
PDP-11 FORTRAN-77
User’s Guide
Order No. AA-V194A-TK

August 1983

This document contains the information necessary to create, link,

and execute PDP-11 FORTRAN-77 programs on a PDP-11 proces-

sor. Programming information is provided for the

RSX-11M/M-PLUS, RSTS/E, and VAX/VMS operating systems.

SUPERSESSION/UPDATE INFORMATION: This is a new document

for this release.

OPERATING SYSTEM AND VERSION: RSX-11M V4.1

RSX-11M-PLUS V2.1

RSTS/E V8.0

VAX/VMS V3.2

SOFTWARE VERSION: FORTRAN-77 V5.0

digital equipment corporation - maynard, massachusetts

First Printing, August 1983

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a_ license

and may be used or copied only in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its

affiliated companies.

Copyright (c) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT

DECSYSTEM-20 PDT DECUS RSTS af ilofi|tlalt
DECwriter

ZK2389

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)

In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road

In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1iG 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed

with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment

Corporation, Northboro, Massachusetts 01532

CONTENTS

Page

PREFACE X1

SUMMARY OF TECHNICAL CHANGES XV

CHAPTER 1 USING PDP-11l FORTRAN-77

1.1 OVERVIEW ° ° © © © « e 8 © © © eo wl hl wl UcwL

1.2 USING FORTRAN-77 ON RSX-11 SYSTEMS eo ee ew ew wl wl wl CwWL

1.2.1 RSX-11 File Specifications « «© » 1-3

1.2.2 Command Switches«..e«« « 7 2 © © «© 14

1.2.3 Compiling a FORTRAN-77 Program with MCR eo 6 e e« 1-5

1.2.3.1 Compiling with DCL +. « « «© « « « 1-6
1.2.4 Compiler Switchese..e. oe © e ew ew vw LH?

1.2.5 Task-Building a FORTRAN-77 Program 2 © © © © «©)6ULL 10

1.2.5.1 Using the MCR Command TKB-. +... I-11

1.2.5.2 Task Builder Options o © «© © © @ ee) 6114

1.2.5.3 Library Usage on RSX-11l Systems oe 2 © ew ew he) 61-18
1.2.6 Executing a FORTRAN-77 Programe. +. 1-20

1.2.7 Examples of FORTRAN-77 Command Sequences ... 1-20

1.3 USING FORTRAN-77 ON RSTS/E SYSTEMS-.. 41-21

1.3.1 RSTS/E File Specifications« « « %IJ-21
1.3.2 Command Switches © © « 1-23
1.3.3 Compiling a FORTRAN-77 Program on RSTS/E

systems e ° ° ° ° ° e e ° ° e e e e e 1-23

1.3.4 Task-Building a FORTRAN- 77 Program on RSTS/E
systems ° r e e ° ° ° e ° e e e e e e 1-24

1.3.4.1 Using the Task Builder on RSTS/E Systems »~ « 1-24
1.3.4.2 Task Builder Optionse 6 « « « « 1-26
1.3.4.3 Library Usage on RSTS/E Systems .. eo 6 «© 1l-27
1.3.5 Executing a FORTRAN-77 Program on RSTS/E

Systems .. 0 8 © ee oe 8 eo ew ew we wl wl ew) UL 28

1.3.6 Examples of FORTRAN- 77 Job Command Sequences . 1-28
1.3.7 Programming Considerations for RSTS/E Users . 1-29
1.4 USING FORTRAN-77 ON VAX/VMS UNDER AME- 1-30

1.4.1 VAX/VMS File Specificationse .- 41-30
1.4.2 Command Switches« « « «© « e © «© © « « 1-32
1.4.3 Compiling a FORTRAN-77 Programe.. 1-32
1.4.4 Task-Building a-‘FORTRAN-77 Program 1-34
1.4.4.1 Using the MCR Command TKB ee 1-35
1.4.4.2 Task Builder Options © 6 © © e@ ew) UL 37
1.4.4.3 Library Usage on VAX/VMS Systems eo ee © © ew) 6140
1.4.5 Executing a FORTRAN-77 Programe... 1-40

1.4.6 Examples of FORTRAN-77 Command Sequences ... 1-41

1.5 OVERLAYS« a had Sb
1.5.1 Introduction to the Overlay Description

Language... . a a Od! 9

1.5.2 Building Overlaid FORTRAN- 77 Programs 1-43
1.6 DEBUGGING A FORTRAN-77 PROGRAMe 1-46

CHAPTER 2 FORTRAN-77 INPUT/OUTPUT

2.1 FORTRAN-77 I/O CONVENTIONS . . 2... 2. © «© « «© « «© « 2-1
2.1.1 Device and File Name Conventions 2-l
2.1.2 Implied-Unit Number Conventions 2-2

2.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit 2-3

iii

CHAPTER

e
e

e

ry
eo

ee

se
e
e
e

W
N

Fe

W
W
W
W
N
H
N
D
N
D
N

F
R
R

FP

W
N
 F

e

K
P
R
R
P
O
D
Y
N
H
A
U
B
R
W
N
E

W

S
H
O

P
W
D

PF

.
e

e
e

W
N
)

D
N
D
N
A
M
N
N
N
O

P
W

W
W
W

D
N
D
N

D
N
N

N
N
N

W
W

W
W

W
W
W

W
W
W

W
W

W
W

W
W

W
W
W

Ww

W
W

Ww
W

CONTENTS

FILES AND RECORDS 6 « « «© -«

File Structure +++. « «
Sequential Organization
Relative Organization
Indexed Organization. .

Sequential Access ...
Direct AccesS

Access to Records . © © eo we ell

Keyed AcceSS . 2. 2« « « © «© «© « «
Record Formats ... oe eo ew ew

Fixed-Length Records oc ce e e@

Variable-Length Records oe =

Segmented Records« -«
OPEN STATEMENT KEYWORDS -@

BLANK . 2. 6 «© «© © © © © © © © © «@
BLOCKSIZE . 2. « © © «© © © © «© «© «@
BUFFERCOUNT . . 2. © « © © © © «© «
DISPOSE o 6 8
INITIALSIZE and EXTENDSIZE o 6 ee
KEY 2. © «© © © © © © « «
ORGANIZATION -«
READONLY . 2. « «© « «© « «
RECL (RECORDSIZE) ° 8

RECORDTYPE . 2. «© 6 «© © © © © © « «

SHARED e e e e e e e e ® e e e e e

USEROPEN : ° ° °

BACKSPACE AND ENDFILE IMPLICATIONS

FORTRAN-77 I/O USING FILE CONTROL SERVICES

OTS/FCS Record Transactions .. .

OTS/FCS File Open Conventions. .
FCS Implications of FIND and REWIND

FCS File Sharing o 8
FORTRAN-77 I/O USING RECORD MANAGEMENT SERVICES

(RMS) ° o © © © © © © © 8 hl
OTS/RMS Record Transactions ...

OTS/RMS File Open Conventions. .
RMS Implications of FIND, REWIND,
RMS File Sharing. . oe 8 ew ew

Task Building with RMS rr ee rr

e
e

e
e

e e e e

UNLOCK

PDP~l11 FORTRAN-77 OPERATING ENVIRONMENT

FORTRAN-77 OBJECT TIME SYSTEM .. .

FORTRAN-77 CALLING SEQUENCE CONVENTION
The Call Site e@ e e e e@ e e e ® e

Return e e e e e e e e e e e e ® e

Return Value Transmission

Register Usage Conventions
Nonreentrant Example

Reentrant Example-
Null Argumentse« « « «

PROGRAM SECTIONS e e e e e e e e e

Compiled-Code PSECT Usage o 8 8

FORTRAN COMMON and RSX-11 System Common

OTS PSECT USage-.-.« e«

OTS AND RESIDENT (SHAREABLE) LIBRARIES
OTS ERROR PROCESSINGe. .

Recovering From OTS—-Detected Errors
Using ERR= and END= Transfers .
Using the ERRSNS Subroutine ..
Using the ERRSET Subroutine ..

FORTRAN-77 COMPILER LISTING FORMAT .
Source Listing«e«-.

Generated Code Listing
Storage Map Listing

iv

p
i
t
?

t
t
t

£¢

be

t
t

t
§

t
3

M
P
O
W
U
U
U
W
A
D
M
D
O
A
A
N
N
A
A

M
N
S

B
&
W

W

P
N
O
M
N
N
N
N
N
N
N
N
N
N
N
N
 N
H

re
be

N
N
M
N
M
D
N
M

N
N

N
N
N

N
N
N
N
W
N
N
N
 W
H

e
e

e
e

O
O
W
M
U
U
O
N

M
O
O
R

W
W
D
H
N
D
N
D
N

FO

e
e

e
e

e
e

e
e

l
l

W
w
W
w
w
W
w
W
W
w
W
w
W
w
w
w
w
w
w
w

h
m
e
 |

CHAPTER

CHAPTER

CHAPTER

i

e
P
h

P
P

®

N
N
R

R
e

e N
e

«©
e¢

©
@«

«
e
e

o
¢

@
@

e

&

W
NO

ke

e
e

e e NO

eR

&

H
P

S
P

H
H

h
b

Hb

e

S
A
U

DP

P
B

W
D
Y

DN
DN

DH

Nn

*
e
e

«©

e
e

©

©
8

@
@

e
°

oe
ef

@

m

W
N

ke

e
e
e

Ma

&
W
N
 F
e

e
e

e
e

e
e

e

A
U
P

A
A
R
P

R
D

R
A
B
W
N
H
N
N
N
N
N
K

R
E
E

e
e

e
e

°
e

O
A
N
N
H
N
O
N

SP

WD

HN

FE

A
M
A
M
A
a
N
n
N
a
n
I
n
r
i
a
n
n
n
i
a
n
a
n

a

w
o

on

ot

ut

U1

O
1
1

[|

o>
)

N
A
N
A

A
A

A
O

OD

>
oe

@e

°°

eo

vh
6.

°
e

D
D
N
M
N

P
W
N

-E

e N
e

CONTENTS

VIRTUAL ARRAY OPTIONS « «© « « «

Limits on VIRTUAL Elementse.

VIRTUAL and DIMENSION Statements

Memory Allocation for VIRTUAL Arrays . .
Execution Time of Virtual Arrays

Converting a Program to VIRTUAL Array Usage

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

INTRINSIC FUNCTIONS . © © © © ew we hel °

Using EXTERNAL and INTRINSIC Statements °

Generic Function Referencese « -«

INTEGER*2 AND INTEGER*4 . 6 °

Representation and Relationship of INTEGER*2

and INTEGER*4 Values 2. 2. 6 « « « «
Integer Constant Typing-. « « «
Octal Constant Typinge.-.
Integer-Valued Intrinsic Functions ...
Implementation-Dependent Integer Typing .

BYTE (LOGICAL*1) DATA TYPE « « e
ITERATION COUNT MODEL FOR DO LOOPS

Cautions Concerning Program tater change °

Iteration Count Computation .. ° °
USING EQUIVALENCE WITH MIXED DATA TYPES °

EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT

ENTRY STATEMENT ARGUMENTS 6 « «© «© «

PDP-1]1 FORTRAN-77 PROGRAMMING CONSIDERATIONS

CREATING EFFICIENT SOURCE PROGRAMS

PARAMETER Statement +. 6 « « «

INCLUDE Statement . . 2. 2. «6 « «6 «© © «© « «

OPEN and CLOSE Statementse.« «

INTEGER*2 and INTEGER*4 2. «© « «
COMPILER OPTIMIZATIONS « « « «

Characteristics of Optimized Programs ..
Compile-time Operations on Constants ...
Source Program Blocks«-.

Eliminating Common Subexpressions
Removing Invariant Computations From Loops

RUN-TIME PROGRAMMING CONSIDERATIONS

FORTRAN-77 OPTIONAL CAPABILITIES

Non-FPP Operation (F4PEIS.OBJ)
RSX-11S Support (F4P11S.0OBJ)

Optional OTS Error Reporting (F4PNER.OBJ)
Short Error Text (SHORT.OBJ) o © © ew 8 le

Intrinsic Function Name Mapping

OTS Resident Library (F4PRES.MAC) o 8 8

OTS Overlay Files 2. 26 «© «© «© © « «

RMS-11 LINK AND RUN-TIME CONSIDERATIONS ee

FCS LINK AND RUN-TIME CONSIDERATIONS

USING CHARACTER DATA

CHARACTER SUBSTRINGS 6 © « «© © « «

CHARACTER CONSTANTS © © © © © © © © © © «© «

DECLARING CHARACTER DATA «ec © e e

INITIALIZING CHARACTER VARIABLES

CHARACTER DATA EXAMPLES o © © © «© © © © © «@

CHARACTER LIBRARY FUNCTIONS © © © © © «© «© «

ICHAR Function +e © «e « e

INDEX Functionee «© «

(F4PMAP.OLB)
Floating-point Output Conversion (F4PCVF. OBJ)

3-19
3-19
3-20
3-20
3-20
3-20

e

b
P

p
b

|
S
I
N

R
H

{
O
O
W
O
®

OC
~]

Pm

LH
&

Pp

{
r
R

e

t
a

fe
te

e
tae

te

e
fe

fe

e
t

fe

f
t

1
O
O
V
U
O
N
T
A
U
U
N
B
W
N
H
N
E

r
e

®

D
A
A
D
N
H
A
N
A
A
A
 AN

{
O
N
W
W
W
W
D
N

FE

F
F

CHAPTER ~~

e
e

fF

©
©

©
©

@
@

o
e

N
e

e
e

en
e

ee

ee

ee

W
O
O
D
Y

N
P
b

P
W
N

FE

APPENDIX A

P
r
P

P
P
P

Pp

P
Y
P
P
Y
Y
 L
Y

S
W
A
M
P

W
H

APPENDIX B

e
d

w
w
w
 w

e¢

¢@

e
ee

@

e
¢

°

el

ce
l

el
l

oo
ol

l
el

l
ool

oe

C
Y
N
D
N

P
B
W
N
H
E

w
o
w

Ww

e

e
e

®

CONTENTS

LEN Function e e e e e e e e

LGE, LGT, LLE, LLT Functions

CHARACTER I/O «+. « «

USING INDEXED FILES

ACCESSING INDEXED FILES .. .

CREATING AN INDEXED FILE...
CURRENT-RECORD AND NEXT-RECORD

WRITING TO INDEXED FILES ...

Duplicate KeyS-.
Omitting Alternate Keys. .

READING FROM INDEXED FILES . .
UPDATING RECORDSe.. ~.
DELETING RECORDS ~

USING INTEGER KEYS -

ERROR CONDITIONS © -«

FORTRAN-77 DATA REPRESENTATION

INTEGER FORMATS °- © © © © 8

INTEGER*2 Formate e

INTEGER*4 Format

FLOATING-POINT FORMATS

POINTERS .
©

Hyperbolic Sine 6 «© «© «© «© « «

vi

REAL (REAL*4) Format (2-Word Floating Point) ..
DOUBLE-PRECISION (REAL*8) Format (4-Word

Floating Point)« « «© «© «© «© «e « «
COMPLEX Format . . « «6 « «© «© «© © © © © © © © © «

LOGICAL*1 (BYTE) FORMAT +. © « « «© « «

LOGICAL FORMATS . . «.« « « «© © «© © © © © © © © © «

CHARACTER REPRESENTATION . 2. «© «© «© © «© © © «© © © ef

HOLLERITH FORMAT . . «© «© «© «© © © © © © © © © © © «

RADIX-50 FORMAT 6 « © © «© © «© © «© © «© «

ALGORITHMS FOR APPROXIMATION PROCEDURES

REAL-VALUE PROCEDURES . . . « « « «© « «© © © e« « «

ACOS -- Real Floating-Point, Arc Cosine
DACOS -- Double-Precision Floating-Point Arc
Cosine . 2. « « « «6 « «© e . ° eo 8 © © 6 ew
ASIN -- Real Floating- -Point Arc Sine eo 6 © 6 ow
DASIN -~- Double-Precision Floating-Point Arc
Sine... oe . Pr rr er er er er

ATAN -- Real Floating- -Point Arc Tangent
ATAN2 -- Real Floating-Point Arc Tangent with
Two Parameters . . ° o 8 © © °o 8 6
DATAN -- Double- ~Precision Floating- -Point Arc
Tangent. . ° © © © © © « ° °
DATAN2 -- Double- -Precision Floating-—- ~Point Arc
Tangent with Two Parameters«.. .
ALOG10 -- Real Floating-Point Common Logarithm .
DLOG10 -- Double-Precision Floating-Point Common

Logarithm .. a a

COS -- Real Floating- -Point Cosine-.
DCOS -- Double-Precision Floating-Point Cosine .
EXP -- Real Floating-Point Exponential
DEXP -- Double-Precision Floating-Point
Exponential-.-. © 8 © © © eo ew ew
COSH -- Real Floating-Point Hyperbolic Cosine.
DCOSH -- Double Floating-Point Hyperbolic Cosine
SINH -- Real Floating-Point Hyperbolic Sine ..
DSINH -- Double-Precision Floating-Point

S
N

A
I
N

SN

N
Y

N
S
S

~)

I
S
A
N
D
S

B
W
W

W
P

F
e

e
e

e
e

m
e

H
e

e

®

W
W
W
N
H
N
N

N
N
N

F
F

e

U
m

W
N

Fe

T
D
W
W
W
D
W
W
O
W
W
W
W

Ww
W
w
w
w
 w
w

e

N
F

APPENDIX C

.
¢

@
«
e
e
e

e
e

r
e
e

N
e

W
N

&

A
A
A
A
R
Q
A
A
Q
A
A
A
A
A
A
N
A

P
o
P

e
B

W
W
W
h
Y

Y
D

D
E

r e
e

W
N

Fe

APPENDIX D

w
o
k
e

ke
no

R
e
n
e

Ee

k
en

en
e)

R
M
P
r
O
D
U
I
A
U
B
W
N
E
H

tT

0)

e N
e

CONTENTS

TANH -- Real Floating-Point Hyperbolic Tangent . B-6
DTANH -- Double-Precision Floating-Point
Hyperbolic Tangent ° ° ° e - « B-7
ALOG -- Real Floating-Point Natural Logarithm - B-7
DLOG -- Double-Precision Floating-Point Natural
Logarithm 6. « « « ee ee ee ee a > al |
SIN -- Real Floating-Point Sine o 8 6 we ew ew hw hw BH 8B
DSIN -- Double-Precision Floating-Point Sine .. B-9
SORT -- Real Floating-Point Square Root... . B-9
DSQRT -- Double-Precision Floating-Point Square
Root . 2. « -« re > Dea 0)
TAN -- Real Floating- -Point Tangent B-ll
DTAN -- Double-Precision Floating-Point Tangent B-11l

COMPLEX-VALUED PROCEDURES © « «© « « B-12

CSQRT -- Complex Square Root Function B-12
CSIN ~- Complex Sine © «© « « « B12

CCOS -- Complex Cosine +. «6 « « « « B12
CLOG -- Complex Logarithm &B-12
CEXP -- Complex Exponentiale.. B-13

RANDOM NUMBER GENERATORS 6 « © © © « « « B-1l3

RANDOM -- Uniform PSeudorandom Number Generator B-13

F4PRAN - Optional Uniform Pseudorandom Number
Generator e e e e e e e e e e e e e e e e e e

DIAGNOSTIC MESSAGES

DIAGNOSTIC MESSAGE OVERVIEW +. © «© «© «© » Cl
COMPILER DIAGNOSTIC MESSAGES« « «© « « C-l

Source Program Diagnostic Messages C-l

Compiler-Fatal Diagnostic Messages C-14
Compiler Limits a a a Olas io)

OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES oe 6 © «© e) = 6CH-16
Object Time System Diagnostic Message Format . C-16
Object Time System Error Codes C-18

OPERATING SYSTEM AND FILE SYSTEM ERROR CODES .. C-28
Operating System Error Codes« « C-28
Summary of FCS-1l Error Codese«.. C=-29
Summary of RMS-11l Error Codese. C=-31

SYSTEM SUBROUTINES

SYSTEM SUBROUTINE SUMMARY « « e
ASSIGN . 2. 2. 2 © © © © © © © © © eo ew tw lw lt lt lw
CLOSE . . 2. 2 6 «© © © © © © 6 © ew tw lw lw lt lt lw
DATE . 2. 2. 2 0 © © © 6 ew eo tw ew lt ew lt tw lt tw lt lw lw
IDATE . 2. 2. «© «© «© © © © © © © © © 6 ew ew tw tlw
ERRSET . 2. 2. 6 «© © © © © «© © © «© © © © © © ee ew
ERRSNS . 2. 2. 6 «© © © © © we ew wt lw ltl lt tlt lt lt ll
ERRTST . 2. 2. 6 © © © © © © © © © © 0 ew tw lw lt lw lt
EXIT . 2. 2 2 © © © © © © © © © 6 ew tw ew tw lw lt lt ll
USEREX . 2. 2. 2 2 © © © © © © ew ew wt lt tlt lt lt el
FDBSET . 2. 2. 6 «© «© © © © © © © 6 0 ew ew tw lw lt lt lt
IRAD50 . 2. 6 2 6 © © 6 ew tw tw ew lt lw lt lt lt lt lt lw ll
RAD50 . . « © © © © © © © © © © © © © tw ew tw ew
R50ASC . . 2 6 6 6 © ew tw ew tw lw tlw lt lt lt lt lt lt ll
SECNDS . 2. 6 «6 «© © © «© © © © © © 8 ew ew lw ew lt ew lw
0 DP |

G
U

o
C

o
9
o
P
e
F
7
9
9
7
7

D
O
U
V
U
M
D
A
N
A
A
R
U
N
A
P
A
W
W
W
N
e
E

COMPATIBILITY:
IV-PLUS

PDP-1]1 FORTRAN-77

DO LOOP MINIMUM ITERATION COUNT « « « « « E-

EXTERNAL STATEMENT . 2. 2. 2. «6 © «© © © © © «© © © «© « E

vii

APPENDIX F
eo

e¢

e
e

e
o
.

e

“
S
H

UI

PB

W
D

FE

fy
y
y

y
y

ey
yo
y)

Oy

Fy
OY

NO
E

NO
n
e

N
O

APPENDIX G

m
W
W

W
W

W
W
D

D
Y
D
D

DN

E
E

o
e

e
e

e

e
o
e

©
e

Wm

&

W
D

Fe

ry e

WM

&
W
D
 k
e

A
N
M
Q
A
A
I
A
I
A
A
N
A
N
A
N
D
N
A
A
N
A

APPENDIX H

INDEX

EXAMPLES

CONTENTS

OPEN STATEMENT BLANK KEYWORD DEFAULT -
OPEN STATEMENT STATUS KEYWORD DEFAULT
BLANK COMMON BLOCK PSECT (.$$$$.)e.-s
X FORMAT EDIT DESCRIPTOR «6 © «© «© « «

COMPATIBILITY: PDP-11

VAX-11 FORTRAN

PDP-11 FORTRAN-77,

LANGUAGE DIFFERENCES «© © © «© © « «

Logical TestS 6 «6 © «© © «© © «© © © © «
Floating-Point ResultS . . . 2. 2. 2 « «© « «© « «
Logical Unit Numbers-. « « « «
Assigned GO TO Label List22.2.-.
DISPOSE = 'Print' Specification -
Integer Computations . . 2... « « « «© « «© « «© «

Default Record Buffer Size« « « « «
RUN-TIME SUPPORT DIFFERENCES

Unformatted Data Transfer+.e.e.

Error Handling and Reporting «

PDP-1]1 FORTRAN-77 EXTENSIONS TO ANSI

(X3.9-1978) FORTRAN

STATEMENT EXTENSIONS . 2. 2. «© «© «© «© © © © © © «© «

STATEMENT SYNTAX EXTENSIONS 6.6.6...
Specification Statements +. « « «

Format StatementS 2. « «© © © © © «© e«

Control Statements2© 2. « «© © «© «© © © @

I/O StatementS . . 2. 2. «© «© «© © «© © © © © © ©
Miscellaneous Syntax Extensions

KEYWORD AND KEYWORD VALUE EXTENSIONS
OPEN Statement Keyword Extensions
OPEN Statement Keyword Value Extensions ...
CLOSE Statement Keyword Extensions
Close Statement Keyword Value Extensions...
READ Statement Keyword ExtensionS

LEXICAL EXTENSIONS . 2... « «© «© © «© © «© © © « «

SOFTWARE PERFORMANCE REPORTS

Call Sequence Conventions: Nonreentrant Example

Call Sequence Convention: Reentrant Example ..
Establishing a FORTRAN COMMON Area and Assembly
Language Subroutine ++. +6 « «© «© «© «
Use of FORTRAN COMMON Area by Assembly Language
Subroutine . . 2. . « «© © © © «© © © © © © © © ©
EQUIVALENCE USing Mixed Data Types« -«
Effects of Optimization on Error Reporting...
Character Data USage « «© «© © «© « «

Output Generated by Example Program

Sample Diagnostic Messages (Terminal Format) ..
Sample Diagnostic Messages (Listing Format) ..
Sample of Object Time System Diagnostic Messages

viii

IV,

e

ry

Pad

ray

Pay

ray

Pa)

ag
al

ay
al

W
W

W
GW

W

DW

NO

D
N
D
N

F
e

O
O
O
O

O
O

@
G
G
)

a
a

W
W
W
W
W
N
H
N
N
N
N
N
E

E
E

r

A

f
w

t
e

|

e
o
r
a
e
n

{
O
w

NM

U1

BP
U
I
D

©

. ~

FIGURES

TABLES

1-1

1-2

1-3

3-1

C-1

H-1

M
O

P
W
W
N
H
N
N

N
N
N

N
F
F
F

!
R
R
R

r
R
N
A

U
B
W
D
H
Y

F
W
D

PE

CONTENTS

Preparing a FORTRAN-77 Program for Execution
Simple Overlay Structure «es.
Overlay Structure . . 2... «© « « © © «© © «

Storage Map Examplee«.« « « «
Sample Diagnostic Messages (Terminal Format)
Software Performance Report (SPR) Form... .

RSX-ll File Specification Defaults
RSTS/E File Specification Defaults
VAX/VMS File Specification Defaults
FORTRAN Default Logical Device Assignments .
Implied Unit Numbers «e+ « »
Availability of File Organizations
Access Modes Per File Organization
RECL Value Limits «+ « «© © «
Default RECL Values-. 0.

RMS File System Librariese-.
Program Section Attributes ... co 6 6 8
Initial Error Control Bit Settings o 8 ee

Generic and Intrinsic Functions

Compiler Limits «6 « © © © «© « «
Default Logical Unit Numbers-.

1x

PREFACE

MANUAL OBJECTIVES

The purpose of this document is to help programmers create, link, and
execute PDP-ll FORTRAN-77 programs under the RSX-11M, RSX-11M-PLUS,

RSTS/E, and VAX/VMS (under AME) operating systems. These operating

systems must run on a machine with a Floating-Point Processor or a
floating-point microcode option.

The PDP-11 FORTRAN-77 language elements are described in the PDP-11
FORTRAN-77 Language Reference Manual.

INTENDED AUDIENCE

This manual is intended for programmers who have a working knowledge
of the fundamental elements and iinterrelationships of the FORTRAN
programming language; a detailed knowledge of the PDP-11 FORTRAN-77
version of FORTRAN is not essential. A detailed knowledge of the host
operating system also is not essential, but some familiarity with it
is recommended. Whenever a thorough understanding of a specific
aspect of an operating system is necessary, you are directed to the

appropriate manual for the required additional information.

STRUCTURE OF THIS DOCUMENT

This manual is organized as follows:

e Chapter 1 contains the information needed to compile, link,
and execute a PDP-1l1l FORTRAN-77 program on RSX-11M/M-PLUS,

RSTS/E, and VAX/VMS operating systems.

e Chapter 2 provides information about PDP-11 FORTRAN-77
input/output, including details on file characteristics,
record structure, and the use of certain OPEN’ statement
keywords.

e Chapter 3 describes the PDP-11 FORTRAN-77 run-time

environment, including the calling conventions, error
processing, and program section uSage.

e Chapter 4 describes PDP-11 FORTRAN-77 implementation concepts,
with particular emphasis on data types, generic functions, DO
loops, and floating-point data representation.

e Chapter 5 covers programming considerations relevant to
typical PDP-11l FORTRAN-77 applications.

Xi

PREFACE

Chapter 6 discusses the use of character data, including
character I/O and the character library functions.

Chapter 7 discusses the use of indexed files and ISAM; an
extended example is included.

Appendixes A through G summarize internal data representation,
diagnostic messages, system-supplied functions, compatibility
between PDP-11 FORTRAN-77 and other DIGITAL FORTRAN
implementations, and language extensions incorporated in
PDP-l11 FORTRAN-77. Appendix H covers the procedures’ for
reporting software problems.

ASSOCIATED DOCUMENTS

The following documents are relevant to FORTRAN-77 programming:

PDP-11 FORTRAN-77 Language Reference Manual

PDP-11l FORTRAN-77 Object Time System Reference Manual

PDP-11 FORTRAN-77 Installation Guide/Release Notes

RMS-11 User's Guide

RMS-11 MACRO Reference Manual

RSX-11M/M-PLUS Guide to Program Development

RSX-11M/M-PLUS Task Builder Manual

RSX-11M/M-PLUS Executive Reference Manual

RSTS/E System Manager's Guide

RSTS/E System User's Guide

RSTS/E Task Builder Reference Manual

RSTS/E Programmer's Utilities Manual

VAX-11/RSX-11M User's Guide

VAX-11/RSX-11 Programmer's Reference Manual

For a complete list of software documents, see the host operating
System documentation directory.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual:

Uppercase words and letters used in examples indicate that you
Should type the word or letter exactly as shown.

Lowercase words and letters used in examples indicate that you
are to substitute a word or value of your choice.

Brackets ([]) indicate optional elements.

Xii

PREFACE

Braces ({ }) are used to enclose lists from which one element

is to be chosen.

Ellipses (...) indicate that the preceding item(s) can _ be

repeated one or more times.

RET represents a carriage return.

RSX-11 is used as a generic term for the RSX-11M and

RSX-11M-PLUS operating systems.

xiii

SUMMARY OF TECHNICAL CHANGES

The PDP-11 FORTRAN-77 compiler has been modified to accommodate

Version 1.0 of the PDP=-1l1 FORTRAN-77 Symbolic Debugger. You will

notice a new compile-time switch, /DB, that allows the compiler to

provide symbol table information to the debugger (if the debugger has

been installed).

Two other new compile-time switches, /EX and /OP, are documented here.

Unlike earlier versions, PDP-l11 FORTRAN-77 V5.0 can run on VAX /VMS

under AME. Section 1.4 describes how to run FORTRAN-77 programs on

VAX/VMS.

All references to the IAS operating system have been deleted because

this system is no longer supported.

XV

CHAPTER 1

USING PDP-11 FORTRAN-77

DIGITAL's PDP-11 FORTRAN-77 consists of two main parts:

e A FORTRAN-77 compiler, which translates a source program into
object code.

e A collection of routines (facilities and services) that a
program may need while it is executing. This collection of
routines is called the Object Time System (OTS).

PDP-1l FORTRAN-77 operates on the RSX-11M, RSX-11M-PLUS, RSTS/E, and

VAX/VMS operating systems.

NOTE

Unless otherwise noted, the term
FORTRAN-77 is used in this manual to

mean PDP-11 FORTRAN-77. Also, RSX-1l is

used aS a generic term for the RSX-11M
and RSX-11M-PLUS operating systems.

1.1 OVERVIEW

To transform a PDP-11 FORTRAN-77 source program into an _ executing
task, you need to perform three steps:

1. Compile the program, to create a relocatable object module.

2. Task-build the program, to link the object module with
necessary external routines.

3. Execute the program (and debug it if necessary).

You compile a program by invoking the FORTRAN-77 compiler and
specifying the source files to be processed; then you task-build it
into an executable form called a task image by invoking your system's
Task Builder and specifying the object module to be processed.
Finally, you execute the task image by using the appropriate program
execution command for your system.

Figure 1-1 illustrates the process of transforming a FORTRAN-77 source
program into an executing task.

USING PDP-11 FORTRAN-77

USER

LIBRARIES

SYSTEM
LIBRARIES

Y

OBJECT TASK TASK EXECUTING SOURCE _ PROGRAM COMPILER MODULE BUILDER IMAGE TASK

LISTING MAP

ZK-241-81

Figure 1-1 Preparing a FORTRAN-77 Program for Execution

You invoke the compiler or the task builder by entering a command line
that specifies the desired function, the input files, the output
files, and any desired command options. Command lines are written in
one of the command languages (MCR, DCL, or CCL).

Input files and output files are specified in command lines by file
Specifications. File specifications for RSX-11 and VAX/vMS system
programs differ from those for RSTS/E system programs.

Optional command inputs are specified with special command mnemonics
called switches. Switches are appended to command words and file
Specifications.

To make entering a sequence of commands’ more efficient, especially
when a sequence is used often, you can place the sequence in an
indirect command file and then’ simply type the file name of the
indirect command file, preceded by @.

1.2 USING FORTRAN-77 ON RSX-11 SYSTEMS

This section contains information for the user who wants to compile,
task-build, and execute a PDP-11l FORTRAN-77 Program on an RSX-11M or
RSX-11M-PLUS system. see Section 1.3 for information on using
FORTRAN-77 on RSTS/E systems.

Specifically, this section describes how to:

@e Write RSX-11 file specifications

e Use command switches

e Use the FORTRAN-77 compiler to create an object module

e Use your system's Task Builder to create a task image

@ Execute a task image

USING PDP-11 FORTRAN-77

1.2.1 RSX-11 File Specifications

For each RSX-11 system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

The format of a file specification for an RSX-11 system program is as
follows:

device:[{g,m]filename.filetype;version

device

The device on which a file is stored or is to be written.

[g,m]

The user identification code (UIC) associated with the user file

directory containing the desired file. This code consists of a
group number (g) and a member number (m). Both g and m are octal
numbers. The default value for the UIC is the identification
code under which you logged in or where you set your default
directory.

filename

The file by its name. A filename value can be up to. nine
characters long.

filetype

The kind of data in the file. A filetype value can be up to
three characters long.

version

The version of the file that is desired. Versions are identified
by an octal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is usually required is the _ file
name. If you omit any other part of the file specification, a default
value is used. Table 1-1 summarizes the file specification default

values.

If you request compilation of a source program specified only by a
File name, the compiler searches for a file with the specified file
name that:

e Is stored on the default device

e Is cataloged under the current default UIC

e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
UIC is [200,200], and that you supply the following input or output
file specification to the compiler:

CIRCLE

USING PDP-11 FORTRAN-77

For input, the compiler searches device DKO in directory [200,200] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [200,200],
and assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [200,200] on DKO.

Table 1-1

RSX-11 File Specification Defaults

Optional Default Value
Element

device User's current default device

[g,m] User's current default UIC

filetype Depends on uSage:

Command file CMD
Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder TSK
Input to RUN command TSK
Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version
Output: highest existing version

plus 1

1.2.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs -- for example, to specify
that the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]

switch

A mnemonic that specifies a certain instruction to the compiler
Or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus Sign or the characters NO. For example, /-SP or /NOSP prevents automatic Spooling of a program
listing.

USING PDP-11 FORTRAN-77

1.2.3 Compiling a FORTRAN-77 Program with MCR

The PDP-11 FORTRAN-77 compiler is a system program that produces

relocatable object modules from FORTRAN-77 source code.

You invoke the FORTRAN-77 compiler with the MCR command F77 as
follows:

F77 [obj-file] [,list-file] = infiles-list

obj-file

The file specification of the object-code output file. This file
specification may be omitted if no object file is desired. If it
is entered, only a file name value is’ required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

F77 FILEL=FILE1L1

F77 FILE1.OBJ=FILE1

Note, however, that no listing file is created in either case.

list-file

The file specification of the listing output file. This file
Specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is’ required; a file type
value of LST is assumed by default if no file type is specified.
Under RSX-11M, the listing file is saved on disk and
automatically spooled to the line printer.

infiles-list

The list of input files that contain tthe source’ programs. In
many cases, this list contains only one file specification;
however, when there is more than one, you must separate’ the
individual specifications with commas. Only a file name is
normally required; a file type value of FTN is assumed if no
file type is specified.

For example, to compile three source programs called WINKN,

BLINKN, and NOD into an object module called SINGLE, you would
enter:

F77 SINGLE, SINGLE = WINKN, BLINKN, NOD

or, if you wish:

F77 SINGLE.OBJ,SINGLE.LST=WINKN.FTN, BLINKN.FTN,NOD. FTN

In addition, an F77 command line can contain one or more of the

compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you simply type:

F77 (RET

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is
installed, the compiler displays the following prompt:

F77>

USING PDP=-11 FORTRAN-77

To enter a succession of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands'7 are entered. Each command line must
Specify the appropriate input and output files for the program module
to be compiled, and any optional switches desired. You then type
CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINEN,
and NOD compiled into separate object modules, you can enter a
Succession of commands as follows:

F77 — (RET (From this point on, the compiler issues the F77>
prompt.)

F777 SWINKN ,WINKN/SP=WINKN

F77>BLINKN, BLINKN/SP=BLINKN (ET
F77>NOD,NOD/SP=NOD (RET
F77>°Z

Note that the compiler types the F77> prompt each time you enter a
command until you type CTRL/Z (*Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN

BLINKN, BLINKN/SP=BLINKN

NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>“Z

are equivalent to the previous example.

1.2.3.1 Compiling with DCL - You invoke the FORTRAN-77 compiler with
the DCL command FORTRAN as follows:

FORTRAN [/qualifiers] infiles-list

/qualifiers

Optionally included to control the output files and the compiler.

infiles-list

The list of input files that contain the source programs to be
concatenated and compiled.

The following DCL qualifiers have no MCR’ switch equivalents. The
remaining DCL qualifiers have effects that are equivalent to the
effects of the switches described in Section 1.2.4. Table 1-1A lists
the DCL qualifiers and their switch equivalents.

/FT77

On systems supporting FORTRAN-77 and FORTRAN IV, the /F77
qualifier is used to specify FORTRAN-77.

/LIST[:filespec]

Produces a listing file using the file specification provided.

USING PDP-11 FORTRAN-77

Table
DCL Qualifiers and Switch Equivalents

1-1A

DCL Qualifier Equivalent Switch

/{NO]CHECK

/CONTINUATIONS:n

/{NO]DEBUG

/{NO]DLINES

/{NO] EXTEND

/ [NOJF77

/IDENTIFICATION

/(NO]I4

/(NO]LIST:filespec

/(NO]MACHINE CODE

/([NO]MAP

/(NO]JOBJECT:filespec

/(NO] OPTIMIZE

/ [NO] SHAREABLE

/([NO]SOURCE

/(NO]STANDARD [:arg]
ALL

NONE

SOURCE

SYNTAX

/ [NO] TRACEBACK: [arg]

ALL

BLOCKS

LINES

NAMES

NONE

/ [NO]WARNINGS

/WORK FILES:n

/ ([NOJCK

/CO:n

/ (NO]DB

/ [NO] DE

/ [NOJEX

/ (NOJF77

/ID

/(NOJI4

none

/LI:3

/LI:2

none

/ [NO]OP

/ [NO]RO

/LI:2

/(NO]ST:

/(NO|TR:

/ [NO]WR

/WF :n

XXX

ALL
NONE

SOURCE
SYNTAX

XXX

ALL

BLOCKS
LINES

NAMES

NONE

USING PDP-11 FORTRAN-77

/NOLIST

Does not produce a listing file.

/OBJECT[:filespec]

Produces an object file using the file specification provided.

/NOOBJECT

Does not produce an object file.

1.2.4 Compiler Switches

You use compiler switches to specify optional instructions to the

compiler or to specify special attributes for input or output files.
A compiler switch consists of a slash followed by a 2-character ASCII
name, and has two forms: a positive form and a negative form. If the
compiler switch designator is SW, for example, then:

/SW sets an action;

/NOSW or /-SW negates that action.

In addition, certain compiler switches may be followed by a value.
The permitted values are character strings, octal numbers, and decimal
numbers. The default radix for a numeric value is decimal. Decimal
values may end with a decimal point; octal values always begin with a
number sign (#). Some examples of valid compiler switches are:

/14

/TR:NAMES

/CO:25
/CO: #23

Some switches are appended to the F77 Command, others to the
Specification for the input or output file to be affected by the
Switch. Unless the /LA switch is set, all the switches listed below
are initialized to their default values before each compilation.

The compiler switches and their meanings are as follows:

Switch Description

/CK Specifies that array references are to be checked to
ensure that they are within the array address
boundaries specified. However, array upper’ bounds
checking is not performed for arrays that are dummy
arguments for which the last dimension bound is
specified as * or 1. For example:

DIMENSION B(0:10,0:*)

or

DIMENSION A(1)

The default setting is /NOCK.

/CO:n Specifies that the compiler accepts at least n
continuation lines. (You may have fewer than n
continuation lines.) The value of n may range from 0
to 99; the default value is 19. Note that each level
of nesting of an INCLUDE Statement costs two
continuation lines.

1-7

Switch

/DB

/DE

/EX

/FT7

/ID

/14

/LA

/LiI:n

USING PDP-11 FORTRAN-77

Description

Specifies that the compiler is to provide symbol table
information for use by the PDP-11 FORTRAN-77 symbolic
debugger. When you use the /DB qualifier, you should
also use the /NOOP qualifier. The TKB switch /DA must
be specified when building a _ program task for
debugging.

The default setting is /NODB.

Requests compilation of lines with a D in column one.

These lines are treated as comment lines’ by the
default /NODE (see the PDP-11 FORTRAN-77 Language

Reference Manual for further information).

Specifies that the compiler compiles FORTRAN’ source
text that extends up to and includes column 132 of an
input record. If /EX is specified, then the ANSI
Standard extension flagger invoked by the command
Switch /ST:SOURCE issues an informational diagnostic
(one per record) for source lines extending beyond
column 72.

The default setting is INDEX.

Specifies an ANSI X3.9-1978 interpretation at compile
time of syntactic and semantic features that have a
different interpretation in PDP-11 FORTRAN IV-PLUS
V3.0. See Appendix E for a detailed discussion of the
incompatibilities between PDP-11 FORTRAN-77 and PDP-11
FORTRAN IV-PLUS. The default setting is /F77.

Types the FORTRAN-77 compiler identification and
version number on your terminal. /NOID is the default
setting.

Allocates two words for the default length of integer
and logical variables. Normally, single storage words
are the default allocation for all integer or logical
variables not given an explicit length definition
(such as INTEGER*2, LOGICAL*4). /NOI4 is the default
setting. See Section 4.2 for further information.

Causes the current switch settings to be retained
(latched) for Subsequent compilations in MCR
interactive mode. Normally, switch settings are
restored to their default values before processing
each command line. This switch is convenient for
compiling a series of programs in MCR interactive mode
with the same switch settings. /NOLA is the default.

Specifies listing options. The value of n may range
from 0 to 3. The meaning of each value is as follows:

n=0 Minimal listing file: diagnostic messages
and program section summary only.

n=l Source listing and program section summary.

n=2 Source listing, program section summary, and
Storage map (default).

n=3 Source listing, assembly code, program
Section summary, and storage map.

Switch

/LI:tn

(Cont.)

/OP

/RO

/SP

/ST:xXxXX

USING PDP-11 FORTRAN-77

Description

The default setting is /LI:2. See Section 3.6 for a
detailed description of the listing format; also
refer to the PDP-11 FORTRAN-77 Object Time System
Reference Manual.

Directs the compiler to produce optimized code. The
negative form, /NOOP, is recommended when /DB is
Specified.

The default setting is /OP.

Directs the compiler to specify pure code and _ pure
data sections as read-only in order to take advantage
of code sharing in multiuser tasks. See Section 3.3
for a description of program section attributes.
/NORO is the default.

Requests automatic spooling of the listing file. The
default is to spool (/SP).

Directs the compiler to look in your source code_ for
extensions to ANSI standard (X3.9-1978) FORTRAN at the

Full-language level. If the compiler finds
extensions, it flags them and produces informational
diagnostics about them. (To receive informational
diagnostics, you must set the warning switch /WR.)

Although PDP-1l1 FORTRAN-77 conforms to the ANSI

FORTRAN standard at the subset level, the compiler
flags only those features that are extensions to. the
full language. See Appendix G for a list of the
flagged extensions.

The /ST:xxx switch can take the following forms:

/ST Informational diagnostics for syntax
extensions

/ST:ALL Informational diagnostics for all
detected extensions

/ST:NONE No informational diagnostics

/ST:SOURCE Informational diagnostics for
lowercase letters and tab characters

in source code

/ST:SYNTAX Same as /ST

/NOST Same as /ST:NONE

The default value is /ST:NONE

see Section C.2 for a list of compiler diagnostic
messages.

USING PDP-11 FORTRAN-77

Switch Description

/TR:xxx Controls the amount of extra code included in the

compiled output for use by the OTS during error
traceback. This code is used in producing diagnostic
information and in identifying which statement in the
Source program caused an error during execution.
/TR:xxx can have the following forms:

/TR Same as /TR:ALL.

/TR: ALL Error traceback information is

compiled for all source statements and
function and subroutine entries.

/TR: LINES Same as /TR:ALL.

/TR:BLOCKS Traceback information is compiled for
Subroutine and function entries and
for selected source statements. The

source statements selected by the

compiler are initial statements in
sequences called blocks (see Section
5.2.3 for the definition of a block).

/TR: NAMES Traceback information is compiled only
for subroutine and function entries.

/TR:NONE No traceback information is produced.

/NOTR Same as /TR:NONE.

The default value is /TR:BLOCKS.

The setting /TR is generally advisable during program
development and testing. The default setting
/TR:BLOCKS is generally advisable for most programs in
regular use. The setting /NOTR may be used for
obtaining fast execution and minimal code, but it
provides no information to the OTS for diagnostic
message traceback.

/WF:n Determines the number of temporary disk work files
that should be used during compilation. From one to
three files can be used; the default value of n is 2.
Increasing the number of files increases the size of
the largest program that can be compiled, but may
decrease compilation speed.

/WR Enables compiler warning diagnostics (W-class
messages; see Section C.1.1). If /NOWR is set, no
warning messages are issued by the compiler. The
default is /WR.

The default settings of the compiler switches can be summarized as:

/NOCK/CO:19/NODB/NODE/NOEX/F77/NOID/NOI4/NOLA/LI: 2/O0P/NORO/SP/NOST/TR: BLOCKS/WF:2/WR

1.2.5 Task-Building a FORTRAN-77 Program

The Task Builder is a system program that links’ relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.2.5.1.

USING PDP-11 FORTRAN-77

The object modules to be linked can come’ from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
System object library LB: [1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object library or is separate object library
LB:[1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
Separate library.

Two versions of the OTS I/O support modules for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
Supports sequential and direct access to sequential files. The other
version of the OTS I/O support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access. to
Sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/0 Support library is the default
on your system and where the other version of the I/O support library
is maintained, should you need it.

The FCS-1l1 file system is always contained in the System object
library (that is, in LB:[1,1]SYSLIB.OLB); the RMS-11 file system is
always contained in a separate object library (that is,
LB: [1,1]RMSLIB.OLB).

The Task Builder also resolves references to resident common. blocks
and resident libraries; the task image produced, therefore, is ready
to be run under the operating system.

You can also use the Task Builder to build tasks with overlay
structures. For additional information about the Task Builder and
Task Builder options, refer to the Task Builder manual. for your
operating system.

1.2.5.1 Using the MCR Command TKB - You use the MCR. command TKB to
invoke the Task Builder.

The TKB command line has the format:

TKB [task-file]/FP[,map-file] = infiles-list

task-file

The file specification of the task-image output file. This file
Specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is required; a
file type value of TSK is assumed if no file type is specified.
Therefore, the commands

TKB FILE1/FP=FILE1

and

TKB FILE1.TSK/FP=FILE1

are equivalent. Note, however, that no map file is created in
either case.

USING PDP-1]1 FORTRAN-77

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEF11A).

NOTE

You must include the /FP switch when you
build a task; if you do not, the task
will exit with the FORTRAN) run-time

message: "TASK INITIALIZATION FAILURE."

(Refer to Section 5.4.1 for the one
exception to this rule.)

/DA Specifies that the system debugging aid ODT is _ to be
included in the task.

/ID Specifies that the task use I- and D-space. You can

build an I- and D-Space task on Versions 2.1 and later of

RSX-11M-PLUS; however, only FCS applications can _ be
built as I- and D-space_ tasks. If you use the /ID
Switch, you cannot use PDP-11 FORTRAN-77 DEBUG to debug

your program.

The default FORTRAN-77 compiler does not support I- and
D-space. To turn on the I- and D-space support in the
FORTRAN-77 compiler, modify the following TKB option in
the Task-Build command file:

GBLPAT=FORTRN: DSPACE:0

to read:

GBLPAT=FORTRN: DSPACE: 1

Then compile your program in the uSual manner and use the
/ID switch when task building.

/MU Specifies that multiple versions of the task may be- run
Simultaneously. The read-only portions of the task are
shared.

map-file

The file specification of the map output file. This file
specification may be omitted if no task-image map file is
desired. If a specification is entered, only a file name is
required; a file type value of MAP is assumed if no file type is
Specified. The map file is automatically spooled to the line
printer. On some operating systems, the map file is

automatically deleted after it is printed.

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to be
appended to the map file.

/SP Specifies that the map file is to be spooled to the line
printer.

USING PDP-11 FORTRAN-77

infiles-list

The list of input files that contain compiled FORTRAN-77 object
modules. (This list may also contain compiled or assembled
libraries and modules that were written in a language other’ than
FORTRAN, Such as MACRO.) In many cases, this list contains only
one file specification; however, when there is more than one
Specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a library file.

See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.5.

For example, to build a task image for the object file SINGLE,
created in Section 1.2.3, when the FORTRAN-77 OTS is included in
the system object library (SYSLIB.OLB), you can enter:

TKB SINGLE/FP,SINGLE=SINGLE

or, if you wish:

TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE. OBJ

Note that under RSX-11 the map file created by these commands is
both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a_ separate
library, this library must be explicitly specified in the Task
Builder command line. For example:

TKB SINGLE/FP,SINGLE=SINGLE,LB: [1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care that
object modules from other PDP-11 FORTRAN

compilers and OTS routines are not

accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-1ll FORTRAN compilers must not be
combined in a single task.

If the default I/O support library on your system is RMS-1l, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

TKB SINGLE/FP,SINGLE=SINGLE, LB: [1,1] F4POTS/LB, LB: [1,1]RMSLIB/LB

You can also use the TKB command in interactive mode, which permits
you to enter multiple-line commands. To enter interactive mode, you
Simply type:

TKB (ED)

USING PDP-11 FORTRAN-77

The Task Builder then displays the following prompt:

TKB>

You may now enter a single command line that indentifies all the input
files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines aS you need. When you have entered all your input files, you
must type a final line consisting of two slash characters (//),
followed by a carriage return (see Section 1.2.5.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.2.5.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double’ slash
described in Section 1.2.5.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:

TKB>

At this point, you can enter as many Task Builder options as you need,
one option per line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a Single
Slash (/) to signal no more options. The Task Builder then proceeds
to build the task and to produce any requested output. To exit
interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files
that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL =n

The number, in decimal, of files that can be opened
Simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

ASG -- You can assign logical unit numbers to’ physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

USING PDP-11 FORTRAN-77

dev

A physical device name.

n

A valid logical unit number.

m

A valid logical unit number.

The default device assignments are as follows:

ASG = SY0:1:2:3:4,TI0:5,CL0O:6

You can build a cluster library for the FORTRAN-77 OTS on RSX-11M
V4.1, RSX-11M-PLUS V2.1, and RSTS/E V8.0. Both the FCS and RMS
versions of the FORTRAN-77 OTS can be built as a cluster library. See
the Task Builder manual for your particular operating system for more
information on how to build a cluster library for the FORTRAN-77 OTS.

To use the FORTRAN-77 OTS cluster library, use the TKB option CLSTR as
Shown in the following example:

TKB>PROG/FP=PROG, LB: [1,1]F4POTS/LB
TKB>/
ENTER OPTIONS:
TKB>CLSTR=F4PCLS,FCSCLS:RO (or RMSRE:RO
TKB>//

F4PCLS is the FORTRAN-77 OTS cluster library; FCSCLS is the FCS
cluster library.

To save space, you may link to several shared resident libraries by
Sharing the same cluster, in the following way:

CLSTR=name ,name,name:access[:apr]

name

The library's symbolic name.

access

Either RO for read-only or RW for read-write.

apr

An integer from 1 through 7 that specifies the first active page
register into which the resident library is to be linked.

The F77 resident library can now cluster with either the FCS or RMS
resident library, FCSCLS or RMSRES, respectively.

COMMON -- If a program is to reference a system global common block,
you must declare this intention by specifying:

COMMON = name:access[:apr]

name

The symbolic name associated with the system global common block.

USING PDP-11 FORTRAN-77

access

Either RO for read-only or RW for read/write.

apr

An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident library consists of
position-independent code. (F4PRES does not consist of
position-independent code.)

The FORTRAN COMMON block with the same name is used to reference the
data in the system global common.

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (See Section 1.2.6.).

For information on how to determine the amount of buffer Space a
program may need, refer to the RMS-11 MACRO Reference Manual.

On RSTS/E systems, you can use the EXTTSK option to allocate up to 31K
words of memory to a task image (if you have the RSX Emulator in the
monitor and your default run-time system is RSX).

The EXTTSK option is more efficient than the ACTFIL option because:

e The amount of space can be more accurately specified.

e The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that supports the Extend Task system
directive, the RMS-11 version of the OTS attempts to extend the buffer
Space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
Is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time System Reference Manual.

USING PDP-11 FORTRAN-77

GBLPAT -- To patch FORTRAN logical unit 0 to a valid system logical
unit, use the option

GBLPAT= main-prog:S$LUNO:n

main-prog

The name of your main program segment.

n

A system logical unit number in the range 1 to 99. (see Section
2.1.3).

LIBR -~- If a program is to reference a system-shared library, you must
specify:

LIBR = name:access[:apr]

name

The library's symbolic name.

access

Either RO for read-only or RW for read/write.

apr

An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can Specify apr only when the resident library consists of
position-independent code (PIC). (F4PRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.

