutine does postprocessing of the data
(POST.OBJ). The following ODL statements specify an overlay structure
having a resident portion that consists of the main program and three
overlays that share the same memory locations. Each overlay contains

a single subroutine. Figure 1-2 illustrates this overlay structure.
The ODL statements to create this structure are as follows:

.ROOT MAIN-*(A,B,C)

A: .FCTR PRE

B: .FCTR PROC

C: .FCTR POST
.END

In this example, the .ROOT statement declares the tree structure; the
.END statement indicates the end of the ODL statements; and the names
A, B, and C specify object modules, libraries, other overlay segment
factor names, or indirect ODL file names (if they are preceded by an
'at' (@) symbol). Commas separate descriptions of overlay segments

1-42

USING PDP-11 FORTRAN-77

that occupy the same memory location; parentheses serve to group
these descriptions. Dashes separate descriptions of modules that are
concatenated into a single segment. The asterisk indicates that the
overlay segments are to be loaded automatically whenever a call is
made to a subprogram in the overlay segment.

MAIN

PRE PROC POST

ZK-242-81

Figure 1-2 Simple Overlay Structure

A path in an overlay structure is any route from the root of the
Structure that follows a series of branches to an outermost segment of
the tree. Figure 1-2 shows only three short paths: MAIN-PRE,
MAIN-PROC, and MAIN-POST. A program in one overlay segment may call a
subprogram in another segment only when the two segments occur on a
common path. For example, MAIN may call PRE, PROC, or POST; however,
the three subroutines cannot call each other.

Figure 1-3 shows a more complex structure specified by the following
ODL statements:

.ROOT A-B-*(C,FCTR1)
FCTR1: .FCTR D-*(E,F,G)
.END

The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and A-B-D-G.

1.5.2 Building Overlaid FORTRAN-77 Programs

When building overlaid FORTRAN-77 programs, you should pay special
attention to the following:

® Specifying the FORTRAN-77 OTS library
e Declaring common blocks

® Declaring the associated variable in a DEFINEFILE or OPEN
statement

® Specifying the RMS-11 library (if used)

USING PDP-11 FORTRAN-77

ZK-172-81

Figure 1-3 Overlay Structure

If the FORTRAN-77 OTS is in the default system library, no additional
specification 1is necessary. If the FORTRAN-77 OTS is a separate
library, and FCS-11 is used, then each segment or branch of the
overlay structure must explicitly refer to the FORTRAN-77 OTS library
as the last file specified. On the other hand, if the FORTRAN-77 OTS
is a separate library, and RMS-11 is used, then each segment or branch
of the overlay structure must explicitly refer to the FORTRAN-77 OTS
library as the next-to-last file specified, with the RMS-11 library
specified as the last file. For example, the ODL file for the example
in Figure 1-3 must be written as follows:

FOR FCs-11
.ROOT A-B-L-*(C-L,FCTR1)
FCTR1: .FCTR D-L-*(E-L,F-L,G-L)
L: .FCTR LB:F4POTS/LB
.END
FOR RMS-11

.ROOT A-B-L-R-*(C-L-R,FCTR1)
FCTRl: .FCTR D-L-R-*(C-L-R,F-L-R,G-L-R)

L: .FCTR LB:F4POTS/LB
R: .FCTR LB:RMSLIB/LB
.END

If your program refers to user libraries, these 1libraries must be
explicitly referenced by each overlay segment that needs thenm.

USING PDP-11 FORTRAN-77

FORTRAN-77 common blocks are allocated on each overlay path in the
lowest overlay segment in which they are referenced. Therefore, when
a new overlay path is loaded, the data in the common blocks 1is 1lost.
If separate overlay paths are to share common data, the common blocks
containing this data must be either declared in the root segment of
the overlay or specified in a SAVE statement. If the data is declared
common only in the overlay segments, separate common areas for each
segment are established and the data is not shared.

For example, suppose the subroutines shown in Figure 1-2 (PRE, PROC,
POST) communicate using common blocks. If the same common blocks are
not declared common in MAIN, three independent common areas with the
same name will be established, one each for PRE, PROC, and POST. When
PROC overlays PRE, the data in the common block(s) of PRE will be
lost. In general, when one segment overlays another, data unique to
the overlaid segment is lost.

If you use the SAVE statement to protect common data items, you should
be aware that the SAVE statement causes the size of the root segment
of an overlay -- and therefore the task size -- to become 1larger.
This enlargement occurs because using the SAVE statement has the
effect of pulling into the root segment of an overlay the $SAVE PSECT
and the PSECTs of any named common blocks mentioned in the SAVE
statement. (The blank common block PSECT (.$$$3), if present, |is
pulled into the root segment whether or not a SAVE statement is used,
except when the /NOF77 switch is set; under /NOF77, .$$$$. 1is never
pulled into a root segment.) The $SAVE PSECT contains the variables
and array elements mentioned in a SAVE statement.

The SAVE statement requires Task Builder support to run an overlaid
FORTRAN-77 program in which subprograms that access saved variables
reside in different segments of the overlay. Task Builder support is
provided beginning with V4.0 of RSX-11M, V2.0 of RSX-11M-PLUS, and
V7.2 of RSTS/E. 1If you are not running a supported operating system
and are running an overlaid program, you can assure access to saved
variables as follows: Place variables or COMMON statements that

contain saved variables in the root segment of the overlay. The value
of saved variables is retained between subprogram calls.

The associated variable in any DEFINEFILE or OPEN statement must be
declared in a common block that is allocated in the root segment.

You can overlay a FORTRAN-77 program in one of three ways:
® You can overlay only the program.
® You can overlay only the FORTRAN-77 OTS (and RMS-11, if used).

e You can overlay both the program and the FORTRAN-77 OTS (and
RMS-11, if used).

Section 2.6.5 provides information about the RMS-11 overlays wused by
the RMS-11 version of the FORTRAN-77 OTS. Section 5.4.8 describes the
OTS overlay files that are available.

The FORTRAN-77 Object Time System Reference Manual describes
overlaying the FORTRAN-77 OTS modules in more detail.

USING PDP-11 FORTRAN-77

1.6 DEBUGGING A FORTRAN-77 PROGRAM

FORTRAN-77 provides several aids for finding and reporting errors:

DEBUG lines in source programs

FORTRAN-77 statements containing a "D" in column 1 <can be
added for debugging purposes. During program development, you
can use these statements and the /DE switch to type out
intermediate values and results. After the program runs
correctly, you can treat these statements as comments by
recompiling without the /DE switch.

Traceback facility

The compiled code and the OTS provide information on the
program unit and 1line number of a run-time error. A list,
following the error message, shows the sequence of calling
program units and line numbers. The amount of information
provided in the list is determined by the /TR switch during
compilation. See Section C.3.1 for the exact format and
content of the traceback.

The debugging program ODT, a user-interactive debugging aid

You include ODT in a task by specifying the /DA switch on the
task image file specification during task building. When
using ODT, you should have the machine language code 1listing
of the program (specify the /LI:3 compiler switch) and the
task-build map. See the IAS/RSX-11 ODT Reference Manual for
further information.

PDP-11 FORTRAN-77 Symbolic Debugger

If your site has 1installed the PDP-11 FORTRAN-77 symbolic
debugger, vyou <can wuse its facilities to ©provide a more
thorough debugging than any of the above. The symbolic
debugger 1is interactive and can refer to program locations
symbolically and give symbolic output. With the debugger, you
can control program execution in a variety of ways: You can
set breakpoints and tracepoints; step through your program by
line or instruction; and step into or over called routines.
You can examine or deposit data in a variety of formats. For
complete information, see the PDP-11 FORTRAN-77 Guide to
Program Debugging. T

CHAPTER 2

FORTRAN-77 INPUT/OUTPUT

This chapter describes input/output (I/0) as implemented 1in PDP-11
FORTRAN-77. In particular, it provides information about FORTRAN-77
I/0 in relation to the two supporting I/O subsystems: File Control
Services (FCS-11) and Record Management Services (RMS-11).

2.1 FORTRAN-77 I/O CONVENTIONS

Certain conventions for logical device and file name assignments, and
for implied 1logical units, are common to I/0 operations involving
either of the I/0O subsystems mentioned above.

2.1.1 Device and File Name Conventions

FORTRAN logical unit numbers correspond one-to-one with the operating
system's logical units (except FORTRAN logical unit 0, which must be
mapped to a system logical unit number other than 0; see Section
2.1.3). Default device assignments are made by the Task Builder for
each logical unit allocated for a task.

Listed in Table 2-1 are the default 1logical device and file name
assignments., You can change default device assignments at the
following times: (1) prior to execution, by using the appropriate
operating system command; (2) at task-build time, by using the Task
Builder ASG option (see Section 1.2.5.2); (3) at execution time, by
using the ASSIGN system subroutine (see Section D.2) or an OPEN
statement.

The default file name conventions hold for logical wunits not 1listed
below; for example, unit number 12 has a default file name of

FOR012.DAT. The default device assignment for 1logical wunits not
listed is the system disk, SY:.

You may use any combination of valid logical unit numbers; however,
there 1is an 1imposed maximum number of units that can be active
simultaneously. This number depends on the number of buffers

allocated and the number of buffers required for each logical unit
(usually 1).

Logical unit numbers are allocated consecutively. Therefore, for
example, even though only logical units 3 and 17 are being used, units
1 through 17 must be allocated.

When a logical unit is closed, the default file name assignment that
existed at the start of task execution is reestablished; the default
device assignment becomes undefined.

FORTRAN-77 INPUT/OUTPUT

Table 2-1
FORTRAN Default Logical Device Assignments

Logical Unit
Number Default Device Default File Name

o

(Mapped to a system
logical unit other than 0)

1 System disk, SY: FOR001.DAT
2 System disk, SY: FOR002.DAT
3 System disk, SY: FOR003.DAT
4 System disk, SY: FOR004.DAT
5 User's terminal, TI: or TT: FOR005.DAT
6 System listing unit, CL: FOR006.DAT
14 (RSTS/E limit) FOR014.DAT
99 System disk, SY: FOR099.DAT
NOTE

The device assignment to a logical unit
is not affected by a CLOSE operation.
However, this convention is subject to
change in future releases and should not
be relied on. 1If the device assignment
of a unit is changed by a CALL ASSIGN or
an OPEN statement, it 1is recommended
that all CALL ASSIGN or OPEN statements
referencing that unit explicitly specify
the device to be used.

2.1.2 Implied-Unit Number Conventions

Certain I/0O statements do not require explicit logical unit
specifications. These statements, and their equivalent forms, are
listed in Table 2-2.

From Table 2-2, you can see that a formatted READ statement of the
form:

READ f,list
is equivalent to:

READ(1,f) list
In a program, these two forms function identically. If 1logical wunit
number 1 is assigned to a terminal, input comes from this terminal no

matter which of the above READ formats you use.

The PRINT, ACCEPT, and TYPE statements implicitly refer to 1logical
units 6, 5, and 5, respectively.

FORTRAN-77 INPUT/OUTPUT

Table 2-2
Implied Unit Numbers

Statement Type Equivalent Form

READ £, list READ (1,f) list
PRINT £, list WRITE (6,f) list
ACCEPT £, list READ (5,f) list
TYPE f, list WRITE (5,f£) list

2.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit

The default mapping of FORTRAN logical unit 0 is to system logical
unit 0; however, 0 is not a wvalid system logical unit number.
Therefore, to map FORTRAN logical unit 0 to a valid system logical
unit, use the GBLPAT option (Section 1.2.6.2) when task-building your
program, as follows:

>TKB

TKB> PROG = PROG,LB:[1,1]F4POTS/LB
TKB> /

TKB> ENTER OPTIONS:

TKB> GBLPAT = PROG:$LUNO:n

TKB> //

where n is a valid system logical unit number.

This command sequence patches global symbol $LUNO in program segment
PROG to system logical unit number n.

2.2 FILES AND RECORDS

This section discusses file structures, record access modes, and

record formats in the context of the capabilities of the FCS and RMS
I/0 subsystems.

2.2.1 File Structure

A clear distinction must be made between the way files are organized
and the way records are accessed.

The term "file organization" refers to the way records are arranged
within a file; the term "record access" refers to the method by which
records are read from a file or written to a file. A file's
organization 1is specified when the file is created, and cannot be
changed. Record access is specified each time a file is opened, and
can be different each time the same file is opened. This section
discusses file organization; Section 2.2.2 discusses record access.
Table 2-3 shows the wvalid record access modes for each file
organization.

Through its two I/0 subsystems, FORTRAN-77 supports three file
organizations: sequential, relative, and 1indexed. Table 2-3
summarizes which file organizations are available to the wvarious 1I/0
subsystems.

FORTRAN-77 INPUT/OUTPUT

Table 2-3
Availability of File Organizations

FCs-11 RMS-11 RMS-11K
Sequential X X X
Relative _ X X
Indexed X

The organization keyword in the OPEN statement specifies the
organization of a file, as described in Section 2.3.7.

2.2.1.1 sSequential Organization - A sequential organization file, or
sequential file, consists of records arranged in a physical sequence
that is typically identical to the order in which the records are
written to the file: the first record in the file is the first record
written, the second record in the file is the second record written,
and so forth.

Sequential file organization is permitted on all devices supported by

the FORTRAN-77 system, and is supported by the FCS-11 and RMS-11 I/0
subsystems.

The sequential files created under the FCs-11 subsystem are
compatible, both structurally and functionally, with sequential files
created under the RMS subsystem. Therefore, you can freely
interchange sequential files among all FORTRAN-77 programs.

2.2.1.2 Relative Organization - A relative organization file, or
relative file, consists of a series of numbered positions, called
cells, that can either contain a single record or remain empty. These
cells are of fixed, equal length and are numbered consecutively from 1
to n, where 1 is the first cell and n is the last cell.

Relative organization allows you to place a record in a file at any
position relative to the beginning of the file. As a result, you can
retrieve a record simply by specifying that record's relative record
number. Conceptually, then, a relative file 1is similar to a
sequential file processed under direct access (see Section 2.2.2.2).
The one important distinction is that you can delete a record from a

relative file (simply by specifying the appropriate relative record
number) .

Once a record has been deleted from a relative file, the cell
containing it is no longer a logical part of the file, and any attempt
to direct-access that cell produces error message #36: "ATTEMPT TO
ACCESS NON-EXISTENT RECORD."

Relative files can be stored only on disk and are supported only by
the RMS I/0 subsystems.

FORTRAN-77 INPUT/OUTPUT

2.2.1.3 1Indexed Organization - An indexed organization file, or
indexed file, <consists of records that are arranged 1logically
according to the value of an alphanumeric or integer field (called a
key field) contained 1in each record. Unlike the records 1in a
sequential or relative file, the records in an indexed file are not
necessarily stored contiqguously, but may be widely dispersed on disk.

When you create an indexed file, you must designate a specific field,
common to each record 1in the file, as a primary key. The value of
this field in any one record determines the position of this record in
a file.

You can designate additional fields in the records of an indexed file
as alternate keys. These fields do not affect the placement of
records in the file (unless the file was created to allow duplicate
primary keys, in which case the records actually having duplicate
primary keys are ordered by an alternate key). However, each
alternate key, like the primary key, provides a way to locate a record
within a file. You can specify up to 255 keys for an indexed file
using an appropriate RMS utility (see the RMS-11 User's Guide). You
can also specify keys with an OPEN statement; however, the maximum
number you can specify with an OPEN statement depends on the total
number of parameters you have specified in the OPEN statement.

Regardless of the means by which they are created, you can access,
with indexed READ statements, up to 255 keys from a FORTRAN-77
program.

An indexed file contains a tree-structured table, called an index, for
each designated key field. Each entry in an index is a pointer to a
set of records, called a bucket, located at the base of the tree. The
bucket contains the record with the designated key value and zero or
more records with lower key values (or the same key values if the key
is an alternate key). A bucket is a unit of I/O0 transfer consisting
of a fixed number of bytes specified by the BLOCKSIZE keyword (see
Section 2.3.2).

Both the number of key fields and the size of the bucket are
established when you create a file; you cannot change these
parameters with subsequent OPEN statements. When you add or modify
records, RMS automatically updates the indexes and creates additional
entries as needed.

Indexed files permit the most flexible record access. This
flexibility is facilitated by the fact that you can use any field in a
record as a key and can have multiple keys.

When a FORTRAN-77 program creates an indexed file, the primary key of
the records of that file are restricted in two respects: (1)
duplicate primary keys are not allowed because the value of each
primary key must be unique; and (2) when a record in the file is
rewritten, its primary key cannot be changed. These restrictions do
not apply to alternate keys. When an indexed file is created by a
means other than a FORTRAN-77 program, and in such a way as to support
changes to, and duplicates of, primary keys, that file may
subsequently be used by a FORTRAN-77 program even though there are
duplicate primary keys and the values of any of the primary keys can
be changed by the program.

Indexed files can be stored only on disk and are available only 1if
RMS-11K is available on your system.

FORTRAN-77 INPUT/OUTPUT

2.2.2 Access to Records

You can select records for processing by the following methods:
e Sequential (including append) access
e Direct access
e Keyed access

Table 2-4 summarizes the ways 1in which each of the three file
organizations can be accessed.

Table 2-4
Access Modes Per File Organization
Access
Organization Sequential Direct Keyed Append
Sequential X x1 X2
Relative X X
Indexed X X

1. Fixed-length records only.

2. Append access to a sequential file consists of opening
the file for sequential access and initially positioning
the current record printer at the end of the file.

The FCS-11 I/0 subsystem supports only sequential and direct access
(to sequential files); keyed access 1is supported only by RMS-11K
software. (RMS-11K is included in RSX-11M-PLUS and RSTS/E systems.)

2.2.2.1 Sequential Access - Sequential access means, as the term
implies, that records are processed in sequence. The exact nature of
this processing sequence depends on the organization of the file. For
sequential files, the processing sequence consists of the physical
progression of the records in the file, from first created to last
created. Processing a sequential file wunder sequential access
requires that a desired record be read only after all records
physically preceding it have been read, and that a new record be
written only to the current end of the file. For relative files, the
processing sequence consists of the numerical order of the record
cells (some of which may not have a record in them). Reading a
relative file wunder sequential access requires that a desired record
be read only after all existing records preceding it have been read
(empty <cells are passed over). Writing to a relative file under
sequential access allows a new record to be written at any point. For
example, if records 1 and 2 are read (in sequential access mode) in a
relative file consisting of 24 record cells, and then a record is
written, the new record is written into cell 3 of the file, replacing
any old record that may have been there. (The concept of writing a
record into a «cell already containing a record 1is a FORTRAN-77
concept.)

FORTRAN-77 INPUT/OUTPUT

The processing sequence for an indexed file consists of an index of
ascending key values; a corresponding physical sequence may or may
not exist. Reading an indexed file under sequential access requires
that only the desired record be read. New records may be added at any
point, with the key values within a record determining the record's
position.

2.2.2.2 Direct Access - Direct access means that records are selected
for processing on the basis of their position relative to the
beginning of a relative or sequential file. Only one record needs to
be read and a new record can be added at any point. Each READ or
WRITE statement must include a relative record number that specifies
the record to be read or written.

You can direct-access relative files and sequential files containing
fixed-length records that reside on disk, but you cannot direct-access
indexed files. Because direct access uses cell numbers to identify
and find records, you can issue successive READ or WRITE statements
requesting records that either precede or follow previously requested
records.

For example, the statements

READ (UNIT=12,REC=24)XARRAY
READ (UNIT=12,REC=20)ZARRAY

transfer the data in record 24 of the file connected to 1logical unit
12 to the variable XARRAY, and the data in record 20 of the same file
to the variable ZARRAY.

Using direct access to read records 1in an RMS-11 sequential or
relative file may result in FORTRAN run-time error 36 if the specified
record was never written. FORTRAN run-time error 36 may also occur if
the specified record of a relative file has been deleted.

2.2.2.3 Keyed Access - Keyed access means that records are selected
for processing on the basis of alphanumeric strings or integer values,
called keys, that identify the desired records. Each 1indexed READ
statement contains a key value that is used to locate the record to be
read. The key value is compared against index entries until the
bucket containing the record 1is 1located. The bucket is then read
until the exact record is located.

To insert a new record in an indexed file, you specify in the I/0 list
of an indexed WRITE statement an item that has previously been defined
as a key for the records in the relevant file; you do not specify a
KEY= wvalue in the WRITE statement. For example, 1if NAME has
previously been defined in an OPEN statement as a key for the records
of an indexed file, to insert a new record in that file you can use
the following statement:

WRITE (UNIT=10, ERR=9999)ORDER, NAME,
1 ADDRESS, CITY, STATE, ZIP, ITEM

Keyed access is valid only for indexed files.

See Chapter 7 for more information on using indexed files.

FORTRAN-77 INPUT/OUTPUT

2.2.3 Record Formats

Records can be stored in a file in one of three formats:
e Fixed length
e Variable length
e Segmented (sequential files only)

The format that applies in a particular case depends on the
organization of the file.

NOTE

The term "record format" refers to
whether a record 1is fixed length,
variable length, or segmented; the term
"record type" refers to whether a record
is formatted or unformatted. "Record
type" should not be confused with the
keyword RECORDTYPE.

2.2.3.1 Fixed-Length Records - When you specify fixed-length records
for a file (see Section 2.3.10), you are specifying that all records
in the file are to contain the same number of bytes; vyou specify the
size of these records by means of the RECORDSIZE keyword of the OPEN
statement (see Section 2.3.9). If the record numbers are to be
computed <correctly, a sequential file to be opened for direct access
must contain fixed-length records.

You can use fixed-length records with sequential, relative, or indexed
files.

Each fixed-length record in a relative file contains an extra byte,
called the deleted-record control byte. The record overhead in an
indexed file consisting of fixed-length records 1is seven bytes per
record.

Fixed-length records always start on a word boundary. An extra byte,
called the "pad byte," 1is allocated 1if the record 1length of a
fixed-length record is odd.

