

UNIX

User's Manual

Release 3.0

T. A. Dolotta
s. B. Olsson

A. G. Petruccelli
Editors

June 1980

Not for use or disclosure outside the
Bell System except under written agreement.

Laboratory 364
Bell Telephone Laboratories, Incorporated

Murray Hill, NJ 07974

"-
I
I

I

Copyright © 1980 Bell Telephone Labomtories, Inc.

UNIX is a Tmdemark of Bell Telephone Labomtories, Inc.

This manual was set on an AUTOLOGIC. Inc.
APS-5 phototypesener driven by the TROFF
formatter operating under the UNIX system.

ACKNOWLEDGEMENTS

The form and much of the content of this manual come from the UNIX
Programmer's Manual-Seventh Edition (Volume 1), developed by M. D.
McIlroy. In addition, parts of the present manual's contents are descended
from the UNIX Programmer's Manual-Sixth Edition by K. Thompson and

. D. M. Ritchie (Bell Laboratories, May 1975), the UNIXfTS User's
Manual-Edition 1.1 by T. A. Dolotta and S. B. Olsson, eds. (Bell Labora­
tories, Jan. 1979), and the PWB/UNIX User's Manual-Release 2.0 (Bell
Laboratories, June 1979). P. E. Cannata and G. C. Vogel rewrote Section 2
for this edition. Many members of Centers 127 and 135, and of Laboratory
364 helped in the creation of this volume; their help is hereby gratefully
acknowledged.

Murray Hill, New Jersey T.A.D.
S.B.O.
A.G.P.

INTRODUCTION

This manual describes the features of UNIX. It provides neither a general overview
of UNIX (for that, see "The UNIX Time-Sharing System," BSTJ, Vol. 57, No.6,
Part 2, pp.1905-29, by D. M. Ritchie and K. Thompson), nor details of the
implementation of the system (see "UNIX Implementation," BSTJ, same issue,
pp.1931-46).

Not all commands, features, and facilities described in this manual are available in
every UNIX system; for example, yacc(l) is usually not available in a UNIX system
running on a PDP-ll /23. When in doubt, consult your system's administrator.

This manual is divided into eight sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
Ie. Communications Commands.
IG. Graphics Commands.
1M. System Maintenance Commands.

2. System Calls.
3. Subroutines:

3C. C and Assembler Library Routines.
3M. Mathematical Library Routines.
3S. Standard I/O Library Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games.
7. Miscellaneous Facilities.
8. System Maintenance Procedures.

Se,:tion I (Commands and Application Programs) describes programs intended to be
invoked directly by the user or by command language procedures, as opposed to
subroutines, which are intended to be called by the user's programs. Commands
generally reside in the directory /bin (for biaary programs). Some programs also
reside in /usr/bin, to save space in /bin. These directories are searched automati­
cally by the command interpreter called the shell. Sub-class lC contains communi­
cation programs such as cu, dpr, fget, etc. These entries may differ from system to
system. Sub-class 1M contains system maintenance programs such as fack, mkfs,
etc., which generally reside in the directory /etc; these commands are not intended
for use by the ordinary user due to their privileged nature. Some UNIX systems
have a directory called /asr/lbin, containing local commands.

Section 1 (System Calls) describes the entries into the UNIX supervisor, including
the C language interface.

Section 3 (Subroutines) describes the available subroutines. Their binary versions
reside in various system libraries in the directories /lib and /.sf/lib. See illll'O(3)
for descriptions of these libraries and the files in which they are stored.

Section 4 (Special Files) discusses the characteristics of each system file that actu­
ally refers to an input/output device. The names in this section generally refer to
the Digital Equipment Corporation's device names for the hardware, rather than to
the names of the special files themselves.

Section 5 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out(S). Excluded
are files used by only one command (for example. the assembler's intermediate
files). In general, the C language struct declarations corresponding to these for­
mats can be found in the directories /usr/include and /usr/iac.lude/sys.

- 5 -

I Introduction

Section 6 (Games) describes the games and educational programs that, as a rule,
reside in the directory /usr/games.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot pro­
cedures, etc. Information in this section is not of great interest to most users.

Each section consists of a number of independent entries of a page or so each. The
name of the entry appears in the upper corners of its pages. Entries within each
section are alphabetized,. with the exception of the introductory entry that begins
each section. The page numbers of each entry start at 1. Some entries may
describe several routines, commands, etc. In such cases, the entry appears only
once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A
few conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and pro­
gram names found elsewhere in the manual (they are underlined in the
typed version of the entries).

Square brackets [J around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name" or
"file", it always refers to afile name.

Ellipses .•• are used to show that the previous argument prototype may be
repeated.

A final convention is used by the commands themselves. An argument
beginning with a minus -, plus +, or equal sign =- is often taken to be
some sort of flag argument, even if it appears in a position where a file
name could appear. Therefore, it is unwise to have files whose names
begin with -, +, or ""'.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produ­
ced. Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally,
the suggested fix is also described.

A table of contents and a permuted index derived from that table precede Sec­
tion 1. On each index line, the title of the entry to which that line refers is fol­
lowed by the appropriate section number in parentheses. This is important because
there is considerable duplication of n~mes among the sections, arising principally
from commands that exist only to exercise a particular system call.

On most systems, all entries are available on-line via the man(l) command, q.v.

- 6 -

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX:
how to log in and log out, how to communicate through your terminal, and how to
run a program. (See UNIX for Beginners by B. W. Kernighan for a more complete
introduction to the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports
full-duplex ASCII terminals. You must also have a valid user name, which.may be
obtained (together with the telephone number(s) of your UNIX system) fr.om the
administrator of your system. Common terminal speeds are 10, 15, 30, and 120
characters per second (110, 150, '300, and 1,200 baud); occasionally, speeds of 240,
480, and 960 characters per second (2,400, 4,800, and 9,600 baud) are also availa­
ble. On some UNIX systems, there are separate telephone numbers for each availa­
ble terminal speed, while on other systems several speeds may be served by a
single telephone number. In the latter case, there is one "preferred" speed; if you
dial in from a terminal set to a different speed, you will be greeted by a string of
meaningless characters (the login: message at the wrong speed). Keep bitting tbe
"break" or "attention" key until the login: message appears. Hard-wired ter­
minals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and
a half-/full-duplex switch that should be set to full-duplex. When a connection (at
the speed of the terminal) has been establisbed, the system types login: and you
then type your user name followed by the "return" key. If you have a password
(and you should!), the system asks for it, but does not print ("echo") it on the
terminal. After you have logged in, the "return", "new-line", and "line-feed"
keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type
upper-case letters, UNIX will assume tbat your terminal cannot generate lower-case
letters and that you mean all subsequent upper-case input to be treated as lower
case. When you have logged in successfully, the sbell will type a $ to you. (The
shell is described below under How to run a program.)

For more information, consult login(l) and getty (8) , wbicb discuss the login
sequence in more detail, and stty(l), whicb tells you bow to describe tbe character­
istics of your terminal to the system (profile(5) explains bow to accomplish tbis last
task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up tbe phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character,

usually typed as "control-d") to the sbell. The shell will terminate and tbe
login: message will appear again.

How to communicate through your terminal. Wben you type to UNIX, a gnome
deep in the system is gathering your cbaracters and saving tbem. Tbese characters
will not be given to a program until you type a "return" (or "new-line"), as
described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-abead, wbich means
that you can type at any time, even while a program is typing at you. Of course, if
you type during output, the output will bave interspersed in it tbe input characters.
However, whatever you type will be saved and interpreted in the correct sequence.
There is a limit to the amount of read-ahead, but it is generous and not likely to be
exceeded unless the system is in trouble. When the read-ahead limit is exceeded,
the system throws away all the saved characters.

- 7 -

I

I How To Get Started

On an input line from a terminal, the character @ "kills" all the characters typed
before it. The character , erases the last character typed. Successive uses of ,
will erase characters back to, but not beyond, the beginning of the line; @ and ,
can be typed as themselves by preceding them with \ (thUS, to erase a \, you need
two Is). These default erase and kill characters can be changed; see stty(l).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is
useful with CRT terminals to prevent output from disappearing before it can be
read. Output is resumed when a DCI (control-q) or a second DC3 (or any other
character, for that matter) is typed. The DCI and DC3 characters are not passed to
any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead
generates an interrupt signal. just like the "break", "interrupt", or "attention" sig­
nal. This signal generally causes whatever program you are running to terminate.
It is typically used to stop a long printout that you don't want. However, programs
can arrange either to ignore this signal altogether, or to be notified when it happens
(instead of being terminated). The editor ed(I), for example, catches interrupts
and stops what it is doing, instead of terminating, so that an interrupt can be used
to halt an editor printout without losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a
running program to terminate, but also generates a file with the "core image" of
the terminated process. Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent as to
whether you have a terminal with the "new-line" function, or whether it must be
simulated with a "carriage-return" and "line-feed" pair. In the latter case, all
input "carriage-return" characters are changed to "line-feed" characters (the stan­
dard line delimiter), and a "carriage-return" and "line-feed" pair is echoed to the
terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not
have the tab function, you can arrange to have tab characters changed into spaces
during output, and echoed as spaces during input. Again, the stty(l) command will
set or reset this mode. The system assumes that tabs are set every eight character
positions. The tabs (1) command will set tab stops on your terminal, if that is pos­
sible.

How to run a program. When you have successfully logged into UNIX, a program
called the shell is listening to your terminal. The shell reads the lines you type,
splits them into a command name and its arguments, and executes the command.
A command is simply an executable program. Normally, the shell looks first in
your current directory (see The current directory below) for a program with the
given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories
where the shell can find them. You can also keep commands in your own direc­
tories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command
and its arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a S at
you to indicate that it is ready for another command. The shell has many other
capabilities, which are described in detail in sh(l).

The current directory. UNIX has a file system arranged in a hierarchy of direc­
tories. When the system administrator gave you a user name, he or she also
created a directory for you (ordinarily with the same name as your user name, and
known as your login or home directory). When you log in, that directory becomes
your current or working directory, and any file name you type is by default assumed

- 8 -

How To Get Started

to be in that directory. Because you are the owner of this directory, you have full
permissions to read, write, alter, or destroy its contents. Permissions to have your
will with other directories and files will have been granted or denied to you by their
respective owners, or by the system administrator. To change the current directory
use cd (I).

Path names. To refer to files not in the current directory, you must use a path
name. Full path names begin with /, which is the name of the root directory of the
whole file system. After the slash comes the name of each directory containing the
next sub-directory (followed by a f), until finally the file name is reached (e.g.,
jusr jae/filex refers to file filex in directory ae, while ae is itself a subdirectory of
usr; usr springs directly from the root directory). See intro(2) for a formal
definition of path name.

If your current directory contains subdirectories, the path names of files therein
begin with the name of the corresponding subdirectory (without a prefixed f).
Without important exception, a path name may be used anywhere a file name is
required.

Important commands that modify the contents of files are cp(l), mv(l), and ,.",(1),
which respectively copy, move (i.e., rename), and remove files. To find out the
status of files or directories, use Is(1). Use mkdir(l) for making directories and
rmdir(l) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning
of the INTRODUCTION above. It may also be useful to glance through Section 2 of
this manual, which discusses system calls, even if you don't intend to deal with the
system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use
ed(l). The four principal languages available under UNIX are C (see cc(1», For­
tran (seej77(1», bs (a compiler/interpreter in the spirit of Basic, see bs(l», and
assembly language (see as (1 ». After the program text has been entered with the
editor and written into a file (whose name has the appropriate suffix), you can give
the name of that file to the appropriate language processor as an argument. Nor­
mally, the output of the language processor will be left in a file in the current direc­
tory named a.out (if that output is precious, use mv(1) to give it a less vulnerable
name). If the program is written in assembly language, you will probably need to
load with it library subroutines (see Id(1». Fortran and C call the loader automati­
cally; programs written in bs(l) are interpreted and, therefore, do not need to be
loaded.

When you have finally gone through this entire process without provoking any
diagnostics, the resulting program can be run by giving its name to the shell in
response to the $ prompt.

If any execution (run-time) errors occur, you will need adb(l) to examine the
remains of your program. On the VAX-ll/780, a second debugger sdb(l), which
allows you to step through C statements rather than assembler instructions, is
available.

Your programs can receive arguments from the command line just as system pro­
grams do; see exec(2).

Text processing. Almost all text is entered through the editor ed(l). The com­
mands most often used to write text on a terminal are cat(1), pr(l), and 1U'Off(1).
The cat (1) command simply dumps ASCD text on the terminal, with no processing
at all. The pr(I) command paginates the text, supplies headings, and has a facility
for multi-column output. Nroff(l) is an elaborate text formatting program, and
requires careful forethought in entering both the text and the formatting commands
into the input file; it produces output on a typewriter-like terminal. Troff(l) is very

- 9 -

I

I How To Get Started

similar to nroff(I), but produces its output on a phototypesetter (it was used to
typeset this manual). There are several "macro" packages (especially the so-called
mm package) that significantly ease the effort required to use nroff(l) and troff(l);
Section 7 entries for these packages indicate where you can find their detailed
descriptions.

Surprises. Certain commands provide inteT-user communication. Even if you do
not plan to use them, it would be well to learn something about them, because
someone else may aim them at you. To communicate with another user currently
logged in, write (1) is used; mail(l) will leave a message whose presence will be
announced to another user when he or she next logs in. The corresponding entries
in this manual also suggest how to respond to these two commands if you are their
target.

When you log in, a message-of-the-day may greet you before the first $.

- 10 -

T ABLE OF CONTENTS

1. Commands and Application Programs

intro . . . • • • • • • • introduction to commands and application programs
300 . . handle special functions of DASI 300 and 300s terminals
4014 ..•.• " ••.••.•. paginator for the Tektronix 4014 terminal
450 . . • • . • • . • . • handle special functions of the DASI 450 terminal
acct ...• overview of accounting and misceIlaneous accounting commands
acctcms ..•... command summary from per-process accounting records
acctcom ...•••••••.•• search and print process accounting file(s)
acctcon • • • . • . • . . • • . • • . • . connect-time accounting
acctmerg • • • . . • • . • . merge or add total accounting files
acctprc • . • • • • • . • . • • • • • process accounting
acctsh • . . • • • • • . . . • • . • • • • • shell procedures for accounting
adb . . • • . . . • • • • • . • . . • • . . • . debugger
admin . • . • . • • . • • • . create and administer sces files
ar • • • . . . • . . • . . . • . . . • . • . archive and library maintainer
arcv •.••••. convert archive files from PDP-II to VAX-I 1/780 format
as.pdp . • • . • . • • . . • • • • • • . . • • . • • assembler for PDP-II
as.vax ••...•.•.•.•.....••. assembler for VAX-Il/780
awk • . . . • • • • • pattern scanning and processing language
banner ...•.•........•••.•.••.•.• make posters
basename • . • . • . • . . • • . . . • • . deliver portions of path names
be • . • • • • • • • • • • • • . • • arbitrary-precision arithmetic language
beopy . . • . • . • • • • . • • • . • • • • • • • • interactive block copy
bdiff • • • • • • • • • . . • • . . • • . • • • • . • . • . . • . big diff
bfs ••••..••.•..••..•.••..•...• big file scanner
bs •.•••....... a compiler/interpreter for modest-sized programs
cal . • . . • • . • • • . • • • . • • . • . • • • • • . • • print calendar
calendar • • . • • . • • • • • • • • • • • • • • • • . • reminder service
cat ••••.•.••••••••••••.•. concatenate and print files
cb . • . . . • • • • . . • • • • • • • • • • • • • • C program beautifier
cc • . . • • • • • . • . • • • • • • • • • • • . • • • • • • • C compiler
cd • . • • • • . • . • • • • • • . • • • • • • • change working directory
cdc • • • • • • • • • • • • . change the delta commentary of an sces delta
chmod. • • . • change mode
chown . • • . • • . • • • • • • • • • • • • • • • change owner or group
chroot . • • • • . • • • • • • • • . • change root directory for a command
clri • • • • • • • • • • • • • • • • • . • • • . • • • • . . • clear i-node
cmp • • • • • • • . • • . • • • • • • • • • • • • • . • compare two files
col • • • • • • • • • • • • • • filter reverse line-feeds
comb • • • • • • • • • • . • • combine sees deltas
comm • select or reject lines common to two sorted files
config • • configure a UNIX system
cp • • • • • copy, link or move files
cpio • • copy file archives in and out
crash • • • • examine system images
cref • • make cross-reference listing
cron ••••••••••••••••••••••••••• clock daemon
crypt. • • • • • • • • • • . • • • • • • • • . encode/decode
csplit • . • context split
ct • call terminal
cu • call another UNIX system
cut • • • • • • • • • • • • • • • cut out selected fields of each line of a file
cw • • • • • • • • • • • • • • • • • • prepare constant-width text for troff
date • print and set the date

- 1 -

Table of Contents

dc . • . . • . . • • desk calculator
dd • • • • . • . • • • • . convert and copy a file
delta ••.•.•.••••••••• make a delta (change) to an sces file
deroff. • • • • • • • • • • • • • remove nroff /troff, tbl, and eq n constructs
devnm • • • . • • • • • • • • • • • • • • • • . • • . • • • device name
df •.•••••• • • • • • • • • • • . report number of free disk blocks
diff . . . • • • . • • • • • • • • • • • • • • • differential file comparator
diff3 .••••.•••••••••.•• 3-way differential file comparison
diffmk • • • • • • • • • • • • • • • • mark differences between files
dircmp • • • • • • • • • • • .'. • • • • • . • • • • directory comparison
dpd ••••••••• HONEYWELL sending daemons, line printer daemon
dpr ••••••••••••••••••• • • • . • • • • • off-line print
du •••••••••••••••••••••••• summarize disk usage
dump. • • • • • • • • • • • • • • • • • • • incremental file system dump
echo •.. • • • • • • • . • • . • • • • • . • • • • • • echo arguments
ed • • • • • • • . • • • • • • • • • • • • • • • • text editor
eft • . • . . . • • • • • . • • • • • • • • . • Extended Fortran Language
env ••••••••••••••• set environment for command execution
eqn • • • • • • • • • • • • • • • format mathematical text for nroff or troff
errdead. • • . • extract error records from dump
errdemon •••••••.••••••••••.•. error-logging daemon
errpt • .. • • • . • • • • • • • • • . process a report of logged errors
errstop •• • • • • • • • • • • • • • • terminate the error-logging daemon
expr • • . • • • • • • • • • . • • • . evaluate arguments as an expression
f77 • . • • • • • • . • • • • • • • • • • • • • • . • Fortran 77 compiler
factor •••••••••••••.• factor a number, generate large primes
fget • • • • . • • • • • • • • • retrieve files from the HONEYWELL 6000
fget.demon • . file retrieval daemons
file • • • . • determine file type
find • • • • . • . • • • • • • • • • • • • • • • • • • . • • • . find files
fsck • • • • • • • • • • • file system consistency check and interactive repair
fscv •••••••• convert files between PDP-II and V AX-II /780 systems
fsdb •••••••••••••••••••••.•• file system debugger
fsend •••••••••••••••• send files to the HONEYWELL 6000
fwtmp •••• • • • • • • • • • • • • • • • • • manipulate wtmp records
gcat. • • • • • • • • send phototypesetter output to the HONEYWELL 6000
gcosmail • • • • • • . send mail to HIS user
gdev • graphical device routines and filters
ged • • • . • . • . graphical editor
get • • • • • . • • • • • • • • • • • . • • • get a version of an sces file
getopt • parse command options
graph • • • • • • • • • • • • . • • draw a graph
graphics • • • • • • • • • • • • • access graphical and numerical commands
greek • select terminal filter
grep ••• search a file for a pattern
gutil • . graphical utilities
help • ask for help
hp •••••• handle special functions of HP 2640 and 2621-series terminals
hyphen • • • . • • • • • • • • • • • • • • • • • • find hyphenated words
id •••••••••••••••••• print user and group IDs and names
install • • . . • • • . • • • . • • • • • • • • • . • • • install commands
join ••.••••••••••••••••.• relational database operator
kas • • • • • • • • • • • • • • • assembler for the KMCII microprocessor
kill • • • • • • • • • • • • • • • • • . terminate a process
kun • un-assembler for the KMCll/DMCII microprocessor
ld • • • • • • • • • • • • • • • • • • . • • • • link editor

- 2 -

Table of Contents

lex ...•..........• generate programs for simple lexical tasks
line . • • • . • • . • read one line
link . exercise link and unlink system calls
lint • • . • . • • • • • • • . . • • a e program checker
login . . • • • . . • • . . • • . . ". . . • • sign on
logname . . . • • . • . • . • • • • . . . get login name
lorder . . . • • . . • . . • . . . find ordering relation for an object library
Ipr • • . • • . . • . • • • • . . . line printer spooler
Is . . • • • • • • . . • . . • . list contents of directories
m4 • . • • . . • • • . • • . • . . . • macro processor
mail. • • • . . send mail to use\"s or read mail
make • . . • • maintain, update, and regenerate groups of programs
man .•.•......•...•.••.•• print entries in this manual
mesg . . • • . • . . • • . . • . . • • . . • • • permit or deny messages
mkdir . . . • . . . • • . • • . • . • . . . • • • . • . make a directory
mkfs • . • • • . • • . . . • • • . . • • . construct a file system
mknod . . . • • . . • • • . • • build special file
mm • • . . print out documents formatted with the MM macros
mmchek . • • . • • • check usage of mm macros and eqn delimiters
mmt . • typeset documents, view graphs, and slides
mount . mount and dismount file system
mvdir . . • • • • • • . move a directory
ncheck . • generate names from i-numbers
newgrp . • • • • • • log in to a new group
news . • • • • • . • • . print news items
nice • • . • • . • • . • • . • . • • • • • • run a command at low priority
nl •.•.•••••..•..•••.•••.••• line numbering filter
nm .•••..•••..••••.•.•.•••.•.. print name list
nohup . • • . • • • . • • • . run a command immune to hangups and quits
od ••••.•.•••.•••...•••••.•..••. octal dump
orjestat • . • . • • • • • • • • • • • . • • • • • RJE status and enquiries
pack • • • • • . • • • • • • • • • • • • • • • . compress and expand files
passwd ••••••••.• • • • • . • • • • • • • change login password
paste. . • • • merge same lines of several files or subsequent lines of one file
pr • • • • • • • • . • • • • • • • • • • • • • • . • • • • print files
prof • • • • • • • • . • • . • • • • • • • • • • • • • display profile data
pro filer • operating system profiler
prs • • • • • • • • print an sees file
ps • • • • • report process status
ptx • • . • • • • • permuted index
pwck . • . • • • • • • • . password/group file checkers
pwd • • • • • • • • • • • • • .". • • • • • • • • working directory name
ratfor . • rational Fortran dialect
reform • reformat text file
regcmp • • • • • • • • • • • • • • . • • • • • regular expression compile
restor • • • • • • • • • • • • • • • • • • • incremental file system restore
rjestat ••••••••••• RJE status report and interactive status console
rm ••••••.••••••••••••••• remove files or directories
rmdel • • • • • • remove a delta from an sees file
rsh • • • restricted shell (command interpreter)
runacct • • • • • • • • • • run daily accounting
sact • • • print current sees file editing activity
sag. • system activity graph
scc. • • • • • • • • • • • • • • • • • e compiler for stand-alone programs
sccsdiff • • • • • • • • • • • • • • • compare two versions ol an sees file
sdb • symbolic debugger

- 3 -

Table of Contents

sdiff • . • side-by-side difference program
sed . . • . • • • • . . . • stream editor
send • gather files and/or submit RJE jobs
setmnt • • • . establish mnttab table
sh • • . • • • • shell, the standard command programming language
shutdown ..••...••••.••••••.. terminate all processing
size • . • • • . • . size of an object file
sleep . suspend execution for an interval
sno . • • SNOBOL interpreter
sort •. sort and/or merge files
spell . • • . find spelling errors
spline . • interpolate smooth curve
split • • • . split a file into pieces
st. . • • • • • • • . • . • • synchronous terminal control
stat • • • • • • • • • • • statistical network useful with graphical commands
strip. • • . • • • • . • • • • • remove symbols and relocation bits
stty . • • . . • . . • • . • . • • • • • . . . set the options for a terminal
su . . . • • . . • • • • • • • • • • • • become super-user or another user
sum • • . . • • • • • • • • • • • • • . • • sum and count blocks in a file
sync • . • • • • • • • . • • • . • . . . • • • • . update the super block
sysdef • • . • • • • . • • • • • • • • • • • • . • • . • system definition
tabs . . . • • • • • • . . • • • • . . • • set tabs on a terminal
tail • • • deliver the last part of a file
tar • . • . • . • . tape file archiver
tbl • • format tables for nroff or troff
tc . . • phototypesetter simulator
tee ••••••••••••••••••••••.••...• pipe fitting
test • condition evaluation command
time • . • • • . • • • • • • • • • • • • • • • • • • . • time a command
timex. • • • • • • • • time a command and generate a system activity report
toc ••••••••••••••••.• graphical table of contents routines
touch. • • • • • • • • • • • • update aa:ess and modification times of a file
tp • • manipulate tape archive
tplot • • • • • • • • • • . • • . . • • . • . • • • graphics filters
tr • • . • translate characters
troff • • • • . • • • • • • • • • • • • • • • • • • • typeset or format text
true. . • • . . • • • • • • • • • • • • • • • • • • • provide truth values
tsort • • • • • . • • • • topological sort
tty. • . • • • • • • • • • • • • • • . • • • • • • get the terminal's name
typo • • • • • • • . • • • • • • • • • • • find possible typographical errors
umask • . • • • • • • • • • • • • • • • • • • set file-creation mode mask
uname. • • • • • • • • • • • • • • • • • • • print name of current UNIX
unget • • • •• •••• undo a previous get of an sees file
uniq. • • . • • • • • • • • • • • • • • . • • report repeated lines in a file
units •••••••••••••••••••••••• conversion program
uuclean • • • • • • • • • • • • • • • • • • • uucp spool directory clean-up
uucp ••..•••••••••••••••••.••• unix to unix copy
uustat • • • • • • • • . • • • • • • • . uucp status inquiry and job control
uusub • monitor uucp network
uuto • • • • • • • • • • • • • • • • • • • public UNIX-to-UNIX file copy
uux . . • • • • • . . • • • . • • . . • . unix to unix command execution
val • validate sees file
vc • . • • • • . version control
vlx ••••••.••.••••• V AX-ll /780 LSI console floppy interface
volcopy . • • • copy file systems with label checking
vpmc •••••.•••••••• compiler for the virtual protocol machine

- 4 -

Table of Contents

vpmstart • . . • load the KMCII-B; print VPM traces
vpr • • • . . • . • • • . . Versatec printer spooler
wait • • • • . await completion of process
wall • . • . . • . • • • write to all users
we • . . . • . • • • . • . . . word count
what . identify sces files
who • • who is on the system
whodo•............. who is doing what
write • . • . . • . • . . . • write to another user
xargs .•......••• construct argument list(s) and execute command
xref . . • • cross reference for C programs
yacc • . . • . . . • . • • . • . • • yet another compiler-compiler

2. System Calls

intro . . • . . • • • introduction to system calls and error numbers
access determine accessibility of a file
acct enable or disable process accounting
alarm set a process's alarm clock
brk .•.....•.....•.•. change data segment space allocation
chdir . • . . • . . . • • . . • change working directory
chmod. . . . • . • . . . • • • . . change mode of file
chown . • . • . • • . • . . . • change owner and group of a file
chroot • • . . . • • . . • • • change root directory
close ..••••.•.•..•.•.•..•... close a file descriptor
creat . • . . • . • • • • • . • . create a new file or rewrite an existing one
dup•...••••.•.•. duplicate an open file descriptor
exec. . . • execute a file
exit . • . . • • • • . . • . • • • terminate process
fcntl . • • • . • • • • • • • • • • • • . . • • • • • • file control
fork ••...•••.•.•.••.•.••.•.• create a new process
getpid • . . . • • . . • . get process, process group, and parent process IDs
getuid . • • • get real user, effective user, real group, and effective group IDs
ioctl • • • . • • . • • • • . . control device
kill . • • • • • • • • • • • send a signal to a process or a group of processes
link .•...•.•••••••••.•.•.••••.• link to a file
lseek. . • • • • • • • • • • • • . • . • • • • move read/write file pointer
mknod • • • . . . • • . • • • make a directory, or a special or ordinary file
mount • • • . . . • • • • . • • • • • • • • • • . • • mount a file system
nice ••••••••••••••.•.•..• change priority of a process
open • • . . • • • • • • • • • • • • • • . • • open for reading or writing
pause •..••••••••.••••.••• suspend process until signal
pipe . • • • • • • . • • • • • • • . • • . . create an interprocess channel
profil •.••.••••••••.••••••••• execution time profile
ptrace • • . • • . • • • • • • • • • • • • • • • • • . • • • process trace
read • . • • • read from file
setpgrp • • • . • . • • • • • • • • • • . • • • • • • set process group 10
setuid ••.••••••••••••••••.•• set user and group IDs
signal • • • • • . • • • • • • . • specify what to do upon receipt of a signal
stat • get file status
stime • • • . • • set time
sync • • • • • • • • • • update super-block
time • • • • • • • • • • • • . • • get time
times • • get process and child process times
ulimit • get and set user limits
umask • set and get file creation mask
umount • • • • • • • • • • • • • • • • • un mount a file system

- 5 -

Table of Contents

uname • get name of current UNIX system
unlink • • • • • . remove directory entry
ustat • • • • • • . get file system statistics
utime •• • • • • • • • • • • • • • • set file access and modification times
wait • . . • • • . • • • • • . • • wait for child process to stop or terminate
write • • • • • . . • • • • • • • • • • • • • • . • • • • • write on a file

3. Subroutines

intro • • • • • • • • • . • • introduction to subroutines and libraries
a641 • • . . • • • • . • • • • • • convert between long and base-64 ASCII
abort •.••••••••••••••••••••• generate an lOT fault
abs • • • . integer absolute value
assert . • • . program verification
atof • • convert ASCII to numbers
bessel • • • • • . • bessel functions
bsearch . • • • binary search
conv • • character translation
crypt • • . • . . • • DES encryption
ctermid • generate file name for terminal
ctime • • • • • • • •• ••••• convert date and time to ASCII
ctype . • . • • • • • • • • • • • • • • • . • • • • character classification
cuserid . • . . • • • • • • • • • • • • • • character lo~n name of the user
ecvt. • . • • • • • • • • • • • • • • . • • • • • . • • output conversion
end • last locations in program
exp •..•.••••• exponential, logarithm. power, square root functions
fclose • . • close or flush a stream
ferror • stream status inquiries
floor • • • • • • • • • • • absolute value, floor, ceiling, remainder functions
fopen • • • • . • • • • • • • • • • • • • . . • • • • • . • open a stream
fptrap • . • floating point interpreter
fread • buffered binary input/output
frexp. • • . • • • • • • • • • • • • • • • split into mantissa and exponent
fseek. • . • reposition a stream
gamma • • • • • • • • • • • • • • • • • • . . • • • log gamma function
getc ••••••••••••••••• get character or word from stream
getenv. • • • • • • • • • • • • • • • • • • • value for environment name
getgrent • get group file entry
getlogin •••••••••••••••••••••••.• get login name
getopt • • get option letter from argv
getpass • • • • read a password
getpw • • • . . get name from UID
getpwent • • • get password file entry
gets • • • • • • • • • • • • • • • . • • • • • • get a string from a stream
hypot • • • • • • • • • • • • • • • • • Euclidean distance
13tol • • • • • • • • • • • convert between 3-byte integers and long integers
logname • login name of user
Isearch ••••••••••••••••••••• linear search and update
malloc • • • • • • • • • • • • • • • • • • • . • • main memory allocator
mktemp • make a unique file name
monitor • prepare execution profile
nlist • get entries from name list
perror. • system error messages
plot .••••••••••••••••••• graphics interface subroutines
popen ••••••••••••••••••• initiate I/O to/from a process
printf • • • . • output formatters
putc • • • • • • • • • • • • • • • put character or word on a stream

- 6 -

Table of Contents

putpwent •••••••••••••••••••• write password file entry
puts • put a string on a stream
qsort • • • • • • . • quicker sort
rand •••••••••••••••••••••• random number generator
regex . • • • • • • • • • • • • • • • • regular expression compile/execute
scanf • • • • • • • • • • • • • • • • • • formatted input conversion
setbuf • • • • • • • • . • • • • • • • • • • • assign buffering to a stream
setjmp • • • • • • . • • • • • • • • • • • • • • • • • • • non-local goto
sinh •••••••••.•••••••••••••• hyperbolic functions
sleep. • • • • • • • • • • • • • • • • . • • suspend execution for interval
ssignal ••••••••••••.•••••••••••• softw:orr. signals
stdio ••••••••.••••••• standard buffered input/output package
string ••••.•••••••••••••••••••• string operations
swab. • . • • . • swap bytes
system •• issue a shell command
tmpfile ••••••••.••••••.•••••• create a temporary file
tmpnam ••••••••.••••••• create a name for a temporary file
trig ••••.•••••••••••••••••• trigonometric functions
ttyname • • • • • • • • • • • • . • • • • . • • . find name of a terminal
ungetc. • • • • • • • . • • • • • • • push character back into input stream

4. Special Files

intro • . • • • • • • • • • • • • • • • • • • • introduction to special files
cat • • • . • • • • • • • • • • • • • • • • • • • phototypesetter interface
dj •••••••••••••••••••• DJ-ll asynchronous multiplexor
dmc •••••••••• communications link with built-in DDCMP protocol
dn •••••••••••••••••••••••• DN-II ACU interface
dqs • • • • • • • • • • • • • • • • • • DQS-II interface for two-point BSC
du • • • • • • • • • • • • • • • • • • • DU-II synchronous line interface
dz ••••••• DZ-ll. DZ-ll/KMC-ll. DH-ll asynchronous multiplexers
err • • • • • • • • • • • • • • • •. • • • • • • • • error-logging interface
hp • • • • • • • • • • • • • • • • • • RP04/RP05/RP06 moving-head disk
hs ••••••••••.••••• RHI1/RJS03-RJS04 fixed-head disk file
ht •••• • • • • • • • • • • • • • • • • • TU 16 magnetic tape interface
kl. • • • • • • • • • • • • • • • • KL-ll or DL-ll asynchronous interface
kmc • KMCll microprocessor
lp • line printer
mem ••••••••••••••••••••••••••• core memory
null • • • • • • • • • • • • • • the null file
pel • pa~llel communications link interface
prf • • • • • • • • • • operating system profiler
rf. • • • • • • ••• RFll/RSll fixed-head disk file
rk • • • • • • • • • • • • • • • • • ••• • • • RK-ll/RK03 or RK05 disk
rl • • • • • • • • • • •• RL-ii/RLOI disk
rp •••••••••••••••••••• RP-ll/RP03 moving-head disk
st • synchronous terminal interface
tm •••••••••••••••••• TMII/TUIO magnetic tape interface
trace •••••••••••••••••••••••• event-tracing driver
tty • general terminal interface
vp • Versatec printer
vpm • The Virtual Protocol Machine

5. File For.ats

intro • introduction to file formats
a.out • • • • • • • • • • • • • • • • • • • assembler and link editor output

- 7 -

Table of Contents

acct. • • • • • per-process accounting file format
ar • • • • • • • • • • • • • • • archive file format
checklist • • list of file systems processed by fsck
core • • • • • • • format of core image file
cpio • format of cpio archive
dir • format of directories
dump • • • • • • • • • • • • • • • • • • • incremental dump tape format
errfile • error-log file format
fs ••••••••••••••••••••••• format of system volume
fspec • • • • • • • • • • • • • • • • • • • format specification in text files
gps ••••••••••• graphical primitive string, format of graphical files
group • group file
inittab •••••••••••••••••••• control information for init
inode. • format of an inode
master • • • • • • • • • • • • • • • • • • master device information table
mnttab • mounted file system table
passwd • • • • • • • • • • • • • • password file
plot • • • • • • • • • • • • • graphics interface
pnch • • • •• ••••••• file format for card images
profile • • • • setting up an environment at login time
sccsfile • • • • • • • • • • • • • • format of sees file
tp • magnetic tape format
utmp • utmp and wtmp entry format

6. Games

intro. introduction to games
arithmetic • • • • • • • • • • • • • • • • • • provide drill in number facts
back • the game of backgammon
bj. • • • • • • • the game of black jack
chess . . . ". the game of chess
craps . • the game of craps
hangman • guess the word
maze • generate a maze
moo • .. guessing game
quiz. • test your knowledge
reversi. • • • • • • • • • • • • • • • • • • • a game of dramatic r~versals
sky • obtain ephemerides
ttt • tic-tac-toe
wump • • • • • • • • • • • • • • • • • • • the game of hunt-the-wumpus

7. Miscellaneous Facilities

intro • • • • • • • • • • • ... • • • • • • • • • introduction to miscellany
ascii •••••• • • • • • • • • • • • • • • • map of ASCII character set
environ • user environment.
eqnchar • • • • special character definitions for eqn and neqn
fcntl • file control options
greek ••••••••••••• graphics for the extended TIY -37 type-box
man ••••••••••••• macros for formatting entries in this manual
mm • • • • • • • • • • • the MM macro package for formatting documents
mv • • • • • • • • • • • • • • • • a macro package for making view graphs
regexp ••••••••••• regular expression compile and match routines
stat ••••••••••••••••••• data returned by stat system call
term •••••••••••••••••••••••• conventional names
types • primitive system data types

- 8 -

Table of Contents

8. System Maintenance Procedures

intro • • introduction to system maintenance procedures
70boot • • • . . 11/70 bootstrap procedures
crash • • . . . what to do when the system crashes
diskboot . disk bootstrap programs
etp • • . Equipment Test Package
filesave daily/weekly UNIX file system backup
getty . set the modes of a terminal
hasp. • . • RJE (Remote Job Entry) to IBM
Inlt•........• process control initialization
makekey • . . . • . . . generate encryption key
mk . bow to remake the system and commands
rc. • . • . . • . . • . . system initialization shell script
rje • . . RJE (Remote Job Entry) to IBM
romboot••.. special ROM bootstrap loaders
rp6fmt•....... format and/or check RP06 disk packs
sar • . . . • . • system activity report package
tape boot . . . • magnetic tape bootstrap program
unix boot . • • UNIX startup and boot procedures
uvac •............••. RJE (Remote Job Entry) to UNIVAC
vaxops . . . • • . . • . V AX-ll /180 console operations

- 9 -

PERMUTED INDEX

70boot: 11/70 bootstrap procedures. 70boot(8)
/functions of HP 2640 and 2621-series terminals. • • hP(l)

handle special functions of HP 2640 and 2621-series/ hp: • hp(l)
functions of DASI 300 and/ 300, 3005: handle special 300(1)

/special functions of DASI 300 and 3005 terminals. • • 300(1)
of DASI 300 and 3005/ 300, 3005: handle special functions 300(1)

functions of DASI 300 and 300s terminals. /special • 300(1)
13tol, Itol3: convert between 3-byte integers and long/ 13tol(3C)

comparison. diff3: 3-way differential file • • diff3(1)
Tektronix 4014 terminal. 4014: paginator for the 4014(1)

paginator for the Tektronix 4014 terminal. 4014: 4014(1)
of the DASI 4S0 terminal. 4S0: handle special functions 4S0(1)

special functions of the DASI 4S0 terminal. 4S0: handle 4S0(1)
files from the HONEYWELL 6000. fget: retrieve • • • • fget(lC)

send files to the HONEYWELL 6000. fsend: • • • • • • • fsend(lC)
output to the HONEYWELL 6000. /send phototypesetter gcat(lC)

procedures. 70boot: 11/70 bootstrap • • 70boot(8)
f77: Fortran 77 compiler. • • • • • • • f77(l)

long and base-64 ASCII. a64I, 1648: convert between a641(3C)
abort: generate an lOT fault. abort(3C)
abs: integer absolute value. abs(3C)

abs: integer absolute value. • • • • • • abs(3C)
floor. fabs, ceil, fmod: absolute value, ftoor,/ ftoor(3M)
of a file. touch: update access and modification times touch(1)

utime: set file access and modification times. utime(2)
accessibility of a file. access: determine ••••• access(2)

commands. graphics: access graphical and numerical graphics(lG)
access: determine accessibility of a file. access(2)

enable or disable process accounting. acct: acct(2)
acctcon: connect-time accounting. • • acctcon(lM)

acctprc: process accounting. acctprc(1M)
acctsh: shell procedures for accounting. acctsh(IM)

accounting/ acct: overview of accounting and miscellaneous acct(lM)
accounting and mi~llaneous accounting commands. /of acct(lM)

acct: per-proc:ss accounting file format. acct(S)
search and print process accounting file(s). acctcom: acctcom(l)

acctmerg: merge or add total accounting files. ••••• acctmerJ(lM)
summary from per-process accounting records. /command acctcms(lM)

runacct: run daily accounting. ••••••• runacct(lM)
process accounting. acct: enable or disable acct(2)

and miscellaneous accountingf acct: ove"icw of accounting acct(IM)
file format. acct: per-process accounting acct(S)

per-process accounting/ acctcms:"command summary from • acctcml(lM)
process accounting file(s). acctcom: search and print • acctcom(l)

accounting. acctcon: connect-time • • • acctcon(1 M)
accounting files. acctmerg: merge or add total acctmerg(1M)

acctprc: process accounting. acctprc(1M)
accounting. acctsh: shell procedures for acctsh(1M)

sin, cos, tan, asin, &cos, atan, atan2:/ trig(3M)
sag: system activity graph. sag(1M)
sar: system activity report packqe. • • sar(8)

command and generate a system activity report. /time a • timell.(1)
current sees file editing activity. sact: print •• • sact(l)

dn: DN-II ACU interface. dn(4)
adb: debugger. •• • • adb(1)

acctmerg: merge or add total accounting files. acctmerJ(lM)
sees files. admin: create and administer • admin(l)

admin: create and administer sees files. ••••• admin(1)
alarm: set a process's alarm clock. ••••••• • •• alarm(2)

clock. alarm: set a process's alarm • alarm(2)

- 1 -

Permuted Index

change data segment space allocation. brk, sbrk: •• • •
rcalloc, calloc: main memory allocator. malloc, free,

rp6fmt: format and/or check RP06 disk packs.
sort: sort and/or merge files. • • • •

send, gath: gather files and/or submit RJEjobs.
link editor output. a.out: assembler and

introduction to commands and application programs. intro:
maintainer. ar: archive and library

ar: archive file format.
language. be: arbitrary-precision arithmetic

maintainer. ar: archive and library ••••
cpio: format of cpio. archive. • ••••••••

ar: archive file format. • • • •
VAX-Il/180/ arev: convert archive files from POP-ll to

tp: manipUlate tape archive. • • • • •
tar: tape file archiver. •••••••

cpio: copy file archives in and out.
from POP-ll to V AX-ll/780/ arcv: convert archive files

command. xargs: construct argument Iist(s) and execute
expr: evaluate arguments as an expression.

echo: echo arguments.
getopt: get option letter from argv. •••••••••

be: arbitrary-precision arithmetic language.
number facts. arithmetic: provide drill in

expr: evaluate arguments as an expression. • • • •
as: assembler for POP-ll.
as: assembler for V AX-II/780.

between long and basc-64 ASCU. a64I, 1648: convert
ascii: map of ASCU character set.

convert date and time to ASCU. /asctime, Uset: •••
set. ascii: map of ASCU character

atof, atoi, atol: convert ASCU to numbers. • • • •
and/ ctime, loca1time, gmtime, asctime, wet: convert date

trigonometric/ sin, cos, tan, asin, &cos, atan, atan2:
help: ask for help. • • • • • •

output. a.out: assembler and link editor
as: assembler for POP-II.

microprocessor. kas: assembler for the KMCII
as: assembler for VAX-II/780.

assert: program verification.
setbuf: assip bufl'ering to a stream.

kl: KL-II or OL-II asynchronous interface. • •
/dh: OZ,II, OZ,II/KMC-II, 08-11 asynchronous multiplexers.

dj: OJ-II asynchronous multiplexor.
sin, cos, tan, asin, acos, atan, atan2: trigonometric/

cos, tan, asin, &cos, atan, atan2: trigonometric/ sin, •
ASCU to numbers. atof, atoi, atol: convert • •

numben. atof, atoi, atol: convert ASCU to
numben. atof, atoi, atol: convert ASCU to

wait: await completion of prOCCll.
processing language. awk: pattern scan nina and •

ungetc: push character hack into input stream. ••
back: the game of backgammon.

back: the game of backgammon. ••••••
daily/weekly UNIX file system backup. filesave, tapesave:

banner: make posten.
1648: convert between long and base-64 ASCU. a64I, •• •

portions of path names. basename, dirname: deliver
arithmetic Ianguaae. be: arbitrary-precision • • •

bcopy: interactive block copy.
bdifl': big difl'.

cb: C program beautifier. • • •
jO, jl, jn, yO, yl, yn: bessel functions.

- 2 -

brk(2)
malloc(3C)
rp6fmt(8)
sort(l)
send(lC)
a.out(5)

• intro(l)
ar(l)
ar(5)
be(l)
ar(l)
cpio(5)
ar(5)
arcv(l)
tp(1)
tar(l)
cpio(l)
arcv(l)
xargs(l)
expr(l)
echo(l)
getopt(3C)
be(l)
arithmetic(6)
expr(l)
as.pdp(l)
as.vax(l)
a64I(3C)
ascii(7)
ctime(3C)
ascii(7)
atof(3C)
ctime(3C)
trig(3M)
help(l)
a.out(5)
as.pdp(l)
kas(l)
as.vax(l)
assert(3X)
setbuf(3S)
k\(4)
dz(4)
dj(4)
trig(3M)

• tria(3M)
atof(3C)
atof(3C)
atof(3C)
·.vait(l)
awk(l)
ungetc(3S)
back(6)
back(6)
filcsave(8)
banner(l)
a641(3C)
basename(I)
be(l)
bcopy(IM)
bdifl'(I)
cb(l)
bessel(3M)

bfs: big file scanner.
fread. fwrite: buffered binary input/output.

bsearch: binary search.
remove symbols and relocation bits. strip: •••••

bj: the game of black jack.
bj: the game of black jack.

bcopy: interactive block copy.
sync: update the super block. • • .

df: report number of free disk blocks.
sum: sum and count blocks in a file.

unixboot: UNIX startup and boot procedures.
rom boot: special ROM bootstrap loaders.

70boot: 11/70 bootstrap procedures.
tape boot: magnetic tape bootstrap program. •

diskboot: disk bootstrap programs.
space allocation. brk, sbrk: change data segment

modest-sized programs. bs: a compiler/interpreter for
DQS-II interface for two-point BSC. dqs: • • • • • • • • •

bsearch: binary search.
fread. fwrite: buffered binary input/output.

stdio: standard buffered input/output package.
setbuf: assign buffering to a stream. • •

mknod: build special file. ••••
dmc: communications link with built-in DDCMP protocol.

swab: swap bytes. •.•••••.
ce, pee: C compiler. .•••••

programs. sec: C compiler for stand-alone
cb: C program beautifier.

lint: a C program checker.
xref: cross reference for C programs. • • •

cal: print calendar.
dc: desk. calculator. . • • •

cal: print calendar.
calendar: reminder service.

cu: call another UNIX system.
data returned by stat system call. stat: ••••••••

ct: call terminal. • • • • • • •
malloe, free, realloe, calloe: main memory allocator.

intro: introduction to system calls and error numbers.
link and unlink system calls. link, unlink: exercise

pneh: file format for card images. • • • • • •
files. cat: concatenate and print

interface. cat: phototypesetter • • •
eb: C program beautifier.
ce, pee: C compiler. • • • •
cd: change working directory.

commentary of an sees delta. cdc: change the delta •••
800r, ceiling,/ 800r, Cabs, ceil, fmod: absolute value,

/fmod: absolute value, 800r, ceiling, remainder functions.
delta: make a delta (change) to an sces file.

pipe: create an interproeess channel. • • • • • • • •
stream. ungete: push character back into input

/isgraph, iscntrl, isascii: character classification.
and neqn. eqnchar: special character definitions for eqn

user. cuserid:character login name of the
/getchar, fgete, getw: get character or word from stream.

/putehar. fpute. putw: put character or word on a stream.
ascii: map of ASCII character set.

toupper, tolower. toascii: character translation. •
tr: translate characters. • • • • • •

directory. chdir: change working
fsck: file system consistency check and interactive repair.

rp6fmt: format and/or check RP06 disk packs. ••

- 3 -

Permuted Index

bfs(1)
fread(3S)
bsearch(3C)
strip(l)
bj(6)
bj(6)
bcopy(IM)
sync(lM)
df(1)
sum(l)
unixboot(8)
romboot(8)
70boot(8)
tapeboot(8)
diskboot(8)
brk(2)
bs(l)
dqs(4)
bsearch(3C)
fread(lS)
stdio(lS)
setbuf(3S)
mknod(IM)
dmc(4)
swab(3C)
ce(l)
sec(l)
cb(l)
lint(l)
xref(l)
cal(l)
dc(l)
ca1(l)
ca1endar(I)
cu(JC)
stat(7)
ct(lC)
malloe(3C)
intro(2)
link(lM)
pnch(S)
cat(l)
cat(4)
cb(l)
ce(l)
cd(J)
cdc(J)
1l00r(3M)
1l00r(3M)

• delta(l)
pipe(2)
ungctc(lS)
ctypc(3C)
eqnchar(7)
cuserid(lS)
gctc(lS)
putc(lS)
ascii(7)
conv(3C)
tr(l)

• chdir(2)
fsck(lM)
rp6fmt(8)

Permuted Index

eqn delimiters. mmchek: check usage of mm macros and
constant-width text fort cw, checkcw: prepare ••••••
text for nroff or/ eqn. neqn. checkeq: format mathematical

lint: a e program checker. • • • . • • • •
grpck: password/group file checkers. pwck.

copy file systems with label checking. volcopy. labe1it:
systems processed by fsck. checklist: list of file . • .

chess: the game of chess. • • • • • . • • •
chess: the game of chess.

chown. chgrp: change owner or group.
times: get process and child process times. • • • •

terminate. wait: wait for child process to stop or • • •
chmod: change mode.
chmod: change mode of file. •

of a file. chown: change owner and group
group. chown. chgrp: change owner or

chroot: change root directory.
for a command. chroot: change root directory

iscntrl. isascii: character classification. /isgraph.
uuclean: uucp spool directory clean-up. ••••••

clri: clear i-node. • • • • .
status/ ferror, feof. clearerr. fileno: stream

alarm: set a process's alarm clock. • .•••••
cron: clock daemon. • . •
close: close a file descriptor.

descriptor. close: close a file • •
fclose. mush: close or flush a stream.

clri: clear i-node. • • .
cmp: compare two files.

line-feeds. col: filter reverse • • •
comb: combine sees deltas.

comb: combine sees deltas.
common to two sorted files. comm: select or reject lines

activity/ timex: time a command and generate a system
nice: run a command at low priority.

change root directory for a command. chroot:
env: set environment for command execution.

uux: unix to unix command execution.
quits. nohup: run a command immune to hangups and
rsh: restricted shell (command interpreter). • • • • •

getopt: parse command options. •••••••
sh: shell. the standard command programming language.
per-process/ acctcms: command summary from

system: issue a shell command.
test: condition evaluation command. • • • • • • •

time: time a command .•••••••
argument list(s) and execute command. xargs: construct

and miscellaneous aClCOunting commands. /of accounting
intro: introduction to commands and application/

access graphical and numerical commands. graphics: • •
install: install commands: ••••••

how to remake the system and commands. mk:
network useful with graphical commands. stat: statistical

cdc: change the delta commentary of an sees delta.
comm: select or reject lines common to two sorted files. •

pel: parallel communications link interface.
built-in DDeMP protocol. dmc: communications link with

diff: differential file comparator. •••••••
cmp: compare two files.

sees file. sccsdiff: compare two versions of an
ditr3: 3-way differential file comparison. •••••••

dircmp: directory comparison. •••••••
regexp: regular expression compile and match routines.

- 4 •

mmchek(l)
cw(l)
eqn(l)
lint(l)
pwck(IM)
volcopy(lM)
checklist(5)
chess(6)
chess(6)
chown(l)
times(2)
wait(2)
chmod(l)
chmod(2)
chown(2)
chown(l)
chroot(2)
chroot(IM)
ctype(3C)
uuclean(lM)
clri(lM)
ferror(3S)
alarm(2)
cron(lM)
close(2)
close(2)
fclose(3S)
clri(lM)
cmp(l)
col(l)
comb(l)
comb(l)
comm(l)
timex(1)
nice(l)
chroot(IM)
env(l)
uux(lC)
nohup(l)
rsh(1)
getopt(l)
sh(l)
acctcms(lM)
system(3S)
test(l)
time(l),
xargs(l)
acct(lM)
intro(l)
graphics(lG)
install(1 M)
mk(8)
stat(lG)
cdc(l)
comm(l)
pcl(4)
dmc(4)
diff(l)
cmp(l)
sccsdiff(l)
ditr3(l)
dircmp(l)
regexp(7)

regcmp: regular expression compile. • • • . • • •
regcmp: regular expression compile/execute. regex,

ce, pee: C compiler. ••••••
n7: Fortran 77 compiler. ••••••

programs. sce: C compiler for stand-alone
protocol machine. vpmc: compiler for the virtual

yace: yet another compiler-compiler.
modest-sized programs. bs: a compiler/interpreter for

wait: await completion of process.
pack, peat, unpack: compress and expand files.

cat: concatenate and print files.
test: condition evaluation command.

system. config: configure a UNIX
config: configure a UNIX system.

acctcon: connect-time accounting.
interactive/ fsck: file system consistency check and

vlx: V AX-II /780 LSI console floppy interface.
vaxops: VAX-II/780 console operations ...

report and interactive status console. rjestat: RJE status
cw, checkcw: prepare constant-width text for trolf.

mUs: construct a file system.
execute command. xargs: construct argument list(s) and

nrolf/trolf, tbl, and eqn constructs. derolf: remove
Is: list contents of directories.

toc: graphical table of contents routines.
csplit: context split. • • • • •
ioctl: control device. • • • •

fcnt!: file control. •••••••
inittab: control information for init.

init: process control initialization.
fcnt!: file control options.

st: synchronous terminal control. • • •
uucp status inquiry and job control. uustat:

vc: version control. •••
term: conventional names.

ecvt, fcvt: output conversion.
units: conversion program.

sscanf: formatted input conversion. scanC, CscanC,
dd: convert and copy a file. •

PDP-II to VAX-II /780/ arev: convert archive files Crom
atoC, atoi, atol: convert ASCn to numbers.

integers and/ l3tol, Itol3: convert between 3-byte • •
base-64 ASCn. a64I, 164a: convert between long and •

/gmtime, asctime, tzset: convert date and time to/ •
and V AX-ll /780 systems. fscv: convert files between PDP-ll

dd: convert and copy a file. • • • • • • • •
bcopy: interactive block copy. ••••••••••

cpio: copy file archives in and out
checking. volcopy, labelit: copy file systems with label

cp, In, mv: copy, link or move files.
uulog, uuname: unix to unix copy. uucp, •••••••

public UNIX-to-UNIX file copy. uuto, uupick: • • • •
file. core: Cormat oC core image

core: Cormat oC core image file.
mem, kmem: core memory. •••••

atan2: trigonometric/ sin, cos, tan, asin, acos, atan,
functions. sinh, cosh, tanh: byperbolic

sum: sum and count blocks in a file. • •
we: word count. • • • • • • • • •

files. cp, In, mv: copy, link or move
cpio: Cormat oC cpio arcbive. • • • • • • •

and out. cpio: copy file archives in .•
cpio: format oC cpio arcbive.

- s -

regelllp(I)
regex(3X)
ce(l)
n7(I)
scc(I)
vpmc(lC)
yace(l)
bs(l)
wait(l)
paek(l)
cat(I)
test(l)
config(lM)
config(1M)
acctcon(1 M)
Csck(IM)
vlx(lM)
vaxops(8)
rjestat(I C)
cw(l)
mkfs(IM)
xargs(l)
derolf(l)
15(1)
toc(lG)
csplit(I)
ioctl(2)
fcnt!(2)
inittab(5)
init(8)
fcnd(7)
st(lM)
uustat(1C)
ve(1)
term(7)
ecvt(3C)
units(l)
scanf(3S)
dd(l)
arcv(l)
atoC(3C)
13tol(3C)
a64I(3C)
ctime(3C)
Cscv(IM)
dd(l)
bcopy(lM)
cpio(l)
volcopy(lM)
cp(l)
uucp(lC)
uuto(lC)
core(5)
core(5)
mem(4)
trig(3M)
sinb(3M)
sum(l)

• wc(l)
cp(l)
cpio(5)
cpio(l)
cpio(S)

Permuted Index

craps: the game of craps. . • • • • • • . • • •
craps: the game of craps.
crash: examine system images.

system crashes. crash: what to do when the
what to do when the system crashes. crash: • • • • • . •

rewrite an existing one. creat: create a new file or
file. tmpnam: create a name for a temporary

an existing one. creat: create a new file or rewrite
fork: create a new process. . . •

tmpfile: create a temporary file.
channel. pipe: create an interprocess . . •

files. admin: create and administer sces
umask: set and get file creation mask. • • • • .

listing. cref: make cross-reference
cron: clock daemon.

programs. xref: cross reference for C
cref: make cross-reference listing.

crypt: encode/decode.
encryption. crypt, setkey, encrypt: DES

csplit: context split. • • • •
ct: call terminal. .••.•

for terminal. ciermid: generate file name
asctime. tzset: convert date/ ctime, localtime, gmtime, •

cu: call another UNIX system.
ttt. cubic: tic-tac-toe. • . . .

actIVIty. sact: print current sces file editing
uname: get name of current UNIX system.

uname: print name of current UNIX. . • • . .
spline: interpolate smooth curve. '" • • • . • . •

of the user. cuserid: character login name
of each line of a file. cut: cut out selected fields

each line of a file. cut: cut out selected fields of
constant-width text fori cw, checkcw: prepare ••

cron: clock daemon. .••••••
sending daemons, line printer daemon. /odpd, Ipd: HONEYWELL

errdemon: error-logging daemon. ..•••.
terminate the error-logging daemon. errstop: . • . . • •

fget.odemon: file retrieval daemons. fget.demon,
/odpd, Ipd: HONEYWELL sending daemons, line printer daemon.

runacct: run daily accounting. • • • • • •
backup. filesave, tapesave: daily/weekly UNIX file system

/handle special functions of DASI 300 and 300s terminals.
special functions of the DASI 450 terminal. /handle •

prof: display profile. data. ••.•.••••••
call. stat: data returned by stat system •

brk, sbrk: change data segment space allocation.
types: primitive system data types. • • • • • •

join: relational database operator.
/asctime, tzset: convert date and time to ASCn.

date: print and set the date. •.•.•.•.
date: print and set the date.
dc: desk calculator. • ••.
dd: convert and copy a file.

/link with built-in DDCMP protocol.
adb: debugger.

fsdb: file system debugger.
sdb: symbolic debugger.

sysdef: system definition.
eqnchar: special character definitions for eqn and neqn.

usage of mm macros and eqn delimiters. mmchek: check
names. basename, dirname: deliver portions of path

file. tail: deliver the last part of a
delta commentary of an sces delta. cdc: change the •

- 6 -

craps(6)
craps(6)
crash(IM)
crash(8)
crash(8)
creat(2)
tmpnam(3S)
creat(2)
fork(2)
tmpfile(3S)
pipe(2)
admin(l)
umask(2)
cref(I)
cron(lM)
xref(l)
cref(I)
crypt(I)
crypt(3C)
csplit(l)
ct(lC)
ctermid(3S)
ctime(3C)
cu(lC)
ttt(6)
sact(I)
uname(2)
uname(l)
spline(IG)
cuserid(3S)
cut(1)
cut(l)
cw(J)
cron(IM)
dpd(IC)
errdemon(lM)
errstop(I M)
fget.demon(I C)
dpd(IC)
runacct(I M)
filesave(8)
300(1)
450(1)
prof(l)
stat(7)
brk(2)
types(7)
join(l)
ctime(3C)
date(l)
date(I)
dc(l)
dd(l)
dmc(4)
adb(l)
fsdb(lM)
sdb(l)
sysdef(IM)
eqnchar(7)
mmchek(I)
basename(I)
tail(I)
cdc(l)

file. delta: make a delta (change) to an sces
delta. cdc: change the delta commentary of an sces

rmdel: remove a delta from an sces file.
to an sces file. delta: make a delta (change)

comb: combine sces deltas. • •.•.•..•
mesg: permit or deny messages. ••.••

tbl. and eqn constructs. deroff: remove nroff/troff,
crypt, setkey, encrypt: DES encryption.

close: close a file descriptor. • • • . • • • .
dup: duplicate an open file descriptor. • . . • • . . •

dc: desk calculator. • .•..
file. access: determine accessibility of a

file: determine file type. • . .
master: master device information table.

ioct1: control device. ••.••••.
devnm: device name. .•..•

/tekset, td: graphical device routines and filters.
devnm: device name. . .

blocks. df: report number of free disk
asynchronous/ dz, dzk, dh: DZ-ll, DZ-ll/KMC-ll, DH-ll

dzk, dh: DZ-II, DZ-ll/KMC-ll, DH-II asynchronous/ dz,
ratfor: rational Fortran dialect. •••••

bdiff: big diff. • . • . . • • . • •
comparator. diff: differential file ••.
comparison. dilf3: 3-way differential file

sdiff: side-by-side difference program. • • • •
diffmk: mark differences between files.

diff: differential file comparator.
dilf3: 3-way differential file comparison.

between files. diffmk: mark differences
dir: format of directories. •
dircmp: directory comparison.

dir: format of directories.
Is: list contents of directories.

rm, rmdir: remove files or directories.
cd: change working directory.

chdir: change working directory.
chroot: change root directory.
uuclean: uucp spool directory clean-up.

dircmp: directory comparison.
unlink: remove directory entry.

chroot: change root directory for a command.
mkdir: make a directory.
mvdir: move a directory. •••••••

pwd: working directory name.
ordinary file. mknod: make a directory, or a special or

path names. basename, dirname: deliver portions of
acct: enable or disable process accounting.

df: report number of free disk blocks. ••••••
disk boot: disk bootstrap programs.

RHll/RJS03-RJS04 fixed-head disk file. hs: ••••••
rf: RFll/RSll fixed-head disk file .••••••••

moving-head disk. /RP04/RPOS/RP06
format and/or check RP06 disk packs. rp6fmt:
rk: RK-ll/RK03 or RKOS disk.

rl: RL-ll/RLOI disk.
rp: RP-II/RP03 moving-head disk.

du: summarize disk usage.
programs. disk boot: disk bootstrap

mount, umount: mount and dismount file system. •
prof: display profile data. • • •

hypot: Euclidean distance. ••••••
multiplexor. dj: DJ-ll asynchronous

- 7 -

Permuled Index

delta(I)
cdc(l)
rmde1(I)
delta (I)
comb(l)
mcsg(1)
deroff(I)
crypt(3C)
close(2)
dup(2)
dc(l)
access(2)
filc(I)
master(S)
ioctl(2)
devnm(IM)
gdcv(IG)
devnm(1M)
df(l)
dz(4)
dz(4)
ratfor(1)
bdiff(l)
diff(I)
diff3(1)
sdiff(I)
diffmk(I)
diff(I)
dilf3(I)
diffmk(I)
dir(S)
dircmp(l)
dir(S)
Is(1)
rm(l)
cd(I)
chdir(2)
chroot(2)
uuclean(lM)
dircmp(I)
unlink(2)
chroot(IM)
mkdir(l)
mvdir(lM)
pwd(l)
mknod(2)
basename(1)
acct(2)
df(!)
diskboot(8)
hs(4)
rf(4)
hp(4)
rp6fmt(8)
rk(4)
rl(4)
rp(4)

• du(l)
diskboot(8)
mount(lM)
proC(!)

• hypot(3M)
dj(4)

Permuted Index

multiplexor. dj: DJ-11 asynchronous •••••
ld: KL-11 or DL-11 asynchronous interface ..

built-in DDCMP protocol. dmc: communications link with
dn: ON-II ACU interface.

dn: ON-II ACU interface.
MM macros. mm: print out documents formatted with the

macro package for formatting documents. mm: the MM • .
slides. mmt, mvt: typeset documents, view graphs, and

whodo: who is doing what. ••••.•..
sending daemons, line printer/ dpd, odpd, Ipd: HONEYWELL

dpr: off-line print. ••...•
two-point BSC. dqs: DQS-II interface for • . •

BSC. dqs: DQS-II interface for two-point
reversi: a game of dramatic reversals. •

graph: draw a graph.
arithmetic: provide drill in number facts.
trace: event-tracing driver. ••••••

interface. du: DU-I! synchronous line
du: summarize disk usage.

interface. du: DU-!I synchronous line
dump: incremental file system dump. •.••••••

extract error records from dump. errdead:
format. dump: incremental dump tape
dump. dump: incremental file system

od: octal dump. ••••••••
dump: incremental dump tape format. .••

descriptor. dup: duplicate an open file
descriptor. dup: duplicate an open file • .

DZ-II/KMC-11,DH-Il/ dz, dzk, dh: DZ-11,
asynchronous/ dz, dzk, dh: DZ-11, DZ-lI/KMC-11, DH-li

dz, dzk, dh: DZ-11, DZ-lI/KMC-!I,DH-11/ ..•
DH-II asynchronous/ dz, dzk, dh: DZ-Il, DZ-lI/KMC-Il,

echo: echo arguments. •••.••
echo: echo arguments.
ecvt, fevt: output conversion.
ed: text editor. • • •

program. end, etext, edata: last locations in
sact: print current sces file editing activity.

ed: text editor.
ged: graphical editor.

Id: link editor.
sed: stream editor.

/user, real group, and effcctive group IDs.
and/ /getegid: get real user, effective user, real group,

Language. efl: Extended Fortran • •
for a pattern. grep, egrep, fgrep: search a file

accounting. aect: enable or disable process
crypt: encode/decode.

crypt, setkey, encrypt: DES encryption.
crypt, setkey, encrypt: DES encryption.

makekey: generate encryption key.
locations in program. end, etext, edata: last •

I getgrgid, getgrnam, setgrent, endgrent: get group file/
/getpwuid, getpwnam, setpwent, endpwent: get password filet

rjestat: RJE status and enquiries. ••••••
nlist: get entries from name list.

man: print entries in this manual.
man: macros for formatting entries in this manual.

utmp, wtmp: utmp and wtmp entry format.
endgrent: get group file entry. /getgrnam, setgrent,

endpwent: get password file entry. /getpwnam, setpwent,
putpwent: write password file entry. • • • •

hasp: RJE (Remote Job Entry) to IBM ..••••.

- 8 -

dj(4)
ld(4)
dmc(4)
dn(4)
dn(4)
mm(l)
mm(7)
mmt(l)
whodo(lM)
dpd(IC)
dpr(lC)
dqs(4)
dqs(4)
reversi(6)
graph(lG)
arithmetic(6)
trace(4)
du(4)
du(l)
du(4)
dump(lM)
errdead(I M)
dump(5)
dump(lM)
od(l)
dump(5)
dup(2)
dup(2)
dz(4)
dz(4)
dz(4)
dz(4)
echo(\)
echo(l)
ecvt(3C)
ed(l)
end(3C)
sact(l)
ed(l)
ged(lG)
Id(l)
sed(l)
getuid(2)
getuid(2)
eft(1)
grcp(l)
acct(2)

. crypt(l)
crypt(3C)
crypt(3C)
makekey(8)
end(3C)
getgrent(3C)
getpwent(3C)
orjestat(I C)
nlist(3C)
man(l)
man(7)
utmp(5)
getgrent(3C)
getpwent(3C)
putpwent(3C)
hasp(8)

rje: RJE (Remote Job
uvac: RJE (Remote Job

unlink: remove directory
command execution.

profile: setting up an
environ: user

execution. env: set
getenv: value for

sky: obtain
character definitions for

remove nroff/troff, tbl, and
check usage of Jr.'I1 macros and

mathematical text for nroff/
definitions for eqn and neqn.

etp:
graphical device/ hpd,

from dump.
daemon.

format.
perror, sys_errlist, sys_nerr,

sys_nerr, errno: system
to system calls and

errdead: extract
errfile:

errdemon:
errstop: terminate the

,err:
process a report of logged

spellout: find spelling
find possible typographical

logged errors.
error-logging daemon.

setmnt:
in program. end,

hypot:
expression. expr:

test: condition
trace:
crash:

execlp, execvp: execute a/
exocvp: execute/ execl, exocv,

execl, execv, execle, execve,
execve, execlp, exocvp:

construct argument list(s) and
set environment for command

sleep: suspend
sleep: suspend

monitor: prepare
profil:

uux: unix to unix command
execvp: execute a/ exec1,

execute/ execl, execv, execle,
/ execv, execle, execve, exec1p,

system calls. link, unlink:
a new file or rewrite an

exponential, logarithm,/
peat, unpack: compress and

modf: split into mantissa and
square/ exp, log, pow, sqrt:

Entry) to IBM. • • • • •
Entry) to UNIVAC.
entry. • ••••••••
env: set environment for
environ: user environment.
environment at login time.
environment. ••••••
environment for command
environment name.
ephemerides.
eqn and neqn. /special
eqn constructs. deroff:
eqn delimiters. mmchek:
eqn, neqn, checkeq: format
eqnchar: special character •
Equipment Test Package.
erase, hardcopy, tebet, td:
err: error-logging interface.
errdead: extract error records
errdemon: error-logging • • •
errfile: error-log file
errno: system error messages.
error messages. /sys_errlist, •
error numbers. /introduction
error records from dump.
error-log file format.
error-logging daemon.
error-logging daemon.
error-logging interface.
errors. errpt:
errors. spell, spellin,
errors. typo: • • • • •
errpt: process a report of
emtop: terminate the • •
establish mnttab table.
etext, edata: last locations
etp: Equipment Test Package.
Eudidean distance. • • •
evaluate arguments as an
evaluation command. •
event-tracing driver.
examine system images.
exec1, exocv, exec1e, exocve,
exec1e, exocve, exec1p,
exec1p, ex«vp: execute a/
execute a file. / exec1e,
execute command. xargs:
execution. env:
execution for an interval.
execution for inte"a1.
execution profile. • • • •
execution time profile.
execution. • • • • .'. •
exocv, exec1e, execve,exec1p,
exocve,exec1p,exocvp: •
exccvp: execute a file.
exercise link and unlink • •
existing one. creat: create
exit: terminate process.
exp, log, pow, sqrt: • • • •
expand files. pack, • • •
exponent. frexp, Idexp, •
expoll'ential, loprithm, power,

- 9-

rje(8)
uvac(8)
unlink(2)
env(l)
environ(7)
profile(S)
environ(7)
env(l)
getenv(3C)
sky(6)
eqnchar(7)
deroff(1)
mmchek(l)
eqn(1)
eqnchar(7)
etp(8)
gdev(IG)
err(4)
errdead(IM)
errdemon(lM)
errlile(S)
perror(3C)
perror(3C)
intro(2)
errdead(lM)
errfile(S)
errdemon(1M)
emtop(IM)
err(4)
errpt(IM)
spell(1)
typo(1)
errpt(lM)
emtop(IM)
setmnt(IM)
end(3C)

• etp(8)
hypot(3M)
expr(l)
test(l)

• trace(4)
Crash(IM)
exec(2)
exec(2)
exec(2)
exec(2)
xarp(l)
env(l)

• • sleep(1)
• sleep(3C)

monitor(3C)
profil(2)
uux(lC)
exec(2)
exec(2)

• • exec(2)
••• tink(IM)

• • creat(2)
• • •• exit(2)

• •• exp(3M)
• • pack(1)

frexp(3C)
• • exp(3M)

Permuted Index

expression. expr: evaluate arguments as an
routines. regexp: regular expression compile and match

regcmp: regular expression compile. • • . •
regex, regcmp: regular expression compile/execute.

expr: evaluate arguments as an expression.•
efl: Extended Fortran Language.

greek: graphics for the extended lTV-37 type-box.
dump. errdead: extract error records from

f77: Fortran 77 compiler.
value, floor, ceiling,/ floor, fabs, ceil, fmod: absolute

large primes. factor, primes: factor a number, generate
number, generate large/ factor, primes: factor a

true, false: provide truth values.
abort: generate an lOT fault.•..•••

a stream. fclose, mush: close or flush
fcnt1: file control. • • . •
fcntl: file control options.

ecvt, fcvt: output conversion. •
fopen, freopen, fdopen: open a stream.

status inquiries. ferror, feof, c1earerr, fileno: stream
fileno: stream status/ ferror. feof, c1earerr,

stream. fclose, mush: close or flush a
HONEYWELL 6000. fget: retrieve files from the

word from/ getc, getchar, fgetc, getw: get character or
retrieval daemons. fget.demon, fget.odemon: file

daemons. fget.demon, fget.odemon: file retrieval .
stream. gets, fgets: get a string from a

pattern. grep, egrep, fgrep: search a file for a • •
times. utime: set file access and modification

determine accessibility of a file. access: •••..
tar: tape file archiver. . . • • •

epio: copy file archives in and out.
pwck, grpck: password/group file checken.

chmod: change mode of file. • . . • • .
change owner and group of a file. chown:

diff: differential file comparator.
diff3: 3-way differential file comparison.

fcnt1: file control.
fcnt1: file control options.

uupick: public UNIX-to-UNIX file copy. uuto,
core: format of core image file. • . • • . • •

umask: set and get file creation mask.
fields of each line of a file. cut: cut out selected

dd: convert and copy a file. • • . • • .
a delta (change) to an sces file. delta: make

close: close a file descriptor.
dup: duplicate an open file descriptor.

file: determine file type.
sact: print current SCCS file editing activity. •

setgrent, endgrent: get group file entry. /getgrnam. .
endpwent: get password file entry. /setpwent. •

putpwent: write password file entry. ..••••
execlp, execvp: execute a file. /execv. execle. execve.

grep, egrep, (grep: search a file for a pattern.
acct: per-process accounting file format.

aT: archive file format.
errfile: error-log file format.

pnch: file format for card images.
intro: introduction to file formats.

get: get a version of an sces file. • • . • • • •
group: group file. • . . • . • • . . • •

fixed-head disk file. hs: RHII/RJS03-RJS04
split: split a file into pieces. • . . • • •

- 10 -

expr(l)
regexp(7)
regcmp(I)
regex(3X)
expr(I)
efl(l)
greek(7)
errdead(I M)
f77(I)
floor(3M)
factor(I)
factor(I)
true(1)
abort(3C)
fclose(3S)
fcntl(2)
fcntl(7)
ecvt(3C)
fopen(3S)
ferror(3S)
ferror(3S)
fclose(3S)
fget(IC)
getc(3S)
fget.demon(lC)
fget.demon(IC)
gets(3S)
grep(I)
utime(2)
access(2)
tar(I)
epio(l)
pwck(IM)
chmod(2)
chown(2)
diff(I)
diff3(I)
fcntl(2)
fcnt1(7)
uuto(1C)
core(5)
umask(2)
cut(I)
dd(I)
delta(I)
c1ose(2)
dup(2)
file(l)
sact(I)
getgrent(3C)
getpwent(3C)
putpwent(3C)
exec(2)
grep(l)
acct(5)
ar(5)
errfile(5)
pnch(5)
intro(5)
get(I)
group(5)
hs(4)
split(I)

link: link to a file. • • • • • • • • •
mknod: build special file. • • • • • • • • •

or a special or ordinary file. /make a directory.
ctermid: generate file name for terminal.

mktemp: make a unique file name. • • • • • •
null: the null file. • • • • • • • • •

one. creat: create a new file or rewrite an existing
passwd: password file. • • • • • • • • • •

or subsequent lines of one file. /lines of several files
Iseek: move read/write file pointer.

prs: print an sees file.
read: read from file. • • • •

reform: reformat text file. • • • •
fget.demon. fget.odemon: file retrieval daemons.

rf: RFIl/RSIl fixed-head disk file. • •••
remove a delta from an sces file. rmdel:

bfs: big file scanner.
two versions of an sces file. sccsdiff: compare
sccsfile: format of sces file. • • •

size: size of an object file. • • •
stat. fstat: get file status.

sum: sum and count blocks in a file. • • •
tapesave: daily/weekly UNIX file system backup. filesave.

and interactive repair. fsek: file system consistency check
fsdb: file system debugger. • • • •

dump: incremental file system dump. •••••
volume. file system: format of system

mkfs: construct a file system.
umount: mount and diSmount file system. mount.

mount: mount a file system.
restor: incremental file system restore.

ustat: get file system statistics.
mnttab: mounted file system table. • •

umount: unmount a file system.
fsck. checklist: list of file systems processed by
volcopy. labelit: copy file systems with label/

deliver the last part of a file. tail: • • •
tmpfile: create a temporary file. • • • • • • • • •

create a name for a temporary file. tmpnam:
and modification times of a file. touch: update access

file: determine file type.
undo a previous get lIf an sees file. unget:

report repeated lines in a file. uniq:
val: validate SCes file. • • •

write: write on a file. • • •
umask: set file-creation mode mask.

ferror. feof. clearerr. fileno: stream status/ •
and print process accounting file(s). acctcom: search •

merge or add total accounting files. acctmerg: • • • • • .. •
create and administer sees files. admin: • ' ••••••

send. gath: gather files and/or submit RJEjobs.
V AX-Il/780/ fscv: convert files between PDP·l1 and •

cat: concatenate and print files. ••••••••••
cmp: compare two files. ••••••••••

lines common to two sorted files. ciomm: select or reject
CPo In. mv: copy. link or move files. • ••••••

mark differences between files. diffmk: • • • •
find: find files. ••••••••

arev: convert archive files from PDp·l1 to/
fget: retrieve files from the HONEYWELL 6000.

format specification in text files; fspec: •••••••
string. format of graphical files. /graphical primitive

intro: introduction to special files. •••••••••

- 11 -

Penmaed Index

link(2)
mknod(IM)
mknod(2)
ctermid(3S)
mktemp(3C)
null(4)
creat(2)
passwd(S)
paste(l)
Iseek(2)
prs(l)
read(2)
reform(I)
fget.demon(I C)
rf(4)
rmdel(I)
bfs(l)
sccsdiff(1)
sccsfile(S)
size(1)
stat(2)
sum(1)
filesave(8)
fsek(lM)
fsdb(1M)
dump(1M)
fs(S)
mkfs(lM)
mount(IM)
mount(2)
restor(lM)
ustat(2)
mnttab(S)
umount(2)
checklist(S)
volcopy(1 M)
tail(1)
tmpfile(3S)
tmpnam(3S)
touch(I)
file(l)
unget(1)
uniq(1)
val(l)
write(2)
umalk(1)
ferror(3S)
acctcom(l)
acctmerg(lM)
admin(1)
send(1C)
fscv(IM)
cat(l)
cmp(l)
comm(l)
cp(1)

• diffmk(1)
find(1)
arev(l)
fget(lC)
fspec(S)
peS)
intro(4)

Permuled Index

rm. rmdir: remove files or directories.
/merge same lines o(several files or subsequent lines off

unpack: compress and expand files. pack. peat. •••••
pr: print files. ••••••••••

sort: sort and/or merge files. ••••••••••
fsend: send files to the HONEYWELL 6000.

what: identify sees files. ••••••
daily/weeldy UNIX file system/ filesave. tapesave:

greek: select terminal filter. ••••••
nl: line numbering filter. ••••••

col: filter reverse line-feeds.
graphical device routines and filters. /tekset. td:

tplot: graphics filters. • • • •
find: find files.

find: find files. • •
hyphen: find hyphenated words.

ttyname. isatty: find name of a terminal.
object library. lorder: find ordering relation for an

errors. typo: find possible typographical
spell. spellin. spellout: find spelling errors.

tee: pipe fitting. •••••
hs: RHll/RJS03-RJS04 fixed-head disk file.

rf: RF11 /RS11 fixed-head disk file.
fptrap: ftoating point interpreter.