MAXBUF -- The default maximum record size for input/output is set
at 133 (decimal) bytes. You can increase this record size by
entering:

MAXBUF = n

n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
Sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as_ follows,
to specify the size of the largest record you intend to process.

For formatted records:

MAXBUF = RECL

For unformatted records:

MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

USING PDP-11 FORTRAN-77

RESLIB -- If a program references a user-shared library, you must
specify:

RESLIB= file-spec/access[:apr]

file-spec

The file specification of the shared-library task image and
symbol-table files.

access

Either RO for read-only or RW for read/write,

apr

An integer from 1 to 7 that specifies the first Active Page
Register into which the resident library is to be linked. You
can specify apr only when the resident library consists of
position-independent code (PIC). (F4PRES does not consist of
position-independent code.) Libraries are discussed in more
detail in Section 1.2.5.3.

UNITS -- The default number of logical units available to a
program is 6 (logical units 1 through 6, inclusive). You can set
this number smaller or larger at task-build time by entering:

UNITS =n

n

The number, in decimal, of logical units desired, from 0 to 99.

However, you should be aware that increasing the number of default
units available will increase task size. (On RSTS/E Systems, you can
specify only up to 14 logical units: from 1 through 14.)

The default device and file name associated with a logical~unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
section. If you need more units than the six provided as the default,
you must enter the UNITS option before you make any assignments with
ASG.

1.2.5.3 Library Usage on RSX-11 Systems - There are _ two types of
RSX-ll libraries, each of which consists of a collection of object
modules: relocatable and resident. A relocatable library is one that
the Task Builder can make a physical part of a task image. A resident
library is one that the Task Builder can make a logical part of a task
image but not a physical part; that is, the Task Builder can link it
to a task image but cannot copy it to a task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
Specification of the file. If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a library

USING PDP-11 FORTRAN-77

specification, it includes in the task image being built those modules
in the specified library that contain definitions of any currently

undefined global symbols.

Resident Libraries -- Resident libraries are located in main memory

and are shareable: that is, a single copy of each library is used by
all tasks that refer to it. You gain access to a resident library by
uSing the LIBR or common option, as described in Section 1.2.5.2.

System Libraries -- Each RSX-ll system has a system relocatable
library and, in addition, has available to it four system resident
libraries.

The system relocatable library is as follows:

LB: [1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any undefined global references remain after all of the
input files have been processed. If the definition of one of these
undefined global symbols is found, the appropriate object module is
included in the task being built.

Four system resident libraries may be available for use with MCR,
Consult your system manager to determine which of the following system
resident libraries are available on your system.

e FCSRES -- A shared library of commonly used FCS-11
input/output routines.

@ RMSRES -- A Shared library of RMS-11 input/output routines.

@e F4PRES -- A shared library of FORTRAN-77 OTS routines. This
library may reference FCSRES.

These system resident libraries are linked to a task by using the Task
Builder option, as follows:

LIBR = FCSRES:RO

or

LIBR = RMSRES:RO

or

LIBR = F4PRES:RO

User Libraries -- Using the Librarian Utility, you can construct your
own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate library switch, as
described in preceding sections. Consult the IAS/RSX-11 Utilities
Procedures Manual for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is ae relocatable library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

TKB PROG/FP=PROG,MATRIXLIB/LB

USING PDP-11 FORTRAN-77

1.2.6 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec[/INC=n]

filespec

The file specification of the file containing the task image.

The number, in decimal, of words of additional buffer space to

allocate for the OTS and file-system buffers. (For information
on how to determine the proper size of n, refer to the RMS-11
Macro Reference Manual.)

You can end a task before its normal completion by typing CTRL-C (“*C),
followed by the ABORT command, or you can end execution with a STOP
Statement. When the STOP statement is executed, the OTS will type a
line with the task name and the contents of the display text following
STOP.

A task that terminates as a result of a CALL EXIT statement or of
reaching the end of the main program does not produce any output to
indicate that it is terminating.

1.2.7 Examples of FORTRAN-77 Command Sequences

For a FORTRAN-77 task consisting of:

e The main program MAIN.FTN

e The subroutine SUBR1.FTN

e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,
and executing:

F77 JOB,JOB= MAIN,SUBR1,UTILITY (éE

TKB JOB/FP=JOB,LB: {1,1]F4POTS/LB RED
RUN JOB

For a more complex task that uses the same FORTRAN-77 source programs
but includes the following options:

e A system global common block named PARM

e An increase in the user record-buffer size

@e Subroutines in the object module library MATLIB.OLB

e The FORTRAN-77 OTS in separate library LB: [1,1]F4POTS.OLB

e@ Array bounds checking in the compiled code

USING PDP-1]1 FORTRAN-77

you can use the following sequence of commands:

F77 JOB, JOB=MAIN, SUBR1, UTILITY/CK
TKB
TKB>JOB/FP=JOB,MATLIB/LB,LB:[1,1]F4POTS/LB (ED
TKB>/
ENTER OPTIONS:
TKB>COMMON=PARM: RW
TKB>MAXBUF=256
TKB>//
RUN JOB (RET

You can also run this procedure by using indirect command files. For
example, Suppose the file COMPILE.CMD contains:

JOB, JOB=MAIN, SUBR1, UTILITY/CK

and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB, LB: [1,1]F4POTS/LB

COMMON =PARM: RW

MAXBUF=256
//

The following is now equivalent to the previous example:

F77 @COMPILE
TKB @LINK (RET

RUN JOB

1.3 USING FORTRAN-77 ON RSTS/E SYSTEMS

This section contains information for the user who wants to compile,
task-build, and execute a FORTRAN-77 program on a RSTS/E system.
Specifically, it describes how to:

e Invoke the FORTRAN-77 compiler and the RSTS/E Task Builder
(with RUN commands or with Concise Command Language (CCL)
commands)

e Write RSTS/E file specifications

e Use command switches

e Use the FORTRAN-77 compiler

e Use the RSTS/E Task Builder

@e Execute a task image

1.3.1 RSTS/E File Specifications

For each RSTS/E system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
the Task Builder) the output files to be produced.

1. Refer to the PDP-11 FORTRAN-77 Installation Guide for information

on how to install FORTRAN-77 as a CCL command.

1-21

USING PDP-11 FORTRAN-77

The format of a file specification for a RSTS/E system program is as
follows:

dev: {p,pn] filename.typ

dev

The device on which the file is stored or is to be written. You
designate the device type by specifying a 2-character device code
and, optionally, a unit number. You may also use a= logical
device name consisting of one to six alphanumeric characters.
The device element must be followed by a colon.

[p,pn]

The user account containing the requested file. This account
number consists of a project number and a programmer number, each
in decimal.

filename

One to six alphanumeric characters. There is no default value
for filename.

typ

One to three alphanumeric characters describing the type of data
in the file.

You need not explicitly state all the elements of a file specification
each time you compile, link, or execute a program. In most cases,
when you omit any part of a file specification, a default value is
used. Table 1-2 summarizes the applicable default values.

Table 1-2

RSTS/E File Specification Defaults

Optional Default Value

Element

dev: OY

[p,pn] User's current default PPN (project number,
programmer number)

typ Depends on usage:

Command file CMD

Input to the FORTRAN-77 compiler FTN
Output from FORTRAN-77 compiler OBJ
Source listing from FORTRAN-77 compiler LST
Input to Task Builder OBJ
Output from Task Builder TSK
Map listing from Task Builder MAP
Library input to Task Builder OLB
Overlay description input to Task Builder ODL
Input to executing program DAT
Output from executing program DAT

Refer to the RSTS/E System User's Guide for a complete discussion on
RSTS/E file specifications.

USING PDP-11 FORTRAN-77

1.3.2 Command Switches

See Section 1.2.2.

Note that the DCL qualifier /STANDARD=NONE does not work on _ RSTS/E

systems.

1.3.3 Compiling a FORTRAN-77 Program on RSTS/E Systems

The FORTRAN-77 compiler is a system program that produces'7- relocatable
object modules from FORTRAN-77 source code.

To invoke the FORTRAN-77 compiler, you type the command line:

RUN SF77_ (ET

Or, if the system manager has installed F77 as a CCL command, you~ can
type:

F77 (ET

In either case, after you press the RETURN key, the compiler issues

the prompt

F77>

You respond to the F77> prompt by entering input and output file

specifications (see Table 1-2) as follows:

[obj-file] [,list-file] = infiles-list

obj-file

The file specification of the object code file to be created by
the compiler. If you do not give a file type in this
Specification, .OBJ is supplied as a default. This is’ the
default file type expected by the Task Builder when you link the
compiled object modules to make an executable file. If you do
not want an object file, omit this file specification from the
command line.

list-file

The file specification of the listing file created by the
compiler. If you do not include a file type in this
Specification, the compiler supplies .LST as the default. If you
do not want a listing file, omit this file specification from the
command line. When you include a listing file name, the compiler
saves the listing file on disk; you can then print the listing
file using the RSTS/E QUE program after the compilation is done.
Refer to the RSTS/E System User's Guide for a description of the

QUE program. The following example shows how to create an object
file (OBJECT.OBJ) and a listing file (LISTF1.LST) on disk from an
input source file (INPUTF.FTN):

F77 OBJECT,LISTF1=INPUTF

If you specify a listing file without an object file, you must
precede the listing file with a comma to indicate the absence of
the object file. For example:

F77 ,LISTF1=INPUTF

USING PDP-11 FORTRAN-77

infiles-list

A list of the file specifications of the files that contain the
FORTRAN-77 source programs. You can specify more than one input
Source file in a command line; however, you generally specify
only one. When you have multiple specifications, separate them
with commas. If you do not provide a file type with this
Specification, the compiler assumes a default file type of .FTN.
For example, to compile three source programs called FILE1,
FILE2, and FILE3 into an object module called SINGLE, you enter:

P77 SINGLE,SINGLE=FILE1,FILE2, FILE3

You can also include the file types, as follows:

F777 SINGLE.OBJ,SINGLE.LST=FILE1. FTN, FILE2. FTN, FILE3.FTN

You may append to these file specifications any of the compiler
command switches listed and described in Section 1.2.4, except
the ones noted.

When the compilation is done, the compiler prints another F77> prompt.
You can perform as many compilations as you wish before you return to
System command level. To exit to the keyboard monitor, type CTRL/Z or
CTRL/C.

If F77 has been installed as a CCL command, you can type the entire
specification on one line, as follows:

F77 [obj-file] [,list-file] = infiles-list

Again, you may include any of the switches listed in Section 1.2.4,
except the ones noted.

1.3.4 Task-Building a FORTRAN-77 Program on RSTS/E Systems

The Task Builder is a system program that links’ relocatable object
modules to form an executable task image. The RSTS/E Task Builder
Reference Manual describes the Task Builder in detail.

1.3.4.1 Using the Task Builder on RSTS/E Systems - You can load _ the
Task Builder into memory by typing a RUN command in the following
format:

RUN STKB

Or, if your system manager has installed TKB as a CCL command, you can
type:

TKB (RET

In either case, after you press the RETURN key, the Task Builder
prints the TKB> prompt. You then enter a command line to identify the
files to be used, as follows:

TKB>[task-file][,map-file] = infiles-list

USING PDP-11 FORTRAN-77

After you press the RETURN key, the Task Builder prints another TKB>
prompt. You then:

@e Enter additional input files, if any.

e Type a line containing only two slashes(//) to tell the Task
Builder to create a task image and to exit with no TKB>
prompt.

e Press the RETURN key. (See Section 1.2.5.2 if you are
entering any Task Builder options.)

If TKB has been installed as a CCL command, and you want to- perform
one task-build operation, you can type the whole request on one line,
as follows:

TKB [task-file][,map-file] = infiles-list

After you press the RETURN key, the Task Builder processes the command
line. It then returns you to the keyboard monitor.

The parameters task-file, map-file, and infiles-list use the standard
RSTS/E file specification format described in Table 1-2.

The elements in the Task Builder command line are as follows:

task-file

The file specification of the task-image output file created by
the Task Builder. If you do not provide a file type in the
task-file name, the Task Builder supplies .TSK as a default.
Therefore, the following commands are equivalent:

TKB FILE1/FP=FILE1

TKB FILE1.TSK/FP=FILE1

The task-file specification may be omitted if no task-image file
is desired.

map-file

The file specification of the map output file. The map file

contains information about the size and location of routines and
global symbols within the task image. If you do not provide a
file type in the map-file name, the Task Builder supplies .MAP as
a default. When you specify a file name, the Task Builder’ saves
the map output on disk. If you do not specify a task-image file
Specification in the command line, you must precede the map-file
name with a comma to indicate the intended absence of the
Specification. The map-file specification may be omitted if no
task-image map file is desired.

infiles-list

The list of input files that contain compiled FORTRAN-77 object
modules. You can specify aS many input files as can fit in 80
columns in the command line; however, you can place additional
input files on additional lines, as long as each specification is
contained wholly on one line (not split between or among lines).
When you specify multiple object files or libraries, separate
them with commas. If you do not give a file type, .OBJ is
assumed as a default. For input library files, you must specify
the /LB switch following the input file name.

USING PDP-11 FORTRAN-77

For example, to build a task image for the object-file SINGLE
Created in Section 1.3.3, when the FORTRAN-77 OTS is included in
the system object library (LB:SYSLIB.OLB), you enter:

TKB SINGLE/FP,SINGLE=SINGLE

Or, if you prefer to include the file types, you enter:

TKB SINGLE.TSK/FP,SINGLE.MAP=SINGLE. OBJ

Both of these command lines save a copy of the map file
(SINGLE.MAP) on disk.

If a separate library contains the FORTRAN-77 OTS routines, you
must specify the library name in the Task Builder command line,
as shown in the following example:

TKB SINGLE/FP,SINGLE=SINGLE, LB: F4POTS/LB

If you are using RMS, you must explicitly include a reference to
the RMS library in the task-build command line. The previous
example would then become:

TKB SINGLE/FP,SINGLE=SINGLE,LB:F4POTS/LB, LB: RMSLIB/LB

When building a task image with object modules’ produced by
FORTRAN-77, you cannot include in the task object modules from
other PDP-11 compilers and OTS routines. Also, you must not
combine in a single task object modules created by different
PDP~-11l compilers.

In addition, a Task Builder command line can contain switches
that specify optional file-controlling actions. For example,
when you attach the /DA (Debugging Aid) switch to the task image
file specification, the Task Builder automatically includes
System on-line debugging aid LB:ODT.OBJ in the task image. To
negate the /DA switch, you can type either /-DA or /NODA. See
Section 1.2.5.1 for the switches that apply to the RSTS/E_ Task
Builder; the RSTS/E Task Builder command switches are also
described in the RSTS/E Task Builder Manual.

NOTE

You must include the /FP switch when you
build ae task. (Refer to Section 5.4.1
for the exception to this rule.) This
Switch instructs the Task Builder to
reserve an area into which the
intermediate results of floating-point
computations can be placed when job
rescheduling occurs. If you omit the
/FP switch, you may receive unreliable
results.

1.3.4.2 Task Builder Options - See Section 1.2.5.2.

USING PDP-11 FORTRAN-77

1.3.4.3 Library Usage on RSTS/E Systems - A library can be

relocatable or resident. A relocatable library is one that the Task

Builder can make a physical part of a task image. A resident library

is one that the Task Builder can make a logical part -- but not a

physical part -- of a task image; that is, the Task Builder can link

it to the task image but cannot copy it into the task image.

Relocatable Libraries -- Relocatable libraries reside in files on

disk. From these libraries, the Task Builder copies object modules

into the task image of each task that references those modules. You

must tell the Task Builder that an input file is contained in a

relocatable library by appending the switch /LB to the input file

specification of that file. If you do not include a file type with

the file name of such a file specification, the Task Builder assumes

-OLB as a default. When the Task Builder encounters a library file

specification, it includes in the task image being built those modules

in the library that contain definitions of any currently undefined
global symbols. The system relocatable library and user relocatable

libraries are described below.

Resident Libraries -- Resident libraries reside in memory, where’ they

are accessed, but not copied, by the tasks that need them. A task may

reference one or more resident libraries. You tell the task program

to access a resident library by specifying the LIBR or RESLIB option.

Section 1.2.5.2 describes these two options.

System Libraries -- RSTS/E has a system relocatable library called

LB:SYSLIB.OLB and, in addition, has available to it three system
resident libraries pertinent to FORTRAN-77.

The Task Builder searches the system relocatable library if any

undefined global references are left after it has processed all the

input files. If the Task Builder finds the definition of one of these

global symbols in the system relocatable library, it includes the

appropriate object module in the task.

Two system resident libraries may be available for use with RSTS/E:

e RMSRES - A resident library of RMS-11 input/output routines.

e F4PRES - A shared library of FORTRAN-77 OTS routines.

Ask your system manager if these libraries are available to you; your

system might not have enough memory to support them.

One or two of the following Task Builder options may link the system
libraries to your task:

LIBR = RMSRES:RO

Or

LIBR = F4PRES:RO

User Libraries -- Using the Librarian Utility, you can create your own
FORTRAN-77 (or assembly language) relocatable libraries. You then

access these libraries by using the /LB switch after the appropriate

library name. Refer to the RSTS/E Programmer's Utilities Manual for

more information on the Librarian Utility.

USING PDP-11 FORTRAN-77

You can access a user library by entering the following command line:

TKB PROG/FP=PROG ,MTXLIB/LB, LB: F4POTS/LB

MTXLIB.OLB is a relocatable library containing matrix-handling
routines; PROG is the object file of a compiled FORTRAN-77 program
that calls the matrix routines.

If you choose RMS as your file management system, enter the following
command lines:

TKB PROG/FP=PROG,MTXLIB/LB, LB: F4POTS/LB, LB: RMSLIB/LB

If your file management system is RMS-11, you cannot use a FORTRAN-77
resident library.

1.3.5 Executing a FORTRAN-77 Program on RSTS/E Systems

To execute a task, you use a RUN command as follows:

RUN filespec

filespec

A file specification of the form described in Section 1.3.1.

Generally, you do not need to include all the elements in a file
Specification. For example, to execute ae task file (TASKO1.TSK)
located in your account on the public disk structure, you type:

RUN TASKO1.TSK

The system assumes SY: as the default device and your account as’ the
default project-programmer number.

1.3.6 Examples of FORTRAN-77 Job Command sequences

For a FORTRAN-77 task image consisting of:

e The main program MAIN.FTN

e The subroutine SUBRTN. FTN

@ Several subprograms in the file SUBPRG.FTN

you can use the following sequence of commands for compiling,
task-building, and executing the image:

F77 JOB,JOB = MAIN,SUBRTN,SUBPRG _ (ET
TKB JOB/FP = JOB (RET
RUN JOB (RET

For a more complex task that uses the same FORTRAN-77 source programs but includes the following options:

@ A system global common block named PARAM

e An increase in the user record-buffer size

e Subroutines in the object-module library MATLIB.OLB

you use

USING PDP-11 FORTRAN-77

The FORTRAN-77 OTS in separate library LB:F4POTS.OLB

Array bounds-checking in the compiled code

a sequence of commands as follows:

F77 JOB, JOB=MAIN,SUBRTN,SUBPRG/CK (RET

TKB RET

TKB>JOB/FP=JOB,MATLIB/LB, LB: F4POTS/LB (ET

TKB>/ (RET

ENTER OPTIONS:

TKB>COMMON=PARAM: RW

TKB>MAXBUF=256 (RET

TKB>// (RET

RUN JOB (RET

You can also run the above procedure uSing indirect command files.
For example, if the file COMPIL.CMD contains:

JOB, JOB=MAIN, SUBRTN, SUBPRG/CK

and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB, LB: F4POTS/LB

/
COMMON=PARAM : RW
MA XBUF=256

//

then the following sequence is equivalent to the previous example:

F77 @COMPIL (RET

TKB @LINK (ET

RUN JOB

1.3.7 Programming Considerations for RSTS/E Users

You should note the _ following programming considerations and
restrictions:

The RSX emulator restricts the use of the memory management

(PLAS) directives to resident libraries only; consequently,
the use of virtual arrays is not Supported.

RSTS/E does not provide an interface for the set of FORTRAN-77
process-control routines or RSX system directives.

You cannot extend an existing contiguous file under RSTS/E;
you must instead allocate an adequate amount of space when you

create a contiguous file under RSTS/E.

A FORTRAN-77 program must load into no more than 28K _ words.
However, if the RSX emulator Support has been added to the
System monitor, a program may extend to 31K words. In
addition, a program may use up to 32K words if resident
libraries are supported.

USING PDP-11 FORTRAN-77

e The UNITS option for TKB is restricted to the range 1-14 on
RSTS/E systems.

NOTE

You will not receive an error message
from the Task Builder if your program
exceeds 28K words. However, if your
program does surpass the prescribed
maximum size, you will receive the
run-time error message, "?Illegal byte
count for I/O."

e The OTS does not let you supersede an existing file. If you
do attempt to create a new file with the same name as that of
an existing file, you will receive error number 30: "Open
failure."

e A contiguous file cannot be extended on RSTS/E. The initial
Size of a contiguous file is also the maximum size.

e You can read past EOF records on interactive devices.

@e Refer to the RMS-11 User's Guide for a list of RSTS/E
restrictions on RMS-1ll.

1.4 USING FORTRAN-77 ON VAX/VMS UNDER AME

This section contains information for the user who wants to compile,
task-build, and execute a PDP-1l1l FORTRAN-77 program on a VAX/VMS
system.

Specifically, this section describes how to:

e Write VAX/VMS file specifications

e Use command switches

e Use the FORTRAN-77 compiler to create an object module

e Use your system's Task Builder to create a task image

@ Execute a task image

For more information on using VAX/VMS AME, consult the VAX-11/RSX-11M
User's Guide and the VAX-11/RSX-11M Programmer's Reference Manual.

1.4.1 VAX/VMS File Specifications

For each VAX/VMS system program you use, you must specify the input
files to be processed and (optionally for the FORTRAN-77 compiler and
your system's Task Builder) the output files to be produced.

USING PDP-11 FORTRAN-77

The format of a file specification for a VAX/VMS system program is as

follows:

device: [directory] filename.filetype;version

device

The device on which a file is stored or is to be written.

[directory]

The named directory containing the desired file.

filename

The file by its name. A filename value can be up to. nine
characters long.

filetype

The kind of data in the file. A filetype value can be up _ to
three characters long.

version

The version of the file that is desired. Versions are identified

by a decimal number, which is incremented by 1 each time a new
version of a file is created.

You need not explicitly state all the elements of a file specification
each time you compile, task-build, or execute a program. The only
part of a file specification that is usually required is the _ file
name. If you omit any other part of the file specification, a default
value is used. Table 1-3 summarizes the file specification default
values.

Table 1-3

VAX/VMS File Specification Defaults

Optional Default Value

Element

device User's current default device

[directory] User's current default directory

filetype Depends on usage:

Command file CMD

Input to compiler FTN
Output from compiler OBJ
Input to Task Builder OBJ
Output from Task Builder EXE
Input to RUN command EXE

Compiler source listing LST
Task Builder map listing MAP
Task Builder library input OLB
Task Builder overlay description ODL
Input to executing program DAT
Output from executing program DAT

version Input: highest existing version

Output: highest existing version
plus 1

1-31

USING PDP-11 FORTRAN-77

If you request compilation of a source Program specified only by a
file name, the compiler searches for a file with the specified file
name that:

e Is stored on the default device

e Is cataloged under the current default directory

e Has a file type of FTN

If more than one file meets these three conditions, the compiler
chooses the file with the highest version number.

For example, assume that your default device is DKO, that your default
directory is [SMITH], and that you supply the following input or
output file specification to the compiler:

CIRCLE

For input, the compiler searches device DKO in directory [SMITH] for
the highest version of CIRCLE.FTN. For output, the compiler generates
the file CIRCLE.OBJ, stores it on device DKO in directory [SMITH], and
assigns it a version that is higher by 1 than any other version of
CIRCLE.OBJ currently cataloged in directory [SMITH] on DKO.

1.4.2 Command Switches

Command switches are devices you can use in command lines to specify
optional command instructions or inputs: for example, to specify that
the compiler compile all lines with a D in column 1.

Command switches are appended to other entities in a command line and
have the form:

/switch[:val]

switch

A mnemonic that specifies a certain instruction to the compiler
or Task Builder.

val

A parameter consisting of an octal or decimal number, or a string
of characters.

Many switches have a negative form that negates the action specified
by the positive form. You can obtain the negative form generally by
following the required slash with a minus Sign or the characters NO.
For example, /-SP or /NOSP prevents automatic spooling of a program
listing.

1.4.3 Compiling a FORTRAN-77 Program

The PDP-11 FORTRAN-77 compiler is a System program that produces
relocatable object modules from FORTRAN-77 source code,

1-32

USING PDP-11 FORTRAN-77

You invoke the FORTRAN-77 compiler with the MCR command F77 as

follows:

MCR F77 [obj-file] [,list-file] = infiles-list

obj-file

The file specification of the object code output file. This file

specification may be omitted if no object file is desired. If it
is entered, only a file name value is required; a file type
value of OBJ is assumed by default if no file type is specified.
Therefore, the following commands are equivalent:

MCR F77 FILE1=FILE1

MCR F77 FILE1.OBJ=FILE1

Note, however, that no listing file is created in either case.

list-file

The file specification of the listing output file. This file
specification may be omitted if no listing file is wanted. If it
is entered, only a file name value is’ required; a file type

value of LST is assumed by default if no file type is specified.
The listing file is saved on disk.

infiles-list

The list of input files that contain the source’ programs. In

many cases, this list contains only one file specification;
however, when there is more than one, you must’ separate the
individual specifications with commas. Only a file name is
normally required; a file type value of FTN is assumed if no
file type is specified.

For example, to compile three source programs called WINKN,

BLINKN, and NOD into an object module called SINGLE, you would
enter:

MCR F77 SINGLE, SINGLE = WINKN, BLINKN, NOD

or, if you wish:

MCR F77 SINGLE.OBJ, SINGLE. LST=WINKN.FTN, BLINKN.FTN,NOD.FTN

In addition, an F77 command line can contain one or more of the

compiler switches listed and described in Section 1.2.4.

You can also use the F77 command in interactive mode, which permits
you to enter multiple compilation commands (lines). To invoke the
interactive mode (if you have installed the image of the FORTRAN-77
compiler as F77), you Simply type:

MCR F77

Regardless of the name under which the PDP-11 FORTRAN-77 compiler is

installed, the compiler displays the following prompt:

F77>

To enter a succesSion of compilation commands under interactive mode,
you type one command line after each prompt, followed by a carriage
return, until all commands’) are entered. Each command line must
specify the appropriate input and output files for the program module

to be compiled, and any optional switches desired. You then type

1-33

USING PDP-11 FORTRAN-77

CTRL/Z. For example, if you want the FORTRAN programs WINKN, BLINKN,
and NOD compiled into separate object modules, you can enter a
succession of commands as follows:

MCR F77_ (RET (From this point on, the compiler issues the F77>
prompt.)

F777 >WINKN ,WINKN/SP=WINKN (RET)

F77>BLINKN, BLINKN/SP=BLINKN

F77>NOD,NOD/SP=NOD (éT
F77>°2Z

Note that the compiler types the F77> prompt each time you enter a
command, until you type CTRL/Z (*Z) to return system control to MCR.

You can also enter the name of an indirect command file in response to
the F77> prompt. For example, if the file COMPILE.CMD contains:

WINKN, WINKN/SP=WINKN
BLINKN, BLINKN/SP=BLINKN
NOD, NOD/SP=NOD

then the commands

F77>@COMPILE
F77>°2Z

are equivalent to the previous example.

1.4.4 Task-Building a FORTRAN-77 Program

The Task Builder is a system Program that links relocatable object
modules to form an executable task image. You invoke the Task Builder
by entering the MCR command TKB. TKB is described in Section 1.4.4.1.

The object modules to be linked can come from user-specified input
files, user libraries, or system libraries. The Task Builder resolves
references to symbols defined in one module and referred to in other
modules. Should any symbols remain undefined after all user-specified
input files are processed, the Task Builder automatically searches the
System object library LB:[1,1]SYSLIB.OLB to resolve them.

The default FORTRAN-77 object time system library normally either is
part of the system object library or is separate object library
LB: [1,1]F4POTS.OLB. Consult your system manager to determine whether
the FORTRAN-77 object time system (OTS) is part of SYSLIB.OLB or is a
Separate library.

Two versions of the OTS I/O support modules’ for FORTRAN-77 are
distributed. One version uses File Control Services (FCS-11), which
Supports sequential and direct access to sequential files. The other
version of the OTS I/O support library uses Record Management Services
(RMS-11), which supports sequential, direct, and keyed access to
Sequential, relative, and indexed files. Consult your system manager
to determine which version of the I/O Support library is the default
on your system and where the other version of the I/O Support library is maintained, should you need it.

The FCS-11 file system is always contained in the system object
library (that is, in LB: [1,1]SYSLIB.OLB); the RMS-11 file system is
alwayS contained in a separate object library (that is,
LB: [1,1]RMSLIB.OLB).

USING PDP-11]1 FORTRAN-77

The Task Builder also resolves references to resident common blocks

and resident libraries; the task image produced, therefore, is ready

to be run under the operating system.

You can also use the Task Builder to build tasks with overlay

structures.

1.4.4.1 Using the MCR Command TKB - You use the MCR command MTKB_ to
invoke the Task Builder.

The TKB command line has the format:

MCR TKB [task-file]/FP[,map-file] = infiles-list

task-file

The file specification of the task-image output file. This’ file
specification may be omitted if no task-image file is desired.
If a specification is entered, only a file name is’ required; a

filetype value of TSK is assumed if no filetype is specified.
Therefore, the commands:

MCR TKB- FILE1/FP=FILE1

and

MCR TKB FILE1L.TSK/FP=FILE1

are equivalent. Note, however, that no map file is created in

either case.

The following switches may be applied to the task-image file:

/FP Specifies that the task use the Floating Point Processor
(FP11) or floating-point microcode option (KEFI11A).

NOTE

You must include the /FP switch when you

build a task; if you do not, the task
will exit with the FORTRAN” run-time

message: "TASK INITIALIZATION FAILURE."

(Refer to Section 5.4.1 for the one

exception to this rule.)

/DA Specifies that the system debugging aid ODT is to be
included in the task.

/MU Specifies that multiple versions of the task may be- run
Simultaneously. The read-only portions of the task are

shared.

map-file

The file specification of the map output file. This file

specification may be omitted if no task-image map file is
desired. If a specification is entered, only a file name is
required; a file type value of MAP is assumed if no file type is
specified. The map file is automatically spooled to the line
printer. On some operating systems, the map file is
automatically deleted after it is printed.

USING PDP-11 FORTRAN-77

The following switches may be applied to the map file:

/CR Specifies that a global cross-reference listing is to. be
appended to the map file.

/SP Specifies that the map file is to be spooled to the line
printer.

infiles-list

The list of input files that contain compiled FORTRAN-77 object

modules. (This list may also contain compiled or assembled
libraries and modules that were written in a language other’ than
FORTRAN, such as MACRO.) In many cases, this list contains only

one file specification; however, when there is more than one
specification, you must separate the individual specifications
with commas. Only a file name is normally required; a file type
value of OBJ is assumed.

The following switches may be applied to input files:

/LB Specifies that the input file is to be a library file.
See Section 1.2.5.3.

/MP Specifies that the input file is an overlay description
file. See Section 1.4.

For example, to build a task image for the object file SINGLE,
created in Section 1.4.3, when the FORTRAN-77 OTS is included in

the system object library (SYSLIB.OLB), you can enter:

MCR TKB SINGLE/FP,SINGLE=SINGLE

or, if you wish:

MCR TKB- SINGLE.TSK/FP,SINGLE.MAP=SINGLE. OBJ

Note that under VAX/VMS AME the map file created by these

commands is both saved on disk and spooled to the line printer.

If the FORTRAN-77 OTS routines are contained in a_ Separate
library, this library must be explicitly specified in the Task
Builder command line. For example:

MCR TKB SINGLE/FP,SINGLE=SINGLE, LB: {1,1]F4POTS/LB

NOTE

When using a separate FORTRAN-77
library, take particular care _ that
object modules from other PDP-11 FORTRAN
compilers and OTS routines are not

accidentally included in a task being
built from FORTRAN-77 object modules.
Object modules produced by different
PDP-11 FORTRAN compilers must not be

combined in a single task.

If the default I/O support library on your system is RMS-1l, you
must explicitly reference RMSLIB in the task-build command line.
The previous example then becomes:

MCR TKB SINGLE/FP,SINGLE=SINGLE, LB: [1,1]F4POTS/LB, LB: [1,1]RMSLIB/LB

USING PDP-11 FORTRAN-77

You can also use the TKB command in interactive mode, which permits

you to enter multiple-line commands. To enter interactive mode, you

Simply type:

MCR TKB

The Task Builder then displays the following prompt:

MCR TKB>

You may now enter a Single command line that identifies all the input

files you want to use to begin the task build, followed by a carriage
return. Or you may enter additional input files on as many subsequent
lines as you need. When you have entered all your input files, you
must type a final line consisting of two slash characters (//),

followed by a carriage return (see Section 1.4.4.2 if you are entering
any Task Builder options). The double slash signals the Task Builder
to begin processing.

1.4.4.2 Task Builder Options - The Task Builder allows numerous
options to be specified. Several of these are of particular interest
to the FORTRAN-77 user.

To specify options in the MCR command TKB, you must use the _ Task
Builder in interactive mode, and you must terminate command input with
a line consisting of a single slash (/) (rather than the double- slash
described in Section 1.4.4.1). The single slash signals the Task
Builder to prompt you, as follows, for option information:

ENTER OPTIONS:

TKB>

At this point, you can enter as many Task Builder options as you need,
one option per line. After you enter each option, the Task Builder
automatically prompts you for the next option until you enter a single
slash (/) to signal no more options. The Task Builder then proceeds

to build the task and to produce any requested output. To exit

interactive mode in TKB, enter two slashes (//).

The Task Builder options considered useful to you as a FORTRAN-77
programmer are described below.

ACTFIL -- You can declare the total number of input and output files
that a task can open simultaneously, and allocate the proper number of
buffers, by entering:

ACTFIL = n

The number, in decimal, of files that can be opened

simultaneously and the buffers needed to accommodate them. The
default value is 4.

Any attempt to open a file or use a logical unit when space is not
available for at least one buffer will cause an error at run time.

The value n includes both explicitly and implicitly opened files.

USING PDP-11 FORTRAN-77

ASG -- You can assign logical unit numbers’ to physical devices by
entering:

ASG = devl:nl:n2:...,dev2:ml:m2:...

dev

A physical device name.

n

A valid logical unit number.

m

A valid logical unit number.

The default device assignments are as follows:

ASG = SY0:1:2:3:4,TI0:5,CLO:6

EXTTSK -- You can allocate additional buffer space for RMS-11
input/output by using the option

EXTTSK = n

The number, in decimal, of words to allocate. The value assigned
by this option may be overridden by the /INC option on the RUN
command (See Section 1.4.5.).

For information on how to determine the amount of buffer space a
program may need, refer to the RMS-11 MACRO Reference Manual.

The EXTTSK option is more efficient than the ACTFIL option because:

e The amount of space can be more accurately specified.

@e The space allocated by EXTTSK does not require disk space in
the task-image file.

When you use an operating system that Supports the Extend Task system
directive, the RMS-11l version of the OTS attempts to extend the buffer
Space dynamically.

FMTBUF -- The default size of the buffer used to contain the
internally compiled form of a format specification stored in an array
is 64 bytes. You can increase the size of this buffer by entering:

FMTBUF = n

The decimal size, in bytes, of the run-time format compilation
buffer.

The total size needed for format compilation is equal to the largest
run-time format specification used by the program. For information on
how to determine the amount of space needed to store a given format,
refer to the PDP-11 FORTRAN-77 Object Time system Reference Manual.

USING PDP-11 FORTRAN-77

GBLPAT -- To patch FORTRAN logical unit 0 to a valid system logical
unit, use the option

GBLPAT= main-prog:$LUNO:n

main-prog

The name of your main program segment.

n

A system logical unit number in the range 1 to 99 (see Section
2.1.3) °

MAXBUF -- The default maximum record size for input/output is set at
133 (decimal) bytes. You can increase this record size by entering:

MAXBUF = n

The number of bytes (in decimal).

The default generally is adequate for sequential input/output. If
sequential, direct, or keyed access operations are performed with
records larger than 133 bytes, you must use this option, as_ follows,
to specify the size of the largest record you intend to process.

For formatted records:

MAXBUF = RECL

For unformatted reccords:

MAXBUF = 4*RECL

For segmented records (see Section 2.2.3.3 for a definition of
segmented records):

MAXBUF = (4*RECL)+2

The two extra bytes for segmented records are the segment control
bytes (see Section 2.2.3.3).

UNITS -- The default number of logical units available to a program is
6 (logical units 1 through 6, inclusive). You can set this number
smaller or larger at task-build time by entering:

UNITS = n

The number, in decimal, of logical units desired, from 0 to 99.

However, you Should be aware that increasing the number of default
units available will increase task size.

The default device and file name associated with a logical-unit number
are discussed in Section 2.1.1.

When you need to assign devices to the units you have specified with
the UNITS option, use the ASG option discussed earlier in this
Section. If you need more units than the six provided as the default,
you must enter the UNITS option before you make any assignments with
ASG.

USING PDP-11 FORTRAN-77

1.4.4.3 Library Usage on VAX/VMS Systems - There is only one type of
VAX/VMS library: relocatable. A relocatable library is a collection
of object modules that the Task Builder can make a physical part of a
task image.

Relocatable Libraries -- Relocatable libraries are stored in files on
disk. From these libraries, the Task Builder copies object modules
into the task image of each task that references those modules. You
must tell the Task Builder that an input file is contained in a
relocatable library by attaching the switch /LB to the input file
specification of the file. If you do not include an extension with
the file name of such a specification, the Task Builder assumes .OLB
as a default. When the Task Builder encounters a library
Specification, it includes in the task image being built those modules
in the specified library that contain definitions of any currently
undefined global symbols.

System Libraries -- Each VAX/VMS system has a_e system. relocatable
library, which follows:

LB: [1,1]SYSLIB.OLB

The Task Builder automatically searches the system relocatable library
to see if any undefined global references remain after all the input
files have been processed. If the definition of one of these
undefined global symbols is found, the appropriate object module is
included in the task being built.

User Libraries -- Using the Librarian Utility, you can construct your
own FORTRAN-77 (or assembly language) relocatable libraries. You then
access these libraries by using the appropriate library switch, as
described in preceding sections. Consult the VAX-11/RSX-11M User's
Guide for further information on the Librarian Utility.

For example, if MATRIXLIB.OLB is a relocatable library containing
matrix manipulation routines and PROG is the object file of a compiled
FORTRAN-77 program that calls the matrix routines, you could enter the
following command line for the Task Builder:

MCR TKB PROG/FP=PROG,MATRIXLIB/LB

1.4.5 Executing a FORTRAN-77 Program

To begin task execution once you have built a task image, you enter a
RUN command of the form:

RUN filespec

filespec

The file specification of the file containing the task image.

You can end a task before its normal completion by typing CTRL-C (“C).

You should not suspend task execution with a PAUSE statement under
VAX/VMS. There is no way to resume execution once the task has
paused.

In batch mode, the PAUSE statement types the display to the log file,
but the program does not pause.

A task that terminates as a result of a CALL EXIT statement or of
reaching the end of the main program does not produce any output to
indicate that it is terminating.

USING PDP-11 FORTRAN-77

1.4.6 Examples of FORTRAN-77 Command Sequences

For a FORTRAN-77 task consisting of:

e The main program MAIN.FTN

e The subroutine SUBR1.FTN

e Several subprograms in the file UTILITY.FTN

you can use the following sequence of commands for compiling, linking,

and executing:

MCR F77 JOB,JOB= MAIN,SUBR1,UTILITY (RET

MCR TKB JOB/FP=JOB Q@Eér

RUN JOB (RET

For a more complex task that uses the same FORTRAN-77 source’ programs

but includes the following options:

e An increase in the user record-buffer size

e Subroutines in the object module library MATLIB.OLB

e The FORTRAN-77 OTS in separate library LB:[1,1]F4POTS.OLB

@e Array bounds checking in the compiled code

you can use the following sequence of commands:

MCR F77 JOB,JOB=MAIN,SUBR1,UTILITY/CK (EéD)
MCR TKB

TKB>JOB/FP=JOB,MATLIB/LB,LB:[1,l1]F4POTS/LB (ET

TKB>/ (ET
ENTER OPTIONS:

TKB>MAXBUF=256

TKB>//
RUN JOB (eT

You can also run this procedure by using indirect command files. For
example, suppose the file COMPILE.CMD contains:

JOB, JOB=MAIN, SUBR1, UTILITY/CK

and the file LINK.CMD contains:

JOB/FP=JOB,MATLIB/LB, LB: [1,1]F4POTS/LB

/
COMMON=PARM : RW
MAXBUF=256

//

The following is now equivalent to the previous example:

MCR F77 @COMPILE
MCR TKB @LINK_ (ET
RUN JOB’ (ED.

1.5 OVERLAYS

The overlay facility provided by the Task Builder allows large
programs to be executed in relatively small areas of main memory. An
overlaid program is essentially a program that has been broken down

USING PDP-11 FORTRAN-77

into parts, or overlays, that are loaded into memory automatically
during program execution.

You construct an overlaid program by providing a single file as input
to the Task Builder. This file describes the structure of the
overlaid program and the actual input files and libraries. You
indicate an overlay file in TKB commands with the /MP qualifier ona
Single input file. For example:

TKB A/FP = A/MP

No other input files need be specified. The default file type for an

overlay description file is ODL.

To specify the structure of an overlay, you use. the Overlay

Description Language (ODL).

The following sections provide an introduction to the Task Builder
Overlay Description Language (ODL) and information about building
Simple overlaid FORTRAN-77 programs. Consult your operating system's
Task Builder manual for more detailed information about overlays and
building overlaid programs; also see Section 2.6.5 for information on
task-building programs with RMS-11 using overlays.

1.5.1 Introduction to the Overlay Description Language

You can build overlay structures using three ODL statements:

- ROOT Specifies the tree structure of an overlay

-FCTR Specifies a single branch of an overlay tree, called a
factor or segment

- END indicates the end of an overlay description

For example, Suppose a FORTRAN-77 program consists of a main program
(MAIN.OBJ) that performs input and output and calls three subroutines:
One subroutine does preprocessing of the data (PRE.OBJ); one
subroutine does the main processing function of the program
(PROC.OBJ); and one subroutine does postprocessing of the data
(POST.OBJ). The following ODL statements specify an overlay structure
having a resident portion that consists of the main program and three
overlays that share the same memory locations. Each overlay contains
a Single subroutine. Figure 1-2 illustrates this overlay structure.
The ODL statements to create this structure are as follows:

- ROOT MAIN-* (A,B,C)
A: ~FCTR PRE
B: ~-FCTR PROC

C; ~-FCTR POST
- END

In this example, the .ROOT statement declares the tree structure; the
-END statement indicates the end of the ODL statements; and the names
A, B, and C specify object modules, libraries, other overlay segment
factor names, or indirect ODL file names (if they are preceded by an
‘at' (@) symbol). Commas separate descriptions of overlay segments

USING PDP-11 FORTRAN-77

that occupy the same memory location; parentheses serve to group
these descriptions. Dashes separate descriptions of modules that are
concatenated into a single segment. The asterisk indicates that the
overlay segments are to be loaded automatically whenever a call is
made to a subprogram in the overlay segment.

MAIN

PRE PROC POST

Z2K-242-81

Figure 1-2 Simple Overlay Structure

A path in an overlay structure is any route from the root of the
Structure that follows a series of branches to an outermost segment of
the tree. Figure 1-2 shows only three short paths: MAIN-PRE,
MAIN-PROC, and MAIN-POST. A program in one overlay segment may call a
Subprogram in another segment only when the two segments occur on a
common path. For example, MAIN may call PRE, PROC, or POST; however,
the three subroutines cannot call each other.

Figure 1-3 shows a more complex structure Specified by the following
ODL statements:

- ROOT A-B-*(C,FCTR1)

- END

The paths in this structure are A-B-C, A-B-D-E, A-B-D-F, and A-B-D-G.

1.5.2 Building Overlaid FORTRAN-77 Programs

When building overlaid FORTRAN-77 Programs, you should pay special
attention to the following:

e Specifying the FORTRAN-77 OTS library

e Declaring common blocks

e Declaring the associated variable in a DEFINEFILE or OPEN
Statement

e Specifying the RMS-11 library (if used)

USING PDP-11 FORTRAN-77

D

C

F

E

G

ZK-172-81

Figure 1-3 Overlay Structure

If the FORTRAN-77 OTS is in the default system library, no additional
Specification is necessary. If the FORTRAN-77 OTS is a separate
library, and FCS-11 is used, then each segment or branch of the
overlay structure must explicitly refer to the FORTRAN-77 OTS library
as the last file specified. On the other hand, if the FORTRAN-77 OTS
is a separate library, and RMS-1l is used, then each segment or branch
of the overlay structure must explicitly refer to the FORTRAN-77 OTS
library as the next-to-last file specified, with the RMS-11 library
Specified as the last file. For example, the ODL file for the example
in Figure 1-3 must be written as follows:

FOR FCS-11

-ROOT A-B-L-*(C-L,FCTR1)
FCTRI1: -FCTR D-L-* (E-L,F-L,G-L)
L: -FCTR LB:F4POTS/LB

~ END

FOR RMS-11

~-ROOT A-B-L-R-* (C-L-R,FCTR1)

FCTRI: -FCTR D-L-R-*(C-L-R,F-L-R,G—-L-R)
L: -FCTR LB:F4POTS/LB
R: -FCTR LB:RMSLIB/LB

~ END

If your program refers to user libraries, these libraries must be
explicitly referenced by each overlay segment that needs them.

USING PDP-11 FORTRAN-77

FORTRAN-77 common blocks are allocated on each overlay path in the
lowest overlay segment in which they are referenced. Therefore, when
a new overlay path is loaded, the data in the common blocks is lost.
If separate overlay paths are to share common data, the common blocks
containing this data must be either declared in the root segment of
the overlay or specified in a SAVE statement. If the data is declared
common only in the overlay segments, Separate common areas for’ each
segment are established and the data is not shared.

For example, Suppose the subroutines shown in Figure 1-2 (PRE, PROC,
POST) communicate using common blocks. If the same common blocks are
not declared common in MAIN, three independent common areas with the
Same name will be established, one each for PRE, PROC, and POST. When
PROC overlays PRE, the data in the common block(s) of PRE will be
lost. In general, when one segment overlays another, data unique to
the overlaid segment is lost.

If you use the SAVE statement to protect common data items, you should
be aware that the SAVE statement causes the size of the root segment
of an overlay -- and therefore the task size -- to become larger.
This enlargement occurs because using the SAVE statement has the
effect of pulling into the root segment of an overlay the $SAVE PSECT
and the PSECTsS of any named common blocks mentioned in the SAVE
Statement. (The blank common block PSECT (.$$$$), if present, is
pulled into the root segment whether or not a SAVE statement is used,
except when the /NOF77 switch is set; under /NOF77, .$$$$. is never
pulled into a root segment.) The $SAVE PSECT contains the variables
and array elements mentioned in a SAVE statement.

The SAVE statement requires Task Builder support to run an_ overlaid
FORTRAN-77 program in which subprograms that access saved variables
reside in different segments of the overlay. Task Builder support is
provided beginning with V4.0 of RSX-11M, V2.0 of RSX-11M-PLUS, and
V7.2 of RSTS/E. If you are not running a supported operating system
and are running an overlaid program, you can assure access to saved
variables as follows: Place variables or COMMON’ statements’ that
contain saved variables in the root segment of the overlay. The value
of saved variables is retained between subprogram calls.

The associated variable in any DEFINEFILE or OPEN statement must be
declared in a common block that is allocated in the root segment.

You can overlay a FORTRAN-77 program in one of three ways:

@ You can overlay only the program.

@ You can overlay only the FORTRAN-77 OTS (and RMS-11, if used).

@ You can overlay both the program and the FORTRAN-77 OTS (and

Section 2.6.5 provides information about the RMS-11 overlays used _ by
the RMS-11 version of the FORTRAN-77 OTS. Section 5.4.8 describes the
OTS overlay files that are available.

The FORTRAN-77 Object Time System Reference Manual describes
overlaying the FORTRAN-77 OTS modules in more detail.

USING PDP-11 FORTRAN-77

1.6 DEBUGGING A FORTRAN-77 PROGRAM

FORTRAN-77 provides several aids for finding and reporting errors:

DEBUG lines in Source programs

FORTRAN-77 statements containing a "D" in column 1 can _ be
added for debugging purposes. During program development, you

can use these statements and the /DE switch to type out

intermediate values and results. After the program runs
correctly, you can treat these statements as comments by

recompiling without the /DE switch.

Traceback facility

The compiled code and the OTS provide information on _ the
program unit and line number of a run-time error. A list,
following the error message, shows the sequence of calling
program units and line numbers. The amount of information
provided in the list is determined by the /TR switch during
compilation. See Section C.3.1 for the exact format and

content of the traceback.

The debugging program ODT, a user-interactive debugging aid

You include ODT in a task by specifying the /DA switch on the
task image file specification during task building. When
using ODT, you should have the machine language code listing
of the program (specify the /LI:3 compiler switch) and the

task-build map. See the IAS/RSX-11 ODT Reference Manual _ for
further information.

PDP-11 FORTRAN-77 Symbolic Debugger

If your site has installed the PDP-11 FORTRAN-77 symbolic
debugger, you can use its facilities to provide a more
thorough debugging than any of the _ above. The symbolic
debugger is interactive and can refer to program locations
Symbolically and give symbolic output. With the debugger, you
can control program execution in a variety of ways: You can
set breakpoints and tracepoints; step through your program by
line or instruction; and step into or over called routines.
You can examine or deposit data in a variety of formats. For
complete information, see the PDP-11 FORTRAN-77 Guide to
Program Debugging. 7

CHAPTER 2

FORTRAN-77 INPUT/OUTPUT

This chapter describes input/output (I/0) as implemented in PDP-11
FORTRAN-77. In particular, it provides information about FORTRAN-77

I/O in relation to the two supporting I/O subsystems: File Control
Services (FCS-11) and Record Management Services (RMS-11).

2.1 FORTRAN-77 I/O CONVENTIONS

Certain conventions for logical device and file name assignments, and
for implied logical units, are common to I/O operations involving
either of the I/O subsystems mentioned above.

2.1.1 Device and File Name Conventions

FORTRAN logical unit numbers correspond one-to-one with the operating
system's logical units (except FORTRAN logical unit 0, which must be

mapped to a system logical unit number other than 0; see Section
2.1.3). Default device assignments are made by the Task Builder for
each logical unit allocated for a task.

Listed in Table 2-1 are the default logical device and file name
assignments. You can change default device assignments at the
following times: (1) prior to execution, by using the appropriate
operating system command; (2) at task-build time, by using the Task

Builder ASG option (see Section 1.2.5.2); (3) at execution time, by
using the ASSIGN system subroutine (see Section D.2) or an OPEN
statement.

The default file name conventions hold for logical units not listed
below; for example, unit number 12 has a default file name of

FOROQ12.DAT. The default device assignment for logical units not
listed is the system disk, SY:.

You may use any combination of valid logical unit numbers; however,
there iS an imposed maximum number of units that can be active
Simultaneously. This number depends on the number of buffers

allocated and the number of buffers required for each logical unit
(usually 1).

Logical unit numbers are allocated consecutively. Therefore, for
example, even though only logical units 3 and 17 are being used, units
1 through 17 must be allocated.

When a logical unit is closed, the default file name assignment that
existed at the start of task execution is reestablished; the default

device assignment becomes undefined.

FORTRAN-77 INPUT/OUTPUT

Table 2-1
FORTRAN Default Logical Device Assignments

Logical Unit
Number Default Device Default File Name

0 (Mapped to a system

logical unit other than 0)
1 System disk, SY: FORO0O1.DAT

2 System disk, SY: FORO02.DAT

3 System disk, SY: FORO03.DAT
4 System disk, SY: FORO04.DAT
5 User's terminal, TI: or TT: FORO05.DAT

6 System listing unit, CL: FOROO6. DAT

14 (RSTS/E limit) FORO14.DAT

99 System disk, SY: FOR0O99.DAT

NOTE

The device assignment to a logical unit
is not affected by a CLOSE operation.
However, this convention is subject’ to
change in future releases and should not
be relied on. If the device assignment
of a unit is changed by a CALL ASSIGN or
an OPEN statement, it is recommended

that all CALL ASSIGN or OPEN statements

referencing that unit explicitly specify
the device to be used.

2.1.2 Implied-Unit Number Conventions

Certain I/O statements do not’ require explicit logical unit
specifications. These statements, and their equivalent forms, are
listed in Table 2-2.

From Table 2-2, you can see that a formatted READ statement of the

forms:

READ f,list

is equivalent to:

READ (1,f£) list

In a program, these two forms function identically. If logical unit
number 1 is assigned to a terminal, input comes from this terminal no
matter which of the above READ formats you uSe.

The PRINT, ACCEPT, and TYPE statements implicitly refer to logical
units 6, 5, and 5, respectively.

FORTRAN-77 INPUT/OUTPUT

Table 2-2

Implied Unit Numbers

Statement Type Equivalent Form

READ f, list READ (1,£) list

PRINT f, list WRITE (6,£) list

ACCEPT f, list READ (5,£) list

TYPE f, list WRITE (5,£) list

2.1.3 Mapping FORTRAN Logical Unit 0 to a System Unit

The default mapping of FORTRAN logical unit 0 is to system logical
unit 0; however, O is not a valid system logical unit number.
Therefore, to map FORTRAN logical unit 0 to a valid system logical
unit, use the GBLPAT option (Section 1.2.6.2) when task-building your

program, as follows:

>TKB
TKB> PROG = PROG,LB:[1,1]F4POTS/LB
TKB> /
TKB> ENTER OPTIONS:
TKB> GBLPAT = PROG:SLUNO:n
TKB> //

where n is a valid system logical unit number.