2.2.3.2 Variable-Length Records - Variable-length records can contain
any number of bytes, up to a specified maximum. This maximum can be
specified by the RECORDSIZE keyword of the OPEN statement (see Section
2.3.9).

You can use variable-length records with sequential, relative, or
indexed file organizations.

Each variable-length record 1is prefixed by a count field that
indicates the number of data bytes in the record. The count field
comprises two bytes on a disk device and four bytes on magnetic tape.

Variable-length records in relative files are actually stored in
fixed-length <cells, the size of which must be specified by the
RECORDSIZE keyword of the OPEN statement (see Section 2.3.9). The
count field 1in wvariable-length records in a relative file specifies
the 1largest record that can be stored in that file, Each
variable-length record in a relative file contains three extra bytes,

2-8

FORTRAN-77 INPUT/OUTPUT

two for the count field and one for deleted-record control. Each
variable-length record in an indexed file contains nine extra bytes.

You can make the count field of a variable-length record available to
a program by means of a READ statement with a Q format descriptor.
You can then use the count field information to determine how many
bytes of data should be read by an I/O list.

2.2.3.3 Segmented Records - A segmented record is a single 1logical
record consisting of one or more variable-length records (segments).
The length of a segmented record is arbitrary; however, the length of
the segments themselves is specified by the RECORDSIZE keyword (see
Section 2.3.9). Segmented records are useful when you want to write
exceptionally long records. Unformatted sequential records written to
sequential files are, by default, stored as segmented records.

The segmented record is unique to FORTRAN and can be wused only with
unformatted sequential files under sequential access. You should not
use segmented records for files that will be read by programs written
in languages other than FORTRAN.

Because there is no set limit on the size of a segmented record, each
variable-length record segment in the segmented record contains
control information to indicate that it is one of the following:

e The first segment in the segmented record

e The last segment in the segmented record

e The only segment in the segmented record

e A segment in the segmented record other than one of the above

This control information is contained in the first two bytes of each
segment of a segmented record.

When you wish to access an unformatted sequential file that contains
fixed-length or variable-length records you must specify
RECORDTYPE='FIXED' or RECORDTYPE='VARIABLE' when you open the file;
otherwise, the first two bytes of each record will be misinterpreted
as control information, and errors will probably result.

2.3 OPEN STATEMENT KEYWORDS

The following sections supplement the OPEN statement description that
appears in the PDP-11 FORTRAN-77 Language Reference Manual. In
particular, implementation-dependent and/or system-dependent aspects
of <certain OPEN statement keywords are described. This section does
not discuss all the keywords that apply to the OPEN statement.

2.3.1 BLANK

BLANK in an OPEN statement controls the interpretation of blanks in
numeric input fields. The default is BLANK='NULL' (blanks in numeric
input fields are ignored).

If a logical unit is opened by means other than an OPEN statement, a
default equivalent to BLANK='ZERO' 1is assumed (that is, blanks in
numeric input fields are treated as zeros).

FORTRAN-77 INPUT/OUTPUT

The BLANK keyword affects the treatment of blanks in numeric input
fields read with the D, E, F, G, I, O, and Z field descriptors. 1If
BLANK='NULL' is in effect for these descriptors, embedded and trailing
blanks are ignored; the value affected 1is converted as if the
nonblank characters were right Jjustified in the field. If
BLANK='ZERO' is in effect, embedded and trailing blanks are treated as
zZeros.

The /F77 switch determines whether a default of BLANK='NULL' or
BLANK='ZERO' is assumed, as illustrated below:

OPEN (UNIT=1, STATUS='OLD')
READ(1,10)I,J
10 FORMAT (215)
END
Data record: 1 2 12

Assigned values:

/F77 /NOF77
I= 12 I= 1020
J= 12 J= 12

If your program treats blanks in numeric input fields as =zeros, and
you do not want to use the /NOF77 switch, include BLANK='ZERO' in the
OPEN statement or use the BZ edit descriptor in the FORMAT statement.

2.3.2 BLOCKSIZE

BLOCKSIZE specifies the physical I/0 transfer size for a file. A
BLOCKSIZE specification has the form:

BLOCKSIZE = bks

For magnetic tape files, the value of bks specifies the physical block
size in the range 18 to 32767 bytes. The default value is 512 bytes.

For tape files created through the RMS-11 subsystem, the maximum block
size is 8192.

For sequential disk files, the value of bks 1is rounded up to an
integral number of 512-byte blocks and used to specify multiblock
transfers. The number of blocks transferred can be 1 through 127.
The default value is one block.

For relative and indexed files, the value of bks is rounded up to an
integral number of 512-byte blocks and used to specify the RMS-11
bucket size, in the range 1 to 32 blocks (1 to 15 on RSTS/E). The
default wvalue 1is the smallest value capable of holding a single
record.

When you select a blocksize, and thereby determine the bucket size
used by RMS-11, vyou should consider the performance effects of the
following factors: file organization, record format, record size, and
the internal information that RMS-11 maintains in each bucket. For
example, a large bucket size generally speeds up sequential access to
a file because fewer I/0 transfers are required. On the other hand, a
minimal bucket size means that minimal I/0 buffer space is required.

Consult the RMS-11 User's Guide for information on determining optimal
bucket size.

FORTRAN-77 INPUT/OUTPUT

2.3.3 BUFFERCOUNT

BUFFERCOUNT specifies the number of memory buffers. A BUFFERCOUNT
specification has the form:

BUFFERCOUNT = bc

The range of values for bc is -1 through 255; a buffercount of -1
specifies that a unit will be opened in block mode rather than record
mode. The size of each buffer is determined by the BLOCKSIZE keyword.
Therefore, if BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of
bytes allocated for buffers is 3%2048, or 6144.

The default value is one buffer for each sequential or relative file,
and two buffers for each indexed file.

2.3.4 DISPOSE

DISPOSE specifies the disposition of a file at the time the file Iis
closed. A DISPOSE specification has the form:

'SAVE'
DISPOSE= 'KEEP'
DISP= 'DELETE"'

'PRINT'

DISPOSE cannot be used to save or print a scratch file, or to delete
or print a read-only file. A DISPOSE parameter in a CLOSE statement
always supersedes a disposition specified in an OPEN statement.

On an IAS operating system, a file printed under DISPOSE 1is always
deleted; on an RSX-11M or M-PLUS system, a file printed under DISPOSE
is always saved.

The RMS-11 version of the OTS does not support the DISPOSE= 'PRINT'
option; the file is always saved. Likewise, DISPOSE='PRINT' is not
supported on RSTS/E; the file is always saved.

2.3.5 INITIALSIZE and EXTENDSIZE

INITIALSIZE specifies the initial storage allocation for a disk file,
and EXTENDSIZE specifies the amount by which a disk file is extended
each time more space is needed for the file.

INITIALSIZE is effective only at the time a file is created. If you
specify EXTENDSIZE when creating a file, the value you specify becomes
the default value used by the system to allocate additional storage
for the file. If you specify EXTENDSIZE when opening an existing
file, the value you specify supersedes any EXTENDSIZE value specified

when the file was created, and remains in effect until you close the
file.

If the value of INITIALSIZE 1is positive, the system allocates

contiguous space; if the wvalue 1is negative, the system allocates
noncontiguous space.

If there is not enough space available to hold the initial size of a
file or to extend a file, an error message is issued.

FORTRAN-77 INPUT/OUTPUT

On RSX-11, if you do not specify an INITIALSIZE value, the system
allocates no file storage for data records at the time a file is
created; instead, the system allocates file storage dynamically as
needed, except on RSTS/E systems. On RSTS/E, if you do not specify an
INITIALSIZE value at file creation, run-time errors may occur. For
direct access files, only the file storage actually written is
allocated; therefore, a direct-access READ to any point beyond the
allocated storage results in an error condition.

2.3.6 KEY
KEY specifies one or more fields to function as keys for accessing
records in an indexed file. A KEY specification (not to be confused
with "key" specification) has the form:

KEY= (kspec [, kspecl...)

KSPEC =.,s: e[: dt]

s
The starting byte position of the key. (The first byte of a
record in FORTRAN-77 is assigned to position 1.

e
The ending byte position of the key.

dt

The key data type: INTEGER, for binary integer keys, or
CHARACTER, for character-string keys. (If dt is omitted, the key
data type is CHARACTER.)

The data type of a key determines the order in which records are
indexed for sorting. The data type of a key is not affected by the
formatting you use for a key value at the time you create a record.
Usually, however, if vyou specify integer keys for a formatted file,
you should use A-formatting for the key values when creating records
in that file. See Section 7.8 for more information on using integer
keys.

A key field has a length of e-s+l, where the values of s and e must be
such that:

1 .LE. (s) .LE. (e) .LE. record-length
1 .LE. (e-s+l1) .LE. 255

The key length of an integer key must be either 2 or 4, to correspond
to INTEGER*2 or INTEGER*4, respectively.

2.3.7 ORGANIZATION

ORGANIZATION specifies the type of organization a file has or 1is to
have. An ORGANIZATION specification has the form:

'SEQUENTIAL'
ORGANIZATION = 'RELATIVE'
'INDEXED'

The default file organization is sequential.

FORTRAN-77 INPUT/OUTPUT

When an existing file is opened, the specified file organization must
match the actual file organization. The ORGANIZATION keyword must be
specified for relative or indexed files.

2.3.8 READONLY

READONLY specifies that write operations are not to be allowed on the
file being opened. The main purpose of READONLY is to allow two or
more programs to read a file simultaneously without having to change
the protection specified for that file. Changing the protection
specified for a file can be hazardous because run-time I/O errors can
occur as a result of the default file access privileges being read or
written at the same time a file's protection does not permit write
access. Therefore, if you want to open a file for the purpose of
reading it, but do not want to prevent others from being able to read
the same file while you have it open, specify the READONLY keyword.
For more information on file sharing, see Section 2.3.11.

2.3.9 RECL (RECORDSIZE)

RECL specifies how much data a record can contain. A RECL
specification has the form:

RECL
RECORDSIZE = rl

The value of rl specifies the length of the logical records in a file.
For files that contain fixed-length records, rl specifies the length
of each record; for files that contain variable-length records, rl
specifies the maximum length of any record; for files containing
segmented records, rl specifies the maximum length of any segment.

The value of rl does not include the bytes that the file system
requires for maintaining record-length and record-control information;
it does, however, include the two segment control bytes, if present.

The value of rl is interpreted as either bytes or storage units (a
storage unit consists of four bytes). It is interpreted as bytes if
the records are formatted and as storage units if the records are

unformatted. Table 2-5 summarizes the maximum values that can be
specified for rl for each file organization and record-format
combination. Table 2-6 summarizes the default RECL values the system

uses when a file is created.

Table 2-5
RECL Value Limits

File Organization Record Type
Formatted Unformatted
(Bytes) (Storage Units)

Sequential 32766 8191
Variable-length records 9999 2499
on magnetic tape

Relative 16380 4095
Indexed 16360 4090

FORTRAN-77 INPUT/OUTPUT

Table 2-6
Default RECL Values

Record Type Size (Bytes)
Formatted 133
Unformatted, fixed-length 128
Unformatted, variable-length 126

If you are opening an existing file that contains fixed-length records
or that has relative organization, and you specify a value for RECL
that is different from the actual length of the records in the file,
an error occurs. If you omit a RECL specification when opening an
existing file, the system uses by default the record length specified
when the file was created.

You must make a RECL specification when you create a file that
contains fixed-length records or that has relative organization.

NOTE

You must specify the Task Builder option
MAXBUF if records larger than 133 bytes
are to be processed.

2.3.10 RECORDTYPE

RECORDTYPE specifies the structure of (the record type of) the records
in a file. A RECORDTYPE specification has the form:

'FIXED'
RECORDTYPE = 'VARIABLE'
'SEGMENTED'

RECORDTYPE is particularly useful when vyou want to override the
default record type used in creating a file. The default record type
is: :

e Fixed if the file organization is indexed or relative, or if
the access mode is direct

e Variable if the file organization is sequential and the access
mode is formatted sequential

® Segmented if the file organization is sequential and the
access mode is unformatted sequential

The default RECORDTYPE value the system uses when accessing an
existing file is determined by the record structure of the file, with
one exception. 1In the case of unformatted sequential files containing
fixed- or wvariable-length records you must explicitly override the
default (which is 'SEGMENTED') by specifying the appropriate
RECORDTYPE value in the OPEN statement. You cannot use an unformatted
sequential READ statement to access an unformatted sequential file
that contains fixed-length or variable-length records unless you
specify the appropriate RECORDTYPE value in an OPEN statement. Files
containing segmented records can be accessed only by unformatted
sequential I/O statements.

FORTRAN-77 INPUT/OUTPUT

2.3.11 SHARED

SHARED specifies that a file can be accessed by more than one program
at a time, or by the same program on more than one logical unit. The
forms of mutual accessing, or sharing, permitted depend on the
organization of the file and on the I/0 system (FCS-11 or RMS-11) in
use.,

FCS-11 permits multiple readers and a single writer.

RMS-11 permits multiple readers and multiple writers on relative and
indexed files. It does not permit multiple writers on sequential
files; however, it does permit multiple readers, provided you specify
READONLY in all programs that open the files affected.

When you specify the SHARED keyword, other users can access the file
with write access. If write-sharing occurs, RMS-11 uses a
bucket-locking facility to control operations on the file and ensure
that simultaneous write, update, or delete operations on the same
record do not occur. See Section 2.6.4 for additional information.

2.3.12 USEROPEN

USEROPEN provides access to features of the supporting I/0 system not
directly supported by the FORTRAN-77 I/0 system. Or, more
specifically, USEROPEN allows you to access RMS or FCS capabilities
and at the same time retain the ease and convenience of FORTRAN-77
programming.

USEROPEN is intended for experienced users.

For the interface specification for a USEROPEN routine, see the
FORTRAN-77 Object Time System Reference Manual. Consult the
IAS/RSX-11 1/0 Operations Reference Manual for FCS details. Consult
the RMS-11 MACRO-11 Reference Manual for RMS details.

2.4 BACKSPACE AND ENDFILE IMPLICATIONS

This section describes implications of the BACKSPACE and ENDFILE 1I/0
statements, which are supported only for sequential files.

A BACKSPACE operation cannot be performed on a file that is opened for
append access, because under append access the current record count is
not available to the FORTRAN-77 I/0 system; backspacing from record n
is done by rewinding to the start of the file and then performing n-1
successive reads to reach the previous record.

The ENDFILE statement writes an end-file record. Because the concept
of an embedded end-file is unique to FORTRAN, the following convention
has been adopted: An end-file record is a l-byte record that contains
the octal code 32 (CTRL/Z). An end-file record can be written only to
sequentially organized files that are accessed as formatted sequential
or unformatted segmented sequential. End-file records should not be

written in files that are read by programs written in a language other
than FORTRAN.

FORTRAN-77 INPUT/OUTPUT

2.5 FORTRAN-77 I/O USING FILE CONTROL SERVICES (FCS)

File Control Services (FCS-11) is an I/0 subsystem that provides
sequential and direct access to sequential files. For a detailed
discussion of FCS-11, consult the IAS/RSX-11 I/0O Operations Reference
Manual.

2.5.1 OTS/FCS Record Transactions

Records are transferred with FCS record mode macros as follows:

® Sequential input -- GETSS
e Sequential output -- PUTSS
e Direct input -- GETS$R

e Direct output -- PUTSR

2.5.2 OTS/FCS File Open Conventions

A file or device is opened for I/0O activity by the execution of an
OPEN statement, or by the execution of an input or output statement if
no file/device is already open on the logical unit specified 1in the
statement. The type of FCS open operation invoked is based on the
specifications (explicit or implied) in the OPEN statement or on the
type of I/0O statement, as follows:

Input statement OPENSU
Output statement OPENSW
OPEN statement
TYPE='OLD" OPENSU
TYPE='NEW"' OPENSW
TYPE="'"SCRATCH"' OPENSW, followed by call to .MRKDL
TYPE="'UNKNOWN' try OPEN$U; 1if no such file, then
OPENSW.

Files created for formatted input/output (both sequential and direct
access) are given the FORTRAN carriage-control attribute (FD.FTN) .

2.5.3 FCS Implications of FIND and REWIND

This section describes FCS-specific implications of the FIND and
REWIND I/0O statements.

A FIND statement is similar to a direct access READ operation with no
I/0 list and may cause an existing file to be opened; upon execution,
it assigns to an associated variable the specified record number.

A REWIND statement is performed as an FCS .POINT operation that
specifies positioning at the beginning of the indicated file (block=1,
byte=0).

FORTRAN-77 INPUT/OUTPUT

2.5.4 FCS File Sharing

The FCS file system permits files to be simultaneously accessed by two
or more tasks.

Two tasks writing to a shared file in which some of the records cross
block boundaries may produce undesirable results. That is, because
the read, modify, and rewrite sequences performed by two tasks writing
to a shared file are asynchronous and independent, a record can occur
in which part of the data was written by one task and part by another.
In addition, because FCS generally tries to minimize disk activity by
postponing a rewrite in case a subsequent read or write can be
performed using the in-task buffer image, the disk image of a file may
be out-of-date for arbitrary time intervals. This problem of
outdatedness may be encountered on both sequential and direct access
input/output.

You may encounter a related problem in regard to the logical
end-of-file. When a file 1is extended, the disk description of the
logical end-of-file is not updated until the file 1is closed by all
tasks accessing it. Therefore, if one task has opened a file to
append new records and has not yet closed it, a second task opening
the file to read certain of its records is not able to read any of the
new records appended by the first task. Furthermore, it is not able
to read any of these new records until the following has occurred:
The first task has closed the file; the second task has closed the
file; the second task has reopened the file.

When using shared files, you must pay careful attention to the
intertask coordination required for reliable performance.

2.6 FORTRAN-77 I/0 USING RECORD MANAGEMENT SERVICES (RMS)

Record Management Services (RMS-11) is an I/0 system that supports
sequential and direct access to sequential and relative files. 1In
addition, RMS-11K (standard on all RSX-11M-PLUS and /RSTS/E systems)
provides sequential and keyed access to files of indexed organization.
For a detailed discussion of RMS-11/RMS-11K, consult the RMS-11
MACRO-11 Reference Manual and the RMS-11 User's Guide. The RMS-11
User's Guide contains useful information on RMS-11 file structures and
ways to improve performance. Note, however, that the RMS-11 features
that are a part of FORTRAN-77 are a subset of the total facilities
discussed in the RMS-11 User's Guide; all RMS features, however, are
available through USEROPEN.

2.6.1 OTS/RMS Record Transactions

To read records under RMS, READ statements use the RMS $GET macro; to
write to records, WRITE statements use the RMS S$PUT macro to add new
records and the RMS S$UPDATE macro to rewrite existing records 1in a
direct access sequential file.

To update a record in an indexed file, the REWRITE statement uses the
RMS SUPDATE macro.

To delete records, the DELETE statement uses the RMS S$DELETE macro.
You cannot DELETE records in a sequential file.

FORTRAN-77 INPUT/OUTPUT

2.6.2 OTS/RMS File Open Conventions

A file or device is opened for I/0 activity by the execution of an
OPEN statement or by the execution of an input or output statement.
The type of open operation invoked is based on the specifications in
the OPEN statement or on the type of I/0 statement, as follows:

Input statement SOPEN
Output statement SCREATE
OPEN statement
TYPE='OLD' SOPEN
TYPE="'NEW' SCREATE
TYPE='SCRATCH' SCREATE with FBSTMD set
TYPE="UNKNOWN' SOPEN; if no such file then SCREATE

2.6.3 RMS Implications of FIND, REWIND, UNLOCK

This section describes RMS-specific implications of the FIND, REWIND,
and UNLOCK statements.

A FIND statement is similar to a direct access READ statement with no
I/0 1list and may cause an existing file to be opened. The RMS $FIND
macro is executed to locate and lock the specified record.

A REWIND statement results in a call to the RMS S$REWIND macro.

The UNLOCK statement wunlocks the bucket currently 1locked on the
specified logical unit by executing the RMS $FREE macro. If no record
is locked, the operation has no effect. See Section 2.6.4 for details
on file sharing and using the UNLOCK statement.

2.6.4 RMS File Sharing

You can write-share relative and indexed files, but not sequential
files.

If a program has write access to a shared file, RMS-11 locks every
bucket accessed by a successful READ or FIND statement until another
I/0 operation is performed on the same logical unit. If a program
attempts to access a record that RMS has locked, FORTRAN run-time
error "SPECIFIED RECORD LOCKED" is reported.

To ensure the greatest flexibility at run time, you should always
anticipate the possibility that any record you attempt to access might
be locked by another logical unit in your own program or by a logical
unit in another program. You can be properly prepared by employing
the following procedures when you write programs.

If you are using a single logical unit to access a file and you
encounter the record-locked error, you can reexecute the I/0 statement
that failed until RMS-11 indicates successful completion.

If you are using multiple logical units to access a file, you cannot
simply reexecute the I/0 statement that failed. One of your other
logical units may have locked the target bucket; therefore, you could
place your program in an infinite loop if you were to continue to
execute the same statement. Instead, you should first execute an
UNLOCK statement for all other logical units having access to the same
file in your program. You can then safely reexecute the I/0 statement
until RMS-11 indicates successful completion.

2-18

FORTRAN-77 INPUT/OUTPUT

Never retain a lock on a bucket longer than necessary. For example,
when you execute a successful READ or FIND statement, you cause RMS-11
to lock a bucket; therefore, you should immediately execute an UNLOCK
on the logical unit so that RMS-11 will unlock the bucket.

The following program segment demonstrates the programming techniques
you should use for shared files. The program attempts to access a
record whose key value is contained in the byte array KEYVAL.

10 READ (IDXLUN, KEY=KEYVAL, ERR=20) DATA
UNLOCK (IDXLUN)

(process record)

20 CALL ERRSNS. (IERR)
IF (IERR .EQ. 52) GO TO 10
TYPE *, 'ERROR READING INDEXED FILE', IERR
STOP
END

2.6.5 Task Building with RMS

RMS-11 is a set of file access routines that execute as part of a
task. The Task Builder resolves references to these routines in
either an object 1library (LB:[1,1]RMSLIB.OLB or LB:RMSLIB.OLB on
RSTS/E) or a resident library (RMSRES or RMSSEQ).

