®

Bell Laboratories

UNIX
User’s Manual

UNIX
User’s Manual

Release 3.0

T. A. Dolotta
S. B. Olsson
A. G. Petruccelli

Editors

June 1980

Not for use or disclosure outside the

Bell System except under written agreement.

Laboratory 364
Bell Telephone Laboratories, Incorporated
Murray Hill, NJ 07974

Copyright © 1980 Bell Telephone Laboratories, Inc.

UNIX is a Trademark of Bell Telephone Laboratories, Inc.

This manual was set on an AUTOLOGIC, Inc.
APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

ACKNOWLEDGEMENTS

The form and much of the content of this manual come from the UNIX
Programmer’s Manual—Seventh Edition (Volume 1), developed by M. D.
Mcllroy. In addition, parts of the present manual’s contents are descended
from the UNIX Programmer’s Manual— Sixth Edition by K. Thompson and
-D. M. Ritchie (Bell Laboratories, May 1975), the UNIX/TS User’s
Manual—Edition 1.1 by T. A. Dolotta and S. B. Olsson, eds. (Bell Labora-
tories, Jan. 1979), and the PWB/UNIX User’s Manual— Release 2.0 (Bell
Laboratories, June 1979). P. E. Cannata and G. C. Vogel rewrote Section 2
for this edition. Many members of Centers 127 and 135, and of Laboratory
364 helped in the creation of this volume; their help is hereby gratefully
acknowledged.

Murray Hill, New Jersey

n-
ouU

A
.B.
.G

>
o

INTRODUCTION

This manual describes the features of UNIX. It provides neither a general overview
of UNIX (for that, see ‘““The UNIX Time-Sharing System,”” BSTJ, Vol. 57, No. 6,
Part 2, pp. 1905-29, by D. M. Ritchie and K. Thompson), nor details of the
implementation of the system (see ‘‘UNIX Implementation,”” BSTJ, same issue,
pp. 1931-46).

Not all commands, features, and facilities described in this manual are available in
every UNIX system; for example, yacc(1) is usually not available in a UNIX system
running on a PDP-11/23. When in doubt, consult your system’s administrator.

This manual is divided into eight sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.

1C. Communications Commands.
1G. Graphics Commands.

IM. System Maintenance Commands.
System Calls.

. Subroutines:

3C. C and Assembler Library Routines.
3M. Mathematical Library Routines.
3S. Standard 1/O Library Routines.
3X. Miscellaneous Routines.

Special Files.

File Formats.

Games.

Miscellaneous Facilities.

System Maintenance Procedures.

w N

PN

Section 1 (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user’s programs. Commands
generally reside in the directory /bin (for bimary programs). Some programs also
reside in /usr/bin, to save space in /bin. These directories are searched automati-
cally by the command interpreter called the shell. Sub-class 1C contains communi-
cation programs such as cu, dpr, fget, etc. These entries may differ from system to
system. Sub-class 1M contains system maintenance programs such as fsck, mkfs,
etc., which generally reside in the directory /etc; these commands are not intended
for use by the ordinary user due to their privileged nature. Some UNIX systems
have a directory called /usr/lbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX supervisor, inchiding
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /lib and /usr/lib. See intro(3)
for descriptions of these libraries and the files in which they are stored.

Section 4 (Special Files) discusses the characteristics of each system file that actu-
ally refers to an input/output device. The names in this section generally refer to
the Digital Equipment Corporation’s device names for the hardware, rather than to
the names of the special files themselves.

Section § (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(5). Excluded
are files used by only one command (for example, the assembler’s intermediate
files). In general, the C language struct declarations corresponding to these for-
mats can be found in the directories /usr/include and /usr/include/sys.

-5.

on$H2Z -

Introduction

Section 6 (Games) describes the games and educational programs that, as a rule,
reside in the directory /usr/games.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot pro-
cedures, etc. Information in this section is not of great interest to most users.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each
section are alphabetized, with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1. Some entries may
describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its ‘‘major’’ name.

All entries are based on a common format, not all of whose parts always appear:
The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and pro-
gram names found elsewhere in the manual (they are underlined in the
typed version of the entries).

Square brackets [] around an argument prototype indicate that the
argument is optional. When an argument prototype is given as ‘‘name’’ or
“file’’, it always refers to a file name.

Ellipses ... are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument
beginning with a minus —, plus +, or equal sign = is often taken to be
some sort of flag argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files whose names
begin with —, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.
The FILES part gives the file names that are built into the program.
The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produ-
ced. Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

A table of contents and a permuted index derived from that table precede Sec-
tion 1. On each index line, the title of the entry to which that line refers is fol-
lowed by the appropriate section number in parentheses. This is important because
there is considerable duplication of names among the sections, arising principally
from commands that exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(1) command, q.v.

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX:
how to log in and log out, how to communicate through your terminal, and how to
run a program. (See UNIX for Beginners by B. W. Kernighan for a more complete
introduction to the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports
full-duplex ASCII terminals. You must also have a valid user name, which.may be
obtained (together with the telephone number(s) of your UNIX system) from the
administrator of your system. Common terminal speeds are 10, 15, 30, and 120
characters per second (110, 150, 300, and 1,200 baud); occasionally, speeds of 240,
480, and 960 characters per second (2,400, 4,800, and 9,600 baud) are also availa-
ble. On some UNIX systems, there are separate telephone numbers for each availa-
ble terminal speed, while on other systems several speeds may be served by a
single telephone number. In the latter case, there is one “preferred’’ speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of
meaningless characters (the login: message at the wrong speed). Keep hitting the
‘‘break’ or ‘‘attention” key until the login: message appears. Hard-wired ter-
minals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and
a half-/full-duplex switch that should be set to full-duplex. When a connection (at
the speed of the terminal) has been established, the system types login: and you
then type your user name followed by the “‘return’ key. If you have a password
(and you should!), the system asks for it, but does not print (‘‘echo”) it on the
terminal. After you have logged in, the ‘‘return’’, ‘‘new-line’’, and “line-feed”
keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters, UNIX will assume that your terminal cannot generate lower-case
letters and that you mean all subsequent upper-case input to be treated as lower
case. When you have logged in successfully, the shell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult login(1) and gerty(8), which discuss the login
sequence in more detail, and siy(1), which tells you how to describe the character-
istics of your terminal to the system (profile(5) explains how to accomplish this last
task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.

2. You can log out by typing an end-of-file indication (ASCIl EOT character,
usually typed as “‘control-d’’) to the shell. The shell will terminate and the
login: message will appear again.

How to communicate through your terminal. When you type to UNIX, a gnome
deep in the system is gathering your characters and saving them. These characters
will not be given to a program until you type a ‘‘return” (or ‘‘new-line”’), as
described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means
that you can type at any time, even while a program is typing at you. Of course, if
you type during output, the output will have interspersed in it the input characters.
However, whatever you type will be saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded,
the system throws away all the saved characters.

oOx—+HzZ-—

ON—Z-

How To Get Started

On an input line from a terminal, the character @ ‘‘kills” all the characters typed
before it. The character # erases the last character typed. Successive uses of #
will erase characters back to, but not beyond, the beginning of the line; @ and #
can be typed as themselves by preceding them with \ (thus, to erase a \, you need
two #s). These default erase and kill characters can be changed; see sty(1).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is
useful with CRT terminals to prevent output from disappearing before it can be
read. Output is resumed when a DC1 (control-q) or a second DC3 (or any other
character, for that matter) is typed. The DC1 and DC3 characters are not passed to
any other program when used in this manner.

The ASCII DEL (a.k.a. “‘rubout’’) character is not passed to programs, but instead
generates an interrupt signal, just like the ‘‘break’, ‘‘interrupt’’, or ‘‘attention”’ sig-
nal. This signal generally causes whatever program you are running to terminate.
It is typically used to stop a long printout that you don’t want. However, programs
can arrange either to ignore this signal altogether, or to be notified when it happens
(instead of being terminated). The editor ed(1), for example, catches interrupts
and stops what it is doing, instead of terminating, so that an interrupt can be used
to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also generates a file with the ‘‘core image’ of
the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent as to
whether you have a terminal with the ‘‘new-line’” function, or whether it must be
simulated with a ‘‘carriage-return’’ and ‘“‘line-feed’’ pair. In the latter case, all
input ‘‘carriage-return’’ characters are changed to ‘‘line-feed’’ characters (the stan-
dard line delimiter), and a ‘‘carriage-return’’ and ‘‘line-feed’’ pair is echoed to the
terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not
have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the stty(1) command will
set or reset this mode. The system assumes that tabs are set every eight character
positions. The rabs(1) command will set tab stops on your terminal, if that is pos-
sible.

How to run a program. When you have successfully logged into UNIX, a program
called the shell is listening to your terminal. The shell reads the lines you type,
splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in
your current directory (see The current directory below) for a program with the
given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories
where the shell can find them. You can also keep commands in your own direc-
tories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command
and its arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a § at
you to indicate that it is ready for another command. The shell has many other
capabilities, which are described in detail in sh(1).

The current directory. UNIX has a file system arranged in a hierarchy of direc-
tories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is by default assumed

-8 -

How To Get Started

to be in that directory. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. Permissions to have your
will with other directories and files will have been granted or denied to you by their
respective owners, or by the system administrator. To change the current directory
use cd(1).

Path names. To refer to files not in the current directory, you must use a path
name. Full path names begin with /, which is the name of the root directory of the
whole file system. After the slash comes the name of each directory containing the
next sub-directory (followed by a /), until finally the file name is reached (e.g.,
/usr/ae/filex refers to file filex in directory ae, while ae is itself a subdirectory of
usr; usr springs directly from the root directory). See intro(2) for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein
begin with the name of the corresponding subdirectory (without a prefixed /).
Without important exception, a path name may be used anywhere a file name is
required.

Important commands that modify the contents of files are ¢p(1), mv(1), and rm(1),
which respectively copy, move (i.e., rename), and remove files. To find out the
status of files or directories, use Is(1). Use mkdir(1) for making directories and
rmdir(1) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning
of the INTRODUCTION above. It may also be useful to glance through Section 2 of
this manual, which discusses system calls, even if you don’t intend to deal with the
system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use
ed(1). The four principal languages available under UNIX are C (see cc(1)), For-
tran (see f77(1)), bs (a compiler/interpreter in the spirit of Basic, see bs(1)), and
assembly language (see as(1)). After the program text has been entered with the
editor and written into a file (wWhose name has the appropriate suffix), you can give
the name of that file to the appropriate language processor as an argument. Nor-
mally, the output of the language processor will be left in a file in the current direc-
tory named a.out (if that output is precious, use mv(1) to give it a less vulnerable
name). If the program is written in assembly language, you will probably need to
load with it library subroutines (see /d(1)). Fortran and C call the loader automati-
cally; programs written in bs(1) are interpreted and, therefore, do not need to be
loaded.

When you have finally gone through this entire process without provoking any
diagnostics, the resulting program can be run by giving its name to the shell in
response to the $ prompt.

If any execution (run-time) errors occur, you will need adb(1) to examine the
remains of your program. On the VAX-11/780, a second debugger sdb(1), which
allows you to step through C statements rather than assembler instructions, is
available.

Your programs can receive arguments from the command line just as system pro-
grams do; see exec(2).

Text processing. Almost all text is entered through the editor ed(1). The com-
mands most often used to write text on a terminal are cat(1), pr(1), and nroff(1).
The cat(1) command simply dumps ASCII text on the terminal, with no processing
at all. The pr(1) command paginates the text, supplies headings, and has a facility
for multi-column output. Nroff(1) is an elaborate text formatting program, and
requires careful forethought in entering both the text and the formatting commands
into the input file; it produces output on a typewriter-like terminal. Troff(1) is very

-9.

O¥HAZ —

OXN—Z—-

How To Get Started

similar to nroff(1), but produces its output on a phototypesetter (it was used to
typeset this manual). There are several ‘“macro’’ packages (especially the so-called
mm package) that significantly ease the effort required to use nroff (1) and troff(1);
Section 7 entries for these packages indicate where you can find their detailed
descriptions.

Surprises. Certain commands provide inter-user communication. Even if you do
not plan to use them, it would be well to learn something about them, because
someone else may aim them at you. To communicate with another user currently
logged in, write(1) is used; mail(1) will leave a message whose presence will be
announced to another user when he or she next logs in. The corresponding entries
in this manual also suggest how to respond to these two commands if you are their
target.

When you log in, a message-of-the-day may greet you before the first §.

-10 -

TABLE OF CONTENTS

1. Commands and Application Programs

introintroduction to commands and application programs
300handle special functions of DASI 300 and 300s terminals
4014paginator for the Tektronix 4014 terminal
450handle special functions of the DASI 450 terminal
acctoverview of accounting and miscellaneous accounting commands
acctcmscommand summary from per-process accounting records
acctcom« . . «search and print process accounting file(s)
acctcon &« ¢ e s s s e s s s s s « . .cOnnect-time accounting
acctmerg « « « + .+« . .merge or add total accounting files
ACCIPIC « « + « o o o « o o o o o o o « « & « « « « . .process accounting
acctshshell procedures for accounting

Cc
0
N
T
E
N
T
S

adb L. 00 s e e e e e e e e e . . . debugger
admin00l e e e e e create and administer SCCS files
Y archive and library maintainer
arcv.convertarchive files from PDP-11 to VAX-11/780 format
aS.PAP &+ v v v e e e e e e e e e e e e e e e e e assembler for PDP-11
AS.VAX 4 4 4 e e e e e e e e e e e eassembler for VAX-11/780
awk 0000 pattern scanning and processing language
banner ¢ it 4 4 s e e e e e e e e+« . . .makeposters
basename 0 e e e e e e e e deliver portions of path names

bc¢...arbitrary-precision arithmetic language
BCOPY « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e e e ointeractive block copy
T 1 T4 i
bfs . . 4 i i i i i e e i e e e e s e e e s e s e s« . .Dbigfilescanner

bs 0o a compiler/interpreter for modest-sized programs
cal 000 e e « « e+ e s e s e e o+« o oprint calendar
calendar e e e s s e e e e e e e e+ .reminderservice

€Al . « « « + s s s s s s s s s s o s s s« . «concatenate and print files
b . . i i i i i e e e i e i e e e e e e s+ oCprogram beautifier
CC o o o s o o o o o s e s o o o o o s s s s s s s o s e oo oCcompiler
ed . . . i i i e e e e e e e e e oo« .change working directory
cdc . .« ... ¢e.. .. .changethe delta commentary of an SCCS delta
chmod. ¢ ¢ ¢t ¢ ¢ ¢ s s e e s e e e e+« .change mode
chown00 000change owner or group
chrootchange root directory for a command
cri .« . . ¢ . . i e i e e e e e e e e e e e e e e« . ocCleari-node
CMP « ¢ ¢ ¢ ¢ o o s s o s o s s s s s s s s o« o« « o «comparetwo files
€Ol v v v e i e e e e e e e e e e e e e s e s« .filter reverse line-feeds
combttt et .combineSCCS deltas
commselectorreectlines common to two sorted files
config . . ¢« ¢« ¢ ¢« ¢t ¢t s e e e e e e oo« «configurea UNIX system
CP « « ¢ e o« o« o « o o o o o o s o o s o « s o« « «cCOpY, link or move files
CPIO « « ¢ v ¢ ¢ ¢ o ¢ o o s o s o o+« ocopyfile archives in and out
crash.¢¢t e eeesesesa .. .ecxaminesystem images
cref . . . i i e e 4 e s e e e e« . .makecross-reference listing
CTON ¢ « 4 o o o o o o o o s s s s o o o o o o« o o o « o« «Clock daemon
CIYPL « « ¢ & o o o o e e o o o o s o o o o« o o s o « « « »cncode/decode
cSplit « « ¢ ¢ v . e e i i i e e i e e e e e s s e e« . . .contextsplit
Cl ¢ & o o o 4 o s o o o o o o s o s s s s e s s s s e« «callterminal
CU « o ¢ ¢ « ¢« ¢ s o o o o o o o o oo oo oo ocallanother UNIX system
CUt . « ¢« « s o« « o « « « « « « «cutoutselected fields of each line of a file
CW « 4 4 « o o o o s o o s o o« « o« oprepare constant-width text for troff
date i e e e e e e e e e e e e e e e e e print and set the date

»n—H4ZmM—HZ00

Table of Contents

dc 000 e el e et e e e e e e e e e desk calculator
dd . . . e e e e e e e e e e e e e e e e e e convert and copy a file
delta ¢ make a delta (change) to an SCCS file
deroff remove nroff/troff, tbl, and eqn constructs
devnm e e e e e e e e e e e e e device name
L report number of free disk blocks
diff000000 e « o « « « . .differential file comparator
diff3 00000 e e . . 3-way differential file comparison
diffmk et e e e e e e e e e e mark differences between files
dircmp e e e e e e e e e e directory comparison
dpd HONEYWELL sending daemons, line printer daemon
dpr 0. .. e e e e e e e e e e e e e e off-line print
du e e e e e e e s e e e e e e e e summarize disk usage
dump. G h e e e e e e e e e e incremental file system dump
- 1 T echo arguments
ed e e e e e e e e e e e e e e e e e text editor
1 Extended Fortran Language
1 set environment for command execution
€QN v v . . e e e e e e e e . . format mathematical text for nroff or troff
errdead. e e e e e e e e e extract error records from dump
errdemon e e e e e e e e e error-logging daemon
EITPL ¢ ¢ ¢ v v v v o v e e e e e e e e e process a report of logged errors
eITStOP & + « « o o o o s o o « « « . .terminate the error-logging daemon
EXPI v v v e e e e e e e e e . « . . evaluate arguments as an expression
o e e e e e e Fortran 77 compiler
factor e« « « « « « « . factor a number, generate large primes
fget .« . ¢ o it e e e e e e e retrieve files from the HONEYWELL 6000
fgetdemon e o o s o« o s o« . .fileretrieval daemons
file........ e e e e e et e e e e e e . determine file type
1T find files
fsck « . .. oo . file system consistency check and interactive repair
fsevconvert files between PDP-11 and VAX-11/780 systems
fsdb et e e e e e e e e e file system debugger
fsendc.00.. scnd files to the HONEYWELL 6000
fWImMP . & ¢ o v e e et e e e e e e e e e e e manipulate wtmp records
geat send phototypesetter output to the HONEYWELL 6000
geosmail 0L e e e e e e e e e e e e e e send mail to HIS user
gdev e « s s s e e+« . .graphical device routines and filters
ged e e e e e s e e e e e e e e e graphical editor
get s se e s e e e e e e . . get a version of an SCCS file
BELOPt . . . o vt et e e e e e e e e e e parse command options
-3 1) draw a graph
graphicsaccess graphwal and numerical commands
greek 000 e e e e e e e e e . . .select terminal filter
BIEP v ¢ e e e esearchaﬁleforapattern
gutil e e e e e e e e e e e e e . « . . graphical utilities
help & & v v e e e e et e e e e e e e e e e e e e e e e ask for help
hp handle special functlons of HP 2640 and 2621-series terminals
hyphen e e s s e e e s s e s s s find hyphenated words
T « « « « . print user and group IDs and names
install 0o e e install commands
join, e 4 s s s s e s s s s s o orelational database operator
kas e « ¢ s s+ e« .assembler for the KMC11 microprocessor
kil e e e e e e e e e terminate a process
kun, e un-assembler for the KMC11/DMCI11 microprocessor
S e e e e s e e e e e e e e e link editor

Table of Contents

lex .« . 000 e e generate programs for simple lexical tasks
line e e e e e e e e e e . read one line
linkk¢........cxerciselink and unlink system calls
1 . « . .aC program checker
login v i i i e e e e e e e e e e e e e e e . sign on
logname ¢ v b it e e e e e e e e « « « . .getlogin name
lorder find ordering relation for an object library
lpr. e e e e e e e e e e e e e e line printer spooler
IS © v« v e i i e e e e e e e e e e e e« . . .listcontents of directories
méd . . .00 D macro processor
mail e e e e e e e e e send mail to users or read mail
makemaintain, update, and regenerate groups of programs
man e e e e e e e e e e e e e print entries in this manual
MESE « « ¢ o o o o o o o o o o o o o o o o o o permit or deny messages
mkdir 000000 « « « + « o+« .« .. .makea directory
mkfs C e e e e e e e e e . « . .construct a file system
mknod 0 il e e e e e e e e e e e e e e build special file
mm print out documents formatted with the MM macros
mmchek check usage of mm macros and eqn delimiters
118 11 typeset documents, view graphs, and slides
MOUNt .+ « &+ & & ¢ o ¢ o « o o & . « « . . mount and dismount file system
mvdir e e e e e e e e e e . move a directory
ncheck e« + « « s« « « . .generate names from i-numbers
NEWEBIP « « + ¢ o o o o o o o o o o o o o o o o o oo log in to a new group
NEWS « v v o o o o o o o o o o o o o e « « « « « « « . .print news items
NICE & v v v v s o o v o o o o o .« « .+ . .runacommand at low priority
1) e e « ¢ e« s s o« o« o oline numbering filter
10 1 « « « . . .print name list
nohup run a command immune to hangups and quits
od e e e e e s s e s s e e e e s . . .octaldump
Orjestat . . & ¢ ¢ 4 o a0 0 e s e e e . « « « « RJE status and enquiries

Pack « « ¢« + . . 4 s s e e e e e e s ecompressand expand files
passwd e+ e.... .changelogin password
paste merge same lines of several files or subsequent lines of one file
PT « ¢ ¢ ¢ ¢ e o o o o o s o s s s o o s o o s e s o+« . o .printfiles
prof . . . ¢ . . i i i i i i e e e e edisplayprofile data
profilero0perating system profiler
PIS « ¢ & ¢« 4 ¢ « + ¢ s e s s s s s e s s s s o+ . . oprintanSCCS file
PS o ¢ ¢ ¢ o ¢« s e e s s e s e e s s s e s s « « « o Feport process status
PLX & ¢ ¢ o ¢ ¢ o o o o o o o s o o s s s e s« o« opermutedindex
PWek ¢ . ¢ v s e e e+ o«password/group file checkers
pwd e 4 e 4 e e e v e eworking directory name
ratfor ¢ . 4 s s 4 e s s s s o s s« . .rational Fortran dialect
reformttt e e e e e« . .reformattext file
FTEECMP . « . « « « « « o = « « « « » « « - . .regular expression compile
FTESTOT . . o « + o o« o o o« s« o« o« o s « » « »incremental file system restore
rjestatRIJE status report and interactive status console
FM « ¢ o ¢ « s s o s o s o « s s s o o s« o «remove files or directories
rmdelremoveadelta from an SCCS file
rsh¢¢¢eee. .. .restricted shell (command interpreter)
FUNACCL & & & o o o o o s o o o o o o o o o o « « « »run daily accounting
SACt « ¢« « ¢« ¢« « « « o o « « « « « « oprint current SCCS file editing activity
SAZ ¢ « = .+ + 4 s o o s e o s s s s e s s s s « s s .System activity graph
SCC e « « ¢« « ¢« s s e s s s o o« s o« o Ccompiler for stand-alone programs
scesdifcomparetwo versions of an SCCS file
sdb. i it i i ettt e e e e esymbolicdebugger

-3-

C
0
N
T
E
[\
T
S

Table of Contents

sdifside-by-side difference program
S€d . . . i i e i e e e e e e e e s e e s e s e e e e s . .stream editor
sendgatherfilesand/or submit RJE jobs
SetmMNt « v « +« ¢ « 4 e e o s o s o« s . . .establish mnttab table
shshel the standard command programming language
shutdownterminate all processing
SIZE « & ¢ v 4 4 v e 4 4 e e e e e e e e e e . . .sizeof an object file
sleepsuspend execution for an interval
SO « + « v o « o o o « s o s s s s e s s e s+« « «SNOBOL interpreter
SOTt « « ¢ 4 o « o o o o o « o o « o o « « « « « .sortand/or merge files
spellfindspelling errors
spline.interpolate smooth curve
splitsplita fileinto pieces
St. « « ¢ e 4t s e e e e e s e e e e+« . «synchronous terminal control
statstatistical network useful with graphical commands
Strip. « « « « « + ¢« « ¢« « + 4« .+removesymbols and relocation bits
Sty .« 4 . . . ¢+t 4« e s s« e s s« « « o .setthe options for a terminal
SU « « o « « s s s o e« s oo o+ . .becomesuper-user or another user
SUM . . « « ¢« « ¢ « o « s ¢« o« o« s« + .+ « -sumand count blocks in a file
SYNC + « ¢ « « o o o o o s « o o o+ + s« « « « + «update the super block
sysdef e ettt o . .system definition
tabs ¢ s 4 e 4 4 e 4 e s s e e e esettabs on a terminal
taildeliver the last part of a file
BAF & & v ¢ 4 e e e e s e e s s s e s e e s s e s s . . .tape filearchiver
tbl ¢ vt .formattables for nroff or troff
1€ ¢« ¢« « ¢ ¢ + 4 s s s s s s s s s s s e+« o« .phototypesetter simulator
BEE & v ¢ 4t e e e s e e e e e s e s e e s e e e e e+ .« .pipe fitting
teSt . + ¢ ¢ +« 4 ¢ s o s o o o o o s o « « »condition evaluation command
tIME . . &« ¢ ¢ ¢ ¢ ¢ o o « ¢ o s o s ¢ o o « o« o « « « »timeacommand
timex.timeacommand and generate a system activity report
tOC .+ « ¢ ¢« « o s s o « s o« « « .« . .pgraphical table of contents routines
touch.update access and modification times of a file
P + ¢ ¢ ¢ ¢ ¢ e e ¢ e 4 e s e e e e e o« . . .manipulate tape archive
tplot« . i 4 e e e e e e s sgraphics filters
Bf &« ¢ ¢ 4 4 e ¢ e o s o o s s s s s e s s s« o« . «translate characters
troff ¢ . . o s i v e e e e e . .typeset or format text
tTU€ « « + + « ¢+ o ¢ o o o o s o s o o o o o « o« « o «provide truth values
BSOMt « &+ ¢ & « o o o o o o o o o« o o o s o o o« o+ « « « .topological sort
tY « « « « o o o o o o o o s o s o s s s o « o+ »getthe terminal’s name
LYPO « « ¢ ¢« ¢« o o « o« o « o o« « « « « o «find possible typographical errors
umask¢setfile-creation mode mask
UNAME . « « « « o o« o « o + o s o o« « « « « «print name of current UNIX
unget . . .« .« + + ¢ ¢« s o+ s+« . .undoa previous get of an SCCS file
UNIQ e « ¢« ¢ « o ¢« o o o o o« o o « « « « « o «report repeated lines in a file
UNItS + o & « ¢ o o o « o o o o o s s o s « s « + « -cCONVErsion program
uucleanuucpspool directory clean-up
UUCP + & + ¢ o o o o o s s o o o o s s o o « s o « o« «unix to unix copy
uustat 4 . . . o o s s+ o . UUCP Status inquiry and job control
uusub st e e s e e e e e o oMmonitor uucp network
UULO « « + « o o o o o o o o o o o« o « o «public UNIX-to-UNIX file copy
UUX © « « « « « « « « « o« s « « « « « « «Unix to unix command execution
Val o ittt i e e e e e e e s e e s e s e s s« o . ovalidate SCCS file
VC t v v v e o o o o o s s e e e . « « .« . version control
12 . S .VAX-11/780 LSI console floppy interface
volcopy - « « ¢ ¢ ¢+« s s o o« . . .copy file systems with label checking
VPMC . « « « ¢« « « « » « « « «» .compiler for the virtual protocol machine

-4-

Table of Contents

vpmstart«load the KMC11-B; print VPM traces
VPT &« « « + 4 4 4 o o 4 & & « « « « s« « « .. . Versatec printer spooler
wait e e e e e eawaitcompletion of process
wallo oo ewriteto all users
WC v s e v o o o s s o s o 4 o s o s e s s e e e s e+« .wordcount
what ¢ ¢ it 4 e s e s e e e s e s . . .identify SCCS files
who ¢ e eeeeoeeswso..whoisonthesystem
whodo¢.4¢.¢¢+e.e....whoisdoing what
WItE « « « « « ¢ & 4 o o o « o o o « « « « « « « . .write to another user
Xargs «construct argument list(s) and execute command
xrefcrossreference for C programs
YACC « « + + 4 4 4 o s 4 4 o+ s o« + o . oyetanother compiler-compiler

Cc
o}
N
T
E
N
T
S

2. System Calls

introintroduction to system calls and error numbers
ACCESS « « « « = « ¢« + o « « + « « « « . . «determine accessibility of a file
acct ¢+ e e e e+«cnableordisable process accounting
alarmsetaprocess’s alarm clock
brkchange data segment space allocation
chdirchange working directory
chmod.change mode of file
chownchange owner and group of a file
chrootchangeroot directory
close i i i ittt i e e e v oclose a file descriptor
creat«cCreatea new file or rewrite an existing one
dup ¢t .duplicate an open file descriptor
EXEC « « & + o« o o o o o o o s o s s s s e s s e s s« . . .executea file
€XIt 4 . 4 e 4 4 4 4 s e s e s s e e e sterminate process
fentl e e e e e i i e e e e e e . o . .filecontrol
forkCreatea new process
getpidgetprocess, process group, and parent process IDs
getuid get real user, effective user, real group, and effective group IDs
joctl e e et e s e e e e« . . .control device
killsendasignal to a process or a group of processes 1
link . . . 0 0 i i s e e e e e e e e e e e e e e e e . . Jlinktoa file
Iseekmoveread/write file pointer
mknodmakea directory, or a special or ordinary file
MOUNt & & « « « o o s o o o o s o o o s o o« + + « . . mounta file system
MICE .+ ¢ & v o ¢« o « « o s« « o« o+« « « « « + .change priority of a process
OPEN . ¢ « « « « « o « o o o« « o« « « « « « « «open for reading or writing
PAUSE « ¢ ¢ o« ¢« ¢« o 4 o o o s o o+« .+ « «suspend process until signal
PIPE . « ¢« ¢« ¢« ¢« 4 ¢« 4 4 e s s e e« oo . ocCreatean interprocess channel
profilt .. .executiontime profile
PITACE « « « « v 4 & o « « o o o s o o s o o o s s « o « « o process trace
read ittt e e e e e e e e e s e e e e+ . oread from file
SEIPETP « « « « « + o « o o s s o o s+ s« o+« . . .setprocess group ID
setuid e e v e e e e 4. .. .setuserand group IDs
signal 0000 0. . .specxfy what to do upon receipt of a signal
STAL © v ¢t v e e e e e e e e e e e e e e e s e s e oo o .getfile status
SIME . & v v v v i i i i i e e e e et e e e e e e e e . . .settime
sync.........................updatesuper-block
HIME &« ¢ & v ot e e o o e e e o o e v v v s e e s e e e e .. .gettime
tMES + o & ¢ v o o o o o o o o o o s get process and child process times
ulimit...................... get and set user limits
umasksetandgetﬁlecreationmask
UMOUNt & & o ¢ ¢« ¢ ¢ ¢ o o o o s o« « o « « « « « . unmount a file system

-5-

yn+4ZmM+42Z200

Table of Contents

UNAME . . « « . o o v o « o « « « « . .get name of current UNIX system
unlinkremove directory entry
UStat e e e e e e s e e s sgetfile system statistics
utimesetfileaccess and modification times
waitwaitfor child process to stop or terminate
WHEE « ¢ ¢ & ¢ o 4 o o o o o o o o o ¢« o« o o o« o« o« « « « - write On a file

3. Subroutines

introintroduction to subroutines and libraries
a64lconvert between long and base-64 ASCII
abortgenerate an IOT fault
abs i i i i et e e e e e« . .integer absolute value
@SSEIt . + v 4 « « « + ¢ o o o o o s o s o o« « + . .program verification
atof e i e it e e e e e e . .convert ASCII to numbers
besselbessel functions
bsearch eeeoeseasse. .binarysearch
COMV .« o v ¢ o« o o« o o o o o s o« o o + o o o o« o« « «Character translation
CIYPt « « ¢ ¢ ¢« ¢« ¢ ¢« o « o o ¢« o o o s o o o s« « .+« «DESencryption
ctermid4..¢.......generate file name for terminal
Ctimé « ¢« « « « « « « « « « « + « «convert date and time to ASCII
CLYPE . & ¢ ¢ 4 e ¢« o o o o o s o o o o o« « .« o .character classification
cuseridcharacter login name of the user
ECVE . & v vttt 4 4 e 4 s e s e e s e s e e e .« . .outputconversion
end e .. .lastlocations in program
€eXpecxponential, logarithm, power, square root functions
fclose . « . . ¢ v v v v v v e v e e s e e . oCloseor flusha stream
ferror ¢ s s 4 ¢ e s e e estream status inquiries
floorabsolute value, floor, ceiling, remainder functions
fopent i i i it e e e .. .0penastream
fptrap ¢ ¢ . ¢« ¢ e e e s e e s s s+ . . .floating point interpreter
freadbuffered binary input/output
frexp. . . . ¢« ¢ ¢ ¢+ e esplitintomantissaand exponent
fseek ¢ ¢ v ¢ s e 4 e e i e e s e ereposition a stream
€aMMA . . + « « o o « s o s s o s« s o o« o« « « « « . loggamma function
BEC ¢ 4 4 s s o s s o o o« o« .getcharacter or word from stream
BEtENV . + « + « + o« + « ¢« ¢« o o « « « o » » »value for environment name
BEBIENt . . &« o « o ¢ ¢ o o o o s o o o o « « o« o o . getgroup file entry
getlogin i i 4 et 4 4 e e e s s e e e .. .getlogin name
BEtOPt « « « ¢ ¢ 4 o 4 4 ¢ o s s o s o s s« o «getoption letter from argv
BEPASS . . 4+ + 4 s . s 4 4 s o e s e s e s o o+reada password
BEPW 4+ 4 e s s e e s s s e o o s s s o . .getname from UID
BEPWENt . . & ¢« ¢ « + « « o s s o o s s« s s o ogetpassword file entry
BES . .+« ¢ 4 4 4 s s s s e s e« s o s s . ogetastring from a stream
hypot ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e o s s o s s+« . oEuclidean distance
I3tolconvert between 3-byte integers and long integers
logname eeeeeeeese . ologinname of user
Isearch ¢ ¢ ¢ ¢ e o o e e oo oo« . .linearsearch and update
malloc ¢ et . .main memory allocator
mktemp « ¢ ¢« ¢ ¢ ¢ ¢ e oo« ...makea unique file name
MONItOr . . « = « « « « « o « « s o« o o « « » « . prepare execution profile
nlist © & . . ¢ ¢ ¢ ¢ 4 e 4 e s s s s s s s« . .getentries from name list
PEITOT « « « « o ¢ o o o o o s o o o o o o o« o o + . System error messages
plotgraphics interface subroutines
POPEN . « ¢ « « ¢« « « o o o« s « « « « « « .initiate I/O to/from a process
printf e s e e et e e oo .output formatters
PULC . « « « « « + + s o « o « « o » « . putcharacter or word on a stream

-6 -

Table of Contents

PUIDWENL & v & v o v v o o o o o o o o s o o o & write password file entry
PULS . & & v v v e e e e e e e e e e e e e e put a string on a stream
QSOTE o v ¢ v o o o o o o o o o o s o o o o 8 e 4 e e quicker sort
¥« random number generator
TEBEX « v o o 4 4 e e e e e e e e e e regular expression compile/execute c
scanf . .. v o e e e e e e e e e e e e e formatted input conversion 8
setbuf 0L sl e assign buffering to a stream T
SEUMP « ¢ v v v v et e e e e e e e e e e e e e e e non-local goto E
311 hyperbolic functions N
sleep . & & o 0 e e e e e e e e e e e e e suspend execution for interval g
ssignal 000 .. e e e e e e e e e software signals
] 1o standard buffered input/output package
SIINE o v v v v v o o v o v o e e e e e e e e e e e string operations
swab . . . L L e e e e e e e e e e e e e e e e e e e swap bytes
SYSEEM & v v ¢ 4 4t e e e e e e e e e e e e e e issue a shell command
tmpfile 00 i e e e e e create a temporary file
tMPNAM &« v o & v o o o o o o o o o & create a name for a temporary file
1 5 trigonometric functions
BYNAME & ¢ v ¢ o o o o o o o o o s o o o o o o s find name of a terminal
UNBELC . & v v v v v o v v o e e ... push character back into input stream

IMFO v & v v v v o vt e e e e e e e e e e e introduction to special files
e phototypesetter interface
¢ DJ-11 asynchronous multiplexor
dme communications link with built-in DDCMP protocol
4 e e e e e e e e e e DN-11 ACU interface
dgs o0 el « « « « . DQS-11 interface for two-point BSC
1 DU-11 synchronous line interface
dz DZ-11, DZ-ll/KMC—ll DH-11 asynchronous multiplexers
EIT & o e o v o s o o o o o o o s o o o o 8 8 s o error-logging interface
hp.. ..., . . RP04/RP05/RP06 moving-head disk
hs e RHII/RJSO3 -RJS04 fixed-head disk file
ht . .o e e e e . . . TU16 magnetic tape interface
kl. « « « KL-11 or DL-11 asynchronous interface
kme e e e e e e e e e e e e KMC11 microprocessor
Ip o o e line printer
MEM . & v v v o o v o o o e e e e e e e e e e e e core memory
null o & L L L L L e e e e e e e e e e e e e e e e e e . . the null file
Pel . . e e e e e e e e e e e e paralle] communications link interface
) o (O e« « « « « « + « o« .oOperating system profiler
. e e e e e e e e . « « « RF11/RS11 fixed-head disk file
2 « .« «.% .. .RK-11/RKO03 or RKOS disk
3 RL-11/RLO1 disk
¢+ S « « « « « « « RP-11/RP03 moving-head disk
1 SN e e e e e e e e e e e e e synchronous terminal interface
tm . v . .0 0. ¢« « + e+« .. .TMI1/TUI0 magnetic tape interface
trACE .« « « v ¢ ¢ s o o 0 o 0 . e e e e eevent-tracing driver
BY « « ¢ o ¢ ¢ e e 4 e s e s s s e e s o o« . .generalterminal interface
12+ e e e e e e e e Versatec printer
vVpm e« « e o s s s s s« s« oThe Virtual Protocol Machine

5. File Formats

INro . . « ¢« ¢« ¢« ¢« « « ¢ o o s s s o s « o« «introduction to file formats
aout. s e e e e e « « « « « «assembler and link editor output

-7-

Table of Contents

QCCl. & « « « s « o o o+ o « o o « « » « o per-process accounting file format
AT « « 4 o ¢ e o o s o o e o s s s e s s s s s s« o «archive file format
checklistlistof file systems processed by fsck
COTE + ¢ « o o s o o s o o s o o o o o« o+ « .format of core image file
CPI0 + ¢+ v & ¢ ¢ ¢« ¢« o s e e e e s o s oo+ s . oformatof cpio archive
dir « . ¢ ¢t ettt e e e e e e e e« . .formatof directories
dump+ ¢ ¢ ¢ e e . .incrementaldump tape format
erefile0 0 0o i e e e v v o error-log file format
fS « 4« v ¢« 4 v s s e e e s s e s s s e« . .formatofsystem volume
fSPEC « ¢ ¢« « « ¢ 4+ ¢ ¢ ¢« ¢« « « « « « . . format specification in text files
8PS + + + + o « « o« « . .graphical primitive string, format of graphical files
BIOUP ¢ « « « s o o « o s o o o o o a o o s o o o o o« « + o+ ogroup file
inittabcontrol information for init
iNode. « « + « ¢ v ¢ ¢t e 4 e s s e s e e e s . .formatofaninode
master . . + + « « » « « « « « « « + « . . master device information table
mnttab e« .mountedfile system table
passwd i te e 4 e 4 4 e e s e e e e« . .password file
plotgraphicsinterface
pnchfileformat for card images
profilesettingupan environment at login time
scesfile. 0 v it e e s s e e e e . . .formatof SCCS file
P ¢ ¢ ¢ ¢ ¢ 4 o o 4 s s s e e e e s e s e+« . . .magnetic tape format
ULMP « « « « + ¢ o o o o« « o o« o o« « « « « . utmp and wtmp entry format

C
(0]
N
T
E
N
T
S

6. Games

INFO . & « ¢« ¢« o o « o« « o s s « o o s o« o« « « « + »introduction to games
arithmeticprovidedrill in number facts
back « ¢ ¢ ¢ ¢« ¢ ¢« ¢« e ¢ e s s s e s s s s .« othe game of backgammon
Bj o ¢ ¢ ¢ 4t e e e e e e o e e s s s s e e s . .thegame of black jack
chess . . v v ¢ ¢« s v v 4 s s s s e e e e oo« o .thegame of chess
CTAPS « o« o o o o s o o o o o o s o o o o s o « « « o «the game of craps
hangman ¢ ¢ ¢ ¢ v e e e e .guesstheword
MAZE . « « « o o « o o s o o o s o o o o « o+ o « « « . .generate a maze
MOO « « « « « o o o « o s s o s s o s o o « o o « « « o ~guessing game
QUIZ . « ¢ ¢ o ¢ o o e o o s s e s e e s e e o o . . .testyour knowledge
FEVErSi « « « o« o o o o o o o« s o « « « « o« » «agame of dramatic reversals
SKY ¢« ¢« ¢ ¢ v e v i i it e e e et e e e . . .oDbtain ephemerides
Bl o vt v e e e e e e e e e e e s e s s e s e e e e s s o . .tic-tac-toe
WUMP « « « ¢+ « o o o « « s o« o « » » « « »the game of hunt-the-wumpus

7. Miscellaneous Facilities

INFO + ¢ ¢ ¢ ¢ + o o o« ¢ o e s o o o o« s + » . introduction to miscellany
asCli + « ¢ « ¢ s s 4 ¢ e s o e e e oo+ o« .mapof ASCII character set
ENVIFON . + & ¢ ¢« + « « « o « o o s s o o s o o« o o + .USEr environment .
eqncharspecial character definitions for eqn and neqn
fentl 4 4 e 4 et e e e e e oo . .filecontrol options
greekgraphics for the extended TTY-37 type-box
manmacrosfor formatting entries in this manual
mmthe MM macro package for formatting documents
MV .. .24+ 004+44+.....amacropackage for making view graphs
regexp . . . « . « «regular expression compile and match routines
StAl . .+ « « + « + s s o s s s s o+ « .datareturned by stat system call
T€IM « « + « « o o o+ o « o o s o o o s « + « « « . .conventional names
LYPES « « ¢ 4 o o « o o o s e o« o« « « « o .primitive system data types

Table of Contents

8. System Maintenance Procedures

INtro .« « « v « o ¢« o« introduction to system maintenance procedures
70boot e+ « +« « « « « . .11/70 bootstrap procedures
crash « « +« e+whattodo when the system crashes
diskboot L0000 e .. disk bootstrap programs
14 . . Equipment Test Package
filesave 0oL daily/weekly UNIX file system backup
getty e e e e e e e e e e . . set the modes of a terminal
hasp. e e e e e e e RJE (Remote Job Entry) to IBM
init 0000 « « « « « « « . .process control initialization
makekey 000000 egenerate encryption key
mk, . « « . . how to remake the system and commands
¢ e « e « s s « « « « « . .system initialization shell script
€ « v+ s et v e ueeeeeeoe..RIE(Remote Job Entry) to IBM
romboot o0 . . . special ROM bootstrap loaders
p6fmtformatand/or check RP06 disk packs
SAT « v v 4 e e e e . .+« « « « «System activity report package
tapeboot e e e e magnetic tape bootstrap program
unixboot UNIX startup and boot procedures
UVAC & v ¢ 4 o ¢ o o o o o o o . . . RJE (Remote Job Entry) to UNIVAC
VAXOops . .+ . 4 . . . e « v e+ e .. .VAX-11/780 console operations

PERMUTED INDEX

70boot:

/functions of HP 2640 and
handle special functions of HP
functions of DASI 300 and/
/special functions of DASI

of DASI 300 and 300s/ 300,
functions of DASI 300 and
13tol, Itol3: convert between
comparison. diff3:

Tektronix 4014 terminal.
paginator for the Tektronix

of the DASI 450 terminal.
special functions of the DASI
files from the HONEYWELL
send files to the HONEYWELL
output to the HONEYWELL
procedures.

f77: Fortran

long and base-64 ASCII.

abs: integer

floor, fabs, ceil, fmod:

of a file. touch: update
utime: set file

accessibility of a file.
commands. graphics:

access: determine

cnable or disable process
acctcon: connect-time
acctprc: process

acctsh: shell procedures for
accounting/ acct: overview of
accounting and miscellancous
acct: per-procsss

search and print process
acctmerg: merge or add total
summary from per-process
runacct: run daily

process accounting.

and miscellaneous accounting/
file format.

per-process accounting/
process accounting file(s).
accounting.

accounting files.

accounting.

sin, cos, tan, asin,

sag: system

sar: system

command and generate a system
current SCCS file editing

dn: DN-11

acctmerg: merge or
SCCS files.

admin: create and
alarm: set a process’s
clock.

11/70 bootstrap procedures.
2621-series terminals.
2640 and 2621-series/ hp: . .
300, 300s: handle special
300 and 300s terminals.
300s: handle special functions
300s terminals. /special
3-byte integers and long/
3-way differential file
4014: paginator for the
4014 terminal. 4014:
450: handle special functions
450 terminal. 450: handle . .
6000. fget: retrieve
6000. fsend: .
6000. /send phototypesetter
TOboot: 11/70 bootstrap
77 compiler.
a64l, 164a: convert between .
abort: generate an 10T fault.
abs: integer absolute value. .
absolute value.
absolute value, floor,/
access and modification times
access and modification times.
access: determine
access graphical and numerical
accessibility of a file.
accounting. acct:
accounting.
accounting.
accounting.
accounting and miscellaneous
accounting commands. /of .
accounting file format.
accounting file(s). acctcom:
accounting files.
accounting records. /command
accounting. . . i
acct: enable or disable

e o o

« o e o o o .

e e o o o s o o

D S

L I

e e o o o o

acct: overview of accounting . .

acct: per-process accounting

e o o

acctcms: command summary from

acctcom: search and print . .
acctcon: connect-time
acctmerg: merge or add total
acctprc: process accounting.
acctsh: shell procedures for
acos, atan, atan2:/
activity graph.
activity report package.
activity report. /time a
activity. sact: print
ACU interface.
adb: debugger.
add total accounting files. .
admin: create and administer
administer SCCS files.
alarmclock.
alarm: set a process’s alarm .

e o o

o« o

e o o o o
e o e o o o

.« o o

-1-

® e o o 8 e e e e e e s s e s s o

e ¢ o o o o o o o & o o o s o & o

70boot(8)
hp(1)

. hp(1)

.......

.......

300(1)
300(1)
300(1)
300(1)
13t0l(3C)
diff3(1)
4014(1)
4014(1)

. 450(1)

.........

.......