This command sequence patches global symbol S$LUNO in program segment

PROG to system logical unit number n.

2.2 FILES AND RECORDS

This section discusses file structures, record access modes, and

record formats in the context of the capabilities of the FCS and RMS
I/O subsystems.

2.2.1 File Structure

A clear distinction must be made between the way files are organized
and the way records are accessed.

The term "file organization" refers to the way records are arranged
within a file; the term "record access" refers to the method by which

records are read from a file or written to a file. A file's
organization is specified when the file is created, and cannot be
changed. Record access is specified each time a file is opened, and
can be different each time the same file is opened. This section
discusses file organization; Section 2.2.2 discusses record access.
Table 2-3 shows the valid record access modes for each file
organization.

Through its two I/0 subsystems, FORTRAN-77 supports three _ file

organizations: sequential, relative, and indexed. Table 2-3
Summarizes which file organizations are available to the various I/O

subsystems.

FORTRAN-77 INPUT/OUTPUT

Table 2-3
Availability of File Organizations

FCS-11 RMS-11 RMS-11K

Sequential X X X

Relative _ X X

Indexed _ _ X

The organization keyword in the OPEN’ statement Specifies the
organization of a file, as described in Section 2.3.7.

2.2.1.1 Sequential Organization - A sequential organization file, or
sequential file, consists of records arranged in a physical sequence
that is typically identical to the order in which the records are
written to the file: the first record in the file is the first record
written, the second record in the file is the second record written,
and so forth.

sequential file organization is permitted on all devices Supported by
the FORTRAN-77 system, and is supported by the FCS-11 and RMS-11 I/0
subsystems.

The sequential files created under the FCS-11 subsystem are
compatible, both structurally and functionally, with sequential files
Created under the RMS- subsystem. Therefore, you can freely
interchange sequential files among all FORTRAN-77 programs.

2.2.1.2 Relative Organization - A relative organization file, or
relative file, consists of a series of numbered positions, called
cells, that can either contain a single record or remain empty. These
cells are of fixed, equal length and are numbered consecutively from 1
to n, where 1 is the first cell and n is the last cell.

Relative organization allows you to place a record ina file at any
position relative to the beginning of the file. As a result, you can
retrieve a record simply by specifying that record's relative record
number. Conceptually, then, a relative file is similar to a
sequential file processed under direct access (see Section 2.2.2.2).
The one important distinction is that you can delete a record from a
relative file (simply by specifying the appropriate relative record
number).

Once a record has been deleted from ae relative file, the cell
containing it is no longer a logical part of the file, and any attempt
to direct-access that cell produces error message #36: "ATTEMPT TO
ACCESS NON-EXISTENT RECORD."

Relative files can be stored only on disk and are Supported only by
the RMS I/O subsystems.

FORTRAN-77 INPUT/OUTPUT

2.2.1.3 Indexed Organization - An indexed organization file, or
indexed file, consists of records that are arranged logically

according to the value of an alphanumeric or integer field (called a
key field) contained in each record. Unlike the records ina
Sequential or relative file, the records in an indexed file are not

necessarily stored contiguously, but may be widely dispersed on disk.

When you create an indexed file, you must designate a specific field,
common to each record in the file, aS a primary key. The value of
this field in any one record determines the position of this record in
a file.

You can designate additional fields in the records of an indexed file
as alternate keys. These fields do not affect the placement of
records in the file (unless the file was created to allow duplicate
primary keys, in which case the records actually having duplicate
primary keys are ordered by an alternate key). However, each
alternate key, like the primary key, provides a way to locate a record
within a file. You can specify up to 255 keys for an indexed file
using an appropriate RMS utility (see the RMS-11 User's Guide). You
can also specify keys with an OPEN statement; however, the maximum

number you can specify with an OPEN statement depends on the total
number of parameters you have specified in the OPEN statement.

Regardless of the means by which they are created, you can access,
with indexed READ statements, up to 255 keys from a FORTRAN-77
program.

An indexed file contains a tree-structured table, called an index, for

each designated key field. Each entry in an index is a pointer to a
set of records, called a bucket, located at the base of the tree. The
bucket contains the record with the designated key value and zero or
more records with lower key values (or the same key values if the key
is an alternate key). A bucket is a unit of I/O transfer consisting
of a fixed number of bytes specified by the BLOCKSIZE keyword (see
Section 2.3.2).

Both the number of key fields and the size of the bucket are
established when you create ae file; you cannot change these
parameters with subsequent OPEN statements. When you add or modify
records, RMS automatically updates the indexes and creates additional
entries as needed.

Indexed files permit the most’ flexible record access. This
flexibility is facilitated by the fact that you can use any field ina
record as a key and can have multiple keys.

When a FORTRAN-77 program creates an indexed file, the primary key of
the records of that file are restricted in two respects: (1)
duplicate primary keys are not allowed because the value of each
primary key must be unique; and (2) when a record in the file is
rewritten, its primary key cannot be changed. These restrictions do
not apply to alternate keys. When an indexed file is created by a
means other than a FORTRAN-77 program, and in such a way as to support
changes to, and duplicates of, primary keys, that file may
Subsequently be used by a FORTRAN-77 program even though there. are
duplicate primary keys and the values of any of the primary keys can
be changed by the program.

Indexed files can be stored only on disk and are available only if
RMS-11K is available on your system.

FORTRAN-77 INPUT/OUTPUT

2.2.2 Access to Records

You can select records for processing by the following methods:

e Sequential (including append) access

e Direct access

e Keyed access

Table 2-4 summarizes the ways in which each of the three _ file
organizations can be accessed.

Table 2-4
Access Modes Per File Organization

Access

Organization Sequential Direct Keyed Append

Sequential X xl x 2

Relative X X

Indexed X X

1. Fixed-length records only.
2. Append access to a sequential file consists of opening

the file for sequential access and initially positioning
the current record printer at the end of the file.

The FCS-11 I/O subsystem supports only sequential and direct access
(to sequential files); keyed access is Supported only by RMS-11K

software. (RMS-11K is included in RSX-11M-PLUS and RSTS/E systems.)

2.2.2.1 Sequential Access - Sequential access means, as the term
implies, that records are processed in sequence. The exact nature of

this processing sequence depends on the organization of the file. For
sequential files, the processing sequence consists of the physical
progression of the records in the file, from first created to last

created. Processing a sequential file under sequential access
requires that a desired record be read only after all records

physically preceding it have been read, and that a new record be

written only to the current end of the file. For relative files, the
processing sequence consists of the numerical order of the record
cells (some of which may not have aerecord in them). Reading a

relative file under sequential access requires that a desired record
be read only after all existing records preceding it have been read
(empty cells are passed over). Writing to a relative file under
Sequential access allows a new record to be written at any point. For
example, if records 1 and 2 are read (in sequential access mode) in a

relative file consisting of 24 record cells, and then a record is
written, the new record is written into cell 3 of the file, replacing
any old record that may have been there. (The concept of writing a
record into a cell already containing a record is a FORTRAN-77
concept.)

FORTRAN-77 INPUT/OUTPUT

The processing sequence for an indexed file consists of an index of
ascending key values; a corresponding physical sequence may or may
not exist. Reading an indexed file under sequential access requires

that only the desired record be read. New records may be added at any

point, with the key values within a record determining the record's
position.

2.2.2.2 Direct Access - Direct access means that records are selected
for processing on the basis of their position relative to the
beginning of a relative or sequential file. Only one record needs’ to
be read and a new record can be added at any point. Each READ or
WRITE statement must include a relative record number that specifies

the record to be read or written.

You can direct-access relative files and sequential files containing
fixed-length records that reside on disk, but you cannot direct-access
indexed files. Because direct access uses cell numbers to identify
and find records, you can issue successive READ or WRITE statements
requesting records that either precede or follow previously requested
records.

For example, the statements

READ (UNIT=12,REC=24) XARRAY

READ (UNIT=12, REC=20) ZARRAY

transfer the data in record 24 of the file connected to logical unit
12 to the variable XARRAY, and the data in record 20 of the same file
to the variable ZARRAY.

Using direct access to read records in an RMS-11 sequential or
relative file may result in FORTRAN run-time error 36 if the specified
record was never written. FORTRAN run-time error 36 may also occur if
the specified record of a relative file has been deleted.

2.2.2.3 Keyed Access - Keyed access means that records are _ selected
for processing on the basis of alphanumeric strings or integer values,
called keys, that identify the desired records. Each indexed READ
statement contains a key value that is used to locate the record to be
read. The key value is compared against index entries until the
bucket containing the record is located. The bucket is then read
until the exact record is located.

To insert a new record in an indexed file, you specify in the I/O list
of an indexed WRITE statement an item that has previously been defined
as a key for the records in the relevant file; you do not specify a

KEY= value in the WRITE statement. For example, if NAME has

previously been defined in an OPEN statement as a key for the’ records
of an indexed file, to insert a new record in that file you can use
the following statement:

WRITE (UNIT=10, ERR=9999)ORDER, NAME,

1 ADDRESS, CITY, STATE, ZIP, ITEM

Keyed access is valid only for indexed files.

see Chapter 7 for more information on using indexed files.

FORTRAN-77 INPUT/OUTPUT

2.2.3 Record Formats

Records can be stored ina file in one of three formats:

e Fixed length

e Variable length

e Segmented (sequential files only)

The format that applies in a particular case depends. on the
Organization of the file.

NOTE

The term “record format" refers to

whether a record is fixed length,
variable length, or segmented; the term
"record type" refers to whether a record

is formatted or unformatted. "Record
type" should not be confused with the
keyword RECORDTYPE.

2.2.3.1 Fixed-Length Records - When you specify fixed-length records
for a file (see Section 2.3.10), you are specifying that all records
in the file are to contain the same number of bytes; you specify the
size of these records by means of the RECORDSIZE keyword of the OPEN
Statement (See Section 2.3.9). If the record numbers are to. be
computed correctly, a sequential file to be opened for direct access
must contain fixed-length records.

You can use fixed-length records with sequential, relative, or indexed
files.

Each fixed-length record in a relative file contains an extra byte,
called the deleted-record control byte. The record overhead in an
indexed file consisting of fixed-length records is seven bytes’ per
record.

Fixed-length records always start on a word boundary. An extra byte,
called the "pad byte," is allocated if the record length of a
fixed-length record is odd.

2.2.3.2 Variable-Length Records - Variable-length records can contain
any number of bytes, up to a specified maximum. This maximum can be
Specified by the RECORDSIZE keyword of the OPEN statement (see Section
2.3.9).

You can use variable-length records with sequential, relative, or
indexed file organizations.

Each variable-length record is prefixed by a count field that
indicates the number of data bytes in the record. The count field
comprises two bytes on a disk device and four bytes on magnetic tape.

Variable-length records in relative files are actually stored in
fixed-length cells, the size of which must be specified by the
RECORDSIZE keyword of the OPEN statement (See Section 2.3.9). The

count field in variable-length records in a relative file specifies
the largest record that can be stored in that file. Each
variable-length record in a relative file contains three extra bytes,

2-8

FORTRAN-77 INPUT/OUTPUT

two for the count field and one for deleted-record control. Each

variable-length record in an indexed file contains nine extra bytes.

You can make the count field of a variable-length record available to

a program by means of a READ statement with a Q format descriptor.

You can then use the count field information to determine how many

bytes of data should be read by an I/0 list.

2.2.3.3 Segmented Records - A segmented record is a single logical
record consisting of one or more variable-length records (segments).
The length of a segmented record is arbitrary; however, the length of
the segments themselves is specified by the RECORDSIZE keyword (see
Section 2.3.9). Segmented records are useful when you want to write

exceptionally long records. Unformatted sequential records written to
sequential files are, by default, stored as segmented records.

The segmented record is unique to FORTRAN and can be used only with
unformatted sequential files under sequential access. You should not

use segmented records for files that will be read by programs’ written
in languages other than FORTRAN.

Because there is no set limit on the size of a Segmented record, each

variable-length record segment in the segmented record contains
control information to indicate that it is one of the following:

e The first segment in the segmented record

e The last segment in the segmented record

e The only segment in the segmented record

e A segment in the segmented record other than one of the above

This control information is contained in the first two bytes of each
segment of a Segmented record.

When you wish to access an unformatted sequential file that contains
fixed-length or variable-length records you must specify
RECORDTYPE='FIXED' or RECORDTYPE='VARIABLE' when you open the _ file;

otherwise, the first two bytes of each record will be misinterpreted

as control information, and errors will probably result.

2.3 OPEN STATEMENT KEYWORDS

The following sections supplement the OPEN statement description that
appears in the PDP-11 FORTRAN-77 Language Reference Manual. In

particular, implementation-dependent and/or system-dependent aspects

of certain OPEN statement keywords are described. This section does
not discuss all the keywords that apply to the OPEN statement.

2.3.1 BLANK

BLANK in an OPEN statement controls the interpretation of blanks’ in

numeric input fields. The default is BLANK='NULL' (blanks in numeric

input fields are ignored).

If a logical unit is opened by means other than an OPEN statement, a

default equivalent to BLANK='ZERO' is assumed (that is, blanks in
numeric input fields are treated as zeros).

FORTRAN-77 INPUT/OUTPUT

The BLANK keyword affects the treatment of blanks in numeric’ input
fields read with the D, E, F, G, I, O, and Z field descriptors. If
BLANK='NULL' is in effect for these descriptors, embedded and trailing
blanks are ignored; the value affected is converted as if the
nonblank characters were right justified in the field. If
BLANK='ZERO' is in effect, embedded and trailing blanks are treated as
zeros.

The /F77 switch determines whether a default of BLANK='"NULL' or
BLANK='ZERO' is assumed, as illustrated below:

OPEN (UNIT=1, STATUS='OLD')

READ (1,10)I1,J
10 FORMAT (215)

END

Data record: 1 2 12

Assigned values:

/FT7 /NOF77
I= 12 I= 1020
J= 12 J= 12

If your program treats blanks in numeric input fields as zeros, and
you do not want to use the /NOF77 switch, include BLANK='ZERO' in the
OPEN statement or use the BZ edit descriptor in the FORMAT statement.

2.3.2 BLOCKSIZE

BLOCKSIZE specifies the physical I/O transfer size for a file. A
BLOCKSIZE specification has the form:

BLOCKSIZE = bks

For magnetic tape files, the value of bks specifies the physical block
Size in the range 18 to 32767 bytes. The default value is 512 bytes.

For tape files created through the RMS-11 subsystem, the maximum block
size is 8192.

For sequential disk files, the value of bks is’ rounded up to. an
integral number of 512-byte blocks and used to specify multiblock
transfers. The number of blocks transferred can be 1 through 127.
The default value is one block.

For relative and indexed files, the value of bks is rounded up to an
integral number of 512-byte blocks and used to specify the RMS-11
bucket size, in the range 1 to 32 blocks (1 to 15 on RSTS/E). The
default value is the smallest value capable of holding a Single
record.

When you select a blocksize, and thereby determine the bucket size
used by RMS-11, you should consider the performance effects of the
following factors: file organization, record format, record size, and
the internal information that RMS-11 maintains in each bucket. For
example, a large bucket size generally speeds up sequential access’ to
a file because fewer I/O transfers are required. On the other hand, a
minimal bucket size means that minimal I/O buffer Space is required.

Consult the RMS-11 User's Guide for information on determining optimal
bucket size.

FORTRAN-77 INPUT/OUTPUT

2.3.3 BUFFERCOUNT

BUFFERCOUNT specifies the number of memory buffers. A BUFFERCOUNT

specification has the form:

BUFFERCOUNT = bc

The range of values for be is -1 through 255; a buffercount of -1l
specifies that a unit will be opened in block mode rather than record
mode. The size of each buffer is determined by the BLOCKSIZE keyword.
Therefore, if BUFFERCOUNT=3 and BLOCKSIZE=2048, the total number of

bytes allocated for buffers is 3*2048, or 6144.

The default value is one buffer for each sequential or relative file,

and two buffers for each indexed file.

2.3.4 DISPOSE

DISPOSE specifies the disposition of a file at the time the file is
closed. A DISPOSE specification has the form:

"SAVE!
DISPOSE= "KEEP!

DISP= "DELETE '

"PRINT'

DISPOSE cannot be used to save or print a scratch file, or to delete
or print a read-only file. A DISPOSE parameter in a CLOSE statement
always supersedes a disposition specified in an OPEN statement.

On an IAS operating system, a file printed under DISPOSE is_' always
deleted; on an RSX-11M or M-PLUS system, a file printed under DISPOSE
is always saved.

The RMS-11 version of the OTS does not Support the DISPOSE= 'PRINT'

option; the file is always saved. Likewise, DISPOSE='PRINT' is not

Supported on RSTS/E; the file is always Saved.

2.3.5 INITIALSIZE and EXTENDSIZE

INITIALSIZE specifies the initial storage allocation for a disk file,
and EXTENDSIZE specifies the amount by which a disk file is extended
each time more space is needed for the file.

INITIALSIZE is effective only at the time a file is created. If you
specify EXTENDSIZE when creating a file, the value you specify becomes

the default value used by the system to allocate additional storage
for the file. If you specify EXTENDSIZE when opening an existing
file, the value you specify supersedes any EXTENDSIZE value specified
when the file was created, and remains in effect until you close the
file.

If the value of INITIALSIZE is positive, the system allocates
contiguous space; if the value is negative, the system allocates
noncontiguous space.

If there is not enough space available to hold the initial size of a
file or to extend a file, an error message is issued.

FORTRAN-77 INPUT/OUTPUT

On RSX-11, if you do not specify an INITIALSIZE value, the system
allocates no file storage for data records at the time a file is
Created; instead, the system allocates file storage dynamically as
needed, except on RSTS/E systems. On RSTS/E, if you do not specify an
INITIALSIZE value at file creation, run-time errors may occur. For
direct access files, only the file storage actually written is
allocated; therefore, a direct-access READ to any point beyond the
allocated storage results in an error condition.

2.3.6 KEY

KEY specifies one or more fields to function as keys for accessing
records in an indexed file. A KEY specification (not to be confused
with "key" specification) has the form:

KEY= (kspec [, kspec]...)

KSPEC =.S: e[: dt]

Ss

The starting byte position of the key. (The first byte of a
record in FORTRAN-77 is assigned to position 1.

e

The ending byte position of the key.

dt

The key data _ type: INTEGER, for binary integer keys, or
CHARACTER, for character-string keys. (If dt is omitted, the key
data type is CHARACTER.)

The data type of a key determines the order in which records are
indexed for sorting. The data type of a key is not affected by the
formatting you use for a key value at the time you create a record.
Usually, however, if you specify integer keys for a formatted file,
you should use A-formatting for the key values when creating records
in that file. See Section 7.8 for more information on using integer
keys.

A key field has a length of e-s+l, where the values of s and e must be
such that:

1 ~ LE. (s) .LE. (e) .LE. record-length

1 - LE. (e-St+l) .LE. 255

The key length of an integer key must be either 2 or 4, to correspond
to INTEGER*2 or INTEGER*4, respectively.

2.3.7 ORGANIZATION

ORGANIZATION specifies the type of organization a file has or is to
have. An ORGANIZATION specification has the form:

"SEQUENTIAL!
ORGANIZATION = ‘RELATIVE!

"INDEXED!

The default file organization is sequential.

FORTRAN-77 INPUT/OUTPUT

When an existing file is opened, the specified file organization must

match the actual file organization. The ORGANIZATION keyword must be

specified for relative or indexed files.

2.3.8 READONLY

READONLY specifies that write operations are not to be allowed on the

file being opened. The main purpose of READONLY is to allow two or

more programs to read a file simultaneously without having to change

the protection specified for that file. Changing the protection

specified for a file can be hazardous because run-time I/O errors can

occur as a result of the default file access privileges being read or

written at the same time a file's protection does not permit write

access. Therefore, if you want to open a file for the purpose of

reading it, but do not want to prevent others from being able to read

the same file while you have it open, specify the READONLY keyword.

For more information on file sharing, see Section 2.3.11.

2.3.9 RECL (RECORDSIZE)

RECL specifies how much data a record can _ contain. A RECL

specification has the form:

RECL
RECORDSIZE = rl

The value of rl specifies the length of the logical records ina file.

For files that contain fixed-length records, rl specifies the length

of each record; for files that contain variable-length records, rl

specifies the maximum length of any record; for files containing
Segmented records, rl specifies the maximum length of any segment.

The value of rl does not include the bytes that the file system

requires for maintaining record-length and record-control information;
it does, however, include the two segment control bytes, if present.

The value of rl is interpreted as either bytes or storage units (a

storage unit consists of four bytes). It is interpreted as bytes if

the records are formatted and as storage units if the records are

unformatted. Table 2-5 summarizes the maximum values that can be

specified for rl for each file organization and record—-format

combination. Table 2-6 summarizes the default RECL values the system

uses when a file is created.

Table 2-5

RECL Value Limits

File Organization Record Type

Formatted Unformatted

(Bytes) (Storage Units)

Sequential 32766 8191

Variable-length records 9999 2499
on magnetic tape

Relative 16380 4095

Indexed 16360 4090

FORTRAN-77 INPUT/OUTPUT

Table 2-6

Default RECL Values

Record Type Size (Bytes)

Formatted 133
Unformatted, fixed-length 128
Unformatted, variable-length 126

If you are opening an existing file that contains fixed-length records
or that has relative organization, and you Specify a value for RECL
that is different from the actual length of the records in the file,
an error occurs. If you omit a RECL specification when opening an
existing file, the system uses by default the record length specified
when the file was created.

You must make a RECL specification when you create a file that
contains fixed-length records or that has relative organization.

NOTE

You must specify the Task Builder option
MAXBUF if records larger than 133 bytes
are to be processed.

2.3.10 RECORDTYPE

RECORDTYPE specifies the structure of (the record type of) the records
in a file. A RECORDTYPE specification has the form:

"FIXED'
RECORDTYPE = "VARIABLE'

"SEGMENTED'!

RECORDTYPE is particularly useful when you want to override the
default record type used in Creating a file. The default record type
is: :

e Fixed if the file organization is indexed or relative, or if
the access mode is direct

@e Variable if the file organization is sequential and the access
mode is formatted sequential

@ Segmented if the file organization is sequential and _ the
access mode is unformatted sequential

The default RECORDTYPE value the System uses when accessing an
existing file is determined by the record structure of the file, with
one exception. In the case of unformatted Sequential files containing
fixed- or variable-length records you must explicitly override the
default (which is 'SEGMENTED') by Specifying the appropriate
RECORDTYPE value in the OPEN statement. You cannot use an unformatted
sequential READ statement to access an unformatted sequential file
that contains fixed-length or variable-length records unless you
Specify the appropriate RECORDTYPE value in an OPEN statement. Files
containing segmented records can be accessed only by unformatted
sequential I/O statements.

FORTRAN-77 INPUT/OUTPUT

2.3.11 SHARED

SHARED specifies that a file can be accessed by more than one program

at atime, or by the same program on more than one logical unit. The

forms of mutual accessing, or sharing, permitted depend on _ the

organization of the file and on the I/O system (FCS-11 or RMS-11) in

use.

FCS-11 permits multiple readers and a single writer.

RMS-11 permits multiple readers and multiple writers on relative and

indexed files. It does not permit multiple writers on sequential

files; however, it does permit multiple readers, provided you specify

READONLY in all programs that open the files affected.

When you specify the SHARED keyword, other users can access_ the file
with write access, If write-sharing occurs, RMS-ll uses a

bucket-locking facility to control operations on the file and ensure

that simultaneous write, update, or delete operations on the same

record do not occur. See Section 2.6.4 for additional information.

2.3.12 USEROPEN

USEROPEN provides access to features of the supporting I/O system not

directly supported by the FORTRAN-77 1/0 system. Or, more

specifically, USEROPEN allows you to access RMS or FCS capabilities

and at the same time retain the ease and convenience of FORTRAN-77

programming.

USEROPEN is intended for experienced users.

For the interface specification for a USEROPEN routine, see the

FORTRAN-77 Object Time System Reference Manual. Consult the

IAS/RSX-11 I/O Operations Reference Manual for FCS details. Consult

the RMS-11 MACRO-11 Reference Manual for RMS details.

2.4 BACKSPACE AND ENDFILE IMPLICATIONS

This section describes implications of the BACKSPACE and ENDFILE 1/0
statements, which are supported only for sequential files.

A BACKSPACE operation cannot be performed on a file that is opened for
append access, because under append access the current record count is

not available to the FORTRAN-77 I/O system; backspacing from record n
is done by rewinding to the start of the file and then performing n-l
Successive reads to reach the previous record.

The ENDFILE statement writes an end-file record. Because the concept
of an embedded end-file is unique to FORTRAN, the following convention
has been adopted: An end-file record is a l-byte record that contains
the octal code 32 (CTRL/Z). An end-file record can be written only to
sequentially organized files that are accessed as formatted sequential
or unformatted segmented sequential. End-file records should not be
written in files that are read by programs written in a language other
than FORTRAN.

FORTRAN-77 INPUT/OUTPUT

2.5 FORTRAN-77 I/O USING FILE CONTROL SERVICES (FCS)

File Control Services (FCS-11) is an I/O subsystem that provides
Sequential and direct access to sequential files. For a detailed
discussion of FCS-11, consult the IAS/RSX-11 I/O Operations Reference
Manual.

2.5.1 OTS/FCS Record Transactions

Records are transferred with FCS record mode macros as follows:

e Sequential input -- GETSS

@e Sequential output -- PUTSS

e Direct input -- GETSR

e Direct output -- PUTSR

2.5.2 OTS/FCS File Open Conventions

A file or device is opened for I/O activity by the execution of an
OPEN statement, or by the execution of an input or output statement if
no file/device is already open on the logical unit specified in the
Statement. The type of FCS open operation invoked is based on the
Specifications (explicit or implied) in the OPEN statement or on the
type of I/O statement, as follows:

Input statement OPENSU

Output statement OPENSW

OPEN statement

TYPE='OLD' OPENSU

TYPE='NEW' OPENSW

TYPE='SCRATCH' OPENSW, followed by call to .MRKDL
TYPE= "UNKNOWN! try OPENSU; if no such file, then

OPENSW.

Files created for formatted input/output (both sequential and direct
access) are given the FORTRAN carriage-control attribute (FD.FTN).

2.5.3 FCS Implications of FIND and REWIND

This section describes FCS-specific implications of the FIND and
REWIND I/O statements.

A FIND statement is similar to a direct access READ operation with no
I/O list and may cause an existing file to be opened; upon execution,
it assigns to an associated variable the specified record number.

A REWIND statement is performed as an FCS .POINT operation that
Specifies positioning at the beginning of the indicated file (block=1,
byte=0).

FORTRAN-77 INPUT/OUTPUT

2.5.4 FCS File Sharing

The FCS file system permits files to be simultaneously accessed by two

or more tasks.

Two tasks writing to a shared file in which some of the records cross

block boundaries may produce undesirable results. That is, because
the read, modify, and rewrite sequences performed by two tasks writing

to a shared file are asynchronous and independent, a record can occur

in which part of the data was written by one task and part by another.
In addition, because FCS generally tries to minimize disk activity by

postponing a rewrite in case a subsequent read or write can _ be

performed using the in-task buffer image, the disk image of a file may
be out-of-date for arbitrary time intervals. This problem of
outdatedness may be encountered on both sequential and direct access

input/output.

You may encounter a related problem in regard to the logical
end-of-file. When a file is extended, the disk description of the
logical end-of-file is not updated until the file is closed by all
tasks accessing it. Therefore, if one task has opened a file to
append new records and has not yet closed it, a second task opening
the file to read certain of its records is not able to read any of the
new records appended by the first task. Furthermore, it is not able
to read any of these new records until the following has occurred:
The first task has closed the file; the second task has closed _ the

file; the second task has reopened the file.

When uSing shared files, you must pay careful attention to the
intertask coordination required for reliable performance.

2.6 FORTRAN-77 I/O USING RECORD MANAGEMENT SERVICES (RMS)

Record Management Services (RMS-1ll) is an I/0 system that supports

sequential and direct access to sequential and relative files. In
addition, RMS-11K (standard on all RSX-11M-PLUS and /RSTS/E systems)

provides sequential and keyed access to files of indexed organization.

For a detailed discussion of RMS-11/RMS-11K, consult the RMS-11l
MACRO-11 Reference Manual and the RMS-11 User's Guide. The RMS-11
User's Guide contains useful information on RMS-11 file structures and

ways to improve performance. Note, however, that the RMS-1ll features
that are a part of FORTRAN-77 are a subset of the total facilities

discussed in the RMS-1l USer's Guide; all RMS features, however, are

available through USEROPEN.

2.6.1 OTS/RMS Record Transactions

To read records under RMS, READ statements use the RMS SGET macro; to
write to records, WRITE statements use the RMS SPUT macro to add new

records and the RMS SUPDATE macro to rewrite existing records in a

direct access sequential file.

To update a record in an indexed file, the REWRITE statement uses’~ the
RMS SUPDATE macro.

To delete records, the DELETE statement uses the RMS SDELETE macro.
You cannot DELETE records in a sequential file.

FORTRAN-77 INPUT/OUTPUT

2.6.2 OTS/RMS File Open Conventions

A file or device is opened for I/O activity by the execution of an
OPEN statement or by the execution of an input or output statement.
The type of open operation invoked is based on the specifications in
the OPEN statement or on the type of I/O statement, as follows:

Input statement SOPEN

Output statement SCREATE

OPEN statement

TYPE="OLD' SOPEN
TYPE='NEW' SCREATE

TYPE='SCRATCH'! SCREATE with FBSTMD set

TYPE='UNKNOWN'! SOPEN; if no such file then SCREATE

2.6.3 RMS Implications of FIND, REWIND, UNLOCK

This section describes RMS-specific implications of the FIND, REWIND,
and UNLOCK statements.

A FIND statement is similar to a direct access READ statement with no
I/O list and may cause an existing file to be opened. The RMS SFIND
macro is executed to locate and lock the specified record.

A REWIND statement results in a call to the RMS SREWIND macro.

The UNLOCK statement unlocks the bucket Currently locked on_ the
Specified logical unit by executing the RMS $FREE macro. If no record
is locked, the operation has no effect. See Section 2.6.4 for details
on file sharing and using the UNLOCK statement.

2.6.4 RMS File Sharing

You can write-share relative and indexed files, but not sequential
files.

If a program has write access to a shared file, RMS-11 locks every
bucket accessed by a successful READ or FIND statement until another
I/O operation is performed on the same logical unit. If a program
attempts to access a record that RMS has locked, FORTRAN run-time
error "SPECIFIED RECORD LOCKED" is reported.

To ensure the greatest flexibility at run time, you should always
anticipate the possibility that any record you attempt to access might
be locked by another logical unit in your own program or by a_ logical
unit in another program. You can be properly prepared by employing
the following procedures when you write programs.

If you are using a single logical unit to access a file and you
encounter the record-locked error, you can reexecute the I/O statement
that failed until RMS-11 indicates successful completion.

If you are using multiple logical units to access a file, you cannot
simply reexecute the I/O statement that failed. One of your other
logical units may have locked the target bucket; therefore, you could
place your program in an _ infinite loop if you were to continue to
execute the same statement. Instead, you should first execute an
UNLOCK statement for all other logical units having access to the same
file in your program. You can then safely reexecute the I/O statement
until RMS-11 indicates successful completion.

2-18

FORTRAN-77 INPUT/OUTPUT

Never retain a lock on a bucket longer than necessary. For example,

when you execute a successful READ or FIND statement, you cause RMS~-l1l

to lock a bucket; therefore, you should immediately execute an UNLOCK

on the logical unit so that RMS-11 will unlock the bucket.

The following program segment demonstrates the programming techniques

you should use for shared files. The program attempts to access a

record whose key value is contained in the byte array KEYVAL.

10 READ (IDXLUN, KEY=KEYVAL, ERR=20) DATA

UNLOCK (IDXLUN)

(process record)

20 CALL ERRSNS. (IERR)

IF (IERR .EQ. 52) GO TO 10
TYPE *, "ERROR READING INDEXED FILE', IERR

STOP
END

2.6.5 Task Building with RMS

RMS-1l is a set of file access routines that execute as part of a

task. The Task Builder reSolves' references to these routines in

either an object library (LB:[{1,1]RMSLIB.OLB or LB:RMSLIB.OLB- on

RSTS/E) or a resident library (RMSRES or RMSSEQ).

Because these routines add from 8K bytes to 44K bytes to the size of a

task, you may need to overlay the RMS portion of a task. A series of

Standard ODL files that describe disk-resident overlays requiring

different amounts of space is provided. Table 2-7 shows the size of
the RMS portion and the RMS features included for each standard ODL
file.

Table 2-7
RMS File System Libraries

File Namel Approximate Addition Features Included

LB: [1,1]RMS11S.0ODL 8K bytes Sequential and relative

organizations

LB: [1,1]RMS11X.ODL 9K bytes Sequential, relative
and indexed

organizations

LB: [1,1]RMS12X.ODL 12K bytes Sequential, relative
and indexed
organizations (in fewer
overlay segments’7 than

RMS11X)

1. Do not include [1,1] on RSTS/E systems

FORTRAN-77 INPUT/OUTPUT

A prototype ODL file, LB: [1,1]RMS11.0ODL, is also provided
(LB:RMS11.ODL on RSTS/E). This file is similar to RMS11X.ODL, but it
contains comments and instructions to aid you in optimizing the
overlay structure to accommodate your particular task requirements.
Refer to the RMS-11 User's Guide for information on optimizing the
overlay structure.

The standard RMS ODL files are incorporated into a program ODL file as
follows:

The factor RMSROT (which is defined in the RMS ODL file, that is,
in RMS11S.ODL, RMS11X.ODL, and RMS12X.ODL) must be added to the
task root segment. The factor RMSALL (which is also defined in
the RMS ODL files) should be added as_ an RMS co-tree root
segment. For example:

- ROOT MAIN-RMSROT, RMSALL ;RMS co-tree

The following ODL file builds the same overlaid program as
described in Section 1.4; it incorporates an overlaid RSX-11M
OTS and the 12K-byte version of RMS aS a co-tree. On RSTS/E,
[1,1] would not be included. (See Section 5.4.8 for more
information on overlaying the FORTRAN-77 OTS.)

-ROOT MAIN-OTSROT-RMSROT-OVL, OTSALL, RMSALL
OVL: .FCTR * (PRE, PROC, POST)
@LB:[1,1]RMS11M
@LB: [1,1]RMS12xX

.END

NOTE

The FORTRAN-77 OTS and RMS must both be
Set up as co-trees (as shown bove) or
not overlaid at all.

You may also be able to use an RMS-11 Shared resident library (RMSRES)
if your system supports. one. Using RMSRES requires 16K bytes of
address space, but significantly reduces both task—-build time and
execution time.

You can include the RMS shared library RMSRES in your task by using
the following procedure:

e Specify LB:[1,1]RMSRLX.ODL (LB:RMSRLX.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

@e Include LIBR= RMSRES:RO as a task-build option.

You can include the RMS shared library for sequential organization,
RMSSEQ, in your task by using the following procedure:

e Specify LB:[1,1]RMSRLS.ODL (LB:RMSRLS.ODL on RSTS/E) as the
indirect RMS ODL file within your ODL file.

e Include LIBR= RMSSEQ:RO as a task—-build option.

CHAPTER 3

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

This chapter discusses aspects of the PDP-1l1 FORTRAN-77 compiler and
OTS operating environment. Information is provided on the following:

e The PDP-11 calling sequence convention

@e FORTRAN program sections

e FORTRAN COMMON blocks and RSX-11 system common blocks

e FORTRAN-77 OTS shared libraries

e FORTRAN-77 OTS error processing

e Compiler listing-file format

3.1 FORTRAN-77 OBJECT TIME SYSTEM

The FORTRAN-77 Object Time System (OTS) is composed of the following
routines:

e Math routines, including the FORTRAN-77 library functions’) and
other arithmetic routines (for example, exponentiation
routines)

e Miscellaneous utility routines (ASSIGN, DATE, ERRSET, and_ so

forth)

e Routines that handle FORTRAN-77 input/output

e Error-handling routines that process arithmetic errors, I/0

errors, and system errors

e Miscellaneous routines required by the compiled code

The FORTRAN-77 OTS is a collection of many small modules that allows
you to omit unnecessary routines during task-building. For example,

if a program performs only sequential formatted I/0, none of the

direct-access I/O routines is included in the task.

3.2 FORTRAN-77 CALLING SEQUENCE CONVENTION

The PDP-11 FORTRAN-77 calling sequence convention iS compatible with
all PDP-11 processor options and provides both reentrant and

nonreentrant forms.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.2.1 The Call Site

The MACRO-11 form of the call is:

; IN INSTRUCTION-SPACE

MOV #LIST,R5 ;ADDRESS OF ARGUMENT LIST TO

;REGISTER 5

JSR PC,SUB ;CALL SUBROUTINE

; IN DATA-SPACE

LIST: -BYTE N,O ;NUMBER OF ARGUMENTS
-WORD ADRI1 ; FIRST ARGUMENT ADDRESS

~WORD ADRN ;N'TH ARGUMENT ADDRESS

The argument list must reside in DATA-SPACE and, except for
Subprograms and statement label arguments, all addresses in the list
must also refer to DATA-SPACE. The argument list itself cannot be
modified by the called program.

The byte at address LIST+1l should be considered undefined and not

referenced. This byte is reserved for use as defined by DIGITAL.

The called program is free to refer to the arguments’ indirectly
through the argument list. This argument-passing mechanism is known
as call-by-reference.

3.2.2 Return

Control is returned to the calling program by restoring (if necessary)
the stack pointer to its value on entry and executing the following:

RTS PC

3.2.3 Return Value Transmission

Function subprograms return a single result in the processor general
registers. The register assignments for returning the different
variable types are:

Type Result

INTEGER*2

LOGICAL*1 RO
LOGICAL*2

INTEGER*4 RO -- low-order result

LOGICAL*4 Rl -- high-order result

REAL RO -- high-order result
Rl -- low-order result

RO -- highest-order result
DOUBLE Rl --

PRECISION R2 --

R3 -- lowest-order result

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Type Result

COMPLEX RO -- high-order real result
Rl -- low-order real result
R2 -- high-order imaginary result
R3 -- low-order imaginary result

3.2.4 Register Usage Conventions

Before making a call, a calling program must save any values in

general-purpose registers RO through R4 that it needs after a return

from a subprogram. After a return, a calling program cannot assume

that the argument list pointer value in register R5 is valid.

Conventions for floating-point registers are similar to those _ for

general-purpose registers. If a Floating Point Processor (FP11l) or

the floating-point microcode option (KEF11A) is present on a _e system,

the calling program must save and restore any floating-point registers

in use by a calling program. The calling program cannot assume that

the floating-point status bits I/L (integer/long integer) or F/D

(floating/double precision) are restored by the called routine.

A subprogram that is called by a FORTRAN-77 program can freely use

processor registers RO-R5, FPP registers FO-F5, and the FPP status

register. When returning from a subroutine (when the RTS PC is

executed), the initial (routine entry) value must be restored to the

contents of the processor hardware stack pointer SP.

3.2.5 Nonreentrant Example

In nonreentrant forms, the argument list can be placed either in line

with the call or out of line in an impure data section. (The latter

is recommended and illustrated here, and is the form produced by _ the

FORTRAN-77 compiler.) Example 3-1 illustrates assembly language code

implementing a small FORTRAN-77 FUNCTION subprogram that uses_ the

nonreentrant form of a call. Note that the nonreentrant form is

shorter and generally faster than the reentrant form because addresses

of simple variables can be assembled into the argument list.

Example 3-1: Call Sequence Conventions: Nonreentrant Example

INTEGER FUNCTION FNC(I,J)

INTEGER FNC]
FNC=FNC1 (I+J,5)+I
RETURN

END

~PSECT
~GLOBL FNC, FNC1

FNC: MOV R5,-(SP) ;SAVE ARG LIST POINTER

MOV @2(R5) ,-—(SP) ;FORM I+J ON STACK

ADD @4(R5),@SP

MOV SP,LIST+2 ; ADDRESS OF I+J TO
>ARG LIST

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-1 (Cont.): Call Sequence Conventions: Nonreentrant Example

MOV #LIST,RS5
JSR PC,FNC1
ADD #2,SP >DELETE TEMPORARY I+J
MOV (SP)+,R5 >RESTORE R5
ADD @2(R5) ,RO ;ADD I TO FNC1 RESULT
RTS PC »RETURN VALUE IN RO

-PSECT DATA >DATA AREA
LIST: ~BYTE 2,0 ;TWO ARGUMENTS

-WORD 0 >DYNAMICALLY FILLED IN
WORD LITS >ADDRESS OF CONSTANT 5

LITS: .WORD 5,0 sCONSTANT 5
. END

3.2.6 Reentrant Example

The PDP-11 FORTRAN-77 calling convention has a reentrant form in which
the argument list is constructed at run time on the execution stack.
Note that the argument addresses must be pushed backwards on the stack

to be correctly arranged in memory for the subroutine that uses the
list. Basically, the technique consists of:

MOV #ADRn ,- (SP) ;ADDRESS OF NTH ARGUMENT

MOV #ADR2,-(SP)

MOV #ADR1,- (SP) ;ADDRESS OF 1ST ARGUMENT
MOV #n,—- (SP) ;NUMBER OF ARGUMENTS
MOV SP,R5

JSR PC,SUB ;CALL SUBROUTINE

ADD #2*n+2,SP ;DELETE ARGUMENT LIST

Example 3-2 illustrates assembly language code that uses’ reentrant
call forms for the same example shown in Example 3-1.

The FORTRAN-77 compiler does not produce reentrant call forms.

Example 3-2: Call Sequence Convention: Reentrant Example

INTEGER FUNCTION FNC(I,J)
INTEGER FNC]

FNC=FNC1 (I+J,5)+I1
RETURN
END

-PSECT

-GLOBL FNC, FNC]

FNC: MOV R5,-—(SP) ;SAVE ARG LIST POINTER

MOV @2(R5) ,- (SP) ;FORM I+J
ADD @4(R5),@SP ;ON STACK

MOV SP,R4 ; REMEMBER WHERE

MOV #CON5 ,- (SP) ;BUILD ARG LIST ON STACK

MOV R4,-(SP) ;ADDRESS OF TEMPORARY
MOV #2,-(SP) ; ARGUMENT COUNT

MOV OP,R5 ;ADDRESS OF LIST TO R5

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-2 (Cont.): Call Sequence Convention: Reentrant Example

JSR PC,FNCI ;CALL FNC1
ADD #10,SP ;DELETE ARG LIST AND TEMP I+J

MOV (SP)+,R5 ;RESTORE ARG LIST POINTER

ADD @2(R5) ,RO ;ADD I TO RESULT OF FNC]
RTS PC ;RETURN RESULT IN RO

~PSECT DATA ;DATA AREA

CON5: -WORD 5,0
- END

3.2.7 Null Arguments

Null arguments are represented in an argument list with an address of

-1 (177777 octal). This address is chosen to ensure that using null

arguments in calling routines not prepared to handle null arguments
will result in an error when the routine is called at execution time.
The errors most likely to occur are illegal memory references’ and/or
word reference to odd byte addresses.

Note that null arguments are included in the argument count, as
follows:

FORTRAN Statement Resulting Argument List

CALL SUB -BYTE 0,0

CALL SUB() -BYTE 1,0

CALL SUB(A,) -—BYTE 2,0

eWORD A

CALL SUB(,B) -BYTE 2,0

eWORD -l

eWORD 8B

3.3 PROGRAM SECTIONS

Program sections (PSECTs) are named segments of code and/or data.

Attributes associated with each program section (see Table 3-1) direct
the Task Builder when the Task Builder is combining separately
compiled FORTRAN program units, assembly language modules, and library

routines into an executable task image.

3.3.1 Compiled-Code PSECT Usage

The compiler uses PSECTS to organize compiled output into’ the
following six sections:

1. Section SCODE1 contains all of the executable code for a

program unit.

2. Section $PDATA contains pure data, such aS constants, that

cannot change during program execution.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3. Section SIDATA contains impure data, such as argument lists,
that can change during program execution.

4. Section $VARS contains Storage allocated for variables and
arrays used in a program.

5. Section $TEMPS contains temporary storage allocated by the
compiler.

6. Section $SAVE contains global storage for entities specified
in a SAVE statement.

The attributes associated with each of these sections are shown in

Table 3-1
Program Section Attributes

Section

Name Attributes

SCODE] RW, I, LCL, REL, CON

SPDATA RW, D, LCL, REL, CON

SIDATA RW, D, LCL, REL, CON

SVARS RW, D, LCL, REL, CON

STEMPS RW, D, LCL, REL, CON

SSAVE RW, D, GBL, REL, CON, SAV

NOTE

The RO/RW attributes for the sections

SCODE1 and $PDATA are controlled by the
compiler /RO command qualifier (see

Section 1.2.4).

Section attributes are as follows:

e RW, RO -- read/write, read only

e I, D -- instructions, data

e CON, OVR -- concatenated, overlaid

e LCL, GBL -- local within overlay segment, global across
segments

e SAV -~- unconditionally place PSECT in root segment

Because FORTRAN-77 programs contain statically allocated impure
Storage, compiled object modules are not’ reentrant and cannot be
included in a shareable library.

Virtual arrays are allocated into a special control section, S$VIRT,
that the Task Builder allocates into the mapped array area of a task.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.3.2 FORTRAN COMMON and RSX-11 System Common

You can indicate that a common block in a task is to reference a

system global common block of the same name. You can do this, at

task-build time, with the Task Builder option:

COMMON = name:access[:apr]

where name is any valid common block name, access may be either RO for

read-only access or RW for read/write access, and the optional element

apr is an integer from 1 to 7 that specifies the first Active Page

Register. If the common block defined in the user task is larger than

the corresponding system global common block, a fatal task-build error

results.

If a task attempts to initialize any storage in a common block by
using DATA statements, a fatal task-build error results.

Storage for a common block is placed into a PSECT of the same name as

that of the common block. PSECTs used for common blocks are given the

attributes RW, D, GBL, REL, OVR, and, for saved named common blocks

and blank common, SAV. (The /F77 switch must be set for the blank

common block PSECT to have the SAV attribute; . named common block

PSECTS have the SAV attribute under either /F77 or /NOF77.) For

example, the statement

COMMON /X/A,B,C

produces the equivalent of the following MACRO-11 code:

~PSECT X,RW,D,GBL,REL,OVR, SAV

A: -BLKW 2

B: »-BLKW 2

C: ~-BLKW 2

A blank common uses the section name .$$$$. Therefore, under /F77 the

statement

COMMON T,U,V

produces the equivalent of:

~-PSECT .SSS$.,RW,D,GBL,REL,OVR,SAV

T: ~-BLKW 2

U: ~-BLKW 2

V: ~-BLKW 2

When named PSECTs with the OVR attribute are combined by the _ Task
Builder, all PSECTs with the same name are allocated to begin at the
Same address. The resulting PSECT has the length of the largest of

the combined PSECTs.

An example of common communication between a FORTRAN-77 main program
and an assembly language subroutine is shown in Examples 3-3 and 3-4.
In the example, the variable ISTRNG in blank common is filled with
Hollerith data. This variable is copied to OSTRNG (with space
characters removed) in the labeled common DATA, and the actual length

is returned in the variable LEN.

Note that one word is allocated for each integer in the assembly
language subroutine; this allocation convention is necessary for
compatibility with FORTRAN storage allocation under the default /NOI4
setting for compilation.

Example 3-3:

Example 3-4:

COMPRS::

1s:

2S:

The

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Example 3-3 shows the FORTRAN main program compiled under the /NOI4
option. assembly language subroutine COMPRS is shown in Example

Establishing a FORTRAN COMMON Area and Assembly Language
Subroutine CALL

LOGICAL*1 ISTRNG (80) ,OSTRNG (80)
COMMON ISTRNG
COMMON /DATA/ LEN, OSTRNG

GET INPUT STRING

READ 1, ISTRNG

FORMAT(80Al1)

COMPRESS THE STRING

CALL COMPRS

TYPE OUT THE COMPRESSED STRING

TYPE 2, LEN, (OSTRNG(I) ,I=1,LEN)
FORMAT (1X,13,6X,80A1)
END

Use of FORTRAN COMMON Area by Assembly Language Subroutine

-TITLE COMPRS

~IDENT /01/

COMPRESS THE HOLLERITH STRING IN BLANK COMMON
COPYING THE STRING TO LABELLED COMMON DATA AND
RETURNING THE ACTUAL LENGTH AS WELL.

~-PSECT .SS$.,D,GBL,OVR
-BLKB 80. ; INPUT BUFFER

e-PSECT DATA,D,GBL,OVR

- BLKW 1 ; ACTUAL LENGTH

-BLKB 80. OUTPUT BUFFER

=
e

~PSECT

MOV #I,RO ; INPUT POINTER
MOV #O0,R1 ; OUTPUT POINTER
MOV #80.,R2 ; INPUT LENGTH
CLR L ; OUTPUT LENGTH

MOVB (RO)+,R3 ; GET INPUT CHARACTER

CMPB #' ,R3 ; IS THIS CHAR A SPACE?

BEQ 2$; IGNORE IF SO

MOVB R3,(R1)+ ; OUTPUT THE CHARACTER
INC L ; COUNT THE CHARACTER

DEC R2 ; COUNT DOWN THE INPUT
BGT 1$; LOOP IF MORE DATA
RTS PC
- END

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.3.3 OTS PSECT Usage

All OTS modules consist of at least two program sections: SSOTSI and
SSOTSD. Section SSOTSI contains pure-code sequences’) and section
SSOTSD contains pure-data information.

The OTS module SOTV declares the following sections that are used as
impure working storage by the OTS:

e Section $SAOTS contains a general work area.

e Section SSDEVT contains storage for each FORTRAN logical
unit. The size of SSDEVT is determined by the Task Builder
UNITS option.

e Section $SFSR1l contains storage _ for I/O buffers and

file-system control blocks. The size of $$FSR1 is determined
by the Task Builder option ACTFIL.

e Section $SIOB1 contains storage for the FORTRAN-7 7
input/output record buffer. The size of SSIOB1 is determined
by the Task Builder option MAXBUF.

@ Section SSOBF1 contains storage for holding the compiled form
of object-time formats. The size of SSOBFl1 is determined by
the Task Builder FMTBUF option.

The handling and conversion routines for formatted records are
contained in the following sections: S$SFIOC, S$SFIOD, $SFIO2, $SFIOI,
SSFIOL, $SFIOZ, SSFIOS, and SSFIOR. Special conventions are used_ so

that the conversion routines are loaded only if they are required by
FORMAT statements in a Source program.

3.4 OTS AND RESIDENT (SHAREABLE) LIBRARIES

Each module of the FORTRAN-77 OTS (with the exception of modules SOTV,

LICSBS, $ORGSQ, SORGRL, and SORGIX) consists only of code and data

that is pure and shareable. Consequently, all or any part of the oTS
can be built into ae resident (Shareable) library or included in
another resident library. However, the OTS does not consist of
position-independent code (PIC) and cannot, therefore, be included in

a resident library that does consist of PIC. In particular, the oTS
cannot be included in resident libraries SYSRES, FCSRES, or RMSRES of

the I/O system, because each of these libraries consists of PIC.

Procedures for building a FORTRAN-77 OTS’ resident’ library are
described in the FORTRAN-77 distributed file F4PRES.MAC (see Section

5.4.7). F4PRES.MAC is an optional OTS file that can be used to build
an OTS resident library.

Module $SOTV consists of impure-data areas used by the remainder of the
OTS for temporary results, logical-unit control tables, buffers, and
So forth. Modules SORGSQ, SORGRL, and SORGIX provide impure’ linkages
for RMS-1ll.

Module LICSBS contains the list-directed input constant storage block.

If you are building OTS resident libraries and you want to include one
or more of the formatted or list-directed I/O routines (shown below)
in one of your resident libraries, you must include all of these
routines in the resident library.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Module Name Global Symbols Function

SFIO SFIO Format processor
SCONVL LCIS$S,LCOS L format conversion

SCONVI ICI$,ICO$,O0CI$,0CO$ I format conversion

SCONVR RCIS ,DCOS , ECOS , FCOS ,GCO$ D, E, F, G, format

conversion

SCONVZ NOCIS ,NOCOS ,ZCIS$,ZCOS$S O and Z format conversion

SLSTI SLSTI List-directed input

SLSTO SLSTO List-directed output

Note that a FORTRAN OTS resident library cannot reference any RMS-11

module.

3.5 OTS ERROR PROCESSING

The Object Time System detects certain errors in a program (for

example, I/0, arithmetic, and invalid argument errors) and reports

these errors on the user's terminal. An error-control table within

the OTS then determines what action the system is to take for each

error reported; for example, it may call for the system to terminate

the task. The default action for each FORTRAN-Specific error is shown

in Table 3-2 (in Section 3.5.1.3).

Three system subroutines (ERRSNS, ERRTST, and ERRSET) are provided to

enable you to control OTS error processing: that is, to obtain
information on specific errors and/or to specify an action to be taken
when a specific error occurs.

The ERRSNS subroutine provides you with information about the error
that has most recently occurred during program execution. It also
provides detailed information on errors detected by the file system
(FCS-11 or RMS-11).

The ERRTST subroutine allows you to test for the occurrence of a
specific error during program execution.

The ERRSET subroutine allows you to modify the continuation action the
system is to take when an error is detected by the OTS. In many
cases, the particular continuation action to be taken may be changed
from the one specified in the error-control table (see Table 3-2).

The subroutines ERRSNS, ERRTST, and ERRSET are described in detail in

Appendix D. OTS error codes and the format of the OTS diagnostic
messages are shown in Appendix C.

3.5.1 Recovering From OTS-Detected Errors

You can use three methods to control recovery from errors detected by
the OTS:

e ERR= and END= transfers

e The ERRSNS subroutine

e The ERRSET subroutine

The following three sections discuss these methods.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.5.1.1 Using ERR= and END= Transfers —- By including an ERR=label or
END=label specification in an I/O statement, you can transfer control

to error-processing code or to any other desired point in a= program.
If you use an END= or ERR= specification to process an I/O error,

execution continues at the statement specified by a label. However,
if you do not use an END= or ERR= specification to process an I/0
error, the system by default prints an error message and halts
execution.