/ceil. fmod: absolute value. ftoor. ceiling. remainder/
absolute value. ftoor./ ftoor. (abs. ceil. fmod:

vlx: V AX-II /780 LSI console ftoppy interface.
fclose. ftlush: close or ftush a stream. • • • • •

ceiling./ ftoor. fabs. ceil. fmod: absolute value. ftoor.
stream. fopen. (reopen. fdopen: open a

fork: create a new process.
per-process accounting file (ormat. acct: • • • • • • • • •

packs. rp6fmt: format and/or chock RP06 disk
ar: an:hive file format. ••••••••••

from PDP-ll to V AX-ll /780 format. /convcrt archive files
dump: incremental dump tape format. •••••••

errfile: error-log file format. ••••••••••
pnch: file format for card images. • • • •

nrolf or/ eqn. neqn. chockeq: format mathematica1 text for
inode: format of an inode. • • •

core: format of core image file.
cpio: format of cpio archive.

dir: format of directories. • •
/ graphical primitive string. format of graphical files.

sccsfile: format of sees file.
file system: format of system volume.
files. fspec: format specification in text

trolf. tbl: format tables for nrolf or
trolf. nrolf: typeset or format text. •

tp: magnetic tape format. ••••••••
wtmp: utmp and wtmp entry format. utmp. • • • • •

intro: introduction to file formats. • • • • • • • •
scanf. fscanf. sscanf: formatted input conversion.

mm: print out documents formatted with the MM macros.
fprintf. sprilltf: output formatters. printf.

mm: the MM macro package for formatting documents.
manual. man: macros for formatting entries in this

n7: Fortran 77 compiler.
ratfor: rational Fortran dialect.
eft: Extended Fortran Language. ••

formatters. printf. fprintf. sprintf: output
interpreter. fptrap: ftoating point

word on a/ putc. putchar. (putc. putw: put character or •

- 12 -

rm(l)
paste(l)
pack(l)
pr(1)
sort(l)
fsend(1C)
what(l)
filesave(8)
greek(l)
nl(1)
col(1)
gdev(1G)
tplot(IG)
find(1)
find(1)
hyphen(l)
ttyname(3C)
10rder(l)
typo(l)
spell(l)
tee(l)
hs(4)
rf(4)
fptrap(3X)
ftoor(3M)
ftoor(3M)
vlx(1M)
fclose(3S)
ftoor(3M)
fopen(3S)
fork(2)
aa:t(S)
rp6fmt(8)
areS)
an:v(1)
dump(S)
errfiIe(S)
pnch(S)
eqn(l)
inode(S)
core(S)
cpio(S)
dir(S)

• peS)
sccsfile(S)
fs(S)
fspec(S)
tbl(l)
trolf(1)

• tp(S)
utmp(S)
intro(S)
scanf(3S)
mm(1)
printf(3S)
mm(7)
man(7)
n7(l)
ratfor(l)
eft(l)
printf(3S)
fptrap(3X)
putc(3S)

stream. puts,
input/output.

df: report number of
memory allocator. malloc,

stream. fopen,
mantissa and exponent.
gets, fgets: get a string
rmdel: remove a delta

fputs: put a string on a
fread. fwrite: buffered binary
free disk blocks.
free. rcalloc. Calloc: main
freopen. fdopen: open a •
frexp. ldexp. modf: split into
from a stream. • •
from an sees file.

getopt: get option letter from argv. • • •
errdead: extract error records from dump. • •

read: read from file.
ncheck: generate names from i-numbers.

nlist: get entries from name list.
arcv: convert archive files from PDP-II to V AX-I 1/780/

acctcms: command summary from per-process accounting/
getw: get character or word from stream. /getehar, fgete,

fget: retrieve files from the HONEYWELL 6000.
getpw: get name from UID. ••••••

input conversion. scanf, fscanf. sscanf: formatted
of file systems processed by fsck. checklist: list
check and interactive repair. . fsck: file system consistency

PDP-ll and VAX-ll/780/ fscv: convert files between

reposition a stream.
HONEYWELL 6000.

text files.
stat,

stream. fseek,
gamma: log gamma

jO, jl, jn, yO, yl, yn: bessel
logarithm, power, square root

ftoor, ceiling. remainder
300, 3005: handle spccial

hp: handle spccial
terminal. 450: handle spccial
sinh. cosh. tanh: hyperbolic

atan, atan2: trigonometric
input/output. fread.

wtmp records.
moo: guessing

back: the
bj: the

chess: the
craps: the
reversi: a

wump: the
intro: introduction to

gamma: log

submit RJE jobs. send,
jobs. send. gath:

output to the HONEYWELL 6000.
user.

fsdb: file system debugger.
fseek, fteU, rewind: • • •
fsend: send files to the
fspec: format specification in
fstat: get file status. • • •
fteU, rewind: reposition a
function. • ••••••
functions. • ••••••
functions. /sqrt: exponential,
functions. /absolute value,
functions of DASI 300 and 3005/
functions of HP 2640 and/
functions of the DASI 450
functions. • •••••••
functions. /tan, asin, &cos,
fwrite: buffered binary
fwtmp, wtmpfix: manipulate
game .••••••••
game of baclr.pmmon.
game of black jack. • •
game of chess. • • • •
game of craps. • • • •
game of dramatic revena1a.
game of hunt-the-wumpus.
games. •••••••••
gamma function. • • • • •
gamma: log gamma function.
gath: gather files and/or • • •
gather files aad/or lubmit RJE
pt: lend phototypesetter • • •
psmail: send mail to HIS
ged: graphical editor. • ••

Permuted Index

puts(3S)
fread(3S)
df(l)
malloc(3C)
fopen(3S)
frexp(3C)
gets(3S)
rmdel(l)
getopt(3C)
errdead(IM)
read(2)
nchcck(IM)
nlist(3C)
arcv(l)
acctcms(lM)
gete(3S)
fget(1C)
getpw(3C)
scanf(3S)
checklist(S)
fsck(1M)
fscv(IM)
fsdb(IM)
fseek(3S)
fsend(lC)
fspec(S)
stat(2)
flleek(3S)
gamma(3M)

• besael(3M)
exp(3M)
ftoor(3M)
300(1)
hp(l)
450(1)
sinh(3M)

• tri,(3M)
frcad(3S)
fwtmp(IM)
moo(6)
back(6)
bj(6)
chea(6)
craps(6)
rcversi(6)

• wump(6)
intro(6)

•• gamma(3M)
• gamma(3M)

lend(lC)
send(1C)
pt(lC)

• psmail(lC)
ged(lG)
maze(6)

• timex(l)
maze:

timex: time a command and
abort:

makekey:
terminal. ctermid:

/primes: factor a number.
ncheck:

lexical tasks. lex:
rand, srand: random number

generate a maze. • • • • •
generate a system ac:Ovity/
generate an lor fault.
generate encryption key.
generate file name for

•••• abort(3C)

generate Iarac primes.
generate names from i-numbers.
generate programs for limple

• makekey(8)
• ctermid(3S)
• factor(l)

nch_(lM)
lex(l)

acnerator. • • • • • • • • •• •• rand(le)

- 13 -

Permuted Index

gets. fgets: get a string from a stream.
get: get a version of an sces file.

ulimit: get and set user limits.
gete. getehar. fgete. getw: get cbaracter or word from!

nlist: get entries from name list.
umask: set and get file creation mask.

stat. fstat: get file status. ••••••
ustat: get file system statistics. • •

file. get: get a version of an sees
!getgrnam. setgrent. endgrent: get group file entry.

getJogin: get login name. •••••
logname: get login name. •••••

getpw: get name from UID. •••
system. uname: get name of current UNIX

unget: undo a previous get of an sees file.
getopt: get option letter from argv.

!getpwnam. setpwent. endpwent: get password file entry. ••
times. times: get process and cbild process

and! getpid. getpgrp. getppid: get process. process grouP.
!geteuid. getgid. getegid: get real user. effective user.!

tty: get tbe terminal's name.
time: get time. •••••••

get character or word from! gete. getehar. fgete. getw: ••
character or word from! getc. getebar. fgete. getw: get •••

getuid. geteuid. getgid. getegid: get real user.!
name. getenv: value for environment

real user. effective! getuid. geteuid. getgid. getegid: get •
user.! getuid. geteuid. getgid. getegid: get real •••

setgrent. endgrent: get group! getgrent. getgrgid. getgrnam.
endgrent: get group! getgrent. getgrgid. getgrnam. setgrent.
get group! getgrent. getgrgid. getgrnam. setgrent. endgrent:

getlogin: get login name.
argv. getopt: get option letter from

getopt: parse command options.
getpass: read a password.

process grouP. and! getpid. getpgrp. gctppid: get process.
process. process group, and! getpid. getp&rP. gctppid: get ••
tp"Oup. and! getpid. getp&rP. getppid: get process. process • •

getpw: get name from UlD. • •
setpwent. endpwent: get! getpwent. getpwuid. getpwnam.
get! getpwent. getpwuid. getpwnam. setpwent. endpwent:
endpwent: get! getpwent. getpwuid. getpwnam. setpwent.

a stream. gets. fgets: get a string from
terminal. getty: set tbe modes of a •

getegid: get real user.! getuid. gctcuid. getgid. ••
from! gete. getebar. fgete. getw: get character or word
convert! Clime. localtime. gmtime. asctime. aset:
setjmp. lonlimp: non-local goto. ••••••••

string. format of grapbical! gps: grapbical primitive
grapb: draw a grapb.

grapb: draw a grapb. • • • • •• • •
sq: system activity grapb. • • • • • • • •

commands. graphics: access grapbical and numerical
! network useful with graphical commands.. •

!erase. hardcopy. tebet. td: graphical device routines and!
ged: grapbical editor.

primitive s~ng. format of graphical files. !graphical
format of graphical! gps: graphical primitive string. • •

routines. toe: graphical table of contents • •
gutil: graphical utilities. • • • • • •

numerical commands. graphics: acceas graphical and
. tplot: graphics filters. • • • • • • •

lTV-37 type-box. greek: graphics for the extended • • •

- 14-

gets(3S)
get(l)
ulimit(2)
gete(3S)
nlist(3C)
umask(2)
stat(2)
ustat(2)
get(l)
getgrent(3C)
getiogin(3C)
logname(l)
getpw(3C)
uname(2)
unget(l)
getopt(3C)
getpwent(3C)
times(2)
getpid(2)
getuid(2)
tty(l)
time(2)
gete(3S)
gete(3S)
getuid(2)
getenv(3C)
getuid(2)
getuid(2)
getgrent(3C)
getgrent(3C)
getgrent(3C)
getiogin(3C)
getopt(3C)
getopt(l)
getpass(3C)
getpid(2)
getpid(2)
getpid(2)
getpw(3C)
getpwent(3C)
getpwent(3C)
getpwent(3C)
gets(3S)
getty(8)
getuid(2)
gete(3S)
Clime(3C)
setjmp(3C)
gps(S)
graph(lG)
grapb(lG)
sag(1M)

• graphics(1G)
stat(lG)
gdev(1G)

• ged(1G)
gps(S)
gps(S)
toc(1G)

• gutil(lG)
graphics(1 G)
tplot(lG)

• greek(7)

plot: graphics interface.
subroutines. plot: graphics interface •

mvt: typeset documents, view graphs, and slides. mmt,
macro package for making view graphs. mv: a •.•••

extended TTY-37 type-box. greek: graphics for the
greek: select terminal filter.

file for a pattern. grep, egrep, fgrep: search a
/user, effective user, real group, and effective group/

/getppid: get process, process group, and parent process IDs.
chown, chgrp: change owner or group. ••.•••.•.

setgrent, endgrent: get group file entry. /getgrnam,
group: group file. . . . • .

group: group file. . . • • .
setpgrp: set process group ID. • . . • • • • .

id: print user and group IDs and names.
real group, and effective group IDs. /effective user,

setuid, setgid: set user and group IDs. . . . • • • •
newgrp: log in to a new group. ••.••.••

chown: change owner and group of a file. . • . • .
a signal to a process or a group of processes. /send

update, and regenerate groups of programs. /maintain,
checkers. pwck, grpck: password/group file

ssignal, gsignal: software signals.
hangman: guess the word.

moo: guessing game. • • • •
gutil: graphical utilities.

DASI 300 and 3OOs/ 300, 3OOs: handle special functions of
2640 and 2621-series/ hp: handle special functions of HP

the DASI 450 terminal. 450: handle special functions of
hangman: guess the word. • •

nohup: run a command immune to hangups and quits. •••••
graphical device/ hpd, erase, hardcopy, tekset. td:

to IBM. hasp: RJE (Remote Job Entry)
help: ask for help.

help: ask for help. •••••••
fget: retrieve files from the HONEYWELL 6000.

fsend: send files to the HONEYWELL 6000.
phototypesetter output to the HONEYWELL 6000. scat: send
line printer/ dpd, odpd, lpd: HONEYWELL sending daemons,

handle special functions of HP 2640 and 2621-series/ hp:
of HP 2640 and 2621-series/ hp: handle spec:ial functions •

moving-head disk. hp: RP04/RP05/RP06
td: graphical device routines/ hpd. erase. hardcopy. tekset.

fixed-head disk file. hs: RHII/RJS03-RJS04
interface. ht: TU16 magnetic tape • • •

wump: the game of hunt-the-wumpus. •••••
sinh. cosh. tanh: hyperbolic functions. ••••

hyphen: find hyphenated words.
hyphen: find hyphenated words. • • •

hypot: Euclidean distance. •
RJE (Remote Job Entry) to IBM. hasp: •••••••

rje: RJE (Remote Job Entry) to IBM. ••••••••••
and names. id: print user and group IDs

setpgrp: set process group 10. • • • . • • •
what: identify sees files. • •••

id: print user and group IDs and names.
group. and parent process IDs. /get process. process

group. and effective group IDs. /effective user. real
setgid: set user and group IDs. setuid.

core: format of core image file. • • • • • • •
crash: examine system images. •••••••••

pnch: file format for card images. ••••••••
nohup: run a command immune to hangups and quits.

- 15 -

Pemruled Index

plot(5)
plot(3X)
mmt(1)
mv(7)
greek(7)
greek(1)
grep(1)
getuid(2)
getpid(2)
chown(1)
getgrent(3C)
group(5)
group(5)
setpgrp(2)
id(1)
getuid(2)
setuid(2)
newgrp(l)
chown(2)
kil1(2)
make(l)
pwck(IM)
ssignal (3C)
hangman(6)
moo(6)
gutil(IG)
300(1)
hp(l)
450(1)
hangman(6)
nohup(1)
gdev(1G)
hasp(8)
help(l)
help(l)
fget(lC)
fsend(lC)
scat(lC)
dpd(lC)
hp(l)
hp(l)
hp(4)
gdev(1G)

• hs(4)
ht(4)
wump(6)
sinh(3M)

• hyphen(l)
hyphen(l)
hypot(3M)
hasp(8)
rje(8)

• id(l)
• setpgrp(2)

what(l)
id(l)
getpid(2)

• geluid(2)
setuid(2)

• core(S)
crash(IM)
pnch(S)
nohup(l)

Pennuted Index

dump:
dump:

restore. restor:
ptx: permuted

control information for
initialization.

init: process control
rc: system

process. popen. pelose:
for init.

clri: clear

inode: format of an
fscanf. sscanf: formatted
push character back into

fread. fwrite: buffered binary
stdio: standard buffered

fileno: stream status
u ustat: u ucp status

install:

abs:
/ltoI3: convert between 3-byte

3-byte integers and long
bcopy:

system consistency check and
rjestat: RJE status report and

cat: phototypesetter
dn: ON-II ACU

du: OU-ll synchronous line
err: error-logging

dqs: OQS-Il
ht: TUI6 magnetic tape

n-ll or OL-ll asynchronous
parallel communications link

plot: graphics
st: synchronous terminal

plot: graphics
tm: TMll/TUIO magnetic tape

tty: general terminal
V AX-ll /180 LSI console ftoppy

spline:
fptrap: ftoating point

rsh: restricted shell (command
sno: SNOBOL
pipe: create an

suspend execution for an
sleep: suspend execution for
commands and application/

formats.

miscellany.
files.

subroutines and libraries.
calls and error numbers.
maintenance procedures.

application programs. intro:
intro:
intro:
intro:
intro:

and libraries. intro:
and error numbers. intro:

incremental dump tape format.
incremental file system dump.
incremental file system
index .•••••.
init. inittab:
init: process control
initialization. . • •
initialization shell script.
initiate I/O to/from a •
inittab: control information
i-node. • •.•••••
inode: format of an inode.
inode ..••.....
input conversion. scanf.
input stream. ungetc: •
input/output.
input/output package. •
inquiries. /feof. c1earerr.
inquiry and job control. •
install commands.
install: install commands.
integer absolute value.
integers and long integers.
integers. /convert between
interactive block copy.
interactive repair. /file
interactive status console.
interface.
interface.
interface.
interface.
interface for two-point BSC.
interface.
interface. kl: •
interface. pel:
interface.
interface.

"

interface subroutines.
interface.
interface. • ••••
interface. vlx:
interpolate smooth curve.
interpreter.
interpreter). • • • •
interpreter.
interprocess channel.
interval. sleep:.. •
interval. • •••••
intro: introduction to
intro: introduction to file
intro: introduction to games.
intro: introduction to • • •
intro: introduction to special
intro: introduction to • • •
intro: introduction to system
intro: introduction to system
introduction to commands and
introduction to file formats.
introduction to games.
introduction to miScellany.
introduction to special files.
introduction to subroutines
introduction to system calls

- 16 -

dump(S)
• dump(lM)

restor(lM)
ptx(l)
inittab(S)
init(8)
init(8)
rc(8)
popen(3S)
inittab(S)
c1ri(lM)
inode(S)
inode(5)
scanf(3S)
ungetc(3S)
fread(3S)
stdio(3S)
ferror(3S)
uustat(lC)
install(l M)
install(I M)
abs(3C)
13tol(3C)
13tol(3C)
bcopy(IM)
fsck(IM)
tjestat(I C)
cat(4)
dn(4)
du(4)
err(4)
dqs(4)
ht(4)
kl(4)
pc1(4)
plot(S)
st(4)
plot(3X)
tm(4)
tty(4)
vlx(lM)
spline(IG)
fptrap(3X)
rsh(l)
sno(l)
pipe(2)
sleep(l)
sleep(3C)
intro(l)
intro(S)
intro(6)
intro(7)
intro(4)
intro(3)
intro(2)
intro(8)
intro(l)
intro(S)
intro(6)
intro(7)
intro(4)
intro(3)
intro(2)

maintenance/ intro: introduction to system
ncheck: generate names from i-numbers. •••••

popen, pclose: initiate I/O to/from a process.
ioctl: control device.

abort: generate an lOT fault. • . • • • •
/islower, isdigit, isxdigit, isalnum, isspace, ispunct./

isdigit, isxdigit, isalnum,/ isalpha, isupper, islower,
isprint, isgraph, iscntrl, isascii: character / /ispunct,

terminal. ttyname, isatty: find name of a • •
/ispunct, isprint, isgraph, iscntrl, isascii: character /
isalpha, isupper, islower, isdigit, isxdigit, isalnum,/

. /isspace, ispunct, isprint, isgraph, iscntrl, isascii:/ •
isalnum,/ isalpha, isupper, islower, isdigit, isxdigit, .
/isalnum, isspace, ispunct, isprint,isgraph, iscntrl,/
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph./
/isdigit, isxdigit, isalnum, isspace. ispunct, isprint./

system: issue a shell command. •
isxdigit, isalnum,/ isalpha, isupper, islower. isdigit, •

/isupper, islower, isdigit, isxdigit, isalnum, isspace,/
news: print news items. • • • • • • • • •

functions. jO, jl, jn, yO. yl, yn: bessel
functions. jO, jl, jn. yO, yl, yn: bessel

bj: the game of black jack. ••••••••
functions. jO, jl, jn, yO, yl, yn: bessel

operator. join: relational database
microprocessor. leas: assembler for the KMCII

makekey: generate encryption key. ••••••••
process or a group off kill: send a signal to a • • • •

Icill: terminate a process.
asynchronous interface. kl: KL-ll or DL-ll •••••

interface. Icl: KL-II or DL-II asynchronous
kmc: KMCII microprocessor.

leas: assembler for the KMCII microprocessor.
kmc: KMCII microprocessor.

/vpmsnap, vpmtrace: load the KMCll-B; print VPM traces.
kun: un-assembler for the KMCll/DMCll microprocessor.

mem, Itmem: core memory. • • •
quiz: test your knowledge. •••••••

KMCII/DMCII microprocessor. kun: un-assembler for the •
3-byte integers and long/ 13tol, Ito13: convert between

base-64 ASCII. a64I, 1648: convert between long and
copy file systems with label checking. /labelit:

with label checking. volcopy, labelit: copy file systems
scanning and processing language. awk: pattern

arbitrary-precision arithmetic language. be:
en: Extended Fortran Language. • • • • • •

standard command programming language. sh: shell, the
ld: link editor. ••••

mantissa and exponent. frexp. ldexp. modf: split into
getopt: get option letter from argv. •••

simple lexical tasks. lex: generate programs for
generate programs for simple lexical tasks. lex: • • •

to subroutines and libraries. /introduction
relation for an object library. /find ordering

ar: archive and library maintainer.
ulimit: get and set user limits. • • • •

du: DU-!l synchronous line interface.
line: read one line.

nl: line numbering filter.
out selected fields of each line of a file. cut: cut

HONEYWELL sending daemons, line printer daemon. /Ipd:
lp: line printer.

lpr: line printer spooler. • • •

- 17 -

intro(8)
ncheck(lM)
popen(3S)
ioctJ(2)
abort(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
ctype(3C)
system(3S)
ctype(3C)
ctype(3C)
news(J)
bessel(3M)
bessel(3M)
bj(6)
bessel(3M)

• join(l)
Icas(l)
makeltey(8)
1cil1(2)
kill(1)
Itl(4)
Icl(4)
kmc(4)
kas(l)
kmc(4)
vpmstart(l C)
kun(l)
mem(4)
quiz(6)
kun(l)
13tol(3C)
a64I(3C)
volcopy(1 M)
volcopy(1 M)
awk(l)
be(l)
eft(I)
sh(l)
ld(l)
frexp(3C)
gctopt(3C)
lex(l)
lex(1)
intro(3)
lorder(l)
ar(l)
ulimit(2)
du(4)
line(l)
nl(l)
cut(l)
dpd(lC)
IP(4~
Ipr(l)

Permuted Index

line: read one line.
Isearch: linear search and update.

col: filter reverse line-feeds. • . . • • • •
files. comm: select or reject lines common to two sorted

uniq: report repeated lines in a file. ••.•••
of several files or subsequent lines of one file. /same lines

subsequent/ paste: merge same lines of several files or
link, unlink: exercise link and unlink system calls.

Id: link editor.
pel: parallel communications link interface.

link: link to a file.
cp, In, mv: copy, link or move files.

link: link to a file. . . •
and unlink system calls. link, unlink: exercise link

protocol. dmc: communications link with built-in DDCMP
a.out: assembler and link editor output.

lint: a C program checker.
Is: list contents of directories.

nlist: get entries from name list. • • •
nm: print name list. . • • . • •

by fsck. checklist: list of file systems processed
cref: make cross-reference listing. •••••••••
xargs: construct argument Iist(s) and execute command.

files. cp, In, mv: copy, link or move
vpmstart, vpmsnap, vpmtrace: load the KMCII-B: print VPM/

romboot: special ROM bootstrap loaders. • • • . • • • • •
tzset: convert date/ ctime, localtime, gmtime, asctime,

end, etext, edata: last locations in program. . • •
gamma: log gamma function.
newgrp: log in to a new group.

logarithm, power, square/ exp, log. pow, sqrt: exponential,
/Iog, pow, sqrt: exponential, logarithm, power, square root/

errpt: process a report of logged errors.
getlogin: get login name. .•.••

logname: get login name. •••••
cuserid: character login name of the user.

logname: login name of user.
passwd: change login password.

login: sign on.
setting up an environment at login time. profile:

logname: get login name.
logname: login name of user.

a64I, 164a: convert between long and base-64 ASCn:
between 3-byte integers and long integers. /ltoI3: convert

setjmp, longjmp: non-local goto.
for an object library. lorder: find ordering relation

nice: run a command at low priority. • ••••••
Ip: line printer. • • . . • •

daemons, line/ dpd, odpd, Ipd: HONEYWELL sending
Ipr: line printer spooler. • •

directories. Is: list contents of
update. Isearch: linear search and
pointer. Iseek: move read/write file

vlx: VAX-l 1/780 lSI console 110ppy interface.
integers and long/ 13tol, Itol3: convert between 3-byte

m4: macro processor .••••
vpm: The Virtual Protocol Machine. •••••••••

for the virtual protocol machine. vpmc: compiler . •
documents. mm: the MM macro package for formatting

graphs. mv: a macro package for making view
m4: macro processor. • •••••

mmchek: check usage of mm macros and eqn delimiters.
in this manual. man: macros for formatting entries

- 18 -

line(1)
\search(3C)
col(1)
comm(l)
uniq(1)
paste(l)
paste(1)
link(1M)
Id(1)
pel(4)
link(2)
cp(\)
link(2)
link(1M)
dmc(4)
a.out(5)
lint(1)
Is(1)
nlist(3C)
nm(1)
checklist(5)
cref(1)
xargs(l)
cp(l)
vpmstart(1C)
romboot(8)
ctime(3C)
end(3C)
gamma(3M)
newgrp(1)
exp(3M)
exp(3M)
errpt(IM)
getiogin(3C)
10gname(1)
cuserid(3S)
logname(3X)
passwd(l)
10gin(1)
profile(5)
logname(l)
logname(3X)
a641(3C)
13tol(3C)
setjmp(3C)
lorder(l)
nice(l)
Ip(4)
dpd(lC)
Ipr(1)
15(1)
Isearch(3C)
Iseek(2)
vlx(1M)
13tol(3C)
m4(1)
vpm(4)
vpmc(lC)
mm(7)
mv(7)
m4(1)
mmchek(1)
man(7)

formatted with the MM macros. Iprint out documents
program. tapeboot: magnetic tape bootstrap

tp: magnetic tape format. •
ht: TUI6 magnetic tape interface.

tm: TMll/TUIO magnetic tape interface.
send mail to users or read mail. mail, rmail:

users or read mail. mail, rmail: send mail to
gcosmail: send mail to HIS user. • • • •

mail, rmail: send mail to users or read mail.
malloc, free, realloc, calloc: main memory allocator. •

regenerate groups ofl make: maintain, update, and
ar: archiv~ and library maintainer. ••••••

intro: introduction to system maintenance procedures.
sees file. delta: make a delta (change) to an

mkdir: make a directory.
or ordinary file. mknod: make a directory, or a special

mktemp: lJlake a unique file name. •
cref: make cross-reference listing. •

regenerate groups ofl make: maintain, update, and
banner: make posters. •••••••

key. makekey: generate encryption
main memory allocator. malloc, free, realloc, calloc:

entries in tbis manual. man: macros for formatting
manual. man: print entries in this

tp: manipUlate tape archive.
fwtmp, wtmpfix: manipulate wtmp records.

frexp, Idexp, modf: split into mantissa and exponent. •
man: print entries in this manual. • • • • • • • •

for formatting entries in tbis manual. man: macros
ascii: map of ABCD cbaracter set.

files. diffmk: mark differences between
umask: set file-creationmode mask. • • • • • • • • • •

set and get file creation mask. umask: •••••
table. master: master device information

information table. master: master device
regular expression compile and matcb routines. regexp: •

eqn, neqn, cbeclteq: format matbematical text for nroff orl
maze: generate a maze. • • •

maze: generate a maze. • • • • • • , • • •
mem, kmem: core memory.

free, realloc, calloc: main memory allocator. malloc,
mem, kmem: core memory. ••••••••

sort: sort andlor merge files. •••••••
files. acctmerg: merge or add total ac:countin,

files or subsequent! paste: mer,e same lines of sev~ •
mesg: permit or deny mlllla,es.

mesg: permit or deny messages. ••••••
sys_nerr, errno: system error messaaes. Isys_errlist,

kas: assembler for the KMCII microprocessor.
kmc: KMCll microprocessor.

for tbe KMCII/DMCII microprocessor. lun-assembler
and commands. mk: bow to remake the system

mkdir: make a directory.
mkfs: construct a file system.
mknod: build special file.

special or ordinary file. mknod: make a directory, or a
name. mktemp: make a unique file •

formattin, documents. mm: the MM macro packqe for • • •
mmcbek: cbeck usa,e of mm macros and eqn delimiters.

documents formatted with tbe MM macros. mm: print out • •
formatted witb tbe MM macros. mm: print out documents • • •

formattin, documents. mm: tbe MM macro packa,e for
macros and eqn delimiters. mmchek: cbeck usa,e of mm

- 19 -

mm(l)
tapeboot(8)
tp(S)
ht(4)
tm(4)
mail(l)
mail(l)
psmail(lC)
mail(l)
malloc(3C)
make(l)
ar(l)

• intro(8)
delta(l)
mkdir(l)
mknod(2)
mktemp(3C)
cref(I)
ma1tc(I)
banner(l)
maltekey(8)
malloc(3C)
man(7)
man(l)
tp(l)
fwtmp(lM)
frexp(3C)
man(l)
man(7)
ascii(7)
diffmk(l)
umask(l)

• umask(2)
master(S)
master(S)

• rcaexp(7)
eqn(l)
maze(6)
maze(6)
mem(4)
malloc(3C)

• mem(4)
sort(l)
acctmer,(lM)
paste(l)

• mes,(I)
mel,(I)
pcrror(3C)
kas(l)
kmc(4)
tun(l)
mk(8)
mkdir(l)
mkfs(IM)

• mkDod(lM)
mknod(2)
mktemp(3C)
mm(7)
mmcbek(l)

•• mm(l)
mm(l)
mm(7)

• mmcbek(1)

Permuted Index

view graphs. and slides. mmt. mvt: typeset documents.
table. mnttab: mounted file system

setmnt: establish mnttab table.
chmod: change mode. • • •

umask: set file-creation mode mask.
chmod: change mode of file.

getty: set the modes of a terminal.
bs: a compiler/interpreter for modest-sized programs.

exponent. frexp. Idexp. modf: split into mantissa and
touch: update access and modification times of a file.
utime: set file access and modification times. • • • •

profile. monitor: prepare execution
uusub: monitor uucp network.

moo: guessing game.
mount: mount a file system.

system. mount. umount: mount and dismount file·
mount: mount a file system.

dismount file system. mount. umount: mount and
mnttab: mounted file system table.

mvdir: move a directory.
cpo In. mv: copy. link or move files. • ••••••

Iseek: move read/write file pointer.
hp: RP04/RP05/RP06 moving-head disk.

rp: RP-II/RP03 moving-head disk.
OH-II asynchronous multiplexers. /OZ-ll /KMC-ll.

dj: OJ-II asynchronous multiplexor. • .••••••.
view graphs. mv: a macro package for making

cpo In. mv: copy. link or move files.
mvdir: move II directory.

graphs. and slides. mmt. mvt: typeset documents. view
i-numbers. ncheck: generate names from

mathematical text fori cqn. ncqn. chcckcq: format
definitions for cqn and ncqn. /spccial character • • •

commands. stat: statistical network useful with graphical
uusub: monitor uucp network. •••••••••

newgrp: log in to a new group.
news: print news items. ••••••

news: print news items. . .
process. nice: change priority of a
priority. nice: run a command at low

nl: line numbering filter.
list. nlist: get entries from name

nm: print name list.
hangups and quits. nohup: run a command immune to

setjmp. longjmp: non-local goto. • • • • . •
format mathematical text for nrotT or trotT. /checkcq:

tbl: format tables for nrotT or trotT. ••••••
trotT. nrotT: typeset or format text.

constructs. derotT: remove nrotT/trotT. tbl. and cqn • •
null: the null file. • • • • • • • • •

null: the null file. • • • • •
factor. primes: factor a number. generate large primes.

nl: line numbering filter. • •
graphics: access graphical and numerical commands.

size: size of an object file. . • • • •
find ordering relation for an object library. lorder:

sky: obtain ephemerides.
od: octal dump.

od: octal dump.
daemons. line printer/ dpd. odpd. Ipd: HONEYWELL sending

dpr: otT-line print.
fopen. freopen. fdopen: open a stream. • •

dup: duplicate an open file descriptor.

- 20-

mmt(l)
mnttab(5)
setmnt(IM)
chmod(1)
umask(l)
chmod(2)
gctty(8)
bs(l)
frexp(3C)
touch(l)
utime(2)
monitor(3C)
uusub(lM)
moo(6)
mount(2)
mount(IM)
mount(2)
mount(IM)
mnttab(S)
mvdir(lM)
cp(l)
Iseek(2)
hp(4)
rp(4)
dz(4)
dj(4)
mv(7)
cp(l)
mvdir(IM)
mmt(l)
ncheck(IM)
cqn(l)
cqnchar(7)
stat(lG)
uusub(lM)
newgrp(l)
news(l)
news(l)
nice(2)
nice(l)
nl(l)
nlist(3C)
nm(l)
nohup(l)
setjmp(3C)
cqn(l)
tbl(l)
trotT(l)
derotT(l)
null (4)
null(4)
factor(l)
nl(l)
graphics(I G)
size(l)
10rder(l)
sky(6)
od(l)
od(l)
dpd(lC)
dpr(lC)
fopen(3S)
dup(2)

open: open for reading or writing.
writing. open: open for reading or •

prf: operating system profiler. •
/prfdc, prfsnap, prfpr: operating system profiler. •
strcspn, strtok: string operations. /strpbrk, strspn,

vaxops: V AX-II /7S0 console operations. •••••
join: relational database operator. . ••.••

getopt: get option letter from argv.
fcntl: file control options. • • • • • . •

stty: set the options for a terminal.
getopt: parse command options. • • • • • . .

object library. lorder: find ordering relation for an
a directory, or a s;>ecial or ordinary file. mknod: make
assembler and link editor output. a.out:

ecvt, fevt: output conversion. •••.
printf, fprintf, sprintf: output formatters.

geat: send phototypesetter output to the HONEYWELL 6000.
miscellaneous/ acct: overview of accounting and •

chown: change owner and group of a file. • •
chown, chgrp: .change owner or group. • •••••

and expand files. pack, peat, unpack: compress
etp: Equipment Test Package. •••••••

documents. mm: the MM macro package for formatting
graphs. mv: a macro package for making view

sar: system activity report package. . . • • • • • .
standard buffered input/output package. stdio: • • • • •
format and/or check RP06 disk packs. rp6fmt: • • . • •

4014 terminal. 4014: paginator for tbe Tektronix
interface. pel: parallel communications link

process, process group, and parent process IDs. /get
getopt: parse command options.

passwd: cbange login password.
passwd: password file.

/setpwent, endpwent: get password file entry.
putpwent: write password file entry.

passwd: password file.
getpass: read a password. ••••

passwd: cbange login password. ••••
pwck, grpck: password/group file cbeckers.

several files or subsequent/ paste: merge same lines of
dirname: deliver portions of patb names. basename, • •

fgrep: searcb a file for a pattern. grep, egrep,
processing language. awk: pattern scanning and

signal. pause: suspend process until
expand files. pack, peat, unpack: compress and

ce, pee: C compiler. • ••••
link interface. pel: parallel communications

process. popen, pelose: initiate I/O to/from a
facv: convert files between PDP-ll and V AX-ll/7S0 systems.

as: assembler for PDP-II. • • • • • • • • • • • •
/convert arcbive files from PDP-ll to V AX-ll/7S0 format.

mesg: permit or deny messages.
ptx: permuted index. •••••

format. acct: per-process accounting file
acctcms: command summary from per-process accounting/ • •

errno: system error messages. perror, sys_errlist, sys_nerr,
eat: phototypesetter interface. •

HONEYWELL 6000. gcat: send pbototypesetter output to tbe
tc: pbototypesetter simulator. •

split: split a file into pieces. •••••••••
channel. pipe: create an interprocess

tee: pipe fitting. •••••
plot: graphics interface. ••

- 21 -

Permuted INiex

open(2)
open(2)
prf(4)
profiler(I M)
string(3C)
vaxops(S)
join(J)
getopt(3C)
fcntl(7)
stty(l)
getopt(l)
10rder(1)
mknod(2)
a.out(5)
ecvt(3C)
printf(3S)
gcat(IC)
acct(lM)
cbown(2)
cbown(J)
pack(J)
etp(S)
mm(7)
mv(7)
sar(8)
stdio(3S)
rp6fmt(S)
4014(1)
pel(4)
getpid(2)
getopt(l)
passwd(J)
passwd(5)
getpwent(3C)
putpwent(3C)
passwd(5)
getpass(3C)
passwd(1)
pwck(IM)
paste(l)
basename(1)
grep(l)
aWk(l)
paule(2)
pack(1)
cc(1)
pel(4)
popen(3S)
fscv(lM)
as.pdp(l)
arcv(l)
mesg(l)
ptx(l)
acct(5)
acctcms(lM)
perror(3C)
cat(4)
pt(lC)

• tc(l)
split(l)
pipe(2)

• tee(l)
plot(S)

Permuted Index

subroutines. plot: graphics interface
images. pnch: file format for card

Iseek: move read/write file pointer. • • • • • • • .
to/from a process. popen, pclose: initiate I/O

basename, dirname: deliver portions of path names. •
banner: make posters. • • • . • • • •

logarithm, power,/ exp, log. pow, sqrt: exponential.
/sqrt: exponential. logarithm. power. square root functions.

pr: prin t files. ••••••
for troff. cw, checkcw: prepare constant-width text

monitor: prepare execution profile: •
unget: undo a previous get of an sees file.

pro filer. prf: operating system •
operating/ prtld, prfstat, prfdc, prfsnap, prfpr:

prfsnap, prfpr: operating/ prtld, prfstat, prfdc,
/prfstat, prfdc, prfsnap, prfpr: operating system/

system/ prtld, prfstat, prfdc. prfsnap, prfpr: operating
prfpr: operating/ prtld, prfstat, prfdc, prfsnap,
generate large/ factor, primes: factor a number,

a number, generate large primes. /primcs: factor •
graphical/ gps: graphical primitive string. format of

types: primitive system data types.
prs: print an sces file.

date: print and set the date.
cal: print calendar. •• •

editing activity. sact: print current sees file
dpr: off-line print. ••••••••

man: print entries in this manual.
cat: concatenate and print files. • • • • • • • •

pr: print files. • • • • • • . •
nm: print name list. • • • . • .

uname: print name of current UNIX.
news: print news items. • • • • • •

with the MM macros. mm: print out documents formatted
file(s). acctcom: search and print process accounting • • •

names. id: print user and group IDs and
vpmtrace: load the KMCII-B; print VPM traces. /vpmsnap.

sending daemons, line printer daemon. /HONEYWELL
lp: line printer.

lpr: line printer spooler.
vpr: Versatec printer spooler.
vp: Versatec printer.

output formatters. printf, fprintf, sprintf:
nice: run a command at low priority. • • • • • •

nice: change priority of a process.
errors. errpt: process a report of logged

acct: enable or disable process accounting. • • •
acctprc: process accounting. • ••

acctcom: search and print process accounting file(s).
times. times: get process and child process

initialization. init: process control • • • . •
exit: terminate process. • • • • • • • .

fork: create a new process. . . • • • • • •
/getpgrp, getppid: get process, process group, and parentl

setpgrp: set process group 10.
process group, and parent process IDs. /get process,

kill: terminate a process. • • • • • • •
nice: change priority of a process. • • • • • • • •

kill: send a signal to a process or a group of/
pclose: initiate I/O to/from a process. popen,
getpid, getpgrp, getppid: get process, process group, and/

ps: report process status.
times: get process and child process times. ••••••

plot(3X)
pnch(S)
Iseek(2)
popcn(3S)
basename(1)
banner(l)
exp(3M)
exp(3M)
pr(l)
cw(l)
monitor(3C)
unget(l)
prf(4)

_ profiler(LM)
profiler(1 M)
profiler(1 M)
profiler(l M)
profiler(l M)
factor(l)
factor(1)
gps(S)
typcs(7)
prs(l)
date(1)
cal(l)
sact(1)
dpr(lC)
man(1)
cat(1)
pr(l)
nm(l)
uname(l)
news(1)
mm(l)
acctcom(l)
id(l)
vpmstart(1 C)
dpd(1C)
Ip(4)
Ipr(1)
vpr(1)
vp(4)
printf(3S)
nice(l)
nice(2)
errpt(1M)
acct(2)
acctprc(1 M)
acctcom(l)
times(2)
init(8)
exit(2)
fork(2)
getpid(2)
setpgrp(2)
getpid(2)
kill(l)
nice(2)
kill(2)
popen(3S)
getpid(2)
ps(1)
times(2)

wait: wait for child
ptrace:

pause: suspend
wait: await completion of

list of file systems
to a process or a group of
awk: pattern scanning and

shutdown: terminate all
m4: macro

alarm: set a

profile.
prof: display

monitor: prepare execution
profil: execution time

environment at login time.
prf: operating system

prfpr: operating system
shell, the standard command

link witb built-in DDCMP
vpm: The Virtual

vpmc: compiler for the virtual
arithmetic:
true, false:

stream. ungete:
put character or word on a/

character or word on a/ pute,
entry.

stream.
a/ putc, putebar, fpute,

file checkers.

qsort:
command immune to hangups and

generator.
rand, srand:

dialect.
ratfor:

sbell script.
,etpuS:

read:
rmail: send mail to users or

line:

open: open for
Iseek: move

allocator. malloc, free,
specify wbat to do upon

from per-process accountin,
errdead: extract error

wtmpfix: manipulate wtmp
xref:cross

reform:
compile.

compile/execute. rqex.
make: maintain. update. and

process to stop or terminate.
process trace.
process until signal. • • , •
process. • ••••••••
processed by fsek. checklist:
processes. /send a signal
processing -language.
processing.
processor. • ••••
process's alarm clock.
prof: display profile data.
profil: execution time
profile data.
profile. • •••••
profile. • •••••
profile: setting up an
profiler. • •••••
profiler. /prfdc. prfsnap,
programming language. sb:
protocol. dmc: communications
Protocol Machine. •••••
protocol macbine. •••••
provide drill in number facts.
provide trutb values. ••
prs: print an sees file. •
ps: report process status.
ptrace: process trace.
ptx: permuted index. ••
pusb cbaracter back into input
pute, putebar, fpute, putw:
putebar, fpute, putw: put
putpwent: write password file
puts. fputs: put a string on a • •
putw: put character or word on
pwck, srpck: password/group
pwd: workin, directory name.
qsort: quicker sort. • • • •
quicker lort. • • • • • • ••
quits. nobup: run a • • • • •
quiz: test your kDowlqe. • •
rand, srand: random number
random number pnerator.
ratfor: rational Fortran
rational Fortran dialect.
rc: system initialization
read a password.
read from filc. • • •
read mail. mail.
read one line.
read: read from file.
reading or writing.
read/write file pointer.
realloc. caIIoc: main memory
receipt of a signal. signal: ••
records. /command summary
records from dump.
records. fwtmp. •••••
reference for C prosrams. • •

-reform: reformat tcxt file. • •
reformat text file.

Permuted IruJex

wait(2)
ptrace(2)
pause(2)
wait(l)
cbecklist(S)
kill(2)
awk(l)
sbutdown(IM)
m4(1)
alarm (2)
prof(l)
profil(2)
prof(l)
monitor(3C)
profil(2)
profile(S)
prf(4)
profiler(I M)
sh(l)
dmc(4)
vpm(4)
vpmc(lC)
aritbmetic(6)
true(l)
prs(l)
ps(!)
ptrace(2)
ptx(l)
ungctc(3S)
pute(3S)
pute(3S)
putpwent(3C)
puts(3S)
pute(3S)
pwck(lM)
pwd(1)
qsort(3C)

• qsort(3C)
nobup(l)

• quiz(6)
rand(3C)

• • rand(3C)
ratfor(l)

• • ratfor(1)
rc(8)

• ptpass(3C)
read(2)
mail(l)
Jine(i)

• read(2)
• opcn(2)

lseck(2)
malloc(3C)
signaI(2)

• aa:tcms(I M)
• errdead(l M)

fwtmp(IM)
• • xref(i)

rerorm(l)
reform(l)

rescmp: rcplar expression
rescmp: regular expression

• •••• rqcmP(l)
• resex(3X)

. resenerate sroups of prosraml. • maltc(l)

- 23-

Permuted Index

expression compile/execute. regex. regcmp: regular
compile and match routines. regexp: regular expression • •

match routines. regexp: regular expression compile and
regcmp: regular expression compile.

regex, regcmp: regular expression/ ••••
sorted files. comm: select or reject lines common to two

lorder: find ordering relation for an object/
join: relational database operator.

strip: remove symbols and relocation bits. . • . • • •
value. lIoor. ceiling. remainder functions. /absolute

commands. mk: how to remake the system and • •
calendar: reminder service. • • • • .

hasp: RJE (Remote Job Entry) to IBM.
rje: RJE (Remote Job Entry) to IBM.

uvac: RJE (Remote Job Entry) to UNIVAC.
file. rmdel: remove a delta from an sces

unlink: remove directory entry. • • • •
rm. rmdir: remove files or directories.

eqn constructs. derolf: remove nrolf/trolf. tbl. and • •
bits. strip: remove symbols and relocation

check and interactive repair. /system consistency
uniq: report repeated lines in a file.

console. rjestat: RJE status report and.interactive status
blocks. df: report number of free disk

errpt: process a report of logged errors. •
sar: system activity report package. • • • • . .

ps: report process status. • • •
file. uniq: report repeated lines in a

and generate a system activity report. timex: time a command
fseek. ftell. rewind: reposition a stream.

system restore. restor: incremental file
incremental file system restore. restor: • • • •

interpreter). rsb: restricted shell (command
fget.demon. fget.odemon: file retrieval daemons.

HONEYWELL 6000. fget: retrieve files from the
stat: data returned by stat system call.

reversi: a game of dramatic reversals. ••.•••.•
col: filter reverse line-feeds.
reversals. reversi: a game of dramatic

fseek. ftell. rewind: reposition a stream.
creat: create a new file or rewrite an existing one. • •

file. rf: RFIl/RSlI fixed-bead disk
file. rf: RFIl/RSIl fixed-head disk •

disk file. bs: RHll/RJS03-RJS04 fixed-head
gather files and/or submit RJE jobs. send. gath: •••••

hasp: RJE (Remote Job Entry) to IBM.
rje: RJE (Remote Job Entry) to IBM.

UNIVAC. uvac: RJE (Remote Job Entry) to • •
IBM. rje: RJE (Remote Job Entry) to

rjestat: RJE status and enquiries.
interactive status/ rjestat: RJE status report and • • • • •

enquiries. rjestat: RJE status and
interactive status console. rjestat: RJE status report and

rk: RK-1l/RK03 or RKOS disk.
rk: RK-Il/RK03 or RKOS disk. • ••••••

rk: RK-ll/RK03 or RKOS disk.
r1: RL-II/RLOI disk. • ••

r1: RL-ll /RLO 1 disk.
directories. rm. rmdir: remove files or

read mail. mail. rmail: send mail to users or
sees file. rmdel: remove a delta from an

directories. rm. rmdir: remove files or
rom boot: special ROM bootstrap loaders. • • •

- 24 -

regex(3X)
regexp(7)
regexp(7)
regcmp(l)
regex(3X)
comm(l)
lorder(l)
join(l)
strip(l)
lIoor(3M)
mk(8)
calendar(1)
hasp(8)
rje(8)
uvac(8)
rmdel(l)
unlink(2)
rm(l)
derolf(l)
strip(l)
fsck(lM)
uniq(l)
rjestat(l C)
df(l)
errpt(IM)
sar(8)
ps(l)
uniq(l)
timex(l)
fseek(3S)
restor(lM)
restor(IM)
rsh(l)
fget.demon(I C)
fget(lC)
stat(7)
reversi(6)
col(l)
reversi(6)
fseek(3S)
creat(2)
rf(4)
rf(4)
hs(4)
send(lC)
hasp(8)
rje(8)
uvac(8)
rje(8)
orjestat(1 C)
rjestat(l C)
orjestat(1 C)
rjestat(1 C)
rk(4)
rk(4)
rk(4)
rl(4)
rl(4)
rm(l)
mail(l)
rmdel(l)
rm(l)
romboot(8)

loaders. rom boot: special ROM bootstrap
chroot: change root directory. •••• • • •
chroot: change root directory for a command.

logarithm, power, square root functions. /exponential,
/tebet, td: graphical device routines and filters. • • •

expression compile and match routines. regexp: regular
graphical table of contents routines. toe: •••••

disk. rp: RP-ll/RP03 moving-head
moving-head disk. hp: RP04/RPOS/RP06 ••••

rp6fmt: format and/orchcck RP06 disk packs .••••••
rp: RP-ll/RP03 moving-head disk.

RP06 disk packs. rp6fmt: format and/or check
interpreter). rsh: restricted shell (command •

nice: run a command at low priority.
hangups and quits. nohup: run a command immune. to •

runac:ct: run daily accounting. ••••
runac:ct: run daily accouating.

editing activity. sact: print current sees file
sag: system activity graph.

package. sar: system activity report
space allocation. brk, sbrk: change data segment

formatted input conversion. scanf, fscanf, sscanf:
bfs: big file scanner. •••••••

language. awk: pattern scanning and processing •
stand-alone programs. sec: C compiler for • • •

the delta commentary of an sces delta. cdc: change
comb: combine sees deltas. • • • • • •

make a delta (change) to an sees file. delta: • • • •
sact: print current sees file editing activity.

get: get a version of an sees file.
prs: print an sees file. • • • •

rmdel: remove a delta from an sees file. • • • •
compare two versions of an sees file. sccsdiff:

sccsfile: format of sees file. • • •
undo a previous get of an sees file. unget:

val: validate sees file.
admin: create and administer sees files.

what: identify sees files.
of an sees file. sccsdiff: compare two versions

sccsfile: format of sees file.
system initialization shell script. rc: ••••••••

sdb: symbolic debuller .••
program. sdiff: sidc-by-side .difference

grep, egrcp, fgrcp: search a file for a pattern.
accounting file(s). acctcom: search and print process

!search: linear search and update. •••
bsearch: binary search. ••••••••

sed: stream editor. •••
brk, sbrk: change data segment .. pace allocation.

to two sorted files. comm: select or reject lines common
greek: select terminal filter.

of a file. cut: cut out selected fidds of each line • •
a group of processes. kill: lend a signal to a process or •

6000. fsend: send files to the HONEYWELL
and/or submit RJEjobs. send, pth: ptber files

gcosmail: 'send mail to HIS user.
mail. mail, rmail: lend mail to ulers or read • •

tbe HONEYWELL 6000. scat: lend phototypesetter output to
dpd, odpd, lpd: HONEYWELL sending daemons, line printer/

stream. setbuf: uaign buffering to a •
IDs. letuid, letgid: set user and group • •

getarent, getgrgid, gctarnam, sctarent, endgrent: get group/
goto. sctjmp, lonaimp: non-local

- 2S-

Permuted l1Ulex

romboot(8)
chroot(2)
chroot(IM)
exp(3M)
gdev(lG)
regexp(7)
toe(lG)
rp(4)
hP(4)
rp6fmt(8)
rp(4)
rp6fmt(8)
rsh(l)
nice(l)
nohup(l)
ruaac:ct(IM)
runac:ct(1 M)
sact(l)
sag(lM)
sar(8)
brk(2)
scanf(3S)
bfs(l)
awk(l)
sec(l)
cdc(l)
comb(l)
delta(l)
sact(l)
get(l)
prs(l)
rmdel(l)
sccsdiff(l)
sccsfile(S)
ungct(l)
val(I)
admin(l)
wbat(l)
sccsdiff(1)
sccsfile(5)
rc(8)

• sdb(l)
sdiff(l)
grcp(l)

• acctcom(1)
!search(3C)
bscarch(3C)
sed(l)
brlt(2)

•• comm(l)
• grcck(l)

cut(l)
ltill(2)
fsend(tC)
send(lC)
gcolmail(lC)
mail(l)
pt(lC)
dpd(lC)
setbuf(3S)

• setuid(2)
IctarCnt(3C)
sctjmp(3C)

Permuted Index

encryption. crypt, setkey, encrypt: DES ...•
table. setmnt: establish mnttab

setpgrp: set process group 10.
getpwent, getpwuid, getpwnam, setpwent, endpwent: get/

login time. profile: setting up an environment at
group IDs. setuid, setgid: set user and

command programming language. sh: shell, the standard
rsh: restricted shell (command interpreter).

system: issue a shell command.
accounting. acctsh: shell procedures for

rc: system initialization shell script.
programming language. sh: shell, the standard command

processing. shutdown: terminate all
program. sdiff: side-by-side difference

login: sign on. •
pause: suspend process until signal.
what to do upon receipt of a signal. signal: specify .

upon receipt of a signal. signal: specify what to do
of processes. kill: send a signal to a process or a group
ssignal, gsignal: software signals. ...•.

lex: generate programs for simple lexical tasks.
tc: phototypesetter simulator.

atan, atan2: trigonometric/ sin, cos, tan, asin, acos,
functions. sinh, cosh, tanh: hyperbolic

size: size of an object file.
size: size of an object file. .
sky: obtain ephemerides.

an interval. sleep: suspend execution for
interval. sleep: suspend execution for

documents, view graphs, and slides. mmt, mvt: typeset
spline: interpolate smooth curve. • . . • .

sno: SNOBOL interpreter.
sno: SNOBOL interpreter. .

ssignal, gsignal: software signals.
sort: sort and/or merge files.

qsort: quicker sort.••..
sort: sort and/or merge files.

tsort: topological sort. ...•..•.•
or reject lines common to two sorted files. comm: select

brk, sbrk: change data segment space allocation.
fspec: format specification in text files.

receipt of a signal. signal: specify what to do upon .
spelling errors. spell, spellin, spellout: find

spelling errors. spell, spellin, spellout: lind
spell, spellin, spellout: find spelling errors. • . • . •

errors. spell. spellin, spellout: find spelling . .
curve. spline: interpolate smooth

split: split a file into pieces. .
csplit: context split. •••.••••

exponent. frexp, Idexp, modf: split into mantissa and
pieces. split: split a file into

uuclean: uucp spool directory clean-up.
Ipr: line printer spooler. • • . . . • •

vpr: Versatec printer spooler. • •.•...
printf, fprintf, sprintf: output formatters.

power, square/ exp, log. POW. sqrt: exponential, logarithm.
exponential, logarithm. power, square root functions. /sqrt:

generator. rand. srand: random number •
conversion. scanf. fscanf, sscanf: formatted input

signals. ssignal. gsignal: software
control. st: synchronous terminal

interface. st: synchronous terminal
sec: C compiler for stand-alone programs.

- 26 -

crypt(3C)
setmnt(lM)
setpgrp(2)
getpwent(3C)
profile(5)
setuid(2)
sh(l)
rsh(I)
system(3S)
acctsh(lM)
rc(8)
sh(l)
shutdown(I M)
sdiff(I)
login(1)
pause(2)
signal(2)
signal(2)
kill(2)
ssignal(3C)
lex (I)
tC(l)
trig(3M)
sinh(3M)
size(I)
size(I)
sky(6)
sleep(I)
sleep(3C)
mmt(l)
spline (I G)
sno(l)
sno(I)
ssignal(3C)
sort(l)
qsort(3C)
sort(l)
tsort(l)
comm(l)
brk(2)
fspec(5)
signal(2)
spell (I)
spell(l)
spell(1)
speU(I)
spline (1 G)
split(1)
csplit(1)
frexp(3C)
split(l)
uuclean(\ M)
\pr(1)
vpr(l)
printf(3S)
exp(3M)
exp(3M)
rand(3C)
scanf(3S)
ssignal(3C)
st(1M)
st(4)
sec(\)

package. stdio:
language. sh: shell. the

unix boot: UNIX
system call.

useful with graphical/
stat: data returned by

with graphical/ stat:
ustat: get file system

rjestat: RJE
status report and interactive
feof. c1earerr. fileno: stream

control. uustat: uucp
ps: report process

status console. rjestat: RJE
stat. fstat: get file

input/output package.

wait for child process to
strncmp. strcpy. strncpy,/

/strcpy. strncpy, strlen,
strncpy,/ strcat, strncat,

/strncat, strcmp, strncmp,
/strrchr. strpbrk, strspn.

sed:
mush: close or flush a

(open, (reopen. (dopen: open a
ftell. rewind: reposition a

get character or word from
fgets: get a string from a

put character or word on a
puts, fputs: put a string on a
setbuf: assign buffering to a

/feof, c1earerr. fileno:
push character back into input

gps: graphical primitive
gets, fgets: get a

puts, (puts: put a
strspn, strespn. strtok:

relocation bits.
/strncmp, strcpy, strncpy.

strcpy, strncpy,/ streat,
streat, strncat, strcmp,

/strcmp. strncmp, strcpy.
/strlen, strchr, strrchr.
/strncpy, strlen, strchr,

/ strehr. strrchr, strpbrk,
/strpbrk. strspn. strcspn,

terminal.
another user.

gath: gather files and/or
intro: introduction to

plot: graphics interface
/same lines of several files or

file. sum:
file.
du:

accounting/ acctcms: command
sync: update the

sync: update
su: become

interval. sleep:
interval. sleep:

standard buffered input/output
standard command programming
startup and boot procedures.
stat: data returned by stat
stat, fstat: get file status.
stat: statistical network
stat system call.
statistical network useful
statistics.
status and enq uiries.
status console. rjestat: RJE
status inquiries. ferror, . •
status inquiry and job . • •
status. ••...•...
status report and interactive
status. .•...•.
stdio: standard buffered
stime: set time.
stop or terminate. wait:
strcat, strncat. strcmp,
strehr, strrchr. strpbrk,/
strcmp, strncmp. strcpy,
strcpy. strncpy. strlen,/
strcspn, strtok: string/
stream editor.
stream. fclose,
stream.
stream. fseek.
stream. /getchar, fgetc, getw:
stream. gets, .•••.••
stream. /putchar, fputc, putw:
stream. • •..•.•
stream. •
stream status inquiries.
stream. ungetc:
string, (ormat of graphical/
string from a stream. . • •
string on a stream. • .••
string operations. /strpbrk,
strip: remove symbols and
strlen, strchr, strrchr '/
strncat, strcmp, strncrnp,
strncrnp, strcpy, strncpy,/
strncpy, strlen. strehr./ .
strpbrk. strspn. strcspn./
strrchr, strpbrk. strspn./
strspn, strespn, strtok:/ •
strtok: string operations.
stty: set the options for a
su: become super-user or
submit RJE jobs. send. •
subroutines and libraries.
subroutines. • • • • • •
subsequent lines of one file.
sum and count blocks in a
sum: sum and count blocks in a
summarize disk usage.
summary from per-process
super block. • • • • • ••
super-block. • • • • • • •
super-user or another user.
suspend execution for an
suspend execution for

- 27 -

Permuted Index

stdio(3S)
sh(\)
unixboot(8)
stat(7)
stat(2)
stat(\G)
stat(7)
stat(\G)
ustat(2)
orjestat(I C)
rjestat(I C)
ferror(3S)
uustat(lC)
ps(l)
rjestat(\ C)
stat(2)

• jtdio(3S)
stime(2)
wait(2)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
sed(1)
fclose(3S)
fopen(3S)
fseek(3S)
getc(3S)
gets(3S)
putc(3S)
puts(3S)
setbu(3S)
ferror(3S)
ungetc(3S)
gps(S)
gets(3S)
puts(3S)
string(3C)
strip(l)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
string(3C)
stty(Il
su(I)
send(lC)
intro(3)
plot(3X)
paste(\)
sum(l)
sum(I)
du(l)
acctcms(1 M)
sync(lM)
sync(2)
su(l)
sleep(l)
sleep(3C)

Permuted Index

pause: suspend process until signal.
swab: swap bytes.

swab: swap bytes. ••.•.••
sdb: symbolic debugger. . • • •

strip: remove symbols and relocation bits.
sync: update super· block.
sync: update the super block.

du: DU-ll synchronous line interface.
st: synchronous terminal control.

interface. st: synchronous terminal • • .
sysdef: system definition.

system error / perror. sys_errlist, sys_nerr. errno:
perror, sys_errlist, sys_nerr. errno: system error /

master device information table. master: ••..•
mnttab: mounted file system table. ••••.••••

toc: graphical table of contents routines.
setmnt: establish mnttab table. •• • . . • • •

tbl: format tables for nroft" or troft". .
tabs: set tabs on a terminal. . . .

tabs: set tabs on a terminal.
a file. tail: deliver the last part of

trigonometric/ sin, cos, tan, asin, acos, atan, atan2:
sinh, cosh, tanh: hyperbolic functions.

tp: manipulate tape archive. • • . • •
tape boot: magnetic tape bootstrap program.

tar: tape file archiver.
dump: incremental dump tape format. •

tp: magnetic tape format. .
ht: TU16 magnetic tape interface.

tm: TMll/TU10 magnetic tape interface.
bootstrap program. tapeboot: magnetic tape

file system backup. filesave, tapesave: daily/weekly UNIX
tar: tape file archiver. • • •

programs for simple lexical tasks. lex: generate • • • • •
deroft": remove nroft"/troft", tbl, and cqn constructs. • • •

or troft". tbl: format tables for nroft"
tc: phototypesetter simulator.

hpd, erase, hardcopy, tekset, td: graphical device routines/
tee: pipe fitting. •.•••

hpd, erase, hardcopy, tekset, td: graphical device/
4014: paginator for the Tektronix 4014 terminal.

tmpfile: create a temporary file. • • • • •
tmpnam: create a name for a temporary file. • • • • •

term: conventional names.
for the Tektronix 4014 terminal. 4014: paginator

functions of the DASI 4S0 terminal. 4S0: handle spceial
st: synchronous terminal control. •

ct: call terminal. .
generate file name for terminal. ctermid:

greek: select terminal filter. • •
getty: set the modes of a terminal.

st: synchronous terminal interface.
tty: general terminal interface.

stty: set the options for a terminal.
tabs: set tabs on a terminal.

isatty: find name of a terminal. ttyname,
functions of DASI 300 and 300s terminals. /handle special

of HP 2640 and 2621-series terminals. /spccial functions
tty: get the terminal's name. . • •

kill: terminate a process.
shutdown: terminate all processing.

exit: terminate process.
daemon. errstop: terminate the error-logging

- 28 -

pause(2)
swab(3C)
swab(3C)
sdb(l)
strip(l)
sync(2)
5ync(lM)
du(4)
5t(lM)
5t(4)
5ysdef(IM)
perror(3C)
perror(3C)
master(5)
mnttab(S)
toc(lG)
5etmnt(IM)
tbl(l)
tabs(l)
tabs(l)
tail(l)
trig(3M)
sinh(3M)
tp(l)
tapcboot(8)
tar(1)
dump{S)
tp(S)
ht(4)
tm(4)
tapcboot(8)
filesave(8)
tar(1)
lex(l)
deroft"(l)
tbl(l)
tc(l)

.' gdev(lG)
tee(1)
gdev(IG)
4014(1)
tmpfile(3S)
tmpnam(3S)
term(7)
4014(1)
4S0(l)
st(lM)
ct(lC)
ctermid(3S)
greek(l)
getty(8)
5t(4)
tty(4)
stty(1)
tabs(l)
ttyname(3C)
300(1)
hp(l)
tty(l)
kill(1)
shutdown(1M)
exit(2)
errstop(1 M)

for child process to stop or
command.

etp: Equipment
quiz:

ed:
reform: reformat

fspec: format specification in
/chcckeq: format mathematical

prepare constant-width
nroff: typeset or format

ttl, cubic:
system activity/ timex:

time:

profil: execution
up an environment at login

slime: set

time: get
tzset: convert date and

process times.
update access and modification

get process and child process
file access and modification
generate a system activity/

interface.
interface. tm:

file.
temporary file.

touppcr, tolower,
contents routines.

popen, pelose: initiate I/O
translation. touppcr,

tsort:
acctmerg: merge or add

modification times of a file.
character translation.

ptracc: process
load the KMCII-B; print VPM

tr:
tolower, toascii: character

tan, uin, &cos, atan, ataol:
constant-width text for

mathematical text for nroff or
format texL

format tables for nrofl' or
yalues.

true, falle: provide

interface.

paphic:s for the extended
a terminal.

ht:
dqa: DQS-ll interface for

file: determine file
for the extended T1Y-37

terminate. wait: wait ••
test: condition evaluation
Test Package.
test your knowledge. •
text editor. • ••••
text file. • • • • • • •
text files. • ••••.•
text for nroff or trofl'. •
text for troff. cw, checkcw:
text. troff, • • • • • • • •
tic-tac-toe. • • • • • • • •
time a command and generate a
time a command.
time: get time. • • •
time profile. • • • • •
time. profile: setting
time. • •••••••
time: time a command.
time. • ••.••••
time to ASCII. /asctime,
times: get process and child
times of a file. touch: • • •
times. times: ••••••
times. utime: let • • • • • •
timex: time a command and • •
tm: TMlljTUlO magnetic tape
TMII/TUIO magnetic tape
tmpfile: create a temporary
tmpnam: create a name for a
toascii: character/
toe: paphical table of • •
to/from a process.
tolower, toascii: character
topologicallOrt.
total accounting files. • •
touch: update access and
touppcr, ,tolower, toucii:
tp: magnetic tape formaL
tp: manipulate tape archive.
tplot: paphic:s filters. ••
tr: translate characters.
trace: eyent-tracing driver.
trace. • •••••••••
traces. /vpm.nap, vpmtrace:
tranalate charac:tcn.
translation. toupper, ...,.
trigonometric functionl. ICOI,
tro~ cw,cbcckcw:~
trofl'. /neqn, cbeckeq: format
trofl', nrofl': typeset or
trofl'. tbl: •••••••
true, false: provide truth
truth values. • • • • • •
1Iort: topological sorL • • •
ttt, cubic: tic-tac-toe.
tty: .enenl terminal
tty: let tbe terminal~1 name.
T1Y-37 type-box. p-eek: •
ttyname, ilatty: find namc of
TUI6mqnetic tape interface.
two-point EC. • • • • • •
type. • ••••••••

wait(2)
tClt(l)

• ctp(S)
quiz(6)
ed(1)
reform(l)
flpec(S)
eqn(l)
cw(1)
trofl'(1)
ttt(6)
timex(1)

• timc(1)
timc(2)
profil(2)
profile(S)
stime(2)
time(1)
time(2)
ctime(3C)
times(2)
touch(1)
times(2)
utime(2)
timcx(l)

• tm(4)
tm(4)
tmpfilc(3S)
tmpnam(3S)
conv(3C)

• toe(IG)
• popea(3S)

• • conv(3C)
tsort(1)
acctmerl(IM)
toucb(1)

• cony(3C)
• tp(S)

tp(l)
• • tplot(lG)

• tr(l)
• tracc(4)

ptracc(2)
• vpmltart(IC)
• tr(l)
• coav(3C)

trig(3M)
••• cw(l)

eqn(l)
.trofl'(1)

tbl(l)
• truc(l)

truc(l)
tsott(1)
ttt(6)

• Uy(4)
• • Uy(l)

• .,.k(7)
ttyname(3C)
bt(4)

• dql(4)
• filc(l)

type-box. Jreek: Ir&Phic:s •••• • • greck(7)

- 29-

PermUled Index

types. types: primitive system data
types: primitive system data types. • • • • • • • • •

graphs. and slides. mmt. mvt: typeset documents. view
troff. nroff: typeset or format text.

typographical errors. typo: find possible
typo: find possible typographical errors.

/localtime. gmtime. a$Ctime. tzset: convert date and time/
getpw: get name from UID. ••••••••

limits. ulimit: get and set user •••
creation mask. umask: set and get file

mask. umask: set file-creation mode
file system. mount. umount: mount and dismount

umount: unmount a file system.
UNIX system. uname: get name of current • •

UNIX. uname: print name of current •
KMCIl/DMCIl/ kun: un-assembler for the •••••

file. unget: undo a previous get of an sees
an sces file. unget: undo a previous get of

into input stream. ungetc: push character back •
a file. uniq: report repeated lines in

mktemp: make a unique file name. • • • • •
units: conversion program.

RJE (Remote Job Entry) to UNIVAC. uvac: •••••
boot procedures. unix boot: UNIX startup and

uuto. uupick: public UNIX-to-UNIX file copy.
unlink system calls. link. unlink: exercise link and

entry. unlink: remove directory
unlink: exercise link and unlink system calls. link.

umount: unmount a file system. ••
files. pack. peat. unpack: compress and expand

times of a file. touch: update access and modification
of programs. make: maintain. update. and regenerate groups

lsearch: linear search and update. ••••••••
sync: update super-block. • • • • •
sync: update the super block. • • •

du: summarize disk usage. • • • • • • • • • • •
delimiters. mmchek: check usage of mm macros and eqn

stat: statistical network useful with graphical! • • • •
id: print user and group IDs and names.

setuid. setgid: set user and group IDs.
character login name of the user. cuserid: •••••

/getgid. getegid: get real user. effective user. real!
environ: user environment.

gcosmail: send mail to HIS user. • •••••••
ulimit: get and set user li.mits.

logname: login name of user. •••••••
/get real user, effective user. real group, and!

become super-user or another user. su:
write: write to another user. • •••••

mail. rmail: send mail to users or read mail.
wall: write to all users. • • • • • •

statistics. ustat: get file system
gutil: graphical utilities. • • • • • •

modification times. utime: set file access and
utmp. wtmp: utmp and wtmp entry format.
entry format. utmp, wtmp: utmp and wtmp

clean-up. uuclean: uucp spool directory
uusub: monitor uucp network. • •••••••

uuclean: uucp spool directory clean-up.
control. uustat: uucp status inquiry and job

unix copy. uuCP. uulog, uuname: unix to
copy. uucp, uulog, uuname: unix to unix

uucp. uulog, lIuname: unix to unix copy. •

- 30-

types(7)
types(7)
mmt(1)
troff(l)
typo(1)
typo(1)
ctime(3C)
getpw(3C)
ulimit(2)
umask(2)
umask(1)
mount(lM)
umount(2)
uname(2)
uname(1)
kun(l)
unget(l)
unget(1)
ungetc(3S)
uniq(1)
mktemp(3C)
units(l)
uvac(8)
unixboot(8)
uuto(lC)
link(lM)
unlink(2)
link(IM)
umount(2)
pack(l)
touch(l)
make(l)
lsearch(3C)
sync(2)
sync(1M)
du(l)
mmchek(l)
stat(lG)
id(l)
setuid(2)
cuserid(3S)
getuid(2)
environ(7)
gcosmail(lC)
ulimit(2)

• logname(3X)
getuid(2)
su(1)

.write(l)
mail(l)

• wall(lM)
ustat(2)
gutil(lG)
utime(2)
utmp(S)
utmp(S)
uuclean(1 M)

• uusub(1M)
uuclean(lM)
uustat(lC)
uucp(lC)

• uucp(1C)
uucp(lC)

file copy. uuto, uupick: public UNIX-tfJ-UNIX
and job control. uustat: uucp status inquiry

uusub: monitor uucp network.
UNIX-to-UNIX file copy. uuto, uupick: public

execution. uux: unix to unix command •
to UNIVAC. uvac: RJE (Remote Job Entry)

val: validate sces file.
val: validate sces file.

abs: integer absolute value. . • • . • . . • • .
fabs, ceil, fmod: absolute value, floor, ceiling,/ floor,

getenv: value for environment name.
true, false: provide truth values.•••••.

as: assembler for V AX-ll /780. ...•...
vaxops: VAX-II /780 console operations.

archive files from PDP-II to VAX-II /180 format. /convert .
interface. vlx: V AX-II /780 LSI console floppy

files between PDP-II and VAX-II /780 systems. /convert
operations. vaxops: V AX-II /780 console

vc: version control. . .
assert: program verification. •....

vpr: Versatec printer spooler.
vp: Versatec printer. • . .
vc: version control.

get: get a version of an sces file.
sccsdiff: compare two versions of an sces file.

mmt, mvt: typeset documents, view graphs, and slides. •
my: a macro package for making view graphs. • •.•••

vpm: The Virtual Protocol Machine.
vpmc: compiler for the virtual protocol machine.

floppy interface. vlx: VAX-I 1/780 LSI console
systems with label checking. volcopy, labelit: copy file

file system: format of system volume. . . • • • • . .
vp: Versatec printer.

Machine. vpm: The Virtual Protocol
load the KMCll-B; print VPM traces. /vpmtrace:

protocol machine. vpmc: compiler for the virtual
KMCll-B; print VPM/ vpmstart, vpmsnap, vpmtrace: load the

load the KMCII-B; print VPM/ vpmstart, vpmsnap, vpmtrace:
print VPM/ vpmstart, vpmsnap, vpmtrace: load th~ KMCll-B;

vpr: Versatec printer spooler.
process. wait: await completion of

or terminate. wait: wait for child process to stop
to stop or terminate. wait: wait for child process

wall: write to all users.
wc: word count.
what: identify sees files.

signal. signal: specify what to do upon receipt of a
crashes. crash: what to do when the system

whodo: who is doing what. •• • .
who: who is on the system. • • •

who: who is on the system.
whodo: who is doing what.

ed: change working directory.
chdir: change working directory.

pwd: working directory name.
write: write on a file. • • • •

putpwent: write password file entry.
wall: write to all users. • •

write: write to another user. • •
write: write on a file.
write: write to another user.

open: open for reading or writing. •••••
utmp, wtmp: utmp and wtmp entry format. • • • •

- 31 -

Pennuled Index

uuto(IC)
uustat(lC)
uusub(IM)
uuto(1C)
uux(1C)
uvac(8)
val(1)
val(1)
abs(3C)
floor(3M)
getenv(3C)
true(1)
as.vax(l)
vaxops(8)
arcv(I)
vlx(1M)
fscv(1M)
vaxops(8)
vc(l)
assert(3X)
vpr(1)
vp(4)
vc(l)
get(1)
sccsdi ff(I)
mmt(1)
mv(7)
vpm(4)
vpmc(lC)
vlx(lM)
volcopy(lM)
fs(S)
vp(4)
vpm(4)
vpmstart(I C)
vpmc(lC)
vpmstart(1 C)
vpmstart(1 C)
vpmstart(1 C)
vpr(1)
wait(1)
wait(2)
wait(2)
wall(1M)
wc(l)
what(1)
signal(2)
crash(8)
whodo(lM)

• who(l)
who(l)
whodo(lM)
ed(l)
chdir(2)
pwd(1)
write(2)
putpwent(3C)
wa1l(lM)

• write(l)
write(2)
write(l)
open(2)
utmp(S)

Pemtuled Index

fwtmp,wtmpfix: manipulate wtmp records. ••••••
format. utmp, wtmp: utmp and wtmp entry

records. fwtmp, wtmpfix: manipulate wtmp
hunt-the-wumpus. wump: the pme of • • • •

Iist(s) and execute command. xarp: construct argument •
programs. xref: cross reference for C
jO, jl, jn, yO, yl, yn: bessel functions.

jO, jl, jn, yO, yl, yn: bessel functions.
compiler-compiler. yacc: yet another ••

jO, jl, jn, yO, yl, yn: bessel functions.

- 32-

fwtmp(lM)
utmp(5)
fwtmp(lM)
wump(6)
xargs(l)
ner(l)
bessel(3M)
bessel(3M)
yac:c(l)
bessel(3M)

INTRO(I) INTRO(I)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands.
Certain distinctions of purpose are made in the headings:

(1) Commands of general utility.
(1 C) Commands for communication with other systems.
(lG) Commands used primarily for graphics and computer-aided design.
(1 M) Commands used primarily for system maintenance.

COMMAND SYNTAX
Unless otherwise noted, commands described in this section accept options
and other arguments according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

noargletter

argletter

optarg

cmdarg

The name of an executable file.

- noargleter(s) or,
- argletter< >optarg
where <> is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding arg/etter.

Path name (or other command argument) not beginning with
- or, - by itself indicating the standard input.

SEE ALSO
getopt(l), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS

BUGS

Upon termination, each command returns two bytes of status, one supplied
by the system and giving the cause for termination, and (in the case of
"normal" termination) one supplied by the program (see wait(2) and
exit(2». The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such
as erroneous parameters, bad or inaccessible data, or other inability to cope
with the task at hand. It is called variously "exit code", "exit status", or
"return code", and is described only where special conventions are invol­
ved.

Regretfully, many commands do not adhere to the aforementioned syntax.

- 1 -

300(1) 300(1)

NAME
300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS
300 [+11 1 [-n 1 [-dt,I,c]

300s [+12 1 [-n 1 [-dt,l,c 1
DESCRIPTION

300 supports special functions and optimizes the use of the DASI 300 (GSI
300 or DTC 300) terminal; 300s performs the same functions for the DASI
300s (GSI 300s or DTC 300s) terminal. It converts half-line forward, half­
line reverse, and full-line reverse motions to the correct vertical motions.
It also attempts to draw Greek letters and other special symbols. It permits
convenient use of 12-pitch text. It also reduces printing time 5 to 70%.
300 can be used to print equations neatly, in the sequence:

neqn file ... I nrolf I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on
before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to
handle 12-pitch text, fractional line spacings, messages, and delays.

+ 11 permits use of 12-pitch. 6 lines/inch text. DASI 300 terminals
normally allow only two combinations: lO-pitch, 6 lines/inch. or
12-pitch, 8 lines/inch. To obtain the 12-pitch, 6 lines per inch
combination, the user should turn the PITCH switch to 12, and
use the + 12 option.

- n controls the size of half-line spa<:ing. A half-line is. by default,
equal to 4 vertical plot increments. Because each increment
equals 1/48 of an inch, a IO-pitch line-feed requires 8
increments, while a 12-pitch line-feed needs only 6. The first
digit of n overrides the default value, thus allowing for individual
taste in the appearance of subscripts and superscripts. For exam­
ple, nroff(l) half-lines could be made to act as quarter-lines by
using -2. The user could also obtain appropriate half-lines for
12-pitch, 8 lines/inch mode by using the option -3 alone, having
set the PITCH switch to 12-pitch.

-dt,l,e controls delay factors. The default setting is -d3,90,3O. DASI
300 terminals sometimes produce peculiar output when faced
with very long lines, too many tab characters. or long strings of
blankless, non-identical characters. One null (delay) character is
inserted in a line for every set of t tabs, and for every contiguous
string of e non-blank, non-tab characters. If a line is longer than
I bytes, I +(totallength)/20 nulls are inserted at the end of that
line. Items can be omitted from the end of the list, Implying use
of the default values. Also, a value of zero for t (c) results in
two null bytes per tab (character). The former may be needed
for C programs, the latter for files like /etc/passwd. Because ter­
minal behavior varies according to the specific characters printed
and the load on a system, the user may have to experiment with
these values to get correct output. The -d option exists only as
a last resort for those few cases that do not otherwise print pro­
perly. For example, the file /etc/passwd may be printed using
-d3,3O,S. The value -dO,! is a good one to use for C programs
that have many levels of indentation.

- 1 -

300(1) 300{l)

Note that the delay control interacts heavily with the prevailing
carriage return and line-feed delays. The stty(l) modes DIO ttl
or am cr3 are recommended for most uses.

300 can be used with the Moff -s flag or .rd requests, when it is necessary
to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the following sequences are equivalent:

nroft' - T300 files •• • and nroft' files ••• I 300
nroft' - T300 -12 files • • • and nroft' files ••• I 300 + 12

The use of 300 can thus often be avoided unless special delays or options
are required; in a few cases, however, the additional movement optimiza­
tion of 300 may produce better-aligned output.

The neqn(l) names of, and resulting output for, the Greek and special
characters supported by 300 are shown in greek(7).