450(1)
fget(1C)
fsend(1C)
geat(1C)
70boot(8)
f77(1)
a641(3C)
abort(3C)

. abs(3C)

ooooooo

abs(3C)
floor(3M)
touch(1)
utime(2)
access(2)
graphics(1G)
access(2)
acct(2)
acctcon(1M)
acctprc(1M)
acctsh(1M)
acct(1M)
acct(1M)
acct(5)
acctcom(1)
acctmerg(1M)
acctcms(1M)
runacct(1M)
acct(2)
acct(1M)
acct(5)
acctcms(1M)
acctcom(1)
acctcon(1M)
acctmerg(1M)
acctprc(1M)
acctsh(1M)
trig(3M)
sag(1M)
sar(8)
timex(1)
sact(1)

dn(4)

adb(1)
acctmerg(1M)
admin(1)
admin(1)
alarm(2)
alarm(2)

Permuted Index

change data segment space
realloc, calloc: main memory
rp6fmt: format

sort: sort

send, gath: gather files

link editor output.
introduction to commands and
maintainer.

language. bc:
maintainer. ar:

cpio: format of cpio,

ar:
VAX-11/780/ arcv: convert
tp: manipulate tape

tar: tape file

cpio: copy file

from PDP-11 to VAX-11/780/
command. xargs: construct
expr: evaluate

echo: echo

getopt: get option letter from
be: arbitrary-precision

number facts.

expr: evaluate arguments

between long and base-64
ascii: map of

convert date and time to
set.

atof, atoi, atol: convert
and/ ctime, localtime, gmtime,
trigonometric/ sin, cos, tan,
help:

output. a.out:

as:

microprocessor. kas:

as:

setbuf:

kl: KL-11 or DL-11

/dh: DZ-11, DZ-11/KMC-11, DH-11
dj: DJ-11

sin, cos, tan, asin, acos,
cos, tan, asin, acos, atan,
ASCII to numbers.
numbers. atof,
numbers. atof, atoi,
wait:

processing language.
ungetc: push character

back: the game of
daily/weekly UNIX file system

164a: convert between long and
portions of path names.
arithmetic language.

cb: C program
j0, j1, jn, yO, y1, yn:

allocation. brk, sbrk:
allocator. malloc, free, . . .
and/or check RP06 disk packs.
and/or merge files.
and/or submit RJE jobs. . .
a.out: assemblerand
application programs. intro: .
ar: archive and library
ar: archive file format.
arbitrary-precision arithmetic
archive and library
archive.
archive file format.
archive files from PDP-11 to
archive. . .
archiver.
archives in and out. . . .
arcv: convert archive files . .
argument list(s) and execute

e o e o o

e e s o o o

arguments as an expression.

arguments.
argv. e e e
arithmetic language.

e e e o o s o

o o o o

arithmetic: provide drill in . . .

as an expression.
as: assembler for PDP-11. . .

as: assembler for VAX-11/780.

ASCIIL a64l, 164a: convert .
ASCII character set.
ASCIL /asctime, tzset: . . .
ascii: map of ASCII character
ASCII to numbers.
asctime, tzset: convert date
asin, acos, atan, atan2:
ask forhelp.
assembler and link editor .
assembler for PDP-11.
assembler for the KMC11
assembler for VAX-11/780. .
assert: program verification.
assign buffering to a stream. .
asynchronous interface. . . .

asynchronous multiplexers.
asynchronous multiplexor.
atan, atan2: trigonometric/

e o o o o o o o =

atan2: trigonometric/ sin, . . .

atof, atoi, atol: convert . . .
atoi, atol: convert ASCII to
atol: convert ASCllto . . .
await completion of process. .
awk: pattern scanning and . .
back into input stream.

.« e e

back: the game of backgammon.

backgammon.
backup. filesave, tapesave: .
banner: make posters. .
base-64 ASCII a64l,

LY

basename, dirname: deliver
be: arbitrary-precision . . .
becopy: interactive block copy.
bdiff: big diff.
beautifier.
bessel functions. . . .

e e o o o e

-2-

e o & o s e s s e »

o e e e o

e e o o o o

brk(2)
malloc(3C)
rp6fmt(8)
sort(1)
send(1C)
a.out(5)
intro(1)

. . ar(1)

. ar(5)
. be(l)

.........

ar(1)
cpio(5)
ar(5)
arcv(1)
tp(1)
tar(1)
cpio(1)
arcv(1)
xargs(1)
expr(1)
echo(1)
getopt(3C)
be(1)

. arithmetic(6)

.....

expr(1)
as.pdp(1)

as.vax(1)

. a641(3C)
. ascii(7)

ctime(3C)
ascii(7)

- . atof(3C)
. ctime(3C)

trig(3M)
help(1)

. a.out(5)

.......

as.pdp(1)
kas(1)
as.vax(1)
assert(3X)
setbuf(3S)

. ki(4)
. dz(4)

dj(4)

trig(3M)
trig(3M)
atof(3C)
atof(3C)

. atof(3C)

wait(1)
awk(1)
ungetc(3S)

. back(6)

.

.

back(6)
filesave(8)

: . banner(1)

a641(3C)
basename(1)

- . be(l)
. . bcopy(1M)
- bdiff(1)

cb(1)
bessel(3M)

fread, fwrite: buffered
bsearch:
remove symbols and relocation

bj: the game of

bcopy: interactive

sync: update the super

df: report number of free disk
sum: sum and count
unixboot: UNIX startup and
romboot: special ROM
70boot: 11/70

tapeboot: magnetic tape
diskboot: disk

space allocation.

modest-sized programs.
DQS-11 interface for two-point

fread, fwrite:

stdio: standard

setbuf: assign

mknod:

dmc: communications link with
swab: swap

cc, pec:

programs. scc:

cb:

lint: a

xref: cross reference for

dc: desk
cal: print

cu:
data returned by stat system
ct:

malloc, free, realloc,

intro: introduction to system
link and unlink system
pnch: file format for

files.

interface.

commentary of an SCCS delta.
floor, ceiling,/ floor, fabs,
/fmod: absolute value, floor,
delta: make a delta

pipe: create an interprocess
stream. ungetc: push
/isgraph, iscntrl, isascii:

and neqn. egnchar: special
user. cuserid:

/getchar, fgetc, getw: get
/putchar, fputc, putw: put
ascii: map of ASCII

toupper, tolower, toascii:

tr: translate

directory.

fsck: file system consistency
rp6fmt: format and/or

Permuted Index

bfs: big file scanner. bfs(1)
binary input/output. fread(3S)
binarysearch. bsearch(3C)
bits. strip: e o o o . . strip(l)

bj: the game of black Jack bj(6)

black jack. v o o« . bj(6)
blockcopy. bcopy(1M)
block. . « . & . ¢ ¢ v it e e e sync(1M)
blocks.+ v v o0 df(1)
blocksinafile. sum(1)

boot procedures.
bootstrap loaders.
bootstrap procedures.

bootstrap program.

bootstrap programs.
brk, sbrk: change data segment
bs: a compiler/interpreter for

BSC. dgs:
bsearch: binary search.
buffered binary input/output.

buffered input/output package.
buffering to a stream. .
build special file.

built-in DDCMP protocol.

bytes.
C compiler.
C compiler for stand-alone
C program beautifier.
C program checker.
C programs.
cal: print calendar.
calculator.
calendar.
calendar: reminder service. .
call another UNIX system.
call. stat:
call terminal.
calloc: main memory allocator.
calls and error numbers. . .
cails. link, unlink: exercise .
card images.
cat: concatenate and print . .
cat: phototypesetter
cb: C program beautifier.
cc, pee: C compiler. . .
cd: change working directory.
cdc: change the delta
ceil, fmod: absolute value, .
ceiling, remainder functions.
(change) to an SCCS file. .

character back into input .
character classification.
character definitions for eqn
character login name of the
character or word from stream.
character or word on a stream.
character set.
character translation. .
characters. « . ¢ o
chdir: change working . . .

.« o

. o o

check and interactive repair.
check RPO6 disk packs. . .

-3

e e o o o

e e o o o »

........

. . unixboot(8)
. . romboot(8)
70boot(8)

. . . tapeboot(8)

diskboot(8)
. brk(2)

- . bs())

.............

.......

dqs(4)
bsearch(3C)
. . fread(3S)

. . . stdio(3S)

.......

............

........

........

..........

.........

.........

......

setbuf(3S)
. . mknod(1M)
dmc(4)
swab(3C)
cc(l)
scc(1)
cb(1)
lint(1)

. . xref(1)
cal(1)
de(1)

. cal(l)

. calendar(1)
. cu(1C)

. stat(7)

. ct(1C)

. malloc(3C)
. intro(2)

. link(1M)
pnch(S)

. . cat(l)
cat(4)
cb(1)

. cc(l)

. . cd(1)

. . cde(l)

. . floor(3M)
. . floor(3M)
. . delta(l)

« « pipe(2)

. . ungetc(3S)
. . ctype(3C)
. . eqnchar(7)
. . cuserid(3S)
. . getc(3S)

. . putc(3S)

. . ascii(7)

. . conv(3C)
. . tr(1)

. . chdir(2)

. . fsck(1M)
. . rp6fmt(8)

o s e e

e o o o

xXmopzZ -

Permuted Index

eqn delimiters. mmchek:
constant-width text for/ cw,
text for nroff or/ eqn, negn,
lint: a C program

grpck: password/group file
copy file systems with label
systems processed by fsck.
chess: the game of

chown,
times: get process and
terminate. wait: wait for

of a file.
group.

for a command.

iscntrl, isascii: character
uuclean: uucp spool directory
clri:

status/ ferror, feof,

alarm: set a process’s alarm
cron:

close:

descriptor.

fclose, fllush:

line-feeds.

comb:

common to two sorted files.
activity/ timex: time a

nice: run a

change root directory for a
env: set environment for
uux: unix to unix

quits. nohup: runa

rsh: restricted shell

getopt: parse

sh: shell, the standard
per-process/ acctcms:
system: issue a shell

test: condition evaluation
time: time a

argument list(s) and execute
and miscellaneous accounting
intro: introduction to

access graphical and numerical
install: install

how to remake the system and
network useful with graphical
cdc: change the delta

comm: select or reject lines
pcl: parallel

built-in DDCMP protocol. dmc:
diff: differential file

cmp:

SCCS file. sccsdiff:

_ diff3: 3-way differential file
dircmp: directory

regexp: regular expression

check usage of mm macros and . . . mmchek(l)
checkcw: prepare cw(l)
checkeq: format mathematical «ee eqn(l)
checker. lint(l)
checkers. pwek, pweck(1M)
checking. volcopy, labelit: volcopy(1M)
checklist: listof file checklist(5)
chess.chess(ﬁ)
chess: the game of chess e « o+« « o Chess(6)
chgrp: change owner or group « « . . chown(l)
child process times. times(2)
child process to stopor wait(2)
chmod: change mode. chmod(l)
chmod: change mode of file. chmod(2)
chown: change owner and group . . . chown(2)
chown, chgrp: change owneror . . . chown(l)
chroot: change root directory. chroot(2)
chroot: change root directory chroot(1M)
classification. /isgraph, ctype(3C)
clean-up. uuclean(1M)
cleari-node. crA(lIM)
clearerr, fileno: stream ferror(3S)
clock.alam(Q)
clock daemon. cron(IM)
close a file descriptor. close(2)
close:closeafile close(2)
closeor flushastream. fclose(3S)
clri:cleari-node. cri(l1M)
cmp: compare two files. cmp(l)
col: filterreverse col(l)
comb: combine SCCS deltas. . « . comb(l)
combine SCCSdeltas. comb(l)
comm: select or reject lines comm(l)
command and generate a system . . . timex(1)
command at low priority. nice(l)
command. chroot: chroot(1M)
command execution. env(l)
command execution. uux(1C)
command immune to hangups and . . nohup(l)
(command interpreter). rsh(l)
command options. getopt(l)
command programming language. . . sh(l)
command summary from acctems(1M)
command. 00 0. ... system(3S)
command. 0 test(l)
command. 0 time(l),
command. xargs: construct xargs(l)
commands. /of accounting acct(IM)
commands and application/ intro(l)
commands. graphics: graphics(1G)
commands. o o o install(1M)
commands. mk: mk(8)
commands. stat: statistical stat(1G)
commentary of an SCCS delta. . . . cdc(l)
common to two sorted files. comm(l)
communications link interface. pcl(4)
communications link with dmc(4)
COMPpArator. . . . « « « « « « « . o diff(1)
compare two files. cmp(l)
compare two versions ofan sccsdiff(1)
comparison. o diff3(1)
COmparison.« . o dircmp(l)
compile and match routines. regexp(7)

. 4-

regcmp: regular expression
regcmp: regular expression
cc, pec: C

f77: Fortran 77

programs. scc: C

protocol machine. vpmc:
yacc: yet another
modest-sized programs. bs: a
wait: await

pack, pcat, unpack:

cat:

test:

system.

config:

acctcon:

interactive/ fsck: file system
vix: VAX-11/780 LSI
vaxops: VAX-11/780
report and interactive status
cw, checkcw: prepare
mkfs:

execute command. xargs:
nroff/troff, tbl, and eqn

Is: list

toc: graphical table of
csplit:

ioctl:

fentl: file

inittab:

init: process

fontl: file

st: synchronous terminal
uucp status inquiry and job
vC: version

term:

ecvt, fcvt: output

units:

sscanf: formatted input

dd:

PDP-11 to VAX-11/780/ arcv:
atof, atoi, atol:

integers and/ 13tol, ltol3:
base-64 ASCII. a64l, 164a:
/gmtime, asctime, tzset:
and VAX-11/780 systems. fscv:
dd: convert and

bcopy: interactive block
cpio:

checking. volcopy, labelit:
cp, In, mv:

uulog, uuname: unix to unix:
public UNIX-to-UNIX file
file.

core: format of

mem, kmem:

atan2: trigonometric/ sin,
functions. sinh,

sum: sum and

wc: word

files.

cpio: format of

and out.

Permuted Index

compile. e v e ee o . regcmp(1)
compile/execute. regex, « « . regex(3X)
compiler.00 .. cc(1)
compiler. e e e e ... fT7(D)
compiler for stand-alone scc(l)
compiler for the virtual .« « . vpme(1C)
compiler-compiler. yacc(1)
compiler/interpreter for bs(1)
completion of process. wait(l)
compress and expand files. pack(l)
concatenate and print files. cat(1)
condition evaluation command. . . test(l)
config: configurea UNIX config(1M)
configure a UNIX system. config(1M)
connect-time accounting. acctcon(1M)
consistency checkand fsck(1M)
console floppy interface. vix(1M)
console operations. vaxops(8)
console. rjestat: RJEstatus rjestat(1C)
constant-width text for troff. . cw(l)
construct a file system. mkfs(1M)
construct argument list(s) and . xargs(1)
constructs. deroff: remove deroff(1)
contents of directories. Is(1)
contents routines. toc(1G)
contextsplit. csplit(1)
control device. ioctl(2)
control.00 fontl(2)
control information for init. inittab(5)
control initialization. init(8)
controloptions. fent(7)
control. it e e e st(1M)
control. uustat: uustat(1C)
control. 00000 .. ve(l)
conventional names. term(7)
conversion.ecvt(JC)
conversion program. units(l)
conversion. scanf, fsanf e o « « « o scanf(3S)
convertand copyafile. dd(l)
convert archive files from arcv(1)
convert ASCII to numbers. atof(3C)
convert between 3-byte 13tol(3C)
convert between longand a64l(3C)
convert date and timeto/ ctime(3C)
convert files between PDP-11 fscv(1M)
copyafile.dd()
COPY. « o« o o o o s o s o o s o o o« beopy(1M)
copy file archivesinand out. cpio(l)
copy file systems with label volcopy(1M)
copy, link or move files. cp(l)
COpy. UUCP, .« « « . . e e e e o o uucp(1C)
copy. uuto, uupick: uuto(1C)
core: format of core image core(5)
corcimagefile. core(s)
COTEMEMOry. . « « « + s« « + « o » Mmem(4)
cos, tan, asin, acos, atan, trig(3M)
cosh, tanh: hyperbolic sinh(3M)
count blocksinafile. sum(l)
COUNL. & & o o o o o o o o o o o o o We(l)
¢cp, In, mv: copy, link or move .o .cp(l)
cpioarchive. cpio(5)
cpio: copy file archivesin cpio(l)
cpio: format of cpio archive. cpio(5)

-5.

xXmoZ -

Permuted Index

craps: the game of

system crashes.

what to do when the system
rewrite an existing one.
file. tmpnam:

an existing one. creat:
fork:

tmpfile:

channel. pipe:

files. admin:

umask: set and get file
listing.

programs. xref:
cref: make

encryption.

for terminal.
asctime, tzset: convert date/

ttt,

activity. sact: print

uname: get name of
uname: print name of
spline: interpolate smooth
of the user.

of each line of a file.

each line of a file. cut:
constant-width text for/
cron: clock

sending daemons, line printer
errdemon: error-logging
terminate the error-logging
fget.odemon: file retrieval
/odpd, Ipd: HONEYWELL sending
runacct: run

backup. filesave, tapesave:
/handle special functions of
special functions of the
prof: display profile,

call. stat:

brk, sbrk: change

types: primitive system
join: relational

/asctime, tzset: convert
date: print and set the

/link with built-in

adb:

fsdb: file system

sdb: symbolic

sysdef: system

eqnchar: special character
usage of mm macros and eqn
names. basename, dirname:
file. tail:

delta commentary of an SCCS

craps. e« e e« o« « o craps(6)
craps: the game of craps. craps(6)
crash: examine system images. crash(1M)
crash: what to do whenthe crash(8)
crashes. crash: crash(8)
creat: create a new fileor creat(2)
create a name for a temporary tmpnam(3S)
create a new file orrewrite creat(2)
creatc a NEW process. fork(2)
create a temporary file. tmpfile(3S)
create an interprocess pipe(2)
create and administer SCCS admin(1)
creationmask. umask(2)
cref: make cross-reference cref(1)
cron: clock daemon. cron(1M)
cross reference forC xref(l)
cross-reference listing. cref(1)
crypt: encode/decode. crypt(1)
crypt, setkey, encrypt: DES crypt(3C)
csplit: context split. csplit(1)
ct:call terminal. ct(1C)
ctermid: generate file name ctermid(3S)
ctime, localtime, gmtime, ctime(3C)
cu: call another UNIX system. cu(1C)
cubic: tic-tac-toe. ttt(6)
current SCCS file editing sact(1)
current UNIX system. uname(2)
current UNIX. uname(l)
CUIVE. ct4 ¢ o o o o o o o o o o o « spline(1G)
cuserid: character login name . cuserid(3S)
cut: cut out selected fields cut(1)

cut out selected fieldsof cut(l)

cw, checkcw: prepare cw(l)
daemon. cron(1M)
daemon. /odpd, Ipd: HONEYWELL . dpd(1C)
daemon. 0000 . errdemon(1M)
daemon. errstop: errstop(1M)
daemons. fgetdemon, fget.demon(1C)
daemons, line printer daemon. . . . dpd(1C)
daily accounting. runacct(1M)

daily/weekly UNIX file system . . .

. filesave(8)

DASI 300 and 300s terminals. 300(1)
DASI 450 terminal. /handle 450(1)
data.00 0000 e prof(1)
data returned by stat system stat(7)
data segment space allocation. brk(2)
datatypes. types(7)
database operator. join(l)
date and timeto ASCIL. ctime(3C)
date.0t e e e .. date(1)
date: print and set the date. date(l)
dc: desk calculator. de(1)

dd: convert and copy a file. dd(1)
DDCMPprotocol. dmc(4)
debugger. adb(1)
debugger. e o o o . . fsdb(1M)
debugger. o . . sdb(l)
definition. 0 .0 00 . sysdef(1M)
definitions for eqn and negn. . eqnchar(7)
delimiters. mmchek: check mmchek(1)
deliver portions of path basename(1)
deliver the last partofa tail(l)
delta. cdc: changethe cdc(l)

-6-

file. delta: make a
delta. cdc: change the
rmdel: remove a

to an SCCS file.

comb: combine SCCS
mesg: permit or

tbl, and eqn constructs.
crypt, setkey, encrypt:
close: close a file

dup: duplicate an open file
dc:

file. access:

file:

master: master

ioctl: control

devnm:

/tekset, td: graphical

blocks.

asynchronous/ dz, dzk,
dzk, dh: DZ-11, DZ-11/KMC-11,
ratfor: rational Fortran
bdiff: big

comparator.
comparison.

sdiff: side-by-side
diffmk: mark

diff:

diff3: 3-way

between files.

dir: format of

Is: list contents of

rm, rmdir: remove files or
cd: change working

chdir: change working
chroot: change root
uuclean: uucp spool

dircmp:

unlink: remove

chroot: change root

mkdir: make a

mvdir: move a

pwd: working

ordinary file. mknod: make a
path names. basename,
acct: enable or

df: report number of free
diskboot:
RH11/RJS03-RJS04 fixed-head
rf: RF11/RS11 fixed-head
moving-head

format and/or check RP06
rk: RK-11/RKO03 or RKO05
rl: RL-11/RLO1

rp: RP-11/RP03 moving-head
du: summarize

programs.

mount, umount: mount and
prof:

hypot: Euclidean
multiplexor.

delta (change) to an SCCS
delta commentary of an SCCS . .
delta from an SCCS file.
delta: make a deita (change)
deltas. . . .
deny messages.
deroff: remove nroﬂ'/troﬂ'
DES encryption.
descriptor. . . .
descriptor. .
desk calculator. . . .
determine accessibility of a

Permuted Index

.....

delta(1)

. cde(1)

rmdel(1)
delta(1)

. comb(1)

.....

.......

.....

determine filetype.

device information table.
device.
device name.
device routines and filters.
devnm: device name.
df: report number of free disk .
dh: DZ-11, DZ-11/KMC-11, DH-11
DH-11 asynchronous/ dz, . ..
dialect. .

diff: differential ﬁle e e e e
diff3: 3-way differential file
difference program.
differences between files.
differential file comparator. . . .
differential file comparison.
diffmk: mark differences . . .
dir: format of directories. . . .
dircmp: directory comparison. .
directories.
directories.
directories.
directory. .
directory. . . .

directory. e e e .
directory clean-up. .

directory comparison. .
directory entry. .
directory for a command. . .
directory. .
directory. .
directory pame.

e s o e o e e o .
e o s s e e e o o o
e o o o

e e o o o o o o

directory, or a special or .
dirname: deliver portions of
disable process accounting.

disk blocks.
disk bootstrap programs.
disk file. hs:
disk file.
disk. /RP04/RPOS5/RP06

disk packs. rp6fmt:
disk.
disk.
disk.

disk usage.
diskboot: disk bootstrap
dismount file system. .
display profile data.
distance.
dj: DJ-11 asynchronous

.
.
s s s e e e o
.

e o o o o o

e ¢ ¢ o o o o o o o

-7.

o e o o s o o

.........

...........

........

mesg(1)
deroff(1)
crypt(3C)
close(2)
dup(2)
de(1)
access(2)
file(1)
master(5)
ioctl(2)
devam(1M)
gdev(1G)
devam(1M)

. df(1)
. dz(4)
. dz(4)

ratfor(1)
bdiff(1)

. diff(1)

diff3(1)

. sdiff(1)

diffmk(1)

. diff(1)

.....

diff3(1)
diffmk(1)
dir(5)
dircmp(1)
dir(5)

. 1s(1)

.

rm(1)

. cd(1)

e e+ o s s s s

chdir(2)
chroot(2)
uuclean(1M)
dircmp(1)
unlink(2)
chroot(1M)
mkdir(1)
myvdir(1M)

. pwd(l)

......

mknod(2)
basename(1)
acct(2)

df(1)
diskboot(8)
hs(4)

. rf(4)

e o & o o o o s s e »

hp(4)
rp6fmt(8)
rk(4)

ri(4)

p(4)

du(l)
diskboot(8)
mount(1M)
prof(1)
hypot(3M)
dj(4)

xXmoZ -

xXmozZz -

Permuted Index

multiplexor. dj:
kl: KL-11 or
built-in DDCMP protocol.

dn:

MM macros. mm: print out
macro package for formatting
slides. mmt, mvt: typeset
whodo: who is

sendmg daemons, line printer/

two-point BSC.
BSC. dgs:

reversi: a game of
graph:

arithmetic: provide
trace: event-tracing
interface.

interface. du:

dump: incremental file system
extract error records from
format.

dump.

od: octal

dump: incremental
descriptor.

descriptor. dup:
DZ-11/KMC-11, DH-11/
asynchronous/ dz, dzk, dh:
dz, dzk, dh: DZ-11,

DH-11 asynchronous/ dz,
echo:

program. end, etext,

sact: print current SCCS file
ed: text

ged: graphical

1d: link

sed: stream

/user, real group, and

and/ /getegid: get real user,
Language.

for a pattern.. grep,
accounting. acct:

crypt:

crypt, setkey,

crypt, setkey, encrypt: DES
makekey: generate

locations in program.
/getgrgid, getgrnam, setgrent,
/getpwuid, getpwnam, setpwent,
rjestat: RJE status and

nlist: get

man: print

man: macros for formatting
utmp, wtmp: utmp and wtmp
endgrent: get group file
endpwent: get password file
putpwent: write password file
hasp: RJE (Remote Job

DJ-11 asynchronous
DL-11 asynchronous interface.
dmc: communications link with . . .
dn: DN-11 ACU interface.

DN-11 ACU interface. dn(4)
documents formatted with the mm(l)
documents. mm:the MM mm(7)
documents, view graphs,and mmt(l)
doing what.« . . whodo(1M)
dpd, odpd, lpd: HONEYWELL .« . dpd(1C)
dpr: off-line print.« . . dpr(1C)
dgs: DQS-11 interface for dqs(4)
DQS-11 interface for two-point . . . dqs(4)
dramatic reversals. reversi(6)
drawagraph. graph(1G)
drill in number facts. arithmetic(6)
driver. trace(4)
du: DU-11 synchronous line du(4)

du: summarize disk usage. du(l)
DU-11 synchronous line du(4)
dump. e v v oo . dump(1M)

dump. errdead:

errdead(1M)

dump: incremental dump tape dump(5)
dump: incremental file system dump(1M)
dump. od(l)
dump tape format. dump(5)
dup: duplicate an open file dup(2)
duplicate anopenfile dup(2)
dz, dzk,dh: DZ-11, dz(4)
DZ-11, DZ-11/KMC-11, DH-11 . dz(4)
DZ-11/KMC-11, DH-11/ dz(4)
dzk, dh: DZ-11, DZ-11/KMC-11, . . dz(4)
echoarguments. echo(l)
echo: echo arguments. echo(l)
ecvt, fcvt: output conversion. ecvt(3C)
ed:texteditor. ed(])
cdata: last locationsin end(3C)
editing activity. sact(l)
editor. cd(l)
editor. c e e e e e e e e e e e ged(1G)
editor. F e [(0)]
editor. sed(1)
effective group IDs getuid(2)
effective user, real group, getuid(2)
efl: Extended Fortran efi(l)
egrep, fgrep: searchafile grep(l)
enable or disable process acct(2)
encode/decode. crypt(l)
encrypt: DES encryption. crypt(3C)
encryption.« . crypt(3C)

encryptionkey.
end, etext, edata:last
endgrent: get group file/
endpwent: get password file/ . . .

enquiries. e oo
entries from namelist.
entries in this manual.
entries in this manual.

entry format.
entry. /getgrnam, setgrent, .
entry. /getpwnam, setpwent,

entry. e e
Entry) to IBM.

s e o e o s s .

D L

-8 -

makekey(8)
end(3C)

. getgrent(3C)
. getpwent(3C)

orjestat(1C)
nlist(3C)
man(l)
man(7)
utmp(5)
getgrent(3C)
getpwent(3C)

. putpwent(3C)
. hasp(8)

rje: RJE (Remote Job
uvac: RJE (Remote Job
unlink: remove directory
command execution.

profile: setting up an
environ: user

execution. env: set

getenv: value for

sky: obtain

character definitions for
remove nroff/troff, tbl, and
check usage of mm macros and
mathematical text for nroff/
definitions for eqn and neqn.
etp:

graphical device/ hpd,

from dump.

daemon.

. format.
perror, sys_errlist, sys_nerr,
sys_nerr, €rrno: system

to system calls and
errdead: extract

errfile:

errdemon:

errstop: terminate the
eIt

process a report of logged
spellout: find spelling

find possible typographical
logged errors.
error-logging daemon.
setmnt:

in program. end,

hypot:

expression. expr:

test: condition

trace:

crash:

execlp, execvp: execute a/
execvp: execute/ execl, execv,
execl, execv, execle, execve,
execve, execlp, execvp:
construct argument list(s) and
set environment for command
sleep: suspend

sleep: suspend

monitor: prepare

profil:

uux: unix to unix command
execvp: execute a/ execl,
execute/ execl, execv, execle,
/execv, execle, execve, execlp,
system calls. link, unlink:

a new file or rewrite an

exponential, logarithm,/
pcat, unpack: compress and
modf: split into mantissa and
square/ exp, log, pow, sqrt:

e o o e

Entry) to IBM. . . .
Entry) to UNIVAC.
entry. . . .
env: set environment for . .
environ: user environment. .
environment at login time.

environment. . .

e o o o o o o o

environment for command . .

environment name.
ephemerides.
eqn and neqn. /special
eqn constructs. deroff: . . .
eqn delimiters. mmchek: . .
eqn, neqn, checkeq: format .
eqnchar: special character . .

e o o

e o o o o o o

Equipment Test Package.
erase, hardcopy, tekset, td:
err: error-logging interface.
errdead: extract error records
errdemon: error-logging . . .
errfile: error-log file
€rrno: system error messages.
error messages. /sys_errlist, .
error numbers. /introduction
error records from dump.
error-log file format.
error-logging daemon. . . .
error-logging daemon.
error-logging interface. . . .
errors. errpt:
errors. spell, spellin,
errors. typo:
errpt: process a report of .
errstop: terminate the . . .
establish mnttab table. . .
ctext, edata: last locations .
etp: Equipment Test Package.
Euclidean distance.
evaluate arguments as an .
evaluation command. .
event-tracing driver. . . .
cxamine system images. .
execl, execv, execle, execve,
execle, execve, execlp,
execlp, execvp: execute a/
execute a file. /execle, .
execute command. xargs:
execution. env:
execution for an interval.
execution for interval. .
execution profile.
execution time profile. .
execution.
execv, execle, execve, execlp,
execve, execlp, execvp:
execvp: execute a file.
exercise link and unlink . .
existing one. creat: create
exit: terminate process. .
exp, log, pow, sqrt:
expand files. pack,
exponent. frexp, ldexp, .
exponential, logarithm, power,

o o o o

« e o

e s o o o

e e o o s o o o

e o

-
.
o o o o
e o o o
.

-9.

Permuted Index

. . rje(8)

uvac(8)
unlink(2)

. env(1)

environ(7)

. profile(5)

environ(7)

. env(l)

getenv(3C)
sky(6)

. eqnchar(7)

e s s e e

deroff(1)
mmchek(1)

eqn(1)

errdead(1M)
errdemon(1M)
errfile(5)
perror(3C)
perror(3C)

. intro(2)

errdead(1M)

. errfile(5)
. errdemon(1M)

errstop(1M)
err(4)
errpt(1M)
speli(1)
typo(1)

. errpt(1M)

e o o 6 6 & o e e o ® e o ° & 8 o e s s e s o o o

errstop(1M)
setmnt(1M)
end(3C)
etp(8)
hypot(3M)
expr(1)
test(1)
trace(4)
crash(1M)
exec(2)
exec(2)
exec(2)
exec(2)
xargs(1)
env(l)
sleep(1)
sleep(3C)
monitor(3C)
profil(2)
uux(1C)
exec(2)
exec(2)
exec(2)
link(1M)
creat(2)
exit(2)
exp(3M)
pack(1)
frexp(3C)
exp(3M)

xXmoZ—

Permuted Index

expression.

routines. regexp: regular
regcmp: regular

regex, regcmp: regular

expr: evaluate arguments as an
efl:

greek: graphics for the

dump. errdead:

value, floor, ceiling,/ floor,
large primes. factor, primes:
number, generate large/
true,

abort: generate an 10T

a stream.

ecvt,

fopen, freopen,

status inquiries. ferror,
fileno: stream status/
stream. fclose,
HONEYWELL 6000.

word from/ getc, getchar,
retrieval daemons.

daemons. fget.demon,
stream. gets,

pattern. grep, egrep,

times. utime: set

determine accessibility of a
tar: tape

cpio: copy

pwck, grpck: password/group
chmod: change mode of
change owner and group of a
diff: differential

diff3: 3-way differential

fend:

fentl:

uupick: public UNIX-to-UNIX
core: format of core image
umask: set and get

fields of each line of a

dd: convert and copy a

a delta (change) to an SCCS
close: close a

dup: duplicate an open

sact: print current SCCS
setgrent, endgrent: get group
endpwent: get password
putpwent: write password
execlp, execvp: execute a
grep, egrep, fgrep: search a
acct: per-process accounting
ar: archive

errfile: error-log

pnch:

intro: introduction to

get: get a version of an SCCS
group: group

fixed-head disk

split: split a

expr: evaluate arguments asan . . .
expression compile and match
expression compile. e e
expression compile/execute.
EXPression. e 0. .
Extended Fortran Language. .
extended TTY-37 type-box.
extract error records from

expr(1)

. . regexp(7)
. regemp(1)

regex(3X)
expr(l)

. efl(1)
. greek(7)
. . errdead(1M)

f77: Fortran 77 compiler. f77(1)
fabs, ceil, fmod: absolute floor(3M)
factor a number, generate factor(1)
factor, primes: factora factor(1)
false: provide truth values. true(1)
fault. abort(3C)
fclose, flush: close or ﬂush fclose(3S)
fentl: filecontrol. fentl(2)
fend: file control options. fentl(7)
fcvt: output conversion. ecvt(3C)
fdopen: open a stream. fopen(3S)
feof, clearerr, fileno: stream ferror(3S)
ferror, feof, clearerr, ferror(3S)
flush: close or flusha fclose(3S)
fget: retrieve files from the fget(1C)
fgetc, getw: get characteror getc(3S)
fget.demon, fget.odemon: file . . fget.demon(1C)
fget.odemon: file retrieval fget.demon(1C)
fgets: get a string froma gets(3S)
fgrep: search a filefora grep(1)
file access and modification utime(2)
file. access: 000 . . access(2)
file archiver. tar(1)

file archivesinandout. cpio(1)
filecheckers. pwck(IM)
file.00 . . . chmod(2)
file.chown: chown(2)
file comparator. diff(1)

file comparison. diff3(1)
filecontrol. fentl(2)
file control options. fentl(7)
file copy. uuto, uuto(1C)
file. & ¢ ¢« ¢t o b e e e e e e e e e core(S)
file creationmask. umask(2)
file. cut: cut out selected cut(l)
filee. e e e e e e . . dd(l)
file. deita:make « . delta(l)
file descriptor. close(2)
file descriptor. dup(2)
file: determine filetype. file(1l)
file editing activity. sact(1)
file entry. /getgrnam, getgrent(3C)
file entry. /setpwent, getpwent(3C)
fileentry. putpwent(3C)
file. /execv, execle, execve, exec(2)
file for a pattern.« . . grep(l)
fileformat. acct(5)
file format. e e e ar(5)

file format. errfile(5)
file format for card images. pnch(5)
file formats. + « o o intro(5)
file. e e i e wle e e e get(1)
file. « . group(5)
file. hs: RHll/RJSO3 RJSO4 . . hs(4)

file into pieces. split(1)

- 10 -

link: link to a

mknod: build special

or a special or ordinary
ctermid: generate

mktemp: make a unique

null: the null

one. creat: create a new
passwd: password

or subsequent lines of one
Iseek: move read/write

prs: print an SCCS

read: read from

reform: reformat text
fget.demon, fget.odemon:

rf: RF11/RS11 fixed-head disk
remove a delta from an SCCS
bfs: big

two versions of an SCCS
sccsfile: format of SCCS

size: size of an object

stat, fstat: get

sum: sum and count blocks in a
tapesave: daily/weekly UNIX
and interactive repair. fsck:
fsdb:

dump: incremental

volume.

mkfs: construct a

umount: mount and dismount
mount: mount a

restor: incremental

ustat: get

mnttab: mounted

umount: unmount a

fsck. checklist: list of
volcopy, labelit: copy

deliver the last part of a
tmpfile: create a temporary
create a name for a temporary
and modification times of a
file: determine

undo a previous get 6f an SCCS
report repeated lines in a

val: validate SCCS

write: write on a

umask: set

ferror, feof, clearerr,

and print process accounting
merge or add total accounting
create and administer SCCS
send, gath: gather
VAX-11/780/ fscv: convert
cat: concatenate and print
cmp: compare two

lines common to two sorted
cp, In, mv: copy, link or move
mark differences between
find: find

arcv: convert archive

fget: retrieve

format specification in text
string, format of graphical
intro: introduction to special

Permuted Index

file. . & ¢ ¢ i it e e e e e e e link(2)

file. mknod(1M)
file. /make a directory, mknod(2)
file name for terminal. ctermid(3S)
filename. 0000 . mktemp(3C)
file.00 null(4)
file or rewrite an existing creat(2)
file. . . ¢« ¢ v v ot e e e e e e passwd(5)

file. /lines of several filess
filepointer.

paste(1)
Iseek(2)

file.00 prs(1)
file. T (= (@)
file. . . . 0 v vt i e e e e e reform(1)

file retrieval daemons.

fget.demon(1C)

file. « & ¢ ¢ v v b e e e e e e e e rf(4)

file. rmdel: N . . rmdel(l)
file scanner. ... e e e e e bfs(1)
file. sccsdiff: compare scesdiff (1)
file.00 sccsfile(5)
file. e e e e . . size(l)
filestatus.0 0. .. stat(2)
filee.sum(l)
file system backup. filesave, filesave(8)
file system consistency check fsck(1M)
file system debugger. fsdb(1M)

file systemdump.
file system: format of system
file system.
file system. mount, . .
file system. . .
file system restore.
file system statistics.
file systemtable.

..........

.........

dump(1M)
fs(5)
mkfs(1M)
mount(1M)
mount(2)
restor(1M)
ustat(2)
mnttab(5)

filesystem. umount(2)
file systems processed by checklist(5)
file systems with label/ e+ o « « o+ volcopy(1M)
file. tail: e e e e e e e . . tail(l)
file.00 .« « « . tmpfile(3S)
file. tmpnam: tmpnam(3S)
file. touch: updateaccess touch(1)
filetype. file(l)

file. unget: unget(1)
file. wnig: unig(l)
file. . « ¢ o v et i e 0. .. val(l)
file. . . ¢ ¢ ¢t v e e et oo o . write(2)
file-creation mode mask. umask(l)
fileno: stream status/ ferror(3S)
file(s). acctcom: search acctcom(l)
files. acctmerg: acctmerg(1M)
files. admin: admin(1)
files and/or submit RJE jobs. send(1C)
files between PDP-11and fscv(IM)
files. . . ¢ ¢ ¢ ot e e . cat(l)
files.cmp(l)
files. comm: select orreject comm(l)
files.00.0..0p()

files. diffmk: diffmk(1)
files. .. .0 ¢ oo findd)
files from PDP-11to/ arcv(l)
files from the HONEYWELL 6000. . fget(1C)
files. fspec: fspec(5)
files. /graphical primitive gps(5)

filess¢¢0...... intro(4)

- 11 -

xXmozZ -~

xXmozZ -

Permuted Index

rm, rmdir: remove

/merge same lines of several
unpack: compress and expand
pr: print

sort: sort and/or merge
fsend: send

what: identify SCCS
daily/weekly UNIX file system/
greek: select terminal

nl: line numbering

col:

graphical device routines and
tplot: graphics

: find:

hyphen:

ttyname, isatty:

object library. lorder:
errors. typo:

spell, spellin, spellout:

tee: pipe

hs: RH11/RJS03-RJS04

rf: RF11/RS11

fptrap:

/ceil, fmod: absolute value,
absolute value, floor,/

vix: VAX-11/780 LSI console
fclose, flush: close or
ceiling,/ floor, fabs, ceil,
stream.

per-process accounting file
packs. rp6fmt:

ar: archive file

from PDP-11 to VAX-11/780
dump: incremental dump tape
errfile: error-log file

pnch: file

nroff or/ eqn, neqn, checkeq:
inode:

core:

cpio:

dir:

/graphical primitive string,
sccsfile:

file system:

files. fspec:

troff. tbl:

troff, nroff: typeset or

tp: magnetic tape

wtmp: utmp and wtmp entry
intro: introduction to file
scanf, fscanf, sscanf:

mm: print out documents
fprintf, sprintf: output

mm: the MM macro package for
manual. man: macros for
f17:

ratfor: rational

efl: Extended

formatters. printf,
interpreter.

word on a/ putc, putchar,

files or directories. rm(l)
files or subsequent linesof/ paste(l)
files. pack, pcat, pack(l)
files.000....0pr(])
files. e e s o s« . sort(l)
files to the HONEYWELL fsend(1C)
files. what(1l)
filesave, tapesave: filesave(8)
fiter. greek(1)
filter. ni(1)
filter reverse line-feeds. col(1)
filters. /tekset, td: . . . gdev(1G)

filters.

e o o e e o s e s o »

. tplot(1G)

find files. find(1)
find: find files. find(1)
find hyphenated words. hyphen(1)
find name of a terminal. . . . ttyname(3C)
find ordering relation for an . . « lorder(1)
find possible typographical typo(1)
find spelling errors. spell(l)
fitting. . .. ¢ . 00000 .. tee(l)
fixed-head disk file. hs(4)
fixed-head disk file. rf(4)
floating point interpreter. fptrap(3X)
floor, ceiling, remainder/ floor(3M)
floor, fabs, ceil, fmod: floor(3M)
floppy interface. vix(IM)
flushastream. fclose(3S)
fmod: absolute value, floor, floor(3M)
fopen, freopen, fdopen: opena . . . fopen(3S)
fork: create a new process. fork(2)
format. acct: . . « ¢« ¢« ¢+ o o o . . . aCCH(5)
format and/or check RP06 disk . . . rp6fmt(8)
format. ¢ ¢ s 00 e 0. . ar(s)
format. /convert archive files arcv(l)
format.000....dump(5)
format. o o ecrrfile(5)
format for card images. pnch(5)
format mathematical text for eqn(l)
formatofaninode. inode(5)
format of core image file. core(5)
format of cpio archive. cpio(5)
format of directories. dir(5)
format of graphical files. gps(5)
format of SCCSfile. sccsfile(5)
format of system volume. fs(5)
format specification intext fspec(5)
format tables for nroffor tbi(1)
formattext. troff(1)
format. ¢0c0 tp(5)
format. utmp, utmp(s)
formats. intro(5)
formatted input conversion. scanf(3S)
formatted with the MM macros. . . . mm(1l)
formatters. printf, printf(3S)
formatting documents. mm(7)
formatting entriesinthis man(7)
Fortran 77 compiler. f17(1)
Fortran dialect. ratfor(l)
Fortran Language. efi(l)
fprintf, sprintf: output printf(3S)
fptrap: floating point fptrap(3X)
fputc, putw: put characteror putc(3S)

-12-

stream. puts,

input/output.

df: report number of
memory allocator. malloc,
stream. fopen,

mantissa and exponent.
gets, fgets: get a string
rmdel: remove a delta
getopt: get option letter
errdead: extract error records
read: read

ncheck: generate names
nlist: get entries

arcv: convert archive files
acctcms: command summary
getw: get character or word
fget: retrieve files

getpw: get name

input conversion. scanf,

of file systems processed by
check and interactive repair.
PDP-11 and VAX-11/780/

reposition a stream.
HONEYWELL 6000.

text files.

stat,

stream. fseek,

gamma: log gamma

JO, j1, jn, yO, yl1, yn: bessel
logarithm, power, square root
floor, ceiling, remainder
300, 300s: handle special
hp: handle special

terminal. 450: handle special
sinh, cosh, tanh: hyperbolic
atan, atan2: trigonometric
input/output. fread,

wtmp records.

moo: guessing

back: the

bj: the

chess: the

craps: the

reversi: a

wump: the

intro: introduction to
gamma: log

submit RJE jobs. send,

jobs. send, gath:

output to the HONEYWELL 6000.
user.

maze:

timex: time a command and
abort:

makekey:

terminal. ctermid:

/primes: factor a number,
ncheck:

lexical tasks. lex:

rand, srand: random number

fputs: put a stringona

fread, fwrite: buffered binary .

Permuted Index

. . puts(3S)
. . fread(3S)

freedisk blocks. df(1)

free, realloc, calloc: main . . .

. . malloc(3C)

freopen, fdopen: opena fopen(3S)

frexp, ldexp, modf: splitinto . . .

fromastream.
from an SCCS file.

from dump. . . .
from file.

fromargv. 0.

. . . rmdel(1)

frexp(3C)
gets(3S)

getopt(3C)
errdead(1M)

e o e v e e . read(2)

from i-numbers. ncheck(1M)

from name list. .

. nlist(3C)

from PDP-11 to VAX-11/780/ arcv(l)
from per-process accounting/ acctcms(1M)
from stream. /getchar, fgetc, getc(3S)
from the HONEYWELL 6000. fget(1C)
fromUID. getpw(3C)
fscanf, sscanf: formatted scanf(3S)

fsck. checklist: list

-13-

. . checklist(5)

‘ fsck: file system consistency fsck(1M)
fscv: convert files between fscv(1M)
fsdb: file system debugger. fsdb(1M)
fseek, ftell, rewind: fseek(3S)
fsend: send filestothe fsend(1C)
fspec: format specificationin fspec(5)
fstat: get filestatus. stat(2)
ftell, rewind: repositiona fseek(3S)
function. e e e+ .. gamma(3M)
functions.« ..« . . . bessel(3M)
functions. /sqrt: exponential, exp(3M)
functions. /absolute value, floor(3M)
functions of DASI 300 and 300s/ . . 300(1)
functions of HP 2640 and/ hp(l)
functions of the DASI450 450(1)
functions. sinh(3M)
functions. /tan, asin, acos, trig(3M)
fwrite: buffered binary fread(3S)
fwtmp, wtmpfix: manipulate fwtmp(1M)
BAME. . . « ¢ ¢« e e o o oo o o+« MOO(6)
game of backgammon. back(6)
gameof blackjack. bj(6)
gameofchess. chess(6)
gamcofcraps. craps(6)
game of dramatic reversals. reversi(6)
game of hunt-the-wumpus. wump(6)
BAMES. . ¢ « ¢ o o o s s o o o o o intro(6)
gamma function. gamma(3M)
gamma: log gamma function. gamma(3M)
gath: gather filesand/or send(1C)
gather files and/or submit RJE . . . send(1C)
geat: send phototypesetter geat(1C)
geosmail: send mailto HIS gcosmail(1C)
ged: graphical editor. ged(1G)
generatcamaze. mMmaze(6)
generate a system activity/ timex(l)
generatean IOT fault. abort(3C)
generate encryption key. makekey(8)
generate file namefor ctermid(3S)
generate large primes. factor(l)
generate names from i-numbers. . . . ncheck(1M)
generate programs for simple lex(1)
generator. . « ¢« ¢ « o o o s o « » o rand(3C)

xXmozZ -~

xXmoZ -

Permuted Index

gets, fgets:

get:

ulimit:

getc, getchar, fgetc, getw:
nlist:

umask: set and

stat, fstat:

ustat:

file.

/getgrnam, setgrent, endgrent:
getlogin:

logname:

getpw:

system. uname:

unget: undo a previous
getopt:

/getpwnam, setpwent, endpwent:
times. times:

and/ getpid, getpgrp, getppid:
/geteuid, getgid, getegid:

tty:

time:

get character or word from/
character or word from/ getc,
getuid, geteuid, getgid,

name.

real user, cffective/ getuid,
user,/ getuid, geteuid,
setgrent, endgrent: get group/
endgrent: get group/ getgrent,
get group/ getgrent, getgrgid,

argv.

process group, and/ getpid,
process, process group, and/
group, and/ getpid, getpgrp,

setpwent, endpwent: get/
get/ getpwent, getpwuid,
endpwent: get/ getpwent,
a stream.

terminal.

getegid: get real user,/
from/ getc, getchar, fgetc,
convert/ ctime, localtime,
setjmp, longjmp: non-local
string, format of graphical/

graph: draw a

sag: system activity
commands. graphics: access
/network useful with
/erase, hardcopy, tekset, td:
. ged:
primitive string, format of
format of graphical/ gps:
routines. toc:

gutil:

numerical commands.

tplot:

TTY-37 type-box. greek:

getegid: get real user,/
getenv: value for environment . . .
geteuid, getgid, getegid: get
getgid, getegid: get real
getgrent, getgrgid, getgrnam,
getgrgid, getgrnam, setgrent,
getgrnam, setgrent, endgrent:
getlogin: get login name.
getopt: get option letter from
getopt: parse command options. . .
getpass: read a password.
getpgrp, getppid: get process, . . .
getpid, getpgrp, getppid: get
getppid: get process, process
getpw: get name from UID.
getpwent, getpwuid, getpwnam,
getpwnam, setpwent, endpwent:
getpwuid, getpwnam, setpwent, . .
gets, fgets: get a string from

e o o s s o

.....

get a string from a stream. gets(3S)
get a version of an SCCS file. . get(1)

get and set user limits. ulimit(2)
get character or word from/ getc(3S)
get entries from namelist. nlist(3C)
get file creation mask. umask(2)
get file status. e . o . stat(2)

get file system statistics. ustat(2)
get: get a version of an SCCS . get(1)

get group fileentry. getgrent(3C)
getloginname. getlogin(3C)
get login name. logname(1)
get name from UID. getpw(3C)
get name of current UNIX uname(2)
get of an SCCSfile. unget(1)
get option letter from argv. getopt(3C)
get password fileentry. getpwent(3C)
get process and child process times(2)

. get process, process group, getpid(2)
get real user, effective user,/ getuid(2)
get the terminal’s name. tty(l)
gettime. 000 0. time(2)
getc, getchar, fgetc, getw: getc(3S)
getchar, fgetc, getw: get getc(3S)

. getuid(2)
. getenv(3C)
. getuid(2)
. getuid(2)

getgrent(3C)
getgrent(3C)
getgrent(3C)
getlogin(3C)
getopt(3C)

. getopt(1)

getpass(3C)

. getpid(2)

getpid(2)
getpid(2)

. getpw(3C)

. . getpwent(3C)

. . getpwent(3C)
. getpwent(3C)

gets(3S)
getty: set the modesofa getty(8)
getuid, geteuid, getgid, getuid(2)
getw: get characterorword getc(3S)
gmtime, asctime, tzset: ctime(3C)
BO10. . . v . e e e e e setymp(3C)
gps: graphical primitive gps(5)
graph: drawa graph. graph(1G)
graph.¢...¢.. ... graph(1G)
graph. sag(IM)
graphical and numerical graphics(1G)
graphical commands. stat(1G)
graphical device routines and/ gdev(1G)
graphical editor. ged(1G)
graphical files. /graphical gps(5)
graphical primitive string, gps(5)
graphical table of contents toc(1G)
graphical utilities. gutl(1G)
graphics: access graphical and graphics(1G)
graphics filters. tplot(1G)
graphics for the extended greek(7)

-14 -

plot:

subroutines. plot:

mvt: typeset documents, view
macro package for making view
extended TTY-37 type-box.

file for a pattern.