For example, suppose the following statement is in your program:

WRITE(8,50,ERR=400)

If an error occurs during the write operation specified, control
transfers to the statement at label 400.

When an ERR= transfer occurs, file status and record position become

undefined.

You can use the END=label specification to handle an _ end-of-file
condition. For example, if an end-of-file condition is detected while
the statement

READ (12,70,END=550)

is being executed, control transfers to statement 550.

If an end-of-file is detected while a READ statement is being
executed, and you did not specify END=label, an error condition
occurs. If you specified ERR=label, control is transferred to’ the
specified statement.

3.5.1.2 Using the ERRSNS Subroutine - You can use the ERRSNS~ system
subroutine to process errors as they are encountered by a program.

When one of the errors listed in Table 3-2 occurs in a program, you
can obtain the number of the error by calling the ERRSNS subroutine;
then, in most situations, you can provide code to react to this
number.

To determine the number of an error, use the ERRSNS~ routine as

demonstrated in the following example:

CHARACTER*40 FILN

10 ACCEPT 1, FILN

1 FORMAT (A)
OPEN (UNIT=INF, STATUS='OLD', FILE=FILN, ERR=100)

- (process input file)

100 CALL ERRSNS (IERR)

IF (IERR .EQ. 43) THEN

TYPE *, "FILE NAME WAS INCORRECT; ENTER NEW FILE NAME'
ELSE IF(IERR .EQ. 29) THEN

TYPE *, ‘FILE DOES NOT EXIST; ENTER NEW FILE NAME'
ELSE

TYPE *, "FAILURE ON INPUT FILE; ERROR=', IERR
ENDIF

STOP
END

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

In this example, the OPEN statement contains an ERR=100 specification
that causes a branch to the ERRSNS Subroutine if an error occurs
during execution of the OPEN. The ERRSNS subroutine returns an
error-number value in the integer variable IERR. The program then
uses the value of IERR to print a message that explains the nature of

the error and to determine whether the program should continue.

3.5.1.3 Using the ERRSET Subroutine - You can alter the default
continuation action to be taken upon OTS detection of a particular
error by using the ERRSET subroutine.

Processing each of the errors detected by the OTS is controlled by six
control bits associated with each error. These bits are preset (see
Table 3-2); however, you may alter some of the initial settings --

and thereby the continuation action to be taken upon the detection of
a particular error -- by using the ERRSET subroutine.

The six control bits and what they control are as follows:

1. Continuation Bit -- If the Continuation Bit is not set, the
task encountering the error exits. If this bit is set, the
task continues (if the next two conditions permit
continuation).

2. Count Bit -- If the Count Bit is set, the error encountered

is counted against the task error-count limit unless an
ERR=transfer is specified. If the error-count limit is
exceeded, the task exits.

3. Continuation Type Bit -- The Continuation Type Bit provides
for one of the following two types of action for a particular
error:

a. Return to the routine that reported the error, for

appropriate recovery action, then proceed.

b. Take an ERR= transfer in an I/O statement. (If the

Continuation Type Bit specifies an ERR= transfer, and
no ERR=label was included in the I/O statement, the

task exits).

Each of the error-control-bit checks above must be satisfied for the

task to continue.

4. Log Bit -- If a task continues after an error is encountered
(that is, if continuation is permitted by each of the above
three control bits), then the Log Bit is tested. If the Log
Bit is set, an error message is produced before the task
continues; if the Log Bit is not set, the task continues
without a message.

If processing any of the first three control bits does not permit
continuation, the task exits and the system prints an error message.

Two additional control bits-are used to specify the acceptability of
arguments to the ERRSET subroutine.

5. Return Permitted Bit -- If the Return Permitted Bit is set,

ERRSET may set the Continuation Type Bit to specify a return.

6. ERR= Permitted Bit -- If the ERR= Permitted Bit is’ set,

ERRSET may set the Continuation Type Bit to specify that an
ERR= transfer is to occur.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

At least one of these two additional bits must be set in order for the
Continuation Bit to be set.

All four of the possible combinations of these two bits occur in the
OTS;

Notable exceptions are the synchronous System-trap errors (3
recurSive I/O error

task termination.

10) and

however, most errors occur as the following:

I/O errors that generally permit ERR=
not return continuation

Errors that permit return continuation but not
continuation
processing)

the

(even if they occur

continuation type but

ERR= transfer
during I/0 statement

through
(40), all of which always result in

The format processing and format conversion errors
(59, 61, 63, 64, 68) allow both types of continuation.

The initial setting of all six control bits -- the two permitted bits
as well as the Continuation Bit, the Count Bit, the Continuation Type
Bit, and the Log Bit -- is shown in Table 3-2. You can use the ERRSET
subroutine change the settings for CONTINUE?, COUNT?, CONTINUE
TYPE, and LOG?. The ERRSET subroutine described in detail in
Appendix D.

Table 3-2

Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT
NUMBER TYPE ERR=? RETURN?

1 NO NO FATAL YES NO NO INVALID ERROR CALL
2 NO NO FATAL YES NO NO TASK INITIALIZATION FAILURE
3 NO NO FATAL YES NO NO ODD ADDRESS TRAP (SSTO)
4 NO NO FATAL YES NO NO SEGMENT FAULT (SST1)
5 NO NO FATAL YES NO NO T-BIT OR BPT TRAP (SST2)
6 NO NO FATAL YES NO NO IOT TRAP (SST3)
7 NO NO FATAL YES NO NO RESERVED INSTRUCTION TRAP...
8 NO NO FATAL YES NO NO NON-RSX EMT TRAP (SST5)
9 NO NO FATAL YES NO NO TRAP INSTRUCTION TRAP (SST6)

10 NO NO FATAL YES NO NO PDP-11/40 FIS TRAP (SST7)
11 NO NO FATAL YES NO NO FPP HARDWARE FAULT
12 NO NO FATAL YES NO NO FPP ILLEGAL OPCODE TRAP
13 NO NO FATAL YES NO NO FPP UNDEFINED VARIABLE TRAP
14 NO NO FATAL YES NO NO FPP MAINTENANCE TRAP

20 YES YES ERR= YES YES NO REWIND ERROR
21 YES YES ERR= YES YES NO DUPLICATE FILE SPECIFICATIONS
22 YES YES ERR= YES YES NO INPUT RECORD TOO LONG
23 YES YES ERR= YES YES NO BACKSPACE ERROR
24 YES YES ERR= YES YES NO END-OF-FILE DURING READ
25 YES YES ERR= YES YES NO RECORD NUMBER OUTSIDE RANGE
26 YES YES ERR= YES YES NO ACCESS MODE NOT SPECIFIED
27 YES YES ERR= YES YES NO MORE THAN ONE RECORD IN I/O...
28 YES YES ERR= YES YES NO CLOSE ERROR
29 YES YES ERR= YES YES NO NO SUCH FILE
30 YES YES ERR= YES YES NO OPEN FAILURE

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Table 3-2 (Cont.)
Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT

NUMBER TYPE ERR=? RETURN?

31 YES YES ERR= YES YES NO MIXED FILE ACCESS MODES

32 YES YES ERR= YES YES NO INVALID LOGICAL NUMBER
33 YES YES ERR= YES YES YES ENDFILE ERROR
34 YES YES ERR= YES YES NO UNIT ALREADY OPEN
35 YES YES ERR= YES YES NO SEGMENTED RECORD FORMAT ERROR
36 YES YES ERR= YES YES NO ATTEMPT TO ACCESS NON-EXISTENT...

37 YES YES ERR= YES YES YES INCONSISTENT RECORD...

38 YES YES ERR= YES YES NO ERROR DURING WRITE
39 YES YES ERR= YES YES NO ERROR DURING READ

40 NO NO FATAL YES NO NO RECURSIVE I/O OPERATION

41 YES YES ERR= YES YES NO NO BUFFER ROOM
42 YES YES ERR= YES YES NO NO SUCH DEVICE

43 YES YES RETURN YES NO YES FILE NAME SPECIFICATION ERROR

44 YES YES ERR= YES YES NO INCONSISTENT RECORD TYPE
45 YES YES ERR= YES YES NO KEYWORD VALUE ERROR IN OPEN...

46 YES YES ERR= YES YES NO INCONSISTENT OPEN/CLOSE...
47 YES YES ERR= YES YES NO WRITE TO READONLY FILE
48 YES YES ERR= YES YES NO UNSUPPORTED I/O OPERATION
49 YES YES ERR= YES YES NO INVALID KEY SPECIFICATION

50 YES YES ERR= YES YES NO INCONSISTENT KEY CHANGE OR...
51 YES YES ERR= YES YES NO INCONSISTENT FILE ORGANIZATION
52 YES YES ERR= NO YES NO SPECIFIED RECORD LOCKED
53 YES YES ERR= YES YES NO NO CURRENT RECORD
54 YES YES ERR= YES YES NO REWRITE ERROR

55 YES YES ERR= YES YES NO DELETE ERROR

56 YES YES ERR= YES YES NO UNLOCK ERROR
57 YES YES ERR= YES YES NO FIND ERROR

59 YES NO ERR= YES YES YES LIST-DIRECTED I/O SYNTAX ERROR
60 YES YES ERR= YES YES NO INFINITE FORMAT LOOP
61 YES YES ERR= YES YES YES FORMAT/VARIABLE-TYPE MISMATCH
62 YES YES ERR= YES YES NO SYNTAX ERROR IN FORMAT
63 YES NO RETURN YES YES YES OUTPUT CONVERSION ERROR
64 YES YES ERR= YES YES YES INPUT CONVERSION ERROR

65 YES YES ERR= YES YES NO FORMAT TOO BIG FOR ‘'FMTBUF'
66 YES YES ERR= YES YES NO OUTPUT STATEMENT OVERFLOWS...

67 YES YES ERR= YES YES NO RECORD TOO SMALL FOR I/O LIST

68 YES YES ERR= YES YES YES VARIABLE FORMAT EXPRESSION...

70 YES YES RETURN YES NO YES INTEGER OVERFLOW

71 YES YES RETURN YES NO YES INTEGER ZERO DIVIDE
72 YES YES RETURN YES NO YES FLOATING OVERFLOW

73 YES YES RETURN YES NO YES FLOATING ZERO DIVIDE

74 YES NO RETURN NO NO YES FLOATING UNDERFLOW
75 YES YES RETURN YES NO YES FPP FLOATING TO INTEGER...

80 YES YES RETURN YES NO YES WRONG NUMBER OF ARGUMENTS
81 YES YES RETURN YES NO YES INVALID ARGUMENT
82 YES YES RETURN YES NO YES UNDEFINED EXPONENTIATION
83 YES YES RETURN YES NO YES LOGARITHM OF ZERO OR NEGATIVE...
84 YES YES RETURN YES NO YES SQUARE ROOT OF NEGATIVE VALUE

86 YES YES RETURN YES NO YES INVALID ERROR NUMBER

(continued on next page)

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Table 3-2 (Cont.)

Initial Error Control Bit Settings

ERROR CONTINUE? COUNT? CONTINUE LOG? PERMITTED TEXT
NUMBER TYPE ERR=? RETURN?

91 YES NO RETURN NO NO YES COMPUTED GOTO OUT OF RANGE
92 YES YES RETURN YES NO YES ASSIGNED LABEL NOT IN LIST
93 YES YES RETURN YES NO YES ADJUSTABLE ARRAY DIMENSION...
94 YES YES RETURN YES NO YES ARRAY REFERENCE OUTSIDE ARRAY
95 NO NO FATAL YES NO NO INCOMPATIBLE FORTRAN OBJECT...
96 NO NO FATAL YES NO NO MISSING FORMAT CONVERSION...
97 NO NO FATAL YES NO NO FTN FORTRAN ERROR CALL
98 YES NO RETURN YES NO YES USER REQUESTED TRACEBACK

100 NO NO FATAL YES NO NO DIRECTIVE: MISSING ARGUMENT (S)
101 NO NO FATAL YES NO NO DIRECTIVE: INVALID EVENT FLAG...

111 NO NO FATAL YES NO NO VIRTUAL ARRAY INITIALIZATION...
112 YES YES RETURN YES NO YES VIRTUAL ARRAY MAPPING ERROR

3.6 FORTRAN-77 COMPILER LISTING FORMAT

There are three optional sections that you may include in a _ compiler
listing file: the source program, the generated machine code, and the
Storage map. The source program and storage map are included in a

list file by default. The generated machine language code is excluded
by default. A description of each of these sections is given below.

3.6.1 Source Listing

The source code of a compiled program is written into the source
listing section of the compiler listing file in the same format as
that in which the source code appears in the input file, except that
the compiler adds internal sequence numbers to facilitate ease of
reference. Comment lines and uncompiled debug statements, however, do
not receive internal sequence numbers.

If the text editor you use generates line numbers, these numbers’ also
appear in the source listing. They appear in the left margin, with
the compiler-generated sequence numbers’ shifted to the right.
Diagnostic messages always refer to the compiler-generated sequence

numbers.

3.6.2 Generated Code Listing

The generated code listing section of the compiler listing file
contains symbolic representations of object code generated by the
compiler. These representations are similar to a MACRO-11 source

listing, but they are not in a form that can be directly assembled by
MACRO-11.

3-15

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Labels that correspond to FORTRAN source labels are printed with an

initial dot. For example, the source label "300" would appear in a
generated code listing as ".300". Not all labels appearing in a
source program necessarily appear in the corresponding generated code
listing. In particular, labels not referenced in a Source program are
ignored by the compiler and are not used in resulting generated code.

References to variables and arrays defined in a Source program are
shown in the corresponding generated code listing by their FORTRAN
names,

PDP-1l general registers 0 through 5 are represented in a generated
code listing by RO through R5, general register 6 is represented by SP
(for Stack Pointer), and general register 7 is represented by PC (for
Program Counter); the floating-point registers are represented by FO
through F5. These representations are the conventional PDP-11l
register names and are used despite the fact that you can also use
these names as FORTRAN variable names.

In some cases, the compiler generates labels for itS own uSe. These
labels are shown in a generated code listing as "LSxxxx", where "xxxx"
is a unique symbol for each label within a program unit.

Addresses for other than labels, registers, and variables are
represented by the name of the program section plus the offset within
that section. Program section names used by the compiler are
Summarized in Section 3.3.1. Changes from one program section to
another are shown as .PSECT lines. The left column of a listing shows

the offset within the current section to which the remainder of the
line applies.

All numbers are in octal radix.

The first line of a generated code listing contains a .TITLE
directive; for SUBROUTINE and FUNCTION subprograms, the title is the

same as the subprogram name. If a PROGRAM statement is used in a main
program, the name in that statement is used as the title; otherwise,
the title .MAIN. is used. If a name is included in a BLOCKDATA
statement, this name is used for the title; otherwise, the title
~-DATA. is used.

The second line of a generated code listing contains an .IDENT
directive in which the date of the compilation is represented.

The lines that follow the second line describe the contents of storage
initialized for FORMAT statements, DATA statements, constants,

subprogram call argument lists, and so forth.

Machine instructions are represented in a generated code listing with
MACRO-11 mnemonics and syntax.

3.6.3 Storage Map Listing

The storage map contains summaries of the following:

e Program sections

e Entry points

e Variables

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

e Arrays

@e Virtual arrays

e Labels

e Functions and subroutines referenced

@e Total memory allocated

Figure 3-1 illustrates a typical storage map listing.

In each of the following descriptions, when a size is given, this size
is printed as octal bytes followed by decimal words (except for
virtual arrays). For example:

000006 3

A data address is given as a program section number’ followed by the
octal offset from the beginning of that program section.

For example, in the data address that follows, 1 is the program
section number and 000626 is the offset (in octal) from the beginning

of program section 1:

1-000626

A dummy argument is represented with an F instead of a program section
number, and the offset is the offset from the argument pointer (R5).

The symbol * following an address field specifies that the program
section number (or F), plus the offset, points to the address of the
data rather than to the data itself.

The PROGRAM SECTIONS summary in a storage map contains
information -- one line per program section -- about each of the

program sections (PSECTS) generated by the compiler. Each line
contains the number of the PSECT being summarized (used by most of the
other summaries), the name of the section, the size of the section,

and the attributes of the section. The size is shown twice: first,

as the number of bytes in octal radix; and, second, as the number of
words in decimal radix. See Section 3.3.1 for definitions of the
section attributes.

The ENTRY POINTS summary contains a list of all declared entry points
and their addresses. If the routine containing an entry point being
listed is a function, the declared data type of this entry point is
also included.

The VARIABLES summary contains a list of each simple variable,
together with its data type and address.

The ARRAYS summary is the same as the VARIABLES summary, except that

it supplies total array size information and detailed dimension
information. If the array is an adjustable array or assumed-size
array, the Size of the array is specified as **, and each
adjustable-dimension bound or assumed-size bound is specified as *.

The VIRTUAL ARRAYS summary is similar to the array summary. The
address of a virtual array is shown as an offset, in 64 byte units,
from the start of virtual array storage. The size is specified as the
number of array elements, not the number of bytes.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

PROGRAM SECTIONS

Number Name Size Attributes

1 $CODEL 001062 281 RWeI»sCONyLCL

2 $PDATA 000022 9 RWrDsCONyLCL

3 $IDATA 000056 2 RWsDrCONe LCL

4 $VARS 000020 8 RW» Dy CONsLOL

7 CRLK 001244 338 RWeDrvOVR?sGRL

ENTRY FOINTS

Name Tyre Address Name Tyre Address Name Tyre Address

ROTOR Rx8 1-000000

STATEMENT FUNCTIONS

Name Tyre Address Name Tyre Address Name Tyre Address

FSI Rx 4 1-001032

VARIABLES

Name Tyre Address Name Tyre Address Name Tyre Address

ALFHAR RxX4 4~-000014 NELX RK 4 F-O00Q00002k I Ixk2 4-000010
J Ik2 4-000012 NB Ik2 F-Q00006k NS Ix2 F-QO0010X

THETA RxX4 4--000004 ZETA Rx*4 4-000000

ARRAYS

Name Tyre Address Size limensions

BR Rx*4 77-Q00000 001244 338 (-6369~-6236)

CHI Cxs F-O000004x xx (O32 K»03X)

VIRTUAL ARRAYS

Name Tyre Offset Size Dimensions

CUINATA R*X¥4 O0001721 16384 (47494%¥4949454)

FT RxX¥4 00000000 15625 (25925925)

LABELS

Label Address Label Address Label Address

29 1-000274 960° 2~000000 999 1~-000726

FUNCTIONS AND SUBROUTINES REFERENCED

COSF SINF $SIN $SQRT

Total Srace Allocated = 002446 659

Total Virtusel Array Storage = 2001

Figure 3-1 Storage Map Example

ZK-243-81

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The LABELS summary contains a list of all user-defined statement

labels. If a label is marked with an apostrophe, the label is a

format label. If the label address field contains **, the label is

neither referenced nor used by the compiled code.

The FUNCTIONS AND SUBROUTINES REFERENCED summary contains a list of
all external-routine references made by the source program.

If the text NO FPP INSTRUCTIONS GENERATED appears in the storage map,

the FORTRAN-77 object module may not require the Floating Point
Processor (FPP) for execution. See Section 5.4.1 for further

information.

At the end of the above summaries, the total amount of memory
allocated by the compilation for all program sections is printed as
follows:

TOTAL SPACE ALLOCATED = 000502 161

If any virtual arrays are declared in the program, the total size in
64-byte units is given as follows:

TOTAL VIRTUAL ARRAY STORAGE = 632

If a summary section has no entries in a particular compilation, the
summary headings are not printed.

3.7 VIRTUAL ARRAY OPTIONS

The VIRTUAL statement declares arrays that are assigned space outside
a program's address space and that are manipulated through the VIRTUAL
array facility of PDP-11 FORTRAN-77. The VIRTUAL array facility
allows arrays to be stored in large data areas that are accesed at

high speed.

NOTE

VIRTUAL arrays are supported only on

operating systems that support’ the
Memory Management Directives.

3.7.1 Limits on VIRTUAL Elements

VIRTUAL arrays are limited by the number of elements, not by _ the
available storage. The maximum number of elements in a VIRTUAL array
is 65535; there is no limit to the total size of the VIRTUAL arrays a
program can access. The limit on elements is 65535 because PDP-11
FORTRAN-77 requires that the number of elements in an array not exceed
the size of an unsigned integer*2, which is 2**16-1l.

The largest LOGICAL*1 VIRTUAL array is 32K words, or 65535 bytes; and
the largest REAL*8 VIRTUAL array is 256K words, or 624280 bytes.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

3.7.1.1 VIRTUAL and DIMENSION Statements - The syntax of the VIRTUAL
statement is identical to that of the DIMENSION statement. However,
there is a significant semantic difference between the two because of
the limitations imposed on the DIMENSION statement. Local arrays
declared by the DIMENSION statement are limited by the maximum memory
available to the program. Section 3.7.2 demonstrates how to use the
VIRTUAL feature in an existing program.

3.7.1.2 Memory Allocation for VIRTUAL Arrays - The Task Builder
allocates a mapped array area below a task's header; this mapped
array area is large enough to contain all the VIRTUAL arrays declared
in a program,

A window of 4K words initially maps the first 4K words of the VIRTUAL
array region. When a.VIRTUAL array element lies outside the window, a
Memory Management directive causes a remap operation to allow access.

3.7.1.3 Execution Time of Virtual Arrays - Using VIRTUAL arrays
increases the execution time of a task because VIRTUAL array elements
must be mapped to memory addresses. In general, the larger’ the

VIRTUAL array, the greater the number of times mapping occurs;
therefore, larger arrays generally take longer to execute than do
smaller arrays.

The following example illustrates how using VIRTUAL arrays increases
execution time:

PARAMETER N=3500
VIRTUAL A(N), B(N), C(N)
DO 10 I= I,N
A(1I)=1234.
B(I)=5678

10 C(I)=A(I)/B(I)
STOP
END

As declared in the program above, the VIRTUAL arrays A, B, and C are

each too large (7000 words) to fit within a 4K-word window of memory.

Each time an element outside the 4K-word window is accessed, remapping
occurs. Thus, executing the DO loop requires 17,500 (3500%*5)
mappings. If only array C were VIRTUAL, however, then only two
mappings would be needed to execute the loop.

The operations in the program above can require as long as 14.1
Seconds for execution on a PDP-11/60 running under RSX-11M, V3.2. By
contrast, if arrays A, B, and C were declared with a DIMENSION
Statement in directly addressable memory, the same operations could
require as little as 0.12 seconds in the same operating environment.

You can reduce the mapping of VIRTUAL arrays by breaking large arrays
into smaller ones and/or by keeping consecutive accesses of array
elements within the current 4K-word window.

3.7.2 Converting a Program to VIRTUAL Array Usage

You can convert an existing program to use VIRTUAL arrays’ simply by
declaring the array with VIRTUAL statements instead of DIMENSION
Statements. In doing this, however, be sure to observe the _ usage
restrictions for VIRTUAL arrays described in the PDP-11 FORTRAN-77
Language Reference Manual.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The following example illustrates general program conversion.

1.

2

Identify the non-VIRTUAL arrays that are to be converted to

VIRTUAL arrays.

Locate the DIMENSION and the type declaration statements in

which these arrays are declared. Replace DIMENSION
Statements with equivalent VIRTUAL statements. Replace

array-declarative type declaration statements with VIRTUAL
statements to define the array dimension, and _ remove the
dimensioning information from the type declaration
statements.

Compile the program and observe all compilation errors.
These errors occur where the syntax restrictions outlined in
the PDP-1l1 FORTRAN-77 Language Reference Manual have been

violated. In some cases, to use VIRTUAL arrays effectively
you may need to reformulate the data structures.

Check the code to ensure that VIRTUAL array parameters are

passed correctly to subprograms.

a. If the argument list of a Subprogram call includes an
unsubscripted VIRTUAL array name, the argument list of the
SUBROUTINE Or FUNCTION statement must have an

unsubscripted VIRTUAL array name in its corresponding
dummy argument. This corresponding VIRTUAL array name
establishes access to the VIRTUAL array for the

subprogram. The declaration of the VIRTUAL array in the

subprogram must be dimensionally compatible with the
VIRTUAL declaration in the calling program. All changes
to the VIRTUAL array that occurred during subprogram
execution are retained when control returns to the calling
program.

When you pass entire arrays as Subprogram parameters, be

certain that the matching arguments are defined as both
VIRTUAL or both non-VIRTUAL. Mismatches of array types
are not detectable at either compilation or execution

time, and the results are undefined.

b. If the argument list of a Subprogram reference includes a
reference to a VIRTUAL array element, the matching formal
parameter in the SUBROUTINE or FUNCTION statement must be
a non-VIRTUAL variable. Value assignments to the formal

parameter occurring within the subprogram do not alter the
stored value of the VIRTUAL array element in the calling
program. To alter the value of that element, the calling

program must include a separate assignment statement that

references the VIRTUAL array element directly.

The process of changing non-VIRTUAL arrays to VIRTUAL arrays is
demonstrated below.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

The following program contains two arrays, A and B.

DIMENSION A(1000,20)

INTEGER*2 B(1000)

DATA B/1000*0/

CALL ABC(A,B,1000,20)
WRITE (2,*) (A(1,1) ,I=1,1000)
END

SUBROUTINE ABC(X,Y,N,M)

DIMENSION X(N,M)

INTEGER*2 Y(N)

DO 10, I=1,N

10 X(I,1)=Y (I)

RETURN

END

Array A is declared in a DIMENSION statement and is of the default

data type. Therefore, substituting the keyword VIRTUAL for the
keyword DIMENSION is sufficient for its conversion.

Note, however, that array B and its dimensions are declared in a_ type
declaration statement (in the second line of the program).

To convert B into a VIRTUAL array, its declarator must be moved to a
VIRTUAL statement; also, the variable B must remain in the type
declaration statement, but without a dimension specification.

A and B are both passed to subroutine ABC as arrays, rather than array
elements. Therefore, the associated subroutine parameters must also
be converted to VIRTUAL arrays.

The following listing shows the program after the conversion is
completed.

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

POPeii FORTRAN@77 V4.0 10238:57 Be June8l Page i

VIRTUAL FING /TRIBLOCKS/WR

@001 VIRTUAL A(1080,20),8(1808)
0002 INTEGERe2 B

@003 00 5 Iai1,1000

8084 5 BCI) sd

2085 CALL ABC(A,B,1060,20)
2006 WRITEC2,") CACTI, 1) /181,1008)
0807 ENO

ZK-171-81

PDPeiti FORTRAN@77 V4,
VIRTUAL LFIYNG 1

PROGRAM SECTIONS

Number Name Size

1 SCODE: 080172

2 SPDATA 888022

3 SIDATA 0900020
4 $VARS @80ag2

VARIABLES

Neme Type Address

T Twe2 4-900000

VIRTUAL ARRAYS

Name Type Offset

A ReQG 980000080

B I*n2 8080002342

LABELS

Lebel Address Lebe!

§ ae

FUNCTIONS AND SUBROUTINES REFERENCED

ABC

Total Space Allecated s 808236

Totel Viretuel Array Storage # 1282

No FPP Inetruetions Generated

79

PDP-—-11 FORTRAN-77 OPERATING ENVIRONMENT

18330357 BeaJune8l Pege 2

/TREBLOCKS/WR

Attributes

61 RW, TsCON,LCL
9 RWeD,CON,LCL

8 RWeD,CONSLCL

{ RW,e,DsCON,LCL

Name Type Address Neme Type Address Name Type Address

Size Dimensions

280080 (1008,22)

180¢ ¢€1080)

Address Laebe! Address Labe) Address Labe! Address

Name Type Address

ZK-171-81

PDP-1] FORTRAN-77 OPERATING ENVIRONMENT

POPeti FORTRAN#77 V4,0 10231:e9 Be Jun=61 Pege 3

VIRTUAL FING I /TRIBLOCKS/WR

Geel SUBROUTINE ABC(X,YseMsN)
0202 VIRTUAL YON) ,X(N,M)
8603 INTEGER@2 Y

0804 DO 10 Iai,N

8805 1@ XCTet)eY¢T)
8006 RETURN

8007 END

ZK-171-81

POPei1 FORTRAN®77 V4.8
VIRTUAL FING!

PROGRAM SECTIONS

Number Neme Size

t SCODE1 @06168
3 SIDATA 800046
a SVARS 8802002

5 STEMPS 808002

ENYRY POINTS

Name Type Address

ABC 1-880600

VARTABLES

Neme Type Address

I Ie2 4=-08008000

VIRTUAL ARRAYS

Name Type Offset

x Rw FeQOab02s

Y Te2 Fe8888Gde

LABELS

Lebel Address Labe!

18 an

PDP-11 FORTRAN-77 OPERATING ENVIRONMENT

Tote!) Space Allocated s 8890232 77

19231300 BeJune8h Page 4
/TREBLOCKS/WR

Attributes

56 RW,T,CON,LCL
19 RWe,OeCON,LCL

1 RW,O,CON,LEL

1 RW,D,CON,LCL

Neme Type Address Neme Type Address

Neme Type Address Name Type Address

M In2 Fe@O@a@be N I*2 Fegdeaiarx

Size Dimensions

aw (a,x)

nh (#)

Address Label Address Lebel Address Laebe!

Name

Neme

Type

Type

Address

Address

Address

Name

Name

Type

Type

Address

Address

ZK-171-81

CHAPTER 4

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

This chapter discusses. several of the fundamental design and
implementation concepts of PDP-1l FORTRAN-77 that are different from

those of other FORTRAN systems, or that are likely to be new to many

FORTRAN programmers.

4.1 INTRINSIC FUNCTIONS

As it processes a program unit, the compiler determines (without any
information about other program units that may be added later) whether
a function referenced in the program unit is an intrinsic’ function
(processor-defined) or a user-defined function. The compiler invokes
an intrinsic function with a symbolic name, called an internal name,

that is different from any name the user can define. For example, the
intrinsic real-valued sine function is invoked by the compiler with
the internal name SSIN.

In general, an internal name is a FORTRAN name with a dollar’ sign
prefixed. Where the FORTRAN name is six characters long, a

5-character contraction is combined with the dollar sign. A complete
list of the intrinsic names and their corresponding internal names
appears in Table 4-1.

Using the IMPLICIT statement to change the default data type rules has

no effect on the data type of intrinsic functions.

4.1.1 Using EXTERNAL and INTRINSIC Statements

The EXTERNAL statement identifies symbolic names as _ user-Supplied
functions and subroutines. The INTRINSIC statement identifies
symbolic names as system-Supplied functions or _ subroutines. For
example, the statement

EXTERNAL INVERT

identifies a subroutine named INVERT as user-Supplied, and

INTRINSIC ABS

identifies a function named ABS as system-Supplied.

Once a symbolic name has been identified in an EXTERNAL statement, it
is no longer available in the same program unit’ for use in an
INTRINSIC statement.

Refer to Appendix E for information on the compatibility of the
EXTERNAL statement with PDP-11 FORTRAN-77 and PDP-11 FORTRAN IV-PLUS

programs.

PDP-1] FORTRAN-77 IMPLEMENTATION CONCEPTS

4.1.2 Generic Function References

A generic function is similar to an intrinsic function, but instead of
being a single function it is a set of similar functions called
Specific functions. The specific functions in a generic set differ
from each other only in that each function manipulates data of one
Specific type. For example, SIN() is a generic function that includes
the specific functions SIN, DSIN, and CSIN, where SIN manipulates real
data, DSIN double-precision data, and CSIN complex data. The data
type of the argument in a generic reference determines which specific
function is actually invoked. For example, SIN(X) invokes SIN if x is
real and DSIN if X is double precision. The compiler makes a separate
determination of the specific function to be referenced each time it
encounters the same generic reference.

Those intrinsic functions that can be referenced by generic references
are listed in Table 4-1 under the heading "Generic Name." Many generic
function names are also intrinsic function names. However, in aie few
cases (for example, the generic function name MIN), the generic
function name is not an intrinsic function name.

Table 4-1

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name l Argument Result

Square Root 2 1 SORT SORT Real Real
DSQRT Double Double

a(1/2) CSORT Complex Complex

Natural Logarithm 3 1 LOG ALOG Real Real
DLOG Double Double

log(e)a CLOG Complex Complex

Common Logarithm 3 1 LOG10 ALOG10 Real Real
DLOG10 Double Double

log(1l0)a

Exponential 1 EXP EXP Real Real
DEXP Double Double

e (a) CEXP Complex Complex

Sine 4 1 SIN SIN Real Real
DSIN Double Double

Sina CSIN Complex Complex
Cosine 4 1 Cos Cos Real Real

DCOS Double Double
cos a CCOS Complex Complex

Tangent 4 1 TAN TAN Real Real
DTAN Double Double

tan a

Arc Sine 976 1 ASIN ASIN Real Real
DASIN Double Double

arc sin a

Arc Cosine °r® 1 ACOS ACOS Real Real
DACOS Double Double

arc cos a

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Namel Argument Result

Arc Tangent 6 1 ATAN ATAN Real Real
DATAN Double Double

arc tan a

Arc Tangent ©+/ 2 ATAN2 ATAN2 Real Real
DATAN2 Double Double

arc tan a(l)/a(2)

Hyperbolic Sine 1 SINH SINH Real Real

DSINH Double Double
Sinh a

Hyperbolic Cosine 1 COSH COSH Real Real

DCOSH Double Double
Cosh a

Hyperbolic Tangent 1 TANH TANH Real Real

DTANH Double Double
Tanh a

Absolute value 8 1 ABS ABS Real Real
DABS Double Double

[a] CABS Complex Real

IIABS Integer*2 Integer*2

JIABS Integer*4 Integer*4

IABS IIABS Integer*2 Integer*2

JIABS Integer*4 Integer*4

Truncation 2 1 INT IINT Real Integer*2

JINT Real Integer*4
[a] IIDINT Double Integer*2

JIDINT Double Integer*4

IDINT IIDINT Double Integer*2
JIDINT Double Integer*4

AINT AINT Real Real

DINT Double Double

Nearest Integer 9 1 NINT ININT Real Integer*2

JNINT Real Integer*4
[a+.5*sign(a)] IIDNNT Double Integer*2

JIDNNT Double Integer*4

IDNINT IIDNNT Double Integer*2

JIDNNT Double Integer*4

ANINT ANINT Real Real

DNINT Double Double

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Namel Argument Result

Fix 10 1 IFIX IIFIX Real Integer*2
(real-to-integer conversion) JIFXI Real Integer*4

Float 10 1 FLOAT FLOATI Integer*2 Real
(integer-to-real conversion) FLOATJ Integer*4 Real

Double Precision Float 19 1 DFLOAT DFLOTI Integer*2 Double
(integer-to-double conversion) DFLOTJ Integer*4 Double

Conversion to Single 1 SNGL - Real Real

Precision10 SNGL Double Real
FLOATI Integer*2 Real
FLOATJ Integer*4 Real

Conversion to 1 DBLE DBLE Real Double
Double Precision 10 - Double Double

- Complex Double

DFLOTI Integer*2 Double
DFLOTJ Integer*4 Double

Real Part of Complex or 1 REAL REAL Complex Real

Conversion to Single FLOATI Integer*2 Real

Precision 10 FLOATJ Integer*4 Real
SNGL Real Real
SNGL Double Real

Imaginary Part of Complex l ~ AIMAG Complex Real

Conversion to Complex 1,2 CMPLX - Integer*2 Complex
or 1,2 - Integer*4 Complex

Complex from Two 1,2 - Real Complex
Arguments tl 1,2 CMPLX Real Complex

1,2 - Double Complex
1 - Complex Complex

Complex Conjugate 1 ~ CONJG Complex Complex
(if a=(X,Y)

CONJG (a)=(X,Y)

Double Product of Reals 2 - DPROD Real Double

a(l)*a(2)

Maximum n MAX AMAX1 Real Real
DMAX1 Double Double

max(a(l),a(2),...a(n)) IMAXO Integer*2 Integer*2
(returns the maximum value JMAXO Integer*4 Integer*4
from among the argument
list; there must be at least MAXO IMAX0O Integer*2 Integer*2
two arguments) JMAXO Integer*4 Integer*4

MAX] IMAX1] Real Integer*2

JMAX1 Real Integer*4

AMXAO AIMAXO Integer*2 Real

AJMAX0 Integer*4 Real

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)

Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Name | Argument Result

Minimum n MIN AMIN] Real Real
DMIN1 Double Double

min(a(l),a(2),..a(n)) IMINO Integer*2 Integer*2

(returns the minimum value JMINO Integer*4 Integer*4

among the argument list;
there must be at least two MINO IMINO Integer*2 Integer*2

arguments) JMINO Integer*4 Integer*4

MIN] IMIN1 Real Integer*2
JMINI Real Integer*4

AMINO AIMINO Integer*2 Real

AJMINO Integer*4 Real

Positive Difference 2 DIM DIM Real Real
DDIM Double Double

a(l)-(min(a(1),a(2))) IIDIM Integer*2 Integer*2
(returns the first argument JIDIM Integer*4 Integer*4

minus the minimum of the
two arguments) IDIM IIDIM Integer*2 Integer*2

JIDIM Integer*4 Integer*4

Remainder 2 MOD AMOD Real Real
DMOD Double Double

a(l)-a(2)*[a(1)/a(2)] IMOD Integer*2 Integer*2

(returns the remainder JMOD Inetger*4 Integer*4
when the first argument

is divided by the second)

Transfer of Sign 2 SIGN SIGN Real Real
DSIGN Double Double

a(l) *Sign a(2) IISIGN Integer*2 Integer*2
JISIGN Integer*4 Integer*4

ISIGN IISIGN Integer*2 Integer*2

JISIGN Integer*4 Integer*4

Bitwise AND 2 IAND IIAND Integer*2 Integer*2

(performs a logical AND on JIAND Integer*4 Integer*4

corresponding bits)

Bitwise OR 2 IOR IIOR Integer*2 Integer*2

(performs an inclusive OR on JIOR Integer*4 Integer*4

corresponding bits)

Bitwise Exclusive OR 2 IEOR IITEOR Integer*2 Integer*2

(performs an exclusive OR on JIEOR Integer*4 Integer*4
corresponding bits)

Bitwise Complement 1 NOT INOT Integer*2 Integer*2

(complements each bit) JNOT Integer*4 Integer*4

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Table 4-1 (Cont.)
Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name 1 Argument Result

Bitwise Shift 2 ISHFT IISHFT Integer*2 Integer*2
JISHFT Integer*4 Integer*4

(a(l) logically shifted left
a(2) bits)

Random Number 12 1 - RAN Integer*4 Real
(returns the next number
from a sequence of pseudo-
random numbers of uniform
distribution over the range 2 - RAN Integer*2 Real
0 to 1)

Length 1 ~ LEN Character Integer*2
(returns length of the
Character expression)

Index (C(1),C(2)) 2 - INDEX Character Integer*2
(returns the position of the
Substring c(2) in the character

expression c(1))

ASCII Value 1 - ICHAR Character Integer*2
(returns the ASCII value of
the argument; the argument

must be a character expres-

Sion that has a length of 1)

Character relationals 2 ~ LLT Character Logical*2
(ASCII collating sequence) 2 - LLE Character Logical*2

2 - LGT Character Logical*2
2 - LGE Character Logical*2

1. See Section 4.2.4 for definitions of "I" and "J" forms.

2. The argument of SQRT and DSQRT must be greater than or equal to 0. The
result of CSQRT is the principal value with the real part greater than or
equal to 0. When the real part is 0, the result is the principal value with
the imaginary part greater than or equal to 0.

3. The argument of ALOG, DLOG, ALOG10, and DLOG10 must be greater than 0. The
argument of CLOG must not be (0.,0.).

4. The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in radians. The
argument is treated modulo 2*pi.

5. The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS must be
less than or equal to l.

6. The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATAN2, and DATAN2 is’ in
radians.

7. The result of ATAN2 and DATAN2 is 0 or positive when a(2) is than or
equal to 0.

less
The result is undefined if both arguments are 0.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

8. The absolute value of a complex number, (X,Y), is the real value:

(X(2)+¥ (2)) (1/2)

9. [x] is defined as the largest integer whose magnitude does not exceed _ the

magnitude of x and whose sign is the same as that of x. For example [5.7]

equals 5. and [-5.7] equals -5.

10. Functions that cause conversion of one data type to another type provide the

same effect as the implied conversion in assignment statements. The function

SNGL with a real argument and the function DBLE with a double precision

argument return the value of the argument without conversion.

11. When CMPLX has only one argument, this argument is converted into the _ real

part of a complex value, and zero is assigned to the imaginary part. When

CMPLX has two arguments, the first argument is converted to the real part of

a complex value, the second to the imaginary part.

12. The argument for this function must be an integer variable or integer array

element. The argument should initially be set to 0. The RAN function stores

a value in the argument that it later uses to calculate the next random

number. Resetting the argument to 0 regenerates the sequence. Alternate

Starting values generate different random-number sequences.

4.2 INTEGER*2 AND INTEGER*4

PDP-11 FORTRAN-77 provides two integer data types: INTEGER*4, for
purposes of high precision; and INTEGER*2, for purposes of
efficiency. INTEGER*4 operations are performed to 32 bits of
Significance; however, because these operations require more
instructions and storage than INTEGER*2 operations, they are less
efficient in terms of both time and memory.

To encourage efficiency, the FORTRAN-77 compiler assumes all integer
variables to be of INTEGER*2 types unless you explicitly declare them
to be INTEGER*4 within a program, or unless you set the /I4 compiler
Switch (see Section 1.2.4).

When in INTEGER*4 mode, the compiler treats all integer (and logical)
variables as INTEGER*4 (and LOGICAL*4) types unless you explicitly
declare them otherwise within a program.

4.2.1 Representation and Relationship of INTEGER*2 and INTEGER*4
Values

INTEGER*2 values are stored as two's complement binary numbers in one
word of storage. INTEGER*4 values are represented in two's complement

binary form in two words of storage: the first word (lower address)
contains the low-order part of the value, and the second word (higher

address) contains the high-order part of the value (including Sign).

An INTEGER*2 value is, then, a subset of an INTEGER*4 value.

Therefore, the address of an INTEGER*4 value within the range -32768
to +32767 can be treated as the address of an INTEGER*2 value; and
conversion from INTEGER*4 tto INTEGER*2 (without overflow checking)
consists simply of ignoring the high-order word of the INTEGER*4
value. (In certain situations where you can determine at compile time
that the results will not be affected, you can generate INTEGER*2 code
to perform INTEGER*4 operations.)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

The FORTRAN rules state that corresponding actual and dummy arguments
must agree in type. In the following example, however, if the
compiler supplies an INTEGER*2 constant as the actual argument, SUB
executes correctly even if its dummy argument is of INTEGER*4 data
type:

CALL SUB(2)

4.2.2 Integer Constant Typing

In general, typing integer constants as either INTEGER*2 or INTEGER*4
is based on the magnitude of the constant; and in most contexts,

INTEGER*2 and INTEGER*4 variables and integer constants may be freely

mixed. However, the programmer is responsible for ensuring that
integer overflow conditions that might adversely affect the program do
not occur. Consider the following example:

INTEGER*¥2 I

INTEGER*4 J

I = 32767
J= 1+ 3

In this example, I and 3 are INTEGER*2 values, and an INTEGER*2 result
is computed. The 16-bit addition, however, overflows’ the valid
INTEGER*2 range, and the resulting bit pattern represents -32766, a
valid INTEGER*2 value that is converted to INTEGER*4 type and assigned
to J. This overflow is not detected.

Compare the above example with the following apparently equivalent
program, which produces an entirely different, and logically correct,
result:

INTEGER*4 J

PARAMETER I = 32767

J= 1+ 3

In this example, the compiler adds the constant 3 and the parameter

constant 32767 and produces ae resulting constant of 32770. The
compiler recognizes this constant as an INTEGER*4 value and assigns it
to J.

4.2.3 Octal Constant Typing

Octal constants can take either of two forms:

"Cl C2 C3...Cn'

"Cl C2 C3...Cn

Octal constants of the form 'Cl C2 C3...Cn' O are typeless numeric
constants that assume data types on the basis of the way they are
used. See the PDP-11 FORTRAN-77 Language Reference Manual for’ the
rules on the typing of octal constants of this form.

Octal constants of the form "Cl C2 C3...Cn, however, are typed as
either INTEGER*2 or INTEGER*4, and are typed on the basis of the
magnitude of the constant.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

An octal constant of the form "C(1) C(2) C(3)...C(n) 31S typed as

INTEGER*2 if bits 16 through 31 of the value are the same as bit 15;

otherwise, it is typed as INTEGER*4. Because octal constants are
treated as unsigned values, they are interpreted as positive values
unless bit 31 is set. The octal constants "100000 through "177777 are
typed as INTEGER*4 and interpreted as the decimal values 32768 through
65535, rather than as the negative signed decimal values -32768
through -l.

Because octal constants are positive values, you must take care when
you compare octal constants with negative signed INTEGER*2 values.

Consider the following example:

INTEGER*2 I

IF (I .EQ. "105132) STOP

The comparison made here always results in an inequality (and the STOP
statement is not executed). The reason for this is that the INTEGER*2
value of I is converted to INTEGER*4 before the comparison (to conform

with the type of "105132); therefore, whenever I contains the bit
pattern "105132, this pattern will be interpreted after conversion as
the negative decimal value -30118.

The above example is equivalent to:

INTEGER*2 I

IF (I .EFQ. 35418) STOP

If INTEGER*2 values must be compared with octal constants of the form
"Ixxxxx, the octal constant should be assigned to an INTEGER*2
temporary. An INTEGER*2 temporary could be used in our example as
follows:

INTEGER*2 I, ICONST

DATA ICONST/"105312/

IF (I .EQ. ICONST) STOP

4.2.4 Integer-Valued Intrinsic Functions

A number of the intrinsic functions provided by FORTRAN-77 (for
example, IFIX) produce integer results from real or double-precision
arguments. These intrinsic functions are called "result generic
functions." Because the compiler operates in two different modes,
INTEGER*2 mode and INTEGER*4 mode, the system provides two internal

versions of each of these integer-producing functions: an INTEGER*2
version and an INTEGER*4 version. The compiler selects the proper
version on the basis of the current compiler mode setting rather than

-- aS it does for the other intrinsic functions -- on the basis of the
data type of arguments in the function reference.

In some cases, you may need to use the version of an integer intrinsic
function that is the opposite of the one that would be invoked under
the current compiler mode _ setting. For example, a program that

predominantly uses INTEGER*2 values may at some point need to get an
INTEGER*4 result from a intrinsic function. To satisfy this need, the
system provides an additional pair of intrinsic function names that
can reference the two internal versions of each integer-producing
intrinsic function no matter what the current compiler mode setting
may be. By convention, these additional names are created by

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

prefixing I and J to the intrinsic function name. For example, I is
prefixed to IFIX to create the INTEGER*2 version of this function
name, and J is prefixed to create the INTEGER*4 version. IIFIX
references the INTEGER*2 internal function SIFIX, and JIFIX references
the INTEGER*4 internal function SJFIX.

The complete set of names and corresponding internal routines is shown
in Table 4-1 (in Section 4.1).

4.2.5 Implementation-Dependent Integer Typing

The FORTRAN-77 compiler performs a number of integer-typing
optimizations by taking advantage of certain properties of the PDP-11
and/or the operating system. These optimizations are generally
transparent to a FORTRAN user and include the following:

e Array addressing calculations Because the entire virtual
address space of the PDP-11 can be represented in one word,
array bounds expressions and array subscript expressions are
always converted to INTEGER*2 before being used in an array
address calculation. Therefore, even when the compiler is
Operating in /I4 mode, the code generated for array addressing
1s performed with INTEGER*2 operations.

e Input/output logical unit numbers Because logical unit numbers
can always be represented by a l-word integer, the compiler
converts all unit numbers to INTEGER*2 when producing calls to
the I/O section of the OTS.

e Direct access record numbers For Simplicity of implementation,
and to provide to programs that predominantly use 1l-word
integers the capability of using very large files, all direct
access record numbers are processed as INTEGER*4 values.

4.3 BYTE (LOGICAL*1) DATA TYPE

FORTRAN-77 provides the byte data type (BYTE) to take advantage of the
byte-processing capabilities of the PDP-11. Although LOGICAL*1 is a
Synonym for BYTE, a BYTE value is actually a_ signed integer. In
addition to storing small integers, the byte data type is used for
keyed access to indexed files and for Storing and manipulating
Hollerith information.

In general, when data of two different types are used in a binary
operation, the lower-ranked type is converted, before any
computations, to the higher-ranked type. However, in the case of a
byte variable and an integer constant that can be represented aS a
byte variable, the integer constant is treated as a byte constant;
therefore, the result of the operation is of type byte rather than of
type integer, as it would be under the more general convention. The
overflow possibilities under this convention, however, are similar to
those previously discussed in Section 4.2.2 for mixed INTEGER*2. and
INTEGER*4 variables and constants.

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

4.4 ITERATION COUNT MODEL FOR DO LOOPS

FORTRAN-77 provides an extended form of the DO statement. This

Statement has the following features:

e The control variable may be an INTEGER*2, INTEGER*4, REAL, or

DOUBLE PRECISION variable.

e The initial value, step size, and final value of the control

variable can be represented by any expressions whose resulting
types are INTEGER*2, INTEGER*4, REAL, or DOUBLE PRECISION.

e The number of times the loop is executed (the iteration count)
is determined the DO statement is initialized and is not
reevaluated during successive executions of the loop. Thus,
the number of times the loop is executed is not affected by
changing the values of the parameter variables used in the DO
Statement.

4.4.1 Cautions Concerning Program Interchange

Three common practices associated with the use of DO statements. on
other FORTRAN systems may not have the intended effects when used with
FORTRAN-77. These are as follows:

e Assigning a value to the control variable within the body of
the loop that is greater than the final value does not always
cause early termination of the loop.

e Modifying a step size variable or a final value variable
within the body of the loop does not modify the loop behavior
or terminate the loop.

e Using a negative step size (for example, DO 10 I = 1,10,-1) in
order to cause an arbitrarily long loop that is terminated by
a conditional control transfer within the loop results in zero
iterations of the loop body. A zero step size may result in
an infinite loop at run time.

4.4.2 Iteration Count Computation

Given the following generic DO statement:

DO label V=ml,m2,m3

(where ml, m2, and m3 are any expressions), the iteration count is

computed as follows:

count= MAX (INT (m2-ml+m3)/m3,0)

This computation does the following:

e Provides that the body of the DO loop will be executed zero
times if the iteration count given by the above formula is
zero (Under the /NOF77 switch, the loop is executed one time
if the iteration count is zero.)

e Permits the step size (m3) to be negative or positive, but not
Zero

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

@ Gives a well-defined and predictable value of an iteration
count that results from any combination of values of the
allowed result types

Be aware, however, that overflow of INTEGER*2 control variables is not
detected and can result in an infinite loop at run time. Consider the
following program unit:

DO 10 I=1,32767

10 CONTINUE

This program unit always results in an infinite loop when I is of
INTEGER*2 type. See Section 4.2.2 for more information on integer
overflow conditions.

You Should also be aware that the effects of round-off error inherent
in any floating-point computation, when real or double-precision
values are used, may cause the count to be greater than, or less than,
desired.

Under certain conditions, it is not necessary actually to compute’ the
iteration count to obtain the required number of iterations; if all
the parameters in an iteration computation are of type integer, and
the step size is a constant (so that the sign of the increment value
is known), the FORTRAN-77 compiler generates the necessary code to
compare the control variable directly with the final value in order to
control the number of iterations of the loop.

4.5 USING EQUIVALENCE WITH MIXED DATA TYPES

You can readily foresee the effects of EQUIVALENCE statements
involving variables and/or arrays of mixed type when you consider the
actual storage (in bytes) of each type of variable involved.

Example 4-1 illustrates the relationships that result when an
EQUIVALENCE statement uses byte, integer, real, and complex elements.

Character data must not be equivalenced to data of any type other than
Character, BYTE, or LOGICAL*1l.

Example 4-1: EQUIVALENCE Using Mixed Data Types

BYTE B (0:9)
COMPLEX C(4)
REAL R(3)
INTEGER*2 I (3)
EQUIVALENCE (C(2),R(3),1I),(I(3) ,B(9))

Address Storage Alignment

n C(1) R(1)
n+1 . °
n+2 ° °

n+3 ° ° B(0)
n+4 - R(2) B(1)
n+5 : . B(2)

(continued on next page)

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Example 4-1 (Cont.): EQUIVALENCE Using Mixed Data Types

Address Storage Alignment

n+6 . . B (3)
n+7 ° ° B(4)
n+8 C(2) R(3) I (1) B(5)

n+9 ° ° ° B(6)

n+10 . . I (2) B(7)
n+11 ° e ° B(8)

n+12 ° I (3) B(9)

n+13 ° °
n+14 °
n+15 °

n+16 C (3)

4.6 EQUIVALENCE, BYTE DATA, AND STORAGE ALIGNMENT

The PDP-11 hardware requires that storage for all data elements except
byte elements begin at an even address. This requirement can be
Satisfied in all except the following two cases:

e Equivalence relationships involving byte elements and nonbyte
elements can make it logically impossible to allocate
variables in a manner that satisfies the even-byte alignment
constraint for all elements involved in an equivalence. An
example of such an equivalence relationship is as follows:

BYTE B(2)

INTEGER*¥2 I,J

EQUIVALENCE (B(1),I),(B(2),J)

e Using a COMMON block in more than one program unit constitutes
an implied relationship of equivalence among the sets of
elements declared in that block. If a strict interpretation
of the sequence of variable allocations causes a nonbyte
variable to start at an odd address, a compiler adjustment is
not made because it could destroy alignment properties
expected in another program unit.

The compiler begins allocating each common block, and each group of
equivalenced variables that are not in common, at an even address. If
an allocation results in an element not of type byte being stored
beginning at an odd address, an error message is produced. If this
happens, to avoid fatal errors during execution, you must modify the
common and/or EQUIVALENCE statements to eliminate the odd-byte
addressing.

Variables and arrays not in common and not used in EQUIVALENCE
Statements are always correctly aligned.

4.7 ENTRY STATEMENT ARGUMENTS

The FORTRAN-77 implementation of argument association in ENTRY
Statements varies from that of some other FORTRAN systems.