SEE ALSO

BUGS

450(1), eqn(l), graph(lG), mesg(l), stty(1), tabs(1), tbl(I), tplot(1G),
troft'(l), greek(7).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the lat­
ter has a tendency to slip when reversing direction, distorting Greek charac­
ters and misaligning the first line of text after one or more reverse line­
feeds.

- 2 -

4014(I) 4014(I)

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t] [-n] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended fora Tektronix 4014 terminal; 4014
arranges for 66 lines to fit on the screen, divides the screen into N
columns, and contributes an eight-space page offset in the (default) single­
column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE- Model 37 half- and reverse-line sequences are inter­
preted and plotted. At the end of each page, 4014 waits for a new-line
(empty line) from the keyboard before continuing on to the next page. In
this wait state, the command land will send the emil to the shell.

The command line options are:

-t Don't wait between pages (useful for directing output into a file).

- D Start printing at the current cursor position and never erase the
screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and I
(lines); default is lines.

SEE ALSO
pr(1), tc(l), troff(I).

- 1 -

4S0(1) 4S0(1)

NAME
450 - handle special functions of the DASI 450 terminal

SYNOPSIS
458

DESCRIPTION
450 supports special functions of, and optimizes the use of, the DASI 450
terminal, or any terminal that is functionally identical, such as the DIABLO
1620 or XEROX 1700. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to
draw Greek letters and other special symbols in the same manner as
300(1). 450 can be used to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before
450 is used. The SPACING switch should be put in the desired position
(either 10- or 12-pitch). In either case, vertical spacing is 6 lines/inch,
unless dynamically changed to 8 lines per inch by an appropriate escape
sequence.

450 can be used with the nroff(1) -I flag or .n requests, when it is neces­
sary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed
key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of
one of the following:

nroff -T450 files ...
or

nroff -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or options
arc required; in a few cases, however, the additional movement optimiza­
tion of 450 may produce better-aligned output.

The neqn(l) names of, and resulting output for, the Greek and special
characters supported by 450 arc shown in ".1(7).

SEE ALSO

BUGS

300(1), eqn(l), graph (1 G), mesg(l), stty(l), tabs(1), tbl(l), tplot(1G),
troff(1), greek(7).

Some special characters cannot be correctly printed in column 1 because the
print head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed
platen instead of a forms tractor; although good enough for drafts, the lat­
ter has a tendency to slip when reversing direction, distorting Greek charac­
ters and misaligning the first line of text after one or more reverse line­
feeds.

- 1 -

ACCT(1M) ACCT(lM)

NAME
acct - overview of accounting and miscellaneous accounting commands

SYNOPSIS
acctdisk

acctdusg [-u file J [-p file 1 > dtmp-file

aceton [file]

acctwtmp [name [line]] > > /usr/adm/wtmp

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting sys­
tems. Acctsh (l M) describes the set of shell procedures built on top of the
C programs.

Connect time accounting is handled by various programs that write records
into /usr/adm/utmp, as described in utmp(5). The programs described in
acctcon(lM) convert this file into session and charging records, which are
then summarized byacctmerg(lM).

Process accounting is performed by the UNIX kernel. Upon termination of
a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctprc(1M) summarize this data for
charging purposes; acctcms(lM) is used to summarize command usage.
Current process data may be examined using acctcom(l).

Process accounting and connect time accounting (or any accounting records
in the format described in acct(5» can be merged and summarized into
total accounting records byacctmerg (see tacct format in acct(5». Prtaeet
(see acctsh (1 M» is used to format any or all accounting records.

Acetdisk reads lines that contain user 10, login name, and number of disk
blocks and converts them to total accounting records that can be merged
with other accounting records.

Aectdusg reads its standard input (usually from find / -print) and compu­
tes disk resource consumption (including indirect blocks) by login. If - u
is given, records consisting of those file names for which acetdusg charges
no one are placed in file (a potential source for finding users trying to avoid
disk charges). If -p is given. file is the name of the password file. This
option is not needed if the password file is /etc/pas8wd.

Aceton alone turns process accounting off. If file is given. it must be the
name of an existing file, to which the kernel appends process accounting
records (see acct(2) and acct(5».

Acctwtmp writes a wtmp(5) record to its standard output. The record con­
tains the current time. name, and line. If line is omitted, a value is emitted
that is interpreted by other programs as a reboot. For more precise accoun­
ting, the following are recommended for use in reboot and shutdown pro­
cedures, respectively:

acctwtmp uname- »/usr/adm/wtmp
acctwtmp reason »/usr/adm/wtmp

/ etc/passwd
/usr /Iib/acct

/usr/adm/pacct
/usr/adm/wtmp

used for login name to user 10 conversions
holds all accounting commands listed in
sub-class 1 M of this manual
current process accounting file
login/logoff history file

- 1 -

ACCT(IM) ACCT(lM)

SEE ALSO
acctcms(lM), acctcom(1), acctcon(lM), acctmclJ(lM), acctprc(lM),
acctsh(IM), fwtmp(lM), runacct(IM), acct(2), acct(S), utmp(S).
The UNIX Accounting System by H. S. McCreary.

- 2-

ACCTCMS(lM) ACCTCMS(1M)

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
acctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in acct(5).
It adds all records for processes that executed identically-named commands,
sorts them, and writes them to the standard output, normally using an
internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean
size (in K), mean CPU minutes per invocation, and "hog factor",
as in acctcom(l). Output is normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "-other".
- D Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal sum-

mary format.

A typical sequence for performing daily command accounting and for main­
taining a running total is:

SEE ALSO

acctcms file ... >today
cp total previous total
acctcms -s today previoustotal >total
acctcms -a -s today

acct(1M), acctcom(1), acctcon(1M), acctmerg(1M), acctprc(1M),
acctsh(lM), fwtmp(IM), runacct(IM), acct(2), acct(5), utmp(5).

- 1 -

ACCTCOM(I) ACCTCOM(I)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acetcom [[options J[file]] ...

DESCRIPTION
Acctcom reads file, the standard input, or jusr jadmjpacet, in the form
described by acct(5) and writes selected records to the standard output.
Each record represents the execution of one process. The output shows the
COMMAND NAME, USER, TIYNAME, START TIME, END TIME, REAL
(SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (theforkjexec flag: 1
for fork without exec) and STAT (the system exit status).

The command name is prepended with a I if it was executed with super­
user privileges. If a process is not associated with a known terminal, a ? is
printed in the TIYNAME field.

If no files are specified, and if the standard input is associated with a ter­
minal or jde, jnull (as is the case when using & in the shell),
jusr jadmjpacet is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by process
completion time. The file jusrjadrrijpacct is usually the current file to be
examined; a busy system may need several files, in which case all but the
current will be found in jusr jadmjpacet? The options are:

-b Read backwards, showing latest commands first.
-f Print the fork/exec flag and system exit status columns in the

output.
- b Instead of mean memory size, show the fraction of total

available CPU time consumed by the process during its execu­
tion. This "hog factor" is computed as:

(total CPU time)/(elapsed time).
-i Print columns containing the I/O counts in the output.
-k Instead of memory size, show total kcore-minutes.
-m Show mean core size (the default).
-r Show CPU factor (user time/(system-time + user-time).
-t Show separate system and user CPU times.
-, Exclude column headings from the output.
-I line Show only processes belonging to terminal jde, jline.
- u user Show only processes belonging to user that may be specified

by: a user ID, a login name that is then converted to a user ID.
a I which designates only those processes executed with
super-user privileges. or ? which designates only those pro­
cesses associated with unknown user IDs.

-g group Show only processes belonging to group. The group may be
designated by either the group ID or group name.

-d mm/dd Any time arguments following this flag are assumed to occur
on the given month and day. rather than during the last 24
hours. This is needed for looking at old files.

-s time Show only those processes that existed on or after time, given
in the form hr:min:sec. The :sec or :min:sec may be omitted.

-e time Show only those processes that existed on or before time.
Using the same time for both -5 and -e shows the processes
that existed at time.

- n pattern Show only commands matching pattern that may be a regular
expression as in ed(l) except that + rqeans one or more
occurrences.

- 1 •

ACCTCOM (1) ACCTCOM (1)

fILES

- H factor Show only processes that exceed factor, where factor is the
"hog factor" as explained in option - b above.

-0 time Show only those processes with operating system CPU time
that exceeds time.

-c time Show only those processes that exceed time that indicates the
total CPU time.

Listing options together has the effect of a logical and.

/etc/passwd
/usr/adm/pacct
/etc/group

SEE ALSO

BUGS

acct(lM), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(lM),
acctsh(lM), fwtmp(lM), ps(l), runacct(lM), su(l), acct.(2) , acct(5),
utmp(5).

Acctcom only reports on processes that have terminated; use ps(l) for
active processes.

- 2 -

ACCTCON (1M) ACCTCON(1M)

NAME
acctcon - connect-time accounting

SYNOPSIS
acetcool [options]

acetcool

DESCRIPTION
Acctconl converts a sequence of login/logoff records read from its standard
input to a sequence of records, one per login session. Its input should nor­
mally be redirected from /usr/adm/wtmp. Its output is ASCII, giving dev­
ice, user ID, login name, prime connect time (seconds), non-prime connect
time (seconds), session starting time (nun,eric), and starting date and time.
The options are:

-p Print input only, showing line name, login name, and time (in
both numeric and date/time formats).

-t Acctconl maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes that
its input is a current file, so that it uses the current time as the
ending time for each session still in progress. The -t flag causes
it to use, instead, the last time found in its input, thus assuring
reasonable and repeatable numbers for non-current files.

-Ifile File is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Both hang-up and termina­
tion of the login shell generate a logoff record, so that the number
of logoffs is often twice the number of sessions.

-0 file File is filled with an overall record for the accounting period,
giving starting time, ending time, number of reboots, and number
of date changes.

Acctcon2 expects as input a sequence of login session records and converts
them into total accounting records (see tacet format in acct(S».

EXAMPLES

FILES

These commands are typically used as shown below. The file amp is
created only for the use of acctprc(lM) commands:

acctconl -t -llineuse -0 reboots <wtmp I sort +In +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

/usr /adm/wtmp

SEE ALSO

BUGS

acct(1M), acctcms(1M), acctcom(I), acctmerg(1M), acctprc(lM),
acctsh(lM), fwtmp(lM), runacct(lM), acct(2), acct(S), utmp(S).

The line usage report is confused by date changes. Use wtmpfix (see
fwtmp.(lM» to correct this situation.

- 1 -

ACCTMERG (1M) ACCTMERG(1M)

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
acctmerg [options] [file] ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the
taoct format (see acct(5», or an ASCII version thereof. It merges these
inputs by adding records whose keys (normally user 10 and name) are iden­
tical, and expects the inputs to be sorted on those keys. Options are:

-a Produce output in ASCII version of taoct.
-i Input files are in ASCII version of taeet.
- P Print input with no processing.
- t Produce a single record that totals all input.
-u Summarize by user 10, rather than user 10 and name.
-, Produce output in verbose ASCII format, with lUore precise notation

for floating point numbers.

The following sequence is useful for making "repairs" to any file kept in
this format:

SEE AlSO

acctmerg -v <filel >file2
edit file2 as desired . ..

acctmerg -a <file2 >filel

acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctprc(lM),
acctsh(lM), fwtmp(lM), runacct(lM), acct(2), acct(5), utmp(5).

- 1 •

ACCTPRC(1M) ACCTPRC(1M)

NAME
acctprc - process accounting

SYNOPSIS
acctprc:l [ctmp]

acctprcl

DESCRIPTION·

FILES

Acctprc1 reads input in the form described by QCct(5), adds login names
corresponding to user IDs, then writes for each process an ASCD line giving
user 10, login name, prime CPU time (tics), non-prime CPU time (tics), and
mean memory size (in 64-byte units). If ctmp is given, it is expected to
contain a list of login sessions, in the form described in acctcon(lM), sor­
ted by user 10 and login name. If this file is not supplied, it obtains login
names from the password file. The information in ct .. p helps it distinguish
among different login names that share the same user ID.

Acctprc2 reads records in the form written by acctprcl, summarizes them by
user 10 and name, then writes the sorted summaries to the standard output
as total accounting records.

These commands are typically used as shown below:

acctprcl ctmp <jusrjadmjpacct I acctprc2 >ptacct

jetcjpasswd

SEE ALSO

BUGS

acct(lM) , acctcms(lM), acctcom(l), acctcon(1M), acctmerg(lM),
acctsh(lM), fwtmp(lM), runacct(lM), acct(2), acct(5), utmp(5).

Although it is possible to distinguish among login names that share user
IDs for commands run normally, it is difficult to do this for those com­
mands run from cron(lM), for example. More precise conversion can be
done by faking login sessions on the console via the QCClWtmp program in
acct(1M).

- 1 -

ACCTSH(1M) ACCTSH(IM)

NAME
acctsh - shell procedures for accounting

SYNOPSIS
ebargefee login-name number

ek pacct [blocks]

dodisk

lastlogin

monaeet number

nulladm file

pretmp

prdaiiy

prtac:c:t file ['heading']

runaeet [mmdd] [mmdd state]

sbutac:c:t ['reason']

startup

turnaeet [on I oft' I switeb]

DESCRIPTION
Chargefee is invoked to charge number dollars to login-name. A record is
written to lusr/adm/fee. to be merged with otber accounting records
during the night.

Ckpacct is initiated via cron. It periodically checks tbe size of
lusr/adm/pac:c:t. If the size exceeds blocks. 1000 by default. tJU'nacct will
be invoked with argument switch.

Dodisk is invoked by cron to perform the disk accounting functions.

Lastlogin is invoked by runacct to update lusr/adm/ac:c:t/sum/loginlog,
which shows the last date on which each person logged in.

Monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. It creates summary files in
lusr ladm/ac:c:t/fisc:al and restarts summary file in lusr ladra/ac:c:t/sum.
Nu/ladm creates file with mode 644 and insures owner is adm. It is called
by lastlog;n. runacct. and tJU'nacct.

Prctmp can be used to print the session record file (normally
lusr/adm/ac:c:t/nite/etmp created byacctconl (see acctcOll(lM».

Prdaily is invoked by runacct to print a report of the previous day's accoun­
ting. The report resides in lusr/adm/ac:c:t/sum/rprtxJcoc where.xxxx is the
month and day of the report. The daily accounting reports may be printed
(by the command "cat /usr/adm/ac:c:t/sum/rpft.*") as often as desired and
they must be explicitly deleted when no longer needed.

Prtacct can be used to format and print any total accounting file.

Runacct performs the accumulation of connect. process. fee. and disk
accounting on a daily basis. It also creates summaries of command usage.
For more information. see runacct(lM).

Shutacct should be invoked during a system shutdown to turn process
accounting off and append a "reason" record to lusr/adm/wtmp. Startup
should be called by rc(8) to turn the accounting on whenever the system is
brought up.

- 1 -

ACCTSH(1M) ACCTSH(1M)

FILFS

Turnacct is an interface to accton (see acct(lM» to turn process accounting
on or off. The switch argument moves the current /usr/adm/pacct to the
next free name in /usr /adm/pacct(J-9), turns accounting off, then turns it
back on again. This procedure is called by ckpacct via the cron to keep the
pacct file size smaller.

/usr/adm/fee
/usr /adm/pacct
/usr /adm/pacet[I-9)

/usr/adm/wtmp
/usr /adm/wtmp[I-9)
/ usr / adm / acct/ nite
/usr /lib/acct

/usr /adm/acct/sum

accumulator for fees
current file for per-process accounting
used if pacet gets large and during
execution of daily accounting procedure
login/logoff summary
used during daily accounting procedure
working directory
holds all accounting commands listed in
sub-class 1M of this manual
summary directory, should be saved

SEE ALSO
acct(lM), acctcms(IM), acctcom(l), acctcon(lM), acctmerg(lM),
acctprc(l M), fwtmp(l M), runacct(l M), acct(2), acct(5), utmp(5).

- 2 -

ADB(I) ADB(I)

NAME
adb - debugger

SYNOPSIS
adb [-,,] [objfil [cortil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine
files and to provide a controlled environment for the execution of UNIX
programs.

Objfil is normally an executable program file, preferably containing a sym­
bol table; if not then the symbolic features of adb cannot be used although
the file can still be examined. The default for objfil is a.out. Corjil is
assumed to be a core image file produced after executing objfil; the default
for corfil is core.

Requests to adb are read from the standard input and responses are to the
standard output. If the -" flag is present then both objfil and corftl are
created if necessary and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes return to the
next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially dot is set to O. For
most commands count specifies how many times the command will be exe­
cuted. The default count is 1. Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a
subprocess is being debugged then addresses are interpreted in the usual
way in the address space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed.

integer An octal number if integer begins with a 0; a hexadecimal number
if preceded by ,; otherwise a decimal number.

integer .fraction
A 32 bit floating point number.

'ecce' The ASCII value of up to 4 characters. \ may be used to escape a '.

< name
The value of name, which is either a variable name or a register
name. Adb maintains a number of variables (see VARIABLES)
named by single letters or digits. If name is a register name then
the value of the register is obtained from the system header in
corftl. The register names are rO ... r5 sp pc ps.

symbol A symbol is a sequence of upper or lower case letters, underscores
or digits, not starting with a digit. The value of the symbol is taken
from the symbol table in objfil. An initial _ or· will be prepended
to symbol if needed.

_ symbol
In C, the "true name" of an external symbol begins with _. It may

- 1 -

ADB(1) ADB(J)

be necessary to utter this name to distinguish it from internal or
hidden variables of a program.

routine .name
The address of the variable name iii the specified C routine. Both
routine and name are symbols. If name is omitted the value is the
address of the most recently activated C stack frame corresponding
to routine.

(exp) The value of the expression expo

Monadic operators:

*exp The contents of the location addressed by exp in corfil.

@exp The contents of the location addressed byexp in obifil.

-exp Integer negation .

• exp Bitwis,e complement.

Dyadic operators are left associative and are less binding than monadic
operators.

COMMANDS

e1 +e2 Integer addition.

e1 -e2 Integer subtraction.

e1-e2

e1%e2

el Ile2

elle2

e11e2

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

E1 rounded up to the next multiple of e2.

Most commands consist of a verb followed by a modifier or list of
modifiers. The following verbs are available. (The commands 1 and / may
be followed by -; see ADDRESSES for further details.)

1f Locations starting at address in objfil are printed according to the
format f. dot is incremented by the sum of the increments for
each format letter (q.v.).

If Locations starting at address in corfil are printed according to the
format f and dot is incremented as for 1.

= f The value of address itself is printed in the styles indicated by the
format/. (For i format 1 is printed for the parts of the instruction
that reference subsequent words.)

A format consists of one or more characters that specify a style of printing.
Each format character may be preceded by a decimal integer that is a repeat
count for the format character. While stepping through a format dot is
incremented by the amount given for each format letter. If no format is
given then the last format is used. The format letters available are as fol­
lows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are
preceded by O.

o .. Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.

- 2 -

ADB(1)

x 2
X4
u 2
U4
f 4
F 8
b I
c I
C I

s n

S n

Y 4
i n

a 0

P 2

o

r 0
n 0
• •••• 0

+

new-line

Print 2 bytes in hexadecimal.
Print 4 bytes in hexadecimal.
Print as an unsigned decimal number.
Print long unsigned decimal.
Print the 32 bit value as a floating point number.
Print double floating point.
Print the addressed byte in octal.
Print the addressed character.

ADB(1)

Print the addressed character using the following escape
convention. Character values 000 to 040 are printed as @
followed by the corresponding character in the range 0100
to 0140. The character @ is printed as @@.
Print the addressed characters until a zero character is
reached.
Print a string using the @ escape convention. n is the
length of the string including its zero terminator.
Print 4 bytes in date format (see ctime(3C».
Print as PDP-II instructions. n is the number of bytes
occupied by the instruction. This style of printing causes
variables I and 2 to be set to the offset parts of the source
and destination respectively.
Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.

I local or global data symbol
! local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the same
rules for symbol lookup as a.
When preceded by an integer tabs to the next appropriate
tab stop. For example, St moves to the next 8-space tab
stop.
Print a space.
Print a new-line.
Print the enclosed string.
Dot is decremented by the current increment. Nothing is
printed.
Dot is incremented by I. Nothing is printed.
Dot is decremented by I. Nothing is printed.

Repeat the previous command with a count of 1.

[! 1)1 value mask
Words starting at dot are masked with mask and compared with
value until a match is found. If L is used then the match is for 4
bytes at a time instead of 2. If no match is found then dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

[! I)w value ...
Write the 2-byte value into the addressed location. If the command
is W, write 4 bytes. Odd addresses are not allowed when writing to
the subprocess address space.

[! I)m hI el f1 [! I)
New values for (hI. el. /1) are recorded. If less than three expres­
sions are given then the remaining map parameters are left

- 3 -

ADB(1)

> name

ADB(I)

unchanged. If the ? or I is followed by • then the second segment
(b2 • e2 ./2) of the mapping is changed. If the list is terminated by
? or I then the file (ob.ifil or corfil respectively) is used for subse­
quent requests. (So that. for example. 1m? will cause I to refer to
ob.ifil.)

Dot is assigned to .the variable or register named.

A shell is called to read the rest of the line following !.

Smodifier
Miscellaneous commands. The available modifiers are:

<! Read commands from the file 1 and return.
>1 Send output to the file I. which is created if it does not

exist.
r Print the general registers and the instruction addressed by

pc. Dot is set to pc.
r Print the floating registers in single 'or double length. If the

floating point status of ps is set to double (0200 bit) then
double length is used anyway.

b Print an breakpoints and their associated counts and com­
mands.

• ALGOL 68 stack backtrace. If address is given then it is
taken to be the address of the current frame (instead of
r4). If count is given then only the first count frames are
printed.

c C stack backtrace. If address is given then it is taken as the
address of the current frame (instead of r5). If C is used
then the names and (16 bit) values of all automatic and sta­
tic variables are printed for each active function. If count is
given then only the first count frames are printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb.
, Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers aTe:

bc Set breakpoint at address. The breakpoint is executed
count - I times before causing a stop. Each time the break­
point is encountered the command c is executed. If this
command sets dot to zero then the breakpoint causes a
stop.

d Delete breakpoint at address.

r Run ob.ifil as a subprocess. If address is given explicitly
then the program is entered at this point; otherwise the
program is entered at its standard entry point. count
specifies how many breakpoints are to be ignored before
stopping. Arguments to the subprocess may be supplied on
the same line as the command. An argument starting with
< or > causes the standard input or output. to be esta­
blished for the command. All signals are turned on on

- 4 -

ADB(1) ADB(1)

entry to the subprocess.

es The subprocess is continued with signal s (see signal (2)).
If address is given then the subprocess is continued at this
address. If no signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for e except that the subprocess is single stepped coont
times. If there is no current subprocess then objfil is run as
a subprocess as for r. In this case no signal can be sent;
the remainder of the line is treated as arguments to the
subprocess.

k The current subprocess. if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by
adb but are not used subsequently. Numbered variables are reserved for
communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
1 The previous value of variable 1.

On entry the following are set from the system header in the co,.fil. If corfil
does not appear to be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
DI The "magic" number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.

ADDRESSES

fiLES

The address in a file associated with a written address is determined by a
mapping associated with that file. Each mapping is represented by two tri­
ples (bl. el. /1) and (b2. e2. f2)and the file address corresponding to a
written address is calculated as follows:

bl S:address<el => file address-address+f1-bl
otherwise

b2s:address<e2 => file address-address+f2-b2.

otherwise, the requested address is not legal. In some cases (e.g. for pro­
grams with separated I and 0 space) the two segments for a file may over­
lap. If a ? or / is followed by an • then only the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core
files. If either file is not of the kind expected then, for that file, 'bl is set to
0, el is set to the maximum file size and f1 is set to 0; in this way the
whole file can be examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as
signed 32 bit integers.

/dev/mem
/dev/swap
a.out
core

- 5 -

ADB(1) ADB(I)

SEE ALSO
ptrace(2), a.out(5), core(5).

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format. Comments about
inaccessible files, syntax errors, abnormal termination of commands, etc.
Exit status is 0, unless last command failed or returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the
program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the sarr.e as an external variable may foul
up the accessing of the external.

- 6 -

ADMIN(1) ADMIN(1)

NAME
admin - create and administer sees files

SYNOPSIS
admio [- 0] [- Hnamell
[-dflag[flag-val]] [-aloginl
[-hI [-z] files

[-rret]
[-elogin]

[-t[namell
[-m[mrlistll

[-fflag[ftag-vaI]]
[-y[commentll

DESCRIPTION
Admin is used to create new sees files and change parameters of existing
ones. Arguments to admin, which may appear in any order, consist of
keyletter arguments, which begin with -, and named files (note that sees
file names must begin with the characters s.). If a named file doesn't exist,
it is created, and its parameters are initialized according to the specified
keyletter arguments. Parameters not initialized by a keyletter argument are
assigned a default value. If a named file does exist, parameters~"rrespon­
ding to specified key letter arguments are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory
were specified as a named file, except that non-Sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed.
Again, non-sees files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed since the effects of the arguments appiy
independently to each named file.

-0

-i[nameJ

-rrel

-t[name]

This key letter indicates that a new sees file is to be
created.

The name of a file from which the text for a new
sees file is to be taken. The text constitutes the first
delta of the file (see - r keyletter for delta numbering
scheme). If the i keyletter is used, but the file name
is omitted. the text is obtained by reading the stan­
dard input until an end-of-file is encountered. If this
keyletter is omitted, then the sees file is created
empty. Only one sees file may be created by an
admin command on which the i key letter is supplied.
Using a single admin to create two or more sees files
require that they be created empty (no -j keyletter).
Note that the - i keyletter implies the - n keyletter.

The release into which the initial delta is inserted.
This keyletter may be used only if the -i key letter is
also used. If the -r keyletter is not used, the initial
delta is inserted into release 1. The level of the ini­
tial delta is always 1 (by default initial deltas are
named 1.1).

The name of a file from which descriptive text for the
sees file is to be taken. If the -t keyletter is used
and admin is creating a new sees file (the - nand/or
-i keyletters also used), the descriptive text file
name must also be supplied. In the case of existing
sees files: (1) a - t keyletter without a file name
causes removal of descriptive text (if any) currently
in the sees file, and (2) a -t keyletter with a file

- 1 -

ADMIN{'t) ADMIN(t)

name causes text (if any) in the named file to replace
the descriptive text (if any) currently in the sees file.

-fflag This keyletter specifies a flag, and, possibly, a value
for the flag, to be placed in the sees file. Several f
keyletters may be supplied on a single admin com­
mand line. The allowable flags and their values are:

b Allows use of the -b keyletter on a get (1) command
to create branch deltas.

c:ceil The highest release (i.e., "ceiling"), a number less
than or equal to 9999, which may be retrieved by a
get (I) command for editing. The default value for
an unspecified c flag is 9999.

ffloor The lowest release (i.e., "ftoor"), a number greater
than 0 but less than 9999, which may be retrieved by
a get (1) command for editing. The default value for
an unspecified f ftag is I.

dSlD The default delta number (SID) to be used by a
get (1) command.

Causes the "No id keywords (ge6)" message issued by
get (1) or delta (1) to be treated as a fatal error. In
the absence of this flag, the message is only a war­
ning. The message is issued if no sees identification
keywords (see get (I» are found in the text retrieved
or stored in the sees file.

j Allows concurrent get (1) commands for editing on
the same SID of an sees file. This allows multiple
concurrent updates to the same version of the sees
file.

I/in A list of releases to which deltas can no longer be
made (let -e against one of these "locked" releases
fails). The list has the following syntax:

<list> ::- <range> I <list> , <range>
<range> ::- RELEASE NUMBER I a

The character a in the list is equivalent to specifying
all releases for the named sees file.

D Causes delta (1) to create a "null" delta in each of
those releases (if any) being skipped when a delta is
made in a new release (e.g., in making delta 5.1 after
delta 2.7, releases 3 and 4 are skipped). These null
deltas serve as "anchor points" so that branch deltas
may later be created from them. The absence of this
flag causes skipped releases to be non-existent in the
sees file preventing branch deltas from being created
from them in the future.

qtext User definable text substituted for all occurrences of
the %Q% keyword in sees file text retrieved by
get (1).

mmod Module name of the sees file substituted for all
occurrences of the %M% keyword in sees file text
retrieved by get(l). If the m flag is not specified, the
value assigned is the name of the sees file with the

- 2 -

ADMIN (1) ADMIN (1)

leading s.· removed.

ttype ~ of module in the sees file substituted for all
occurrences of % Y% keyword in sees file text
retrieved by get(l).

,[pgm] Causes tklta(l) to prompt for Modification Request
(MR) numbers as the reason for creating a delta.
The optional value specifies the name of an MR num­
ber validity checking program (see tklta(l». (If this
ftag is set when creating an sees file, the DI keyletter
must also be used even if its value is null).

-dflag Causes removal (deletion) of the specified flag from
an sees file. The -d keyletter may be specified only
when processing existing sees files. Several -d
keylctters may be supplied on a single admin com­
mand. See the -f keyletter for allowable flag names.

Ilist A list of releases to be "unlocked". See the -f
keyletter for a description of the I ftag and the syntax
of a list.

-aJogill A login name, or numerical UNIX group ID, to be
added to the list of users which may make deltas
(changes) to the sees file. A group ID is equivalent
to specifying all login names common to that group
ID. Several a keyletters may be used on a single
admill command line. As many logins, or numerical
group IDs, as desired may be on the list simul­
taneously. If the list of users is empty, then anyone
may add deltas.

-eiogill A login name, or numerical group ID, to be erased
from the list of users allowed to make deltas
(changes) to the sees file. Specifying a group ID is
equivalent to specifying all login names common to
that group ID. Several e keyletters may be used on a
single admin command line.

-y(comment) The comnrent text is inserted into the sees file as a
comment for the initial delta in a manner identical to
that of delta(l). Omission of the -y keyletter results
in a default comment line being inserted in the form:

- DI [mrIi.!t)

-b

date and time created YY/MM/DD HH:MM:5S by login

The -y keyletter is valid only if the -i and/or -n
keyletters are specified (i.e., a new sees file is being
created).

The list of Modification Requests (MR) numbers is
inserted into the sees file as the reason for creating
the initial delta in a manner identical to delta(l).
The , ftag must be set and the MR numbers are vali­
dated if the, ftag has a value (the name of an MR
number validation program). Diagnostics will occur
if the, ftag is not set or MR validation fails.

Causes admin to check the structure of the sees file
(see scc.¢le(S», and to compare a newly computed
check-sum (the sum of all the characters in the sees
file except those in the first line) with the check-sum

- 3 -

ADMIN (I) ADMIN(I)

FILES

-z

that is stored in the first line of the sees file.
Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it
nullifies the effect of any other keyletters supplied,
and is, therefore, only meaningful when processing
existing files.

The sees file check-sum is. recomputed and stored in
the first line of the sees file (see - h, above).

Note that use of this keyletter on a truly corrupted
file may prevent future detection of the corruption.

The last component of all sees file names must be of the form l.jile-1UIme.
New sees files are given mode 444 (see chmod(l». Write permission in
the pertinent directory is, of course, required to create a file. All writing
done by admin is to a temporary x-file. called x.jile-1UIme, (see get(l»,
created with mode 444 if the admin command is creating a new sees file,
or with the same mode as the sees file if it exists. After successfui execu­
tion of admin, the sees file is removed (if it exists), and the x-file is
renamed with the name of the sees file. This ensures that changes are
made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and
that sees files themselves be mode 444. The mode of the directories
allows only the owner to modify sees files contained in the directories.
The mode of the sees files prevents any modification at all except by sees
commands.

If it should be necessary to patch an sees file for any reason, the mode
may be changed to 644 by the owner allowing use of ed(l). Care must be
taken! The edited file should always be processed by an admi. - h to check
for corruption followed by an adDlin -z to generate a proper check-sum.
Another admin - h is recommended to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.jile-1UIme), which is
used to prevent simultaneous updates to the sees file by different. users.
See get(l) for further information.

SEE ALSO
delta(l), ed(l), get(l), help(l), prs(l), what(1), sccsfile(5).
SOUI'ce Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help (l) for explanations.

- 4 -

AR(1) AR(l)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname 1 afile name ...

DESCRIPTION

FILES

AT maintains groups of files combined into a single archive file. Its main
use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose.

Ar can read archive files produced in either PDP-ll or V AX-ll 1780 format
(see areS»~. However, when ar creates an archive, it always creates the
header in the format of the local system. A conversion program exists to
convert PDP-II archives to VAX-1l/780 archive format (see arcv(J». This
feature is useful only for source archive files. Individual files are inserted
without conversion into the archive file.

Key is one character from the set drqtpmx, optionally concatenated with
one or more of vuaibcl. Afile is the archive file. The names are consti­
tuent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character
u is used with r, then only those files with modified dates later than
the archive files are replaced. If an optional positioning character
from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file.
Optional positioning characters are invalid. The command does not
check whether the added members are already in the archive.
Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and. as in r. specifies where the files are to be moved.

x Extract the named files. If no names are given. all files in the
archive are extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option. ar gives a file-by-file descrip­
tion of the making of a new archive file from the old archive and
the constituent files. When used with t. it gives a long listing of all
information about the files. When used with x. it precedes each file
with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

Local. Normally ar places its temporary files in the directory Itmp.
This option causes them to be placed in the local directory.

temporaries

- 1 -

AR(1) AR(1)

SEE ALSO

BUGS

arcv(l), Id(I), lorder(1), ar(5).

If the same file is mentioned twice in an argument list, it may be put in the
archive twice.

- 2 •

ARCV(l) ARCV(l)

NAME
arcv - convert archive files from PDP-II to V AX-ll /780 format

SYNOPSIS
arcy files

DESCRIPTION
Arcv converts source archive files from the PDP-II format to the V AX-
1l/780 format. Because each converted file is copied over the original file,
arcv runs with all interrupts turned off.

FILES
/tmp/arC*

SEE ALSO
ar(l), ar(5).

- 1 -

AS (1) (PDP-ll only) AS(I)

NAME
as - assembler for PDP-II

SYNOPSIS
as [-] [-0 objfile] file ...

DESCRIPTION

FILES

As assembles the concatenation of the named files. If the optional first
argument - is used, all undefined symbols in the assembly are treated as
global.

The output of the assembly is left on the file obifile; if that is omitted,
a.out is used. It is executable if no errors oc...:llrred during the assembly,
and if there were no unresolved external references.

/lib/as2
/tmp/atm[1-3]?
a.out

pass 2 of the assembler
temporary
object

SEE ALSO
adb(l), Id(I), nm(1), a.out(5).
UNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS

BUGS

If the name chosen for the output file is of the form -1.(ea], the assembler
issues an appropriate complaint and quits. When an input file cannot be
read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is
typed out together with the line number and the file name in which it
occurred. Errors in pass 1 cause cancellation of pass 2. The possible errors
are:

Parentheses error
Parentheses error

< String not terminated properly
• Indirection used illegally

Illegal assignment to •
a Error in address
b Branch instruction is odd or too remote
e Error in expression
f Error in local (f or b) type symbol
g Garbage (unknown) character
i End of file inside an .if
m Multiply-defined symbol as label
o Word quantity assembled at odd address
p • different in pass 1 and 2
r Relocation error
u Undefined symbol
x Syntax error

Syntax errors can cause incorrect line numbers in subsequent diagnostics

- 1 - .

AS(1) (V AX-ll/780 oaly) AS(l)

NAME
as - assembler for VAX-11/780

SYNOPSIS
as [-d1l4] [-0 objfile] [name]

DESCRIPTION

FILES

As assembles the named file, or the standard input if no file name is
specified. The optional argument -d may be used to specify the number
of bytes to be assembled for offsets which involve forward or external
references, which have sizes unspecified in the assembly language. The
default is four bytes, i.e., -d4. All undefined symbols in the assembly are
treated as global.

The output of the assembly is left on the file obifile; if that is omitted,
a.out is used. It is executable if no errors occurred during the assembly,
and if there were no unresolved external references.

/tmp/as. temporary
/tmp/a[ab] [a - h]t. temporary
a.out object

SEE ALSO
adb(l), ld(l), nm(l), sdb(l), a.out(5).

- 1 •

AWK(I) AWK(I)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc 1 [prog 1 [files 1

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns
specified in prog. With each pattern in prog there can be an associated
action that will be performed when a line of a file matches the pattern. The
set of patterns may appear literally as prog, or in a file specified as -f file.
The prog string should be enclosed in single quotes (') to protect it from
the shell.

Files are read in order; if there are no files, the standard input is read. The
file name - means the standard input. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is
performed for each matched pattern.

An input line is made up of fields separated by white space. (This default
can be changed by using FS, see below). The fields are denoted $1, $2, ... ;
$0 refers to the entire line.

A pattern-action statement has the form:

pattern { action I
A missing action means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the fol­
lowing:

if (conditional) statement [else statement]
while (conditional) statement
for (expression conditional; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An
empty expression-list stands for the whole line. Expressions take on string
or numeric values as appropriate, and are built using the operators +, -,
., /, %, and concatenation (indicated by a blank). The C operators + +,
--, +=, -=, .=, /=, and %= are also available in expressions. Vari­
ables may be scalars, array elements (denoted xli]) or fields. Variables are
initialized to the null string. Array subscripts may be any string, not neces­
sarily numeric; this allows for a form of associative memory. String con­
stants are quoted (").

The print statement prints its arguments on the standard output (or on a
file if >expr is present), separated by the current output field separator,
and terminated by the output record separator. The print! statement for­
mats its expression list according to the format (see printj(3S».

The built-in function length returns the length of its argument taken as a
string, or of the whole line if no argument. There are also built-in func­
tions exp, log, sqrt, and int. The last truncates its argument to an integer;
substr(s, m, n) returns the n-character substring of s that begins at position
m. The function sprintfifmt, expr, expr • ...) formats the expressions

- I -

AWK(I) AWK(I)

according to the prlnt/(3S) format given by In and returns the resulting·
string.

Patterns are arbitrary Boolean combinations (!, II, "&:, and parentheses) of
regular expressions and relational expressions. Regular expressions must
be surrounded by slashes and are as in egrep (see grep(l». Isolated regular
expressions in a pattern apply to the entire line. Regular expressions may
also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines
between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is
either - (for contains) or r (for does not contain). A conditional is an arith­
metic expression, a relational expression, or a Boolean combination of
these.

The special patterns BEGIN and END may be used to capture control before
the first input line is read and after the last. BEGIN must be the first pat­
tern, END the last.

A single character c may be used to separate the fields by starting the pro­
gram with:

BEGlN{FS""cl

or by using the - Fe option.

Other variable names with special meanings include NF, the number of
fields in the current record; NR, the ordinal number of the current record;
FILENAME, the name of the current input file; OFS, the output field separa­
tor (default blank); ORS, the output record separator (default new-line);
and OFMT, the output format for numbers (default %.61).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 I
Add up first column, print sum and average:

{ s + $1 I
END {print ·sum is·, s, • average is·, s/NR I

Print fields in reverse order:
{ for (i- NF; i > 0; --i) print $i I

Print all lines between start/stop pairs:

/start/, /stop/
Print all lines whose first field is different from previous one:

$1 !- prev { print; prev - $1 }

SEE ALSO
grep(I), lex(l), serl(l).
Awk-A Panern Scanning and Processing Languap by A. V. Aho, B. W.
Kernighan, and P. J. Weinberger.

- 2 -

AWK(I) AWK(I)

BUGS
Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force
an expression to be treated as a number add 0 to it; to force it to be treated
as a string concatenate the null string ("") to it.

- 3 -

BANNER (1)

NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

BANNER (1)

Banner prints its arguments (each up to 10 characters long) in large letters
on the standard output.

- 1 -

BASENAME(I) BASENAME(I)

NAME
basename. dirname - deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
Basename deletes any prefix ending in / and the suffix (if present in string)
from string. and prints the result on the standard output. It is normally
used inside substitution marks C ') within shell procedures.

Dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example. invoked with the argument /ulr/lre/cmd/eat.c.
compiles the named file and moves the output to a file named eat in the
current directory:

cc SI
mv a.out "basename SI .c

The following example will set the shell variable NAME to IUlr/lre/cmd:

SEE ALSO
sh(1).

NAME- • dirname /usr /src/cmd/cat.c·

- 1 -

BC(l) BC(l)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
be [- e 1 [-I 1 [file ... 1

DESCRIPTION
Be is an interactive processor for a language that resembles C but provides
unlimited precision arithmetic. It takes input from any files given. then
reads the standard input. The -I argument stands for thc namc of an arbi­
trary precision math library. The syntax for be programs is as follows; L
means letter a - z. E means expression. S means statement.

Comments
are enclosed in /. and ./.

Names
simple variables: L
array elemcnts: L [E]
The words "ibase". "obase". and "scalc"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scalc (E)
L(E •...• E)

number of significant decimal digits
number of digits right of decimal point

Operators -
+ - • / % - (% is rcmainder; - is powcr)
+ + - - (prefix and postfix; apply to names)
== <== >= != < >
= =+ ""'- =. ==/ =% =-

Statements
E
{S; ... ; S }
if(E)S
whilc (E) S
for (E ; E ; E) S
null statement
break
quit

Function dcfinitions
dcfinc. L (L •...• L) {

auto L •...• L
S; ... S
rcturn (E)

Functions in -I math library
s(x) sine
c(x) cosine
e(x) cxponcntml
l(x) log
a(x) arctangcnt
j(n.x) Bcssel function

All function arguments arc passcd by value.

- 1 -

BC(1) BC(1)

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or new-lines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of dc(l). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. "Auto" variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name..

Be is actually a preprocessor for dc(l), which it invoke.: automatically,
unless the -c (compile only) option is present. In this case the de input is
sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){

auto a, b, c, i, s
a = I
b=1
s = 1
for(i=l; 1==1; i++){

a = a*x
b = h*i
c = alb
if(c === 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential
function and

for(i=l; i<-=lO; i++) e(i)

prints approximate values of the exponential function of the first ten
integers.

/usr /lib/lib.b
/usr/bin/dc

mathematical library
desk calculator proper

SEE ALSO
dc(l).

BUGS

Be - An Arbitrary Precision Desk-CAlculator LanflUlge
by L. L. Cherry and R. Morris.

NoH,l1 yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

- 2 -

BCOPY(1M) (Obsolescent) BCOPY(1M)

NAME
bcopy - interactive block copy

SYNOPSIS
/etc/bcopy

DESCRIPTION
Bcopy dates from a time when neither the UNIX file system nor the DEC
disk drives were as reliable as they are now. Bcopy copies from and to files
starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to:
offset:
from:
offset:
count:

(you name the file or device to be copied to).
(you provide the starting "to" block number).
(you name the file or device to be copied from).
(you provide the starting "from" block number).
(you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a
chance to concatenate blocks at the to+offset+count location). If you
answer from with a carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(l), dd(l).

- 1 -

BDlFF(I) BDIFF(l)

NAME
bdiff - big diff

SYNOPSIS
bditr file 1 file2 [n] [-5]

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(l) to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow
processing of files which are too large for diff. Bdiff ignores lines common
to the beginning of both files, splits the remainder of each file into II-line
segments, and invokes diff upon corresponding segments. The value of II
is 3500 by default. If the optional third argument is given, and it is
numeric, it is used as the value for II. This is useful in those cases in
which 3500-line segments are too large for diff, causing it to fail. If file]
(file2) is -, the standard input is read. The optional -s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that
this does not suppress possible exclamations by diff. If both optional
arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to
account for the segmenting of the files (that is, to make it look as if the
files had been processed whole). Note that because of the segmenting of
the files, bdiff does not necessarily find a smallest sufficient set of file
differences.

/tmp/bd'?????

SEE ALSO
diff(1).

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

BFS(l) BFS(l)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION
Bfs is (almost) like ed(1) except that it is read-only and processes much
larger files. Files can be up to I024K bytes (the maximum possible size)
and 32K lines, with up to 255 characters per line. Bfs is usually more
efficient than ed for scanning a file, since the file is not copied to a buffer.
It is most useful for identifying sections of a large file where esp/it(l) can
be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any
file written with the w command. The optional - suppresses printing of
sizes. Input is prompted with • if P and a carriage return are typed as in
ed. Prompting can be turned off again by inputting another P and carriage
return. Note that messages are given in response to errors if prompting is
turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols besides / and ?:
> indicates downward search without wrap-around, and < indicates
upward search without wrap-around. Since hfs uses a different regular
expression-matching routine from ed, the regular expressions accepted are
slightly wider in scope (see regex(3X». There is a slight difference in mark
names: only the letters a through z may be used, and all 26 marks are
remembered.

The e, g. " k. n, p, q, w. =, ! and null commands operate as described
under ed. Commands such as ---, +++-, +++=, -12, and +4p
are accepted. Note that 1,10p and 1,10 will both print the first ten lines.
The f command only prints the name of the file being scanned; there is no
remembered file name. The w command is independent of output diver­
sion, truncation, or crunching (see the xo, xt and xc commands, below).
The following additional commands are available:

xfjile
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received or an error
occurs, reading resumes with the file containing the xf. Xf com­
mands may be nested to a depth of 10.

xo (file]
Further output from the p and null commands is diverted to the
named file, which, if necessary, is created mode 666. If file is
missing, output is diverted to the standard output. Note that
each diversion causes truncation or creation of the file.

: label
This positions a label in a command file. The label is terminated
by new-line, and blanks between the: and the start of the label
are ignored. This command may also be used to insert com­
ments into a command file, since labels need not be referenced.

(• , •)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi­
tions:

- 1 -

BFS(1) BFS(1)

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn't match at least one
line in the specified range, including the first and last
lines.

On success, • is set to the line matched and a jump is made to
labe/. This command is the only one that doesn't issue an error
message on bad addresses, so it may be used to test whether
addresses are bad before other commands are executed. Note
that the command

xb(/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to at most
number characters. The initial number is 255.

xv [digit] [spaces] [value]
The variable name is the specified digit following the x •.
xvSl00 or x.S 100 both assign the value 100 to the variable S.
X.61,I00p assigns the value 1,100p to the variable 6. To
reference a variable. put a % in front of the variable name. For
example. using the above assignments for variables 5 and 6:

1.%5p
1.%5
%6

will all print the first 100 lines.

g/%5/p
would globally search for the characters 100 and print each line
containing a match. To escape the special meaning of %. a \
must precede it.

g/".*\%[cdsl/p

could be used to match and list lines containing print! of charac­
ters. decimal integers. or strings.
Another feature of the x. command is that the first line of out­
put from a UNIX command can be stored into a variable. The
only requirement is that the first character of value be an!. For
example:

x.S!cat jllllk
!rm jllnk
!echo -%5-
x.6!expr %6 + 1

would put the current line into variable 5, print it, and
increment the variable 6 by one. To escape the special meaning
of ! as the first character of value, precede it with a \.

xv7\!date

- 2 -

BFS(1)

stores the value !date into variable 7.

xbz label

xbn label

BFS(I)

These two commands will test the last saved return code from
the execution of a UNIX command (!command) or nonzero
value, respectively, to the specified label. The two examples
below both search for the next five lines containing the string
size.

xc [switch)

xv 55
: I
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

If switch is 1, output from the p and null commands is crun­
ched; if switch is 0 it isn't. Without an argument, xc reverses
switch. Initially switch is set for no crunching. Crunched output
has strings of tabs and blanks reduced to one blank and blank
lines suppressed.

SEE ALSO
csplit(l), ed(l), regex(3X).

DIAGNOSTICS
? for errors in commands, if prompting is turned off. Self-explanatory
error messages when prompting is on.

- 3 -

BS{l) BS(1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args 1 1

DESCRIPTION
Bs is a remote descendant of Basic and Snobol4 with a little C language
thrown in. Bs is designed for programming tasks where program develop­
ment time is as important as the resulting speed of execution. Formalities
of data declaration and file/process manipulation are minimized. Line-at­
a-time debugging, the trace and dump statements, and useful run-time error
messages all simplify program testing. Furthermore, incomplete programs
can be debugged; inner functions can be tested before outer functions have
been written and vice versa.

If the command line fiJe argument is provided, the file is used for input
before the console is read. By default, statements read from the file
argument are compiled for later execution. Likewise, statements entered
from the console are normally executed immediately (see compile and exe­
cute below). Unless the final operation is assignment. the result of an
immediate expression statement is printed.

Bs programs are made up of input lines. If the last character on a line is a
\. the line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable
can have the same name.

A bs statement is either an expression or a keyword followed by zero or
more expressions. Some keywords (clear. compile. !. execute. include.
ibase. abase. and run) are always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value. assignment or
function call). The details of expressions follow the description of sta­
tement types below.

break
Break exits from the inner-mostforfwhile loop.

clear
Clears the symbol table and compiled statements. Clear is executed
immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution
default). The optional expression is evaluated and used as a file name
for further input. A clear is associated with this latter case. Compile is
executed immediately.

continue
Continue transfers to the loop-continuation of the currentforfwhile loop.

dump
The name and current value of every non-local variable is printed.
After an error or interrupt. the number of the last statement and (possi­
bly) the user-function trace are displayed.

- 1 -

88(1) 88(1)

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect).
This statement does not cause stored statements to execute (see run
below).

for name = expression expression statement
for name expression expression

next
for expression , expression • expression statement
for expression • expression • expression

next
The for statement repetitively executes a statement (first form) or a
group of statements (second form) under control of a named variable.
The variable talces on the value of the first expression, then is
incremented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions
separated by commas. The first of these is the initialization, the second
is the test (true to continue), and the third is the loop-continuation
action (normally an increment).

fun f([a, ...]) [v, ...]

nuf
Fun defines the function name, arguments, and local variables for a
user-written function. Up to ten arguments and local variables are
allowed. Such names cannot be arrays, nor can they be I/O associated.
Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interroga­
tion operator (1) below. If interrogation is not present, fretum merely
returns zero. When interrogation is active, fretul'n transfers to that
expression (possibly by-passing intermediate function returns).

ibase N
lbase sets the input base (radix) to N. The only supported values for N
are 8, 10 (the default), and 16. Hexadecimal values 10-15 are entered
as a-f. A leading digit is required (i.e .• lOa must be entered as Oma).
lbase (and abase. below) are executed immediately.

goto name
Control is passed to the internally stored statement with the matching
label.

if expression statement
if expression

[else

fi
. ..]

The statement (first form) or group of statements (second form) is exe­
cuted if the expression evaluates to non-zero. The strings 0 and ••
(null) evaluate as zero. In the second form. an optional else allows for
a group of statements to be executed when the first group is not. The
only statement permitted on the same line with an else is an if; only

- 2 -

BS(l) 88(1)

other fi's can be on the same line with a fi, The elision of else and if
into an elif is supported. Only a single fi is required to close an if· .. elif
... [else ...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs
Such statements become part of the program being compiled. source
statements. Include statements may not be nested.

obase N
Obase sets the input base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first
form, control will pass to the label given, just as if a goto had been exe­
cuted at the time onintr was executed. The effect of the statement is
cleared after each interrupt. In the second form, an interrupt will cause
bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of
a function call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first
internal statement. If the run statement is contained in a file, it should
be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate
mode.

trace [expression 1
The trace statement controls function tracing. If the expression is null
(or evaluates to zero), tracing is turned off. Otherwise. a record of
user-function calls/returns will be printed. Each return decrements the
trace expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for
loop-continuation is given.

! shell command
An immediate escape to the Shell.

This statement is ignored. It is used to interject commentary in a pro­
gram.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter
(upper or lower case) optionally followed by letters and digits. Only the
first six characters of a name are significant. Except for names declared
in fun statements, all names are global to the program. Names can take
on numeric (double float) values. string values. or can be associated
with input/output (see the built-in function open() below).

- 3 -

85(1) BS(1)

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in
parentheses separated by commas. Except for built-in functions (listed
below), the name must be defined with a/un statement. Arguments to
functions are passed by value.

name [expression [, expression] ...)
This syntax is used reference either arrays or tables (see built-in table
functions below). For arrays, each expression is truncated to an integer
and used as a specifier for the name. The resulting array reference is
syntactically identical to a name; a(1,2) is the same as a(1)[2]. The trun­
cated expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point,lnd possi­
bly a scale factor consisting of an e followed by a possibly signed
exponent.

string
Character strings are delimited by 0 characters. The \ escape character
allows the double quote (\0), new-line (\0), carriage return (\r), back­
space (\b), and tab (\t) characters to appear in a string. Otherwise, \
stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ...]) [expression)
The bracketed expression is used as a subscript to select a comma­
separated expression from the parenthesized list. List elements are
numbered from the left, starting at zero. The expression:

(False, True) [a = = b]

has the value True if the comparison is true.

1 expression
The interrogation operator tests for the success of the expression rather
than its value. At the moment, it is useful for testing end-of-file (see
examples in the Programming Tips section below), the result of the eval
built-in function, and for checking the return from user-written func­
tions (see /return). An interrogation "trap" (end-of-file, etc.) causes an
immediate transfer to the most recent interrogation, possibly skipping
assignment statements or intervening function levels.

- expression
The result is the negation of the expression.

++ name
Increments the value of the variable (or array reference). The result is
the new value.

-- name
Decrements the value of the variable. The result is the new value.

! expression
The logical negation of the expression. Watch out for the shell escape
command.

expression operator expression
Common functions of two arguments are abbreviated by the two
arguments separated by an operator denoting the function. Except for
the assignment, concatenation, and relational operators, both operands

- 4 -

BS(1) BS(1)

are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right
to left, all other operators bind left to right.

_ (underscore) is the concatenation operator.

&1
& (logical and) has result zero if either of its arguments are zero. It has
result one if both of its arguments are non-zero; 1 (logical or) has result
zero if both of its arguments are zero. It has result one if either of its
arguments is non-zero. Both operators treat a null string as a zero.

< <= > >= == !=

+

The relational operators « less than, < = less than or equal, >
greater than, >= greater than or equal, == equal to, != not equal to)
return one if their arguments are in the specified relation. They return
zero otherwise. Relational operators at the same level extend as fol­
lows: a>b>c is the same as a>b & b>c. A string comparison is made
if both operands are strings.

Add and subtract .

• / %
Multiply, divide, and remainder.

Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i)
is the value of the i-th actual parameter on the current level of function
call. At level zero, arg returns the i-th command-line argument (arg(O)
returns hs).

aal'l()
returns the number of arguments passed. At level zero, the command
argument count is returned.

Mathemlltical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between - ... /2 and ... /2.

ceil(x)
returns the smallest integer not less than x.

cos(x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

ftoor(x)
returns the largest integer not greater than x.

- 5 -

BS(1) BS(I)

log(x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and one.

lin(x)
is the sine of x (radians).

Iqrt(x)
is the square root of x.

String operations

lize(I)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format
specification in the style of print/(3S). Only the % ••• t, % ••• e, and
% ••• I types are safe.

index(x, y)
returns the number of the first position in x that any of the characters
from y matches. No match yields zero.

tranl(I, f, t)
Translates characters of the source s from matching characters in / to a
character in the same position in t. Source characters that do not appear
in / are copied to the result. If the string / is longer than t, source
characters that match in the excess portion of / do not appear in the
result.

lubstr(I, Itart, width)
returns the sub-string of s defined by the starting position and width.

mateh(ltring, pattern)
mstring(n)

The panern is similar to the regular expression syntax of the ed(1) com­
mand. The characters " l, J, ~ (inside brackets), • and $ are special.
The mstring function returns the n-th (l <=- n <= 10) substring of
the subject that occurred between pairs of the pattern symbols \(and \)
for the most recent call to match. To succeed, patterns must match the
beginning of the string (as if all patterns began with ~). The function
returns the number of characters matched. For example:

match("aI23abI23", ".*\([a-z]\)") =-.'"" 6
mstring(1) = ... "b"

open(name, file, function)
elole(name)

File handling

The name argument must be a bs variable name (passed as a string).
For the open, the file argument may be 1) a 0 (zero), I, or 2 represen­
ting standard input, output, or error output, respectively, 2) a string
representing a file name, or 3) a string beginning with an ! representing
a command to be executed (via sh -c). The/unction argument must be
either r (read), " (write), W (write without new-line), or a (append).
After a close, the name reverts to being an ordinary variable. The initial
associations are:

open ("get" , 0, Or")
open("put", I, ·w")
open("puterr", 2, Ow")

- 6 -

BS(I)

Examples are given in the following section.

access(s, m)
executes access(2).

ftype(s)

BS(1)

returns a single character file type indication: f for regular file, d for
directory, b for block special, or c for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Sub­
scripts" (called keys) are strings (numbers arc; converted). The I'Ulme
argument must be a bs variable name (passed as a string). The size
argument sets the minimum number of elements to be allocated. Bs
prints an error message and stops on table overflow.

item(name, i)

key()
The item function accesses table elements sequentially (in normal use,
there is no orderly progression of key values). Where the item function
accesses values, the key function accesses the "subscript" of the pre­
vious item call. The I'Ulme argument should not be quoted. Since exact
table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table("t", 100)

;; If word contains "party", the foUowing expression adds one to
the count
;; of that word:
++t[word]

;; To print out the the key/value pairs:
for i 0, ?(s .. item(t, i», ++i if keyO put .. key(L":"_s

iskey(.ame, word)
The iskey function tests whether the key word exists in the table .a.e
and returns one for true, zero for false.

Odds and ends

e,al(s)
The string argument is evaluated as a bs expression. The function is
handy for converting numeric strings to numeric internal form. EWII
can also be used as a crude form of indirection, as in:

name" "xyz"
eVal("++"_ name)

which increments the variable xyz. In addition, eWII preceded by the
interrogation operator permits the user to control bs error conditions.
For example:

?eval("open('"X\", '"XXX\", '"r'")")

returns the value zero if there is no file named "XXX" (instead of hal­
ting the user's program). The following executes a goto to the label L
(if it exists):

Iabel="L"
if !(?eval("goto "_label» puterr ... "no label"

- 7 -

88(1) 88(1)

plot(request. args)
The plot function produces output on devices recognized by tplot(lG).
The requests are as follows:

Call Function

plot(O, term)

plot(I)

plot(2, string)

plot(3, xl, yl, x2, y2)

plot(4, x, y, r)

causes further plot output to be
piped into tplot(IG) with an
argument of ~ Tterm.

"erases" the plotter.

labels the current point with string.

draws the line between (xl ,yl) and
(x2,y2).

draws a circle with center (x ,y) and
radius r.

plot(5, xl, yl, x2, y2, x3, y3) draws an arc (counterclockwise) with

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

plot(lO, string)

plot(11, xl, yl, x2, y2)

plot(l2. xl. yl. x2, y2)

center (xl ,yl) and endpoints
(x2,y2) and (x3,y3).

is not implemented.

makes the current point (x,y).

draws a line from the current point
to (x,y).

draws a point at (x,y).

sets the line mode to string.

makes (xl ,yJ) the lower left corner
of the plotting area and (x2 ,y2) the
upper right corner of the plotting
area.

causes subsequent x (y) coordinates
to be multiplied by xl (yl) and then
added to x2 (y2) before they are
plotted. The initial scaling is
,lot(l1. 1.0. 1.0.0.0.0.0).

Some requests do not apply to all plotters. All requests except zero and
twelve are implemented by piping characters to tplot(IG). See plot(5)
for more details.

last()
in immediate mode. last returns the most recently computed value.

PR.OGR.AMMING TIPS
Using bs as a calculator:

Sbs
(I Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12/ le9
11.78496

(I Compound interest (6% for 5 years on SI.000).
int == .06/4
bal == 1000
for i ... I 5~ bal = bal + bal*int
ba1-1000

- 8 -

BS(1)

346.855007

exit

The outline of a typical bs program:

(I initialize things:
varl = 1
open ("read", "in file" , Or")

(I compute:
while ?(str = read)

next
(I clean up:
close("read")

(I last statement executed (exit or stop):
exit
(I last input line:
run

Input/Output examples:

(I Copy "oldfile" to "newfilc".
open("read", "oldfile", Or")
open("write", "newfile", Ow")

while ?(write -= read)

(I close "read" and "write":
close("read")
close("write")

(I Pipe between commands.
open("Is", "!Is .", Or")
open("pr", "!pr -2 -h 'List'", Ow")
while ?(pr ... Is) ...

{I be sure to close (wait for) these:
close("ls ")
close("pr")

118(1)

SEE ALSO
ed(l), sh(I), tplot(l G), acccss(2), printf(3S), stdio(3S), Section 3 of this
volume for further description of the mathematical functions (pow(3M) is
used for exponentiation), plot(S). Bs uses the Standard Input/Output
package.

- 9-

CAL(I) CAL(1)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION

BUGS

Cal prints a calendar for the specified year. If a month is also specified, a
calendar just for that month is printed. Year can be between 1 and 9999.
The month is a number between 1 and 12. The calendar produced is that
for England and her colonies.

Try September 1752.

The year is always considered to start in January even though this is histor­
ically naive.
Beware that "cal 78" refers to the early Christian era, not the 20th century.

- 1 -

CALENDAR (1) CALENDAR (I)

NAME
calendar - reminder service

SYNOPSIS
calendar [-]

DESCRIPTION

FILES

Calendar consults the file calendar in the current directory and prints out
lines that contain today's or tomorrow's date anywhere in the line. Most
reasonable month-day dates such as "Dec. 7," "december 7," "12/7,"
etc., are recognized, but not "7 December' or "7/12". On weekends
"tomorrow" extends through Monday.

When an argument is present, calendar does its job for every user who has
a file calendar in his login directory and sends him any positive results by
mail (1). Normally this is done daily in the wee hours under control of
CTon (1 M).

calendar
/usr/lib/calprog to figure out today's and tomorrow's dates
/etc/passwd
/tmp/cal.
/usr/lib/crontab

SEE ALSO

BUGS

cron(IM), mail(1).

Your calendar must be public information for you to get reminder service.
Calendar's extended idea of "tomorrow" does not account for holidays.

- 1 -

I

CAT(I) CAT(I)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [-s] file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat file I file2 > file3

concatenates the first two files and places the result on the third.

If no input file .is given, or if the argument - is encountered, cat reads
from the standard input file. Output is buffered in 512-byte blocks unless
the - u option is specified. The - s option makes cat silent about non­
existent files. No input file may be the same as the output file unless it is a
special file.

SEE ALSO
cp(1), pr(1).

- 1 •

CB(1) CB(I)

NAME
cb - C program beautifier

SYNOPSIS
cb [file]

DESCRIPTION
Cb places a copy of the C program in file (standard input if file is not
given) on the standard output with spacing and indentation that displays
the structure of the program.

- 1 -

CC(l) CC(l)

NAME
cc, pee - C compiler

SYNOPSIS
cc [option] ... file ...
pec [option] """ file " ..

DESCRIPTION
Cc is the UNIX C compiler. Pee is the portable version for a PDP-II
machine. They accept several types of arguments:

Arguments whose names end with .c are taken to be C source programs;
they are compiled, and each object program is left on the file whose name
is that of the source with .0 substituted for .c. The.o file is normally
deleted, however, if a single C program is compiled and loaded all at one
go.

In the same way, arguments whose names end with .5 are taken to be
assembly source programs and are assembled, producing a .0 file.

The following options are interpreted by ee and pee. See Id(I) for link edi­
tor options.

-c Suppress the link edit phase of the compilation, and force an
object file to be produced even if only one program is compiled.

- p Arrange for the compiler to produce code which counts the num­
ber of times each routine is called; also, if link editing takes place,
replace the standard startoff routine by one which automatically
calls monitor(3C) at the start and arranges to write out a 1D0n.oat
file at normal termination of execution of the object program. An
execution profile can then be generated by use of pro/(I).

-I Link the object program with the floating-point interpreter for sys­
tems without hardware floating-point.

-I Cause the compiler to generate additional information needed for
the use of sdb(1). (VAX-ll/780 only.)

-dn This option is passed through to 0$(1). (VAX only.)

-0 Invoke an object~code optimizer.

-S Compile the named C programs, and leave the assembler-language
output on corresponding files suffixed .5.

- E Run only the macro preprocessor on the named C programs, and
send the result to the standard output.

- P Run only the macro preprocessor on the named C programs, and
leave the result on corresponding files suffixed .i.

-C Comments are not stripped by the macro preprocessor.

- Dname-dej
-Dname

Define the name to the preprocessor, as if by I define. If no
definition is given, the name is defined as I.

-Uname
Remove any initial definition of name.

-Idir Change the algorithm for searching for I include files whose
names do not begin with / to look in dir before looking in the
directories on the standard list. Thus, # include files whose names
are enclosed in •• will be searched for first in the directory of the
file argument, then in directories named in -(options, and last in

- 1 -

CC(I)

FILES

CC(I)

directories on a standard list. For I iDclude files whose names are
enclosed in <>, the directory of the file argument is not sear­
ched.

-Bstring
Find substitute compiler passes in the files named string with the
suffixes cpp, cO, c1 and cl. If string is empty, use a standard
backup version.

-t[,oll]
Find only the designated compiler passes in the files whose names
are constructed by a - B option. In the absence of a - B option,
the string is taken to be /lib/D.

Other arguments are taken to be either link editor option arguments, or C­
compatible object programs, typically produced by an earlier ee or pee run,
or perhaps libraries of C-compatible routines. These programs, together
with the results of any compilations specified, are linked (in the order
given) to produce an executable program with the name a.oat.

file.c
file.o
a.out
/tmp/ctm.
/lib/cpp
/lib/c[OI]
/usr/lib/comp
/lib/ccom
/lib/c2
/lib/OC*
/lib/nc*
/lib/fcl
/lib/crtO.o
/lib/mcrtO.o
/lib/fcrtO.o
/lib /libc.a
/usr/include

input file
object file
linked output
temporary
preprocessor
PDP-ll compiler, ee
compiler, pee
VAX compiler, ee
optional optimizer
backup compiler, oce
test compiler, nee
PDP-II ftoating-point compiler, ee
runtime startoff
startoff for profiling
startoff for ftoating-point interpretation
standard library, see (3)
standard directory for I iDclade files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C
Prentice-Hall, 1978.
B. W. Kernighan, Programming in C-A Tutorilll.
D. M. Ritchie, C Reference Manual.
adb(1), as(1), Id(1), prof(1), monitor(3C).

DIAGNOSnCS

Programming lAnguage ,

The diagnostics produced by C itself are intended to be self-explanatory.
Occasional messages may be produced by the assemblcr or the link editor.
Of these, the most mystifying are from the PDP-ll asscmbler, in particular
m, which means a multiply-defined external symbol (function or data).

- 2 -

CD(I) CD(I)

NAME
cd - change working directory

SYNOPSIS
cd [directory]

DESCRIPTION
If specified, directory becomes the new working directory; otherwise, the
value of the shell parameter SHOME is used. The process must have exe"
cute (search) permission in directory.

Because a new process is created to execute each command, cd would be
ineffective if it were written as a normal command; therefore, it is recog"
nized and executed by the shell.

SEE ALSO
pwd(l), sh(l), chdir(2).

" 1 -

CDC(1) CDC(l)

NAME
cdc - change the delta commentary of an sces delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment)) files

DESCRIPTION
Cdc changes the delta commentary, for the SID specified by the -r keylet­
ter, of each named sces file.

Delta commentary is defined to be the Modification Request (MR) and com­
ment information normally specified via the delta (l) command (-m and
-y keyletters).

If a directory is named, cdc behaves as though each file in the directory
were specified as a named file, except that non-SCes files (last component
of the path name does not begin with 5.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an
sces file to be processed.

Arguments to cdc, which may appear in any order, consist of keylener
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

-rSID

-m[mrlist]

Used to specify the sces IDentification (SID) string
of a delta for which the delta commentary is to be
changed.

If the sces file has the v flag set (see admin (l» then
a list of MR numbers to be added and/or deleted in
the delta commentary of the SID specified by the -r
keyletter may be supplied. A null MR list has no
effect.

MR entries are added to the list of MRs in the same
manner as that of delta(l). In order to delete an MR,
precede the MR number with the character! (see
EXAMPLES). If the MR to be deleted is currently in
the list of MRs, it is removed and changed into a
"comment" line. A list of all deleted MRs is placed
in the comment section of the delta commentary and
preceded by a comment line stating that they were
deleted.

If - m is not used and the standard input is a ter­
minal, the prompt MRs? is issued on the standard
output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued.
The MRs? prompt always precedes the eommeDts?
prompt (see -y keyletter).

MRs in a list are separated by blanks and/or· tab
characters. An unescaped new-line character ter­
minates the MR list.

Note that if the v flag has a value (see admin(l», it
is taken to be the name of a program (or shell pro­
cedure) which validates the correctness of the MR
numbers. If a non-zero exit status is returned from
the MR number validation program, cdc terminates

- 1 -

CDC(l) COC(1)

and the delta commentary remains unchanged.

-y[comment] Arbitrary text used to replace the comment(s) already
existing for the delta specified by the -r keyletter.
The previous comments are kept and preceded by a
comment line stating that they were changed. A null
comment has no effect.

H -y is not specified and the standard input is a ter­
minal, the prompt COlDlllents? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An unescaped new-line character terminates the com­
ment text.

The exact permissions necessary to modify the sees file are docu­
mented in the Smuce Code Control System User's Guide. Simply sta­
ted, they are either (l) if you made the delta, you can change its delta
commentary; or (2) if you own the file and directory you can modify
the delta commentary.

EXAMPLES
cdc -rl.6 -m"bI78-12345 !bI77-54321 bI79-()()()()l" -ytrouble s.file

adds b178-12345 and bI79-00001 to the MR list, removes bl77-54321 from
the MR list, and adds the comment trouble to delta 1.6 of s.file.

cdc -rl.6 s.file
MRs? !bI77-54321 b178-12345 bl79-OOOOi
comments? trouble

does the same thing.

WARNINGS

FILES

H sees file names are supplied to the cdc command via the standard input
(- on the command line), then the -ID and -y keyletters must also be
used.

x-file
z-nIe

(see de/ta(l»
(see deha(l»

SEE ALSO
admin(l), delta(l), get(l). help(l), prs(l), sccsfile(5).
Smuce Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSnCS
Use he/p{l) for explanations.

- 2 -

CHMOD(I) CHMOD(I)

NAME
chmod - change mode

SYNOPSIS
chmocl mode file ...

DESCRIPTION
The permissions of each named file are changed according to mode. which
may be absolute or symbolic. An absolute mode is an octal number con­
structed from the OR of the following modes:

4000 set user 10 on execution·
.'2000 set group 10 on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), I
(group) and 0 (other). The letter a stands for UIO, the default if who is
omitted.

Op can be + to add permission to the file's mode, - to take away permis­
sion, or = to assign permiSsion absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), " (write), " (exe­
cute), s (set owner or group 10) and t (save text - sticky); u, lor 0 indi­
cate that permission is to be taken from the current mode. Omitting permis­
sion is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations
are performed in the order specified. The letter 8 is only useful with u or I
and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file
executable:

chmod o-w file

chmod + x file

SEE ALSO
Is(l), chmod(2).

- 1 -

CHOWN(I)

NAME
chown, chgrp - change owner or group

SYNOPSIS
chow. owner file .. .

chgrp group file .. .

DESCRIPTION

CHOWN(I)

Chown changes the owner of the files to owner. The owner may be either a
decimal user ID or a login name found in the password file.

FILES

Chgrp changes the group ID of the files to group. The group may be either
a decimal group ID or a group name found in the group file.

/etc/pas5wd
/etc/group

SEE ALSO
chown(2), group(S), passwd(S).

- I -

CHROOT(IM) CHROOT(IM)

NAME
chroot - change root directory for a command

SYNOPSIS
chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of
any initial slashes (f) in path names is changed for a command and any of
its children to newroot. Furthermore, the initial working directory is
newroot.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the current
root of the running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files in the
new root file system.

- 1 -

CLRI(1M) CLRI(IM)

NAMB
clri - clear i-node

SYNOPSIS
~Irl file-system i-number ...

DI!SCRIPTION
C/rl writes zeros on the 64 bytes occupied by the i-node numbered 1-
"'''"~'. FIle-sy8l~m must be a special file name referring to a device con­
taining a file system. After clrt is executed, any blocks in the affected file
will show up as "milling" in an /sck(1 M) of the file-,,81~m. This com­
mand should only be used in emergencies and extreme care should be
exercised.

Read and write permillion is required on the specified file-qst~m device.
The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some
reason appears in no directory. If it is used to mp an i-node which does
appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to somt new file,. the
old entry will still pomt to that file. At that point removing the old entry
will destroy the new file. The new entry will apin point to an unallocated
i-node, so the whole cycle i. likely to be repeated apin and apin.

SBB ALSO
f.ck(1M), f.db(1 M), ncheck(1 M), f.(5).

BUGS
If the file is open, clrl i. likely to be ineffective.

- I -

CMP(I) CMP(I)

NAME
cmp - compare two files

SYNOPSIS
c.p [-I] [-I] filel file2

DESCRIPTION
The two files are compared. (If filel is -. the standard input is used.)
Under default options. cmp makes no comment if the files are the same; if
they ditTer. it announces the byte and line number at which the difference
occurred. Jr one file is an initial subsequence of the other. that fact is
noted.

Options:

-I Print the byte number (decimal) and the ditTerinl bytes (octal) for
each ditTerence.

-I Print nothinl for ditTerinl files; return codes only.

SEE ALSO
comm(I). ditT(I).

DIAGNOSTICS
Exit code 0 is returned for identical files. I for ditTerent files. and 2 for an
inaccessible or missinl arlument.

- I -

COL(I) COL(I)

NAME
col - filter reverse line-feeds

SYNOPSIS
col [- bfp"]

DESCRIPTION
Col reads from the standard input and writes onto the standard output. It
performs the line overlays implied by reverse line feeds (ASCII code
ESC-7) , and by forward and reverse half-line-feeds (ESC-9 and ESC-8).
Col is particularly useful for filtering multicolumn output made with the .rt
command of nroff(l) and output resulting from use of the tbl(I) preproces­
sor.

If the -b option is given, col assumes that the output device in use is not
capable of backspacing. In this case, if two or more characters are to
appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not
emit them on output. Instead, text that would appear between lines is
moved to the next lower full-line boundary. This tPeatment can be
suppressed by the -f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either
kind of reverse line motion.

Unless the -" option is given, col will convert white space to tabs on out­
put wherever possible to shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to
start and end text in an alternate character set. The character set to which
each input character belongs is remembered, and on output SI and SO
characters are generated as appropriate to ensure that each character is prin­
ted in the correct character set.

On input, the only control characters accepted are space, backspace, tab,
return, new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The
VT character is an alternate form of full reverse line-feed, included for
compatibility with some earlier programs of this type. All other non­
printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences found in its
input; the -p option may be used to cause col to output these sequences as
regular characters, subject to overprinting from reverse line motions. The
use of this option is highly discouraged unless the user is fully aware of the
textual position of the escape sequences.

SEE ALSO

NOTES

BUGS

nrolf(l), tbl(l).

The input format accepted by col matches the output produced by nroff(1)
with either the -T37 or -Tip options. Use -T37 (and the -f option of
col) if the ultimate disposition of the output of col will be a device that can
interpret half-line motions, and -Tip otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of
the document are ignored. As a result, the first line must not have any
superscripts.

- 1 -

COMB(I) COMB(I)

NAME
comb - combine sces deltas

SYNOPSIS
comb [-0] [-5] [-psid] [-dist] files

DESCRIPTION

FILES

Comb generates a shell procedure (see sh (1» which, when run, will recon­
struct the given sees files. The reconstructed files will, hopefully, be smal­
ler than the original files. The arguments may be specified in any order,
but all keyletter arguments apply to all named sees files. If a directory is
named, comb behaves as though each file in the directory were specified as
a named file, except that non-sees files (last component of the path name
does not begin with 5.) and unreadable files are silently ignored. If a name
of - is given, the standard input is read; each . line of the standard input is
taken to be the name of an sees file to be processed; non-SCes files and
unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only
one named file is to be processed, but the effects of any keyletter argument
apply independently to each named file.

-pSID The sees IDentification string (SID) of the oldest delta to be
preserved. All older deltas are discarded in the reconstructed file.

-cJisr A Un (see get (1) for the syntax of a Un) of deltas to be preserved.
All other deltas are discarded.

-0 For each get -e generated, this argument causes the reconstructed
file to be accessed at the release of the delta to be created, oth­
erwise the reconstructed file would be accessed at the most recent
ancestor. Use of the -0 keyletter may decrease the size of the
reconstructed sees file. It may also alter the shape of the delta
tree of the original file.

-s This argument causes comb to generate a shell procedure which,
when run, will produce a report giving, for each file: the file name,
size (in blocks) after combining, original size (also in blocks), and
percentage change computed by:

100 • (original - combined) / original
It is recommended that before any sees files are actually com­
bined, one should use this option to determine exactly how much
space is saved by the combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas
and the minimal number of ancestors needed to preserve the tree.

s.eOMB
comb?????

The name of the reconstructed sees file.
Temporary.

SEE AlSO
admin(l), delta(l), get(l), help(l), prs(l), sc:csfile(S).
SOUI'Ce Code Control System User's GuUJe by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use help(1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any
space; in fact, it is possible for the reconstructed file to actually be larger
than the original.

- 1 -

COMM(1) COMM(l)

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [113]] filel file2

DESCRIPTION
Comm reads .filel and file2, which should be ordered in ASCII collating
sequence (see sort (1 », and produces a three-column. output: lines only in
file1; lines only in file2; and lines in both files. The file name - means the
standard input.

Flags I, 2, or 3 suppress printing of the corresponding column. Thus
comm -11 prints only the lines common to the two files; comm -13
prints only lines in the first file but not in the second; comm -113 is a no­
op.

SEE ALSO
cmp(1), diff(l), sort(1), uniq(1).

- 1 -

CONFIG(1M) CONFlG(IM)

NAME
config - configure a UNIX system

SYNOPSIS
jetejeonfig [- t 1 [-I file 1 [-c file 1 ~ - m file 1 dfile

DESCRIPTION
Config is a program that takes a description of a UNIX system and generates
two files. One file provides information regarding the interface between the
hardware and device handlers. The other file is a C program defining the
configuration tables for the various devices on the system.

The -I option specifies the name of the hardware interface file; IOW.5 is
the default name on the PcP-II; uniyec.c is the default name on the V AX­
Il j780.

The -e option specifies the name of the configuration table file; conf.e is
the default name.

The - m option specifies the name of the file that contains all the informa­
tion regarding supported devices; jete/master is the default name. This
file is supplied with the UNIX system and should not be modified unless the
user fully understands its construction.

The -t option requests a short table of major device numbers for character
and block type devices. This can facilitate the creation of special files.

The user must supply dfile; it must contain device information for the
user's system. This file is divided into two parts. The first part contains
physical device specifications. The second part contains system-dependent
information. Any line with an asterisk (.) in column I is a comment.

All configurations are assumed to have the following devices:

one DLlI (for the system console)
one KWII-L line clock or KWII-P programmable clock

with standard interrupt vectors and addresses. These two devices must not
be specified in dfile. Note that UNIX needs only one clock, but can handle
both types.

First Part of dfile
Each line contains four or five fields, delimited by blanks and/or tabs in the
following format:

devname vector address bus number

where tiev1Ulme is the name of the device (as it appears in the jetej.a.ter
device table), vector is the interrupt vector location (octal), atldress is the
device address (octal), bus is the bus request level (4 through 7), and mmt­

her is the number (decimal) of devices associated with the corresponding
controller; number is optional, and if omitted, a default value which is the
maximum value for that controller is used.

There are certain drivers that may be provided with the system, that are
actually pseudo-device drivers; that is, there is no real hardware associated
with the driver. Drivers of this type are identified on their respective
manual entries. When these devices are specified in the description file,
the interrupt vector, device 1lIidnss, and bus request level must all be zero.

- 1 -

CON FIG (1M) CONFIG(IM)

Sec::ond Part of dfile
The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbitrary.

1. Root/pipe/dump device specification

Three lines of three fields each:

root
pipe
dump

devname
devname
devname

minor
minor
minor

where minOl' is the minor device number (in octal).

2. Swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

where swplo is the lowest disk block (decimal) in the swap area and nswap
is the number of disk blocks (decimal) in the swap area.

3. Parameter specification

Thirteen lines of two fields each as follows (number is decimal):

EXAMPLE

buffers
sabufs
inodes
files
mouBts
core .. a,
swapmap
calls
proes
.. axprec
texts
elists
pewer

number
number (no1'on the VAX-ll/780)
number
number
number
number (not on the V AX-ll /780)
number
number
number
number
number
number
o or 1

Suppose we wish to configure a POP-llf70 system with the following devi-
ces:

one RP04 disk drive controller with 6 drives
one OHII asynchronous multiplexer with 16 lines (default number)
one OM 11 modem control with 16 lines (for the OHIl)
one OHlt asynchronous mUltiplexer with 8 lines
one OMII modem control with 8 lines (for the OHlt)
one LPlt line printer
one TUt6 tape drive controller with 2 drives
one OLlt asynchronous interface

Note that UNIX only supports OHtt units that require corresponding OMII
units. It is wise to specify them in OH-OM pairs to facilitate understanding
the configuration. Note also that, in the preceding case, the OUI that is
specified is in addition to the OUI that was part of the initial system. We
must also specify the following parameter information:

root device is an RP04 (drive 0, section 0)
pipe device is an RP04 (drive 0, section 0)
swap device is an RP04 (drive I, section 4),

with a swplo of 6000 and an nswap of 2000
dump device is a TUI6 (drive 0)
number of buffers is 35

- 2 -

CONFIG(IM) CONFIG(IM)

FILES

number of system addressable buffers is 12
number of processes is 150
maximum number of processes per user ID is 25
number of mounts is 8
number of in odes is 120
number of files is 120
number of calls is 30
number of texts is 35
number of character buffers is 150
number of core map entries is 50
number of swap map entries is 50
power fail recovery is to be included

The actual system configuration would be specified as follows:
rp04 254 776700 5 6
dhll 320 760020 5
dm 11 300 770500 4
dhll 330 760040 5 8
dmll 304 770510 4 8
lpll 200 775514 5
tul6 224 772440 5 2
dill 350 775610 5
root rp04 0
pipe rp04 0
swap rp04 14 6000 2000
dump tul6 0
• Comments may be inserted in this manner
buffers 35
sabufs 12
procs 150
maxproc 25
mounts 8
inodes 120
files 120
calls 30
texts 35
dists 150
coremap 50
swapmap 50
power

/ etc/master
low.s
univecoc
conf.c

1

default input master device table
default output hardware interface file for PDP-II
default output hardware interface file for the VAX-ll/780
default output configuration table file

SEE ALSO
master(5).
Setting Up UNIX.

DIAGNOSTICS

BUGS

Diagnostics are routed to the standard output and are self-explanatory.

The -t option does not know about devices °that have aliases. For exam­
ple. an RP06 (an alias for an RP(4) will show up as an RP04; however, the
major device numbers are always correct.

3 -

CP(1) CP(I)

NAME
cpo In. mv - cOPY. link or move files

SYNOPSIS
cp file I [file2 ... J target
In filel [file2 ... J target
mv filel [file2 ... J target

DESCRIPTION
Filel is copied (linked. moved) to target. Under no circumstance can filel
and lorget be the same. If target is a directory. then one or more files are
copied (linked. moved) to that directory.

If mv determines that the mode of target forbids writing. it will print the
mode (see chmod(2» and read the standard input for one line (if the stan­
dard input is a terminal); if the line begins with y. the move takes place; if
not. mv exits.

Only mv will allow filel to be a directory. in which case the directory
rename will occur only if the two directories have the same parent.

SEE ALSO

BUGS

cpio(l). link(lM). rm(1). chmod(2).

If filel and target lie on different file systems. mv must copy the file and
delete the original. In this case the owner name becomes that of the copy­
ing process and any linking relationship with other files is lost.

Ln will not link across file systems.

- 1 -

CPIO(1) CPIO(I)

NAME
epio - copy file archives in and out

SYNOPSIS
cpio -0 [scBv J
cpio - i [Bcdmrtuv6 J [patterns

cpio -p [sdlmru" J directory

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names
and copies those files onto the standard output together with path name
and status information.

Cpio -j (copy in) extracts from the standard input (which is assumed to be
the product of a previous cpio -0) the names of files selected by zero or
more patterns given in the name-generating notation of sh (l). In patterns,
meta-characters ? ., and [... J match the slash / character. The default for
patterns is. (i.e., select all files).

Cpio -p (pass) copies out and in in a single operation. Destination path
names are interpreted relative to the named directory.

The meanings of the available options are:

s Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not

apply to the pass option; meaningful only with data directed to or
from /dev /rmt?).

d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is

skipped.
Print a table of contents of the input. No files are created.

u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

v Verbose: causes a list of file names to be printed. When used with
the t option, the table of contents looks like the output of an Is -I
command (see Is(1».
Whenever possible, link files rather than copying them. Usable
only with the -p option.

m Retain previous file modification time. This option is ineffective on
directories that are being copied.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful
with -j (copy in).

EXAMPLES
The first example below copies the contents of a directory into an archive;
the second duplicates a directory hierarchy:

Is I epio -0 >/dev/mtO

cd olddir
find . -print I epio -pdl newdir

The trivial case "find • -print I epio -oB > /dev /rmtO" can be handled
more efficiently by:

find • -epio /dev /rmtO

SEE ALSO
ar(l), find(l), epio(5).

- 1 -

I

CPIO(I) CPIO(I)

BUGS
Path names are restricted to 128 characters. If there are too many unique
linked files, the program runs out of memory to keep track of them and,
thereafter, linking information is lost. Only the super-user can copy special
files.

- 2 -

CRASH (1M) CRASH(IM)

NAME
crash - examine system images

SYNOPSIS
/etc/crasb [system] [namelist] [ka6]

DESCRIPTION
Crash is an interactive utility for examining an operating system core
image. It has facilities for interpreting and formating the various control
structures in the system and certain miscellaneous functions that are useful
when perusing a dump.

The arguments to crash are the file name where the system image can be
found. a namelist file to be used for symbol values. and the segment
address of the initial process to be examined. The current process can be
changed via subsequent commands. The default values are /de'/fDefD.
/unix. and the location of the swapper. process 0; hence. crash with no
arguments can be used to examine an active system. If a system image file
is given. it is assumed to be a system core dump and the initial process is
set to be that of the process running at the time of the crash. This is deter­
mined by the value of ka6 stored in a fixed location by the system dump
mechanism.

COMMANDS
Input to crash is typically of the form:

command [options] [structures to be printed].
When allowed. options will modify the format of the print out. If no
specific structure elements are specified. all valid entries will be used. As
an example. proc - 12 153 would print process table slots 12. 15 and 3 in
a long format. while proc would print the entire process table in the stan­
dard format. The current repertory consists of:

ka6 [segment address]
Print the location of the current process if no argument is given. or
set the location to that of the supplied value.

u Print the user structure of the current process as determined by the
value of ka6.

trace[-r]
Generate a kernel stack trace of the current process. If the -r
option is used. the trace begins at the saved stack frame pointer in
r5. Otherwise the trace starts at the bottom of the stack and
attempts to find valid stack frames deeper in the stack.

r5 [stack frame]
Print the program's idea of the start of the current stack frame (set
initially from a fixed location in the dump) if no argument is given,
or set the frame pointer to the supplied value.

stack format an octal dump of the kernel stack of the current process.
The addresses shown are virtual system data addresses rather than
true physical locations.

proc [~ [r]] [list of process table entries]
Format the process table. The -r option causes only runnable pro­
cesses to be printed. The - alone generates a longer listing.

inode [-] [list of inode table entries]
Format the inode table. The - option will also printthe inode data
block addresses.

- 1 -

CRASH(1M) CRASH(lM)

file [list of rue table entries]
Format the file table .

• o •• t [list of mount table entries]
Format the mount table.

text [list of text table entries]
Format the text table.

tty [type] [-] [list of tty entries]
Print the tty structures. The type argument determines which struc­
ture will be used (such as kl or dla; the last type is remembered).
The - option prints the stty parameten for the given line.

stat Print certain statistics found in the dump. These include the panic
string, time of crash, system name, and the regilten saved in low
memory by the dump mechanism.

,ar Print the tunable system parameten.

It.f [list of buffer headen]
Format the system buffer headen.

buffer [format] [list of buffen]
Print the data in a system buffer according to/omtIJI. Valid formats
include decimal, octal, claancter, byte, directory, iDode, and write.
The last creates a file containing the buffer data.

callout Print all entries in the caUout table.
map [list of map names]

Format the named system map structures .
•• [list of symbols]

Print symbol value and type as found in the namelist file.

ts (list of text addresses]
Find the closest text symbols to the given addresses.

ds [list of data addresses]
Find the closest data symbols to the given addresses .

.. [symbol or data address] [count] [format]
Dump COWlt data values starting at the symbol value or address
given according to /DmIIIt. Allowable formats are octal, decimal,
elaancter, or byte.

! Escape to shell.

II Exit from crash.

? Print synopsis of commands.

AUASES

FILES

There are built in aliases for many of the commands and formats. In gen­
eral, the first letter of a name is satisfactory, thus, k is a shorthand nota­
tion for kerael. Exceptions are x for text and e for decimal.

jdevjmem
junix
buf.'

default system image file
default namelist file
files created containing buffer data

SEE ALSO
crash(8).

- 2 -

CREF(I) CREF(I)

NAME
cref - make cross-reference listing

SYNOPSIS
eref [-acilaostuxl13] files

DESCRIPTION

FILES

Cre! makes a cross-reference listing of assembler or C programs; files are
searched for symbols in the appropriate syntax.

The output report is in four columns:

1. symbol;
2. file name;
3. see below;
4. text as it appears in the file.

Cre! uses either an ipOI'e file or an only file. If the -i option is given, the
next argument is taken to be an ignore file; if the -0 option is given, the
next argument is taken to be an only file. Ignore and only files are lists of
symbols separated by new-lines. All symbols in an ipore file are ignored in
columns 1 and 3 of the output. If an only file is given, only symbols in that
file will appear in column I. Only one of these options may be given; the
default setting is -i using the default ignore file (see Fl~ below).
Assembler pre-defined symbols or C keywords are ignored.
The -5 option causes current symbols to be put in column 3. In the
assembler, the current symbol is the most recent name symbol; in C, the
current function name. The -I option causes the line number within the
file to be put in column 3.

The -t option causes the next available argument to be used as the name
of the intermediate file (instead of the temporary file It.,/en??). This
file is created and is "ot removed at the end of the process.

The ere! options are:

a assembler format (default)
c C format input

use an ipore file (see above)
put line number in column 3 (instead of current symbol)

a omit column 4 (no context)
o use an only file (see above)
5 current symbol in column 3 (default)
t user-supplied temporary file
u print only symbols that occur exactly once
x print only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3.

Itmp/crt??
/usr/lib/cref/aign
/usr/lib/cref/atab
/usr/lib/cref/cign
/usr/lib/cref/ctab
/usr/lib/cref/crpost
/usr/lib/cref/upost

temporaries
default assembler ipore file
grammar table for assembler files
default C ipore file
grammar table for C files
post-processor
post-processor for -. option

SEE ALSO
as(l), ce(l), sort(l), xref(l).

- 1 -

I

CREF(I) CREF(I)

BUGS
ere! inserts an ASCn DEL character into the intermediate file after the
eighth character of each name that is eight or more characters long in the
source file.

- 2-

CRON(1M) CRON(IM)

NAME
cron - clock daemon

SYNOPSIS
/ete/eron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the
instructions in the file /usr/lib/c:rontab. Because cron never exits, it
should be executed only once. This is best done by running cron from the
initialization process through the file /etc:/rc: (see init(8».

The file c:rontab consists of lines of six fields each. The fields are separated
by spaces or tabs. The first five are integer patterns that specify the minute
(0-59), hour (0-23), day of the month (1-31), month of the year (1-12),
and day of the week (0-6, with O=Sunday). Each of these patterns may
contain:

a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these num­
bers); or
an asterisk (meaning all legal values).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a new-line character. Only the
first line (up to a % or the end of line) .of the command field is executed by
the shell. The other lines are made available to the command as standard
input.

Cron examines aontab once a minute to see if it has changed; if it has,
cron reads it. Thus it takes only a minute for entries to become effective.

/usr/lib/crontab
/ usr /lib / cronlog

SEE ALSO
sh(l), init(8).

DIAGNOSTICS

BUGS

A history of all actions by cron are recorded in /Dsr/lib/croalog.

Cron reads c:rontab only when it has changed, but it reads the in-core ver­
sion of that table once a minute. A more efficient algorithm could be used.
The overhead in running cron is about one percent of the CPU, exclusive of
any commands executed by cron.

- 1 -

CRYPT(1) CRYPT(l)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output.
The password is a key that selects a particular transformation. If no
password is given, crypt demands a key from the terminal and turns off
printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted, by crypt are compatible with those trc:ated by the editor ed
in encryption mode.

The security of encrypted files depends on three factors: the fundamental
method must be hard to solve; direct search of the key space must be
infeasible; "sneak paths" by which keys or clear text can become visible
must be minimized.

Crypt implements a one-rotor machine designed along the lines of the Ger­
man Enigma, but with a 256-element rotor. Methods of attack on such
machines are known, but not widely; moreover the amount of work
required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e. to take a substantial fraction of a
second to compute. However, if keys are restricted to (say) three lower­
case letters, then encrypted files can be read by expending only a substan­
tial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible
to users executing ps(l) or a derivative. To minimize this possibility, crypt
takes care to destroy any record of the key immediately upon entry. The
choice of keys and key security are the most vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(l), makekey(8).

If output is piped to nroff(1) and the encryption key is not given on the
command line, crypt can leave terminal modes in a strange state (see
stty(l».

- 1 -

CSPLIT(1) CSPLIT(l)

NAME
csplit - context split

SYNOPSIS
csplit [-s] [-k] [-f prefix) file argl [... argn]

DESCRIPTION
Csp/it reads file and separates it into n + 1 sections, defined by the
arguments argl • •• argn. By default the sections are placed in xxOO •.•
xxn (n may not be greater than 99). These sections get the following
pieces of file:

00:

01 :

From the start of file up to (but not including) the line
referenced byargl.
From the line referenced by argJ up to the line referenced by
arg2.

n + 1: From the line referenced by argn to the end of file.

The options to esp/it are:

- s Csp/it normally prints the character counts for each file
created. If the -s option is present, esp/it suppresses the
printing of all character counts.

- k Csplit normally removes created files if an error occurs. If
the - k option is present, esplit leaves previously created
files intact.

-f prefix If the -f option is used, the created files are named
prefixOO .•. prefixn. The default is xxOO . .• xxn.

The arguments (argl ••. argn) to esp/it can be a combination of the fol­
lowing:

/rexp/ A file is to be created for the section from the current line
up to (but not including) the line containing the regular
expression rexp. The current line becomes the line con­
taining rexp. This argument may be followed by an optional
+or - some number of lines (e.g., /Pagc/-5).

%rexp% This argument is the same as /rexp/, except that no file is
created for the section.

lnno A file is to be created from the current line up to (but not
including) Inno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows In"o, the
file will be split every· 1",,0 lines ("urn times) from that
point.

Enclose all rexp type arguments that contain blanks or other characters
meaningful to the Shell in the appropriate quotes. Regular expressions may
not contain embedded new-lines. Csp/it does not affect the original file; it
is the users responsibility to remove it.

EXAMPLES
csplit -f cobol file '/procedure division/, /par5./ /par16./

This example creates four files, cobol09 ••• cobo103. After editing the
"split" files, they can be recombined as follows:

- 1 -

I

CSPUT(I) CSPUT(I)

cat cobolO[O-3] > file

Note that this example overwrites the original file.

csplit - k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The - k option causes the created files to be retained if there are less than
10,000 lines; however, an error message would still be printed.

csplit -k prog.c '%main(%' '(}/+I' {20}

Assuming that prog.c follows the normal C coding conlention of ending
routines with a } at the beginning of the line, this example will create a file
containing each separate C routine (up to 21) in prog.c.

SEE AlSO
ed(I), sh(l), regexp(7).

DIAGNOSTICS
Self explanatory except for:

arg - out of range
which means that the given argument did not reference a line between the
current position and the end of the file.

- 2 -

CT(IC) CT(IC)

. NAME
ct - call terminal

SYNOPSIS
ct [-h] [-y] [-wn] [-sspeed] telno

DESCRIPTION

FILES

Ct dials the phone number of a modem that is attached to a terminal, and
spawns a login process to that terminal. Telno is the telephone number,
with minus signs at appropriate places for delays.

Ct determines which dialers arc associated with Hnes that arc set to the
appropriate speed by examining the file /asr/lib/allcp/iAleyices. If all
such available dialers arc busy, ct will ask if it should wait for a line, and if
so, for how many minutes it should wait before it gives up. Ct will con­
tinue to try to open the dialers at one-minute intervals until the specified
limit is exceeded. The dialogue may be overridden by specifying the -wn
option, where n is the maximum number of minutes that ct is to wait for a
line.

Normally, ct will hang up the current Hne, so that that line can answer the
incoming call. The -h option will prevent this action. If the -Y option is
used, ct will send a running narrative to standard error.

The data rate may be set with the -s option, where speed is expressed in
baud. The default rate is 300.

The destination terminal must be attached to a modem that can answer the
telephone.

/usr/lib/uucp/L-devices
SEE ALSO

cu(lC), login(l), uucp(IC), dn(4), getty(8).

- 1 -

I

CU(IC) CU(lC)

NAME
cu - call another UNIX system

SYNOPSIS
cu [-sspeed] [-aacu] [-Iline] [-h] [-ol-e] telno I dir

DESCRIPTION
Cu calls up another UNIX system, a terminal, or possibly a non-UNIX sys­
tem. It manages an interactive conversation with possible transfers of
ASCII files. Speed gives the transmission speed (110, 150, 300, 1200, 4800,
9600); 300 is the default value. Most of our modems restrict us to choose
between 300 and 1200. Directly connected lines may be set to other
speeds.

The -a and -I values may be used to specify device names for the ACU
and communications line devices. They can be used to override searching
for the first available ACU with the right speed. The - h option emulates
local echo, supporting calis to other computer systems which expect ter­
minals to be in half-duplex mode. The -e (-o).option designates that
even (odd) parity is to be generated for data sent to the remote. Telno is
the telephone number, with equal signs for secondary dial tone or minus
signs for delays, at appropriate places. The string dir for telno must be
used for directly connected lines, and implies a null ACU.

Cu will try each line listed in the file jusrjlibjuucpjL-de,ices until it finds
an available line with appropriate attributes or runs out of entries. After
making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with -, passes
it to the remote system; the receive process accepts data from the remote
system and, except for lines beginning with -, passes it to the standard out­
put. Normally, an automatic DC3jDCl protocol is used to control input
from the remote so the buffer is not overrun. Lines beginning with - have
special meanings.

The transmit process interprets the following:

terminate the conversation.

-! escape to an interactive shell on the local system.

-!cmd... run cmd on the local system (via sh -c).

-Scmd. . . run cmd locally and send its output to the remote sys-
tem.

-%take from [to] copy file from (on the remote system) to file to on
the local system. If to is omitted, the from argument
is used in both places.

-%put from [to] copy file from (on local system) to file to on remote
system. If to is omitted, the from argument is used
in both places.

send the line -... to the remote system.

-Dostop turn off the DC3/DCl input control protocol for the
remainder of the session. This is useful in case the
remote system is one which does not respond pro­
perly to the DC3 and DCI characters,

The receive process normally copies data from the remote system to its
standard output. A line from the remote that begins with -> initiates an
output diversion to a file. The complete sequence is:

- 1 -

CU(1C) CU(IC)

FILES

-> [>] : file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if » is used) to file.
The trailing -> terminates the divenion.

The use of -",ut requires sny(l) and cat(l) on the remote side. It also
requires that the current erase and kill characten on the remote system be
identical to the current ones on the local system. Backslashes are inserted
at appropriate places.

The use of -"take requires the existence of echo(l) ar.-i cat(l) on the
remote system. Also, stty tabs mode should be set on the remote system
if tabs are to be copied without expansion.

/usr/lib/uucp/L-devices
/usr/spooljuucp/LCK .. (tty-device)
/dev/null

SEE ALSO
cat(l), ccho(l), stty(l), uucp(lC), dh(4), dn(4), tty(4).

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, non-zero (various values) otherwise.

There is an artificial slowing of transmission by cu during the -"pat opera­
tion so that loss of data is unlikely.

- 2-

I

CUT(1) CUT(1)

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -elist [filel file2 ...]
cut -flist [-dchar] [-s] [filel file2 ... J

DESCRIPTION

HINTS

Use cut to cut out columns from a table or fields from each line of a file; in
data base parlance, it implements the projection of a relation. The fields as
specified by list can be fixed length, i.e., character positions as on a pun­
ched card (-e option), or the length can vary from line to line and be
marked with a field delimiter character like tab (-f option). CUI can be
used as a filter; if no files are given, the standard input is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing
order), with optional - to indicate ranges as in the -0 option of
nroffltroff for page ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for
1-5,10); or 3- (short for third through last field).

-dist The list following -e (no space) specifies character positions
(e.g., -c:l-71 would pass the first 72 characters of each line).

-f/ist The list following -f is a list of fields assumed to be separated in
the file by a delimiter character (see -d); e.g. , -fl,7 copies the
first and seventh field only. Lines with no field delimiters will be
passed through intact (useful for table subheadings), unless -5 is
specified.

-dchar The character following -d is the field delimiter (-f option
only). Default is tab. Space or other characters with special
meaning to the shell must be quoted.

-5 Suppresses lines with no delimiter characters in case of -f
option. Unless specified, lines with no delimiters will be passed
through untouched.

Either the -e or -f option must be specified.

Use grep(l) to make horizontal "cuts" (by context) through a file, or
paste(l) to put files together column-wise (i.e., horizontally). To reorder
columns in a table, use cut and paste.

EXAMPLES
cut -d: -n,s letc/passwd mapping of user IDs to names

name=' who am i I cut - n -do 0" to set Dame to current login name.

DIAGNOSTICS
line too long A line can have no more than 511 characters or

fields.

bad list for elf option Missing -e or -f option or incorrectly specified list.

no fields

SEE ALSO
grep(l), paste(l).

No error occurs if a line has fewer fields than the list
calls for.

The list is empty.

- 1 -

CWO) CWO)

NAME
cw, checkcw - prepare constant-width text for troff

SYNOPSIS
cw [-lxx] [-rxx] [, -fn] [-t] [+t] [-d] [files]

checkcw [-lxx] [-rxx] files

DESCRIPTION
Cw is a preprocessor for tToffO) input files that contain text to be typeset in
the constant-width (CW) font.
Text typeset with the CW font resembles the output of terminals and of line
printers. This font is used to typeset examples of programs al.ci of compu­
ter output in user manuals, programming texts, etc, (An earlier version of
this font was used in typesetting The C Programming Language by B. W.
Kernighan and D. M. Ritchie). It has been designed to be quite distinctive
(but not overly obtrusive) when used together with the Times Roman font.
Because the CW font contains a "non-standard" set of characters and
because text typeset with it requires different character and inter-word spa­
cing than is used for "standard" fonts, documents that use the CW font
must be preprocessed by cwo

The CW font contains the 94 printing ASCII characters:
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!$%&()' '++IiI. ,f: ;=?[] 1-_ A_,,<>{}#\

plus eight non-ASCII characters represented by four-character trQU(I)
names (in some cases attaching these names to "non-standard" graphics),
as follows:

Character Symbol Trqlf Name
"Cents" sign ¢ \ (ct

EBCDIC "not" sign \ (no
Left arrow .. \ «-

Right arrow .. \ (->
Down arrow ~ \ (da

Vertical single quote \ (fm
Control-shift indicator \ (dg
Visible space indicator n \ (sq

Hyphen \(hy

The hyphen is a synonym for the unadorned minus sign (-). Certain ver­
sions of cw recognize two additional names: \ (ua for an up arrow and
\ (lh for a diagonal left-up (home) arrow.

Cw recognizes five request lines, as well as user-defined delimiters. The
request lines Jook like tTo.oO) macro requests, and are copied in their
entirety by cw onto its output; thus, they can be defined by the user as
tTo.tJ(I) macros; in fact, the. CW and. CN macros should be so defined (see
HINTS below).

The five requests are:
. cw Start of text to be set in the CW font; • CW causes a break; it can

take precisely the same options, in precisely the same format, as are
available on the cw command line .

• CN End of text to be set in the CW font; • CN causes a break; it can
take the same options as are available on the cw command line.

- 1 -

CWO) CWO)

• CD Change delimiters and/or settings of other options; takes the same
options as are available on the cw command line.

• CP arg1 arg2 arg3 • • • argn
All the arguments (which are delimited like traff(l) macro
arguments) are concatenated, with the odd-numbered arguments
set in the ew font and the even-numbered ones in the prevailing
font.

• PC arg1 arg2 arg3 • •• argn
Same as . CP, except that the even-numbered (rather than odd­
numbered) arguments are set in the ew font.

The . CW and . CN request<; are meant to bracket text (e.g., a program frag­
ment> that is to be typeset in the ew font "as is." Normally, cwoperates
in the transparent mode. In that mode, except for the • CD request and the
nine special four-character names listed in the table above, every character
between . CW and . eN request lines stands for itself. In particular, cw
arranges for periods (.) and apostrophes (,) at the beginning of lines, and
backslashes (\) and ligatures (fi, ff, etc.) everywhere to be "hidden"
from traff(O. The transparent mode can be turned off (see beloW), in
which case normal traff(I) rules apply. In any case, cw hides from the user
the effect of the font changes generated by the . CW and . CN requests.
The only purpose of the . CD request is to allow the changing of various
options other than just at the beginning of a document.

The user can also define delimiters. The left and right delimiters perform
the same function as the • CW I . CN requests; they are meant, however, to
enclose ew "words" or "phrases" in running text (see the example under
BUGS below). Cw treats text enclosed by delimiters in precisely the same
manner as text bracketed by . CW I . CN pairs, except that, for aesthetic
reasons, spaces in text bracketed by . cw I . CN pairs have the same width
as any other ew character, while spaces between delimiters are half as
wide, so that they have the same width as spaces in the prevailing text (but
are not adjustable).
Delimiters have no special meaning inside • CW I . CN pairs.
The options are:
-lxx The one- or two-character string xx becomes the left delimiter; if

xx is omitted, the left delimiter becomes undefined, which it is ini­
tially.

-rxx Same for the right delimiter. The left and right delimiters may (but
need not> be different.

- f n The ew font is mounted in font position n; acceptable values for n
are 1, 2, and 3 (default is 3, replacing the bold font>. This option
is only useful at the beginning of a document.

-t Tum transparent mode off.

+t Tum transparent mode on {this is the initial default}.
-d Print current option settings on file descriptor 2 in the form of

tl'aff(O comment lines. This option is meant for debugging.
Cw reads the standard input when no files are specified, so it can be used
as a filter. Typical usage is:

cw Jiles : troff ••.

Checkcw checks that left and right delimiters, as well as the . CW I • CN
pairs, are properly balanced. It prints out all offending lines.

- 2 -

CWO)

HINTS

FILES

CW(1)

Typical definitions of the • CW and • CN macros meant to be used with the
mm(7) macro package:

.de cw

.DS I

.ps 9

.vs 10.Sp

.ta 16m/3u 32m/3u 4Bm/3u 64m/3u BOm/3u 96m/3u .••

.de CN

.ta O.Si 1i 1.Si 2i 2.Si 3i 3.Si 4i 4.Si Si S.5i 6i

.vs

.ps

.DE

At the very least, the • CW macro should invoke the ".q6{l) no-fill (. nf)
mode.

When set in running text, the CW font is meant to be set in the same point
size as the rest of the text. In displayed matter, on the other hand, it can
often be profitably set one point smtliler than the prevailing point size (the
displayed definitions of • CW and • CN above are one point smaller than the
running text on this page). The CW font is sized so that, when it is set in
9-point, there are 12 characters per inch.

Documents that contain CW text may also contain tables and/or equations.
If this is the case, the order of preprocessing should be: cw, tbl, and eqn.
Usually, the tables contained in such documents will not contain any CW
text, although it is entirely possible to have elements of the table set in the
CW font; of course, care must be taken that tbl(1) format information not
be modified by cwo Attempts to set equations in the CW font are not likely
to be either pleasing or successful.

In the CW font, overstriking is most easily accom'plished with backspaces:
letting ~ represent a backspace, d~~ \ (dq yields o. Because spaces (and,
therefore backspaces) are half as wide between delimiters as inside
.CW/.CN pairs (see above), two backspaces are required for each over­
strike between delimiters.

/usr/lib/fontlftCW CW font-width table
SEE ALSO

eqn(1), mmt(1), tbl(1), troff(1), mm(7), mv(7).

WARNINGS

BUGS

If text preprocessed by cw is to make any sense, it must be set on a
typesetter equipped with the CW font or on the MHCC STARE facility; on
the latter, the CW font appears as bold, but with the proper CW spacing.

Only a masochist would use periods (.) or backslashes (\) as delimiters.
Certain CW characters don't concatenate gracefully with certain Times
Roman characters, e.g., a CW ampersand (&) followed by a Times Roman
comma(,); in such cases, judicious use of 1TQ8(l) half- and quarter-spaces
(\ Land \ A) is most salutary, e.g., one should use _&._ \A, (rather than
just plain _&._,) to obtain &., (assuming that _ is used for both delimiters).
Using cw with nrQ/fis silly.
The output of cw is bard to read.
See also BUGS under ".q6{l).

- 3 -

I

DATE (1) DATE (I)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]] [+format 1

DESCRIPTION
If no argument is given, or if the argument begins with +, the current date
and time are printed. Otherwise, the current date is set. The first mm is
the month number; tid is the day number in the month; hh is the hour
number (24 hour system); the second mm is the minute number; y.y is the
last 2 digits of the year number and is optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year
is mentioned. The system operates in GMT. Date takes care of the conver­
sion to and from local standard and daylight time.

If the argument begins with +. the output of date is under the control of
the user. The format for the output is similar to that of the first argument
to print/(3S). All output fields are of fixed size (zero padded if necessary).
Each field descriptor is preceded by % and will be replaced in the output by
its corresponding value. A single % is encoded by %%. All other characters
are copied to the output without change. The string is always terminated
with a new-line character.

Field Descriptors:
a insert a new-line character
t insert a tab character
.. month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS

Julian date - 001 to 366
" day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
II abbreviated month - Jan to Dec
r time in AM/PM notation

EXAMPLE
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would generate as output:
DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS
No permission

bad conversion
bad format character

FILES
/dev/kmem

if you aren't the super-user and you try to change the
date;
if the date set is syntactically incorrect;
if the field descriptor is not recognizable.

- 1 -

DC(1) DC(1)

NAME
dc - desk calculator

SYNOPSIS
de [file 1

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on
decimal integers, but one may specify an input base, output base, and a
number of fractional digits to be maintained. The overall structure of de is
a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The fol­
lowing constructions are recognized:

number
The value of the number is pushed on the stack. A number is an
unbroken string of the digits 0-9. It may be preceded by an under­
score L) to input a negative number. Numbers may contain decimal
points.

+-j*%-
The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (f), remaindered (%), or exponentiated C).
The two entries are popped off the stack; the result is pushed on the
stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x,
where x may be any character. If the s is capitalized, x is treated as
a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ASCII string,
removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is pop­
ped by two. If q is capitalized, the top value on the stack is popped
and the string execution level is popped by that value.

x treats the top element of the stack as a character string and executes
it as a string of de commands.

X replaces the number on the top of the stack with its scale factor.

[••.) puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

,. replaces the top element on the stack by its square root. Any exis­
ting fractional part of the argument is taken into account, but oth­
erwise the scale factor is ignored.

interprets the rest of the line as a UNIX command.

c All values on the stack are popped.

- 1 -

DC(1)

o

o
k

z

z
?

. .

DC(I)

The top value on the stack is popped and used as the number radix
for further input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix
for further output.

pushes the output base on the top of the stack.

the top of the stack is popped. and that value is used as a non­
negative scale factor: the appropriate number of places are printed on
output. and maintained during multiplication. division. and exponen­
tiation. The interaction of scale factor. input base. and output base
will be reasonable if all are changed together.

The stack level is pushed onto the stack.

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal)
and executed.

are used by be for array operations .

EXAMPLE
This example prints the first ten values of n!:

[lal +dsa*plalO>y]sy
Osal
Iyx·

SEE ALSO
bc(I). which is a preprocessor for de providing infix notation and a C-Iike
syntax which implements functions and reasonable control structures for
programs.

DIAGNOSTICS
x is unimplemented

where x is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

Out of space
when the free list is exhausted (too many digits).

Out of headers
for too many numbers being kept around.

Out of pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

- 2 -

DD(I) DD(I)

NAME
dd - convert and copy a file

SYNOPSIS
del [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible con­
versions. The standard input and output are used by default. The input
and output block size may be specified to take advantage of raw physical
I/O.

option
if=jile
of=jile
ibs=n
obs=n
bs=n

values
input file name; standard input is default
output file name; standard output is default
input block size n bytes (default 512)
output block size (default 512)
set both input and output block size, superseding ibs and
obs; also, if no conversion is specified, it is particularly
efficient since no in-core copy need be done

cbs=n. conversion buffer size
skip=n skip n input records before starting copy
seek=n seek n records from beginning of output file before copying
couDt=n copy only n input records
CODY = ascii convert EBCDIC to AScn

ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alpbabetics to lower case
uease map alphabetics to upper case
swab swap every pair of bytes
Doerror do not stop processing on an error
sync pad every input record to ibs
••• , .•• several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may
end with k, b, or w to specify multiplication by 1024, 512, or 2 respec­
tively; a pair of numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former
case cbs characters are placed into the cQnversion buffer, converted to
ASCII, and trailing blanks trimmed and new-line added before sending the
line to the output. In the latter case ASCII characters are read into the con­
version buffer, converted to EBCDIC, and blanks added to make up an out­
put record of size cbs.

After completion, tid reports the number of whole and partial input and
output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten SO-byte EBCDIC card
images per record into the ASCII file x:

dd if=/dev/rmtO of-x ibs SOO cbs-SO conv-ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw
physical devices because it allows reading and writing in arbitrary record
sizes.

SEE ALSO
cp(I).

- 1 -

DD(1) DD(l)

DIAGNOSTICS

BUGS

f+p records in(out) numbers of full and partial records read(written)

The ASCII/EBCDIC conversion tables are taken from the 256 character stan­
dard in the CACM Nov, 1968. The ibm conversion, while less blessed as a
standard, corresponds better to certain IBM print train conventions. There
is no universal solution.

New-lines are inserted only on conversion to ASCII; padding is done only
on conversion to EBCDIC. These should. be separate options.

- 2 -

DELTA(l) DELTA(I)

NAME
delta - make a delta (change) to an sees file

SYNOPSIS
delta [-rSID] [-5] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p]
files

DESCRIPTION
Delta is used to permanently introduce into the named sees file changes
that were made to the file retrieved by get(l) (called the g-file. or generated
file).

Delta makes a delta to each named sees file. If a directory is n~med. delta
behaves as though each file in the directory were specified as a named file.
except that non-sees files (last component of the path name does not
begin with 5.) and unreadable files are silently ignored. If a name of - is
given. the standard input is read (see WARNINGS); each line of the stan­
dard input is taken to be the name of an sees file to be processed.

Delta may issue prompts on the standard output depending upon certain
keyletters specified and flags (see admin (1» that may be present in the
sees file (see -m and -y keyletters below).

Keyletter arguments apply independently to each named file.

-rSID Uniquely identifies which delta is to be made to the
sees file. The use of this keyletter is necessary only
if two or more outstanding gets for editing (get -e)
on the same sees file were done by the same person
(login name). The SID value specified with the -r
keyletter can be either the SID specified on the get
command line or the SID to be made as reported by
the get command (see get(l». A diagnostic results if
the specified SID is ambiguous. or. if necessary and
omitted on the command line.

- 5 Suppresses the issue. on the standard output. of the
created delta's SID. as well as the number of lines
inserted. deleted and unchanged in the sees file.

-n

-glist

-m[mrlist]

Specifies retention of the edited g-fiJe (normally
removed at completion of delta processing).

Specifics a list (see get(l) for the definition of list) of
deltas which are to be ignored when the file is
accessed at the change level (SID) created by this
delta.

If the sees file has the, flag set (see admin(l» then
a Modification Request (MR) number must be sup­
plied as the reason for creating the new delta.

If - m is not used and the standard input is a ter­
minal. the prompt MRs? is issued on the standard
output before the standard input is read; if the stan­
dard input is not a terminal. no prompt is issued.
The MRs? prompt always precedes the eomme.ts?
prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab
characters. An unescaped new-line character ter­
minates the MR list.

- 1 -

DELTA (1) DELTA (1)

FILES

Note that if the, ftag has a value (sec admill(1 n, it
is taken to be the name of a program (or shell pro­
cedure) which will validate the correctncss of the MR
numbers. If a non-zero exit status is returned from
MR number validation program, delta terminates (it
is assumed that the MR numbers were not all valid).

-y[c~nt] Arbitrary text used to describe the reason for making
the delta. A nuD string is considered a valid comment.

If -y is not specified and the standard input is a ter­
minal, the prompt co •• eats? is issued on the stan­
dard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued.
An un escaped new-line character terminates the com­
ment texL

-p Causes delta to print (on the standard output) the
sees file differences before and after the delta is
applied in a diJf(I) format.

All files of the form ?-file arc explained in the Source Code Control System
Use,'s Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after com-
pletion of delta.

p-file Existed before the execution of delltl; may exist after com­
pletion of delta.

q-file Created during the execution of delta; removed after com­
pletion of delta.

x-file Created during the execution of delta; renamed to sees file
after completion of delta.

z-file Created during the execution of delta; removed during the
execution of delta.

d-file Created during the execution of delta; removed after com­
pletion of delta.

/usr/bin/bdiff Program to compute differences between the "gotten" file
and the r-jile.

WARNINGS
Lines beginning with an SOH ASCn character (binary 001) cannot be placed
in the sees file unless the SOH is escaped. This character has special
meaning to sees (sec sccsjile(Sn and will cause an error.

A get of many sees files, foDowed by a delta of those files, should be
avoided when the get generates a large amount of data. Instead, multiple
pt/delta sequences should be used.

If the standard input (-) is specified on the delltl command line. the - ..
(if nccessary) and -y keyletters must also be present. Omission of these
keyletters causes an error to occur.

SEE ALSO
admin(l), bdiff(l), get(l), help(l), prs(I), sccsfile(S).
Source Code ConIroI System User's GuUle by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Usc Mq,(l) for explanations.

- 2 -

DEROFF(l) DSROFF(l)

NAME
deroff - remove nroffJtroff, tbl, and eqn constructs

SYNOPSIS
deroff [-w] [- mx] [files]

DESCRIPTION
Deroff reads each of the Jiles in sequence and removes all troff(l) requests,
macro calls, baclcslash constructs, eqn(l) constructs (between .EQ and .EN
lines, and between delimiters), and tbl(l) descriptions, and writes the
remainder of the file on the standard output. Deroff follows chains of
included files (.50 and .DX troff commands); if a file has already been inclu­
ded, a .50 naming that file is ignored and a .ax naming that file terminates
execution. If no input file is given, tkroff reads the standard input:

The - m option may be followed by an m, 5, or l. The resulting - mm or
-ms option causes the mm or ms macros to be interpreted so that only
running text is output (i.e., no text from macro lines.) The -.1 option
forces the - mm option and also causes deletion of lists associated with the
mm macros.

If the -w option is given, the output is a word list, one "word" per line,
with all other characters deleted. Otherwise, the output follows the ori­
ginal, with the deletions mentioned above. In text, a "word" is any string
that contains at least two letters and is comp<1Sed of letters, digits, amper­
sands (11:), and apostrophes ('); in a macro call, however, a "word" is a
string that hegins with at least two letters and contains a total of at least
three letters. Delimiters are any characters other than letters, digits, apos­
trophes, and ampersands. Trailing apostrophes and ampersands are remo­
ved from "words."

SEE ALSO

BUGS

eqn(l), tbl(l), troff(l).

Deroff is not a complete troff interpreter, so it can be confused by subtle
constructs. Most such errors result in too much rather than too little out­
put.
The -ml option does not handle nested lists correctly.

- 1 -

DEVNM(lM) DEVNM(lM)

NAME
devnm - device name

SYNOPSIS
/etc/denm [names]

DESCIUPTlON
Devnm identifies the special file associated with the mounted file system
where the argument name resides.

This command is most commonly used by /etc/rc (see rc(8» to construct a
mount table entry for the root device.

EXAMPLE

FILES

The command:
/etc/devnm /usr

produces
rpl /usr

if /usr is mounted on Ide, /rpl.

/dev/~
/etc/mnttab

SEE ALSO
setmnt(lM).

- 1 -

DF(I) DF(I)

NAME
df - report number of free disk blocks

SYNOPSIS
df [-t J [-f J [file-systems J

DESCRIPTION

FILES

Df prints out the number of free blocks and free i-nodes available for on­
line file systems by examining the counts kept in the super-blocks; file­
systems may be specified either by device name (e.g .• jde'jrpl) or by
mounted directory name (e.g., jusr). If the file-systems argument is
unspecified, the free space on all of the mounted file sistems is printed.

The -t flag causes the total allocated block figures to be reported as well.

If the -f flag is given. only an actual count of the blocks in the free list is
made (free i-nodes are not reported). With this option. df will report on
raw devices.

jdev jrf­
jdevjrh
jdevjrp*
jetcjmnttab

SEE ALSO
fsck(lM). fs(5). mnttab(5).

- 1 -

I

DIFF(I) DIFF(l)

NAME
diff - differential file comparator

SYNOPSIS
dift' [- efb b] file 1 file2

DESCRIPTION

FILES

Diff tells. what lines must be changed in two files to bring them into
agreement. If filel (fileZ) is -, the standard input is used. If filel (filel)
is a directory, then a file in that directory with the name filel (filel) is
used. The normal output contains lines of these forms:

nl a nJ.n4
nl.nl d nJ
nl.nl cnJ.n4

These lines resemble ed commands to convert filel into fileZ. The num­
bers after the letters pertain to filel. In fact, 'by exchanging a for d and
reading backward one may ascertain equally how to convert file2 into fileJ..
As in ed, identical pairs where nl - nl or nJ ... n4 are abbreviated as a
single number.

Following each of these lines come all the lines that are affected in the first
file ftagged by <, then all the lines that are affected in the second file
flagged by >.
The -b option causes trailing blanks (spaces and tabs) to be ignored and
other strings of blanks to compare equal.

The -e option produces a script of a. c and d commands for the editor ed,
which will recreate filel from filel. The -f option produces a similar
script, not useful with ed, in the opposite order. In connection with -e,
the following shell program may help maintain mUltiple versions of a file.
Only an ancestral file (Sl)and a chain of version-to-version ed scripts
(S2,S3, ...) made by diff need be on hand. A "latest version" appears on
the standard output.

(shift; cat S.; echo 'l,Sp') I ed - SI

Except in rare circumstances, diff finds a smallest sufficient set of file
differences.

Option - II does a fast, half-hearted job. It works only when changed
stretches are short and weD separated, but does work on files of unlimited
length. Options -e and -f are unavailable with - It.

/tmp/d?????
/usr/lib/diffh for - It

SEE ALSO
cmp(l), comm(l), ed(l).

DIAGNosnCS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about
creating lines consisting of a single period (.).

- 1 -

DIFF3(1) DIFF3(1)

NAME
diff3 - 3-way differential file comparison

SYNOPSIS
diD [- exl] file 1 file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

....... = = all three files differ
-===-===1

----2
====3

filel is different

file2 is different

jiJe3 is different

The type of change suffered in converting a given range of a given file to
some other is indicated in one of these ways:

I : nl a Text is to be appended after line number nl in
file I, where I - 1, 2, or 3.

I: nl • n2 c Text is to be changed in the range line nl to line
n2. If nl - n2, the range may be abbreviated to
nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed.

Under the -e option, dijJ3 publishes a script for the editor ed that will
incorporate into filel all changes betweenfile2 and file3, i.e., the changes
that normally would be flagged ---- and ----3. Option -x (-3)
produces a script to incorporate only changes flagged ---- (----3).
The following command will apply the resulting script to filel .

(cat script; echo 'l,Sp') led - filel

/tmp/d3*
/usr/lib/diff3prog

SEE ALSO

BUGS

diff(l).

Text lines that consist of a single. will defeat -e.
Files longer than 64K bytes won't work.

- 1 -

DlFFMK(l) DlFFMK(l)

NAME
diffmk - mark differences between files

SYNOPSIS
dift'mk namel name2 name3

DESCRIPTION
Diffmk compares two versions of a file and creates a third file that includes
"change mark" commands for nroff(l) or troff(l). Name1 and name2 are
the old and new versions of the file. Diffmk generates name3, which con­
tains the lines of name2 plus inserted formatter "change mark" (.me)
requests. When name3 is formatted, changed or inserted text is shown by I
at the right margin of each line. The position of deleted text is shown by a
single -.
If anyone is so inclined, he can use diffmk to produce listings of C (or
other) programs with changes marked. A typical command line for such
use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file maes contains:

.pl 1

.II 77

.nf

.eo

.nc

The .11 request might specify a different line length, depending on the
nature of the program being printed. The.eo and .DC requests are probably
needed only for C programs.

If the characters I and - are inappropriate, a copy of diffmk can be edited to
change them (diffmk is a shell procedure).

SEE ALSO

BUGS

diff(l), nroff(I).

Aesthetic considerations may dictate manual adjustment of some output.
File differences involving only formatting requests may produce undesirable
output, i.e., replacing .sp by .sp 1 will produce a "change mark" on the
preceding or following line of output.

- 1 -

DIRCMP(l)

NAME
dircmp - directory comparison

SYNOPSIS
dircmp dirl dir2

DESCRIPTION

DIRCMP(I)

Dircmp examines dirJ and dir2 and generates various tabulated information
about the contents of the directories. Listings of files that are unique to
each directory are generated in addition to a list that indicates whether the
files common to both directories have the same contents.

SEE ALSO
cmp(l). diff(l).

- 1 -

DPD(IC) DPD(lC)

NAME
dpd, odpd, lpd - HONEYWELL sending daemons, line printer daemon

SYNOPSIS
/usr /lib/dpd
/usr/lib/odpd
/usr /lib/lpd

DESClUPTION
Dpd and odpd are the daemons for the 200-series DATA-PHONE- set and
for the Murray Hill Spider network. They are designed to submit jobs to
the HONEYWELL 6000 computer via the GRTS interface. For systems with
both Spider and DATA-PHONE connections to the MH HONEYWELL 6000
computer, dpd is the Spider daemon, and odpd is the DATA-PHONE set dae­
mon, and is used automatically as a backup when the Spider link is down.
On other systems, there is only one daemon, dpd, which uses the DATA·
PHONE set. Lpd is the daemon for the line printer.

Dpd and odpd use the directory /usr/spool/dpd. Lpd uses the directory
/usr/spool/lpd. The file lock in either directory is used to prevent two
daemons from becoming active. After the program has successfully set the
lock, it forks and the main path exits, thus spawning the daemon. The
directory is scanned for files beginning with "dr'. Each such file is submit­
ted as a job. Each line of a job file must begin with a key character to
specify what to do with the remainder of the line.

S directs dpd to generate a unique slIumb card. The snumb number is
generated from the file snumb in the spooling directory in the case
of the DATA-PHONE set daemon, or it is read from the PDP-8 that
interfaces to GC<E in the case of the Spider daemon. This key
character is not used by lpd.

L specifies that the remainder of the line is to be sent as a literal.
I is the same as L, but signals the $ IOENT card which is to be mailed

back by the mail option.
B specifies that the rest of the line is a file name. That file is to be

sent as binary cards.
F is the same as B except a form-feed is prepended to the file.
U specifies that the rest of the line is a file name. After the job has

been transmitted, the file is unlinked.
M is followed by a user 10; after the job is sent, a message is mailed to

the user via the mQiI (1) command to verify the sending of the job.
N is followed by a user file name, to be sent back under the mail

option. (Not used by Ipd).
Q is followed by a string of characters, which is a message to be sent

back to the user under the mail option. (Not used by Ipd).

Any error encountered will cause the daemon to drop the call, wait up to
20 minutes, (only 10 seconds for lpd), and start over. This means that an
improperly constructed "dr' file may cause the same job to be submitted
every 20 minutes.

Dpd is automatically initiated by all of the GC<E commands, (dpr, geat,
fget, and fsend) and by tete/reo On systems with both dpd daemons, odpd
is automatically initiated by dpd on certain errors from Spider. Lpd is
automatically initiated by the line printer command, /pr.

To restart dpd or /pd (in the case of hardware. or software malfunction), it
is nCC.e.5sary to first kill the old daemon (if it is still alive), and remove the
lock file (if present), before initiating the new daemon. This is done
automatically by /ete/rc when the system is brought up, in case there were

- 1 -

DPD(IC) DPD(lC)

any jobs left in the spooling directory when the system last went down.

FILES
/usr/spool/dpd/*
/usr/spool/lpd/*
/etc/passwd
/dev/du?
/dev/dn?
/dev /Ip

SEE ALSO

spool area for GCOS daemons.
spool area for line printer daemon.
to get the user's name.
DATA·PHONE set.
ACU device for use with the DATA·PHONE set.
line printer device.

dpr(lC). fget(IC), fget.demon(lC), fsend(lC), gcat(lC), Ipr(!).

- 2-

DPR(IC) DPR(IC)

NAME
dpr - off-line print

SYNOPSIS
dpr [- destination] [options] [files]

DESCRIPTION
Dpr causes the named files to be printed off-line at the specified destina­
tion, by GCOS at the Murray Hill Computation Center. GCOS identification
must appear in the UNIX password file (see passwd(5)), or be supplied by
the -i option. If no files are listed the standard input is assumed; thus dpr
may be used as a filter.

The destination is a two-character code which is taken to be a Murray Hill
GCOS "station id." Useful codes are rl for quality print, and ql for quality
print with special ribbon, both on regular wide paper. The codes r2 and q2
give the same print on narrow paper. The default destination is on-line at
the Murray Hill Computation Center.

The following options, each as a separate argument, and in any combina­
tion (multiple outputs are permitted), may be given before or after the des­
tination:

-c Makes a copy of the file to be sent before returning to the user.
- r Removes the file after sending it.
-f Uses the next argument as a dummy file name to report back in the

mail. (This is useful for distinguishing multiple runs, especially
when dpr is being used as a filter).

-i Supplies the GCOS "ident card" image as the parameter
- iMxxxx ,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

-ID When transmission is complete, reports by mail(l) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option.

- D Does not report the completion of transmission by mail (1).
-5n Submits job to GCOS with service grade n (n=l, 2, 3). Default is

-51.

EXAMPLES

FILES

The command:

dpr -r -n errorl error2

will send the files error 1 and error1 to GCOS for printing, removing the
files after they have been sent, but not sending mail. The line:

pr filel I dpr -sl -f jobl -ri

will send the output of pr to GCOS for printing on the quality printer with
service grade I, and will send mail that job] has been sent.

/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

user's identification and GCOS ident card.
sending daemon.
spool area.

SEE ALSO
dpd(lC), fget(1C), fsend(lC), gcat(1C).

- 1 -

DU(I) DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du [-ars] [names]

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) direc­
tories within each directory and file specified by the names argument. The
block count includes the indirect blocks of the file. If names is missing, • is
used.

The optional argument -8 causes only the grand total (for each of the
specified names) to be given. The optional argument -a causes an entry to
be generated for each file. Absence of either causes an entry to be genera­
tad for each directory only.

Du is normally silent about directories that cannot be read, files that cannot
be opened, etc. The -r option will cause du to generate messages in such
instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not
listed.
If there are too many distinct linked files, du will count the excess files
more than once.
Files with holes in them will get an incorrect block count.

- 1 -

DUMP(IM) (OblolesceDt) DUMP(IM)

NAME
dump - incremental file system dump

SYNOPSIS
dump [key [arguments] file-system]

DESCIUPTlON

FILES

Dump copies to magnetic tape all files changed after a certain date in the
file-system. The key specifies the date and other options about the dump.
Key consists of characten from the set 01134S6789fusd.

f Place the dump on the next argument file instead of the tape.
u If the dump completes successfully, write the date of the beginning of

the dump on file /ete/ddate. This file records a separate date for each
file system and each dump level.

0-9 This number is the "dump level". All files modified since the last
date stored in the file /ete/ddate for the same file system at lesser
levels wiD be dumped. If no date is determined by the level, the
beginning of time is assumed; thus the option 0 causes the entire file
system to be dumped.

s The size of the dump tape is specified in feet. The number of feet is
taken from the next argument. When the specified size is reached,
the dump will wait for reels to be changed. The default size is 2,300
feet.

d The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used per
write. The default is 1600.

If no arguments are given. the key is assumed to be 9u and a default file
system is dumped to the default tape.

Now a short suggestion on how to perform dumps. Start with a full level-O
dump: dump Ou. Next, periodic level-9 dumps should be made on an
exponential progression of tapes. (Sometimes called Tower of Hanoi: 1, 2,
l, 3, l, 2, 1, 4, ... ; tape 1 used every other time, tape 2 is used every
fourth, tape 3 is used every eighth, etc.): dump 9.. When the level-9
incre!pental approaches a full tape (about 78,000 blocks at l600 BPI blocked
20 blocks per record), a level-l dump should be made: dump lu. After
this, the exponential series should progress as if uninterrupted. These
level-9 dumps are based on the level-l dump, which is based on the level-O
full dump. This progression of levels of dumps can be carried as far as
desired.

default file system and tape vary with installation.
/etc/ddate: record dump dates of file system/level.

SEE ALSO
cpio(l), restor(lM), volcopy(lM), dump(S).

DIAGNOSTICS

BUGS

If the dump requires more than one tape, it wiD ask you to change tapes.
Reply with a new-line after this has been done.

Sizes arc based on l600 BPI blocked tape. The raw magnetic tape device
has to be used to approach these densities. Read erron on the file system
are ignored. Write erron on the magnetic tape are usually fatal.

- 1 -

ECHO(1) ECHO(1)

NAME
echo - echo arguments

SYNOPSIS
echo [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a new-line
on the standard output. It also understands C-like escape conventions;
beware of conflicts with the shell's use of \:

\b backspace
\c print line without new-line
\f form-feed
\8 new-line
\r carriage return
\t tab
\\ backslash
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit

octal number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending
known data into a pipe.

SEE ALSO
sh(1).

- 1 -

I

ED(I) ED(I)

NAME
ed - text editor

SYNOPSIS
ed [-] [- x] [file]

DESCRIPTION
Ed is the standard text editor. If the file argument is given, ed simulates an
e command (see below) on the named file; that is to say, the file is read
into ed's buffer so that it can be edited. The optional - suppresses the
printing of character counts bye, r, and w commands, of diagnostics from
e and q commands, and of the! prompt after a !sheD command. If -x is
present, an x command is simulated first to handle an encrypted file. Ed
operates on a copy of the file it is editing; changes made to the copy have
no effect on the file until a w (write) command is given. The copy of the
text being edited resides in a temporary file called the buffer. There is only
one buffer.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed by
parameters to that command. These addresses specify one or more lines in
the buffer. Every command that requires addresses has default addresses,
so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain commands
allow the input of text. This text is placed in the appropriate place in the
buffer. While ed is accepting text, it is said to be in input mode. In this
mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period (0) alone at the beginning of a line.

Ed supports a limited form of reguJlU' expression notation; regular expres­
sions are used in addresses to specify lines and in some commands (e.g., s)
to specify portions of a line that are to be substituted. A regular expression
(RE) specifies a set of character strings. A member of this set of strings is
said to be mJltched by the RE. The REs allowed by ed are constructed as
follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a
one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character
RE that matches the special character itself. The special characters
are:

a. 0, *, [, and \ (period, asterisk, left square bracket, and backslash,
respectively), which are always special, except when they appear
within square brackets «); see 1.4 below).

b. A (caret or circumflex), which is special at the beginning of an
entire RE (see 3.1 and 3.2 below), or when it immediately follows
the left of a pair of square brackets «(» (see 1.4 below).

c. S (currency symbol), which is special at the end of an entire RE
(see 3.2 below).

d. The character used to bound (i.e., delimit) an entire RE, which is
special for that RE (for example, see how slash (f) is used in
the g command, below.)

1.3 A period (0) is a one-character RE that matches any character
except new-line.

- 1 -

ED(1) ED(I)

1.4 A non-empty string of characters enclosed in square brackets
«(J) is a one-character RE that matches anyone character in
that string. If, however, the first character of the string is a
circumflex (ft), the one-character RE matches any character
except new-line and the remaining characters in the string. The
ft has this special meaning only if it occurs first in the string.
The minus (-) may be used to indicate a range of consecutive
ASCII characters; for example, (0-9J is equivalent to
(0123456789J. The - loses this special meaning if it occurs
first (after an initial ft, if any) or last in the string. The right
square bracket (J) does not terminate such a string when i~ is
the first character within it (after an initial ft, if any); e.g.,
(Ja -f] matches either a right square bracket (]) or one of the
letters a through r inclusive. The four characters listed in 1.2.a
above stand for themselves within such a string of characters.

The following rules may be used to construct RE·s from one-character
REs:

2.1

2.2

A one-character RE is a RE that matches whatever the one­
character RE matches.

A. one-character RE followed by an asterisk (.) is a RE that
matches zero or more occurrences of the one-character RE. If
there is any choice, the longest leftmost string that permits a
match is chosen.

2.3 A one-character RE followed by \Im\}, \Im.\}, or \{m.n\} is a
RE that matches a range of occurrences of the one-character
RE. The values of m and n must be non-negative integers less
than 256; \{m\} matches eJCIlctly m occurrences; \{m. \}
matches at least m occurrences; \{m.n\} matches any number of
occurrences between m and n inclusive. Whenever a choice
exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatena­
·tion of the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a
RE that matches whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in
the same RE. Here n is a digit; the s-ub-expression specified is
that beginning with the n-th occurrence of \(counting from the
left. For example, the expression ft \(.*\)\15 matches a line
consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial seg­
ment or final segment of a line (or both):

3.1 A circumflex (ft) at the beginning of an entire RE constrains
that RE to match an initial segment of a line.

3.2 A currency symbol (5) at the end of an entire RE constrains
that RE to match a final segment of a line. The construction
ft entire RE5 constrains the entire RE to match the entire line.

The null RE (e.g., / f) is equivalent to the last RE encountered. See
also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any
time there is a current line. Generally speaking, the current line is the

- 2 -

ED(l) ED(I)

last line affected by a command; the exact effect on the current line is
discussed under the description of each command. Addresses are con­
structed as follows:

1. The character. addresses the current line.

2. The character S addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. IX addresses the line marked with the mark name character x,
which must be a lower-case letter. Lines are marked with the k
command described below.

5. A RE enclosed by slashes (f) addresses the first line found by
searChing forward from the line following the current line
toward the end of the buffer and stopping at the first line con­
taining a string matching the RE. If necessary, the search wraps
around to the beginning of the buffer and continues up to and
including the current line, so that the entire buffer is searched.
See also the last paragraph before FILES below.

6. A RE enclosed in question marks (?) addresses the first line
found by searching backward from the line preceding the
current line toward the beginning of the buffer and stopping at
the first line containing a string matching the RE. If necessary,
the search wraps around to the end of the buffer and continues
up to and including the current line. See also the last paragraph
before FILES below.

7. An address followed by a plus sign (+) or a minus sign (-)
followed by a decimal number specifies that address plus
(respectively minus) the indicated number of lines. The plus
sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, -5 is understood to
mean .-5.

9. If an address ends with + or -, then 1 is added to or subtrac­
ted from the address. respectively. As a consequence of this
rule and of rule 8 immediately above, the address - refers to
the line preceding the current line. (To maintain compatibility
with earlier versions of the editor, the character A in addresses
is entirely equivalent to -.) Moreover, trailing + and -
characters have a cumulative effect, so - - refers to the
current line less 2.

10. For convenience. a comma (,) stands for the address pair I,S,
while a semicolon (;) stands for the pair .,S.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default
addresses when an insufficient number of addresses is given; if more
addresses are given than such. a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case,
the current line (.) is set to the first address, and only then is the
second address calculated. This feature can be used to determine the
starting iine for forward and backward searches (see rules 5. and 6.

- 3 -

ED(l) ED(l)

above). The second address of any two-address sequence must
correspond to a line that follows, in the buffer, the line corresponding
to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address; they
show that the given addresses are the default.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, I, r, or w) may be suffixed by p
or by I, in which case the current line is either printed or listed,
respectively, as discussed below under the p and I commands.

(•)a
<text>

The append command reads the given text and appends it
after the addressed line; . is left at the last inserted line, or, if
there were none, at the addressed line. Address 0 is legal for
this command: it causes the "appended" text to be placed at
the beginning of the buffer.

(•)c
<text>

(• , •)d

efile

Efile

f file

The change command deletes the addressed lines, then
accepts input text that replaces these lines; • is left at the last
line input, or, if there were none, at the first line that was not
deleted.

The delete command deletes the addressed lines from the
buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end of
the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer to
be deleted, and then the named file to be read in; • is set to
the last line of the buffer. If no file name is given, the
currently-remembered file name, if any, is used (see the I
command). The number of characters read is typed; file is
remembered for possible use as a default file name in subse­
quent e, r, and w commands. If file begins with !, the rest of
the line is taken to be a shell (sh (1» command whose output
is to be read. Such a shell command is not remembered as
the current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not
check to see if any changes have been made to the buffer
since the last w command.

If file is given, the lile-name command changes the
currently-remembered file name to file; otherwise, it prints
the currently-remembered file name.

(1 , $)g/ RE / command list
In the global command, the first step is to mark every line
that matches the given RE. Then, for every such line, the
given command list is executed with. initially set to that line.
A single command or the first of a list of commands appears

- 4 -

ED(I) ED(l)

on the same line as the global command. All lines of a
multi-line list except the last line must be ended with a \; a,
i, and c commands and associated input are permitted; the.
terminating input mode may be omitted if it would be the last
line of the command list. An empty command list is equivalent
to the p command. The g, G, v, and V commands are not
permitted in the command list. See also BUGS and the last
paragraph before FILES below.

(l,S)G/RE/

h

H

In the interactive Global command, the first step is to mark
every line that matches the given RE. Then, for every such
line, that line is printed, • is changed to that line, and anyone
command (other than one of the a, c, i, g, G, v, and V com­
mands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on; a
new-line acts as a null command; an .t causes the re­
execution of the most recent command executed within the
current invocation of G. Note that the commands input as
part of the execution of the G command may address and
affect any lines in the buffer. The G command can be ter­
minated by an interrupt signal (ASCU DEL or BREAK).

The help command gives a short error message that explains
the reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error
messages are printed for all subsequent ? diagnostics. It will
also explain the previous ? if there was one. The H com­
mand alternately turns this mode on and off; it is initially off.

(•)1
<text>

The insert command inserts the given text before the
addressed line; • is left at the last inserted line, or, if there
were none, at the addressed line. This command differs from
the a command only in the placement of the input text.
Address 0 is not legal for this command.

(., .+1)j

(.)kx

(.,.)1

The join command joins contiguous lines by removing the
appropriate new-line characters. If only one address is given,
this command does nothing.

The mark command marks the addressed line with name x,
which must be a lower-case letter. The address IX then
addresses this line; • is unchanged.

The list command prints the addressed lines in an unambi­
guous way: a few non-printing characters (e.g., tab. back­
spac~) are represented by (hopefully) mnemonic overstrikes,
all other non-printing characters are printed in octal, and long
lines are folded. An I command may be appended to any
other command other than e,j, T, or w.

(•••)_11
The move command repositions the addressed line(s) after

- 5 -

ED(1)

(•••)n

(•••)p

p

q

Q

ED(l)

the line addressed by a. Address 0 is legal for a and causes
the addressed line(s) to be moved to the beginning of the
file; it is an error if address a falls withia the range of moved
lines; • is left at the last line moved.

The number command prints the addressed lines. preceding
each line by its line number and a tab character; . is left at
the last line printed. The n command may be appended to
any other command other than e. J. r. or w.

The print command prints the addressed lines; • is left at the
last line printed. The p command may be appended to any
other command other than e. J. r. or w; for example. dp
deletes the current line and prints the new current line.

The editor will prompt with a • for all subsequent commands.
The P command alternately turns this mode on and off; it is
initially off.

The quit command causes ed to exit. No automatic write of a
file is done (but see DIAGNOSTICS below).

The editor exits without checking if changes have been made
in the buffer since the last w command.

(S)r file
The read command reads in the given file after the addressed
line. If no file name is given. the currently-remembered file
name. if any. is used (see e and J ~ommands). The
currently-remembered file name is not changed unless file is
the very first file name mentioned since ed was invoked.
Address 0 is legal for rand caases the file to be read at the
beginning of the buffer. If the read is successful. the number
of characters read is typed; • is set to the last line read in. If
file begins with !. the rest of the line is taken to be a shell
(sh (l» command whose output is to be read. Such a shell
command is not remembered as the current file name.

(.,.)s/RE/replacement/ or
(.,.)s/RE/replacement/g

The substitute command searches each addressed line for an
occurrence of the specified RE. In each line in which a match
is found. all (non-overlapped) matched strings are replaced
by the replacement if the global replacement indicator g
appears after the command. If the global indicator does not
appear. only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any character other than space or new-line
may be used instead of / to delimit the RE and the repla­
cement; • is left at the last line on which a substitution
occurred. See also the last paragraph before FILES below.

An ampersand (") appearing in the replacement is replaced
by the string matching the RE on the current line. The
special meaning of " in this context may be suppressed by
preceding it by \. As a more general feature. the characters

- 6 -

ED(1)

(.,. ltD

u

ED(1)

\n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression of the specified RE enclosed
between \(and \). When nested parenthesized subexpres­
sions are present, n is determined by counting occurrences of
\(starting from the left. When the character % is the only
character in the replacement, the replacement used in the most
recent substitute command is used as the replacement in the
current substitute command. The % loses its special meaning
when it is in a replacement string of more than one character
or is preceded by a \.

A line may be split by substituting a new-line character into
it. The new-line in the replacement must be escaped by pre­
ceding it by \. Such substitution cannot be done as part of a
g or v command list.

This command acts just like the m command, except that a
copy of the addressed lines is placed after address a (which
may be 0); • is left at the last line of the copy.

The undo command nullifies the effect of the most recent
command that modified anything in the buffer, namely the
most recent a, c, d, g. i,i, m, r, s, t, v, G, or V command.

(1,$)'jREjcommand list
This command is the same as the global command g except
that the CommJlnd list is executed with • initially set to every
line that does not match the RE.

(1,$)VjREj
This command is the same as the interactive global command
G except that the lines that are marked during the first step
are those that do not match the RE.

(I, $)w file

x

($)=

The write command writes the addressed lines into the
named file. If the file does not exist, it is created with mode
666 (readable and writable by everyone), unless your umask
setting (see sh (1» dictates otherwise. The currently­
remembered file name is not changed unless file is the very
first file name mentioned since ed was invoked. If no file
name is given. the currently-remembered file name, if any, is
used (see e and f commands); • is unchanged. If the com­
mand is successful, the number of characters written is typed.
If file begins with !, the rest of the line is taken to be a shell
(sh(1» command whose output is to be read. Such a shell
command is not remembered as the current file name.

A key string is demanded from the standard input. Subse­
quent e, r, and w commands will encrypt and decrypt the text
with this key by the algorithm of crypt(l). An explicitly
empty key turns off encryption.

The line number of the addressed line is typed; is
unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX shell

- 7 -

ED(I)

FILES

ED(I)

(sh (1 » to be interpreted as a command. Within the text of
that command, the un escaped character % is replaced with the
remembered file name; if a ! appears as the first character of
the shell command, it is replaced with the text of the pre­
vious shell command. Thus, !! will repeat the last shell com­
mand. If any expansion is performed, the expanded line is
echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be
printed. A new-line alone is eqloivalent to • + 1 p; it is useful
for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and
returns to its command level.

Some size limitations: 512 characters per line, 256 characters per glo­
bal command list, 64 characters per file name, and 128K characters in
the buffer. The limit on the number of lines depends on the amount
of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all charac­
ters after the last new-line. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a RE pr of a replacement string (e.g., f)
would be the last character before a new-line, that delimiter may be
omitted, in which case the addressed line is printed. The following
pairs of commands are equivalent:

s/sl/s2 s/sl/s2/p
g/sl g/sl/p
?sl ?sl?

/tmp/eli
ed.hup

DIAGNOSTICS
?

temporary; Ii is the process number.
work is saved here if the terminal is hung up.

for command errors.
for an inaccessible file. ?file
(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to destroy
ed's buffer via the e or q commands: it prints ? and allows one to continue
editing. A second e or q command at this point will take effect. The -
command-line option inhibits this feature.

SEE ALSO
crypt(I), grep(l), sed(I), sh(l).
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan.
Advanced Editing on UNIX by B. W. Kernighan.

CA VEA TS AND BUGS
A! command cannot be subject to a g or a v command.
The! command and the! escape from the e, r, and w commands cannot
be used if the the editor is invoked from a restricted shell (see sh(l).
The sequence \n in a RE does not match any character.
The I command mishandles DEL.
Files encrypted directly with the C1)pt(l) command with the null key cannot
be edited.
Because 0 is an illegal address for the w command, it is not possible to
create an empty file with ed.

- 8 -

EFL(l) EFL(I)

NAME
efl - Extended Fortran Language

SYNOPSIS
efl [options] [files]

DESCRIPTION
Eft compiles a program written in the EFL language into clean Fortran on
the standard output. Eft provides the C-Iike control constructs of ratfor(1):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-Iike data structures, e.g.:

struct
{
integer ftags(3)
character(8) name
long real coords(2)
} table(1 00)

The language offers generic functions, assignment operators (+ =, & =.
etc.), and sequentially evaluated logical operators (&&: and ID. There is a
uniform input/output syntax:

write(6,x.y:f(7,2), do i=l,lO { a(i,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; sta­
tement label names (not just numbers).

comments:
, this is a comment.

translation of relational and logical operators:
>, >=, &:, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
return (expression)

defines:
define name replacement

includes:
include file

Eft understands several option arguments: - w suppresses warning mes­
sages, -, suppresses comments in the generated program, and the default
option -C causes comments to be included in the generated program.

An argument with an embedded = (equal sign) sets an EFL option as if it
had appeared in an option statement at the start of the program. Many
options are described in the reference manual. A set of defaults for a parti­
cular target machine may be selected by one of the choices: system-unix,
system=gcos, or system==cray. The default setting of the system option
is the same as the machine the compiler is running on. Other specific
options determine the style of input/output, error handling, continuation
conventions, the number of characters packed per word, and default for­
mats.

- 1 -

EFL(1) EFL(I)

Eft is best used with .177 (1).

SEE ALSO
cc(I), n7(l), ratfor(l).
The Programming Language EFL by S.I. Feldman.

- 2 -

ENV(l) ENV(1)

NAME
env - set environment for command execution

SYNOPSIS
en, [-] [name=value] ... [command args]

DESCRIPTION
Env obtains the current environment, modifies it according to its arguments,
then executes the command with the modified environment. Arguments of
the form name=value are merged into the inherited environment before
the command is executed. The - ftag causes the inherited environment to
be ignored completely, so that the command is executed with exactly the
environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

SEE ALSO
sh(l), exec(2), profile(5), environ(7).

- 1 -

EQN(1) EQN(I)

NAME
eqn, neqn, chcckeq - format mathematical text for nroft' or troft'

SYNOPSIS
eqn [-dxy) [-pn) [-sn) [-fn) [files)

neqn [-dxy) [-pn) [-sn) [-fn) [files)

checkeq [files)

DESCRIPTION
Eqn is a 11'0ff(1} preprocessor for typesetting mathematical text on a Wang
Laboratories, Inc. C/ A/T phototype:etter, while neqn is used for the same
purpose with nroff(l) on typewriter-like terminals. Usage is almost always:

eqn files I troft'
neqn files I nroft'

or equivalent.

If no files are specified, these programs read from the standard input. A
line beginning with .EQ marks the start of an equation; the end of an equa­
tion is marked by a line beginning with .EN. Neither of these lines is
altered, so they may be defined in macro packages to get centering, num­
bering, etc. It is also possible to designate two characters as delimiters; sub­
sequent text between delimiters is then treated as eqn input. Delimiters
may be set to characters x and y with the command-line argument -dxy or
(more commonly) with delim xy between .EQ and .EN. The left and right
delimiters may be the same character; the dollar sign is often used as such
a delimiter. Delimiters are turned oft' by delim oft". All text that is neither
between delimiters nor between .EQ and .EN is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/ .EN
pairs.

Tokens within eqn are separated by spaces, tabs, new-lines, braces, double
quotes, tildes, and circumflexes. Braces {} are used for grouping; generally
speaking, anywhere a single character such as x could appear, a complicated
construction enclosed in braces may be used instead. Tilde C'} represents a
full space in the output, circumflex C) ha.lf as much.

Subscripts and superscripts are produced with the keywords •• It and .. p.
Thus x sub j makes Xi' a sub k sup 2 produces al, while e,,2.t,.2 is made
with e sup {x sup 2 + y sup 2}. Fractions are made with oYer: Q over b

yields :; sqrt makes square roots: I over sqrt {ax sup 2+bx+c} results in

1

v'ax4bx+c
n

The keywords from and to introduce lower and upper limits: lim ~Xi is
n-oo 0

made with lim/rom {n -> in!} sum/rom 0 to n x sub i. Left and right
brackets, braces, etc., of the right height are made with left and rilht:

left [x sup 2 + y sup 2 over alpha right J "'-'" I produces ~~] ... 1.

Legal c~aracters after left and rilht are braces, brackets, bars, c and f for
ceiling and floor, and II for nothing at all (useful for a right-side-only
bracket). A left thing need not have a matching rilht thing.

- 1 -

EQN(l) EQN(I)

Vertical piles of things are made with pile, Ipile, epile, and rpile:
a

pile {a above b above c I produces b. Piles may have arbitrary numbers of
c

elements; Ipile left-justifies, pile and epile center (but with different verti­
cal spacing), and rpile right justifies. Matrices are made with matrix:

Xi 1
matrix { /col { X sub i above y sub 2 I ccol { I above 2 I I produces 2'

Y2
In addition, there is reol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and
under: x dot = 1ft) bar is ic=1 (t), y dotdot bar = n under is ; = 4,
and x vec = y dyad is x = y.
Point sizes and fonts can be changed with size n or size ± n, roman, italic,
bold, and font n. Point sizes and fonts can be changed globally in a docu­
ment by gsize nand glont n, or by the command-line arguments -sn and
-fn.

Normally, subscripts and superscripts are reduced by 3 points from the pre­
vious size; this may be changed by the command-line argument -pn.

Successive display arguments can be lined up. Place mark before the
desired lineup point in the first equation; place lineup at the place that is to
line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:

define thing % replacement %

defines a new token called thing that will be replaced by replacement
whenever it appears thereafter. The % may be any character that does not
occur in replacement.

Keywords such as sum (~), int (I), i.f (00), and shorthands such as
>=- (~), != (,t:), and -> (--) are recognized. Greek letters are spelled
out in the desired case, as in alpba (a), or GAMMA (r). Mathematical
words such as sin, cos, and log are made Roman automatically. Troff(1)
four-character escapes such as \(dd (t) and \(bs (@) may be used
anywhere. Strings enclosed in double quotes (" ... ") are passed through
untouched; this permits keywords to be entered as text, and can be used to
communicate with troff(l) when all else fails. Full details are given in the
manual cited below.

SEE ALSO

BUGS

Typesetting Mathematics-User's Guide by B. W. Kernighan and L. L.
Cherry.
New Graphic Symbols for EQN and NEQN by C. Scrocca.
mm(l), mmt(l), tbl(l), troft' (l), eqnchar(7), mm(7), mv(7).

To embolden digits, parentheses, etc., it is necessary to quote them, as in
bold "12.3".
See also BUGS under tToff(l).

• 2 -

ERRDEAD(1M) ERRDEAD(1M)

NAME
errdead - extract error records from dump

SYNOPSIS
jetcjerrdead dumpfile [namelist]

DESCRIPTION

FILES

When hardware errors are detected by the system, an error record that con­
tains information pertinent to the error is generated. If the error-logging
daemon e"demon(lM) is not active or if the system crashes before the
record can be placed in the error file, the error information is held by the
system in a local buffer. EmJead examines a system dump (or memory),
extracts such error records, and passes them to e1TpI(lM) for analysis.

The dumpfile specifies the file (or memory) that is to be examined. The
system namelist is specified by namelist; if not given, JUDb: is used.

junix
jusrjbin/errpt
/usrjtmp/errXXXXXX

system namelist
analysis program
temporary file

DIAGNOSTICS
Diagnostics may come from either errdead or e1TpI. In either case, they are
intended to be self-explanatory.

SEE ALSO
errdemon(lM), errpt(lM).

- 1 -

ERRDEMON (1 M) ER.R.DEMON(1M)

NAME
errdemon - error-logging daemon

SYNOPSIS
letc/errdemoD [file]

DESCR.lPTION

fILES

The error logging daemon e"demon collects error records from the opera­
ting system by reading the special file Ide'/error and places them in file. If
file is not specified when the daemon is activated, lusr/adm/errfile is used.
Note that file is created if it does not exist; otherwise, error records are
appended to it, so that no previous error data is lost. No analysis of the
error records is done by e"demon; that responsibility is left to errpt(l M).
The error-logging daemon is terminated by sending it a software kill signal
(see signal(2». Only the super-user may start the daemon, and only one
daemon may be active at any time.

I dev I error source of error records
lusr/adm/errfile repository for error records

DIAGNOSTICS
The diagnostics produced by e"demon are intended to be self-explanatory.

SEE ALSO
errpt(lM), errstop(lM), kill(l), err(4).

- 1 -

ERRPT(1M) ERRPT(1M)

NAME
errpt - process a report of logged errors

SYNOPSIS
errpt [-a] [-dev] •.. [-int] [-mem] [-5 date] [-e date]
[-pn] [-f] [files]

DESCRIPTION

FILES

Errpt processes data collected by the error logging mechanism
(e"demon(1M» and generates a report of that data. The default report is a
summary of all errors posted in the files named. Options apply to all files
and are described below. If no file~ are specified, errpt attempts to use
/usr/adm/errfile as/de.

A summary report notes the options that may limit its completeness,
records the time stamped on the earliest and latest errors encountered, and
gives the total number of errors of one or more types. Each device sum­
mary contains the total number of unrecovered errors, recovered errors,
errors unabled to be logged, I/O operations on the device, and miscel­
laneous activities that occurred on the device. The number of times that
errpt has difficulty reading input data is included as read errors.

Any detailed report contains, in addition to specific error information, all
instances of the error logging process being started and stopped, and any
time changes (via date(1» that took place during the interval being pro­
cessed. A summary of each error type included in the report is appended
to a detailed report.

A report may be limited to certain records in the following ways:

-s date

-e date

-a
-dev

-int

-mem

-pn

-f

/usr/adm/errfile

Ignore all records posted earlier than date, where date has
the form mmddbbmmyy, consistent in meaning with the
date (1) command.

Ignore all records posted later than date, whose form is as
described above.

Produce a detailed report that includes aU error types.

A detailed report is limited to dev, a block device
identifier. Errpt is familiar with the common form of
identifiers (e.g., rs03, R.S04, hs; see Section 4 of this
volume). Currently, the block devices for which errors
are logged are RP03, RP04, RPOS, RP06, RS03, R.S04,
TUIO, TUl6, RKOS, and RFll.