/user, effective user, real
/getppid: get process, process
chown, chgrp: change owner or
setgrent, endgrent: get

group:

setpgrp: set process

id: print user and

real group, and cffective
setuid, setgid: set user and
newgrp: log in to a new
chown: change owner and
a signal to a process or a
update, and regenerate
checkers. pwck,

ssignal,

hangman:

moo:

DASI 300 and 300s/ 300, 300s:
2640 and 2621-series/ hp:
the DASI 450 terminal. 450:

nohup: run a command immune to
graphical device/ hpd, erase,
to IBM.

help: ask for

fget: retrieve files from the
fsend: send files to the
phototypesetter output to the
line printer/ dpd, odpd, lpd:
handle special functions of
of HP 2640 and 2621-series/
moving-head disk.

td: graphical device routines/
fixed-head disk file.
interface.

wump: the game of

sinh, cosh, tanh:

hyphen: find

RJE (Remote Job Entry) to
rje: RJE (Remote Job Entry) to
and names.

setpgrp: set process group
what:

id: print user and group
group, and parent process
group, and effective group
setgid: set user and group
core: format of core

crash: examine system
pnch: file format for card
nohup: run a command

graphics interface.
graphics interface
graphs, and slides. mmt, . . .
graphs. mv:a

greek: graphics for the
greck: select terminal filter. . .

« s e .

.

Permuted Index

grep, egrep, fgrep: secarcha
group, and effective group/ . . .

group, and parem process IDs.
group. . .
group file entry /getgrnam. ..
group file.

e e s e e

. plot(5)
. plot(3X)
. mmt(1)

mv(7)

. greek(7)
. greek(1)

grep(1)
getuid(2)

. getpid(2)

.....

.............

group: groupfile.

groupID.
group IDs and names. . . .
group IDs. /effective user, .
group IDs. .
group. .
group of a file.
group of processes. /send . .
groups of programs. /maintain,

I Y

.......

grpck: password/group file . . .

gsignal: software sngnals ..
guesstheword.
guessing game. ..
gutil: graphical utilities. . . .
handle special functions of .
handle special functions of HP .
handle special functions of
hangman: guess the word.
hangups and quits. . .
hardcopy, tekset, td:
hasp: RJE (Remote Job Entry)
help: ask for help.
help.
HONEYWELL 6000.
HONEYWELL 6000.
HONEYWELL 6000. gcat: send
HONEYWELL sending daemons,
HP 2640 and 2621-series/ hp: .
hp: handle special functions .
hp: RP04/RP05/RP06
hpd, crase, hardcopy, tekset,
hs: RH11/RJS03-RJS04 . . .
ht: TU16 magnetic tape . . .
hunt-the-wumpus.
hyperbolic functions.
hyphen: find hyphenated words.
hyphenated words.
hypot: Euclidean distance.
IBM. hasp:
IBM.
id: print user and group IDs
ID.00...
identify SCCS files.
IDs and names.
IDs. /get process, process
IDs. /effective user, real
IDs. setuid,
image file.
images.
images.
immune to hangups and quits.

¢ o o

e e o o o o

s e o o o

e o o o o o o

« s e o

e o o o o o
« s o

“ e o o

e o o o o

e o o o o o o

.
.
.
.
.
.
.
.
.
e o o o s s o o .
.

.
.
e e s o o o o
.
.
.

.
.
.
.
.
.
.
.
.
.
.
e o o o o o o o .
.

-15-

@ & o o & o o & o s o s o & o s e e e 0 e .

chown(1)
getgrent(3C)
group(5)
group(5)
setpgrp(2)

. id(1)

getuid(2)

. setuid(2)
. newgrp(l)

...........

chown(2)
kill(2)

. make(1)
. pwck(1M)

ssignal(3C)
hangman(6)

. moo(6)

gutil(1G)
300(1)
hp(1)
450(1)
hangman(6)
nohup(1)
gdev(1G)
hasp(8)
help(1)
help(1)
fget(1C)
fsend(1C)
geat(1C)
dpd(1C)
hp(1)
hp(1)

hyphen(1)
hyphen(1)
hypot(3M)
hasp(8)
rje(8)
id(1)
setpgrp(2)
what(1)
id(1)
getpid(2)
getuid(2)
setuid(2)
core(S)
crash(1M)
pnch(S)
nohup(1)

xXmozZ -

xXmoZ-—

Permuted Index

dump:

dump:

restore. restor:

ptx: permuted

control information for
initialization.

init: process control

rc: system

process. popen, pclose:
for init.

clri: clear

inode: format of an

fscanf, sscanf: formatted
push character back into
fread, fwrite: buffered binary
stdio: standard buffered
fileno: stream status

uustat: uucp status

install:

abs:

/1tol3: convert between 3-byte
3-byte integers and long
beopy:

system consistency check and
rjestat: RJE status report and
cat: phototypesetter

dn: DN-11 ACU

du: DU-11 synchronous line
err: error-logging

dgs: DQS-11

ht: TU16 magnetic tape

KL-11 or DL-11 asynchronous
parallel communications link
plot: graphics

st: synchronous terminal

plot: graphics

tm: TM11/TU10 magnetic tape
tty: general terminal
VAX-11/780 LSI console floppy
spline:

fptrap: floating point

rsh: restricted shell (command
sno: SNOBOL

pipe: create an

suspend execution for an
sleep: suspend execution for
commands and application/
formats.

miscellany.

files.

subroutines and libraries.
calls and error numbers.
maintenance procedures.
application programs. intro:
intro:

intro:

intro:

intro:

and libraries. intro:

and error numbers. intro:

incremental dump tape format. . . . dump(5)
incremental file system dump. dump(1M)
incremental file system restor(IM)
index. 0000 ... ptx(1)
init. inittab: « . inittab(5)
init: processcontrol init(8)
initialization.« . init(8)
initialization shell script. rc(8)
initiate [/O to/froma popen(3S)
inittab: control information inittab(5)
ienode. 000 e ... ci(IM)
inode: format of aninode. inode(5)
inode.00 e inode(S)
input conversion. scanf, scanf(3S)
input stream. ungetc: ungetc(3S)
input/output. fread(3S)
input/output package. stdio(3S)
inquiries. /feof, clearerr, ferror(3S)
inquiry and jobcontrol. uustat(1C)
install commands. install(1M)
install: install commands. install(1M)
integer absolute value. abs(3C)
integers and long integers. 13tol(3C)
integers. /convert between 13tol(3C)
interactive block copy. becopy(1M)
interactive repair. /file fsck(1M)
interactive status console. rjestat(1C)
interface.0 cat(4)
interface. 0 ... « « o dn(4)
interface. e e e e e du(4)
interface. e e e e e e err(4)
interface for two-point BSC. dqs(4)
interface. ¢« . ¢ ¢ ¢ ht(4)
interface. kl: e e o . . ki(4)
interface. pcl: pci(4)
interface. plot(5)
interface. 0 0 0 o . . . St(4)
interface subroutines. plot(3X)
interface. ¢ 0 0 e 0. . . tm(4)
interface. 0 0 0 0 o .. . tty(4)
interface. vix: ViIX(IM)
interpolate smooth curve. spline(1G)
interpreter. fptrap(3X)
interpreter). r1sh(l)
interpreter. s00(1)
interprocess channel. pipe(2)
interval. sleep: sleep(l)
interval. ¢ sleep(3C)
intro: introductionto intro(l)
intro: introductionto file intro(5)
intro: introduction to games. intro(6)
intro: introductionto intro(7)
intro: introduction to special intro(4)
intro: introductionto intro(3)
intro: introduction to system intro(2)
intro: introduction to system intro(8)
introduction to commands and . . . intro(l)
introduction to file formats. intro(5)
introductionto games. intro(6)
introduction to miscellany. intro(7)
introduction to special files. intro(4)
introduction to subroutines intro(3)
introduction to system calls intro(2)

-16 -

maintenance/ intro:
ncheck: generate names from
popen, pclose: initiate

abort: generate an
/islower, isdigit, isxdigit,
isdigit, isxdigit, isalnum,/
isprint, isgraph, iscntrl,
terminal. ttyname,
/ispunct, isprint, isgraph,
isalpha, isupper, islower,
. /isspace, ispunct, isprint,
isalnum,/ isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,
system:
isxdigit, isalnum,/ isalpha,
/isupper, islower, isdigit,
news: print news
functions.

functions. jO,
bj: the game of black
functions. j0, jl,

operator.
microprocessor.
makekey: generate encryption
process or a group of/

asynchronous interface.
interface. kl:

kas: assembler for the

kmc:

/vpmsnap, vpmtrace: load the
kun: un-assembler for the

mem,

quiz: test your

KMC11/DMCI11 microprocessor.
3-byte integers and long/
base-64 ASCII. aé64l,

copy file systems with

with label checking. voicopy,
scanning and processing
arbitrary-precision arithmetic

efl: Extended Fortran

_ standard command programming

mantissa and exponent. frexp,
getopt: get option

simple lexical tasks.

generate programs for simple
to subroutines and

relation for an object

ar: archive and

ulimit: get and set user

du: DU-11 synchronous

line: read one

. nk
out selected fields of each
HONEYWELL sending daemons,
Ip:

Ipr:

introduction to system
i-numbers.
I/O to/from a process.
ioctl: control device. . . .
IOT fault. . .
isalnum, isspace, ispunct,/
lsalpha isupper, islower, .
isascii: character/ /ispunct,
isatty: find name ofa . . .
iscntrl, isascii: character/
isdigit, isxdigit, isalnum,/
isgraph, iscntrl, isascii:;/ .
islower, isdigit, isxdigit, .
isprint, isgraph, iscntrl,/
ispunct, isprint, isgraph,/
isspace, ispunct, isprint,/
issue a shell command.
isupper, islower, isdigit, . .
isxdigit, isalnum, isspace,/
items.
10, j1, jn, ¥0, y1, yn: bessel
jl1, jn, yO, yl, yn: bessel . .
Jack
jn, y0, yl, yn: bessel
join: relational database
kas: assembler for the KMC11 .
key. .
kill: send a signaltoa
kill: terminate a process. . . .
kl: KL-1lorDL-11

¢« e e o o o o & o

e o s s s .

e e e e o o e @

« e o o

* s e e e o o e e o o

KL-11 or DL-11 asynchronous
kmc: KMCI11 microprocessor.
KMC1! microprocessor.
KMC11 microprocessor.
KMCI11-B; print VPM traces.

o .

Y

KMC11/DMCI11 microprocessor.

kmem: core memory.
knowledge.
kun: un-assembler for the . . .
13tol, itol3: convert between . .
164a: convert between long and

label checking. /labelit:
labelit: copy file systems
language. awk: pattern .
language. bc: .
Language.

e o o s o o o o o

o« e

e .

e o o o

language. sh: shell, the
Id: link editor. . .
Idexp, modf: split into .
letter from argv.
lex: generate programs for
lexical tasks. lex: . . .
libraries. /introduction
library. /find ordering

library maintainer. . .
limits.
line interface. .
line.

e o e o e s o

line numbering filter.
line of a file. cut: cut
line printer daemon. /ipd:
line printer.
line printer spooler.

o o e o e o o o+ o

@ o o e e ® o e e o s s s & ° e o s e o e o

® @ o o e * e s e ® s s e 6 e o o e o &

o o o

-17-

e & e o o o 8 o o s o s s s 6 o o ® e e s o s & s o

e o o e o s e s o o

o o o o

Permuted Index

e s o a4 o e o o o o o o

« o e o e o

@ © o o & o & o o & s e o 6 e * e e e & s 8 ° & o6 s e s s s e

.......

intro(8)

. ncheck(1M)

@ o o o o e ® e 5 s e s e e e s s e ® e ° e s e v s e o o o o

popen(3S)
ioctl(2)
abort(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3S)
ctype(3C)
ctype(3C)
news(1)
bessel(3M)
bessel(3M)
bj(6)
bessel(3M)
join(1)
kas(1)
makekey(8)
kill(2)
kill(1)
ki(4)

ki(4)
kmc(4)
kas(1)

. kmc(4)

e o o o o e e o o

vpmstart(1C)
kun(1)
mem(4)
quiz(6)
kun(l)
13tol(3C)
2641(3C)
volcopy(1M)
volcopy(1M)

. awk(1)

¢ © o o o © & ® & o e o ° o e ¢ o s o

be(1)
efi(1)
sh(l)
Id(1)
frexp(3C)
getopt(3C)
lex(1)
lex(1)
intro(3)
lorder(1)
ar(1)
ulimit(2)
du(4)
line(1)
nl(1)
cut(1l)

xXmoOZ -

xXmozZ-—

Permuted Index

Isearch:

col: filter reverse

files. comm: select or reject
uniq: report repeated

of several files or subsequent
subsequent/ paste: merge same
link, unlink: exercise

Id:

pel: parallel communications

cp, In, mv: copy,

link:

and unlink system calls.
protocol. dmc: communications
a.out: assembler and

Is:

nlist: get entries from name
nm: print name

by fsck. checklist:

cref: make cross-reference
xargs: construct argument
files. cp,

vpmstart, vpmsnap, vpmtrace:
romboot: special ROM bootstrap
tzset: convert date/ ctime,
end, etext, edata: last

gamma:

newgrp:

logarithm, power, square/ exp,
/log, pow, sqrt: exponential,
errpt: process a report of
getlogin: get

logname: get

cuserid: character

logname:

passwd: change

setting up an environment at

a64l, 164a: convert between
between 3-byte integers and
setjmp,

for an object library.

nice: run a command at

daemons, line/ dpd, odpd,

directories.

update.

pointer.

vix: VAX-11/780
integers and long/ 13tol,

vpm: The Virtual Protocol
for the virtual protocol
documents. mm: the MM
graphs. mv: a

mé4:

mmchek: check usage of mm
in this manual. man:

line: read one line.

e e s o

linear search and update.

line(1)

. lIsearch(3C)

linefeeds. col(l)
lines commontotwosorted comm(l)
linesinafile. uni(l)
lines of one file. /same lines paste(l)
lines of several filesor paste(l)
link and unlink system calls. link(1M)
link editor. Q1)
link interface. « o pcl(4)
link: linktoafilee. link(2)
link or move files. ¢cp(l)
linktoafile. e e s o o o o link(2)
link, unlink: exercise link link(IM)
link with built-in DDCMP dmc(4)
link editor output. aout(5)
lint: a C program checker. lint(1)
list contents of directories. Is(1)
list. 0t it i e .. nlist(3C)
list. e s e o o s+ nm(l)
list of file systems processed checklist(5)
listing. ¢ ¢ o0 cref(1)
list(s) and execute command. xargs(l)
In, mv: copy, link or move cp(l)

load the KMC11-B; print VPM/

. vpmstart(1C)

loaders.+«.+.....romboot(8)
localtime, gmtime, asctime, ctime(3C)
locations in program. end(3C)
log gamma function. gamma(3M)
logintoa newgroup. newgrp(l)
log, pow, sqrt: exponential, exp(3M)
logarithm, power, square root/ . . . exp(3M)
loggederrors. crrpt(IM)
loginname. getlogin(3C)
loginname. logname(l)
login name of the user. cuserid(3S)
login name of user. logname(3X)
login password. passwd(1)
login: signon. login(1)
login time. profile: profile(5)
logname: get login name. . . logname(1)

logname: login name of user.

. logname(3X)

long and base-64 ASCIL. a64l(3C)
long integers. /ltol3: convert 13tol(3C)
longjmp: non-local goto. setjmp(3C)
lorder: find ordering relation lorder(l)
low priority. nice(l)
lp:lineprinter.Ip4)

Ipd: HONEYWELL sending dpd(1C)
lpr: line printer spooler. lpr(1)

Is: listcontentsof Is(1)
Isearch: linear searchand Isearch(3C)
Iseck: move read/write file . . . lIseek(2)
LSI console floppy interface. vIx(IM)
Itol3: convert between 3-byte 13tol(3C)
m4: macro processor. mé(l)
Machine. e s s e s e e e . vpm(4)
machine. vpmc: compiler vpmc(IC)
macro package for formatting mm(7)
macro package for making view . . . mv(7)
Macro processor. . . « . « « » « +» » mMm4(1)
macros and eqn delimiters. mmchek(1)

macros for formatting entries

-18 -

man(7)

formatted with the MM
program. tapeboot:

tp:

ht: TU16

tm: TM11/TU10

send mail to users or read
users or read mail.

gcosmail: send

mail, rmail: send

malloc, free, realloc, calloc:
regenerate groups of/ make:
ar: archive and library

intro: introduction to system
SCCS file. delta:

mkdir:

or ordinary file. mknod:
mktemp:

cref:

regenerate groups of/
banner:

key.

main memory allocator.
entries in this manual.
manual.

tp:

fwtmp, wtmpfix:

frexp, ldexp, modf: split into
man: print entries in this

for formatting entries in this
ascii:

files. diffmk:

umask: set file-creation mode
set and get file creation
table. master:

information table.

regular expression compile and
eqn, neqn, checkeq: format

maze: generate a

free, realloc, calloc: main
mem, kmem: core

sort: sort and/or

files. acctmerg:

files or subsequent/ paste:

mesg: permit or deny
Sys_nerr, errno: system error
kas: assembler for the KMC11
kmc: KMCl11

for the KMC11/DMC11

and commands.

special or ordinary file.

name.

formatting documents. mm: the
mmchek: check usage of
documents formatted with the
formatted with the MM macros.
formatting documents.

macros and eqn delimiters.

macros. /print out documents

magnetic tape bootstrap
magnetic tape format. . . .
magnetic tape interface.

.....

magnetic tape interface.

mail. mail, rmail: ., .
mail, rmail: send mail to
mail to HISuser.
mail to users or read mail.
main memory allocator. . .
maintain, update, and .
maintainer.
maintenance procedures. .
make a delta (change) to an
make a directory. . . .
make a dxrectory. ora specml

« s e e e e

make a unique file name.

make cross-reference listing. . .
make: maintain, update, and .
make posters.
makekey: generate encrypuon
malloc, free, realloc, calloc:
man: macros for formatting . .
man: print entries in this . ., .
manipulate tape archive.
manipulate wtmp records. . .
mantissa and exponent. . . .
manual.
manual. man: macros .
map of ASCII character set. . .
mark differences between . . .
mask.
mask. umask:
master device information . .
master: master device
match routines. regexp:
mathematical text for nroff or/
maze: generate a maze.
maze. e e e e
mem, kmem: core memory. . .
memory allocator. malloc,
memory.
merge files. . .
merge or add total accounting
merge same lines of several .
mesg: permit or deny messages.
messages.
messages. /sys_errlist,
microprocessor.
microprocessor.
microprocessor. /un-assembler
mk: how to remake the system
mkdir: make a directory. . .
mkfs: construct a file system.
mknod: build special file. . .
mknod: make a directory, or a
mktemp: make a unique file .
MM macro package for . . .
mm macros and eqn delimiters.
MM macros. mm: print out . .
mm: print out documents
mm: the MM macro package for
mmchek: check usage of mm .

L

e o s s s e s e

« o 0 e

e o e o o o

D)

e e o e o o

o s e e o

e o o e .

o s e

s e e o o 0

e s e o o o

o« o

-19 -

Permuted Index

. . mm(l)

. . tapeboot(8)

tp(5)

. . ht(4)

. . tm(4)

mail(1)

mail(1)

. . gcosmail(1C)

. . mail(1)

. malloc(3C)

make(1)

ar(1)

intro(8)

delta(1)

. mkdir(1)

mknod(2)

mktemp(3C)
. cref(1)

. . make(l)

. . banner(1l)

. . makekey(8)

malloc(3C)

. . man(7)

. . man(l)

. .o tp(1)

L
o e o s

.

. o« fwtmp(1M)

® e s s e e s s s .

. . frexp(3C)
. . man(l)
man(7)

. ascii(7)

. diffmk(1)

. umask(1)

. umask(2)

. master(5)

. master(5)

. regexp(7)

. eqn(l) -

. maze(6)

. maze(6)

. mem(4)

. malloc(3C)

. mem(4)

. sort(1)

. acctmerg(1M)
. paste(1)

. mesg(1)

. mesg(1)

« o o o s o

perror(3C)
kas(1)
kmc(4)
kun(1)
mk(8)
mkdir(1)
mkfs(1M)
mknod(1M)
mknod(2)
mktemp(3C)
mm(7)
mmchek(1)
mm(1)
mm(1)
mm(7)
mmchek(1)

* e e o e s e e ® s+ s e s e s e e s e e e

xXmozZ -~

xXmozZ -

Permuted Index

view graphs, and slides.
table.

setmnt: establish
chmod: change

umask: set file-creation
chmod: change

getty: set the

‘bs: a compiler/interpreter for
exponent. frexp, ldexp,
touch: update access and
utime: set file access and
profile.

uusub:

mount:
system. mount, umount:

dismount file system.
mnttab:

mvdir:

cp, In, mv: copy, link or
Iseek:

hp: RP04/RP0S/RP06
rp: RP-11/RP03

DH-11 asynchronous
dj: DJ-11 asynchronous
view graphs.

cp, In,

graphs, and slides. mmt,
i-numbers.

- mathematical text for/ eqn,
definitions for eqn and
commands. stat: statistical
uusub: monitor uucp

news: print

process.
priority.

list.

hangups and quits.

setjmp, longjmp:

format mathematical text for
- tbl: format tables for

troff,

constructs. deroff: remove
null: the

factor, primes: factor a

nl: line

graphicS' access graphical and
size: size of an

find ordering relation for an
sky:

od:

daemons, line printer/ dpd,
dpr:

fopen, freopen, fdopen:
dup: duplicate an

mmt, mvt: typeset documents, . .
mnttab: mounted file system
mnttab table. . . .
mode.
modemask.
modeoffile.
modes of a terminal. .
modest-sized programs. . . .
modf: split into mantissa and
modification times of a file. .
modification times.
monitor: prepare execution .
monitor uucp network.
moo: guessing game. . . .
mount a file system.
mount and dismount file.
mount: mount a file system.
mount, umount: mountand
mounted file system table.
move a directory. .
move files. .
move read/write file pointer. - . . .

e e s e o

DY

e e & o o o o

« e e e

moving-head disk.

moving-head disk.

multiplexers. /DZ-ll/KMC ll .

multiplexor.0
mv: a macro package for malnng ..
mv: copy, link or move files. . . .
mvdir: move a directory.
mvt: typeset documents, view . . .
ncheck: generate names from .
neqn, checkeq: format . . .
neqn. /special character . . .
network useful with graphical
network. . o s
newgrp: log in to a new group.
newsitems.
news: print news items.
nice: change priorityofa
nice: run a command at low
nl: line numbering filter. .
nlist: get entries from name
nm: print name list. - . . .
nohup: run a command i lmmune to
non-localgoto.
nroff or troff. /checkeq: . . .
nroffortroff.

« s e e o

« e e
.
.

nroff: typeset or format text.

nroff/troff, tbl, and eqn . . .
null file. . . .
null: the null file.
number, generate large primes.

numbering filter. . .
numerical commands.
object file.
object library. lorder:
obtain ephemerides.
octaldump. ¢ 0oL
od: octal dump.
odpd, lpd: HONEYWELL sendmg

off-line print.
open a stream.
open file descriptor.

e o e o o o e o

e e o s e & o s e e
e s s e o o o o v o

-20 -

.
.
.
.
.
L N I T Y
.
.
.
.
.

o o o

mmt(l)
mnttab(5)
setmnt(1M)
chmod(1)

. umask(1)

chmod(2)
getty(8)
bs(1)

. frexp(3C)

touch(1)
utime(2)

. monitor(3C)

uusub(1M)
moo(6)
mount(2)
mount(1M)

. mount(2)

mount(1M)

. mnttab(5)

mvdir(1M)

. op(1)

Iseek(2)
hp(4)

- 1p(4)
. dz(4)

dj(4)
mv(7)
cp(1)
mvdir(1M)

. mmt(1)
. ncheck(1M)

cqn(1)
eqnchar(7)

. stat(1G)

uusub(IM)
newgrp(1)
news(1)
news(1)

. nice(2)

.

nice(1)
ni(1)
nlist(3C)

. nm(1)

nohup(1)

. setjmp(3C)

eqn(1l)

. thi(1)

troff(1)

. deroff(1)

¢« e o o e

e e s s s s s s o e e e o

null(4)
null(4)
factor(1)
ni(1)
graphics(1G)
size(1)
lorder(1)
sky(6)

od(1)

. od(1)

.

dpd(1C)

.. dpr(1C)
. fopen(3S)

dup(2)

open:
writing.

prf:

/prfdc, prfsnap, prfpr:

strespn, strtok: string

vaxops: VAX-11/780 console
join: relational database
getopt: get

fentl: file control

stty: set the

getopt: parse command

object library. lorder: find

a directory, or a special or
assembler and link editor

ecvt, fevt:

printf, fprintf, sprintf:

gcat: send phototypesetter
miscellaneous/ acct:

chown: change

chown, chgrp: change

and expand files.

etp: Equipment Test
documents. mm: the MM macro
graphs. mv: a macro

sar: system activity report
standard buffered input/output
format and/or check RP06 disk
4014 terminal. 4014:

interface. pcl:

process, process group, and
getopt:

/setpwent, endpwent: get
putpwent: write

passwd:

getpass: read a

passwd: change login

pwcek, grpek:

several files or subsequent/
dirname: deliver portions of
fgrep: search a file for a
processing language. awk:
signal.

expand files. pack,

cc,

link interface.

process. popen,

fscv: convert files between

as: assembler for

/convert archive files from
mesg:

ptx:

format. acct:

acctcms: command summary from
errno: system error messages.
cat:

HONEYWELL 6000. gcat: send
tc:

split: split a file into

channel.

tee:

Permuted Index

open for reading or writing. open(2)
open: open for reading or . « « . open(2)
operating system profiler. .« . . prf(4)
operating system profiler. profiler(1M)
operations. /strpbrk, strspn, string(3C)
operations. vaxops(8)
OPErator. . « « « « « « o « « o o « join(l)
option letter fromargv. getopt(3C)
options. v e oo . fentl(7)
options for a terminal. stty(l)

Options. . .+ . « ¢« . 0 getopt(l)
ordering relation foran lorder(l)
ordinary file. mknod: make mknod(2)
output. aout: e o o« . aout(s)
output Conversion. . . « « « o « o o ecvt(3C)
output formatters. printf(3S)
output to the HONEYWELL 6000. . . gcat(1C)
overview of accountingand acct(1M)
owner and groupofafile. chown(2)
OWNEeror group. . . « « « « « « « » chown(l)
pack, pcat, unpack: compress pack(l)
Package. e o e s o o . etp(8)
package for formatting mm(7)
package for making view mv(7)
package. 000 e e .. sar(8)
package. stdio: « « . stdio(3S)
packs. rp6fmt: e o« o« . rp6fmt(8)
paginator for the Tektronix 4014(1)
parallel communications link pcl(4)
parent process IDs. /get getpid(2)
parse command options. getopt(1)
passwd: change login password. . . . passwd(l)
passwd: password file. passwd(5)
password fileentry. getpwent(3C)
password fileentry. putpwent(3C)
password file. passwd(5)
password. getpass(3C)
password. e o o« « . passwd(l)
password/group file checkers. pwck(1M)
paste: merge same linesof paste(l)
path names. basename, basename(l)
pattern. grep, egrep, grep(l)
pattern scanningand awk(l)
pause: suspend process until pause(2)
pcat, unpack: compressand pack(l)
pec: Ccompiler. cc(l)

pcl: parallel communications pcl(4)
pclose: initiate I/O to/froma popen(3S)
PDP-11 and VAX-11/780 systems. . . fscv(1M)
PDP-11. ¢+ ... aspdp(l)
PDP-11 to VAX-11/780 format. . . . arcv(l)
permit or deny messages. mesg(l)
permutedindex. ptx(1)
per-process accounting file acct(5)
per-process accounting/ acctems(1M)
perror, sys_errlist, sys_nerr, perror(3C)
phototypesetter interface. cat(4)
phototypesetter output tothe gecat(1C)
phototypesetter simulator. tc(1)
pieces. o .. 0. o split(l)
pipe: create an interprocess pipe(2)
pipefitting. tee(l)
plot: graphics interface. plot(5)

-21-

xXmozZ -

Permuted Index

subroutines.

images.

Iseek: move read/write file
to/from a process.
basename, dirname: deliver
banner: make

logarithm, power,/ exp, log,
/sqrt: exponential, logarithm,

for troff. cw, checkcw:
monitor:

unget: undo a

profiler.

operating/ prfld, prfstat,
prfsnap, prfpr: operating/
/prfstat, prfdc, prfsnap,
system/ prfld, prfstat, prfdc,
prfpr: operating/ prfld,
generate large/ factor,

a number, generate large
graphical/ gps: graphical
types:

prs:

date:

cal:

editing activity. sact:

dpr: off-line

man:

cat: concatenate and

pr:

nm:

uname:

news:

with the MM macros. mm:
file(s). acctcom: search and
names. id:

vpmtrace: load the KMC11-B;
sending daemons, line

Ip: line

lpr: line

vpr: Versatec

vp: Versatec

output formatters.

nice: run a command at low
nice: change

errors. errpt:

acct: enable or disable
acctpre:

acctcom: search and print
times. times: get
initialization. init:

exit: terminate

fork: create a new
/getpgrp, getppid: get process,
setpgrp: set

process group, and parent
kill: terminate a

nice: change priority of a
kill: send a signal to a
pelose: initiate 1/O to/from a
getpid, getpgrp, getppid: get
ps: report

times: get process and child

plot: graphics interface . .
pnch: file format for card .
pointer.
popen, pclose: initiate I/O .
portions of path names. . .
posters.
pow, sqrt: exponential, . .
power, square root functions.
pr: print files.
prepare constant-width text
prepare execution profile.
previous get of an SCCS file. . .
prf: operating system
prfdc, prfsnap, prfpr:
prfld, prfstat, pride,
prfpr: operating system/ . .

e o e o o

e e s e o o e

e o o o o o =

prfsnap, prfpr: operating .

prfstat, prfdc, prfsnap, . .

primes: factor a number, .
primes. /primes: factor . . .
primitive string, format of
primitive system data types. . .
print an SCCS file.
print and set the date.
printcalendar.
print current SCCS file
print.
print entries in this manual. . .
print files.
print files.

e o o o o o o

print name list.« 0.
print name of current UNIX ..
print newsitems.
print out documents formatted .
print process accounting

e e s e o

.....

........

plot(3X)
pnch(5)
Iseek(2)
popen(3S)
basename(1)
banner(1)
cxp(3M)
exp(3M)
pr(1)

cw(1)
monitor(3C)
unget(1)
prf(4)

. profiler(LM)

v e e e

profiler(1M)
profiler(1M)
profiler(1M)
profiler(1M)

. factor(1)

factor(1)
gps(5)
types(7)
prs(1)
date(1)

. cal(l)
. sact(1l)

dpr(1C)

. man(l)

cat(1)
pr(1)

. nm(1)

uname(1)

. news(l)
. mm(l)

print user and group IDsand
. vpmstart(1C)
. dpd(1C)

print VPM traces. /vpmsnap, . .
printer daemon. /HONEYWELL
printer. . . .
printer spooler. .
printer spooler.
printer.

e e & o o e o o o

« o .

printf, fprintf, sprintf: .
priority.
priority of a process. . .
process a report of logged
process accounting. . .
process accounting.
process accounting file(s). .
process and child process .

e e o s e

process control
process.
Process. . .« . « .« o+ .
process group, and parent/ . . .
process group ID.
process IDs. /get process,
process.
process.
process or a groupof/
process. popen, . .« . . . o . .
process, process group, and/ . .
process status.
process times.

e e o o o o o

e o o o o o e e o o e o

e e o & o o o s o

-2 -

o e e s e

acctcom(1)
id(1)

Ip(4)
lpr(1)
vpr(1)
vp(4)
printf(3S)

. nice(1)

nice(2)

. errpt(1M)

acct(2)
acctprc(1 M)
acctcom(1)
times(2)
init(8)
exit(2)
fork(2)
getpid(2)

. setpgrp(2)

getpid(2)
kill(1)
nice(2)
kill(2)

. popen(3S)

getpid(2)
ps(1)
times(2)

wait: wait for child

ptrace:

pause: suspend

wait: await completion of
list of file systems

to a process or a group of
awk: pattern scanning and
shutdown: terminate all
m4: macro

alarm: set a

profile.

prof: display

monitor: prepare execution
profil: execution time
environment at login time.
prf: operating system

prfpr: operating system

shell, the standard command
link with built-in DDCMP
vpm: The Virtual

vpmc: compiler for the virtual
arithmetic:

true, false:

stream. ungetc:

put character or word on a/
character or word on a/ putc,
entry.

stream.

a/ putc, putchar, fputc,

file checkers.

gsort:
command immune to hangups and

generator.

rand, srand:

dialect.

ratfor:

shell script.

getpass:

read:

rmail: send mail to users or
line:

open: open for

Iseck: move

allocator. malloc, free,
specify what to do upon
from per-process accounting
errdead: extract error
wtmpfix: manipulate wtmp
xref: cross

reform:

compile.

compile/execute. regex,
make: maintain, update, and

Permuted Index

process to stop or terminate.

wait(2)

processtract. ptrace(2)
process until signal. pause(2)
PrOCESS. « « o ¢ o o o s o o o 0 o . wait(1)
processed by fsck checkhst checklist(5)
processes. /send asignal kill(2)
processing language. awk(l)
processing.« shutdown(1M)
Processor. e e e e e m4(1)
process’s alarmclock. alarm(2)
prof: display profiledata. prof(1)
profil: executiontime profil(2)
profiledata. prof(1)
profile. monitor(3C)
profile. profil(2)
profile: settingupan profile(5)
profiler. e e e e prf(4)
profiler. /prfdc prfsnap, profiler(1M)

programming language. sh:
protocol. dmc: communications . . .

-23-

sh(1)
dmc(4)

Protocol Machine. vpm(4)
protocol machine. e+« . vpme(1C)
provide drill in number facts. arithmetic(6)
provide truth values. true(l)
prs: printan SCCSfile. prs(1)

ps: report process status. ps(l)
ptrace: process trace. ptrace(2)
ptx: permuted index. ptx(1)

push character back into input ungetc(3S)
putc, putchar, fputc, putw: putc(3S)
putchar, fputc, putw: put putc(3S)
putpwent: write password file putpwent(3C)
puts, fputs: put a stringona puts(3S)
putw: put character or word on . . . putc(3S)
‘pwck, grpck: password/group pwck(1M)
pwd: working directory name. pwd(l)
gsort: quickersort. gsort(3C)
quickersort. gsort(3C)
quits. nohup:runa nohup(l)
quiz: test your knowledge. quiz(6)
rand, srand: random number rand(3C)
random number generator. rand(3C)
ratfor: rational Fortran ratfor(l)
rational Fortran dialect. ratfor(1)
rc: system initialization rc(8)
readapassword. getpass(3C)
read fromfile. read(2)
read mail. mail, mail(l)
readoneline. line(l)
read: read from file. read(2)
reading or writing. open(2)
read/write file pointer. Iseek(2)
realloc, calloc: main memory malloc(3C)
receipt of a signal. signal: signal(2)
records. /command summary acctcms(1M)
records fromdump. errdead(1M)
records. fwtmp, fwtmp(IM)
reference for C programs. xref(l)
‘reform: reformat text file. reform(1)
reformattextfile. reform(l)
regcmp: regular expression regcmp(l)
regemp: regular expression regex(3X)
regenerate groups of programs. . . . make(l)

xXmoZ -~

xXmOoZ-—

Permuted Index

expression compile/execute.
compile and match routines.
match routines. regexp:
regcmp:

regex, regcmp:

sorted files. comm: select or
lorder: find ordering

join:

strip: remove symbols and
value, floor, ceiling,
commands. mk: how to
calendar:

hasp: RJE

rjie: RJE

uvac: RJE

file. rmdel:

unlink:

rm, rmdir:

eqn constructs. deroff:

bits. strip:

check and interactive

uniq: report

console. rjestat: RJE status
blocks. df:

errpt: process a

sar: system activity

ps:
file. uniq:

and generate a system activity
fseek, ftell, rewind:

system restore.

incremental file system
interpreter). rsh:
fget.demon, fget.odemon: file
HONEYWELL 6000. fget:
stat: data

reversi: a game of dramatic
col: filter

reversals.

fseek, ftell,

creat: create a new file or

file.

file. rf:

disk file. hs:

gather files and/or submit

hasp:

rje:
UNIVAC. uvac:

IBM.

rjestat:

interactive status/ rjestat:
enquiries.

interactive status console.

rk: RK-11/RKO03 or
rk:

rl:

directories.

read mail. mail,
SCCS file.
directories. rm,
romboot: special

regex, regemp: regular
regexp: regular expression
regular expression compileand . . .
regular expression compile.

regular expression/

regex(3X)
regexp(7)
regexp(7)
regecmp(1)

. regex(3X)

reject lines commontotwo comm(l)
relation for an object/ lorder(l)
relational database operator. join(l)
relocation bits. strip(1)
remainder functions. /absolute . floor(3M)
remake the systemand mk(8)
reminder service. calendar(1)
(Remote Job Entry) to IBM. . hasp(8)
(Remote Job Entry) to IBM. . 1je(8)
(Remote Job Entry) to UNIVAC. . . uvac(8)
remove a delta from an SCCS rmdei(l)
remove directory entry.« + . unlink(2)
remove files or directories. rm(1)
remove nroff/troff, tbl,and deroff(1)
remove symbols and relocation . strip(1)
repair. /system consistency fsck(1M)
repeated linesinafile. uniq(1)
report and.interactive status rjestat(1C)
report number of freedisk df(1)
report of logged errors. errpt(1M)
report package. sar(8)
report process status. ps(1)
report repeated linesina uniq(1)
report. timex: time a command . .+ timex(1)
reposition a stream. fseek(3S)
restor: incremental file restor(1M)
restore. restor: . . « « « o« o o o o . restor(1M)
restricted shell (command rsh(1)
retrieval daemons. fget.demon(1C)
retrieve filesfromthe fget(1C)
returned by stat systemcall. stat(7)
reversals. 000, reversi(6)
reverse line-feeds. col(l)
reversi: a game of dramatic reversi(6)
rewind: reposition a stream. fseek(3S)
rewrite an existingone. creat(2)

rf: RF11/RS11 fixed-head disk rf(4)
RF11/RS11 fixed-head disk rf(4)
RH11/RJS03-RJS04 fixed-head . . . hs(4)

RIJE jobs. send, gath:« . send(1C)
RJE (Remote Job Entry) to IBM. . . hasp(8)
RJE (Remote Job Entry) to IBM. . . rje(8)

RJE (Remote Job Entry) to uvac(8)
rje: RJE (Remote Job Entry) to . . . rje(8)

RJE status and enquiries. orjestat(1C)
RJE status reportand rjestat(1C)
rjestat: RJE statusand orjestat(1C)
rjestat: RJE status reportand rjestat(1C)
rk: RK-11/RKO03 or RKOS disk. . . . rk(4)
RKOSdisk.rk(4)
RK-11/RKO03 or RKOS disk. rk(4)

rl: RL-11/RLO1 disk. ri(4)
RL-11/RLO1 disk. o . ri(4)

rm, rmdir: remove filesor rm(1)
rmail: send mail tousersor mail(l)
rmdel: remove a delta froman . . . rmdel(l)
rmdir: remove filessor rm(l)
ROM bootstrap loaders. romboot(8)

-24 -

loaders.

chroot: change

chroot: change

logarithm, power, square
/tekset, td: graphical device
expression compile and match
graphical table of contents
disk.

moving-head disk. hp:
rp6fmt: format and/or check

p:
RPO6 disk packs.
interpreter).

nice:

hangups and quits. nohup:
runacct:

editing activity.

package.

space allocation. brk,
formatted input conversion.
bfs: big file

language. awk: pattern
stand-alone programs.

the delta commentary of an
comb: combine

make a delta (change) to an

sact: print current

get: get a version of an

prs: print an

rmdel: remove a delta from an
compare two versions of an
sccsfile: format of

undo a previous get of an

val: validate

admin: create and administer
what: identify

of an SCCS file.

system initialization shell

program.

grep, cgrep, fgrep:
accounting file(s). acctcom:
Isearch: linear

bsearch: binary

brk, sbrk: change data

to two sorted files. comm:
greek:

of a file. cut: cut out

a group of processes. kill:
6000. fsend:

and/or submit RJE jobs.
geosmail:

mail. mail, rmail:

the HONEYWELL 6000. gcat:
dpd, odpd, lpd: HONEYWELL
stream.

IDs. setuid,

getgrent, getgrgid, getgrnam,
goto.

romboot: special ROM bootstrap . . .

root directory. . . .
root directory for a command.
root functions. /exponential,
routines and filters. . .
routines. regexp: regular . . .
routines. toc:
rp: RP-11/RP03 moving-head
RPO4/RPO5/RPO6 . . .
RPO6 disk packs. . .
RP-11/RP03 moving-head disk.
rp6fmt: format and/or check
rsh: restricted shell (command .
run a command at low priority.

e e s e

Permuted Index

romboot(8)
. . chroot(2)
chroot(1M)

.« . exp(3M)

......

run a command immuneto . . .

run daily accounting.

¢ e o s e

runacct: run daily accounting. . .

-25.

gdev(1G)

. . regexp(7)

. . toc(1G)

. . 4)

hp(4)
rp6fmt(8)

« . p(4)

. . rp6fmt(8)

. . rsh(l)

. . nice(l)

. . nohup(l)

. . rusacct(1M)
. . runacct(1M)

sact: print current SCCS file sact(l)
sag: system activity graph. sag(IM)
sar: system activity report sar(8)
sbrk: change data segment brk(2)
scanf, fscanf, sscanf: scanf(3S)
SCANNET. .+ « « & & o e e e e e e bfs(1)
scanning and processing awk(1)
scc: Ccompilerfor scc(l)
SCCS delta. cdc: change cde(l)
SCCSdeltas. e ¢« . . comb(l)
SCCS file. delta: delta(l)
SCCS file editing activity. sact(l)
SCCSfile. gey(l)
SCCSfile.« o . . prs(l)
SCCS file. e s e e e o e s e« . rmdel(l)
SCCS file. scesdifl:« . sccsdiff(1)
SCCSfile. sccsfile(5)
SCCS file. unget. . « « + « . unget(l)
SCCSfile. v oo . val(l)
SCCSfiles. « . admin(l)
SCCSfiles. what(l)
scesdiff: compare two versions scesdiff(1)
sccsfile: format of SCCS file. sccsfile(5)
SCTPt. ICX . &« o o o ¢ o o s o « « - 1C(8)
sdb: symbolic debugger. sdb(l)
sdiff: side-by-side difference sdiff(l)
scarch a file for a pattern. grep(l)
search and print process acctcom(1)
scarchand update. Isearch(3C)
search. bsearch(3C)
sed: stream editor. sed(l)
segment space allocation. brk(2)
select or reject lines common comm(1l)
select terminal filter. greek(1l)
selected fields of each line cut(l)
send a signal to a processor kill(2)
send files to the HONEYWELL . . . fsend(IQ)
send, gath: gatherfiles send(1C)
'send mail to HISuser. gcosmail(1C)
send mail to usersorread mail(l)
send phototypesetter outputto gecat(1C)
sending daemons, line printer/ . . . dpd(1C)
setbuf: assign bufferingtoa setbuf(3S)
setgid: set user and group setuid(2)
setgrent, endgrent: get group/ getgrent(3C)
setjmp, longjmp: non-local setjmp(3C)

xXmoZ -

xXmOoZ -

Permuted Index

encryption. crypt,
table.

getpwent, getpwuid, getpwnam,
login time. profile:

group IDs.

command programming language.
rsh: restricted

system: issue a

accounting. acctsh:

rc: system initialization
programming language. sh:
processing.

program. sdiff:

login:

pause: suspend process until
what to do upon receipt of a
upon receipt of a signal.

of processes. kill: send a
ssignal, gsignal: software
lex: generate programs for
tc: phototypesetter

atan, atan2: trigonometric/
functions.

size:

an interval.

interval.

documents, view graphs, and
spline: interpolate

sno:
ssignal, gsignal:
sort:

gsort: quicker

tsort: topological

or reject lines common to two
brk, sbrk: change data segment
fspec: format

receipt of a signal. signal:
spelling errors.

spelling errors. spell,

spell, spellin, spellout: find
errors. spell, spellin,

curve.

split:

csplit: context

exponent. frexp, Idexp, modf:
pieces.

uuclean: uucp

lpr: line printer

vpr: Versatec printer

printf, fprintf,

power, square/ exp, log, pow,
exponential, logarithm, power,
generator. rand,

conversion. scanf, fscanf,
signals.

control.

interface.

scc: C compiler for

setkey, encrypt: DES
setmnt: establish mnttab

crypt(3C)

. setmnt(1M)

setpgrp: set process group ID. setpgrp(2)
setpwent, endpwent: get/ getpwent(3C)
setting up an environment at . . profile(5)
setuid, setgid: set userand setuid(2)
sh: shell, the standard sh(1)

shell (command interpreter). . . rsh(1l)
shelcommand. system(3S)
shell procedures for acctsh(1M)
shellscript. rc(8)

shell, the standard command . sh(l)
shutdown: terminateall shutdown(1M)
side-by-side difference sdiff(1)
signon. [login(1)
signal. pause(2)
signal. signal: specify signai(2)
signal: specify whattodo signal(2)
signal to a process or a group kill(2)
signals. ssignal(3C)
simple lexical tasks. lex(1)
simulator. te(l)

sin, cos, tan, asin, acos, trig(3M)
sinh, cosh, tanh: hyperbolic sinh(3M)
size of an objectfile. size(1l)
size: size of an object file. size(1)
sky: obtain ephemerides. sky(6)
sleep: suspend execution for sleep(1)
sleep: suspend execution for sleep(3C)
slides. mmt, mvt: typeset mmt(1)
smoothcurve. spline(1G)
sno: SNOBOL interpreter. sno(1)
SNOBOL interpreter. sno(l)
software signals.« « .+ . ssignal(3C)
sort and/or merge files. sort(1)
SOTL. 4 & & v o 0 o o s o o o s o s gsort(3C)
sort: sort and/or merge files. sort(l)
SOrt. v v 4 4 . . e s e e o« o o« tsort(l)
sorted files. comm: select comm(1)
space allocation. brk(2)
specification in text files. fspec(5)
specify whattodoupon signal(2)
spell, spellin, spellout: find spell(1)
spellin, spellout: ind spell(1)
spellingerrors. spell(1)
spellout: find spelling spell(l)
spline: interpolate smooth spline(1G)
split a file into pieces. split(1)
split. o e e o s o . csplit(l)
split into mantissaand frexp(3C)
split: splita fileinto split(1)
spool directory clean-up. uuclean(1M)
spooler. lpr(1)
spooler. e o« .ovpr(l)
sprintf: output formatters. printf(3S)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
srand: random number rand(3C)
sscanf: formatted input scanf(3S)

ssignal, gsignal: software
st: synchronous terminal
st: synchronous terminal
stand-alone programs.