Because these routines add from 8K bytes to 44K bytes to the size of a
task, you may need to overlay the RMS portion of a task. A series of
standard ODL files that describe disk-resident overlays requiring
different amounts of space is provided. Table 2-7 shows the size of

the RMS portion and the RMS features included for each standard ODL
file.

Table 2-7
RMS File System Libraries

File Namel Approximate Addition Features Included
LB:[1,1]RMS11S.0DL 8K bytes Sequential and relative
organizations
LB:[1,1]RMS11X.0DL 9K bytes Sequential, relative
and indexed

organizations

LB: [1,1]RMS12X.0DL 12K bytes Sequential, relative
and indexed
organizations (in fewer
overlay segments than
RMS11X)

1. Do not include [1,1] on RSTS/E systems

FORTRAN-77 INPUT/OUTPUT

A prototype ODL file, LB:[1,1]RMS11.0DL, is also provided
(LB:RMS11.0DL on RSTS/E). This file is similar to RMS11X.ODL, but it
contains comments and instructions to aid vyou in optimizing the
overlay structure to accommodate your particular task requirements.

Refer to the RMS-11 User's Guide for information on optimizing the
overlay structure.

The standard RMS ODL files are incorporated into a program ODL file as
follows:

The factor RMSROT (which is defined in the RMS ODL file, that is,
in RMS11S.0DL, RMS11X.0DL, and RMS12X.0DL) must be added to the
task root segment. The factor RMSALL (which is also defined in
the RMS ODL files) should be added as an RMS co-tree root
segment. For example:

.ROOT MAIN-RMSROT,RMSALL ;RMS co-tree

The following ODL file builds the same overlaid program as
described in Section 1.4; it incorporates an overlaid RSX-11M
OTS and the 12K-byte version of RMS as a co-tree. On RSTS/E,
[1,1] would not be included. (See Section 5.4.8 for more
information on overlaying the FORTRAN-77 OTS.)

.ROOT MAIN-OTSROT-RMSROT-OVL,OTSALL,RMSALL
OVL: .FCTR * (PRE,PROC,POST)
@LB:[1,1]RMS11M
@LB: [1,1]RMS12X
.END

NOTE
The FORTRAN-77 OTS and RMS must both be

set up as co-trees (as shown bove) or
not overlaid at all.

You may also be able to use an RMS-11 shared resident library (RMSRES)

if your system supports one. Using RMSRES requires 16K bytes of
address space, but significantly reduces both task-build time and
execution time.

You can include the RMS shared library RMSRES in your task by using
the following procedure:

e Specify LB:[1,1]RMSRLX.ODL (LB:RMSRLX.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

® Include LIBR= RMSRES:RO as a task-build option.

You can include the RMS shared library for sequential organization,
RMSSEQ, in your task by using the following procedure:

e Specify LB:[1,1]RMSRLS.ODL (LB:RMSRLS.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

e Include LIBR= RMSSEQ:RO as a task-build option.

CHAPTER 3

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

This chapter discusses aspects of the PDP-11 FORTRAN-77 compiler and
OTS operating environment. Information is provided on the following:

e The PDP-11 calling sequence convention

e FORTRAN program sections

e FORTRAN COMMON blocks and RSX-11 system common blocks
e FORTRAN-77 OTS shared libraries

e FORTRAN-77 OTS error processing

e Compiler listing-file format

3.1 FORTRAN-77 OBJECT TIME SYSTEM

The FORTRAN-77 Object Time System (OTS) is composed of the following
routines:

e Math routines, including the FORTRAN-77 library functions and
other arithmetic routines (for example, exponentiation
routines)

e Miscellaneous utility routines (ASSIGN, DATE, ERRSET, and so
forth)

e Routines that handle FORTRAN-77 input/output

e Error-handling routines that process arithmetic errors, 1I/0
errors, and system errors

e Miscellaneous routines required by the compiled code

The FORTRAN-77 OTS is a collection of many small modules that allows
you to omit unnecessary routines during task-building. For example,
if a program performs only sequential formatted 1I/0, none of the
direct-access I/0 routines is included in the task.

3.2 FORTRAN-77 CALLING SEQUENCE CONVENTION

The PDP-11 FORTRAN-77 calling sequence convention is compatible with

all PDP-11 processor options and provides both reentrant and
nonreentrant forms,.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.2.1 The Call site
The MACRO-11 form of the call is:
; IN INSTRUCTION-SPACE
MOV #LIST,RS ;ADDRESS OF ARGUMENT LIST TO

;REGISTER 5
JSR PC,SUB ; CALL SUBROUTINE

; IN DATA-SPACE

LIST: .BYTE N,0 ;NUMBER OF ARGUMENTS
.WORD ADR1 ; FIRST ARGUMENT ADDRESS
«WORD ADRN ;N'"TH ARGUMENT ADDRESS

The argument 1list must reside in DATA-SPACE and, except for
subprograms and statement label arguments, all addresses in the list
must also refer to DATA-SPACE. The argument 1list itself cannot be
modified by the called program.

The byte at address LIST+1 should be <considered undefined and not
referenced., This byte is reserved for use as defined by DIGITAL.

The called program is free to refer to the arguments indirectly

through the argument list. This argument-passing mechanism is known
as call-by-reference.

3.2.2 Return

Control is returned to the calling program by restoring (if necessary)
the stack pointer to its value on entry and executing the following:

RTS PC

3.2.3 Return Value Transmission

Function subprograms return a single result in the processor general
registers. The register assignments for returning the different
variable types are:

Type Result
INTEGER*2
LOGICAL*1 RO
LOGICAL*2
INTEGER*4 RO -- low-order result
LOGICAL*4 Rl -- high-order result
REAL RO -- high-order result
Rl -- low-order result
RO -- highest-order result
DOUBLE Rl --
PRECISION R2 --
R3 -- lowest-order result

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Type Result
COMPLEX RO -- high-order real result
Rl -- low-order real result
R2 -- high-order imaginary result
R3 -- low-order imaginary result

3.2.4 Register Usage Conventions

Before making a call, a calling program must save any values in
general-purpose registers RO through R4 that it needs after a return
from a subprogram. After a return, a calling program cannot assume
that the argument list pointer value in register R5 is valid.

Conventions for floating-point registers are similar to those for
general-purpose registers. If a Floating Point Processor (FP1l1l) or
the floating-point microcode option (KEFl1lA) is present on a system,
the calling program must save and restore any floating-point registers
in use by a calling program. The calling program cannot assume that
the floating-point status bits I/L (integer/long integer) or F/D
(floating/double precision) are restored by the called routine.

A subprogram that is called by a FORTRAN-77 program can freely wuse
processor registers RO-R5, FPP registers FO0-F5, and the FPP status
register. When returning from a subroutine (when the RTS PC is
executed), the 1initial (routine entry) value must be restored to the
contents of the processor hardware stack pointer SP.

3.2.5 Nonreentrant Example

In nonreentrant forms, the argument list can be placed either in line
with the call or out of line in an impure data section. (The latter
is recommended and illustrated here, and is the form produced by the
FORTRAN-77 compiler.) Example 3-1 illustrates assembly language code
implementing a small FORTRAN-77 FUNCTION subprogram that uses the
nonreentrant form of a call. Note that the nonreentrant form is
shorter and generally faster than the reentrant form because addresses
of simple variables can be assembled into the argument list.

Example 3-1: Call Sequence Conventions: Nonreentrant Example

INTEGER FUNCTION FNC(I,J)
INTEGER FNCl
FNC=FNC1 (I+J,5)+I

RETURN
END
.PSECT
.GLOBL FNC,FNC1
FNC: MOV R5,-(SP) ;SAVE ARG LIST POINTER
MOV @2 (R5) ,~(SP) ; FORM I+J ON STACK
ADD @4 (R5) ,@sP
MOV SP,LIST+2 ;ADDRESS OF I+J TO

;ARG LIST

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-1 (Cont.):

Call Sequence Conventions:

Nonreentrant Example

MOV #LIST,RS5
JSR PC,FNC1
ADD $2,SP ;DELETE TEMPORARY I+J
MOV (SP)+,R5 ; RESTORE R5
ADD @2(R5) ,RO ;ADD I TO FNC1 RESULT
RTS PC ; RETURN VALUE IN RO
. PSECT DATA ;DATA AREA
LIST: .BYTE 2,0 ; TWO ARGUMENTS
.WORD 0 ; DYNAMICALLY FILLED IN
.WORD LITS ;ADDRESS OF CONSTANT 5
LITS: «WORD 5,0 ; CONSTANT 5
. END
3.2.6 Reentrant Example

The PDP-11 FORTRAN-77 calling convention has a reentrant form in which
the argument 1list is constructed at run time on the execution stack.
Note that the argument addresses must be pushed backwards on the stack

to be correctly arranged in memory for the subroutine that uses the
list. Basically, the technique consists of:

MOV #ADRn,- (SP) ;ADDRESS OF NTH ARGUMENT

MoV #ADR2,- (SP)

MOV #ADR1,-(SP) ;ADDRESS OF 1ST ARGUMENT

MOV #n,- (SP) ;NUMBER OF ARGUMENTS

MOV SP,R5

JSR PC,SUB ;CALL SUBROUTINE

ADD #2*n+2,SP ;DELETE ARGUMENT LIST

Example 3-2 illustrates assembly language code that uses
call forms for the same example shown in Example 3-1.

reentrant

The FORTRAN-77 compiler does not produce reentrant call forms.

Example 3-2: Call Sequence Convention: Reentrant Example

INTEGER FUNCTION FNC(I,J)
INTEGER FNC1
FNC=FNC1 (I+J,5)+I

RETURN
END
.PSECT
.GLOBL FNC,FNC1
FNC: MOV R5,-(SP) ;SAVE ARG LIST POINTER
MOV @2 (R5) ,-(SP) ;FORM I+J
ADD @4 (R5) ,@SP ;ON STACK
MOV SP,R4 ; REMEMBER WHERE
MOV #CON5,-(SP) ;BUILD ARG LIST ON STACK
MOV R4 ,-(SP) ;ADDRESS OF TEMPORARY
MOV #2,-(spP) ; ARGUMENT COUNT
MOV SP,R5 ;ADDRESS OF LIST TO RS

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-2 (Cont.): Call Sequence Convention: Reentrant Example

JSR PC,FNC1 ;CALL FNC1
ADD $#10,SP ;DELETE ARG LIST AND TEMP I+J
MOV (SP)+,R5 ;RESTORE ARG LIST POINTER
ADD @2 (R5) ,RO ;ADD I TO RESULT OF FNCl
RTS PC ;RETURN RESULT IN RO
.PSECT DATA ;DATA AREA
CON5: .WORD 5,0
.END

3.2.7 Null Arguments

Null arguments are represented in an argument list with an address of
-1 (177777 octal). This address is chosen to ensure that using null
arguments in calling routines not prepared to handle null arguments
will result in an error when the routine is called at execution time.
The errors most likely to occur are illegal memory references and/or
word reference to odd byte addresses.

Note that null arguments are included in the argument count, as
follows:

FORTRAN Statement Resulting Argument List
CALL SUB .BYTE 0,0
CALL SUB() .BYTE 1,0
.WORD -1
CALL SUB(A,) .BYTE 2,0
.WORD A
.WORD -1
CALL SUB(,B) .BYTE 2,0
.WORD -1
.WORD B

3.3 PROGRAM SECTIONS

Program sections (PSECTs) are named segments of code and/or data.
Attributes associated with each program section (see Table 3-1) direct
the Task Builder when the Task Builder 1is combining separately
compiled FORTRAN program units, assembly language modules, and library
routines into an executable task image.

3.3.1 Compiled-Code PSECT Usage

The compiler wuses PSECTs to organize compiled output into the
following six sections:

1. Section $CODE1l contains all of the executable code for a
program unit.

2. Section $PDATA contains pure data, such as constants, that
cannot change during program execution.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT
3. Section S$IDATA contains impure data, such as argument lists,
that can change during program execution.

4. Section $VARS contains storage allocated for wvariables and
arrays used in a program,

5. Section $TEMPS contains temporary storage allocated by the
compiler,

6. Section $SAVE contains global storage for entities specified
in a SAVE statement.

The attributes associated with each of these sections are shown in
Table 3-1.

Table 3-1
Program Section Attributes

Section

Name Attributes

SCODE1 RwW, I, LCL, REL, CON
$PDATA RW, D, LCL, REL, CON
SIDATA RW, D, LCL, REL, CON
$VARS RW, D, LCL, REL, CON
STEMPS RW, D, LCL, REL, CON
$SAVE RW, D, GBL, REL, CON, SAV

NOTE

The RO/RW attributes for the sections
SCODE1 and $PDATA are controlled by the
compiler /RO command qualifier (see
Section 1.2.4).

Section attributes are as follows:

e RW, RO -- read/write, read only

e I, D -- instructions, data

e CON, OVR -- concatenated, overlaid

e LCL, GBL -- local within overlay segment, global across
segments

e SAV —-- unconditionally place PSECT in root segment

Because FORTRAN-77 programs contain statically allocated impure
storage, compiled object modules are not reentrant and cannot be
included in a shareable library.

Virtual arrays are allocated into a special control section, $VIRT,
that the Task Builder allocates into the mapped array area of a task.

3-6

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.3.2 FORTRAN COMMON and RSX-11] System Common

You can indicate that a common block in a task 1is to reference a
system global common block of the same name. You can do this, at
task-build time, with the Task Builder option:

COMMON = name:access|:apr]

where name is any valid common block name, access may be either RO for
read-only access or RW for read/write access, and the optional element
apr is an integer from 1 to 7 that specifies the first Active Page
Register. If the common block defined in the user task is larger than
the corresponding system global common block, a fatal task-build error
results.

If a task attempts to initialize any storage in a common block by
using DATA statements, a fatal task-build error results,

Storage for a common block is placed into a PSECT of the same name as
that of the common block. PSECTs used for common blocks are given the
attributes RW, D, GBL, REL, OVR, and, for saved named common blocks
and blank common, SAV. (The /F77 switch must be set for the blank
common block PSECT to have the SAV attribute; named common block
PSECTS have the SAV attribute under either /F77 or /NOF77.) For
example, the statement

COMMON /X/A,B,C
produces the equivalent of the following MACRO-11 code:
.PSECT X,RW,D,GBL,REL,OVR, SAV
A: .BLKW 2

B .BLKW 2
C: .BLKW 2

A blank common uses the section name .$$$$. Therefore, under /F77 the
statement

COMMON T,U,V
produces the equivalent of:

.PSECT .$$$$.,RW,D,GBL,REL,OVR,SAV
T: .BLKW 2
U: .BLKW 2
V: .BLKW 2

When named PSECTs with the OVR attribute are combined by the Task
Builder, all PSECTs with the same name are allocated to begin at the
same address. The resulting PSECT has the length of the 1largest of
the combined PSECTs.

An example of common communication between a FORTRAN-77 main program
and an assembly language subroutine is shown in Examples 3-3 and 3-4.
In the example, the variable ISTRNG in blank common is filled with
Hollerith data. This wvariable 1is copied to OSTRNG (with space
characters removed) in the labeled common DATA, and the actual 1length
is returned in the variable LEN.

Note that one word is allocated for each integer in the assembly
language subroutine; this allocation convention 1is necessary for
compatibility with FORTRAN storage allocation under the default /NOI4
setting for compilation.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-3 shows the FORTRAN main program compiled under the /NOI4
option. The assembly language subroutine COMPRS is shown in Example
3-4.

Example 3-3: Establishing a FORTRAN COMMON Area and Assembly Language
Subroutine CALL

LOGICAL*1 ISTRNG (80) ,0STRNG (80)
COMMON ISTRNG
COMMON /DATA/ LEN, OSTRNG

C GET INPUT STRING
C
READ 1, ISTRNG
1 FORMAT(80Al)
C COMPRESS THE STRING
C
CALL COMPRS
C TYPE OUT THE COMPRESSED STRING
C
TYPE 2, LEN, (OSTRNG(I),I=1,LEN)
2 FORMAT (1X,I3,6X,80Al1)
END

Example 3-4: Use of FORTRAN COMMON Area by Assembly Language Subroutine
.TITLE COMPRS
.IDENT /01/
; COMPRESS THE HOLLERITH STRING IN BLANK COMMON
; COPYING THE STRING TO LABELLED COMMON DATA AND
; RETURNING THE ACTUAL LENGTH AS WELL.
i

.PSECT .$$$$.,D,GBL,OVR
I: .BLKB 80. ; INPUT BUFFER

.PSECT DATA,D,GBL,OVR

L: .BLKW 1 ; ACTUAL LENGTH
0: .BLKB 80. ; OUTPUT BUFFER
.PSECT
COMPRS: :
MOV #I,R0 ; INPUT POINTER
MOV #0,R1 ; OUTPUT POINTER
MOV #80.,R2 ; INPUT LENGTH
CLR L ; OUTPUT LENGTH
1s: MOVB (RO)+,R3 ; GET INPUT CHARACTER
CMPB $#' ,R3 ; IS THIS CHAR A SPACE?
BEQ 28 ; IGNORE IF SO
MOVB R3, (R1)+ ; OUTPUT THE CHARACTER
INC L ; COUNT THE CHARACTER
2$: DEC R2 ; COUNT DOWN THE INPUT
BGT 13 ; LOOP IF MORE DATA
RTS PC
. END

3-8

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.3.3 OTS PSECT Usage

All OTS modules consist of at least two program sections: $$0TSI énd
$$0TSD. Section $$OTSI <contains pure-code sequences and section
$$0TSD contains pure-data information.

The OTS module $OTV declares the following sections that are wused as
impure working storage by the OTS:

° Section $$AO0OTS contains a general work area.

. Section $$DEVT contains storage for each FORTRAN 1logical
unit. The size of $$DEVT is determined by the Task Builder
UNITS option.

° Section §$$FSR1 contains storage for I/0 buffers and
file-system control blocks. The size of $$FSR1 is determined
by the Task Builder option ACTFIL.

° Section $$IOB1 contains storage for the FORTRAN-77
input/output record buffer. The size of $$IO0Bl is determined
by the Task Builder option MAXBUF.

° Section $$OBFl contains storage for holding the compiled form
of object-time formats. The size of $$0OBFl is determined by
the Task Builder FMTBUF option.

The handling and conversion routines for formatted records are
contained in the following sections: $$FIOC, SFIOD, $$FIO2, $SFIOI,
$$FIOL, $$FIOZ, $$FI0S, and SSFIOR. Special conventions are wused so
that the conversion routines are loaded only if they are required by
FORMAT statements in a source program.

3.4 OTS AND RESIDENT (SHAREABLE) LIBRARIES

Each module of the FORTRAN-77 OTS (with the exception of modules $O0TV,
LICSBS$, $ORGSQ, $ORGRL, and $ORGIX) consists only of code and data
that is pure and shareable. Consequently, all or any part of the OTS
can be built into a resident (shareable) 1library or included in
another resident library. However, the OTS does not «consist of
position-independent <code (PIC) and cannot, therefore, be included in
a resident library that does consist of PIC. In particular, the OTS
cannot be included in resident libraries SYSRES, FCSRES, or RMSRES of
the I/0 system, because each of these libraries consists of PIC.

Procedures for building a FORTRAN-77 OTS resident library are
described 1in the FORTRAN-77 distributed file F4PRES.MAC (see Section
5.4.7). F4PRES.MAC is an optional OTS file that can be used to build
an OTS resident library.

Module $OTV consists of impure-data areas used by the remainder of the
0TS for temporary results, logical-unit control tables, buffers, and
so forth. Modules $ORGSQ, $ORGRL, and $ORGIX provide impure linkages
for RMS-11.

Module LICSB$ contains the list-directed input constant storage block.

If you are building OTS resident libraries and you want to include one
or more of the formatted or list-directed I/O routines (shown below)
in one of your resident libraries, you must include all of these
routines in the resident library.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Module Name Global Symbols Function
$FIO $FIO Format processor
$CONVL LCI$,LCOS L format conversion
$CONVI ICI$,IC0$,0C1I$,0C0$ I format conversion
$CONVR RCI$,DCOS$,ECOS,FC0$,GCOS$ D, E, F, G, format

conversion

$CONVZ NOCIS$,NOCO0S$,2CIS$,ZC0% 0 and Z format conversion
$SLSTI SLSTI List-directed input
$LSTO $LSTO List-directed output

Note that a FORTRAN OTS resident library cannot reference any RMS-11
module.

3.5 OTS ERROR PROCESSING

The Object Time System detects certain errors in a program (for
example, 1I/0, arithmetic, and 1invalid argument errors) and reports
these errors on the user's terminal. An error-control table within
the OTS then determines what action the system is to take for each
error reported; for example, it may call for the system to terminate
the task. The default action for each FORTRAN-specific error is shown
in Table 3-2 (in Section 3.5.1.3).

Three system subroutines (ERRSNS, ERRTST, and ERRSET) are provided to
enable you to control OTS error processing: that is, to obtain
information on specific errors and/or to specify an action to be taken
when a specific error occurs.

The ERRSNS subroutine provides you with information about the error
that has most recently occurred during program execution. It also
provides detailed information on errors detected by the file system
(FCS-11 or RMS-11).

The ERRTST subroutine allows you to test for the occurrence of a
specific error during program execution.

The ERRSET subroutine allows you to modify the continuation action the
system is to take when an error is detected by the OTS. In many
cases, the particular continuation action to be taken may be changed
from the one specified in the error-control table (see Table 3-2).

The subroutines ERRSNS, ERRTST, and ERRSET are described in detail in

Appendix D. OTS error codes and the format of the OTS diagnostic
messages are shown in Appendix C.