Include in a detailed report errors of the stray-interrupt
type.

Include in a detailed report errors of the memory-parity
type.

Limit the size of a detailed report to n pages.

In a detailed report, limit the reporting of block device
errors to unrecovered errors.

default error file

SEE ALSO
errdemon(1M), errfile(S).

- 1 -

ERRSTOP (1 M) ERRSTOP (1 M)

NAME
errstop - terminate the error-logging daemon

SYNOPSIS
jetcjerrstop [namelist]

DESCRIPTION

FILES

The error-logging daemon e"demon(lM) is terminated by using e"stop.
This is accomplished by executing ps(1) to determine the daemon's iden­
tity and then sending it a software kill signal (see signaJ(2»; junix is used
as the system namelist if none is specified. Only the super-user may use
e"stop.

junix default system namelist

DIAGNOSTICS
The diagnostics produced bye"stop are intended to be self-explanatory.

SEE ALSO
errdemon(1M), ps(l), kill(2).

- I -

EXPR(1) EXPR(1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result IS

written on the standard output. Terms of the expression must be separated
by blanks. Characters special to the shell must be escaped. Note that 0 is
returned to indicate a zero value, rather than the null string. Strings con­
taining blanks or other special characten. should be quoted. Integer-valued
arguments may be preceded by a unary minus sign. Internally, integers are
treated as 32-bit, 2's complement numbers.

The operators and keywords are listed below .. Characters that need to be
escaped are preceded by \. The list is in order of increasing precedence,
with equal precedence operators grouped within (} symbols.

expr \ 1 expr
returns the first expr if it is neither null nor 0, otherwise returns
the second expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns
O.

expr { =, \>, \>=, \<, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr {*, I, % } expr
multiplication, division, or remainder of the integer-valued
arguments.

expr: expr

EXAMPLES

The matching operator : compares the first argument with the
second argument which must be a regular expression; regular
expression syntax is the same as that of ed(l), except that an pat­
terns are "anchored" (i.e., begin with -) and, therefore, - is not a
special character, in that context. Normally, the matching operator
returns the number of characters matched (0 on failure). Alterna­
tively, the \(••• \) pattern symbols can be used to return a portion
of the first argument.

1. a=·expr $a + 1·

adds 1 to the shell variable •.

2. , ·For $a equal to either" lusr/abc/file" or just "file"-
expr $a : •• */\(Af \1 $a

returns the last segment of a path name (i.e., file). Watch
out for / alone as an argument: expr will take it as the
division operator (see BUGS below).

- 1 -

EXPR(l) EXPR(I)

3.

4.

, A better representation of example 2.
expr / /Sa: .*j\(A(

The addition of the / / characters eliminates any ambiguity
about the division operator and simplifies the whole expres­
sion.

expr SVAR :
~ .
.*

returns the number of characters in SVAR.

SEE ALSO
ed(l), sh(l).

EXIT CODE
As a side effect of expression evaluation, expt' returns the following exit
values:

o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS

BUGS

syntax e"lJr
non-numeric argument

for operator/operand errors
if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
the command:

expr Sa =­

looks like:

expr .. '"" ...

as the arguments are passed to expr (and they will all be taken as the
operator). The following works:

expr XSa = X=-

- 2 -

F77(l) F77(J)

NAME
n7 - Fortran 77 compiler

SYNOPSIS
r17 [options 1 files

DESCRIPTION
F77 is the UNIX Fortran 77 compiler; it accepts several types of files
arguments:

Arguments whose names end with .f are taken to be Fortran 77 source
programs; they are compiled and each object program is left in the
current directory in a file whose name is that of the source, with .0

substituted for .f.
Arguments whose names end with .r or .e are taken to be RATFOR or
EFL source programs, respectively; these are first transformed by the
appropriate preprocessor, then compiled by P7, producing .0 files.
In the same way, arguments whose names end with .c or .5 are taken
to be C or assembly source programs and are compiled or assembled,
producing .0 files.

The following options have the same meaning as in cc(l) (see /d(l) for link
editor options):

-c Suppress link editing and produce .0 files for each source file.
- p Prepare object files for profiling (see ?of(l».
-0 Invoke an object·code optimizer.
-S Compile the named programs and leave the assembler·

language output in corresponding files whose names are
suffixed with .5. (No.o files are created.)

-ooutput Name the final output file output, instead of a.oat.
-f In systems without floating-point hardware, use a version of

p7 that handles floating-point constants and links the object
program with the floating-point interpreter.

The following options are peculiar to p7:
-oDetrip

-u

-w

-F

-m

-E

-R

Compile DO loops that are performed at least once if reached.
(Fortran 77 DO loops are not performed at aU if the upper
limit is smaller than the lower limit.)
Make the default type of a variable "undefined", rather than
using the default Fortran rules.
Suppress all warning messages. If the option is -"", only
Fortran 66 compatibility warnings are suppressed.
Apply EFL and RATFOR preprocessor to relevant files, put the
result in files whose names have their suffix changed to .of.
(No .0 files are created.)
Apply the M4 preprocessor to each EFL or RA TFOR source file
before transforming with the raifOl"(l) or efl(l} processors.
The remaining characters in the argument are used as an EFL
flag argument whenever processing a .e file.
The remaining characters in the argument are used as a RAT­
FOR flag argument whenever processing a .r file.

Other arguments are taken to be either link-editor option arguments or
p7 -compilable object programs (typically produced by an earlier run). or
libraries of p7 -compilable routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to pro­
duce an executable program with the default name a.out .

·1-

F77(1)

FILES
file. [fresc]
file.o
a.out
./fort[pid]. ?
/usr /lib/fl7passl
/lib/cl
/lib/c2
/usr/lib/libF77.a
/ usr /lib /lib177 .a
/lib/libc.a

input file
object file
linked output
temporary
compiler
pass 2
optional optimizer
intrinsic function library
Fortran I/O library
C library; see Section 3 of this Manual.

F77(1'

SEE ALSO
A Portable Fortran 77 Compiler by S. I. Feldman and P. J. Weinberger
ce(l), en(l), Id(l), m4(1), prof(l), ratfor(l).

DIAGNOSTICS
The diagnostics produced by p7 itself are intended to be self-explanatory.
Occasional messages may be produced by the link editor Id(l).

- 2 .

FACTOR(1) FACTOR(I)

NAME
factor. primes - factor a number. generate large primes

SYNOPSIS
fador [number]

priDles

DESCRIPTION
When factor is invoked without an argument. it wai~ for a number \~ be
typed in. If you type in a positive number less than 2 (about 7.2XIO) it
will factor the number and prin! its prime factors; each one is printed the
proper number of times. Then it waits for another number. It exits if it
encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above and
then exits.

Maximum time to factor is proportional to Vn and occurs when n is prime
or the square of a prime. It takes 1 minute to factor a prime near 101 on a
PDP-ll.

When primes is invoked, it waits {~r a number to be typed in. If you type
in a positive number less than 2 it will print all primes greater than or
equal to this number.

DIAGNOSTICS
"Ouch" for input out of range or for garbage input.

- 1 -

FGET(lC) FGET(lC)

NAME
fget - retrieve files from the HONEYWELL 6000

SYNOPSIS
fget [options] [files]

DESCRIPTION
Fget arranges to have one or more GCOS files sent to UNIX. GCOS
identification must appear in the UNIX password file (see passwd(5» , or be
supplied by the -i option. Normally, the files retrieved will appear in the
UNIX user's current directory under the GCOS file name.

The GCOS catalog from which the files are obtained depends on the form of
the file name argument. If the file name has only embedded slashes, then
it is assumed to be a full GCOS path name and that file is retrieved. If the
file name has no e~bedded slashes or begins with a slash, then the GCOS
catalog from which the file is retrieved is the same as the UNIX login name
of the person who issues the command. If, however, a user has a different
name in the third field of the GCOS "ident card image" (which image is
extracted from the UNIX password file-see passwd(5» , this name is taken
as the GCOS catalog name. Whatever GCOS catalog is finally used, the files
must either have general read permission or the user must have arranged
that the user ID network has read permission on that catalog (see
jsend(lC)). This can be accomplished with the GCOS command:

filsys mc <user ID>,(r)/network/

The UNIX file into which the retrieved GCOS file will ultimately be written
is initialized with one line containing the complete GCOS file name. If the
file contains the initial line for an extended period, it means that GCOS is
down or something has gone horribly wrong and you should try again.

The following options, each as a separate argument (or in the case of -d
and -a, as two separate arguments), may appear in any order, but must
precede all file arguments.

-a Retrieve files as ASCll (default).
-b Retrieve files as binary.
-d Use the next argument as the UNIX directory into which retrieved

files are written.
-i Supply the GCOS "ident card" image as the parameter

- iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

-m When the request has been forwarded to GCOS, report by mail(l)
the so-called snumb of the receiving job; mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran or that UNIX
retrieved the output. This is the default option.

-8 Do not report the forwarding of the request by mail(l).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is the default

option.
-sn Submit job to GCOS with service grade n (n"'l, 2, 3). Default is

-sl.
-a Use the next argument as the GCOS catalog name for all files.

EXAMPLES
The command:

fget -u gcosme -t -n -d /usr/me/test filel file2

will retrieve the GCOS files gcosme/ftlel and geosme/ftlel, as the UNIX
files /asr/me/test/ftlel and /asr/me/test/ftlel, respectively, but will not

- 1 -

FGET(IC) FGET(IC)

generate any mail or GCOS accounting output as a result of the transaction.

FILES
/etc/passwd
/usr/lib/dpd
/usr /spool/dpd/*
/usr/lib/fget.demon

SEE ALSO

user's identification and GCOS ident card.
sending daemon.
spool area.
retrieval daemon.

dpd(lC), dpr(1C), fsend(1C), fget.demon(lC), passwd(S).

- 2 -

FGET.DEMON(IC) FGET.DEMON(IC)

NAME
fget.demon, fget.odemon - file retrieval daemons

SYNOPSIS
/usr /lib/fget.demoD time
/usr/lib/fget.odemoD time

DESCRIPTION

FILES

Fget.demon and fget.odemon are the retrieval daemons for the 200-series
DA T A-PHONE- set and for the Murray Hill Spider network. They are
designed to retrieve files that have been requested by fget(l C) from the MH
HONEYWELL 6000 computer. The argument time is the number of seconds
for fget.demon to wait for files to appear from GRTS. The default is 6 minu­
tes. Fget.demon is automatically initiated byfget(lC), and by cron(lM).

On systems with both Spider and DATA-PHONE connections to the
HONEYWELL 6000 computer,fget.demon uses Spider, andfget.odemon uses
the DATA-PHONE set, and is called automatically as a backup when the Spi­
der connection is down. On other systems, there is only one fget daemon,
fget.demon, which use the DATA·PHONE set.

The fget daemons use the spooling directory /usr/spool/dpd. The file
glock in that directory is used to prevent two daemons from becoming
active. After the program has successfully set the lock, it forks and the
main path exits, thus spawning the daemon. GRTS is interrogated for any
output for the daemon's station-id. If none, fget.demon will wait up to time
seconds, interrogating GRTS every minute or so to see if any output has
arrived. All problems and successful transactions are recorded in the errors
file in the spooling directory.

To restart fget.demon (in the case of hardware or software malfunction), it
is necessary to first kill the old fget.demon (if still alive), and remove the
lock file (if present), before initiating fget.demon. This is done automati­
cally by /etc/re wheft the system is brought up, in case there are any files
waiting to come over.

/usr/spool/dpd/*
/dev/du?
/dev/dn?

spool area.
DATA-PHONE set.
ACU device.

SEE ALSO
dpd(1C), fget(lC).

- 1 -

FILE (1) FILE (1)

NAME
file - determine file type

SYNOPSIS
file [- f] file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it.
If an argument appears to be ASCII, file examines the first 512 bytes and
tries to guess its language. If an argument is an executable a.out, file will
print the version stamp, provided it is greater than 0 (see the description of
the -V option in ld(l)).

If the -(option is given, the next argument is taken to be a file containing
the names of the files to be examined.

- 1 -

FIND (1) FlND(l)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the
path-name-list (i.e., one or more path names) seeking files that match a
boolean expression written in the primaries given below. In the descrip­
tions, the argument n is used as a decimal integer where + n means more
than n, - n means less than nand n means exactly n.

- name file True if file matches the current file name. Normal shell
argument syntax may be used if escaped (watch out for !,
? and .).

-perm onum True if the file permission flags exactly match the octal
number onum (see chmod(l». If onum is prefixed by a
minus sign, more flag bits (017777, see stat(2» become
significant and the flags are compared:

(flags&onum) = =onum

-type c True if the type of the file is c, where c is b, c, d, P. or f
for block special file, character special file, directory, fifo
(a.k.a named pipe), or plain file.

-links n True if the file has n links.

- user uname True if the file belongs to the user uname. If uname is
numeric and does not appear as a login name in the
/ete/passwd file, it is taken as a user !D.

-group gname True if the file belongs to the group gname. If gname is
numeric and does not appear in the /ete/group file, it is
taken as a group !D.

-size n True if the file is n blocks long (512 bytes per block).

-atime n True if the file has been accessed in n days.

- mtime n True if the file has been modified in n days.

-dime n True if the file has been changed in n days.

-exec cmd True if the executed emil returns a zero value as exit sta-
tus. The end of emil must be punctuated by an escaped
semicolon. A command argument {} is replaced by the
current path name.

-ok emil Like -exec except that the generated command line is
printed with a question mark first, and is executed only if
the user responds by typing y.

-print Always true; causes the current path name to be printed.

-epio device Write the current file on device in cpio (5) format (5120
byte records).

- newer flle True if the current file has been modified more recently
than the argument file.

(expression) True if the parenthesized expression is true (parentheses
are special to the shell and must be escaped).

The primaries may be combined using the following operators (in order of
decreasing precedence):

- 1 -

FIND (1) F1ND(l)

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxta­
position of two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

FILES

To remove all files named a.out or •• 0 that have not been accessed for a
week:

find / \(-name a.out -0 -name ' 0' \) -atime +7 -exee rm {} \;

/ete/passwd, fete/group

SEE ALSO
cpio(1), sh(1), test(1), stat(2), cpio(5), f5(5).

- 2 -

I

FSCK(IM) FSCK(IM)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
/etc/fsck [-y] [-0] [-sX] [-SX] [-t file] [file-system]

DESCRIPTION
Fsck audits and interactively repairs inconsistent conditions for UNIX file
systems. If the file system is consistent then the number of files, number of
blocks used, and number of blocks free are reported. If the file system is
inconsistent the operator is prompted for concurrence before each correc­
tion is attempted. It should be noted that most corrective actions will result
in some loss of data. The amount and severity of data lost may be deter­
mined from the diagnostic output. The default action for each consistency
correction is to wait for the operator to respond yes or 00. If th~ operator
does not have write permission fsck will default to a - 0 action.

Fsck has more consistency checks than its predecessors check, dcheck,
fcheck, and icheck combined.

The following flags are interpreted by fsck.

-y Assume a yes response to all questions asked by fsck.

-0 Assume a no response to all questions asked by fsck; do not open
the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a new
one by rewriting the super-block of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the old,
bad, in-core copy of the superblock will not continue to be used, or
written on the file system.

The -sX option allows for creating an optimal free-list organization.
The following forms of X are supported for the following devices:

-53 (RP03)
- s4 (RP04, RP05, RP(6)
-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was created
are used. If these values were not specified, then the value 400:9 is
used.

-SX Conditionally reconstruct the free list. This option is like -sX above
except that the free list is rebuilt only if there were no discrepancies
discovered in the file system. Using -S will force a no response to
all questions asked by fsck. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the -t flag,
fsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked, and if it
is not a special file or did not already exist, it is removed when fsck
completes.

If no file-systems are specified, fsck will read a list of default file systems
from the file /etc/checklist.

- 1 -

FSCK(IM) FSCK(IM)

FILFS

Inconsistencies checked are as follows:

I. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an in ode or the free list outside the range of the

file system.
3. Incorrect link counts.
4. Size checks:

Incorrect number of blocks.
Directory size not 16-byte aligned.

5. Bad inode format.
6. Blocks not accounted for anywhere.
7. Di;-ectory checks:

File pointing to unallocated inode.
Inode number out of range.

S. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file system.

9. Bad free block list format.
10. Total free block and/or free in ode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+fouad
directory. The name assigned is the in ode number. The only restriction is
that the directory lost+fouad must preexist in the root of the file system
being checked and must have empty slots in which entries can be made.
This is accomplished by making lost+fouad, copying a number of files to
the directory, and then removing them (before/sek is executed).

Checking the raw device is almost always faster.

/etc/checklist contains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by /sck are intended to be self-explanatory.

SEE ALSO

BUGS

checklist(5), fs (5), crash (S).

Inode numbers for. and.. in each directory should be checked for vali­
dity.

-I and -b options from check should be available in/sek.

- 2 -

FSCV(lM) FSCV(IM)

NAME
fscv - convert files between PDP-ll and VAX-II /780 systems

SYNOPSIS
/ete/fse, -, ispecial [ospecial]
/ete/fse, -p ispecial [ospecial]

DESCRIPTION
Fscv converts file systems between PDP-ll and VAX-ll/780 formats. The
super block. free list. and inodes are converted to the format of the output
file. Fscv may be executed on PDP-ll and VAX processors. The mandatory
flag specifies the format of the converted file system:

-, Convert file system from PDP-II to V AX format.

- p Convert file system from V AX to PDP-ll format.

[special is the name of a special file containing a file system to be converted
(e.g.; /de,/rrpl). The optional ospecia/ is the name of the special file to
receive the results of the conversion. If ospecia/ is specified the entire con­
tents of ispecia/ are copied to ospecia/ before the conversion is performed.
If ospecia/ is not specified an in-place conversion of ispecia/ is performed.
The following items should be noted before executingfscv:

1. A file system consistency check (fsck(lM» should be performed on
ispecia/ immediately prior to executingfscv.

2. Neither ispecia/ nor the optional ospecial should contain a mounted
file system during execution of fscv. Modification to either the input
or the output file system while fscv is executing will probably corrupt
the converted file system.

3. A backup of ispedal (sec voicopy(1M» is highly recommended if an
in-place conversion is to be performed. System crashes. I/O errors.
etc .• during execution of fscv may destroy the file system contained
in ispecial. Also. if the optional ospecial is specified any data con­
tained in that special file will be over written.

4. If the optional ospecial is specified. this special file must be large
enough to contain the entire contents of ispecial. See the appropriate
special files in section 4.

EXAMPLES

BUGS

Copy and convert a file system from PDP-ll to VAX format:
/etc/fscy -v /dev/rrpO /dev/rrpiO

Perform an in-place conversion from VAX to PDP-II format:
/etc/fscv -p /dev/rrpIO

The boot block is not modified during conversion. The resulting file sys­
tem will not be bootable. No data contained in the files of the file system
arc modified.

SEE ALSO
fsck(IM), volcopy(IM).

- 1 •

FSDB(1M) FSDB(IM)

NAME
fsdb - file system debugger

SYNOPSIS
/ete/f. special [-]

DESCIlIPTION
Fsdb can be used to patch up a damaged file system after a crash. It has
conversions to translate block and i-numbers into their corresponding disk
addresses. Also inclvded are mnemonic offsets to access different parts of
an i-node. These greatly simplify the process of correcting control block
entries or descending the file system tree.

Fsdb contains several error checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional - argument or by the use of the 0 symbol. (Fsdb reads the i-size
and f-size entries from the superblock of the file system as the basis for
these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between
source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as
block I/O. A buffer management routine is used to retain commonly used
blocks of data in order to reduce the number of read system calls. All
assignment operations result in an immediate write-through of the
corresponding block. .

The symbols recognized by fsdb are: ,
i
It
d
+,­
q
>,<

=+

="
o
P
f
B
W
D

absolute address
convert from i-number to i-node address
convert to block address
directory slot offset
address arithmetic
quit
save, restore an address
numerical assignment
incremental assignment
decremental assignment
character string assignment
error checking ftip ftop
general print facilities
file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before printing
begins. It advances with the printing and is left at the 'address of the last
item printed. The output can be terminated at any time by typing the
delete character. If a number follows the, symbol, that many entries are
printed. A check is made to detect block boundary overflows since logically
sequential blocks are generally not physically sequential. If a count of zero
is used, all entries to the end of the current block are printed. Tbe print
options available are:

- 1 -

I

FSDB(1M) FSDB(1M)

i print as i-nodes
d print as directories
o print as octal words
e print as decimal words
c print as characters
b print as octal bytes

The r symbol is used to print data blocks associated with the current i­
node. If followed by a number. that block of the file is printed. (Blocks
are numbered from zero.) The desired print option letter follows the block
number, if present. or the r symbol. This print facility works for small as
well as large files. It checks for special devices and that the block pointers
used to find the data are not zero.

Dots. tabs and spaces may be used as function delimiters but are not neces­
sary. A line with just a new-line character will increment the current
address by the size of the data type last printed. That is. the address is set
to the next byte. word. double word. directory entry or i-node. allowing the
user to step through a region of a file system. Information is printed in a
format appropriate to the data type. Bytes. words and double words are
displayed with the octal address followed by the value in octal and decimal.
A .B or .D is appended to the address for byte and double word values.
respectively. Directories are printed as a directory slot offset followed by
the decimal i-number and the character representation of the entry name.
Inodes are printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the
current working i-node:

EXAMPLES
386i

In=4

In=+1

fc

2i.fd

d5i.fc

Ib.pOo

md
In
uid
gid
sO
51
a#
at
mt
maj
min

mode
link count
user ID number
group ID number
high byte of file size
low word of file size
data block numbers (0 - 12)
access time
modification time
major device number
minor device number

prints i-number 386 in an i-node format. This now
becomes the current working i-node.

changes the link count for the working i-node to 4.

increments the link count by 1.

prints. in ASCII, block zero of the file associated with the
working i-node.

prints the first 32 directory entries for the root i-node of
this file system.

changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the
above command. The first 512 bytes of the file are then
printed in ASCII.

prints the superblock of this file system in octal.

- 2 -

FSDB(1M) FSDB(1M)

2i.aOb.d7 = 3 changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

d7 .nm = "name" changes the name field in the directory slot to the given
string. Quotes are optional when used with am if the first
character is alphabetic.

SEE ALSO
fsck(1M), dir(5), fs(5).

- 3 -

I

FSEND(lC) FSEND(lC)

NAME
fsend - send files to the HONEYWELL 6000

SYNOPSIS
fsend [options] [files]

DESCRIPTION
Fsend arranges to have one or more UNIX files sent to HONEYWELL GCOS.
GCOS identification must appear in the UNIX password file (see passwd(5»,
or be supplied by the -i option. If no names appear, the standard input ill
sent; thus fsend may be used as a filter.

Normally, the catalog on the HONEYWELL file system in which the new file
will appear is the same as the UNIX login name of the person who iss"es
the command. If, however, a user has a differeRt name in the third field of
the GCOS "ident card image" (which image is extracted from the UNIX
password file; see passwd(5» , this name is taken as the GCOS catalog name.
Whatever GCOS catalog is finally used, the user must have arranged that
the user ID "network" has create permission on that catalog, or read and
write permission on the individual files. The latter is more painful but pre­
ferred if access to other files in the catalog is to be fully controlled. This
can be accomplished with the GCOS commands:

filsys mc <user ID>,(c)/network/
or

filsys cf <file>, (r, w) /network/, b/ <initial-size>, unlimited/

The name of the GCOS file is ordinarily the same as the name of the UNIX
file. When the standard input is sent, the GCOS file is normally taken to be
pipe.end.

The following options. each as a separate argument, (or ill the case of -.
and -f. as two separate arguments). may appear i. any order. but must
precede all file name arguments.

-a Send succeeding files as ASCII (default). If the last character of die
file is not a new-line. one is added. All oUter characters are preser­
ved.

-b Send succeeding files as binary. Each UNIX byte is right justified in
a GCOS byte and the bytes packed into 120-byte logical records (30
GCOS words). The last record is padded out with NULs.

-c: Make copies of the files to be sent before returRing to tile user.
-r Remove the files after sending them.
-f Use the next argument as the GCOS file name for the succeeding

file.
-i Supply the GCOS "ident card" image as the parameter

-iMxxxx,Myyy where Mxxxx is the GCOS job number and Myyy
the GCOS bin number.

- m When transmission is complete. report by nuzi/(l) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is the default option.

-0 Do not report the completion of transmission by nuzi/(l).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is the default

option.
-sn Submit job to GCOS with service grade n (n=l, 2, 3). Default is

-51.
- u Use the next argument as the GCOS catalog name for all files.

- 1 -

FSEND(IC) FSEND(IC)

- x Send succeeding files to be archived by the Gees archive command.

EXAMPLE

FILES

The command:

fsend -t -u unixsup -b -f gfile ufile

will send the binary UNIX file ufile to become the Gees file .. ix.up/lfile,
and will not produce anyon-line GCes accounting output.

/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

user's identification and GCOS ident card.
sending daemon.
spool area.

SEE ALSO
dpd(1C), dpr(1C), fget(lC), gcat(lC), mail(l).

- 2 -

I

FWTMP(IM) FWTMP(1M)

NAME
fwtmp, wtmpfix - manipulate wtmp records

SYNOPSIS
rwtmp [-ic]
wtmpfix [files]

DESCRIPTION
Fwtmp

Fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formated ASCII
records. The ASCII version is useful to enable editing, via ed(l), bad
records or general purpose maintenance of the file.

The argument -ic is used to denote that input is in ASCII form, and output
is to be written in binary form.

Wtmpfix

FILES

Wtmpfix examines the standard input or named files in wtmp format,
corrects the time/date stamps to make the entries consistent, and writes to
the standard output. A - can be used in place of files to indicate the stan­
dard input. If time/date corrections are not made, acctconl will fault when
it encounters certain date change records.

Each time the date is set while operating in multi-user mode, a pair of date
change records are written to fusr fadm/wtmp. The first record is the old
date denoted by I in the name field. The second record specifies the new
date and is denoted by a { in the name field. Wtmpfix uses these records to
synchronize all time stamps in the file.

/usr/adm/wtmp
/usr/include/utmp.h

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), acctcon(lM), acctmerg(lM),
acctprc(lM), acctsh(lM), runacct(lM), acct(2), acct(S), utmp(S).

- 1 -

GCAT(IC) GCAT(IC)

NAME
gcat - send phototypesetter output to the HONEYWELL 6000

SYNOPSIS
gat [options] [files]

DESCR.IPTION
Gear arranges to have troff(l) output sent to the phototypesetter or debug­
ging devices (STARE or line printer) attached to the HONEYWELL system.
GCOS identification must appear in the UNIX password file (see passwd(5» ,
or be supplied by the -i option. If no file name appears, the standard
input is sent; thus gear may be used as an output pipe for troff(1).

The option -g (for GCOS) must be used with the troff(l) command to
make things work properly. This command string sends output to the
GCOS phototypesetter:

trolf -g file I gcat

The following options, each as a separate argument, and in any combina­
tion (multiple outputs are permitted), may be given after gcat:

-ph Send output to the phototypesetter. This is a default option.
-st Send output to STARE for fast turn-around.
-tx Send output as text to the line printer (useful for checking spelling,

hyphenation, pagination, etc.).
-du Send output to the line printer, dummied up to make the format

correct. Because many characters are dropped, the output is
unreadable, but useful for seeing the shape (margins, etc.) of the
document.

-c Make a copy of the file to be sent before returning to the user.
-r Remove the file after sending it.
-f Use the next argument as a dummy file Dame to report back in the

mail. (This is useful for distinguishing multiple runs, especiany
when geat is being used as a filter).

-i Supply the GCOS "ident card" image as the parameter
~iMxxxx.Mm where Mxxxx is the GCOS job number and Mm
the GCOS bin number.

-m When transmission is complete, report by mail(l) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is a default option.

- n Do not report the completion of transmission by mail (1).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is a default

option.
-sn Submit job to GCOS with service grade n (n = 1, 2, 3). Default is

-51.

If none of the output options are specified, phototypesetter output (-ph) is
assumed by default.

EXAMPLE

FILES

The command:

trolf -g myfile I gcat -st -im1234,m567,myname -f myfile

will send the output of troff(1) to STARE, with the GCOS "ident card"
specifying "M1234,M567 ,MYNAME", and will report back that myftle has
been sent.

- 1 -

GCAT(IC)

/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

SEE ALSO

user's identification and GCOS ident card.
sending daemon.
spool area.

dpd(1C), dpr(1C), fget(lC), fsend(lC), troff(l).

- 2 -

GCAT(IC)

GCOSMAIL(IC) GCOSMAIL(IC)

NAME
gcosmail - send mail to HIS user

SYNOPSIS
gcosmail [option ...] [HISuserid ...]

DESCRIPTION

FILES

Gcosmail takes the standard input up to an end of file and sends it as mail
to the named users on the HONEYWELL 6000 system, using the HIS mail
command. The following options are recognized by gcosmail:

-f Use the next argument as a dummy tile name to report back in the
mail. (This is useful for distinguishing mUltiple runs).

-i Supply the GCOS "ident card" image as the parameter
-iMx.x:xx,Mm. where Mx.x:xx is the GCOS job number and Myyy is
the GCOS bin number.

- m When transmission is complete, report by mai/ (l) the so-called
snumb of the receiving GCOS job. The mail is sent by the UNIX
daemon; there is no guarantee that the GCOS job ran successfully.
This is a default option.

-D Do not report the completion of transmission by mai/(l).
-0 Print the on-line GCOS accounting output.
-t Toss out the on-line GCOS accounting output. This is a default

option.
- sn Submit job to GCOS with service grade n (n "" I, 2, 3). Default is

-51.

/etc/passwd
/usr/lib/dpd
/usr/spool/dpd/*

user's identification and GCOS ident card.
sending daemon.
spool area.

SEE ALSO
dpd(1C), dpr(1C), fsend(1C).

- 1 -

GDEV(IG) GDEV(lG)

NAME
hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS
hpd [-options] [GPS file .••]
erase
hardcopy
tekset
td [-eurn] [GPS file .••]

DESCRIPTION
All of the commands described below reside in /usr/hi./graf (see
graphics(l G».
hpd Hpd translates a GPS (see gps(5», to instructions for the

Hewlett-Packard 7221A Graphics Plotter. A viewing window is
computed from the maximum and minimum points in file
unless the -u or -r option is provided. If no file is given, the
standard input is assumed. Options are: .

ense

en Select character set n, n between 0 and 5 (see the
HP7221A Plotter Operating aNi Provamming Manual,
Appendix A).

pn Select pen numbered n,' n between 1 and 4 inclusive.

rn Window on GPS region n, n between I and 25 inclusive.

sn Slant characters n degrees clockwise from the vertical.

u Window on the entire GPS universe.

xdn Set x displacement of the viewport's lower left corner to n
inches.

xu Set width of viewport to n inches.

ydn Set y displacement of the viewport's lower left corBer to n
inches.

yu Set height of viewport to n inches.

Erase sends characters to a Tektronix 4010 series storage ter­
minal to erase the screen.

hardcopy When issued at a Tektronix display terminal with a hard copy
unit, hardcopy generates a screen copy on the unit.

tekset

td

SEE ALSO

Tebet sends characters to a Tektronix terminal to clear the
display screen, set the display mode to alpha, and set characters
to the smallest font.

Td translates a GPS to scope code for a Tektronix 4010 series
storage terminal. A viewing window is computed from the max­
imum and minimum points in file unless the - u or -r option is
provided. If no file is given, the standard input is assumed.
Options are:

e Do not erase screen before initiating display.

rn Display GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

graphics(l G), ged(lG), gps(5).

- I -

GED(lG) GED(1G)

NAME
ged - graphical editor

SYNOPSIS
led [-euRrnJ [GPS file ••. J

DESCRIPTION
Ged is an interactive graphical editor used to display, construct, and edit
GPS files on Tektronix 4010 series display terminals. If GPS file(s) are
given, ged reads them into an internal display buffer and displays the buffer.
The GPS in the buffer can then be edited. If - is given as a file name, ged
reads a GPS from the standard input.

Ged accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u Display the entire GPS universe.

R Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc,
and text. Arc and lines objects have a start point, or object-handle, followed
by zero or more points, or point-handles. Text has only an object-handle.
The objects are positioned within a Cartesian plane, or universe, having 64K
(- 32K to + 32K) points, or universe-units, on each axis. The universe is
divided into 25 equal sized areas called regions. Regions are arranged in
five rows of five squares each, numbered 1 to 25 from the lower left of the
universe to the upper right.

Ged maps rectangular areas, called windows, from the universe onto the
display screen. Windows allow the user to view pictures from different
locations and at different magnifications. The universe-window is the win­
dow with minimum magnification, i.e. the window that views the entire
universe. The home-window is the window that completely displays the con­
tents of the display buffer.

COMMANDS
Ged commands are entered in stages. Typically each stage ends with a
<cr> (return). Prior to the final <cr> the command may be aborted by
typing rubout. The input .of a stage may be edited during the stage using
the erase and kill characters of the calling shell. The prompt • indicates
that ged is waiting at stage 1.

Each command consists of a subset of the following stages:

1. Command line
A command line consists of a command name followed by
argument(s) followed by a <cr>. A command name is a
single character. Command arguments are either option(s) or a
file-name. Options are indicated by a leading -.

2. Text Text is a sequence of characters terminated by an unescaped
<cr>. (120 lines of text maximum.)

3. Points Points is a sequence of one or more screen locations (max­
imum of 30) indicated either by the terminal cross hairs or by
name. The prompt for entering points is the appearance of the
crosshairs. When the crosshairs are visible, typing:

sp (space) enters the current location as a point. The point
is identified with a number.

- 1 -

GED(IG)

4. Pivot

GED(lG)

Sn enters the previous point numbered n.

>x labels the last point entered with the upper case letter x.

$x enters the point labeled x.

establishes the previous points as the current points. At
the start of a command the previous points are those
locations given with the previous command.

echoes the current points.

S.n enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

The pivot is a single location, entered by typing <cr> or by
using the S operator, and indicated with a •.

5. Destination
The destination is a single location entered by typing <cr> or
by using S.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Com­
mand stages are printed in italics. Arguments surrounded by brackets "[I"
are optional. Parentheses "()" surrounding arguments separated by "or"
means that exactly one of the arguments must be given.

Constract commands:
Arc [- echo,style. weight] points

Box [- echo ,style, weight] points

Circle [- echo,style, weight) points

Hardware [-echo] text points

Lines [- echo,style, weight] points

Text [-angle,echo,beight,mid-point,right-point,text, weight]
text points

Edit commands:
Delete

Edit

Kopy

Move

Rotate

Scale

View commands:
coordinates

erase

new-display

(- (universe or ,iew) or points)

[-angle,echo,beight,style,weight] (- (universe or
,iew) or points)

[-echo,points,x) points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy,x] points pivot destination

[-echo,factor,kopy,x] points pivot destinatiOll

object-handles (- (universe or ,iew) or points)

- 2 -

GED(IG) GED(lG)

point-handles

,iew

(- (labelled-points or .niverse or ,iew) or points)

(- (ltome or universe or region) or [-x) pivot des­
tinllliOft)

x
zoom

Other commands:
quit or Quit

[-.iew) points

[-eut) points

l.::ad [-angie,echo,height, mid-point, right-point, text, weight)
file-name [destination)

set [-.ngle,echo,factor ,lteight,kopy ,.id-point,points,
right-point,styie,text, weight,x)

write file-name

!command

?

Options:
OptiOftS specify parameters used to construct, edit, and view Braphicai
objects. If a parameter used by a .command is not specifed as an option, the
default value for the parameter will be used (see set below). The format of
command options is

-option [,option)
where option is keylener[vallle). Flags take OR the villues of true or false
indicated by + and - respectively. If no value is given with a ftag, true is
assumed.

Object options:

• nBlen

echo

factorn

heightn

kopy

• id-point

points

right-point

styletype

AnBie of n degrees .

When true, echo additions to the display buffer.

Scale factor is n percent.

HeiBht of'1eJCt is n universe-units (0:Sn<1280).

When true, copy rather than move.

When true, mid-point is used to locate text string .

When true, operate on points otherwise operate on
objects.

When true, riBht-poiDt is used to locate text string.

Line style set to one of following types:
so solid
d. dashed
dd dot-dashed
de dotted
Id long-dashed

- 3 -

GED{lG) GED(lG)

text When false, text strings are outlined rather than drawn.

weighttype Sets line weight to one of following types:

Area options:

home

out

regionn

universe

view

x

n narrow
m medium
b bold

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

COMMAND DESCRIPTIONS
Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points.
The first point entered is the object-handle. Successive points are
point-handles. Lines connects the handles in numerical order. Arc
fits a curve to the handles (currently a maximum of 3 points will be
fit with a circular arc; splines will be added in a later version).

Box and Circle
are special cases of Lines and Arc, respectively. Box generates a rec­
tangle with sides parallel to the universe axes. A diagonal of the rec­
tangle would connect the first point entered with the last point. The
first point is the object-handle. Point-handles are created at each of
the vertices. Circle generates a circular arc centered about the point
numbered zero and passing through the last point. The circle's
object-handle coincides with the last point. A point-handle is genera­
ted 180 degrees around the circle from the object-handle.

Text and Hardware
generate text objects. Each consists of a command line, text and points.
Text is a sequence of characters delimited by <er>. Multiple lines of
text may be entered by preceding a er with a backslash (i.e. \er). The
Text command creates software generated characters. Each line of
software text is treated as a separate text object. The first point
entered is the object-handle for the first line of text. The Hardware
command sends the characters in text uninterpreted to the terminal.

Edit commands:
Edit commands operate on portions of the display butTer called defined­
areas. A defined-area is referenced either with an area option or interac­
tively. If an area option is not given, the perimeter of the defined-area is
indicated by points. If no point is entered, a small defined-area is built
around the location of the <er>. This is useful to reference a single point.
If only one point is entered, the location of the <er> is taken in conjunc­
tion with the point to indicate a diagonal of a rectangle. A defined-area
referenced by points will be outlined with dotted lines.

Delete
removes all objects whose object-handle lies within a defined-area.
The universe option removes all objects and erases the screen.

- 4-

GED(1G) GED(tG)

Edit modifies the parameters of the objects within a defined-area.
Parameters that can be edited are:

angle angle of text
beight height of text
style style of lines and arc
weight weight of Jines, arc, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined-area
by the displacement from the pivot to the destination.

Rotate

Scale

rotates objects within a defined-area around the pivot. If the kopy flag
is true then the objects are copied rather than moved.

For objects whose object-handles are within a defined-area, point
displacements from the pivot lire scaled by factor percent. If the kopy
flag is true then the objects are copied rather than moved.

View commands:
coordinates

prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object- (and/or point-handles) that lie within the defined-area
with 0 (or Pl. point-handles identifies labelled points when the
labelled-points flag is true.

,iew moves the window so that the universe point corresponding to the
pivot coincides with the screen point corresponding to the destination.
Options for home, universe, and region display particular windows in
the universe.

x indicates the center of a defined-area. Option ,iew indicates the cen­
ter of the screen.

zoom
decreases (zoom out) or increases the magnification of the viewing
window based on the defined-area. For increased magnification, the
window is set to circumscribe the defined-area. For a decrease in
magnification the current window is inscribed within the defined-area.

Other commands:
quit or Quit

exit from ged. quit responds with ? if the display buffer has not been
written since the last modification.

read inputs tbe contents of a file. If the file contains a GPS it is read
directly. If the file contains text it is converted into text objccl(S).
The first line of a text file begins at destination.

set when given option(s) resets default parameters, otherwise it prints
current default values.

write
outputs the contents of the display buffer to a file.

- 5 -

GED(IG) GED(lG)

escapes ged to execute a UNIX comman.d.

? lists ged commands.

SEE ALSO
graphics(lG), gdev(lG), rsh(l), gps(5).
A Tutorial IntTotiuction to .the Graphical Editor by A. R. Feuer.

- 6 -

GET(l) GET(l)

NAME
get - get a version of an sces file

SYNOPSIS
get [-rSIO] [-ccutoff] [-ilist] [-xlist] [-.seq-no.] [-It) [-e)
[-HpJ] [-p] [-.] [-a) [-a) [-.,) [-I) [-t] file ••.

DESCItIPTION
Get generates an ASCII text file from each named sces file according to the
specifications given by its keyletter arguments, which begin with -. The
arguments may be specified in any order, but all keyletter arguments apply
to all named sces files. If a directory is named, get behaves as thoUI.
each file in- the directory were specified as a named file, except that non­
sces files (last component of the path name does not begin with s.) and
unreadable files are silently ignored. If a name of - is given, the standard
input is read; each line of the standard input is taken to be the name of an
sees file to be processed. Again, non-5Ces files and unreadable files are
silently ignored.

The generated text is normally written into a file called the g-file whose
name is derived from the sces file name by simply removing the leading
s.; (see also FILES, below).

Each of the keyletter arguments is explained below as though only one
sees file is to be processed, but the effects of any keyletter argument
applies independently to each named file.

-rSID The sces IDentification string (SID) of the version (delta) oi
an sces file to be retrieved. Table 1 below shows, for the most
useful cases, what version of an sees file is retrieved (as well
as the SID of the version to be eventually created by delta (I) if
the -e keyletter is also used), as a function of the SID
specified.

-ccutoJf Cutoff date-time, in the form:

YV[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file which were created after
the specified cutoff date-time are included in the generated ASCII
text file. Units omitted from the date-time default to their
maximum possible values; that is, -e7S02 is equivalent to
-e758ll1135959. Any number of non-numeric characters may
separate the various 2 digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:
"-e77 /2/2 9:11:15". Note that this implies that one. may use
the %E% and %U% identification keywords (see below) for
nested gets within, say the input to at(lC) command:

-!get "-c%E% %U%" s.file

- e Indicates that the pt is for the purpose of editing or making a
change (delta) to the' sees file via a subsequent use of tklla(l).
The -e keyletter used in a pt for a particular version (SID) of
the sees file prevents further i«s for editing on the same SID
until tklta is executed or the j (joint edit) ftag is set in the sees
file (see admin(l». Concurrent use of tet -e for different
SIDs is always allowed.

If the "file generated by pt with an -e keyletter is ac:cidentaUy
ruined in the process of editing it. it may be regenerated by re­
executing the pt command with the - It keyletter in place of
the -e keyletter.

- 1 -

GET(1)

-b

-ilist

-xiist

-k

-I[p]

-p

-5

-ID

-a

-&

-t

GET(l)

sees file protection specified via the ceiling, floor, and author­
ized user list stored in the sees file (see admin (1» are enforced
when the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta
should have an SID in a new branch as shown in Table 1. This
keyletter is ignored if the b flag is not present in the file (see
admin(l» or if the retrieved delta is not a leaf delta. (A leaf
delta is one that has no successors on the sees file tree.)
Note: A branch delta may always be created from a non-leaf
delta.

A list of deltas to be included (forced to be applied) in the
creation of the generated file. The list has the following syntax:

<list> ::= <range> I <list> • <range>
<range> ::= SID I SID - SID

SID, the sees Identification of a delta, may be in any form
shown in the "SID Specified" column of Table 1. Partial SIDs
are interpreted as shown in the "SID Retrieved" column of
Table 1.

A list of deltas to be excluded (forced not to be applied) in the
creation of the generated file. See the - i keyletter for the list
format.

Suppresses replacement of identification keywords (see below)
in the retrieved text by their value. The - k keyletter is
implied by the -e keyletter.

Causes a delta summary to be written into an i-file. If -I, is
used then an I-file is not created; the delta summary is written
on the standard output instead. See FILES for the format of the
I-file.

Causes the text retrieved from the sees file to be written on
the standard output. No g-file is created. All output which nor­
mally goes to the standard output goes to file descriptor 2
instead, unless the -5 keyletter is used, in which case it disap­
pears.

Suppresses all output normally written on the standard output.
However, fatal error messages (which always go to file descrip­
tor 2) remain unaffected.

Causes each text line retrieved from the sees file to be pre­
ceded by the SID of the delta that inserted the text line in the
sees file. The format is: SID, followed by a horizontal tab, fol­
lowed by the text line.

Causes each generated text line to be preceded with the %M%
identification keyword value (see below). The format is: %M%
value, followed by a horizontal tab, followed by the text line.
When both the -ID and -a keyletters are used, the format is:
%M% value, followed by a horizontal tab, followed by the - ID

keyletter generated format.

Suppresses the actual retrieval of text from the sees file. It is
primarily used to generate an I-file, or to verify the existence of
a particular SID.

Used to access the most recently created ("top") delta in a
given release (e.g., -rl), or release and level (e.g., -rl.l).

- 2 "

GET(l) GET(l)

SID·

-aseq-no. The delta sequence number of the sees file delta (version) to
be retrieved (see sccsfile(5». This keyletter is used by the
combO) command; it is not a generally useful keyletter, and
users should not use it. If both the -r and -a keyletters are
specified, the -a keyletter is used. Care should be taken when
using the -a keyletter in conjunction with the -e keyletter, as
the SID of the delta to be created may not be what one expects.
The -r keyletter can be used with the -a and -e keyletters to
control the naming of the SID of the delta to be created.

For each file processed, get responds (on the standard output) with the SID
being accessed and with the number of lines retrieved from the sees file.

If the -e keyletter is used, the SID of the delta to be made appears after
the SID accessed and before the number of lines generated. If there is
more than one named file or if a directory or standard input is named, each
file name is printed (preceded by a new-line) before it is processed. If the
-i keyletter is used included deltas are listed following the notation "Inclu­
ded"; if the -:I: keyletter is used, excluded deltas are listed following the
notation "Excluded".

TABLE I. Determination of sees Identification String
- b Keyletter Other SID SID of Delta

Specified Usedt Conditions Retrieved to be Created
nonet
nonet
R
R
R
R

R

R

R.L
R.L

R.L

R.L.B
R.L.B
R.L.B.s
R.L.B.s
R.L.B.S

•

..

no R defaults to mR mR.mL mR.(mL+I)
yes R defaults to mR mR.mL mR.mL.(mB+1).1
no R>mR mR.mL R.I···
no R- mR mR.mL mR.(mL+l)
yes R>mR mR.mL mR.mL.(mB + I).1
yes R- mR mR.mL mR.mL.(mB+l).1

R < mRand hR.mL·· hR.mL.(mB+I).1 R does not exist
Trunk succ. *
in release > R R.mL R.mL.(mB+I).1
and R exists

no No trunk succ. R.L R.(L+l)
yes No trunk succ. R.L R.L.(mB + I).1

Trunk succ. R.L R.L.(mB+l).l in release > R
no No branch succ. R.L.B.mS R.L.B.(mS+l)
yes No branch succ. R.L.B.mS R.L.(mB+l).1
no No branch succ. R.L.B.s R.L.B.(S + I)
yes No branch succ. R.L.B.s R.L.(mB+I).1

Branch succ. R.L.B.s R.L.(mB+l).1

UR", uL", uB", and US" are the urel~e", ulevel", ubranch", and
Usequence" components of the SID, respectively; um" means umax-
imum". Thus, for example, uR.mL" means Uthe maximum level
number within release R"; uR.L.(mB+ 1).1" means Uthe first
sequence number on the MW branch (i.e., maximum branch number
plus one) of level L within release R". Note that if the SID specified
is of the form "R.L" , uR.L.B", or "R.L.B.s", each of the specified
components must exist .
uhR" is the highest existing release that is lower than the specified,
n01leJdstelll, release R.

- 3 -

GET(l) GET(I)

••• This is used to force creation of the first delta in a new release.
II Successor.
t The -b keyletter is effective only if the It flag (see admin (l» is

present in the file. An entry of - means "irrelevant".
:I: This case applies if the til (default SID) flag is not present in the file. If

the II ftag is present in the file, then the SID obtained from the II flag is
interpreted as if it had been specified on the command line. Thus,
one of the other cases in this table applies.

IDENTIFICATION KEYWOItDS

FILES

Identifying information is inserted into the text retrieved from the sees file
by replacillg identification keyworis with their value wherever they occur.
The following keywords may be used in the text stored in an sees file:

Keyword Value
%M% Module name: either the value of the III flag in the file (see

%1%

%R%
%L%
%B%
%S%
%1>%
%H%
%TI!(,
%E,.
%G%
I!(,U%
%Y%
%F%
%P%
%Q%
%C%

%Z%
%W%

%A%

admin(1», or if absent, the name of the sees file with the
leading s. removed.
sees identification (SID) (%It%.%L%.%B%.%S%) of the
retrieved text.
Release.
Level.
Branch.
Sequence.
Current date (YV/MM/DD).
Current date (MM/DD/YV).
Current time (HH:MM:SS).
Date newest applied delta was created (YV /MM/DD).
Date newest applied delta was created (MM/DD/YV).
Time newest applieG delta was created (HH:MM:SS).
MoGule type: vahle of the t flag ill the sees file (see admi" (1».
sees file name.
Fully qualified sees file name.
The value of the III flag in the file (see admin(l».
Currel'lt lille IUlmber. This keyword is intended for identifying
messages output by the program such as "this shouldn't have
happened" type errors. It is IfOt intended to be used on every
line to provide seq¥ellce numbers.
The 4-character string @(I) recognizable by what(l).
A shorthand notation for constructillg what (1) strings for UNIX
program files. %W% = %Z%%M%<horizontal-tab>%I%
Another shorthand notation for constructing what(1) strings for
non-UNIX program files. %A% =- %Z%%Y% %M% %I%%Z%

Several auxiliary files may be created by get, These files are known generi­
cally as the g-file. I-file, p-file. and z-file. The letter before the hyphen is
called the tag. An auxiliary file Ilame is formed from the sees file name:
the last component of aU sees file names must be of the form s.module­
name, the auxiliary files are named by replacing the leading s with the tag.
The g-file is an exception to this scheme: the g-file is named by removing
the s. prefix. For example, s.xyz.c::, the auxiliary file names would be
xyz.c, I.xyz.c. ,.xyz.c, and z.xyz.c, respectively.

The g-file, which contains the generated text, is created in the current
directory (unless the -p keyletter is used). A g-file is created in all cases,
whether or not any lines of text were generated by the get. It is owned by
the real user. If the -It keyletter is used or implied its mode is 644; oth­
erwise its mode is 444. Only the real user need have write permission in

- 4 -

GET(I) GET(I)

the current directory.

The I-file contains a table showing which deltas were applied in generating
the retrieved text. The I-file is created in the current directory if the -I
keyletter is used; its mode is 444 and it is owned by the real user. Only the
real user need have write permission in the current directory.

Lines in the I-file have the following format:

a. A blank character if the delta was applied;
• otherwise.

b. A blank character if the delta was applied or wasn't applied
and ignored;
• if the delta wasn't applied and wasn't ignored.

c. A code indicating a "special" reason why the delta was or
was not applied:

"I": Included.
"X": Excluded.
"C": Cut off (by a -c keyletter).

d. Blank.
e. sees id'entification (SID).
f. Tab character.
g. Date and time (in the form YY /MM/DD HH:MM:SS) of

creation.
h. Blank.
1. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented
one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e
keyletter along to delta. Its contents are also used to prevent a subsequent
execution of get with an -e keyletter for the same SID until delta is execu­
ted or the joint edit flag, j, (see admill(l» is set in the sees file. The p-file
is created in the directory containing the secs file and the effective user
must have write permission in that directory. Its mode is 644 and it is
owned by the effective user. The format of the p-file is: the gotten SID, fol­
lowed by a blank, followed by the SID that the new delta will have when it
is made, followed by a blank, followed by the login name of the real IIser,
followed by a blank, followed by the date-time the get was executed, fol­
lowed by a blank and the -i keyletter argument if it was present, followed
by a blank and the -x keyletter argument if it was present, followed by a
new-line. There can be an arbitrary number of lines in the p-jile at any
time; no two lines can have the same new delta SID.

The z-jile serves as a lock-out mechanism against simultaneous updates. Its
contents are the binary (2 bytes) process ID of the command (i.e., get) that
created it. The z-file is created in the directory containing the secs file for
the duration of get. The same protection restrictions as those for the p-file
apply for the z-jile. The z-file is created mode 444.

SEE ALSO
admin(l), delta(l), help(l), prs(l), what(l), sccsfile(S).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Use help(l) for explanations.

If the effective user has write permission (either explicitly or implicitly) in
the directory containing the secs files, but the real user doesn't, then only
one file may be named when the -e keyletter is used.

- 5 -

GETOPT(l) GETOPT(l)

NAME
getopt - parse command options

SYNOPSIS
set - - ~ getopt optstring S. ~

DESCRIPTION
Getopt is used to break up options in command lines for easy parsing by
shell procedures, and to check for legal options. Optstring is a string of
recognized option letters (see getopt(3C); if a letter is followed by a colon,
the ogtion is expected to have an argument which mayor may not be
separated from it by white space. The special option - - is used to delimit
the end of the options. Getopt will place - - in the arguments at the end
of the options, or recognize it if used explicitly. The shell arguments ($1
$2 ...) are reset so that each option is preceded by a - and in its own
shell argument; each option argument is also in its own shell argument.

DIAGNOSTICS
Getopt prints an error message on the standard error when it encounters an
option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the options a and b, and the option 0, which
requires an argument.

set - - • getopt abo: $*­
if [$7 != 0]
then

fi

echo $USAGE
exit 2

for i in $*
do

done

case $i in
-a I -b)
-0)
--)
esac

FLAG=$i; shift;;
OARG=$2; shift; shift;;
shift; break;;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd - oarg - a file file
cmd -a -oarg - - file file

SEE ALSO
sh(I), getopt(3C).

- 1 -

GRAPH(IG) GR.APH(1G)

NAME
graph - draw a graph

SYNOPSIS
graph [options 1

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as
abscissas and ordinates of a graph. Successive points are connected by
straight lines. The graph is encoded on the standard output for display by
the tplot(1 G) filters.

If the coordinates of a point are followed by a non-numeric string, that
string is printed as a label be!inning on the point. Labels may be surroun­
ded with quotes', in which case they may be empty or contain blanks and
numbers; labels never contain new-lines.

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument (default 1). A second
optional argument is the starting point for automatic abscissas
(default 0 or lower limit given by -x).

-b Break (disconnect) the graph after each label in the input.
- c Character string given by next argument is default label for each

point.
-g Next argument is !rid style, 0 no grid, 1 frame with ticks, 2 full

grid (default).
-1 Next argument is label for graph.
-m Next argument is mode (style) of connecting lines: 0 disconnec-

ted, 1 connected (default). Some devices give distinguishable
line styles for other small integers (e.g., the Tektronix 4014:
2=dotted, 3==dash-dot, 4-short-dash, S-=long-dash).

-s Save screen, don't erase before plotting.
- x [I] If I is present, x axis is logarithmic:. Next 1 (or 2) arguments

are lower (and upper) x limits. Third argument, if present, is
grid spacing on x axis. Normally these quantities are deter­
mined automatically.

- y [I] Similarly for y.
- h Next argument is fraction of space for height.
-w Similarly for width.
-r Next argument is fraction of space to move right before plotting.
- u Similarly to move up before plotting.
-t Transpose horizontal and vertical axes. (Option -x now applies

to the vertical axis.)
A legend indicating grid range is produced with a grid unless the -s option
is present. If a specified lower limit exceeds the upper limit, the axis is
reversed.

SEE ALSO

BUGS

graphics(1G), spline(lG), tplot(lG).

Graph stores all points internally and drops those for which there isn't
room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed .

• 1 •

GRAPHICS(lG) GRAPHICS(IG)

NAME
graphics - access graphical and numerical commands

SYNOPSIS
graphics [-r]

DFSClUmON
Graphics appends the path name /usr/bin/graf to the current SPATH
value, changes the primary shell prompt to -, and executes a new shell.
The directory /usr/bin/gr.f contains all of the Graphics subsystem com­
mands. If the -r option is given, access to the graphical commands is
created in a restricted environment; that is, SPATH is set to /:rbin:­
/usr /rbin:/biD:/usr /biD:/usr/bin/graf and the restricted shell, rsh (l), is
invoked. To restore the environment that existed prior to issuing the gra­
phics command, type EOT (control-d on most terminals). To logoff from
the graphics environment, type quit.

The command line format for a command in graphics is Comtnllnd name fol­
lowed by argwnent(s). An argument may be a file name or an option string.
A file name is the name of any UNIX file except those beginning with -.
The file name - is the name for the standard input. An option string con­
sists of - followed by one or more option(s). An option consists of a
keyletter possibly followed by a value. Options may be separated by com­
mas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat(l G).

Commands that generate tables of contents; see tac(lG).

Commands that interact with graphical devices; see gdev (1 G) and
ged(lG).

A collection of graphical utility commands; s.ee guti/(lG).

A list of the graphics commaftds can be &enerated by typing w ntis in the
grtIphics environment.

SEE AlSO
gdev(lG), ged(lG), gutil(1G), stat(lG), toc(lG), gps(5).
UNIX Graphics Overview by A. R. Feuer.
Administrative InfomuJtioll for the UNIX Graphics Package by R. L. Chen, D.
E. Pinkston, and A. Guyton.

- 1 -

GREEK. (1) GREEK. (1)

NAME
greek - select terminal filter

SYNOPSIS
greek [- Tterminal]

DESCRIPTION

FILES

Greek is a filter that reinterprets the extended character set, as well as the
reverse and half-line motions, of a 128-character TELETYPe- Model 37 ter­
minal (which is the 1170ff(1) default terminal) for certain other terminals.
Special characters are simulated by overstrilting, if necessary and possible.
If the argument is omitted, greek attempts til use the environment variable
STERM (sec ellwOII(7». The following IB'milUl/s are recognized currently:

300 DASI 300.
300-12 DASI 300 in 12-pitch.
3005 DASI 300s.
300s-12 DASI 300s in 12-pitch.
450 DASI 450.
450-12 DASI 450 in 12-pitch.
1620 Diablo 1620 (alias DASI450).
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch.
2621 Hewlett-Packard 2621, 2640, and 2645.
2640 Hewlett-Packard 2621, 2640, and 2645.
2645 Hewlett-Packard 2621, 2640, and 2645.
4014 Tektronix 4014.
hp Hewlett-Packard 2621, 2640, and 2645.
tek Tektronix 4014.

/usr/bin/300
/usr/bin/300s
/usr/bin/4014
/asr/bin/450
/usr/bin/hp ... ,.

SEE ALSO
300(1), 300s(1), 4014(1), 450(1), eqn(l), p-eek(7), hp(1), mm(I),
nrotr(l), tplot(lG), environ(7), term(7).

- 1 -

I

GR.EP(1) GR.EP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [options] expression [files]

egrep [options] [expression] [files]

fgrep [optio ns] [strings] [files]

DESCIUPTION
Commands of the grep family search the input files (standard input default)
for lines matching a pattern. Normally, each line found is copied to the
standard output. Grep patterns are limited regular expressions in the style
of ed(I); it uses a compact non-deterministic algorithm. Egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that
sometimes needs exponential space. Fgrep patterns are fixed strings; it is
fast and compact. The following options are recognized:
-,
-x
-e
-I

-0

-b

-s

All lines but those matching are printed.
(Exact) only lines matched in their entirety are printed ifgrep only).
Only a count of matching lines is printed.
Only the names of files with matching lines are listed (once), separa­
ted by new-lines.
Each line is preceded by its relative line number in the file.
Each line is preceded by the block number on which it was found.
This is sometimes useful in locating disk block numbers by context.
The error messages produced for nonexistent or unreadable files are
suppressed (grep only).

- e expression
Same as a simple expression argument, but useful when the expres­
sion begins with a - (docs not work with grep).

-ffue
The relular expression (egrep) or strings list ifgrep) is taken from the
file.

In all cases, the file name is output if there is more than one input file.
Care should be taken when using the characters $, ., [, -, I, (,), and \ in
expression, because they are also meaningful to the shell. It is safest to
enclose the entire expression argument in single quotes' ... '.

Fgrep searches for lines that contain one of the strings separated by new­
lines.

Egrep accepts regular expressions as in ed(1), except for \(and \). with the
addition of:

1. A regular expression followed by + matches one or more occurren­
ces of the regular expression.

2. A regular expression followed by ? matches 0 or 1 occurrences of
the regular expression.

3. Two regular expressions separated by I or by a new-line match
strings that are matched by either.

4. A regular expression may be enclosed in parentheses () for
grouping.

The order of precedence of operators is [], then .. ? +, then concatenation,
then I and new-line.

SEE ALSO
ed(l), sed(1), sh(1).

- 1 -

GREP(I) GREP(I)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or
inaccessible files.

Ideally there should be only one gnp, but we don't know a single algorithm
that spans a wide enough range of space-time tradeoffs.
Lines are limited to 256 characters; longer lines are truncated.
Egrep does not recognize ranges, such as (a-z), in character classes.

- 2 -

GUTlL(IG) GUTlL(IG)

NAME
gutil - graphical utilities

SYNOPSIS
command-name [options] [files]

DESCRJPTION
Below is a list of miscellaneous device independent utility commands found
in lasr/biD/"af. If no files are given, input is from the standard input.
All output is to the standard output. Graphical data is stored in GPS for­
mat; see gp.r(5).

bel

cntopt

- send bel character to terminal

[==s.rtring fstring istring t.rtring] [args] - options converter
Cvrtopt reformats args (usually the command line arguments of
a calling shell procedure) to facilitate processing by shell pro­
cedures. An arg is either a file name (a string not beginning
with a -, or a - by itself) or an option string (a string of
options beginning with a -). Output is of the form:

-option -option . .. file name(s)
All options appear singUlarly and preceding any file names.
Options that take values (e.g .• -r1.1) or are two letters long
must be described through options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the
first line of a shell procedure:

set - 'cnto,. =[options) S@'
Options to cvrtopt are:

sstring

(string

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

String accepts integers as valaes.

String is a two letter option name that takes no value.

String is a one or two letter option name.

gd [GPS files] - GPS dump
Gd prints a human readable listing of GPS.

gto, [-rn a I [GPS files] - GPS to pIot(5) filter
GlOp transforms a GPS into plot(5) commands displayable by
plot(lG) filters. GPS objects are translated if they fall within the
window that circumscribes the first file unless an optiOfl is given.
Options:

rn translate objects in GPS region n.

a translate all objects in the GPS aniverse.

pd [plot(5) files] - plot(5) dump
Pd prints a human readable listing of p/ot(5) format graphical
commands.

ptog [plot(5) files] - plot(5) to GPS filter
Ptog transforms plot(5) commands into a GPS.

qait - terminate session

remcom [files I - remove comments
Remcom copies its input to its output with comments removed.
Comments are as defined in C (i.e., /. comment ./).

- 1 -

GUTIL(lG) GUTIL(lG)

wla.tis [-.] [urnes] - ltrief online documentation
Whatis prints a brief description of each If/Ime Jiven. If no 1UIme

is livell, then the curreat list of description INI1IfD is printed.
wlaatis \. prints Ollt every description.
Option:

• just· print com~nd epti.ons

y.. file - pipe fittinl

SEE AlSO

Yoo is a piping primitive that deposits the 01ltput of a pipeline
into a file used in the pipeline. Note that, witDout yoo, this is
not usually successful as it causes a read and write on the same
file simultaneously.

graphics(lG), gps(S).

- 2-

HELP(I) HELP(I)

NAME
help - ask for help

SYNOPSIS
help [args]

DESCRIPTION

FILES

Help finds information to explain a message from a command or explain
the use of a command. Zero or more arguments may be supplied. If no
arguments are given, help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the fol­
lowing types:

type I Begins with non-numerics, ends in numerics. The
non-numeric prefix is usually an abbreviation for the
program or set of routines which produced the mes­
sage (e.g., ge6, for message 6 from the get com­
mand).

type 2

type 3

Does not contain numerics (as a command, such as
get)

Is all numeric (e.g., 211)

The response of the program will be the explanatory information related to
the argument, if there is any.

When all else fails, try "help stuck".

/usr/lib/help directory containing files of message text.

DIAGNOSTICS
Use he/p(1) for explanations.

- 1 -

HP(1) HP(l)

NAME
hp - handle special functions of HP 2640 and 2621-series terminals

SYNOPSIS
hp [-e] [-m]

DESCRIPTION
Hp supports special functions of the Hewlett-Packard 2640 series of ter­
minals, with the primary purpose of producing accurate representations of
most nroff(I) output. Typical uses are:

nroff - h files ... I hp
nroff - h -s ... files I hp

In the latter case, nroff will stop at the beginning of each page (including
the first) and wait for you to hit line-feed (control-j) before resuming out­
put.

Regardless of the hardware options on your terminal, hp tries to do sensible
things with underlining and reverse line-feeds. If the terminal has the
"display enhancements" feature, subscripts and superscripts can be indi­
cated in distinct ways. If it has the "mathematical-symbol" feature, Greek
and other special characters can be displayed.

The flags are as follows:

-e It is assumed that your terminal has the "display enhancements"
feature, and so maximal use is made of the added display modes.
Overstruck characters are presented in the Underline mode. Super­
scripts are shown in Half-bright mode, and subscripts in Half­
bright, Underlined mode. If this flag is omitted, hp assumes that
your terminal lacks the "display enhancements" feature. In this
case, all overstruck characters, subscripts, and superscripts are
displayed in Inverse Video mode, i.e., dark-on-Iight, rather than the
usual Iight-on-dark.

-m Requests minimization of output by removal of new-lines. Any
contiguous sequence of 3 or more new-lines is converted into a
sequence of only 2 new-lines; i.e., any number of successive blank
lines produces only a single blank output line. This allows you to
retain more actual text on the screen.

With regard to Greek and other special characters, hp provides the same set
as does 300(1), except that "not" is approximated by a right arrow, and
only the top half of the integral sign is shown. The display is adequate for
examining output from neqn(1).

DIAGNOSTICS
"line too long" if the representation of a line exceeds 1,024 characters.
The exit codes are 0 for normal termination, 1 for all errors.

SEE ALSO

BUGS

300(1), col(1), greek(1), neqn(1), tbl(I), troff(I).

An "overstriking sequence" is defined as a printing character followed by a
backspace followed by another printing character. In such sequences, if
either printing character is an underscore, the other printing character is
shown underlined or in Inverse Video; otherwise, only the first printing
character is shown (again, underlined or in Inverse Video). Nothing special
is done if a backspace is adjacent to an AScn control character. Sequences
of control characters (e.g., reverse line-feeds, backspaces) can make text
"disappear"; in particular, tables generated by tbl(l) that contain vertical
lines will often be missing the lines of text that contain the "foot" of a

- I -

HP(t) HP(l)

vertical line, unless the input to Itp is piped throtlsh col (1).
Althoulh some terminals do provide numerical superscript characters, no
attempt is made to display them.

- 2 -

HYPHEN(l) HVPHEN(l)

NAME
hyphen - find hyphenated words

SYNOPSIS
bypben files

DESCR.IPTlON

BUGS

Hyphen finds all the hyphenated words in files and prints them on the stan­
dard output. If no arguments are given, the standard input is used. Thus
hyphen may be used as a filter.

Hyphen can't cope with hyphenated italic (i.e., underlined) words; it will
often miss them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than
spurious extra output.

-1 -

ID(1) ID(I)

NAME
id - print user and group IDs and names

SYNOPSIS
id

DESCRJPTlON
ld writes a message on the standard output giving the user and group IDs
and the corresponding names of the invoking process. If the effective and
real IDs do not match, both are printed.

SEE ALSO
logname(1). getuid(2). getgid(2).

- 1 -

INSTALL (1M) INSTALL(1M)

NAME
install - install commands

SYNOPSIS
iDstall [-e dira] [-f dirb] [-i] [-D dire] [-0] [-s]
file [dirx ...]

DESCRIPTION
Install is a command most commonly used in "makefiles" (see make(l»
to install a file (updated target file) in a specific place within a file system.
Each file is installed by copying it into the appropriate directory, thereby

. retaining the mode and owner of the original command. The program
prints messages telling the user exaCl.ly what files it is replacing or creating
and where they are going.

If no options or directories (dirx ...) are given, install will search (using
find(1» a set of default directories (IbiD, lusr IbiD, lete, IUb, and
lusrllib, in that order) for a file with the same name as file. When the
first occurrence is found, install issues a message saying that it is overwri­
ting that file with file, and p:-oceeds to do so. If the file is not found, the
program states this and exits without further action.

If one or more directories (dUx ...) are specified after file, those directories
will be searched before the directories specified in the default list.

The meanings of the options are:

-e diro Installs a new command in the directory specified in
dira. Looks for file in dira and installs it there if it is
not found. If it is found, install issues a message say­
ing that the file already exists, and exits without
overwriting it. May be used alone or with the -s
option.

-f dirb

-i

-D dire

-0

-s

SEE ALSO
mk(8).

Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the
new file will be set to 755 and biD, respectively. If
the file already exists, the mode and owner will be
that of the already existing file. May be used alone
or with the -0 or -s options.

Ignores default directory list, searching only through
the given directories (dUx ...). May be used alone or
with any other options other than -e and -f.

If file is not found in any of the searched directories,
it it put in the directory specified in dire. The mode
and owner of the new file will be set to 755 and biD,
respectively. May be used alone or with any other
options other than -c and -f.

If file is found, this option saves the "found" file by
copying it to OLD file in the directory in which it was
found. May be used alone or with any other options
other than -c.
Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

- 1 -

JOIN (I) JOIN (I)

NAME
join - relational database operator

SYNOPSIS
join [options] file I file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by
the lines of filel and file2. If filel is -, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the
fields on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that
have identical join fields. The output line normally consists of the common
field, then the rest of the line from filel, then the rest of the line from
file2.

Fields are normally separated by blank, tab or new-line. In this case, multi­
ple separators count as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for each unpairable
line in file n, where nisi or 2.

-e s Replace empty output fields by string s.
- jn m Join on the mth field of file n. If n is missing, use the mth field in

each file.

- 0 list Each output line comprises the fields specifed in list, each element
of which has the form n.m, where n is a file number and m is a
field number.

-tc Use character c as a separator (tab character). Every appearance of
c in a line is significant.

SEE ALSO

BUGS

awk(l), comm(l), sort(l).

With default field separation, the collating sequence is that of sort -b; with
-t, the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(1) are wildly incongru­
ous.

- 1 •

KAS(1) KAS(1)

NAME
kas - assembler for the KMCII microprocessor

SYNOPSIS
tas [name 1 [-0 namel] [-d name2 1

DESCRIPTION

FILES

Kas is an assembler/debugger/loader for the KMCII microprocessor. The
optional argument name specifies the input file; default is standard input.
The optional argument -0 indicates that the next argument namel will be
the output of the assembler; default is a.out. The optional argument -d
indicates that the assembler is to be used in debug mode and that the next
argument name2 is the device file name of the microprocessor. No output
file is created in debug mode.

Error diagnostics are written on the standard error output and contain the
input file name and line number and a brief description of the error. C
preprocessor control lines to change the file name and line number are
recognized. This allows the use of the preprocessor to expand the input
before assembly.

a.out
/dev/kmc?
/lib/cpp

output object
microprocessor device
C preprocessor

SEE ALSO
kun(1), kmc(4).
Assembler for the DEC KMCll Microprocessor by L. A. Wehr.

- 1 -

KILL(1) KlLL(1)

NAME
kill - terminate a process

SYNOPSIS
kill [-signo] processid

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. This will nor­
mally kill processes that do not catch or ignore the signal. The process
number of each asynchronous process started with & is reported by the
Shell (unless more than one process is started in a pipeline, in which case
the number of the last process in the pipeline is reported). Process num­
bers can also be found by using ps(l).

The details of the kill are described in kill(2). For example, if process
number 0 is specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super­
user.

If a signal number preceded by - is given as first argument, that signal is
sent instead of terminate (see signal(2». In particular "kill -9 ... " is a
sure kill.

SEE ALSO
ps(l), sh(!), kill(2), signal(2).

- 1 -

KUN(1) KUN(1)

NAME
kun - un-assembler for the KMCll/DMCll microprocessor

SYNOPSIS
kun [name 1 [-0 namel 1

DESCRIPTION
Kun is a un-assembler for the KMCII/DMCII microprocessors. It produces
an output listing, acceptable to the assembler kas(I), from the input object.

The optional argument name specifies the input object, default is standard
input. The format of the input is either assembler output (first word magic
0410), or formatted dump (first word magic 0440), or raw dump (anything
else). In the first two cases, tht. header is ignored.

The optional argument -0 indicates that the next argument name} is to
contain the output listing, default is standard output.

The input object is first scanned to determine branch destinations. Labels
will be inserted at these locations with format Lint:, where int is the octal
value of the location in words. Immediate values of instructions are also
printed in octal. Page breaks are noted by the labels PO:, ... , P3:.

SEE ALSO
kas(l), kmc(4).

- 1 -

LD(I) LD(1)

NAME
ld - link editor

SYNOPSIS
Id [-sulxXrdDilD] [-0 name] [-t name] [-v num] file ...

DESCR.IPTlON
Ld combines several object programs into one; resolves external references;
and searches libraries (as created by ar(l». In the simplest case several
object files are given, and ld combines them, producing an object module
which can be either executed or become the input for a further Id run. (In
the latter case, the -r option must be given to preserve the relocation
bits.) The output of ld is left on a.out. This file is made executable if no
errors occurred during the load and the -r flag was not specified.

The argument routines are concatenated in the order specified. The entry
point of the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is
encountered in the argument list. Only those routines defining an unresol­
ved external reference. are loaded. If a routine from a library references
another routine in the library, the referenced routine must appear after the
referencing routine in the library. Thus the order of programs within
libraries is important.

The symbols _etext, _edata and _eDd (etext, edata and eDd in C) are
reserved, and if referred to, are set to the first location above the program,
the first location above initialized data, and the first location above all data
respectively. It is erroneous to define these symbols.

Ld understands several flag arguments which are written preceded by a -.
Except for -I, they should appear before the file names.

-s "Strip" the output, that is, remove the symbol table and relocation
bits to save space (but impair the usefulness of the debugger).
This information can also be removed by strip(l). This option is
turned off if there are any undefined symbols.

- u Take the following argument as a symbol and enter it as undefined
in the symbol table. This is useful for loading wholly from a
library, since initially the symbol table is empty and an unresolved
reference is needed to force the loading of the first routine.

-I This option is an abbreviation for a library name. -I alone stands
for /UII/Ubc.a, which is the standard system library for C and
assembly language programs. -Ix stands for /UII/liltx.a, where x
is a string. If that does not exist, ld tries /usr/lill/liltx.a A library
is searched when its name is encountered, so the placement of a -I
is significant.

-x Do not preserve local (non-.globl) symbols in the output symbol
table; only enter external symbols. This option saves some space in
the output file.

- X Save local symbols except for those whose names begin with L.
This option is used by cc to discard internally generated labels while
retaining symbols local to routines.

-r Generate relocation bits in the output file so that it can be the sub­
ject of another ld run. This ftag also prevents final definitions from
being given to common symbols, and suppresses the "undefined
symbol" diagnostics.

- 1 -

LD(I) LD(I)

FILES

-d Force definition of common storage even if the -r ftag is present.

-D Arrange that when the output file is executed, the text portion will
be read-only and shared among all users executing the file. This
involves moving the data areas up to the first possible 4K word
boundary following the end of the text. On the VAX 11/780, this
option is on by default; use - N to turn it off.

-i When the output file is executed, the program text and data areas
will live in separate address spaces. The only dift"erence between
this option and -D is that here the data starts at location o. This
option is meaningful only on the PDP-ll; it does nothing on the
VAX.

- m The names of all files and archive members used to create the out­
put file are written to the standard output.

-0 The name argument after -0 is used as the name of the III output
file, instead of a.out.

-t The name argument is taken to be a symbol name, and any
references to or definitions of that symbol are listed, along with
their types. There can be up to 16 occurrences of -tnGme on the
command line.

-v The num argument is taken as a decimal version number iden­
tifying the a.out that is produced. Num must be in the range
0-32767. The version stamp is stored in the a.o.t header; lice
a.out(5).

/lib/lib? .a
/usr /lib/lib?a
a.out

libraries
more libraries
output file

SEE ALSO
ar(l), as(1), cc(I), a.out(5).

- 2 -

I

LEX(l) LEX(l)

NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-rchn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to
be searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the
input to the output except when a string specified in the file is found; then
the corresponding program text is executed. The actual string matched is
left in yytext, an external character array. Matching is done in order of the
strings in the file. The strings may contain square brackets to indicate
character classes, as in [abx-z] to indicate a, b, x, y, and z; and the opera­
tors *, +, and? mean respectively any non-negative number of, any posi­
tive number of, and either zero or one occurrences of, the previous charac­
ter or character class. The character . is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation
are also supported. The notation r{d,e} in a rule indicates between d and e
instances of regular expression r. It has higher precedence than I. but lower
than *, ?, +, and concatenation. The character' at the beginning of an
expression permits a successful match only immediately after a new-line,
and the character S at the end of an expression requires a trailing new-line.
The character I in an expression indicates trailing context; only the part of
the expression up to the slash is returned in yytext, but the remainder of
the expression must follow in the input stream. An operator character may
be used as an ordinary symbol if it is within • symbols or preceded by \.
Thus [a - zA - Z] + matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a charac­
ter; unput(c) to replace a character read; and output(c) to place an output
character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylex(). and the library
contains a main() which calls it. The action REJECT on the right side of
the rule causes this match to be rejected and the next suitable match execu­
ted; the function yymore() accumulates additional characters into the same
yytext; and the function yyless(p) pushes back the portion of the string
matched beginning at p, which should be between yytext and yytext+yyleng.
The macros input and output use files yyin and yyout to read from and
write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is
copied; if it precedes %% it is copied into the external definition area of the
lex.yy.c file. All rules should follow a %%, as in Y ACe. Lines preceding
%% which begin with a non-blank character define the string on the left to
be the remainder of the line; it can be called out later by surrounding it
with {}. Note that curly brackets do not imply parentheses; only string sub­
stitution is done.

EXAMPLE
D [0-9]
%%
if printf("IF statement\n");
[a - z] + printf("tag, value %s\n" ,yytext);
O{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);

- I -

LEX(I) LEX(I)

"++" printf("unary op\n");
"+" printf("binary op\n");
"/." { loop:

while (inputO != '.');
switch (input(»

{
case'/,: break;
case '.': unput('.');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files. The fiag -r indicates RATFOR
actions, -c indicates C actions and is the default, -t causes the lex.yy.c
program to be written instead to standard output, -, provides a one-line
summary of statistics of the machine generated, -n will not print out the
- summary. Multiple files are treated as a single file. If no files are
specified, standard input is used.

Certain table sizes for the resulting finite state machine can be set in the
definitions section:

%p n number of positions is n (default 2000)

%n n number of states is n (500)

%t n number of parse tree nodes is n (1000)

%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -, option,
unless the - n option is used.

SEE ALSO
yacc(l).
LEX - Lexical Analyzer Generator by M. E. Lesk and E. Schmidt.

BUGS
The -r option is not yet fully operational.

- 2 -

LlNE(l)

NAME
line - read one line

SYNOPSIS
line

DESCRIPTION

LlNE(l)

Line copies one line (up to a new-line) from the standard input and writes
it on the standard output. It returns an exit code of 1 on EOF and always
prints at least a new-line. It is often used within shell files to read from the
user's terminal.

SEE ALSO
sh(l), read(2).

- 1 -

L1NK(1M)

NAME
link, unlink - exercise link and unlink system calls

SYNOPSIS
jete/link filel file2
/ete/unIiDk file

DESClUPTION

L1NK(1M)

Link and unlink perform their respective system caDs on their arguments,
abandoning all error checking. These commands may only be executed by
the super-user, who (it is hoped) knows what he or she is doing.

SEE ALSO
rm(l), link(2), unlink(2).

".

- 1 -

UNT(l) UNT(I)

NAME
lint - a C program checker

SYNOPSIS
lint [-abc:hnpuyx 1 file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be
bugs, non-portable, or wasteful. It also checks type usage more strictly
than the compilers. Among the things which are currently detected are
unreachable statements, loops not entered at the top, automatic variables
declared and not used, and logical expressions whose value is constant.
Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying num­
bers of arguments, and functions whose values are not used.