.......

- 26 -

. ssignal(3C)
. st(1M)

st(4)
sce(1)

package. stdio:
language. sh: shell, the
unixboot: UNIX
system call.

useful with graphical/

stat: data returned by

with graphical/ stat:

ustat: get file system

rjestat: RJE

status report and interactive
feof, clearerr, fileno: stream
control. uustat: uucp

ps: report process

status console. rjestat: RJE
stat, fstat: get file
input/output package.

wait for child process to
strncmp, strcpy, strncpy,/
/strepy, strncpy, strien,
strncpy,/ strcat, strncat,
/strncat, strcmp, strncmp,
/strrchr, strpbrk, strspn,
sed:

flush: close or flush a
fopen, freopen, fdopen: open a
ftell, rewind: reposition a
get character or word from
fgets: get a string from a
put character or word on a
puts, fputs: put a string on a
setbuf: assign buffering to a
/feof, clearerr, fileno:

push character back into input
gps: graphical primitive
gets, fgets: get a

puts, fputs: put a

strspn, strespn, strtok:
relocation bits.

/strncmp, strcpy, strncpy,
strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,
/strcmp, strncmp, strcpy,
/strlen, strchr, strrchr,
/strncpy, strlen, strchr,
/strchr, strrchr, strpbrk,
/strpbrk, strspn, strcspn,
terminal.

another user.

gath: gather files and/or
intro: introduction to

plot: graphics interface
/same lines of several files or
file. sum:

file.

du:

accounting/ acctcms: command
sync: update the

sync: update

su: become

interval. sleep:

interval. sleep:

standard buffered input/output
standard command programming
startup and boot procedures.
stat: data returned by stat
stat, fstat: get file status.
stat: statistical network
stat system call.
statistical network useful
statistics.
status and enquiries.
status console. rjestat: RJE . .
status inquiries. ferror,

.......

......

......

.............

........

Permuted Index

. stdio(3S)
. . sh(1)

. unixboot(8)
stat(7)
stat(2)
stat(1G)

. . stat(7)
stat(1G)
ustat(2)
orjestat(1C)
. . rjestat(1C)
. ferror(3S)

status inquiryand job uustat(1C)
status. o0 . . e e e e e .. ps(l)
status report and interactive rjestat(1C)
Status. e e e e e e . . stat(2)
stdio: standard buffered Stdio(3S)
stime:settime. stime(2)
stop or terminate. wait: wait(2)
strcat, strncat, stremp, string(3C)
strchr, strrchr, strpbrk,/ string(3C)
strcmp, strncmp, Strcpy, string(3C)
strcpy, strncpy, strien,/ string(3C)
strcspn, strtok: string/ string(3C)
stream editor. o . . sed(l)
stream. fclose, fclose(3S)
SIFEAM. .« + + « o « o o « o o o & . fopen(3S)
stream. fseek, fseek(3S)
stream. /getchar, fgetc, getw .« . . getc(3S)
stream. gets,« . . gets(3S)
stream. /putchar, fputc, putw .« . . putc(3S)
stream. e e« e o s+ . puts(3S)
SITEAM. & & & o ¢ o o o o o o o o & setbuf(3S)
stream status inquiries. ferror(3S)
stream. ungetc: ungetc(3S)
string, format of graphical/ gps(5)
string from a stream. gets(3S)
stringonastream. puts(3S)
string operations. /strpbrk, string(3C)
strip: remove symbolsand strip(1)
strien, strchr, strrchr,/ string(3C)
strncat, strcmp, strnecmp, string(3C)
strncmp, strepy, strncpy,/ string(3C)
strncpy, strien, strchr,/ string(3C)
strpbrk, strspn, strespn,/ string(3C)
strrchr, strpbrk, strspn,/ string(3C)
strspn, strcspn, strtok:/ string(3C)
strtok: string operations. string(3C)
stty: set the options fora stty(l)
su: become super-useror su(l)
submit RJE jobs. send, send(1C)
subroutines and libraries. intro(3)
subroutines. plot(3X)
subsequent lines of one file. paste(l)
sum and count blocksina sum(l)
sum: sum and count blocks i ma . . . sum(l)
summarize disk usage. du(l)
summary from per-process acctems(1M)
superblock. sync(IM)
super-block. sync(2)
super-user or anotheruser. su(l)
suspend execution foran sleep(l)
suspend executionfor sleep(3C)

-27.-

Permuted Index

pause:

swab:
sdb:
strip: remove

du: DU-11
st:
interface. st:

system error/ perror,
perror, sys_errlist,

master device information
mnttab: mounted file system
toc: graphical

setmnt: establish mnttab
tbl: format

tabs: set

a file.

trigonometric/ sin, cos,
sinh, cosh,

tp: manipulate

tapeboot: magnetic

tar:

dump: incremental dump
tp: magnetic

ht: TU16 magnetic

tm: TM11/TU10 magnetic
bootstrap program.

file system backup. filesave,

programs for simple lexical
deroff: remove nroff/troff,
or troff.

hpd, erase, hardcopy, tekset,

hpd, erase, hardcopy,

4014: paginator for the
tmpfile: create a

tmpnam: create a name for a

for the Tektronix 4014
functions of the DASI 450

st: synchronous

ct: call

. generate file name for
greek: select

getty: set the modes of a

st: synchronous

tty: general

stty: set the options for a

tabs: set tabs on a

isatty: find name of a

functions of DASI 300 and 300s
of HP 2640 and 2621-series

tty: get the

kill:

shutdown:

exit:

daemon. errstop:

suspend process until signal. pause(2)
swab: swap bytes. swab(3C)
swapbytes.00 swab(3C)
symbolic debugger. sdb(1)
symbols and relocation bits. strip(1)
sync: update super-block. sync(2)
sync: update the super block. sync(I1M)
synchronous line interface. du(4)
synchronous terminal control. st(1IM)
synchronous terminal st(4)
sysdef: system definition. sysdef(1M)
sys_errlist, sys_nerr, errno: perror(3C)
sys_nerr, errno: system error/ perror(3C)
table. master: master(5)
table. e e e e e e e e . mnttab(5)
table of contents routines. toc(1G)
table. e o 0 s s e b o setmnt(1M)
tables for nroffortroff. tbl(1)
tabsonaterminal. tabs(1)
tabs: set tabs on a terminal. tabs(1)

tail: deliver the last part of tail(1)

tan, asin, acos, atan, atan2: trig(3M)
tanh: hyperbolic functions. sinh(3M)
tape archive. tp(l)

tape bootstrap program. tapeboot(8)
tape file archiver. tar(1)

tape format. dump(5)
tape format. e e e e e e tp(5)

tape interface. ht(4)

tape interface. tm(4)
tapeboot: magnetictape tapeboot(8)
tapesave: daily/weekly UNIX . filesave(8)
tar: tape file archiver. tar(1)
tasks. lex: generate lex(1)

tbl, and eqn constructs. deroff(1)
tbl: format tables for nroff tbi(1)

tc: phototypesetter simulator. tc(1)

td: graphical device routines/ gdev(1G)
tee: pipe fitting. tee(1)
tekset, td: graphical device/ gdev(1G)
Tektronix 4014 terminal. 4014(1)
temporary file. tmpfile(3S)
temporary file. tmpnam(3S)

term: conventional names. term(7)
terminal. 4014: paginator 4014(1)
terminal. 450: handle special 450(1)
terminalcontrol. st(IM)
terminal. e e .. a(10)
terminal. ctermid: ctermid(3S)
terminal filter. e e e e e e greek(1)
terminal. getty(8)
terminal interface. st(4)
terminal interface. tty(4)
terminal.00 000 .. stty(1)
terminal. e e e« o . o tabs(l)
terminal. ttyname, ttyname(3C)
terminals. /handle special 300(1)
terminals. /special functions hp(l)
terminal’s name. tty(l)
terminate a process. kill(1)
terminate all processing. shutdown(1M)
terminate process. €Xit(2)
terminate the error-logging errstop(1M)

-28 -

for child process to stop or
command.

etp: Equipment

quiz:

ed:

reform: reformat

fspec: format specification in
/checkeq: format mathematical
prepare constant-width
nroff: typeset or format

ttt, cubic:

system activity/ timex:
time:

profil: execution
up an environment at login
stime: set

time: get

tzset: convert date and
process times.

update access and modification
get process and child process
file access and modification
generate a system activity/
interface.

interface. tm:

file.

temporary file.

toupper, tolower,

contents routines.

popen, pclose: initiate I/O
translation. toupper,

tsort:

acctmerg: merge or add
modification times of a file.
character translation.

ptrace: process
load the KMC11-B; print VPM
tr:

tolower, toascii: character
tan, asin, acos, atan, atan2:
constant-width text for
mathematical text for nroff or
format text.

format tables for nroff or
values.

true, false: provide

interface.

graphics for the extended
a terminal.

ht:

dgs: DQS-11 interface for
file: determine file

for the extended TTY-37

terminate. wait: wait wait(2)
test: condition evaluation test(l)
Test Package. etp8)
test your knowledge. quiz(6)
texteditor. ed(l)
textfile. e e o s oo« o . reform(l)
text files. v e e e o . . . fspec(5)
text for nroffortroff. eqn(l)
text for troff. cw, checkew: cw(l)
text. troff,00 ... troff(1)
UHC-tAC-10€. . ¢ « ¢ ¢ 4 4 4 0 0. 0. ttt(6)
time a command and generatea . . . timex(l)
timcacommand. time(l)
time: gettime. time2)
timeprofile. profil(2)
time. profile: setting profile(5)
ime. . . ¢ . ¢ v e v o oo oo« o stime(2)
time: timeacommand. time(l)
time. e e o s o o o time(2)
time to ASCII. /asctime, ctime(3C)
times: get processand child times(2)
times of a file. touch: touch(l)
times. times: times(2)
times. utime:set utime(2)
timex: time a command and timex(l)
tm: TM11/TU10 magnetic tape . . . tm(4)
TM11/TU10 magnetic tape e o+ . tm(4)
tmpfile: create a temporary tmpfile(3S)
tmpnam: create a name fora tmpnam(3S)
toascii: character/ conv(3C)
toc: graphical tableof toc(1G)
to/fromaprocess. popen(3S)
tolower, toascii: character conv(3C)
topological sort. tsort(l)
total accounting files. acctmerg(1M)
touch: update accessand touch(l)
toupper, tolower, toascii: conv(3C)
tp: magnetic tape format. tp(5)

tp: manipulate tape archive. tp(1)
tplot: graphics filters. tplot(1G)
tr: translate characters. tr(l)
trace: event-tracing driver. trace(4)
traCe. . . + v o o s o s o o o » o o ptrace(2)
traces. /vpmsnap, vpmtrace: vpmstart(1C)
translate characters. tr(l)
translation. toupper, conv(3C)
trigonometric functions. /cos, trig(3M)
troff. cw, checkcw: prepare cw(l)
troff. /neqn, checkeq: format eqn(l)
troff, nroff: typesetor troff(1)
troff. tbl:thl(])
true, false: providetruth true(l)
truthvalues. true(l)
tsort: topological sort. tsort(l)
ttt, cubic: tic-tac-toe. ttt(6)
tty: general terminal tty(4)
tty: get the terminal’s name. tty(l)
TTY-37 type-box. greek: greek(?7)
ttyname, isatty: find nameof ttyname(3C)
TU16 magnetic tape interface. ht(4)
two-point BSC. dqs(4)
BYPE. ¢ e e e e e e oo oo . o file(l)
type-box. greek: graphics greek(7)

-29.

Permuted Index

types.

types: primitive system data
graphs, and slides. mmt, mvt:
troff, nroff:

typographical errors.

typo: find possible
/localtime, gmtime, asctime,
getpw: get name from

limits.

creation mask.

mask.

file system. mount,

UNIX system.

UNIX.
KMC11/DMC11/ kun:
file. unget:

an SCCS file.

into input stream.

a file.

mktemp: make a

RJE (Remote Job Entry) to
boot procedures.

uuto, uupick: public

unlink system calls. link,
entry.

unlink: exercise link and
umount:

files. pack, pcat,

times of a file. touch:

of programs. make: maintain,
Isearch: linear search and
sync:

sync:

du: summarize disk
delimiters. mmchek: check
stat: statistical network

id: print

setuid, setgid: set
character login name of the
/getgid, getegid: get real
environ:

geosmail: send mail to HIS
ulimit: get and set
logname: login name of
/get real user, effective
become super-user or another
write: write to another
mail, rmail: send mail to
wall: write to all

statistics.

gutil: graphical
modification times.

utmp, wtmp:

entry format.

clean-up.

uusub: monitor

uuclean:

control. uustat:

unix copy.

copy. uucp,

uucp, uulog,

types: primitive system data types(7)
LYPES. ¢« ¢ ¢ ¢ e e e 0 e e e e e s types(7)
typeset documents, view mmt(l)
typeset or format text. troff(1)
typo: find possible typo(l)
typographical errors. typo(l)
tzset: convert date and nme/ « + « . ctime(3C)
UID. e e e e e e e e e e e . . getpw(3C)
ulimit: get and setuser ulimit(2)
umask: setand getfile umask(2)
umask: set file-creation mode umask(l)
umount: mount and dismount mount(IM)
umount: unmount a file system. . umount(2)
uname: get name of current uname(2)
uname: print name of current uname(l)
un-assembler for the kun(l)
undo a previous get of an SCCS « « . unget(l)
unget: undo a previous get of unget(l)
ungetc: push character back ungetc(3S)
uniq: report repeated linesin uniq(l)
unique file name. e e e e mktemp(3C)
units: conversion program. units(l)
UNIVAC. uvac: . . .« ¢« ¢« « + .+ . . uvac(d)
unixboot: UNIX startupand unixboot(8)
UNIX-to-UNIX filecopy. uuto(1C)
unlink: exercise link and v o« o link(1M)

unlink: remove directory
unlink system calls. link,
unmount a file system.

. unlink(2)

link(1M)

. umount(2)

unpack: compress and expand pack(l)
update access and modification . . touch(l)
update, and regenerate groups make(l)

update. e e

e s e s e s e e .
.

. Isearch(3C)

update super-block. sync(2)
update the super block. sync(IM)
USABE. « « o o o o o « o o o+ o o » du(l)
usage of mm macros and eqn . mmchek(1)
useful with graphical/ stat(1G)
user and group IDs and names. . . . id(1)
userand groupIDs. setuid(2)
user. cuserid: . . [cuserid(3S)
user, cffective user, real/ e e e e o . getuid(2)

user environment.

I

. environ(7)

USET. ¢ v o o o o s o o o o o s o » geosmail(1C)
userlimits. ulimit(2)
USET. « ¢ o « o o s o s o o o« « » » logname(3X)
user, real group,and/ getuid(2)
USET. SU: & « « o o o o o o o o o o su(l)

USET. « o o o o o o o o s o o o o o Write(l)
usersorread mail. mail(l)
USETS. + « + o o o o o o o o o o o o wall(IM)
ustat: get filesystem ustat(2)
utilities. gutil(1G)
utime: set fileaccessand utime(2)
utmp and wtmp entry format. utmp(5)
utmp, wtmp: utmp and wtmp utmp(5)
uuclean: uucp spool directory . . uuclean(1M)
uucp network. uusub(1M)

uucp spool directory clean-up.
uucp status inquiry and job .
uucp, uulog, uuname: unix to
uulog, uuname: unix to unix

uuname: unix to unix copy. .

e o o o e e e
o o o o o e
.

-30-

. uuclean(1M)
. uustat(1C)

uucp(1C)
uucp(1C)
uucp(1C)

file copy. uuto,
and job control.

UNIX-to-UNIX file copy.
execution.
to UNIVAC.

val:

abs: integer absolute
fabs, ceil, fmod: absolute
getenv:

true, false: provide truth’

as: assembler for

vaxops:

archive files from PDP-11 to
interface. vix:

files between PDP-11 and
operations.

assert: program

vpr:

vp:

ve

get: get a

scesdiff: compare two

mmt, mvt: typeset documents,
mv: a macro package for making
vpm: The

vpmc: compiler for the

floppy interface.

systems with label checking.
file system: format of system

Machine.

load the KMC11-B; print
protocol machine.

KMC11-B; print VPM/ vpmstart,
load the KMC11-B; print VPM/
print VPM/ vpmstart, vpmsnap,

process.
or terminate. wait:
to stop or terminate.

signal. signal: specify
crashes. crash:
whodo:

who:

cd: change
chdir: change
pwd:

write:
putpwent:
wall:

write:

open: open for reading or

utmp, wtmp: utmp and

uupick: public UNIX-t0o-UNIX . .

uustat: uucp status inquiry
uusub: monitor uucp network.
uuto, uupick: public
uux: unix to unix command
uvac: RJE (Remote Job Entry)
val: validate SCCS file.
validate SCCS file.
value, floor, celhng,/ floor,
value for environment name.
values.
VAX-11/780.
VAX-11/780 oonsole operations.

e e o e o

VAX-11/780 format. /convert .

VAX-11/780 LSI console floppy
VAX-11/780 systems. /convert
vaxops: VAX-11/780 console

vc: versioncontrol.

verification.
Versatec printer spooler.
Versatec printer.
version control.

version of an SCCS file. . . .

o o e

Permuted Index

. . uuto(1C)
. . uustat(1C)

. . . uusub(1M)

........

.......

.....

.......

. e

............

......

versions of an SCCS file.

view graphs, and slides.
view graphs.
Virtual Protocol Machine.
virtual protocol machine.
vix: VAX-11/780 LSI console
volcopy, labelit: copy file
volume.
vp: Versatec printer.
vpm: The Virtual Protocol
VPM traces. /vpmtrace: .
vpmc: compiler for the virtual
vpmsnap, vpmtrace: load the
vpmstart, vpmsnap, vpmtrace:
vpmtrace: load the KMC11-B;
vpr: Versatec printer spooler.
wait: await completion of
wait for child process to stop
wait: wait for child process .
wall: write to all users.
wc: word count. . .
what: identify SCCS files. . .
what to do upon receipt of a .
what to do when the system .
who is doing what.

« e s o

who is on the system.
who: who is on the system.
whodo: who is doing what.
working directory.
working directory.
working directory name.
write on a file.
write password file entry.

write to all users.
write to another user.
write: write on a file.

write: write to another user. .
WHtng. . . . ¢ ¢ ¢ 0 0 0.
wtmp entry format.

.« o o

. o

e o o o o

.
.
.
.
.
.
. . .
.

e o o o & s o

e o o o @

-31-

.....

......

........

.....

.......

e e o o & o 8 o o o o s s e s o o

uuto(1C)
uux(1C)
. uvac(8)
val(1)
val(1)
abs(3C)
floor(3M)
. getenv(3C)
. true(l)
as.vax(1)
. vaxops(8)
. arcv(1)

. vix(1M)
. fscv(1M)
. vaxops(8)
ve(l)
assert(3X)
vpr(l)
vp(4)
ve(l)
get(1)
scesdiff(1)
mmt(1)
mv(7)
vpm(4)
vpmc(1C)
. . vix(IM)
volcopy(1M)

xXmoZ -

.......... fs(5)

vp(4)

. vpm(4)
vpmstart(1C)
. . vpmc(1C)
vpmstart(1C)
vpmstart(1C)

. vpmstart(1C)

vpr(1)
wait(1)
. . wait(2)
. . wait(2)
wall(1M)
we(l)
. what(1)
. signal(2)

. crash(8)

. whodo(1M)
. who(l)

. who(1)

. whodo(1M)
. cd(1)

. chdir(2)

. pwd(1)

. write(2)

. putpwent(3C)
. wall(1M)

. write(1)

. write(2)

. write(1)

. open(2)

. utmp(5)

xXmoZ -

Permuted Index

fwtmp, wtmpfix: manipulate
format. utmp,

records. fwtmp,
hunt-the-wumpus.

list(s) and execute command.
programs.

jo, j1, jn,

10, j1, jn, y0,
compiler-compiler.

i9, j1, jn, y0, y1,

wtmprecords. fwtmp(1M)
wtmp: utmp and wtmp entry utmp(5)
wtmpfix: manipulate wtmp fwtmp(1M)
wump: the gameof wump(6)
xargs: construct argument xargs(l)
xref: cross reference forC xref(l)
y0, yl, yn: bessel functions. bessel(3M)
yl, yn: bessel functions. bessel(3M)
yacc: yetanother yacc(1)
yn: bessel functions. bessel(3M)

-32-

INTRO(1) INTRO(1)

NAME

intro — introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

(1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.
(IM) Commands used primarily for system maintenance.

COMMAND SYNTAX

Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name [option(s)] [cmdarg(s)]

where:
name The name of an executable file.
option — noargleter(s) or,

— argletter <>>optarg
where <> is optional white space.

noargletter A single letter representing an option without an argument.

argletter A single letter representing an option requiring an argument.
optarg Argument (character string) satisfying preceding arglerter.
cmdarg Path name (or other command argument) not beginning with

— or, — by itself indicating the standard input.

SEE ALSO

getopt(1), getopt(3C).
Section 6 of this volume for computer games.
How 1o Get Started, at the front of this volume.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, onec supplied
by the system and giving the cause for termination, and (in the case of
‘“‘normal”’ termination) one supplied by the program (see wait(2) and
exit(2)). The former byte is O for normal termination; the latter is cus-
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously “‘exit code’’, ‘‘exit status’’, or
“‘return code’’, and is described only where special conventions are invol-
ved.

Regretfully, many commands do not adhere to the aforementioned syntax.

300(1) 300(1)

NAME
300, 300s — handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+12] [—n] [—dtlc]

300s [+12] [—n] [—dt,l,c]

DESCRIPTION

300 supports special functions and optimizes the use of the DASI 300 (GSI
300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half-
line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It also reduces printing time 5 to 70%.
300 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 360

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals
normally allow onily two combinations: 10-pitch, 6 lines/inch, or
12-pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch
combination, the user should turn the PITCH switch to 12, and
use the +12 option.

-n controls the size of half-line spacing. A half-line is, by default,
equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a 10-pitch line-feed requires 8
increments, while a 12-pitch line-feed needs only 6. The first
digit of n overrides the default value, thus allowing for individual
taste in the appearance of subscripts and superscripts. For exam-
ple, nroff(1) half-lines could be made to act as quarter-lines by
using —2. The user could also obtain appropriate half-lines for
12-pitch, 8 lines/inch mode by using the option —3 alone, having
set the PITCH switch to 12-pitch.

—dt,l,c controls delay factors. The default setting is —d3,90,30. DASI
300 terminals sometimes produce peculiar output when faced
with very long lines, too many tab characters, or long strings of
blankless, non-identical characters. One null (delay) character is
inserted in a line for every set of ¢ tabs, and for every contiguous
string of ¢ non-blank, non-tab characters. If a line is longer than
| bytes, 1+ (total length)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the list, implying use
of the default values. Also, a value of zero for ¢t (c) results in
two null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd. Because ter-
minal behavior varies according to the specific characters printed
and the load on a system, the user may have to experiment with
these values to get correct output. The —d option exists only as
a last resort for those few cases that do not otherwise print pro-
perly. For example, the file /etc/passwd may be printed using
—d3,30,5. The value —d0,1 is a good one to use for C programs
that have many levels of indentation.

300(1) 300(1)

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The sity(1) modes nl0 cr2
or nl0 cr3 are recommended for most uses.

300 can be used with the nroff —s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroff —T300 files ... and nroff files ... | 300
nroff —T300—12 files... and nroff files ... | 300 +12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 300 may produce better-aligned output.

The negn(1) names of, and resulting output for, the Greek and special
characters supported by 300 are shown in greek (7).

SEE ALSO
450(1), eqn(1), graph(1G), mesg(1), stty(1), tabs(1), tbi(1), tplot(1G),
troff(1), greek(7).

BUGS
Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the lat-
ter has a tendency to slip when reversing direction, distorting Greek charac-

ters and misaligning the first line of text after one or more reverse line-
feeds.

4014(1) 4014(1)

NAME

4014 — paginator for the Tektronix 4014 terminal
SYNOPSIS

49014 [—t][—n][—cN][—pL]I file]
DESCRIPTION

The output of 4014 is intended for a Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default) single-
column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE® Model 37 half- and reverse-line sequences are inter-
preted and plotted. At the end of each page, 4014 waits for a new-line
(empty line) from the keyboard before continuing on to the next page. In
this wait state, the command !cmd will send the cmd to the shell.

The command line options are:
—t Don’t wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the
screen.
—cN Divide the screen into N columns and wait after the last column.

—pL Set page length to L; L accepts the scale factors i (inches) and 1
(lines); default is lines.

SEE ALSO
pr(1), tc(1), troff(1).

450(1) 450(1)

NAME
450 — handle special functions of the DASI 450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450
terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as
300(1). 450 can be used to print equations neatly, in the sequence:

neqn file ... | nroff | 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

450 can be used with the nroff(1) —s flag or .rd requests, when it is neces-
sary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the use of 450 can be climinated in favor of
one of the following:

nroff —T450 files ...
or
nroff —T450—12 files ...

The use of 450 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza-
tion of 450 may produce better-aligned output.

The negn(1) names of, and resulting output for, the Greek and special
characters supported by 450 are shown in greek(7).

SEE ALSO
300(1), eqn(1), graph(1G), mesg(1), stty(1), tabs(1), tbi(1), tplot(1G),
troff(1), greek(7).

BUGS

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.

If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the lat-
ter has a tendency to slip when reversing direction, distorting Greek charac-
ters and misaligning the first line of text after one or more reverse line-
feeds.

ACCT(1M) ACCT(1M)

NAME

acct — overview of accounting and miscellaneous accounting commands
SYNOPSIS

acctdisk

acctdusg [—u file] [—p file] > dtmp-file
accton [file]
acctwtmp [name[line]] >>/usr/adm/wtmp

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting sys-
tems. Acctsh(1M) describes the set of shell procedures built on top of the
C programs.

Connect time accounting is handled by various programs that write records
into /usr/adm/utmp, as described in utmp(5). The programs described in
acctcon(1M) convert this file into session and charging records, which are
then summarized by acctmerg(1M).

Process accounting is performed by the UNIX kernel. Upon termination of
a process, one record per process is written to a file (normally
Jusr/adm/pacct). The programs in acctprc(1M) summarize this data for
charging purposes; acctems(1M) is used to summarize command usage.
Current process data may be examined using acctcom(1).

Process accounting and connect time accounting (or any accounting records
in the format described in acct(5)) can be merged and summarized into
total accounting records by acctmerg (see tacct format in acct(5)). Prtacct
(see acctsh(1M)) is used to format any or all accounting records.

Acctdisk reads lines that contain user ID, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

Acctdusg reads its standard input (usually from find / —print) and compu-
tes disk resource consumption (including indirect blocks) by login. If —u
is given, records consisting of those file names for which acctdusg charges
no one are placed in file (a potential source for finding users trying to avoid
disk charges). If —p is given, file is the name of the password file. This
option is not needed if the password file is /etc/passwd.

Accton alone turns process accounting off. If file is given, it must be the
name of an existing file, to which the kernel appends process accounting
records (see acct(2) and accr(5)).

Acctwtmp writes a wimp(5) record to its standard output. The record con-
tains the current time, name, and line. If line is omitted, a value is emitted
that is interpreted by other programs as a reboot. For more precise accoun-
ting, the following are recommended for use in reboot and shutdown pro-
cedures, respectively:

acctwtmp “uname’ >>>/usr/adm/wtmp
acctwtmp reason >>>/usr/adm/wtmp

/etc/passwd used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in

sub-class IM of this manual
/usr/fadm/pacct current process accounting file
Jusr/fadm/wtmp login/logoff history file

-1-

ACCT(1M) ACCT(1M)

SEE ALSO
acctcms(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).
The UNIX Accounting System by H. S. McCreary.

ACCTCMS (1M) ACCTCMS(1M)

NAME
acctcms — command summary from per-process accounting records

SYNOPSIS .
acctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in acct(5).
It adds all records for processes that executed identically-named commands,

sorts them, and writes them to the standard output, normally using an
internal summary format. The options are:

—a Print output in ASCII rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean
size (in K), mean CPU minutes per invocation, and ‘‘hog factor’’,
as in acctcom(1). Output is normally sorted by total kcore-minutes.

—c Sort by total CPU time, rather than total kcore-minutes.

| Combine all commands invoked only once under ‘‘sssother’.

—n Sort by number of command invocations.

—s Any file names encountered hereafter are already in internal sum-
mary format.

A typical sequence for performing daily command accounting and for main-
taining a running total is:
acctcms file ... >today
cp total previoustotal
acctcms —s today previoustotal >>total
acctcms —a —s today
SEE ALSO

acct(1M), acctcom(l), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

ACCTCOM(1) ACCTCOM(1)

NAME

acctcom — search and print process accounting file(s)
SYNOPSIS

acctcom [[options][file]] . . .
DESCRIPTION

Acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct(5) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TTYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the fork /exec flag: 1
for fork without exec) and STAT (the system exit status).

The command name is prepended with a # if it was executed with super-
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a ter-
minal or /dev/mull (as is the case when using & in the shell),
/usr/adm/pacct is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The file /usr/adm/pacct is usually the current file to be
examined; a busy system may need several files, in which case all but the
current will be found in /usr/adm/pacct?. The options are:

—b Read backwards, showing latest commands first.

—f Print the fork /exec flag and system exit status columns in the
output.

—h Instead of mean memory size, show the fraction of total

available CPU time consumed by the process during its execu-
tion. This ‘*hog factor’’ is computed as:
(total CPU time)/(clapsed time).

—i Print columns containing the I/O counts in the output.

-k Instead of memory size, show total kcore-minutes.

—m Show mean core size (the default).

-r Show CPU factor (user time/(system-time + user-time).

-t Show separate system and user CPU times.

-v Exclude column headings from the output.

—1 line Show only processes belonging to terminal /dev/line.

—u user Show only processes belonging to user that may be specified

by: a user ID, a login name that is then converted to a user ID,
a # which designates only those processes executed with
super-user privileges, or ? which designates only those pro-
cesses associated with unknown user IDs.

—g group Show only processes belonging to group. The group may be
designated by cither the group ID or group name.

—d mm/dd Any time arguments following this flag are assumed to occur
on the given month and day, rather than during the last 24
hours. This is needed for looking at old files.

—s time Show only those processes that existed on or after time, given
in the form Ar:min:sec. The :sec or :min:sec may be omitted.
—e lime Show only those processes that existed on or before time.

Using the same fime for both —s and —e shows the processes
that existed at time.

—n pattern Show only commands matching pattern that may be a regular
expression as in ed(1) except that + means one or more
occurrences.

-1-

ACCTCOM(1) ACCTCOM(1)

—H factor Show only processes that exceed factor, where factor is the
‘““hog factor’’ as explained in option —h above.

—O0 time Show only those processes with operating system CPU time
that exceeds time.

—C time Show only those processes that exceed time that indicates the
total CPU time.

Listing options together has the effect of a logical and.

FILES
/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO
acct(1M), acctems(1M), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), ps(1), runacct(1M), su(l), acct(2), acct(5),
utmp(S5).

BUGS
Acctcom only reports on processes that have terminated; use ps(1) for
active processes.

ACCTCON (1M) ACCTCON(1M)

NAME

acctcon — connect-time accounting
SYNOPSIS

acctconl [options]

acctcon2
DESCRIPTION

Acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor-
mally be redirected from /usr/adm/wtmp. Its output is ASCII, giving dev-
ice, user ID, login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (numeric), and starting date and time.
The options are:

-p Print input only, showing line name, login name, and time (in
both numeric and date/time formats).
—t Acctconl maintains a list of lines on which users are logged in.

When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that
its input is a current file, so that it uses the current time as the
ending time for each session still in progress. The —t flag causes
it to use, instead, the last time found in its input, thus assuring
reasonable and repeatable numbers for non-current files.

—1 file File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Both hang-up and termina-
tion of the login shell generate a logoff record, so that the number
of logoffs is often twice the number of sessions.

—o file File is filled with an overall record for the accounting period,
giving starting time, ending time, number of reboots, and number
of date changes.

Acctcon? expects as input a sequence of login session records and converts

them into total accounting records (see tacct format in acct(5)).
EXAMPLES

These commands are typically used as shown below. The file ctmp is

created only for the use of acctpre(1M) commands:

acctconl —t —1 lineuse —o reboots <wtmp | sort +1n +2 >ctmp
acctcon2 <ctmp | acctmerg > ctacct

FILES
/usr/adm/wtmp

SEE ALSO
acct(1M), acctcms(1M), acctcom(l), acctmerg(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

BUGS

The line usage report is confused by date changes. Use wmmpfix (see
JSfwimp(1M)) to correct this situation.

ACCTMERG (1M) ACCTMERG (1M)

NAME

acctmerg — merge or add total accounting files

SYNOPSIS

acctmerg [options] [file] . . .

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the
tacct format (see acct(5)), or an ASCII version thereof. It merges these
inputs by adding records whose keys (normally user ID and name) are iden-
tical, and expects the inputs to be sorted on those keys. Options are:

—a
=i
i
—t
—u
—=v

Produce output in ASCII version of tacct.

Input files are in ASCII version of tacct.

Print input with no processing.

Produce a single record that totals all input.

Summarize by user ID, rather than user ID and name.

Produce output in verbose ASCHl format, with more precise notation
for floating point numbers.

The following sequence is useful for making ‘‘repairs’ to any file kept in
this format:

SEE ALSO

acctmerg —v <filel >file2
edit file2 as desired ...
acctmerg —a <file2 >filel

acct(IM), acctcms(1M), acctcom(l), acctcon(1M), acctprc(1M),
acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

ACCTPRC(1M) ACCTPRC(1M)

NAME

acctprc — process accounting

SYNOPSIS

acctprcl [ctmp]
acctprc2

DESCRIPTION'

FILES

Acctprc]l reads input in the form described by acct(5), adds login names
corresponding to user IDs, then writes for each process an ASCII line giving
user ID, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in 64-byte units). If ctmp is given, it is expected to
contain a list of login sessions, in the form described in acctcon(1M), sor-
ted by user ID and login name. If this file is not supplied, it obtains login
names from the password file. The information in ctmp helps it distinguish
among different login names that share the same user ID.

Acctprc2 reads records in the form written by acctprcl , summarizes them by
user ID and name, then writes the sorted summaries to the standard output
as total accounting records.

These commands are typically used as shown below:
acctprcl ctmp </usr/adm/pacct | acctprc2 >ptacct

/etc/passwd

SEE ALSO

BUGS

acct(1M), acctcms(1M), acctcom(l), acctcon(1M), acctmerg(1M),
acctsh(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

Although it is possible to distinguish among login names that share user
IDs' for commands run normally, it is difficult to do this for those com-
mands run from cron(1M), for example. More precise conversion can be
done by faking login sessions on the console via the acctwtmp program in
acct(1M).

ACCTSH(1M) ACCTSH(1M)

NAME .
acctsh — shell procedures for accounting

SYNOPSIS
chargefee login-name number

ckpacct [blocks]

dodisk

lastlogin

monacct number

nulladm file

prctmp

prdaily

prtacct file ["heading®]
runacct [mmdd] [mmdd state]
shutacct ["reason®]
startup

turnacct [on | off | switch]

DESCRIPTION
Chargefee is invoked to charge number dollars to login-name. A record is
written to /usr/adm/fee, to be merged with other accounting records
during the night.

Ckpacct is initiated via crom. It periodically checks the size of
/usr/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will
be invoked with argument switch.

Dodisk is invoked by cron to perform the disk accounting functions.

Lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

Monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. It creates summary files in
/usr/adm/acct/fiscal and restarts summary file in /usr/adm/acct/sum.
Nulladm creates file with mode 644 and insures owner is adm. It is called
by lastlogin, runacct, and turnacct.

Prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctconl (see acctcon(1M)).

Prdaily is invoked by runacct to print a report of the previous day’s accoun-
ting. The report resides in /usr/adm/acct/sum/rprtxxxx where xxxx is the
month and day of the report. The daily accounting reports may be printed
(by the command ‘‘cat /usr/adm/acct/sum/rprt*’’) as often as desired and
they must be explicitly deleted when no longer needed.

Prtacct can be used to format and print any total accounting file.

Runacct performs the accumulation of connect, process, fee, and disk
accounting on a daily basis. It also creates summaries of command usage.
For more information, see runacct(1M).

Shutacct should be invoked during a system shutdown to turn process
accounting off and append a ‘‘reason’’ record to /usr/adm/wtmp. Startup
should be called by 7c(8) to turn the accounting on whenever the system is
brought up.

ACCTSH (1M) ACCTSH (1M)

Turnacct is an interface to accton (see acct(1M)) to turn process accounting
on or off. The switch argument moves the current /usr/adm/pacct to the
next free name in /usr/adm/pacct[1-9], turns accounting off, then turns it
back on again. This procedure is called by ckpacct via the cron to keep the
pacct file size smaller.
FILES
/usr/adm/fee accumulator for fees
/usr/adm/pacct current file for per-process accounting
/usr/adm/pacct[1-9] used if pacct gets large and during
execution of daily accounting procedure
/usr/adm/wtmp login/logoff summary
/usr/adm/wtmp[1-9] used during daily accounting procedure
/usr/adm /acct/nite working directory
/usr/lib/acct holds all accounting commands listed in
sub-class 1M of this manual
/usr/adm/acct/sum summary directory, should be saved
SEE ALSO

acct(1M), acctcms(1M), acctcom(l), acctcon(1M), acctmerg(1M),
acctprc(1M), fwtmp(1M), runacct(1M), acct(2), acct(5), utmp(5).

ADB(1) ADB(1)

NAME
adb — debugger

SYNOPSIS
adb [—w] [objfil [corfil]]
DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine

files and to provide a controlled environment for the execution of UNIX
programs.

Objfil is normally an executable program file, preferably containing a sym-
bol table; if not then the symbolic features of adb cannot be used although
the file can still be examined. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing objfil; the default
for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the —w flag is present then both objfil and corfil are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the
next adb command.

In general requests to adb are of the form
[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to 0. For
most commands count specifies how many times the command will be exe-
cuted. The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged then addresses are interpreted in the usual
way in the address space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.
+ The value of dot incremented by the current increment.
" The value of dot decremented by the current increment.
" The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number
if preceded by #; otherwise a decimal number.

integer .fraction
A 32 bit floating point number.

‘cccc’ The ASCII value of up to 4 characters. \ may be used to escape a ’.

< name
The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES)
named by single letters or digits. If name is a register name then
the value of the register is obtained from the system header in
corfil. The register names are r0 ... rS sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores
or digits, not starting with a digit. The value of the symbol is taken
from the symbol table in objfil. An initial _ or ~ will be prepended
to symbol if needed.

symbol
In C, the “‘true name” of an external symbol begins with _. It may

-1-

ADB(1) ADB(1)

be necessary to utter this name to distinguish it from internal or
hidden variables of a program.

routine .name
The address of the variable name i the specified C routine. Both
routine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding
to routine.

(exp) The value of the expression exp.

Monadic operators:
sexp The contents of the location addressed by exp in corfil.
@exp The contents of the location addressed by exp in objfil.
—exp Integer negation.
“exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic
operators.

el +e2 Integer addition.
el —e2 Integer subtraction.
else2 Integer multiplication.

el %e2 Integer division.

el &e2 Bitwise conjunction.

el|e2 Bitwise disjunction.

el #e2 EI rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands ? and / may
be followed by *; see ADDRESSES for further details.)

f Locations starting at address in objfil are printed according to the
format f. dot is incremented by the sum of the increments for
each format letter (q.v.).

/f Locations starting at address in corfil are printed according to the
format f and dot is incremented as for ?.

=f The value of address itself is printed in the styles indicated by the
format f. (For i format ? is printed for the parts of the instruction
that reference subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format dot is
incremented by the amount given for each format letter. If no format is
given then the last format is used. The format letters available are as fol-
lows:

E N S IR NN S I N (8]

Print 2 bytes in octal. All octal numbers output by adb are
preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

oeo2 o

ADB(1)

AF T mEE
—— 00 5NN

("]
X

- w
»

» sz
OO0

+

new-line

0

ADB(1)

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following escape
convention. Character values 000 to 040 are printed as @
followed by the corresponding character in the range 0100
to 0140. The character @ is printed as @@.

Print the addressed characters until a zero character is
reached.

Print a string using the @ escape convention. n is the
length of the string including its zero terminator.

Print 4 bytes in date format (see ctime(3C)).

Print as PDP-11 instructions. n is the number of bytes
occupied by the instruction. This style of printing causes
variables 1 and 2 to be set to the offset parts of the source
and destination respectively.

Print the value of dor in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.

When preceded by an integer tabs to the next appropriate
tab stop. For example, 8t moves to the next 8-space tab
stop.

Print a space.

Print a new-line.

Print the enclosed string.

Dot is decremented by the current increment. Nothing is
printed.

Dot is incremented by 1. Nothing is printed.

Dot is decremented by 1. Nothing is printed.

Repeat the previous command with a count of 1.

[?/N value mask
Words starting at dot are masked with mask and compared with
value until a match is found. If L is used then the match is for 4
bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[?/]w value ...

Write the 2-byte value into the addressed location. If the command
is W, write 4 bytes. Odd addresses are not allowed when writing to
the subprocess address space.

[2/1m b1 el f1(?/]
New values for (b1, el, f1) are recorded. If less than three expres-
sions are given then the remaining map parameters are left

{
-3-

ADB(1) ADB(1)

unchanged. If the ? or / is followed by = then the second segment
(b2,e2,f2) of the mapping is changed. If the list is terminated by
? or / then the file (0bjfil or corfil respectively) is used for subse-
quent requests. (So that, for example, /m? will cause / to refer to
objfil.)

>name
Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.
>f Send output to the file f, which is created if it does not

exist.

r Print the general registers and the instruction addressed by
pc. Dot is set to pc. .

f Print the floating registers in single or double length. If the

floating point status of ps is set to double (0200 bit) then
double length is used anyway.

b Print all breakpoints and their associated counts and com-
mands.
a ALGOL 68 stack backtrace. If address is given then it is

taken to be the address of the current frame (instead of
rd). If count is given then only the first count frames are
printed.
c C stack backtrace. If address is given then it is taken as the
address of the current frame (instead of rS5). If C is used
then the names and (16 bit) values of all automatic and sta-
tic variables are printed for each active function. If count is
given then only the first count frames are printed.
The names and values of external variables are printed.
Set the page width for output to address (default 80).
Set the limit for symbol matches to address (default 255).
All integers input are regarded as octal.
Reset integer input as described in EXPRESSIONS.
Exit from adb.
Print all non zero variables in octal.
Print the address map.

5<.ﬂﬂ-emgo

:modifier
Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is executed
count—1 times before causing a stop. Each time the break-
point is encountered the command ¢ is executed. If this
command sets dot to zero then the breakpoint causes a

stop.
d Delete breakpoint at address.
or Run objfil as a subprocess. If address is given explicitly

then the program is entered at this point; otherwise the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with
< or > causes the standard input or output to be esta-
blished for the command. All signals are turned on on

-4-

ADB(1) ADB(1)

entry to the subprocess.

cs The subprocess is continued with signal s (see signal(2)).
If address is given then the subprocess is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the
same as forr.

ss As for ¢ except that the subprocess is single stepped count
times. If there is no current subprocess then objfil is run as
a subprocess as for r. In this case no signal can be sent;
the remainder of the line is treated as arguments to the
subprocess.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables are set initially by
adb but are not used subsequently. Numbered variables are reserved for
communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil
does not appear to be a core file then these values are set from objfil.

The base address of the data segment.

The data segment size.

The entry point.

The ‘“magic’’ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

~eogoaw

ADDRESSES

FILES

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri-
ples (b1, el, f1) and (b2, e2, f2) and the file address corresponding to a
written address is calculated as follows:

bl <address<el => file address==address +f1 —bl
otherwise

b2 <address <é2 => file address=address +f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for pro-
grams with separated I and D space) the two segments for a file may over-
lap. Ifa ? or / is followed by an s then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core
files. If ecither file is not of the kind expected then, for that file, b/ is set to
0, el is set to the maximum file size and f] is set to O; in this way the
whole file can be examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as
signed 32 bit integers.

/dev/mem
/dev/swap
a.out

core

ADB(1) ADB(1)

SEE ALSO :
ptrace(2), a.out(5), core(5).

DIAGNOSTICS
‘““Adb>’ when there is no current command or format. Comments about
inaccessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on initial entry to the
program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul
up the accessing of the external.

ADMIN(1) ADMIN(1)

NAME
admin — create and administer SCCS files

SYNOPSIS
admin [—n] [—i[name]] [—rrel] [—t{name]] [—ffag[flag-val]]
[—dflag[flag-val]] [—alogin] [—elogin] [—m{mrlist]] [—y[comment]]
[—h] [—2z] files

DESCRIPTION
Admin is used to create new SCCS files and change parameters of existing
ones. Arguments to admip, which may appear in any order, consist of
keyletter arguments, which begin with —, and named files (note that SCCS
file names must begin with the characters s.). If a named file doesn’t exist,
it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters cnrrespon-

ding to specified keyletter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.
Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments appiy
independently to each named file.

-n This keyletter indicates that a new SCCS file is to be
created.
—i[name]l The name of a file from which the text for a new

SCCS file is to be taken. The text constitutes the first
delta of the file (see —r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted, the text is obtained by reading the stan-
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the SCCS file is created
empty. Only one SCCS file may be created by an
admin command on which the i keyletter is supplied.
Using a single admin to create two or more SCCS files
require that they be created empty (no —i keyletter).
Note that the —i keyletter implies the —n keyletter.

—rrel The release into which the initial delta is inserted.
This keyletter may be used only if the —i keyletter is
also used. If the —r keyletter is not used, the initial
delta is inserted into release 1. The level of the ini-
tial delta is always 1 (by default initial deltas are
named 1.1).

—t{name] The name of a file from which descriptive text for the
SCCS file is to be taken. If the —t keyletter is used
and admin is creating a new SCCS file (the —n and/or
—i keyletters also used), the descriptive text file
name must also be supplied. In the case of existing
SCCS files: (1) a —t keyletter without a file name
causes removal of descriptive text (if any) currently
in the SCCS file, and (2) a —t keyletter with a file

-1-

ADMIN(1)

—fflag

cceil

ffloor

dsip

Mist

qtext

mmod

ADMIN(1)

name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the SCCS file.

This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the SCCS file. Several f
keyletters may be supplied on a single admin com-
mand line. The allowable flags and their values are:

Allows use of the —b keyletter on a ger(1) command
to create branch deltas.

The highest release (i.e., ‘‘ceiling’’), a number less
than or equal to 9999, which may be retrieved by a
get(1) command for editing. The default value for
an unspecified ¢ flag is 9999.

The lowest release (i.e., “‘floor’’), a number greater
than O but less than 9999, which may be retrieved by
a get(1) command for editing. The default value for
an unspecified f flag is 1.

The default delta number (SID) to be used by a
get(1) command.

Causes the "No id keywords (ge6)" message issued by
get(1) or delta(1) to be treated as a fatal error. In
the absence of this flag, the message is only a war-
ning. The message is issued if no SCCS identification
keywords (see ger(1)) are found in the text retrieved
or stored in the SCCS file.

Allows concurrent get(1) commands for editing on
the same SID of an SCCS file. This allows multiple
concurrent updates to the same version of the SCCS
file.