As mentioned in Chapter 3 of this manual, FORTRAN-77 uses’ the
call-by-reference method of passing arguments to called procedures.
some other FORTRAN implementations use the call-by-value/result
method. This difference in approach is important to keep in mind when
you reference dummy arguments in ENTRY statements.

4-13

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

Although standard FORTRAN allows you to use the same dummy arguments

in different ENTRY statements, it allows you to reference only those
dummy arguments that are defined for the ENTRY point being called.
For example, given the subprogram unit

SUBROUTINE SUB1 (X,Y,Z)

ENTRY ENT1(X,A)

ENTRY ENT2(B,Z,Y)

you can make the following references:

CALL Valid References

SUB1 Xx Y Z

ENT1 4 A

ENT 2 B Z Y

FORTRAN implementations that use the call-by-value/result method,
however, permit you to reference dummy arguments that are not defined
in the ENTRY statement being called. For example, consider’ the
following device for initializing dummy variables’ for subsequent
referencing:

SUBROUTINE INIT(A,B,C)

RETURN

ENTRY CALC (Y,X)

Y = (A*X+4+B)/C

END

You can use _ this nonstandard device in call-by-value/result
implementations because a separate internal variable is allocated for
each dummy argument in the called procedure. When the procedure is
called, each scalar actual-argument value is assigned to’. the
corresponding internal variable, and these internal variables are then
used whenever there is a reference to a dummy argument within the
procedure. On return from the procedure, modified dummy arguments are
copied back to the corresponding actual-argument variables.

When an entry point is referenced, all the dummy arguments of the
entry point are defined with the values of the corresponding actual
arguments and can be referenced on subsequent calls to the subprogram.
However, you should avoid such subsequent referencings in programs
that are to be compiled under FORTRAN-77, as they will not have the
intended effect will produce programs that are not transportable to
other systems that use the call-by-reference method.

FORTRAN-77 creates associations between dummy and actual arguments’ by
passing the address of each actual argument to the called procedure.
Each subsequent reference to a dummy argument generates an indirect
address reference through the actual-argument address. When control
returns from the called procedure, the association between actual and
dummy arguments ends. The dummy arguments do not retain their values,
and therefore cannot be referenced on subsequent calls. Therefore, to
perform the kind of nonstandard references shown in the previous
example, the subprogram would have to copy the values of the dummy

PDP-11 FORTRAN-77 IMPLEMENTATION CONCEPTS

arguments to other variables. For example, if subroutine INIT is
rewritten as follows, it will work on FORTRAN-77 as well as on systems
that use the call-by-value/result method:

SUBROUTINE INIT (A1,B1,Cl1)

SAVE A,B,C

Al
Bl

Cc Cl

RETURN
ENTRY CALC(Y,X)

Y = (A*X+B)/C
END

89
)

H
o
w

il

CHAPTER 5

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

This chapter discusses techniques’ for writing effective FORTRAN-77
Programs. Topics discussed are as follows:

e Efficient use of program statements and data types

@e Compiler optimizations

@e Program size and speed considerations

@ Optional OTS capabilities

@ RMS-11l and FCS link and run-time considerations

9-1 CREATING EFFICIENT SOURCE PROGRAMS

The following sections discuss the use of the PARAMETER, INCLUDE,
OPEN, and CLOSE statements’ in relation to writing efficient source Programs; they also discuss the efficient use of the INTEGER*2 and
INTEGER*4 data types.

5.1.1 PARAMETER Statement

The PARAMETER statement provides a way for you to write programs
containing easily modified Parameters, such as array bounds and iteration counts, without losing the efficiency of using constant
expressions to manipulate these parameters, Because the FORTRAN-77
compiler can optimize constants more efficiently than it can optimize
variables (see Section 9.2.2), programs that use PARAMETER statements
are generally more efficient than programs that initialize parameters
with DATA or assignment statements. For example, the first program fragment below compiles into more efficient code than the second or
third:

(1) PARAMETER (M=50,N=100)
DIMENSION X(M),Y(N)
DO 5, I=1,M
DO 5, J=1,N

5 X(I) = X(I)*Y(J) + X (M) *Y (N)

(2) DIMENSION X(50),Y(100)
DATA M,N/50,100/
DO 5, I=1,M
DO 5, J=1,N

5 X(I) = X(I)*Y(J) + X(M) *Y(N)

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

(3) DIMENSION X(50),Y(100)
M = 50
N = 100

DO 5, J=1,N

5 X(I) = X(I)*Y(J) + X(M) *Y(N)

5.1.2 INCLUDE Statement

The INCLUDE statement provides a way for you to eliminate duplication

of source code and to facilitate program maintenance. Because of the

availability of the INCLUDE statement, you can create and maintain a
Separate file for a section of program text used by several different
program units, and then include this text in the individual program
units at compile time. For example, rather than duplicate the

specification for a common block referenced by several program units,

you can write the specification a single time in a separate file;
then each program unit referencing the common block merely executes an
INCLUDE statement to incorporate the specification into the unit. In
addition to increasing programming efficiency, using the INCLUDE
Statement fosters reliability, modular programming, and ease of
maintenance.

The following example shows the use of the INCLUDE statement.

The file COMMON. FTN defines the size of the blank common block and the

Size of the arrays X,Y, and Z.

Main Program File File COMMON.FTN

INCLUDE 'COMMON.FTN' PARAMETER M=100

DIMENSION Z(M) COMMON X(M) ,Y(M)
CALL CUBE

DO 5 I=1,M

5 Z(1) =X (1)+SQORT(Y (1))

SUBROUTINE CUBE

INCLUDE 'COMMON.FTN'

DO 10 I=1,M

10 X (I) =Y (1) **3
RETURN
END

5.1.3 OPEN and CLOSE Statements

The OPEN and CLOSE statements provide you with precise and explicit --
as well as efficient -- control of I/0 devices and files. Some

examples follow:

e OPEN (UNIT=1, STATUS='NEW', INITIALSIZE=200)

This statement creates a sequential file and allocates’ the
Space required for the _ file. Allocation of space at file
opening is more efficient than dynamic extension of the file.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

@ OPEN (UNIT=1, STATUS='"UNKNOWN!, EXTENDSIZE=200)

This statement specifies a relatively large EXTENDSIZE value,
which is useful when a program writes many blocks to a file;
it is faster to use one large extension than several. small
ones.

@e OPEN (UNIT=J, STATUS='NEW'...)

IF (IERR) CLOSE(UNIT=J, STATUS='DELETE')

CLOSE (UNIT=J, STATUS='SAVE')

If an error (denoted by IERR) occurs that makes the file
created by the OPEN statement invalid or useless, the file is
efficiently deleted.

e CHARACTER*40 FILNAM
1 TYPE 100
100 FORMAT('SINPUT FILE?")

ACCEPT 101,FILNAM
101 FORMAT (A)

OPEN (UNIT=3, FILE=FILNAM, STATUS='OLD', ERR=9)

9 TYPE 102, FILNAM
102 FORMAT (' ERROR OPENING FILE ',A)

GO TO 1

This program fragment reads a file specification into the
Character variable FILNAM. The specified file is then opened
for processing.

@ OPEN (UNIT=1,STATUS='"NEW', ORGANIZATION='INDEXED',
RECL=60,FORM='UNFORMATTED!,
KEY= (1:20, 30:33:INTEGER, 46:57), ACCESS='KEYED')

This statement creates a new indexed file that has three keys:
The primary key is from byte 1 to byte 20; the first
alternate key is an integer key from byte 30 to byte 33; and
the second alternate key is from byte 46 to byte 57.

NOTE

If you are adding several records to a
file, make certain you specify a large
enough EXTENDSIZE to reflect the size
the file will be at the end of the
program.

5-1.4 INTEGER*2 and INTEGER*4

Because the PDP-1l is a 16-bit computer, the code sequences generated
for INTEGER*4 computations are larger and slower than those for their
INTEGER*2 counterparts. Therefore, the use of INTEGER*4 should be
limited to those data items requiring 32-bit representation;
INTEGER*2 should be used elsewhere. In general, it is advisable to
minimize use of the /1I4 compiler option.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5-2 COMPILER OPTIMIZATIONS

Optimization is producing the greatest amount of processing with the
least amount of time and memory.

The primary goal of FORTRAN-77 optimization is to produce an object
program that executes faster than an unoptimized version of the same
Source program. A secondary goal is to reduce the size of the object
program.

The language elements you use in a source program directly affect the
compiler's ability to optimize the object program. Therefore, you
should be aware of the ways in which you can assist compiler
optimization. The FORTRAN-77 compiler performs the _ following
optimizations:

e Constant folding: Integer constant expressions are evaluated
at compile-time.

e Compile-time constant conversion.

e Compile-time evaluation of constant subscript expressions in
array calculations.

e Argument-list merging: If two function or subroutine
references have the same arguments, a_ single copy of the

argument list is generated.

e Branch instruction optimizations for arithmetic and logical IF
statements.

e Eliminating unreachable ("dead") code: An optional warning
message is issued to indicate unreachable statements in a

source program.

@e Recognizing and Replacing common subexpressions.

e Removing invariant computations from DO loops.

@e Local register assignment: Frequently referenced variables
are retained (if possible) in registers to reduce the number
of load and store instructions required.

e Assigning frequently used variables’ and expressions to

registers across DO loops.

e Constant pooling: Storage is allocated for only one copy of a
constant in the compiled program. Constants, including most
numeric constants, used as immediate-mode operands are not
allocated storage.

@e Inline code expansion for some intrinsic functions.

e Fast calling sequences for the real and double-precision

versions of some intrinsic functions.

e Reordering the evaluation of expressions to minimize the
number of temporary values required.

@e Delaying unary minus and .NOT. operations to eliminate unary
negation and complement operations.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

@ Partially evaluating Boolean expressions. For example, if el
in the following expression has the value -FALSE., e2 iS not
evaluated:

IF (el.AND.e2) GO TO 20

The order in which el and e2 appear in the source statement
has no effect on partial evaluation.

e Peephole optimization of instruction sequences: examining
code on an instruction-by-instruction basis to find operations
that can be replaced by shorter, faster operations.

9.2.1 Characteristics of Optimized Programs

An optimized FORTRAN-77 program is computationally equivalent to an
unoptimized program; therefore, identical numerical results. are
obtained and equivalent (in meaning, not quantity) run-time diagnostic
messages are produced. An optimized program, however, can produce
fewer run-time diagnostic messages and the diagnostics can occur at
different statements in the source program.

Example 5-1: Effects of Optimization on Error Reporting

Unoptimized Program Optimized Program

A = X/Y t = X/Y
B= X/Y A =t

DO 10, I = 1,10 B = t
10 C(I) = C(I) * (X/Y) DO 10, I = 1,10

10 C(I) = C(I) * t

In Example 5-1, if Y has the value 0.0, the unoptimized program
Produces 12 zero-divide errors at run time; the optimized program,
however, produces only one zero-divide error because the calculation
that produces the error has been moved out of a loop. (Note that t is
a temporary variable created by the compiler.)

Note that optimizations such as eliminating redundant calculations and
moving invariant calculations out of loops can affect the use of the
ERRTST system subroutine. For example, in the above program, a call
to ERRTST from inside the loop does not detect a zero-divide error in
the loop calculation because the compiler has moved the
error-producing part of the calculation outside the loop.

59.2.2 Compile-time Operations on Constants

The compiler performs the following computations on expressions
involving constants (including PARAMETER constants):

@e Negation of constants: Constants preceded by unary minus
Signs are negated at compile time. For example:

X = -10.0

is compiled as a single move operation.

PDP-1]1 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e Type conversion of constants: Lower-ranked constants are
converted to the data type of the higher-ranked operand at
compile time. For example:

X = 10*Y

is compiled as:

X = 10.0*Y

e Integer arithmetic on constants: Expressions involving +, -,
*, f/f or ** operators are evaluated at compile time. For
example:

PARAMETER (NN=27)

I = 2*NN+J

1S compiled as:

I = 54+J

Array subscript calculations involving constants are simplified at
compile time where possible. For example:

DIMENSION I1(10,10)
I(1,2) = 1(4,5)

is compiled as a single move instruction.

5.2.3 Source Program Blocks

FORTRAN-77 performs some optimizations only within the confines of a
Single "block" of a source program. A block is a sequence of one or
more source statements. The start of a new block is generally defined
by a labeled statement that is the target of a control transfer from
another statement (for example, a GO TO, an arithmetic IF, or an ERR=
option). An ENTRY statement also defines a new block. Some
occurrences of statement labels do not define the start of a new
block; these occurrences are as follows:

e Unreferenced statement labels.

e A label terminating a DO loop, provided the only references to
the label occur in DO statements.

e Labels of FORMAT statements. FORMAT statements must be

labeled, but control cannot be transferred to a FORMAT
Statement.

@e Labels such that the only reference to the label occurs in the
immediately preceding arithmetic IF statement. For example:

IF(A) 10,20, 20
10 Xx = l.

@e Singly referenced labels. A jump to a Singly referenced label
may be equivalent to an IF THEN/ENDIF structure. If it is,
the IF THEN/ENDIF structure is used and the block is extended
past the labeled statement.

The compiler imposes a limitation on the size of a single block.
Therefore, a very long straight-line sequence of FORTRAN statements
can be treated as several "blocks" during optimization.

PDP-1]1 FORTRAN-77 PROGRAMMING CONSIDERATIONS

A block can contain one or more DO loops, provided none of the labels
within the loops defines the start of a new block. Therefore, the
following are considered single blocks and are optimized as complete
units:

Example 1] Example 2

X = BC DO 20, I=1,N
DO 10, I=1,N DO 20, J=1,N

10 A(I) = A(I)/(B*C) SUM = 0.0
DO 20, J=1,N DO 10, K=1,N

20 Y(J) = Y(J)+B*C 10 SUM = SUM+A(I,K)*B(K,J)
20 C(I,J) = SUM

If the label specified as the target of a GOTO in a logical IF is
referenced only once, the structure may be equivalent to a block IF.
For example, the following examples are equivalent:

Example 1 Example 2

IF (I .LT. J) GOTO 20 IF (I .LT. J)THEN

A(I) = A(1)*J A(I) = A(I)*J
J=J-1 J=J+1

20 I=I+1 ENDIF

I=I+1]

However, even though these two examples are equivalent, Example 2 is
more easily optimized. Therefore, as long as Example 1 is valid (that
is, aS long as both the GOTO and the label are in the same block, and
the nesting rules are not violated), FORTRAN-77 transforms Example 1
into the form shown in Example 2.

Optimizations can be done most effectively over complete structures.
Therefore, if a block would otherwise be ended within either a block
IF or DO structure, the block is instead ended at the beginning of the
DO structure or the conditional block of the block IF structure.

Also, a more thoroughly optimized object program is produced if the
number of separate blocks is minimized. The common-subexpression,
code motion, and register allocation optimizations are performed only
within single blocks.

Multiple block IF structures, as well as nested DO and block MIF
Structures, can occur within a single block.

5.2.4 Eliminating Common Subexpressions

Often a subexpression appears in more than one computation within a
program. If the values of the operands of such a subexpression are
not changed between computations, the value of the subexpression can
be computed once and substituted for each occurrence of the

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

Subexpression. For example, B*C is a common subexpression in the
following sequence:

A = B*C+E*F

A+G-B*¥C H

IF ((B*¥C)-H)10, 20, 30

- The preceding sequence is compiled as:

t = B*C

A = ttE*F

H = A+t+G-t

IF((t)-H)10, 20, 30

where t is a temporary variable created by the compiler. Two
computations of the subexpression B*C are eliminated from the
sequence,

In the above example, you can modify the source program to eliminate
the redundant calculation of (B*C). In the following example,
however, you cannot reasonably modify the source program to achieve
the same optimization ultimately effected by the compiler. The
Statements

DIMENSION A(25,25), B(25,25)
A(I,J)= B(I,J)

are compiled, without optimization, to a sequence of instructions of
the form:

tl J*25+I1

t2 = J*25+I

A(tl) = B(t2)

where the variables tl and t2 represent equivalent expressions.
Recognizing the redundancy, the compiler optimizes the sequence into
the following shorter, faster sequence:

t = J*25 + I

A(t) = B(t)

If a common subexpression is created within a conditional block of a
block IF, this subexpression can be used anywhere within the
Conditional block in which it was created, including within any nested
inner blocks; but it cannot be used outside that conditional block.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.2.5 Removing Invariant Computations From Loops

Execution speed is enhanced if invariant computations are moved out of
loops. For example, in the sequence

DO 10, I=1,100

10 F = 2.0¥*Q*A(I)+F

the value of the subexpression 2.0*Q is the same during each iteration

of the loop. Transformation of the sequence to:

t = 2.0%*Q

DO 10, I=1,100
10 F = t*A(1I)+F

moves the calculation 2.0*Q outside the body of the loop and
eliminates 99 multiply operations.

However, invariant computations cannot be moved out of a zero-trip DO
loop. For example, in the sequence

DO 10, I=1,N

10 F=2.0*Q*A(I)+F

statement 10 is not executed for certain values of n; therefore, the

invariant computation 2.0*Q cannot be moved out of the loop.

5.3 RUN-TIME PROGRAMMING CONSIDERATIONS

You can often reduce the execution time of programs by making use _ of
the following facts relevant to the FORTRAN-77 run-time environment.

e Unformatted I/O is substantially faster and more accurate than
formatted I/O. The unformatted data representation usually

occupies less file storage Space as well. Therefore, you
Should use unformatted I/O for storing intermediate results on

secondary storage.

e Specifying an array name in an I/O list is more efficient than
uSing an equivalent implied DO list. A single I/0
transmission call passes an entire array; however, an implied
DO list can pass only a single array element for each I/O
call.

e Implementing the BACKSPACE statement involves’ repositioning
the file and scanning previously processed records. If a
reread capability is required, it is more efficient to- read
the record into a temporary array and DECODE the array several

times than to read and backspace the record.

e Array subscript checking is time-consuming and requires
additional compiled code. It is primarily useful during
program development and debugging.

e To obtain minimum direct access I/O processing, the record
length should be an integer factor or multiple of the device
block size of 512 bytes (for example, 32 bytes, 1024 bytes,

and so on). Note that relative files under RMS-11 have

additional overhead bytes added to each record.

e If the approximate size of the file is known, it is more
efficient to allocate disk space when the file is opened than
to incrementally extend the file as records are written.

PDP-1]1 FORTRAN-77 PROGRAMMING CONSIDERATIONS

e Using run-time formats should be minimized. The compiler
PreprocesseS FORMAT statements into an efficient internal
form. Run-time formats must be converted into this internal
form at run-time. In many cases, variable format expressions
allow the format to vary at run time as needed.

@e RMS-11 I/O operations are substantially slower in most cases
than corresponding FCS-11 I/0 operations; therefore, using
RMS-11 should generally be restricted to indexed files under
keyed access.

5-4 FORTRAN-77 OPTIONAL CAPABILITIES

The FORTRAN-77 system, as distributed, contains several optional
capabilities supported by alternate OTS modules. These capabilities
include:

@e Running FORTRAN-77 without a Floating Point Processor

e Running FORTRAN-77 compiled programs under RSX-11S

@e Choosing alternate run-time error reporting

@e Obtaining an alternate floating-point output conversion
routine

@e Building an OTS shareable library

e Building tasks with overlaid OTS modules

@e Choosing an alternate random—-number generator for
compatibility with previous versions of the OTS (see Appendix
B).

These options are described below. You should consult your system
manager to determine the availability of these options; optional OTS
modules are located in LB:[1,1] (LB: on RSTS/E). None of these
options is required for normal use of the FORTRAN-77 system.

5-4.1 Non-FPP Operation (F4PEIS.OBJ)

The FORTRAN-77 compiler does not require a floating-point processor
(FP1l or KEF11A) to compile a FORTRAN-77 program; the compiler can
run on any PDP-11 with the EIS instruction set. However, the code
generated by the FORTRAN-77 compiler is intended to run on a PDP-11
with FPP and may therefore contain FPP instructions.

A FORTRAN-77 source program containing no real, double-precision, or
complex constants, variables, arrays, or function references’ is
compiled into a PDP-1l program that contains no FPP instructions. If
this program is linked using the module F4PEIS.OBJ and the standard
FORTRAN-77 OTS, as shown below, the resulting task executes no FPP
instructions. Such programs can therefore run on any PDP-11 with the
EIS instruction set.

TKB INT/-FP=INT,LB: [1,1]F4PEIS,LB: [1,1]F4POTS/LB

On RSTS/E, [1,1] is not included in the above command line.

If a compiled program unit contains no FPP instructions, the program
listing contains the statement: NO FPP INSTRUCTIONS GENERATED.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.4.2 RSX-11S Support (F4P11S.0BJ)

An optional OTS module provides a subset of FORTRAN-77 I/O capability
consistent with the facilities available in RSX-11S. Sequential I/0
Statements are supported for unit record devices such as terminals,

nonspooled card readers, and line printers. This I/O Support uses
direct QIO operations and does not require any modules of the standard
file system. The RSX-11S subset OTS is approximately 2000 words

smaller than the normal OTS and can be provided as an object module or

as a separate OTS library.

5.4.3 Optional OTS Error Reporting (F4PNER.OBJ)

An optional OTS module that does not perform any run-time diagnostic
message reporting is available; it is several hundred words smaller
than the standard error-reporting module. Error processing and calls

to ERRSET, ERRSNS, and ERRTST continue to operate normally, only the
logging of the diagnostic message to the user’ terminal being
suppressed. If this option is used, STOP and PAUSE messages are not

produced.

5.4.4 Short Error Text (SHORT.OBJ)

For RSX-11M, RSX-11M-PLUS, and RSTS/E, the error message text for

run-time error reports is contained in memory and requires over 1000

words. An alternative version is available that requires only one

word. If the alternative is used, the error report is complete except
for the l-line English text description of the error. This module,
SSHORT, is included in the task at task-build time. For example:

>TKB MAIN/FP=MAIN,LB: [1,1]F4POTS/LB: SSHORT, LB: [1,1]F4POTS/LB

On RSTS/E, [1,1] is not included in the above command line.

5.4.5 Intrinsic Function Name Mapping (F4PMAP.OLB)

As discussed in Section 4.1, references to FORTRAN intrinsic functions

are transformed at compile time into calls that use internal names.
Therefore, if a program written in MACRO-11 uses a FORTRAN name
instead of an internal name to reference an intrinsic function, an
unresolved reference results during task build.

To prevent such unresolved references during the task building of a

MACRO program, ae set of concatenated object modules is provided for
transforming FORTRAN-77 intrinsic-function names into internal names
at task-build time. For example, the name SIN is transformed at
task-build time by means of the following module:

TITLE SMSIN
SIN:: JMP SSIN

~ END

The object module similar to the one for SIN is available for each
intrinsic-function name.

An F4PMAP library may be necessary to provide function mapping.

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5.4.6 Floating-point Output Conversion (F4PCVF.OBJ)

An alternative module for performing formatted output of
floating-point values under control of the D, E, F, and G format codes

is provided. The standard module uses multiple-precision, fixed-point
integer techniques to maintain maximum accuracy during the converSion.
(FPP hardware is not used.) The alternative module performs the same
functions using the FPP hardware; it is substantially faster but in
some cases less accurate than the standard module. The standard

module is accurate to 16 decimal digits; the optional module is
accurate to 15 digits.

5.4.7 OTS Resident Library (F4PRES.MAC)

FAPRES.MAC is a MACRO-11 source file that contains global references

to all OTS modules. You can use this file as a starting point in
building an OTS resident library. Documentation in the file describes
the OTS modules and such logical groups of modules as sequential I/0
Support and complex arithmetic. If your operating system supports
memory management directives, this resident library provides a more
extensive capability without sacrificing address space.

The OTS resident library uses the short-error-text module (see Section

5.4.4).

The procedures for building an OTS resident library are described by
documentation in the file, in Section 3.4, and in the RSX-11M System

Generation Manual.

NOTE

You cannot build an OTS resident library
that contains RMS support. Also, if the

OTS resident library is overlaid, you
must place all OTS I/O modules in the
Same overlay.

5.4.8 OTS Overlay Files

There are two OTS overlay files:

e FCS11M.ODL (FCS-11 support for RSX-11M/M-PLUS, RSTS/E, and
VAX/VMS)

@ RMS11M.ODL (RMS-11(K) support for RSX-11M/M-PLUS, RSTS/E, and
VAX/VMS)

PDP-11 FORTRAN-77 PROGRAMMING CONSIDERATIONS

Each file is an ODL fragment file that you can use for overlaying’ the

FORTRAN-77 OTS modules. Also, each file contains documentation that

describes OTS options and procedures for using the file. The
following example of an ODL file includes the FCS-11 overlaid OTS file
in the overlay file described in Section 1.4 (on RSTS/E, [1,1] is not

included):

-ROOT MAIN-OTSROT-*(A,B,C), OTSALL

A: ~-FCTR PRE
B: -FCTR PROC

C: ~FCTR POST

@LB:[1,1]FCS11M
» END

(The factor "OTSROT" must be added to the root segment; the

factor "OTSALL" must also be added aS a co-tree. These factors

are defined in the OTS overlay files listed above.)

The following example of an ODL file includes the overlaid RMS-11 OTS
file of the overlay file described in Section 1.4, as well as the RMS
overlay file RMS11X (on RSTS/E, [1,1] is not included):

- ROOT MAIN-OTSROT-RMSROT-OVL, OTSALL, RMSALL

OVL: -FCTR * (PRE, PROC, POST)

@LB:[1,1]RMS11M
@LB: [1,1] RMS11X

e- END

(The factors "“OTSROT" and "RMSROT" must be added to the root

segment; the factors "OTSALL" and "RMSALL" must also be added as
co-trees.)

See Section 1.4 for more information about overlaid programs.

5.5 RMS-11 LINK AND RUN-TIME CONSIDERATIONS

When RMS-11l is used with programs that are not overlaid, even
modest-sized programs produce tasks that overflow the address space of

the PDP-11l. There are two possible solutions to this problem: Expand
the task size such that it is large enough to accommodate the task, or
make the program smaller by overlaying.

If the task is near or beyond the task size limit, the task build
fails with a message indicating an oversize task.

Even if your program successfully links, you may encounter

buffer-space problems at run time, indicated by FORTRAN-77 error
message #41: "NO BUFFER ROOM."

If this message is encountered, try rerunning your program with a
larger task increment, using (except on RSTS/E):

RUN/INC: value taskname

value

The amount of additional memory to be used for buffers.

The RUN command may fail if the /INC value makes the total task
Size too large. If the RUN command does fail, the only choices
you have to get a successful run are to reduce the size of your
program or to overlay your program.

PDP-1]1 FORTRAN-77 PROGRAMMING CONSIDERATIONS

5-6 FCS LINK AND RUN-TIME CONSIDERATIONS

Under certain circumstances, the open-file buffers kept by FCS in
PSECT S$SFSRl1 may become fragmented, causing the FORTRAN-77 OTS to
produce, unexpectedly, the error message: "No Buffer Room."

One of the circumstances under which one of the open-file buffers can
become fragmented is as_ follows: Suppose a program specifies
ACTFIL=2, to indicate that the program has at most two files open at
any one time; FCS then allocates 1024 bytes for two 512-byte buffers
in PSECT SFSR1 (512 bytes is the largest possible device buffer
Size).

Suppose further that a logical unit is opened to a terminal, causing
FCS to allocate an 80-byte buffer (that device's buffer size) in PSECT
SSFSR1. Then another logical unit is opened to a disk file, causing
FCS to allocate the next 512 bytes in PSECT S$$FSR1 as a buffer for the
disk file. Finally, the logical unit connected to the terminal is
Closed, resulting in the release, by FCS, of the 80-byte buffer in
PSECT SSFSR1.

Any attempt to open a second disk file (resulting in a 512-byte
buffer) now fails because PSECT S$SFSR1 does not have 512 contiguous
bytes. It has 80 free bytes, then 512 bytes in use by the first disk
file, then 432 (512 - 80) free bytes.

Some possible solutions to the above situation are to specify a block
Size of 512 when opening the terminal; to open the first disk file
before opening the terminal (if possible); or to specify ACTFIL=3, to
allocate a larger S$SFSRI1 buffer.

CHAPTER 6

USING CHARACTER DATA

The character data type facilitates the manipulation of alphanumeric

data. You can use character data in the form of character variables,

arrays, constants, and substrings.

6.1 CHARACTER SUBSTRINGS

You can select certain segments (substrings) from a character variable

or array element by specifying the variable name, followed by
delimiter values that indicate the leftmost and/or rightmost

characters in the substring. For example, if the character string

NAME contains:

ROBERT WILLIAM BOB JACKSON

and you want to extract the substring BOB, specify the following:

NAME (16:18)

If you omit the first value, you are indicating that the first
character of the substring is the first character in the variable.
For example, if you specify:

NAME (:18)

the resulting substring is:

ROBERT WILLIAM BOB

If you omit the second value, you are specifying the rightmost
character to be the last character in the variable. For example:

NAME (16:)

encompasses:

BOB JACKSON

6.2 CHARACTER CONSTANTS

Character constants are strings of characters enclosed in apostrophes.

You can assign a character value to a character variable in much the

same way you would assign a numeric value to ae real or integer
variable. For example, as a result of the statement

XYZ = 'ABC'

USING CHARACTER DATA

the characters ABC are stored in location XYZ. Note that if xXYZ's
length is less than three bytes, the character string is truncated on
the right. Thus, if you specify:

CHARACTER*2 XYZ

XYZ = ‘ABC!

the result is AB. If, on the other hand, the variable is longer’ than
the constant, it is padded on the right with blanks. For example, the
Statements

CHARACTER*6 XYZ

XYZ = ‘ABC!

result in having:

ABC

Stored in XYZ. If the previous contents of xXYZ were CBSNBC, the
result would Still be ABC because the previous contents are
overwritten.

You can give character constants Symbolic names by using the PARAMETER
Statement. For example, if you specify:

CHARACTER*17 TITLE
PARAMETER (TITLE = 'THE METAMORPHOSIS')

you can use the symbolic name TITLE anywhere a character constant is
allowed.

You can include an apostrophe as part of the constant by specifying
two consecutive apostrophes. For example, the statements

CHARACTER*15 TITLE
PARAMETER (TITLE = 'FINNEGANS''S WAKE ')

result in the character constant FINNEGAN'S WAKE.

The value assigned to a character parameter can only be a character
constant.

6.3 DECLARING CHARACTER DATA

To declare variables or arrayS aS character type, you use the
CHARACTER type declaration statement, as demonstrated in the following
example:

CHARACTER*10 TEAM(12),PLAYER

This statement defines a 1l2-element character array (TEAM), each element of which is 10 bytes long; anda character variable (PLAYER), which is also 10 bytes long.

You can specify different lengths for variables in a CHARACTER
Statement by including a length value for specific variables. For
example:

CHARACTER*6 NAME,AGE*2, DEPT

In this example, NAME and DEPT are defined as 6-byte variables, and
AGE is defined as a 2-byte variable.

6-2

USING CHARACTER DATA

6.4 INITIALIZING CHARACTER VARIABLES

Use the DATA statement to preset the value of a character variable.
For example:

CHARACTER*¥10 NAME, TEAM(5)

DATA NAME/' '/,TEAM/'SMITH','JONES',
1 "DOE','BROWN','GREEN'/

Note that NAME contains 10 blanks, but that each array element in TEAM
contains a character value, right-padded with blanks.

To initialize an array so that each of its elements contains the same
value, use a DATA statement of the following type:

CHARACTER*5 TEAM(10)
DATA TEAM/10*'WHITE'/

The result is a 10-element array in which each element contains WHITE.

6.5 CHARACTER DATA EXAMPLES

An example of character data usage is shown in Example 6-1. The

example is a program that manipulates the letters of the alphabet.
The results are shown in Example 6-2.

6.6 CHARACTER LIBRARY FUNCTIONS

The PDP-11 FORTRAN-77 system provides’ the following character

functions:

@ ICHAR

@ INDEX

@ LEN

e@ LGE, LGT, LLE, LLT

6.6.1 ICHAR Function

The ICHAR function returns an integer ASCII code equivalent to the
character expresSion passed as its argument. It has the form:

ICHAR (c)

A character expression. If c is longer than one byte, the ASCII
code equivalent to the first byte is returned and the remaining
bytes are ignored.

90

10

10

10

91

USING CHARACTER DATA

Example 6-1: Character Data Usage

CHARACTER C,ALPHA*26
DATA ALPHA/'ABCDEFGHIJKLMNOPORSTUVWXYZ'!/

WRITE (6,90)

FORMAT (' CHARACTER EXAMPLE PROGRAM OUTPUT')

DO 10 I = 1:26

WRITE (6,*) ALPHA

C = ALPHA(1:1)

ALPHA(1:25) = ALPHA(2: 26)

ALPHA(26:26) = C

CONTINUE

CALL REVERS (ALPHA)
WRITE (6,*) ALPHA

CALL FIND('UVW' ,ALPHA)

CALL FIND('AAA','DAAADHAJDAAAJAAA CEUEBCUEI')

WRITE (6,*) ' END OF CHARACTER EXAMPLE PROGRAM!
END

SUBROUTINE REVERS (S)
CHARACTER T¥*¥1,5*26

K = 26

DO 10 I = 1, K/2

T = S(I:T)

S(I:I) = S(K:K)
S (K:K) T

K = K -]

CONTINUE
RETURN

END

SUBROUTINE FIND(SUB,S)

CHARACTER*3 SUB, S*26
CHARACTER*132 MARKS

I= 1

MARKS = ' !

J = INDEX (S(I:) ,SUB)

IF (J .NE. 0) THEN
I= 1+ (J-1)

MARKS (I:I) = '#!

I = I+l
IF (I .LE. LEN(S)) GO TO 10
ENDIF

WRITE (6,91) S, MARKS
FORMAT (2(/1X,A))
RETURN
END

USING CHARACTER DATA

Example 6-2: Output Generated by Example Program

CHARACTER EXAMPLE PROGRAM OUTPUT

ABCDEFGHIJKLMNOPORSTUVWXYZ
BCDEFGHIJKLMNOPOQRSTUVWXYZA

CDEFGHIJKLMNOPOQRSTUVWXYZAB
DEFGHIJKLMNOPOQRSTU VWXYZABC
EFGHIJKLMNOPOQRSTUVWXYZABCD

FGHIJKLMNOPORSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXY ZABCDEF

HIJKLMNOPORSTUVWXYZABCDEFG

IJKLMNOPORSTUVWXY ZABCDEFGH
JKLMNOPORSTUVWXYZABCDEFGHI

KLMNOPORSTUVWXY ZABCDEFGHIJ

LMNOPORSTU VWXYZABCDEFGHIJK
MNOPORSTUVWXYZABCDEFGHIJKL

NOPORSTU VWXYZABCDEFGHIJKLM

OPORSTU VWXY ZABCDEFGHIJKLMN
PORSTU VWXYZABCDEFGHIJKLMNO

QRSTUVWXY ZABCDEFGHIJKLMNOP

RSTU VWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR

TUVWXYZABCDEFGHIJKLMNOPORS

UVWXYZABCDEFGHIJKLMNOPORST
VWWXYZABCDEFGHIJKLMNOPQRSTU

WXY ZABCDEFGHIJKLMNOPORSTUV

XYZABCDEFGHIJKLMNOPORSTU VW
YZABCDEFGHIJKLMNOPOQRSTUVWX

ZABCDEFGHIJKLMNOPORSTU VWXY

ZYXWVUTSROPONMLKJIHGFEDCBA

ZY XWVUTSRQOPONMLKJ IHGFEDCBA

DAAADHAJDAAAJAAA CEUEBCUEI

it #
END OF CHARACTER EXAMPLE PROGRAM

6.6.2 INDEX Function

The INDEX function is used to determine the starting position of a
substring. It has the form:

INDEX (cl ,c2)

cl

A character expression that specifies the string to be searched
for a match with the value of c2.

c2

A character expression representing the substring for which a
match is desired.

If INDEX finds an instance of the specified substring (c2), it returns
an integer value corresponding to the starting location in the string
(cl). For example, if the substring sought is CAT and the string that
is searched contains DOGCATFISHCAT, the return value of INDEX is 4.

If INDEX cannot find the specified substring, it returns the value 0.

USING CHARACTER DATA

If there are multiple occurrences of the substring, INDEX locates’ the
first (left-most) one. Use of the INDEX function is illustrated in
Examples 6-1 and 6-2.

6.6.3 LEN Function

The LEN function returns an integer value that indicates the length of
a character expression. It has the form:

LEN (c)

A character expression.

6.6.4 LGE, LGT, LLE, LLT Functions

The lexical comparison functions (LGE, LGT, LLE, and LLT) compare two
character expressions, using the ASCII collating sequence. The result
is the logical value .TRUE. if the lexical relation is true, and
FALSE. if the lexical relation is not true. The functions have the
forms:

LGE (cl,c2)

LGT (cl,c2)

LLE (cl,c2)

LLT (cl,c2)

cl1,c2

Character expressions.

You may wish to include these functions in FORTRAN programs that can
be used on computers that do not use the ASCII character set. In
PDP-~1ll FORTRAN-77, the lexical comparison functions are equivalent to
the .GE., .GT., ~-LE., ~LT. relational operators. For example, the
Statement

IF (LLE (stringl, string2)) GO TO 100

is equivalent to:

IF (stringl.LE.string2) GO TO 100

6.7 CHARACTER I/0

The character data type simplifies transmitting alphanumeric data.
You can read and write character strings of any length from 1 to 255
characters. For example; the statements

CHARACTER*24 TITLE

READ (12,100) TITLE
100 FORMAT (A)

USING CHARACTER DATA

cause 24 characters to be read from logical unit 12 and stored in the

24-byte character variable TITLE. If instead of character data you

were to use Hollerith data stored in numeric variables or arrays, the
following code is necessary:

INTEGER*4 TITLE (6)

READ (12,100) TITLE

100 FORMAT (6A4)

Note that you must divide the data into lengths suitable for
(in this case)
Match.

real or

integer data, and specify I/O and FORMAT statements to

In this example, a one-dimensional array comprising six 4-byte
elements is filled with 24 characters from logical unit 12.

CHAPTER 7

USING INDEXED FILES

This chapter provides detailed information on using indexed
organization files. Included is an extended example. The indexed
file is defined in Chapter 7 of the PDP-11 FORTRAN-77 Language
Reference Manual.

Indexed organization is especially suitable for maintaining complex
files from which records can be _ selected on the basis of one of
several criteria. For example, a mail order firm using an indexed
file to store its customer list might select records on the basis of a
unique customer order number, the customer's zip code, or the item
ordered. In such cases, reading sequentially on the basis of the zip
code key would produce a mailing list already sorted by zip code, and
reading sequentially on the basis of the item-ordered key would give a
list of customers sorted by product ordered.

7.1 ACCESSING INDEXED FILES

You can access indexed files in both the sequential and the _ keyed
modes. Sequential reading retrieves records in sorted order by
defined key field. Keyed access, on the other hand, permits random
record selection on the basis of a particular key-field value.

Once you select a record by key, a sequential read retrieves records
with ascending key values, beginning with the key-field value of the
initial indexed READ. Using the keyed and sequential access modes’ in
combination is sometimes referred to as the Indexed Sequential Access
Method (ISAM).

When you specify ACCESS="KEYED" in an OPEN statement, you enable both
sequential and keyed access to an indexed file.

7.2 CREATING AN INDEXED FILE

You can create an indexed file with the following:

@e An OPEN statement

e An appropriate utility

You can use the OPEN statement to specify the more common file options
and a utility to select features not directly supported from
FORTRAN-77. Note, however, that any indexed file created with a
utility can be accessed by FORTRAN-77 I/O statements.

When you create an indexed file, you define certain fields within each
record as key fields. One of these key fields, called the primary
key, is identified as key number zero and must be present in every

7-1

USING INDEXED FILES

record. Additional keys, called alternate keys, may also be defined;
they are numbered from 1 through a maximum of 254. While an indexed
file may have as many as 255 key fields defined, in practice few
applications require more than three or four key fields.

When you design an indexed file, you decide which character positions
within each record are to be the key fields. There are three key data
types supported by PDP-11 FORTRAN-77: INTEGER*2, INTEGER*4, and
CHARACTER. Using the example of a mail order firm, you might define a
file record to consist of the following fields:

INTEGER*4 ORDER

CHARACTER*20 NAME
CHARACTER*20 ADRESS

CHARACTER*19 CITY

CHARACTER*2 STATE

CHARACTER*9 ZIP
INTEGER*2 ITEM

Positions 1:4

Positions 5:24

Positions 25:44
Positions 45:63

Positions 64:65
Positions 66:74

Positions 75:76

Given this record definition, you could use the following OPEN
Statement to create an indexed file:

OPEN (UNIT=10, FILE='CUSTOMERS.DAT', STATUS='NEW',
1 ORGANIZATION='INDEXED', ACCESS='KEYED',
2 RECORDTYPE='VARIA8LE', FORM='UNFORMATTED',
3 RECL=19, ! 19 storage units
4 KEY=(1:4: INTEGER, 66:74:CHARACTER, 75:76: INTEGER) ,
5 ERR=9999)

This OPEN statement establishes the attributes of the file, including
a primary key and two alternate keys. Note that the definitions of
the integer keys do not explicitly state INTEGER*4 and INTEGER*2. The
data type sizes are determined by the number of character positions
allotted to the key fields, which in this case are 4 and 2,
respectively.

You may specify the KEY= keyword when opening an existing file; the
FORTRAN Run-Time Library ensures that the given key specification
matches that of the file.

FORTRAN uses RMS default key attributes when creating an indexed file.
These defaults are as follows:

@e Primary key values cannot be changed when a record is
rewritten.

e Primary key values cannot be duplicated; that is, no_- two
records can have the same primary key value.

e Alternate keys may both be changed and have duplicates.

You can use an RMS utility or a USEROPEN routine to override these
defaults and to specify other values not supported by FORTRAN-77, such
as null key values, key names, and key data types other’ than integer
and character.

Refer to Section 2.3.12 for information on using the USEROPEN keyword
in FORTRAN-77 OPEN’ statements. The RMS-11 User's Guide has more
information on indexed file options.

USING INDEXED FILES

7.3 CURRENT-RECORD AND NEXT-RECORD POINTERS

The RMS file system maintains two pointers into an open indexed file:
the next-record pointer and the current-record pointer. The
next-record pointer indicates the record to be retrieved by a
sequential read. When you open an indexed file, the next-record
pointer indicates the record with the lowest primary key value.
Subsequent sequential read operations cause the next-record pointer to
be the one with the next higher key value in the same key field. In
case of duplicate key values, records are retrieved in the order in
which they were written.

The current-record pointer indicates the record most recently
retrieved by a read operation, that is, the record that is locked from
access by other programs sharing the file. The current record can be
operated on by the REWRITE statement and the DELETE statement, but is
undefined until a READ operation is performed on the file. Any file
operation other than a READ causes’ the current-record pointer to
become undefined. In addition, an error results if a REWRITE or
DELETE operation is performed when the current-record pointer is
undefined.

7.4 WRITING TO INDEXED FILES

You can write records to an indexed file with either formatted or
unformatted indexed WRITE statements. Each WRITE inserts a new record
into the file and updates the index(es) so that the new record appears
in the correct order for each key field.

Continuing the mail order file example of Section 7.2, you could add a
new record to the file with the following statement:

WRITE (UNIT=10,ERR=9999) ORDER,

1 NAME,ADRESS,CITY,STATE,ZIP, ITEM

7.4.1 Duplicate Keys

It is possible to write two or more records with the same key value.
Whether this duplicate-key situation is allowed depends on _ the
attributes that were specified for the file when it was created. By
default, FORTRAN-77 creates files that allow duplicate alternate keys
but that prohibit duplicate primary keys (see Section 7.2). If
duplicate keys are present in a file, the records with equal keys are
retrieved on a first-in, first-out basis.

For example, assume that five records are written to an indexed file
in the following order (for Clarity, only key fields are shown):

ORDER ZIP ITEM

1023 70856 375
942 02163 2736
903 14853 375

1348 44901 1047
1263 33032 690

USING INDEXED FILES

If the file is later opened and _ read sequentially by primary key
(ORDER), the sorted order of the records is unaffected by the
duplicated ITEM key, as shown below:

ORDER ZIP ITEM

903 14853 375
942 02163 2736

1023 70856 375
1263 33032 690
1348 44901 1047

If the file is read along the second alternate
the sort order is affected by the duplicate key, as shown below:

however,

ORDER ZIP ITEM

1023 70856 375
903 14853 375

1263 33032 690
1348 44901 1047
942 02163 2736

Notice that the records containing the same were
retrieved in the order in which they were written to the file.

7.4.2 Omitting Alternate Keys

You can omit one or more alternate keys when indexed
file that contains variable-length records.
field, omit the alternate key-field name
However,

the last the mail order example (ORDER 1263)

Specify another field after that point;
key must be at the end of the variable-length record.

To omit any alternate key
statement.

an omitted

For example, if
was written

with

then

the statement

WRITE (UNIT=10,ERR=9999) ORDER,
1 NAME,ADRESS,CITY,STATE, ZIP

the result of reading the complete file along the alternate ITEM
index would be as follows:

ORDER ZIP ITEM

1023 70856 375
903 14853 375

1348 44901 1047
942 02163 2736

Because the ITEM was omitted when the last record was
is no index entry for that key;

there
and it cannot be read when the file

is sorted on ITEM,

You may omit only alternate keys from a record; the primary key must
always be present.

7.5 READING FROM INDEXED FILES

You can read records in an indexed file with either sequential or
indexed READ statements.

USING INDEXED FILES

Indexed READ statements position the file pointers (see Section 7.3)
at a particular record (determined by the key value), the
key-of-reference, and the match criterion. Once you retrieve a
particular record by key, you can use sequential READ statements to
retrieve records with increasing key values.

The following FORTRAN-77 program segment prints the order number’ and
Zip code of each record, with a zip code in which the first 5
characters are greater than or equal to '10000' but less than '50000!:

C

C Read first record with ZIP key greater than or
C equal to '10000'.
C

READ (UNIT=10, KEYGE='10000', KEYID=1, ERR=9999),
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP

Cc

C While the Zip Code previously read is within range, print
C the order number and zip code, then read the next record.
C
10 IF (ZIP .LT. '50000') THEN

PRINT *, ‘Order number', ORDER, 'has zip code',
1 ZIP

READ (UNIT=10, END=200, ERR=9999)
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP

C
C END= branch will be taken if there are no more records
C in the file.
C

ENDIF

GOTO 10
200 CONTINUE

The error branch on the indexed READ in the example is taken if no
record is found with a zip code greater than or equal to '10000'; an
attempt to access a nonexistent record is an error. However, if the
Sequential READ has accessed all records in the file, an end-of-file
Status occurs, just as it does with other file organizations.

7.6 UPDATING RECORDS

You use the REWRITE statement to update existing records in an indexed
file. You cannot replace an existing record simply by writing it
again: A WRITE statement attempts to add a new record.

An update operation is accomplished in two steps. First, you must
read the record in order to make it the current record. Next, you
execute a REWRITE statement. As an example, to update the record
containing ORDER 903 (see prior examples) so that the NAME field
becomes 'Theodore Zinck', you might use the following FORTRAN-77 code
Segment:

READ (UNIT=10, KEY=903, KEYID=0, IOSTAT=IOS, ERR=9999)
1 ORDER, NAME, ADRESS, CITY, STATE, ZIP; ITEM
NAME='Theodore Zinck'!

REWRITE (UNIT=10, ERR=9999) ORDER
1 NAME, ADRESS, CITY, STATE, ZIP, ITEM

When you rewrite a record, key fields may change. Whether a key-field
change is permitted depends on the attributes given the file when it
was created.

USING INDEXED FILES

7.7 #DELETING RECORDS

To delete records from an indexed file, you use the DELETE statement.
The DELETE and REWRITE statements are similar in that each operates on
a record that has been locked by a READ statement.

The following FORTRAN-77 code segment deletes the second record in the
file with ITEM 375 (refer to previous examples):

READ (UNIT=10, KEY=375, KEYID=2, ERR=9999)
READ (UNIT=10, ERR=9999) ORDER
1 NAME, ADRESS, CITY, STATE, ZIP, ITEM
IF (ITEM .EQ. 375) THEN

DELETE (UNIT=10, ERR=9999)
ELSE

PRINT *,'There is no second record.'!
ENDIF

Deletion removes a record from all defined indexes in the file.

7.8 USING INTEGER KEYS

When writing an integer-key value to a record (with an indexed WRITE
Statement), use an A2 format for an INTEGER*2 value and an A4 format
for an INTEGER*4 value. Do not use an I format, because the I. format
produces an ASCII representation that an indexed READ statement cannot
later read.

To read a key field, however, you may use any format you wish, because
the format you associate with an indexed READ has no bearing on the
matching process used to locate the record in which the desired key
field is located.

The following program segment is an example of using integer keys with
an indexed file. Note that ACODE and TEL, which are the third and
second alternate keys in the record described below, are of type
INTEGER*2 and INTEGER*4, respectively, and that the formats used to

write these keys are A2 and A4, respectively.

The record layout is as follows:

FIELD SIZE TYPE MEANING

FI 1 CHAR FIRST INITIAL

NAME 10 CHAR LAST NAME

STADDR 20 CHAR STREET ADDRESS

CITY 10 CHAR CITY
STATE 2 CHAR STATE

SSN 9 CHAR SOCIAL SECURITY NUMBER

ACODE 2 INT *2 AREA CODE
TEL 4 INT *4 TELEPHONE NUMBER

AGE 2 INT*2 AGE

USING INDEXED FILES

The keys are as follows:

PRIMARY SSN 44:52

ALTERNATE 1: NAME 2:11
ALTERNATE 2: TEL 55:58: INTEGER
ALTERNATE 3: ACODE 53:54: INTEGER

CHARACTER FI*1,NAME*10,STADDR*20,CITY*10,STATE*2,SSN*9
INTEGER*4 TEL

INTEGER*2 AGE, ACODE
COMMON /DBREC1/ACODE,TEL,AGE
COMMON /DBREC2/NAME,FI,STADDR,CITY,STATE,SSN
INTEGER*4 INTKEY

OPEN (UNIT=1,NAME='DB.DAT' ,ORGANIZATION='INDEXED' ,ACCESS='KEYED',
1 RECORDTYPE='!FIXED' , RECL=128,FORM='FORMATTED' , TYPE='NEW',
2 KEY=(44:52, 2:11, 55:58:INTEGER, 53:54: INTEGER))

WRITE (11,1000) FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

READ WITH KEY EQUAL TO INTKEY

Q
A
a
A
Q

READ (1,1000,KEY=INTKEY,KEYID=IKEYID)

1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

C READ WITH KEY GREATER THAN INTKEY

READ (1,1000,KEYGT=INTKEY,KEYID=IKEYID)
1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

C READ WITH KEY EQUAL TO OR GREATER THAN INTKEY
C

READ (1,1000, KEYGE=INTKEY, KEYID=IKEYID)
1 FI,NAME,STADDR,CITY,STATE,SSN,ACODE,TEL,AGE

1000 FORMAT (A1,10A1,20A1,10A1,2A1,9A1,A2,A4,A2)

STOP
END

7.9 ERROR CONDITIONS

You can expect to encounter certain error conditions when using
indexed files. The two most common of these conditions result from
attempts to read locked records and attempts to create duplicate
primary keys. Provisions for handling both of these situations should
be included in a well-written program.

When an indexed file is shared by several users, any read operation
can result in a “SPECIFIED RECORD LOCKED" error. One way to recover
from this error condition is to ask if the user would like to

USING INDEXED FILES

reattempt the read. If the user's response is positive, the program
can go back to the READ statement. For example:

PARAMETER (LOCKED=52)

100 READ (UNIT=10, ERR=200) DATA

200 CALL ERRSNS (IERR)

IF(IERR .EQ. LOCKED) GOTO 100

If your program reads a record but does not intend to modify the

record, you should place an UNLOCK statement immediately after the

READ statement. This technique reduces the time that a record is
locked and permits other programs to access the record.

The second error condition, creation of duplicate primary keys, occurs
when a program tries to create a record with a key value that is
already in use. To handle this situation, you might have your program
prompt for a new key value whenever an attempt is made to create a

duplicate key. This technique is demonstrated below:

INTEGER DUPKEY

PARAMETER (DUPKEY=50)

200 WRITE(UNIT=10, ERR=300) KEYVAL, DATA

300 CALL ERRSNS (IERR)
IF (IERR .~.EQ. DUPKEY) THEN

TYPE*, 'This key value already exist. Please enter'
TYPE*, 'a different key value, or press CONTROL Z'
TYPE*, ‘to discontinue this operation.'
READ (UNIT=*, END=999) KEYVAL
GOTO 200

ELSE

TYPE*, 'ERROR',IERR,'DURING WRITE'
STOP

ENDIF

999 CONTINUE

APPENDIX A

FORTRAN-77 DATA REPRESENTATION

A.1 INTEGER FORMATS

A.1.1 INTEGER*2 Format

Sign

O=+

1 Binary number

15 14 0

ZK-1244-83

Integers are stored in two's complement representation. INTEGER*¥2
values lie in the range -32768 to +32767. For example:

+22 = 000026 (Octal)

-7 = 177771 (Octal)

A.1.2 INTEGER*4 Format

word 1: low order ‘|
15 0

word 2: {|S | high order |
15 14 0

INTEGER*4 values are stored in two's complement representation. The
first word contains the low-order part of the value; the second word
contains the sign and high-order part of the value. Note that if the
value is in the range of an INTEGER*2 value (-32768 to +32767), then
the first word may be referenced as an INTEGER*2 value.

A.2 FLOATING-POINT FORMATS

The exponent for both 2-word and 4-word floating-point formats is
Stored in excess-128 notation. Binary exponents from -128 to +127 are
represented by the binary equivalents of 0 through 255. Fractions are
represented in sign-magnitude notation, with the binary radix point to
the left. Numbers are assumed to be normalized; therefore, because
it would be redundant, the most significant bit is not stored (the
Practice of not storing the most significant bit is called "hidden bit
normalization"). The unstored bit is assumed to be a 1 unless the
exponent is 0 (corresponding to 2**-128), in which case the unstored
bit is assumed to be 0. The value 0 is represented by an exponent

FORTRAN-77 DATA REPRESENTATION

field of 0 and aéeSign bit of 0O. For example, +1.0 would be
represented in octal by:

40200
0)

in the 2-word format, or:

40200
0
0
0

in the 4-word format. The decimal number -5.0 is:

140640
0

in the 2-word format, or:

140640

0
0

0

in the 4-word format.