3.5.1 Recovering From OTS-Detected Errors

You can use three methods to control recovery from errors detected by
the OTS:

e ERR= and END= transfers
e The ERRSNS subroutine
e The ERRSET subroutine

The following three sections discuss these methods.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.5.1.1 Using ERR= and END= Transfers - By including an ERR=label or
END=label specification in an I/O statement, you can transfer control
to error-processing code or to any other desired point in a program.
If you use an END= or ERR= specification to process an I/0 error,
execution continues at the statement specified by a 1label. However,
if you do not wuse an END= or ERR= specification to process an I/O
error, the system by default prints an error message and halts
execution.

For example, suppose the following statement is in your program:
WRITE (8,50,ERR=400)

If an error occurs during the write operation specified, control
transfers to the statement at label 400.

When an ERR= transfer occurs, file status and record position become
undefined.

You can use the END=label specification to handle an end-of-file
condition. For example, if an end-of-file condition is detected while
the statement

READ(12,70,END=550)
is being executed, control transfers to statement 550.

If an end-of-file 1is detected while a READ statement 1is being
executed, and you did not specify END=label, an error condition
occurs. If you specified ERR=label, control 1is transferred to the
specified statement.

3.5.1.2 Using the ERRSNS Subroutine - You can use the ERRSNS system
subroutine to process errors as they are encountered by a program.
When one of the errors listed in Table 3-2 occurs in a program, you
can obtain the number of the error by calling the ERRSNS subroutine;
then, in most situations, you can provide code to react to this
number.

To determine the number of an error, use the ERRSNS routine as
demonstrated in the following example:

CHARACTER*40 FILN
10 ACCEPT 1, FILN

1 FORMAT (A)
OPEN (UNIT=INF, STATUS='OLD', FILE=FILN, ERR=100)
. (process input file)

100 CALL ERRSNS (IERR)
IF (IERR .EQ. 43) THEN
TYPE *, '"FILE NAME WAS INCORRECT; ENTER NEW FILE NAME'
ELSE IF(IERR .EQ. 29) THEN
TYPE *, 'FILE DOES NOT EXIST; ENTER NEW FILE NAME'
ELSE
TYPE *, 'FAILURE ON INPUT FILE; ERROR=', IERR
ENDIF
STOP
END

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

In this example, the OPEN statement contains an ERR=100 specification
that causes a branch to the ERRSNS subroutine if an error occurs
during execution of the OPEN, The ERRSNS subroutine returns an
error-number value 1in the 1integer variable IERR. The program then
uses the value of IERR to print a message that explains the nature of
the error and to determine whether the program should continue.

3.5.1.3 Using the ERRSET Subroutine - You can alter the default
continuation action to be taken upon OTS detection of a particular
error by using the ERRSET subroutine.

Processing each of the errors detected by the OTS is controlled by six
control bits associated with each error. These bits are preset (see
Table 3-2); however, you may alter some of the initial settings --
and thereby the continuation action to be taken upon the detection of
a particular error -- by using the ERRSET subroutine.

The six control bits and what they control are as follows:

1. Continuation Bit -- If the Continuation Bit is not set, the
task encountering the error exits. If this bit is set, the
task continues (if the next two conditions permit
continuation).

2. Count Bit -- If the Count Bit is set, the error encountered
is counted against the task error-count 1limit unless an
ERR=transfer is specified. If the error-count 1limit is

exceeded, the task exits.

3. Continuation Type Bit -- The Continuation Type Bit provides
for one of the following two types of action for a particular
error:

a. Return to the routine that reported the error, for
appropriate recovery action, then proceed.

b. Take an ERR= transfer in an I/0 statement. (If the
Continuation Type Bit specifies an ERR= transfer, and
no ERR=label was included in the I/0 statement, the
task exits).

Each of the error-control-bit checks above must be satisfied for the
task to continue.

4. VLog Bit -- If a task continues after an error is encountered
(that 1s, 1if continuation is permitted by each of the above
three control bits), then the Log Bit is tested. If the Log
Bit is set, an error message is produced before the task
continues; 1if the Log Bit is not set, the task continues
without a message.

If processing any of the first three control bits does not permit
continuation, the task exits and the system prints an error message.

Two additional control bits-are used to specify the acceptability of
arguments to the ERRSET subroutine.

5. Return Permitted Bit -- If the Return Permitted Bit 1is set,
ERRSET may set the Continuation Type Bit to specify a return.

6. ERR= Permitted Bit -- If the ERR= Permitted Bit 1is set,
ERRSET may set the Continuation Type Bit to specify that an
ERR= transfer is to occur.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

At least one of these two additional bits must be set in order for the
Continuation Bit to be set.

All four of the possible combinations of these two bits occur in the
OTS; however, most errors occur as the following:

® I/0 errors that generally permit ERR= continuation type but
not return continuation

e Errors that permit return continuation but not ERR= transfer
continuation (even if they occur during I/0 statement
processing)

Notable exceptions are the synchronous system-trap errors (3 through
10) and the recursive I/0 error (40), all of which always result in
task termination. The format processing and format conversion errors
(59, 61, 63, 64, 68) allow both types of continuation.

The initial setting of all six control bits -- the two permitted bits
as well as the Continuation Bit, the Count Bit, the Continuation Type
Bit, and the Log Bit -- is shown in Table 3-2. You can use the ERRSET
subroutine to change the settings for CONTINUE?, COUNT?, CONTINUE
TYPE, and LOG?. The ERRSET subroutine is described in detail 1in
Appendix D.

Table 3-2
Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT
NUMBER TYPE ERR=? RETURN?

1 NO NO FATAL YES NO NO INVALID ERROR CALL

2 NO NO FATAL YES NO NO TASK INITIALIZATION FAILURE
3 NO NO FATAL YES NO NO ODD ADDRESS TRAP (SSTO0)

4 NO NO FATAL YES NO NO SEGMENT FAULT (SST1)

5 NO NO FATAL YES NO NO T-BIT OR BPT TRAP (SST2)

6 NO NO FATAL YES NO NO IOT TRAP (SST3)

7 NO NO FATAL YES NO NO RESERVED INSTRUCTION TRAP...
8 NO NO FATAL YES NO NO NON-RSX EMT TRAP (SST5)

9 NO NO FATAL YES NO NO TRAP INSTRUCTION TRAP (SST6)
10 NO NO FATAL YES NO NO PDP-11/40 FIS TRAP (SST7)
11 NO NO FATAL YES NO NO FPP HARDWARE FAULT

12 NO NO FATAL YES NO NO FPP ILLEGAL OPCODE TRAP

13 NO NO FATAL YES NO NO FPP UNDEFINED VARIABLE TRAP
14 NO NO FATAL YES NO NO FPP MAINTENANCE TRAP

20 YES YES ERR= YES YES NO REWIND ERROR

21 YES YES ERR= YES YES NO DUPLICATE FILE SPECIFICATIONS
22 YES YES ERR= YES YES NO INPUT RECORD TOO LONG
23 YES YES ERR= YES YES NO BACKSPACE ERROR
24 YES YES ERR= YES YES NO END-OF-FILE DURING READ
25 YES YES ERR= YES YES NO RECORD NUMBER OUTSIDE RANGE
26 YES YES ERR= YES YES NO ACCESS MODE NOT SPECIFIED
27 YES YES ERR= YES YES NO MORE THAN ONE RECORD IN I/O...
28 YES YES ERR= YES YES NO CLOSE ERROR
29 YES YES ERR= YES YES NO NO SUCH FILE

30 YES YES ERR= YES YES NO OPEN FAILURE

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Table 3-2 (Cont.)
Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT

NUMBER TYPE ERR=? RETURN?
31 YES YES ERR= YES YES NO MIXED FILE ACCESS MODES
32 YES YES ERR= YES YES NO INVALID LOGICAL NUMBER
33 YES YES ERR= YES YES YES ENDFILE ERROR
34 YES YES ERR= YES YES NO UNIT ALREADY OPEN
35 YES YES ERR= YES YES NO SEGMENTED RECORD FORMAT ERROR
36 YES YES ERR= YES YES NO ATTEMPT TO ACCESS NON-EXISTENT...
37 YES YES ERR= YES YES YES INCONSISTENT RECORD...
38 YES YES ERR= YES YES NO ERROR DURING WRITE
39 YES YES ERR= YES YES NO ERROR DURING READ
40 NO NO FATAL YES NO NO RECURSIVE I/0 OPERATION
41 YES YES ERR= YES YES NO NO BUFFER ROOM
42 YES YES ERR= YES YES NO NO SUCH DEVICE
43 YES YES RETURN YES NO YES FILE NAME SPECIFICATION ERROR
44 YES YES ERR= YES YES NO INCONSISTENT RECORD TYPE
45 YES YES ERR= YES YES NO KEYWORD VALUE ERROR IN OPEN...
46 YES YES ERR= YES YES NO INCONSISTENT OPEN/CLOSE...
47 YES YES ERR= YES YES NO WRITE TO READONLY FILE
48 YES YES ERR= YES YES NO UNSUPPORTED I/0O OPERATION
49 YES YES ERR= YES YES NO INVALID KEY SPECIFICATION
50 YES YES ERR= YES YES NO INCONSISTENT KEY CHANGE OR...
51 YES YES ERR= YES YES NO INCONSISTENT FILE ORGANIZATION
52 YES YES ERR= NO YES NO SPECIFIED RECORD LOCKED
53 YES YES ERR= YES YES NO NO CURRENT RECORD
54 YES YES ERR= YES YES NO REWRITE ERROR
55 YES YES ERR= YES YES NO DELETE ERROR
56 YES YES ERR= YES YES NO UNLOCK ERROR
57 YES YES ERR= YES YES NO FIND ERROR
59 YES NO ERR= YES YES YES LIST-DIRECTED I/0 SYNTAX ERROR
60 YES YES ERR= YES YES NO INFINITE FORMAT LOOP
61 YES YES ERR= YES YES YES FORMAT/VARIABLE-TYPE MISMATCH
62 YES YES ERR= YES YES NO SYNTAX ERROR IN FORMAT
63 YES NO RETURN YES YES YES OUTPUT CONVERSION ERROR
64 YES YES ERR= YES YES YES INPUT CONVERSION ERROR
65 YES YES ERR= YES YES NO FORMAT TOO BIG FOR 'FMTBUF'
66 YES YES ERR= YES YES NO OUTPUT STATEMENT OVERFLOWS...
67 YES YES ERR= YES YES NO RECORD TOO SMALL FOR I/O LIST
68 YES YES ERR= YES YES YES VARIABLE FORMAT EXPRESSION...
70 YES YES RETURN YES NO YES INTEGER OVERFLOW
71 YES YES RETURN YES NO YES INTEGER ZERO DIVIDE
72 YES YES RETURN YES NO YES FLOATING OVERFLOW
73 YES YES RETURN YES NO YES FLOATING ZERO DIVIDE
74 YES NO RETURN NO NO YES FLOATING UNDERFLOW
75 YES YES RETURN YES NO YES FPP FLOATING TO INTEGER...
80 YES YES RETURN YES NO YES WRONG NUMBER OF ARGUMENTS
81 YES YES RETURN YES NO YES INVALID ARGUMENT
82 YES YES RETURN YES NO YES UNDEFINED EXPONENTIATION
83 YES YES RETURN YES NO YES LOGARITHM OF ZERO OR NEGATIVE...
84 YES YES RETURN YES NO YES SQUARE ROOT OF NEGATIVE VALUE
86 YES YES RETURN YES NO YES INVALID ERROR NUMBER

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Table 3-2 (Cont.)

Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT

NUMBER TYPE ERR=? RETURN?
91 YES NO RETURN NO NO YES COMPUTED GOTO OUT OF RANGE
92 YES YES RETURN YES NO YES ASSIGNED LABEL NOT IN LIST
93 YES YES RETURN YES NO YES ADJUSTABLE ARRAY DIMENSION...
94 YES YES RETURN YES NO YES ARRAY REFERENCE OUTSIDE ARRAY
95 NO NO FATAL YES NO NO INCOMPATIBLE FORTRAN OBJECT...
96 NO NO FATAL YES NO NO MISSING FORMAT CONVERSION...
97 NO NO FATAL YES NO NO FTN FORTRAN ERROR CALL
98 YES NO RETURN YES NO YES USER REQUESTED TRACEBACK
100 NO NO FATAL YES NO NO DIRECTIVE: MISSING ARGUMENT (S)
101 NO NO FATAL YES NO NO DIRECTIVE: INVALID EVENT FLAG...
111 NO NO FATAL YES NO NO VIRTUAL ARRAY INITIALIZATION...
112 YES YES RETURN YES NO YES VIRTUAL ARRAY MAPPING ERROR

3.6 FORTRAN-77 COMPILER LISTING FORMAT

There are three optional sections that you may include in a compiler
listing file:

storage map.

list file by default.

by default.

3.6.1

Source Listing

the source program, the generated machine code, and the

The source program and storage map are included in a

The generated machine language code is excluded

The source code of a compiled program
section of
that in which the source code appears in the input file, except that

listing

the

compiler
reference.

adds

the

internal

sequence

not receive internal sequence numbers.

A description of each of these sections is given below.

written into the source
compiler listing file in the same format as

numbers to facilitate ease of
Comment lines and uncompiled debug statements, however, do

If the text editor you use generates line numbers, these numbers also

appear 1in the source listing.
the compiler-generated sequence
Diagnostic messages always
numbers.

3.6.2 Generated Code Listing

The generated code
contains
compiler.
listing,

MACRO-11.

symbolic

listing
representations
These representations are
but they are not in a form that can be directly assembled by

section

3-15

numbers

of
of

the
object

similar

They appear in the left margin, with
shifted to the right.
refer to the compiler-generated sequence

compiler 1listing file
code generated by the

a MACRO-11 source

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Labels that correspond to FORTRAN source labels are printed with an
initial dot. For example, the source label "300" would appear in a
generated code listing as ".300". Not all 1labels appearing in a
source program nhecessarily appear in the corresponding generated code
listing. In particular, labels not referenced in a source program are
ignored by the compiler and are not used in resulting generated code.

References to variables and arrays defined in a source program are
shown in the <corresponding generated code listing by their FORTRAN
names.

PDP-11 general registers 0 through 5 are represented in a generated
code listing by RO through R5, general register 6 is represented by SP
(for Stack Pointer), and general register 7 is represented by PC (for
Program Counter); the floating-point registers are represented by FO0
through F5. These representations are the conventional PDP-11
register names and are used despite the fact that you can also use
these names as FORTRAN variable names.

In some cases, the compiler generates labels for its own use. These
labels are shown in a generated code listing as "L$xxxx", where "xxxx"
is a unique symbol for each label within a program unit.

Addresses for other than 1labels, registers, and variables are
represented by the name of the program section plus the offset within
that section. Program section names wused by the compiler are
summarized in Section 3.3.1. Changes from one program section to
another are shown as .PSECT lines. The left column of a listing shows
the offset within the current section to which the remainder of the
line applies.

All numbers are in octal radix.

The first 1line of a generated code 1listing contains a .TITLE
directive; for SUBROUTINE and FUNCTION subprograms, the title is the
same as the subprogram name. If a PROGRAM statement is used in a main
program, the name in that statement is used as the title; otherwise,
the title .MAIN. 1is used. 1If a name 1is 1included 1in a BLOCKDATA
statement, this name 1is used for the title; otherwise, the title
.DATA. 1is used.

The second line of a generated code 1listing contains an .IDENT
directive in which the date of the compilation is represented.

The lines that follow the second line describe the contents of storage
initialized for FORMAT statements, DATA statements, constants,
subprogram call argument lists, and so forth.

Machine instructions are represented in a generated code listing with
MACRO-11 mnemonics and syntax.

3.6.3 Storage Map Listing

The storage map contains summaries of the following:
e Program sections
e Entry points

e Variables

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

e Arrays
e Virtual arrays
e Labels
e Functions and subroutines referenced
e Total memory allocated
Figure 3-1 illustrates a typical storage map listing.

In each of the following descriptions, when a size is given, this size
is printed as octal bytes followed by decimal words (except for
virtual arrays). For example:

000006 3

A data address is given as a program section number followed by the
octal offset from the beginning of that program section.

For example, in the data address that follows, 1 is the program
section number and 000626 is the offset (in octal) from the beginning
of program section 1:

1-000626

A dummy argument is represented with an F instead of a program section
number, and the offset is the offset from the argument pointer (R5).

The symbol * following an address field specifies that the program
section number (or F), plus the offset, points to the address of the
data rather than to the data itself.

The PROGRAM SECTIONS summary in a storage map contains
information -- one 1line per program section -- about each of the
program sections (PSECTs) generated by the compiler. Each 1line
contains the number of the PSECT being summarized (used by most of the
other summaries), the name of the section, the size of the section,
and the attributes of the section. The size is shown twice: first,
as the number of bytes in octal radix; and, second, as the number of
words in decimal radix. See Section 3.3.1 for definitions of the
section attributes.

The ENTRY POINTS summary contains a list of all declared entry points
and their addresses. If the routine containing an entry point being
listed is a function, the declared data type of this entry point is
also included.

The VARIABLES summary contains a 1list of each simple variable,
together with its data type and address.

The ARRAYS summary is the same as the VARIABLES summary, except that
it supplies total array size information and detailed dimension
information. If the array is an adjustable array or assumed-size
array, the size of the array 1is specified as **, and each
adjustable-dimension bound or assumed-size bound is specified as *.

The VIRTUAL ARRAYS summary is similar to the array summary. The
address of a wvirtual array is shown as an offset, in 64 byte units,
from the start of virtual array storage. The size is specified as the
number of array elements, not the number of bytes.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

PROGRAM SECTIONS

Number Name Size Attributes
1 $CODEL 001062 281 RW»I»CONyLCL
2 $PDATA 000022 9 RWsDyCONyLCL
3 $IDATA 000056 23 RWsDyCONsLCL
4 $VARS 000020 8 RWsDyCONsLCL
7 CRLK 001244 338 RWsDyOVRyGRL

ENTRY FOINTS

Name Ture Address Name Ture Address Name Ture Address

ROTOR Rx8 1-000000

STATEMENT FUNCTIONS

Name Ture Address Name Ture Address Name Teyre Address

FSI R%4 1-001032

VARIARILES

Name Ture Address Name Ture Address Name Ture Address
ALFHAR RX4 4-000014 DELX RXx4 F-000002%x I Ix2 4-000010
J Ix2 4-000012 NE I%2 F~-000006% NS Ix2 F~000010x%
THETA Rx4 4000004 ZETA RX4 4-000000
ARRAYS

Name Ture Address Size Nlimensions

EBR Rx4 7-000000 001244 338 (-6169-616)

CHI Cx8 F-000004x% X% (O1%ky0i%)
VIRTUAL ARRAYS

Name Ture (Offset Size Dimensions

CODATA R¥%4 00001721 16384 (4y4y45454+4,54)

FT R¥X4 00000000 15625 (25,25,25)
LARELS

Label Address Label Address L.abel Address

29 1-000274 607 2-000000 999 1-000726

FUNCTIONS AND SURROUTINES REFERE

COSF SINF $5IN $SQRT

Total Srace Allocated = 002446

Total Virtusl Arrau Storage = 20

NCED

659

01

Figure 3-1 Storage Map Example

ZK-243-81

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The LABELS summary contains a 1list of all user-defined statement
labels. If a label is marked with an apostrophe, the label is a
format label. If the label address field contains **, the 1label |is
neither referenced nor used by the compiled code.

The FUNCTIONS AND SUBROUTINES REFERENCED summary contains a 1list of
all external-routine references made by the source program.

If the text NO FPP INSTRUCTIONS GENERATED appears in the storage map,
the FORTRAN-77 object module may not require the Floating Point
Processor (FPP) for execution. See Section 5.4.1 for further
information.

At the end of the above summaries, the total amount of memory
allocated by the compilation for all program sections is printed as
follows:

TOTAL SPACE ALLOCATED = 000502 161

If any virtual arrays are declared in the program, the total size in
64-byte units is given as follows:

TOTAL VIRTUAL ARRAY STORAGE = 632

If a summary section has no entries in a particular compilation, the
summary headings are not printed.

3.7 VIRTUAL ARRAY OPTIONS

The VIRTUAL statement declares arrays that are assigned space outside
a program's address space and that are manipulated through the VIRTUAL
array facility of PDP-11 FORTRAN-77. The VIRTUAL array facility
allows arrays to be stored in large data areas that are accesed at
high speed.

NOTE

VIRTUAL arrays are supported only on
operating systems that support the
Memory Management Directives.

3.7.1 Limits on VIRTUAL Elements

VIRTUAL arrays are limited by the number of elements, not by the
available storage. The maximum number of elements in a VIRTUAL array
is 65535; there is no limit to the total size of the VIRTUAL arrays a
program can access, The 1limit on elements is 65535 because PDP-11
FORTRAN-77 requires that the number of elements in an array not exceed
the size of an unsigned integer*2, which is 2**16-1.

The largest LOGICAL*1 VIRTUAL array is 32K words, or 65535 bytes; and
the largest REAL*8 VIRTUAL array is 256K words, or 624280 bytes.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.7.1.1 VIRTUAL and DIMENSION Statements - The syntax of the VIRTUAL
statement 1is identical to that of the DIMENSION statement. However,
there is a significant semantic difference between the two because of
the limitations imposed on the DIMENSION statement. Local arrays
declared by the DIMENSION statement are limited by the maximum memory
available to the program. Section 3.7.2 demonstrates how to use the
VIRTUAL feature in an existing program.

3.7.1.2 Memory Allocation for VIRTUAL Arrays - The Task Builder
allocates a mapped array area below a task's header; this mapped
array area is large enough to contain all the VIRTUAL arrays declared
in a program.

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region. When a VIRTUAL array element lies outside the window, a
Memory Management directive causes a remap operation to allow access.

3.7.1.3 Execution Time of Virtual Arrays - Using VIRTUAL arrays
increases the execution time of a task because VIRTUAL array elements
must be mapped to memory addresses. In general, the 1larger the
VIRTUAL array, the greater the number of times mapping occurs;
therefore, larger arrays generally take 1longer to execute than do
smaller arrays.