A list of releases to which deltas can no longer be
made (get —e against one of these ‘‘locked’’ releases
fails). The list has the following syntax:

<list> 1= <range> | <list> , <range>
<range> ::= RELEASE NUMBER | a

The character a in the list is equivalent to specifying
all releases for the named SCCS file.

Causes delta(1) to create a “‘null”’ delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as ‘‘anchor points’’ so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
SCCS file preventing branch deltas from being created
from them in the future.

User definable text substituted for all occurrences of
the %Q% keyword in SCCS file text retrieved by
get(1).

Module name of the SCCS file substituted for all
occurrences of the %#M% keyword in SCCS file text
retrieved by get(1). If the m flag is not specified, the
value assigned is the name of the SCCS file with the

-2-

ADMIN(1)

type

—dflag

—alogin

—elogin

—ylcomment]

— m[mriist]

ADMIN(1)

leading s. removed.

Type of module in the SCCS file substituted for all
occurrences of %Y% keyword in SCCS file text
retrieved by ger(1).

Causes delta(1) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR num-
ber validity checking program (see delta(1)). (If this
flag is set when creating an SCCS file, the m keyletter
must also be used even if its value is null).

Causes removal (deletion) of the specified flag from
an SCCS file. The —d keyletter may be specified only
when processing existing SCCS files. Saveral —d
keyletters may be supplied on a single admin com-
mand. See the —f keyletter for allowable flag names.

A list of releases to be ‘‘unlocked”. See the —f
keyletter for a description of the I flag and the syntax
of a list.

A login name, or numerical UNIX group ID, to be
added to the list of users which may make deltas
(changes) to the SCCS file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admin command line. As many logins, or numerical
group IDs, as desired may be on the list simul-
taneously. If the list of users is empty, then anyone
may add deltas.

A login name, or numerical group ID, to be ecrased
from the list of users allowed to make deltas
(changes) to the SCCS file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

The comment text is inserted into the SCCS file as a
comment for the initial delta in a manner identical to
that of delta(1). Omission of the —y keyletter resuits
in a default comment line being inserted in the form:

date and time created YY /MM /DD HH:MMSS by login

The —y keyletter is valid only if the —i and/or —n
keyletters are specified (i.e., a new SCCS file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the SCCS file as the reason for creating
the initial delta in a manner identical to delta(l).
The v flag must be set and the MR numbers are vali-
dated if the v flag has a value (the name of an MR
number validation program). Diagnostics will occur
if the v flag is not set or MR validation fails.

Causes admin to check the structure of the SCCS file
(see sccsfile(5)), and to compare a newly computed
check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum

-3-

ADMIN(1) ADMIN(1)

that is stored in the first line of the SCCS file.
Appropriate error diagnostics are pg'oduccd.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

-z The SCCS file check-sum is. recomputed and stored in
the first line of the SCCS file (see —h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

FILES

The last component of all SCCS file names must be of the form s.file-name.
New SCCS files are given mode 444 (see chmod(1)). Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file, called x.file-name, (see get(1)),
created with mode 444 if the admin command is creating a new SCCS file,
or with the same mode as the SCCS file if it exists. After successful execu-
tion of admin, the SCCS file is removed (if it exists), and the x-file is
renamed with the name of the SCCS file. This ensures that changes are
made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and
that SCCS files themselves be mode 444. The mode of the directories
allows only the owner to modify SCCS files contained in the directories.
The mode of the SCCS files prevents any modification at all except by SCCS
commands.

If it should be necessary to patch an SCCS file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(1). Care must be
taken! The edited file should always be processed by an admin —h to check
for corruption followed by an admin —z to generate a proper check-sum.
Another admin —h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is
used to prevent simultaneous updates to the SCCS file by different users.
See get(1) for further information.
SEE ALSO
delta(1), ed(1), get(1), help(1), prs(1), what(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.
DIAGNOSTICS
Use help(1) for explanations.

AR(1) AR(1)

NAME
ar — archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose.

Ar can read archive files produced in either PDP-11 or VAX-11/780 format
(see ar(5)). However, when ar creates an archive, it always creates the
header in the format of the local system. A conversion program exists to
convert PDP-11 archives to VAX-11/780 archive format (see arcv(1)). This
feature is useful only for source archive files. Individual files are inserted
without conversion into the archive file.

Key is one character from the set drqtpmx, optionally concatenated with
one or more of vuaibcl. Afile is the archive file. The names are consti-
tuent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with modified dates later than
the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive.
Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

P Print the named files in the archive.

Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

X Extract the named files. If no names are given, all files in the
archive are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file descrip-
tion of the making of a new archive file from the old archive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with x, it precedes each file
with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

1 Local. Normally ar places its temporary files in the directory /tmp.
This option causes them to be placed in the local directory.

FILES
/tmp/v* temporaries

AR(1) AR(1)

SEE ALSO
arcv(l), Id(1), lorder(1), ar(5).

BUGS
If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

ARCY(1) ARCY (1)

NAME
arcv — convert archive files from PDP-11 to VAX-11/780 format
SYNOPSIS
arcy files
DESCRIPTION
Arcv converts source archive files from the PDP-11 format to the VAX-
11/780 format. Because each converted file is copied over the original file,
arcv runs with all interrupts turned off.
FILES
/tmp/arce
SEE ALSO
ar(1), ar(5).

AS(1) (PDP-11 only) AS(1)

NAME

as — assembler for PDP-11
SYNOPSIS

as [—] [—o objfile] file ..
DESCRIPTION

As assembles the concatenation of the named files. If the optional first
argument — is used, all undefined symbols in the assembly are treated as
global. ‘

The output of the assembly is left on the file objfile; if that is omitted,
a.out is used. It is executable if no errors occurred during the assembly,
and if there were no unresolved external references.

FILES
/lib/as2 pass 2 of the assembler
/tmp/atm][1-3]? temporary
a.out object

SEE ALSO

adb(1), 1d(1), nm(1), a.out(5).
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS

If the name chosen for the output file is of the form *2.[cs], the assembler
issues an appropriate complaint and quits. When an input file cannot be
read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is
typed out together with the line number and the file name in which it
occurred. Errors in pass 1 cause cancellation of pass 2. The possible errors
are:

Parentheses error

Parentheses error

String not terminated properly
Indirection used illegally

Illegal assignment to .

Error in address

Branch instruction is odd or too remote
Error in expression

Error in local (f or b) type symbol
Garbage (unknown) character

End of file inside an .if
Multiply-defined symbol as label

Word quantity assembled at odd address
. different in pass 1 and 2

Relocation error

Undefined symbol

Syntax error

. A=

ns-!'ueg—we-hna-n'

BUGS
Syntax errors can cause incorrect line numbers in subsequent diagnostics.
L

AS(1) (VAX-11/780 only) AS(1)

NAME

as — assembler for VAX-11/780
SYNOPSIS

as [—d124] [—o objfile] [name]
DESCRIPTION

As assembles the named file, or the standard input if no file name is
specified. The optional argument —d may be used to specify the number
of bytes to be assembled for offsets which involve forward or external
references, which have sizes unspecified in the assembly language. The
default is four bytes, i.e., —d4. All undefined symbols in the assembly are
treated as global.

The output of the assembly is left on the file objfile; if that is omitted,
a.out is used. It is executable if no errors occurred during the assembly,
and if there were no unresolved external references.

FILES
/tmp/as# temporary
/tmp/a[ab][a—h]ts temporary
a.out object
SEE ALSO

adb(1), Id(1), nm(1), sdb(1), a.out(5).

AWK (1) AWK (1)

NAME

awk — pattern scanning and processing language
SYNOPSIS

awk [—Fc] [prog] [files]
DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, or in a file specified as —f file.
The prog string should be enclosed in single quotes (") to protect it from
the shell.

Files are read in order; if there are no files, the standard input is read. The
file name — means the standard input. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS, see below). The fields are denoted $1, $2, ...;
$0 refers to the entire line.

A pattern-action statement has the form:
pattern { action }

A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol-
lowing:

if (conditional) statement [else statement]
while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ...}

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +,

s, /, %, and concatenation (indicated by a blank). The C operators + +,
——, +=, —=, =, /= and %= are also available in expressions. Vari-
ables may be scalars, array elements (denoted x[i]) or fields. Variables are
initialized to the null string. Array subscripts may be any string, not neces-
sarily numeric; this allows for a form of associative memory. String con-
stants are quoted (").

The print statement prints its arguments on the standard output (or on a
file if >expr is present), separated by the current output field separator,
and terminated by the output record separator. The printf statement for-
mats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func-
tions exp, log, sqrt, and int. The last truncates its argument to an integer;
substr(s, m, n) returns the n-character substring of s that begins at position
m. The function sprintf(fint, expr, expr,...) formats the expressions

-1-

AWK(1) AWK(1)

according to the printf(3S) format given by fmt and returns the resulting -
string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of
regular expressions and relational expressions. Regular expressions must
be surrounded by slashes and are as in egrep (see grep(1)). Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either ~ (for contains) or ! (for does not contain). A conditional is an arith-
metic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat-
tern, END the last.

A single character ¢ may be used to separate the fields by starting the pro-
gram with:

BEGIN { FS = ¢ }
or by using the —Fc option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separa-
tor (default blank); ORS, the output record separator (default new-line);
and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72
Print first two fields in opposite order:
{ print $2, $1 }
Add up first column, print sum and average:

{s += 81}
END { print "sum is", s,

average is", s/NR }
Print fields in reverse order:
{ for (i = NF; i > 0; ——i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/
Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }
SEE ALSO
grep(1), lex(1), sed(1).

Awk— A Pattern Scanning and Processing Language by A. V. Aho, B. W.
Kernighan, and P. J. Weinberger.

-2-

AWK (1) AWK (1)

BUGS

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force
an expression to be treated as a number add O to it; to force it to be treated

as a string concatenate the null string (**) to it.

BANNER(1) BANNER(1)

NAME

banner — make posters
SYNOPSIS

banner strings
DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.

BASENAME(1) BASENAME(1)

NAME
basename, dirname — deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string, and prints the result on the standard output. It is normally
used inside substitution marks (") within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /usr/src/cmd/cat.c,
compiles the named file and moves the output to a file named cat in the
current directory:

cc §$1 .
mv a.out basename $1 ¢

The following example will set the shell variable NAME to /usr/src/cmd:
NAME="dirname /usr/src/cmd/cat.c’

SEE ALSO
sh(1).

BC(1) BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be [—c] [—1]]file..]
DESCRIPTION

Bc is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then
reads the standard input. The —1 argument stands for the name of an arbi-
trary precision math library. The syntax for bc programs is as follows; L
means letter a—z, E means expression, S means statement.

Comments
are enclosed in /# and /.

Names
simple variables: L
array elements: L [E]

" e

The words ‘‘ibase’’, ‘‘obase’’, and “‘scale’’

Other operands
arbitrarily long numbers with optional sign and decimal point.

(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)
Operators *
+ — ¢/ %" (% is remainder; " is power)
++ —= (prefix and postfix; apply to names)

=——<=>=Il=<>
= =4 =-— =‘=/=% ="

Statements
E
{S;..;S}
if (E)S
while (E) S
for(E;E;E)S
null statement
break
quit

Function definitions
defineL (L,.., L) {

auto L, ..., L
S;...S
return (E)
}
Functions in —1 math library
s(x) sine

c(x) cosine

e(x) exponential
1(x) log

a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

BC(1)

BC(1)

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(1). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. ‘“Auto” variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name.

Bc is actually a preprocessor for dc(1), which it invoke: automatically,
unless the —c (compile only) option is present. In this case the dc input is
sent to the standard output instead.

EXAMPLE

scale = 20
define e(x){
autoa, b, c, i, s

a=1
b=1
s =1
for(i=1; 1==1; i+ +){
a = ax
b = bsi
c=a/b
if(c == 0) return(s)
} s = s+c¢

}

defines a function to compute an approximate value of the exponential
function and

for(i=1; i<=10; i+ +) e(i)

prints approximate values of the exponential function of the first ten
integers.

FILES
/usr/lib/lib.b mathematical library
Jusr/bin/dc desk calculator proper
SEE ALSO
de(1).
BC — An Arbitrary Precision Desk-Calculator Language
by L. L. Cherry and R. Morris.
BUGS

No &&, || yet.
For statement must have all three E’s.
Quit is interpreted when read, not when executed.

BCOPY (1IM) (Obsolescent) BCOPY (1M)

NAME

bcopy — interactive block copy
SYNOPSIS

/etc/beopy
DESCRIPTION

Bcopy dates from a time when neither the UNIX file system nor the DEC
disk drives were as reliable as they are now. Bcopy copies from and to files
starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting ‘‘to’’ block number).
from: (you name the file or device to be copied from).
offset: (you provide the starting ‘‘from’’ block number).
count: (you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a
chance to concatenate blocks at the to+offset+count location). If you
answer from with a carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(1).

BDIFF(1) BDIFF(1)

NAME
bdiff — big diff
SYNOPSIS
bdiff filel file2 [n] [—s]

DESCRIPTION

: Bdiff is used in a manner analogous to diff (1) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into n-line
segments, and invokes diff upon corresponding segments. The value of n
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for n. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. If filel
(file2) is —, the standard input is read. The optional —s (silent) argument
specifies that no diagnostics are to be printed by bdiff’ (note, however, that
this does not suppress possible exclamations by diff. If both optional
arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

FILES

SEE ALSO
diff(1).

DIAGNOSTICS
Use help(1) for explanations.

BFS(1) BFS(1)

NAME

bfs — big file scanner
SYNOPSIS

bfs [—] name
DESCRIPTION

Bfs is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to 1024K bytes (the maximum possible size)
and 32K lines, with up to 255 characters per line. Bfs is usually more
efficient than ed for scanning a file, since the file is not copied to a buffer.
It is most useful for identifying sections of a large file where csplit(1) can
be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional — suppresses printing of
sizes. Input is prompted with & if P and a carriage return are typed as in
ed. Prompting can be turned off again by inputting another P and carriage
return. Note that messages are given in response to errors if prompting is
turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols besides / and ?:
> indicates downward search without wrap-around, and < indicates
upward search without wrap-around. Since bfs uses a different regular
expression-matching routine from ed, the regular expressions accepted are
slightly wider in scope (see regex(3X)). There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

The e, g, v, k, n, p, q, w, =, ! and null commands operate as described
under ed. Commands suchas ———, +++—, +++=, —12, and +4p
are accepted. Note that 1,10p and 1,10 will both print the first ten lines.
The f command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diver-
sion, truncation, or crunching (see the xo, xt and xc commands, below).
The following additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs, reading resumes with the file containing the xf. Xf com-
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is
missing, output is diverted to the standard output. Note that
each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the : and the start of the label
are ignored. This command may also be used to insert com-
ments into a command file, since labels need not be referenced.

(., .)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:

BFS(1) BFS(1)

1. Either address is not between 1 and §.

2. The second address is less than the first.

3. The regular expression doesn’t match at least one
line in the specified range, including the first and last
lines.

On success, . is set to the line matched and a jump is made to
label. This command is the only one that doesn’t issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb/"/ label

is an unconditional jump. ‘
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digiz following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable §.
Xv61,100p assigns the value 1,100p to the variable 6. To
reference a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %, a \
must precede it.

g/"-\%[cds]/p

could be used to match and list lines containing printf of charac-
ters, decimal integers, or strings.

Another feature of the xy command is that the first line of out-
put from a UNIX command can be stored into a variable. The
only requirement is that the first character of value be an !. For
example:

xvS!icat junk
Irm junk

lecho "%5"
xv6lexpr %6 + 1

would put the current line into variable S, print it, and
increment the variable 6 by one. To escape the special meaning
of ! as the first character of value, precede it with a \.

xv7\!date

BFS(1) BFS(1)

stores the value !date into variable 7.
xbz label

xbn label
These two commands will test the last saved return code from
the execution of a UNIX command (!command) or nonzero
value, respectively, to the specified label. The two examples
below both search for the next five lines containing the string
size.

xv55

.1

/size/

xv5texpr %5 — 1
!if 0%S != 0 exit 2
xbn 1

xv45

1

/size/

xv4lexpr %4 — 1
lif 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crun-
ched; if switch is 0 it isn’t. Without an argument, xc reverses
switch. Initially switch is set for no crunching. Crunched output
has strings of tabs and blanks reduced to one blank and blank
lines suppressed.

SEE ALSO
csplit(1), ed(1), regex(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

BS(1) BS(1)

NAME
bs — a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program develop-
ment time is as important as the resulting speed of execution. Formalities
of data declaration and file/process manipulation are minimized. Line-at-
a-time debugging, the trace and dump statements, and useful run-time error
messages all simplify program testing. Furthermore, incomplete programs
can be debugged; inner functions can be tested before outer functions have
been written and vice versa.

If the command line file argument is provided, the file is used for input
before the console is read. By default, statements read from the file
argument are compiled for later execution. Likewise, statements entered
from the console are normally executed immediately (see compile and exe-
cute below). Unless the final operation is assignment, the result of an
immediate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a
\, the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable
can have the same name.

A bs statement is either an expression or a keyword followed by zero or
more expressions. Some keywords (clear, compile, !, execute, include,
ibase, obase, and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or
function call). The details of expressions follow the description of sta-
tement types below.

break
Break exits from the inner-most for/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name
for further input. A clear is associated with this latter case. Compile is
executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.
dump

The name and current value of every non-local variable is printed.
After an error or interrupt, the number of the last statement and (possi-
bly) the user-function trace are displayed.

BS(1)

BS(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute .
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run
below). .

for name = expression expression statement
for name = expression expression

next

for expression , expression , expression statement
for expression , expression , expression

next

The for statement repetitively executes a statement (first form) or a
group of statements (second form) under control of a named variable.
The variable takes on the value of the first expression, then is
incremented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions
separated by commas. The first of these is the initialization, the second
is the test (true to continue), and the third is the loop-continuation
action (normally an increment).

fun f([a, ...]) [v,...]

nuf
Fun defines the function name, arguments, and local variables for a
user-written function. Up to ten arguments and local variables are
allowed. Such names cannot be arrays, nor can they be 1/O associated.
Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interroga-
tion operator (?) below. If interrogation is not present, freturn merely
returns zero. When interrogation is active, freturn transfers to that
expression (possibly by-passing intermediate function returns).

ibase N
Ibase sets the input base (radix) to N. The only supported values for N
are 8, 10 (the default), and 16. Hexadecimal values 10—15 are entered
as a—f. A leading digit is required (i.e., f0a must be entered as 0f0a).
Ibase (and obase, below) are executed immediately.

goto name

Control is passed to the internally stored statement with the matching
label.

if expression statement
if expression
[else
.
The statement (first form) or group of statements (second form) is exe-
cuted if the expression evaluates to non-zero. The strings 0 and ™
(null) evaluate as zero. In the second form, an optional eise allows for

a group of statements to be executed when the first group is not. The
only statement permitted on the same line with an else is an if; only

fi

-2

BS(1)

BS(1)

other fi’s can be on the same line with a fi. The elision of else and if
into an elif is supported. Only a single fi is required to close an if . .. elif
... [else ...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs
Such statements become part of the program being compiled. source
statements. Include statements may not be nested.

obase N
Obase sets the input base to N (see ibase above).

onintr label

onintr
The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe-
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause
bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of
a function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first
internal statement. If the run statement is contained in a file, it should
be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate
mode.

trace [expression]
The trace statement controls function tracing. If the expression is null
(or evaluates to zero), tracing is turned off. Otherwise, a record of
user-function calls/returns will be printed. Each return decrements the
trace expression value.

while expression statement
while expression

next :
While is similar to for except that only the conditional expression for
loop-continuation is given.

! shell command
An immediate escape to the Shell.

#

This statement is ignored. It is used to interject commentary in a pro-
gram.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared
in fun statements, all names are global to the program. Names can take
on numeric (double float) values, string values, or can be associated
with input/output (see the built-in function open() below).

BS(1)

BS(1)

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a fun statement. Arguments to
functions are passed by value.

name [expression [, expression] ...]
This syntax is used reference either arrays or tables (see built-in rable
functions below). For arrays, each expression is truncated to an integer
and used as a specifier for the name. The resulting array reference is
syntactically identical to a name; a[1,2] is the same as a[1]{2]. The trun-
cated expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, gnd possi-
bly a scale factor consisting of an e followed by a possibly signed
exponent.

string
Character strings are delimited by " characters. The \ escape character
allows the double quote (\"), new-line (\n), carriage return (\r), back-

space (\b), and tab (\t) characters to appear in a string. Otherwise, \
stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression]
The bracketed expression is used as a subscript to select a comma-
separated expression from the parenthesized list. List elements are
numbered from the left, starting at zero. The expression:

(False, True)[a == b]]
has the value True if the comparison is true.

? expression

The interrogation operator tests for the success of the expression rather
than its value. At the moment, it is useful for testing end-of-file (see
examples in the Programming Tips section below), the result of the eval
built-in function, and for checking the return from user-written func-
tions (see freturn). An interrogation “‘trap’’ (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping
assignment statements or intervening function levels.

— expression
The result is the negation of the expression.

+ + name
Increments the value of the variable (or array reference). The result is
the new value.

—— name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape
command.

expression operator expression
Common functions of two arguments are abbreviated by the two
arguments separated by an operator denoting the function. Except for
the assignment, concatenation, and relational operators, both operands

-4-

BS(1)

BS(1)

are converted to numeric form before the function is applied.
Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right
to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; | (logical or) has result
zero if both of its arguments are zero. It has result one if either of its
arguments is non-zero. Both operators treat a null string as a zero.

< <= > >= == I=
The relational operators (< less than, <= less than or equal, >
greater than, > = greater than or equal, == equal to, != not equal to)
return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as fol-
lows: a>b>c is the same as a>b & b>c. A string comparison is made
if both operands are strings.

+ ——
Add and subtract.

s /%
Multiply, divide, and remainder.

Exponentiation.
Built-in Functions:
Dealing with arguments

arg(i)
is the value of the i-th actual parameter on the current level of function
call. At level zero, arg returns the i-th command-line argument (arg(0)
returns bs).

narg()
returns the number of arguments passed. At level zero, the command
argument count is returned.

Mathematical

abs(x)

is the absolute value of x.
atan(x)

is the arctangent of x. Its value is between —x /2 and = /2.
ceil(x)

returns the smallest integer not less than x.
cos(x)

is the cosine of x (radians).
exp(x)

is the exponential function of x.
floor(x)

returns the largest integer not greater than x.

-5-

BS(1)

BS(1)

log(x)

is the natural logarithm of x.
rand()

is a uniformly distributed random number between zero and one.
sin(x)

is the sine of x (radians).

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format
specification in the style of printf(3S). Only the %...f, %...e, and
% ...s types are safe.

index(x, y)
returns the number of the first position in x that any of the characters
from y matches. No match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a
character in the same position in ¢. Source characters that do not appear
in f are copied to the result. If the string f is longer than ¢, source
characters that match in the excess portion of f do not appear in the
result.

substr(s, start, width)
returns the sub-string of s defined by the srarting position and width.

match(string, pattern)

mstring(n)
The pattern is similar to the regular expression syntax of the ed(1) com-
mand. The characters ., [,], ~ (inside brackets), * and $ are special.
The mstring function returns the n-th (1 <= n <= 10) substring of
the subject that occurred between pairs of the pattern symbols \(and \)
for the most recent call to match. To succeed, patterns must match the
beginning of the string (as if all patterns began with ~). The function
returns the number of characters matched. For example:

match("a123ab123", "#\([a—z]\)") == 6
mstring(l) == "b"

File handling

open(name, file, function)
close(name)
The name argument must be a bs variable name (passed as a string).
For the open, the file argument may be 1) a 0 (zero), 1, or 2 represen-
ting standard input, output, or error output, respectively, 2) a string
representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh —c). The function argument must be
either r (read), w (write), W (write without new-line), or a (append).
After a close, the name reverts to being an ordinary variable. The initial
associations are:
open("get", 0, "r")
open("put”, 1, "w")
open("puterr”, 2, "w")

-6 -

BS(1)

BS(1)

Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s)
returns a single character file type indication: f for regular file, d for
directory, b for block special, or ¢ for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. ‘‘Sub-
scripts’’ (called keys) are strings (numbers arc converted). The name
argument must be a bs variable name (passed as a string). The size
argument sets the minimum number of elements to be allocated. Bs
prints an error message and stops on table overflow.

item(name, i)

key()
The item function accesses table eclements sequentially (in normal use,
there is no orderly progression of key values). Where the item function
accesses values, the key function accesses the ‘‘subscript’” of the pre-
vious item call. The name argument should not be quoted. Since exact
table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table("t", 100)

#' ‘l'f word contains "party", the following expression adds one to
the count

of that word:

+ +t[word]

#. .'I.'o print out the the key/value pairs:
fori = 0, 2(s = item(t, i)), ++i if key() put = key()_":"_s
iskey(name, word)
The iskey function tests whether the key word exists in the table mame
and returns one for true, zero for false.

Odds and ends

eval(s)

The string argument is evaluated as a bs expression. The function is
handy for converting numeric strings to numeric internal form. Eval
can also be used as a crude form of indirection, as in:

name = "xyz"

eval("+ +"_ name)
which increments the variable xyz. In addition, eval preceded by the
interrogation operator permits the user to control bs error conditions.
For example:

?eval("open(\"X\", \"XXX\", \"r\")")
returns the value zero if there is no file named “XXX*’ (instead of hal-
ting the user’s program). The following executes a goto to the label L
(if it exists):

label="L"

if 1(?eval("goto "_ label)) puterr = "no label"

BS(1) BS(1)

plot(request, args)
The plot function produces output on devices recognized by tplot(1G).
The requests are as follows:

Call Function

plot(0, term) causes further plot output to be
piped into plot(1G) with an
argument of — Tterm.

plot(1) ‘‘erases’’ the plotter.

plot(2, string) labels the current point with string.

plot(3, x1, yl, x2, y2) draws the line between (x/,y/) and
(x2,p2).

plot(4, x, y, r) draws a circle with center (x,y) and
radius r.

plot(5, x1, yl, x2, y2, x3, y3) draws an arc (counterclockwise) with
center (x/,yI) and endpoints
(x2,y2) and (x3,y3).

plot(6) is not implemented.
plot(7, x, y) makes the current point (x,y).
plot(8, x, y) draws a line from the current point
. to (x,p).
plot(9, x, y) draws a point at (x,y).
plot(10, string) sets the line mode to string.
. plot(11, x1, yl, x2, y2) makes (xI,yl) the lower left corner

of the plotting area and (x2,y2) the
upper right corner of the plotting
area.

plot(12, x1, yl1, x2, y2) causes subsequent x (y) coordinates
to be multiplied by x/ (y/) and then
added to x2 (y2) before they are
plotted. The initial scaling s
plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to #plot(1G). See plot(5)
for more details.

last()
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIPS
Using bs as a calculator:

$bs

Distance (inches) light travels in a nanosecond.
186000 * 5280 = 12 / 1¢9

11.78496

Compound interest (6% for 5 years on $1,000).
int = .06 /4

bal = 1000

fori = 1 5#4 bal = bal + balsint

bal — 1000

BS(1) : BS(1)

346.855007
exit

The outline of a typical bs program:
initialize things:

varl =1
open("read”, "infile", "r")

.#. 'computc:
while ?(str = read)

next
clean up:
close("read")

last statement executed (exit or stop):
exit

last input line:

run

Input/Output examples:
Copy "oldfile" to "newfile".

open("read”, "oldfile", "r"
open("write", "newfile", "w")

'\\;l‘lilc ?(write = read)

‘#. ’closc "read” and "write":
close("read")
close("write")

Pipe between commands.
open("ls", "ls #", "r")

open("pr", "tpr —2 —h ‘List™, "w")
while ?(pr = Is) ...

be sure to close (wait for) these:

close("Is")

close("pr")

SEE ALSO

ed(1), sh(1), tplot(1G), access(2), printf(3S), stdio(3S), Section 3 of this
volume for further description of the mathematical functions (pow(3M) is
used for exponentiation), plot(5). Bs uses the Standard Input/Output
package.

CAL(1) CAL(1)

NAME
cal — print calendar
SYNOPSIS
cal [month] year
DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. Year can be between 1 and 9999.

The month is a number between 1 and 12. The calendar produced is that
for England and her colonies.

Try September 1752.

BUGS

The year is always considered to start in January even though this is histor-
ically naive.
Beware that ‘‘cal 78"" refers to the early Christian era, not the 20th century.

CALENDAR(1) CALENDAR(1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file calendar in the current directory and prints out
lines that contain today’s or tomorrow’s date anywhere in the line. Most
reasonable month-day dates such as *“‘Dec. 7, ‘“‘december 7, *“12/7,”
etc.,, are recognized, but not ‘7 December’ or *‘7/12”. On weekends
‘“‘tomorrow’’ extends through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in his login directory and sends him any positive results by
mail(1). Normally this is done daily in the wee hours under control of
cron(1M).

FILES
calendar
/usr/lib/calprog to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cals
/usr/lib/crontab
SEE ALSO
cron(1M), mail(1).

BUGS
Your calendar must be public information for you to get reminder service.
Calendar’s extended idea of ““tomorrow’ does not account for holidays.

CAT(1) CAT(1)

NAME
cat — concatenate and print files

SYNOPSIS
cat [—u] [—s] file ..
DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:
cat file
prints the file, and:
cat filel file2 >file3
concatenates the first two files and places the result on the third.

If no input file is given, or if the argument — is encountered, cat reads
from the standard input file. Output is buffered in 512-byte blocks uniess
the —u option is specified. The —s option makes car silent about non-
existent files. No input file may be the same as the output file unless it is a
special file.

SEE ALSO
cp(1), pr(1).

CB(1) CB(1)

NAME
cb — C program beautifier
SYNOPSIS
cb [file]
DESCRIPTION
Cb places a copy of the C program in file (standard input if file is not

given) on the standard output with spacing and indentation that displays
the structure of the program.

CC(1) CC(1)

NAME
cc, pcc — C compiler

SYNOPSIS
cc [option] ... file ...
pee [option] ... file ...

DESCRIPTION
Cc is the UNIX C compiler. Pcc is the portable version for a PDP-11
machine. They accept several types of arguments:

Arguments whose names end with .c are taken to be C source programs;
they are compiled, and each object program is left on the file whose name
is that of the source with .o substituted for .c. The .o file is normally
deleted, however, if a single C program is compiled and loaded all at one
go.

In the same way, arguments whose names end with .s are taken to be
assembly source programs and are assembled, producing a .o file.

The following options are interpreted by cc and pcc. See ld(1) for link edi-
tor options.

—-c Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the num-
ber of times each routine is called; also, if link editing takes place,
replace the standard startoff routine by one which automatically
calls monitor(3C) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An
execution profile can then be generated by use of prof(1).

—-f Link the object program with the floating-point interpreter for sys-
tems without hardware floating-point.

-8 Cause the compiler to generate additional information needed for
the use of sdb(1). (VAX-11/780 only.)

—dn This option is passed through to as(1). (VAX only.)

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed .s.

—E Run only the macro preprocessor on the named C programs, and
send the result to the standard output.

—-P Run only the macro preprocessor on the named C programs, and
leave the result on corresponding files suffixed .i.

-C Comments are not stripped by the macro preprocessor.
— Dname=def
—Dname

Define the name to the preprocessor, as if by #define. If no
definition is given, the name is defined as 1.

—Uname
Remove any initial definition of name.

—Idir Change the algorithm for searching for #include files whose
names do not begin with / to look in dir before looking in the
directories on the standard list. Thus, #include files whose names
are enclosed in "" will be searched for first in the directory of the
file argument, then in directories named in —I options, and last in

-1-

CC(1)

CC(1)

directories on a standard list. For #include files whose names are
enclosed in <>, the directory of the file argument is not sear-
ched.

— Bstring
Find substitute compiler passes in the files named string with the
suffixes cpp, ¢0, cl and c2. If string is empty, use a standard
backup version.

—t[p012]
Find only the designated compiler passes in the files whose names
are constructed by a —B option. In the absence of a —B option,
the string is taken to be /lib/n.

Other arguments are taken to be either link editor option arguments, or C-
compatible object programs, typically produced by an earlier cc or pcc run,
or perhaps libraries of C-compatible routines. These programs, together
with the results of any compilations specified, are linked (in the order
given) to produce an executable program with the name a.out.

FILES

file.c input file

file.o : object file

a.out linked output

/tmp/ctms= temporary

/lib/cpp preprocessor

/lib/c[01] PDP-11 compiler, cc

/usr/lib/comp compiler, pcc

/lib/ccom VAX compiler, cc

/lib/c2 optional optimizer

/lib/oce backup compiler, occ

/lib/ncs test compiler, ncc

/lib/fcl PDP-11 floating-point compiler, cc

/lib/crt0.0 runtime startoff

/lib/mecrt0.0 startoff for profiling

/lib/fcrt0.0 startoff for floating-point interpretation

/lib/libc.a standard library, see (3)

/usr/include standard directory for # include files
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, 1978.

B. W. Kernighan, Programming in C— A Tutorial.

D. M. Ritchie, C Reference Manual.

adb(1), as(1), 1d(1), prof(1), monitor(3C).
DIAGNOSTICS

The diagnostics produced by C itself are intended to be self-explanatory.
Occasional messages may be produced by the assembler or the link editor.
Of these, the most mystifying are from the PDP-11 assembler, in particular
m, which means a multiply-defined external symbol (function or data).

CD(1) CD(1)

NAME
cd — change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If specified, directory becomes the new working directory; otherwise, the
value of the shell parameter SHOME is used. The process must have exe-
cute (search) permission in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog-
nized and executed by the shell.

SEE ALSO
pwd(1), sh(l), chdir(2).

CDC(1) CDC(1)

NAME

cdc — change the delta commentary of an SCCS delta
SYNOPSIS

cdc —rSID [—m[mrlist]] [—y[comment]] files
DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the —r keylet-
ter, of each named SCCS file.

Delta commentary is defined to be the Modification Request (MR) and com-
ment information normally specified via the delta(l) command (—m and
—vy keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCCS files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of — is given, the standard input is read (sce
WARNINGS); each line of the standard input is taken to be the name of an
SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

—rSID Used to specify the SCCS IDentification (SID) string
of a delta for which the delta commentary is to be
changed.

—m[nmrlist] If the SCCS file has the v flag set (see admin(1)) then
a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the —r
keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(1). In order to delete an MR,
precede the MR number with the character ! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
‘“‘comment’’ line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If —m is not used and the standard input is a ter-
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the stan-
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab

characters. An unescaped new-line character ter-
minates the MR list.

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates

-1-

CDC(1)

EXAMPLES

—y[comment)

CDC(1)

and the delta commentary remains unchanged.

Arbitrary text used to replace the comment(s) already
existing for the deita specified by the —r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

If —y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

The exact permissions necessary to modify the SCCS file are docu-
mented in the Source Code Control System User’s Guide. Simply sta-
ted, they are either (1) if you made the delta, you can change its delta
commentary; or (2) if you own the file and directory you can modify
the deita commentary.

cdc —rl.6 —m"bl78-12345 !bl77-54321 b179-00001" —ytrouble s.file

adds bl78-12345 and b179-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc —rl.6 s.file

MRs? 1b177-54321 b178-12345 b179-00001

comments? trouble
does the same thing.
WARNINGS

If SCCS file names are supplied to the cdc command via the standard input
(— on the command line), then the —m and —y keyletters must also be

used.

FILES

x-file
z-file

SEE ALSO

(see delta(1))
(see delta(1))

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

CHMOD (1) CHMOD(1)

NAME

chmod — change mode
SYNOPSIS

chmod mode file ...
DESCRIPTION

The permissions of each named file are changed according to mode, which
may be absolute or symbolic. An absolute mode is an octal number con-
structed from the OR of the following modes:

4000 set user ID on execution’
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission]

The who part is a combination of the letters u (for user’s permissions), g
(group) and o (other). The letter a stands for ugo, the default if who is
omitted.

Op can be + to add permission to the file’s mode, — to take away permis-
sion, or = to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (exe-
cute), s (set owner or group ID) and t (save text — sticky); u, g or o indi-
cate that permission is to be taken from the current mode. Omitting permis-
sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter s is only useful with u or g
and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file
executable:

chmod o—w file

chmod +x file

SEE ALSO
Is(1), chmod(2).

CHOWN(1) CHOWN(1)

NAME

chown, chgrp — change owner or group
SYNOPSIS

chown owner file ...

chgrp group file ...

DESCRIPTION
Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.
Chgrp changes the group ID of the files to group. The group may be either
a decimal group ID or a group name found in the group file.
FILES
/etc/passwd
/etc/group
SEE ALSO
chown(2), group(5), passwd(5).

CHROOT(1M) CHROOT(1M)

NAME

chroot — change root directory for a command
SYNOPSIS

chroot newroot command
DESCRIPTION

The given command is executed relative to the new root. The meaning of
any initial slashes (/) in path names is changed for a command and any of
its children to newroot. Furthermore, the initial working directory is
newroot.

‘Notice that:

chroot newroot command >x
will create the file x relative to the original root, not the new one.
This command is restricted to the super-user.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroor argument is relative to the current
root of the running process.

SEE ALSO
chdir(2).
BUGS

One should exercise extreme caution when referencing special files in the
new root file system.

CLRI(IM) CLRI(IM)

NAME

clri — clear i-node

SYNOPSIS

clrl file-system i-number ...

DESCRIPTION

Clri writes zeros on the 64 bytes occupied by the i-node numbered /-
number. File-system must be a special file name referring to a device con-
taining a file system. After c/rf is executed, any blocks in the affected file
will show up as *‘missing’’ in an fsck(1M) of the file-system. This com-
mand should only be used in emergencies and extreme care should be
exerciscd.

Read and write permission is required on the specified file-system device.
The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some
reason appears in no directory. If it is used to zap an i-node which does
appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to somé& new file, the
old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated
i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO

BUGS

fsck(1 M), fsdb(1M), ncheck(1M), fs(5).

If the file is open, cr is likely to be ineffective.

CMP(1) CMP(1)

NAME

cmp — compare two files
SYNOPSIS

emp [—1] [—s] filel file2
DESCRIPTION

The two files are compared. (If filel is —, the standard input is used.)
Under default options, cmp makes no comment if the files are the same; if
they differ, it announces the byte and line number at which the difference
occurred. If one file is an initial subsequence of the other, that fact is
noted.

Jptions:

—1 Print the byte number (decimal) and the differing bytes (octal) for
cach difference.
—s Print nothing for differing files; return codes only.
SEE ALSO
comm(1), diff(1).
DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an
inaccessible or missing argument.

COL(1)] COL(1)

NAME
col — filter reverse line-feeds

SYNOPSIS
col [—bfpx]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCII code
ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the .rt
command of nroff (1) and output resulting from use of the tb/(1) preproces-
sor.

If the —b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This treatment can be
suppressed by the —f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the —x option is given, col will convert white space to tabs on out-
put wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO
characters are generated as appropriate to ensure that each character is prin-
ted in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The
VT character is an alternate form of full reverse line-feed, included for
compatibility with some ecarlier programs of this type. All other non-
printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences found in its
input; the —p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The
use of this option is highly discouraged unless the user is fully aware of the
textual position of the escape sequences.

SEE ALSO
nroff(1), tbi(1).

NOTES
The input format accepted by col matches the output produced by nroff (1)
with either the —T37 or —Tlp options. Use —T37 (and the —f option of
col) if the ultimate disposition of the output of col will be a device that can
interpret half-line motions, and —Tlp otherwise.

BUGS
Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

COMB(1) COMB(1)

NAME

comb — combine SCCS deltas
SYNOPSIS

comb [—o] [—s] [—psid] [—clist] files
DESCRIPTION

Comb generates a shell procedure (see sh(1)) which, when run, will recon-
struct the given SCCS files. The reconstructed files will, hopefully, be smal-
ler than the original files. The arguments may be specified in any order,
but all keyletter arguments apply to all named SCCS files. If a directory is
named, comb behaves as though each file in the directory were specified as
a named file, except that non-SCCS files (last component of the path name
does not begin with s.) and unreadable files are silently ignored. If a name
of — is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

—pSID The SCCS IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

—clist A list (see get(1) for the syntax of a list) of deltas to be preserved.
All other deltas are discarded.

-0 For each get —e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, oth-
erwise the reconstructed file would be accessed at the most recent
ancestor. Use of the —o keyletter may decrease the size of the
reconstructed SCCS file. It may also alter the shape of the delta
tree of the original file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 = (original — combined) / original
It is recommended that before any SCCS files are actually com-
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

FILES
s.COMB The name of the reconstructed SCCS file.
comb????? Temporary.

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

BUGS
Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

COMM(1) COMM(1)

NAME

comm — select or reject lines common to two sorted files
SYNOPSIS

comm [— [123]] filel file2
DESCRIPTION

Comm reads filel and file2, which should be ordered in ASCII collating
sequence (see sort(1)), and produces a three-column, output: lines only in
filel ; lines only in file2; and lines in both files. The file name — means the
standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm —12 prints only the lines common to the two files; comm —23
prints only lines in the first file but not in the second; comm —123 is a no-
op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

CONFIG (1M) CONFIG(1M)

NAME

config — configure a UNIX system
SYNOPSIS

Jetc/config [—t] [—1 file] [—c file] { —m file] dfile
DESCRIPTION

Config is a program that takes a description of a UNIX system and generates
two files. One file provides information regarding the interface between the
hardware and device handlers. The other file is a C program defining the
configuration tables for the various devices on the system.

The —1 option specifies the name of the hardware interface file; low.s is
the default name on the PCP-11; univec.c is the default name on the VAX-
11/780.

The —c option specifies the name of the configuration table file; conf.c is
the default name.

The —m option specifies the name of the file that contains all the informa-
tion regarding supported devices; /etc/master is the default name. This
file is supplied with the UNIX system and should nor be modified unless the
user fully understands its construction.

The —t option requests a short table of major device numbers for character
and block type devices. This can facilitate the creation of special files.

The user must supply dfile; it must contain device information for the
user’s system. This file is divided into two parts. The first part contains
physical device specifications. The second part contains system-dependent
information. Any line with an asterisk (¢) in column 1 is a comment.

All configurations are assumed to have the following devices:

one DL11 (for the system console)
one KWI11-L line clock or KW11-P programmable clock

with standard interrupt vectors and addresses. These two devices must not
be specified in dfile. Note that UNIX needs only one clock, but can handle
both types.

First Part of dfile
Each line contains four or five fields, delimited by blanks and/or tabs in the
following format:

devname vector address bus number

where devname is the name of the device (as it appears in the /etc/master
device table), vector is the interrupt vector location (octal), address is the
device address (octal), bus is the bus request level (4 through 7), and num-
ber is the number (decimal) of devices associated with the corresponding
controller; number is optional, and if omitted, a default value which is the
maximum value for that controller is used.

There are certain drivers that may be provided with the system, that are
actually pseudo-device drivers; that is, there is no real hardware associated
with the driver. Drivers of this type are identified on their respective
manual entries. When these devices are specified in the description file,
the interrupt vector, device address, and bus request level must all be zero.

CONFIG (1M) CONFIG (1M)

Second Part of dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbitrary.

1. Root/pipe/dump device specification
Three lines of three fields each:

root devname minor
pipe devname minor
dump devname minor

where minor is the minor device number (in octal).
2. Swap device specification
One line that contains five fields as follows:
swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and nswap
is the number of disk blocks (decimal) in the swap area.

3. Parameter specification
Thirteen lines of two fields each as follows (number is decimal):

buffers number
sabufs number (not'on the VAX-11/780)
inodes number
files number
mounts number
coremap number (not on the VAX-11/780)
swapmap number
calls number
procs number
maxprec number
texts number
clists number
pewer Oorl
EXAMPLE
Suppose we wish to configure a PDP-11/70 system with the following devi-
ces:

one RP04 disk drive controller with 6 drives

one DH11 asynchronous muitiplexer with 16 lines (default number)

one DM11 modem control with 16 lines (for the DH11)

one DH11 asynchronous multiplexer with 8 lines

one DM11 modem control with 8 lines (for the DH11)

one LP11 line printer

one TU16 tape drive controller with 2 drives

one DL11 asynchronous interface
Note that UNIX only supports DH11 units that require corresponding DM11
units. It is wise to specify them in DH-DM pairs to facilitate understanding
the configuration. Note also that, in the preceding case, the DLI11 that is
specified is in addition to the DL11 that was part of the initial system. We
must also specify the following parameter information:

root device is an RP04 (drive 0, section 0)

pipe device is an RP04 (drive 0, section 0)

swap device is an RP04 (drive 1, section 4),

with a swplo of 6000 and an nswap of 2000
dump device is a TU16 (drive 0)
number of buffers is 35

CONFIG (1M)

CONFIG (1M)

number of system addressable buffers is 12
number of processes is 150

maximum number of processes per user ID is 25
number of mounts is 8

number of inodes is 120

number of files is 120

number of calls is 30

number of texts is 35

number of character buffers is 150
number of coremap entries is 50

number of swapmap entries is 50

power fail recovery is to be included

The actual system configuration would be specified as follows:

rp04 254 776700 5 6
dhll 320 760020 S
dmll 300 770500 4
dhll 330 760040 5 8
dmll 304 770510 4 8
Ipll 200 775514 5
tulé 224 772440 5 2
dill 350 775610 5
root rp04 0
pipe rp04 0
swap rp04 14 6000 2000
dump tulé 0
= Comments may be inserted in this manner
buffers 35
sabufs 12
procs 150
maxproc 25
mounts 8
inodes 120
files 120
calls 30
texts 35
clists 150
coremap 50
swapmap 50
power 1
FILES
/etc/master default input master device table
low.s default output hardware interface file for PDP-11
univec.c default output hardware interface file for the VAX-11/780
conf.c default output configuration table file
SEE ALSO
master(5).
Setting Up UNIX.
DIAGNOSTICS
Diagnostics are routed to the standard output and are self-explanatory.
BUGS

The —t option does not know about devices that have aliases. For exam-
ple, an RPO6 (an alias for an RP04) will show up as an RP04; however, the
major device numbers are always correct.

CP(1)

NAME

CP(1)

cp, In, mv — copy, link or move files

SYNOPSIS

cp filel [file2 ...] target
In filel [file2 ...] target
mv filel [file2 ...] target

DESCRIPTION

Filel is copied (linked, moved) to target. Under no circumstance can filel
and rarget be the same. If target is a directory, then one or more files are
copied (linked, moved) to that directory.

If mv determines that the mode of target forbids writing, it will print the
mode (see chmod(2)) and read the standard input for one line (if the stan-
dard input is a terminal); if the line begins with y, the move takes place; if
not, mv exits.

Only mv will allow filel to be a directory, in which case the directory
rename will occur only if the two directories have the same parent.

SEE ALSO

BUGS

cpio(1), link(1M), rm(1), chmod(2).

If filel and target lie on different file systems, mv must copy the file and
delete the original. In this case the owner name becomes that of the copy-
ing process and any linking relationship with other files is lost.

Ln will not link across file systems.

CPIO(1) CPIO(1)

NAME
cpio — copy file archives in and out

SYNOPSIS
cpio —o [acBv]

cpio —i [Bedmrtuvé] [patterns]
cpio —p [adlmruv] directory

DESCRIPTION
Cpio —o (copy out) reads the standard input to obtain a list of path names
and copies those files onto the standard output together with path name
and status informaticn.

Cpio —i (copy in) extracts from the standard input (which is assumed to be
the product of a previous cpio —o) the names of files selected by zero or
more patterns given in the name-generating notation of sh(1). In patterns,
meta-characters ?, =, and [...] match the slash / character. The default for
patterns is ¢ (i.e., select all files).

Cpio —p (pass) copies out and in in a single operation. Destination path
names are interpreted relative to the named directory.

The meanings of the available options are:

a Reset access times of input files after they have been copied.

B Input/output is to be blocked 5,120 bytes to the record (does not
apply to the pass optiocn; meaningful only with data directed to or
from /dev/rmt?).

d Directories are to be created as needed.

¢ Write header irfformation in ASCII character form for portability.

r Interactively rename files. If the user types a null line, the file is
skipped.

t Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

v Verbose: causes a list of file names to be printed. When used with

the t option, the table of contents looks like the output of an Is —1
command (see Is(1)).