A.2.1 REAL (REAL*4) Format (2-Word Floating Point)

Sign

O= i igh- word 1: + Binary excess High order

j=-- 128 exponent mantissa

15 14 7 6 0

word 2: Low-order mantissa

15 0

ZK-1245-83

The form of a single-precision real number is sign magnitude, with bit
15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits 6:0
and 15:0 in the second word a normalized 24-bit fraction with the
redundant most significant fraction bit not represented. The value of
a Single-precision real number is in the approximate range .29*10**-38
through 1.7*10**38. The precision is approximately one part in
2**23--or typically seven decimal digits.

A.2.2 DOUBLE-PRECISION (REAL*8) Format (4-Word Floating Point)

Sign
word 1: O= Binary excess High-order

=-| 128 exponent mantissa
15 14 7 6 0

word 2: | Low-order mantissa |
15 0

word 3: | Lower-order mantissa
15 0

word 4: | LoweSt-order mantissa |
15 0

FORTRAN-77 DATA REPRESENTATION

The form of a double-precision real number is identical to that of a
Single-precision real number except for an additional 32
low-Significance fraction bits. The exponent conventions and
approximate range of values are the same as for a single-precision
real value. The precision is approximately one part in 2**55--or
typically 16 decimal digits.

A.2.3 COMPLEX Format

Sign

word 1: O=+| Binary excess High-order
=-| 128 exponent mantissa

15 14 7 6 0
Real
Part

word 2: | Low-order mantissa
15 0

Sign

O=+| Binary excess High-order
word 3: l=-|} 128 exponent mantissa

15 14 7 6 0
Imaginary
Part

word 4: | Low-order mantissa |
15 0

The form of a complex number is an ordered pair of real numbers. The
first real number’ represents the real part of the imaginary number;
the second represents the imaginary part.

A.3 LOGICAL*1 (BYTE) FORMAT

Data item

7 0

ZK-1246-83

The logical values true or false (see Section A.4), a single Hollerith

character, or integers in the range of numbers from +127 to -128 can
be represented in LOGICAL*1 format. LOGICAL*1l array elements’ are
stored in adjacent bytes.

A.4 LOGICAL FORMATS

LOGICAL*¥1

TRUE: byte 1 ll undefined |
7 6 0

FALSE: byte 1 10 undefined |
7 6 0

FORTRAN-77 DATA REPRESENTATION

LOGICAL*2

TRUE: word 1 | 1 undefined |
15 14 0

FALSE: word 1 | 0 undefined |
15 14 0

LOGICAL *4

TRUE: word 1 | undefined |
15 0

word 2 | 1 undefined |
15 14 0

FALSE: word 1 | undefined |
15 0

word 2 | 0 undefined |
15 14 0

A.5 CHARACTER REPRESENTATION

A character string is a contiguous sequence of bytes in memory.

char 1]: A

Ichar Ll} : A+L -1l

A character string is specified by two attributes: the address A of
the first byte of the string, and the length L of the string in bytes.
The length L of a string is in the range 1 through 255.

A.6 HOLLERITH FORMAT

word 1: char 2 char 1

15 8 7 0

word 2: char 4 char 3

15 8 7 0

blank=40 octal char n (n<255)

15 8 7 0

ZK-1247-83

Hollerith constants are stored one character per byte. Hollerith
values are padded on the right with blanks, if necessary, to fill the
associated data item.

FORTRAN-77 DATA REPRESENTATION

A.7 RADIX-50 FORMAT

Radix-50 character set

Value (Octal) Octal ASCII Character Equivalent
Radix-50

(Space) 40 0

A-Z 101-132 1-32

S 44 33

° 56 34

(unused) 35

0-9 60-71 36-47

Radix-50 values are stored, up to three characters per word, by
packing the Radix-50 values into single numeric values according to
the formula:

((1*50+75) *50+k)

i, j, k

The code values of three Radix-50 characters.

The maximum Radix-50 value is, therefore:

47*50**24+47*50+47=174777 (8)

The following table provides a convenient means of translating between
the ASCII character set and Radix-50 equivalents. For example, given
the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000

2=002400
B=000002

X2B=115402

FORTRAN-77 DATA REPRESENTATION

Single Character

First Character

"NK
K
M
S

S
C
H
A
N
D
W
O

V
O

BZ

BZ

M
r
A
G
H
A
O
D
A
m
A
I
Q
D
L
Y
S

wo

O
n
A
I
A
N
U

R
P
W
N
E

©

or

000000
003100
006200
011300
014400
017500
022600
025700
031000
034100
037200
042300
045400
050500
053600
056700
062000
065100
070200
073300
076400
101500
104600
107700
113000
116100
121200
124300
127400
132500
135600
140700
144000
147100
152200
155300
160400
163500
166600
171700

Second

"
M
O
N
K

KX

S
Q
C
H
A
N
D
O
V
O
Z
S
M
r
A
G
H
R
M
O
D
A
M
O
Q
W
D
 Y
S

o
D

I
A
M

SP

W
N

EF

©

Character

000000
000050
000120
000170
000240
000310
000360
000430
000500
000550
000620
000670
000740
001010
001060
001130
001200
001250
001320
001370
001440
001510
001560
001630
001700
001750
002020
002070
002140
002210
002260
002330
002400
002450
002520
002570
002640
002710
002760
003030

N
K

X
S

S
C
H

N
D
W
O
V
O
Z

B
S
M
r
A
Y
U
H
D
T
O
A
D
M
H
m
O
V
N
W
 Y

W
w
o
M
w
I
A
M
N

HS

W
H
F

©

Third
Character

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000020
000021
000022
000023
000024
000025
000026
000027
000030
000031
000032
000033
000034
000035
000036
000037
000040
000041
000042
000043
000044
000045
000046
000047

(space)

(unused)

APPENDIX B

ALGORITHMS FOR APPROXIMATION PROCEDURES

This appendix contains brief descriptions of the algorithms used in
intrinsic functions that involve approximations.

some of the descriptions below give relative error bounds. These
relative error bounds are for the approximating polynomials involved
in the algorithms, and assume exact arithmetic. Possible additional
Sources of errors not reflected in these error bounds are:

@ Rounding and truncation errors that can occur when a given
argument is reduced to the range in which approximations for a
polynomial or rational fraction are valid

@e Rounding errors that can occur as ae result of using
finite-precision, floating-point arithmetic in polynomial or
rational-fraction computations

B.1 REAL-VALUE PROCEDURES

B.1.1 ACOS -- Real Floating-Point, Arc Cosine

ACOS (X) is computed as:

If X = 0, then ACOS(X) = pi/2
If X = 1, then ACOS(X) = 0
If X = -1, then ACOS(X) = pi
If 0 < X < 1, then ACOS (X) = ATAN (SQRT (1-X**2) /X)
If -1 < X <0, then ACOS (x) ATAN (SORT (1-X**2) /X) + pi
If 1 < ABS(X) , error

B.1.2 DACOS -- Double-Precision Floating-Point Arc Cosine

DACOS (X) is computed as:

If X = 0, then DACOS(X) = pi/2
If X = 1, then DACOS(X) = 0
If X = -1, then DACOS(Xx) = pi
If 0 < X < 1, then DACOS (X) = DATAN (DSQRT (1-X**2) /X)
If -l1 < X < 0, then DACOS (X) = DATAN (DSQRT (1-X**2)/X) + pi
If 1 < ABS(X), error

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.3 ASIN -- Real Floating-Point Arc Sine

ASIN (X) is computed as:

If X = 0, then ASIN(X) = 0

If X = 1, then ASIN(X) = pi/2

If X = -1, then ASIN(X) = -pi/2

If 0 < ABS(X) < 1, then ASIN(X) = ATAN (X/SOQRT (1—-X**2))
If 1 < ABS(X), error

B.1.4 DASIN -- Double-Precision Floating-Point Arc Sine

DASIN(X) is computed as:

If X = 0, then DASIN(X) = 0

If X = 1, then DASIN(X) = pi/2
If X = -1, then DASIN(X) = -pi/2
If 0 < ABS(X) < 1, then DASIN(X) = DATAN (X/DSQRT (1-X**2))
If 1 < ABS(X), error

B.1.5 ATAN -- Real Floating-Point Arc Tangent

ATAN (X) is computed as:

l. If X < O, then:

Begin

Perform Steps 2, 3, and 4 with arg = ABS(Xx)
Negate the result Since ATAN(X) = -ATAN (-X)
Return End

2. If ABS(X) > 1, then:
Begin

Perform Steps 3 and 4 with arg = 1/ABS(X)
Negate result and add a bias of pi/2 since

ATAN (ABS(X)) = pi/2 - ATAN(1/ABS(X))
Return End

3. At this point the argument is 1 >= X d= 0
If ABS (xX) > TAN(pi/12), then:
Begin

Perform Step 4 with arg = (X * SQRT(3) - 1)/
(SORT (3) + X)

Add pi/6 to the result
Return End

Note: (X * SORT(3) -1)/(X + SQRT(3)) <= TAN(pi/12) for
ABS(X) >= TAN(pi/12)

4. Finally, the argument is ABS(X) <= TAN (pi/12)
Begin

ATAN (X) = X * SUM(C[i] * X**(2[i])), i = 0:4
Return End

The coefficients C[i] are drawn from Hart #4941.1
The relative error is <= 10**-9.54.

1. Hart, J. F. et al., Computer Approximations (John Wiley & Sons,
1968), P. 267.

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.6 ATAN2 -- Real Floating-Point Arc Tangent with Two Parameters

ATAN2 (X,Y) is computed as:

If Y = 0 or X/Y > 2**25, ATAN (X,Y) = pi/2 * (sign X)
If Y > 0 and X/Y <= 2**25, ATAN2 (X,Y) = ATAN(X/Y)
If Y < 0 and X/Y <= 2**25, ATAN2(X,Y) = pi * (Sign X)

+ ATAN (X/Y)

B.1.7 DATAN -- Double-Precision Floating-Point Arc Tangent

DATAN (x) iS computed as:

l. If X < O, then:
Begin

Perform Steps 2, 3, and 4 with arg = ABS(X)
Negate the result since DATAN(X) = -DATAN (-X)
Return

End

2. If ABS(X) > 1, then:

Begin
Perform Steps 3 and 4 with arg = 1/ABS(Xx)
Negate result and add a bias of pi/2 since
DATAN (ABS (X)) = pi/2 - DATAN(1/ABS(X))
Return

End

3. At this point the argument is 1 >= xX >= 0
If ABS(X) > DATAN(pi/12) then:
Begin

Perform Step 4 with arg = (X*DSQRT(3) - 1)/
(DSQRT (3) + X)

Add pi/6 to the result
Return

End

Note: (X*DQRT(3) -1)/(X + DQRT(3)) <= DATAN(pi/l2 for
AB(X) >= DATAN(pi/12)

4. Finally, the argument is ABS(X) <= DATAN (pi/12):
Begin

DATAN(X) = X * SUM(C[i] * X**(2*i)), i = 0:8
Return

End

The coefficient C[i]'s are drawn from Hart #4941.1
The relative error is <= 10**-9.54,

B.1.8 DATAN2 -- Double-Precision Floating-Point Arc Tangent with Two
Parameters

If Y O or X/Y > 2**25, DATAN2 (X,Y) = pi/2 * (sign X)
If Y
If Y

O and X/Y <= 2**25, DATAN2 (X,Y) = DATAN (X/Y)
O and X/Y <= 2**25, DATAN2 (X,Y) pi * (sign X)

+ DATAN (X/Y)

N
V

iI

1. Hart, Computer Approximations p. 267.

B-3

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.9 ALOG10 -- Real Floating-Point Common Logarithm

ALOG10(x) iS computed as:

ALOG10(E) * ALOG (X)

where: |

E = 2.718, the base of the natural log system.

see the description of ALOG (Section B.1.21) for the complete
algorithm.

B.1.10 DLOG10 -- Double-Precision Floating-Point Common Logarithm

DLOG10 (X) 1S computed as:

DLOG1O(E) * DLOG (xX)

where:

E = 2.718, the base of the natural log system.

See the description of DLOG (Section B.1.22) for the complete
algorithm.

B.l.11 COS -- Real Floating-Point Cosine

COS (X) is computed as:

SIN (X+pi/2)

see the description of SIN (Section B.1.23) for the complete
algorithm.

B.1.12 DCOS -- Double-Precision Floating-Point Cosine

DCOS (X) 1S computed as:

DSIN (X+pi/2).

see the description of DSIN (Section B.1.24) for the complete
algorithm.

B.1.13 EXP -- Real Floating-Point Exponential

EXP (X) is computed as:

If X > 88.028, overflow occurs

If X <= -88.5, EXP(X) = 0
If ABS(X) < 2**-28, EXP(X) = 1

ALGORITHMS FOR APPROXIMATION PROCEDURES

Otherwise:

EXP(X) = 2**Y * 2**7 * QDkekW

where:

Y = INTEGER (X*LOG2 (E))

V = FRAC (X*LOG2(E)) * 16

Z = INTEGER (V)/16

W = FRAC (V) /16

P+wQ
2e*EW =

P-wQ

P and Q are first degree polynomials in w**2,
The coefficients of P and Q are drawn from Hart #1121.1

Powers of 2**(1/16) are obtained from a table. All arithmetic is done
in double precision and then rounded to single precision at the end of
calculation. The relative error is less than or equal to 10¥**-16.4.

B.1.14 DEXP -- Double-Precision Floating-Point Exponential

see the description of EXP (Section B.1.13). The approximation is
identical except that there is no conversion to Single precision at
the end.

B.1.15 COSH -- Real Floating-Point Hyperbolic Cosine

COSH(X) is computed as:

If ABS(X) < 2**-11, COSH(X) = 1

If 2**-11 <= ABS(X) < 0.25,
COSH(X) = DIGITAL's approximation 2

If 0.25 <= ABS(X) <= 87.0,
COSH(X) = (EXP(X) + EXP (-X))/2

If 87.0 < ABS(X) and ABS(X) - LOG (2) < 87,
COSH(X) = EXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABS(X) - LOG (2) >= 87, then overflow

B.1.16 DCOSH -- Double Floating-Point Hyperbolic Cosine

DCOSH(X) is computed as:

If ABS(X) < 2**-27, DCOSH(X) = 1

If 2**-27 <= ABS(X) < 0.25,
DCOSH(X) = DIGITAL's approximation*

1. Hart, Computer Approximations, p. 206.

2. This approximation is proprietary.

B-5

ALGORITHMS FOR APPROXIMATION PROCEDURES

If 0.25 <= ABS(X) <= 87.0,
DCOSH(X) = (DEXP(X) + DEXP(-X))/2

If 87.0 < ABS(X) and ABS(X) - LOG(2) < 87,
DCOSH(X) = DEXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

B.1.17 SINH -- Real Floating-Point Hyperbolic Sine

SINH(X) iS computed as:

If ABS(X) < 2**-11, SINH(X) = X

If 2**-1]1 <= ABS(X) < 0.25,
SINH(X) = DIGITAL'S approximation*

If 0.25 <= ABS(X) <= 87.0,

SINH(X) = (EXP(X) - EXP(-X))/2

If 87.0 < ABS(X) and ABS(X) - LOG(2) < 87,

SINH(X) = sign(X) * EXP(ABS(X) -—- LOG(2))

If 87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

B.1.18 DSINH -- Double-Precision Floating-Point Hyperbolic Sine

DSINH(x) is computed as:

If ABS(X) < 2**-27, DSINH(X) = X

If 2**-27 <= ABS(X) < 0.25,
DSINH(X) = DIGITAL'S approximation*

If 0.25 <= ABS(X) <= 87.0,

DSINH(X) = (DEXP(X) - DEXP(-X))/2

If 87.0 < ABS(X) and ABS(X) - LOG(2) < 87,

DSINH(X) = sign(X) * DEXP(ABS(X) - LOG(2))

If 87.0 < ABS(X) and ABS(X) - LOG(2) >= 87, then overflow

B.1.19 TANH -- Real Floating-Point Hyperbolic Tangent

TANH (X) is computed as:

If ABS(X) <= 2**-14, then TANH(X) = X

If 2**-14 < ABS(X) <= 0.25, then TANH(X) = SINH(X) / COSH(X)

If 0.25 < ABS(X) < 16.0, then

TANH (X) = (EXP (2*X) - 1)/(EXP(2*X) + 1)

If 16.0 <= ABS(X), then TANH(X) = sign(X) * 1

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.20 DTANH -- Double-Precision Floating-Point Hyperbolic Tangent

DTANH (X) iS computed as:

If ABS(X) <= 2**-14, then DTANH (X) = X

If 2**-14 < ABS(X) <= 0.25, then DTANH(X) = DSINH (X) /DCOSH (X)

If 0.25 < ABS(X) < 16.0, then
DTANH(X) = (DEXP(2*X) - 1)/(DEXP(2*X) + 1)

If 16.0 <= ABS(X), then DTANH(X) = Sign(X) * 1

B.1.21 ALOG -- Real Floating-Point Natural Logarithm

ALOG (x) is computed as:

If X <= 0, an error is signaled.

Therefore, let X = Y * (2**A)

where:

1/2 <= Y <1

Then LOG(X) = A * LOG(2) + LOG (Y)

If ABS(X-1) <= 0.25, let W = (X-1)/(X+41)

Then, LOG(X) = W * SUM(C[i] * W**(2*i))

Otherwise, let W (Y-SQRT (2) /2) / (Y+SORT (2) /2)

Then, LOG(X) = A * LOG(2) - 1/2 * LOG (2) +
W * SUM C[i] * W**(2*i)

The coefficients are drawn from Hart #2662.1
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10**-9,9,

B.1.22 DLOG -- Double-Precision Floating-Point Natural Logarithm

DLOG (x) is computed as:

If X <= 0, an error is signaled.

Therefore, let xX = Y * (2**A)

where:

1/2 <= Y <1

Then, DLOG(X) = A * DLOG(2) + DLOG (Y)

1. Hart, Computer Approximations, p. 227.

B-7

ALGORITHMS FOR APPROXIMATION PROCEDURES

If ABS(X-1) <= 0.25, then let W = (X-1)/(X+1)

Then DLOG(X) = W * SUM (C[i] * W**(2*i))

Otherwise, let W (Y - DSQRT(2)/2)/(Y + DSQRT (2) /2)

Then DLOG(X) = A * DLOG(2) - 1/2 * DLOG(2) +

W * SUM(C[i] * W** (2*1)

The coefficients are drawn from Hart #2662.1
The polynomial approximation used is of degree 6.

The relative error is less than or equal to 10**-9.9.

B.1.23 SIN -- Real Floating-Point Sine

SIN(X) iS computed as:

Let Q = INTEGER(ABS (X)/(pi/2))

where:

Q = 0 for first quadrant
Q = 1 for second quadrant
Q = 2 for third quadrant
Q = 3 for fourth quadrant

Let Y = FRACTION ((ABS (X)/(pi/2))

If ABS(Y) < 2**-14, the sine is computed as:

SIN(X) = S * (pi/2)

S = yY if Q = 0
S = 1-yY if Q=1
S = -Y if Q = 2
S = Y-l if Q = 3

For all other cases:

SIN(X) = P(Y*pi/2) if Q = 0

SIN(X) = P((1-Y)*pi/2) if Q=1

SIN(X) = P(-Y*¥pi/2) if Q = 2

SIN (X) = P((¥-1)*pi/2) if Q = 3

where:

P = Y*¥SUM(C[i] * (Y**(2*%i))) for i = 0:4

The coefficients are taken from Hastings.2
The polynomial approximation used is of degree 4.

The relative error is less than or equal to 10**-8. The result
guaranteed to be within the closed interval -1.0 to +1.0.

1. Hart, Computer Approximations, p. 227.

2. Hastings, C. et al., Approximation £

is

r Digital Computers re)

(Princeton University Press, 1955), Sheet 16 (Part 2, p. 140).

B-8

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.1.24 DSIN -- Double-Precision Floating-Point Sine

DSIN(X) is computed as:

Let Q = INTEGER (ABS (X)/(pi/2))

where:

Q = 0 for first quadrant
Q = 1 for second quadrant
Q = 2 for third quadrant
Q = 3 for fourth quadrant

Let Y = FRACTION ((ABS (X)/(pi/2))

If ABS(Y) < 2**-28, the sine is computed as:

DSIN(X) = S * (pi/2)

S = yY if Q = 0

S = 1-yY if Q=1
S = -Y if Q = 2
S = Y-l if Q = 3

For all other cases:

DSIN(X) = P(Y*pi/2) if Q=0
DSIN (X) = P((1-Y)*pi/2) if Q=1
DSIN(X) = P(~Y*pi/2) if Q = 2
DSIN(X) = P((Y-1)*pi/2) if Q = 3

where:

P = Y*SUM(C[i] * (¥Y**(2*i))) for i = 0:8

The coefficients are taken from Hastings.

The polynomial approximation used is of degree 8.

The relative error is less than or equal to 10**-18.6. The result
guaranteed to be within the closed interval -1.0 to +1.0.

No loss of precision occurs if X < 2 * pi *256.

B.1.25 SQRT -- Real Floating-Point Square Root

SORT (X) is computed as:

If X <= 0, an error is Signaled. Therefore, let X = -xX

Let X = 2**K * F

where:

K is the exponential part of the Floating-point data.
F is the fractional part of the floating-point data.

is

ALGORITHMS FOR APPROXIMATION PROCEDURES

If K is even:

X = 2**(2P) * F

SQRT (X) = 2**P * SQRT (F)

1/2 <= F< l

where:

P = K/2.

If K is odd:

X = 2**(2P+1) * F = 2**(2P4+2) * (F/2)

SORT (X) = 2**(P+1) * SQRT(F/2)

1/4 <= F/2 < 1/2

Let F' = A*F + B, when K is even:

© 453730314 (octal)

327226214 (octal) w
YP

o
t

o
m
?
)

Let F' = A*(F/2) + B, when K is odd:

A = 0.650117146 (octal)

B = 0.230170444 (octal)

Let K' = P, when K is even

Let K' = P+l, when K is odd

Let Y{[0] = 2**K' * F' be a straight line approximation within the
given interval using coefficients A and B, which minimize the
absolute error at the midpoint and endpoint.

Starting with Y[0], two Newton-Raphson iterations are performed:

Y{n+l] = 1/2 * (Y[n] + X/Y[n])

The relative error is < 10**-8.

B.1.26 DSQRT -- Double-Precision Floating-Point Square Root

DSQRT(x) is computed as:

If X <= 0, an error is Signaled. Therefore, let X = -X.

Let X = 2**K * F where:

K is the exponential part of the floating-point data.
F is the fractional part of the floating data.

If K is even:

X = 2**(2P) * F

DSORT(X) = 2**P * DSORT (F)

1/2 <= F <1

ALGORITHMS FOR APPROXIMATION PROCEDURES

If K is odd:

X = 2**(2P+1) * F = 2**(2P+2) * (F/2)
DSQORT(X) = 2**(P+1) * DSQRT(F/2)

1/4 <= F/2 < 1/2

Let F' = A*F + B, when K is even:

A = 0.453730314 (octal)
B = 0.327226214 (octal)

Let F' = A*(F/2) + B, when K is odd:

A = 0.650117146 (octal)

B = 0.230170444 (octal)

Let K' = P, when K is even.

Let K' = P+l, when K is odd.

Let Y[0] = 2**K' * F' be a Straight line approximation within the
given interval using coefficients A and B, which minimize the
absolute error at the midpoint and endpoint.

Starting with yY[0], three Newton-Raphson iterations are
performed:

Y{n+l] = 1/2 * (Y {n] + X/Y{[n])

The relative error is < 10**-17.

B.1.27 TAN -- Real Floating-Point Tangent

TAN (X) iS computed as:

SIN (X)/COS (X)

If COS(X) = 0 and SIN(X) > 0; error, return +

If COS(X) = 0 and SIN(X) < 0; error, return -

where:

CO is the largest representable number.

B.1.28 DTAN -- Double-Precision Floating-Point Tangent

DTAN (X) 1S computed as:

DSIN (X)/DCOS (X)

If DCOS(X) = 0 and DSIN(X) > 0; error, return + If DCOS(X) = 0. and
DSIN(X) < O; error, return -

where:

CO is the largest representable number.

B-11

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.2 COMPLEX-VALUED PROCEDURES

B.2.1 CSQRT -- Complex Square Root Function

CSQRT iS computed as:

ROOT = SQRT ((ABS (r) + CABS ((r,i))) / 2)

Q= i / (2 * ROOT)

r i CSORT ((r,i))

>=0 | any (ROOT, Q)
<0 >=0 (Q, ROOT)
<0 <0 (-Q, -ROOT)

B.2.2 CSIN -- Complex Sine

CSIN(Z) 1S computed as:

(SIN(X) * cosh(Y), iCOS(X) * sinh(Y))

where:

Z=X = iY

cosh(Y) = (EXP(Y) + (1.0/EXP(Y)))/2

Sinh(Y) = (EXP(Y) - (1.0/EXP(Y)))/2

B.2.3 CCOS --— Complex Cosine

CCOS(Z) is computed as:

(COS (X) * cosh(Y), i(-SIN(X) * sinh(yY))

where:

Z=xX+iyY

cosh(Y) = (EXP(Y) + (1.0/EXP(Y)))/2.0
Sinh(Y) = (EXP(Y) - (1.0/EXP(Y)))/2.0

B.2.4 CLOG -- Complex Logarithm

CLOG(Z) iS computed as:

(ALOG (CABS (Z)), 1ATAN2 (X,Y))

where:

Z=X + iY

ALGORITHMS FOR APPROXIMATION PROCEDURES

B.2.5 CEXP -- Complex Exponential

CEXP(Z) iS computed as:

EXP(X) * (COS(Y) +iSIN(Y))

where:

Z=xX+ 1Y

B.3 RANDOM NUMBER GENERATORS

Two random number generators are available with FORTRAN-77: RANDOM
and F77RAN. They are described in the following sections.

B.3.1 RANDOM -- Uniform Pseudorandom Number Generator

This procedure is a general random number generator of the
multiplicative congruential type. This means that it tends to be
fast, but prone to nonrandom sequences when considering triples of
numbers generated by this method. This procedure is called again to
obtain the next pseudorandom number. The 32-bit seed is updated
automatically. The result is a floating-point number that is
uniformly distributed in the range between 0.0 inclusive and 1.0
exclusive. There are no restrictions on the seed, although it should
be initialized to different values on Separate runs in order to obtain
different random sequences. RANDOM uses the following to update the
seed passed as the parameter:

SEED = 69069 * SEED + 1 (MOD 2**32)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

RANDOM is invoked in one of three ways:

f = RAN(})
f = RAN(il,i2)
CALL RANDU (il,i2,£)

where:

f is a real, floating-point, random number
j} is an INTEGER*4 seed
i1,i2 are INTEGER*2 seeds.

Notes:

1. Because the result is never 1.0, a simple way to get a
uniform random integer selector is to multiply the value
returned by the random number function by the number of
cases. For example, if a uniform choice among’ five
Situations is to be made, then the following FORTRAN
statement will work:

GO TO (1,2,3,4,5),1 + IFIX(5.*RAN (ISEED))

The explicit IFIX is necessary before adding 1 in order to
avoid a possible rounding during the normalization after the
addition of floating-point numbers.

ALGORITHMS FOR APPROXIMATION PROCEDURES

2. For further information on congruential generators and their
limitations, see:

G. Marsaglia, “Random Number Generation", in The
Encyclopedia of Computer Science, ed., Anthony Ralston

(Petrocelli/Charter, 1976), pp. 1192-1197.

B.3.2 FA4PRAN - Optional Uniform Pseudorandom Number Generator

This optional procedure is a general random number generator of the
multiplicative congruential type. This procedure was the standard
random number generator previous to Version 3.0 of PDP-1l1l FORTRAN’ and
is included only for compatibility purposes as the file
LB: [1,1]F4PRAN. OBJ.

If I12=0, SEED = 2**16+3

otherwise, SEED = (2**16+3) * SEED (MOD 2**31)

The value of SEED is a 32-bit number whose high-order 24 bits are
converted to floating point and returned as the result.

F4PRAN is invoked in one of two ways:

f= RAN (il,i2)
CALL RANDU (il,i2,f)

where:

f is a real floating-point, random number.
il, i2 are INTEGER*2 seeds. Op

APPENDIX C

DIAGNOSTIC MESSAGES

C.1 DIAGNOSTIC MESSAGE OVERVIEW

Diagnostic messages related to a FORTRAN-77 Program can come from the
compiler or from the OTS. The compiler detects syntax errors in a
source program -- that is, such errors as’ unmatched parentheses,
illegal characters, misspelled keywords, and missing or illegal
Parameters. The OTS reports errors that occur during execution.

C.2 COMPILER DIAGNOSTIC MESSAGES

Compiler diagnostic messages are generally self-explanatory; they
Specify the nature of a detected error and the action taken by the
compiler. Besides reporting errors detected in Source-program Syntax,
the compiler issues messages for errors such as I/O errors and stack
overflow that involve the compiler itself.

C.2.1 Source Program Diagnostic Messages

The compiler distinguishes three classes of Source-program errors,
reported as follows:

F - Fatal errors that you must correct before a program can be
compiled. If any F-class errors are reported in a
compilation, the compiler produces no object file.

& - Errors that should be corrected. The program is not likely
to run as intended with E-class errors; however, an object
File is produced.

W - Warning messages that are issued for statements uSing
nonstandard, though accepted, Syntax and for statements
corrected by the compiler. These statements may not have the
intended result and you should check them before attempting
execution. These messages are produced only when the warning
Switch (/WR) is set.

I ~ Information messages that although they do not call for
corrective action, inform you that a correct FORTRAN-77
Statement may have unexpected results. These messages are
produced only when the warning switch (/WR) is set.

Errors detected during the initial phase of compiling appear immediately after the source line in which the error is presumed to
have occurred; all other diagnostic messages appear immediately after
the source listing.

DIAGNOSTIC MESSAGES

Diagnostic messages issued by the compiler consist of two lines: The
first line gives the error number and error message text; the second
line contains a short section of the source line or the line number
and/or the symbol that caused the diagnostic message.

One of the most frequent reasons for syntax errors, typing mistakes,
can sometimes cause the compiler to give misleading diagnostic
messages. You should avoid the following common typing mistakes:

e Missing commas or parentheses in complicated expressions or
FORMAT statements.

@e Particular instances of misspelled variable names. Because
the compiler usually cannot detect these errors, execution may
also be affected.

e Inadvertent line continuation marks, which can causSe error

messages for the preceding lines.

e Typing the uppercase letter O for the digit 0, or the reverse.
If your terminal does not differentiate between the number and
the letter, you may find it difficult to detect this error.

The presence of invalid ASCII characters in the source program can
also cause misleading diagnostics. Nonprinting ASCII control
characters except tab and form feed are not permitted in a FORTRAN-77
source program. If such control characters are detected, they are

replaced by the question mark (?). However, because a question mark
cannot occur in a FORTRAN-77 statement, this replacement can cause a
syntax error.

Example C-l1 shows the form of source-program diagnostic messages as

they are displayed at your terminal in interactive mode. Example C=-2
Shows how these messages appear in listings.

Example C-1: Sample Diagnostic Messages (Terminal Format)

F'77>COMERR=COMERR/NOF77

F77 -- ERROR 63-E Format item contains meaningless character
[RSTUVWXYZ',14,M] in module ERRCHK at line 5

F77 -- ERROR 85=-W Name longer than 6 characters
{[, LONGIDENTIFIER] in module ERRCHK at line 12

F77 -- ERROR 26-W No path to this statement
in module ERRCHK at line 17

F77 -- ERROR 10-E Multiple definition of a statement label, second
ignored [FORMAT] in module ERRCHK at line 20

F77 -- ERROR 50-F Undefined statement label
[102] in module ERRCHK

F77 -- 5 Errors COMERR.FTN; 3

Example C-2:

DIAGNOSTIC MESSAGES

Sample Diagnostic Messages (Listing Format)

0001 PROGRAM ERRCHK
0002 PARAMETERS T=.TRUE.,F=.FALSE.
0003 INTEGER*4 TT,FF,1I,J,I1I
0004 DATA TT,FF/T,F/

Cc
0005 501 FORMAT (' 12345678 90ABCDEFGHIJKLMNOPQRSTUVWXYZ!',14,M)
F77 -- ERROR 63-E Format item contains meaningless character

[RSTUVWXYZ',1I4,M] in module ERRCHK at line 5

0006 OPEN (UNIT=1,NAME='FILE1.DAT' ,ACCESS='DIRECT',
1 RECORDSIZE=2)

0007 WRITE (1'1)TT,FF
C

0008 TYPE 501,TT,FF

0009 TYPE 501,TT,FF
C

0010 CALL SUBR

0011 READ (1,102)1,J,K
0012 READ (1,102,ERR=24)1I,J,LONGIDENTIFIER
F77 -- ERROR 85-W Name longer than 6 characters

[, LONGIDENTIFIER] in module ERRCHK at line 12

0013 24 ASSIGN 92 TO K

0014 I=0
0015 J=3
0016 GO TO 24
0017 II=J/I
F777 -- ERROR 26-W No path to this statement

in module ERRCHK at line 17

0018 73 XX=Y /X
0019 TYPE 502,11I,XX,ZZ

0020 501 FORMAT (2X,L2,2X,L2)
F/77 -- ERROR 10-E Multiple definition of a statement label, second

ignored [FORMAT] in module ERRCHK at line 20

0021 502 FORMAT (2X,15,2X,F,2X,F)
0022 CLOSE (UNIT=1, DISP='DELETE')
0023 92 STOP 'OK'
0024 END
F77 -- ERROR 50-F Undefined statement label

[102] in module ERRCHK

F77 -- 5 Errors COMERR.FTN; 3

The compiler diagnostic messages are as follows:

1 W

2 W

3 E

Redundant continuation mark ignored

A continuation

required.
mark Present where an initial line is

The continuation mark is ignored.

Invalid statement number ignored

An improperly formed statement number is present in columns 1-5
of an initial line. The statement number has been ignored.

Too many continuation lines, remainder ignored

More continuation lines are present than were specified by
qualifier.

The default value is 19.
/CO:n Up

the
to 99 continuation lines are permitted.

10

11

12

13

14

DIAGNOSTIC MESSAGES

Source line too long, compilation terminated

A source line contains more than 88 characters. Note: The
compiler examines only the first 72 characters of a line.

Statement out of order, statement ignored

Statements must appear in the order specified in the PDP-11l
FORTRAN-77 Language Reference Manual.

Statement not valid in this program unit, statement ignored

A program unit contains a statement that is not allowed; for
example, an executable statement in a BLOCK DATA subprogram.

Missing END statement, END is assumed

An END statement is missing at the end of the last input file
and has been inserted.

Extra characters following a valid statement

Extraneous text is present at the end of a Syntactically valid
statement. Check the entire statement for typing or syntax
errors.

Invalid initialization of variable not in COMMON

An attempt was made in a BLOCK DATA subprogram to initialize a
variable that is not in a COMMON block.

Multiple definition of a statement label, second ignored

Two or more statements have the same statement label. The

first occurrence of the label is used.

Compiler expression stack overflow

An expression is too complex to be compiled. This error occurs

in the following cases:

e An arithmetic or logical expression is too complex.

e There are too many actual arguments in a reference to a
Subprogram.

e There are too many parameters in an OPEN statement.

The expression, Subprogram reference, or OPEN statement must be
Simplified.

Statement cannot terminate a DO loop

The terminal statement of a DO loop cannot be a GO TO,

arithmetic IF, RETURN, DO, or END statement.

Count of Hollerith or Radix50 constant too large, reduced

The integer count preceding H or R_ specifies more characters
than remain in the source statement.

Missing apostrophe in character constant

A character constant must be enclosed by apostrophes.

15

16

17

18

19

20

21

22

23

24

25

26

DIAGNOSTIC MESSAGES

Missing variable or subprogram name

A required variable name or subprogram name was not found.

Multiple declaration of data type for variable, first used

A variable cannot appear in more than one type declaration
Statement. The first type declaration is used.

Constant in format item out of range

A numeric value in a FORMAT statement exceeds’ the allowable
range. Refer to the PDP-11 FORTRAN-77 Language Reference
Manual.

Invalid repeat count in DATA statement, count ignored

The repeat count in a DATA statement is not an unSigned nonzero
integer constant. It has been ignored.

Missing constant

A required constant was not found.

Missing variable or constant

An expression, or a term of an expression, has been omitted.
Examples:

WRITE ()

DIST = * TIME

Missing operator or delimiter symbol

Two terms of an expression are not Separated by an operator, or
a punctuation mark (Such as a comma) has been omitted.
Examples;

CIRCUM = 3.14 DIAM

Multiple declaration of name

A name appears in two or more inconsistent declaration
statements.

Syntax error in IMPLICIT statement

Improper syntax was used in an IMPLICIT statement. Refer to
the PDP-11 FORTRAN-77 Language Reference Manual.

More than 7 dimensions specified, remainder ignored

An array may have up to seven dimensions.

Non-constant subscript where constant required

In the DATA and EQUIVALENCE Statements, subscript expressions
must be constant.

No path to this statement

Program control cannot reach the statement. The Statement is
deleted.

27

28

29

30

31

32

33

34

35

DIAGNOSTIC MESSAGES

Adjustable array bounds must be dummy arguments or in COMMON

Variables specified in dimension declarator expressions must
either be subprogram dummy arguments or appear in COMMON.

Overflow while converting constant or constant expression

The specified value of a constant is too large or too small to
be represented.

Inconsistent usage of statement label

Labels of executable statements have been confused with labels

of FORMAT statements.

Missing exponent after E or D

A floating-point constant is specified in E or D notation, but
the exponent has been omitted.

Invalid character used in hex, octal, or Radix-50 constant

e The valid Radix-50 characters are the letters A-Z, the

digits 0-9, the dollar sign, the period, and the space.
A space is substituted for the invalid character.

e The valid hexadecimal characters are 0-9, A-F, a-f.

e The valid octal characters are 0-7.

Program storage requirements exceed addressable memory

The storage space allocated to the variables and arrays of the

program unit exceeds the addressing range of the PDP-1l.

Variable inconsistently equivalenced to itself

The EQUIVALENCE statements of the program specify inconsistent
relationships among variables and array elements. Example:

EQUIVALENCE (A(1), A(2))

Undimensioned array or function definition out of order

Either a statement function definition has been found among
executable statements, or an assignment statement has been
detected that involves an array for which dimension information
has not been given.

Format specifier in error

The format specifier in an I/O statement is invalid. It must
be one of the following:

e Label of a FORMAT statement

e * (list-directed)

e@ A run-time format specifier: variable, array, or array
element

e Character constant containing a valid FORMAT
specification

36

37

38

39

40

4l

42

43

44

45

46

47

48

DIAGNOSTIC MESSAGES

Subscript or substring expression value out of bounds

An array element has been referenced which is not within the
specified dimension bounds.

Invalid equivalence of two variables in COMMON

Variables in COMMON cannot be equivalenced to each other.

EQUIVALENCE statement incorrectly expands a COMMON block

A COMMON block cannot be extended beyond its beginning by an
EQUIVALENCE statement.

Allocation begins on a byte boundary

A non-BYTE quantity has been allocated to an odd byte boundary.

Adjustable array used in invalid context

A reference is made to an adjustable array in a context where
such a reference is not allowed.

Subscripted reference to non-array variable

A variable that is not defined as an array cannot appear with
Subscripts.

Number of subscripts does not match array declaration

More or fewer dimensions are referenced than were declared for
the array.

Incorrect length modifier in type declaration

The length specified in a type declaration statement is not
compatible with the data type specified. Example:

INTEGER PIPES*8

Syntax error in INCLUDE file specification

The file name string is not acceptable (invalid syntax, invalid
qualifier, undefined device, and so forth).

Missing separator between format items

A comma or other separator character has been omitted between
fields in a FORMAT statement.

Zero-length string

The length specification of a character, Hollerith, or Radix-50
constant must be nonzero.

Missing statement label

A statement-label reference is not present where one is
required.

Missing keyword

A keyword, such as TO, is omitted from a statement such as
ASSIGN 10 TO I.

49

50

51

52

53

54

55

56

57

58

59

60

61

DIAGNOSTIC MESSAGES

Non-integer expression where integer value required

An expression required to be of type INTEGER is of another data
type.

Undefined statement label

A reference is made to a statement label that is not defined in

the program unit.

Number of names exceeds number of values in DATA statement

The number of constants specified in a DATA statment must match
the number of variables or array elements to be initialized.
The remaining variables and/or array elements are not
initialized.

Number of values exceeds number of names in DATA statement

The number of constants specified in a DATA statement must
match the number of variables or array elements to be
initialized. The remaining constant values are ignored.

Statement cannot appear in logical IF statement

The statement contained in a logical IF must not be a Do,
logical IF, or END statement.

Unclosed DO loops or block IF

The terminal statement of a DO loop or the ENDIF statement of
an IF block was not found.

Assignment to DO variable within loop

The control variable of a DO loop has been assigned a_ value
within the loop.

Variable name, constant, or expression invalid in this context

A quantity has been incorrectly used: for example, the name of
a subprogram where an arithmetic expression is required.

Operation not permissible on these data types

An invalid operation, such as .AND. on two real variables, is
specified.

Left side of assignment must be variable or array element

The symbolic name to which the value of an expression is

assigned must be a variable or array element.

Syntax error in I/O list

Improper syntax was detected in an I/O list.

Constant size exceeds variable size in DATA statement

The size of a constant in a DATA statement is greater than that
of its corresponding variable.

String constant truncated to maximum length

The maximum length of a Hollerith constant or character
constant is 255 characters; of a Radix-50 constant, 12.

C-8

62

63

64

65

66

67

68

69

70

71

72

73

74

DIAGNOSTIC MESSAGES

Lower bound greater than upper bound in array declaration

The upper bound of a dimension must be greater than or equal to
the lower bound.

Format item contains meaningless character

An invalid character or a syntax error is present in a FORMAT
Statement.

Format item cannot be signed

A signed constant is valid only with the P format code.

Unbalanced parentheses in format list

The number of right parentheses does not match the number of
left parentheses.

Missing number in format list

Example: FORMAT (F6.)

Extra number in format list

Example: FORMAT (14,3)

Extra comma in format list

Example: FORMAT (14,)

Format groups nested too deeply

Too many parenthesized format groups have been nested. Formats
can be nested to eight levels.

END= or ERR= specification given twice, first used

Two instances of either END= or ERR= were’ found. Control is
transferred to the location specified in the first occurrence.

Invalid I/O specification for this type of I/O statement

A syntax error is in the portion of an I/O statement preceding
the I/O list.

Arguments incompatible with function, assumed user supplied

A function reference has been made using an intrinsic function
name, but the argument list does not agree in order, number, or
type with the intrinsic function requirements. The function is
assumed to be supplied by you as an external function.

ENTRY within DO loop or IF block statement ignored

An ENTRY statement is not permitted within the range of a DO
loop.

Statement too complex

The statement is too large to compile. It must be subdivided
into several statements.

75

76

77

78

719

80

81

82

83

84

85

86

87

DIAGNOSTIC MESSAGES

Too many named COMMON blocks

Reduce the number of named COMMON blocks.

INCLUDE files nested too deeply

Reduce the level of INCLUDE nesting or increase the number of
continuation lines permitted. Each INCLUDE file requires space
for approximately two continuation lines.

Duplicated keyword in OPEN/CLOSE statement

A keyword subparameter of the OPEN or CLOSE statement cannot be

Specified more than once.

DO and IF statements nested too deeply

DO loops and IF blocks cannot be nested more than 20 levels.

DO or IF statements incorrectly nested

The terminal statements of a nest of DO loops or IF blocks” are
incorrectly ordered, or a terminal statement precedes its DO or
block IF statement.

UNIT= keyword missing in OPEN/CLOSE statement

The UNIT= subparameter of the OPEN and CLOSE statement must be
present.

Letter mentioned twice in IMPLICIT statement, last used

An initial letter has been given an implicit data type more
than once. The last data type given is used.

Incorrect keyword in CLOSE statement

A subparameter that can be specified only in an OPEN’ statement
has been specified in a CLOSE statement.

Missing I/O list

An I/O list is not present where one is required.

Open failure on INCLUDE file

The file specified could not be opened. Possibly the _ file
Specification is incorrect, the file does not exist, the volume

is not mounted, or a protection violation occurred.

Name longer than 6 characters

A symbolic name has been truncated to six characters.

Invalid virtual array usage

A virtual array has been used in a context that is not
permitted.

Invalid key specification

The key value in a keyed I/O statement must be a character
constant, a BYTE array name, or an integer expression.

88

89

90

91

92

93

94

DIAGNOSTIC MESSAGES

Non-logical expression where logical value required

An expression that must be of type LOGICAL is of another data
type.

Invalid control structure using ELSEIF, ELSE, or ENDIF

The order of ELSEIF, ELSE, or ENDIF statement is incorrect.

ELSEIF, ELSE, and ENDIF statements cannot stand alone. ELSEIF
and ELSE must be preceded by either a block IF statement or an
ELSEIF statement. ENDIF must be preceded by either a block IF,
ELSEIF, or ELSE statement. Examples:

DO 10 I=1,10
J=J+I

ELSEIF (J.LE.K)THEN

ERROR: ELSE IF preceded by a DO statement.

IF (J.LT.K) THEN

J=I+Jd
ELSE

J=I-J

ELSEIF (J.EQ.K) THEN
ENDIF

ERROR: ELSEIF preceded by an ELSE statement.

Name previously used with conflicting data type

A data type is assigned to a name that has already been used in
a context that required a different data type.

Character name incorrectly initialized with numeric value

Character data with a length greater than 1 is initialized with
a numeric value in a data statement. Example:

Character *4 A

DATA A/14/

Substring reference used in invalid context

A substring reference to a variable or array that is not of
data type CHARACTER has been detected. Example:

REAL X (10)

Y=X (J: K)

Character substring limits out of order

The first character position of a substring expression is
greater than the last character position. Example:

C(5:3)

Mixed numeric and character elements in COMMON

A COMMON block must not contain both numeric and character
data.

95

96

97

98

99

100

101

102

103

104

105

106

107

DIAGNOSTIC MESSAGES

Invalid ASSOCIATEVARIABLE specification

An ASSOCIATEVARIABLE specification in an OPEN or DEFINE FILE

Statement is a dummy argument or an array element.

ENTRY dummy variable previously used in executable statement

The dummy arguments of an ENTRY statement must not have’ been

used previously in an executable program in the same program

unit.

Invalid use of intrinsic function as actual argument

A generic intrinsic function name was used as an actual

argument.

Name used in INTRINSIC statement is not an intrinsic function

A function name that appears in an INTRINSIC statement is not
an intrinsic function.

Non-blank characters truncated in string constant

A character or Hollerith constant was converted to a data type

that was not large enough to contain all significant digits.

Non-zero digits truncated in hex or octal constant

An octal or hexadecimal constant was converted to a data type

that was not large enough to contain all significant digits.

Mixed numeric and character elements in EQUIVALENCE

Numeric and character variable and array elements cannot be
equivalenced to each other.

Arithmetic expression where character value required

An expression that must be of data type CHARACTER was another
data type.

Assumed size array name used in invalid context

An assumed size array name was used where the size of the array
was also required -- for example, in an I/O list.

Character expression where arithmetic value required

An expression that must be arithmetic (integer, real, logical,
or complex) is of data type character.

Function or entry name not numeric

Functions of data type character are not allowed.

Default STATUS='UNKNOWN' used in OPEN statement

The OPEN statement default STATUS='UNKNOWN' may cause an old
File to be modified inadvertently.

Extension to FORTRAN-77: tab indentation or lowercase source

The use of tab characters or lowercase source letters in the

source code iS an extension to the ANSI FORTRAN standard.

108 I

109 I

110 I

lll I

112 I

113 I

114 I

DIAGNOSTIC MESSAGES

Extension to FORTRAN-77: non-standard comment

The ANSI FORTRAN standard allows only the characters C and * to
begin a comment line; D, d, and! are extensions to the
Standard.

Extension to FORTRAN-77: non-standard statement type

A nonstandard statement type was used. See Appendix G.

Extension to FORTRAN-77: non-standard lexical item

One of the following nonstandard lexical items was used:

e The single-quote form of record specifier in a direct
access I/O statement

e A variable format expression

Extension to FORTRAN-77: non-standard operator

The operator .XOR. is an extension to the ANSI FORTRAN
Standard. The standard form of .XOR. is .NEOQV..

Extension to FORTRAN-77: non-standard keyword

A nonstandard keyword was used. See Appendix G.

Extension to FORTRAN-77: non-standard constant

The following constant forms are extensions to the ANSI FORTRAN
Standard:

Hollerith NH. .w.ee

Typeless "xxxx'X or 'oooo!'O

Octal "0000 OY QOo000

Hexadecimal ZX XXX

Radix-50 NRe.weee

Complex with
PARAMETER components

Extension to FORTRAN-77: non-standard data type specification

The following data type specifications are extensions to the
ANSI FORTRAN standard. The acceptable equivalent in the
Standard language is given where appropriate. This message is
issued when these type specifications are used in the IMPLICIT
Statement or in a numeric type statement that contains a data
type length override.

Extension Standard

BYTE

LOGICAL*¥1

LOGICAL*2 LOGICAL
LOGICAL#4 LOGICAL (with /14 specified only)
INTEGER*¥2 INTEGER
INTEGER*4 INTEGER (with /14 specified only)
REAL*4 REAL

REAL*8 DOUBLE PRECISION
COMPLEX *8 COMPLEX

C-13

DIAGNOSTIC MESSAGES

115 I Extension to FORTRAN-77: non-standard syntax

One of the following syntax extensions was specified:

PARAMETER name = value No parentheses around

name = value.

IMPLICIT type letter See Section G.2.1 for
explanation.

CALL name (argl,,arg3) Null actual argument.

READ (...),iolist Comma between I/O control
and element lists.

el * -e2 Two consecutive operators.

116 I Extension to FORTRAN-77: non-Standard FORMAT statement item

The following format field descriptors are extensions to the
ANSI FORTRAN standard:

S, Q, 0, Z All forms

(A,L,1I,F,E,G,D) Default field width forms

P Without scale factor

C.2.2 Compiler-Fatal Diagnostic Messages

Certain error conditions can occur during compilation that are so
severe that the compilation must be terminated immediately. The
following messages report such errors. Included are hardware error
conditions, conditions that may require you to modify the source
program, and conditions that are the result of software errors.

F77 -- FATAL 01 * Open error on work file (LUN 6)
F77 -- FATAL 02 * Open error on temp file (LUN 7,8)

During the compilation process, FORTRAN-77 creates a temporary
work file and zero, one, or two temporary scratch files; the
compiler was unable to open these required files. Possibly the
volume was not mounted, space was not available on the volume, or
a protection violation occurred.

F77 -- FATAL 03 * I/O error on work file (LUN 6)
F77 -- FATAL 04 * I/O error on temp file (LUN 7,8)
F77 -- FATAL 05 * I/O error on source file
F77 -- FATAL 06 * I/O error on object file
F77 -- FATAL 07 * I/O error on listing file

I/O errors report either hardware I/O errors or such’. software
error conditions as an attempt to write on a write-protected
volume.

F/77 -- FATAL 08 * Compiler dynamic memory overflow

Reduce the number of continuation lines allowed, reduce the
INCLUDE file nesting depth, run in a larger partition, or rebuild
or reinstall the compiler with a larger dynamic memory area.

DIAGNOSTIC MESSAGES

F/77 -- FATAL 09 * Compiler virtual memory overflow

A single program unit is too large to be compiled. Specify /WF:3
or divide the program into smaller units.

F77 -- FATAL 10 * Compiler internal consistency check

An internal consistency check has failed. This error should be
reported to DIGITAL in a Software Performance Report; see
Appendix G. .

F/77 -- FATAL 11 * Compiler control stack overflow

The compiler's control stack overflowed. Simplifying the source
program will correct the problem.

C.2.3 Compiler Limits

There are limits to the size and complexity of a Single FORTRAN-77
program unit. There are also limits on the complexity of FORTRAN
Statements. In some cases, the limits are readily described; see
Table C-1l. In other cases, however, the limits are not so easily
defined.

For example, the compiler uses external work files to store the symbol
table and a compressed representation of the source program. The /WF
qualifier controls the number of work files: The maximum is 3, which
provides space for approximately 2000 or more lines of source code in
a typical FORTRAN program unit. If you run out of work file space,
compiler fatal error 9 occurs.

In some cases, you can adjust the limits by relinking the compiler and
modifying the limits to suit your needs. Table C-1 shows two values
for such limits, in the form m(n), where m is the default limit and n
is the maximum. Limits for which only one value is shown are not
adjustable. Consult the PDP-1l FORTRAN-77 Installation Guide for
information about modifying compiler limits and relinking the
compiler.

Table C-l
Compiler Limits

Language Element Limit

DO nesting 20 (many)

Block if nesting 20 (32)

Actual arguments per CALL
or function reference 32 (120)

OPEN statement keywords 16 (60)

Named COMMON blocks 45 (250)

Saved named COMMON blocks 45 (128)

(continued on next page)

DIAGNOSTIC MESSAGES

Table C-1 (Cont.)

Compiler Limits

Language Element Limit

Format group nesting 8

Labels in computed or
assigned GOTO list 250

Parentheses nesting
in expressions 24 (many)

INCLUDE file nesting 10

Continuation lines 99

FORTRAN source line length 88 characters

Symbolic name length 6 characters

Constants:

Character 255 characters
Hollerith 255 characters
Radix-50 12 characters

Array dimensions 7

C.3 OBJECT TIME SYSTEM DIAGNOSTIC MESSAGES

The following sections provide information on the formats and
contents of OTS diagnostic messages, and a list of OTS error
messages arranged by error code.