The following example illustrates how using VIRTUAL arrays increases
execution time:

PARAMETER N=3500
VIRTUAL A(N), B(N), C(N)
DO 10 I= I,N
A(I)=1234.
B(I)=5678
10 C(I)=A(I)/B(I)
STOP
END

As declared in the program above, the VIRTUAL arrays A, B, and C are
each too large (7000 words) to fit within a 4K-word window of memory.
Each time an element outside the 4K-word window is accessed, remapping
occurs. Thus, executing the DO 1loop requires 17,500 (3500%*5)
mappings. 1If only array C were VIRTUAL, however, then only two
mappings would be needed to execute the loop.

The operations in the program above can require as 1long as 14.1
seconds for execution on a PDP-11/60 running under RSX-11M, V3.2. By
contrast, if arrays A, B, and C were declared with a DIMENSION
statement in directly addressable memory, the same operations could
require as little as 0.12 seconds in the same operating environment.

You can reduce the mapping of VIRTUAL arrays by breaking large arrays
into smaller ones and/or by keeping consecutive accesses of array
elements within the current 4K-word window.

3.7.2 Converting a Program to VIRTUAL Array Usage

You can convert an existing program to use VIRTUAL arrays simply by
declaring the array with VIRTUAL statements instead of DIMENSION
statements. 1In doing this, however, be sure to observe the usage
restrictions for VIRTUAL arrays described in the PDP-11 FORTRAN-77
Language Reference Manual.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The following example illustrates general program conversion.

1.

2.

Identify the non-VIRTUAL arrays that are to be converted to
VIRTUAL arrays.

Locate the DIMENSION and the type declaration statements in
which these arrays are declared. Replace DIMENSION
statements with equivalent VIRTUAL statements. Replace
array-declarative type declaration statements with VIRTUAL
statements to define the array dimension, and remove the
dimensioning information from the type declaration
statements.

Compile the program and observe all compilation errors.
These errors occur where the syntax restrictions outlined in
the PDP-11 FORTRAN-77 Language Reference Manual have been
violated. In some cases, to use VIRTUAL arrays effectively
you may need to reformulate the data structures.

Check the code to ensure that VIRTUAL array parameters are
passed correctly to subprograms.

a. If the argument list of a subprogram call includes an
unsubscripted VIRTUAL array name, the argument list of the
SUBROUTINE or FUNCTION statement must have an
unsubscripted VIRTUAL array name 1in its corresponding
dummy argument. This corresponding VIRTUAL array name
establishes access to the VIRTUAL array for the
subprogram. The declaration of the VIRTUAL array in the
subprogram must be dimensionally compatible with the
VIRTUAL declaration in the calling program. All changes
to the VIRTUAL array that occurred during subprogram
execution are retained when control returns to the calling
program.

When you pass entire arrays as subprogram parameters, be
certain that the matching arguments are defined as both
VIRTUAL or both non-VIRTUAL. Mismatches of array types
are not detectable at either compilation or execution
time, and the results are undefined.

b. If the argument list of a subprogram reference includes a
reference to a VIRTUAL array element, the matching formal
parameter in the SUBROUTINE or FUNCTION statement must be
a non-VIRTUAL variable. Value assignments to the formal
parameter occurring within the subprogram do not alter the
stored value of the VIRTUAL array element in the calling
program. To alter the value of that element, the calling
program must include a separate assignment statement that
references the VIRTUAL array element directly.

The process of changing non-VIRTUAL arrays to VIRTUAL arrays Iis
demonstrated below.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The following program contains twe arrays, A and B.

DIMENSION A(1000,20)
INTEGER*2 B(1000)

DATA B/1000*0/

CALL ABC(A,B,1000,20)
WRITE(2,%*) (A(1,1),I=1,1000)
END

SUBROUTINE ABC(X,Y,N,M)
DIMENSION X (N,M)
INTEGER*2 Y (N)
po 10, I1=1,N

10 X(I,1)=Y(I)
RETURN
END

Array A is declared in a DIMENSION statement and is of the default
data type. Therefore, substituting the keyword VIRTUAL for the
keyword DIMENSION is sufficient for its conversion.

Note, however, that array B and its dimensions are declared in a type
declaration statement (in the second line of the program).

To convert B into a VIRTUAL array, its declarator must be moved to a
VIRTUAL statement; also, the wvariable B must remain in the type
declaration statement, but without a dimension specification.

A and B are both passed to subroutine ABC as arrays, rather than array
elements. Therefore, the associated subroutine parameters must also
be converted to VIRTUAL arrays.

The following listing shows the program after the conversion is
completed.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

PDPe=11 FORTRAN77 V4,0 18130157 8=Jun=81 Page 1§
VIRTUAL.FTNy ! /TRIBLOCKS/WR

(1.1 3} VIRTUAL A(1000,29),8B(1008)

0002 INTEGER=2 B

2003 00 S Isi,1008

eeaddq s 8(1)=0

Qeees CALL ABC(A,B,10090,20)

0006 WRITE(2,%) (A(I,1),1m1,1000)

0ee7 END

ZK-171-81

PDP=1i FORTRAN=77 V4,0
VIRTUAL,FTNy1

PROGRAM SECTIONS

Number Name Size
1 SCODEY @@a172
2 SPDATA 0Q@@022
3 SIDATA e@0@020
4 SVARS eee0g2
VARIABLES
Name Type Address
I Ix2 4=900000
VIRTUAL ARRAYS
Name Type Offset
A Re4 po0Q0R0Q
B I»2 00002342
LABELS
Labe! Address Labe!
L] (1]

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

103302357
/TRIBLOCKS/WR

8alyun=81

Attributes
61 RW,1,CON,LCL
9 RW,D,CON,LCL
8 RW,D,CON,LCL
1 RW,D,CON,LCL
Name Type Address Name Type
Size Dimensions
20000 (1000,22)
1000 (10809)
Address Labe! Address Labe) Ad

FUNCTIONS AND SUBROUTINES REFERENCED

ABC

Total Space Allccated s 000236

Total Virtual Array Storace = 1282

No FPP Instructions Generated

79

Page 2
Address Name
dress Labe!

Type

Address

Address

Name

Type

Address

ZK-171-81

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

PDPei] FORTRAN®T7 V4,0 10131100 8e=Jun=81 Page 3
VIRTUAL FTNy 1 /TRIBLOCKS/WR
et SUBROUTINE ABC(X,Y,M/N)
eee2 VIRTUAL YIN),X(N,M)
eeos INTEGER#2 Y
eeed DO 18 Isi,N
[LLH 19 X(1e1)my(l)
2006 RETURN
Q007 END
ZK-171-81

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

PDP=11 FORTRANT7 V4,0 12331300 8eJune=8i Page 4
VIRTUAL,FTNy 1 /TRIBLOCKS/WR

PROGRAM SECTIONS

Number Name Size Attributes
1 SCODEY @2e1e60 56 RW, I,CON,LCL
3 SIDATA @0004e 19 RW,D,CON,LCL
4 SVARS [.LLII.H 1 RW,D,CON,LCL
H STEMPS Q008202 1 RW,D,CON,LCL

ENTRY POINTS

Name Type Address Name Type Address Name Type Address Name Type Address Name Type Address
ABC 1-200800
VARIABLES

Name Type Address Name Type Address Name Type Address Name Type Address Name Type Address
1 Iv2 4=-000000 M In2 F=000086% N Ix2 Feg@d0210%

VIRTUAL ARRAYS

Name Type Offset Size Dimensions
X Ry Fed0@002% L] (xyn)

Y In2 F=000004x " (%)
LABELS

Labe! Address Labe! Address Labe! Address Labe! Address Labe! Address

10 3]

Total Space Allocated = 2309232 77
ZK-171-81

CHAPTER 4

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

This chapter discusses. several of the fundamental design and
implementation concepts of PDP-11 FORTRAN-77 that are different from
those of other FORTRAN systems, or that are likely to be new to many
FORTRAN programmers.

4.1 INTRINSIC FUNCTIONS

As it processes a program unit, the compiler determines (without any
information about other program units that may be added later) whether
a function referenced in the program unit 1is an intrinsic function
(processor-defined) or a user-defined function. The compiler invokes
an intrinsic function with a symbolic name, called an internal name,
that is different from any name the user can define. For example, the

intrinsic real-valued sine function is invoked by the compiler with
the internal name $SIN.

In general, an internal name is a FORTRAN name with a dollar sign
prefixed. Where the FORTRAN name is six characters 1long, a
5-character contraction is combined with the dollar sign. A complete
list of the 1intrinsic names and their corresponding internal names
appears in Table 4-1.

Using the IMPLICIT statement to change the default data type rules has
no effect on the data type of intrinsic functions.

4.1.1 Using EXTERNAL and INTRINSIC Statements

The EXTERNAL statement 1identifies symbolic names as user-supplied
functions and subroutines. The INTRINSIC statement identifies
symbolic names as system-supplied functions or subroutines. For

example, the statement
EXTERNAL INVERT

identifies a subroutine named INVERT as user-supplied, and

INTRINSIC ABS
identifies a function named ABS as system-supplied.

Once a symbolic name has been identified in an EXTERNAL statement, it
is no 1longer available in the same program unit for use in an
INTRINSIC statement.

Refer to Appendix E for information on the compatibility of the
EXTERNAL statement with PDP-11 FORTRAN-77 and PDP-11 FORTRAN IV-PLUS
programs.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

4.1.2 Generic Function References

A generic function is similar to an intrinsic function, but instead of
being a single function it is a set of similar functions called
specific functions. The specific functions in a generic set differ
from each other only in that each function manipulates data of one
specific type. For example, SIN() is a generic function that includes
the specific functions SIN, DSIN, and CSIN, where SIN manipulates real
data, DSIN double-precision data, and CSIN complex data. The data
type of the argument in a generic reference determines which specific
function is actually invoked. For example, SIN(X) invokes SIN if X is
real and DSIN if X is double precision. The compiler makes a separate
determination of the specific function to be referenced each time it
encounters the same generic reference.

Those intrinsic functions that can be referenced by generic references
are listed in Table 4-1 under the heading "Generic Name." Many generic
function names are also intrinsic function names. However, in a few
cases (for example, the generic function name MIN), the generic
function name is not an intrinsic function name.

Table 4-1
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name 1 Argument Result
Square Root 2 1 SQRT SQRT Real Real
DSQRT Double Double
a(l/2) CSQRT Complex Complex
Natural Logarithm 3 1 LOG ALOG Real Real
DLOG Double Double
log(e)a CLOG Complex Complex
Common Logarithm 3 1 LOG10 ALOG10 Real Real
DLOG10 Double Double
log(l0)a
Exponential 1 EXP EXP Real Real
DEXP Double Double
e(a) CEXP Complex Complex
Sine 4 1 SIN SIN Real Real
DSIN Double Double
sin a CSIN Complex Complex
Cosine 4 1 cos cos Real Real
DCOS Double Double
cos a CCos Complex Complex
Tangent 4 1 TAN TAN Real Real
DTAN Double Double
tan a
Arc Sine 5/6 1 ASIN ASIN Real Real
DASIN Double Double
arc sin a
Arc Cosine 5r6 1 ACOS ACOS Real Real
DACOS Double Double

arc cos a

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Arc Tangent 6 ATAN ATAN Real Real
DATAN Double Double
arc tan a
Arc Tangent 6,7 ATAN2 ATAN2 Real Real
DATAN2 Double Double
arc tan a(l)/a(2)
Hyperbolic Sine SINH SINH Real Real
DSINH Double Double
sinh a
Hyperbolic Cosine COSH COSH Real Real
DCOSH Double Double
Cosh a
Hyperbolic Tangent TANH TANH Real Real
DTANH Double Double
Tanh a
Absolute value 8 ABS ABS Real Real
DABS Double Double
[a] CABS Complex Real
IIABS Integer*2 Integer*2
JIABS Integer*4 Integer*4
IABS IIABS Integer*2 Integer*2
JIABS Integer*4 Integer*4
Truncation 9 INT IINT Real Integer*2
JINT Real Integer*4
[a] IIDINT Double Integer*2
JIDINT Double Integer*4
IDINT IIDINT Double Integer*2
JIDINT Double Integer*4
AINT AINT Real Real
DINT Double Double
Nearest Integer 9 NINT ININT Real Integer*2
JININT Real Integer*4
[a+.5*sign(a)] IIDNNT Double Integer*2
JIDNNT Double Integer*4
IDNINT IIDNNT Double Integer*2
JIDNNT Double Integer*4
ANINT ANINT Real Real
DNINT Double Double

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Fix 10 1 IFIX IIFIX Real Integer*2
(real-to-integer conversion) JIFXI Real Integer*4
Float 10 1 FLOAT FLOATI Integer*2 Real
(integer-to-real conversion) FLOATJ Integer*4 Real
Double Precision Float 10 1 DFLOAT DFLOTI Integer*2 Double
(integer-to-double conversion) DFLOTJ Integer*4 Double
Conversion to Single 1 SNGL - Real Real
Precisionl0 SNGL Double Real
FLOATI Integer*2 Real
FLOATJ Integer*4 Real
Conversion to 1 DBLE DBLE Real Double
Double Precision 10 - Double Double
- Complex Double
DFLOTI Integer*2 Double
DFLOTJ Integer*4 Double
Real Part of Complex or 1 REAL REAL Complex Real
Conversion to Single FLOATI Integer*2 Real
Precision 10 FLOATJ Integer*4 Real
SNGL Real Real
SNGL Double Real
Imaginary Part of Complex 1 - AIMAG Complex Real
Conversion to Complex 1,2 CMPLX - Integer*2 Complex
or 1,2 - Integer*4 Complex
Complex from Two 1,2 - Real Complex
Arguments 1,2 CMPLX Real Complex
1,2 - Double Complex
1 - Complex Complex
Complex Conjugate 1 - CONJG Complex Complex
(if a=(X,Y)
CONJG (a)=(X,Y)
Double Product of Reals 2 - DPROD Real Double
a(l)*a(2)
Maximum n MAX AMAX1 Real Real
DMAX1 Double Double
max(a(l),a(2),...a(n)) IMAXO Integer*2 1Integer*2
(returns the maximum value JMAXO0 Integer*4 1Integer*4
from among the argument
list; there must be at least MAXO0 IMAXO Integer*2 Integer*2
two arguments) JMAXO0 Integer*4 1Integer*4
MAX1 IMAX1 Real Integer*2
JMAX1 Real Integer*4
AMXAQ AIMAXO Integer*2 Real
AJMAXO Integer*4 Real

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result
Minimum n MIN AMIN1 Real Real
DMIN1 Double Double
min(a(l),a(2),..a(n)) IMINO Integer*2 Integer*2
(returns the minimum value JMINO Integer*4 1Integer*4
among the argument list;
there must be at least two MINO IMINO Integer*2 1Integer*2
arguments) JMINO Integer*4 Integer*4
MIN1 IMIN1 Real Integer*2
JMIN1 Real Integer*4
AMINO AIMINO Integer*2 Real
AJMINO Integer*4 Real
Positive Difference 2 DIM DIM Real Real
DDIM Double Double
a(l)-(min(a(l),a(2))) I1IDIM Integer*2 Integer*2
(returns the first argument JIDIM Integer*4 1Integer*4
minus the minimum of the
two arguments) IDIM IIDIM Integer*2 Integer*2
JIDIM Integer*4 1Integer*4
Remainder 2 MOD AMOD Real Real
DMOD Double Double
a(l)-a(2)*[a(l)/a(2)] IMOD Integer*2 Integer*2
(returns the remainder JMOD Inetger*4 Integer*4
when the first argument
is divided by the second)
Transfer of Sign 2 SIGN SIGN Real Real
DSIGN Double Double
a(l) *Sign a(2) IISIGN Integer*2 Integer*2
JISIGN Integer*4 Integer*4
ISIGN IISIGN Integer*2 Integer*2
JISIGN Integer*4 1Integer*4
Bitwise AND 2 IAND IIAND Integer*2 1Integer*2
(performs a logical AND on JIAND Integer*4 1Integer*4
corresponding bits)
Bitwise OR 2 IOR IIOR Integer*2 Integer*2
(performs an inclusive OR on JIOR Integer*4 1Integer*4
corresponding bits)
Bitwise Exclusive OR 2 IEOR IIEOR Integer*2 Integer*2
(performs an exclusive OR on JIEOR Integer*4 1Integer*4
corresponding bits)
Bitwise Complement 1 NOT INOT Integer*2 Integer*2
(complements each bit) JNOT Integer*4 Integer*4

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name 1 Argument Result
Bitwise Shift 2 ISHFT IISHFT Integer*2 Integer*2

JISHFT Integer*4 1Integer*4

(a(l) logically shifted left
a(2) bits)

Random Number 12 1 - RAN Integer*4 Real
(returns the next number

from a sequence of pseudo-

random numbers of uniform

distribution over the range 2 - RAN Integer*2 Real
0 to 1)
Length 1 - LEN Character 1Integer*2

(returns length of the
character expression)

Index (C(1),C(2)) 2 - INDEX Character 1Integer*2
(returns the position of the

substring c(2) in the character

expression c (1))

ASCII Value 1 - ICHAR Character 1Integer*2
(returns the ASCII value of

the argument; the argument

must be a character expres-

sion that has a length of 1)

Character relationals 2 ~ LLT Character Logical#*2
(ASCII collating sequence) 2 - LLE Character Logical#*2
2 - LGT Character Logical*2
2 - LGE Character Logical#*2

See Section 4.2.4 for definitions of "I" and "J" forms.

The argument of SQRT and DSQRT must be greater than or equal to 0. The
result of CSQRT 1is the principal value with the real part greater than or
equal to 0. When the real part is 0, the result is the principal value with
the imaginary part greater than or equal to 0.

The argument of ALOG, DLOG, ALOG10, and DLOG10 must be greater than 0. The
argument of CLOG must not be (0.,0.).

The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in radians. The
argument is treated modulo 2*pi.

The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be
less than or equal to 1.

The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN2 is in
radians.

The result of ATAN2 and DATAN2 is 0 or positive when a(2) 1is 1less than or
equal to 0. The result is undefined if both arguments are 0.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

8. The absolute value of a complex number, (X,Y), is the real value:
(X(2)+Y(2)) (1/2)

9. [x] is defined as the largest integer whose magnitude does not exceed the
magnitude of x and whose sign is the same as that of x. For example [5.7]
equals 5. and [-5.7] equals -5.

10. Functions that cause conversion of one data type to another type provide the
same effect as the implied conversion in assignment statements. The function
SNGL with a real argument and the function DBLE with a double precision
argument return the value of the argument without conversion.

11. When CMPLX has only one argument, this argument is converted into the real
part of a complex value, and zero is assigned to the imaginary part. When
CMPLX has two arguments, the first argument is converted to the real part of
a complex value, the second to the imaginary part.

12. The argument for this function must be an integer variable or integer array
element. The argument should initially be set to 0. The RAN function stores
a value in the argument that it later uses to calculate the next random
number. Resetting the argument to 0 regenerates the sequence. Alternate
starting values generate different random-number sequences.

4.2 INTEGER*2 AND INTEGER*4

PDP-11 FORTRAN-77 provides two integer data types: INTEGER*4, for
purposes of high precision; and INTEGER*2, for purposes of
efficiency. INTEGER*4 operations are performed to 32 bits of
significance; however, because these operations require more
instructions and storage than INTEGER*2 operations, they are less
efficient in terms of both time and memory.

To encourage efficiency, the FORTRAN-77 compiler assumes all integer
variables to be of INTEGER*2 types unless you explicitly declare them
to be INTEGER*4 within a program, or unless you set the /I4 compiler
switch (see Section 1.2.4).

When in INTEGER*4 mode, the compiler treats all integer (and 1logical)
variables as INTEGER*4 (and LOGICAL*4) types unless you explicitly
declare them otherwise within a program.

4.2.1 Representation and Relationship of INTEGER*2 and INTEGER¥*4
Values

INTEGER*2 values are stored as two's complement binary numbers in one
word of storage. INTEGER*4 values are represented in two's complement
binary form in two words of storage: the first word (lower address)
contains the low-order part of the value, and the second word (higher
address) contains the high-order part of the value (including sign).

An INTEGER*2 value 1is, then, a subset of an INTEGER*4 value.
Therefore, the address of an INTEGER*4 value within the range -32768
to +32767 can be treated as the address of an INTEGER*2 value; and
conversion from INTEGER*4 to INTEGER*2 (without overflow checking)
consists simply of ignoring the high-order word of the INTEGER*4
value. (In certain situations where you can determine at compile time
that the results will not be affected, you can generate INTEGER*2 code
to perform INTEGER*4 operations.)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

The FORTRAN rules state that corresponding actual and dummy arguments
must agree in type. In the following example, however, if the
compiler supplies an INTEGER*2 constant as the actual argument, SUB
executes correctly even if 1its dummy argument is of INTEGER*4 data
type:

CALL SUB(2)

4.2.2 Integer Constant Typing

In general, typing integer constants as either INTEGER*2 or INTEGER*4
is based on the magnitude of the constant; and in most contexts,
INTEGER*2 and INTEGER*4 variables and integer constants may be freely
mixed. However, the programmer is responsible for ensuring that
integer overflow conditions that might adversely affect the program do
not occur. Consider the following example:

INTEGER*2 I
INTEGER*4 J

I = 32767
J=1+3

In this example, I and 3 are INTEGER*2 values, and an INTEGER*2 result
is computed. The 16-bit addition, however, overflows the valid
INTEGER*2 range, and the resulting bit pattern represents -32766, a
valid INTEGER*2 value that is converted to INTEGER*4 type and assigned
to J. This overflow is not detected.

Compare the above example with the following apparently equivalent
program, which produces an entirely different, and logically correct,
result:

INTEGER*4 J
PARAMETER I = 32767
J=1+3

In this example, the compiler adds the constant 3 and the parameter
constant 32767 and produces a resulting constant of 32770. The

compiler recognizes this constant as an INTEGER*4 value and assigns it
to J.

4.2.3 Octal Constant Typing
Octal constants can take either of two forms:
'Cl C2 C3...Cn"
"Cl C2 C3...Cn
Octal constants of the form 'Cl C2 C3...Cn' O are typeless numeric
constants that assume data types on the basis of the way they are

used. See the PDP-11 FORTRAN-77 Language Reference Manual for the
rules on the typing of octal constants of this form.