It is assumed that all the files are to be loaded together; they are checked
for mutual compatibility. By default, lint uses function definitions from the
standard lint library Hib-Ie.ln; function definitions from the portable lint
library Hib-port.ln are used when lint is invoked with the -p option.

Any number of lint options may be used, in any order. The following
options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables
that are not long.

-b Suppress complaints about break statements that cannot be
reached. (Programs produced by lex or yacc will often result in a
large number of such complaints.)

-c: Suppress complaints about casts that have questionable portability.

- h Do not apply heuristic tests that attempt to intuit bugs, improve
style, and reduce waste.

- u Suppress complaints about functions and external variables used
and not defined, or defined and not used. (This option is suitable
for running lint on a subset of files of a larger program.)

-y Suppress complaints about unused arguments in functions.

-x Do not report variables referred to by external declarations but
never used.

The following arguments alter lint's behavior:

- n Do not check compatibility against either the standard or the porta-
ble lint library.

- p Attempt to check portability to other dialects (IBM and GCOS) of C.

The - D, - U, and - I options of cc(l) are also recognized as separate
arguments.

Certain conventional comments in the C source will change the behavior of
lint:

/*NOTREACHED*/
at appropriate points stops comments about unreachable
code.

/*v ARARGSn*/
suppresses the usual checking for variable numbers of
arguments in the following function declaration. The data
types of the first n arguments are checked; a missing n is
taken to be O.

- I -

LINT (]) UNT(I)

FILES

j*ARGSUSED*j
turns on the -, option for the next function.

j*LlNTLlBRARY*j
at the beginning of a file shuts off complaints about unused
functions in this file.

Lint produces its first output on a per SOUTce file basis. Complaints regar­
ding included files are collected and priJlted after all source files have been
processed. Finally, information gathered from all input files is collected
and checked for consistency. At this point, if it is not clear whether a com­
plaint stems from a given source file or f.om one of its included files, the
source file name will be printed followed by a question mark.

jusr jlibjlint[I 2]
jusr jlibjllib-Ic.ln

j usr jlibjllib-port.ln

programs
(binary format;

(binary format;

jusrjtmpj*lint*

SEE ALSO

declarations for standard functions
source is in j usr jlib jllib-Ie:)
declarations for portable functions
source is in jusrjlibjllib-port)
temporaries

BUGS

ce(1).

Exit(2) and other functions which do not return are not understood; this
causes various lies.

- 2 -

I

LOGIN (I) LOGIN (I)

NAME
login - sign on

DESCRIPTION

FILES

The login command is used at the beginning of each terminal session and
allows you to identify yourself to the system. It can no longer be invoked
explicitly, but is invoked by the system when a connection is first esta­
blished, or after the previous user has logged out by sending an "end-of­
file" (control- D) to his or her initial shell. (See How to Get Started at the
beginning of this volume for instructions on how to dial up initially.)

Login asks for your user name, and, if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password,
so it will not appear on the written record of the session.

At some installations, an option may be invoked that will require you to
enter a second "external" password. This will occur only for dial-up con­
nections, and will be prompted by the message "External security:". Both
passwords are required for a successful login.

If password aging has been invoked by the super-user on your behalf, your
password may have expired. In this case, you will be shunted into
passwd(l) to change it, after which you may attempt to login again.

If you do not complete the login successfully within a certain period of time
(e.g., one niinute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, you will be informed
of the existence (if any) of mail, and the profiles (i.e., /ete/profile and
SHOME/ • profile) (if any) are executed (see projiJe(5». Login initializes the
user and group IDs and the working directory, then executes a command
interpreter (usually sh (l» according to specifications found in the
/etc/passwd file. Argument 0 of the command interpreter is - followed
by the last component of the interpreter's path name. The environment (sec
environ(7» is initialized to:

HOME = your-login-directory
PATH=:/bin:/usr/bin
LOGNAME-your-Iogin-name

/etc/utmp
/usr/adm/wtmp
/usr / mail/your-name
/etc/motd
/etc/passwd
/etc/profile
SHOME/. profile

accounting
accounting
mailbox for user your-name
message-of-the-day
password file
system profile
personal profile

SEE ALSO
mail(l), newgrp(l),
environ(7), getty(8).

DIAGNOSTICS
Login incorrect

sh(l), passwd(l), sU(l), passwd(5), profile(5),

if the user name or the password is incorrect.
No shell, cannot open passwordjiJe, no directory:

consult a UNIX programming counselor.
Your password has eXpired. Choose a new one.

if password aging is implemented.

- 1 -

LOGNAME(I)

NAME
logname - get login name

SYNOPSIS
logname

DESCRIPTION

LOGNAME(I)

Logname returns the contents of the environment variable SLOG NAME,
which is set when a user logs into the system.

FILES
/etc/profile

SEE ALSO
env(1), login(I), logname(3X), environ(1).

- 1 -

LORDER(I) LORDER(I)

NAME
lorder - find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files (see or(l». The
standard output is a list of pairs of object file names, meaning that the first
file of the pair refers to external identifiers defined in the second. The out­
put may be processed by tson(l) to find an ordering of a library suitable for
one-pass access by ld(1).

This brash one-liner intends to build a new library from existing .0 files.

ar cr library • lorder *.0 I tsort •

*symref, *symdef temp files

SEE ALSO

BUGS

ar(l), ld(l), tsort(l).

Object files whose name do not end with .0, even when contained in library
archives, are overlooked. Their global symbols and references are attribu­
ted to some other file.

- 1 -

LPR(1) LPR(I)

NAME
Ipr - line printer spooler

SYNOPSIS
lpr [option ...] [name ...]

DESCRIPTION

FILES

Lpr causes the named files to be queued for printing on a line printer. If
no names appear, the standard input is assumed; thus /pr may be used as a
filter.

The following options may be given (each as a separate argument and in
any order) before any file name arguments:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
-m When printing is complete, reports that fact by mail(l).
-0 Does not report the completion of printing by mai/(1). This is the

default option.

j etcjpasswd
jusrjlibjlpd
jusrjspooljlpdj*

user's identification and accounting data.
line printer daemon.
spool area.

SEE ALSO
dpd(lC), dpr(1C), Ipd(lC).

- 1 -

LS(l) LS(l)

NAME
Is - list contents of directories

SYNOPSIS
Is [-Iogtasdrueif] names

DESCRIPTION
For each directory named, Is lists the contents of that directory; for each
file named, Is repeats its name and any other information requested. By
default, the output is sorted alphabetically. When no argument is given,
the current directory is listed. When several arguments are given, the
arguments are first sorted appropriately, but file arguments are processed
before directories and their contents. There are several options:

-I List in long format, giving mode, number of links, owner, group,
size in bytes, and time of last modification for each file (see below).
If the file is a special file, the size field win contain the major and
minor device numbers, rather than a size.

-0 The same as -I, except that the group is not printed.

-g The same as -I, except that the owner is not printed.

-t Sort by time of last modification (latest first) instead of by name.

-a List all entries; in the absence of this option, entries whose names
begin with a period (.) are not listed.

-s Give size in blocks (including indirect blocks) for each entry.

-d If argument is a directory, list only its name; often used with -I to
get the status of a directory.

-r Reverse the order of sort to get reverse alphabetic or oldest first, as
appropriate.

-u Use time of last access instead of last modification for sorting (with
the -t option) and/or printing (with the -I option).

-e Use time of last modification of the inode (mode, etc.) instead of
last modification of the file for sorting (-t) and/or printing (-I).

-i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -I, - t, - s, and
-r, and turns on -a; the order is the order in which entries
appear in the directory.

The mode printed under the -I option consists of 11 characters that are
interpreted as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
e if the entry is a character special file;
, if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the file; and the last to
aU others. Within each set, the three characters indicate permission
to read, to write, and to execute the file as a program, respectively.
For a directory, "execute" permission is interpreted to mean per­
mission to search the directory for a specified file.

- 1 -

LS(I)

FILES

The permissions are indicated as follows:

r if the file is readable;
" if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

LS(I)

The group-execute permission character is given as s if the file has
set-groupoID mode; likewise, the user-execute permission character
is given as s if the file has set-user-ID mode. The last character of
the mode (normally x or -) is t if the 1000 (octal) bit of the mode
is on; see chmod(1) for the meaning of this mode. The indications
of set-ID and 1000 bit of the mode are capitalized if the correspon­
ding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks,
including indirect blocks, is printed.

/etc/passwd
/etc/group

to get user IDs for Is -I and Is -0.
to get group IDs for Is -I and Is -g.

SEE ALSO
chmod(l), find(1).

- 2-

M4(1) M4(1)

NAME
m4 - macro processor

SYNOPSIS
m4 [optio ns] [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other
languages. Each of the argument files is processed in order; if there are no
files, or if a file name is -, the standard input is read. The processed text
is written on the standard output.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is
unbuffered. Using this mode requires a special state of mind.

- 5 Enable line sync output for the C preprocessor (# line ...)

- Bint Change the size of the push-back and argument collection buffers
from the default of 4,096.

- Hint Change the size of the symbol table hash array from the default of
199. The size should be prime.

-Sint Change the size of the call stack from the default of 100 slots.
Macros take three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before
any -D or -U flags:

- Dname [=val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If a defined macro
name is not followed by a (, it is deemed to have no arguments. Leading
unquoted blanks, tabs, and new-lines are ignored while collecting
arguments. Potential macro names consist of alphabetic letters, digits, and
underscore _, where the first character is not a digit.

Left and right single quotes are used to quote strings. The value of a
quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching
for a matching right parenthesis. Macro evaluation proceeds normally
during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection,
the value of the macro is pushed back onto the input stream and rescan­
ned.

M4 makes available the following built-in macros. They may be redefined,
but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define the second argument is installed as the value of the macro
whose name is the first argument. Each occurrence of Sn in
the replacement text, where n is a digit, is replaced by the n-

- 1 -

M4(l)

undefine

defn

pushdef

popdef

ifdef

shift

M4(l)

th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string; 5# is replaced by
the number of arguments; S. is replaced by a list of all the
arguments separated by commas; S@ is like s., but each
argument is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definition of its argument(s). It is useful
for renaming macros, especially built-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the
previous one if any.

if the first argument is defined, the value is the second
argument, otherwise the third. If there is no third argument,
the value is null. The word unix is predefined on UNIX ver­
sions of m4.

returns all but its first argument. The other arguments are
quoted and pushed back with commas in between. The quo­
ting nullifies the effect of the extra scan that will subsequently
be performed.

changequote change quote symbols to the first and second arguments. The
symbols may be up to five characters long. Changequote
without arguments restores the original values (i.e., '.).

changecom change left and right comment markers from the default #
and new-line. With no arguments, the comment mechanism
is effectively disabled. With one argument, the left marker
becomes the argument and the right marker becomes new­
line. With two arguments, both markers are affected. Com­
ment markers may be up to five characters long.

divert m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order;
initially stream 0 is the current stream. The divert macro
changes the current output stream to its (digit-string)
argument. Output diverted to a stream other than 0 through
9 is discarded.

undivert causes immediate output of text from diversions named as
arguments, or all diversions if no argument. Text may be
undiverted into another diversion. Undiverting discards the
diverted text.

divnum returns the value of the current output stream.

dnl reads and discards characters up to and including the next
new-line.

ifelse has three or more arguments. If the first argument is the
same &tring as the second, then the value is the third
argument. If not, and if there are more than four arguments,
the process is repeated with arguments 4, 5, 6 and 7. Oth­
erwise, the value is either the fourth string, or, if it is not
present, null.

incr returns the value of its argument incremented by 1. The
value of the argument is calculated by interpreting an initial
digit-string as a decimal number.

- 2 -

M4(l)

deer

eval

len

index

substr

translit

include

sinclude

syscmd

sysval

maketemp

m4exit

m4wrap

errprint

dumpdef

traceon

traccoff

SEE ALSO

M4(1)

returns the value of its argument decremented by I.

evaluates its argument as an arithmetic expression, using 32-
bit arithmetic. Operators include +, -, *, /, %, - (exponen­
tiation), bitwise A, I, -, and -; relationals; parentheses. Octal
and hex numbers may be specified as in C. The second
argument specifies the radix for the result; the default is 10.
The third argument may be used to specify the minimum
number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second
argument begins (zero origin), or -1 if the second argument
does not occur.

returns a substring of its first argument. The second
argument is a zero origin number selecting the first character;
the third argument indicates the length of the substring. A
missing third argument is taken to be large enough to extend
to the end of the first string.

transliterates the characters in its first argument from the set
given by the second argument to the set given by the third.
No abbreviations are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is
inaccessible.

executes the UNIX command given in the first argument. No
value is returned.

is the return code from the last call to syscmd.

fills in a string of XXXXX in its argument with the current pro­
cess ID.

causes immediate exit from m4. Argument 1, if given, is the
exit code; the default is o.
argument I will be pushed back at final EOF; example:
m4wrap(cleanup(f)
prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or
fOT aU if no arguments are given.

with no arguments, turns on tracing for aU macros (including
built-ins). Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraccd only by specific
calls to traceoff.

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

- 3 -

MAIL(1) MAIL(1)

NAME
mail, rmail - send mail to users or read mail

SYNOPSIS
mail [-rpq] [-f file]

mail persons

rmail persons

DESCRIPTION
Mail without arguments prints a user's mail, message-by-message, in last­
in, first-out order. For each message, the user is prompted with a !, and a
line is read from the standard input to determine the disposition of the
message:

<new-line>
+
d
p

s [files]
W [files]

m [persons]

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files
(mbox is default).
Mail the message to the named persons (yourself is
default).

q Put undeleted mail back in the mailfile and stop.
EOT (control-d) Same as q.
x Put all mail back in the mailfile unchanged and stop.
!command Escape to the shell to do command.
• Print a command summary.

The optional arguments alter the printing of the mail:

-r causes messages to be printed in first-in, first-out order.
-p causes all mail to be printed without prompting for disposition.
-q causes mail to terminate after interrupts. Normally an interrupt

only causes the termination of the message being printed.
-fjile causes mail to use file (e.g., .box) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file
(or up to a line consisting of just a .) and adds it to each person's mailfile.
The message is preceded by the sender's name and a postmark. Lines that
look like postmarks in the message, (i.e .• "From ... ") are prcceded with a
>. A person is usually a user name rccognized by login(1). If a person
being sent mail is not recognized, or if mail is interrupted during input, the
dead. letter will be saved to allow editing and res ending.

To denote a recipient on a remote system, prefix person by the system
name and exclamation mark (see uucp(1C». Everything after the first
exclamation mark in persons is interpreted by the remote system. In parti­
cular, if persons contains additional exclamation marks, it can denote a
sequence of machines through which the message is to be sent on the way
to its ultimate destination. For example, specifying a!b!ede as a recipient',s
name causes the message to be sent to user b!ede on system a. System a
will interpret that destination as a request to send the message to user ede
on system b. This might be useful, for instance, if the sending system can
access system a but not system b, and system a has access to system b.

The mailfile may be manipUlated in two ways to alter the function of mail.
The other permissions of the file may be read-write, read-only, or neither
read nor write to allow different levels of privacy. If changed to other than

- 1 -

I

MAIL(1) MAIL(l)

FILES

the default, the file will be preserved even when empty to perpetuate the
desired permissions. The file may also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded
to person. This is especially useful to forward all of a person's mail to one
machine in a multiple machine environment.

Rmail only permits the sending of mail; uucp(1 C) uses rmail as a security
precaution.

When a user logs in he is informed of the presence of mail, if any.

/etc/passwd
/usr/mail/­
SHOME/mbox
SMAIL
/tmp/ma­
/usr/mail/-.lock
dead.letter

to identify sender and locate persons
incoming mail for user -; mailfile
saved mail
mailfile
temporary file
lock for mail directory
unmailable text

SEE ALSO

BUGS

login (1), u ucp(1 C), write(1).

Race conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be
forced by typing a p.

- 2 -

MAKE(l) MAKE(l)

NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile) [-p) [-i) [-k) [-s) [-r) [-n) [-b) [-e)
[-m) [-t) [-q) [-d) [names)

DESCRIPTION
The following is a brief description of all options and some special names:

-f makefile Description file name. Makefile is assumed to be the name of
a description file. A file name of - denotes the standard
input. The contel1ts of makefile override the built-in rules if
they are present.

- p Print out the complete set of macro definitions and target
descriptions.

-i Ignore error codes returned by invoked commands. This
mode is entered if the fake target name .IGNORE appears in
the description file.

-k Abandon work on the current entry, but continue on other
branches that do not depend on that entry.

- s Silent mode. Do not print command lines before executing.
This mode is also entered if the fake target name .SILENT
appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ are printed.

-b Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

- m Print a memory map showing text, data, and stack. This
option is a no-operation on systems without the getu system
call.

-t Touch the target files (causing them to be up-to-date) rather
than issue the usual commands.

-d Debug mode. Print out detailed information on files and
times examined.

-q Question. The make command returns a zero or non-zero
status code depending on whether the target file is or is not
up-to-date .

• DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists .

• PRECIOUS Dependents of this target will not be removed when quit or
interrupt are hit .

• SILENT Same effect as the -s option .

• IGNORE Same effect as the -i option.

Mdke executes commands in makefile to update one or morc target names.
Name is typically a program. If no -f option is present, .akefile,
Makefile, s.makefile, and s.Makefile arc tried in order. If makefile is -,
the standard input is taken. More than one -f makefile argument pair
may appear.

- 1 -

MAU(l) MAKB(1)

Make updates a target only if it depends on files that are newer than the
target. All prerequisite files of a target are added recursively to the list of
targets. Missing files are deemed to be out of date.

Makefile contains a sequence of entries that specify dependencies. The first
line of an entry is a blank-separated, non-null list of targets, then a :, then
a (possibly null) list of prerequisite files or dependencies. Text following a
; and all following lines that begin with a tab are shell commands to be exe­
cuted to update the target. The first line that does not begin with a tab or
, begins a new dependency or macro definition. Shell commands may be
continued across lines with the <backslash><new-line> sequence. Sharp
(') and new-line surround comments.

The following mtIkefile says that PCm depends on two files a.o and b.o, and
that they in turn depend on their corresponding source files (a.e and b.e)
and a common file iDd.b:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o: incl.h a.c
cc -c a.c

b.o: incl.h b.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. A line is
printed when it is executed unless the -5 option is present, or the .entry
.SILENT: is in mtIkefile, or unless the first character of the command is @.
The -D option specifies printing without execution; however, if the com­
mand line has the string S(MAKE) in it, the line is always executed (see
discussion of the MAKEFLAGS macro under Environment). The -t (touch)
option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the - i
option is present, or the entry .IGNORE: appears in makefile, or if the line
specifying the command begins with <tab> <hyphen> , the error is
ignored. If the - k option is present, work is abandoned on the current
entry, but continues on other branches that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of
make) to run without errors. The difference between the old version of
make and this version is that this version requires all dependency lines to
have a (possibly null) command associated with them. The previous ver­
sion of make assumed if no command was specified explicitly that the com­
mand was null.

Interrupt and quit cause the target to be deleted unless the target depends
on the special name .PRECIOUS.

EnviroDment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environment variables are pro­
cessed before any makefile and after the internal rules; thus, macro
assignments in a makefile override environment variables. The -e option
causes the environment to override the macro assignments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing
any legal input option (except -f, -p, and -d) defined for the command
line. Further, upon invocation, mtIke "invents" the variable if it is not in
the environment, puts the current options into it, and passes it on to invo­
cations of commands. Thus, MAKEFLAGS always contains the current
input options. This proves very useful for "super-makes". In fact, as
noted above, when the -D option is used, the command S(MAKE) is

- 2 -

MAKE(1) MAKE(1)

executed anyway; hence, one can perform a .. ake -a recursively on a
whole software system to see what would have been executed. This is
because the - a is put in MAKEFLAGS and passed to further invocations of
$(MAKE). This is one way of debugging all of the makefiles for a software
project without actually doing anything.

Macros
Entries of the form stringl ~ string2 are macro definitions. Subsequent
appearances of S(stringl [:substl [subst2]]) are replaccd by string2. The
parentheses are optional if a single charactcr macro name is used and thcre
is no substitute sequence. The optional :substl -subst2 is a substitute
sequence. If it is specified, all non-:h'erlapping occurrcnces of substl in the
namcd macro arc replaced by subst2. Strings (for thc purposes of this type

, of substitution) are delimitcd by blanks, tabs, ncw-linc characters, and
beginnings of lincs. An example of the use of the substitute sequcnce is
shown under Libraries.

Internal Macros
Thcrc are five internally maintained macros which are useful for writing
rules for building targets.

S- The macro S- stands for the filc name part of the current depcndcnt
with the suffix dclcted. It is cvaluated only for infcrcncc rules.

S@ The S@ macro stands for the full targct namc of thc currcnt targct. It
is cvaluated only for explicitly named depcndcncics.

$< The $< macro is only cvaluated for infercnce rules or thc .DEFAULT
rule. I~ is the module which is out of date with rcspect to the targct
(i.e., the "manufactured" dcpcndent file namc). Thus, in the .c.o
rule, the $< macro would cvaluate to the .c filc. An examplc for
making optimized .0 files from .c filcs is:

.c.o:
cc -c -0 S*.c

or:

.c.o:
cc -c -0 $<

S1 The $1 macro is cvaluated whcn cxplicit rules from thc makefilc are
cvaluated. It is thc list of prerequisites that are out of datc with
rcspect to the target; esscntially, those modules which must be rcbuilt.

ft The ft macro is only evaluated when the target is an archive library
membcr of thc form IIb(tile.o). In this case, S@ evaluates to lib and
ft evaluates to thc library mcmber, tile.o.

Four of the five macros can have alternative forms. When an upper case D
or F is appcnded to any of the four macros the meaning is changed to
"directory part" for D and "file part" for F. Thus, S(@D) refers to the
directory part of the string S@. If there is no directory part, Thc only
macro excluded from this alternative form is S1. The reasons for this are
debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prere­
quisites such as .c, .s, etc. If no update commands for such a file appear in
mtlkefile, and if an inferable prerequisite exists, that prerequisite is com­
piled to make the target. In this case, mtllce has inferencerulcs which aDow
building files from other files by examining the suffixes and determining an
appropriate inference rule to usc. The current default inference rules are:

- 3 -

I

MAKE(I) MAKE(I)

.c £ .sh .sh- .c.O £.0 £.c .s.O .s-.o .y.o .y-.o .1.0 .1 .0

.y.c .y-.c .I.c .c.a £.a .s-.a .h-.h

The internal rules for mIllce are contained in the source file rules.c for the
mIllce program. These rules can be locally modified. To print out the rules
compiled into the mIllce on any machine in a form suitable for recompila­
tion, the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the (null) string which print/(3S)
prints when JuLnded a null string.

A tilde in the above rules refers to an sees file (see seesftle(S». Thus, the
rule .c-.o would transform an sees C source file into an object file (.0).
Because the s. of the sees files is a prefix it is incompatible with mIllce's
suffix point-of-view. Hence, the tilde is a way of changing any file
reference into an sees file reference.

A rule with only one suffix (i.e .• c:) is the definition of how to build x from
x.c. In effect, the other suffix is null. This is useful for building targets
from only one source file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order
is significant; the first possible name for which both a file and a rule exist is
inferred as a prerequisite.

The default list is:

• SUFFIXES: .0 .c .y .I .s

Here again, the above command for printing the internal rules will display
the list of suffixes implemented on the current machine. Multiple suffix
lists accumulate; .SUFFIXES: with no dependencies clears the list of
suffixes.

Inference Rules
The first example can be done more briefty:

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because mIllce has a set of internal rules for building files. The user
may add rules to this list by simply putting them in themlllceftle.

Certain macros are used by the default inference rules' to permit the
inclusion of optional matter in any resulting commands. For example,
CFLAGS,. LFLAGS, and YRAGS are used for compiler options to ce(l),
/ex(l), and yaee(l) respectively. Again. the previous method for exam­
ining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file
with suffix .0 from a file with suffix .c is specified as an entry with .c.o: as
the target and no dependents. Shell commands associated with the target
define the rule for making a .0 file from a .c file. Any target that has no
slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries
If a target. or dependency name contains parenthesis, it is assumed to be an
archive library, the string within parenthesis referring to a member within
the library. Thus Iib(ftle.o) and S(L1B)(ftle.o) both refer to an archive
library which contains' file.o. (This assumes the LIB macro has been pre­
viously defined.) The expression S(L1B)(ftlel.o filel.o) is not legal. Rules
pertaining to archive libraries have the form .xx.. where the XX is the

- 4-

MAKE(I) MAKE(I)

FILES

suffix from which the archive member is to be made. An unfortunate
byproduct of the current implementation requires the XX to be different
from the suffix of the archive member. Thus, one cannot have Iib(file.o)
depend upon file.o explicitly. The most common use of the archive inter­
face follows. Here, we assume the source files are all C type source:

lib: lib(filel.o) lib(file2.0) lib(file3.o)
@echo lib is now up to date

.c.a:
S(CC) -c S(CFLAGS) S<
ar rv S@ S*.o
rm -f S*.o

In fact, the .c •• rule listed above is built into "",Ice and is unnecessary in
this example. A more interesting, but more limited example of an archive
library maintenance construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.o)
S(CC) -c S(CFLAGS) S(?:.o==.c)
ar rv lib S?
rm S? @echo lib is now up to date

.c.a:;

Here the substitution mode of the macro expansions is used. The 51 list
is defined to be the set of object file names (inside lib) whose C source files
are out of date. The substitution mode translates the .0 to .c. (Unfortuna­
tely, one cannot as yet transform to .c-; however, this may become possible
in the future.) Note also, the disabling of the .c •• : rule, which would have
created each object file, one by one. This particular construct speeds up
archive library maintenance considerably. This type of construct becomes
very cumbersome if the archive library contains a mix of assembly pro­
grams and C programs.

(Mm]akefile
s.(MmJakefile

SEE ALSO

BUGS

sh(l), mk(8).
Make- A Programfor Maintaining Computer Programs by S. I. Feldman.
An Augmented Version of Make by E. G. Bradford.

Some commands return non-zero status inappropriately; use -i to over­
come the difficulty. Commands that are directly executed by the shell,
notably cd(l), are ineffectual across new-lines in "",Ice. The syntax
(lib(filel.o filel.o file3.0) is illegal. You cannot build lib(file.o) from
file.o. The macro S(.:.o-=.c-) doesn't work.

- 5 -

MAN(l) MAN(I)

NAMB
man - print entries in this manual

SYNOPSIS
man [options] [section] titles

DESCRIPTION
Man locates and prints the entry of this manual named title in the specified
section. (For historical reasons, the word "page" is often used as a
synonym for "entry" in this context.) The title is entered in lower case.
The section number may not have a letter suffix. If no section is specified,
the whole manual is searched for title and all occurrences of it are printed.
Options and their meanings are:

-t Typeset the entry in the default format (8.5"Xll").
-s Typeset the entry in the small format (6"X9").
-T4014 Display the typeset output on a Tektronix 4014 terminal using

-Ttek
-Tst

-Tvp

-Tterm

tc(l).
Same as -T4014.
Print the typeset output on the MHCC STARE facility (see
gcat(lC».
Print the typeset output on a Versatec printer using vpr(1); this
option is not available at all UNIX sites.
Format the entry using nrojf(l) and print it on the standard
output (usually, the terminal); term is the terminal type (see
term(7) and the explanation below); for a list of recognized
values of term, type belp term1. The default value of term is
450.

-w Print on the standard output only the path names of the entries,
relative to jusrjman, or to the current directory for -d option.

-d Search the current directory rather than jusrjman; requires the
full file name (e.g., eu.le, rather than just eu).

-11 Indicates that the manual entry is to be produced in 12-pitch.
May be used when STERM (see below) is set to one of 300,
300s, 450, and 1610. (The pitch switch on the DASI 300 and
300s terminals must be manually set to 11 if this option is
used.)

-e Causes man to invoke col(l); note that col(1) is invoked
automatically by man unless term is one of 300, 3OOs, 450, 37,
4000A, 381, 4014, tek, 1610, and X.

-y Causes man to use the non-compacted version of the macros.

The above options are mutually exclusive, except that the -s option may
be used in conjunction with the first four -T options above. Any other
options are passed to trojf(1), nrojf(l), or the man(7) macro package.

When using nrojf(l), man examines the environment variable STERM (see
environ(7» and attempts to select options to nrojf(l), as well as filters, that
adapt the output to the terminal being used. The -Tterm option overrides
the value of STERM; in particular, one should use -Tip when sending the
output of man to a line printer.

Section may be changed before each title.

As an example:

man man

would reproduce on the terminal this entry, as well as any other entries
named man that may exist in other sections of the manual, e.g., man(7).

- 1 -

MAN(I) MAN(I)

FILFS

If the first line of the input for an entry consists solely of the string:
'\0 x

where x is any combination of the three characters c, e, and t, and where
there is exactly one blank between the double quote (0) and x, then 1PUl1l

will preprocess its input through the appropriate combination of cw(1),
eqll (l) or lIeqll (l), and tbl (l), respectively.

/usr/man/man[I-8]/.
/usr/man/local/man [1-81/.

SEE ALSO

BUGS

cw(l), eqn(l), gcat(lC), tbl(l), tc(l), troff(l), environ(7), man(7),
term(7).

All entries are supposed to be reproducible either on a typesetter or on a
terminal. However, on a terminal some information is necessarily lost.

- 2 -

I

MESG(1)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [D] [y]

DESCRIPTION

MESG(1)

Mesg with argument D forbids messages via write (1) by revoking non-user
write permission on the user's terminal. Mesg with argument y reinstates
permission. All by itself, mesg reports the current state without changing
it.

FILES
fdevftty*

SEE ALSO
write(I).

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

- 1 -

MKDIR(1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION

MKDIR(1)

Mkdi, creates specified directories in mode 777. Standard entries, _, for the
directory itself, and __ , for its parent, are made automatically.

Mkdi, requires write permission in the parent directory.

SEE ALSO
rm(l).

DIAGNOSTICS
Mkdi, returns exit code 0 if all directories were successfully made; oth­
erwise, it prints a diagnostic and returns non-zero.

- I -

I

MKFS(lM) MKFS(lM)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special blocks[:inodes] [gap blocks]
/etc/mUs special proto [gap blocks]

DESCRIPTION
Mkfs constructs a file system by writing on the special file according to the
directions found in the remainder of the command line. If the second
argument is given as a string of digits, mkfs builds a file system with a
single empty directory on it. The size of the file system is the value of
blocks interpreted as a decimal number. The boot program is left uninitial­
ized. If the optional number of inodes is not given, the default is the num­
ber of blocks divided by 4.

If the second argument is a file name that can be opened, mkfs assumes it
to be a prototype file proto, and will take its directions from that file. The
prototype file contains tokens separated by spaces or new-lines. The first
token is the name of a file to be copied onto block zero as the bootstrap
program (see unixboot(8». The second token is a number specifying the
size of the created file system. Typically it will be the number of blocks on
the device, perhaps diminished by space for swapping. The next token is
the i-list size in blocks (remember there are eight i-nodes per block). The
next set of tokens comprise the specification for the root file. File
specifications consist of tokens giving the mode, the user !D, the group !D,
and the initial contents of the file. The syntax of the contents field depends
on the mode.

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters -bal specify regular, block
special, character special and directory files respectively.) The second
character of the type is either u or - to specify set-user-id mode or not.
The third is g or - for the set-groupoid mode. The rest of the mode is a
three digit octal number giving the owner, group, and other read, write,
execute permissions (see chmod(1».

Two decimal number tokens come after the mode; they specify the user
and group !D's of the owner of the file.

If the file is a regular file, the next token is a path name whence the con­
tents and size are copied. If the file is a block or character special file, two
decimal number tokens follow which give the major and minor device num­
bers. If the file is a directory, mkfs makes the entries. and •• and then
reads a list of names and (recursively) file specifications for the entries in
the directory. The scan is terminated with the token S.

A sample prototype specification follows:

/stand/diskboot
4872 110
d--77731
usr d--777 3 1

sh - - -755 3 1 /bin/sh
ken d--7SS 6 1

$
bO b- -644 3 1 0 0
cO c--6443100
$

$

- 1 -

MKFS(IM) MKFS(1M)

In both command syntaxes, the rotational gap and the number of blocks
can be specified. For RP04 type drives, these numbers should be 7 and 418.

SEE ALSO

BUGS

dir(5), fs(5), unixboot(8).

If a prototype is used, it is not possible to initialize a file larger than 64K
bytes, nor is there a way to specify links.

- 2 -

I

MKNOD{lM) MKNOD{lM)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [c] [b] major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special file.
The first argument is the name of the entry. In the first case, the second is
b if the special file is block-type (disks, tape) or c if it is character-type
(other devices). The last two arguments are numbers specifying the major
device type and the minor device (e.g. unit, drive, or line number), which
may be either decimal or octal.

The assignment of major device numbers is specific to each system. They
have to be dug out of the system source file conf.c.

Mknod can also be used to create fifo's (a.k.a named pipes) (second case in
SYNOPSIS above).

SEE ALSO
mknod(2).

- 1 -

MM(l) MM(I)

NAME
mm - print out documents formatted with the MM macros

SYNOPSIS
m m [options] [files]

DESCRIPTION

HINTS

Mm can be used to type out documents using nroJf(I} and the MM text­
formatting macro package. It has options to specify preprocessing by tbl(l)
and/or neqn(l) and postprocessing by various terminal-oriented output
filters. The proper pipelines and the required arguments and flags for
nroJf(I) and MM arc generated, depending on the options selected.

Options for mm are given below. Any other arguments or flags (e.g.,
-rC3) are passed to nroJf(I) or to MM, as appropriate. Such options can
occur in any order, but they must appear before the files arguments. If no
arguments are given, mm prints a list of its options.

-Tterm Specifies the type of output terminal; for a list of recognized
values for term, type help term2. If this option is not used, mm
will use the value of the shell variable SfERM from the environ­
ment (see profile(5) and environ(7» as the value of term, if
SfERM is set; otherwise, mm will use 450 as the value of term. If
several terminal types are specified, the last one takes precedence.

-12 Indicates that the document is to be produced in 12-pitch. May
be used when SfERM is set to one of 300, 3005, 450, and 1620.
(The pitch switch on the DASI 300 and 300s terminals must be
manually set to 12 if this option is used.)

-c Causes mm to invoke col(l); note that col(l) is invoked automa­
tically by mm unless term is one of 300, 3005, 450, 37, 4000A,
382, 4014, tek, 1620, and X. .

-e Causes mm to invoke neqn(l).
-t Causes mm to invoke tbl(l).
- E Invokes the -e option of nroJf(l).
-y Causes mm to use the non-compacted version of the macros (see

mm(7».

As an example (assuming that the shell variable SfERM is set in the
environment to 450), the two command lines below are equivalent:

mm -t -rC3 -12 ghh
tbl ghh* I nroff -cm -T450-12 - h -rC3

Mm reads the standard input when - is specified instead of any file names.
(Mentioning other files together with - leads to disaster.) This option
allows mm to be used as a filter, e.g.:

cat dws I mm -

1. Mm invokes nroJf(l) with the - b flag. With this flag, nroJf(l)
assumes that the terminal has tabs set every 8 character positions.

2. Use the -o/ist option of nroJf(I) to specify ranges of pages to be
output. Note, however, that mm, if invoked with one or more of
the -e, -t, and - options, together with the -olist option of
nroJf(l) may cause a harmless "broken pipe" diagnostic if the last
page of the document is not specified in list.

3. If you use the -5 option of nroJf(I) (to stop between pages of out­
put), use line-feed (rather than return or new-line) to restart the
output. The -5 option of nroJf(l) does not work with the -c
option of mm, or if mm automatically invokes col(l) (see -c

- 1 -

I

MM(l)

4.

MM(l)

option above).
If you lie to mm about the kind of terminal its output will be prin­
ted on, you'll get (often subtle) garbage; however, if you are
redirecting output into a file, use the -T37 option, and then use
the appropriate terminal filter when you actually print that file.

SEE ALSO
col(1), env(l), eqn(l), greek(l), mmt(l), nrotT(1), tbl(l), profile(5),
mm(7), term(7).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

DIAGNOSTICS
u mm: no input file" if none of the arguments is a readable file and mm is
not used as a filter.

- 2 -

MMCHEK(I) MMCHEK(I)

NAME
mmchek - check usage of mm macros and eqn delimiters

SYNOPSIS
mmchek [files]

. DESCRIPTION
Mmchek is a program for checking the contents of the named files for
errors in the use of Memorandum Macros (see mm (1» and some eqn (1)
constructions. Appropriate messages are produced. The program skips all
directories, and if no file name is given, standard input is read.

SEE ALSO
eqn(1), mm(l), mmt(1).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.

DIAGNOSTICS

BUGS

Unreadable files cause the message "Cannot open file-name". The
remaining output of the program is diagnostic of the source file.

This is an experimental version of mmchek. Mmchek may be fully suppor­
ted in the future.

- 1 -

MMT(l) MMT(l)

NAME
mmt, mvt - typeset documents, view graphs, and slides

SYNOPSIS
mmt [options 1 [files 1
m,t [options 1 [files 1

DESCRIPTION

HINT

These two commands are very similar to mm(l), except that they both
typeset their input via troff(1), as opposed to formatting it via nroff(l); mmt
uses the MM macro package, while mvt uses the Macro Package for View
Graphs and Slides. These two commands have options to specify prepro­
cessing by tbl(1) and/or eqn(l). The proper pipelines and the required
arguments and ftags for troff(I) and for the macro packages are generated,
depending on the options selected.

Options are given below. Any other arguments or ftags (e.g., -re3) are
passed to troff(I) or to the macro package, as appropriate. Such options
can occur in any order, but they must appear before the files arguments. If
no arguments are given, these commands print a list of their options.

-e Causes these commands to invoke eqn(l).
-t Causes these commands to invoke tbl(I).
-Tst Directs the output to the MH STARE facility.
- T,p Directs the output to a Versatec printer via the vpr(I) spooler;

this option is not available at all UNIX sites.
-T4014 Directs the output to a Tektronix 4014 terminal via the tc(l)

filter.
-Ttek Same as -T4014.
-a Invokes the -a option of troff(I).
-y Causes mmt to use the non-compacted version of the macros

(see mm(7». No effect for mvt.

These commands read the standard input when - is specified instead of
any file names.

Mvt is just a link to mmt.

Use the -oUst option of troff(I) to specify ranges of pages to be output.
Note, however, that these commands, if invoked with one or more of the
-e, -t, and - options, together with the -olist option of troff(l) may
cause a harmless "broken pipe" diagnostic if the last page of the document
is not specified in list.

SEE ALSO
env(l), eqn(1), mm(1), tbl(1), tc(1), troff(1), profile(5), environ(7),
mm(7), mv(7).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.
A Macro Package Jor View Graphs and Slides by T. A. Dolotta and D. W.
Smith (in preparation).

DIAGNOSTICS
"m[mvlt: no input file" if none of the arguments is a readable file and the
command is not used as a filter.

- 1 -

MOUNT(lM) MOUNT(IM)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
fete/mount [special directory [-r 1 1
/ete/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on
the device special. The directory must exist already; it becomes the name of
the root of the newly mounted file system.

These commands maintain a table of mounted devices. If invoked with no
arguments, mount prints the table.

The optional last argument indicates that the file is to be mounted read­
only. Physically write-protected and magnetic tape file systems must be
mounted in this way or errors will occur when access times are updated,
whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previously
mounted on device special is to be removed.

/etc/mnttab mount table

SEE ALSO
mount(2), mnttab(5).

DIAGNOSTICS

BUGS

Mount issues a warning if the file system to be mounted is currently moun­
ted under another name.

Umount complains if the special file is not mounted or if it is busy. The file
system is busy if it contains an open file or some user's working directory.

Some degree of validation is done on the file system, however it is gen­
erally unwise to mount garbage file systems.

- 1 -

MVDlR(1M)

NAME
mvdir - move a directory

SYNOPSIS
/ete/m,dir dirname name

DPSCRIPTION

MVDIR(1M)

Mvdir renames directories within a file system. Dimame must be a direc­
tory; name must not exist. Neither name may be a sub-set of the other
(jx/y cannot be moved to /x/y /z, nor vice versa).

Only super-user can use mvdir.

SEE ALSO
mkdir(l).

- 1 -

NCHECK(1M) NCHECK(IM)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
Rebeck [-j numbers] [-a] [-s] [file-system]

DESCRIPTION
Ncheck with no argument generates a path name vs. i-number list of all
files on a set of default file systems. Names of directory files are followed
by /.. The - j option reduces the report to only those files whose i­
numbers follow. The -a option allows printing of the names. and •• ,
which are ordinarily suppressed. suppressed. The -s option reduces the
report to special files and files with set-user-ID mode; it is intended to
discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(1 M), sort(1).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the "parent" of a
parentless file and a path name beginning with ••• denotes a loop.

- 1 -

NEWGRP(I) NEWGRP(I)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [group]

DESCRIPTION

FILES

Newgrp changes the group identification of its caller, analogously to
Jogin(l). The same person remains logged in, and the current directory is
unchanged, but calculations of access permissions to files are performed
with respect to the new group ID.

Newgrp without an argument changes the group identification to the group
in the password file; in effect it changes the group identification back to the
caller's original group.

A password is demanded if the group has a password and the user himself
does not, or if the group has a password and the user is not listed in
fete/group as being a member of that group.

When most users log in, they are members of the group named other.

/etc/group
/etc/passwd

SEE ALSO

BUGS

login(l), group(5).

There is no convenient way to enter a password into fete/group.
Use of group passwords is not encouraged, because, by their very nature,
they encourage poor security practices. Group passwords may disappear in
the future.

- 1 -

NEWS (I) NEWS(I)

NAME
news - print news items

SYNOPSIS
news [- a] [- n] [- s] [items]

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention,
these events are described by files in the directory /asr/Dews.

When invoked without arguments, news prints the contents of all current
files in /asr/news, most recent first, with each preceded by an appropriate
header. News stores the "currency" time as the modification date of a file
named .news_time in the user's home directory (the identity of this direc­
tory is determined by the environment variable SHOME); only files more
recent than this currency time are considered "current."

The -a option causes news to print all items, regardless of currency. In
this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the stored
time. It is useful to include such an invocation of news in one's .profile
file, or in the system's /etc/profile.

All other arguments are assumed to be specific news items that are to be
printed.

If a delete is typed during the printing of a news item, printing stops and
the next item is started. Another delete within one second of the first
causes the program to terminate.

/etc/profile
/usr/news/.
SHOME/ • news_time

SEE ALSO
profile(5), environ(7).

- 1 -

NICE(l)

NAME
nice - run a command at low priority

SYNOPSIS
nice [-increment] command [arguments

DESCRIPTION

NICE(I)

Nice executes command with a lower CPU scheduling priority. If the
increment argument (in the range 1-19) is given, it is used; if not, an
increment of 10 is assumed.

The super-user may run commands with priority higher than normal by
using a negative increment, e.g., - -10.

SEE ALSO
nohup(l), nice(2).

DIAGNOSTICS
Nice returns the exit status of the subject command.

BUGS
An increment larger than 19 is equivalent to 19.

- 1 -

NL(l) NL(1)

NAME
nl - line numbering filter

SYNOPSIS
nl [-htype] [-btype] [-ftype] [-vstartl] [-iincr] [-p] [-Inum]
[- ssep] [-wwidth] [- nformat] file

DESCRIPTION
NI reads lines from the named file or the standard input if no file is named
and reproduces the lines on the standard output. Lines are numbered on
the left in accordance with the command options in effect.

NI views the text It reads in terms of logical pages. Line numbering is reset
at the start of each logical page. A logical page consists of a header, a
body, and a footer section. Empty sections are valid. Different line num­
bering options are independently available for header, body, and footer
(e.g. no numbering of header and footer lines while numbering blank lines
only in the body).

The start of logical page sections are signaled by input lines containing
nothing but the following character(s):

Line contents Start of

\:\:\:
\:\:
\:

header

body

footer

Unless signaled otherwise, nI assumes the text being read is in a single logi­
cal page body.

Command options may appear in any order and may be intermingled with
an optional file name. Only one file may be named. The options are:

-btype Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are: a, number all lines; t,
number lines with printable text only; n, no line numbering;
pstring, number only lines that contain the regular expression
specified in string. Default type for logical page body is t (text
lines numbered).

-htype Same as -btype except for header. Default type for logical page
header is n (no lines numbered).

-ftype Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

-p Do not restart numbering at logical page delimiters.

- utartl Startl is the initial value used to number logical page lines.
Default is 1.

-iincr Incr is the increment value used to number logical page lines.
Default is 1.

-ssep Sep is the character(s) used in separating the line number and
the corresponding text line. Default sep is a tab.

-wwidth Width is the number of characters to be used for the line num­
ber. Default width is 6.

- Dformat Format is the line numbering format. Recognized values are: la,
left justified, leading zeroes supressed; rD, right justified, leading
zeroes supressed; rz, right justified, leading zeroes kept. Default
format is rD (right justified).

- I -

NL(l) NL(l)

-Inum Num is the number of blank lines to be considered as one. For
example, -12 results in only the second adjacent blank being
numbered (if the appropriate - ha, -ba, and/or -fa option is
set). Default is 1.

SEE ALSO
pr(1).

- 2 -

NM(I) NM(1)

NAME
nm - print name list

SYNOPSIS
nm [-gnoprsu] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument
list. If an argument is an archive, a listing for each object file in the
archive will be produced. If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value (blanks if undefined) and one
of the letters U (undefined), A (absolute), T (text segment symbol), D
(data segment symbol), 8 (bss segment symbol), R (register symbol), F
(file symbol), or C (common symbol). If the symbol is local (non­
external) the type letter is in lower case. The output is sorted alphabeti­
cally.

Options are:

-g Print only global (external) symbols.

- n Sort numerically rather than alphabetically.

-0 Prepend file or archive clement name to each output line rather
than only once. This option can be used to make piping to grep(l)
more meaningful.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-5 Sort according to the size of the external symbol (computed from
the difference between the value of the symbol and the value of the
symbol with the next highest value). This difference is the value
printed. This flag turns on -g and -0 and turns off -u and -po

-u Print only undefined symbols.

SEE ALSO
ar(l), a.out(5), ar(5).

- I -

NOHUP(I)

NAME
nohup - run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION

NOHUP(l)

Nohup executes command with hangups and quits ignored. If output is not
re-directed by the user, it will be sent to nohup.out. If nohup.out is not
writable in the current directory, output is redirected to SHOME/nohup.out.

SEE ALSO
nice(l), signal(2).

- I -

OD(1) OD(1)

NAME
od - octal dump

SYNOPSIS
od [-bcdox] [file] [[+]offset[•][b]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If
the first argument is missing, -0 is default. The meanings of the format
options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null =\0, backspace=\b, form-feed==\f, new-line==\D,
return=\r, tab=\t; others appear as 3-digit octal numbers.

-d Interpret words in decimal.

-0 Interpret words in octal.

-x Interpret words in hex.

The file argument specifies which file is to be dumped. If no file argument
is specified, the standard input is usC?d.

The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If. is
appended, the offset is interpreted in decimal. If b is appended, the offset
is interpreted in blocks of 512 bytes. If the file argument is omitted, the
offset argument must be preceded by +.
Dumping continues until end-of-file.

SEE ALSO
adb(I).

- I -

ORJFSTAT(Ie) (Obsolescent) ORJFSTAT(Ie)

NAME
rjestat - RJE status-and enquiries

SYNOPSIS
rjestat [-] [A] [B] [C] [VI] [Ul] [VJ]

DFSeRIPTlON

FILFS

When invoked without the - argument, rjestat reports the current status of
RJE links to the specified host computers. When invoked with the -
argument, rjesta.t sets up an interactive status terminal. If no hosts are
cited explicitly, the specification defaults to all those for which a given
UNIX is configured. The "host" pseudonyms A. B. C. VI. V2. and VJ are
built into the RJE software. A. B. and C may be used to represent any IBM
host machine. Their a~ual destinations are immaterial to RJE. The pseu­
donyms VI. V2. and VJ are built into RJE to represent any UNIVAC host.

To enter an enquiry via such a status terminal, you must first generate an
interrupt. This can be done by hitting the DEL key or the
BREAK/INTERRUPT key. Rjestat will respond by prompting for enquiries
directed to each host in turn. The line on which a prompt appears may be
completed to form a. legitimate display command for that particular host. If
the line is termina~d with a \, the prompt will be repeated, otherwise it will
advance to the neitlfost. A'~rfiage return alone indicates that no enquiry
is to be directed to a particular host. You should expect to wait at least 30
seconds for a response.

An interrupt will temporarily halt the display of responses. It can therefore
be used to inhibit roll-up on a CRT terminal. The display of responses will
resume after all prompts have been satisfied (perhaps by null completions).

To exit from the status terminal, generate a quit signal or type DEL fol­
lowed by EOT.

The interactive status enquiry capability is not supported for UNIVAC.

/dev/rje*
/usr/rje/sys
/usr/rje/lines

DSQ-Il's used by RJE
PWB/UNIX system name
configuration table

And, in the directory for each RJE subsystem:

log activity log
resp concatenated responses
status message of the day
xmit* files queued
*mesg enquiry slot
*init boot program

SEE ALSO
Guide to IBM Remote Job Entry for PWB/UNIX Users by A. L. Sabsevitz and
E. J. Finger.
OSfVS2 HASP II Version 4 Operator's Guide, IBM SRL #GC27-6993.
Operator's Library: OS/VS2 Reference (JES2) , IBM SRL #GC38-0210.

- 1 -

PACK (I) PACK (I)

NAME
pack, pcat, unpack - compress and expand files

SYNOPSIS
pack [- 1 name

pcat name ...

unpack name ...

DESCRIPTION
Pack attempts to store the specified files in a compressed form. Wherever
possible (and useful), each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and owner
as those of name. If pack is successful, f1Qme will be removed. Packed
files can be restored to their original form using unpack or peat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis.
If the - argument is used, an internal flag is set that causes the number of
times each byte is used, its relative frequency, and the code for the byte to
be printed on the standard output. Additional occurrences of - in place of
name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file
and the character frequency distribution. Because a decoding tree forms
the first part of each .z file, it is usually not worthwhile to pack files smaller
than 'three blocks, unless the character frequency distribution is very
skewed, which may occur with printer plots or pictures,

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform distri­
bution of characters, show little compression, the packed versions being
about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
th e file has links;
the file is a directory;
the file cannot be opened;
no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .z file cannot be created;
an I/O error occurred during processing.

The last segment of the file name must contain no more than 12 characters
to allow space for the appended .z extension. Directories cannot be
compressed.

Pcat does for packed files what cat(l) does for ordinary files. The specified
files are unpacked and written to the stan&rd output. Thus to view a
packed file named f1Qme.z use:

peat name.z
or just:

peat name

To make an unpacked copy, say nnn, of a packed file named IUlme.z
(without destroying f1Qme.z) use the command:

pcat name >nnn

- 1 -

I

PACK (1) PACK(1)

Pcat returns the number of files it was unable to unpack. Failure may
occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the
command, a search is made for a file called name.z (or just name, if name
ends in .z). If this file appears to be a packed file, it is replaced by its
expanded version. The new file has the .z suffix stripped from its name,
and has the same access modes, access and modification dates, and owner
as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack.
Failure may occur for the same reasons that it may in peat, as well as for
the following:

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

- 2 -

PASSWD(I) PASSWD(I)

NAME
passwd - change login password

SYNOPSIS
passwd name

DESCRIPTION

FILES

This command changes (or installs) a password associated with the login
name.

The program prompts for the old password (if any) and then for the new
one (twice). The caller must supply these. New passwords should be at
least four characters long if they use a sufficienL~Y rich alphabet and at least
six characters long if monocase. Only the first eight characters of the
password are significant.

Only the owner of the name or the super-user may change a password; the
owner must prove he knows the old password. Only the super-user can
create a null password.

The password file is not changed if the new password is the same as the old
password. or if the password has not "aged" sufficiently; see passwd(5».

JetcJpasswd
SEE ALSO

login(l). crypt(3C). passwd(5).

- 1 -

PASTE(l) PASTE (1)

NAME
paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste file I file2 ...
paste -d list filel file2
paste - s (-d list J file 1 file2

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given
input files filel , file2, etc. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging). If you will,
it is the counterpart of cat(l) which concatenates vertically, i.e., one file
after the other. In the last form above, paste subsumes the function of an
older command with the same name by combining subsequent lines of the
input file (serial merging). In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is
to the standard output, so it can be used as the start of a pipe, or as a filter,
if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file
(or last line in case of the -s option) are replaced by a tab charac­
ter. This option allows replacing the tab character by one or more
alternate characters (see below).

list One or more characters immediately following -d replace the
default tab as the line concatenation character. The list is used cir­
cularly, i. e. when exhausted, it is reused. In parallel merging (i. e.
no -5 option), the lines from the last file are always terminated
with a new-line character, not from the list. The list may contain
the special escape sequences: \0 (new-line), \t (tab), \\
(backslash), and \0 (empty string, not a null character). Quoting
may be necessary, if characters have special meaning to the shell
(e.g. to get one backslash, use -d"\\\\").

-s Merge subsequent lines rather. than one from each input file. Use
tab for concatenation, unless a list is specified with -d option.
Regardless of the list, the very last character of the file is forced to
be a new-line.

May be used in place of any file name, to read a line from the stan­
dard input. (There is no prompting).

EXAMPLES
Is I paste -d"· -

Is I paste

list directory in one column

list directory in four columns

paste -s -d"\t\n" file combine pairs of lines into lines

SEE ALSO
grep(1), cut(I),
pr(I): pr - t - m. " works similarly, but creates extra blanks, tabs and
new-lines for a nice page layout.

DIAGNOSTICS
line too long Output lines are restricted to 511 characters.

too many files Except for -5 option, no more than 12 input files
may be specified.

- 1 -

PR(1) PR(I)

NAME
pr - print files

SYNOPSIS
pr [options] [files]

DESCRIPTION
Pr prints the named files on the standard output. If jile is -, or if no files
are specified, the standard input is assumed. By default, the listing is
separated into pages, each headed by the page number, a date and time,
and the name of the file.

By default, columns are of equal width, separated by at least one space;
lines which do not fit are truncated. If the -s option is used, lines are not
truncated and columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

Options may appear singly or be combined in any order. Their meanings
are:

+ k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i
are assumed for multi-column output.

-a Print multi-column output across the page.

- m Merge and print all files simultaneously, one per column (overrides
the -k, and -a options).

-d Double~space the output.

-eck Expand input tabs to character positions k+l, 2*k+I, 3*k+l, etc.
If k is 0 or is omitted, default tab settings at every eighth position
are assumed. Tab characters in the input are expanded into the
appropriate number of spaces. If c (any non-digit character) is
given, it is treated as the input tab character (default for c is the tab
character).

- ick In output, replace white space wherever possible by inserting tabs to
character positions k + I, 2*k + I, 3*k + I, etc. If k is 0 or is omit­
ted, default tab settings at every eighth position are assumed. If c
(any non-digit character) is given, it is treated as the output tab
character (default for c is the tab character).

-nck Provide k-digit line numbering (default for k is 5). The number
occupies the first k + 1 character positions of each column of nor­
mal output or each line of - m output. If c (any non-digit charac­
ter) is given, it is appended to the line number to separate it from
whatever follows (default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for
equal-width multi-column output, no limit otherwise).

-ok Offset each line by k character positions (default is 0). The num­
ber of character positions per line is the sum of the width and
offset.

-Ik Set the length of a page to k lines (default is 66).

- h Use the next argument as the header to be printed instead of the
file name.

-p Pause before beginning each page if the output is directed to a ter­
minal (pr will ring the bell at the terminal and wait for a carriage

- 1 -

PR(I) PR(1)

return).

-f Use form-feed character for new pages (default is to use a sequence
of line-feeds). Pause before beginning the first page if the standard
output is associated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five-line identifying header nor the five-line trailer
normally supplied for each page. Quit printing after the last line of
each file without spacing to the end of the page.

-sc Separate columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

EXAMPLES

FILES

Print filel and file2 as a double-spaced, three-column listing headed by
"file list":

pr - 3dh "file list" file 1 file2

Write filel on file2, expanding tabs to columns 10, 19.28,37, ... :

pr - e9 -t <filel >file2

/dev/tty*

SEE ALSO

to suspend messages

cat(l).

- 2 -

PROF (I) PROF (I)

NAME
prof - display profile data

SYNOPSIS
prof [-, 1 [- a 1 [-I 1 [-low [- high 1 1 [file 1

DESCRIPTION

FILES

Prof interprets the file mOD.out produced by the monitOl"(3C) subroutine.
Under default modes. the symbol table in the named object file (a.out
default) is read and correlated with the mOD.out profile file. For each
external symbol. the percentage of time spent executing between that sym­
bol and the ne>..t is printed (in decreasing order), together with the number
of times that routine was called and the number of milliseconds per call.

If the -a option is used. all symbols are reported rather than just external
symbols. If the -I option is used. the output is listed by symbol value
rather than decreasing percentage.

If the -, option is used, all printing is suppressed and a graphic version of
the profile is produced on the standard output for display by the tplot(lG)
filters. The optional arguments low and high. by default 0 and 100. cause a
selected percentage of the profile to be plotted with accordingly higher reso­
lution.

In order for the number of calls to a routine to be tallied. the -p option of
cc must have been given when the file containing the routine was compiled.
This option also arranges for the mOD.out file to be produced automatically.

mon.out for profile
a.out for namelist

SEE ALSO
cc(l). tplot(19). profil(2), monitor(3C).

BUGS
Beware of quantization errors.

- 1 -

PROFILER (1 M) PROFILER (1 M)

NAME
prlld, prfstat, prfdc, prfsnap, prfpr - operating system pro filer

SYNOPSIS
/ete/prftd [nameHst]
/ete/prfstat [on I off]
/ete/prfde [period [off_hour]]
/ete/prfsnap file
/ete/prfpr file [cutoff [namelist]]

DESCRIPTION

FILES

Prfld, prfstat, prfde, prfsnap, and pr/pr form a system of programs to facili­
tate an activity study of the UNIX operating system.

Prfld is used to initialize the recording mechanism in the system. It genera­
tes a table containing the starting address of each system subroutine as
extracted from namelist.

Prfstat is used to enable or disable the sampling mechanism. Profiler
overhead is less than I % as calculated for 500 text addresses. Prfstat will
also reveal the number of text addresses being measured.

Prfde and prfsnap perform the data collection function of the pro filer by
copying the current value of all the text address counters to a file where the
data can be analyzed. Pride will store the counters into ftle every period
minutes and will turn off at off_hour. Prfsnap collects data at the time of
invocation only, appending the counter values. toftle.

Prfpr formats the data collected by prfde or prfsnap. Each text address is
converted to the nearest text symbol (as found in namelist) and is printed if
the percent activity for that range is greater than cutoff.

/dev/prf
/unix

interface to profile data and text addresses
default for nameHst file

SEE ALSO
prf(4).

- 1 -

PRS(1) PRS(l)

NAME
prs - print an sces file

SYNOPSIS
prs [-d[dataspec]] [-r[SID)) [-e) [-I] [-a] files

DESCRIPTION
Prs prints, on the standard output, parts or all of an sces file (see
sccsfile(5» in a user supplied format. If a directory is named, prs behaves
as though each file in the directory were specified as a named file, except
that non-SCes files (last component of the path name does not begin with
s.), and unreadable files are silently ignored. If a name of - is given, the
standard input is read; each line of the standard input is taken to be the
name of an sces file or directory to be processed; non-sees files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of keylener
arguments, and file names.

All the described keyletter arguments apply independently to each named
file:

-d[dataspec] Used to specify the output data specification. The
dataspec is a string consisting of sees file data
keywords (see DATA KEYWORDS) interspersed with
optional user supplied text.

-r[SID] Used to specify the sces IDentification (SID) string
of a delta for which information is desired. If no SID
is specified, the SID of the most recently created delta
is assumed.

-e Requests information for all deltas created earlier
than and including the delta designated via the -r
keyletter.

-I Requests information for all deltas created later than
and including the delta designated via the -r keylet­
ter.

-a Requests printing of information for both removed.
i.e .• delta type == R. (see made/(1» and existing. i.e .•
delta type = D. deltas. If the -a keyletter is not
specified. information for existing deltas only is pro­
vided.

DATA KEYWORDS
Data keywords specify which parts of an sees file are to be retrieved and
output. All parts of an sces file (see sccsfile(5» have an associated data
keyword. There is no limit on the number of times a data keyword may
appear in a dataspec.

The information printed by prs consists of: (1) the user supplied text; and
(2) appropriate v.alues (extracted from the sees file) substituted for the
recognized data keywords in the order of appearance in the dataspec. The
format of a data keyword value is either Simple (S), in which keyword sub­
stitution is direct. or Multi-line (M). in which keyword substitution is fol­
lowed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab
is specified by \t and carriage return/new-line is specified by \ •.

- 1 -

PRS(l) PRS(I)

TABLE 1. sees Files Data Keywords
KeywonJ Data Item File Section Value Fomun

:Dt: Delta information Delta Table See below· S
:DL: Delta line statistics :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta nnnnn S
:Ld: Lines deleted by Delta nnnnn S
:Lu: Lines unchanged by Delta nnnnn S
:DT: Delta type D or R S

:1: SCCS ID string (SID) :R:.:L:.:B:.:S: S
:R: Release number nnnn S
:L: Level number nnnn S
:B: Branch number nnnn S
:S: Sequence number nnnn S
:0: Date Delta created :Dy:/:Dm:/:Dd: S
:Dy: Year Delta created nn S
:Dm: Month Delta created nn S
:Dd: Day Delta created nn S
:T: Time Delta created :Th:::Tm:::Ts: S

:Th: Hour Delta created nn S
:Tm: Minutes Delta created nn S
:Ts: Seconds Delta created nn S
:P: Programmer who created Delta logname S

:DS: Delta sequence number nnnn S
:DP: Predecessor Delta seq-no. nnnn S
:01: Seq-no. of deltas incl., excl., ignored :Dn:/:Dx:/:Dg: S
:Dn: Deltas included (seq II) :DS: :DS: ... S
:Dx: Deltas excluded (seq II) :DS: :DS: ... S
:Dg: Deltas ignored (seq II) :DS: :DS: ... S
:MR: MR numbers for delta text M

:C: Comments for delta text M
:UN: User names User Names text M
:FL: Rag list Flags text M
:Y: Module type flag text S

:MF: MR validation flag yes or no S
:MP: MR valiqation pgm name text S
:KF: Keyword error/warning flag yes or /10 S
:BF: Branch flag yes or /10 S
:J: Joint edit flag yes or no S

:LK: Locked releases :R: ... S
:Q: User defined keyword text S
:M: Module name text S
:FB: Roor boundary :R: S
:CB: Ceiling boundary :R: S
:Ds: Default SID :1: S
:ND: Null delta flag yes or /10 S
:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body text M
:W: A form of what (I) string N/A :Z::M:\t:l: S
:A: A form of what(l) string N/A :Z::Y: :M: :I::Z: S
:Z: what {I) string delimiter N/A @(#) S
:F: sces file name N/A text S

:PN: sces file path name N/A text S

• :Dt: = :DT: :1: :0: :T: :P: :DS: :DP:

- 2 -

PRS(t) PRS(t)

EXAMPLES

FILES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce· on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the ""D" type. The only keyletter argument
allowed to be used with the special case is the -a keyletter.

/tmp/pr?????

SBBALSO .
admin(l), delta(l), get(l), help(l), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use he/p(l) for explanations.

- 3 -

PS(l) PS(I)

NAME
ps - report process status

SYNOPSIS
ps [options]

DESCRIPTION
Ps prints certain information about active processes. Without options,
information is printed about processes associated with the current terminal.
Otherwise, the information that is displayed is controlled by the following
options:

-e Print information about all processes.
-d Print information about all processes, except process group

leaders.
-a Print information about all processes, except process group

leaders and processes not associated with a terminal.
-f Generate a full listing. (Normally, a short listing containing

only process 10, terminal ("tty") identifier, cumulative execu­
tion time, and the command name is printed.) See below for
meaning of columns in a full listing.

-I Generate a long listing. See below.
-c corefile Use the file corefile in place of Ide'/mem.
-s swapdev Use the file swapdev in place of Ide'/s"ap. This is useful

when examining a corefile; a swapdev of /de'/oull will cause
the user block to be zeroed out.

- 0 name/ist The argument will be taken as the name of an alternate namel­
ist (luoix is the default).

- t tlist Restrict listing to data about the processes associated with the
terminals given in tlist, where tJist can be in one of two forms:
a list of terminal identifiers separated from one another by a
comma, or a list of terminal identifiers enclosed in double
quotes and separated from one another by a comma and/or

-p plist

-u ulist

-g glist

one or more spaces.
Restrict listing to data about processes whose process 10 num­
bers are given in plist, where plist is in the same format as
tlist.
Restrict listing to data about processes whose user 10 numbers
or login names are given in wist, where ulist is in the same
format as tJist. In the listing, the numerical user 10 will be
printed unless the -f option is used, in which case the login
name will be printed.
Restrict listing to data about processes whose process groups
are given in glist. where glist is a list of process group leaders
and is in the same format as tlist.

The column headings and the meaning of the columns in a ps listing are
given below; the letters f and I indicate the option (full or long) that causes
the corresponding heading to appear; all means that the heading always
appears. Note that these two options only determine what information is
provided for a process; they do not determine which processes will be listed.

F (I) Flags (octal and additive) associated with the process:
01 in core;
02 system process;
04 locked in core (e.g., for physical 1/0);
10 being swapped;
20 being traced by another process.

- 1 -

PS(l)

FILES

S

UID

PID

PPID
C
STIME
PRI

NI
ADDR

sz
WCHAN

TrY
TIME
CMD

PS(I)

(I) The state of the process:
o non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped.

(f,l) The user ID number of the process owner; the login name
is printed under the -f option.

(all) The process ID of the process; it is possible to kill a pro-
cess if you know this datum.

(f,l) The process ID of the parent process.
(f,l) Processor utilization for scheduling.
(0 Starting time of the process.
(I) The priority of the process; higher numbers mean lower

priority.
(I) Nice value; used in priority computation.
(I) The memory address of the process, if resident; oth­

erwise, the disk address.
(I) The size in blocks of the core image of the process.
(I) The event for which the process is waiting or sleeping; if

blank, the process is running.
(all) The controlling terminal for the process.
(all) The cumulative execution time for the process.
(all) The command name; the full command name and its

arguments are printed under the -f option.

A process that has exited and has a parent, but has not yet been waited for
by the parent, is marked <defuDct>.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining memory or
the swap area. Failing this, the command name, as it would appear without
the -f option, is printed in square brackets.

junix
jdevjmem
jdev

system namelist
memory
searched to find swap device and terminal ("tty") names.

SEE ALSO

BUGS

kill(l), nice(l).

Things can change while ps is running; the picture it gives is only a close
approximation to reality. Some data printed for defunct processes are
irrelevant.

- 2 -

PTX(I) PTX(I)

NAME
ptx - permuted index

SYNOPSIS
ptx [options] [input [output]

DESCRIPTION

FILES

BUGS

Ptx generates a permuted index to file input on file output (standard input
and output default). It has three phases: the first does the permutation,
generating one line for each keyword in an input line. The keyword is rota­
ted to the front. The permuted file is then sorted. Finally, the sorted lines
are rotated so the keyword comes at the middle of each line. Ptx produces
output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nroff or troff(l) maCrO provided by the user.
The before keyword and keyword and after fields incorporate as much of the
line as will fit around the keyword when it is printed. Tail and head, at
least one of which is always the empty string, are wrapped-around pieces
small enough to fit in the unused space at the opposite end of the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line.
The default line length is 72 characters for nroff and 100 for
troff·

-g n Use the next argument, n, as the number of characters that ptx
will reserve in its calculations for each gap among the four
parts of the line as finally printed. The default gap is 3 charac­
ters.

-0 only Use as keywords only the words given in the only file.

- i ignore Do not use as keywords any words given in the ignore file. If
the -i and -0 options are missing, use /usr/lib/eign as the
ignore file.

-b break Use the characters in the break file to separate words. Tab,
new-line, and space characters are always used as break charac­
ters.

-r Take any leading non-blank characters of each input line to be
a reference identifier (as to a page or chapter), separate from
the text of the line. Attach that identifier as a 5th field on each
output line.

The index for this manual was generated using ptx.

/bin/sort
/usr/lib/eign

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes C) are botched, because ptx uses that character
internally.

- 1 -

PWCK(IM) PWCK(IM)

NAME
pwck, grpck - password/group file checkers

SYNOPSIS
pwek [file]
grpck [file]

DESCRIPTION

FILPS

Pwck scans the password file and notes any inconsistencies. The checks
include validation of the number of fields, login name, user ID. group ID.
and whether the login directory and optional program name exist. The cri­
teria for determining a valid login name are taken from Setting Up UNIX.
The default password file is /ete/passwd.

Grpck verifies all entries in the group file. This verification includes a check
of the number of fields. group name. group ID. and whether all login
names appear in the password file. The default group file is jete/lfoup.

/etc/group
/etc/passwd.

SEE ALSO
group(5), passwd(5).
Setting Up UNIX.

DIAGNOSTICS
Group entries in jetejgroap with no login names are ftaged.

- 1 -

PWD(1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1).

DIAGNOSTICS

PWD(I)

"Cannot open and "Read error in .. " indicate possible file system
trouble and should be referred to a UNIX programming counselor .

• 1 -

RATFOR(I) RATFOR(I)

NAME
ratfor - rational Fortran dialect

SYNOPSIS
ratfor [options 1 [files 1

DESCRIPTION
Rat/or converts a rational dialect of Fortran into ordinary irrational Fortran.
Rat/or provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making:

loops:

if (condition) statement [else statement 1
switch (integer value) {

case integer: statement

[default: 1 statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition) 1
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
II this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

The option - h causes quoted strings to be turned into 27H constructs.
The -C option copies comments to the output and attempts to format it
neatly. Normally, continuation lines are marked with a &: in column 1; the
option -6x makes the continuation character x and places it in column 6.

Rat/or is best used with p7 (l).

SEE ALSO
efl(l), f77(l).
B. W. Kernighan and P. 1. Plauger, Software Tools, Addison-Wesley, 1976.

- 1 -

REFORM(l) (Obsolescent) REFORM(l)

NAME
reform - reformat text file

SYNOPSIS
reform [tabspecl [tabspec2lJ [+bn] [+en] [+f] [+in] [+mn] [+pn]
[+5] [+tn]

DESCRIPTION
Reform reads each line of the standard input file, reformats it, and then
writes it to the standard output. Various combinations of reformatting
operations can be selected, of which the most common involve rear­
rangement of tab characters. It is often used to trim trailing blanks, trun­
cate lines to a specified length, or prepend blanks to lines.

Reform first scans its arguments, which may be given in any order. It then
processes its input file, performing the following actions upon each line, in
the order given:

A line is read from the standard input.

If +5 is given, all characters up to the first tab are stripped off and
saved for later addition to the end of the line. Presumably, these
characters comprise an "sees SID" produced by get (I).

The line is expanded into a tabless form, by replacing tabs with blanks
according to the input tab specification tabspecl.

If + pn is given, n blanks are prepended to the line.

If +tn is given, the line is truncated to a length of n characters.

All trailing blanks are now removed.

If +en is included, the line is extended out with blanks to the length of
n characters.

If +5 is given, the previously-saved "sees SID" is added to the end of
the line.

If +bn is given, the n characters at the beginning Of the line are conver­
ted to blanks, if and only if all of them are either digits or blanks.

If + mn is included, the line is moved left, i.e., n characters are remo­
ved from the beginning of the line.

The line is now contracted by replacing some blanks with tab characters
according to the list of tabs indicated by the output tab specification
tabspec2, and is written to the standard output file. Option +i controls
the method of contraction (see below).

The various arguments accepted by reform are as follows:

tabspecl describes the tab stops assumed for the input file. This tab
specification may take on any of the forms described in tabs (1).
In addition, the operand - - indicates that the tab specification
is to be found in the first line read from the standard input. If
no legal tab specification is found there, -8 is assumed. If
tabspecl is omitted entirely, - - is assumed.

tabspec2 describes the tabs assumed for the output file. It is interpreted
in the same way as tabspecl, except that omission of tabspec2
causes the value of tabspec1 to be used for tabspec2.

The remaining arguments are all optional and may be used in any com­
bination, although only a few combinations make much sense. Specifying
an argument causes an action to be performed, as opposed to the usual
default of not performing the action. Some options include numeric

- 1 -

REFORM(I) (Obsolcaccnt) REFORM(I)

values, which also have default values. Option actions are applied to each
line in the order described above. Any line length mentioned applies to
the length of a line just before the execution of the option described, and
the terminating new-line is never counted in the line length.

+bn causes the first n characters of a line to be converted to blanks,
if and only if those characters include only blanks and digits. If
n is omitted, the default value is 6, which is useful in deleting
sequence numbers from COBOL programs.

+en causes each line shorter than n characters to be extended out
with blanks to that length. Omitting n implies a default value
of 72. This option is useful for those rare cases in which
sequence numbers need to be added to an existing unnum­
bered file. The use of S in editor regular expressions is more
convenient if all lines have equal length, so that the user can
issue editor commands such as:
s/$OOOO 1 000/

+f causes a format line to be written to the standard output, pre­
ceding any other lines written. See fspec(5) for details regar­
ding format specifications. The format line is taken from
tabspec2, Le., the line normally appears as follows:
<:t-tabspec2 d:>

If tabspec2 is of the form --file-1Ulme (Le., an indirect reference to a tab
specification in the first line of the named file), then that tab specification
line is written to the standard output.

+incontrols the technique used to compress interior blanks into
tabs. Unless this option is specified, any sequence of 1 or more
blanks may be converted to a single tab character if that
sequence occurs just before a tab stop .. This causes no prob­
lems for blanks that occur before the first non blank character
in a line, and it is always possible to convert the result back to
an equivalent tabless form. However, occasionally an interior
blank (one occurring after the first nonblank) is converted to a
tab when this is not intended. For instance, this might occur in
any program written in a language utilizing blanks as delimiters.
Any single blank might be converted to a tab if it occurred just
before a tab stop. Insertion or deletion of characters preceding
such a tab may cause it to be interpreted in an unexpected way
at a later time. If the +i option is used, no string of blanks
may be converted to a tab unless there are II or more con­
tiguous blanks. The default value is 2. Note that leading
blanks are always converted to tabs when possible. It is recom­
mended that conversion of programs from non -UNIX to UNIX
systems use this option.

+ mn causes each line to be moved lift II characters, with a default
vlllue of 6. This can be useful for crunching COBOL programs.

+pn causes II blanks to be prcpended (default of 6 if II is omitted).
This option is effectively the inverse of +mll, and is often
useful for adjusting the position of IU'Off(1) output for ter­
minals lacking both forms tractor positioning and a seltable left
margin.

+5 is used with the -m option of pt(1). The -m option causes
get to prepend to each generated line the appropriate sees SID,

- 2 -

I

REFORM(l) (Obsolescent) REFORM(l)

followed by a tab. The +s option causes reform to remove the
SID from the front of the line, save it, then add it later to the
end of the line. Because +e71 is implied by this option, the
effect is to produce 80-character card images with sces SID in
columns 73 -80. Up to 8 characters of the SID are shown; if it
is longer, the eighth character is replaced by • and any charac­
ters to the right of it are discarded.

+tn causes any line longer than n characters to be truncated to that
length. If n is omitted, the length defaults to 72. Sequence
numbers can thus be removed and any blanks immediately pre­
ceding them deleted.

The following illustrate typical uses of reform. The terms PWB and
OBJECT below refer to UNIX and non- UNIX computer systems, respec­
tively. Each arrow indicates the direction of conversion. The character?
indicates an arbitrary tab specification; see tabs(l) for descriptions of legal
specifications.

OBJECT - - - > PWB (i.e., manipulation of RJE output):

Note that files transferred by RJE from OBJECT to PWB materialize with
format -8.

reform -8 -c +t +b +i <oldfile >newfile (into COBOL)
reform -8 -c3 +t +m +i <oldfile >newfile (into COBOL, crunched)

NOTE: -c3 is the preferred format COBOL; it uses the least disk space of
the COBOL formats.

PWB - - - > OBJECT (i.e., preparation of files for RJE submission):

reform'? -8 <oldfile >newfile (from arbitrary format into -8)
get -p -m sccsfile I reform +s I send ...

PWB ONLY (Le., no involvement with other systems):

pr file I reform'? -0 <oldfile (print on terminal without hardware tabs)
reform'? -0 <oldfile >newfile (convert file to tabless format)

DIAGNOSTICS
All diagnostics are fatal, and the offending line is displayed following the
message.
"line too long" a line exceeds 512 characters (in tab less form).
"not sces -mot a line does not have at least one tab when +s flag is
used.
Any of the diagnostics of tabs (1) can also appear.

EXIT CODFS
o - normal
1 - any error

SEE ALSO

BUGS

get(l), nroff(l), send(lC), tabs(1), fspec(5).

Reform is aware of the meanings of backspaces and escape sequences, so
that it can be used as a postprocessor for nroff. However, be warned that
the +e, +m, and +t options only count characters, not positions. Anyone
using these options on output containing backspaces or halfline motions will
probably obtain unexpected results.

- 3 -

REGCMP(1) REGCMP(I)

NAME
regcmp - regular expression compile

SYNOPSIS
regcmp [-] files

DESCRIPTION
Regcmp, in most cases, precludes the need for calling regcmp (see
regex(3X)) from C programs. This saves on both execution time and pro­
gram size. The command regcmp compiles the regular expressions in file
and places the output in file .i. If the - option is used, the output will be
placed in file.c. The format of entries in file is a name (C variable) fol­
lowed by one or more blanks followed by a regular expression enclosed in
double quotes. The output of regcmp is C source code. Compiled regular
expressions are represented as extern char vectors. File.i files may thus be
included into C programs, or file.c files may be compiled and later loaded.
In the C program which uses the regcmp output, regex(abc ,line) will apply
the regular expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-zO-9.J*)SO"

telno "\({O,l }([2 -9][OI][I-9])SO\){O,l} ."
"([2-9][O-9]{2})SI[-]{O,I}"
"([O-9]{4})S2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO
regex(3X).

- 1 -

RESTOR(lM) (ObIOleSC:CDt) RESTOR(IM)

NAME
restor - incremental file system restore

SYNOPSIS
restor key [arguments]

DESCRIPTION

FILES

Restor is used to read magnetic tapes dumped with the dump command.
The key specifies what is to be done. Key is one of the characters rRxt,
optionally combined with f.

f Use the first argument as the name of the tape instead of the
default.

r or R The tape is read and loaded into the file system specified in
argument. This should not be done lightly (see below). If the key
is R, restor asks which tape of a multi-volume set to start on. This
allows restor to be interrupted and then restarted (an Jsck must be
done before the restart).

x Each file on the tape named by an argument is extracted. The file
name has all "mount" prefixes removed; for example, if /usr is a
mounted file system, /usr/biD/lpr is named /biD/lpr on the tape.
The extracted file is placed in a file with a numeric name supplied
by restor (actually the inode number). In order to keep the amount
of tape read to a minimum, the following procedure is recommen­
ded:

1. Mount volume 1 of the set of dump tapes.

2. Type the restOl' command.

3. RestOI' will announce whether or not it found the files, give
the numeric name that it will assign to the file, and rewind
the tape.

4. It then asks you to "mount the desired tape volume".
Type the number of the volume you choose. On a multi­
volume dump the recommended procedure is to mount the
last through the first volumes, in that order. RestOI' checks
to see if any of the requested files are on the mounted tape
(or a later tape-thus the reverse order) and doesn't read
through the tape if no files arc. If you are working with a
single-volume dump or if the number of files being restored
is large, respond to the query with I and restOl' will read the
tapes in sequential order.

t Print the date the tape was written and the date the file system was
dumped from.