C.3.1 Object Time System Diagnostic Message Format

An OTS diagnostic message consists of several lines of information
formatted as follows:

tsknam -- [EXITING DUE TO] ERROR number

text

[AT PC = address]
[I/O: ioerr ioerrl unit filespec]

IN XXXXxXxX [AT [OR AFTER] yyy]

FROM xxxxxx [AT [OR AFTER] yyy]

FROM xXxXxXxXxx [AT [OR AFTER] yyy]

(In the above message prototype, fixed parts of the message are
Shown in uppercase letters and variable parts in lowercase letters.)

The variable parts of the message are:

tsknam The name of the task in which the error occurred,

number The error number.

text A l-line description of the error.

DIAGNOSTIC MESSAGES

The phrase "EXITING DUE TO" is included only when the error is
causing program termination. If a program is terminated by the OTS,
the termination status value is severe error.

If the OTS error results from one of the Synchronous system traps or
a Floating-Point Processor trap, the program counter is shown in the
line AT PC =. This line is produced only for errors numbered 3
through 14 and 72 through 75.

If the OTS error results from an I/O error condition detected by the
file system, the line beginning I/0: is included.

loerr The primary error code; this value is the F.ERR
value for the FCS-11 file system or the OS$STS
value for the RMS-1l file system.

ioerrl The secondary error code; this value is the
F.ERR+1 value for FCS-11 or the OSSTV value for

unit The logical unit on which this error occurred.

filespec The file name, file type, and version number of
the file.

Next follows a traceback of the subprogram calling nest at the time
of the error. Each line represents one level of Subprogram call and
Shows

XXXXXX The name of the subprogram.

The name of the main program is shown as’ .MAIN.
unless a PROGRAM statement has been used. The
name of a subprogram is the same as the name
used in the SUBROUTINE, FUNCTION, or ENTRY
statement. Statement functions, OTS system
routines, and routines written in assembly
language are not shown in the traceback.

A program unit compiled with the /TR:NONE switch
in effect is not included in the traceback list.

yyy The internal sequence number of the subprogram
at which the error, call statement, or function
reference occurred.

If a program unit is compiled with the /TR:ALL
Switch in effect, then the text AT yyy indicates
the exact internal sequence number at which the
error occurred.

If a program unit is compiled with the
/TR:BLOCKS switch in effect, then the text AT OR
AFTER yyy indicates that the error occurred in
the block starting at sequence number yyy

If a program unit is compiled with the /TR:NAMES
option in effect, then no sequence information
is available and no text or sequence number
follows the routine name.

DIAGNOSTIC MESSAGES

NOTE

In the case of the Floating-Point
Processor errors, it is possible for the
internal sequence number shown in the
first traceback line to be the sequence
number of the next statement. This
results from the asynchronous
relationship between the central
Processor and the FPP, and occurs when
the CPU has started execution of the
next statement before the FPP error trap
is initiated.

Example C-3 depicts a sample terminal listing of several object time
System diagnostic messages.

Example C-3: Sample of Object Time System Diagnostic Messages

TTnn -- ERROR 37

Inconsistent record length
IN "ERRCHK" AT 00022

TTnn -- ERROR 34

Unit already open
IN "SUBR2 " AT OR AFTER 00002
FROM "SUBRI1 "

FROM "ERRCHK" AT 00025

TTnn --— ERROR 64

Input conversion error
IN "ERRCHK" AT 00026

TTnn -- ERROR 24
End-of-file during read
FCS -10, 0 1 FILE1.DAT;1

IN "ERRCHK" AT 00028

TTnn -- ERROR 73

Floating zero divide
at PC = 024656

IN "ERRCHK" AT 00036

TTnn -- ERROR 84

Square root of negative value
IN "FUNC " AT 00002

FROM "ERRCHK" AT 00037

TTnn -- Exiting due to ERROR 29
No such file

FCS -26, O 4 TEMPFILE.DAT

IN "ERRCHK" AT 00042

C.3.2 Object Time System Error Codes

The following messages result from severe run-time error conditions
for which no error recovery 1S_ possible. Consult the operating
System's Executive reference manual for details of what error
conditions cause traps to the System Synchronous Trap Table entries
cited below.

10

DIAGNOSTIC MESSAGES

Invalid error call

A TRAP instruction has been executed whose low byte is within the
range used by the OTS for error reporting but for which no error
condition is defined.

Task initialization failure

Task startup has failed for one of the following reasons:

e The directive to initialize synchronous system trap handling
(SVTKSS) has returned an error indication.

e The executive directive to enable the FPP asynchronous” trap
(SFPASS) has returned an error indication. This error will be

returned if the task was task-built with /-FP specified, or if
the hardware configuration does not contain an FPP.

e The FCS-11 initialization call (FINITS) Or RMS-11

initialization call (SINITIF) has returned an error
indication.

Odd address trap (SSTO)

The program has made a word reference to an odd byte address.

Segment fault (SST1)

The program has referenced a nonexistent address, most likely due
to a subscript value out of range on an array reference.

T-bit or BPT trap (SST2)

A trap has occurred as a result of the trace bit being set in the
processor status word or of the execution of a BPT instruction.

IOT trap (SST3)

A trap has occurred as a result of the execution of an I0OT
instruction.

Reserved instruction trap (SST4)

The program has attempted to execute an illegal instruction.

Non-RSX EMT trap (SST5)

The program has executed an EMT instruction whose low byte is not
in the range used by the operating system.

TRAP instruction trap (SST6)

A TRAP instruction has been executed whose low byte is outside
the range used for OTS error messages.

PDP-11/40 FIS trap (SST7)

This message may result when an operating system which was
generated for an 11/40 is used on another PDP-11l processor.

1l

12

13

14

DIAGNOSTIC MESSAGES

FPP hardware fault

The FPP Floating Exception Code (FEC) register contained the
value 0 following an FPP interrupt. This is probably a hardware
malfunction.

FPP illegal opcode trap

The FPP has detected an illegal floating-point instruction.

FPP undefined variable trap

The FPP loaded an illegal value (-0.0). This trap should not
occur since the OTS initialization routine does not enable this
trap condition. A negative zero value should never be produced
by any FORTRAN operation.

FPP maintenance trap

The FPP Floating Exception Code register contained the value 14
(octal) following a FPP interrupt. This is probably a hardware
malfunction.

The following messages result from errors related to the file system:

20

21

22

23

24

REWIND error

An error condition was detected by FCS-1l1 during the .POINT
operation or by RMS-11 during the SREWIND operation used to
position at the beginning of a file.

Duplicate file specifications

Multiple attempts to specify file attributes have been attempted,
without an intervening close operation, by one of the following:

e@ DEFINEFILE followed by DEFINEFILE

@e DEFINEFILE, CALL ASSIGN, or CALL FDBSET followed by an OPEN
Statement.

Input record too long

A record too large to fit into the user record buffer has been
read. Rebuild the task using a larger Task Builder MAXBUF value
(see Section 1.2.4.2) and specify a larger RECL for the file.

BACKSPACE error

One of the following errors has occurred:

@ BACKSPACE was attempted on a relative or indexed file or a
file opened for append access (see Section 2.3).

e FCS-11l or RMS-11 has detected an error condition while
rewinding the file.

@e FCS-11 or RMS-11 has detected an error condition while reading
forward to the desired record.

End-of-file during read

Either an end-file record produced by the ENDFILE statement or an
end-of-file condition has been encountered during a READ
Statement, and no END= transfer specification was provided.

25

26

27

28

29

30

31

32

33

34

DIAGNOSTIC MESSAGES

Record number outside range

A direct access I/O statement has specified a record number
outside the range specified in a DEFINEFILE statement or in the
MAXREC keyword of the OPEN statement.

Access mode not specified

The access mode of an I/O statement was inconsistent with the

access specified by a DEFINEFILE or OPEN’ statement for the
logical unit.

More than one record in I/O statement

An attempt was made to process more than a single record in a

REWRITE statement or in an ENCODE or DECODE statement.

Close error

An error condition has been detected during the close, delete, or

print operation of an attempt to close a file.

No such file

A file with the specified name could not be found during an open
operation.

Open failure

FCS-11 or RMS-11 has detected an error condition during an _ open

operation. (This message is used when the error condition is not
one of the more common conditions for which specific error
messages are provided.)

Mixed file access modes

An attempt was made to use both formatted and unformatted
operations, or both sequential and direct access operations, on
the same unit.

Invalid logical unit number

e A logical unit number was used that is greater than 99, less
than 0, or outside the range specified by the Task Builder
UNITS option (See Section 1.2.6.2).

e A logical unit number of 0 was not mapped to a valid logical
unit number (1-99) specified by the Task Builder option GBLPAT
(see Section 2.1.3).

ENDFILE error

An end-file record may not be written to a direct access file, a
relative file, an indexed file, or an unformatted file that does

not contain segmented records.

Unit already open

An OPEN statement or DEFINEFILE statement was attempted that

specified a logical unit already opened for input/output.

35

36

37

38

39

40

Al

DIAGNOSTIC MESSAGES

segmented record format error

Invalid segmented record control data was detected in an
unformatted sequential file. The file was probably either
created with RECORDTYPE='"FIXED' or 'VARIABLE' in effect, or
written by a language other than FORTRAN.

Attempt to access non-existent record

One of the following conditions has occurred:

e A nonexistent record was specified in a direct access READ or
FIND statement to a relative file. The nonexistent record
might have been deleted or never written.

e A record located beyond the end-of-file was specified in a
direct access READ or FIND statement.

e No record matches the key value of a keyed access READ
Statement.

Inconsistent record length

An invalid or inconsistent record length specification occurred
for one of the following reasons:

e The record length specified is too large to fit in the user
record buffer. Rebuild the task with a larger Task Builder
MAXBUF value.

e The record length specified does not match the record length
attribute of an existing fixed-length file.

e The record length specification was omitted when an attempt
was made to create a relative file or a file with fixed-length
records.

Error during write

PCS-11 OR RMS-11l has detected an error condition during execution
of a WRITE statement.

Error during read

FCS-1l1 or RMS-11 has detected an error condition during execution
of a READ statement.

Recursive I/O operation

An expresSion in the I/O list of an I/O statement has caused
initiation of another I/0 operation. This can happen if a
function that performs I/O is referenced in an expression in an
I/O list.

No buffer room

There is not enough free memory left in the OTS buffer area to set up required I/O control blocks and buffers. Rebuild the task
with a larger Task Builder ACTFIL option (see Section 1.2.5.2).
For RMS-11l, rebuild the task with a larger EXTTSK value, or run
the task with a larger task increment. For FSC, if the correct
ACTFIL has been specified, see Section 5.6 for information on how
to work around fragmentation of the $$FSR1 buffer area,

C~22

42

43

44

45

46

47

48

DIAGNOSTIC MESSAGES

No such device

A file name specification has included an invalid device name or
a device for which no handler task is loaded when an open
operation is attempted.

File name specification error

The file name string used in a CALL ASSIGN or OPEN statement is
syntactically invalid, contains a qualifier specification,
references an undefined device, or is otherwise not acceptable to
the operating system.

Inconsistent record type

The RECORDTYPE specification does not match the record type of an
existing file.

Keyword value error in OPEN statement

An OPEN statement keyword that requires a value has an illegal
value. The following values are accepted:

BLOCKSIZE: 0 to 32767

EXTENDSIZE: -32768 to 32767
INITIALSIZE: -32768 to 32767

MAXREC: 0 to 2**31-1
BUFFERCOUNT: 0 to 127
RECL: up to 32766 for sequential

organization

16360 for relative or
indexed organ-
ization

9999 for magnetic tape

Inconsistent OPEN/CLOSE parameters

The specifications in an OPEN and/or subsequent CLOSE statement
have incorrectly specified one or more of the following:

e@ A 'NEW' or 'SCRATCH! file which is 'READ-ONLY'

@e ‘APPEND' to a 'NEW', 'SCRATCH', or 'READONLY' file

e '‘'SAVE' or ‘PRINT’ on a 'SCRATCH' file

e '‘'DELETE' or 'PRINT' on a 'READONLY' file.

Write to read-only file

A write operation has been attempted to a file which was declared
to be READONLY.

Unsupported I/0 operation

An I/O operation (such as direct or keyed access) has been
specified which is not Supported by the OTS being used.

49

50

51

52

53

54

55

56

57

DIAGNOSTIC MESSAGES

Invalid key specification

A key specification value, such as position, Size, Or
key-of-reference number, was invalid in an OPEN or READ
Statement. Examples:

OPEN (UNIT=1,RECL=40,KEY=(200: 220))
or

READ (UNIT=1,KEY='ABCD' , KEYID=-1)

Inconsistent key change or duplicate key value

A keyed WRITE or REWRITE statement Specified an invalid key value
for one or more of the following reasons:

e@ A key value changed that is not allowed to change.

@ A key value duplicated the key value of another record, but
duplicate key values are not permitted.

Inconsistent file organization

The value of the ORGANIZATION keyword in an OPEN statement does
not match the organization of the existing file being opened.

Specified record locked

The record specified by an I/O statement was locked by another
Program or another logical unit within your program.

No current record

A REWRITE or sequential DELETE statement was executed but no
Current record was defined. sequential REWRITE and DELETE
Statements must be preceded by a successful READ statement.

REWRITE error

An error occurred during execution of a REWRITE Statement, or an
attempt was made to rewrite a record in a sequential or relative
file.

DELETE error

An error occurred during execution of a DELETE statement, or = an
attempt was made to delete a record from a sequential file.

UNLOCK error

An error occurred during execution of an UNLOCK statement.

FIND error

An error occurred during execution of a FIND statement.

The following messages result from errors related to transmitting data
between a FORTRAN-77 program and an internal record:

59 List-directed I/O syntax error

The data in a list-directed input record has an invalid format or
the type of the constant is incompatible with the corresponding
variable. The value of the variable is unchanged.

60

61

62

63

64

65

66

67

68

DIAGNOSTIC MESSAGES

Infinite format loop

The format associated with an I/O statement that includes an I/O
list has no field descriptors to use in transferring those
variables. For example:

WRITE (1I,1)X
1 FORMAT (' X=')

Format/variable-type mismatch

An attempt was made to input or output a real variable with an
integer field descriptor (I or L), or an integer or logical
variable with a real field descriptor (D, E, F, or G). The data
type of the value is ignored, and the value is processed as if it
were of the correct data type.

Syntax error in format

A syntax error was encountered while the OTS was processing a
format stored in an array.

Output conversion error

During a formatted output operation, the value of a particular
number could not be output in the specified field length without
loss of significant digits. The field is filled with asterisks
(*).

Input conversion error

During a formatted input operation, an invalid character was
detected in an input field, or the input value overflowed the
range representable in the input variable. The value of the
variable is set to zero.

Format too big for 'FMTBUF'

The OTS has run out of memory while scanning an array format that
waS generated at run time. The default internal format buffer
length is 64 bytes. You can increase this length by uSing the
Task Builder FMTBUF option (see Section 1.2.5.2).

Output statement overflows record

An output operation has specified a record that exceeds’. the
maximum record size specified. The maximum record length is
Specified by the DEFINEFILE statement, by the RECL keyword of the
OPEN statement, or by the record length attribute of an existing
file. See Section F.1.7.

Record too small for I/O list

A READ statement has attempted to input more data than existed in
the record being read. For example, the I/O list might have too
many elements.

Variable format expression value error

The value of a variable format expression is not within the range
acceptable for its intended use: for example, a field width that
is less than or equal to zero. A value of 1 is used.

DIAGNOSTIC MESSAGES

The following messages result from arithmetic overflow and underflow
conditions:

70

71

72

73

74

75

Integer overflow

During an arithmetic operation, an integer's value has exceeded
INTEGER*4 range. (Note: Overflow of INTEGER*2 range involving
INTEGER*2 variables is not detected.)

Integer zero divide

During an integer mode arithmetic operation, an attempt waS made
to divide by zero. (Note: A zero-divide operation involving
INTEGER*2 variables is rarely detected.)

Floating overflow

During an arithmetic operation, a real value has exceeded the
largest representable real number. The result of the operation
is set to zero.

Floating zero divide

During a real mode arithmetic operation, an attempt was made to
divide by zero. The result of the operation is set to zero.

Floating underflow

During an arithmetic operation, a real value has become less than
the smallest representable real number and has been replaced with
a value of zero.

FPP floating to integer conversion overflow

The conversion of a _ floating-point value to an integer has
resulted in a value that overflows the range representable in an
integer. The result of the operation is zero.

The following messages result from incorrect calls to FORTRAN-77
Supplied functions or subprograms:

80

81

82

83

Wrong number of arguments

One of the FORTRAN library functions or system subroutines has
been called with an improper number of arguments (see Table 4-1
or Appendix D).

Invalid argument

One of the FORTRAN library functions or system subroutines has
detected an invalid argument value. (see Table 4-1 or Appendix
D).

Undefined exponentiation

An exponentiation (for example, 0.**0.) has been attempted that
is mathematically undefined. The result returned is zero.

Logarithm of zero or negative value

An attempt was made to take the logarithm of zero or a negative
number. The result returned is zero.

DIAGNOSTIC MESSAGES

84 Square root of negative value

An argument required the evaluation of the square root of a

negative value. The square root of the absolute value is
computed and returned.

The following miscellaneous errors are detected:

91 Computed GOTO out of range

The integer variable or expression in a computed GO TO statement
was less than 1 or greater than the number of statement label
references in the list. Control is transferred to the next
executable statement.

92 Assigned label not in list

An assigned GOTO has been executed in which the label assigned to
the variable is not one of the labels in the list. Control is
transferred to the next executable statement.

93 Adjustable array dimension error

Upon entry to a Subprogram, the evaluation of dimensioning
information has detected an array in which one of the following
occurs:

e An upper dimension bound is less than a lower dimension bound

e The dimensions imply an array which exceeds the addressable
memory.

94 Array reference outside array

An array reference has been detected that is outside the array as
described by the array declarator. Execution continues. (This
checking is performed only for program units compiled with the
/CK switch in effect.)

95 Incompatible FORTRAN object module in task

An object module produced by another PDP-11 FORTRAN compiler has
been linked with a FORTRAN-77 task (see Section 1.2.5.1).

96 Missing format conversion routine

e A format conversion code has been used for which the
corresponding conversion routine is not loaded (see Section
3.4).

e@ An F4P V3 object file that uses octal format may have been
task-built with the F77 OTS. Re-task-build with the option
GBLREF = ZCIS$, or recompile, with the F77 v4 compiler, the
modules that use octal format; then task-build as usual.

97 FTN FORTRAN error call

The error-reporting subroutine entry used by the FTN FORTRAN
system has been called. Possibly an FTN object module or
FTN-dependent service subroutine has been included in the task.

98 User requested traceback

A user-supplied MACRO-11 subprogram has requested a_ subroutine
calling nest-traceback display. Execution continues.

DIAGNOSTIC MESSAGES

The following messages result from incorrect calls to system directive
subroutines:

100 Directive: Missing argument(s)

A call to a system directive subroutine was made in which one or
more of the arguments required for directive execution was not
given.

101 Directive: Invalid event flag number

made in which the
for event flag specification was not in the valid

A call to a system directive subroutine was
argument used
range (l to 64).

The following messages result from incorrect usage of virtual arrays:

111 Virtual array initialization failure

The mapped array area could not be

system does not support the

required, or no memory management
use.

initialized. The operating
memory management directives
registers are available for

112 Virtual array mapping error

A virtual-array address was invalid, probably due to a
Execution continues. out of bounds.

C.4 OPERATING SYSTEM AND FILE SYSTEM ERROR CODES

The following sections
operating system and file system errors that occur during run time.

C.4.1

Standard operating system error codes

list the error-code names’ and

Operating System Error Codes

returned during- run
directives in the Directive Status Word are as follows:

IE.UPN 177777 -Ol. INSUFFICIENT DYNAMIC STORAGE
IE.INS 177776 -02. SPECIFIED TASK NOT INSTALLED
IE.PTS 177775 -03. PARTITION TOO SMALL FOR TASK.
IE.UNS 177774 -04. INSUFFICIENT DYNAMIC STORAGE FOR SEND
IE.ULN 177773 -05. UN-ASSIGNED LUN
IE.HWR 177772 -06. DEVICE HANDLER NOT RESIDENT
IE.ACT 177771 -07. TASK NOT ACTIVE
IE.ITS 177770 -08. DIRECTIVE INCONSISTENT WITH TASK STATE
IE.FIX 177767 -09. TASK ALREADY FIXED/UNFIXED
IE.CKP 177766 -10. ISSUING TASK NOT CHECKPOINTABLE
IE.TCH 177765 -1ll. TASK IS CHECKPOINTABLE
IE.RBS 177761 -15. RECEIVE BUFFER IS TOO SMALL
IE.PRI 177760 -16. PRIVILEGE VIOLATION
IE.RSU 177757 -17. RESOURCE IN USE
IE.NSW 177756 -18. NO SWAP SPACE AVAILABLE
IE.ILV 177755 -19. ILLEGAL VECTOR SPECIFIED
IE.AST 177660 -80. DIRECTIVE ISSUED/NOT ISSUED FROM AST
IE.MAP 177657 -81. ILLEGAL MAPPING SPECIFIED
IE.IOP 177655 -83. WINDOW HAS I/O IN PROGRESS
IE.ALG 177654 -84., ALIGNMENT ERROR

subscript

values

IE .WOV
IE.NVR

IE.NVW

IE.ITP
IE.IBS

IE. LNL

IE.IUI
IE. IDU

IE.ITI
IE.PNS
IE.IPR

IE.ILU

IE.IEF
IE.ADP

IE.SDP

C.4.2

Directive error codes are returned during

Directive
File

177653
177652
177651
177650
177647
177646
177645
177644
177643
177642
177641
177640
177637
177636
177635

Status

Descriptor
Directive

-85.
-86.
-87.
-88.
-89.
-90.
-9l.
-92.
-93.
-94.
~-95.
-96.
-97.
-98.
-99.

Word.
Block.

DIAGNOSTIC MESSAGES

ADDRESS

INVALID

INVALID

INVALID
INVALID

WINDOW ALLOCATION OVERFLOW

REGION ID
ADDRESS WINDOW ID

TI PARAMETER
SEND BUFFER SIZE (

LUN LOCKED IN USE
INVALID UIC
INVALID DEVICE OR UNIT
INVALID TIME PARAMETERS

PARTITION/REGION NOT IN SYSTEM
INVALID PRIORITY (GT.

INVALID LUN
INVALID EVENT FLAG (

PART OF DPB OUT OF USER'S SPACE
DIC OR

Byte

~GT.

DPB SIZE INVALID

Summary of FCS-11 Error Codes

run

F.ERR+1 in the

time
FCS returns these codes in byte F.ERR of the

distinguishes
error codes from the overlapping codes from within the file

system by showing negative values for the Directive error codes.

-GT.

250.)

64.)

FDB

File system error codes are returned by FCS-11 in byte

File Descriptor Block.
System error code.

IE.BAD

IE.IFC

IE.DNR
IE.VER
IE.ONP

IE.SPC
IE.DNA

IE.DAA
IE. DUN
IE.EOF

IE.EOV

IE.WLK
IE. DAO

IE.SRE

IE.ABO
IE.PRI
IE.RSU

IE.OVR
IE.BYT

IE.BLK
IE.MOD
IE.CON

IE.BBE

IE.STK
IE. FHE

IE.EOT

IE.OFL

IE.BCC

IE.NOD

ITE.DFU
IE. IFU

IE.NSF

177777
177776
177775
177774
177773
177772
177771
177770
177767
177766
177765
177764
177763
177762
177761
177760
177757
177756
177755
177754
177753
177752
177710
177706
177705
177702
177677
177676

177751
177750
177747

177746

-Ol.
-02.

-03.
-04.

-O05.

-06.
-O7.

-08.

-09.
-10.

-ll.

-12.

-13.

-14.

-15.
-16.

-17.

-18.
-19.
-20.

-21.
-22.

-56.
-58.
-59.

-62.

-65.
-66.

-23.
—-24.
-25.

—-26.

Byte

BAD PARAMETERS
INVALID FUNCTION CODE

DEVICE
PARITY

NOT READY
ERROR ON DEVICE

HARDWARE OPTION NOT PRESENT
ILLEGAL USER BUFFER
DEVICE

DEVICE

DEVICE
END OF

END OF

NOT ATTACHED
ALREADY ATTACHED

NOT ATTACHABLE
FILE DETECTED

VOLUME DETECTED
WRITE ATTEMPTED TO LOCKED UNIT

DATA OVERRUN
SEND/RECEIVE FAILURE

REQUEST TERMINATED
PRIVILEGE VIOLATION

SHARABLE RESOURCE IN USE

ILLEGAL OVERLAY REQUEST

ODD BYTE COUNT (OR VIRTUAL ADDRESS)
LOGICAL BLOCK NUMBER TOO LARGE

INVALID UDC MODULE #
UDC CONNECT ERROR

BAD BLOCK ON DEVICE

NOT ENOUGH STACK SPACE
FATAL HARDWARE ERROR ON DEVICE

END OF

DEVICE

TAPE DETECTED

OFF LINE

to

255.)

FCS

F.ERR

F.ERR+1 is 0 if F.ERR contains a file

(FCS OR FCP)

BLOCK CHECK, CRC, OR FRAMING ERROR

CALLER'S NODES EXHAUSTED
DEVICE FULL
INDEX FILE FULL
NO SUCH FILE

IE.LCK

IE. HFU

IE .WAC

IE.CKS
IE .WAT

IE.RER

IE.WER

IE.ALN

IE.SNC

IE.SQC
IE.NLN

IE.CLO

IE.DUP
IE.BVR
IE. BHD

ITE.EXP
IE.BTF

IE.ALC

IE.ULK
ITE.WCK

IE.NBF

IE.RBG
IE.NBK

IE.ILL
IE.BTP

IE.RAC

IE.RAT
IE.RCN

IE.2DV

IE. FEX
IE.BDR

ITE.RNM

IE.BDI

IE.FOP

IE.BNM

IE.BDV
IE.NFI

ITE.ISQ

IE.NNC
IE.AST

ITE .NNN

IE.NFW

IE.BLB

IE.TMM
IE.NDR

IE.CNR

IE.TMO
IE.NNL

IE.NLK

IE.NST
IE.FLN

IE.IES
IE.PES

IE.ICE

IE.ONL
IE.NTR
IE.REJ

IE.FLG

177745
177744
177743
177742
177741
177740
177737
177736
177735
177734
177733
177732
177707
177701
177700
177665
177664
177654
177653
177652

177731
177730
177727
177726
177725
177724
177723
177722
177720
177717
177716
177715
177714
177713
177712
177711
177704
177703
177663
177660

177674
177673
177672
177671
177670
177667
177666
177662
177661
177660
177657
177656
177655

177721
177675
177651
177650
177647

-73.
-74.
-78.
-79.
-80.
-8l.
-82.
-83.

-47.
-67.
-87.
-88.
-89.

DIAGNOSTIC MESSAGES

LOCKED FROM READ/WRITE ACCESS
FILE HEADER FULL

ACCESSED FOR WRITE
FILE HEADER CHECKSUM FAILURE

ATTRIBUTE CONTROL LIST FORMAT ERROR
FILE PROCESSOR DEVICE READ ERROR

FILE PROCESSOR DEVICE WRITE ERROR
FILE ALREADY ACCESSED ON LUN

FILE ID, FILE NUMBER CHECK
FILE ID, SEQUENCE NUMBER CHECK
NO FILE ACCESSED ON LUN
FILE WAS NOT PROPERLY CLOSED

ENTER -—- DUPLICATE ENTRY IN DIRECTORY
BAD VERSION NUMBER

BAD FILE HEADER

FILE EXPIRATION DATE NOT REACHED
BAD TAPE FORMAT

ALLOCATION FAILURE

UNLOCK ERROR
WRITE CHECK FAILURE

OPEN - NO BUFFER SPACE AVAILABLE FOR FILE
ILLEGAL RECORD SIZE

FILE EXCEEDS SPACE ALLOCATED, NO BLOCKS

ILLEGAL OPERATION ON FILE DESCRIPTOR BLOCK
BAD RECORD TYPE

ILLEGAL RECORD ACCESS BITS SET

ILLEGAL RECORD ATTRIBUTES BITS SET
ILLEGAL RECORD NUMBER —- TOO LARGE

RENAME ~- 2 DIFFERENT DEVICES
RENAME —- NEW FILE NAME ALREADY IN USE
BAD DIRECTORY FILE

CAN'T RENAME OLD FILE SYSTEM

BAD DIRECTORY SYNTAX
FILE ALREADY OPEN

BAD FILE NAME
BAD DEVICE NAME

FILE ID WAS NOT SPECIFIED

ILLEGAL SEQUENTIAL OPERATION

NOT ANSI 'D' FORMAT BYTE COUNT
NO AST SPECIFIED IN CONNECT

NO SUCH NODE
PATH LOST TO PARTNER

BAD LOGICAL BUFFER

TOO MANY OUTSTANDING MESSAGES

NO DYNAMIC SPACE AVAILABLE

CONNECTION REJECTED

TIMEOUT ON REQUEST
NOT A NETWORK LUN

TASK NOT LINKED TO SPECIFIED ICS/ICR INTERRUPTS
SPECIFIED TASK NOT INSTALLED
DEVICE OFFLINE WHEN OFFLINE REQUEST WAS ISSUED
INVALID ESCAPE SEQUENCE

PARTIAL ESCAPE SEQUENCE

INTERNAL CONSISTANCY ERROR

DEVICE ONLINE
TASK NOT TRIGGERED

TRANSFER REJECTED BY RECEIVING CPU
EVENT FLAG ALREADY SPECIFIED

C.4.3

RMS-11 error codes are returned during run time in offset STS of
(FAB) or File Access Block

DIAGNOSTIC MESSAGES

Summary of RMS-11l Error Codes

the

Record Access Block (RAB). Additional
Status information or system error codes are returned in offset STV.

ER SABO
ERSACC

ERSACT
ERSAID
ERSALN
ERSALQ
ERSANI
ERSAOP
ERSAST
ERSATR
ERSATW
ERSBKS
ERSBKZ
ERSBLN
ERSBOF
ERSBPA
ERSBPS
ERSBUG
ERSCCR
ERSCHG

ERSCHK
ERSCLS

ERSCOD

ERSCRE
ERSCUR

ERSDAC

ERSDAN
ERSDEL
ERSDEV
ERSDFW

ERSDIR
ERSDME
ERSDNF
ERSDNR
ERSDPE
ERSDTP
ERSDUP

ERSENT

ERSENV
ERSEOF
ERSESS
ERSEXP
ERSEXT
ERSFAB
ERSFAC

177760
177740

177720
177700
177660
177640
177620
177600
177560
177540
177520
177500
177460
177440
177430
177420
177400
177360
177340
177320

177300
177260

177240
177220
177200

177160

177140
177120
177100
177070

177060
177040
177020
177000
176770
176760
176740

176720

176700
176660
176640
176630
176620
176600
176560

-16.

-32.

-48.
-64.
-80.
-96.
-112.
-128.
-144.
-160.
~176.
-192.
-208.
-224.
-232.
-240.
-256.
-272.
-288.
-304.

-320.

-336.

-352.
-368.
-384.

-400.

-416.
-432.
-448,
-456.

-464.
-480.
-496.
~512.
-520.
-528.
-544.

-560.

-576.
-592.
-608.
-616.
-624.
-640.
-656.

OPERATION ABORTED (STV=ERSSTK/MAP)
F11ACP COULD NOT ACCESS FILE (STV=SYS ERR
CODE)
"FILE" ACTIVITY PRECLUDES OPERATION
BAD AREA ID (STV=@XAB)
ALIGNMENT OPTIONS ERROR (STV=@XAB)
ALLOCATION QUANTITY TOO LARGE
NOT ANSI "D" FORMAT
ALLOCATION OPTIONS ERROR (STV=@XAB)
INVALID (I.E. SYNCH) OPERATION AT AST LEVEL
ATTRIBUTE READ ERROR (STV=SYS ERR CODE)
ATTRIBUTE WRITE ERROR (STV=SYS ERR CODE)
BUCKET SIZE TOO LARGE (FAB)
BUCKET SIZE TOO LARGE (STV=@XAB)
"BLN" LENGTH ERROR (RAB/FAB)
BEGINNING OF FILE DETECTED (SSPACE)
PRIVATE POOL ADDRESS NOT MULTIPLE OF "4"
PRIVATE POOL SIZE NOT MULTIPLE OF "4"
INTERNAL RMS ERROR CONDITION DETECTED
CAN'T CONNECT RAB
SUPDATE-KEY CHANGE WITHOUT HAVING ATTRIBUTE OF
XBSCHG SET
BUCKET FORMAT CHECK-BYTE FAILURE
RSTS/E CLOSE FUNCTION FAILED (STV=SYS ERR
CODE)
INVALID OR UNSUPPORTED "COD" FIELD (STV=@XAB)
COULD NOT CREATE FILE (STV=SYS ERR CODE)
NO CURRENT RECORD (OPERATION NOT PRECEDED BY
GET/FIND)
F11-ACP DEACCESS ERROR DURING "CLOSE" (STV=SYS
ERR CODE)

DATA "AREA" NUMBER INVALID (STV=@XAB)
RFA-ACCESSED RECORD WAS DELETED

BAD DEVICE, OR INAPPROPRIATE DEVICE TYPE

ERROR OCCURRED ON DEFERRED WRITE (STV=SYS
ERR CODE)
ERROR IN DIRECTORY NAME

DYNAMIC MEMORY EXHAUSTED
DIRECTORY NOT FOUND

DEVICE NOT READY

DEVICE POSITIONING ERROR (STV=SYS ERR CODE)

"DTP" FIELD INVALID (STV=@XAB)
DUPLICATE KEY DETECTED, XBSDUP ATTRIBUTE NOT
SET

RSX-F1lIACP ENTER FUNCTION FAILED (STV=SYS ERR
CODE)

OPERATION NOT SELECTED IN
END-OF-FILE

EXPANDED STRING AREA TOO SHORT

FILE EXPIRATION DATE NOT YET REACHED

FILE EXTEND FAILURE (STV=SYS ERR CODE)
NOT A VALID FAB ("BID" NOT=FBSBID)

ILLEGAL FAC FOR REC-OP,0, OR FBSPUT NOT SET
FOR "CREATE"

"ORGS" MACRO

ERSFEX
ERSFID
ERSFLG
ERSFLK
ERSFND

ERSFNF
ERSFNM
ERSFOP
ERSFSS

ERSFUL
ERSIAN
ERSIDX
ERSIFI
ERSIMX

ERSINI
ERSIOP
ERSIRC
ERSISI
ERSKBF
ERSKEY
ERSKRF
ERSKSZ
ERSLAN

ERSLBL
ERSLBY

ERSLCH

ERSLEX

ERSLOC

ERSMAP
ERSMKD

ERSMRN
ERSMRS

ERSNAM

ERSNEF
ERSNID
ERSNPK
ERSOPN
ERSORD
ERSORG
ERSPLG
ERSPOS
ERSPRM
ERSPRV
ERSRAB
ERSRAC
ERSRAT
ERSRBF

ERSRER
ERSREX
ERSRFA
ERSRFM
ERSRLK
ERSRMV

176540

177530

176520

176500
176460

176440

176420

176400

176370

176360

176340
176320

176300

176260

176240

176220
176200

176160

176140
176120

176100

176060
176040

176020
176000

175760

175750

175740

175720
175700

175660
175640

175620

175600

175560
175540

175520

175500
175460

175440

175420
175400

175360

175340
175320
175300

175260

175240

175220
175200

175160

175140
175120

-672.
-680.
-688.
-704.
-720.

-~736.

-752.

-768.
-770.

-784.
-800.
-816.
-832.
-848.

-864.
-880.
-896.
-912.
-928.
-944,
-960.
-976.
-992.

-1008.
-1024.

-1040.

-1048.

-1056.

-1072.
-1088.

-1104.

-1136.

-1152.

-1168.
-1184.

-1200.

-1216.
-1232.

-1248.

-1264.
-1280.

-1296.

-1312.
-1328.
—-1344.

-1360.

-1376.
-1392.
-1408.
-1424,
-1440.
-1456.

DIAGNOSTIC MESSAGES

FILE ALREADY EXISTS
INVALID FILE-ID
INVALID FLAG-BITS COMBINATION
FILE IS LOCKED BY OTHER USER
RSX-F11ACP "FIND" FUNCTION FAILED (STV=SYS ERR
CODE)
FILE NOT FOUND
ERROR IN FILE NAME
INVALID FILE OPTIONS
SYSTEM ERROR DURING FNA/DNA STRING PARSE
(STV=SYS ERR CODE)
DEVICE/FILE FULL

INDEX "AREA" NUMBER INVALID (STV=@XAB)
INDEX NOT INITIALIZED (STV ONLY, STS=ERSRNF)
INVALID IFI VALUE, OR UNOPENED FILE
MAX NUM (254) AREAS/KEY XABS EXCEEDED
(STV=@XAB)
SINIT MACRO NEVER ISSUED
OPERATION ILLEGAL, OR INVALID FOR FILE ORG.
ILLEGAL RECORD ENCOUNTERED (SEQ. FILES ONLY)
INVALID ISI VALUE, OR UNCONNECTED RAB
BAD KEY BUFFER ADDRESS (KBF=0)
INVALID KEY FIELD (KEY=0/NEG)
INVALID KEY-OF-REFERENCE (SGET/SFIND)
KEY SIZE=0, OR TOO LARGE (IDX)/NOT=4 (REL)
LOWEST-LEVEL-INDEX "AREA" NUMBER INVALID
(STV=@XAB)
NOT ANSI LABELED TAPE
LOGICAL CHANNEL BUSY
LOGICAL CHANNEL NUMBER TOO LARGE
LOGICAL EXTEND ERROR, PRIOR EXTEND STILL VALID
(STV=@XAB)
"LOC" FIELD INVALID (STV=@XAB)
BUFFER MAPPING ERROR
F11IACP COULD NOT MARK FILE FOR DELETION
(STV=SYS ERR CODE)
MRN VALUE=NEG/REL.KEY>MRN
MRS VALUE=0 FOR FIXED LENGTH RECS/=0 FOR REL.
FILES
"NAM" BLOCK ADDRESS INVALID (NAM=O,
ACCESSIBLE)
NOT POSITIONED TO EOF (SEQ. FILES ONLY)
CAN'T ALLOCATE INTERNAL INDEX DESCRIPTOR
INDEXED FILE-NO PRIMARY KEY DEFINED
RSTS/E OPEN FUNCTION FAILED (STV=SYS ERR CODE)
XAB'S NOT IN CORRECT ORDER (STV=@XAB)
INVALID FILE ORGANIZATION VALUE
ERROR IN FILE'S PROLOGUE (RECONSTRUCT FILE)
"POS" FIELD INVALID (POS>MRS,STV=@XAB)
BAD FILE DATE FIELD RETRIEVED (STV=@XAB)
PRIVILEGE VIOLATION (OS DENYS ACCESS)
NOT A VALID RAB ("BID" NOT=RBSBID)
ILLEGAL RAC VALUE
ILLEGAL RECORD ATTRIBUTES
INVALID RECORD BUFFER ADDR (NOT WORD-ALIGNED
IF BLK-IO)
FILE READ ERROR (STV=SYS ERR CODE)
RECORD ALREADY EXISTS
BAD RFA VALUE (RFA=0)
INVALID RECORD FORMAT
TARGET BUCKET LOCKED BY ANOTHER STREAM
RSX-F11ACP REMOVE FUNCTION FAILED (STV=SYS
ERR CODE)

(STV=@XAB)

OR NOT

ERSRNF
ERSRNL
ERSROP
ERSRPL

ERSRRV

ERSRSA
ERSRSZ

ERSRTB

ERSRVU

ERSSEQ

ERSSHR

ERSSIZ
ERSSTK
ERSSYS
ERSTRE
ERSTYP
ERSUBF

ERSUSZ

ERSVER
ERSVOL
ERSWCD

ERSWER

ERSWLK
ERSWPL

ERSXAB

ERSXTR

175100
175060
175040
175020

175000
174760
174740

174720

174710
174700

174660

174640
174620
174600
174560
174540
174520

174500
174460
174440
174430

174420

174410
174400

174360
174340

-1472.
-1488.

-1504.

-1520.

-1536.
-1552.
-1568.

-1584.

-1600.

-1616.

-1632.
-16048.
-16064.
-1680.
-1696.
-1712.

-1728.
-1744,
-1760.
-1768.

-~1776.

-1808.
-1824,

DIAGNOSTIC MESSAGES

RECORD NOT FOUND (STV=0/ERSIDX)

RECORD NOT LOCKED

INVALID RECORD OPTIONS

ERROR WHILE READING PROLOGUE
CODE)

INVALID RRV RECORD ENCOUNTERED
RAB STREAM CURRENTLY ACTIVE
BAD RECORD SIZE (RSZ>MRS, OR NOT=MRS IF FIXED
LENGTH RECS

RECORD TOO BIG FOR USER'S BUFFER (STV=ACTUAL
REC SIZE)

RRV UPDATE ERROR ON INSERT

PRIMARY KEY OUT OF SEQUENCE

(STV=SYS ERR

(RAC=RBSSEQ FOR
SPUT)
"SHR" FIELD INVALID FOR FILE (CAN'T SHARE SEQ
FILES)

"SIZ" FIELD INVALID (STV=@XAB)
STACK TOO BIG FOR SAVE AREA
SYSTEM DIRECTIVE ERROR (STV=SYS ERR CODE)
INDEX TREE ERROR
ERROR IN FILE TYPE EXTENSION/FNS TOO BIG
INVALID USER BUFFER ADDR (0, OR BLK-IO NOT
WORD ALIGNED)

INVALID USER BUFFER SIZE (USZ=0)
ERROR IN VERSION NUMBER
INVALID VOLUME NUMBER (STV=@XAB)
WILD CARD ENCOUNTERED DURING FNA/DNA STRING
PARSE
PILE WRITE ERROR (STV=SYS ERR CODE)
DEVICE IS WRITE-LOCKED
ERROR WHILE WRITING PROLOGUE (STV=SYS ERR
CODE)

NOT A VALID XAB (@XAB=ODD,STV=@XAB)

EXTRANEOUS FIELD DETECTED DURING FNA/DNA
STRING PARSE

APPENDIX D

SYSTEM SUBROUTINES

D.1 SYSTEM SUBROUTINE SUMMARY

The FORTRAN-77 library contains, in addition to functions intrinsic to
the FORTRAN language, subroutines that the user may call (except on

RSTS/E) in the same manner aS a euser-written subroutine. These

subroutines are described in this appendix.

In addition, the RSX-1l operating systems provide a complete set of
subroutines, callable from FORTRAN, for performing process control and
executive calls (see the RSX-11M/M-PLUS Executive Reference Manual).

The subroutines supplied with FORTRAN-77 are:

ASSIGN Specifies, at run time, device and/or file name

information to be associated with a logical unit
number.

CLOSE Closes a file on a specified logical unit.

DATE Returns a 9-byte String containing the ASCII
representation of the current date.

IDATE Returns three integer values representing the current
month, day, and year. :

ERRSET Specifies the action to be taken on detection of

certain errors.

ERRSNS Returns information about the most recently detected

error condition.

ERRTST Returns information about whether a specific error
condition has occurred during program execution.

EXIT Terminates the execution of a program, reports

termination status information, and returns control to
the operating system.

USEREX Specifies a user subprogram to be called immediately
prior to task termination.

\
FDBSET Specifies special I/O options to be associated with a

logical unit. —

RAD50 Converts 6-character Hollerith strings to Radix-50
representation and returns the result as a function
value.

TRADS50 Converts Hollerith strings to Radix-50 representation.

RSOASC Converts Radix-50 strings to Hollerith strings.

D-1

SYSTEM SUBROUTINES

R50ASC Converts Radix-50 strings to Hollerith strings.

SECNDS Provides system time of day or elapsed time as a
floating-point function value, in seconds.

TIME Returns an 8-byte String containing the ASCII
representation of the current time, in hours, minutes,
and seconds.

References to integer arguments in the following subroutine
descriptions refer to arguments of type INTEGER*2., In general,
INTEGER*4 variables or array elements may be used as input values to
these subroutines, if their value is within the INTEGER*2 range.
However, arguments that receive return values from these subroutines
must, for correct operation, be INTEGER*2 variables or array elements.

D.2 ASSIGN

The ASSIGN subroutine specifies file name information for a logical
unit. The ASSIGN call must be executed before the logical unit is
opened for I/O operations. The assignment remains in effect until the
end of the program or until the file is closed by the CLOSE subroutine
or a CLOSE statement. The call to ASSIGN has the form:

CALL ASSIGN(n[,name][,icnt])

n

An integer value that specifies the logical unit a number.

name

A variable, array, array element, or alphanumeric literal that
contains any standard file specification. If the device is not
Specified, the device assignment remains unchanged. If a file
name is not specified, the default name as described in Section
2.1.1 is used.

icnt

An INTEGER*2 value that specifies the number of characters in the
String name. If icnt is zero or not present, the String name is
Processed until the first ASCII null character is encountered.

CALL ASSIGN requires only the first argument; all others are optional
and, if omitted, are replaced by the default values as noted in the
argument descriptions. However, if any argument is to be included,
all arguments that precede it must also be included.

If only the unit number argument is specified, all previously
Specified file name information concerning that unit is disassociated
from the unit, and the default conditions become effective.

For example, in the following situation:

CALL ASSIGN(5,'SY:ABC.DAT')

WRITE (5,-)

CALL CLOSE (5)
WRITE (5,-) 2...

the first WRITE operation is performed to file ABC.DAT and the second
to FOROOS5.DAT.

SYSTEM SUBROUTINES

see also the discussion in Section 2.1.1 concerning default device
assignments.

D.3 CLOSE

The CLOSE subroutine closes the currently open file ona logical unit.
The call to CLOSE has the form:

CALL CLOSE (n)

An integer value that specifies the logical unit number.

When the close is completed, the logical unit reacquires the default
file name attributes in effect when program execution was initiated.

see also the discussion in Section 2.1.1 concerning default device
assignments.

D.4 DATE

The DATE subroutine obtains the current date as set within the system.
The call to DATE has the form:

CALL DATE (buf)

buf

An array or array element.

The date is returned as a 9-byte ASCII String of the form:

dd-mmm-yy

dd

The 2-digit date.
mmm

The 3-letter month specification.

YY

The last two digits of the year.

D.5 IDATE

The IDATE subroutine returns three INTEGER*2 values that represent the
Current month, day, and year. The call to IDATE has the form:

CALL IDATE (i,j,k)

If the current date is March 19, 1979, the values of the integer
variables upon return are:

i = 3
j = 19
k = 79

SYSTEM SUBROUTINES

D.6 ERRSET

The ERRSET subroutine specifies the action to be taken when an error
is detected by the OTS. The error action to be taken is specified
individually for each error--that is, independently of other errors.
The call to ERRSET has the form:

CALL ERRSET (number, contin, count, type, log, maxlim)

number

An integer value that specifies the error number to which the
following parameters apply.

contin

A logical value that specifies whether to continue after. an
error. - TRUE. means continue after the error is detected;

-FALSE. causSes an exit after the error.

count

A logical value that specifies whether to count this error
against the task's maximum error limit. .TRUE. causes the error
to be counted; -FALSE. causes it not to be counted.

type

A logical value that specifies the type of continuation to be
performed after error detection. .TRUE. passes control to an
ERR= transfer label if available; .FALSE. causes a return to
the routine that detected the error for default error recovery.

log

A logical value that specifies whether to produce an error
message for this error. -TRUE. produces a message; .FALSE.
Suppresses the message.

maxlim

A poSitive INTEGER*2 value used to set the task's maximum error
limit. The default value is set at 15 at task initialization.

Null arguments are permitted for all but the first argument and cause
no change in the current state of that control code.

see Section 3.5 for a discussion of the control effects obtained by
these subroutine arguments. Table 3-2 shows the initial settings of
the error control bits.

D.7 ERRSNS

The ERRSNS subroutine returns information about the most recent error
that has occurred during program execution. The call to ERRSNS has
the form:

CALL ERRSNS (num,ioerr,ioerrl,iunit)

SYSTEM SUBROUTINES

num

An INTEGER*2 variable or array element name in which the most
recent error number is stored. A zero will be returned if no
error has occurred since the last call to ERRSNS, or if no error
has occurred since the beginning of task execution.

If the last error occurred as a result of an I/O error, the next three
parameters receive selected values. Otherwise, values of 0 are
returned.

ioerr

An INTEGER*2 variable or array element in which the primary file
System error code is stored: that is, the FCS-11 F.ERR value or
the RMS-11 STS value.

ioerr

An INTEGER*2 variable or array element in which the secondary
file system error code is stored: that is, the FCS-1ll F.ERR+1
value or the RMS-11 STV value.

junit

An INTEGER*2 variable or array element in which the logical unit
number is stored.

From zero to four arguments may be specified. After the call to
ERRSNS, the error information is reset to 0.

To determine if an error occurs in a given section of a program, the
following technique is suggested:

1. Call ERRSNS immediately prior to the segment in order’ to
clear any previous error data.

2. Execute the section.

3. Call ERRSNS again and branch on a nonzero return value to
error analysis code.

For example:

CALL ERRSNS
CALL ASSIGN (1,'NAME.DAT')
CALL FDBSET (1,'OLD','SHARE')
CALL ERRSNS (IERR,IFCS,IFCS1,ILUN)
IF (IERR.NE.O) GOTO 100

D.8 ERRTST

The ERRTST subroutine tests for the occurrence of a Specific error
during program execution. The call to ERRTST has the forn:

CALL ERRTST(i,3)

The INTEGER*2 error number, and the value of j} is returned as:

l1 if error number i has occurred
2 if error number i has not occurred

SYSTEM SUBROUTINES

For example, the sequence

CALL ERRTST (43,J)
GO TO (10,20),J

20 CONTINUE

transfers control to statement 10 if error 43 has occurred.

The ERRTST routine also resets to 0 the error flag for an occurring
error. For example, in the sequence

CALL ERRTST (I,J)

CALL ERRTST (I,J)

the second call is guaranteed to return J=2. The ERRTST subroutine is
independent of the ERRSET subroutine; neither subroutine directly
influences the other except that ERRSET can cause execution to
terminate.

D.9 EXIT

The EXIT subroutine causes program termination, closes all files,
reports termination status to the operating system, and returns
control to the operating system. The call to EXIT has the form:

CALL EXIT [(istat)]

istat

An INTEGER*2 value that is the termination status value to be
reported to the operating system.

If istat is not specified, the termination status value is success.

D.10 USEREX

The USEREX subroutine specifies a routine that is to be called as part
of the program termination process. Using USEREX allows clean-up
operations in non-FORTRAN routines. The call to USEREX has the form:

EXTERNAL name

CALL USEREX (name)

name

The routine that is to be be called. This name must appear in an
EXTERNAL statement in the program unit.

SYSTEM SUBROUTINES

The user exit subroutine is called with a JSR PC instruction after all
procedures required for FORTRAN program termination have been
completed--that is, when all files have been closed, and any attempt
to perform FORTRAN I/O operations produces unpredictable results. In
addition, all OTS error handling is disabled; so if an error occurs
in the USEREX-specified routine, the task is immediately aborted by
the operating system. The transfer of control takes place immediately
preceding the exit to the operating system; return from the
Subroutine by an RTS PC results in a normal exit to the operating
system.

D.11 FDBSET

The FDBSET subroutine specifies special input/output options. (It is
provided primarily for compatibility with older FORTRAN
implementations because similar and more extensive capabilities are
available through the OPEN statement.) The call to FDBSET has the
form:

CALL FDBSET (unit,mode,share,numbuf ,initsz,extend)

unit

an INTEGER*2 value specifying tthe logical unit to which the
subsequent arguments apply.

mode

One of the following character constants, specifying the type of
access to be used:

"READONLY' For read-only access.
"NEW' For creating a new file.
"OLD! For accessing an existing file.
"APPEND! For appending to an existing sequential file.
"UNKNOWN'! For an unknown file; has the effect of trying

'OLD' first, and if no such file exists, uses
"NEW.

share

The character constant 'SHARE', which Specifies that shared
access is allowed.

numbuf

An INTEGER*2 value that specifies the number of buffers to be
used for multibuffered input/output.

initsz

An INTEGER*2 value that specifies the initial allocation, in disk
blocks, of file storage for a new file.

extend

An INTEGER*2 value that specifies the number of blocks by which
to extend a file.

FDBSET may only be called prior to opening the unit specified in the
first argument. CALL FDBSET, CALL ASSIGN, and the DEFINEFILE
Statement may be used together.

SYSTEM SUBROUTINES

The unit number argument is required. All other arguments may be null
or missing to indicate no specification for that argument.

D.12 IRAD50O

The IRAD50 subprogram performs conversions of ASCII data to Radix-50
representation. Radix-50 representation is required by the Process
Control subroutines and the System Directives’ for specifying task
names within the RSX-11 system. (See Section A.5.)

IRADS50 may be called as a FUNCTION subprogram if the return value is
desired, or as a SUBROUTINE subprogram if no return value is desired.
The call to IRAD50 has the form:

n = IRAD50O (icnt,input,output)

or

CALL IRAD50 (icnt,input ,output)

icnt

The INTEGER*2 maximum number of characters to convert.

input

An ASCII (Hollerith) text string to be converted to Radix-50.

output

The location for storing the results of the conversion.

The INTEGER*2 number of characters actually converted.

Three characters of text are packed into each word of output. The
number of output words modified is computed by the expression (in
integer mode)

(icnt+2)/3

Therefore, if a count of four is specified, two words of output are
written even if only a 1l-character input string is given as an
argument.

scanning of input characters terminates on the first non-Radix—-50
character encountered in the input string.

D.13 RADSO

The RAD50 function subprogram provides a Simplified way to encode
RSX-ll task names in Radix-50 notation (see Section A.5). This
function converts six characters of ASCII data to two words of
Radix-50 data. The call to RADSO has the form:

RAD50 (name)

SYSTEM SUBROUTINES

name

The variable name or array element corresponding to an ASCII
String

Note that the RADS50 function may be used as an argument to an RSX-11
System directive subroutine. For example:

REAL*8 A

DATA A/'TASK A'/
CALL REQUES (RAD50(A),...)