Octal constants of the form "Cl C2 C3...Cn, however, are typed as
either INTEGER*2 or INTEGER*4, and are typed on the basis of the
magnitude of the constant.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

An octal constant of the form "C(l) C(2) C(3)...C(n) 1is typed as
INTEGER*2 if bits 16 through 31 of the value are the same as bit 15;
otherwise, it is typed as INTEGER*4. Because octal constants are
treated as unsigned values, they are interpreted as positive values
unless bit 31 is set. The octal constants "100000 through "177777 are
typed as INTEGER*4 and interpreted as the decimal values 32768 through
65535, rather than as the negative signed decimal values -32768
through -1.

Because octal constants are positive values, you must take care when
you compare octal constants with negative signed INTEGER*2 values.

Consider the following example:

INTEGER*2 I
IF (I .EQ. "105132) STOP

The comparison made here always results in an inequality (and the STOP
statement is not executed). The reason for this is that the INTEGER*2
value of I is converted to INTEGER*4 before the comparison (to conform
with the type of "105132); therefore, whenever I contains the bit
pattern "105132, this pattern will be interpreted after conversion as
the negative decimal value -30118.

The above example is equivalent to:

INTEGER*2 I
IF (I .EQ. 35418) STOP

If INTEGER*2 values must be compared with octal constants of the form
"1xxxxx, the octal constant should be assigned to an INTEGER*2

temporary. An INTEGER*2 temporary could be used in our example as
follows:

INTEGER*2 I, ICONST
DATA ICONST/"105312/
IF (I .EQ. ICONST) STOP

4.2.4 Integer-Valued Intrinsic Functions

A number of the intrinsic functions provided by FORTRAN-77 (for
example, IFIX) produce integer results from real or double-precision
arguments. These intrinsic functions are <called "result generic
functions." Because the compiler operates in two different modes,
INTEGER*2 mode and INTEGER*4 mode, the system provides two internal
versions of each of these integer-producing functions: an INTEGER*2
version and an INTEGER*4 version. The compiler selects the proper
version on the basis of the current compiler mode setting rather than
-— as it does for the other intrinsic functions -- on the basis of the
data type of arguments in the function reference.

In some cases, you may need to use the version of an integer intrinsic
function that 1is the opposite of the one that would be invoked under
the current compiler mode setting. For example, a program that
predominantly wuses INTEGER*2 values may at some point need to get an
INTEGER*4 result from a intrinsic function. To satisfy this need, the
system provides an additional pair of intrinsic function names that
can reference the two internal versions of each integer-producing
intrinsic function no matter what the current compiler mode setting
may be. By convention, these additional names are created by

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

prefixing I and J to the intrinsic function name. For example, I is
prefixed to IFIX to create the INTEGER*2 version of this function
name, and J is prefixed to <create the INTEGER*4 version. IIFIX
references the INTEGER*2 internal function $IFIX, and JIFIX references
the INTEGER*4 internal function $JFIX.

The complete set of names and corresponding internal routines is shown
in Table 4-1 (in Section 4.1).

4.2.5 Implementation-Dependent Integer Typing

The FORTRAN-77 compiler performs a number of integer-typing
optimizations by taking advantage of certain properties of the PDP-11
and/or the operating system. These optimizations are generally
transparent to a FORTRAN user and include the following:

e Array addressing calculations Because the entire virtual
address space of the PDP-11 can be represented in one word,
array bounds expressions and array subscript expressions are
always converted to INTEGER*2 before being used in an array
address calculation. Therefore, even when the compiler is
operating in /I4 mode, the code generated for array addressing
is performed with INTEGER*2 operations.

e Input/output logical unit numbers Because logical unit numbers
can always be represented by a l-word integer, the compiler
converts all unit numbers to INTEGER*2 when producing calls to
the I/0 section of the OTS.

e Direct access record numbers For simplicity of implementation,
and to provide to programs that predominantly use l-word
integers the capability of using very large files, all direct
access record numbers are processed as INTEGER*4 values.

4.3 BYTE (LOGICAL*1) DATA TYPE

FORTRAN-77 provides the byte data type (BYTE) to take advantage of the
byte-processing capabilities of the PDP-11. Although LOGICAL*1 is a
synonym for BYTE, a BYTE value 1is actually a signed integer. In
addition to storing small integers, the byte data type is used for
keyed access to indexed files and for storing and manipulating
Hollerith information.

In general, when data of two different types are used in a binary
operation, the lower-ranked type is converted, before any
computations, to the higher-ranked type. However, in the case of a
byte wvariable and an integer constant that can be represented as a
byte variable, the integer constant is treated as a byte constant;
therefore, the result of the operation is of type byte rather than of
type integer, as it would be under the more general convention. The
overflow possibilities under this convention, however, are similar to
those previously discussed in Section 4.2.2 for mixed INTEGER*2 and
INTEGER*4 variables and constants.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

4.4 TITERATION COUNT MODEL FOR DO LOOPS

FORTRAN-77 provides an extended form of the DO statement. This
statement has the following features:

e The control variable may be an INTEGER*2, INTEGER*4, REAL, or
DOUBLE PRECISION variable.

e The initial value, step size, and final value of the control
variable can be represented by any expressions whose resulting
types are INTEGER*2, INTEGER*4, REAL, or DOUBLE PRECISION.

e The number of times the loop is executed (the iteration count)
is determined the DO statement is 1initialized and is not
reevaluated during successive executions of the 1loop. Thus,
the number of times the loop is executed is not affected by
changing the values of the parameter variables used in the DO
statement.

4.4.1 Cautions Concerning Program Interchange

Three common practices associated with the use of DO statements on

other FORTRAN systems may not have the intended effects when used with
FORTRAN-77. These are as follows:

e Assigning a value to the control variable within the body of
the loop that is greater than the final value does not always
cause early termination of the loop.

o Modifying a step size variable or a final value variable

within the body of the loop does not modify the loop behavior
or terminate the loop.

e Using a negative step size (for example, DO 10 I = 1,10,-1) in
order to cause an arbitrarily long loop that is terminated by
a conditional control transfer within the loop results in zero
iterations of the loop body. A zero step size may result in
an infinite loop at run time.

4.4.2 1Iteration Count Computation
Given the following generic DO statement:
DO label V=ml,m2,m3

(where ml, m2, and m3 are any expressions), the iteration count is
computed as follows:

count= MAX (INT (m2-ml+m3)/m3,0)
This computation does the following:

e Provides that the body of the DO loop will be executed zero
times if the 1iteration count given by the above formula is
zero (Under the /NOF77 switch, the loop is executed one time
if the iteration count is zero.)

® Permits the step size (m3) to be negative or positive, but not
zero

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

e Gives a well-defined and predictable value of an iteration
count that results from any combination of values of the
allowed result types

Be aware, however, that overflow of INTEGER*2 control variables is not
detected and can result in an infinite loop at run time. Consider the
following program unit:

DO 10 I=1,32767

10 CONTINUE

This program unit always results in an infinite 1loop when I 1is of

INTEGER*2 type. See Section 4.2.2 for more information on integer
overflow conditions.

You should also be aware that the effects of round-off error inherent

in any floating-point computation, when real or double-precision
values are used, may cause the count to be greater than, or less than,
desired.

Under certain conditions, it is not necessary actually to compute the
iteration count to obtain the required number of iterations; if all
the parameters in an iteration computation are of type integer, and
the step size is a constant (so that the sign of the increment value
is known), the FORTRAN-77 compiler generates the necessary code to
compare the control variable directly with the final value in order to
control the number of iterations of the loop.

4.5 USING EQUIVALENCE WITH MIXED DATA TYPES

You can readily foresee the effects of EQUIVALENCE statements
involving variables and/or arrays of mixed type when you consider the
actual storage (in bytes) of each type of variable involved.

Example 4-1 1illustrates the relationships that result when an
EQUIVALENCE statement uses byte, integer, real, and complex elements.

Character data must not be equivalenced to data of any type other than
character, BYTE, or LOGICAL*].

Example 4-1: EQUIVALENCE Using Mixed Data Types

BYTE B (0:9)

COMPLEX C(4)

REAL R(3)

INTEGER*2 I (3)

EQUIVALENCE (C(2),R(3),I),(I(3),B(9))

Address Storage Alignment
n C(1l) R(1)

n+l . .

n+2 . .

n+3 . . B(0)
n+4 . R(2) B(1)
n+5 . . B(2)

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Example 4-1 (Cont.): EQUIVALENCE Using Mixed Data Types

Address Storage Alignment
n+6 . . B(3)
n+7 . . B(4)
n+8 C(2) R(3) I(1) B(5)
n+9 . . . B(6)
n+10 . . I(2) B(7)
n+ll . . . B(8)
n+12 . I1(3) B(9)
n+13 . .

n+14 .

n+15 .

n+16 C(3)

4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT

The PDP-11 hardware requires that storage for all data elements except
byte elements begin at an even address. This requirement can be
satisfied in all except the following two cases:

e Equivalence relationships involving byte elements and nonbyte
elements can make it 1logically impossible to allocate
variables in a manner that satisfies the even-byte alignment
constraint for all elements involved in an equivalence. An
example of such an equivalence relationship is as follows:

BYTE B(2)
INTEGER*2 I,J
EQUIVALENCE (B(l),I),(B(2),J)

e Using a COMMON block in more than one program unit constitutes
an implied relationship of equivalence among the sets of
elements declared in that block. If a strict interpretation
of the sequence of variable allocations causes a nonbyte
variable to start at an odd address, a compiler adjustment is
not made Dbecause it could destroy alignment properties
expected in another program unit.

The compiler begins allocating each common block, and each group of
equivalenced variables that are not in common, at an even address. If
an allocation results in an element not of type byte being stored
beginning at an odd address, an error message is produced. If this
happens, to avoid fatal errors during execution, you must modify the

common and/or EQUIVALENCE statements to eliminate the odd-byte
addressing.

Variables and arrays not in common and not wused in EQUIVALENCE
statements are always correctly aligned.

4.7 ENTRY STATEMENT ARGUMENTS

The FORTRAN-77 implementation of argument association in ENTRY
statements varies from that of some other FORTRAN systems.

As mentioned 1in Chapter 3 of this manual, FORTRAN-77 uses the
call-by-reference method of passing arguments to called procedures.
Some other FORTRAN implementations use the call-by-value/result
method. This difference in approach is important to keep in mind when
you reference dummy arguments in ENTRY statements.

4-13

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Although standard FORTRAN allows you to use the same dummy arguments
in different ENTRY statements, it allows you to reference only those
dummy arguments that are defined for the ENTRY point being called.
For example, given the subprogram unit

SUBROUTINE SUB1 (X,Y,Z)

ENTRY ENT1 (X,A)

ENTRY ENT2(B,Z,Y)

you can make the following references:

CALL Valid References
SUB1 X Y Z
ENT1 X A

ENT2 B Z Y

FORTRAN implementations that use the call-by-value/result method,
however, permit you to reference dummy arguments that are not defined
in the ENTRY statement being called. For example, consider the
following device for initializing dummy variables for subsequent
referencing:

SUBROUTINE INIT(A,B,C)
RETURN

ENTRY CALC(Y,X)

Y = (A*X+B)/C

END

You can use this nonstandard device in call-by-value/result
implementations because a separate internal variable is allocated for
each dummy argument in the called procedure. When the procedure is
called, each scalar actual-argument value 1is assigned to the
corresponding internal variable, and these internal variables are then
used whenever there 1is a reference to a dummy argument within the
procedure. On return from the procedure, modified dummy arguments are
copied back to the corresponding actual-argument variables.

When an entry point is referenced, all the dummy arguments of the
entry point are defined with the values of the corresponding actual
arguments and can be referenced on subsequent calls to the subprogram.
However, you should avoid such subsequent referencings in programs
that are to be compiled under FORTRAN-77, as they will not have the
intended effect will produce programs that are not transportable to
other systems that use the call-by-reference method.

FORTRAN-77 creates associations between dummy and actual arguments by
passing the address of each actual argument to the called procedure.
Each subsequent reference to a dummy argument generates an indirect
address reference through the actual-argument address. When control
returns from the called procedure, the association between actual and
dummy arguments ends. The dummy arguments do not retain their values,
and therefore cannot be referenced on subsequent calls. Therefore, to
perform the kind of nonstandard references shown in the previous
example, the subprogram would have to copy the values of the dummy

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

arguments to other variables. For example, if subroutine INIT is
rewritten as follows, it will work on FORTRAN-77 as well as on systems
that use the call-by-value/result method:

SUBROUTINE INIT(Al1l,B1,Cl)
SAVE A,B,C

A Al

B Bl

C Cl

RETURN

ENTRY CALC(Y,X)

Y = (A*X+B)/C

END

CHAPTER 5

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

This chapter discusses techniques for writing effective FORTRAN-77
programs. Topics discussed are as follows:

e Efficient use of program statements and data types
e Compiler optimizations

® Program size and speed considerations

e Optional OTS capabilities

® RMS-11 and FCS link and run-time considerations

5.1 CREATING EFFICIENT SOURCE PROGRAMS

The following sections discuss the use of the PARAMETER, INCLUDE,
OPEN, and CLOSE statements in relation to writing efficient source
programs; they also discuss the efficient use of the INTEGER*2 and
INTEGER*4 data types.

5.1.1 PARAMETER Statement

The PARAMETER statement provides a way for you to write programs
containing easily modified parameters, such as array bounds and
iteration counts, without losing the efficiency of using constant
expressions to manipulate these parameters. Because the FORTRAN-77
compiler can optimize constants more efficiently than it can optimize
variables (see Section 5.2.2), programs that use PARAMETER statements
are generally more efficient than programs that initialize parameters
with DATA or assignment statements. For example, the first program
fragment below compiles into more efficient code than the second or
third:

(1) PARAMETER (M=50,N=100)
DIMENSION X (M),Y(N)
DO 5, I=1,M
bo 5, J=1,N
5 X(I) = X(I)*Y(J) + X (M) *Y (N)

(2) DIMENSION X (50),Y(100)
DATA M,N/50,100/
DO 5, I=1,M
DO 5, J=1,N
5 X(I) = X(I)*Y(J) + X (M)*Y(N)

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

(3) DIMENSION X(50),Y(100)
M = 50
N = 100

DO 5, I=1,M
DO 5, J=1,N
5 X(I) = X(I)*Y(J) + X(M)*Y(N)

5.1.2 INCLUDE Statement

The INCLUDE statement provides a way for you to eliminate duplication
of source code and to facilitate program maintenance. Because of the
availability of the INCLUDE statement, you can create and maintain a
separate file for a section of program text used by several different
program units, and then include this text in the individual program
units at compile time. For example, rather than duplicate the
specification for a common block referenced by several program units,
you can write the specification a single time in a separate file;
then each program unit referencing the common block merely executes an
INCLUDE statement to incorporate the specification into the unit. 1In
addition to increasing programming efficiency, using the INCLUDE
statement fosters reliability, modular programming, and ease of
maintenance.

The following example shows the use of the INCLUDE statement.

The file COMMON.FTN defines the size of the blank common block and the
size of the arrays X,Y, and Z.

Main Program File File COMMON.FTN
INCLUDE 'COMMON.FTN' PARAMETER M=100
DIMENSION Z (M) COMMON X (M) ,Y (M)
CALL CUBE
DO 5 1=1,M

5 Z(I)=X(I)+SQRT(Y(I))

.
.

SUBROUTINE CUBE
INCLUDE 'COMMON.FTN'
DO 10 I=1,M

10 X (I)=Y(I)**3
RETURN
END

5.1.3 OPEN and CLOSE Statements

The OPEN and CLOSE statements provide you with precise and explicit --
as well as efficient -- control of 1I/0 devices and files. Some
examples follow:

e OPEN (UNIT=1, STATUS='NEW', INITIALSIZE=200)
This statement creates a sequential file and allocates the

space required for the file. Allocation of space at file
opening is more efficient than dynamic extension of the file.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e OPEN (UNIT=1, STATUS='UNKNOWN', EXTENDSIZE=200)

This statement specifies a relatively large EXTENDSIZE value,
which is useful when a program writes many blocks to a file;
it is faster to use one large extension than several small
ones.,

e OPEN (UNIT=J, STATUS='NEW'...)

IF (IERR) CLOSE(UNIT=J, STATUS='DELETE')

.

CLOSE (UNIT=J, STATUS='SAVE')

If an error (denoted by IERR) occurs that makes the file
created by the OPEN statement invalid or useless, the file is
efficiently deleted.

. CHARACTER*40 FILNAM
1 TYPE 100
100 FORMAT ('$INPUT FILE?')
ACCEPT 101,FILNAM
101 FORMAT (A)

OPEN (UNIT=3, FILE=FILNAM, STATUS='OLD', ERR=9)

9 TYPE 102, FILNAM
102 FORMAT (' ERROR OPENING FILE ',A)
GO TO 1

This program fragment reads a file specification into the
character variable FILNAM. The specified file is then opened
for processing.

e OPEN(UNIT=1,STATUS='NEW', ORGANIZATION='INDEXED',
RECL=60,FORM="'UNFORMATTED',
KEY= (1:20, 30:33:INTEGER, 46:57), ACCESS='KEYED')

This statement creates a new indexed file that has three keys:
The primary key 1is from byte 1 to byte 20; the first
alternate key is an integer key from byte 30 to byte 33; and
the second alternate key is from byte 46 to byte 57.

NOTE

If you are adding several records to a
file, make <certain you specify a large
enough EXTENDSIZE to reflect the size
the file will be at the end of the
program.

5.1.4 INTEGER*2 and INTEGER*4

Because the PDP-11 is a 16-bit computer, the code sequences generated
for INTEGER*4 computations are larger and slower than those for their
INTEGER*2 counterparts. Therefore, the use of INTEGER*4 should be
limited to those data items requiring 32-bit representation;
INTEGER*2 should be used elsewhere. 1In general, it is advisable to
minimize use of the /I4 compiler option.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.2 COMPILER OPTIMIZATIONS

Optimization is producing the greatest amount of processing with the
least amount of time and memory.

The primary goal of FORTRAN-77 optimization is to produce an object
program that executes faster than an unoptimized version of the same
source program. A secondary goal is to reduce the size of the object
program.

The language elements you use in a source program directly affect the
compiler's ability to optimize the object program. Therefore, you
should be aware of the ways 1in which you can assist compiler
optimization. The FORTRAN-77 compiler performs the following
optimizations:

e Constant folding: Integer constant expressions are evaluated
at compile-time.

e Compile-time constant conversion.

e Compile-time evaluation of constant subscript expressions in
array calculations.

e Argument-list merging: If two function or subroutine
references have the same arguments, a single copy of the
argument list is generated.

e Branch instruction optimizations for arithmetic and logical IF
statements.

e Eliminating unreachable ("dead") code: An optional warning
message is 1issued to indicate unreachable statements in a
source program.

® Recognizing and Replacing common subexpressions.

e Removing invariant computations from DO loops.

® Local register assignment: Frequently referenced variables
are retained (if possible) in registers to reduce the number

of load and store instructions required.

e Assigning frequently used variables and expressions to
registers across DO loops.

e Constant pooling: Storage is allocated for only one copy of a
constant in the compiled program. Constants, including most
numeric constants, used as immediate-mode operands are not
allocated storage.

e Inline code expansion for some intrinsic functions.

e Fast calling sequences for the real and double-precision
versions of some intrinsic functions.

e Reordering the evaluation of expressions to minimize the
number of temporary values required.

e Delaying unary minus and .NOT. operations to eliminate unary
negation and complement operations.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e Partially evaluating Boolean expressions. For example, if el

in the following expression has the value .FALSE., e2 is not
evaluated:

IF (el.AND.e2) GO TO 20

The order in which el and e2 appear in the source statement
has no effect on partial evaluation.

e Peephole optimization of instruction sequences: examining
code on an instruction-by-instruction basis to find operations
that can be replaced by shorter, faster operations.

5.2.1 Characteristics of Optimized Programs

An optimized FORTRAN-77 program is computationally equivalent to an
unoptimized ©program; therefore, 1identical numerical results are
obtained and equivalent (in meaning, not quantity) run-time diagnostic
messages are produced. An optimized program, however, can produce
fewer run-time diagnostic messages and the diagnostics can occur at
different statements in the source program.

Example 5-1: Effects of Optimization on Error Reporting

Unoptimized Program Optimized Program
A = X/Y t = X/
B = X/Y A =t
DO 10, I = 1,10 B =1t
10 C(I) = C(I) * (X/Y) DO 10, I = 1,10
10 C(I) = C(I) * t

In Example 5-1, if Y has the wvalue 0.0, the unoptimized program
produces 12 zero-divide errors at run time; the optimized program,
however, produces only one zero-divide error because the calculation
that produces the error has been moved out of a loop. (Note that t is
a temporary variable created by the compiler.)

Note that optimizations such as eliminating redundant calculations and
moving invariant calculations out of loops can affect the use of the
ERRTST system subroutine. For example, in the above program, a call
to ERRTST from inside the loop does not detect a zero-divide error in
the 1loop calculation because the compiler has moved the
error-producing part of the calculation outside the loop.

5.2.2 Compile-time Operations on Constants

The compiler performs the following computations on expressions
involving constants (including PARAMETER constants):

® Negation of constants: Constants preceded by unary minus
signs are negated at compile time. For example:

X = -10.0

is compiled as a single move operation.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e Type conversion of constants: Lower-ranked constants are
converted to the data type of the higher-ranked operand at
compile time. For example:

X = 10*Y

is compiled as:

X = 10.0%*Y
e Integer arithmetic on constants: Expressions involving +, -,
*, / or ** operators are evaluated at compile time. For
example:

PARAMETER (NN=27)
I = 2*NN+J

is compiled as:
I = 54+4J

Array subscript calculations involving constants are simplified at
compile time where possible. For example:

DIMENSION I(10,10)
I (1,2) =1 (4,5)

is compiled as a single move instruction.