1 Whenever possible, link files rather than copying them. Usable
only with the —p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful

with —i (copy in).
EXAMPLES

The first example below copies the contents of a directory into an archive;
the second duplicates a directory hierarchy:

Is | cpio —o >/dev/mt0
cd olddir
find . —print | cpio —pdl newdir
The trivial case *“find . —print | cpio —oB >/dev/rmt0” can be handled
more cfficiently by:
find . —cpio /dev/rmt0
SEE ALSO
ar(1), find(1), cpio(5).

CPIO(1) CPIO(1)

BUGS
Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files.

CRASH (1M) CRASH(1M)

NAME
crash — examine system images

SYNOPSIS
/etc/crash [system] [namelist] [ka6]

DESCRIPTION
Crash is an interactive utility for examining an operating system core
image. It has facilities for interpreting and formating the various control
structures in the system and certain miscellaneous functions that are useful
when perusing a dump.

The arguments to crash are the file name where the system image can be
found, a namelist file to be used for symbol values, and the segment
address of the initial process to be examined. The current process can be
changed via subsequent commands. The default values are /dev/mem,
/unix, and the location of the swapper, process 0; hence, crash with no
arguments can be used to examine an active system. If a system image file
is given, it is assumed to be a system core dump and the initial process is
set to be that of the process running at the time of the crash. This is deter-
mined by the value of ka6 stored in a fixed location by the system dump
mechanism.

COMMANDS
Input to crash is typically of the form:
command [options] [structures to be printed].

When allowed, options will modify the format of the print out. If no
specific structure elements are specified, all valid entries will be used. As
an example, proc — 12 15 3 would print process table slots 12, 15 and 3 in
a long format, while proc would print the entire process table in the stan-
dard format. The current repertory consists of:

ka6 [segment address]
Print the location of the current process if no argument is given, or
set the location to that of the supplied value.

u Print the user structure of the current process as determined by the
value of ka6.
trace[—r]

Generate a kernel stack trace of the current process. If the —r
option is used, the trace begins at the saved stack frame pointer in
r5. Otherwise the trace starts at the bottom of the stack and
attempts to find valid stack frames deeper in the stack.

r5 [stack frame]
Print the program’s idea of the start of the current stack frame (set
initially from a fixed location in the dump) if no argument is given,
or set the frame pointer to the supplied value.

stack Format an octal dump of the kernel stack of the current process.
The addresses shown are virtual system data addresses rather than
true physical locations.

proc [—[r]] [list of process table entries]
Format the process table. The —r option causes only runnable pro-
cesses to be printed. The — alone generates a longer listing.

inode [—] [list of inode table entries]
Format the inode table. The — option will also print the inode data
block addresses.

CRASH(1IM) CRASH(1M)

file [list of file table entries]
Format the file table.

mount [list of mount table entries]
Format the mount table.

text [list of text table entries]
Format the text table.

tty [type] [— 1 [list of tty entries]
Print the tty structures. The fype argument determines which struc-
ture will be used (such as kl or dh; the last zype is remembered).
The — option prints the stty parameters for the given line.

stat Print certain statistics found in the dump. These include the panic
string, time of crash, system name, and the registers saved in low
memory by the dump mechanism.

var Print the tunable system parameters.

buf [list of buffer headers]
Format the system buffer headers.

buffer [format] [list of buffers]
Print the data in a system buffer according to format. Valid formats
include decimal, octal, character, byte, directory, inede, and write.
The last creates a file containing the buffer data.

callout Print all entries in the callout table.
map [list of map names } .
Format the named system map structures.
nm [list of symbols]
Print symbol value and type as found in the namelist file.
ts [list of text addresses]
Find the closest text symbols to the given addresses.
ds [list of data addresses]
Find the closest data symbols to the given addresses.

od [symbol or data address] [count] [format]
Dump count data values starting at the symbol value or address
given according to format. Allowable formats are octal, decimal,
character, or byte.

! Escape to shell.
q Exit from crash.
? Print synopsis of commands.

ALIASES
There are built in aliases for many of the commands and formats. In gen-
eral, the first letter of a name is satisfactory, thus, k is a shorthand nota-
tion for kernel. Exceptions are x for text and e for decimal.

FILES

/dev/mem default system image file

/unix default namelist file

buf. # files created containing buffer data
SEE ALSO

crash(8).

CREF(1) CREF(1)

NAME

cref — make cross-reference listing

SYNOPSIS

cref [—acilnostux123] files

DESCRIPTION

Cref makes a cross-reference listing of assembler or C programs; files are
secarched for symbols in the appropriate syntax.

The output report is in four columns:

1. symbol;

2. file name;

3. see below;

4. text as it appears in the file.

Cref uses either an ignore file or an only file. If the —i option is given, the
next argument is taken to be an ignore file; if the —o option is given, the
next argument is taken to be an only file. Ignore and only files are lists of
symbols separated by new-lines. All symbols in an ignore file are ignored in
columns 1 and 3 of the output. If an only file is given, only symbols in that
file will appear in column 1. Only one of these options may be given; the
default setting is —i using the default ignore file (see FILES below).
Assembler pre-defined symbols or C keywords are ignored.

The —s option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C, the
current function name. The —1 option causes the line number within the
file to be put in column 3.

The —t option causes the next available argument to be used as the name
of the intermediate file (instead of the temporary file /tmp/crt??). This
file is created and is not removed at the end of the process.

The cref options are:

a assembler format (default)

¢ C format input

i use an ignore file (see above)

1 put line number in column 3 (instead of current symbol)

n omit column 4 (no context)

o use an only file (see above)

s current symbol in column 3 (default)

t user-supplied temporary file

u print only symbols that occur exactly once

x print only C external symbols

1 sort output on column 1 (default)

2 sort output on column 2

3 sort output on column 3.

FILES
/tmp/crt?? temporaries
/usr/lib/cref/aign default assembler ignore file
/usr/lib/cref/atab grammar table for assembler files
/Jusr/lib/cref/cign default C ignore file
/usr/lib/cref/ctab grammar table for C files
/usr/lib/cref/crpost post-processor
/usr/lib/cref/upost post-processor for —u option
SEE ALSO

as(1), cc(1), sort(1), xref(1).

CREF(1) CREF(1)

BUGS
Cref inserts an ASCIl DEL character into the intermediate file after the
eighth character of each name that is eight or more characters long in the
source file.

CRON(1M) CRON(1M)

NAME

cron — clock daemon

SYNOPSIS

/etc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the
instructions in the file /usr/lib/crontab. Because crom never exits, it
should be executed only once. This is best done by running cron from the
initialization process through the file /etc/rc (see init(8)).

The file crontab consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns that specify the minute
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12),
and day of the week (0-6, with 0=Sunday). Each of these patterns may
contain:

a number in the (respective) range indicated above;

two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these num-
bers); or

an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a new-line character. Only the
first line (up to a % or the end of line) of the command field is executed by
the shell. The other lines are made available to the command as standard
input.

Cron examines crontab once a minute to see if it has changed; if it has,
cron reads it. Thus it takes only a minute for entries to become effective.

/usr/lib/crontab
/usr/lib/cronlog

SEE ALSO

sh(1), init(8).

DIAGNOSTICS

BUGS

A history of all actions by cron are recorded in /usr/lib/cronlog.

Cron reads crontab only when it has changed, but it reads the in-core ver-
sion of that table once a minute. A more efficient algorithm could be used.
The overhead in running cron is about one percent of the CPU, exclusive of
any commands executed by cron.

CRYPT(1) CRYPT(1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

Crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off
printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed
in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; ‘‘sneak paths’ by which keys or clear text can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the Ger-
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower-
case letters, then encrypted files can be read by expending only a substan-
tial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible
to users executing ps(1) or a derivative. To minimize this possibility, crypt
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

FILES

/dev/tty for typed key
SEE ALSO

ed(1), makekey(8).
BUGS

If output is piped to nroff(1) and the encryption key is not given on the
command line, crypt can leave terminal modes in a strange state (see
sty (1)).

CSPLIT(1)

NAME

CSPLIT(1)

csplit — context split

SYNOPSIS

csplit [—s] [—k] [—f prefix] file argl [... argn]

DESCRIPTION

Csplit reads file and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in xx00 ...
xxn (n may not be greater than 99). These sections get the following

pieces of file:

00: From the start of file up to (but not including) the line
referenced by argl .

01: From the line referenced by argl up to the line referenced by
arg?.

n+1: From the line referenced by argn to the end of file.

The options to csplit are:

Csplit normally prints the character counts for each file
created. If the —s option is present, csplit suppresses the
printing of all character counts.

Csplit normally removes created files if an error occurs. If
the —k option is present, csplit leaves previously created
files intact.

—f prefix If the —f option is used, the created files are named

prefix00 . . . prefixn. The default is xx00 ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the fol-

lowing:
[rexp/

Inno

{num}

A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. The current line becomes the line con-
taining rexp. This argument may be followed by an optional
+or — some number of lines (e.g., /Page/—5).

This argument is the same as /rexp/, except that no file is
created for the section.

A file is to be created from the current line up to (but not
including) /nno. The current line becomes /nno.

Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows /nno, the
file will be split every- Inno lines (num .times) from that
point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the Shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. Csplit does not affect the original file; it
is the users responsibility to remove it.

EXAMPLES

csplit —f cobol file ‘/procedure division/’ /par5./ /parl6./

This example creates four files, cobol00 ... cobol03. After editing the
*‘split™ files, they can be recombined as follows:

CSPLIT(1) ' CSPLIT(1)

cat cobol0[0—3] > file
Note that this example overwrites the original file.
csplit —k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The —k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit —k prog.c ‘%main(%’ ‘/"}/+1’ {20}

Assuming that prog.c follows the normal C coding conyention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(1), sh(1), regexp(7).

DIAGNOSTICS
Self explanatory except for:
arg — out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

CT(1C) CT(1C)

NAME

ct — call terminal

SYNOPSIS

et [—h][—v][—wn] [—sspeed] telno

DESCRIPTION

FILES

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a login process to that terminal. Telno is the telephone number,
with minus signs at appropriate places for delays.

Ct determines which dialers are associated with lines that are set to the
appropriate speed by examining the file /usr/lib/uucp/L-devices. If all
such available dialers are busy, ¢t will ask if it should wait for a line, and if
so, for how many minutes it should wait before it gives up. Cr will con-
tinue to try to open the dialers at one-minute intervals until the specified
limit is exceeded. The dialogue may be overridden by specifying the —wn
option, where n is the maximum number of minutes that ¢t is to wait for a
line.

Normally, ¢t will hang up the current line, so that that line can answer the
incoming call. The —h option will prevent this action. If the —v option is
used, ct will send a running narrative to standard error.

The data rate may be set with the —s option, where speed is expressed in
baud. The default rate is 300.

The destination terminal must be attached to a modem that can answer the
telephone.

/usr/lib/uucp/L-devices

SEE ALSO

cu(1C), login(1), uucp(1C), dn(4), getty(8).

CuU(1C) Cu(1C)

NAME
cu — call another UNIX system

SYNOPSIS
cu [—sspeed] [—aacu] [—1lline] [—h] [—o|—e] telno | dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys-
tem. It manages an interactive conversation with possible transfers of
ASCII files. Speed gives the transmission speed (110, 150, 300, 1200, 4800,
9600); 300 is the default value. Most of our modems restrict us to choose
between 300 and 1200. Directly connected lines may be set to other
speeds.

The —a and —1 values may be used to specify device names for the ACU
and communications line devices. They can be used to override searching
for the first available ACU with the right speed. The —h option emulates
local echo, supporting calls to other computer systems which expect ter-
minals to be in half-duplex mode. The —e (—o).option designates that
even (odd) parity is to be generated for data sent to the remote. Telno is
the telephone number, with equal signs for secondary dial tone or minus
signs for delays, at appropriate places. The string dir for telno must be
used for directly connected lines, and implies a null ACU.

Cu will try each line listed in the file /usr/lib/uucp/L-devices until it finds
an available line with appropriate attributes or runs out of entries. After
making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with ~, passes
it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with ~, passes it to the standard out-
put. Normally, an automatic DC3/DC1 protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with ~ have
special meanings.

The transmit process interprets the following:

terminate the conversation.

1 escape to an interactive shell on the local system.

“lemd. . . run ¢cmd on the local system (via sh —c).

“Scmd. . . run cmd locally and send its output to the remote sys-
tem.

“%take from [10] copy file from (on the remote system) to file o on
the local system. If fo is omitted, the from argument
is used in both places.

“%put from [to] copy file from (on local system) to file f0 on remote
system. If to is omitted, the from argument is used
in both places.

~-

send the line ~... to the remote system.

“nostop turn off the DC3/DCl input control protocol for the
remainder of the session. This is useful in case the
remote system is one which does not respond pro-
perly to the DC3 and DC1 characters,

The receive process normally copies data from the remote system to its
standard output. A line from the remote that begins with > initiates an
output diversion to a file. The complete sequence is:

Cu(1C) cu(1c)

FILES

>[>1:file
zero or more lines to be written to file
>

Data from the remote is diverted (or appended, if >> is used) to file.
The trailing “> terminates the diversion.

The use of “%put requires stty(1) and car(1) on the remote side. It also
requires that the current erase and kill characters on the remote system be
identical to the current ones on the local system. Backslashes are inserted
at appropriate places.

The use of “%take requires the existence of echo(l) ard cat(1) on the
remote system. Also, stty tabs mode should be set on the remote system
if tabs are to be copied without expansion.

/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK..(tty-device)
/dev/null

SEE ALSO

cat(1), echo(1), stty(1), uucp(1C), dh(4), dn(4), tty(4).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

There is an artificial slowing of transmission by cu during the “%put opera-
tion so that loss of data is unlikely.

CUT(1) CUT(1)

NAME
cut — cut out selected fields of each line of a file

SYNOPSIS
cut —clist [filel file2 ..]
cut —flist [—dchar] [—s] [filel file2 ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a pun-
ched card (—c option), or the length can vary from line to line and be
marked with a field delimiter character like tab (—f option). Cur can be
used as a filter; if no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional — to indicate ranges as in the —o option of
nroff /troff for page ranges; e.g., 1,4,7; 1—3,8; —5,10 (short for
1—5,10); or 3— (short for third through last field).

—clist The list following —c¢ (no space) specifies character positions
(e.g., —c1—72 would pass the first 72 characters of each line).

—flist The list following —f is a list of fields assumed to be separated in
the file by a delimiter character (see —d); e.g. , —f1,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless —s is
specified.

—dchar The character following —d is the field delimiter (—f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

—-s Suppresses lines with no delimiter characters in case of —f
option. Unless specified, lines with no delimiters will be passed
through untouched.

Either the —c or —f option must be specified.

HINTS
Use grep(1) to make horizontal ‘‘cuts’’ (by context) through a file, or
paste(1) to put files together column-wise (i.c., horizontally). To reorder
columns in a table, use cut and paste.

EXAMPLES
cut —d: —f1,5 /etc/passwd mapping of user IDs to names
name="who am i|cut —f1 —d" "’ to set name to current login name.
DIAGNOSTICS
line too long A line can have no more than 511 characters or

fields.

bad list for c/f option Missing —c¢ or —f option or incorrectly specified lisz.
No error occurs if a line has fewer fields than the list
calls for.

no fields The list is empty.
SEE ALSO
grep(1), paste(1).
\

cw(1) cw(1)

NAME
cw, checkcw — prepare constant-width text for troff

SYNOPSIS
ewl -1xx J [-exx 1 '-en) [-t) [+t] [-a] [files]

checkcew [-1xx 1 [-xxx] files

DESCRIPTION
Cw is a preprocessor for roff(1) input files that contain text to be typeset in
the constant-width (CW) font.

Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs aw.d of compu-
ter output in user manuals, programming texts, etc. (An earlier version of
this font was used in typesetting The C Programming Language by B. W.
Kernighan and D. M. Ritchie). It has been designed to be quite distinctive
(but not overly obtrusive) when used together with the Times Roman font.

Because the CW font contains a ‘‘non-standard’’ set of characters and
because text typeset with it requires different character and inter-word spa-
cing than is used for ‘‘standard’’ fonts, documents that use the CW font
must be preprocessed by cw.

The CW font contains the 94 printing ASCII characters:

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

IS%& () #+@.,/:5=2[11-_"-"<>{}#\

plus eight non-ASCII characters represented by four-character off{1)
names (in some cases attaching these names to ‘‘non-standard’ graphics),
as follows:
Character Symbol Troff Name
“Cents”sign ¢ \(ct

EBCDIC “‘not” sign - \(no
Leftarrow « \(<-
Rightarrow - \(->

Down arrow $ \(da

Vertical single quote ' \(£fm
Control-shift indicator \(dg
Visible space indicator ~ \(sq
Hyphen - \ (hy

The hyphen is a synonym for the unadorned minus sign (-). Certain ver-
sions of cw recognize two additional names: \ (ua for an up arrow and
\ (1h for a diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The
request lines Jook like moff(1) macro requests, and are copied in their
entirety by cw onto its output; thus, they can be defined by the user as
roff(1) macros; in fact, the .CW and .CN macros should be so defined (see
HINTS below).

The five requests are:

.Cw Start of text to be set in the CW font; .CW causes a break; it can
take precisely the same options, in precisely the same format, as are
available on the cw command line.

.CN End of text to be set in the CW font; .CN causes a break; it can
take the same options as are available on the cw command line.

-1-

cw(l)

cw(l)

.cp Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line.

.CP argl arg2 arg3 ... argn
All the arguments (which are delimited like wroff(1) macro
arguments) are concatenated, with the odd-numbered arguments
set in the CW font and the even-numbered ones in the prevailing
font.

.PC argl arg2 arg3 ... argn
Same as .CP, except that the even-numbered (rather than odd-
numbered) arguments are set in the CW font.

The .CW and .CN requests are meant to bracket text (e.g., a program frag-
ment) that is to be typeset in the CW font “‘as is.”” Normally, cw operates
in the transparent mode. In that mode, except for the .CD request and the
nine special four-character names listed in the table above, every character
between .CW and .CN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (’) at the beginning of lines, and
backslashes (\) and ligatures (fi, ££, etc.) everywhere to be ‘‘hidden”
from roff(1). The transparent mode can be turned off (see below), in
which case normal qf(1) rules apply. In any case, cw hides from the user
the effect of the font changes generated by the .CW and .CN requests.

The only purpose of the .CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform
the same function as the .CW/.CN requests; they are meant, however, to
enclose CW “‘words” or ‘‘phrases’ in running text (see the example under
BUGS below). Cw treats text enclosed by delimiters in precisely the same
manner as text bracketed by .CW/.CN pairs, except that, for aesthetic
reasons, spaces in text bracketed by .CW/.CN pairs have the same width
as any other CW character, while spaces between delimiters are half as
wide, so that they have the same width as spaces in the prevailing text (but
are not adjustable).

Delimiters have no special meaning inside .CW/ .CN pairs.
The options are:

-1xx The one- or two-character string xx becomes the left delimiter; if
xx is omitted, the left delimiter becomes undefined, which it is ini-
tially.

-rxx Same for the right delimiter. The left and right delimiters may (but
need not) be different.

-fn The CW font is mounted in font position n; acceptable values for n
are 1, 2, and 3 (default is 3, replacing the bold font). This option
is only useful at the beginning of a document.

-t Turn transparent mode off.
+t Turn transparent mode on (this is the initial defauit).

-4 Print current option settings on file descriptor 2 in the form of
roff{1) comment lines. This option is meant for debugging.

Cw reads the standard input when no files are specified, so it can be used
as a filter. Typical usage is:

cw files | troff ...

Checkcw checks that left and right delimiters, as well as the .CW/.CN
pairs, are properly balanced. It prints out all offending lines.

.2.

cw(1)

HINTS

FILES

cw()

Typical definitions of the .CW and .CN macros meant to be used with the
mm(7) macro package:

.de CW

.DS I

.ps 9

.vs 10.5p

.ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ..
.de CN

.ta 0.51i 11 1.5i 2i 2.51i 3i 3.51i 4i 4.5i 5i 5.5i 6i
.VS

.pSs
.DE

At the very least, the .CW macro should invoke the rqff(1) no-fill (.nf)
mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smaller than the prevailing point size (the
displayed definitions of .CW and .CN above are one point smaller than the
running text on this page). The CW font is sized so that, when it is set in
9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: cw, rbl, and egn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have elements of the table set in the
CW font; of course, care must be taken that /(1) format information not
be modified by cw. Attempts to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with backspaces:
letting « represent a backspace, d«+\ (dg yields d. Because spaces (and,
therefore backspaces) are half as wide between delimiters as inside
.CW/ .CN pairs (see above), two backspaces are required for each over-
strike between delimiters.

/usr/lib/font/ftCW CW font-width table

SEE ALSO

eqn(1), mmt(1), tbl(1), troff(1), mm(7), mv(7).

WARNINGS

BUGS

If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font or on the MHCC STARE facility; on
the latter, the CW font appears as bold, but with the proper CW spacing.

Only a masochist would use periods (.) or backslashes (\) as delimiters.
Certain CW characters don’t concatenate gracefully with certain Times
Roman characters, e.g., a CW ampersand (&) followed by a Times Roman
comma(,); in such cases, judicious use of roff{1) half- and quarter-spaces
(\1.and \") is most salutary, e.g., one should use _&_\", (rather than
just plain _&_,) to obtain &, (assuming that _ is used for both delimiters).
Using cw with nroff is silly. ‘

The output of cw is hard to read.

See also BUGS under rofi(1).

DATE(1) DATE(1)

NAME

date — print and set the date

SYNOPSIS

date [mmddhhmm{yy]] [+format]

DESCRIPTION

If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is
the month number; dd is the day number in the month; hh is the hour
number (24 hour system); the second mm is the minute number; yy is the
last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is mentioned. The system operates in GMT. Date takes care of the conver-
sion to and from local standard and daylight time.

If the argument begins with +, the output of date is under the control of
the user. The format for the output is similar to that of the first argument
to printf(3S). All output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be replaced in the output by
its corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change. The string is always terminated
with a new-line character.

Field Descriptors:

insert a new-line character

insert a tab character

month of year — 01 to 12

day of month — 01 to 31

last 2 digits of year — 00 to 99
date as mm/dd/yy

hour — 00 to 23

minute — 00 to 59

second — 00 to 59

time as HH:MM:SS

Julian date — 001 to 366

day of week — Sunday = 0
abbreviated weekday — Sun to Sat
abbreviated month — Jan to Dec
time in AM/PM notation

e 1""-1(02:5'4 g ~s

EXAMPLE

date ‘+DATE: %m/%d/%y%nTIME: %H:%M:%S’
would generate as output:

DATE: 08/01/76

TIME: 14:45:05

DIAGNOSTICS
No permission if you aren’t the super-user and you try to change the
date;
bad conversion if the date set is syntactically incorrect;

FILES

bad format character if the field descriptor is not recognizable.

/dev/kmem

DC(1) DC(1)

NAME
dc — desk calculator

SYNOPSIS
dc [file]

DESCRIPTION
Dc is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. The overall structure of dc is
a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The fol-
lowing constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0—9. It may be preceded by an under-
score (_) to input a negative number. Numbers may contain decimal
points.

+ - /%"
The top two values on the stack are added (+), subtracted (—),
multiplied (s), divided (/), remaindered (%), or exponentiated (°).
The two entries are popped off the stack; the result is pushed on the
stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The reglster x is not
altered. All registers start with zero value. If the | is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

The top value on the stack is duplicated.

P The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

All values on the stack are printed.

q exits the program. If executing a string, the recursion level is pop-
ped by two. If q is capitalized, the top value on the stack is popped
and the string execution level is popped by that value.

X treats the top element of the stack as a character string and executes
it as a string of dc commands.

X replaces the number on the top of the stack with its scale factor.
[...] puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any exis-
ting fractional part of the argument is taken into account, but oth-
erwise the scale factor is ignored.

! interprets the rest of the line as a UNIX command.
c All values on the stack are popped.

DC(1) DC(1)

i The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the stack.
° The top value on the stack is popped and used as the number radix

for further output.
o pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-
negative scale factor: the appropriate number of places are printed on
output, and maintained during multiplication, division, and exponen-
tiation. The interaction of scale factor, input base, and output base
will be reasonable if all are changed together.

z The stack level is pushed onto the stack.
replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal)
and executed.

N are used by bc for array operations.

EXAMPLE
This example prints the first ten values of n!:
[la1 +dsasplal0>y]sy
Osal
lyx -
SEE ALSO

be(1), which is a preprocessor for dc providing infix notation and a C-like
syntax which implements functions and reasonable control structures for
programs.
DIAGNOSTICS
X is unimplemented
where x is an octal number.
stack empty
for not enough elements on the stack to do what was asked.
Out of space
when the free list is exhausted (too many digits).
Out of headers
for too many numbers being kept around.
Out of pushdown
for too. many items on the stack.
Nesting Depth
for too many levels of nested execution.

DD(1) DD(1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible con-
versions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical

1/0.

option values

if=file input file name; standard input is default

of =file output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done

chs=n conversion buffer size

skip=n skip n input records before starting copy

seek=n seek n records from beginning of output file before copying

count=n copy only n input records

conv =ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCIl to EBCDIC
Icase map alphabetics to lower case
ucase map alphabetics tc upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
.y ««. several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2 respec-
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebedic conversion is specified. In the former
case cbs characters are placed into the conversion buffer, converted to
ASCII, and trailing blanks trimmed and new-line added before sending the
line to the output. In the latter case ASCII characters are read into the con-
version buffer, converted to EBCDIC, and blanks added to make up an out-
put record of size cbs.

After completion, dd reports the number of whole and partial input and
output blocks.
EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card
images per record into the ASCII file x:
dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/O on the raw
physical devices because it allows reading and writing in arbitrary record
sizes.

SEE ALSO
cp(1).

DD(1) DD(1)

DIAGNOSTICS :
f+p records in(out) numbers of full and partial records read(written)
BUGS

The ASCII/EBCDIC conversion tables are taken from the 256 character stan-
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There
is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC, These should be separate options.

DELTA(1) DELTA (1)

NAME
delta — make a delta (change) to an SCCS file

SYNOPSIS
delta [—rSID] [—s] [—n] [—glist] [—m[mrlist]] [—y[comment]] [—p]
files

DESCRIPTION

Delia is used to permanently introduce into the named SCCS file changes
that were made to the file retrieved by ger(1) (called the g-file, or generated
file).

Delta makes a delta to each named SCCS file. If a directory is nomed, delta
behaves as though each file in the directory were specified as a named file,
except that non-SCCS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of — is
given, the standard input is read (see WARNINGS); cach line of the stan-
dard input is taken to be the name of an SCCS file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin(1)) that may be present in the
SCCS file (see —m and —y keyletters below).

Keyletter arguments apply independently to each named file.

—rSID Uniquely identifies which delta is to be made to the
SCCS file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get —e)
on the same SCCS file were done by the same person
(login name). The SID value specified with the —r
keyletter can be cither the SID specified on the ger
command line or the SID to be made as reported by
the get command (see get(1)). A diagnostic results if
the specified SID is ambiguous, or, if necessary and
omitted on the command line.

-s Suppresses the issue, on the standard output, of the
created delta’s SID, as well as the number of lines
inserted, deleted and unchanged in the SCCS file.

-n Specifies retention of the edited g-file (normally
removed at completion of delta processing).
—glist Specifies a list (see get(1) for the definition of list) of

deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

—m|[mvriist] If the SCCS file has the v flag set (see admin(1)) then
a Modification Request (MR) number must be sup-
plied as the reason for creating the new delta.

If —m is not used and the standard input is a ter-
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the stan-
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the comments?
prompt (see —y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter-
minates the MR list.

DELTA(1)

DELTA(1)

Note that if the v flag has a value (see admin(1)), it
is taken to be the name of a program (or shell pro-
cedure) which will validate the correctness of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it
is assumed that the MR numbers were not all valid).

—ylcomment] Arbitrary text used to describe the reason for making

FILES

the delta. A null string is considered a valid comment.

If —y is not specified and the standard input is a ter-
minal, the prompt comments? is issued on the stan-
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com-
ment text.

Causes delta to print (on the standard output) the
SCCs file differences before and after the delta is
applied in a diff (1) format.

All files of the form ?-file are explained in the Source Code Control System
User’s Guide. The naming convention for these files is also described there.

g-file
p-file
q-file
x-file
z-file
d-file
/usr/bin/bdiff

WARNINGS

Existed before the execution of delta; removed after com-
pletion of delta.

Existed before the execution of delta; may exist after com-
pletion of delta.

Created during the execution of delta; removed after com-
pletion of delta. :

Created during the execution of delta; renamed to SCCS file
after completion of delta.

Created during the execution of delta; removed during the
execution of delta.

Created during the execution of delta; removed after com-
pletion of delta.

Program to compute differences between the ‘‘gotten’ file
and the g-file.

Lines beginning with an SOH ASCII character (binary 001) cannot be placed
in the SCCS file unless the SOH is escaped. This character has special
meaning to SCCS (see sccsfile(5)) and will cause an error.

A get of many SCCS files, followed by a delta of those files, should be
avoided when the ger generates a large amount of data. Instead, multiple
get/delta sequences should be used.

If the standard input (—) is specified on the delta command line, the —m
(if necessary) and —y keyletters must also be present. Omission of these
keyletters causes an error to occur.

SEE ALSO

admin(1), bdiff(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

Use help(1) for explanations.

DEROFF(1) DEROFF(1)

NAME

deroff — remove nroff/troff, tbl, and eqn constructs

SYNOPSIS

deroff [—w] [—mx] [files]

DESCRIPTION

Deroff reads each of the files in sequence and removes all troff (1) requests,
macro calls, backslash constructs, eqn(1) constructs (between .EQ and .EN
lines, and between delimiters), and zb/(1) descriptions, and writes the
remainder of the file on the standard output. Deroff follows chains of
included files (.so and .nx troff commands); if a file has already been inclu-
ded, a .so naming that file is ignored and a .nmx naming that file terminates
execution. If no input file is given, deroff’ reads the standard input:

The —m option may be followed by an m, s, or 1. The resulting —mm or
—ms option causes the mm or ms macros to be interpreted so that only
running text is output (i.c., no text from macro lines.) The —ml option
forces the —mm option and also causes deletion of lists associated with the
mm mMmacros.

If the —w option is given, the output is a word list, one “‘word”’ per line,
with all other characters deleted. Otherwise, the output follows the ori-
ginal, with the deletions mentioned above. In text, a ‘““word” is any string
that contains at least two letters and is composed of letters, digits, amper-
sands (&), and apostrophes (’); in a macro call, however, a “word” is a
string that begins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits, apos-
trophes, and ampersands. Trailing apostrophes and ampersands are remo-
ved from “‘words.”

SEE ALSO

BUGS

eqn(1), tbi(1), troff(1).

Deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little out-
put.

The —ml option does not handle nested lists correctly.

DEVNM(1M) DEVNM(1M)

NAME

devnm — device name
SYNOPSIS

/etc/devam [names]
DESCRIPTION

Devnm identifies the special file associated with the mounted file system
where the argument name resides.

This command is most commonly used by /etc/rc (see rc(8)) to construct a
mount table entry for the root device.

EXAMPLE
The command:
/etc/devnm /usr
produces
rpl /usr
if /usr is mounted on /dev/rpl.
FILES
/dev/rps
/etc/mnttab
SEE ALSO
setmnt(1M).

DF(1) ‘ DF(1)

NAME

df — report number of free disk blocks
SYNOPSIS

daf [=t] [—f] [file-systems]
DESCRIPTION

Df prints out the number of free blocks and free i-nodes available for on-
line file systems by examining the counts kept in the super-blocks; file-
systems may be specified either by device name (e.g., /dev/rpl) or by
mounted directory name (e.g., /usr). If the file-systems argument is
unspecified, the free space on all of the mounted file systems is printed.

The —t flag causes the total allocated block figures to be reported as well.

If the —f flag is given, only an actual count of the blocks in the free list is
made (free i-nodes are not reported). With this option, df will report on
raw devices.

FILES
/dev/rfs
/dev/rk=
/dev/rp*
/etc/mnttab
SEE ALSO
fsck(1M), fs(5), mnttab(5).

DIFF(1) DIFF(1)

NAME

diff — differential file comparator

SYNOPSIS

diff [—efbh] filel file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into
agreement. If filel (file2) is —, the standard input is used. If filel (file2)
is a directory, then a file in that directory with the name file2 (filel) is
used. The normal output contains lines of these forms:

nl an3.né
nl,n2 d n3
nl,n2 ¢ n3,né

These lines resemble ed commands to convert filel into file2. The num-
bers after the letters pertain to file2. In fact, by exchanging a for d and
reading backward one may ascertain equally how to convert file2 into filel.
As in ed, identical pairs where n/ = n2 or n3 = n4 are abbreviated as a
single number.

Following each of these lines come all the lines that are affected in the first
file flagged by <, then all the lines that are affected in the second file
flagged by >.

The —b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The —e option produces a script of a, ¢ and d commands for the editor ed,
which will recreate file2 from filel. The —f option produces a similar
script, not useful with ed, in the opposite order. In connection with —e,
the following shell program may help maintain multiple versions of a file.
Only an ancestral file ($1) and a chain of version-to-version ed scripts
(82,83,...) made by diff neced be on hand. A ‘‘latest version’ appears on
the standard output.

(shift; cat $»; echo '1,8p’) | ed — $1

Except in rare circumstances, diff finds a smalilest sufficient set of file
differences.

Option —h does a fast, half-hearted job. It works only when changed
stretches are short and well separated, but does work on files of unlimited
length. Options —e and —f are unavailable with —h.

FILES
tmp/d???7?

/usr/lib/diffh for —h
SEE ALSO

cmp(1), cpmm(l), ed(1).
DIAGNOSTICS

Exit status is O for no differences, 1 for some differences, 2 for trouble.
BUGS

Editing scripts produced under the —e or —f option are naive about
creating lines consisting of a single period (.).

DIFF3(1) DIFF3(1)

NAME

diff3 — 3-way differential file comparison
SYNOPSIS

diff3 [—ex3] filel file2 file3
DESCRIPTION

Diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

==== all three files differ
====] Jilel is different
====) file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

f:nla Text is to be appended after line number n/ in
file f, where f = 1, 2, or 3.

finl ,n2c¢ Text is to be changed in the range line nl to line
n2. If nl = n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a ¢ indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.c., the changes
that normally would be flagged ==== and ======3 Option —x (—3)
produces a script to incorporate only changes flagged = === (mm==u=3),
The following command will apply the resulting script to filel .

(cat script; echo ‘1,8p") | ed — filel
FILES
/tmp/d3«
/usr/lib/diff3prog
SEE ALSO
diff(1).

BUGS
Text lines that consist of a single . will defeat —e.
Files longer than 64K bytes won’t work.

DIFFMK(1) DIFFMK(1)

NAME

diffmk — mark differences between files

SYNOPSIS

difmk namel name2 name3

DESCRIPTION

Diffmk compares two versions of a file and creates a third file that includes
‘‘change mark’’ commands for nroff(1) or troff(1). Namel and name2 are
the old and new versions of the file. Diffmk generates name3, which con-
tains the lines of name2 plus inserted formatter ‘‘change mark’ (.mc)
requests. When name3 is formatted, changed or inserted text is shown by |
at the right margin of each line. The position of deleted text is shown by a
single s.

If anyone is so inclined, he can use diffmk to produce listings of C (or
other) programs with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

pl 1
77
.nf
.0
.nc

The .1l request might specify a different line length, depending on the
nature of the program being printed. The .eo and .nc requests are probably
needed only for C programs.

If the characters | and » are inappropriate, a copy of diffmk can be edited to
change them (diffimk is a shell procedure).

SEE ALSO

BUGS

diff (1), nroff(1).

Aesthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce undesirable
output, i.e., replacing .sp by .sp 2 will produce a ‘‘change mark’ on the
preceding or following line of output.

DIRCMP(1) DIRCMP(1)

NAME

dircmp — directory comparison
SYNOPSIS

dircmp dirl dir2
DESCRIPTION

Dircmp examines dir/ and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to
each directory are generated in addition to a list that indicates whether the
files common to both directories have the same contents.

SEE ALSO
cmp(1), diff(1).

DPD(1C) DPD(1C)

NAME
dpd, odpd, Ipd — HONEYWELL sending daemons, line printer daemon
SYNOPSIS
/usr/lib/dpd
/usr/lib/odpd
/usr/lib/lpd
DESCRIPTION
Dpd and odpd are the daemons for the 200-series DATA-PHONE® set and
for the Murray Hill Spider network. They are designed to submit jobs to
the HONEYWELL 6000 computer via the GRTS interface. For systems with
both Spider and DATA-PHONE connections to the MH HONEYWELL 6000
computer, dpd is the Spider daemon, and odpd is the DATA-PHONE set dae-
mon, and is used automatically as a backup when the Spider link is down.
On other systems, there is only one daemon, dpd, which uses the DATA-
PHONE set. Lpd is the daemon for the line printer.

Dpd and odpd use the directory /usr/spool/dpd. Lpd uses the directory
/usr/spool/lpd. The file lock in ecither directory is used to prevent two
daemons from becoming active. After the program has successfully set the
lock, it forks and the main path exits, thus spawning the daemon. The
directory is scanned for files beginning with ‘‘df*’. Each such file is submit-
ted as a job. Each line of a job file must begin with a key character to
specify what to do with the remainder of the line.

S directs dpd to generate a unique snumb card. The snmumb number is

generated from the file snumb in the spooling directory in the case

of the DATA-PHONE set daemon, or it is read from the PDP-8 that

interfaces to GCOS in the case of the Spider daemon. This key

character is not used by /pd.

specifies that the remainder of the line is to be sent as a literal.

is the same as L, but signals the $ IDENT card which is to be mailed

back by the mail option.

specifies that the rest of the line is a file name. That file is to be

sent as binary cards. _

is the same as B except a form-feed is prepended to the file.

specifies that the rest of the line is a file name. After the job has

bee¢n transmitted, the file is unlinked.

is followed by a user ID; after the job is sent, a message is mailed to

the user via the mail(1) command to verify the sending of the job.

is followed by a user file name, to be sent back under the mail

option. (Not used by /pd).

Q is followed by a string of characters, which is a message to be sent
back to the user under the mail option. (Not used by ipd).

Any error encountered will cause the daemon to drop the call, wait up to
20 minutes, (only 10 seconds for Ipd), and start over. This means that an
improperly constructed ‘‘df’’ file may cause the same job to be submitted
every 20 minutes.

Dpd is automatically initiated by all of the GCOS commands, (dpr, gcat,
fget, and fsend) and by /etc/rc. On systems with both dpd daemons, odpd
is automatically initiated by dpd on certain errors from Spider. Lpd is
automatically initiated by the line printer command, lpr.

To restart dpd or Ipd (in the case of hardware or software malfunction), it
is necessary to first kill the old daemon (if it is still alive), and remove the
lock file (if present), before initiating the new daemon. This is done
automatically by /etc/rc when the system is brought up, in case there were

il

z 2 1 w

-1-

DPD(1C) DPD(1C)

any jobs left in the spooling directory when the system last went down.

FILES
/usr/spool/dpd/= spool area for GCOS dacmons.
/usr/spool/lpd/+ spool area for line printer daemon.
/etc/passwd to get the user’s name.
/dev/du? DATA-PHONE set.
/dev/dn? ACU device for use with the DATA-PHONE set.
/dev/lp line printer device.

SEE ALSO

dpr(1C), fget(1C), fget.demon(1C), fsend(1C), gcat(1C), Ipr(?).

DPR(1C) DPR(1C)

NAME

dpr — off-line print

SYNOPSIS

dpr [—destination] [options] [files]

DESCRIPTION

Dpr causes the named files to be printed off-line at the specified destina-
tion, by GCOS at the Murray Hill Computation Center. GCOS identification
must appear in the UNIX password file (see passwd(5)), or be supplied by
the —i option. If no files are listed the standard input is assumed; thus dpr
may be used as a filter.

The destination is a two-character code which is taken to be a Murray Hill
GCOS “‘station id.”” Useful codes are rl for quality print, and q1 for quality
print with special ribbon, both on regular wide paper. The codes r2 and q2
give the same print on narrow paper. The default destination is on-line at
the Murray Hill Computation Center.

The following options, each as a separate argument, and in any combina-
tion (multiple outputs are permitted), may be given before or after the des-
tination:

—c Makes a copy of the file to be sent before returning to the user.

-r Removes the file after sending it.

—f Uses the next argument as a dummy file name to report back in the
mail. (This is useful for distinguishing multiple runs, especially
when dpr is being used as a filter).

=i Supplies the GCOS “‘‘ident card’” image as the parameter
—iMxxxx ,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

—m When transmission is complete, reports by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option.

—n Does not report the completion of transmission by mail(1).

—sn Submits job to GCOS with service grade n (n=1, 2, 3). Default is
—s2.

EXAMPLES

The command:
dpr —r —n errorl error2

will send the files errorl and error2 to GCOS for printing, removing the
files after they have been sent, but not sending mail. The line:

pr filel | dpr —sl —f jobl —rl

will send the output of pr to GCOS for printing on the quality printer with
service grade 1, and will send mail that job! has been sent.

FILES
/etc/passwd user’s identification and GCOS ident card.
/usr/lib/dpd sending daemon.
/usr/spool/dpd/# spool area.

SEE ALSO

dpd(1C), fget(1C), fsend(1C), gcat(1C).

DU(1) DU(1)

NAME
du — summarize disk usage

SYNOPSIS
du [—ars] [names]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) direc-
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, . is
used.

The optional argument —s causes only the grand total (for each of the
specified names) to be given. The optional argument —a causes an entry to
be generated for each file. Absence of either causes an entry to be genera-
ted for each directory only.

Du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The —r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

BUGS
If the —a option is not used, non-directories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

DUMP(1M) (Obsolescent) DUMP(1M)

NAME

dump — incremental file system dump
SYNOPSIS

dump [key [arguments] file-system]
DESCRIPTION

Dump copies to magnetic tape all files changed after a certain date in the
file-system. The key specifies the date and other options about the dump.
Key consists of characters from the set 0123456789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning of
the dump on file /etc/ddate. This file records a separate date for each
file system and each dump level.

0—9 This number is the ‘““dump level’’. All files modified since the last
date stored in the file /etc/ddate for the same file system at lesser
levels will be dumped. If no date is determined by the level, the
beginning of time is assumed; thus the option 0 causes the entire file
system to be dumped.

s The size of the dump tape is specified in feet. The number of feet is
taken from the next argument. When the specified size is reached,
the dump will wait for reels to be changed. The default size is 2,300
feet.

d The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used per
write. The default is 1600.

If no arguments are given, the key is assumed to be 9u and a default file
* system is dumped to the default tape.

Now a short suggestion on how to perférm dumps. Start with a full level-0
dump: dump Ou. Next, periodic level-9 dumps should be made on an
exponential progression of tapes. (Sometimes called Tower of Hanoi: 1, 2,
1,3, 1,2, 1, 4, ...; tape 1 used every other time, tape 2 is used every
fourth, tape 3 is used every cighth, etc.): dump 9u. When the level-9
incremental approaches a full tape (about 78,000 blocks at 1600 BPI blocked
20 blocks per record), a level-1 dump should be made: dump lu. After
this, the exponential series should progress as if uninterrupted. These
level-9 dumps are based on the level-1 dump, which is based on the level-0
full dump. This progression of levels of dumps can be carried as far as
desired.

FILES
default file system and tape vary with installation.
/etc/ddate: record dump dates of file system/level.
SEE ALSO
cpio(1), restor(1M), volcopy(1M), dump(5).
DIAGNOSTICS
If the dump requires more than one tape, it will ask you to change tapes.
Reply with a new-line after this has been done.
BUGS
Sizes are based on 1600 BPI blocked tape. The raw magnetic tape device

has to be used to approach these densities. Read errors on the file system
are ignored. Write errors on the magnetic tape are usually fatal.

ECHO(1)

NAME

ECHO(1)

echo — echo arguments

SYNOPSIS

echo [arg] ..

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell’s use of \:

\b
\c¢
\f
\n
\r
\t
\\
\n

backspace

print line without new-linc

form-feed

new-line

carriage return

tab

backslash

the 8-bit character whose ASCII code is the 1-, 2- or 3-digit
octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(1).

ED(1) ED(1)

NAME

ed — text editor
SYNOPSIS

ed [—][—x][file]
DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say, the file is read
into ed’s buffer so that it can be edited. The optional — suppresses the
printing of character counts by e, 7, and w commands, of diagnostics from
e and ¢ commands, and of the ! prompt after a !shell command. If —x is
present, an x command is simulated first to handle an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (.) alone at the beginning of a line.

Ed supports a limited form of regular expression notation; regular expres-
sions are used in addresses to specify lines and in some commands (e.g., s)
to specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be matched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters
are:

a. ., [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets ([]; see 1.4 below).

b. ° (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets ([]) (see 1.4 below).

c. 8 (currency symbol), which is special at the end of an entire RE
(see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash (/) is used in
the g command, below.)

1.3 A period (.) is a one-character RE that matches any character
except new-line.

ED(1)

ED(1)

1.4 A non-empty string of characters enclosed in square brackets
([D is a one-character RE that matches any one character in
that string. If, however, the first character of the string is a
circumflex (), the one-character RE matches any character
except new-line and the remaining characters in the string. The
" has this special meaning only if it occurs first in the string.
The minus (—) may be used to indicate a range of consecutive
ASCIl characters; for example, [0—9] is equivalent to
[0123456789]. The — loses this special meaning if it occurs
first (after an initial ~, if any) or last in the string. The right
square bracket (]) does not terminate such a string when i: is
the first character within it (after an initial ~, if any); e.g.,
[Ja—f] matches either a right square bracket (]) or one of the
letters a through f inclusive. The four characters listed in 1.2.a
above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character

REs:

2.1 A one-character RE is a RE that matches whatever the one-
character RE matches.

2.2 A one-character RE followed by an asterisk (¢) is a RE that
matches zero or more occurrences of the one-character RE. If
there is any choice, the longest leftmost string that permits a
match is chosen.

2.3 A one-character RE followed by \{m\}, \{m,\}, or \fm,n\} is a
RE that matches a range of occurrences of the one-character
RE. The values of m and n must be non-negative integers less
than 256; \{m\} matches exactly m occurrences; \{m,\}
matches at least m occurrences; \{m,n\} matches any number of
occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatena-
‘tion of the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a
RE that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in
the same RE. Here n is a digit; the sub-expression specified is
that beginning with the n-th occurrence of \(counting from the
left. For example, the expression ~\(.#\)\1$ matches a line
consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial seg-
ment or final segment of a line (or both):

3.1 A circumflex (") at the beginning of an entire RE constrains
that RE to match an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains
that RE to match a final segment of a line. The construction
" entire RES constrains the entire RE to match the entire line.

The null RE (e.g., //) is equivalent to the last RE encountered. See
also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any
time there is a current line. Generally speaking, the current line is the

-2-

ED(1)

ED(1)

last line affected by a command; the exact effect on the current line is
discussed under the description of each command. Addresses are con-
structed as follows:

1.

2.
3.
4

10.

The character . addresses the current line.
The character $ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.

‘x addresses the line marked with the mark name character x,
which must be a lower-case letter. Lines are marked with the k
command described below.

A RE enclosed by slashes (/) addresses the first line found by
searching forward from the line following the current line
toward the end of the buffer and stopping at the first line con-
taining a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and
including the current line, so that the entire buffer is searched.
See also the last paragraph before FILES below.

A RE enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the
current line toward the beginning of the buffer and stopping at
the first line containing a string matching the RE. If necessary,
the search wraps around to the end of the buffer and continues
up to and including the current line. See also the last paragraph
before FILES below.

An address followed by a plus sign (+) or a minus sign (—)
followed by a decimal number specifies that address plus
(respectively minus) the indicated number of lines. The plus
sign may be omitted.

If an address begins with + or —, the addition or subtraction is
taken with respect to the current line; e.g, —5 is understood to
mean .—5.