The RAD50 function is equivalent to the following FORTRAN function:

FUNCTION RAD50 (A)

CALL IRAD50 (6,A,RAD50)
RETURN
END

D.14 RS50ASC

The R50ASC subprogram provides decoding of Radix-50 encoded values
into ASCII strings. The call to RS50OASC has the form:

CALL R50ASC (icnt,in,out)

icnt

The INTEGER*2 number of output characters to be produced.

in

The variable or array that contains the encoded input. Note that
(icnt+2)/3 words are read for conversion.

out

The variable or array in which icnt characters (bytes) are
placed.

If the undefined Radix-50 code is detected, or the Radix-50 word
exceeds maximum value 174777 (octal), question marks are placed in the
output.

D.15 SECNDS

The SECNDS function subprogram returns the system time in seconds as a
Single-precision, floating-point value less the value of its
Single-precision, floating-point argument. The call to SECNDS has the
form:

REAL SECNDS
y = SECNDS (x)

Set equal to the time in seconds’ since midnight, minus’ the
user-Supplied value of x.

SYSTEM SUBROUTINES

You can use the SECNDS function to perform elapsed-time computations.
For example:

C START OF TIMED SEQUENCE
Tl = SECNDS (0.0)

CODE TO BE TIMED
A
A
D

DELTA = SECNDS (T1)

where DELTA gives the elapsed time.

The value of SECNDS is accurate to the resolution of the System clock:
0.0166... seconds for a 60-cycle clock, 0.02 seconds for a 50-cycle
clock,

Notes

1. The time is computed from midnight. SECNDS also produces
correct results for time intervals that span midnight.

2. The 24 bits of precision provide accuracy to’ the resolution
of the system clock for about one day. However, loss of
Significance can occur if you attempt to compute
elapsed times late in the day.

D.16 TIME

The TIME subroutine returns the current System time as
String. The call to TIME has the forn:

CALL TIME (buf)

buf

An 8-byte variable, array, or array element.

The TIME call returns the time as an 8-byte ASCII character
the form:

hh:mm:ss

hh

The 2-digit hour indication.

mm

The 2-digit minute indication.

ss

The 2-digit second indication.

For example:

10:45:23

A 24-hour clock is used.

very small

an ASCII

String of

APPENDIX E

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN IV-PLUS

PDP-11 FORTRAN-77 is based on American National Standard FORTRAN-77,
X3.9-1978. As a result, it contains certain incompatibilities with
the PDP-11 FORTRAN IV-PLUS language, which is based on the previous
Standard, X3.9-1966. The areas affected are:

e DO loop minimum iteration count

e EXTERNAL statement

e OPEN statement BLANK keyword default

e@ OPEN statement STATUS keyword default

e Blank common block PSECT

e xX format edit descriptor

The PDP-11 FORTRAN-77 compiler selects ANSI FORTRAN-77 language
interpretations by default. If you are compiling PDP-11 FORTRAN
IV-PLUS programs, there are several actions you can take to compensate
for language incompatibilities:

@ You can modify your programs so that they produce the intended
result with the /F77 switch. Compiler diagnostics help you
identify OPEN statements in which an explicit STATUS keyword
Should be added. Linker diagnostics help you locate EXTERNAL
Statements that must be changed to INTRINSIC statements.

@e You can specify the /NOF77 switch to select PDP-1l FORTRAN
IV-PLUS language interpretations. The /NOF77 switch affects
the interpretation of DO loop minimum iteration counts,
EXTERNAL statements, and OPEN statement BLANK and STATUS
defaults. It does not affect the X format edit descriptor.

@ You can build the PDP-11 FORTRAN-77 compiler with the /NOF77
Switch as the default, thereby selecting PDP-11 FORTRAN
IV-PLUS language interpretations as defaults.

This appendix discusses each of the language differences. When
possible, it gives an example of how you can modify your PDP-1l
FORTRAN IV-PLUS programs to make them compatible with both PDP-11
FORTRAN-77 and PDP-11 FORTRAN IV-PLUS.

E.1 DO LOOP MINIMUM ITERATION COUNT

In PDP-1l1 FORTRAN-77, the body of a DO loop is not executed if the end
condition of the loop is already satisfied when the DO statement is
executed (see Section 4.4.2). In PDP-1l1l FORTRAN IV-PLUS, however, the
body of a DO loop is always executed at least once.

E-1l

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN IV-PLUS

If you are running a PDP-1ll FORTRAN IV-PLUS program with the /F77
Switch, you may want to ensure a minimum loop’ count of one by
modifying the program's DO statements. AS an example, asSume that a
FORTRAN IV-PLUS program contains this statement:

DO 10, J = ISTART, IEND

This DO statement specifies that the body of the loop is executed only
when IEND is greater than or equal to ISTART. However, you could
modify the statement to handle a situation in which IEND might be less
than ISTART. For example:

DO 10 J = ISTART, MAX(ISTART, IEND)

The body of this modified DO loop is executed at least once in both
PDP-1l FORTRAN-77 and PDP-1l1l FORTRAN IV-PLUS.

The /F77 switch controls the interpretation of the DO loop minimum
iteration count.

E.2 EXTERNAL STATEMENT

Under PDP-1]l FORTRAN IV-PLUS, a function specified in an EXTERNAL
Statement with the name of a FORTRAN processor-defined (intrinsic) or

library function was assumed to refer to the named _ processor-defined
or library function, not to a user-defined function with that name.
If, however, a function name appeared in an EXTERNAL statement

preceded by an asterisk, that function was assumed to be a

user-defined function, regardless of any name conflicts.

Under ANSI FORTRAN-77 and PDP-11 FORTRAN-77, a function specified in
an EXTERNAL statement with the name of a processor-defined (intrinsic)
or library function is assumed to refer to a user-defined function.

Under PDP-11 FORTRAN-77, the function name fname in the statement

EXTERNAL fname [, fname ...]

is interpreted to refer to a user-defined function by default.

If the /NOF77 switch is specified, and fname is the same as one of the

processor-defined or library functions, fname is interpreted to refer
to the processor-defined or library function.

If fname appears preceded by an asterisk, it is interpreted to refer
to a user-defined function if the /NOF77 switch is set, but it is an

error if the /F77 switch is set.

All functions declared with the new INTRINSIC Statement are

interpreted to be processor-defined (intrinsic) or library functions,
regardless of the setting of the/NOF77 switch.

E.3 OPEN STATEMENT BLANK KEYWORD DEFAULT

In PDP-11 FORTRAN-77, the OPEN statement BLANK keyword controls’ the
interpretation of blanks in numeric input fields. The PDP-1l
FORTRAN-77 default is BLANK='NULL'; that is, blanks in numeric input
fields are ignored. The PDP-11 FORTRAN IV-PLUS OPEN statement does
not have a BLANK’ keyword. However, the PDP-11 FORTRAN IV-PLUS

interpretation of blanks in numeric input fields is equivalent to
BLANK='ZERO'.

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN IV-PLUS

If a logical unit is opened without an explicit OPEN statement, PDP-1l
FORTRAN-77 and PDP-ll1 FORTRAN IV-PLUS both provide a default
equivalent to BLANK='ZERO'.

The BLANK keyword affects the treatment of blanks in numeric input
fields read with the D,E,F,G,I,0, and Z field descriptors. If
BLANK='NULL' is in effect, embedded and trailing blanks are ignored;
the value is converted as if the nonblank characters were right-
Justified in the field. If BLANK='ZERO' is in effect, embedded and
trailing blanks are treated aS zeros. The following example
illustrates the difference in how blanks in numeric input fields are
interpreted in PDP-11 FORTRAN-77 and in PDP-11 FORTRAN IV-PLUS:

Program:

OPEN (UNIT=1, STATUS='OLD') READ(1,10)I, J
10 FORMAT (215) END

Data record:

1 2 12

FORTRAN-77 values FORTRAN IV-PLUS values

I=12 I = 1020
J = 12 J = 12

The /F77 switch controls the default value for the BLANK keyword. If
your program treats blanks in numeric input fields as zeros and you do
not want to use the /NOF77 switch, include BLANK='ZERO' in the OPEN
Statement or use the BZ edit descriptor in the FORMAT statement.

E.4 OPEN STATEMENT STATUS KEYWORD DEFAULT

In PDP-1l FORTRAN-77, the OPEN statement STATUS keyword specifies the
initial status of the file ('OLD', 'NEw', "SCRATCH', or 'UNKNOWN').
The PDP-1l1 FORTRAN-77 default is STATUS='"UNKNOWN'!; that is, an
existing file is opened, or a new file is created if the file does not
exist. The PDP-1l FORTRAN IV-PLUS keyword TYPE is a synonym for
STATUS; however, the PDP-11 FORTRAN IV-PLUS default is TYPE='NEW'.

If you use the /F77 switch and you do not specify STATUS (or TYPE) in
an OPEN statement, the compiler issues an informational message to
warn you that it is using a default of STATUS='"UNKNOWN'. It is
advisable to include an explicit STATUS (or TYPE) keyword in every
OPEN statement.

The /F77 switch controls the default value for the STATUS (or TYPE)
keyword.

E.5 BLANK COMMON BLOCK PSECT (.$$$S.)

Under PDP-1l FORTRAN-77, the blank common block PSECT (.$$$$.) has the
SAV attribute; it does not have this attribute under PDP-11 FORTRAN
IV-PLUS. The SAV attribute on a PSECT has the effect of pulling that
PSECT into the root segment of an overlay.

The /F77 command switch controls the default assignment of the SAV
attribute; under /F77, the blank common block PSECT is asSigned the
SAV attribute by default.

COMPATIBILITY: PDP-11 FORTRAN-77 AND PDP-11 FORTRAN IV-PLUS

E.6 X FORMAT EDIT DESCRIPTOR

The nX edit descriptor causes transmission of the next character to or
from a record to occur at the position n characters to the right of
the current position. In a PDP-11 FORTRAN-77 output statement,
character positions that are skipped are not modified, and the length
of the output record is not affected. However, in a PDP-11 FORTRAN
IV-PLUS output statement, the X edit descriptor writes blanks and may
extend the output record. For example, the statements

WRITE (1,10)

10 FORMAT (1X, ‘ABCDEF', T4, 2X, '12345', 3X)

produce the output records:

FORTRAN-77 FORTRAN IV-PLUS

ABCD12345 AB 12345

The /F77 switch does not affect the interpretation of the xX edit
descriptor. To achieve the PDP-11 FORTRAN IV-PLUS effect, change nxX
to n(' ').

APPENDIX F

COMPATIBILITY: PDP-11 FORTRAN-77, PDP-11 FORTRAN IV, VAX-11 FORTRAN

PDP-11 FORTRAN-77 is a compatible superset of PDP-1l1 FORTRAN IV and a
compatible subset of VAX-11 FORTRAN.

Generally speaking, any PDP-11 FORTRAN-77 program that does not’ use
Superset features runs correctly in PDP-1l FORTRAN IV, and any PDP-1l

FORTRAN-77 program runs correctly in VAX-11 FORTRAN.

Differences in execution, however, may be encountered because of

differences in compiler architecture, hardware architecture, or
operating system environment.

The following sections discuss differences among PDP-11l FORTRAN IV,
PDP-11 FORTRAN-77, and VAX-11 FORTRAN.

There are both language differences and run-time support differences

among PDP-11 FORTRAN IV, PDP~11l FORTRAN-77, and VAX-11 FORTRAN.

F.1 LANGUAGE DIFFERENCES

Differences related to language involve:

e Logical tests

e Floating-point results

e Logical unit numbers

e Assigned GO TO label list

e Integer computations

e Effect of DISPOSE = 'PRINT' specification

F.1.1 Logical Tests

The logical constants .TRUE. and .FALSE. are defined, respectively,
as all 1s and ali zeros by both VAX-11 FORTRAN and PDP-11 FORTRAN.
The test of .TRUE. and .FALSE. differs, nowever.

PDP-1ll1 FORTRAN-77 tests the sign bit of a logical value: bit 7 for
LOGICAL*1, bit 15 for LOGICAL*2, and bit 31 for LOGICAL*4, PDP-1l
FORTRAN IV tests the low-order byte: All zeros is .FALSE.; any
nonzero pattern is .TRUE.. And VAX-11 FORTRAN tests the low-order bit
(bit 0) of a logical value. (This is the system-wide VAX-11
convention for testing logical values.)

COMPATIBILITY: PDP-11 FORTRAN-77, PDP-1]1 FORTRAN IV, VAX-11 FORTRAN

In most cases, these differences have no effect on compatibility.
They are significant only for nonstandard FORTRAN programs that
perform arithmetic operations on logical values and then make logical
tests on the result.

In the example:

LOGICAL*1 BA

BA = 3

IF (BA) GO TO 10

PDP~l1]1 FORTRAN-77 produces a value of .FALSE., but PDP-1l1 FORTRAN IV
and VAX-11 FORTRAN produce a value of .TRUE.

F.1.2 Floating-Point Results

Differences in math library routine results may occur between
different arithmetic hardware configurations on PDP-1ll processors and
between PDP-11l and VAX-1l hardware due to the hardware architecture
differences. Equivalent accuracy is provided but there may be
differences in the least-significant digits.

F.1.3 Logical Unit Numbers

If you specify a logical unit number in an I/O statement, a default
unit number is- used. The defaults used by PDP-11l1 FORTRAN-77 and
PDP-1l1l FORTRAN IV differ from those used by VAX-11 FORTRAN, as_ shown
in Table F-l.

Table F-1]
Default Logical Unit Numbers

I/O Statement PDP-1l Unit VAX-11 Unit

READ 1 -4

PRINT 6 -l

TYPE 5 -2

ACCEPT 5 —3

Note that PDP-11 FORTRAN uses normal logical unit numbers, but VAX-11
FORTRAN uses unit numbers that are not available to users.

F.1.4 Assigned GO TO Label List

PDP-1l1 FORTRAN-77 checks at run time that the label is in the list of
labels specified. If not, execution continues at the next statement.

PDP-11 FORTRAN IV and VAX-11 FORTRAN check only that the labels
specified in the list are valid statement labels in the program unit.
No check is made at run time, and execution continues at the label
Specified.

COMPATIBILITY: PDP-1] FORTRAN-77, PDP-11 FORTRAN IV, VAX-11 FORTRAN

F.1.5 DISPOSE = ‘Print’ Specification

On some PDP-11l systems, the file is deleted after being printed if
DISPOSE = ‘PRINT! was specified. On VAX-11 systems and some PDP-11
systems, the file is retained after being printed.

F.1.6 Integer Computations

In PDP-11l1 FORTRAN-77 and VAX-11 FORTRAN, INTEGER*4 computations are

carried out uSing 32-bit arithmetic. In PDP-11l1 FORTRAN IV, INTEGER*4
data occupies 32 bits of storage (4 bytes) but only 16 bits are used
for computation.

F.1.7 Default Record Buffer Size

In PDP-1l FORTRAN-77, if there was no RECL specification when ae file
was created, the FORTRAN-77 OTS uses the default record size (see

section 2.3.8) as the size of the user record buffer. FORTRAN IV,
however, allows the user record buffer to be as large as the value

Specified in the MAXBUF option in the task-build command line.

In FORTRAN-77, when you attempt to write more bytes to a record than
the default record size, you should use an explicit OPEN statement
with a RECL specification.

F.2 RUN-TIME SUPPORT DIFFERENCES

Run-time support differences involve unformatted data transfer and

error handling and reporting.

F.2.1 Unformatted Data Transfer

For unformatted input/output operations, four bytes of data are
transferred for INTEGER*4 and LOGICAL*4 data. However, because the

high-order part is undefined in PDP-11 FORTRAN IV, INTEGER*4 = and
LOGICAL*4 values written by a PDP-1ll FORTRAN IV program may not
reliably be read by PDP-11 FORTRAN-77 or VAX-11 FORTRAN.

F.2.2 Error Handling and Reporting

Error handling and reporting differ significantly between PDP-1l

FORTRAN and VAX-11 #£=FORTRAN. In PDP-11 FORTRAN, program execution
normally continues after errors such as floating overflow until 15
such errors have occurred, at which point execution is terminated.
VAX-1]1 FORTRAN, however, sets a limit of one such error; program
execution normally terminates when the first such error occurs.

VAX-11 FORTRAN neither generates an error message nor increments’ the
image error count when an I/O error occurs, if an ERR=specification is

included in the I/O statement. PDP-1]1 FORTRAN both reports the error

and increments the task error count.

APPENDIX G

PDP-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD (X3.9-1978) FORTRAN

The following are PDP-ll FORTRAN-77 extensions to ANSI_ standard
(X3.9-1978) FORTRAN at the full-language level.

If you specify the /ST switch at compile time, the compiler’ flags
these extensions in your source code and produces informational
diagnostics about them. See Section 1.2.4 for complete information on
how to use the /ST switch. See Appendix C for a list of compiler
diagnostic messages.

G.1 STATEMENT EXTENSIONS

The following statements appear in PDP-11 FORTRAN-77 but not in ANSI
Standard FORTRAN:

ACCEPT DELETE REWRITE

BYTE ENCODE TYPE

DECODE FIND UNLOCK

DEFINE FILE INCLUDE VIRTUAL

G.2 STATEMENT SYNTAX EXTENSIONS

The following sections contain PDP-11 FORTRAN-77 syntactic variations
of statements present in ANSI standard FORTRAN.

G.2.1 Specification Statements

Data type *len (Except CHARACTER *len)

IMPLICIT (Examples of extended syntax follow)

IMPLICIT INTEGER A,B

IMPLICIT INTEGER (A-C) ,(P-T)

PARAMETER (Alternative syntax, see Section A.4, PDP-11

FORTRAN-77 Language Reference Manual)

typ FUNCTION nam *len (Length specifier in function declaration)

PDP-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD (X3.9-1978) FORTRAN

G.2.2 Format Statements

Default formats for I, F, E, D, G, L, O, A, Z

Ow, Ow.m, Q, Zw, Zw.m, $ format descriptors

P without scale factor

Variable format expressions

G.2.3 Control Statements

Null actual argument (Examples follow)

CALL name (,arg2)

CALL name (argl,,arg3)
CALL name (argl,)
CALL name (argl,,,,arg5)

G.2.4 I/0 Statements

READ and WRITE (Comma between I/0 control. and
example follows)

READ (...), iolist

G.2.5 Miscellaneous Syntax Extensions

The following are present in PDP-11 FORTRAN-77 but
Standard FORTRAN:

Consecutive operators in expressions

D-line comments

End-of-line comments

element

not

Parameter constants for the real or imaginary part of a
constant

Tab-character formatting

G.3 KEYWORD AND KEYWORD VALUE EXTENSIONS

G.3.1 OPEN Statement Keyword Extensions

ASSOCIATE VARIABLE NAME

BLOCKSIZE NOS PANBLOCKS

BUFFERCOUNT ORGANIZATION

CARRIAGECONTROL READONLY

DISPOSE RECORDSIZE

DISP RECORDTYPE

lists;

in ANSI

complex

PDP-11 FORTRAN-77 EXTENSIONS TO ANSI STANDARD (X3.9-1978)

EXTENDSIZE SHARED

INITIALSIZE TYPE

KEY USEROPEN

MAXREC

G.3.2 OPEN Statement Keyword Value Extensions

ACCESS "APPEND'

ACCESS "KEYED!

G.3.3 CLOSE Statement Keyword Extensions

DISP

DISPOSE

G.3.4 Close Statement Keyword Value Extensions

STATUS "SAVE'

STATUS "PRINT'

G.3.5 READ Statement Keyword Extensions

KEY

KEYEQ

KEYID

KEYGE

KEYGT

G.4 LEXICAL EXTENSIONS

FORTRAN

The following lexical elements are present in PDP-11 FORTRAN-77 but

not in ANSI standard FORTRAN:

Hollerith constants Radix-50 constants

Lowercase source letters "rec in direct access I/O statements

"nn octal constants -XOR. operator

O octal constants Z hexadecimal constants

"oct'O, ‘'hex'X constants

APPENDIX H

SOFTWARE PERFORMANCE REPORTS

From time to time, you may encounter problems and/or errors in using
the FORTRAN-77 Compiler or Object Time System. These should be
communicated to Digital Equipment Corporation by means of a Software
Performance Report (SPR). Software Performance Report forms like the
one shown in Figure H-1l may be obtained from the nearest SPR center.

You should submit Software Performance Reports to the nearest SPR
center for handling. SPRS are forwarded to the appropriate group
within the Software Engineering Department for analysis and response.

Use the following guidelines in preparing a Software Performance
Report:

e Give as complete a description as possible of the problem
encountered. Often a detail that may seem irrelevant will

give a clue to solving the problem.

e If possible, isolate the problem to a small example. Large,

unfamiliar programs are difficult to work with and may result
in a misunderstanding of what the problem is or an inability
to duplicate the problem.

e If the error example is longer than one page of source code,

try to send all information in a machine-readable form.
Machine-readable problems are much easier to diagnose and
enable us to provide better service. All media are returned.

e Send console samples, command files, listings, link maps, and
So on with the SPR, Annotations Showing where the error
occurred are extremely helpful.

e If a program reads input data, include sample input listings
and, if possible, sample output.

e If an error example cannot be isolated to a single program

unit, include listings for all program units involved.

Many SPRS do not contain sufficent information to duplicate or

identify the problem. Complete and concise information helps DIGITAL
give accurate and timely service to software problems.

SOFTWARE PERFORMANCE REPORTS

SOFTWARE FIELO NO.:

PERFORMANCE
REPORT

CORPORATE SPR NOW] 219086

v TO SET UP FOR PROPER ALIGNMENT, START AT MARK BELOW.

OPERATING SYSTEM VERSION

PAGE OF

SYSTEM PROGRAM OR DOCUMENT TITLE VERSION OR DOCUMENT PART NO. DATE

ADDRESS:

CUST. NO.::

DEC OFFICE

YES

DO YOU HAVE SOURCES?

"7

OTHER

REPORT TYPE/PRIORITY

PROBLEM/ERROR

SUGGESTED ENHANCEMENT
—

a

“
u

&@

Ww
W

N

L_._f

——

1. HEAVY SYSTEM IMPACT
+1

MODERATE SYSTEM IMPACT

MINOR SYSTEM IMPACT

NO SIGNIFICANT IMPACT

DOCUMENT ATION /SUGGESTION

SUBMITTED BY: PHONE:

CAN THE PROBLEM BE REPRODUCED AT WILL? ves | nol |

OTHER:

MAG TAPE [| FLOPPY DISKS

ATTACHMENTS

[J usrine| pecrare| |
COULD THIS SPR HAVE BEEN PREVENTED BY

BETTER OR MORE DOCUMENTATION?

PLEASE EXPLAIN IN PROVIDED SPACE BELOW.

ves | nol |

CPU TYPE SERIAL NO. MEMORY SIZE DISTRIBUTION MEDIUM SYSTEM DEVICE DO NOT PUBLISH

[|

ALL SUBMISSIONS BECOME THE PROPERTY OF DIGITAL EQUIPMENT CORPORATION. SHORT NAME MNT. CAT. MNT. GRP. XFER GRP. PL PRB. TYPE

DATE RECEIVED (MAIL) DATE TO MAINTAINER XFER DATE LOGGED ON

DATE RECEIVED (ASG} DATE RECEIVED FROM MAINTAINER DATE ANSWERED LOGGED OFF

EN 1044H-07-R479 (35C)

Figure H-1 Software Performance Report (SPR) Form

ADMINISTRATIVE SERVICES GROUP, SWS
ZK-244-81

INDEX

ABORT command, 1-20

ACCEPT statement, 2-3, F-2

Accessing indexed files, 7-1
Access modes, 2-6, D-7

append, 2-6, 2-16
direct, 2-5, 2-6,

2-7, 2-8, 2-15, 2-16,

2-17, 2-18
keyed, 2-6, 2-7,

2-18, 4-11, 5-9, 7-1
sequential, 2-6,

2-7, 2-9, 2-11, 2-15,

2-16, 2-17, 2-18, 7-1

ACTFIL, 1-14

Active Page Register, 1-15, 1-16,

1-17, 3-7

Addresses, 3-17
A field descriptor, formatting

with the, 2-13, 7-6

Algorithms, approximations, B-1l
Alignment, Storage, 4-13

SSAOTS, 3-9
Arguments, actual, 4-8, 4-14,

4-15, C-14
dummy, 4-8, 4-14, 4-15

in ENTRY statements, 4-14

Null, 3-5
Array bounds, 5-1

Arrays, 3-17, 3-18, 5-9, C-15

character, 6-1
checking, 1-7

eguivalencing, 4-12
virtual, 1-30, 3-7, 3-18, 3-19,

3-20, 3-21
ASG, 1-14, 2-1
Assignment statements, 5-1

ASSIGN system subroutine, 2-1,
3-1, D-l, D-2

Associated variable,

in DEFINEFILE or OPEN, 1-43

Attributes, program section, 3-6

BACKSPACE statement, 2-15, 5-9

Batch mode, 1-20

BLANK keyword, 2-9, E-l, E-2
Blanks, E-2 to E-3

embedded and trailing, E-3
interpretation of, 2-10

BLOCKDATA statement, 3-17
Block mode, 2-11

Block size, 2-10

BLOCKSIZE keyword, 2-5, 2-10

Braces, 2

Brackets ([]), 2
Bucket, 2-5, 2-8, 2-19

Bucket locking, 2-16

Bucket size, 2-l1l
Buffer, format specifications,

1-16
BUFFERCOUNT keyword, 2-11

Buffers, allocating, 1-16
fragmented, 5-13
memory, 2-11

OTS, 1-20
BYTE (see LOGICAL*1)

BZ edit description, 2-10

Call, MACRO-11 form of The, 3-2

CALL ASSIGN statement, 2-2, D-2,

D-8
Call-by-reference, 3-2, 4-14
Call-by-value/result, 4-14
CALL CLOSE statement, D-3

CALL DATE statement, D-3

CALL EXIT statement, 1-20, D-6

CALL ERRSET statement, D-4
CALL ERRSNS statement, D-5

CALL ERRTST statement, D-6
CALL FDBSET statement, D-7

CALL IDATE statement, D-4

Calling, 3-2, 4-14 to 4-15
CALL IRAD50 statement, D-8

Calls, executive, D-1l

non-reentrant, 3-l, 3-3

reentrant, 3-l, 3-4

CALL statement, C-14

CALL TIME statement, D-10

CALL USEREX statement, D-7

Carriage control attribute,
FORTRAN (see FD.FTN)

CCL, 1-21
CCL commands, 1-21, 1-24

Cells, record, 2-4, 2-7, 2-9
CHARACTER (see Type declaration

statements, character)

Character data type, 6-1, A-4
Character functions (see

Functions, character library)

Character set, ASCII, A-6

Radix-50, A-6
Checking, array subscript, 5-9
/CK compiler switch, 1-7
Clock, system, D-10
CLOSE statement, 2-2, 2-12, 5-l,

5-2, D-2
CLOSE subroutine, D-l, D-2, D-3
CMD files, 1-4, 1-22

Index-l

SCODE1, 3-6

Code sharing, in multi-user tasks,
1-8

Command file, indirect, 1-2

Command languages, 1-2

Command lines, 1-2

Command sequences,

examples of, 1-20

Command switches (see Switches)
Common block, global,

referencing a, 1-16
Common blocks, 3-1, 3-7, C-14

blank, E-l, E=-3

COMMON, 3-1, 4-13
in overlays, 1-45
resident, 1-10

system global, 3-7
COMMON task builder option, 1-15,

3-7

Compatibility, E-l, F-1
Compiler, invoking the, 1-2, 1-5,

on RSTS/E, 1-23

Compiler, FORTRAN-77, 1-1, 1-3,
1-5, 1-23, 3-1, 3-5, 4-10,
E-1

limits of, C-15

Compiler mode, INTEGER*2, 4-10

INTEGER*4, 4-8, 4-10

Compiling, 1-1
on RSTS/E, 1-23

on RSX-11, 1-5

on VAX/VMS, 1-32

with DCL, 1-6
COMPLEX, A-3

Computations, elapsed time, D-9
integer, F-3
invariant, 5-8

CON attribute, 3-7
Concise Command Language

(see CCL)

/CO:n compiler switch, 1-7

Constants, 5-5

Character, 6-1, C-15

Hollerith, A-5, C-15
integer, 4-8

logical, F-1
octal, 4-8

Radix-50, C-15

Continuation action, 3-12
Continuation Bit, 3-12
Continuation lines, C-15

Specifying maximum number of,
1-7

Continuation Type Bit, 3-13
Control bits, error, 3-12

initial settings of, 3-14 to
3-15

Control bytes, segment, 1-17,
2-9, 2-14

Conventions, 3-10

calling, 3-1, 3-2
device, 2-1]

File name, 2-1

INDEX

Conventions (Cont.)

file open, 2-17, 2-19

implied unit number, 2-2
I/O, 2-1
register usage, 3-3

Conversion, ASCII to Radix-50,
D-8

floating-point, 5-10, 5-11
SCONVI, 3-10
SCONVL, 3-10
SCONVR, 3-10
SCONVZ, 3-10
Count Bit, 3-13
SCREATE, 2-19

Cross-reference listing, global,
1-12

/CR task builder switch, 1-12

DAT, 1-4, 1-22

/DA task builder switch, 1-12,
1-35

Data, pure, 3-10

DATA statement, 3-7, 3-17, 5-l,
5-3

Date, current, D-l, D-3, D-4

DATE Subroutine, 3-1, D-1, D-3
D attribute, 3-7

/DB Compiler switch, 1-8
DCL, 1-6
Debugging a program, 1-1, 1-46
Debugging lines, compiling, 1-7
DECODE statement, 5-9

/DE compiler switch, 1-8, 1-46
DEFINEFILE statement, 1-43, 1-44,

D-8

SDELETE, 2-18

Deleted-record control byte, 2-9

DELETE statement, 2-18, 7-3, 7-6
Devices, RSX-ll, 1-3

Device type, RSTS/E, 1-22
VAX/VMS, 1-31

SSDEVT, 3-9
Diagnostics, C-l

call, C-25, C-27

compilation, fatal, C-13
compiler, 1-9, C-l1, C-13
file system, C-19, C-27
FCS-11, C-20

internal record, C-23

Operating system, C-28
OTS, C-16

overflow/underflow, C-24
RMS-11, C-30

source program, C-l

virtual array, C-27
DIMENSION statement, 3-21
Direct-access READ, 2-12, 2-17,

2-19
Disk space, allocating, 5-9

Index-2

INDEX

DISP (see DISPOSE) EXIT subroutine, D-1l, D-6
"DELETE', 2-11 Expressions, variable format, 5-9
DISPOSE keyword, 2-ll, F-3 EXTENDSIZE keyword, 2-11

DO loops, 4-11, 5-6, 5-7, E-l Extend Task system directive, 1-14

nested, 5-7, C-14 Extensions, language, G-l
DO statement, 4-11, 5-6, E-1l compiler switch for, 1-8

DOUBLE PRECISION, A-3 diagnostics about, C-13
EXTERNAL statement, 4-1, D-7, E-1l,

E-2
E EXTTSK, 1-13

E errors, C-1l F

EIS instruction set, 5-10
Ellipses (...), 2
ENDFILE statement, 2-16 Factors, overlay (see Segments,

End-of-file, logical, 2-18 overlay)

End-of-file conditions, 3-12 F77 command, 1-5

~-END statement, 1-28 /F77 compiler switch, 1-8
END= transfers, 3-1l -FCTR statement, 1-43

Entry points, 3-17, 3-18, 4-14 FCS, 2-3, 5-1, 5-14
ENTRY statement, 4-13, 5-6 (also see FCS-11)

EQUIVALENCE statement, 4-12 FCS-11, 1-10, 1-19, 2-4, 2-6,

Equivalencing, byte and nonbyte, 2-15, 2-16, 5-9, 5-12
4-13 FCSIAS.ODL, 5-12

mixed data type, 4-13 FCS11M.ODL, 5-12

ERR=, 5-6 FCSRES, 1-19, 3-10

Error, most recent, D-5 FDBSET subroutine, D-l, D-7
ERR= Permitted Bit, 3-13 FD.FTN, 2-17

ERR= transfers, 3-11, 3-13 F errors, C-l

Error codes, FCS-11, C-28 Fields, count, 2-9
operating system, C-27 key, 2-12, 7-2
OTS, C-18 File Control Services (see FCS
RMS-11, C-30 and FCS-11)

Error conditions, D-1l, D-5 File directory, default, 1-3
Error-control table, OTS, 3-10, user, 1-3

3-11 File names, 2-1

Error handling, F-3 default assignments of, 2-1 to
Error messages, Short, 5-11 2-2

Error procesSing, 3-1 indirect ODL, 1-42
OTS, 3-10 RSTS/E, 1-22

Error reporting, D-6, F-3 RSX-ll, 1-3

alternate run-time, 5-10 VAX/VMS, 1-31

optional OTS, 5-11 Files, 2-3 to 2-6, 2-13

Errors, finding and reporting closing, D-1l, D-6
(see Debugging a program) compiler input, 1-6, 1-24

Errors, format conversion, 3-13 contiguous, 1-29, 1-30
format processing, 3-13 disk, 2-12
indexed file, 7-7 disposition of, 2-1l
I/O, 3-11, C-1l, C-16 extending, D-7

OTS, recovering from, 3-11 indexed, 1-10, 2-4, 2-5, 2-6 to
Synchronous system-trap, 3-13 2-9, 2-11, 2-13, 2-14,

Error Traceback, 1-9, C-16 2-15, 2-18 to 2-20, 4-1l,

ERRSET subroutine, 3-1, 3-ll, 5-9, 7-1 to 7-8

3-12, 5-1ll, D-1l, D-4 input, 1-2, 1-3, 1-6
ERRSNS Subroutine, 3-1l, I/O transfer size for, 2-11

5-ll, D-1, D-4 length of, 2-14

ERRTST Subroutine, 3-10, 5-5, listing, 1-5, 1-21

5-11, D-1l, D-5 map, l-1ll, 1-23
/EX compiler switch object code, 1-5, 1-24

Executing a program, 1-1] ODL, 2-19

on RSTS/E, 1-28 OTS overlay, 5-12
on RSX-1l, 1-20 output, 1-2, 1-3

on VAX/VMS, 1-40 overlay descriptions, 1-1ll, 1-42

Index-3

INDEX

Files (Cont.)
read only, 2-12

relative, 1-10, 2-4, 2-6 to

2-9, 2-11, 2-12 to 2-15,
2-18 to 2-20

RSTS/E task, 1-26

RSTS/E Task Builder input, 1-24
scratch, 2-12

sequential, 1-10, 2-4, 2-6 to

2-9, 2-11, 2-14 to 2-16,
2-18 to 2-20

Shared, 2-18

tape, 2-11

Task Builder input, 1-11

task image, 1-10, 1-11, 1-20,
1-25

work, 1-9

File sharing, 2-13, 2-15, D-7

FCS, 2-17
RMS, 2-18

File size, 5-9

File specifications, 1-2
default values of, 1-3, 1-4,

1-22

RSTS/E, 1-2, 1-22

RSX-1ll, 1-2, 1-3

VAX/VMS, 1-30

File type, RSTS/E, 1-19
RSX-1l1l, 1-3

VAX/VMS, 1-31

File version, 1-3

SFIND, 2-19

FIND statement, 2-16, 2-19, 2-20
SFIO, 3-10
SSFIO2, 3-10

SSFIOC, 3-10
SSFIOD, 3-10

SSFIOI, 3-10

SSFIOL, 3-10

SSFIOR, 3-10

SSFIOS, 3-10

SSFIOZ, 3-10

"FIXED', 2-10, 2-15

Floating-point microcode option,
1, 1-1ll, 3-3

Floating-Point Processor, 1,

l-ll, 3-3, 3-18, 5-10,
C-16, C-17

FMTBUF, 1-16, 3-9

Format conversion, 3-10
Format processing, 3-10
Formats, data, A-1l

group nested, C-]4

run-time, 5-9
FORMAT statement, 2-10, 3-17, 5-6,

5-9
Formatted indexed WRITE, 7-3
Formatting, 5-11
FORTRAN IV-PLUS, PDP-11, 1-8

FP11 (see Floating-Point
Processor)

F4PCVP.OBJ, 5-12

F4PEIS.OBJ, 5-10

F4PMAP.OLB, 5-11
F4PNER.OBJ, 5-11
F4PRES, 1-17, 1-19
F4PRES.MAC, 3-10, 5-12
F4P11S.0OBJ, 5-11
/FP Task Builder Switch, 1-12,

1-28
SFREE, 2-19

SSFSR1, 3-9, 5-13
/F77 switch, 2-10, E-1

FTN, 1-4, 1-6, 1-20, 1-22
Functions, 3-17, 3-18

Character library, 6-3

generic, 4-2 to 4-7

intrinsic, 4-1, 4-2 to 4-7,
4-9, 5-1l, B-l, E-2

library, E-2

result generic, 4-10
Specific, 4-2
user-defined, E-2

Function subprograms, 3-3

FUNCTION, 3-17, D-8

GBLPAT, 1-17, 2-3
Generated code listing, 3-16

SGET, 2-18

GBL attribute, 3-7

GETSR, 2-17

GETSS, 2-17

GO TO statement, 5-6, 5-7
assigned, C-15, F-2

computed, C-15

Hollerith data, D-l, D-2, D-8

/14 compiler switch, 1-8, 4-8,
4-10, 5-3

I attribute, 3-7

ICHAR function, 6-3

/ID compiler switch, 1-8
IDATA, 3-6

IDATE subroutine, D-l, D-3
I errors, C-l

I format code, 7-6

IF statements, arithmetic, 5-6
block, 5-7, C-14
logical, 5-7

IF THEN/ENDIF structure, 5-6

IMPLICIT statement, 4-1
Implied DO list, 5-9
/INC option, 5-13

Index-4

INDEX

INCLUDE statement, 5-1, 5-2, C-15
Incompatibilities, 1-8, E-l, F-l

INDEX function, 6-3, 6-5

"INDEXED', 2-13

Indexed READ statements, 2-5,
2-8, 7-6

Indexed Sequential Access Method

(see ISAM)

Indexed WRITE statement, 2-8

Index, index file, 2-5, 2-8
INITIALSIZE keyword, 2-11

Input/foutput, FORTRAN-77
(see I/0, FORTRAN-77)

INTEGER*2, 4-7, 5-1, 5-3, A-l

Integer variables, specifying
default

length of, 1-8
Interactive mode, 1-6, 1-8, 1-13

Internal names, function, 4-1

INTRINSIC statement, E-l, E-2

I/O, character, 6-6
direct access, 2-17, 2-18, 3-1, 5-9

FCS-11, 5-9
formatted, 2-17, 5-9
FORTRAN-77, 2-1, 3-1
list-directed, 3-10

RMS-11, 5-9

sequential, 1-17, 5-10
unformatted, 5-9, F-3

SSIOB1, 3-9
I/O options, specifying, D-7
I/O support modules, 1-10
IRAD50 suborutine, D-1l, D-8

ISAM, 2, 7-1

Iteration count, 5-1, E-1l
computation, 4-11

DO loop, 4-11

Job command sequences, RSTS/E,
examples of, 1-28

"KEEP', 2-11
KEF11A, 1-11

KEY keyword, 2-8, 2-12, 7-2

Key attributes, RMS default, 7-2
Keys, 2-8

alternate, 2-5, 7-2 to 7-4

binary integer, 2-13
Character string, 2-13

data type of, 2-13
duplicate, 2-5, 2-6, 7-3, 7-7
integer, 7-6
primary, 2-5, 7-2, 7-3

Key fields, 2-5, 7-2

Labels, 3-17, 3-18, F-2

source, 3-16

statement, 5-6
/LA compiler switch, 1-8

Latching switch settings, 1-8
/LB Task Builder switch, 1-ll,

1-16, 1-25, 1-26, 1-28

LB:{1,1] F4POTS.OLB, 1-10

LB:ODT.OBJ, 1-26

LB:RMSLIB.OLB, 2-20

LB:{1,1]RMSLIB.OLB, 1-10, 2-20

LB:RMS11.ODL, 2-20

LB:[1,1]RMS11.ODL, 2-20

LB:[{1,1]RMS11S.ODL, 2-20

LB:{1,1]RMS11X.ODL, 2-20
LB: [1,1] RMS12X.ODL, 2-20
LB:SYSLIB.OLB, 1-26

LB:[{1,l]SYSLIB.OLB, 1-10, 1-19

LCL attribute, 3-7
LEN functions, 6-3, 6-6
LGE functions, 6-3, 6-6
LGT functions, 6-3, 6-6
LIBR, 1-17, 1-19, 1-27 |

Librarian Utility, 1-19, 1-27

Libraries, OTS, 1-10, 1-43, 3-9
relocatable, 1-18, 1-19
relocatable, RSTS/E, 1-27

resident, 1-10, 1-18, 1-19,

3-10

resident, RSTS/E, 1-27, 1-28,

1-29
RMS file system, 2-20

Shared, 1-18, 1-19, 3-1

system, 1-19
system, RSTS/E, 1-27

user, 1-18, 1-19, 1-40
user, RSTS/E, 1-27

Library, F4PMAP, 5-1l
Library, OTS resident

(shareable), 5-10, 5-12

Library, system object, 1-10
Library functions, FORTRAN-77,

3-1
Library uSage,

RSTS/E, 1-27

RSX-1l, 1-18

VAX/VMS, 1-40

LICSBS, 3-10
/LI:n compiler switch, 1-8, 1-32

Lines, C-15

Linking object modules, 1-9

Listing-file format, compiler,
3-1

Listing format, compiler, 3-16
Listing options, specifying, 1-8
Log Bit, 3-13
LLE functions, 6-3, 6-6

LLT functions, 6-3, 6-6
LOGICAL*1, 4-10, A-3, F-
LOGICAL*2, A-4, F-1l

1

Index-5

LOGICAL*4, 4-8, A-4, F-1, F-3
Logical device assignments,

default, 2-2
Logical unit numbers, assigning,

1-13
Logical unit numbers, 2-1

default, F-2

default assignments, 2-1 to 2-2
explicit, 2-1

implicit, 2-2
Logical unit 0, patching, 1-17,

2-3

Logical units, 2-10, 2-19, D-l,
D-2, D-7, F-2

default number of, 1-18

Logical variables, specifying
default length of, 1-8

Lowercase words/letters, 2

LST file, 1-4, 1-5, 1-22
SLSTI, 3-10

SLSTO, 3-10

MACRO, 1-11

MACRO-11, 3-16

MACROS, record mode, 2-17
Magnetic tape, variable-length

records on, 2-14
MAP file, 1-4, 1-11, 1-23, 1-26
Mapping, intrinsic function

name, 5-1l

logical unit 0 (see Logical
unit 0, patching)

MAXBUF, 1-14, 2-15, 3-9, F-3

Modular programming, 5-2
/MP Task Builder switch, 1-11,

1-28

/MU Task Builder switch, 1-11

Multiblock transfers, 2-11
Multiple readers, (see File

Sharing)

Names, symbolic, C-15

"NEW', 2-17, 2-19, E-3

/NOF77 switch, 1-31, 2-10, E-1
"NULL', 2-10

SSOBF1, 3-10

OBJ file, 1-4, 1-5, 1-11, 1-20,
l-21, 1-23

Object modules, 1-1, 1-3
relocatable, 1-5, 1-20

INDEX

Object Time System (see OTS)

ODL files, 1-4, 1-20

ODT debugging program, 1-11, 1-32
OLB files, 1-4, 1-16, 1-20, 1-24
"OLD', 2-17, 2-19, E-3
/OP compiler switch, 1-9
SOPEN, 2-19

OPEN statement, 2-1, 2-2, 2-4,

2-5, 2-8, 2-9, 2-17, 2-19,
5-l, 5-2, 7-1, C-14,
E-l, E-2, E-3, F-3

OPENSU, 2-17

OPENSW, 2-17

Operations, binary, 4-11
OPNTSD, 2-17

Optimization, compiler, 5-1,
5-4 to 5-9

Optimization, integer typing,
4-10

Optimized programs, 5-5

Optimizing, 2-20
Options, RSTS/E Task Builder,

1-26
Task Builder 1-14 to 1-18

ORGANIZATION keyword, 2-4, 2-12
SORGIX, 3-10
SORGRL, 3-10
SORGSQ, 3-10

OTS, 1-2, 1-9, 1-10, 1-17, 1-19,
1-26, 1-27, 1-28, 1-34, 2-12,
2-21, 3-1, 3-9, 5-1, 5-9,
5-12

overlaid, 5-10

overlaying the, 1-43
SSOTSD, 3-9
SSOTSI, 3-9
SOTV, 3-10

Overhead, record, 2-9

Overflow, 4-11, 5-13

integer, 4-8

Overlaid programs, 1-28
building, 1-43

Overlay description file, (see
Files, overlay description;
also see ODL files)

Overlay Description Language,
1-42 to 1-43

Overlays, 1-41, 5-13, E-3
OTS, 5-12

OVR attribute, 3-7

Pad byte, 2-9
PARAMETER statement, 5-1, 5-5
Parentheses in expressions, C-15
PAUSE statement, 5-1ll

~S$$S$ PSECT, E-3
PSECTS (see Program Sections)
SPDATA, 3-6

PDP-1l, 1

Index-6

INDEX

PIC, 1-17, 1-18, 3-10

Pointers, current record, 7-3

next record, 7-3
Position independent code

(see PIC)
PPN, 1-22
"PRINT!', 2-11, F-3
PRINT statement, 2-3, F-2

Process control, D-l, D-8

Processor-defined functions

(see Functions, intrinsic)

Program blocks, 5-6
Program counter, 3-16
Programming considerations,

RSTS/E, 1-29

Program sections (PSECTsS), 3-1,

3-5, 3-17, 3-18

blank common block, E-1

OTS, 3-9
Program size, 5-1

PROGRAM statement, 3-17

Program termination, D-l, D-7
Program units, limits of, C-14
Project number, programmer

number, 1-21, 1-22 (also see
PPN)

SPUT, 2-18

PUTSR, 2-17

PUTSS, 2-17

Q field descriptor, 2-9
QUE program, RSTS/E, 1-23

RAD50 subroutine, D-1l, D-8

Radix-50, D-1l, D-2, D-8

Random number generators, B-13
R50ASC subroutine, D-2, D-9

READONLY keyword, 2-13

READ statements, 2-3, 2-7, 2-9,

2-18, 2-19, 2-20, 3-12, 7-3,
7-6, 7-8, A-2, F-2 (also see

I/O, list-directed; indexed

READ statements)

REAL*4 (see REAL)

REAL*8 (see DOUBLE PRECISION)

RECL keyword, 2-8, 2-9, 2-13, F-3
Record access, 2-4 (also see

Access modes)

Record buffer size, default, F-3

Record length, 5-9
Record Management Services,

(see RMS-11)

Record mode, 2-11
Records, 2-3, 2-8 to 2-10, 2-15

deleting, 7-6

Records (Cont.)

end file, 2-16

fixed length, 2-6, 2-7, 2-8,

2-14, 2-15

formatted, 1-15, 2-14, 3-10

locked, 7-7

long, 2-9
segmented, 1-18, 2-8, 2-9, 2-15
unformatted, 1-18, 2-14
unformatted sequential, 2-9

updating, 7-5
variable length, 2-8, 2-14, 2-15,

7-4

Record size, 1-17

RECORDSIZE (See RECL)

RECORDTYPE keyword, 2-8, 2-10,
2-14

Reference, generic functions,

4-2

Registers, floating point, 3-3,
3-16

general, 3-3, 3-16

"RELATIVE', 2-13

RESLIB, 1-18, 1-25

RED, xiii
Return Permitted Bit, 3-13
SREWIND, 2-19

REWIND statement, 2-16, 2-19

REWRITE statement, 2-18, 7-3,

7-5, 7-6

RMS, 1-24, 2-3 (also see RMS-11;

RMS-11K)

RMS-1l1l, 1-10, 1-16, 1-17, 1-19,

1-27, 1-30, 1-31, 1-32, 1-33,

2-4, 2-11, 2-12, 2-16, 2-17,
2-20, 3-10, 5-1, 5-9, 5-12,
5-13

RMS-11K, 1-10, 2-4, 2-6, 2-18,

5-11
RMSLIB, 1-11

RMS11M.ODL, 5-12

RMSRES, 1-19, 1-25, 2-20, 3-10

RO attribute, 1-17, 1-18, 3-7
/RO compiler switch, 1-9
-ROOT statement, 1-42
RSX-11, 1-1, 1-2

RSX Emulator, 1-16, 1-29

RSX-11S, 5-10
RUN command, 1-4, 1-16, 1-20,

1-23, 1-25, 1-29, 5-13
RW attribute, 1-17, 1-18, 3-7

SAV attribute, 3-7, E-3
"SAVE', 2-11

SSAVE PSECT, 1-45, 3-6

SAVE statement, 3-6

in overlaid programs, 1-45
"SCRATCH', 2-17, 2-19, E-3

SECNDS subroutine, D-2, D-9

Index-7

Sections, impure data, 3-4
pure code, 1-8

pure data, 1-8

"SEGMENTED', 2-15

Segments, overlay, 1-42

Sequence numbers, internal, 3-16

"SEQUENTIAL', 2-13

Sequential formatted I/0, 3-1
Sequential I/0, 2-17, 2-18
Sequential I/O statements, 5-10
Shareable libraries (see

Libraries, resident)
SHARED keyword, 2-15

SSHORT, 5-11

SHORT.OBJ, 5-11

Slash characters, 1-15, 1-16,

1-26
Source listing, 3-16

Source program, transforming a,
1-1

/SP compiler switch, 1-9

Spooling, listing file, 1-8
map file, 1-12

/SP Task Builder switch, 1-12

/ST:XXX compiler switch, 1-9, 1-23
Stack, execution, 3-4
Stack pointer, 3-2, 3-16

processor hardware, 3-3
Status bits, floating-point, 3-3
STATUS keyword, E-l, E-3
STOP statement, 1-20, 5-11
Storage, file, D-7

file-system control block, 3-9
I/O buffer, 3-9
I/O record buffer, 3-9

logical unit number, 3-9
object-time format, 3-10

virtual array, 3-20
Storage map listings, 3-16
Storage units, 2-14

Subexpressions, common, 5-7
Subroutines, 3-17, 3-18

SUBROUTINE Subprogram, 3-17, D-8
Strings, converting, D-l, D-2

Substrings, character, 6-1
Switches, 1-2

compiler, 1-7, 1-9, 1-22

RSTS/E Task Builder, 1-24
RSX-ll command, 1-4

SY:, 2-1 to 2-2
SYSLIB.OLB, 1-10

SYSRES, 1-16, 3-10
System disk (See SY:)
System relocatable library

(see Libraries, system)

system relocatable library,
RSTS/E (see Libraries,
system)

INDEX

Task, continuing a, 1-17
ending a, 1-17

Suspending a, 1-17

Task Builder, 1-10, 1-28, 2-1,

2-20, 3-6
invoking the, 1-1l

RSTS/E, 1-24

uSing libraries with, 1-15
Task Builder options

(see Options)

Task-building, 1-1

RMS, 2-19
RSTS/E, 1-24
RSX-11, 1-9

VAX/VMS, 1-34

Task image, 1-1, 1-3, 1-9, 1-10,
1-24

Task image, executing (see
Executing a program)

Task names, D-8

Task size, 5-13

Tasks, multi-user, 1-8

STEMPS, 3-6

TIME subroutine, D-2, D-10
Time, system, D-9

Time of day, current, D-2, D-9,
D-10

TKB Command, 1-9, 1-1l, 1-24,
1-35

in interactive mode, 1-14

/TR:XXX Compiler switch, 1-10,
1-32, C-16

Traceback, error (see Error

traceback)
Traceback facility, 1-46
Traps, Synchronous system, C-16
Tree structure, overlay, 1-42

TSK files, 1-4, 1-10, 1-24, 1-25
Type declaration statements,

character, 6-2

TYPE keyword, 2-17, 2-19, E-3
TYPE statement, 2-3, F-2

UIC, 1-3

default, 1-4

Unformatted indexed WRITE, 7-3

Unformatted sequential I/O, 2-15

Unformatted sequential READ, 2-15

UNITS option, 3-9
"UNKNOWN', 2-17, 2-19, E-3

UNLOCK statement, 2-19, 7-8

Index-8

SUPDATE, 2-18
Uppercase words/letters, 2

User account, RSTS/E, 1-22

USEREX subroutine, D-1, D-6
User identification code

(see UIC)
USEROPEN keyword, 2-15, 2-18,

V

"VARIABLE', 2-10, 2-15

Variables, 3-17, 3-18
character, 6-1
equivalencing, 4-12

integer, 4-8

SVARS, 3-6

SVIRT, 3-7

VIRTUAL statement, 3-21

INDEX

7-2

W errors, C-l

/WF:n compiler switch, 1-10,
/WR compiler switch, 1-9, C-l

Write sharing (see File sharing)
WRITE Statements, 2-7, 2-18, 7-3,

7-4, 7-5

C-14

X edit descriptor, E-l, E-4

"ZERO', 2-10

Index-9

READER’S COMMENTS

PDP-11 FORTRAN-77

User’s Guide

AA-V194A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[_] Assembly language programmer

[_] Higher-level language programmer

(_} Occasional programmer (experienced)

[|] User with little programming experience

[.] Student programmer

|_] Other (please specify)

Name Date

Organization

Street

City State Zip Code

or Country

- — -—- — DoNotTear- Fold Here and Tape — — — — — —- —~ —-~- —- —- 7- 7m7> rrr ee ell |

| | | | No Postage

Necessary

d|ijgji|tlal! if Mailed in the | |
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD
NASHUA, NEW HAMPSHIRE 03061

— — — DoNotTear-FoldHeree — — — — —- —~ ~~ —- - -—- > >—- > r-o>-r -—--—--—I|

Cu
t

Al
on

g
Do

tt
ed

Li

ne

	0-01
	0-02
	0-03
	0-04
	0-05
	0-06
	0-07
	0-08
	0-09
	0-10
	0-11
	0-12
	0-13
	0-14
	0-15
	0-16
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-06A
	1-06B
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Z-01
	Z-02