5.2.3 Source Program Blocks

FORTRAN-77 performs some optimizations only within the confines of a
single "block" of a source program. A block is a sequence of one or
more source statements. The start of a new block is generally defined
by a labeled statement that is the target of a control transfer from
another statement (for example, a GO TO, an arithmetic IF, or an ERR=
option). An ENTRY statement also defines a new block. Some
occurrences of statement labels do not define the start of a new
block; these occurrences are as follows:

® Unreferenced statement labels.

e A label terminating a DO loop, provided the only references to
the label occur in DO statements.

e Labels of FORMAT statements. FORMAT statements must be

labeled, but control cannot be transferred to a FORMAT
statement.

e Labels such that the only reference to the label occurs in the
immediately preceding arithmetic IF statement. For example:

IF(A) 10,20,20
10 X = 1.

e Singly referenced labels. A jump to a singly referenced label
may be equivalent to an IF THEN/ENDIF structure. If it is,
the IF THEN/ENDIF structure is used and the block is extended
past the labeled statement.

The compiler imposes a limitation on the size of a single block.

Therefore, a very 1long straight-line sequence of FORTRAN statements
can be treated as several "blocks" during optimization.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

A block can contain one or more DO loops, provided none of the 1labels
within the 1loops defines the start of a new block. Therefore, the
following are considered single blocks and are optimized as complete
units:

Example 1 Example 2
X = B*C Do 20, I1=1,N
DO 10, I=1,N DO 20, J=1,N
10 A(I) = A(I)/(B*C) SUM = 0.0
DO 20, J=1,N DO 10, K=1,N
20 Y (J) = Y (J)+B*C 10 SUM = SUM+A(I,K)*B(K,J)

20 C(I,J) = SUM

If the label specified as the target of a GOTO in a 1logical IF is
referenced only once, the structure may be equivalent to a block IF.
For example, the following examples are equivalent:

Example 1 Example 2
IF (I .LT. J) GOTO 20 IF (I .LT. J)THEN
A(I) = A(I)*J A(I) = A(I)*J
J=J-1 J=J+1
20 I=I+1 ENDIF
I=I+1

However, even though these two examples are equivalent, Example 2 is
more easily optimized. Therefore, as long as Example 1 is valid (that
is, as long as both the GOTO and the label are in the same block, and
the nesting rules are not violated), FORTRAN-77 transforms Example 1
into the form shown in Example 2.

Optimizations can be done most effectively over complete structures.
Therefore, 1if a block would otherwise be ended within either a block
IF or DO structure, the block is instead ended at the beginning of the
DO structure or the conditional block of the block IF structure.

Also, a more thoroughly optimized object program is produced if the
number of separate blocks 1is minimized. The common-subexpression,
code motion, and register allocation optimizations are performed only
within single blocks.

Multiple block IF structures, as well as nested DO and block IF
structures, can occur within a single block.

5.2.4 Eliminating Common Subexpressions

Often a subexpression appears in more than one computation within a
program. If the wvalues of the operands of such a subexpression are
not changed between computations, the value of the subexpression can
be computed once and substituted for each occurrence of the

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS
subexpression. For example, B*C is a common subexpression in the
following sequence:

A B*C+E*F

A+G-B*C

H

IF((B*C)-H)10,20,30

. The preceding sequence is compiled as:

t = B*C
A = t+E*F
H = A+G-t

IF((t)-H)10,20,30

.

where t is a temporary variable created by the compiler. Two
computations of the subexpression B*C are eliminated from the
sequence.

In the above example, you can modify the source program to eliminate
the redundant calculation of (B*C) . In the following example,
however, you cannot reasonably modify the source program to achieve
the same optimization wultimately effected by the compiler. The
statements

DIMENSION A(25,25), B(25,25)
A(I,J)= B(I,J)

are compiled, without optimization, to a sequence of instructions of
the form:

tl = J*25+1
t2 = J*25+I
A(tl) = B(t2)

where the wvariables tl1 and t2 represent equivalent expressions.

Recognizing the redundancy, the compiler optimizes the sequence into
the following shorter, faster sequence:

t =J*25 + 1
A(t) = B(t)

If a common subexpression is created within a conditional block of a
block IF, this subexpression can be used anywhere within the
conditional block in which it was created, including within any nested
inner blocks; but it cannot be used outside that conditional block.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.2.5 Removing Invariant Computations From Loops

Execution speed is enhanced if invariant computations are moved out of
loops. For example, in the sequence

DO 10, I=1,100
10 F = 2.0%Q*A(I)+F

the value of the subexpression 2.0*Q is the same during each iteration
of the loop. Transformation of the sequence to:

t = 2.0%Q
DO 10, I=1,100
10 F = t*A(I)+F

moves the calculation 2.0*Q outside the body of the 1loop and
eliminates 99 multiply operations.

However, invariant computations cannot be moved out of a zero-trip DO
loop. For example, in the sequence

po 10, I=1,N
10 F=2.0*Q*A(I)+F

statement 10 is not executed for certain values of n; therefore, the
invariant computation 2.0*Q cannot be moved out of the loop.

5.3 RUN-TIME PROGRAMMING CONSIDERATIONS

You can often reduce the execution time of programs by making use of
the following facts relevant to the FORTRAN-77 run-time environment.

e Unformatted I/0 is substantially faster and more accurate than
formatted 1I/0. The wunformatted data representation usually
occupies less file storage space as well. Therefore, vyou
should use unformatted I1/0 for storing intermediate results on
secondary storage.

e Specifying an array name in an I/O list is more efficient than
using an equivalent implied DO 1list. A single 1I/O
transmission call passes an entire array; however, an implied
DO 1list can pass only a single array element for each I/0
call.

e Implementing the BACKSPACE statement 1involves repositioning
the file and scanning previously processed records. If a
reread capability is required, it is more efficient to read
the record into a temporary array and DECODE the array several
times than to read and backspace the record.

e Array subscript checking 1is time-consuming and requires
additional compiled code. It is primarily useful during
program development and debugging.

e To obtain minimum direct access I/0 processing, the record
length should be an integer factor or multiple of the device
block size of 512 bytes (for example, 32 bytes, 1024 bytes,
and so on). Note that relative files wunder RMS-11 have
additional overhead bytes added to each record.

e If the approximate size of the file is known, it is more
efficient to allocate disk space when the file is opened than
to incrementally extend the file as records are written.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e Using run-time formats should be minimized. The compiler
preprocesses FORMAT statements into an efficient internal
form. Run-time formats must be converted into this internal
form at run-time. 1In many cases, variable format expressions
allow the format to vary at run time as needed.

e RMS-11 I/O operations are substantially slower in most cases
than corresponding FCS-11 1I/0 operations; therefore, using

RMS-11 should generally be restricted to indexed files under
keyed access.

5.4 FORTRAN-77 OPTIONAL CAPABILITIES
The FORTRAN-77 system, as distributed, contains several optional
capabilities supported by alternate OTS modules. These capabilities
include:

e Running FORTRAN-77 without a Floating Point Processor

e Running FORTRAN-77 compiled programs under RSX-11S

e Choosing alternate run-time error reporting

e Obtaining an alternate floating-point output conversion
routine

e Building an OTS shareable library

e Building tasks with overlaid OTS modules

e Choosing an alternate random-number generator for
compatibility with previous versions of the OTS (see Appendix
B) .

These options are described below. You should consult your system
manager to determine the availability of these options; optional OTS
modules are located in LB:[1,1] (LB: on RSTS/E). None of these
options is required for normal use of the FORTRAN-77 system.

5.4.1 Non-FPP Operation (F4PEIS.OBJ)

The FORTRAN-77 compiler does not require a floating-point processor
(FP11 or KEF1lA) to compile a FORTRAN-77 program; the compiler can
run on any PDP-11 with the EIS instruction set. However, the code
generated by the FORTRAN-77 compiler is intended to run on a PDP-11
with FPP and may therefore contain FPP instructions.

A FORTRAN-77 source program containing no real, double-precision, or
complex constants, variables, arrays, or function references is
compiled into a PDP-11 program that contains no FPP instructions. If
this program is 1linked using the module F4PEIS.OBJ and the standard
FORTRAN-77 OTS, as shown below, the resulting task executes no FPP
instructions. Such programs can therefore run on any PDP-11 with the
EIS instruction set.

TKB INT/—FP=INT,LB:[1,1]F4PEIS,LB:[l,l]F4POTS/LB
On RSTS/E, [1,1] is not included in the above command line.

If a compiled program unit contains no FPP instructions, the program
listing contains the statement: NO FPP INSTRUCTIONS GENERATED.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.4.2 RSX-11S Support (F4P11S.0BJ)

An optional OTS module provides a subset of FORTRAN-77 I/0 capability
consistent with the facilities available in RSX-11S. Sequential I/O
statements are supported for unit record devices such as terminals,
nonspooled card readers, and 1line printers. This I/0 support uses
direct QIO operations and does not require any modules of the standard
file system. The RSX-11S subset OTS 1is approximately 2000 words
smaller than the normal OTS and can be provided as an object module or
as a separate OTS library.

5.4.3 Optional OTS Error Reporting (F4PNER.OBJ)

An optional OTS module that does not perform any run-time diagnostic
message reporting 1is available; it is several hundred words smaller
than the standard error-reporting module. Error processing and calls
to ERRSET, ERRSNS, and ERRTST continue to operate normally, only the
logging of the diagnostic message to the user terminal being
suppressed. If this option is used, STOP and PAUSE messages are not
produced.

5.4.4 Short Error Text (SHORT.OBJ)

For RSX-11M, RSX-11M-PLUS, and RSTS/E, the error message text for
run-time error reports is contained in memory and requires over 1000
words. An alternative version is available that requires only one
word. If the alternative is used, the error report is complete except
for the 1-line English text description of the error. This module,
$SHORT, is included in the task at task-build time. For example:

>TKB MAIN/FP=MAIN,LB:[1,1]F4POTS/LB:$SHORT,LB: [1,1]F4POTS/LB

On RSTS/E, [1,1] is not included in the above command line.

5.4.5 Intrinsic Function Name Mapping (F4PMAP.OLB)

As discussed in Section 4.1, references to FORTRAN intrinsic functions
are transformed at compile time into calls that use internal names.
Therefore, if a program written in MACRO-11 uses a FORTRAN name
instead of an internal name to reference an intrinsic function, an
unresolved reference results during task build.

To prevent such unresolved references during the task building of a
MACRO program, a set of concatenated object modules is provided for
transforming FORTRAN-77 intrinsic-function names into internal names
at task-build time. For example, the name SIN is transformed at
task-build time by means of the following module:

.TITLE $SMSIN
SIN:: JMP S$SIN
.END

The object module similar to the one for SIN 1is available for each
intrinsic-function name.

An F4PMAP library may be necessary to provide function mapping.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.4.6 Floating-point Output Conversion (F4PCVF.OBJ)

An alternative module for performing formatted output of
floating—-point values under control of the D, E, F, and G format codes
is provided. The standard module uses multiple-precision, fixed-point
integer techniques to maintain maximum accuracy during the conversion.
(FPP hardware is not used.) The alternative module performs the same
functions using the FPP hardware; it is substantially faster but in
some cases less accurate than the standard module. The standard
module is accurate to 16 decimal digits; the optional module is
accurate to 15 digits.

5.4.7 OTS Resident Library (F4PRES.MAC)

FAPRES.MAC is a MACRO-11 source file that contains global references
to all OTS modules. You can use this file as a starting point in
building an OTS resident library. Documentation in the file describes
the OTS modules and such logical groups of modules as sequential I/O
support and complex arithmetic. If vyour operating system supports
memory management directives, this resident library provides a more
extensive capability without sacrificing address space.

The OTS resident library uses the short-error-text module (see Section
5.4.4).

The procedures for building an OTS resident library are described by
documentation in the file, in Section 3.4, and in the RSX-11M System
Generation Manual.

NOTE

You cannot build an OTS resident library
that contains RMS support. Also, if the
OTS resident library 1is overlaid, vyou
must place all OTS I/0 modules in the
same overlay.

5.4.8 OTS Overlay Files
There are two OTS overlay files:

e FCS11M.ODL (FCS-11 support for RSX-11M/M-PLUS, RSTS/E, and
VAX/VMS)

e RMS11IM.ODL (RMS-11(K) support for RSX-11M/M-PLUS, RSTS/E, and
VAX/VMS)

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

Each file is an ODL fragment file that you can use for overlaying the
FORTRAN-77 OTS modules. Also, each file contains documentation that
describes OTS options and procedures for using the file. The
following example of an ODL file includes the FCS-11 overlaid OTS file
in the overlay file described in Section 1.4 (on RSTS/E, [1,1] is not
included):

.ROOT MAIN-OTSROT-*(A,B,C), OTSALL
A: .FCTR PRE
B: .FCTR PROC
C: .FCTR POST
@LB:[1,1]FCS11M
.END

(The factor "OTSROT" must be added to the root segment; the
factor "OTSALL" must also be added as a co-tree. These factors
are defined in the OTS overlay files listed above.)

The following example of an ODL file includes the overlaid RMS-11 OTS
file of the overlay file described in Section 1.4, as well as the RMS
overlay file RMS11X (on RSTS/E, [1l,1] is not included):

.ROOT MAIN-OTSROT-RMSROT-OVL, OTSALL, RMSALL
OVL: .FCTR * (PRE, PROC, POST)
@LB:[1,1]RMS11M
@LB: [1,1]RMS11X

.END

(The factors "OTSROT" and "RMSROT" must be added to the root

segment; the factors "OTSALL" and "RMSALL" must also be added as
co-trees.)

See Section 1.4 for more information about overlaid programs.

5.5 RMS-11 LINK AND RUN-TIME CONSIDERATIONS

When RMS-11 1is used with ©programs that are not overlaid, even
modest-sized programs produce tasks that overflow the address space of
the PDP-11. There are two possible solutions to this problem: Expand
the task size such that it is large enough to accommodate the task, or
make the program smaller by overlaying.

If the task is near or beyond the task size 1limit, the task build
fails with a message indicating an oversize task.

Even 1if your ©program successfully links, you may encounter
buffer-space problems at run time, 1indicated by FORTRAN-77 error
message #41: "“NO BUFFER ROOM."

If this message is encountered, try rerunning your program with a
larger task increment, using (except on RSTS/E):

RUN/INC: value taskname

value

The amount of additional memory to be used for buffers.

The RUN command may fail if the /INC value makes the total task
size too large. If the RUN command does fail, the only choices

you have to get a successful run are to reduce the size of vyour
program or to overlay your program.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.6 FCS LINK AND RUN-TIME CONSIDERATIONS

Under certain circumstances, the open-file buffers kept by FCS in
PSECT $$FSR1 may become fragmented, causing the FORTRAN-77 OTS to
produce, unexpectedly, the error message: "No Buffer Room."

One of the circumstances under which one of the open-file buffers can
become fragmented is as follows: suppose a program specifies
ACTFIL=2, to indicate that the program has at most two files open at
any one time; FCS then allocates 1024 bytes for two 512~-byte buffers
in PSECT $$FSR1 (512 bytes 1is the largest possible device buffer
size).

Suppose further that a logical unit is opened to a terminal, causing
FCS to allocate an 80-byte buffer (that device's buffer size) in PSECT
$SFSR1. Then another logical unit is opened to a disk file, causing
FCS to allocate the next 512 bytes in PSECT $$FSR1 as a buffer for the
disk file. Finally, the logical unit connected to the terminal is

closed, resulting in the release, by FCS, of the 80-byte buffer in
PSECT SFSR1.

Any attempt to open a second disk file (resulting in a 512-byte
buffer) now fails because PSECT $$FSR1 does not have 512 contiguous
bytes. It has 80 free bytes, then 512 bytes in use by the first disk
file, then 432 (512 - 80) free bytes.

Some possible solutions to the above situation are to specify a block
size of 512 when opening the terminal; to open the first disk file
before opening the terminal (if possible); or to specify ACTFIL=3, to
allocate a larger $$FSR1 buffer.

CHAPTER 6

USING CHARACTER DATA

The character data type facilitates the manipulation of alphanumeric
data. You can use character data in the form of character variables,
arrays, constants, and substrings.

6.1 CHARACTER SUBSTRINGS

You can select certain segments (substrings) from a character variable
or array element by specifying the variable name, followed by
delimiter wvalues that indicate the leftmost and/or rightmost
characters in the substring. For example, if the character string
NAME contains:

ROBERT WILLIAM BOB JACKSON
and you want to extract the substring BOB, specify the following:

NAME (16:18)

If you omit the first value, vyou are indicating that the first
character of the substring 1is the first character in the variable.
For example, if you specify:

NAME (:18)
the resulting substring is:

ROBERT WILLIAM BOB

If you omit the second value, you are specifying the rightmost
character to be the last character in the variable. For example:

NAME (16:)
encompasses:

BOB JACKSON

6.2 CHARACTER CONSTANTS

Character constants are strings of characters enclosed in apostrophes.
You can assign a character value to a character variable in much the
same way you would assign a numeric value to a real or integer
variable. For example, as a result of the statement

XYZ = 'ABC'

USING CHARACTER DATA

the characters ABC are stored in location XYZ. Note that 1if XYZ's
length 1is less than three bytes, the character string is truncated on
the right. Thus, if you specify:

CHARACTER*2 XYZ

XYZ = 'ABC'
the result is AB. 1If, on the other hand, the variable is longer than
the constant, it is padded on the right with blanks. For example, the
statements

CHARACTER*6 XYZ

XYZ = 'ABC'
result in having:

ABC

stored in XYZ. 1If the previous contents of XYZ were CBSNBC, the

result would still be ABC because the previous contents are
overwritten.

You can give character constants symbolic names by using the PARAMETER
statement. For example, if you specify:

CHARACTER*17 TITLE
PARAMETER (TITLE = 'THE METAMORPHOSIS')

you can use the symbolic name TITLE anywhere a character constant is
allowed.

You can include an apostrophe as part of the constant by specifying
two consecutive apostrophes. For example, the statements

CHARACTER*15 TITLE
PARAMETER (TITLE = 'FINNEGANS''S WAKE ')

result in the character constant FINNEGAN'S WAKE.

The value assigned to a character parameter can only be a character
constant.

6.3 DECLARING CHARACTER DATA

To declare variables or arrays as character type, vyou use the
CHARACTER type declaration statement, as demonstrated in the following
example:

CHARACTER*10 TEAM(12),PLAYER

This statement defines a l12-element character array (TEAM), each
element of which is 10 bytes long; and a character variable (PLAYER),
which is also 10 bytes long.

You can specify different lengths for variables in a CHARACTER
statement by including a 1length value for specific variables. For
example:

CHARACTER*6 NAME,AGE*2,DEPT
In this example, NAME and DEPT are defined as 6-byte variables, and
AGE is defined as a 2-byte variable.

6-2

USING CHARACTER DATA

6.4 INITIALIZING CHARACTER VARIABLES

Use the DATA statement to preset the value of a character variable.
For example:

CHARACTER*10 NAME, TEAM(5)
DATA NAME/' '/,TEAM/'SMITH','JONES',
1 'DOE','BROWN','GREEN"'/

Note that NAME contains 10 blanks, but that each array element in TEAM
contains a character value, right-padded with blanks.

To initialize an array so that each of its elements contains the same
value, use a DATA statement of the following type:

CHARACTER*5 TEAM(10)
DATA TEAM/10*'WHITE'/

The result is a 10-element array in which each element contains WHITE.

6.5 CHARACTER DATA EXAMPLES
An example of character data usage 1is shown in Example 6-1. The

example is a program that manipulates the letters of the alphabet.
The results are shown in Example 6-2.

6.6 CHARACTER LIBRARY FUNCTIONS

The PDP-11 FORTRAN-77 system provides the following character
functions:

e ICHAR
e INDEX
e LEN

e LGE, LGT, LLE, LLT

6.6.1 ICHAR Function

The ICHAR function returns an integer ASCII code -equivalent to the
character expression passed as its argument. It has the form:

ICHAR (c)

A character expression. If c is longer than one byte, the ASCII
code equivalent to the first byte is returned and the remaining
bytes are ignored.

90

10

10

10

91

USING CHARACTER DATA

Example 6-1: Character Data Usage

CHARACTER C,ALPHA*26

DATA ALPHA/'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/
WRITE (6,90)

FORMAT (' CHARACTER EXAMPLE PROGRAM OUTPUT')

DO 10 I = 1:26
WRITE (6,*) ALPHA
C = ALPHA(1l:1)
ALPHA(1:25) = ALPHA(2:26)
ALPHA(26:26) = C
CONTINUE

CALL REVERS (ALPHA)
WRITE (6,*) ALPHA

CALL FIND('UVW' ,ALPHA)
CALL FIND('AAA','DAAADHAJDAAAJAAA CEUEBCUEI')

WRITE (6,*) ' END OF CHARACTER EXAMPLE PROGRAM'
END

SUBROUTINE REVERS (S)
CHARACTER T*1,S5%*26

K = 26
DO 10 I =1, K/2
T = S(I:1I)
S(I:1I) S (K:K)
S (K:K) T
K =K -1
CONTINUE
RETURN
END

won

SUBROUTINE FIND(SUB,S)
CHARACTER*3 SUB, S*26
CHARACTER*132 MARKS

I =1

MARKS = ' !

J = INDEX(S(I:),SUB)
IF (J .NE. 0) THEN

I =1+ (J-1)

MARKS(I:I) = "4°'

I = I+1

IF (I .LE. LEN(S)) GO TO 10
ENDIF

WRITE (6,91) S, MARKS
FORMAT (2 (/1X,A))
RETURN

END

USING CHARACTER DATA

Example 6-2: Output Generated by Example Program

CHARACTER EXAMPLE PROGRAM OUTPUT
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
POQRSTUVWXYZABCDEFGHIJKLMNO
ORSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY
ZYXWVUTSRQPONMLKJIHGFEDCBA

ZYXWVUTSRQPONMLKJIHGFEDCBA

DAAADHAJDAAAJAAA CEUEBCUEI

#
END OF CHARACTER EXAMPLE PROGRAM

6.6.2 INDEX Function

The INDEX function is used to determine the starting position of a
substring. It has the form:

INDEX (cl,c2)
cl

A character expression that specifies the string to be searched
for a match with the value of c2.

c2

A character expression representing the substring for which a
match is desired.