If an address ends with + or —, then 1 is added to or subtrac-
ted from the address, respectively. As a consequence of this
rule and of rule 8 immediately above, the address — refers to
the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character ~ in addresses
is entirely equivalent to —.) Moreover, trailing + and —
characters have a cumulative effect, so —— refers to the
current line less 2.

For convenience, a comma (,) stands for the address pair 1,8,
while a semicolon (;) stands for the pair .,8$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more
addresses are given than such a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case,
the current line (.) is set to the first address, and only then is the
second address calculated. This feature can be used to determine the
starting line for forward and backward searches (see rules 5. and 6.

-3-

ED{1)

ED(1)

above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding
to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address; they
show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, f, 7, or w) may be suffixed by p
or by 1, in which case the current line is either printed or listed,
respectively, as discussed below under the p and / commands.

(.)a)
<text>

The append command reads the given text and appends it
after the addressed line; . is left at the last inserted line, or, if
there were none, at the addressed line. Address O is legal for
this command: it causes the ‘‘appended’’ text to be placed at
the beginning of the buffer.

(.)e
<text>

The change command deletes the addressed lines, then
accepts input text that replaces these lines; . is left at the last
line input, or, if there were none, at the first line that was not
deleted.

(.,.)d
The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end of
the buffer, the new last line becomes the current line.

e file

The edit command causes the entire contents of the buffer to
be deleted, and then the named file to be read in; . is set to
the last line of the buffer. If no file name is given, the
currently-remembered file name, if any, is used (see the f
command). The number of characters read is typed; file is
remembered for possible use as a default file name in subse-
quent e, 7, and w commands. If file begins with !, the rest of
the line is taken to be a shell (s#(1)) command whose output
is to be read. Such a shell command is not remembered as
the current file name. See also DIAGNOSTICS below.

E file

The Edit command is like e, except that the editor does not
check to see if any changes have been made to the buffer
since the last w command.

f file
If file is given, the file-name command changes the
currently-remembered file name to file; otherwise, it prints
the currently-remembered file name.

(1,8)g/RE /command list
In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears

-4-

ED(1)

ED(1)

on the same line as the global command. All lines of a
multi-line list except the last line must be ended with a \; a,
i, and ¢ commands and associated input are permitted; the .
terminating input mode may be omitted if it would be the last
line of the command list. An empty command list is equivalent
to the p command. The g, G, v, and ¥V commands are not
permitted in the command list. See also BUGS and the last
paragraph before FILES below.

(1,$)G/RE/

()i

In the interactive Global command, the first step is to mark
every line that matches the given RE. Then, for every such
line, that line is printed, . is changed to that line, and any one
command (other than one of the a, ¢, i, g, G, v, and V com-
mands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on; a
new-line acts as a null command; an & causes the re-
execution of the most recent command executed within the
current invocation of G. Note that the commands input as
part of the execution of the G command may address and
affect any lines in the buffer. The G command can be ter-
minated by an interrupt signal (ASCII DEL or BREAK).

The help command gives a short error message that explains
the reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will
also explain the previous ? if there was one. The H com-
mand alternately turns this mode on and off; it is initially off.

<text>

The insert command inserts the given text before the
addressed line; . is left at the last inserted line, or, if there
were none, at the addressed line. This command differs from
the @ command only in the placement of the input text.
Address 0 is not legal for this command.

(.. +1)j

(oyo)l

The join command joins contiguous lines by removing the
appropriate new-line characters. If only one address is given,
this command does nothing.

The mark command marks the addressed line with name x,
which must be a lower-case letter. The address ‘x then
addresses this line; . is unchanged.

The list command prints the addressed lines in an unambi-
guous way: a few non-printing characters (e.g., tab, back-
space) are represented by (hopefully) mnemonic overstrikes,
all other non-printing characters are printed in octal, and long
lines are folded. An / command may be appended to any
other command other than e, f, 7, or w.

(.y.)ma

The move command repositions the addressed line(s) after

-5-

ED(1)

ED(1)

the line addressed by a. Address 0 is legal for a and causes
the addressed line(s) to be moved to the beginning of the
file; it is an error if address a falls withia the range of moved
lines; . is left at the last line moved.

(e9e)m
The number command prints the addressed lines, preceding
each line by its line number and a tab character; . is left at
the last line printed. The n command may be appended to
any other command other than e, f, r, or w.

(-5.)p
The print command prints the addressed lines; . is left at the
last line printed. The p command may be appended to any
other command other than e, f, r, or w; for example, dp
deletes the current line and prints the new current line.

P
The editor will prompt with a » for all subsequent commands.
The P command alternately turns this mode on and off; it is
initially off.

q
The quit command causes ed to exit. No automatic write of a
file is done (but see DIAGNOSTICS below).

Q

The editor exits without checking if changes have been made
in the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed
line. If no file name is given, the currently-remembered file
name, if any, is used (see e and f commands). The
currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked.
Address O is legal for » and causes the file to be read at the
beginning of the buffer. If the read is successful, the number
of characters read is typed; . is set to the last line read in. If
file begins with !, the rest of the line is taken to be a shell
(sh(1)) command whose output is to be read. Such a shell
command is not remembered as the current file name.

(5.)s/RE [replacement | or

(+5+)8/RE [replacement /g
The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match
is found, all (non-overlapped) matched strings are replaced
by the replacement if the global replacement indicator g
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any character other than space or new-line
may be used instead of / to delimit the RE and the repla-
cement; . is left at the last line on which a substitution
occurred. See also the last paragraph before FILES below.

An ampersand (&) appearing in the replacement is replaced
by the string matching the RE on the current line. The
special meaning of & in this context may be suppressed by
preceding it by \. As a more general feature, the characters

-6-

ED(1)

(.r.)ta

ED(1)

\n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression of the specified RE enclosed
between \(and \). When nested parenthesized subexpres-
sions are present, n is determined by counting occurrences of
\(starting from the left. When the character % is the only
character in the replacement, the replacement used in the most
recent substitute command is used as the replacement in the
current substitute command. The % loses its special meaning
when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into
it. The new-line in the replacement must be escaped by pre-
ceding it by \. Such substitution cannot be done as part of a
g or v command list.

This command acts just like the m command, except that a
copy of the addressed lines is placed after address a (which
may be 0); . is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the
most recent a, c,d, g,i,j,m,r,s,t,v, G, or ¥V command.

(1,8)v/RE [command list

This command is the same as the global command g except
that the comvnand list is executed with . initially set to every
line that does not match the RE.

(1,8)V/RE/

This command is the same as the interactive global command
G except that the lines that are marked during the first step
are those that do not match the RE.

(1,8)w file

($)=

The write command writes the addressed lines into the
named file. If the file does not exist, it is created with mode
666 (readable and writable by everyone), unless your umask
setting (see sh(1)) dictates otherwise. The currently-
remembered file name is not changed unless file is the very
first file name mentioned since ed was invoked. If no file
name is given, the currently-remembered file name, if any, is
used (see e and f commands); . is unchanged. If the com-
mand is successful, the number of characters written is typed.
If file begins with !, the rest of the line is taken to be a shell
(sh(1)) command whose output is to be read. Such a shell
command is not remembered as the current file name.

A key string is demanded from the standard input. Subse-
quent e, r, and w commands will encrypt and decrypt the text
with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption.

The line number of the addressed line is typed; . is
unchanged by this command.

shell command

The remainder of the line after the ! is sent to the UNIX shell

-7-

ED(1)

FILES

ED(1)

(sh(1)) to be interpreted as a command. Within. the text of
that command, the unescaped character % is replaced with the
remembered file name; if a ! appears as the first character of
the shell command, it is replaced with the text of the pre-
vious shell command. Thus, !! will repeat the last shell com-
mand. If any expansion is performed, the expanded line is
echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is equivalent to .+1p; it is useful
for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per glo-
bal command list, 64 characters per file name, and 128K characters in
the buffer. The limit on the number of lines depends on the amount
of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all charac-
ters after the last new-line. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /)
would be the last character before a new-line, that delimiter may be
omitted, in which case the addressed line is printed. The following
pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p

g/sl g/sl/p

sl 751?

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

DIAGNOSTICS
? for command errors.
ile for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed’s buffer via the e or ¢ commands: it prints ? and allows one to continue
editing. A second e or ¢ command at this point will take effect. The —
command-line option inhibits this feature.

SEE ALSO

crypt(1), grep(1), sed(1), sh(1).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNIX by B. W. Kernighan.

CAVEATS AND BUGS

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot

be used if the the editor is invoked from a restricted shell (see sh(1)).

The sequence \n in a RE does not match any character.

The /| command mishandles DEL.

Files encrypted directly with the crypt(1) command with the null key cannot

be edited.

Because O is an illegal address for the w command, it is not possible to

create an empty file with ed. '

EFL(1) EFL(1)

NAME
efl — Extended Fortran Language

SYNOPSIS
efl [options] [files]

DESCRIPTION

Efl compiles a program written in the EFL language into clean Fortran on
the standard output. EfI provides the C-like control constructs of ratfor(1):

statement grouping with braces.
decision-making:
if, if-else, and select-case (also known as switch-case);

while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:
struct

{

integer flags(3)
character(8) name
long real coords(2)
} table(100)

The language offers generic functions, assignment operators (+=, &=,
etc.), and sequentially evaluated logical operators (&& and ||). There is a
uniform input/output syntax:

write(6,x,y:f(7,2), do i=1,10 { a(i,j),z.b(i) })
EFL also provides some syntactic ‘‘sugar’’:

free-form input:
multiple statements per line; automatic continuation; sta-
tement label names (not just numbers).

comments:
this is a comment.

translation of relational and logical operators:
>, >= &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Efi understands several option arguments: —w suppresses warning mes-
sages, —# suppresses comments in the generated program, and the default
option —C causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a parti-
cular target machine may be selected by one of the choices: system=unix,
system=gcos, or system=cray. The default setting of the system option
is the same as the machine the compiler is running on. Other specific
options determine the style of input/output, error handling, continuation
conventions, the number of characters packed per word, and default for-
mats.

EFL(1) EFL(1)

Efl is best used with f77(1).

SEE ALSO
cc(1), f77(1), ratfor(1).
The Programming Language EFL by S.1. Feldman.

ENV (1) ENV (1)

NAME

env — set environment for command execution
SYNOPSIS

env [—] [name=value] ... [command args]
DESCRIPTION

Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of
the form name =value are merged into the inherited environment before
the command is executed. The — flag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

SEE ALSO
sh(1), exec(2), profile(5), environ(7).

EQN(1) EQN(1)

NAME

eqn, neqn, checkeq — format mathematical text for nroff or troff

SYNOPSIS

eqn [—dxy] [—pn] [—sn] [—fn] [files]
neqn [—dxy] [—pn] [—sn] [—fn] [files]
checkeq [files]

DESCRIPTION

Egn is a troff (1) preprocessor for typesetting mathematical text on a Wang
Laboratories, Inc. C/A/T phototype:etter, while negn is used for the same
purpose with nroff (1) on typewriter-like terminals. Usage is almost always:

eqn files | troff
neqn files | nroff

or equivalent.

If no files are specified, these programs read from the standard input. A
line beginning with .EQ marks the start of an equation; the end of an equa-
tion is marked by a line beginning with .EN. Neither of these lines is
altered, so they may be defined in macro packages to get centering, num-
bering, etc. It is also possible to designate two characters as delimiters; sub-
sequent text between delimiters is then treated as egn input. Delimiters
may be set to characters x and y with the command-line argument —dxy or
(more commonly) with delim xy between .EQ and .EN. The left and right
delimiters may be the same character; the dollar sign is often used as such
a delimiter. Delimiters are turned off by delim off. All text that is neither
between delimiters nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN
pairs.

Tokens within egn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally

- speaking, anywhere a single character such as x could appear, a complicated

construction enclosed in braces may be used instead. Tilde (7) represents a
full space in the output, circumflex (*) half as much.

Subscripts and superscripts are produced with the keywords sub and sup.
Thus x sub j makes x;, a sub k sup 2 produces a/, while e* is made
with e sup {x sup 2 + y sup 2}. Fractions are made with over: a over b

yiclds %; sqrt makes square roots: I over sqrt {ax sup 2+bx+c} results in
1

Vax™bx+c

n
The keywords from and to introduce lower and upper limits: lim Ex,- is
n—x"g

made with lim from {n —> inf } sum from 0 to n x sub i. Left and right
brackets, braces, etc., of the right height are made with left and right:

~ ~ 2
left [x sup 2 + y sup 2 over alpha right]| “=" 1 produces 7-1-4%—=l.

Legal characters after left and right are braces, brackets, bars, ¢ and f for
ceiling and floor, and ** for nothing at all (useful for a right-side-only
bracket). A left thing need not have a matching right thing.

EQN(1) EQN(1)

Vertical piles of things are made with pile, lpile, cpile, and rpile:
a
pile {a above b above c} produces b. Piles may have arbitrary numbers of

c

elements; lpile left-justifies, pile and cpile center (but with different verti-

cal spacing), and rpile right justifies. Matrices are made with matri)l(:
x.

matrix { Icol { x sub i above y sub 2 } ccol { I above 2 } } produces y; 2

In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and
under: x dot = f{t) bar is x=f(t), y dotdot bar ~=""n under is y = pn,
and x vec "="y dyad is x = .

Point sizes and fonts can be changed with size n or size 2, roman, italic,
bold, and font n. Point sizes and fonts can be changed globally in a docu-
ment by gsize n and gfont n, or by the command-line arguments —s» and
—fn.

Normally, subscripts and superscripts are reduced by 3 points from the pre-
vious size; this may be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place that is to
line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement %

defines a new token called rhing that will be replaced by replacement
whenever it appears thereafter. The % may be any character that does not
occur in replacement.

Keywords such as sum (3)), int (f), inf (c0), and shorthands such as
>= (=), != (#), and —> (—) are recognized. Greek letters are spelled
out in the desired case, as in alpha (a), or GAMMA (T'). Mathematical
words such as sim, cos, and log are made Roman automatically. Troff(1)
four-character escapes such as \(dd (}) and \(bs (@) may be used
anywhere. Strings enclosed in double quotes (*...") are passed through
untouched; this permits keywords to be entered as text, and can be used to
communicate with roff(1) when all else fails. Full details are given in the
manual cited below.

SEE ALSO

BUGS

Typesetting Mathematics— User’s Guide by B. W. Kernighan and L. L.
Cherry.

New Graphic Symbols for EQN and NEQN by C. Scrocca.

mm(1), mmt(1), tbi(1), troff (1), eqnchar(7), mm(7), mv(7).

To embolden digits, parentheses, etc., it is necessary to quote them, as in
bold "12.3".
See also BUGS under troff(1).

ERRDEAD (1M) ERRDEAD (1M)

NAME

errdead — extract error records from dump

SYNOPSIS

/etc/errdead dumpfile [namelist]

DESCRIPTION

When hardware errors are detected by the system, an error record that con-
tains information pertinent to the error is generated. If the error-logging
daemon errdemon(1M) is not active or if the system crashes before the
record can be placed in the error file, the error information is held by the
system in a local buffer. Errdead examines a system dump (or memory),
extracts such error records, and passes them to errpt(1M) for analysis.

The dumpfile specifies the file (or memory) that is to be examined. The
system namelist is specified by namelist; if not given, /umix is used.

FILES
/unix system namelist
/usr/bin/errpt analysis program
Jusr/tmp/errXXXXXX temporary file
DIAGNOSTICS
Diagnostics may come from either errdead or errpt. In cither case, they are
intended to be self-explanatory.
SEE ALSO

errdemon(1M), errpt(1M).

ERRDEMON(1M) ERRDEMON(1M)

NAME

errdemon — error-logging daemon
SYNOPSIS

/etc/errdemon [file]
DESCRIPTION

The error logging daemon errdemon collects error records from the opera-
ting system by reading the special file /dev/error and places them in file. If
file is not specified when the daemon is activated, /usr/adm/errfile is used.
Note that file is created if it does not exist; otherwise, error records are
appended to it, so that no previous error data is lost. No analysis of the
error records is done by errdemon; that responsibility is left to errpr(1M).
The error-logging daemon is terminated by sending it a software kill signal
(see signal(2)). Only the super-user may start the daemon, and only one
daemon may be active at any time.

FILES
/dev/error source of error records
Jusr/adm/errfile repository for error records
DIAGNOSTICS

The diagnostics produced by errdemon are intended to be self-explanatory.

SEE ALSO
errpt(1M), errstop(1M), kill(1), err(4).

ERRPT (1M) ERRPT(1M)

NAME

errpt — process a report of logged errors

SYNOPSIS

errpt [—a] [—dev]... [—int] [—mem] [—s date] [—e date]
[—pn] [—f] [files]

DESCRIPTION

Errpt processes data collected by the error logging mechanism
(errdemon (1M)) and generates a report of that data. The default report is a
summary of all errors posted in the files named. Options apply to all files
and are described below. If no files are specified, errpr attempts to use
/usr/adm/errfile as file.

A summary report notes the options that may limit its completeness,
records the time stamped on the earliest and latest errors encountered, and
gives the total number of errors of one or more types. Each device sum-
mary contains the total number of unrecovered errors, recovered errors,
errors unabled to be logged, I/O operations on the device, and miscel-
laneous activities that occurred on the device. The number of times that
errpt has difficulty reading input data is included as read errors.

Any detailed report contains, in addition to specific error information, all
instances of the error logging process being started and stopped, and any
time changes (via date(1)) that took place during the interval being pro-
cessed. A summary of each error type included in the report is appended
to a detailed report.

A report may be limited to certain records in the following ways:

—s date Ignore all records posted earlier than date, where date has
the form mmddhhmmyy, consistent in meaning with the
date(1) command.

—e date Ignore all records posted later than date, whose form is as
described above.

—a Produce a detailed report that includes all error types.

—dev A detailed report is limited to dev, a block device
identifier. Errpt is familiar with the common form of
identifiers (e.g., rs03, RS04, hs; see Section 4 of this
volume). Currently, the block devices for which errors
are logged are RPO3, RP04, RPOS, RP06, RSO3, RS04,
TU10, TU16, RKOS, and RF11.

—int Include in a detailed report errors of the stray-interrupt
type.
—mem Include in a detailed report errors of the memory-parity
type.
-pn Limit the size of a detailed report to n pages.
e 4 In a detailed report, limit the reporting of block device
errors to unrecovered errors.
FILES
/usr/adm/errfile default error file
SEE ALSO

errdemon(1M), errfile(5).

ERRSTOP (1M) ERRSTOP(1M)

NAME

errstop — terminate the error-logging daemon
SYNOPSIS

/etc/errstop [namelist]
DESCRIPTION

The error-logging daemon errdemon(1M) is terminated by using errstop.
This is accomplished by executing ps(1) to determine the daemon’s iden-
tity and then sending it a software kill signal (see signal(2)); /unix is used
as the system namelist if none is specified. Only the super-user may use
errstop.

FILES
/unix default system namelist

DIAGNOSTICS
The diagnostics produced by errstop are intended to be self-explanatory.

SEE ALSO
errdemon(1M), ps(1), kill(2).

EXPR(1) EXPR(1)

NAME
expr — evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is
written on the standard output. Terms of the expression must be separated
by blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con-
taining blanks or other special characters should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2’s complement numbers.

The operators and keywords are listed below. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within {} symbols.

expr \| expr
returns the first expr if it is neither null nor 0, otherwise returns
the second expr. :

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns
0.

expr { =,\>,\>=,\<,\<=,!=}expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr{ +, — } expr
addition or subtraction of integer-valued arguments.

expr {\s, /, % } expr
multiplication, division, or remainder of the integer-valued
arguments.

expr : expr
The matching operator : compares the first argument with the
second argument which must be a regular expression; regular
expression syntax is the same as that of ed(1), except that all pat-
terns are ‘‘anchored” (i.e., begin with *) and, therefore, ~ is not a
special character, in that context. Normally, the matching operator
returns the number of characters matched (0 on failure). Alterna-
tively, the \(...\) pattern symbols can be used to return a portion
of the first argument.

EXAMPLES . .
1. a= expr $a + 1
adds 1 to the shell variable a.
2. # “For $a equal to cither "/usr/abc/file” or just "file"”

expr $a : “.s/\(.\)" \| $a

returns the last segment of a path name (i.c., file). Watch
out for / alone as an argument: expr will take it as the
division operator (see BUGS below).

EXPR (1) EXPR(1)

3. # A better rcpresentati‘;m of example 2.
expr //Sa : “.s/\(.8\)

The addition of the // characters climinates any ambiguity
about the division operator and simplifies the whole expres-

sion.
4. expr SVAR : "
returns the number of characters in SVAR.
SEE ALSO
ed(1), sh(1).
EXIT CODE
As a side effect of expression evaluation, expr returns the following exit
values:
0 if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.
DIAGNOSTICS
syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string
BUGS

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an =,
the command:

expr $a = "=
looks like:

-

exp == o= ==

as the arguments are passed to expr (and they will all be taken as the =
operator). The following works:

expr X$a = X=

F17(1) F77(1)

NAME
f77 — Fortran 77 compiler

SYNOPSIS
77 [options] files

DESCRIPTION
F77 is the UNIX Fortran 77 compiler; it accepts several types of files
arguments:

- Arguments whose names end with .f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the
current directory in a file whose name is that of the source, with .o
substituted for .f.

- Arguments whose names end with .r or .e are taken to be RATFOR or
EFL source programs, respectively; these are first transformed by the
appropriate preprocessor, then compiled by /77, producing .o files.

- In the same way, arguments whose names end with .c or .s are taken
to be C or assembly source programs and are compiled or assembied,
producing .o files.

The following options have the same meaning as in cc(1) (see ld(1) for link
editor options):

—c Suppress link editing and produce .o files for each source file.
-p Prepare object files for profiling (see prof(1)).

-0 Invoke an object-code optimizer.

-S Compile the named programs and leave the assembler-

language output in corresponding files whose names are
suffixed with .s. (No .o files are created.)

— ooutput Name the final output file output, instead of a.out.

—f In systems without floating-point hardware, use a version of
/77 that handles fioating-point constants and links the object
program with the floating-point interpreter.

The following options are peculiar to f77:

—onetrip Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at all if the upper
iimit is smaller than the lower limit.)

—u Make the default type of a variable ‘‘undefined”’, rather than
using the default Fortran rules.

—w Suppress all warning messages. If the option is —wé66, only
Fortran 66 compatibility warnings are suppressed.

—F) Apply EFL and RATFOR preprocessor to relevant files, put the

result in files whose names have their suffix changed to .of.
(No .o files are created.)

—m Apply the M4 preprocessor to each EFL or RATFOR source file
before transforming with the ratfor(1) or efI(1) processors.

—E The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.

—R The remaining characters in the argument are used as a RAT-

FOR flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or
J77 -compilable object programs (typically produced by an earlier run), or
libraries of f77-compilable routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to pro-
duce an executable program with the default name a.out .

F77(1)

FILES
file.[fresc]
file.o
a.out
./fort[pid].?
/usr/lib/f77pass1
/lib/cl
/lib/c2
/Jusr/lib/libF77.a
/usr/lib/1ibI77.a
/lib/libc.a

SEE ALSO

F17(1*

input file

object file

linked output

temporary

compiler

pass 2

optional optimizer

intrinsic function library

Fortran I/O library

C library; see Section 3 of this Manual.

A Portable Fortran 77 Compiler by S. 1. Feldman and P. J. Weinberger
cc(1), efl(1), 1d(1), m4(1), prof(1), ratfor(1).

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor /d(1).

FACTOR(1) FACTOR(1)

NAME

factor, primes — factor a number, generate large primes
SYNOPSIS

factor [number]

primes
DESCRIPTION

When factor is invoked without an argument, it wait§6 for a number to be
typed in. If you type in a positive number less than 27 (about 7.2X10™) it
will factor the number and print its prime factors; each one is printed the
proper number of times. Then it waits for another number. It exits if it
encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and
then exits.

Maximum time to factor is proportional to \/n and occurs when n is prime
or the square of a prime. It takes 1 minute to factor a prime near 10 " on a
PDP-11.

When primes is invoked, it waits for a number to be typed in. If you type
in a positive number less than 2 © it will print all primes greater than or
equal to this number.

DIAGNOSTICS

““Ouch” for input out of range or for garbage input.

FGET(1C) FGET(1C)

NAME
fget — retrieve files from the HONEYWELL 6000

SYNOPSIS
fget [options] [files]

DESCRIPTION
Fget arranges to have one or more GCOS files sent to UNIX. GCOS
identification must appear in the UNIX password file (see passwd(5)), or be

supplied by the —i option. Normally, the files retrieved will appear in the
UNIX user’s current directory under the GCOS file name.

The GCOS catalog from which the files are obtained depends on the form of
the file name argument. If the file name has only embedded slashes, then
it is assumed to be a full GCOS path name and that file is retrieved. If the
file name has no embedded slashes or begins with a slash, then the GCOS
catalog from which the file is retrieved is the same as the UNIX login name
of the person who issues the command. If, however, a user has a different
name in the third field of the GCOS “‘ident card image’ (which image is
extracted from the UNIX password file—see passwd(5)), this name is taken
as the GCOS catalog name. Whatever GCOS catalog is finally used, the files
must either have general read permission or the user must have arranged
that the user ID network has read permission on that catalog (see
fsend(1C)). This can be accomplished with the GCOS command:

filsys mc <user ID>,(r)/network/

The UNIX file into which the retrieved GCOS file will ultimately be written
is initialized with one line containing the complete GCOS file name. If the
file contains the initial line for an extended period, it means that GCOS is
down or something has gone horribly wrong and you should try again.

The following options, ecach as a separate argument (or in the case of —d
and —u, as two separate arguments), may appear in any order, but must
precede all file arguments.

—a Retrieve files as ASCII (default).

—b Retrieve files as binary.

—d Use the next argument as the UNIX directory into which retrieved
files are written.

—i Supply the GCOS ‘‘ident card”” image as the parameter
—iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

—m When the request has been forwarded to GCOS, report by mail(1)
the so-called snumb of the receiving job; mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran or that UNIX
retrieved the output. This is the default option.

—n Do not report the forwarding of the request by mail(1).

—o Print the on-line GCOS accounting output.

-t Toss out the on-line GCOS accounting output. This is the default

option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3). Default is
—sl.

—u Use the next argument as the GCOS catalog name for all files.

EXAMPLES
The command:

fget —u gcosme —t —n —d /usr/me/test filel file2

will retrieve the GCOS files gcosme/filel and gcosme/file2, as the UNIX ‘
files /usr/me/test/filel and /usr/me/test/file2, respectively, but will not

-1-

FGET(1C) FGET(1C)

generate any mail or GCOS accounting output as a result of the transaction.

FILES
/etc/passwd user’s identification and GCOS ident card.
/usr/lib/dpd sending dacmon.
/usr/spool/dpd/= spool area.
/usr/lib/fget.demon retrieval dacmon.
SEE ALSO
dpd(1C), dpr(1C), fsend(1C), fget.demon(1C), passwd(5).

FGET.DEMON((1C) FGET.DEMON((1C)

NAME

fget.demon, fget.odemon — file retrieval daemons

SYNOPSIS

/usr/lib/fget.demon time
/usr/lib/fget.odemon time

DESCRIPTION

Fget.demon and fget.odemon are the retrieval daemons for the 200-series
DATA-PHONE® set and for the Murray Hill Spider network. They are
designed to retrieve files that have been requested by fget(1C) from the MH
HONEYWELL 6000 computer. The argument time is the number of seconds
for fget.demon to wait for files to appear from GRTS. The default is 6 minu-
tes. Fget.demon is automatically initiated by fget(1C), and by cron(1M).

On systems with both Spider and DATA-PHONE connections to the
HONEYWELL 6000 computer, fget.demon uses Spider, and fget.odemon uses
the DATA-PHONE set, and is called automatically as a backup when the Spi-
der connection is down. On other systems, there is only one fget daemon,
fget.demon, which use the DATA-PHONE set.

The fget daemons use the spooling directory /usr/spool/dpd. The file
glock in that directory is used to prevent two daemons from becoming
active. After the program has successfully set the lock, it forks and the
main path exits, thus spawning the daemon. GRTS is interrogated for any
output for the daemon’s station-id. If none, fger.demon will wait up to time
seconds, interrogating GRTS every minute or so to sec if any output has
arrived. All problems and successful transactions are recorded in the errors
file in the spooling directory.

To restart fget.demon (in the case of hardware or software malfunction), it
is necessary to first kill the old fget.demon (if still alive), and remove the
lock file (if present), before initiating fget.demon. This is done automati-
cally by /etc/rc when the system is brought up, in case there are any files
waiting to come over.

FILES
/Jusr/spool/dpd /= spool area.
/dev/du? DATA-PHONE set.
/dev/dn? ACU device.

SEE ALSO

dpd(1C), fget(1C).

FILE(1) FILE(1)

NAME
file — determine file type -

SYNOPSIS
file [—f] file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0 (see the description of
the —V option in ld(1)).

If the —f option is given, the next argument is taken to be a file containing
the names of the files to be examined.

FIND(1) FIND(1)

NAME
find — find files

SYNOPSIS
find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descrip-
tions, the argument n is used as a decimal integer where +n means more
than n, —n means less than n and n means exactly n.

—name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for [,
? and).

—perm onum True if the file permission flags exactly match the octal
number onum (see chmod(1)). If onum is prefixed by a
minus sign, more flag bits (017777, see stat(2)) become
significant and the flags are compared:

(flags&onum)==onum
—type ¢ True if the type of the file is ¢, where c is b, ¢, d, p, or f
' for block special file, character special file, directory, fifo
(a.k.a named pipe), or plain file.

—links n True if the file has n links.

—user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/etc/passwd file, it is taken as a user ID.

—group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /etc/group file, it is
taken as a group ID.

—size n True if the file is # blocks long (512 bytes per block).

—atime n True if the file has been accessed in n days.

—mtime n True if the file has been modified in 7 days.

—ctime n True if the file has been changed in n days.

—exec cmd True if the executed cmd returns a zero value as exit sta-
tus. The end of ¢md must be punctuated by an escaped
semicolon. A command argument {} is replaced by the
current path name.

—ok cmd Like —exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

—print Always true; causes the current path name to be printed.

—cpio device Write the current file on device in cpio (5) format (5120
byte records).

—newer file True if the current file has been modified more recently

(expression)

than the argument file.

True if the parenthesized expression is true (parentheses
are special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

FIND(1) FIND(1)

1) The negation of a primary (! is the unary not operator).
2) Concatenation of primaries (the and operation is implied by the juxta-
position of two primaries).
3) Alternation of primaries (—o is the or operator).
EXAMPLE
To remove all files named a.out or s.0 that have not been accessed for a
week:
find / \(—name a.out —o0 —name *.0’\) —atime +7 —execrm {} \;
FILES
/etc/passwd, /etc/group
SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(5), fs(5).

FSCK(1M) FSCK(1M)

NAME .
fsck — file system consistency check and interactive repair

SYNOPSIS
Jete/fsck [=y] [—m] [—sX] [=SX] [—t file] [file-system]

DESCRIPTION

Fsck audits and interactively repairs inconsistent conditions for UNIX file
systems. If the file system is consistent then the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before each correc-
tion is attempted. It should be noted that most corrective actions will result
in some loss of data. The amount and severity of data lost may be deter-
mined from the diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or mo. If thg operator
does not have write permission fsck will default to a —n action.

Fsck has more consistency checks than its predecessors check, dcheck,
fcheck, and icheck combined.

The following flags are interpreted by fsck.
—y Assume a yes response to all questions asked by fsck.

—n Assume a no response to all questions asked by fsck; do not open
the file system for writing.

—sX Ignore the actual free list and (unconditionally) reconstruct a new
one by rewriting the super-block of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the old,
bad, in-core copy of the superblock will not continue to be used, or
written on the file system.

The —sX option allows for creating an optimal free-list organization.
The following forms of X are supported for the following devices:

—5s3 (RPO3)
—s4 (RP04, RPOS5, RPO6)
—sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was created
are used. If these values were not specified, then the value 400:9 is
used.

—SX Conditionally reconstruct the free list. This option is like —sX above
except that the free list is rebuilt only if there were no discrepancies
discovered in the file system. Using —S will force a no response to
all questions asked by fsck. This option is useful for forcing free list
reorganization on uncontaminated file systems.

—t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the —t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the —t flag,

" fsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked, and if it
is not a special file or did not already exist, it is removed when fsck
completes.

If no file-systems are specified, fsck will read a list of default file systems
from the file /etc/checklist.

FSCK(1M) FSCK(1M)

FILES

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the range of the
file system.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
Bad inode format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated inode.
Inode number out of range.
8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

~N oW

Orphaned files and directories (allocated but unreferenced) are, with the
operator’s concurrence, reconnected by placing them in the lost+found
directory. The name assigned is the inode number. The only restriction is
that the directory lost+found must preexist in the root of the file system
being checked and must have empty slots in which entries can be made.
This is accomplished by making lost+found, copying a number of files to
the directory, and then removing them (before fsck is executed).

Checking the raw device is almost always faster.

/etc/checklist contains default list of file systems to check.

DIAGNOSTICS

The diagnostics produced by fsck are intended to be self-explanatory.

SEE ALSO

BUGS

checklist(5), fs(5), crash(8).

Inode numbers for . and .. in each directory should be checked for vali-
dity.

—g and —b options from check should be available in fsck.

FSCV(1IM) FSCV(1M)

NAME
fscv — convert files between PDP-11 and VAX-11/780 systems

SYNOPSIS
/ete/fsev —v ispecial [ospecial]
Jete/fsev —p ispecial [ospecial]

DESCRIPTION
Fscv converts file systems between PDP-11 and VAX-11/780 formats. The
super block, free list, and inodes are converted to the format of the output
file. Fscv may be executed on PDP-11 and VAX processors. The mandatory
flag specifies the format of the converted file system:

—v Convert file system from PDP-11 to VAX format.
—p Convert file system from VAX to PDP-11 format.

Ispecial is the name of a special file containing a file system to be converted
(e.g.; /dev/rrpl). The optional ospecial is the name of the special file to
receive the results of the conversion. If aspecial is specified the entire con-
tents of ispecial are copied to ospecial before the conversion is performed.
If ospecial is not specified an in-place conversion of ispecial is performed.
The following items should be noted before executing fscv:

1. A file system consistency check (fsck(1M)) should be performed on
ispecial immediately prior to executing fscv.

2. Neither ispecial nor the optional ospecial should contain a mounted
file system during execution of fscv. Modification to either the input
or the output file system while fscv is executing will probably corrupt
the converted file system.

3. A backup of ispecial (see volcopy(1M)) is highly recommended if an
in-place conversion is to be performed. System crashes, I/O errors,
etc., during execution of fscv may destroy the file system contained
in ispecial. Also, if the optional ospecial is specified any data con-
tained in that special file will be over written.

4. If the optional ospecial is specified, this special file must be large
enough to contain the entire contents of ispecial. See the appropriate
special files in section 4.

EXAMPLES
Copy and convert a file system from PDP-11 to VAX format:

/etc/fscv —v [dev/rrp0 /dev/rrpl0
Perform an in-place conversion from VAX to PDP-11 format:

/etc/fscv —p /dev/rrpl0
BUGS
The boot block is not modified during conversion. The resuiting file sys-
tem will not be bootable. No data contained in the files of the file system
are modified.
SEE ALSO
fsck(1M), volcopy(1M).

FSDB(1M) FSDB(1M)

NAME

fsdb — file system debugger
SYNOPSIS

/etc/fsd@b special [—]
DESCRIPTION

Fsdb can be used to patch up a damaged file system after a crash. It has
conversions to translate block and i-numbers into their corresponding disk
addresses. Also included are mnemonic offsets to access different parts of
an i-node. These greatly simplify the process of correcting control block
entries or descending the file system tree.

Fsdb contains several error checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional — argument or by the use of the O symbol. (Fsdb reads the i-size
and f-size entries from the superblock of the file system as the basis for
these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between
source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as
block I/O. A buffer management routine is used to retain commonly used
blocks of data in order to reduce the number of read system calls. All
assignment operations result in an immediate write-through of the
corresponding block. ’

The symbols recognized by fsdb are:

absolute address

convert from i-number to i-node address
convert to block address
directory slot offset
address arithmetic

quit

save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities

file print facility

byte mode

word mode

double word mode

escape to shell

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before printing
begins. It advances with the printing and is left at the address of the last
item printed. The output can be terminated at any time by typing the
delete character. If a number follows the p symbol, that many entries are
printed. A check is made to detect block boundary overflows since logically
sequential blocks are generally not physically sequential. If a count of zero
is used, all entries to the end of the current block are printed. The print
options available are:

L e S N

TOEWTT O NN IVE 4TV

FSDB(1M) FSDB(1M)

print as i-nodes

print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

o6 o a™

The f symbol is used to print data blocks associated with the current i-
node. If followed by a number, that block of the file is printed. (Blocks
are numbered from zero.) The desired print option letter follows the block
number, if present, or the f symbol. This print facility works for small as
well as large files. It checks for special devices and that the block pointers
used to find the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not neces-
sary. A line with just a new-line character will increment the current
address by the size of the data type last printed. That is, the address is set
to the next byte, word, double word, directory entry or i-node, allowing the
user to step through a region of a file system. Information is printed in a
format appropriate to the data type. Bytes, words and double words are
displayed with the octal address followed by the value in octal and decimal.
A .B or .D is appended to the address for byte and double word values,
respectively. Directories are printed as a directory slot offset followed by
the decimal i-number and the character representation of the entry name.
Inodes are printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

md mode
In link count
uid user ID number
gid group ID number
s0 high byte of file size
sl low word of file size
af data block numbers (0 — 12)
at access time
mt modification time
maj major device number
min minor device number
EXAMPLES
386i prints i-number 386 in an i-node format. This now
becomes the current working i-node.
In=4 changes the link count for the working i-node to 4.
In=+1 increments the link count by 1.
fc prints, in ASCII, block zero of the file associated with the
working i-node.
2i.fd prints the first 32 directory entries for the root i-node of
' this file system.
dsi.fe changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the
above command. The first 512 bytes of the file are then
printed in ASCIL
1b.p0o prints the superblock of this file system in octal.

FSDB(1M) FSDB(1M)

2i.a0b.d7=3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7.nm="name" changes the name field in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

SEE ALSO
fsck(1M), dir(5), fs(5).

FSEND(1C) FSEND(1C)

NAME

fsend — send files to the HONEYWELL 6000

SYNOPSIS

fsend [options] [files]

DESCRIPTION

Fsend arranges to have one or more UNIX files sent to HONEYWELL GCOS.
GCOS identification must appear in the UNIX password file (see passwd(5)),
or be supplied by the —i option. If no names appear, the standard input is
sent; thus fsend may be used as a filter.

Normally, the catalog on the HONEYWELL file system in which the new file
will appear is the same as the UNIX login name of the person who issues
the command. If, however, a user has a different name in the third field of
the GCOS ‘“‘ident card image’ (which image is extracted from the UNIX
password file; see passwd(5)), this name is taken as the GCOS catalog name.
Whatever GCOS catalog is finally used, the user must have arranged that
the user ID ‘“‘network’ has create permission on that catalog, or read and
write permission on the individual files. The latter is more painful but pre-
ferred if access to other files in the catalog is to be fully controlled. This
can be accomplished with the GCOS commands:

filsys mc <user ID>,(c)/network/
or ,
filsys cf <file>,(r,w)/network/,b/<initial-size>,unlimited/

The name of the GCOS file is ordinarily the same as the name of the UNIX
file. When the standard input is sent, the GCOS file is normally taken to be
pipe.end.

The following options, each as a separate argument, (or in the case of —u
and —f, as two separate arguments), may appear in any order, but must
precede all file name arguments.

—a Send succeeding files as ASCII (defauit). If the last character of the
file is not a new-line, one is added. AH other characters are preser-
ved.

—b Send succeeding files as binary. Each UNIX byte is right justified in
a GCOS byte and the bytes packed into 120-byte logical records (30
GCOS words). The last record is padded out with NULs.

—c Make copies of the files to be sent before returning to the user.

-r Remove the files after sending them.

—f Use the next argument as the GCOS file name for the succeeding
file.

—i Supply the GCOS “‘ident card’’ image as the parameter
—iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

—m When transmission is complete, report by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option.

—-n Do not report the completion of transmission by mail(1).

-0 Print the on-line GCOS accounting output.

-t Toss out the on-line GCOS accounting output. This is the default
option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3). Default is
—sl.

—u Use the next argument as the GCOS catalog name for all files.

FSEND (1C) FSEND(1C)

—x Send succeeding files to be archived by the GCOS archive command.

EXAMPLE
The command:

fsend —t —u unixsup —b —f gfile ufile

will send the binary UNIX file ufile to become the GCOS file unixsup/gfile,
and will not produce any on-line GCOS accounting output.

FILES
/etc/passwd user’s identification and GCOS ident card.
/usr/lib/dpd sending dacmon.
/usr/spool/dpd/=+ spool area.

SEE ALSO

dpd(1C), dpr(1C), fget(1C), gcat(1C), mail(1).

FWTMP(1M) FWTMP(1M)

NAME

fwtmp, wtmpfix — manipulate wtmp records

SYNOPSIS

fwtmp [—ic]
wtmpfix [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formated ASCII
records. The ASCII version is useful to enable editing, via ed(1), bad
records or general purpose maintenance of the file.

The argument —ic is used to denote that input is in ASCII form, and output
is to be written in binary form.

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp format,
corrects the time/date stamps to make the entries consistent, and writes to
the standard output. A — can be used in place of files to indicate the stan-
dard input. If time/date corrections are not made, acctcon! will fault when
it encounters certain date change records.

Each time the date is set while operating in multi-user mode, a pair of date
change records are written to /usr/adm/wtmp. The first record is the old
date denoted by | in the name field. The second record specifies the new
date and is denoted by a { in the name field. Wimpfix uses these records to
synchronize all time stamps in the file.

/usr/adm/wtmp
/usr/include/utmp.h

SEE ALSO

acct(1M), acctcems(1M), acctcom(l), acctcon(I1M), acctmerg(IM),
acctprc(1M), acctsh(1M), runacct(1M), acct(2), acct(S5), utmp(S).

GCAT(1C) GCAT(1C)

NAME
gcat — send phototypesetter output to the HONEYWELL 6000

SYNOPSIS
geat [options] [files]

DESCRIPTION
Gcar arranges to have troff (1) output sent to the phototypesetter or debug-
ging devices (STARE or line printer) attached to the HONEYWELL system.
GCOS identification must appear in the UNIX password file (see passwd(5)),
or be supplied by the —i option. If no file name appears, the standard
input is sent; thus gcat may be used as an output pipe for troff(1).

The option —g (for GCOS) must be used with the off(1) command to
make things work properly. This command string sends output to the
GCOS phototypesetter:

troff —g file | geat

The following options, each as a separate argument, and in any combina-
tion (multiple outputs are permitted), may be given after gcat:

—ph Send output to the phototypesetter. This is a default option.

—st Send output to STARE for fast turn-around.

—tx Send output as text to the line printer (useful for checking spelling,
hyphenation, pagination, etc.).

—du Send output to the line printer, dummied up to make the format
correct. Because many characters are dropped, the output is
unreadable, but useful for seeing the shape (margins, etc.) of the
document.

—c Make a copy of the file to be sent before returning to the user.

-r Remove the file after sending it.

—f Use the next argument as a dummy file name to report back in the
mail. (This is useful for distinguishing multiple runs, especially
when gcat is being used as a filter).

=i Supply the GCOS “‘ident card’’ image as the parameter
—iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

—m When transmission is complete, report by mail(1) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is a default option.

—n Do not report the completion of transmission by mail(1).

—o Print the on-line GCOS accounting output. _

—t Toss out the on-line GCOS accounting output. This is a default
option.

—sn Submit job to GCOS with service grade n (n=1, 2, 3). Default is
—sl.

If none of the output options are specified, phototypesetter output (—ph) is
assumed by default.

EXAMPLE
The command:
troff —g myfile | gcat —st —im1234,m567,myname —f myfile

will send the output of troff (1) to STARE, with the GCOS ‘‘ident card”’
specifying ‘“M1234, M567,MYNAME"’, and will report back that myfile has
been sent.

FILES

GCAT(1C) GCAT(1C)

/etc/passwd user’s identification and GCOS ident card.
/usr/lib/dpd sending daemon.
/usr/spool/dpd/+ spool area.

SEE ALSO

dpd(1C), dpr(1C), fget(1C), fsend(1C), troff(1).

GCOSMAIL(1C) GCOSMAIL(1C)

NAME

gcosmail — send mail to HIS user
SYNOPSIS

geosmail [option ...] [HiSuserid ...]
DESCRIPTION

Gcosmail takes the standard input up to an end of file and sends it as mail
to the named users on the HONEYWELL 6000 system, using the HIS mail
command. The following options are recognized by gcosmail:

—f Use the next argument as a dummy file name to report back in the
mail. (This is useful for distinguishing multiple runs).

—i Supply the GCOS ‘‘ident card’’ image as the parameter
—iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy is
the GCOS bin number.

—m When transmission is complete, report by mail(1) the so-called
snumb of the recciving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran suocessfully
This is a default option.

—n Do not report the completion of transmission by mail(1).

-0 Print the on-line GCOS accounting output.

—t Toss out the on-line GCOS accounting output. This is a default

option.
—sn Submit job to GCOS with service grade n (n=1, 2, 3). Default is
—sl.
FILES
/etc/passwd user’s identification and GCOS ident card.
Jusr/lib/dpd sending daemon.
/usr/spool/dpd/# spool area.
SEE ALSO

dpd(1C), dpr(1C), fsend(1C).

GDEV(1G) GDEV (1G)

NAME
hpd, erase, hardcopy, tekset, td — graphical device routines and filters
SYNOPSIS
hpd [—options] [GPS file ...]
erase
hardcopy
tekset
td [—eurn] [GPS file ...]
DESCRIPTION
All of the commands described below reside in /usr/bim/graf (see
graphics(1G)).
hpd Hpd translates a GPS (see gps(5)), to instructions for the
Hewlett-Packard 7221A Graphics Plotter. A viewing window is
computed from the maximum and minimum points in file
unless the —u or —r option is provided. If no file is given, the
standard input is assumed. Options are:
cn Select character set n, n between 0 and 5 (see the
HP7221A Plotter Operating and Programming Manual,
Appendix A). ’
pn Select pen numbered #, n between 1 and 4 inclusive.
rn Window on GPS region n, n between 1 and 25 inclusive.
sn Slant characters n degrees clockwise from the vertical.
u Window on the entire GPS universe.
xdn Set x displacement of the viewport’s lower left corner to n
inches.
xvn Set width of viewport to n inches.
ydn Set y displacement of the viewport’s lower left corner to n
inches.
yva Set height of viewport to n inches.
erase Erase sends characters to a Tektronix 4010 series storage ter-

minal to erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy
unit, hardcopy generates a screen copy on the unit.

tekset Tekset sends characters to a Tektronix terminal to clear the
display screen, set the display mode to alpha, and set characters
to the smallest font.

td Td translates a GPS to scope code for a Tektronix 4010 series
storage terminal. A viewing window is computed from the max-
imum and minimum points in file unless the —u or —r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.
rn Display GPS region n, n between 1 and 25 inclusive.
u Display the entire GPS universe.

SEE ALSO
graphics(1G), ged(1G), gps(5).

GED (1G) GED(1G)

NAME
ged — graphical editor

SYNOPSIS
ged [—euRrn] [GPS file ...]

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit
GPS files on Tektronix 4010 series display terminals. If GPS file(s) are
given, ged reads them into an internal display buffer and displays the buffer.
The GPS in the buffer can then be edited. If — is given as a file name, ged
reads a GPS from the standard input.

Ged accepts the following command line options:
e Do not erase the screen before the initial display.
rn Display region number n.
u Display the entire GPS universe.
R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc,
and text. Arc and lines objects have a start point, or object-handle, followed
by zero or more points, or point-handles. Text has only an object-handle.
The objects are positioned within a Cartesian plane, or universe, having 64K
(—32K to +32K) points, or universe-units, on each axis. The universe is
divided into 25 equal sized areas called regions. Regions are arranged in
five rows of five squares each, numbered 1 to 25 from the lower left of the
universe to the upper right.