The r option should only be used to restore a complete dump tape onto a
clear file system, or to restore an incremental dump tape onto a file system
so created. Thus:

/etc/mtfs /dev/rpO 40600
restor r /dev/rpO

is a typical sequence to restore a complete dump. Another restOl' can be
done to get an incremental dump in on top of this.

A dump followed by a mJcfs and a restOl' is used to change the size of a file
system.

default tape unit varies with installation

- 1 -

RFSTOR(1M) (Obsolescent) RFSTOR(1M)

rst*

SEE ALSO
dump(1M), fsck(IM), mkfs(1M).

DIAGNOSTICS

BUGS

There are various diagnostics involved with reading the tape and writing the
disk. There are also diagnostics if the i-list or the free list of the file system
is not large enough to hold the dump.

If the dump extends over more than one tape, it may ask you to change
tapes. Reply with a new-line when the next tape has been mounted.

There is redundant information on the tape that could be used in case of
tape reading problems. Unfortunately, restor doesn't use it.

- 2 -

RJESTAT(lC) RJESTAT(lC)

NAME
rjestat - RJE status report and interactive status console

SYNOPSIS
rjestat [host]... [-shost] [-chost cmd] ...

DESCRIPTION
Rjestat provides a method of determining the status of an RJE link and of
simulating an IBM remote console (with UNIX features added). When
invoked with no arguments, rjestat reports the current status of all the RJE
links connected to to the UNIX system. The options are:

host

-shost

-chost cmd

Print the status of the line to host. Host is the pseudonym for
a particular IBM system. It can be any name that corresponds
to one in the first column of the RJE configuration file.

After all the arguments have been processed, start an interac­
tive status console to host.

Interpret cmd as if it were entered in status console mode to
host. See below for the proper format of cmd.

In status console mode, rjestat prompts with the host pseudonym followed
by : whenever it is ready to accept a command. Commands are terminated
with a new-line. A line that begins with! is sent to the UNIX shell for exe­
cution. A line that begins with the letter q terminates rjestat. All other
input lines are assumed to have the form:

ibmcmd [redirect]

Ibmcmd is any IBM JES or HASP command. Only the super-user or rje login
can send commands other than display or inquiry commands. Redirect is a
pipeline or a redirection to a file (e.g., "> file" or .. I grep). The IBM
response is written to the pipeline or file. If redirect is not present, the
response is written to the standard output of rjestat.

An interrupt signal (DEL or BREAK) will cancel the command in progress
and cause rjestat to return to the command input mode.

EXAMPLE
The following command reports the status of all the card readers attached
to host A, remote 5. JES2 is assumed.

rjestat -cA 'Sdu,rmt5 I grep RD'

DIAGNOSTICS

FILES

The message "RJE error: indicates that rjestat found an inconsistency in
the RJE system. This may be transient but should be reported to the site
administrator.

/usr/rje/lines RJE configuration file

resp host response file that exists in the RJE subsystem directory
(e.g., /usr/rjel).

SEE ALSO
send(lC), rje(8).
OS/VS2 HASP II Version 4 Operator's Guide, IBM SRL #GC27-6993.
Operator's Library: OS/VS2 Reference (JES2), IBM SRL # GC38-0210.

- I -

RM(I) RM(I)

NAME
rm, rmdir - remove files or directories

SYNOPSIS
rm [-fri] file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an entry
was the last link to the file, the file is destroyed. Removal of a file requires
write permission in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is a terminal, its
permissions are printed and a line is read from the standard input. If that
line begins with y the file is deleted, otherwise the file remains. No ques­
tions are asked when the -f option is given or if the standard input is not
a terminal.

If a designated file is a directory, an error comment is printed unless the
optional argument -r has been used. In that case, rm recursively deletes
the entire contents of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each
file, and, under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2).

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file •• merely to
avoid the antisocial consequences of inadvertently doing something like:

rm -r ••

- 1 -

I

RMDEL(I) RMDEL(I)

NAME
rmdel -remove a delta from an sees file

SYNOPSIS
rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named sees file.
The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named sees file. In addition, the
specified must not be that of a version being edited for the purpose of mak­
ing a delta (i. e., if a p-file (see get(l» exists for the named sees file, the
specified must not appear in any entry of the p-file).

If a directory is named, mulel behaves as though each file in the directory
were specified as a named file, except that non-sees files (last component
of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an sees file to be processed;
non-sees files and unreadable files are silently ignored.

The exact permissions necessary to remove a delta are documented in the
Source Code Control System User's Guide. Simply stated, they are either (I)
if you make a delta you can remove it; or (2) if you own the file and direc­
tory you can remove a delta.

x-file (see delta (l»
z-file (see delta (l»

SEE ALSO
delta(l), get(l), help(l), prs(l), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

RSH(1) RSH(l)

NAME
rsh - restricted shell (command interpreter)

SYNOPSIS
rsb [flags] [name [argI ...]]

DESCRIPTION
Rsh is a restricted version of the standard command interpreter sh(l). It is
used to set up login names and execution environments whose capabilities
are more controlled than those of the standard shell. The actions of rsh are
identical to those of sh, except that the following are disallowed:

cd
setting the value of SPATH
command names containing /
> and»

When invoked with the name -rsh, rsh reads the user's .profile (from
SHOME/.profile). It acts as the standard sh while doing this, except that an
interrupt causes an immediate exit, instead of causing a return to command
level. The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end user
shell procedures that have access to the full power of the standard shell,
while restricting him to a limited menu of commands; this scheme assumes
that the end user does not have write and execute permissions in the same
directory.

The net effect of these rules is that the writer of the .profile has complete
control over user actions, by performing guaranteed setup actions, then
leaving the user in an appropriate directory (probably not the login direc­
tory).

Rsh is actually just a link to sh and any flags arguments are the same as for
sh (l).

The system administrator often sets up a directory of commands that can
be safely invoked by rsh. Some systems also provide a restricted editor red.

SEE ALSO
sh(l), profile(S).

- 1 -

RUNACCT(1M) RUNACCT(IM)

NAME
runacct - run daily accounting

SYNOPSIS
runacet [mmdd [state]]

DESCRIPTION
Runaeet is the main daily accounting shell procedure. It is normally ini­
tiated via eron (1 M). Runaeet processes connect, fee, disk, and process
accounting files. It also prepares summary files for prdaily or billing pur­
poses.

Runaeet takes care not to damage active accounting files or summary files
in the event of errors. It records its progress by writing descriptive diagnos­
tic messages into ac:tiYe. When an error is detected, a message is written to
Ide, /eonsole, mail (see mail(1» is sent to root and adlD, and runaeet ter­
minates. Runaeet uses a series of lock files to protect against re-invocation.
The files lock and lockl are used to prevent simultaneous invocation, and
lastdate is used to prevent more than one invocation per day.

Runacct breaks its processing into separate, restartable states using stateftle
to remember the last state completed. It accomplishes this by writing the
state name into statefile. Runaect then looks in statefile to see what it has
done and to determine what to process next. States are executed in the fol­
lowing order:

SETUP

wrMPFIX

Move active accounting files into working files.

Verify integrity of wtlDP file, correcting date
changes if necessary.

CONNECTI Produce connect session records in c:tlDp.b format.

CONNECTl Convert c:tlDp.b records into tacet.b format.

PROCESS Convert process accounting records into tacet.b
format.

MERGE Merge the connect and process accounting records.

FEES Convert output of ehargefee into tacet.b format and
merge with connect and process accounting records.

DISK Merge disk accounting records with connect, pro­
cess, and fee a~ounting records.

MER GET ACCT Merge the daily total accounting records in daytacet
with the summary total accounting records in
/usr /adlD/acet/sulD/tacet.

CMS

USEREXIT

CLEANUP

Produce command summaries.

Any installation-dependent accounting programs
can be included here.

Cleanup temporary files and exit.

To restart runaeet after a failure, first check the ac:tiYe file for diagnostics,
then fix up any corrupted data files such as pacet or wtlDp. The lock files
and lastdate file must be removed before runaect can be restarted. The
argument mmdd is necessary if runaect is being restarted, and specifies the
month and day for which runaeet will rerun the accounting. Entry point for
processing is based on the contents of statefile; to override this, include the
desired state on the command line to designate where processing should
begin.

- I -

RUNACCT(1M) RUNACCT(1M)

EXAMPLES

FILES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/fd210g &

To restart runacct.
nohup runacct 0601 2» /usr/adm/acct/nite/fd2Iog &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2» /usr/adm/aeet/nite/fd210g &

/usr /lib/acct/runacct
jusr/adm/wtmp
/usr /adm/paeet[1-9]
/usr/src/cmd/acct/tacct.h
/usr /src/cmd/acct/ctmp.h
/usr/adm/aeet/nite/active
/usr/adm/acct/nite/daytacct
/usr/adm/aeet/nite/lock
/usr /adm/aeet/nite/lock 1
/usr/adm/acct/nite/lastdate
/usr/adm/acct/nite/statefile
/usr /adm/aeet/nite/ptaeet[1-9].mmdd

SEE ALSO
acct(lM), acctcms(lM), acctcom(l), aeetcon(lM), acctmerg(lM),
aeetprc(lM), aeetsh(lM), cron(lM), fwtmp(IM), acct(2) , acct(5),
utmp(5).
The UNIX Accounting System by H. S. McCreary.

DIAGNOSTICS

BUGS

Self explanatory.

Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

runaeet mmdd WTMPFIX

If runacct failed in the PROCESS state. remove the last ptacet file because it
will not be complete.

- 2 -

SACT(l) SACT(l)

NAME
sact - print current sees file editing activity

SYNOPSIS
sad files

DESCRIPTION
Sact informs the user of any impending deltas to a named sces file. This
situation occurs when get(l) with the -eoption has been previously exe­
cuted without a subsequent execution of delta(l). If a directory is named
on the command line, sact behaves as though each file in the directory
were specified as a named file, except that non-sees files and unreadable
files are silently ignored. If a name of - is given, the standard input is
read with each line being taken as the name of an sees file to be processed.

The output for each named file consists of five fields separated by spaces.

SEE ALSO

Field 1 specifies the SID of a delta that currently exists in the
sees file to which changes will be made to make the
new delta.

Field 2 specifies the SID for the new delta to be created.

Field 3

Field 4

Field 5

contains the logname of the user who will make the
delta (i.e. executed a get for editing).

contains the date that get - e was executed.

contains the time that get -e was executed.

delta(l), get(1), unget(l).

DIAGNOSTICS
Use help (1) for explanations.

- 1 -

SAG(IM) SAG (1M)

NAME
sag - system activity graph

SYNOPSIS
sag [-s time 1 [-e time 1 [-T term 1 [-uirwcobdpaf 1 [file 1

DESCR.IPTlON

FILES

Sag displays, in a graphical form, the system activity of the UNIX operating
system during a specified time interval. File is the file that contains the
daily system activity information, default is /asr/adm/sa/sadd, where dd is
today's day of the month. Sag has the following options:

-s time
-e time
-T lema

-u

-i

-r
-w
-c
-0

-II

-d

-p

-a
-f

Begin graph at time specified as hh:mm. Default is 08:00.
End graph at time specified as hh:mm. Default is 18:00.
Translate output to a form suitable for terminal lema. If this
option is not used, the environment variable srERM (see
environ(7» is used. Refer to lpiOl(lG) for available types of
terminals.
Plot CPU utilization, showing proportion of user, system and
idle time (default option).
Plot percent of time the CPU was idle and waiting on block
I/O, waiting on swap in or swap out, or waiting on physical
I/O.
Plot logical reads/minute and block reads/minute.
Plot logical writes/minute and block writes/minute.
Plot buffer cache hit ratios for reads and for writes.
Plot block transfer rate between system buffers and devices,
showing reads/minute, writes/minute, and the sum of reads
and writes/minute.
Plot bytes read/second by system call read(2) and bytes
written/second by system call wrlle(2).
Plot the sum of reads and writes/minute for each of the first
three RP06 type disk drives.
Plot process switches/second, process preemptions/second and
system calls/second.
Plot process swapins/minute and process swapouts/minutc.
Plot file access activities: iget/second, namei/second, and
directory blocks read/second.

/usr/adm/sa/sadd daily data file, where dd arc digits representing the
day of the month.

SEE ALSO

NOTES
graph(lG), tplot(lG), sar(8).

Plotted data points are extracted from the system activity file,
/usr/adm/sa/sadd, which is written under the control of cron{lM), nor­
mally every 20 minutes between 8:00 and 18:00 on weekdays, and hourly at
other times.
In the event of a system outage, the system activity counters are reset to
zero when the system is rebooted. This discontinuity is shown by a gap in
the plotted data.

DIAGNOSTICS
"terminal type not known" if srERM is not set and the -T option is not

specified.

- 1 -

SCC(l) SCC(I)

NAME
scc - C compiler for stand-alone programs

SYNOPSIS
see [+ [lib]] [option] ... [file] ...

DESCRIPTION

FILES

See prepares the named files for stand-alone execution. The option and file
arguments may be anything that can legally be used with the ee command;
it should be noted, though, that the -p (profiling) option, as well as any
object module that contains system calls, will cause the executable not to
run.

See defines the compiler constant, STANDALONE, so that sections of C
programs may be compiled conditionally for when the executable will be
run stand-alone.

The first argument specifies an auxiliary library that defines the device
configuration of the PDP-II computer for which the stand-alone executable
is being prepared. Lib may be one of the following:

A RP04/05/06 disk and TU16 magnetic tape, or equivalent

B RKll/RK05 disk, RPll/RP03 disk, and TMll/TUl6 magnetic tape,
or equivalent

If no + lib argument is specified, + A is assumed. If the + argument is
specified alone, no configuration library is loaded unless the user supplies
his own.

/lib/crt20.0
/usr/lib/lib2.a
/usr/lib/lib2A.a
/ usr /Iib /lib2B.a

execution start-off
stand-alone library
+ A configuration library
+ B configuration library

(PDP-ll only)
(PDP-II only)

SEE ALSO
ce(l), Id(l), a.out(5).
A Stand-alone Input/Output Library, by S. R. Eisen.

- 1 -

SCCSDIFF (1) SCCSDIFF (I)

NAME
sccsdiff - compare two versions of an SCCS file

SYNOPSIS
sccsdifl' -rSIDI -rSID2 [-p] [-sn] files

DESCRIPTION

FILES

Sccsdiff compares two versions of an secs file and generates the differences
between the two versions. Any number of secs files may be specified, but
arguments apply to all files.

-rSID? SID1 and SID2 specify the deltas of an sees file that are
to be compared. Vet .. ions are passed to bdiff(l) in the
order given.

-p pipe output for each file through pr(l).

- sn n is the file segment size that bdiff will pass to diff(I).
This is useful when diff fails due to a high system load.

/tmp/get????? Temporary files

SEE ALSO
bdiff(l), get(l), help(l), pr(l).
Source Code Control System User's Guideby L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
'Jile: No differences" If the two versions are the same.
Use help(l) for explanations.

- 1 -

SDB(1) (V AX 11 /780 only) SDB(1)

NAME
sdb - symbolic debugger

SYNOPSIS
sdb [objfil [corfil [directory]]]

DESCRIPTION
Sdb is a symbolic debugger which can be used with C and F77 programs. It
may be used to examine their files and to provide a controlled environment
for their execution.

Objfil is an executable program file which has been compiled with the -g
(debug) option. The default for objfil is a.out. CorfiI is assumed to be a
core image file produced after executing objfiI; the default for corfU is core.
The core file need not be present.

It is useful to know that at any time there is a cu"ent line and cu"ent file.
If corfil exists then they are initially set to the line and file containing the
source statement at which the process terminated or stopped. Otherwise,
they are set to the first line in mainO. The current line and file may be
changed with the source file examination commands.

Names of variables are written just as they are in Cor F77. Variables local
to a procedure may be accessed using the form procedure:variable. If no
procedure name is given, the procedure containing the current line is used
by default. It is also possible to refer to structure members as
variable.member, pointers to structure members as variable->member and
array elements as variable[numberJ. Combinations of these forms may also
be used.

It is also possible to specify a variable by its address. All forms of integer
constants which are valid in C may be used, so that addresses may be input
in decimal, octal or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of
the file. If no procedure or file name is given, the current file is used by
default. If no number is given, the first line of the named procedure or file
is used.

The commands for examining data in the program are:

t Print a stack trace of the terminated or stopped program.

T Print the top line of the stack trace.

variable /Im
Print the value of variable according to length I and format m. If I
and m are omitted, sdb chooses a length and format suitable for the
variable's type as declared in t~e program. The length specifiers are:

b one byte
h two bytes (half word)
I four bytes (long word)
number

string length for formats s and a

Legal values for mare:
c character
d decimal
u decimal, unsigned
o octal
x hexadecimal

- I -

SDB(I) (VAX 11/780 081y) SDB(I)

f 32 bit single precision ftoating point
g 64 bit dou ble precision ftoating point
s Assume variable is a string pointer and print charac­

ters starting at the address pointed to by the variable.
a Print characters starting at the variable's address.
p pointer to procedure

The length specifiers are only effective with the formats d, u, 0 and x.
If one of these formats is specified and I is omitted, the length
defaults to the word length of the host machine; 4 for the VAX-
11/780. If a numeric length specifier is used for the s or a command
then that many characters are printed. Otherwise successive charac­
ters are printed until either a null byte is reached or 128 characters are
printed. The last variable may be redisplayed with the command ./.

The sh (1) metacharacters • and ? may. be used within procedure and
variable names, providing a limited form of pattern matching. If no
procedure name is given, both variables local to the current procedure
and global (common for F77) variables are matched, while if a pro­
cedure name is specified then only variables local to that procedure
and matched. To match only global variables (or blank common for
F77), the form :pattern is used. The name of a common block may
be specified instead of a procedure name for F77 programs.

variable == 1m
linenumber = 1m
number=lm

Print the address of variable or linenumber, or the value of number in
the format specified by 1m. If no format is given, then Ix is used.
The last variant of this command provides a convenient way to con­
vert between decimal, octal and hexadecimal.

variable !value
Set variable to the given value. The value may be a number, charac­
ter constant or a variable. If the variable is of type ftoat or double,
the value may also be a ftoating constant.

The commands for examining source files are:

eprocedure
efile-name

Set the current file to the file containing procedure or to file-name. Set
the current line to the first line in the named procedure or file. If no
procedure or file name is given, the current procedure and file names
are reported.

/ regular expression /
Search forward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing / may be elided.

? regular expression?
Search backward from the current line for a line containing a string
matching regular expression as in ed(1). The trailing? may be elided.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current
line to the last line printed.

control-D
Scroll. Print the next 10 lines. Set the current line to the last line
printed.

- 2 -

SDB(I) (VAX 11/180 only) SDB(I)

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current
line.

count +
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no
arguments reuses the previous arguments to the program while the R
command runs the program with no arguments. An argument begin­
ning with < or > causes redirection for the standard input or output
respectively. If count is given. it specifies the number of breakpoints
to be ignored.

Iinenumber c count
Iinenumber C count

Continue after a breakpoint or interrupt. If count is given. it specifies
the number of breakpoints to be ignored. C continues with the signal
which caused the program to stop and c ignores it. If a linenumber is
specified then a temporary breakpoint is placed at the line and execu­
tion is continued. The breakpoint is deleted when the command
finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line.
If count is given. it specifies the number of breakpoints to be ignored.

count s
Single step. Run the program through count lines. If no count is
given then the program is run for one line.

count S
Single step. but step through subroutine calls.

k Kill the debugged program.

procedure(argl.arg2 •...)
procedure(argl.arg2 •...)/m .

Execute the named procedure with the given arguments. Arguments
can be integer. character or string constants or names of variables
accessible from the current procedure. The second form causes the
value returned by the procedure to be printed according to format m.
If no format is given. it defaults to d.

Iinenumber b commands
Set a breakpoint at the given line. If a procedure name without a line
number is given (e.g. "proc:"). a breakpoint is placed at the first line
in the procedure even if it was not compiled with the debug flag. If
no linenumber is given. a breakpoint is placed at the current line. If
no commands are given then execution stops just before the break­
point and control is returned to sdb. Otherwise the commands are
executed when the breakpoint is encountered and execution con­
tinues. Multiple commands are specified by separating them with
semicolons.

- 3 -

SDB(l) (VAX 11/780 only) SDB(1)

FILES

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then
the breakpoints are deleted interactively: Each breakpoint location is
printed and a line is read from the standard input. If the line begins
with a y or d then the breakpoint is deleted.

D Delete all breakpoints.

Print the last executed line.

linen umber a
Announce. If linenumber is of the form proc:number. the command
effectively does a linenumber b l. If linenumber is of the form proc:.
the command effectively does a proc: b T.

Miscellaneous commands:

!command
The command is interpreted by sh(l).

new-line
If the previous command printed a source line then advance the
current line by I line and print the new current line. If the previous
command displayed a core location then display the next core location .

• string
Print the given string.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
X Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO
adb(l). a.out(5). core(5).

DIAGNOSTICS

BUGS

Error reports are either identical to those of adb(l) or are self-explanatory.

If a procedure is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged). all variables are initialized
before the procedure is started. This makes it impossible to use a pro­
cedure which formats data from a core image.

Arrays must be of one dimension and of zero origin to be correctly
addressed by sdb.

The default type for printing F77 parameters is incorrect. Their address is
printed instead of their value.

Tracebacks containing F77 subprograms with multiple entry points may
print too many arguments in the wrong order, but their values are correct.

- 4 -

SDlFF(1) SDlFF(1)

NAME
sdiff - side-by-side difference program

SYNOPSIS
sdiff [options ...] file 1 file2

DESCRIPTION
Sdiff uses the output of diff(1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files is printed
with a blank gutter between them if the lines are identical, a < in the gut­
ter if the line only exists in filel , a > in the gutter if the line only exists in
file2, and a I for lines that are different.

For example:

x
a
b
c
d

<
<

y
a

d
> c

The following options exist:

-w n Use the next argument, n, as the width of the output line. The
default line length is 130 characters.

-1 Only print the left side of any lines that are identical.

-s Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that

SEE AlSO

is created as a user controlled merging of filel and file2. Iden­
tical lines of filel and file2 are copied to output. Sets of
differences, as produced by diff(l), are printed; where a set of
differences share a common gutter character. After printing
each set of differences, sdiff prompts the user with a % and
waits for one of the following user-typed commands:

I append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical
lines

, turn off silent mode

e I call the editor with the left column

e r call the editor with the right column

e b call the editor with the concatenation of left
and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on
the end of the output file.

diff(l), ed(l).

- 1 -

SED(I) SED (I)

NAME
sed - stream editor

SYNOPSIS
sed [- n] [-e script] [-f sfile] [files]

DESCRIPTION
Sed copies the named files (standard input default) to the standard output.
edited according to a script of commands. The -f option causes the script
to be taken from file sfile; these options accumulate. If there is just one
-e option and no -f options. the flag -e may be omitted. The -n
option suppresses the default output. A script consists of editing com­
mands. one per line. of the following form:

[address [• address]] function [arguments]

In normal operation. sed cyclically copies a line of input into a panern space
(unless there is something left after a D command). applies in sequence all
commands whose addresses select that pattern space. and at the end of the
script copies the pattern space to the standard output (except under -n)
and deletes the pattern space.

Some of the commands use a hold space to save all or part of the panern
space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively
across files. a S that addresses the last line of input. or a context address.
i.e .• a /regr,llar expression / in the style of ed(1) modified thus:

In a context address. the construction Vregular expression? where
? is any character. is identical to /regular expression/. Note
that in the context address \xabc\xdefx. the second x
stands for itself. so that the regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern
space.

A period • matches any character except the terminal new-line of
the pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that

matches the address.
A command line with two addresses selects the inclusive range

from the first pattern space that matches the first address
through the next pattern space that matches the second. (If
the second address is a number less than or equal to the
line number first selected. only one line is selected.)
Thereafter the process is repeated. looking again for the
first address.

Editing commands can be applied only to non-selected pattern spaces by
use of the negation function! (below).

In the following list of functions the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which
end with \ to hide the new-line. Backslashes in text are treated like
backslashes in the replacement string of an s command. and may be used
to protect initial blanks and tabs against the stripping that is done on every
script line. The rfile or wfile argument must terminate the command line
and must be preceded by exactly one blank. Eaoh wfile is created before
processing begins. There can be at most 10 distinct wfile arguments.

- 1 -

SED(1) SED(1)

(1) a\
text Append. Place text on the output before reading the next input

line.
(2) b label Branch to the: command bearing the label. If label is empty,

branch to the end of the script.
(2) c\
text

(2) d
(2) 0

(2) g

(2) G
(2) b

(2) H
(I) i\
text
(2) I

(2) n

(2) N

(2) p
(2) P

Change. Delete the pattern space. With 0 or 1 address or at the
end of a 2-address range, place text on the output. Start the
next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first
new-line. Start the next cycle.
Replace the contents of the pattern space by the contents of the
hold space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the
pattern space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous
form. Non-printing characters are spelled in two-digit ASCII and
long lines are folded.
Copy the pattern space to the standard output. Replace the pat­
tern space with the next line of input.
Append the next line of input to the pattern space with an
embedded new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first
new-line to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before

reading the next input line.
(2) s/regular expression /replacement /jIags

Substitute the replacement string for instances of the regular
expression in the pattern space. Any character may be used
instead of /. For a fuller description see ed(l). Flags is zero or
more of:

g

p

Global. Substitute for all nonoverlapping instan­
ces of the regular expression rather than just the
first one.
Print the pattern space if a replacement was
made.

" wfile Write. Append the pattern space to wfile if a
replacement was made.

(2) t label Test. Branch to the: command bearing the label if any substitu­
tions have been made since the most recent reading of an input
line or execution of a t. If label is empty, branch to the end of
the script.

(2)" wfile
Write. Append the pattern space to wfile.

(2) x Exchange the contents of the pattern and hold spaces.
(2) y/stringl /string2/

Transform. Replace all occurrences of characters in string1 with
the corresponding character in string2. The lengths of string1
and string2 must be equal.

- 2 -

SED (I) SED (I)

(2)!function
Don't. Apply the function (or group, if function is {) only to
lines not selected by the address(es).

(0) : label This command does nothing; it bears a label for band t com­

(1)=
(2) {

(0)

mands to branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only
when the pattern space is selected.
An empty command is ignored.

SEE ALSO
awk(l), ed(I), grep(I).
SED- A Non-interactive Text Editor by L. E. McMahon.

- 3 -

I

SEND (IC) SEND (IC)

NAME
send, gath - gather files and/or submit RJE jobs

SYNOPSIS
gath [- ih] file •••

send argument •••

DESCRIPTION
Gath

Gath concatenates the named files and writes them to the standard output.
Tabs are expanded into spaces according to the format specification for each
file (see Jspec (5». The size limit and margin parameters of a format
specification are also respected. Non-graphic characters other than tabs are
identified by a diagnostic message and excised. The output of gath contains
no tabs unless the - h flag is set, in which case the output is written with
standard tabs (every eighth column).

Any line of any of the files which begins with • is interpreted by gath as a
control line. A line beginning"· "(tilde,space) specifies a sequence of
files to be included at that point. A line beginning .! specifies a UNIX com­
mand; that command is executed, and its output replaces the .! line in the
gath output.

Setting the -i flag prevents control lines from being interpreted and causes
them to be output literally.

A file name of - at any point refers to standard input, and a control line
consisting of •• is a logical EOF. Keywords may be defined by specifying a
replacement string which is to be substituted for each occurrence of the
keyword. Input may be collected directly from the terminal, with several
alternatives for prompting. In fact, all of the special arguments and flags
recognized by the send command are also recognized and treated identically
by gath. Several of them only make sense in the context of submitting an
RJEjob.

Send
Send is a command-level interface to the RJE subsystems. It allows the
user to collect input from various sources in order to create a run stream
consisting of card images, and submit this run stream for transmission to a
host computer.

Possible sources of input to send are: ordinary files, standard input, the ter­
minal, and the output of a command or shell file. Each source of input is
treated as a virtual file, and no distinction is made based upon its origin.
Typical input is an ASCII text file of the sort that is created by the editor
ed(l). An optional format specification appearing in the first line of a file
(see Jspec(5» determines the settings according to which tabs are expanded
into spaces. In addition, lines that begin with· are normally interpreted as
commands controlling the execution of send. They may be used to set or
reset flags, to define keyword substitutions, and to open new sources of
input in the midst of the current source. Other text lines are translated
one-for-one into card images of the run stream.

The run stream that results from this collection is treated as one job by the
RJE subsystems. Send prints the card count of the run stream, and the
queuer that is invoked prints the name of the temporary file that holds the
job while it is awaiting transmission. The initial card of a job submitted to
an IBM host must have a / / in the first column. The initial card of a job
submitted to a UNIVAC host must begin with a "@RUN" or "'run", etc.
Any cards preceding these will be excised. If a host computer is not

- 1 -

SEND (IC) SEND(lC)

specified before the first card of the runstream is ready to be sent, send will
select a reasonable default. In the case of an IBM job, all cards beginning
with /*$ will be excised from the runstream, because they are HASP com­
mand cards.

The arguments that send accepts are described below. An argument is
interpreted according to the first pattern that it matches. Preceding a
character with \ causes it to loose any special meaning it might otherwise
have when matching against an argument pattern.

+
:spec:

: message

-:prompt

+:prompt

-flags

+flags

=flags

!command

$line

@directory

-comment

?:keyword

? keyword = xx

keyword=xx

Close the current source.

Open standard input as a new source.

Open the terminal as a new source.

Establish a default format specification for inclu­
ded sources,
e.g., :m6t-ll:

Print message on the terminal.

Open standard input and, if it is a terminal, print
prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.

Reset the specified flags.

Restore the specified flags to their state at the pre­
vious level.

Execute the specified UNIX comnuznd via the one­
line shell, with input redirected to Idey laull as a
default. Open the standard output of the com­
mand as a new source.

Collect contiguous arguments of this form and
write them as consecutive lines to a temporary
file; then have the file executed by the shell.
Open the standard output of the shell as a new
source.

The current directory for the send process is
changed to directory. The original directory will be
restored at the end of the current source.

Ignore this argument.

Prompt for a definition of keyword from the ter­
minal unless keyword has an existing definition.

Define the keyword as a two digit hexadecimal
character code unless it already has a non null
replacement.

Define the keyword in terms of a replacement
string unless it already has a non null repla­
cement.

Prompt for a definition of keyword from the ter­
minal.

Define keyword as a two-digit hexadecimal charac­
ter code.

- 2 -

SEND(IC) SEND(lC)

keyword = string

host

Define keyword in terms of a replacement string.

The host machine that the job should be submit­
ted to. It can be any name that corresponds to
one in the first column of the RJE configuration
file (jusrjrjejlines).

file-name Open the specified file as a new source of input.

When commands are executed via $ or ! the shell environment (see
environ(7» will contain the values of all send keywords that begin with $
and have the syntax of a shell variable.

The flags recognized by send are described in terms of the special proces­
sing that occurs when they are set:

-I List card images on standard output. EBCDIC characters are
translated back to ASCII.

-q Do not output card images.

-f Do not fold lower case to upper.

-t Trace progress on diagnostic output, by announcing the opening
of input sources.

- k Ignore the keywords that are active at the previous level and
erase any keyword definitions that have been made at the current
level.

-r Process included sources in raw mode; pack arbitrary 8-bit bytes
one per column (80 columns per card) until an EOF.

-i Do not interpret control lines in included sources; treat them as
text.

-s Make keyword substitutions before detecting and interpreting
control lines.

-y Suppress error diagnostics and submit job anyway.

-g Gather mode, qualifying -I flag; list text lines before converting
them to card images.

- b Write listing with standard tabs.

- p Prompt with. when taking input from the terminal.

- m When input returns to the terminal from a lower level, repeat the
prompt, if any.

-a Make -k flag propagate to included sources, thereby protecting
them from keyword substitutions.

-c List control lines on diagnostic output.

-d Extend the current set of keyword definitions by adding those
active at the end of included sources.

-x This flag guarantees that the job will be transmitted in the order
of submission (relative to other jobs sent with this flag).

Control lines are input lines that begin with -. In the default mode
+ir, they are interpreted as commands to send. Normally they are
detected immediately and read literally. The -5 flag forces keyword
substitutions to be made before control lines are intercepted and inter­
preted. This can lead to unexpected results if a control line uses a
keyword which is defined within an immediately preceding -$ sequence.
Arguments appearing in control lines are handled exactly like the

- 3 -

SEND (IC) SEND(lC)

command arguments to send, except that they are processed at a nested
level of input.

The two possible formats for a control line are: "~argument" and
.. ~ argument In the first case, where the ~ is not followed by a
space, the remainder of the line is taken as a single argument to send.
In the second case, the line is parsed to obtain a sequence of
arguments delimited by spaces. In this case the quotes' and" may be
employed to pass embedded spaces.

The interpretation of the argument • is chosen so that an input line
consisting of ~. is .treated as a logical EOF. The following example
illustrates some of the above conventions:

send
argument ...

This sequence of three lines is equivalent to the command synopsis at
the beginning of this description. In fact, the - is not even required.
By convention, the send command reads standard input if no other
input source is specified. Send may therefore be employed as a filter
with side-effects.

The execution of the send command is controlled at each instant by a
current environment, which includes the format specification for the
input source, a default format specification for included sources, the
settings of the mode flags, and the active set of keyword definitions.
This environment can be altered dynamically. When a control line
opens a new source of input, the current environment is pushed onto a
stack, to be restored when input resumes from the old source. The
initial format specification for the new source is taken from the first
line of the file. If none is provided, the established default is used or,
in its absence, standard tabs. The initial mode settings and active
keywords are copied from the old environment. Changes made while
processing the new source will not affect the environment of the old
source, with one exception: if -d mode is set in the old environment,
the old keyword context will be augmented by those definitions that are
active at the end of the new source.

When send first begins execution, all mode flags are reset, and the
values of the shell environment variables become the initial values for
keywords of the same name with a $ prefixed.

The initial reset state for all mode flags is the + state. In general,
special processing associated with a mode N is invoked by flag -Nand
is revoked by flag +N. Most mode settings have an immediate effect
on the processing of the current source. Exceptions to this are the -r
and -i flags, which apply only to included source, causing it to be pro­
cessed in an uninterpreted manner.

A keyword is an arbitrary 8-bit AScn string for which a replacement
has been defined. The replacement may be another string, or (for IBM
RJE only) the hexadecimal code for a single 8-bit byte. At any instant,
a given set of keyword definitions is active. Input text lines are scan­
ned, in one pass from left to right, and longest matches are attempted
between substrings of the line and the active set of keywords. Charac­
ters that do not match are output, subject to folding and the standard
translation. Keywords are replaced by the specified hexadecimal code
or replacement string, which is then output character by character. The
expansion of tabs and length checking, according to the format

- 4 -

SEND(IC) SEND(IC)

specification of an input source, are delayed until substitutions have
been made in a line.

All of the keywords definitions made in the current source may be
deleted by setting the - k flag. It then becomes possible to reuse
them. Setting the - k flag also causes keyword definitions active at the
previous source level to be ignored. Setting the + k flag causes
keywords at the previous level to be ignored but does not delete the
definitions made at the current level. The = k argument reactivates
the definitions of the previous level.

When keywords are redefined, the previous definition at the same level
of source input is lost, however the definition at the previous level is
only hidden, to be reactivated upon return to that level unless a -d
flag causes the current definition to be retained.

Conditional prompts for keywords, ?:A,/p which have already been
defined at some higher level to be null or have a replacement will sim­
ply cause the definitions to be copied down to the current level; new
definitions will not be solicited.

Keyword substitution is an elementary macro facility that is easily
explained and that appears useful enough to warrant its inclusion in the
send command. More complex replacements are the function of a gen­
eral macro processor (m4 (l), perhaps). To reduce the overhead of
string comparison, it is recommended that keywords be chosen so that
their initial characters are unusual. For example, let them all be upper
case.

Send performs two types of error checking on input text lines. Firstly,
only ASCII graphics and tabs are permitted in input text. Secondly, the
length of a text line, after substitutions have been made, may not
exceed 80 bytes for IBM, or 132 bytes for UNIVAC. The length of each
line may be additionally constrained by a size parameter in the format
specification for an input source. Diagnostic output provides the loca­
tion of each erroneous line, by line number and input source, a
description of the error, and the card image that results. Other routine
errors that are announced are the inability to open or write files, and
abnormal exits from the shell. Normally, the occurrence of any error
causes send, before invoking the queuer, to prompt for positive
affirmation that the suspect run stream should be submitted.

For IBM hosts, send is required to translate 8-bit ASCII characters into
their EBCDIC equivalents. The conversion for 8-bit ASCII characters in
the octal range 040-176 is based on the character set described in
"Appendix H" of IBM Systemj370 Principles of Operation (IBM SRL
GA22-7000). Each 8-bit ASCII character in the range 040-377 pos­
sesses an EBCDIC equivalent into which it is mapped, with five excep­
tions: - into , 0345 into ., 0325 into ~, 0313 into I, 0177 (DEL) is
illegal. In listings requested from send and in printed output returned
by the subsystem, the reverse translation is made with the qualification
that EBCDIC characters that do not have valid 8-bit ASCII equivalents
are translated into -. UNIVAC hosts, on the other hand, operate in
ASCII code, and any translations between ASCII and field-data are
made, in accordance with the UNIVAC standard, by the host computer.

Additional control over the translation process is afforded by the -f
flag and hexadecimal character codes. As a default, send folds lower­
case letters into upper case. For UNIVAC RJE it does more: the entire
ASCII range 0140-0176 is folded into 0100-0136, so that ., for

- 5 -

SEND(lC) SEND(lC)

example, becomes @. In either case, setting the -f ftag inhibits any
folding. Non-standard character codes are obtained as a special case of
keyword substitution.

SEE ALSO

BUGS

m4(1), orjestat(l C), rjestat(l C), sh(l), fspec(5), ascii(7), hasp(8), rje(8),
uvac(8).
Guide to IBM Remote Job EnlI'y for PWB/UNIX Users by A. L. Sabsevitz and
E. J. Finger.
UNIX Remote Job Entry User's Guide by K. A. Kelleman.

Standard input is read in blocks, and unused bytes are returned via
Iseek(2). If standard input is a pipe, multiple arguments of the form - and
-:prompt should not be used, nor should the logical EOF C.).

- 6-

SETMNT(IM) SETMNT(IM)

NAME
setmnt - establish mnttab table

SYNOPSIS
/ete/setDlnt

DESCRIPTION

FILES

Setmnt creates the /ete/mnttab table (see mnttab(5», which is needed for
both the mount(IM) and umount(IM) commands. Setmnt reads standard
input and creates a mnnab entry for each line. Input lines have the format:

filesys node

wherefilesys is the name of the file system's special file (e.g., "rp??") and
node is the root name of that file system. Thus filesys and node become the
first two strings in the mnttab(5) entry.

/etc/mnttab

SEE ALSO
mnttab(5).

BUGS
Evil things will hap.pen if filesys or node are longer than 10 characters.
Setmnt silently enforces an upper limit on the maximum number of mnnab
entries.

- I -

SH(1) SH(l)

NAME
sh - shell, the standard command programming language

SYNOPSIS
sh [-eeiknrstuvx] [args]

DESCRIPTION
Sh is a command programming language that executes commands read
from a terminal or a file. See Invocation below for the meaning of
arguments to the shell.

Commands.
A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the com­
mand to be executed. Except as specified below, the remaining words are
passed as arguments to the invoked command. The command name is
passed as argument 0 (see exec(2». The value of a simple-command is its
exit status if it terminates normally, or (octal) 200+status if it terminates
abnormally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a pipe (2) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by;, &, &&, or II,
and optionally terminated by ; or &. Of these four symbols, ; and & have
equal precedence, which is lower than that of && and II. The symbols &&
and II also have equal precedence. A semicolon (;) causes sequential exe­
cution of the preceding pipeline; an ampersand (&) causes asynchronous
execution of the preceding pipeline (i.e., the shell does not wait for that
pipeline to finish). The symbol && (II) causes the list following it to be
executed only if the preceding pipeline returns a zero (non-zero) exit sta­
tus. An arbitrary number of new-lines may appear in a list, instead of sem­
icolons, to delimit commands.

A command is either a simple-command or one of the following. Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command.

for name [in word . ..] do list done
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word ... is omitted, then the for
command executes the do list once for each positional parameter
that is set (see Parameter Substitution below). Execution ends when
there are no more words in the list.

case word in [pattern [I pattern] ...) list ;;] ... esae
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file-name generation (see File Name Generation below).

if list tben list [elif list tben list] ... [else list) fi
The list following if is executed and, if it returns a zero exit status,
the list following the first tben is executed. Otherwise, the list fol­
lowing elif is executed and, if its value is zero, the list following the
next then is executed. Failing that, the else list is executed. If no
else list or tben list is executed, then the if command returns a
zero exit status.

w bile list do list done
A wbile command repeatedly executes the wbile list and, if the exit
status of the last command in the list is zero, executes the do list;

- 1 -

SH(I)

(list)

{list;}

SH(I)

otherwise the loop terminates. If no commands in the do list are
executed, then the while command returns a zero exit status; until
may be used in place of while to negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.

The following words are only recognized as the first word of a command
and when not quoted:

if then else elif fi case esac for while until do done { }

Comments.
A word beginning with # causes that word and all the following characters
up to a new-line to be ignored.

Command Substitution.
The standard output from a command enclosed in a pair of grave accents
(••) may be used as part or all of a word; trailing new-lines are removed.

Parameter Substitution.
The character 5 is used to introduce substitutable parameters. Positional
parameters may be assigned values by set. Variables maybe set by writing:

name = value [name = value 1 ...
Pattern-matching is not performed on value.

5{parameter}
A parameter is a sequence of letters, digits, or underscores (a
name), a digit, or any of the characters *, @' #. ?, -, 5, and !.
The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A
name must begin with a letter or underscore. If parameter is a digit
then it is a positional parameter. If parameter is * or @, then all
the positional parameters, starting with 51, are substituted (separa­
ted by spaces). Parameter SO is set from argument zero when the
shell is invoked.

5{parameter: -word}
If parameter is set and is non-null then substitute its value; oth­
erwise substitute word.

5{parameter: = word}
If parameter is not set or is null then set it to word; the value of the
parameter is then substituted. Positional parameters may not be
assigned to in this way.

5{parameter: ?word}
If parameter is set and is non-null then substitute its value; oth­
erwise, print word and exit from the shell. If word is omitted, then
the message "parameter null or not set" is printed.

5{parameter: + word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted
string, so that, in the following example, pwd is executed only if d is not
set or is null:

echo S{d:- ·pwd·}

If the colon (:) is omitted from the above expressions, then the shell only
checks whether parameter is set or not.

- 2 -

SH(I) SH(I)

The following parameters are automatically set by the shell:
The number of positional parameters in decimal.

Flags supplied to the shell on invocation or by the set com­
mand.

? The decimal value returned by the last synchronously exe­
cuted command.

S The process number of this shell.
The process number of the last background command
invoked.

The following parameters are used by the shell:
HOME The default argument (home directory) for the cd com­

mand.
PATH The search path for commands (see Execution below).
MAIL If this variable is set to the name of a mail file, then the

shell informs the user of the arrival of mail in the specified
file.

PSI Primary prompt string, by default "s ".
PSl Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.

The shell gives default values to PATH, PSI, PSl, and IFS, while HOME
and MAIL are not set at all by the shell (although HOME is set by login (1».

Blank Interpretation.
After parameter and command substitution, the results of substitution are
scanned for internal field separator characters (those found in IFS) and split
into distinct arguments where such characters are found. Explicit null
arguments C ft or ••) are retained. Implicit null arguments (those resulting
from parameters that have no values) are removed.

File Name Generation.
Following substitution, each command word is scanned for the characters .,
?, and [. If one of these characters appears then the word is regarded as a
panern. The word is replaced with alphabetically sorted file names that
match the pattern. If no file name is (ound that matches the pattern, then
the word is left unchanged. The character • at the start of a file name or
immediately following a I, as well as the character I itself, must be
matched explicitly.

Quoting.

• Matches any string, including the null string.
? Matches any single character.
[...) Matches anyone of the enclosed characters. A pair of

characters separated by - matches any character lexically
between the pair, inclusive.

The following characters have a special meaning to the shell and cause ter­
mination of a word unless quoted:

; It () I < > new-line space tab

A character may be quoted (i.e., made to stand for itselO by preceding it
with a \. The pair \Dew-IiDe is ignored. All characters enclosed between a
pair of single quote marks (••), except a single quote, are quoted. Inside
double quote marks (••), parameter and command substitution occurs and
\ quotes the characters \, ., ., and S. -S-- is equivalent to -SI $1 ...• ,
whereas .S@" is equivalent to -SI· -$1 •....

Prompting.
When used interactively, the shell prompts with the value of PSI before
reading a command. If at any time a new-line is typed and further input is

- 3 -

SH(l) SH(l)

needed to complete a command, then the secondary prompt (i.e., the value
of PS2) is issued.

Input/Output.
Before a com.mand is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may appear
anywhere in a simple-command or may precede or follow a command and
are not passed on to the invoked command; substitution occurs before word
or digit is used:

<word Use file word as standard input (file descriptor 0).
> word Use file word as standard output (file descriptor 1). If the

file does not exist then it is created; otherwise, it is trun­
cated to zero length.

»word Use file word as standard output. If the file exists then out­
put is appended to it (by first seeking to the end-of-file);
otherwise, the file is created.

«[-]word The shell input is read up to a line that is the same.as word,
or to an end-of-file. The resulting document bectJmes the
standard input. If any character of word is quoted, then no
interpretation is placed upon the characters of the docu­
ment; otherwise, parameter and command substitution
occurs, (unescaped) \new-Iine is ignored, and \ must be
used to quote the characters \, S, " and the first character
of word. If - is appended to «, then all leading tabs are
stripped from word and from the document.

<&digit The standard input is duplicated from file descriptor digit
(see dup(2». Similarly for the standard output using >.

<&- The standard input is closed. Similarly for the standard out­
put using >.

If one of the above is preceded by a digit, then the file descriptor created is
that specified by the digit (instead of the default 0 or I). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor I.

If a command is followed by & then the default standard input for the com­
mand is the empty file Ide'/null. Otherwise, the environment for the exe­
cution of a command contains the file descriptors of the invoking shell as
modified by input/output specifications.

Environment.
The environment (see environ(7» is a list of name-value pairs that is passed
to an executed program in the same way as a normal argument list. The
shell interacts with the environment in several ways. On invocation, the
shell scans the environment and creates a parameter for each name found,
giving it the corresponding value. Executed commands inherit the same
environment. If the user modifies the values of these parameters or creates
new ones, none of these affects the environment unless the export com­
mand is used to bind the shell's parameter to the environment. The
environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it
with one or more assignments to parameters. Thus:

TERM=450 cmd args and
(export TERM; TERM =450; cmd args)

- 4 -

SH(1) SH(1)

are equivalent (as far as the above execution of cmd is concerned).

If the - k flag is set, all keyword arguments are placed in the environment,
even if they occur after the command name. The following first prints a=b
c and then c:

echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are ignored if
the command is followed by It; otherwise signals have the values inherited
by the shell from its parent, with the exception of signal II (but see also
the trap command below).

Execution.
Each time a command is executed, the above substitutions are carried out.
Except for the Special Commands listed below, a new process is created and
an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory con­
taining the command. Alternative directory names are separated by a colon
(:). The default path is :/bin:/usr/bin (specifying the current directory,
Ibin, and lusr/bin, in that order). Note that the current directory is
specified by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list. If the
command name contains a I then the search path is not used. Otherwise,
each directory in the path is searched for an executable file. If the file has
execute permission but is not an a.out file, it is assumed to be a file con­
taining shell commands. A sub-shell (i.e., a separate process) is spawned
to read it. A parenthesized command is also executed in a sub-shell.

Special Commands.
The following commands are executed in the shell process and, except as
specified, no input/output redirection is permitted for such commands:

No effect; the command does nothing. A zero exit code is retur­
ned .

• file Read and execute commands from file and return. The search path
specified by PATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or wbile loop, if any. If n is specified
then break n levels.

continue [n]
Resume the next iteration of the enclosing for or wbile loop. If n
is specified then resume at the n-th enclosing loop.

cd[arg]
Change the current directory to arg. The shell parameter HOME is
the default argo

e,al [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given. cause the shell
input/output to be modified.

exit [n]
Causes a shell to exit with the exit status specified by n. If n is

- 5 -

SH(1) SH(1)

omitted then the exit status is that of the last command executed
(an end-of-file will also cause the shell to exit.)

export [name ...]
The given names are marked for automatic export to the environ­
ment of subsequently-executed commands. If no arguments are
given. then a list of all names that are exported in this shell is prin­
ted.

newgrp [arg . ..]
Equivalent to exec newgrp arg

read [name ...]
One line is read from the standard input and the first word is assig­
ned to the first name. the second word to the second name. etc .•
with leftover words assigned to the last name. The return code is 0
unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these
names may not be changed by subsequent assignment. If no
arguments are given. then a list of all readonly names is printed.

set [-ekntun [arg ... J]

sbift

test

times

-e If the shell is non-interactive then exit immediately if a
command exits with a non-zero exit status.

- k All keyword arguments are placed in the environment for a
command. not just those that precede the command name.

- n Read commands but do not execute them.
-t Exit after reading and executing one command.
-u Treat.unset variables as an error when substituting.
-y Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.

Do not change any of the flags; useful in setting $1 to -.
Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in 5-. The remaining arguments are posi­
tional parameters and are assigned, in order, to 51. 51 •.... If no
arguments are given then the values of all names are printed.

The positional parameters from Sl . .. are renamed 51

Evaluate conditional expressions. See test(l} for usage and descrip­
tion.

Print the accumulated user and system times for processes run
from the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signal(s} n. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. An attempt
to trap on signal 11 (memory fault) produces an error. If arg is
absent then all trap(s} n are reset to their original values. If arg is
the null string then this signal is ignored by the shell and by the
commands it invokes. If n is 0 then the command arg is executed
on exit from the shell. The trap command with no arguments
prints a list of commands associated with each signal number.

umask [nnn]
The user file-creation mask is set to nnn (see umask(2)}. If nnn is

- 6 -

SU(I) SU(I)

omitted, the current value of the mask is printed.
wait Wait for all child processes to terminate report the termination sta­

tus. If n is not given then all currently active child processes are
waited for. The return code from this command is always zero.

Invocation.
If the shell is invoked through exec(2) and the first character of argument
zero is -, commands are initially read from /etc/profile and then from
SUOME/.profile, if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as
/bin/sb. Th~ flags below are interpreted by the shell on invocation only;
Note that unless the -c or -s flag is specified, the first argument is
assumed to be the name of a file containing commands, and the remaining
arguments are passed as positional parameters to that command file:

-c string If the -c flag is present then commands are read from string.
-s If the -5 flag is present or if no arguments remain then com-

mands are read from the standard input. Any remaining
arguments specify the positional parameters. Shell output is
written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are atta­
ched to a terminal, then this shell is interactive. In this case
TERMINATE is ignored (so that kill 0 does not kill an interac­
tive shell) and INTERRUPT is caught and ignored (so that wait is
interruptible). In all cases, QUIT is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell (see
rsh(l».

The remaining flags and arguments are described under the set command
above.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return
a non-zero exit status. If the shell is being used non-interactively then exe­
cution of the shell file is abandoned. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command above).

/ etc/profile
SHOME/ .profile
/tmp/sh.
/dev/null

SEE ALSO

BUGS

cd(l), env(l), login(l), newgrp(l), rsh(l), test(l),
exec(2), fork(2), pipe(2), signal(2), umask(2),
profile(5), environ(7).

umask(1), dup(2),
wait(2), a.out(5),

The command readonly (without arguments) produces the same output as
the command export.
If « is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input document; a
garbage file /tmp/sb- is created and the shell complains about not being
able to find that file by another name.

- 7 -

SHUTDOWN (1M) SHUTDOWN (1M)

NAME
shutdown - terminate all processing

SYNOPSIS
fete/shutdown

DESCRIPTION
Shutdown is part of the UNIX operation procedures. Its primary function is
to terminate all currently running processes in an orderly and cautious
manner. The procedure is designed to interact with the operator (Le., the
person who invoked shutdown). Shutdown may instruct the operator to per­
form some specific tasks, or to supply certain responses before execution
can resume. Shutdown goes through the following steps:

SEE ALSO

All users logged on the system are notified to log off the system by a
broadcasted message. The operator may display his/her own message at
this time. Otherwise, the standard file save message is displayed.

If the operator wishes to run the file-save procedure, shutdown
unmounts all file systems.

All file systems' super blocks are updated before the system is to be
stopped (see sync(lM». This must be done before re-booting the sys­
tem, to insure file system integrity. The most common error diagnostic
that will occur is device busy. This diagnostic happens when a particular
file system could not be unmounted. See umount(1M).

sync(lM), umount(lM).

- 1 -

SIZE (I)

NAME
size - size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION

SIZE(I)

Size prints the (decimal) number of bytes required by the text. data. and
bss portions. and their sum in octal and decimal. of each object-file
argument. If no file is specified. a.out is used.

SEE ALSO
a.out(5).

- 1 -

SLEEP(l)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION

SLEEP (I)

Sleep suspends execution for time seconds. It is used to execute a com­
mand after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO
aiarm(2), sleep(3C).

BUGS
Time must be less than 65536 seconds.

- 1 -

SNO(1) SNO(I)

NAME
sno - SNOBOL interpreter

SYNOPSIS
sno [files 1

DESCRIPTION
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno
obtains input from the concatenation of the named files and the standard
input. All input through a statement containing the label end is considered
program and is compiled. The rest is available to syspit.

Sno differs from SNOBOL in the following ways:

SEE ALSO
awk(1).

There are no unanchored searches. To get the same effect:

a .. b unanchored search for b.
a *x* b = x c unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for abc.

Function declaration is done at compile time by the use of the
(non-unique) label define. Execution of a function call begins at
the statement following the define. Functions cannot be defined at
run· time, and the use of the name define is preempted. There is
no provision for automatic variables other than parameters. Exam­
ples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty sta­
tement.

Labels, functions and variables must all have distinct names. In
particular, the non-empty statement on end cannot merely name a
label.

If start is a label in the program, program execution will start there.
If not, execution begins with the first executable statement; define
is not an executable statement.

There are no builtin functions.

Parentheses for arithmetic are not needed. Normal precedence
applies. Because of this, the arithmetic operators / and. must be
set off by spaces.

The right side of assignments must be non-empty.

Either I or • may be used for literal quotes.

The pseudo-variable sysppt is not available.

"SNOBOL, a String Manipulation Language," by D. J. Farber, R. E.
Griswold, and I. P. Polonsky, JACM 11 (1964), pp. 21-30.

- 1 -

SORT(1) SORT(l)

NAME
sort - sort and/or merge files

SYNOPSIS
sort [-cmubdfinrtx] [+posl [-pos2]] ... [-0 output]
[names]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the
standard output. The name - means the standard input. If no input files
are named. the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by
bytes in machine collating sequence. The ordering is affected globally by
the following options. one or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field comparisons.

d "Dictionary" order: only letters. digits and blanks are significant in
comparisons.

f Fold upper case letters onto lower case.

Ignore characters outside the ASCII range 040-0176 in non-numeric
comparisons.

n An initial numeric string. conslstlflg of optional blanks. optional
minus sign. and zero or more digits with optional decimal point. is
sorted by arithmetic value. Option n implies option b.

r Reverse the sense of comparisons.

tx "Tab character" separating fields is x.

The notation +posl -pos2 restricts a sort key to a field beginning at posl
and ending just before pos2. Posl and pos2 each have the form m.n.
optionally followed by one or more of the flags bdfinr. where m tells a
number of fields to skip from the beginning of the line and n tells a num­
ber of characters to skip further. If any flags are present they override all
the global ordering options for this key. If the b option is in effect n is
counted from the first non-blank in the field; b is attached independently to
pos2. A missing .n means .0; a missing -pos2 means the end of the line.
Under the -tx option. fields are strings separated by x; otherwise fields are
non-empty non-blank strings separated by blanks.

When there are multiple sort keys. later keys are compared only after all
earlier keys compare equal. Lines that otherwise compare equal are
ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give
no output unless the file is out of sort.

m Merge only. the input files are already sorted.

u Suppress all but one in each set of equal lines. Ignored bytes and
bytes outside keys do not participate in this comparison.

o The next argument is the name of an output file to use instead of the
standard output. This file may be the same as one of the inputs.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words (capital­
ized words differ from uncapitalized):

- 1 -

SORT (I) SORT(l)

FILES

sort -u +Of +0 list

Print the password file (passwd(5» sorted by user ID (the third colon­
separated field):

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month­
day) entries (the options -um with just one input file make the choice of a
unique representative from a set of equal lines predictable):

sort - urn +0 -\ dates

/usr /tmp/stm???

SEE ALSO
comm(l), join(l), uniq(1).

DIAGNOSTICS

BUGS

Comments and exits with non-zero status for various trouble conditions
and for disorder discovered under option -c.

Very long lines are silently truncated.

- 2 -

SPELL (1) SPELL (1)

NAME
spell, spellin, spellout - find spelling errors

SYNOPSIS
spell [options I [files]

/usr/lib/spell/spellin [list I
/ usr /lib / spell/ spellout [- d I list

DESCRIPTION

FILES

Spell collects words from the named files and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain
inflections, prefixes, and/or suffixes) from words in the spelling list are
printed on the standard output. If no files are named, words are collected
from the standard input.

Spell ignores most trojf(l), tb/(l), and eqn(l) constructions.

Under the -Y option, all words not literally in the spelling list are printed,
and plausible derivations from the words in the spelling list are indicated.

Under the -b option, British spelling is checked. Besides preferring centre,
colour, speciality, travelled, etc., this option insists upon -ise in words like
standardise , Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each
word.

The spelling list is based on many sources, and while more haphazard than
an ordinary dictionary, is also more effective with respect to proper names
and popular technical words. Coverage of the specialized vocabularies of
biology, medicine, and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated
below with their default settings. Copies of all output are accumulated in
the history file. The stop list filters out misspellings (e.g.,
thier=thy-y+ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell (both expect a list
of words, one per line, from the standard input): spellin adds the words on
the standard input to the preexisting list and places a new list on the stan­
dard output. If no list is specified, the new list is created from scratch.
Spellout looks up each word read from the standard input, and prints on the
standard output those that are missing from (or, with the -d option,
present in) the hash list.

D_SPELL= /usr/lib/spell/hlist[ab]

S_SPELL= /usr/lib/spell/hstop
H_SPELL = / usr /lib / spell/ spellhist
/tmp/spell.$$
/usr/lib/spell/spellprog

hashed spelling lists, American & Bri­
tish
hashed stop list
history file
temporary
program

SEE ALSO

BUGS

deroff(l), eqn(l), sed(l), sort(1), tbl(l), tee(1), troff(1), typo(1).

The spelling list's coverage is uneven; new installations will probably wish
to monitor the output for several months to gather local additions; typi­
cally, these are kept in a separate local dictionary that is added to the
hashed list via spellin.
British spelling was done by an American.

- 1 -

SPLINE(lG) SPLINE(lG)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [options]

DESCRIPTION
Spline takes pairs of numbers from the standard input as abscissas and ordi­
nates of a function. It produces a similar set, which is approximately
equally spaced and includes the input set, on the standard output. The
cubic spline output (R. W. Hamming, Numerical Methods JOT Scientists and
Engineers, 2nd ed., pp. 349fT) has two continuous derivatives, and
sufficiently many points to look smooth when plotted, for example by
graph(lG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input);
spacing is given by the next argument, or is assumed to be 1 if
next argument is not a number.

- k The cons:ant k ~sed i~ the b.oundary value computation:
Yo = Icy), Yn = Icyn-)

is set by the next argument (default k =- 0).

-n Space output points so that approximately n intervals occur
between the lower and upper x limits (default n -= 100).

-p Make output periodic, i.e., match derivatives at ends. First and
last input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Nor­
mally, these limits are calculated from the data. Automatic abscis­
sas start at lower limit (default 0).

SEE ALSO
graph(lG).

DIAGNOSTICS

BUGS

When data is not strictly monotone in x, spline reproduces the input
without interpolating extra points.

A limit of 1,000 input points is enforced silently .

• 1 -

SPLIT(l) SPLIT(l)

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-Iine pieces (default 1000), as many as
necessary, onto a set of output files. The name of the first output file is
name with aa appended, and so on lexicographically. If no output name is
given. x is default.

If no input file is given. or if - is given in its stead. then the standard
input file is used.

SEE ALSO
bfs (l), csplit(1).

- 1 -

ST(1M) ST(lM)

NAME
st - synchronous terminal control

SYNOPSIS
jete/ stload
/ete/stentrl [on I off)

DESCRIPTION

FILES

The stload command file is used to load the synchronous terminal prototype
script, jete/proto, into the designated KMCII-B microprocessor, and start
execution of the script. As supplied, stload uses jde, /kmcO; it may need
local modification if another KMCII-B is bei~g used.

The stemrl command is used to activate and deactivate the synchronous ter­
minal driver.

The /etejre file should contain the following multi-user entries:

/ etc/stload
/etc/stcntrl on

while jetejshutdown should have:

/ etc/stcntrl off

j etc/ stproto
jdevjkmc?
/dev/vpm?
jdev /s1O
/dev /st?

synchronous terminal prototype script
KMCII-B microprocessor
virtual protocol machine
synchronous terminal control channel
synchronous terminal user channels

SEE ALSO

BUGS

kmc(4), st(4), trace(4), vpm(4).

The stentrl.e file assumes that jde, j'pmO is the vpm device being used for
the first (and usually only) synchronous terminal controller. If some other
vpm device is being used, the steatrl.e file must be modified and rebuilt.

- I -

STAT(lG) STAT (lG)

NAME
stat - statistical network useful with graphical commands

SYNOPSIS
node-name [options] [files]

DESCRIPTION
Stat is a collection of command level functions (nodes) that can be inter­
connected using sh (I) to form a statistical network. The nodes reside in
/usr/bin/graf (see graphics(lG». Data is passed through the network as
sequences of numbers (vectors), where a number is of the form:

[sign] (digits) (.digits) [e[sign]digits]

evaluated in the usual way. Brackets and parentheses surround fields. All
fields are optional, but at least one of the fields surrounded by parentheses
must be present. Any character input to a node that is not part of a num­
ber is taken as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output
vector elements;

Summarizers,

Translators,

Generators,

which calculate statistics of a vector;

which convert among formats; and

which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indi­
cated by a leading minus (-). In general, an option is specified by a
character followed by a value, such as 0. This is interpreted as c := 5 (c is
assigned 5). The following keys are used to designate the expected type of
the value':

c characters,

integer,

f floating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a Shell
argument delimiter.

Options without keys are flags. All nodes except generators accept files as
input, hence it is not indicated in the synopses.

Transformers:

abs

af

ceil

cusum

exp

floor

gamma

list

[-ci] - absolute value
columns (similarly for -c options that follow)

[-ci tv] - arithmetic function
titled output, verbose

[-ci] - round up to next integer

[-ci] - cumulative sum

[-ci] - exponential

[-ci] - round down to next integer

[-ci] - gamma

[-ci dstring] - list vector elements
delimiter(s)

- I -

STAT(IG)

log

mod

pair

power

root

round

siline

sin

subset

[-ci bf] ~ logarithm
base

[-cj mfl - modulus
modulus

[-cj Ffile xi] - pair elements
File containing base vector, x group size

[-cj pf] - raise to a power
power

[-cj rf] - take a root
root

STAT (IG)

[-ci pi si] - round to nearest integer, .5 rounds to I
places after decimal point, significant digits

[-ci ifnisf] - generate a line given slope and intercept
intercept, number of positive integers, slope

[-cj] - sine

[-afbf ci Ffile ii V nl np pf si ti] - generate a subset
above, below, File with master vector, interval, leave,
master contains element numbers to leave, master con­
tains element numbers to pick, pick, start, terminate

Summarizers:

bucket [-ai ci Ffile hfii Vn;) - break into buckets
average size, File containing bucket boundaries, bigh,
interval, low, number

cor [- Ffile 1 - correlation coefficient
File containing base vector

bilo [- b I 0 ox oy 1 - find high and low values

Ireg

mean

point

prod

qsort

rank

total

var

Translators:

bigh only, low only, option form, option form with x
prepended, option form with y prepended

[- Ffile i 0 s] - linear regression
File containing base vector, intercept only, option form for
siline, slope only

[-fj ni pf) - (trimmed) arithmetic mean
fraction, number, percent

[-fj ni pf s] - point from empirical cumulative density
function
fraction, number, percent, sorted input

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

bar [-a b f g ri wi xf xa yf ya yV yhf] - build a bar chart
suppress axes, bold, suppress frame, suppress grid, region,
width in percent, x origin, suppress x-axis label, y origin,
suppress y-axis label, y-axis lower bound, y-axis high
bound

- 2 -

STAT(IG)

hist

label

STAT(IG)

[-a b f g ri xl xa yl ya ylf ylif] - build a histogram
suppress axes, bold, suppress frame, suppress grid, region,
x origin, suppress x-axis label, y origin, suppress y-axis
label, y-axis lower bound, y-axis high bound

[-b c Ffile h p ri x xu y yr] - label the axis of a GPS
file
bar chart input, retain case, label File, histogram input,
plot input, rotation, x-axis, upper x-axis, y-axis, right y­
axis

pie [- bop pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:= 100), value
as percentage(:=i), draw percent of pie, region, no values,
x origin, y origin
Unlike other nodes, input is lines of the form

[< i e fcc>] value [label]
ignore (don't draw) slice, explode slice, fill slice,
color slice c = (black, red, green, blue)

plot [-a b cstring d f Ffile g m ri xf xa xif xhl xlf xni xt
yl ya yif yhl ylf yni yt] - plot a graph
suppress axes, bold, plotting characters, discoimected,
suppress frame, File containing x vector, suppress grid,
mark points, region, x origin, suppress x-axis label, x
interval, x high bound, x low bound, number of ticks on
x-axis, suppress x-axis title, y origin, suppress y-axis label,
y interval, y high bound, y low bound, number of ticks on
y-axis, suppress y-axis title

title [-b c Istring vstring ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

GeneratOl's:

gas

prime

rand

RFSTRICTlONS

[-ci if ni sl if] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni] - generate prime numbers
high, low, number

[-ci hi If ml ni s;) - generate random sequence
high, low, multiplier, number, seed

Some nodes have a limit on the size of the input vector.

SEE ALSO
graphics(lG), gps(5).

- 3 -

STRIP (1) STRIP (I)

NAME
strip - remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION

FILES

Strip removes the symbol table and relocation bits ordinarily attached to the
output of the assembler and link editor. This is useful to save space after a
program has been debugged.

The effect of strip is the same as use of the -s option of Id.

If name is an archive file, strip will remove the local symbols from any
a.out format files it finds in the archive. Certain libraries, such as those
residing in /lib, have no need for local symbols. By deleting them, the size
of the archive is decreased and link editing performance is increased.

/tmp/stm*

SEE ALSO

temporary file

ld(l).

- 1 -

S1TY(l) S1TY(l)

NAME
stty - set the options for a terminal

SYNOPSIS
stty [-a 1 [-g 1 [options 1

DESCRIPTION
Stty sets certain terminal I/O options for the device that is the current stan­
dard input; without arguments, it reports the settings of certain options;
with the -a option, it reports all of the option settings; with the -g
option, it reports current settings in a form that can be used as an
argument to another stty command. Detailed information about the modes
listed in the first five groups below may be found in Ity(4). Options in the
last group are implemented using options in the previous groups. Note that
many combinations of options make no sense, but no sanity checking is
performed. The options are selected from the following:

Control Modes
parenb (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
es5 es6 es7 es8 select character size (see Ity(4».
o hang up phone line immediately.
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

hupel (- hupel)

hup (-hup)
estopb (-estopb)
eread (-eread)
elocal (-elocal)

Input Modes
ignbrk (- ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpek (-inpek)
istrip (- istrip)
inler (-inler)
igner (- igncr)
iernl (-iernl)
iuele (-iuele)

ixon (- ixon)

ixany (- ixany)
ixoff (-ixoff)

Output Modes
opost (-OP05t)

oleue (-oleue)

onler (-onler)
ounl (-ocrnl)

Set terminal baud rate to the number given, if possi­
ble (these are the speeds supported by the DH-ll
interface).
hang up (do not hang up) DATA-PHONE- connection
on last close.
same as hupel (- hupel).
use two (one) stop bits per character:
enable (disable) the receiver.
assume a line without (with) modem control.

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see tty(4».
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits.
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.
map (do not map) upper-case alphabetics to lower
case on input.
enable (disable) START/STOP output control. Output
is stopped by sending an ASCII DC3 and started by
sending an ASCII DCI.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP
characters when the input queue is nearly empty/full.

post-process output (do not post-process output;
ignore all other output modes).
map (do not map) lower-case alphabetics to upper
case on output.
map (do not map) NL to CR-NL on output.
map (do not map) CR to NL on output.

- 1 -

STTY(1)

onocr (-onocr)
onlret (-onlret)

ofill (-ofill)
of del (-of del)
crO crI cr2 cr3
nlO nil
tabO tabI tab2 tab3
bsO bsl
ffOfn
• to vtl

Local Modes
isig (- isig)

ieanon (-ieanon)

xease (- xease)

echo (-echo)
echoe (- echoe)

echok (-echok)
Ifkc (-Ifkc)
echonl (-echonl)
noflsh (-noflsh)

Control Assignments
control-character c

line j

Combination Modes

STTY(1)

do not (do) output CRs at column zero.
on the terminal NL performs (does not perform) the
CR function.
use fill characters (use timing) for delays.
fill characters are DELs (NULs).
select style of delay for carriage returns (see tty(4».
select style of delay for line-feeds (see tty(4».
select style of delay for horizontal tabs (see tty(4».
select style of delay for backspaces (see tty(4».
select style of delay for form-feeds (see tty(4».
select style of delay for vertical tabs (see tty(4» .

enable (disable) the checking of characters against
the special control characters INTR and QUIT .

. enable (disable) canonical input (ERASE and KILL
processing) .
canonical (unprocessed) upper flower-case presenta­
tion.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace­
space-backspace string. Note: this mode will erase
the ERASEed character on many CRT terminals;
however, it does not keep track of column position
and, as a result, may be confusing on escaped charac­
ters, tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as ecbok (-ecbok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR or QUIT.

set control-character to c, where control-character is
erase, kill, intr, quit, eof, eol, min, or time (min
and time are used with -ieanon; see tty(4». If c is
preceded by an (escaped from the shell) caret C),
then the value used is the corresponding CTRL
character (e.g., "-d" is a CTRL-d); "-1" is inter­
preted as DEL and .. - -" is interpreted as undefined.
set line discipline to i (0 < i < 127).

e.enp or parity enable parenb and e57.
oddp enable parenb, e57, and parodd.
-parity, -e.enp, or -oddp

disable parenb, and set cs8.
raw (-raw or cooked)

nl (-nl)

enable (disable) raw input and output (no ERASE,
KILL, INTR, QUIT, EOT, or output post processing).
unset (set) iernl, onler. In addition -DI unsets
iDler, igDcr, ocrnl, and oDlret.

lease (-lease) set (unset) xease, iuclc, and oleue.
LCASE (-LCASE) same as lease (-lease).
tabs (-tabs or tab3)

ek

sane

preserve (expand to spaces) tabs when printing.
reset ERASE and KILL characters back to normal,
and@.
resets all modes to some reasonable values.

- 2 -

STIY(I)

term

SEE ALSO

STTY(I)

set all modes suitable for the terminal type term,
where term is one of tty33, tty37, vtOS, tn300, ti700,
or tek.

tabs(l), ioctl(2), tty(4).

- 3 -

SU(I) SU(I)

NAME
su - become super-user or another user

SYNOPSIS
su [- 1 [name [arg ... 1 1

DESCRIPTION

FILES

Su allows one to become another user without logging off. The default
user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is
ah .. dJy super-user). If the password is correct, su will execute a new shell
with the user ID set to that of the specified user. To restore normal user ID
privileges, type an EOF to the new shell.

Any additional arguments are passed to the shell, permitting the super-user
to run shell procedures with restricted privileges (an arg of the form -c:
string executes string via the shell). When additional arguments are passed,
/bin/sb is always used. When no additional arguments are passed, su uses
the shell specified in the password file.

An initial - flag causes the environment to be changed to the one that
would be expected if the user actually logged in again. This is done by
invoking the shell with an argO of -su causing the .profile in the home
directory of the new user ID to be executed. Otherwise, the environment is
passed along with the possible exception of SPATH, which is set to
/bin:/etc::/usr/bin for root. Note that the .profile can check argO for -sb
or -su to determine how it was invoked.

/etc/passwd
$HOiViE/ .profile

system's password file
user's profile

SEE ALSO
env(l), 10gin(I), sh(l), environ(7).

- 1 -

I

SUM (I) SUM(l)

NAME
sum - sum and count blocks in a file

SYNOPSIS
sum [-r 1 file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also
prints the number of blocks in the file. It is typically used to look for bad
spots, or to validate a file communicated over some transmission line. The
option -r causes an alternate algorithm to be used in computing the check­
sum.

SEE ALSO
wc(l).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check
the block count.

- 1 -

SYNC (1M)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (1M)

Sync executes the sync system pnmltlve. If the system is to be stopped,
sync must be called to insure file system integrity. See sync(2) for details.

SEE ALSO
sync(2).

- 1 -

SYSDEF(1M) SYSDEF(lM)

NAME
sysdef - system definition

SYNOPSIS
jetcjsysdef [opsys [master}]

DESCRIPTION

FILES

Sysdef analyzes the named operating system file and extracts configuration
information. This includes all hardware devices, their addresses, interrupt
vectors and unit count, as well as system devices and all tunable
parameters.

The output of sysdef can be used directly by config(1 M) to regenerate the
appropriate low.s (unhec.c on the VAX-llj780) and conf.c configuration
files.

junix
jetc/master

default operating system file
default table for hardware specifications

DIAGNOSTICS
"unknown device interrupts at vector xxx" if information regarding the
device cannot be found in the master table.

SEE ALSO

BUGS

config(l M), master(5).

As yet, sysdef knows nothing of devices that are not interrupt driven.
Because information regarding config aliases is not preserved by the system,
device names returned might not be accurate.

- 1 -

TABS (I) TABS (I)

NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec 1 [+ mn 1 [-Ttype]

DESCRIPTION
Tabs sets the tab stops on the user's terminal according to the tab
specification tabspec, after clearing any previous settings. The user must of
course be logged in on a terminal with remotely-settable hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a
different way than most other terminals for some tab settings: the first
number in a list of tab settings becomes the left margin on a TermiNet ter­
minal. Thus, any list of tab numbers whose first element is other than 1
causes a margin to be left on a TermiNet, but not on other terminals. A
tab list beginning with 1 causes the same effect regardless of terminal type.
It is possible to set a left margin on some other terminals, although in a
different way (see below).

Four types of tab specification are accepted for tabspec: "canned," repeti­
tive, arbitrary, and file. If no tabspec is given, the default value is -8, i.e.,
UNIX "standard" tabs. The lowest column number is 1. Note that for
tabs, column 1 always refers to the leftmost column on a terminal, even
one whose column markers begin at 0, e.g., the DASI 300, DASI 300s, and
DASI450.

-code Gives the name of one of a set of "canned" tabs. The legal codes
and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one space
gets you to column 8, and a tab reaches column 12. Files using
this tab setup should include a format specification as follows:

<:t-c2 m6 566 d:>
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67

COBOL compact format (columns 1-6 omitted), with more tabs
than -c2. This is the recommended format for COBOL. The
appropriate format specification is:

<:t-c3 m6 566 d:>
-f 1,7,11,15,19,23

FORTRAN
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61

PL/I
-s 1,10,55

SNOBOI..,
-u 1,12,20,44

UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n,
etc. Note that such a setting leaves a left margin of n columns on
TermiNet terminals only. Of particular importance is the value

- 1 -

TASS(l) TABS(l)

nl.n2 •...

-8: this represents the UNIX "standard" tab setting. and is the
most likely tab setting to be found at a terminal. It is required for
use with the nroff(1) - b option for high-speed output. Another
special case is the value -0. implying no tabs at all.

The arbitrary format permits the user to type any chosen set of
numbers. separated by commas. in ascending order. Up to 40
numbers are allowed. If any number (except the first one) is pre­
ceded by a plus sign. it is taken as an increment to be added to the
previous value. Thus. the tab lists 1.10.20.30 and 1.10.+ 10.+10
are considered identical.

- -file If the name of a file is given. tabs reads the first line of the file.
searching for a format specification. If it finds one there. it sets
the tab stops according to it. otherwise it sets them as -8. This
type of specification may be used to make sure that a tabbed file is
printed with correct tab settings. and would be used with the pr(1)
command:

tabs - - file; pr file

Any of the following may be used also; if a given flag occurs more than
once. the last value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set
tabs and always needs to know the type to set margins. Type is a
name listed in term(7). If no -T flag is supplied. tabs searches
for the SfERM value in the environment (see environ (7». If no
type can be found. tabs tries a sequence that will work for many
terminals.

+ mn The margin argument may be used for some terminals. It causes
all tabs to be moved over n columns by making column n+ 1 the
left margin. If + 18 is given without a value of n. the value
assumed is 10. For a TermiNet. the first value in the tab list
should be 1. or the margin will move even further to the right.
The normal (leftmost) margin on most terminals is obtained by
+ 180. The margin for most terminals is reset only when the + 18

flag is given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS
illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in an arbi­
trary specification.
when a "canned" code cannot be found.
if - -file option used. and file can't be opened.
if - -file option used and the specification in that file
points to yet another file. Indirection of this form is
not permitted.

SEE ALSO

BUGS

nroff(1). environ(7). term(7).

There is no consistency among different terminals regarding ways of clear­
ing tabs and setting the left margin.
It is generally impossible to usefully change the left margin without also
setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence). but is
willing to set 40.

- 2 -

TAIL(I) TAIL (I)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [± [number][lbcl [-f 1 1 [file 1

DESCRIPTION
Tail copies the named 'file to the standard output beginning at a designated
place. If no file is named. the standard input is used.

Copying begins at distance + number from the beginning. or - number from
the end of the input (if number is null. the value 10 is assumed). Number
is counted in units of lines, blocks. or characters, according to the appen­
ded option I. b. or c. When no units are specified. counting is by lines.

With the -f ("follow") option. if the input file is not a pipe, the program
will not terminate after the line of the input file has been copied. but will
enter an endless loop, wherein it sleeps for a second and then attempts to
read and copy further records from the input file. Thus it may be used to
monitor the growth of a file that is being written by some other process.
For example, the command:

tail -f fred

will print the last ten lines of the file fred. followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO
dd(l).

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus
are limited in length. Various kinds of anomalous behavior may happen
with character special files.