If INDEX finds an instance of the specified substring (c2), it returns
an integer value corresponding to the starting location in the string
(cl). For example, if the substring sought is CAT and the string that
is searched contains DOGCATFISHCAT, the return value of INDEX is 4.

If INDEX cannot find the specified substring, it returns the value O.

USING CHARACTER DATA

If there are multiple occurrences of the substring, INDEX locates the
first (left-most) one. Use of the INDEX function is illustrated in
Examples 6-1 and 6-2.

6.6.3 LEN Function

The LEN function returns an integer value that indicates the length of
a character expression. It has the form:

LEN (c)
A character expression.

6.6.4 LGE, LGT, LLE, LLT Functions

The lexical comparison functions (LGE, LGT, LLE, and LLT) compare two
character expressions, using the ASCII collating sequence. The result
is the logical value .TRUE. if the 1lexical relation is true, and

.FALSE. if the lexical relation is not true. The functions have the
forms:

LGE (cl1,c2)
LGT (cl,c2)
LLE (cl,c2)
LLT (cl,c2)

cl,c2
Character expressions.

You may wish to include these functions in FORTRAN programs that can
be used on computers that do not use the ASCII character set. 1In
PDP-11 FORTRAN-77, the lexical comparison functions are equivalent to

the .GE., .GT., .LE., .LT. relational operators. For example, the
statement

IF (LLE (stringl, string2)) GO TO 100
is equivalent to:

IF (stringl.LE.string2) GO TO 100

6.7 CHARACTER I/0

The character data type simplifies transmitting alphanumeric data.
You can read and write character strings of any length from 1 to 255
characters. For example; the statements

CHARACTER*24 TITLE

READ(12,100) TITLE
100 FORMAT (A)

USING CHARACTER DATA

cause 24 characters to be read from logical unit 12 and stored in the
24-byte character variable TITLE. If instead of character data you

were to use Hollerith data stored in numeric variables or arrays, the
following code is necessary:

INTEGER*4 TITLE (6)

READ (12,100) TITLE
100 FORMAT (6A4)

Note that you must divide the data into lengths suitable for
(in this case)

match.

real or
integer data, and specify I/0O and FORMAT statements to
In this example, a one-dimensional array comprising six 4-byte
elements is filled with 24 characters from logical unit 12.

CHAPTER 7

USING INDEXED FILES

This chapter provides detailed information on using indexed
organization files. Included 1is an extended example. The indexed
file is defined in Chapter 7 of the PDP-11 FORTRAN-77 Language
Reference Manual.

Indexed organization is especially suitable for maintaining complex
files from which records can be selected on the basis of one of
several criteria. For example, a mail order firm using an indexed
file to store its customer list might select records on the basis of a
unique customer order number, the customer's zip code, or the item
ordered. In such cases, reading sequentially on the basis of the zip
code key would produce a mailing list already sorted by zip code, and
reading sequentially on the basis of the item-ordered key would give a
list of customers sorted by product ordered.

7.1 ACCESSING INDEXED FILES

You can access indexed files in both the sequential and the keyed
modes. Sequential reading retrieves records in sorted order by
defined key field. Keyed access, on the other hand, permits random
record selection on the basis of a particular key-field value.

Once you select a record by key, a sequential read retrieves records
with ascending key values, beginning with the key-field value of the
initial indexed READ. Using the keyed and sequential access modes 1in
combination 1is sometimes referred to as the Indexed Sequential Access
Method (ISAM).

When you specify ACCESS="KEYED" in an OPEN statement, you enable both
sequential and keyed access to an indexed file.

7.2 CREATING AN INDEXED FILE
You can create an indexed file with the following:

e An OPEN statement

e An appropriate utility
You can use the OPEN statement to specify the more common file options
and a utility to select features not directly supported from
FORTRAN-77. Note, however, that any indexed file created with a
utility can be accessed by FORTRAN-77 I/0 statements.
When you create an indexed file, you define certain fields within each

record as key fields. One of these key fields, called the primary
key, is identified as key number zero and must be present in every

7-1

USING INDEXED FILES

record. Additional keys, called alternate keys, may also be defined;
they are numbered from 1 through a maximum of 254, While an indexed
file may have as many as 255 key fields defined, in practice few
applications require more than three or four key fields.

When you design an indexed file, you decide which character positions
within each record are to be the key fields. There are three key data
types supported by PDP-11 FORTRAN-77: INTEGER*2, INTEGER*4, and
CHARACTER. Using the example of a mail order firm, you might define a
file record to consist of the following fields:

INTEGER*4 ORDER
CHARACTER*20 NAME
CHARACTER*20 ADRESS
CHARACTER*19 CITY
CHARACTER*2 STATE
CHARACTER*9 ZIP
INTEGER*2 ITEM

Positions 1:4

Positions 5:24

Positions 25:44
Positions 45:63
Positions 64:65
Positions 66:74
Positions 75:76

S pm e g G g O

Given this record definition, you could use the following OPEN
statement to create an indexed file:

OPEN (UNIT=10, FILE='CUSTOMERS.DAT', STATUS='NEW',

1 ORGANIZATION='INDEXED', ACCESS="KEYED',

2 RECORDTYPE='VARIABLE', FORM='UNFORMATTED',

3 RECL=19, ! 19 storage units

4 KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER),
5 ERR=9999)

This OPEN statement establishes the attributes of the file, including
a primary key and two alternate keys. Note that the definitions of
the integer keys do not explicitly state INTEGER*4 and INTEGER*2. The
data type sizes are determined by the number of character positions
allotted to the key fields, which in this case are 4 and 2,
respectively.

You may specify the KEY= keyword when opening an existing file; the
FORTRAN Run-Time Library ensures that the given key specification
matches that of the file.

FORTRAN uses RMS default key attributes when creating an indexed file.
These defaults are as follows:

e Primary key values cannot be changed when a record is
rewritten.

e Primary key values cannot be duplicated; that 1is, no two
records can have the same primary key value.

e Alternate keys may both be changed and have duplicates.

You can use an RM§ utility or a USEROPEN routine to override these
defaults and to specify other values not supported by FORTRAN-77, such

as null key values, key names, and key data types other than integer
and character.

Refer to Section 2.3.12 for information on using the USEROPEN keyword
in FORTRAN-77 OPEN statements. The RMS-11 User's Guide has more
information on indexed file options.

USING INDEXED FILES

7.3 CURRENT-RECORD AND NEXT-RECORD POINTERS

The RMS file system maintains two pointers into an open indexed file:
the next-record pointer and the current-record pointer. The
next-record pointer indicates the record to be retrieved by a
sequential read. When you open an indexed file, the next-record
pointer indicates the record with the lowest primary key wvalue.
Subsequent sequential read operations cause the next-record pointer to
be the one with the next higher key value in the same key field. In
case of duplicate key values, records are retrieved in the order in
which they were written.

The current-record pointer indicates the record most recently
retrieved by a read operation, that is, the record that is locked from
access by other programs sharing the file. The current record can be
operated on by the REWRITE statement and the DELETE statement, but is
undefined until a READ operation is performed on the file. Any file
operation other than a READ causes the current-record pointer to
become undefined. 1In addition, an error results if a REWRITE or
DELETE operation is performed when the current-record pointer is
undefined.

7.4 WRITING TO INDEXED FILES

You can write records to an indexed file with either formatted or
unformatted indexed WRITE statements. Each WRITE inserts a new record
into the file and updates the index(es) so that the new record appears
in the correct order for each key field.

Continuing the mail order file example of Section 7.2, you could add a
new record to the file with the following statement:

WRITE (UNIT=10,ERR=9999) ORDER,
1 NAME,ADRESS,CITY,STATE,ZIP,ITEM

7.4.1 Duplicate Keys

It is possible to write two or more records with the same key wvalue.
Whether this duplicate-key situation is allowed depends on the
attributes that were specified for the file when it was created. By
default, FORTRAN-77 creates files that allow duplicate alternate keys
but that prohibit duplicate primary keys (see Section 7.2). If
duplicate keys are present in a file, the records with equal keys are
retrieved on a first-in, first-out basis.

For example, assume that five records are written to an indexed file
in the following order (for clarity, only key fields are shown):

ORDER ZIP ITEM
1023 70856 375
942 02163 2736
903 14853 375
1348 44901 1047
1263 33032 690

USING INDEXED FILES

If the file is later opened and read sequentially by primary key
(ORDER), the sorted order of the records is unaffected by the
duplicated ITEM key, as shown below:

ORDER ZIpP ITEM
903 14853 375
942 02163 2736

1023 70856 375
1263 33032 690
1348 44901 1047

If the file is read along the second alternate

(ITEM), however,

the sort order is affected by the duplicate key, as shown below:

ORDER ZIP ITEM
1023 70856 375
903 14853 375
1263 33032 690
1348 44901 1047
942 02163 2736
Notice that the records containing the same (375) were

retrieved in the order in which they were written to the file.

7.4.2 Omitting Alternate Keys

You can omit one or more alternate keys when writing to an indexed
file that contains variable-length records. To omit any alternate key
field, omit the alternate key-field name from the WRITE statement.
However, do not specify another field after that point; an omitted
key must be at the end of the variable-length record. For example, if
the 1last record in the mail order example (ORDER 1263) was written
with the statement

WRITE (UNIT=10,ERR=9999) ORDER,
1 NAME,ADRESS,CITY,STATE,ZIP

then the result of reading the complete file along the alternate ITEM
index would be as follows:

ORDER Z1p ITEM
1023 70856 375
903 14853 375
1348 44901 1047
942 02163 2736

Because the ITEM was omitted when the last record was
is no index entry for that key;
is sorted on ITEM.,

You may omit only alternate keys from a record;
always be present.

7.5 READING FROM INDEXED FILES

You can read records in an indexed

indexed READ statements.

file

written, there
and it cannot be read when the file

the primary key must

sequential or

USING INDEXED FILES

Indexed READ statements position the file pointers (see Section 7.3)
at a particular record (determined by the key wvalue), the
key-of-reference, and the match criterion. Once you retrieve a
particular record by key, you can use sequential READ statements to
retrieve records with increasing key values.

The following FORTRAN-77 program segment prints the order number and
zip code of each record, with a =zip code 1in which the first 5
characters are greater than or equal to '10000' but less than '50000':

c
C Read first record with ZIP key greater than or
C equal to '10000'.
C
READ (UNIT=10, KEYGE='10000', KEYID=1, ERR=9999),
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP
C
C While the Zip Code previously read is within range, print
(¢ the order number and zip code, then read the next record.
C
10 IF (ZIP .LT. '50000') THEN
PRINT *, 'Order number', ORDER, 'has zip code',
1 ZIP
READ (UNIT=10, END=200, ERR=9999)
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP
C
C END= branch will be taken if there are no more records
C in the file.
C
ENDIF
GOTO 10

200 CONTINUE

The error branch on the indexed READ in the example is taken if no
record is found with a zip code greater than or equal to '10000'; an
attempt to access a nonexistent record is an error. However, if the
sequential READ has accessed all records in the file, an end-of-file

status occurs, just as it does with other file organizations.

7.6 UPDATING RECORDS

You use the REWRITE statement to update existing records in an indexed
file. You cannot replace an existing record simply by writing it
again: A WRITE statement attempts to add a new record.

An update operation is accomplished in two steps. First, you must
read the record in order to make it the current record. Next, you
execute a REWRITE statement. As an example, to update the record
containing ORDER 903 (see prior examples) so that the NAME field

becomes 'Theodore Zinck', you might use the following FORTRAN-77 code
Segment :

READ (UNIT=10, KEY=903, KEYID=0, IOSTAT=IOS, ERR=9999)
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP; ITEM
NAME='Theodore Zinck!'

REWRITE (UNIT=10, ERR=9999) ORDER

1 NAME, ADRESS, CITY, STATE, ZIP, ITEM

When you rewrite a record, key fields may change. Whether a key-field
change is permitted depends on the attributes given the file when it
was created.

USING INDEXED FILES

7.7 DELETING RECORDS

To delete records from an indexed file, you use the DELETE statement.
The DELETE and REWRITE statements are similar in that each operates on
a record that has been locked by a READ statement.

The following FORTRAN-77 code segment deletes the second record in the
file with ITEM 375 (refer to previous examples) :

READ (UNIT=10, KEY=375, KEYID=2, ERR=9999)
READ (UNIT=10, ERR=9999) ORDER
1 NAME, ADRESS, CITY, STATE, ZIP, ITEM
IF (ITEM .EQ. 375) THEN
DELETE (UNIT=10, ERR=9999)
ELSE

PRINT *,'There is no second record.'
ENDIF

Deletion removes a record from all defined indexes in the file.

7.8 USING INTEGER KEYS

When writing an integer-key value to a record (with an indexed WRITE
statement), use an A2 format for an INTEGER*2 value and an A4 format
for an INTEGER*4 value. Do not use an I format, because the I format

produces an ASCII representation that an indexed READ statement cannot
later read.

To read a key field, however, you may use any format you wish, because
the format you associate with an indexed READ has no bearing on the
matching process used to locate the record in which the desired key
field is located.

The following program segment is an example of using integer keys with
an indexed file. Note that ACODE and TEL, which are the third and
second alternate keys in the record described below, are of type
INTEGER*2 and INTEGER*4, respectively, and that the formats used to
write these keys are A2 and A4, respectively.

The record layout is as follows:

FIELD SIZE TYPE MEANING

FI 1 CHAR FIRST INITIAL

NAME 10 CHAR LAST NAME

STADDR 20 CHAR STREET ADDRESS

CITY 10 CHAR CITY

STATE 2 CHAR STATE

SSN 9 CHAR SOCIAL SECURITY NUMBER
ACODE 2 INT*2 AREA CODE

TEL 4 INT*4 TELEPHONE NUMBER

AGE 2 INT*2 AGE

USING INDEXED FILES

The keys are as follows:

PRIMARY SSN 44:52
ALTERNATE 1: NAME 2:11
ALTERNATE 2: TEL 55:58: INTEGER
ALTERNATE 3: ACODE 53:54:INTEGER

CHARACTER FI*1,NAME*10,STADDR*20,CITY*10,STATE*2,SSN*9
INTEGER*4 TEL

INTEGER*2 AGE, ACODE

COMMON /DBREC1/ACODE,TEL,AGE

COMMON /DBREC2/NAME,FI,STADDR,CITY,STATE,SSN

INTEGER*4 INTKEY

OPEN(UNIT=1,NAME='DB.DAT',ORGANIZATION='INDEXED',ACCESS='KEYED',

1 RECORDTYPE='FIXED',RECL=128,FORM="'FORMATTED',TYPE="'NEW',
2 KEY=(44:52, 2:11, 55:58:INTEGER, 53:54:INTEGER))

WRITE (1,1000)FI,NAME,STADDR,CITY,STATE, SSN,ACODE, TEL,AGE

READ WITH KEY EQUAL TO INTKEY

ann

READ(1,1000,KEY=INTKEY,KEYID=IKEYID)
1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

C READ WITH KEY GREATER THAN INTKEY

READ(1,1000,KEYGT=INTKEY,KEYID=IKEYID)
1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

C READ WITH KEY EQUAL TO OR GREATER THAN INTKEY

C

READ (1,1000,KEYGE=INTKEY,KEYID=IKEYID)

1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE
1000 FORMAT (Al,10Al1,20A1,10A1,2A1,9A1,A2,A4,A2)

STOP

END

7.9 ERROR CONDITIONS

You can expect to encounter certain error conditions when using
indexed files. The two most common of these conditions result from
attempts to read locked records and attempts to create duplicate
primary keys. Provisions for handling both of these situations should
be included in a well-written program.

When an indexed file is shared by several users, any read operation
can result in a "SPECIFIED RECORD LOCKED" error. One way to recover
from this error condition is to ask if the user would 1like to

USING INDEXED FILES

reattempt the read. If the user's response is positive, the program
can go back to the READ statement. For example:

PARAMETER (LOCKED=52)

100 READ (UNIT=10, ERR=200) DATA

200 CALL ERRSNS (IERR)
IF(IERR .EQ. LOCKED) GOTO 100

If your program reads a record but does not intend to modify the
record, you should place an UNLOCK statement immediately after the
READ statement. This technique reduces the time that a record Iis
locked and permits other programs to access the record.

The second error condition, creation of duplicate primary keys, occurs
when a program tries to create a record with a key value that is
already in use. To handle this situation, you might have your program
prompt for a new key value whenever an attempt is made to create a
duplicate key. This technique is demonstrated below:

INTEGER DUPKEY
PARAMETER (DUPKEY=50)

200 WRITE (UNIT=10, ERR=300) KEYVAL, DATA

.

300 CALL ERRSNS (IERR)
IF (IERR .EQ. DUPKEY) THEN
TYPE*, 'This key value already exist. Please enter'
TYPE*, 'a different key value, or press CONTROL Z'
TYPE*, 'to discontinue this operation.’
READ (UNIT=*, END=999) KEYVAL
GOTO 200
ELSE
TYPE*, 'ERROR',IERR,'DURING WRITE'
STOP
ENDIF
999 CONTINUE

APPENDIX A

FORTRAN-77 DATA REPRESENTATION

A.l1 INTEGER FORMATS

A.1.1 INTEGER*2 Format

Sign
0=+

Binary number

1=—

15 14 0

ZK-1244-83

Integers are stored in two's complement representation. INTEGER*2
values lie in the range -32768 to +32767. For example:

+22 000026 (Octal)
-7 = 177771 (Octal)

A.1.2 INTEGER*4 Format

word 1: | low order]
15 0
word 2: [s | high order |
15 14 0
INTEGER*4 values are stored in two's complement representation. The

first word contains the low-order part of the value; the second word
contains the sign and high-order part of the value. Note that if the
value is in the range of an INTEGER*2 value (-32768 to +32767), then
the first word may be referenced as an INTEGER*2 value.

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
stored in excess-128 notation. Binary exponents from -128 to +127 are
represented by the binary equivalents of 0 through 255. Fractions are
represented in sign-magnitude notation, with the binary radix point to
the left. Numbers are assumed to be normalized; therefore, because
it would be redundant, the most significant bit is not stored (the
practice of not storing the most significant bit is called "hidden bit
normalization"). The unstored bit 1is assumed to be a 1 unless the
exponent is 0 (corresponding to 2**-128), in which case the unstored
bit is assumed to be 0. The value 0 is represented by an exponent

FORTRAN-77 DATA REPRESENTATION

field of 0 and a sign bit of 0. For example, +1.0 would be
represented in octal by:

40200
0

in the 2-word format, or:
40200
0

0
0

in the 4-word format. The decimal number -5.0 is:

140640
0

in the 2-word format, or:
140640
0
0
0

in the 4-word format.

A.2.1 REAL (REAL*4) Format (2-Word Floating Point)

Sign
word 1: 0=+ Binary excess ngh-qrder

1=-- 128 exponent mantissa

15 14 7 6 0
word 2: Low-order mantissa

15 0

ZK-1245-83

The form of a single-precision real number is sign magnitude, with bit
15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0
and 15:0 in the second word a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. The value of
a single-precision real number is in the approximate range .29*10**-38
through 1.7*10%**38, The precision 1is approximately one part in
2**23—--0or typically seven decimal digits.

A.2.2 DOUBLE-PRECISION (REAL*8) Format (4-Word Floating Point)

Sign
word 1: 0= Binary excess High-order

=—| 128 exponent mantissa

15 14 7 6 0
word 2: [Low-order mantissa |

15 0
word 3: [Lower—-order mantissa |

15 0
word 4: [Lowest-order mantissa]

15 0

FORTRAN-77 DATA REPRESENTATION

The form of a double-precision real number is identical to that of a
single-precision real number except for an additional 32
low-significance fraction bits. The exponent conventions and
approximate range of values are the same as for a single-precision
real value. The precision is approximately one part 1in 2**55--or
typically 16 decimal digits.

A.2.3 COMPLEX Format

Sign
word 1: 0=+| Binary excess High-order
=-| 128 exponent mantissa
15 14 7 6 0
Real
Part
word 2: | Low-order mantissa |
15 0
Sign
0=+| Binary excess High-order
word 3: =—-| 128 exponent mantissa
15 14 7 6 0
Imaginary
Part
word 4: | Low-order mantissa]
15 0
The form of a complex number is an ordered pair of real numbers. The

first real number represents the real part of the imaginary number;
the second represents the imaginary part.

A.3 LOGICAL*1 (BYTE) FORMAT

Data item

7 0

ZK-1246-83

The logical values true or false (see Section A.4), a single Hollerith
character, or integers in the range of numbers from +127 to -128 can

be represented in LOGICAL*1 format. LOGICAL*1 array elements are
stored in adjacent bytes.

A.4 LOGICAL FORMATS

LOGICAL*1

TRUE: byte 1 [l undefined |
7 6 0

FALSE: byte 1 [0 undefined |
7 6 0

FORTRAN-77 DATA REPRESENTATION

LOGICAL*2
TRUE: word 1 [1 undefined |
15 14 0
FALSE: word 1 | 0 undefined |
15 14 0

LOGICAL*4
TRUE: word 1 [undefined]
15 0
word 2 [1 undefined |
15 14 0
FALSE: word 1 | undefined |
15 0
word 2 [0 undefined |
15 14 0

A.5 CHARACTER REPRESENTATION

A character string is a contiguous sequence of bytes in memory.

char 1] : A

[char ©] : A+L -1

A character string is specified by two attributes: the address A of
the first byte of the string, and the length L of the string in bytes.
The length L of a string is in the range 1 through 255.

A.6 HOLLERITH FORMAT

word 1: char 2 char 1
15 8 7 0
word 2: char 4 char 3
15 8 7 0
blank=40 octal char n (n<255)
15 8 7 0

ZK-1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>