Ged maps rectangular areas, called windows, from the universe onto the
display screen. Windows allow the user to view pictures from different
locations and at different magnifications. The universe-window is the win-
dow with minimum magnification, i.e. the window that views the entire
universe. The home-window is the window that completely displays the con-
tents of the display buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends with a
<cr> (return). Prior to the final <cr> the command may be aborted by
typing rubout. The input of a stage may be edited during the stage using
the erase and kill characters of the calling shell. The prompt # indicates
that ged is waiting at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument(s) followed by a <cr>. A command name is a
single character. Command arguments are cither option(s) or a
file-name. Options are indicated by a leading —.

2. Text Text is a sequence of characters terminated by an unescaped
<cr>. (120 lines of text maximum.)

3. Points Points is a sequence of one or more screen locations (max-
imum of 30) indicated either by the terminal crosshairs or by
name. The prompt for entering points is the appearance of the
crosshairs. When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point
is identified with a number.

GED(1G) GED(1G)

$n enters the previous point numbered n.
>x labels the last point entered with the upper case letter x.
$Sx enters the point labeled x.

establishes the previous points as the current points. At
the start of a command the previous points are those
locations given with the previous command.

= echoes the current points.

$.n enters the point numbered n from the previous points.
erases the last point entered.

@ erases all of the points entered.

4. Pivot The pivot is a single location, entered by typing <cr> or by
using the $ operator, and indicated with a s.

S. Destination
The destination is a single location entered by typing <cr> or
by using §.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Com-
mand stages are printed in italics. Arguments surrounded by brackets ‘‘{]”
are optional. Parentheses ‘‘()’’ surrounding arguments separated by ‘‘or”
means that exactly one of the arguments must be given.

Construct commands:

Arc [—echo,style,weight] points

Box [—echo,style,weight] points

Circle [—echo,style,weight] points

Hardware [—echo] text points

Lines [—echo,style,weight] points

Text [—angle,echo,height, mid-point,right-point,text, weight]
text points

Edit commands:

Delete (— (universe or view) or points)
Edit [—angle,echo,height,style,weight] (— (universe or
view) or points)

Kopy [—echo,points,x] points pivot destination

Move [—echo,points,x] points pivot destination

Rotate [—angle,echo,kopy,x] points pivot destination

Scale [—echo,factor,kopy,x] points pivot destination
View commands:

coordinates poinis

erase

new-display

object-handles (— (universe or view) or points)

GED(1G) GED(1G)

point-handles (— (labelled-points or wniverse or view) or points)

view (— (mome or universe or region) or [—x] pivor des-
tination)

X [—view] points

zoom [—eut] points

Other commands:
quit or Quit

12ad [—angle,echo,height, mid-point,right-point,text, weight}
file-name [destination]

set [—angle,echo,factor, height,kopy, mid-point,points,
right-point,style,text,weight,x]

write file-name

Ycommand

?

Options:
Options specify parameters used to construct, edit, and view graphical
objects. If a parameter used by a command is not specifed as an option, the
default value for the parameter will be used (see set below). The format of
command options is
— option {,option]
where option is keyletter[value]. Flags take on the values of true or false
indicated by + and — respectively. If no value is given with a flag, true is

assumed.
Object options:
anglen Angle of n degrees.
echo When true, echo additions to the display buffer.
factorn Scale factor is n percent.
heightn Height of text is n universe-units (0=<n<1280).
kopy When true, copy rather than move.
mid-point When true, mid-point is used to locate text string.
points When true, operate on points otherwise operate on
objects.

right-point When true, right-point is used to locate text string.
styletype Line style set to one of following types:

so solid

da dashed

dd dot-dashed
de dotted

d long-dashed

GED(1G)

Area options:

GED(1G)
text When false, text strings are outlined rather than drawn.
weightrype Sets line weight to one of following types:

n narrow
m medium
b bold
home Reference the home-window.
out Reduce magnification.
regionn Reference region n.
universe Reference the universe-window.
view Reference those objects currently in view.
X Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:
Arc and Lines

behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are
point-handles. Lines connects the handles in numerical order. Arc
fits a curve to the handles (currently a maximum of 3 points will be
fit with a circular arc; splines will be added in a later version).

Box and Circle

are special cases of Lines and Arc, respectively. Box generates a rec-
tangle with sides parallel to the universe axes. A diagonal of the rec-
tangle would connect the first point entered with the last point. The
first point is the object-handle. Point-handles are created at each of
the vertices. Circle generates a circular arc centered about the point
numbered zero and passing through the last point. The circle’s
object-handle coincides with the last point. A point-handle is genera-
ted 180 degrees around the circle from the object-handle.

Text and Hardware

generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <er>. Multiple lines of
text may be entered by preceding a cr with a backslash (i.e. \cr). The
Text command creates software generated characters. Each line of
software text is treated as a separate text object. The first point
entered is the object-handle for the first line of text. The Hardware
command sends the characters in text uninterpreted to the terminal.

Edit commands:

Edit commands operate on portions of the display buffer called defined-
areas. A defined-area is referenced either with an area option or interac-
tively. If an area option is not given, the perimeter of the defined-area is
indicated by points. If no point is entered, a small defined-area is built
around the location of the <cr>. This is useful to reference a single point.
If only one point is entered, the location of the <<cr> is taken in conjunc-
tion with the point to indicate a diagonal of a rectangle. A defined-area
referenced by points will be outlined with dotted lines.

Delete

removes all objects whose object-handle lies within a defined-area.
The universe option removes all objects and erases the screen.

-4-

GED(1G) GED (1G)

Edit modifies the parameters of the objects within a defined-area.
Parameters that can be edited are:
angle angle of text
height height of rext
style style of lines and arc
weight weight of lines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined-area
by the displacement from the pivor to the destination.

Rotate
rotates objects within a defined-area around the pivor. If the kopy flag
is true then the objects are copied rather than moved.

Scale
For objects whose object-handles are within a defined-area, point
displacements from the pivor are scaled by factor percent. If the kopy
flag is true then the objects are copied rather than moved.

View commands:
coordinates
prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object- (and/or point-handles) that lie within the defined-area
with O (or P). point-handles identifies labelled points when the
labelled-points flag is true.

view moves the window so that the universe point corresponding to the
pivot coincides with the screen point corresponding to the destination.
Options for home, universe, and region display particular windows in
the universe.

X indicates the center of a defined-area. Option view indicates the cen-
ter of the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing
window based on the defined-area. For increased magnification, the
window is set to circumscribe the defined-area. For a decrease in
magnification the current window is inscribed within the defined-area.

Other commands:
quit or Quit
exit from ged. quit responds with ? if the display buffer has not been
written since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read
directly. If the file contains text it is converted into rext object(s).
The first line of a text file begins at destination.

set when given opfion(s) resets default parameters, otherwise it prints
current default values. '

write
outputs the contents of the display buffer to a file.

-5.

GED(1G) GED(1G)

! escapes ged to execute a UNIX command.
? lists ged commands.

SEE ALSO
graphics(1G), gdev(1G), rsh(1), gps(5).
A Tutorial Introduction to the Graphical Editor by A. R. Feuer.

GET(1) GET(1)

NAME
get — get a version of an SCCS file

SYNOPSIS
get [—rSID] [—ccutoff] [—ilist] [—xlist] [—aseq-no.] [—k] [—e]
[—1pll [—=p] [—m] [—n] [—s] [—b] [—g] [—t] dile ...

DESCRIPTION
Get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with —. The

arguments may be specified in any order, but all keyletter arguments apply
to all named SCCS files. If a directory is named, get behaves as though
each file in the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of — is given, the standard
input is read; each line of the standard input is taken to be the name of an
SCCS file to be processed. Again, non-SCCS files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the SCCS file name by simply removing the leading
s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
SCCS file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

—rSID The SCCS IDentification string (SID) of the version (delta) of
an SCCS file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an SCCS file is retrieved (as well
as the SID of the version to be eventually created by delta(1) if
the —e keyletter is also used), as a function of the SID
specified.

—ccutoff Cutoff date-time, in the form:
YY[MM[DD[HH[MM]SS]]]]]

No changes (deltas) to the SCCS file which were created after
the specified cutoff date-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, —c7502 is equivalent to
—¢750228235959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"—¢77/2/2 9:22:25". Note that this implies that one. may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to a send(1C) command:

“iget "—c%E% %U%" s.file

—e Indicates that the get is for the purpose of editing or making a
change (delta) to the SCCS file via a subsequent use of delta(1).
The —e keyletter used in a get for a particular version (SID) of
the SCCS file prevents further gets for editing on the same SID
until delta is executed or the j (joint edit) flag is set in the SCCS
file (sec admin(1)). Concurrent use of get —e for different
SIDs is always allowed.

If the g-file generated by get with an —e keyletter is accidentally
ruined in the process of editing it, it may be regenerated by re-
executing the ger command with the —k keyletter in place of
the —e keyletter.

GET(1)

—ilist

—xlist

GET(1)

SCCS file protection specified via the ceiling, floor, and author-
ized user list stored in the SCCS file (see admin(1)) are enforced
when the —e keyletter is used.

Used with the —e keyletter to indicate that the new deita
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file (see
admin(1)) or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the SCCS file tree.)

Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a deita, may be in any form
shown in the *‘SID Specified’’ column of Table 1. Partial SIDs
are interpreted as shown in the *‘SID Retrieved’’ column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the —i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The —k keyletter is
implied by the —e keyletter.

Causes a delta summary to be written into an /file. If —lp is
used then an /-file is not created; the deita summary is written
on the standard output instead. See FILES for the format of the
Ifile.

Causes the text retrieved from the SCCS file to be written on
the standard output. No g-file is created. All output which nor-
mally goes to the standard output goes to file descriptor 2
instead, unless the —s keyletter is used, in which case it disap-
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip-
tor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be pre-
ceded by the SID of the delta that inserted the text line in the
SCCS file. The format is: SID, followed by a horizontal tab, fol-
lowed by the text line.

Causes each generated text line to be preceded with the 2M%
identification keyword value (see below). The format is: XM%
value, followed by a horizontal tab, followed by the text line.
When both the —m and —n keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the —m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCS file. It is
primarily used to generate an /-file, or to verify the existence of
a particular SID.

Used to access the most recently created (‘‘top’’) delta in a
given release (e.g., —rl), or release and level (e.g., —rl.2).

.2.

GET(1) GET(1)

—aseg-no. The delta sequence number of the SCCS file delta (version) to
be retrieved (see sccsfile(5)). This keyletter is used by the
comb(1) command; it is not a generally useful keyletter, and
users should not use it. If both the —r and —a keyletters are
specified, the —a keyletter is used. Care should be taken when
using the —a keyletter in conjunction with the —e keyletter, as
the SID of the delta to be created may not be what one expects.
The —r keyletter can be used with the —a and —e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the SCCS file.

If the —e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
—1i keyletter is used included deltas are listed following the notation ‘‘Inclu-
ded’’; if the —x keyletter is used, excluded deltas are listed following the
notation ‘‘Excluded’’.

TABLE 1. Determination of SCCS Identification String

SID* —b Keyletter Other SID SID of Delta
Specified Used?t Conditions Retrieved to be Created
nonef no R defaults to mR mR.mL mR.(mL +1)
nonef yes R defaults to mR mR.mL mR.mL.(mB+1).1
R no R > mR mR.mL R.1%**

R no R = mR mR.mL mR.(mL +1)

R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R - R < mR and hR.mL** hR.mL.(mB+1).1

R does not exist
Trunk succ. #

R - in release > R R.mL R.mL.(mB+1).1
and R exists

RL no No trunk succ. R.L R.(L+1)

R.L yes No trunk succ. R.L R.L.(mB+1).1
Trunk succ.

l}.L - in release = R R.L - R.L.(mB+1).1

RLB no No branch succ. ___R.L.BmS __R.LB.(mS+1)

R.L.B _yes No branch succ. RLBmS R.L.(mB+1).1

R.L.BS no No branch succ. R.L.BS R.LB(S+1)

R.LBS yes No branch succ. R.L.B.S R.L.(mB+1).1

R.L.BS — Branch succ. R.L.BS R.L.(mB+1).1

* “R”, “L™, “B”, and “‘S” are the ‘“‘release”, “‘level”, ‘‘branch™, and
“sequence’’ components of the SID, respectively; ‘“m’’ means ‘‘max-
imum”. Thus, for example, “R.mL” means ‘‘the maximum level
number within release R’’; *“R.L.(mB+1).1” means ‘the first
sequence number on the new branch (i.e., maximum branch number
plus one) of level L within release R’’. Note that if the SID specified
is of the form “R.L”, “R.L.B”, or “R.L.BS”, each of the specified
components nust exist.

** “hR” is the highest existing release that is lower than the specified,
nonexistent, release R.

GET(1) GET(1)

**#* This is used to force creation of the first delta in a new release.

Successor.

t The —b keyletter is effective only if the b flag (see admin(1)) is
present in the file. An entry of — means ‘‘irrelevant’.

¥ This casec applies if the @ (default SID) flag is not present in the file. If
the d flag is present in the file, then the SID obtained from the d flag is
interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

FILES

Identifying information is inserted into the text retrieved from the SCCS file
by replacing identification keywords with their value wherever they occur.
The following keywords may be used in the text stored in an SCCS file:

Keyword Value

%M% Module name: cither the value of the m flag in the file (see
admin(1)), or if absent, the name of the SCCS file with the
leading s. removed.

%1% SCCS identification (SID) (%R%.%L%.%B%.%S%) of the
retrieved text.

%R % Release.

%L % Level.

%B% Branch.

%S% Sequence.

% D% Current date (YY/MM/DD).

% H% Current date (MM/DD/YY).

%T% Current time (HH:MM:SS).

%E% Date newest applied delta was created (YY/MM/DD).

%G% Date newest applied delta was created (MM/DD/YY).

%U% Time newest applicd delta was created (HH:MM:SS).

%Y % Module type: value of the ¢t flag in the SCCS file (see admin(1)).

%F% SCCS file name.

%P% Fully qualified SCCS file name.

%Q% The value of the g flag in the file (see admin(1)).

%C% Current line rumber. This keyword is intended for identifying
messages output by the program such as ‘‘this shouldn’t have
happened’ type errors. It is mot intended to be used on every
line to provide sequence numbers.

%Z% The 4-character string @(#) recognizable by whar(1).

% W% A shorthand notation for constructing what(1) strings for UNIX
program files. W% = %Z%%M%<horizontal-tab> %1%

%A% . Another shorthand notation for constructing what(1) strings for
non-UNIX program files. %A% = %Z%%Y% %M% %1% %Z%

Several auxiliary files may be created by get, These files are known generi-
cally as the g-file, I-file, p-file, and z-file. The letter before the hyphen is
called the tag. An auxiliary file name is formed from the SCCS file name:
the last component of all SCCS file names must be of the form s.module-
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c, the auxiliary file names would be
Xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the —p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the ger. It is owned by
the real user. If the —k keyletter is used or implied its mode is 644; oth-
erwise its mode is 444. Only the real user need have write permission in

-4.

GET(1) GET(1)

the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The /-file is created in the current directory if the —1
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the /-file have the following format:

a. A blank character if the delta was applied;
* otherwise.

b. A blank character if the delta was applied or wasn’t applied
and ignored;
s if the delta wasn’t applied and wasn’t ignored.

c. A code indicating a ‘‘special’’ reason why the delta was or

was not applied:
“I”’: Included.
“X*": Excluded.
“C’’: Cut off (by a —c keyletter).
Blank.
SCCS identification (SID).
Tab character.
Date and time (in the form YY/MM/DD HH:MMSS) of
creation.
Blank.
Login name of person who created delta.

o e A

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a getr with an —e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of ger with an —e keyletter for the same SID until delta is execu-
ted or the joint edit flag, j, (see admin(1)) is set in the SCCS file. The p-file
is created in the directory containing the SCCS file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol-
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real user,
followed by a blank, followed by the date-time the ger was executed, fol-
lowed by a blank and the —i keyletter argument if it was present, followed
by a blank and the —x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-file at any
time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.c., ger) that
created it. The z-file is created in the directory containing the SCCS file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-file. The z-file is created mode 444.

SEE ALSO
admin(1), delta(1), help(1), prs(1), what(1), sccsfile(5).
Source Code Control System User’s Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

BUGS
If the effective user has write permission (either explicitly or implicitly) in
the directory containing the SCCS files, but the real user doesn’t, then only
one file may be named when the —e keyletter is used.

-5.

GETOPT(1) GETOPT(1)

NAME
getopt — parse command options
SYNOPSIS R R
set —— getopt optstring $e
DESCRIPTION

Getopt is used to break up options in command lines for easy parsing by
shell procedures, and to check for legal options. Optstring is a string of
recognized option letters (see getopt(3C)); if a letter is followed by a colon,
the option is expected to have an argument which may or may not be
separated from it by white space. The special option — — is used to delimit
the end of the options. Getopt will place —— in the arguments at the end
of the options, or recognize it if used explicitly. The shell arguments ($1
$2 . . .) are reset so that each option is preceded by a — and in its own
shell argument; each option argument is also in its own shell argument.
DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.
EXAMPLE
The following code fragment shows how one might process the arguments

for a command that can take the options a and b, and the option o, which
requires an argument.

set —— “getopt abo: $s°

if [$7!=0]

then
echo SUSAGE
exit 2

fi

for i in $=

do
case $i in
—a| —b) FLAG=S$i; shift;;
—0) OARG=$2; shift; shift;;
-=) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd —aoarg file file

cmd —a —o arg file file
cmd —oarg —a file file
cmd —a —oarg —— file file

SEE ALSO
sh(1), getopt(3C).

GRAPH(1G) GRAPH(1G)

NAME

graph — draw a graph

SYNOPSIS

graph [options]

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the plot (1G) filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label beginning on the point. Labels may be surroun-
ded with quotes ", in which case they may be empty or contain blanks and
numbers; labels never contain new-lines.

The following options are recognized, each as a separate argument:

—a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(default O or lower limit given by —x).

—b Break (disconnect) the graph after each label in the input.

—c Character string given by next argument is default label for each
point.

—-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full
grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnec-

ted, 1 connected (default). Some devices give distinguishable
line styles for other small integers (e.g., the Tektronix 4014:
2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash).

—s Save screen, don’t erase before plotting.

—x[1] 1If lis present, x axis is logarithmic. Next 1 (or 2) arguments
are lower (and upper) x limits. Third argument, if present, is
grid spacing on x axis. Normally these quantities are deter-
mined automatically.

—y [1] Similarly for y.

—h Next argument is fraction of space for height.

—w Similarly for width.

-r Next argument is fraction of space to move right before plotting.
—u Similarly to move up before plotting.

—t Transpose horizontal and vertical axes. (Option —x now applies

to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

SEE ALSO

BUGS

graphics(1G), spline(1G), tplot(1G).

Graph stores all points internally and drops those for which there isn’t
room.

Segments that run out of bounds are dropped, not windowed.

Logarithmic axes may not be reversed.

GRAPHICS(1G) GRAPHICS(1G)

NAME

graphics — access graphical and numerical commands
SYNOPSIS

graphics [—r]
DESCRIPTION

Graphics appends the path name /usr/bin/graf to the current SPATH
value, changes the primary shell prompt to ~, and executes a new shell.
The directory /usr/bin/graf contains all of the Graphics subsystem com-
mands. If the —r option is given, access to the graphical commands is
created in a restricted environment; that is, SPATH is set to /:rbim:-
/usr/rbin:/bin:/usr/bin:/usr/bin/graf and the restricted shell, rsh(1), is
invoked. To restore the environment that existed prior to issuing the gra-
phics command, type EOT (control-d on most terminals). To logoff from
the graphics environment, type quit.

The command line format for a command in graphics is command name fol-
lowed by argument(s). An argument may be a file name or an option string.
A file name is the name of any UNIX file except those beginning with —.
The file name — is the name for the standard input. An option string con-
sists of — followed by one or more option(s). An option consists of a
keyletter possibly followed by a value. Opfions may be separated by com-
mas.

The graphical commands have been partitioned into four groups.
Commands that manipulate and plot numerical data; see stat(1G).
Commands that generate tables of contents; see toc(1G).
Commands that interact with graphical devices; see gdev(1G) and
ged(1G).

A collection of graphical utility commands; see gutil(1G).

A list of the graphics commanrds can be generated by typing whatis in the
graphics enviroament.

SEE ALSO
gdev(1G), ged(1G), gutil(1G), stat(1G), toc(1G), gps(5).
UNIX Graphics Overview by A. R. Feuer.
Administrative Information for the UNIX Graphics Package by R. L. Chen, D.
E. Pinkston, and A. Guyton.

GREEK (1) GREEK(1)

NAME

greek — select terminal filter

SYNOPSIS

greek [—Tterminal]

DESCRIPTION

FILES

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPE® Model 37 ter-
minal (which is the nroff (1) default terminal) for certain other terminals.
Special characters are simulated by overstriking, if necessary and possible.
If the argument is omitted, greek attempts to use the environment variable
STERM (see environ(7)). The following terminals are recognized currently:

300 DASI 300.

300-12 DASI 300 in 12-pitch.
300s DASI 300s.

300s-12 DASI 300s in 12-pitch.
450 DASI 450.

450-12 DASI 450 in 12-pitch.

1620 Diablo 1620 (alias DASI 450).

1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.

hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

Jusr/bin/300
/Jusr/bin/300s
/usr/bin/4014
/usr/bin/450
Jusr/bin/hp

SEE ALSO

300(1), 300s(1), 4014(1), 450(1), eqn(l), greek(7), hp(l), mm(l),
nroff (1), tplot(1G), environ(7), term(7).

GREP(1) GREP(1)

NAME

grep, egrep, fgrep — search a file for a pattern

SYNOPSIS

grep [options] expression [files]
egrep [options] [expression] [files]
fgrep [options] [strings] [files]

DESCRIPTION

Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the style
of ed(1); it uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that
sometimes needs exponential space. Fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized:

—v All lines but those matching are printed.

—x (Exact) only lines matched in their entirety are printed (fgrep only).

—c¢ Only a count of matching lines is printed.

—1 Only the names of files with matching lines are listed (once), separa-
ted by new-lines.

—n Each line is preceded by its relative line number in the file.

—b Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by context.

—s The error messages produced for nonexistent or unreadable files are
suppressed (grep only).

—e expression
Same as a simple expression argument, but useful when the expres-
sion begins with a — (does not work with grep).

—f file ’

The regular expression (egrep) or strings list (fgrep) is taken from the

file.

In all cases, the file name is output if there is more than one input file.
Care should be taken when using the characters $, *, [, °, |, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes ...".

Fgrep searches for lines that contain one of the strings separated by new-
lines.

Egrep accepts regular expressions as in ed(1), except for \(and \), with the
addition of:

1. A regular expression followed by + matches one or more occurren-
ces of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of
the regular expression.

3. Two regular expressions separated by | or by a new-line match
strings that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then #? +, then concatenation,
then | and new-line.

SEE ALSC

ed(1), sed(1), sh(1).

GREP(1) GREP(1)

DIAGNOSTICS

BUGS

Exit status is O if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files.

Ideally there should be only one grep, but we don’t know a single algorithm
that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

Egrep does not recognize ranges, such as [a—z], in character classes.

GUTIL(1G)

NAME

GUTIL(1G)

gutil — graphical utilities

SYNOPSIS

command-name [optiors] [files]

DESCRIPTION

Below is a list of miscellancous device independent utility commands found
in /usr/bin/graf. If no files are given, input is from the standard input.
All output is to the standard output. Graphical data is stored in GPS for-
mat; see gps(5).

bel
cvrtopt

gtop

pd

ptog

quit
remcom

— send bel character to terminal
[=sstring Istring istring tstring] [args] — options converter
Cvrtopt reformats args (usually the command line arguments of
a calling shell procedure) to facilitate processing by shell pro-
cedures. An arg is cither a file name (a string not beginning
with a —, or a — by itself) or an option string (a string of
options beginning with a —). Output is of the form:

—option — option . . . file name(s)
All options appear singularly and preceding any file names.
Options that take values (e.g., —rl.1) or are two letters long
must be described through options to cvrropt.

Cvrtopt is usually used with set in the following manner as the
first line of a shell procedure:

set — “cvrtopt =[options] S@"
Options to cvrtopt are:

sstring String accepts string values.

fstring String accepts floating point numbers as values.
istring String accepts integers as values.

tstring String is a two letter option name that takes no value.
String is a one or two letter option name.

[GPS files] — GPS dump

Gd prints a human readable listing of GPS.

[—rna] [GPSfiles] — GPS to plot(5) filter

Gtop transforms a GPS into plot(5) commands displayable by
plot(1G) filters. GPS objects are translated if they fall within the
window that circumscribes the first file unless an option is given.
Options:

™ translate objects in GPS region n.
] translate all objects in the GPS universe.

[plot(5) files 1 — plot(5) dump

Pd prints a human readable listing of plot(5) format graphical
commands.

[plot(5) files 1 — plot(5) to GPS filter

Prtog transforms plot(5) commands into a GPS.

— terminate session

[files] — remove comments
Remcom copies its input to its output with comments removed.
Comments are as defined in C (i.e., /* comment »/).

-1-

GUTIL (1G)

whatis

yoo

SEE ALSO

GUTIL(1G)

[—e] [names] — brief online documentation

Whatis prints a brief description of cach mame given. If no name
is given, then the current list of description names is printed.
whatis \s prints out every description.

Option:

° just print command eptions

file — pipe fitting

Yoo is a piping primitive that deposits the output of a pipeline
into a file used in the pipeline. Note that, without yoo, this is
not usually successful as it causes a read and write on the same
file simultaneously.

graphics(1G), gps(5).

HELP(1) HELP(1)

NAME
help — ask for help
SYNOPSIS
help [args]
DESCRIPTION
Help finds information to explain a message from a command or explain
the use of a command. Zero or more arguments may be supplied. If no
arguments are given, help will prompt for one.
The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the fol-
lowing types:
type 1 Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for the
program or set of routines which produced the mes-
sage (e.g., ge6, for message 6 from the get com-
mand).
type 2 Does not contain numerics (as a command, such as
get)
type 3 Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try ‘““help stuck’.

FILES
/usr/lib/help directory containing files of message text.

DIAGNOSTICS
Use help(1) for explanations.

HP(1) HP(1)

NAME

hp — handle special functions of HP 2640 and 2621-series terminals
SYNOPSIS

bp[—e] [-m]
DESCRIPTION

Hp supports special functions of the Hewlett-Packard 2640 series of ter-
minals, with the primary purpose of producing accurate representations of
most nroff (1) output. Typical uses are:

nroff —h files ... | hp
nroff —h —s ... files | hp

In the latter case, nroff’ will stop at the beginning of each page (including
the first) and wait for you to hit line-feed (control-j) before resuming out-
put.

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the
‘‘display enhancements’’ feature, subscripts and superscripts can be indi-
cated in distinct ways. If it has the ‘‘mathematical-symbol’ feature, Greek
and other special characters can be displayed.

The flags are as follows:

—e It is assumed that your terminal has the ‘‘display enhancements”’
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super-
scripts are shown in Half-bright mode, and subscripts in Half-
bright, Underlined mode. If this flag is omitted, Ap assumes that
your terminal lacks the ‘‘display enhancements’’ feature. In this
case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-light, rather than the
usual light-on-dark.

—m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; i.e., any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as does 300(1), except that ‘“‘not’ is approximated by a right arrow, and
only the top half of the integral sign is shown. The display is adequate for
examining output from negn(1).

DIAGNOSTICS
““line too long’’ if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 2 for all errors.

SEE ALSO
300(1), col(1), greek(1), neqn(1), tbl(1), troff(1).

BUGS
An “‘overstriking sequence’’ is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
cither printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special
is done if a backspace is adjacent to an ASCII control character. Sequences
of control characters (e.g., reverse line-feeds, backspaces) can make text
‘‘disappear’’; in particular, tables generated by #b/(1) that contain vertical
lines will often be missing the lines of text that contain the ‘‘foot” of a

-1-

HP(1) HP(1)

vertical line, unless the input to Ap is piped through col(1).
Although some terminals do provide numerical superscript characters, no
attempt is made to display them.

HYPHEN(1) HYPHEN(1)

NAME

hyphen — find hyphenated words
SYNOPSIS

hyphen files
DESCRIPTION

Hyphen finds all the hyphenated words in files and prints them on the stan-
dard output. If no arguments are given, the standard input is used. Thus
hyphen may be used as a filter.

BUGS
Hyphen can’t cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than
spurious extra output.

ID(1) ID(1)

NAME

id — print user and group IDs and names
SYNOPSIS

id
DESCRIPTION

Id writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are printed.

SEE ALSO
logname(1), getuid(2), getgid(2).

INSTALL(1M) INSTALL(1M)

NAME
install — install commands

SYNOPSIS
install [—¢ dira] [—f ditb] [—i][—m dic] [—0] [—s]
file [dirx ...]

DESCRIPTION
Install is a command most commonly used in ‘“‘makefiles’ (see make(1))
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby
.retaining the mode and owner of the original command. The program
prints messages telling the user exacily what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search (using
find(1)) a set of default directories (/bim, /usr/bim, /etc, /lib, and
/usr/lib, in that order) for a file with the same name as file. When the
first occurrence is found, install issues a message saying that it is overwri-
ting that file with file, and proceeds to do so. If the file is not found, the
program states this and exits without further action.

If one or more directories (dirx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

—c dira Installs a new command in the directory specified in
dira. Looks for file in dira and installs it there if it is
not found. If it is found, install issues a message say-
ing that the file already exists, and exits without
overwriting it. May be used alone or with the —s
option.

—f dirb Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and bin, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone
or with the —o or —s options.

—i Ignores default directory list, searching only through
the given directories (dirx ...). May be used alone or
with any other options other than —c and —f.

—n dirc If file is not found in any of the searched directories,
it it put in the directory specified in dirc. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options other than —c and —f.

-0 If file is found, this option saves the ‘‘found’’ file by
copying it to OLDfile in the directory in which it was
found. May be used alone or with any other options
other than —c.

-8 Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

SEE ALSO
mk(8).

JOIN(1) JOIN(1)

NAME

join — relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from filel, then the rest of the line from
file2.

Fields are normally separated by blank, tab or new-line. In this case, multi-
ple separators count as one, and leading separators are discarded.

These options are recognized:

—an In addition to the normal output, produce a line for each unpairabie
line in file n, where n is 1 or 2.

—e s Replace empty output fields by string s.

—jn m Join on the mth field of file n. If n is missing, use the mth field in
each file.

—o list Each output line comprises the fields specifed in lisz, each element
of which has the form n.m, where n is a file number and m is a
field number.

—tc Use character ¢ as a separator (tab character). Every appearance of
¢ in a line is significant.

SEE ALSO

BUGS

awk(1), comm(1), sort(1).

With default field separation, the collating sequence is that of sort —b; with
—t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(1) are wildly incongru-
ous.

KAS(1) KAS(1)

NAME

kas — assembler for the KMC11 microprocessor

SYNOPSIS

kas [name] [—o namel] [—d name2]

DESCRIPTION

Kas is an assembler/debugger/loader for the KMC11 microprocessor. The
optional argument name specifies the input file; default is standard input.
The optional argument —o indicates that the next argument namel will be
the output of the assembler; default is a.out. The optional argument —d
indicates that the assembler is to be used in debug mode and that the next
argument name?2 is the device file name of the microprocessor. No output
file is created in debug mode.

Error diagnostics are written on the standard error output and contain the
input file name and line number and a brief description of the error. C
preprocessor control lines to change the file name and line number are
recognized. This allows the use of the preprocessor to expand the input
before assembly.

FILES
a.out output object
/dev/kmc? microprocessor device
/lib/cpp C preprocessor

SEE ALSO

kun(1), kmc(4).
Assembler for the DEC KMC11 Microprocessor by L. A. Wehr.

KILL(1) KILL(1)

NAME

kill — terminate a process
SYNOPSIS

kill [—signo] processid ...
DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This will nor-
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
Shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process num-
bers can also be found by using ps(1).

The details of the kill are described in kill(2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-
user.

If a signal number preceded by — is given as first argument, that signal is
sent instead of terminate (see signal/(2)). In particular “kill —9 ...”" is a
sure kill.

SEE ALSO
ps(1), sh(1), kill(2), signal(2).

KUN(1) KUN(1)

NAME

kun — un-assembler for the KMC11/DMC11 microprocessor
SYNOPSIS

kun [name] [—o namel]
DESCRIPTION

Kun is a un-assembler for the KMC11/DMCI11 microprocessors. It produces
an output listing, acceptable to the assembler kas(1), from the input object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
else). In the first two cases, the header is ignored.

The optional argument —o indicates that the next argument namel is to
contain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels
will be inserted at these locations with format Lint:, where inr is the octal
value of the location in words. Immediate values of instructions are also
printed in octal. Page breaks are noted by the labels PO:, ... , P3:.

SEE ALSO
kas(1), kmc(4).

LD(1) LD(1)

NAME
Id — link editor

SYNOPSIS
Id [—sulxXrdnim] [—0o name] [—t name] [—V num] file ...

DESCRIPTION

Ld combines several object programs into one; resolves external references;
and searches libraries (as created by ar(1)). In the simplest case several
object files are given, and /d combines them, producing an object module
which can be either executed or become the input for a further /d run. (In
the latter case, the —r option must be given to preserve the relocation
bits.) The output of /d is left on a.out. This file is made executable if no
errors occurred during the load and the —r flag was not specified.

The argument routines are concatenated in the order specified. The entry
point of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresol-
ved external reference are loaded. If a routine from a library references
another routine in the library, the referenced routine must appear after the
referencing routine in the library. Thus the order of programs within
libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in C) are
reserved, and if referred to, are set to the first location above the program,
the first location above initialized data, and the first location above all data
respectively. It is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a —.
Except for —1, they should appear before the file names.

—s “‘Strip’’ the output, that is, remove the symbol table and relocation
bits to save space (but impair the usefulness of the debugger).
This information can also be removed by stip(1). This option is
turned off if there are any undefined symbols.

—u Take the following argument as a symbol and enter it as undefined
in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

-1 This option is an abbreviation for a library name. —1 alone stands
for /lib/libc.a, which is the standard system library for C and
assembly language programs. —lIx stands for /lib/libx.a, where x
is a string. If that does not exist, /d tries /usr/lib/libx.a A library
is searched when its name is encountered, so the placement of a —1
is significant.

-x Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external symbols. This option saves some space in
the output file.

—X Save local symbols except for those whose names begin with L.
This option is used by cc to discard internally generated labels while
retaining symbols local to routines.

-r Generate relocation bits in the output file so that it can be the sub-
ject of another /d run. This flag also prevents final definitions from
being given to common symbols, and suppresses the ‘‘undefined
symbol’’ diagnostics.

LD (1)

LD(1)

—d Force definition of common storage even if the —r flag is present.

—n Arrange that when the output file is executed, the text portion will
be read-only and shared among all users executing the file. This
involves moving the data areas up to the first possible 4K word
boundary following the end of the text. On the VAX 11/780, this
option is on by default; use —N to turn it off.

—i When the output file is executed, the program text and data areas
will live in separate address spaces. The only difference between
this option and —n is that Lere the data starts at location 0. This
option is meaningful only on the PDP-11; it does nothing on the
VAX.

—m The names of all files and archive members used to create the out-
put file are written to the standard output.

—o The name argument after —o is used as the name of the /d output
file, instead of a.out.

—t The name argument is taken to be a symbol name, and any
references to or definitions of that symbol are listed, along with
their types. There can be up to 16 occurrences of —tname on the
command line.

—V The num argument is taken as a decimal version number iden-
tifying the a.out that is produced. Nwm must be in the range
0—32767. The version stamp is stored in the a.out header; see
a.out(5).

FILES

/lib/lib?.a libraries

Jusr/lib/lib?.a more libraries

a.out output file

SEE ALSO

ar(1), as(1), cc(1), a.out(5).

LEX(1) LEX(1)

NAME
lex — generate programs for simple lexical tasks

SYNOPSIS
lex [—retvn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to
be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate
character classes, as in [abx—2z] to indicate a, b, x, y, and z; and the opera-
tors #, +, and ? mean respectively any non-negative number of, any posi-
tive number of, and either zero or one occurrences of, the previous charac-
ter or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation
are also supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than |, but lower
than *, ?, +, and concatenation. The character ~ at the beginning of an
expression permits a successful match only immediately after a new-line,
and the character $ at the end of an expression requires a trailing new-line.
The character / in an expression indicates trailing context; only the part of
the expression up to the slash is returned in yytext, but the remainder of
the expression must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within " symbols or preceded by \.
Thus [a—2A —Z]+ matches a string of letters.

Three subroutines defined as macros are expected: input() to read a charac-
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(), and the library
contains a main() which calls it. The action REJECT on the right side of
the rule causes this match to be rejected and the next suitable match execu-
ted; the function yymore() accumulates additional characters into the same
wtext; and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and yytext +yyleng.
The macros input and output use files yyin and yyout to read from and
write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %% it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in YACC. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it
with {}. Note that curly brackets do not imply parentheses; only string sub-
stitution is done.

EXAMPLE
D [0—9]
%%
if printf("IF statement\n");

[a—z] + printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);

-1-

LEX (1) LEX (1)

"++" printf("unary op\n");

"+ printf("binary op\n");

"/ { loop:
while (input() !'= *);
switch (input())

case ’/’: break;
case ‘+’: unput(’r);
default: go to ioop;

}
The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The flag —r indicates RATFOR
actions, —c¢ indicates C actions and is the default, —t causes the lex.yy.c
program to be written instead to standard output, —v provides a one-line
summary of statistics of the machine generated, —n will not print out the
— summary. Maultiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2000)
%n n number of states is n (500)

%t n number of parse tree nodes is n (1000)
%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the —v option,
unless the —n option is used.

SEE ALSO
yacc(1).
LEX — Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

BUGS
The —r option is not yet fully operational.

LINE(1) LINE(1)

NAME
line — read one line

SYNOPSIS
line

DESCRIPTION
Line copies one line (up to a new-line) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a new-line. It is often used within shell files to read from the
user’s terminal.

SEE ALSO
sh(1), read(2).

LINK(1M) LINK (1M)

NAME
link, unlink — exercise link and unlink system calls

SYNOPSIS
/etc/link filel file2
/etc/unlink file

DESCRIPTION
Link and unlink perform their respective system calls on their arguments,
abandoning all error checking. These commands may only be executed by
the super-user, who (it is hoped) knows what he or she is doing.

SEE ALSO
rm(1), link(2), unlink(2).

LINT(1) LINT(1)

NAME

lint — a C program checker
SYNOPSIS

lint [—abchnpuvx] file ...
DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be
bugs, non-portable, or wasteful. It also checks type usage more strictly
than the compilers. Among the things which are currently detected are
unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant.
Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying num-
bers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked
for mutual compatibility. By default, /int uses function definitions from the
standard lint library llib-lc.ln; function definitions from the portable lint
library Ilib-port.In are used when /int is invoked with the —p option.

Any number of lint options may be used, in any order. The following
options are used to suppress certain kinds of complaints:

—a Suppress complaints about assignments of long values to variables
that are not long.

—-b Suppress complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in a
large number of such complaints.)

—c Suppress complaints about casts that have questionable portability.

—h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

—u Suppress complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running l/int on a subset of files of a larger program.)

—-v Suppress complaints about unused arguments in functions.

—x Do not report variables referred to by external declarations but
never used.

The following arguments alter /int’s behavior:

-n Do not check compatibility against either the standard or the porta-
ble lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C.

The —D, —U, and —1I options of cc(1) are also recognized as separate
arguments.

Certain conventional comments in the C source will change the behavior of
lint:
/*NOTREACHED#*/

at appropriate points stops comments about unreachable
code.

/*VARARGSn*/
suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be 0.

LINT(1) LINT(1)

/*ARGSUSED#/
turns on the —v option for the next function.

/sLINTLIBRARY#/
at the beginning of a file shuts off complaints about unused
functions in this file.

Lint produces its first output on a per source file basis. Complaints regar-
ding included files are collected and printed after all source files have been
processed. Finally, information gathered from all input files is collected
and checked for consistency. At this point, if it is not clear whether a com-
plaint stems from a given source file or f.om one of its included files, the
source file name will be printed followed by a question mark.

FILES
/Jusr/lib/lint[12] programs
Jusr/lib/llib-lc.In declarations for standard functions (binary format;
source is in /usr/lib/llib-lc)
/usr/lib/llib-port.In declarations for portable functions (binary format;
source is in /usr/lib/1lib-port)
Jusr/tmp/#lints temporaries
SEE ALSO
cc(1).
BUGS

Exit(2) and other functions which do not return are not understood; this
causes various lies.

LOGIN(1) LOGIN(1)

NAME

login — sign on

DESCRIPTION

The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It can no longer be invoked
explicitly, but is invoked by the system when a connection is first esta-
blished, or after the previous user has logged out by sending an ‘‘end-of-
file’’ (control—D) to his or her initial shell. (See How to Get Started at the
beginning of this volume for instructions on how to dial up initially.)

Login asks for your user name, and, if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password,
so it will not appear on the written record of the session.

At some installations, an option may be invoked that will require you to
enter a second ‘‘external’’ password. This will occur only for dial-up con-
nections, and will be prompted by the message ‘‘External security:”’. Both
passwords are required for a successful login.

If password aging has been invoked by the super-user on your behalf, your
password may have expired. In this case, you will be shunted into
passwd(1) to change it, after which you may attempt to login again.

If you do not complete the login successfully within a certain period of time
(e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, you will be informed
of the existence (if any) of mail, and the profiles (i.e., /etc/profile and
SHOME/.profile) (if any) are executed (see profile(5)). Login initializes the
user and group IDs and the working directory, then executes a command
interpreter (usually sh(l)) according to specifications found in the
/etc/passwd file. Argument O of the command interpreter is — followed
by the last component of the interpreter’s path name. The environment (see
environ(7)) is initialized to:

HOME =your-login-directory

PATH=:/bin:/usr/bin

LOGNAME=your-login-name

FILES
/etc/utmp accounting
/usr/adm/wtmp accounting
/usr/mail/your-name mailbox for user your-name
/etc/motd message-of-the-day
/etc/passwd password file
/etc/profile system profile
SHOME/. profile personal profile

SEE ALSO

mail(1), newgrp(1), sh(l), passwd(l), su(l), passwd(5), profile(5),
environ(7), getty(8).

DIAGNOSTICS

Login incorrect
if the user name or the password is incorrect.
No shell, cannot open password file, no directory:
consult a UNIX programming counselor.
Your password has expired. Choose a new one.
if password aging is implemented.

LOGNAME(1) LOGNAME(1)

NAME
logname — get login name

SYNOPSIS
logname
DESCRIPTION

Logname returns the contents of the environment variable SLOGNAME,
which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(1), logname(3X), environ(7).

LORDER(1) LORDER(1)

NAME

lorder — find ordering relation for an object library
SYNOPSIS

lorder file ...
DESCRIPTION

The input is one or more object or library archive files (see ar(1)). The
standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second. The out-
put may be processed by tsort(1) to find an ordering of a library suitable for
one-pass access by ld(1).
This brash one-liner intends to build a new library from existing .o files.

ar cr library " lorder .0 | tsort”

FILES
ssymref, *symdef temp files
SEE ALSO
ar(1), 1d(1), tsort(1).
BUGS
Object files whose name do not end with .0, even when contained in library

archives, are overlooked. Their global symbols and references are attribu-
ted to some other file.

LPR(1) LPR(1)

NAME

Ipr — line printer spooler
SYNOPSIS

Ipr [option ...] [name ...]
DESCRIPTION

Lpr causes the named files to be queued for printing on a line printer. If

no names appear, the standard input is assumed; thus [pr may be used as a
filter.

The following options may be given (each as a separate argument and in
any order) before any file name arguments:

—c Makes a copy of the file to be sent before returning to the user.

-r Removes the file after sending it.

—m When printing is complete, reports that fact by mail(1).

—n Does not report the completion of printing by mail(1). This is the
default option.

FILES
/etc/passwd user’s identification and accounting data.
Jusr/lib/lpd line printer daemon.
/usr/spool/ipd/« spool area.

SEE ALSO

dpd(1C), dpr(1C), Ipd(1C).

LS(1) LS(1)

NAME
Is — list contents of directories

SYNOPSIS
Is [—logtasdrucif] names

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each
file named, Is repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the
arguments are first sorted appropriately, but file arguments are processed
before directories and their contents. There are several options:

-1 List in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file (see below).
If the file is a special file, the size field will contain the major and
minor device numbers, rather than a size.

-0 The same as —1, except that the group is not printed.
—-g The same as —1, except that the owner is not printed.
—t Sort by time of last modification (latest first) instead of by name.

—a List all entries; in the absence of this option, entries whose names
begin with a period (.) are not listed.

—s Give size in blocks (including indirect blocks) for each entry.

-d If argument is a directory, list only its name; often used with —1 to
get the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

—u Use time of last access instead of last modification for sorting (with
the —t option) and/or printing (with the —1 option).

—c Use time of last modification of the inode (mode, etc.) instead of
last modification of the file for sorting (—t) and/or printing (—1).

—i For each file, print the i-number in the first column of the report.

—-f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off —1, —t, —s, and
—r, and turns on —a; the order is the order in which entries
appear in the directory.

The mode printed under the —1 option consists of 11 characters that are
interpreted as follows:

The first character is:

if the entry is a directory;

if the entry is a block special file;

if the entry is a character special file;

if the entry is a fifo (a.k.a. ‘““named pipe’’) special file;
if the entry is an ordinary file.

|'=Q§'ﬂ-

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner’s permissions; the next to
permissions of others in the user-group of the file; and the last to
all others. Within each set, the three characters indicate permission
to read, to write, and to execute the file as a program, respectively.
For a directory, ‘‘execute’’ permission is interpreted to mean per-
mission to search the directory for a specified file.

-1-

LS(1)

LS(1)

The permissions are indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

— if the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character
is given as s if the file has set-user-ID mode. The last character of
the mode (normally x or —) is t if the 1000 (octal) bit of the mode
is on; see chmod(1) for the meaning of this mode. The indications
of set-ID and 1000 bit of the mode are capitalized if the correspon-
ding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

FILES
/etc/passwd to get user IDs for Is —1 and Is —o.
/etc/group to get group IDs for Is —l and Is —g.
SEE ALSO

chmod(1), find(1).

M4(1) M4(1)

NAME
mé4 — macro processor

SYNOPSIS
md [options] [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other
languages. Each of the argument files is processed in order; if there are no
files, or if a file name is —, the standard input is read. The processed text
is written on the standard output.

The options and their effects are as follows:

—e Operate interactively. Interrupts are ignored and the output is
unbuffered. Using this mode requires a special state of mind.

—s Enable line sync output for the C preprocessor (#line ...)

—Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

—Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

—Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

—Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any —D or —U flags:

—Dname[=val]
Defines name to val or to null in val’s absence.

—Uname
undefines name.

Macro calls have the form:
name(argl,arg2, ..., argn)

The (must immediately follow the name of the macro. If a defined macro
name is not followed by a (, it is deemed to have no arguments. Leading
unquoted blanks, tabs, and new-lines are ignored while -collecting
arguments. Potential macro names consist of alphabetic letters, digits, and
underscore _, where the first character is not a digit.

Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. Macro evaluation proceeds normally
during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection,
the value of the macro is pushed back onto the input stream and rescan-
ned.

M4 makes available the following built-in macros. They may be redefined,
but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of $n in
the replacement text, where n is a digit, is replaced by the n-

-1-

M4(1)

undefine
defn

pushdef
popdef

ifdef

shift

changequote

changecom

divert

undivert

divhum
dnl

ifelse

incr

M4(1)

th argument. Argument O is the name of the macro; missing
arguments are replaced by the null string; $# is replaced by
the number of arguments; $+ is replaced by a list of all the
arguments separated by commas; $@ is like $+, but each
argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one if any.

if the first argument is defined, the value is the second
argument, otherwise the third. If there is no third argument,
the value is null. The word unix is predefined on UNIX ver-
sions of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quo-
ting nullifies the effect of the extra scan that will subsequently
be performed.

change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e.,).

change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new-
line. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string)
argument. Output diverted to a stream other than 0 through
9 is discarded.

causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the