- 1 -

1,"AR(1)' TAR(I)

NAME
tar - tape file archiver

SYNOPSIS
tar [key] [files]

DESCRIPTION
Tar saves and restores files on magnetic tape. Its actions are controlled by
the key argument. The key is a string of characters containing at most one
function letter and possibly one or more function modifiers. Other
arguments to the command are files (or directory names) specifying which
files are to be dumped or restored. In all cases, appearance of a directory
name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function
implies this function.

x The named files are extracted from the tape. If a named file
matches a directory whose contents had been written onto the
tape, this directory is (recursively) extracted. The owner,
modification time, and mode are restored (if possible). If no files
argument is given, the entire content of the tape is extracted.
Note that if several files with the same name are on the tape, the
last one overwrites all earlier ones.
The names of the specified files are listed each time that they
occur on the tape. If no files argument is given, all the names on
the tape are listed.

u The named files are added to the tape if they are not already there,
or have been modified since last written on that tape.

c Create a new tape; writing begins at the beginning of the tape,
instead of after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects
the desired function:

0, .•. ,7 This modifier selects the drive on which the tape is mounted. The
default is l.

v Normally, tar does its work silently. The v (verbose) option
causes it to type the name of each file it treats, preceded by the
function letter. With the t function, v gives more information
about the tape entries than just the name.

w causes tar to print the action to be taken, followed by the name of
the file, and then wait for. the user's confirmation. If a word
beginning with y is given, the action is performed. Any other
input means "no".

f causes tar to use the next argument as the name of the archive
instead of /dev/mt? If the name of the file is -, tar writes to
the standard output or reads from the standard input, whichever is
appropriate. Thus, tar can be used as the head or tail of a pipel­
ine. Tar can also be used to move hierarchies with the command:

cd fromdir; tar cf - . I (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factor for tape
records. The default is I, the maximum is 20. This option should
only be used with raw magnetic tape archives (see f above). The
block size is determined automatically when reading tapes (key let­
ters x and t).
tells tar to complain if it cannot resolve all of the links to the files
being dumped. If I is not specified, no error messages are printed.

- 1 -

TAR(1) TAR(l)

FILES

m tells tar to not restore the modification times. The modification
time of the file will be the time of extraction.

/dev /mt?
/tmp/tar*

DIAGNOSTICS

BUGS

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated.
The current magnetic tape driver cannot backspace raw magnetic tape. If
the archive is on a disk file. the b option should not be used at all. because
updating an archive stored on disk can destroy it.
The current limit on file-name length is 100 characters.

- 2 -

TBL(1) TBL(1)

NAME
tbl - format tables for nroff or troff

SYNOPSIS
tbl [-TX] [files]

DFSCRIPTION
Tbl is a preprocessor that formats tables for nroff(1) or troff(l). The input
files are copied to the standard output, except for lines between .TS and .TE
command lines, which are assumed to describe tables and are re-formatted
by tbl. (The .TS and .TE command lines are not altered by tbl) .

• TS is followed by global options. The available global options are:

center center the table (default is left-adjust);
expand make the table as wide as the current line length;
box enclose the table in a box;
doublebox enclose the table in a double box;
allbox enclose each item of the table in a box;
tab (x) . use the character x instead of a tab to separate items in

a line of input data.

The global options, if any, are terminated with a semi-colon (;).

Next come lines describing the format of each line of the table. Each such
format line describes one line of the actual table, except that the last format
line (which must end with a period) describes all remaining lines of the
table. Each column of each line of the table is described by a single key­
letter,. optionally followed by specifiers that determine the font and point
size of the corresponding item, that indicate where vertical bars are to
appear between columns, that determine column width, inter-column spa­
cing, etc. The available key-letters are:

c center item within the column;
r right-adjust item within the column;
I left-adjust item within the column;
n numerically adjust item in the column: units positions of

numbers are aligned vertically;
s span previous item on the left into this column;
a center longest line in this column and then left-adjust all

other lines in this column with respect to that centered line;
span down previous entry in this column;
replace this entry with a horizontal line;
replace this entry with a double horizontal line.

The characters B and I stand for the bold and italic fonts, respectively; the
character I indicates a vertical line between columns.

The format lines are followed by lines containing the actual data for the
table, followed finally by .TE. Within such data lines, data items are nor­
mally separated by tab characters.

If a data line consists of only _ or =-, a single or double line, respectively,
is drawn across the table at that point; if a single item in a data line consists
of only _ or =, then that item is replaced by a single or double line.

Full details of all these and other features of tbl are given in the reference
manual cited below.

The -TX option forces thl to use only full vertical line motions, making the
output more suitable for devices that cannot generate partial vertical line
motions (e.g., line printers).

- 1 -

TBL(1) TBL(l)

If no file names are given as arguments, tbl reads the standard input, so it
may be used as a filter. When it is used with eqn(l) or neqn(l), tbl should
come first to minimize the volume of data passed through pipes.

EXAMPLE
If we let --< represent a tab (which should be typed as a genuine tab), then
the input:

yields:

.TS
center box
cB s s
cI I cI s

A Icc
I Inn.
Household Population

-
Town--Households
--Num ber-Size

Bedminster--789--3.26
Bernards Twp.--3087--3.74
Bernardsville-2018-3.30
Bound Brook--+3425--+3.04
Bridgewater--+7897--+3.81
Far Hills--240--+3.19
.TE

Household Population

Town Households
Number Size

Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

SEE ALSO

BUGS

TBL-A Program to Format Tables by M. E. Lesk
eqn(l), mm(l), mmt(l), troff(l), mm(7), mv(7).

See BUGS under troff(l).

- 2 -

I

TC(I) TC(1)

NAME
tc - phototypesetter simulator

SYNOPSIS
tc [- t 1 [- sn 1 [- pi 1 [file 1

DESCRIPTION
Te interprets its input (standard input default) as device codes for a Wang
Laboratories, Inc. Cj AjT phototypesetter. The standard output of Ie is
intended for a Tektronix 4014 terminal with ASCII and APL character sets.
The sixteen typesetter sizes are mapped into the 4014's four sizes; the
entire TROFF character set is drawn using the 4014's character generator,
with overstruck combinations where necessary. Typical usage is:

troff -t files I tc

At the end of each page, Ie waits for a new-line (empty line) from the key­
board before continuing on to the next page. In this wait state, the com­
mand e will suppress the screen erase before the next page; sn will cause
the next n pages to be skipped; and !emd will send emd to the shell.

The command line options are:

-t Don't wait between pages (for directing output into a file).

-sn Skip the first n pages.

-pi Set page length to I; I may include the scale factors p (points),
(inches), c (centimeters), and P (picas); default is picas.

SEE ALSO
4014(1), sh(l), tplot(lG), troff(l).

BUGS
Font distinctions are lost.

- 1 -

TEE(l) TEE (I)

NAME
tee - pipe fitting

SYNOPSIS
tee [-j] [-a] [file]

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies
in the files. The -j option ignores interrupts; the -a option causes the
output to be appended to the files rather than overwriting them.

- 1 -

I

TEST (1) TEST(l)

NAME
test - condition evaluation command

SYNOPSIS
test expr
[expr)

DESCRIPTION
Test evaluates the expression expr and, if its value is true, returns a zero
(true) exit status; otherwise, a non-zero (false) exit status is returned; test
also returns a non-zero exit status if there are no arguments. The fol­
lowing primitives are used to construct expr:

-r file true if file exists and is readable.

-w file

-x file

-Ifile

-dfile

-cfile

-bfile

-ufile

-gfile

-kfile

-sfue

-t [fildes I

-z sl

-n sl

sl = s2

s1 != s2

sl

nl -eq n2

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and its set-user-IO bit is set.

true if file exists and its set-group-IO bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is fildes (1
by default) is associated with a terminal device.

true if the length of string sl is zero.

true if the length of the string sl is non-zero.

true if strings sl and s2 are identical.

true if strings s1 and s2 are not identical.

true if sl is not the null string.

true if the integers n1 and n2 are algebraically equal. Any of
the comparisons -ne, -gt, -ge, -It, and -Ie may be used
in place of -eq.

These primaries may be combined with the following operators:

unary negation operator.

-a binary and operator.

-0 binary or operator (-a has higher precedence than -0).

(expr parentheses for grouping.

Notice that all the operators and Hags are separate arguments to test.
Notice also that parentheses are meaningful to the shell and, therefore,
must be escaped.

SEE ALSO
find(l), sh(l).

WARNING
In the second form of the command (Le., the one that uses (]. rather than
the word test), the square brackets must be delimited by blanks.

- 1 -

TIME (1) TIME(1)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elap­
sed time during the command, the time spent in the system, and the time
spent in execution of the command. Times are reported in seconds.

The execution time can depend on ·vhat kind of memory the program hap­
pens to land in; the user time in MOS is often half what it is in core.

The times are printed on standard error.

SEE ALSO
timex(l), times(2).

- 1 -

TIMEX (1) TIMEX (1)

NAME
timex - time a command and generate a system activity report

SYNOPSIS
timex command

DESCRIPTION
The given command is executed; after its execution, timex prints the elap­
sed time, the time spent executing command, and the time spent in the sys­
tem, as time(l) does. It also reports system activity that occurred during
command execution, including CPU utilization, I/O activity, system
switching and swapping, and file system access. AD system activity is repor­
ted, not just that due to command.

The output of timex is written on standard error.

SEE ALSO
time(l), sar(8).

- 1 -

TOC(lG) TOC(IG)

NAME
toe - graphical table of contents routines

SYNOPSIS
dtoe [directory]
ttoe mm-file
vtoe [-cbnimsvn] [ITOC file]

DESCRIPTION
All of the commands listed below reside in /asr/bin/graf (see
graphics(l G».
dtoc Dtoc makes a textual table of contents, ITOC, of all subdirec­

tories beginning at directory (directory defaults to .). The list has
one entry per directory. The entry fields from left to right are
level number, directory name, and the number of ordinary
readable files in the directory. Dux is useful in making a visual
display of all or parts of a file system. The following will make a
visual display of all the readable directories under /:

dtoe / I vtoe I td

ttoc Output is the table of contents generated by the .TC macro of
mm(I) translated to ITOC format. The input is assumed to be a
mm file that uses the .H family of macros for section headers. If
no file is given, the standard input is assumed.

v toe Vtoc produces a GPS describing a hierarchy chart from a ITOC.
The output drawing consists of boxes containing text connected
in a tree structure. If no file is given, the standard input is
assumed. Each ITOC entry describes one box and has the form:

id [/ine-weight.line-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots.
The id specifies the position of the entry in the
hierarchy. The id O. is the root of the tree.

line-weight is either:

line-style is either:

n, normal-weight; or
m, medium-weight; or
b, bold-weight.

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
Id, long-dashed

text is a character string surrounded by quotes. The
characters between the quotes become the contents
of the box. To include a quote within a box it
must be escaped (\").

mark is a character string (surrounded by quotes if it
contains spaces), with included dots being escaped.
The string is put above the top right corner of the
box. To include either a quote or a dot within a
mark it must be escaped.

Entry example: 1.1 b,da • ABC" DEF
Entries may span more than one line by escaping the new-line

- 1 -

TOC(IG)

SEE ALSO

TOC(IG)

(\new-line).

Comments are surrounded by the /*,*/ pair. They may appear
anywhere in a TTOC.

Options;

c Use text as entered, (default is all upper case).

hn Horizontal interbox space is n% of box width.

Suppress the box id.

m Suppress the box mark.

s Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

graphics(lG), gps(5).

- 2 -

TOUCH (1) TOUCH(I)

NAME
touch - update access and modification times of a file

SYNOPSIS
touch [-amc] [mmddhhmm[yy]] files

DESCRIPTION
Touch causes the access and modification times of each argument to be
updated. If no time is specified (see date (1» the current time is used. The
-a and - m options cause touch to update only the access or modification
times respectively (default is -am). The -c option silently prevents touch
from creating !be file if it did not previously exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist and
were not created).

SEE ALSO
date(l), utime(2).

- 1 -

TP(I) (Obsolescent) TP(I)

NAME
tp - manipulate tape archive

SYNOPSIS
tp [key J [name ... J

DESCRIPTION
Tp saves and restores files on DECtape or other magnetic tape. Its actions
are controlled by the key argument. The key is a string of characters con­
taining at most one function letter and possibly one or more function
modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases,
appearance of a directory name refers to the files and (recursively) sub­
directories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the tape. If files with the same
names already exist, they are replaced. "Same" is determined by
string comparison, so .jabc can never be the same as
jusrjsbojabc even if jusrjsbo is the current directory. If no file
argument is given, . is the default.

u Updates the tape. u is like r, but a file is replaced only if its
modification date is later than the date stored on the tape; that is
to say, if it has changed since it was dumped. u is the default
command if none is given.

d Deletes the named files from the tape. At least one name
argument must be given. This function is not permitted on mag­
netic tapes.

x Extracts the named files from the tape to the file system. The
owner and mode are restored. If no file argument is given, the
entire contents of the tape are extracted.

Lists the names of the specified files. If no file argument is given,
the entire contents of the tape is listed.

The following characters may be used in addition to the letter which selects
the function desired.

m Specifies magnetic tape as opposed to DECtape.

0, ••. ,7

,

c

f

w

This modifier selects the drive on which the tape is mounted.
For DECtape, x is default; for magnetic tape 0 is the default.

Normally tp does its work silently. The , (verbose) option
causes it to type the name of each file it treats preceded by the
function letter. With the t function, , gives more information
about the tape entries than just the name.

Means a fresh dump is being created; the tape directory is
cleared before beginning. Usable only with rand u. This option
is assumed with magnetic tape since it is impossible to selec­
tively overwrite magnetic tape.

Errors reading and writing the tape are noted, but no action is
taken. Normally, errors cause a return to the command level.

Use the first named file, rather than a tape, as the archive. This
option is known to work only with x.

Causes tp to pause before treating each file, type the indicative
letter and the file name (as with ,) and await the user's
response. Response y means "yes", so the file is treated. Null

- 1 -

TP(I)

FILES
/dev/tap?
/dev /mt?

(Obsolescent) TP(1)

response means "no", and the file does not take part in
whatever is being done. Response x means "exit"; the tp com­
mand terminates immediately. In the x function, files pre­
viously asked about have been extracted already. With r, U, and
d no change has been made to the tape.

SEE ALSO
ar(1). cpio(l). tar(1).

DIAGNOSTICS

BUGS

Several; the non-obvious one is "Phase error", which means the file
changed after it was selected for dumping but before it was dumped.

A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by tp
difficult to carry to other machines; tar (1) avoids the problem.

Tp does not copy zero-length files to tape.

- 2 -

TPLOT(lG) TPLOT(lG)

NAME
tplot - graphics filters

SYNOPSIS
tplot [-Tterminal [-e raster]

DESCRIPTION

FILES

These commands read plotting instructions (see plot(5)) from the standard
input and in general produce, on the standard output, plotting instructions
suitable for a particular terminal. If no terminal is specified, the environ­
ment parameter STERM (see environ(7)) is used. Known terminals are:

300 DASI 300.
300S DASI 300s.
450 DASI 450.
4014 Tektronix 4014.
ver Versatec D1200A. This version of plot places a scan-converted

image in jusr jtmpjrasterSS and sends the result directly to the
plotter device, rather than to the standard output. The -e option
causes a previously scan-converted file raster to be sent to the plot­
ter.

jusr jlibjt300
jusrjlibjt300s
jusr jlib/t450
/usr/lib/t4014
/usrjlib/vplot
/usr/tmp/rasterSS

SEE ALSO
plot(3X), plot(5), term(7).

- 1 -

TR(1) TR(I)

NAME
tr - translate characters

SYNOPSIS
tr [-cds] [string I [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in string] are map­
ped into the corresponding characters of string2. Any combination of the
options -eds may be used:

-c Complements the set of characters in string] with respect to the
universe of characters whose ASCII codes are 001 through 377
octal.

-d Deletes all input characters in string] .

-s Squeezes all strings of repeated output characters that are in
string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of
characters or repeated characters into the strings:

la -z] Stands for the string of characters whose ASCII codes run from
character a to character z, inclusive.

(a-n] Stands for n repetitions of a. If the first digit of n is 0, n is con­
sidered octal; otherwise, n is taken to be decimal. A zero or mis­
sing n is taken to be huge; this facility is useful for padding
string2.

The escape character \ may be used as in the shell to remove special mean­
ing from any character in a string. In addition, \ followed by I, 2, or 3
octal digits stands for the character whose ASCII code is given by those
digits.

The following example creates a list of all the words in file] one per line in
file2, where a word is taken to be a maximal string of alphabetics. The
strings are quoted to protect the special characters from interpretation by
the shell; 012 is the ASCII code for newline.

tr -cs "[A-Z)[a-z)" "(\012-]" <filel >file2

SEE ALSO

BUGS

ed(I), sh(1), ascii(7).

Won't handle ASCII NUL in string] or string2; always deletes NUL from
input.

- 1 •

TROFF(I) TROFF(I)

NAME
troff, nroff - typeset or format text

SYNOPSIS
oroW [options 1 [files 1
troW [options 1 [files 1

DESCRIPTION
NrojJ formats text contained in files (standard input by default) for printing
on typewriter-like devices and line printers; similarly, troif formats text for
a Wang Laboratories, Inc., C/ A/T phototypesetter. Their capabilities are
described in the NROFF/TROFF User's Manual cited below.

An argument consisting of a minus (-) is taken to be a file name
corresponding to the standard input. The options, which may appear in any
order, but must appear before the files, are:

-olist

-oN
-sN

-raN
-i
-q
-z

-mname

-cname

-kname

Nroff only:
-Tname

-e

Print only pages whose page numbers appear in the list of num­
bers and ranges, separated by commas. A range N - M means
pages N through M; an initial -N means from the beginning to
page N; and a final N- means from N to the end. (See BUGS
below.)
Number first generated page N.
Stop every N pages. Nroif will halt after every N pages (default
N = 1) to allow paper loading or changing, and will resume upon
receipt of a line-feed or new-line (new-lines do not work in
pipelines. e.g., with mm(l ». This option does not work if the
output of nroif is piped through col (1). Troif will stop the pho­
totypesetter every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter's start button is
pres.sed. When nroif (troif) halts between pages, an ASCII BEL
(in troif, the message page stop) is sent to the terminal.
Set register a (which must have a one-character name) to N.
Read standard input after files are exhausted.
Invoke the simultaneous input-output mode of the .rd request.
Print only messages generated by .tm (terminal message)
requests.
Prepend to the input files the non-compacted (ASCII text) macro
file /usr /lib/tmac/tmac.name.
Prepend to the input files the compacted macro files
/usr/lib/macros/cmp.[nt).[dt).name and
/usr/lib/macros/ucmp.[ot).name.
Compact the macros used in this invocation of nroif/troif, placing
the output in files [dt).name in the current directory (see the
May 1979 Addendum to the NROFF/TROFF User's Manual for
details of compacting macro files).

Prepare output for specified terminal. Known names are 37 for
the (default) TELETYPEIID Model 37 terminal, tn300 for the GE
TermiNet 300 (or any terminal without half-line capability),
300s for the DASI 3OOs, 300 for the DASI 300, 450 for the DASI
450, Ip for a (generic) ASCII line printer, 381 for the DTC-382,
4000A for the Trendata 4000A, 831 for the Anderson Jacobson
832, X for a (generic) EBCDIC printer, and 1631 for the Hewlett
Packard 2631 line printer.
Produce equally-spaced words in adjusted lines, using the full
resolution of the particular terminal.

- 1 -

TROFF(I) TROFF(I)

- h Use output tabs during horizontal spacing to speed output and
reduce output character count. Tab settings are assumed to be
every 8 nominal character widths.

-un Set the emboldening factor (number of character overstrikes) for
the third font position (bold) to n, or to zero if n is missing.

Troff only:

FILES

-t Direct output to the standard output instead of the phototypeset­
ter.

- f Refrain from feeding out paper and stopping phototypesetter at
the end of the run.

- w Wait until phototypesetter is available, if it is currently busy.
-b Report whether the phototypesetter is busy or available. No text

processing is done.
-8 Send a printable ASCII approximation of the results to the stan­

dard output.
- pN Print all characters in point size N while retaining all prescribed

spacings and motions, to reduce phototypesetter elapsed time.
-g Prepare output for the Murray Hill Computation Center photo­

typesetter and direct it to the standard output (see gcat(l C».
This option is not compatible with the -s option; furthermore,
when this option is invoked, all .fp (font position) requests (if
any) in the troff input must come before the first break, and no
.t1 requests may come before the first break.

-Tname Use font-width tables for device name (the font tables are found
in /usr/lib/font/name/*). Currently, no names are supported.

/usr/lib/suftab
/tmp/ta$#
/usr /Iib/tmac/tmac.*
/usr/lib/macros/*
/usr jlib/termj*
jusr jlibjfontj*

suffix hyphenation tables
temporary file
standard macro files and pointers
standard macro files
terminal driving tables for nroff
font width tables for troff

SEE ALSO

BUGS

NROFF/TROFF User's Manual by J. F. Ossanna.
A TROFF Tutorial by B. W. Kernighan.
eqn(l), tbl(l), mm(7).
col(l), greek(l), mm(l) (nroff only).
gcat(lC), mmt(l), tc(l), mv(7) (troff only).

Nroff/troff believes in Eastern Standard Time; as a result, depending on the
time of the year and on your local time zone, the date that nroff/troff gen­
erates may be off by one day from your idea of what the date is.
When nroff/troff is used with the -olist option inside a pipeline (e.g., with
one or more of cw(l), eqn(l), and tbl(l», it may cause a harmless
"broken pipe" diagnostic if the last page of the document is not specified
in list.

- 2 -

TRUE (1)

NAME
true, false ~ provide truth values

SYNOPSIS
true

false

DESCRIPTION

TRUE (1)

True does nothing, successfully. False does nothing, unsuccessfully. They
are typically used in input to sh (l) such as:

SEE ALSO
sh(l).

DIAGNOSTICS

while true do
command

done

True has exit status zero, false nonzero.

- 1 -

TSORT(l) TSORT(l)

NAME
tsort - topological sort

SYNOPSIS
tsort [file 1

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items con­
sistent with a partial ordering of items mentioned in the input file. If no
file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks.
Pairs of different ;:ems indicate ordering. Pairs of identical items indicate
presence, but not ordering.

SEE ALSO
lorder(I).

DIAGNOSTICS

BUGS

Odd data: there is an odd number of fields in the input file.

Uses a quadratic algorithm; not worth fixing for the typical use of ordering
a library archive file.

- 1 -

TIY(1)

NAME
tty - get the terminal's name

SYNOPSIS
tty [-s 1

DESCRIPTION

1TY(l)

Tty prints the path name of the user's terminal. The -s option inhibits
printing, allowing one to test just the exit code.

EXIT CODES
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS
"not a tty" if the standard input is not a terminal and -s is not specified.

- 1 -

TYPO (1) (Obsolcsccnt) TYPO (1)

NAME
typo - find possible typographical errors

SYNOPSIS
typo [- n 1 [files 1

DESCRIPTION

FILES

Typo hunts through a document for unusual words, typographic errors, and
hapax legomena and prints them on the standard output.

The words used in the document are printed out in decreasing order of
peculiarity along with an index of peculiarity. An index of 10 or more is
considered peculiar. Printing of certain very common English words is
suppressed.

The statistics for jUdging words are taken from the document itself, with
some help from known statistics of English. The - n option suppresses the
help from English and should be used if the document is written in, for
example, Urdu.

Tro.lf(1) control lines are ignored. Quote marks, vertical bars, hyphens,
and ampersands within words are equivalent to spaces. Words hyphenated
across lines are put back together.

/tmp/ttmp??
/usr/lib/salt
/usr/lib/w2006

SEE ALSO
spell(1).

- 1 -

UMASK(I) UMASK(I)

NAME
umask - set file-creation mode mask

SYNOPSIS
umask [000]

DESCRIPTION
The user file-creation mode mask is set to 000. The octal three digits refer
to read/write/execute permissions for owner, group, and others, respectively
(see chmod(2) and umask(2». The value of each specified digit is subtrac­
ted from the corresponding "digit" specified by the system for the creation
of a file (see creat(2». For example, umask 012 removes group and others
write permission (files normally created with mode 777 become mode 755;
files created created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO
chmod(l), sh(l), chmod(2), creat(2), umask(2).

- I -

UNAME(l)

NAME
uname - print name of current UNIX

SYNOPSIS
uname [- snna]

DESCRIPTION

UNAME(l)

Unatne prints the current system name of UNIX on the standard output file.
It is mainly useful to determine what system one is using. The options
cause selected information returned by IIl1ame(2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename may be a name that the system
is known by to a communications network).

- r print the operating system release.

-, print the operating system version.

-a print all the above information.

SEE ALSO
uname(2).

- 1 -

I

UNGET(1) UNGET(I)

NAME
unget - undo a previous get of an SCCS file

SYNOPSIS
uoget [-rSID1 [-s1 [-01 files

DESCRIPTION
Unget undoes the effect of a get -e done prior to creating the intended
new delta. If a directory is named, unget behaves as though each file in the
directory were specified as a named file, except that non-SCCS files and
unreadable files are silently ignored. If a name of - is given, the standard
input is read with each line being taken as the name of an SCCS file to be
processed.

Keyletter arguments apply independently to each. named file.

SEE ALSO

-rSID

-s

Uniquely identifies which delta is no longer intended.
(This would have been specified by get as the "new
delta"). The use of this keyletter is necessary only if
two or more outstanding gets for editing on the same
SCCS file were done by the same person (login name).
A diagnostic results if the specified SID is ambiguous, or
if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the
intended delta's SID.

- 0 Causes the retention of the gotten file which would nor­
mally be removed from the current directory.

delta(l), get(l), sact(l).

DIAGNOSTICS
Use he/p(l) for explanations.

- I -

UNIQ(1) UNIQ(1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [-ude [+n] [-n]] [input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the
second and succeeding copies of repeated lines are removed; the remainder
is written on the output file. Input and output should always be different.
Note that repeated lines must be adjacent in order to be found; see sart(l).
If the - u flag is used, just the lines that are not repea~'!d in the original file
are output. The -d option specifies that one copy of just the repeated lines
is to be written. The normal mode output is the union of the -u and -d
mode outputs.

The -e option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of times
it occurred.

The n arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields together with any blanks before each are ignored.
A field is defined as a string of non-space, non-tab characters
separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

SEE ALSO
comm(l), sort(l).

- 1 -

UNITS (1) UNITS (1)

NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION

FlLPS

Units converts quantItIes expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: em

* 2.540000e+OO
/ 3.937008e-OI

A quantity is specified as a multiplicative combination of units optionally
preceded by a numeric multiplier. Powers are indicated by suffixed positive
integers, division by the usual sign:

You have: IS lbs roree/in2
You want: atm

* 1.02068ge+OO
/ 9.79729ge-Ol

Units only does multiplicative scale changes; thus it can convert Kelvin to
Rankine, but not Centigrade to Fahrenheit. Most familiar units, abbrevia­
tions, and metric prefixes are recognized, together with a generous leaven­
ing of exotica and a few constants of nature including:

pi ratio of circumference to diameter,
e speed of light,
e charge on an electron,
g acceleration of gravity,
roree same as g,
mole Avogadro's number,
water pressure head per unit height of water,
au astronomical unit.

Pound is not recognized as a unit of mass; Ib is. Compound names are run
together, (e.g. light year). British units that differ from their u.S. counter­
parts are prefixed thus: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

/usr/lib/unittab

- 1 -

UUCLEAN (1M) UUCLEAN(1M)

NAME
uuclean - uucp spool directory clean-up

SYNOPSIS
uuclean [options] ...

DESCRIPTION

FILES

Vue/eon will scan the spool directory for files with the specified pr~fix and
delete all those which are older than the specified number of hours.

The following options are available.

- ddirectory
Clean directory instead of the spool directory.

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments
may be specified. A - P without any pre following will cause all
files older than the specified time to be deleted.

- ntime Files whose age is more than time hours will be deleted if the
prefix test is satisfied. (default time is 72 hours)

-m Send mail to the owner of the file when it is deleted.

This program will typically be started by cron (1 M).

jusrjlibjuucp
jusrjspooljuucp

directory with commands used by flue/eon internally
spool directory

SEE ALSO
uucp(IC), uux(lC).

- 1 -

UUCP(IC) UUCP(IC)

NAME
uucp, uulog, uuname - unix to unix copy

SYNOPSIS
uucp [option 1 .•• source-file ..• destination-file

uulog [option 1 ...
uuname

DESCRIPTION
Uucp copies files named by the source-file arguments to the destination-file
argument. A file name may be a path name on your machine, or may have
the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows
about. Shell metacharacters h[] appearing in path-name will be expanded
on the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by • user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by • /user where user is a login name on the
specified system and is replaced by that user's directory under PU8-
DIR;

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy will
fail. If the destination-file is a directory, the last part of the source-file name
is used.

Uucp preserves execute permissions across the transmission and gives 0666
read and write permissions (see chmod(2».

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file
to the spool directory (default).

-C Copy the source file to the spool directory.

- m Send mail to the requester when the copy is complete.

- Buser Notify user on the remote system that a file was sent.

-esys Send the uucp command to system sys to be executed there.
(Note - this will only be successful if the remote machine allows
the uucp command to be executed by /usr/lib/uucp/uuxqt.)

Uulog maintains a summary log of uucp and uux(1 C) transactions in the
file /usr/spool/uuc:p/LOGFILE by gathering information from partial log
files named /usr /spool/uuc:p/LOG ••• ? (These files will only be created if
the LOGFILE is being used by another process.) It removes the partial log
files.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys.

- 1 -

UUCP(IC) UUCP(IC)

FILES

- uuser Print information about work done for the specified user.

Uuname lists the uucp names of known systems. The -I option returns
the local system name.

/usr/spool/uucp
/usr /spool/uucppublic

/usr/lib/uucp/*

spool directory
pu blic directory for receiving and sending (PUB­
DIR)
other data and program files

SEE ALSO
mail(l), uux(lC).
Uucp Implementation Description by D. A. Nowitz.

WARNING

BUGS

The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely not be
able to fetch files by path name; ask a responsible person on the remote
system to send them to you. For the same reasons you will probably not
be able to send files to arbitrary path names. As distributed, the remotely
accessible files are those whose names begin jusrjspool/uucppublic
(equivalent to -nuucp or just -).

All files received by uucp will be owned by uucp.
The - m option will only work sending files or recelvmg a single file.
(Receiving multiple files specified by special shell characters h[) will not
activate the - m option.)

- 2 •

I

UUSTAT(IC) UUSTAT(IC)

NAME
uustat - uucp status inquiry and job control

SYNOPS.IS
uustat [option 1 ...

DESCRIPTION
Uustat will display the status of, or cancel, previously specified uucp com­
mands, or provide general status on uucp connections to other systems.
The following options are recognized:

- mmch Report the status of accessibility of machine mch. If mch is
specified as all, then the status of all machines known to the
local uucp are provided.

- kjobn Kill the uucp request whose job number is jobn. The killed uucp
request must belong to the person issuing the uustat command
unless he is the super-user.

-chour Remove the status entries which are older than hour hours.
This administrative option can only be initiated by the user uuep
or the super-user.

- uuser Report the status of all uucp requests issued by user.
-ssys Report the status of all uucp requests which communicate with

remote system sys.
-ohour Report the status of all uucp requests which are older than hour

hours.
-yhour Report the status of all uucp requests which are younger than

hour hours.
- jalJ Report the status of all the uucp requests.
-, Report the uucp status verbosely. If this option is not specified,

a status code is printed with each uucp request.
When no options are given, uusta! outputs the status of all uucp requests
issued by the current user. Note that only one of the options -j. -m,
- k, -e, or the rest of other options may be specified.

For example, the command

uustat -uhdc -smhtsa -y72 -v

will print the verbose status of all uucp requests that were issued by user
hdc to communicate with system mhtsa within the last 72 hours. The
meanings of the job request status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description.
The octal code corresponds to the following description:

OCTAL STATUS
00001 the copy failed, but the reason cannot be determined
00002 permission to access local file is denied
00004 permission to access remote file is denied
00010 bad uucp command is generated
00020 remote system cannot create temporary file
00040 cannot copy to remote directory
00100 cannot copy to local directory
00200 local system cannot create temporary file
00400 cannot execute uucp
01000 copy succeeded
02000 copy finished, job deleted
04000 job is queued

- 1 -

UUSTAT(IC) UUSTAT(IC)

FILES

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory descrip­
tion of the machine status.

jusr jspooljuucp
jusr jlibjuucpjL_stat
jusr jlibjuucpjR_stat

spool directory
system status file
request status file

SEE ALSO
uucp(1 C).
Uustat - A UUCP Status Inquiry Program, by H. Che.

- 2 -

UUSU8(1M) UUSU8(1M)

NAME
uusub - monitor uucp network

SYNOPSIS
uU5ub [options 1

DESCRIPTION

FILES

Uusub defines a uucp subnetwork and monitors the connection and traffic
among the members of the subnetwork. The following options are availa­
ble:

-asys
-dsys
-I
-r
-f
-uhr
-csys

Add sys to the subnetwork.
Delete sys from the subnetwork.
Report the statistics on connections.
Report the statistics on traffic amount.
Flush the connection statistics.
Gather the traffic statistics over the past hr hours.
Exercise the connection to the system sys. If sys is specified as
all, then exercise the connection to all the systems in the sub-
network.

The meanings of the connections report are:

sys # call # ok time # dev # login # nack # other

where sys is the remote system name, # ca/I is the number of times the
local system tries to call sys since the last flush was done, # ok is the num­
ber of successful connections, time is the the latest successful connect time,
dey is the number of unsuccessful connections because of no available
device (e.g. ACU), # login is the number of unsuccessful connections
because of login failure, # nack is the number of unsuccessful connections
because of no response (e.g. line busy, system down), and #other is the
number of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:

sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes sent
over the period of time indicated in the latest uusub command with the
-uhr option. Similarly, rfile and rbyte are the numbers of files and bytes
received.

The command:

uusub -c all -u 24

is typically started by cron(IM) once a day.

/usr/spool/uucp/SYSLOG
/usr/lib/uucp/L_sub
/usr/lib/uucp/R_sub

system log file
connection statistics
traffic statistics

SEE ALSO
uucp(lC), uustat(IC).

- 1 -

UUTO(IC) UUTO(lC)

NAME
uuto, uupick - public UNIX-to-UNIX file copy

SYNOPSIS
uuto [options 1 source-files destination
uupick [-s system 1

DESCRIPTION

FILES

Uuto sends source-files to destination. Uuto uses the uucp(l C) facility to
send files, while it allows the local system to control the file access. A
source-file name is a path name on your machine. Destination has the
form:

system!user

where system is taken from a list of system names that uucp knows about
(see uuname(1C). Logname is the login name of someone on the specified
system.

Two options are available:

- p Copy the source file into the spool directory before transmission.
- m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on
system, where PUBDIR is a public directory defined in the uucp source.
Specifically the files are sent to

PUBDIR/receive/user/mysystem/files.

The destined recipient is notified by mail (1) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically,
uupick searches PUBDIR for files destined for the user. For each entry (file
or directory) found, the following message is printed on the standard out­
put:

fl'.111 system: [fik file-IfQMe 1 (dir lIi,rtllme 1 ?

Uupick theft reads a line from the staadard input to determine the disposi­
tion of the file:

<Rew-li"e>

II

m [dir 1

a [dir 1
p

q

Go Oft to next entry.

Delete the entry.

Move the entry to named directory di, (current directory
is default).

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

• Print a command summary.

Uupick invoked with the -ssystem option will only search the PUBDIR for
files sent from system.

PUBDIR/usr/spooljuucppublic public directory

SEE ALSO
mail(l), uuc1ean(lM), uucp(lC), uulog(lC), uuname(lC), uustat(lC),
uux(lC).

- 1 -

UUX(IC) UUX(IC)

NAME
uux - unix to unix command execution

SYNOPSIS
uux [-] command-string

DESCRIPTION

FILES

Uwe will gather zero or more files from various systems, execute a com­
mand on a specified system and then send standard output to a file on a
specified system. Note that, for security reasons, many installations will
limit the list of commands executable on behalf of an incoming request
from uwe. Many sites will permit ·little more than the receipt of mail (see
mail(l» via uwe.

The command-string is made up of one or more arguments that look like a
Shell command line, except that the command and file names may be
prefixed by system-name!. A null system-name is interpreted as the local
system.

File names may be one of

(l)a full path name;

(2) a path name preceded by·xxx where xxx is a login name on the
spccified system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

The - option will cause the standard input to the uwe command to be the
standard input to the command-string. For example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !f1.diff"

will get the fl files from the "usg" and "pwba" machines, execute a diff
command and put the results in fl.ditr in the local directory.

Any special shell characters such as <>;1 should be quoted either by quo­
ting the entire command-string, or quoting the special characters as indivi­
dual arguments.

Uwe will attempt to get all files to the execution system. For files which are
output files, the file name must be escaped using parentheses. For exam­
ple, the command

uux a!uucp b!/usr/file \(c!/usr/file\)
will send a uucp command to system "a" to get lusr/ftle from system "b"
and send it to system "c";

Uwe will notify you if the requested command on the remote system was
disallowed. The response comes by remote mail from the remote machine.

/usr/lib/uucp/spool
/usr/lib/uucp/*

spool directory
other data and programs

SEE ALSO

BUGS

uuclean(lM), uucp(lC),
Uucp Implementation Description by D. A. Nowitz

Only the first command of a shell pipeline may have a system-name!. All
other commands are executed on the system of the first command.
The use of t~e shell metacharacter * will probably not do what you want it
to do. The shell tokens «and > > are not implemented.

- 1 -

VAL(I) VAL(I)

NAME
val - validate sees file

SYNOPSIS
\lal -
\lal [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION
Val determines if the specified file is an sees file meeting the characteris­
tics specified by the optional argument list. Arguments to val may appear
in any order. The arguments consist of keyletter arguments, which begin
with a -, and named files.

Val has a special argument, -, which causes reading of the standard input
until an end-of-file condition is detected. Each line read is independently
processed as if it were a command line argument list.

Val generates diagnostic messages on the standard output for each com­
mand line and file processed and also returns a single 8-bit code upon exit
as described below.

The keyletter arguments are defined as follows. The effects of any keyletter
argument apply independently to each named file on the command line.

-s

-rSID

-mname

--ytype

The presence of this argument silences the diagnostic
message normally generated on the standard output
for any error that is detected while processing each
named file on a given command line.

The argument value SID (Sces IDentification String)
is an sces delta number. A check is made to deter­
mine if the SID is ambiguous (e. g., rl is ambiguous
because it physically does not exist but implies 1.1,
1.2, etc. which may exist) or invalid (e. g., rI.O or
rl.l.O are invalid because neither case can exist as a
valid delta number). If the SID is valid and not ambi­
guous, a check is made to determine if it actually
exists.

The argument value name is compared with the sees
%M% keyword in file.

The argument value type is compared with the sces
%Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e.,
can be interpreted as a bit string where (moving from left to right) set bits
are interpreted as follows:

bit 0 = missing file argument;
bit I = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;
bit 3 = can't open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, -y mismatch;
bit 7 = %M%, - m mismatch;

Note that val can process two or more files on a given command line and in
turn can process multiple command lines (when reading the standard
input). In these cases an aggregate code is returned - a logical OR of the
codes generated for each command line and file processed.

- I -

I

VAL(I) VAL(I)

SEE ALSO
admin(l). delta(l). get(l). prs(l).

DIAGNOSTICS
Use help (1) for explanations.

BUGS
Val can process up to 50 files on a single command line. Any number
above 50 will produce a core dump.

- 2 -

VC(1) (Obsolescent) VC(I)

NAME
vc - version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-5] [keyword=value ... keyword-value]

DESCRIPTION
The vc command copies lines from the standard input to the standard out­
put under control of its arguments and control statements encountered in the
standard input. In the process of performing the copy operation, user
declared keywords may be replaced by their string value when they appear in
plain text and/or control statements.

The copying of lines from the standard input to the standard output is con­
ditional, based on tests (in control statements) of keyword values specified
in control statements or as vc command arguments.

A control statement is a single line beginning with a control character,
except as modified by the -t keyletter (see below). The default control
character is colon (:), except as modified by the -c keyletter (see below).
Input lines beginning with a backslash (\) followed by a control character
are not control lines and are copied to the standard output with the
backslash removed. Lines beginning with a backslash followed by a non­
control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alpha­
betic. A value is any ASCII string that can be created with ed(l); a numeric
value is an unsigned string of digits. Keyword values may not contain
blanks or tabs.

Replacement of keywords by values is done whenever a keyword surroun­
ded by control characters is encountered on a version control statement.
The -a keyletter (see below) forces replacement of keywords in all lines of
text. An uninterpreted control character may be included in a value by pre­
ceding it with \. If a literal \ is desired, then it too must be preceded by \.

Keyletter arguments

-a

-t

-cchar

-5

Forces replacement of keywords surrounded by con­
trol characters with their assigned value in all text
lines and not just in vc statements.

All characters from the beginning of a line up to and
including the first tab character are ignored for the
purpose of detecting a control statement. If one is
found, all characters up to and including the tab are
discarded.

Specifies a control character to be used in place of :.

Silences warning messages (not error) that are nor­
mally printed on the diagnostic output.

Version Control Statements

:dcl keyword[, •••• keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword=value
Used to assign values to keywords. An asg statement overrides the
assignment for the corresponding keyword on the vc command line
and all previous asg's for that keyword. Keywords declared, but not
assigned values have null values.
:if condition

- 1 -

VC(l) (ObsolesceDt) VC(l)

:end
Used to skip lines of the standard input. If the condition is true all
lines between the if statement and the matching end statement are
copied to the standard output. If the condition is false. all intervening
lines are discarded. including control statements. Note that interven­
ing if statements and matching end statements are recognized solely
for the purpose of maintaining the proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::- <and> I <and> "I· <or>
::- <exp> I <exp> "&" <and>
::= "(" <or> ")" I <value> <op> <value>
::- "-" I "!-" I "<" I ">"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if. and
when present. inverts the value of the
entire condition

The> and < operate only on unsigned integer values (e. g.: 012 >
12 is false). All other operators take strings as arguments (e. g.: 012
!- 12 is true). The precedence of the operators (from highest to
lowest) is:

== ! = > < all of equal precedence
&
I

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least
one blank or tab.

::text

:on

:off

Used for keyword replacement on lines that are copied to the standard
output. The two leading control characters are removed. and
keywords surrounded by control characters in text are replaced by
their value before the line is copied to the output file. This action is
independent of the -a keyletter.

Turn on or off keyword replacement on all lines.

:ctlchar
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

- 2 -

VC(I) (ObsolcscCDt) VC(I)

:err message
Prints the given message followed by:

ERROR: err statement on line ••• (915)
on the diagnostic output. Vc halts execution, and returns an exit code
of 1.

DIAGNOSTICS
Use help(l) for explanations.

EXIT CODES
0- normal
1 - any error

- 3 -

VLX(1M) (VAX-Il/780 only) VLX(1M)

NAME
vlx - V AX-II /780 LSI console floppy interface

SYNOPSIS
v Ix key [files 1

DESCRIPTION

FILES

Vlx is used to maintain the console floppy. The floppy is in DEC RT-II for­
mat. Hence. a file name is restricted to a 1- to 6-character alphanumeric
name optionally followed by a . character separator and a 1- to 3-character
alphanumeric extension. Upper and lower cases are mapped together.
Only the last component of a path name is used.

Key is one character from the set drtx. optionally concatenated with one or
both of vf. The meanings of the key characters are:

d Delete the named files from the floppy.

r Replace the named files on the floppy.

Print a table of contents of the floppy. If no names are given. all files
are tabled. If names are given. only those files are tabled.

x Extract the named files from the floppy. If no names are given. all
files are extracted.

v Verbose. When used with t. it gives a long listing of all information
about the files. When used with x. it precedes each file with a name.

f Use the next name as the floppy file name. instead of the default
Ide v /conflp.

Idev Iconflp

SEE ALSO
vaxops(8).

console floppy

BUGS
Dependent on knowledge and correctness of DEC software.

- I -

VOLCOPY (1M) VOLCOPY (1 M)

NAME
volcopy, labelit - copy file systems, with label checking

SYNOPSIS
/etc/volcopy [-bpibits-per-inch) [-feetsize) fsname speciall volnamel
special2 volname2

/etc/labelit special [fsname volume [- 0))

DESCRIPTION

FILES

Vo/copy makes a literal copy of the file system using a blocksize matched to
the device (10 blocks for 800/1600 bpi tape; 88 blocks for everything else).
Using volcopy, a 2400 foot/1600 bpi tape will hold a 65K file system. The
optional flag arguments are used only with tapes (-bpi -- bits-per-inch;
-feet -- size of reel in feet). The program requests the information if it is
not given on the command line. If the file system is too large to fit on one
reel, volcopy will prompt for additional reels. Labels of all reels are
checked. Tapes may be mounted alternately on two drives.

The fsname argument represents the mounted name (e.g.: root, ul, etc.) of
the filsystem being copied.

The special should be the physical disk section or tape (e.g.: /dev/rrpI5,
/de .. /rmtO, etc.).

The volname is the physical volume name (e.g.: pk3, to 122 , etc.) and
should match the external label sticker. Such label names are limited to
five or fewer characters.

Special/ and volnamel are the device and volume from which the copy of
the file system is being extracted. Special2 and volname2 are the target dev­
ice and volume.

Fsname and vo/name are recorded in the last 12 characters of the superblock
(char fsname[6], volname[6);).

Labe/it can be used to provide initial labels for unmounted disk or tape file
systems. With the optional arguments omitted, /abe/it prints current label
values. The -0 option provides for initial labeling of new tapes only (this
destroys previous contents).

/ etc/log/filesave

SEE ALSO

a record of file systems/volumes copied

fs(5}.

BUGS
Only device names beginning /dev /rmt are treated as tapes.

- 1 -

VPMC(IC) VPMC(IC)

NAME
vpmc - compiler for the virtual protocol machine

SYNOPSIS
'pmc [-m] [-r] [-c) [-x] [-s sfile] [-I lfile]
[- i ifile] [-0 ofile] file

DESCRIPTION
Vpmc is the compiler for a language that is used to describe communica­
tions link protocols. The output of vpmc is a load module for the virtual
protocol machine (VPM), which is a software construct for implementing
communications link protocols (e.g., BISYNC) on the DEC KMCll
microprocessor. VPM is implemented by an interpreter in the KMCll which
cooperates with a driver in the UNIX host computer to transfer data over a
communications link in accordance with a specified link protocol. UNIX
user processes transfer data to or from a remote terminal or computer sys­
tem through VPM using normal UNIX open, read, write, and close opera­
tions. The VPM program in the KMCll provides error control and flow
control using the conventions specified in the protocol.

The language accepted by vpmc is essentially a subset of C; the implemen­
tation of vpmc uses the RATFOR preprocessor (ratfor(1» as a front end;
this leads to a few minor differences, mostly syntactic.

There are two versions of the interpreter. The appropriate version for a
particular application is selected by means of the -i option. The BISYNC
version (-i bisync) supports half-duplex, character-oriented protocols such
as the various forms of BISYNC. The HDLC version (-i bdlc) supports
full-duplex, bit-oriented protocols such as HDLC. The communications
primitives used with the BISYNC version are character-oriented and block­
ing; the primitives used with the HDLC version are frame-oriented and
non-blocking.

Options
The meanings of the command-line options are:

- m Use m4 (l) instead of cpp as the macro preprocessor.
-r Produce RATFOR output on the standard output and suppress

the remaining compiler phases.
-c Compile only (suppress the assembly and linking phases).
-x Retain the intermediate files used for communication between

-s sfile
-1 !file
-i ifile
-oofile

passes.
Save the generated VPM assembly language on file sfile.
Produce a VPM assembly-language listing on file /file.
Use the interpreter version specified by ifile (default bisync).
Write the executable object file on file ofile (default a.eut).

These options may be given in any order.

Programs
Input to vpmc consists of a (possibly null) sequence of array declarations,
followed by one or more function definitions. The first defined function is
invoked (on command from the UNIX VPM driver) to begin prografn exe­
cution.

Functions
A function definition has the following form:

function name.()
statement.J;st
end

- 1 -

VPMC(lC) VPMC(IC)

Function arguments (formal parameters) are not allowed. The effect of a
function call with arguments can be obtained by invoking the function via a
macro that first assigns the value of each argument to a global variable
reserved for that purpose. See EXAMPLES below.

A statemenUist is a (possibly null) sequence of labeled statements. A
labeled_statement is a statement preceded by a (possibly null) sequence of
labels. A label is either a name followed by a colon (:) or a decimal integer
optionally followed by a colon.

The statements that make up a statement list must be separated by sem­
icolons (;). (A semicolon at the end of a line can usually be oC"itted; refer
to the description of RATFOR for details.) Null statements are allowed.

Statement Syntax
The following types of statements are allowed:

expression
Ivaille = expression
Ivaille + = expression
Ivaille - = expression
Ivaille I = expression
Ivaille & = expression
Ivaille ~ =expression
Ivallle« -expression
Ivallle» = expression
if(expression)statement
if(expression)statement else statement
while (expression)statement
for (statement ; expression; statement)statement
repeat statement
repeat statement until expression
break
next
switch(e~ssion) {caseJist }
retum(e~ssion)
return
goto name
goto decimaCconstant
{statemenciist }

repeat is equivalent to the do keyword in C; aext is equivalent to coati.De.

A case_list is a sequence of statement lists, each of which is preceded by a
label of the form:

case constant:

The label for the last statement..../ist in a caseJist may be of the form:

default:

Unlike C, RATFOR supplies an automatic break preceding each new case
label.

Expression Syntax
A primary_expression (abbreviated primary) is an Ivalue or a constant. An
lvaille is one of the following:

name
name [constant]

A II1Ulry_expression (abbreviated 1I1Ul'J') is one of the following:

- 2 -

VPMC(IC)

primary
name ()
system_call
+ +lvalue
- -lvalue
(expression)
!unary
-unary

VPMC(lC)

The foJlowing types of expressions are aJlowed:

unary
unary + primary
unary - primary
unary [primary
unary &primary
unary&-primary
unary ~primary
unary «primary
unary»primary
unary = = primary
unary! = primary
unary> primary
unary <primary
unary> = primary
unary < = primary

Note that the right operand of a binary operator can only be a constant. a
name, or a name with a constant subscript.

System Calls
A VPM program interacts with a communications device and a driver in the
host computer by means of system caJls (primitives).

The foJlowing primitives are available only in the BISYNC version of the
interpreter:

crc16(primary)
The value of the primary expression is combined with the cyclic
redundancy check-sum at the location passed by a previous crcloc
system caJl. The CRC-16 polynomial (xI6+xls+x2+1) is used for
the check-sum calculation.

crcloc(name)
The two-byte array starting at the location specified by name is
cleared. The address of the array is recorded as the location to be
updated by subsequent crc16 system calls.

get (IvaLue)
Get a byte from the current transmit buffer. The next available
byte, if any, is copied into the location specified by lvalue. The
returned value is zero if a byte was obtained, otherwise it is non­
zero.

getrbuf(name)
Get (open) a receive buffer. The returned value is zero if a buffer
is available, otherwise it is non-zero. If a buffer is obtained, the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a receive
buffer has previously been opened via a getrbuf call but has not yet
been closed via a call to rtnrbuf, that buffer is reinitialized and

- 3 -

VPMC(lC) VPMC(1C)

remains the current buffer.

getxbuf(name)
Get (open) a transmit buffer. The returned value is zero if a buffer
is available. otherwise it is non-zero. If a buffer is obtained. the
buffer parameters are copied into the array specified by name. The
array should be large enough to hold at least three bytes. The
meaning of the buffer parameters is driver-dependent. If a transmit
buffer has previously been opened via a getxbuf call but has not yet
been closed via a call to rtnxbuf, that buffer is reinitialized and
remains the current buffer.

put (primary)
Put a byte into the current receive buffer. The value of the primary
expression is inserted into the next available position, if any, in the
current receive buffer. The returned value is zero if a byte was
transferred. otherwise it is non-zero.

rev (lvalue)
Receive a character. The process delays until a character is available
in the input silo. The character is then moved to the location
specified by Ivalue and the process is reactivated.

rsom (constant)
Skip to the beginning of a new receive frame. The receiver
hardware is cleared and the value of constant is stored as the
receive sync character. This call is used to synchronize the local
receiver and remote transmitter when the process is ready to accept
a new receive frame.

rtnrbuf(name)
Return a receive buffer. The original values of the buffer
parameters for the current receive buffer are replaced with values
from the array specified by name. The current receive buffer is
then released to the driver.

rtnxbuf(name)
Return a transmit buffer. The original values of the buffer
parameters for the current transmit buffer are replaced with values
from the array specified by name. The current transmit buffer is
then released to the driver.

xeom(constant)
Transmit end-of-message. The value of the constant is transmitted,
then the transmitter is shut down.

xmt(primary)
Transmit a character. The value of the primary expression is
transmitted over the communications line. If the output silo is full,
the process waits until there is room in the silo.

xsom(constant)
Transmit start-of-message. The transmitter is cleared, then the
value of constant is transmitted six times. This call is used to syn­
chronize the local transmitter and the remote receiver at the begin­
ning of a frame.

The following primitives are available only with the HDLC version of the
interpreter:

abtxfrm()
The current transmission, if any, is aborted, if possible, by sending
a frame-abort sequence (seven one bits, followed immediately by a

- 4 -

VPMC(lC) VPMC(lC)

terminating flag). This operation is not feasible with some
hardware interfaces, in which case this primitive is a no-operation.

getxfrnm(J"i~~)
Get a transmit buffer. If the transmit-buffer queue is not empty,
the buffer at the head of the queue is removed from the queue and
attached to the sequence number specified by the value of the J"i­
~~ expression. If the sequence number is greater than seven or
the sequence number already has a buffer attached, the process is
terminated in error. The returned value is zero if a buffer was
obtained, otherwise non-zero.

re,frnm(name)
Get a completed receive frame. If the queue of completed receive
frames is non-empty, the frame at the head of the queue is remo­
ved and becomes the current receive frame. If a frame is obtained,
the first five bytes of the frame are copied into the array specified
by name. The returned value is true (non-zero) if a frame was
obtained; otherwise, it is false (zero). The rightmost four bits of
the returned value indicate the frame length as follows: if the value
of the rightJ;l1ost four bits is equal to fifteen, the frame length is
greater than or equal to 15; otherwise the frame length is equal to
the value of the rightmost four bits. The frame length includes the
two eRe bytes at the end of the frame and any control information
at the beginning of the frame. Bytes following the first two bytes of
the frame, but not including the two eRe bytes, are copied into a
receive buffer, if one is available at the time the frame is received.
Bit 020 of the returned value is zero if a receive buffer was availa­
ble, otherwise non-zero. The values of the leftmost three bits of
the returned value are currently unspecified. If a frame was
obtained, the first five bytes of the frame are copied into the array
specified by name. Frames with errors are discarded; a count is
kept for each type of error. Frames may be discarded for any of
the following reasons: (1) eRe error, (2) frame too short (less than
four bytes), (3) frame too long (buffer size exceeded), or (4) no
receive buffer available. If a frame with a buffer attached was pre­
viously obtained with re,frnm, but the buffer has not been released
to the driver with rtDrfrnm, that buffer is returned to the queue of
empty receive buffers. At most one receive frame with no buffer
attached is retained by the interpreter; if a new frame arrives before
the frame with no buffer attached has been obtained with re,frm,
the new frame is discarded.

rtDrfrnm()
Return a receive buffer. The current receive buffer (the one
obtained by the most recent re,frnm primitive) is returned to the
driver. If there is no current receive buffer, the process is termina­
ted in error.

rsxnmtq<)
Reset the transmit-buffer queue. The sequence number assignment
is removed from all transmit buffers. If a transmission is currently
in progress, the transmission is aborted, if possible.

rtDxfrnm(J"1~~)
Return a transmit buffer. The transmit buffer currently attached to
the sequence number specified by the value of the J"i~ry is retur­
ned to the driver and the sequence number assignment is removed
from that buffer. If the specified sequence number does not have a

- 5 -

VPMC(IC) VPMC(IC)

buffer attached, the process is terminated in error. Transmit
buffers must be returned in the same sequence in which they were
obtained, otherwise the process is terminated in error.

setdl(name ,primary)
Specify transmit-control information. The number of bytes
specified by the primary are copied from the array specified by name
and saved for use with subsequent xmtfrm or xmtdl primitives. If
the transmitter is currently busy, tbe process is terminated in error.

xmtbusy()
Test for transmitter busy. If a frame is currently being transmitted,
the returned value is true (non-zero); otherwise the returned value
is false (zero).

xmtdl()
Transmit a control frame. If a transmission is not already in pro­
gress, a new transmission is initiated. The transmitted frame will
contain the control information specified by tbe most recent setetl
primitive, followed by a two-byte CRC. The CRC-CCIlT polynomial
(x 16+X I 2.tx 5+ 1) is used for the CRC calculation. The returned
value is zero if a new transmission was initiated, otherwise non­
zero.

xmtfrm(primary)
Transmit an information frame. If a transmission is not already in
progress, a new transmission is initiated. The transmitted frame
will contain the control information specified by the most recent
setdl primitive, followed by tbe contents of the buffer which is
currently attached to the sequence number specified by tbe value of
the primary expression, followed by a two-byte CRC. The CRC­
CCIlT polynomial (x 16+X I 2+X 5+ 1) is used for the CRC calculation.
The returned value is zero if a new transmission was initiated.
otherwise non-zero. If the sequence number is greater tban seven
or tbe sequence number does not have a buffer attacbed. the pro­
cess is terminated in error.

The following primitives are available witb all versions of the interpreter:

dsrwait()
Wait for modem-ready and then set modem-ready mode. The pro­
cess delays until tbe modem-ready signal from tbe modem interface
is asserted. If the modem-ready signal subsequently drops. the pro­
cess is terminated. If dsrwait is never invoked. tbe modem-ready
signal is ignored.

exit (primary)
Terminate execution. The process is baited and tbe value of tbe
primary expression is passed to the driver.

getemd(name)
Get a command from tbe driver. If a command bas been received
from tbe driver since tbe last call to getemd. four bytes of com­
mand information are copied into tbe array specified by name and a
value of true (non-zero) is returned. If no command is available.
tbe returned value is false (zero).

pause()
Return control to tbe dispatcher. Tbis primitive informs the
dispatcber that the virtual process may be suspended until the next
occurrence of an event that might affect tbe state of the protocol
for tbis line. Examples of sucb events are: (1) completion of an

- 6 -

VPMC(IC) VPMC(IC)

output transfer, (2) completion of an input transfer, (3) timer
expiration, and (4) a buffer-in command from the driver. In a
multi-line implementation, the pause primitive allows the process
for a given line to give up control to allow the processor to service
another line.

rtnrpt(name)
Return a report to the driver. Four bytes from the array specified
by name are transferred to the driver. The process delays until the
transfer is complete.

testop(primary)
Test for odd parity. The returned value is true (non-zero) if the
value of the primary expression has odd parity, otherwise the retur­
ned value is false (zero).

timeout(primary)
Schedule or cancel a timer interrupt. If the value of the primary
expression is non-zero, the current values of the program counter
and stack pointer are saved and a timer is loaded with the value of
primary. The system call then returns immediately with a value of
false (zero) as the returned value. The timer is decremented each
tenth of a second thereafter. If the timer is decremented to zero,
the saved values of the program counter and stack pointer are res­
tored and the system call returns with a value of true (non-zero).
The effect of the timer interrupt is to return control to the code
immediately following the timeout system call, at which point a
non-zero return value indicates that the timer has expired. The
timeout system call with a non-zero argument is normally written
as the condition part of an if statement. A timeout system call with
a zero argument value cancels all previous timeout requests, as
does a return from the function in which the timeout system call
was made. A timeout system call with a non-zero argument value
overrides all previous timeout requests. The maximum permissible
value for the argument is 255, which gives a timeout period of 25.5
seconds.

timer(primary)
Start a timer or test for timer expiration. If the value of the pri­
mary is non-zero, a software timer is loaded with the value of the
primary and a value of true (non-zero) is returned. The timer is
decremented each tenth of a second thereafter until it reaches zero.
If the value of the primary is zero, the returned value is the current
value of the timer; this will be true (non-zero) if the value of the
timer is currently non-zero, otherwise false (zero). The timer used
by this primitive is different from the timer used by the timeout
primitive.

trace (primary [,primary)

Constants

The values of the two primary expressions and the current value of
the script location counter are passed to the driver. If the second
primary is omitted, a zero is used instead. The process delays until
the values have been accepted by the host computer.

A constant is a decimal, octal, or hexadecimal integer, or a single character
enclosed in single quotes. A token consisting of a string of digits is taken
to be an octal integer if the first digit is a zero, otherwise the string is inter­
preted as a decimal integer. If a token begins with Ox or OX, the remainder
of the token is interpreted as a hexadecimal integer. The hexadecimal

- 7 -

VPMC(IC) VPMC(IC)

digits include a through f or, equivalently, A through F.

Variables
Variable names may be used without having been previously declared. All
names are global. All values are treated as 8-bit unsigned integers.

Arrays of contiguous storage may be allocated using the .rray declaration:

array name [constant]

where constant is a decimal integer. Elements of arrays can be referenced
using constant subscripts:

name [constant]

Indexing of arrays assumes that the first element has an index of zero.

Names
A name is a sequence of letters and digits; the first character must be a let­
ter. Upper- and lower-case letters are considered to be distinct. Names
longer than 31 characters are truncated to 31 characters. The underscore
(_) may be used within a name to improve readability, but is discarded by
RATFOR.

Preprocessor Commands
If the - m option is omitted, comments, macro definitions, and file
inclusion statements are written as in C. Otherwise, the following rules
apply:

I. If the character II appears in an input line, the remainder of the line is
treated as a comment.

2. A statement of the form:

define(name ,text)

causes every subsequent appearance of name to be replaced by text.
The defining text includes everytbin! after the comma up to the balan­
cin! ri!ht parendaesis; multi-line defiaitions are allowed. Macros may
have argumellts. AllY occurrellcc of Sn within tAe replacement text for
a macro will be replaced by the 11th actual arsument when the macro is
invoked.

3. A statement of the form:

include (file)

inserts the contents of file in place of the iDclade command. The con­
tents of the included file is often a set of definitions.

EXAMPLES
These examples require the use of the - m option.

(I The function defined below transmits a frame in transparent BISYNC.
(I A transmit buffer must be obtained with getxbuf before the function
(I is invoked.
(I
(I Define symbolic constants:
(I
define(DLE,OxIO)
define(ETB,Ox26)
define(PAD,Oxff)
define(STX,Ox02)
define(SYNC,Ox32)
(I
(I Define a macro with an argument:

- 8 -

VPMC(IC) VPMC(IC)

FILES

II
define(xmtcrc,!crc16($1); xmt($l);})
II
II Declare an array:
II
array crc[2];
II
II Define the function:
II
function xmtblk()

crcloc(crc);
xsom(SYNC);
xmt(OLE);
xmt(STX);
while(get(byte) = =O){

if(byte = = OLE)
xmt(OLE);

xmtcrc(byte);

end
II

}
xmt(OLE);
xmtcrc(ETB);
xmt(crc[O));
xmt(crc[l]);
xeom(PAO);

II The following example illustrates the use of macros to simulate a
II function call with arguments.
II
II The macro definition:
II
define(xmtctl,!c=Sl ;d=S2;xmtctll ()})
II
II The function definition:
II
function xmtctll ()

xsom(SYNC);
xmt(c);
if(d!=O)

end
II

xmt(d);
xeom(PAD);

II Sample invocation:
II
function test()

xmtctl(OLE,Ox70);
end

sas_temp.
/tmp/sas_ta ??
/tmp/sas_tb??
/usr/lib/vpm/pass.
/usr/lib/vpm/pl
/usr/lib/vpm/vratfor

temporaries
temporary
temporary
compiler phases
compiler phase
compiler phase

- 9 -

VPMC(IC)

/lib/cpp
/usr/bin/m4
/bin/kasb
/usr /lib/vpm/bisync/*
/usr/lib/vpm/hdlc/*

SEE ALSO

preprocessor
preprocessor
KMCIl-B assembler

VPMC(IC)

interpreter source for the BISYNC interpreter
interpreter source for the HOLC interpreter

m4(\), ratfor(1), vpmstart(\C), vpm(4).
C Reference Manual by D. M. Ritchie.
RATFOR- A Preprocessor for a Rational Fortran by B. W. Kernighan.
The M4 Macro PrOC"S.fOf' by B. W. Kernighan and D. M. Ritchie.
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30).

- 10 -

I

VPMSTART(IC) VPMSTART(IC)

NAME
vpmstart, vpmsnap, vpmtrace - load the KMCII-B; print VPM traces

SYNOPSIS
'pmstart device n [tllen 1
'pmsnap

vpmtrace

DESCRIPTION
Vpmstan writes jiJen (a.out by default) to the KMCl1-B specified by device.

The argument n is a magic number that the KMCII-B driver saves to iden­
tify the running program. This number is checked when the VPM driver is
opened to provide some assurance that the program running in the
KMCII-B is the one expected. The magic number for VPM interpreters is
6. When jiJen has been written to the KMCII-B, its execution is begun.
Filen may be any file executable by the KMCII-B.

If jilen is made using vpmc(lC), the VPM interpreter will be started by
vpmstan. The VPM interpreter waits for a RUN command from the VPM
driver before beginning execution of the protocol script. The RUN com­
mand is sent by the YPM driver when the corresponding VPM device file is
opened.

Vpmsnap opens the trace driver (minor device number 1) and reads and
prints time-stamped event records until killed.

Vpmtrace opens the trace driver (minor device number 0) and reads and
prints event records until killed.

SEE ALSO
vpmc(lC), tracc(4), vpm(4).

- 1 -

VPR(1) VPR(I)

NAME
vpr - Versatec printer spooler

SYNOPSIS
vpr [options 1 [files 1

DESCRIPTION
Vpr causes the named files to be queued for printing on a Versatec printer.
If no names appear, the standard input is assumed: thus vpr may be used
as a filter.

The following options may be given (each as a separate argument and in
any order) before any file name arguments:

-c Makes a copy of the file to be sent before returning to the user.
-r Removes the file after sending it.
- m When printing is complete, reports that fact by mail (1).
- n Does not report the completion of printing by mail(1). This is the

default option.
-f Uses the next argument as a dummy file name when reporting com­

pletion by rnai/(I), thus forcing the - m option. (This is useful for
distinguishing multiple runs, especially when vpr is being used as a
filter) .

-p [-e raster 1
Uses the plot filter vplot to output files produced by graph (1 G).
The -e option will cause a previously scan converted file raster to
be sent to the Versatec.

-t Uses the troff filter veat to output files produced by troff(1). Troff
must be invoked with the -t option.

-nF For n between I and 4, assumes font F is mounted in font position
n, where F is R, I, B, or S.

EXAMPLES

FILES

Two common uses are:

troff -t [options 1 file I vpr -t

and

graph [options 1 file I vpr -p

/ etc/passwd
/usr/spool/vpd/*
/usr/lib/vpd
/usr /Iib/vpd.pr
/usr/lbin/vcat
/usr /Iib/vplot

user's identification and accounting data
spool area
line printer daemon
print filter
troff filter
plot filter

SEE ALSO
dpr(1 C), Ipr(l), tplot(l G).

- 1 -

~AIT(1) WAIT(I)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on
abnormal terminations.

Because the wait(2) system call must be executed in the parent process, the
shell itself executes wait, without creating a new process.

SEE AlSO
sh(l).

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the
shell, and thus can't be waited for.

- 1 -

WALL (1M) WALL(1M)

NAME
wall - write to all users

SYNOPSIS
/ete/wall

DESCRIPTION

FILES

Wall reads its standard input until an end-of-file. It then sends this mes­
sage to all currently logged in users preceded by "Broadcast Message from
... ". It is used to warn all users, typically prior to shutting down the sys­
tem.

The sender should be super-user to override any protectious the users may
have invoked.

/dev /tty.

SEE ALSO
mesg(l), write(1).

DIAGNOSTICS
"Cannot send to ... " when the open on a user's tty file fails.

- 1 -

WC(l) WC(I)

NAME
wc - word count

SYNOPSIS
wc [-Iwc] [names]

DESCRIPTION
We counts lines, words and characters in the named files, or in the stan­
dard input if no names appear. It also keeps a total count for all named
files. A word is a maximal string of characters delimited by spaces, tabs, or
new-lines.

The options I, w. and c may be used in any combination to specify that a
subset of lines, words, and characters are to be reported. The default is
-Iwc.

When names are specified on the command line, they will be printed along
with the counts.

- 1 -

WHAT(1) WHAT(1)

NAME
what - identify sees files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the pattern that get (1)
substitutes for %Z% (this is @(#) at this printing) and prints out what fol­
lows until the first·, >, new-line, \, or null character. For example, if the
C program in file f.c contains

char ident[) = "@(#)identification informatio:"'";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

Lo:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get (1),
which automatically inserts identifying information, but it can also be used
where the information is inserted manually.

SEE ALSO
get(l), help(l).

DIAGNOSTICS

BUGS

Use help (1) for explanations.

It's possible that an unintended occurrence of the pattern @(,) could be
found just by chance, but this causes no harm in nearly all cases.

- I -

WHO{l) WHO{I)

NAME
who - who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION

FILES

Who, without an argument, lists the login name, terminal name, and login
time for each current UNIX user.

Without an argument, who examines the /ete/utmp file to obtain its infor­
mation. If a file is given, that file is examined. Typically the given file will
be /usr/adm/wtmp, which contains a record of all the logins since it was
created. Then who lists logins, logouts, and crashes since the creation of
the wtmp file. Each login is listed with user name, terminal name (with
Ide, / suppressed), and date and time. When an argument is given, logouts
produce a similar line without a user name. Reboots produce a line with x
in the place of the device name, and a fossil time indicative of when the
system went down.

With two arguments, as in who am I (and also who are you), who tells who
you are logged in as.

/etc/utmp

SEE ALSO
getuid(2), utmp(5).

- 1 -

WHODO(IM)

NAME
whodo - who is doing what

SYNOPSIS
jetcjwboclo

DESCRIPTION

WHODO(IM)

Whodo produces merged, reformatted. and dated output from tbe who(l)
and ps(1) commands.

SEE ALSO
ps(1), who(1).

- 1 -

WRITE(1) WRITE (I)

NAME
write - write to another user

SYNOPSIS
write user [tty]

DESCRIPTION

FILES

Write copies lines from your terminal to that of another user. When first
called, it sends the message:

Message from your-Iogname your-tty ...

The recipient of the message should write back at this point. Communica­
tion continues until an end of file is read from the terminal or an interrupt
is sent. At that point, write writes EOF on the other terminal and exits.

If you want to write to a user who is logged in more than once, the tty
argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(l) com­
mand. At the outset, writing is allowed. Certain commands, in particular
nroff(1) and pr(1), disallow messages in order to prevent messy output.

If the character! is found at the beginning of a line, write calls the shell to
execute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to
another user, wait for him or ber to write back before starting to send.
Each party should end each m,~ssage with a distinctive signal «0) for
"over" is conventional), indicating that the other may reply; (00) for "over
and out" is suggested when conversation is to be terminated.

/etc/utmp
/bin/sh

to find user
to execute!

SEE ALSO
mail(1), mesg(l), who(l).

- 1 -

XARGS(1) XARGS(1)

NAME
xargs - construct argument list(s) and execute command

SYNOPSIS
xargs [flags 1 [command [initial-arguments 1 1

DESCRIPTION
Xargs combines the fixed initial-arguments with arguments read from stan­
dard input to execute the specified command one or more times. The num­
ber of arguments read for each command invocation and the manner in
which they are combined are determined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH.
If command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings
of characters delimited by one or more blanks, tabs, or new-lines; empty
lines are always discarded. Blanks and tabs may be embedded as part of an
argument if escaped or quoted: Characters enclosed in quotes (single or
double) are taken literally, and the delimiting quotes are removed. Outside
of quoted strings a backslash (\) will escape the next character.

Each argument list is constructed starting with the initial-arguments, fol­
lowed by some number of arguments read from standard input (Exception:
see -i flag). Flags -i, -I, and -n determine how arguments are selected
for each command invocation. When none of these flags are coded, the
initial-arguments are followed by arguments read continuously from stan­
dard input until an internal buffer is full, and then command is executed
with the accumulated args. This process is repeated until there are no more
args. When there are flag conflicts (e.g., -I vs. -n), the last flag has pre­
cedence. Flag values are:

-Inumber Command is executed for each non-empty number
lines of arguments from standard input. The last
invocation of command will be with fewer lines of
arguments if fewer than number remain. A line is
considered to end with the first new-line unless the
last character of the line is a blank or a tab; a trailing
blank/tab signals continuation through the next non­
empty line. If number is omitted I is assumed.
Option -x is forced.

-irep/str

-nnumber

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial­
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not
grow larger than 255 characters, and option -x is
also forced. {} is assumed for rep/str if not specified.

Execute command using as many standard input
arguments as possible, up to number arguments max­
imum. Fewer arguments will be used if their total
size is greater than size characters, and for the last
invocation if there are fewer than number arguments
remaining. If option -x is also coded, each number
arguments must fit in the size limitation, else xargs
terminates execution.

- I -

XARGS(1)

-t

-p

-x

-ssize

-eeo/slr

XARGS(l)

Trace mode: The comnuznd and each constructed
argument list are echoed to file descriptor 2 just prior
to their execution.

Prompt mode: The user is asked whether to execute
command each invocation. Trace mode (-t) is turned
on to print the command instance to be executed,
followed by a ? •• prompt. A reply of y (optionally
followed by anything) will execute the command;
anything else, including just a carriage return, skips
that particular invocation of comnuznd.

Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the
options -i and -I. When neither of the options -i,
-I, or - n are coded, the total length of all
arguments must be within the size limit.

The maximum total size of each argument list is set
to size characters; size must be a positive integer less
than or equal to 470. If -s is not coded, 470 is taken
as the default. Note that th~ character count for size
includes one extra character for each argument and
the count of characters in the command name.

EO/Sir is taken as the logical end-of-file string.
Underbar C) is assumed for the logical EOF string if
-e is not coded. -e with no eo/str coded turns off
the logical EOF string capability (underbar is taken
literally). Xargs reads standard input until either
end-of-file or the logical EOF string is encountered.

Xargs will terminate if either it receives a return code of -1 from, or if it
cannot execute, comnuznd. When command is a shell program, it should
explicitly exit (see sh(1» with an appropriate value to avoid accidentally
returning with -1.

EXAMPLES
The following will move all files from directory SI to directory S2, and echo
each move command just before doing it:

Is SI I xargs -i -t mv Slf{ I S2f{ I
The following will combine the output of the' parenthesized commands onto
one line, which is then echoed to the end of file log:

(logname; date; echo SO S.) I xargs »log

The user is asked which files in the current directory are to be archived and
archives them into arch (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -I ar r arch
2. Is I xargs -p -I I xargs ar r arch

The following will execute diff(l) with successive pairs of arguments ori­
ginally typed as shell arguments:

echo S. I xargs - n2 diff

DIAGNOSTICS
Self explanatory.

- 2 -

XREF(l)

NAME
xref - cross reference for C programs

SYNOPSIS
xref [file ... 1

DESCRIPTION

XREF(I)

Xref reads the named files or the standard input if no file is specified and
prints a cross reference consisting of lines of the form

identifier file-name line-numbers ...

Function definition is indicated by a plus sign (+) preceding the line num­
ber.

SEE ALSO
cref(I).

- 1 -

YACC(l) YACC(1)

NAME
yacc - yet another compiler-compiler

SYNOPSIS
yacc [-vd 1 grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar into a set of tables for a simple
automaton which executes an LR(1) parsing algorithm. The grammar may
be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a
program yyparse. This program must be loaded with the lexical analyzer
program, yylex, as well as main and yye"or, an error handling routine.
These routines must be supplied by the user; lex (I) is useful for creating
lexical analyzers usable by yacc.

If the - v flag is given, the file y.output is prepared, which contains a
description of the parsing tables and a report on conflicts generated by
ambiguities in the grammar.

If the -d flag is used, the file y.tab.b is generated with the #define sta­
tements that associate the yacc-assigned "token codes" with the user­
declared "token names". This allows source files other than y .tab.c to
access the token codes.

y.output
y.tab.c
y.tab.h
yacc.tmp, yacc.acts
/usr/lib/yaccpar

defines for token names
temporary files
parser prototype for C programs

SEE ALSO
lex(l).
LR ParSing by A. V. Aho and S. C. Johnson, Computing Surveys, June,
1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS

BUGS

The number of reduce-reduce and shift-reduce conflicts is reported on the
standard output; a more detailed report is found in the y.output file. Simi­
larly, if some rules are not reachable from the start symbol, this is also
reported.

Because file names are fixed, at most one yacc process can be active in a
given directory at a time.

- I -

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
/I include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one
or more error returns. An error condition is indicated by an otherwise
impossible returned value. This is almost always -1; the individual
descriptions specify the details. An error number is also made available in
the external variable e"no. E"no is not cleared on successful calls, so it
should be tested only after an error has been indicated.

All of the possible error numbers are not listed in each system call descrip­
tion because many errors are possible for most of the calls. The following
is a complete list of the error numbers and their names as defined in
<error.h>.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should
exist but doesn't, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the interrup­
ted system call returned this error condition.

5 EIO I/O error
Some physical I/O error. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a member
of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
(see a.out(5».

9 EBADF Bad file number
Either a file descriptor refers to no open file. or a read (respectively
write) request is made to a file which is open only for writing
(respectively reading).

- 1 -

I

I

INTRO(2) INTRO(2)

10 ECHILD No child processes
A wait, was executed by a process that had no existing or
unwaited-for child processes.

II EAGAIN No more processes
A fork, failed because the system's process table is full or the user
is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more space than
the system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap
space during a fork.

13 EACCFS Permission denied
An attempt was made to access a file in a way forbidden by the pro­
tection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use an
argument of a system call.

IS ENOTBLK Block device required
A non-block file was mentioned where a block device was required,
e.g., in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text seg­
ment). It will also occur if an attempt is made to enable accounting
when it is already enabled.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g.,
link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for
example in a path prefix or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device;
mentioning an undefined signal in signal, or kill; reading or writing
a file for which lseek has generated a negative pointer). Also set by
the math functions described in the (3M) entries of this manual.

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more
opens can be accepted.

24 EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

- 2 -

INTRO(2) INTRO(2)

25 ENOTTY Not a typewriter

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently
open for writing (or reading). Also an attempt to open for writing
a pure-procedure program that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size (I ,082,201 ,088
bytes) or ULiMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the
device.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or director), was made on a device
mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links
(1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the
domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not represen­
table within machine precision.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer
called a process 10. The range of this 10 is from 0 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork (2). The
parent process 10 of a process is the process 10 of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a
positive integer called the process group 10. This 10 is the process 10 of
the group leader. This grouping permits the signaling of related processes;
see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is identified
by a positive integer called the tty group 10. This grouping is used to ter­
minate a group of related process upon termination of one of the processes
in the group; see exit(2) and signaJ(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a
real user 10.

- 3 -

I

I

INTRO(2) INTRO(2)

Each user is also a member of a group. The group is identified by a posi­
tive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group ID, respectively, of the user responsible for the
creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are
used to determine file access permissions (see below). The effective user
ID and effective group ID are equal to the process's real user ID and real
group ID respectively, unless the process or one of its ancestors evolved
from a file that had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user
A process is recognized as a super-user process and is granted special
privileges if its effective user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are special pro­
cesses and are referred to as procO and procl.

ProcO is the scheduler. Procl is the initialization process (init). Procl is
the ancestor of every other process in the system and is used to control the
process structure.

File Name.
Names consisting of up to 14 characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values exclu­
ding 0 (null) and the ASCII code for I (slash).

Note that it is generally unwise to use ., 1, I, or] as part of file names
because of the special meaning attached to these characters by the shell.
See sh(l).

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional
slash U), followed by zero or more directory names separated by slashes,
optionally followed by a file name.

More precisely, a path name is a null-terminated character string construc­
ted as follows:

<path-name> ::= <file-name>1 <path-prefix> <file-name>1!
<path-prefix>::= < rtprefix > I! <rtprefix>
< rtprefix > :: = <dirname> II < rtprefix > <dirname> I

where <file-name> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters (other than
the ASCII slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the root direc­
tory. Otherwise, the search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory.
Directory entries are called links. By convention, a directory contains at
least two links, ' and '" referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.

- 4 -

INTRO(2) INTRO(2)

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name searches.
A process's root directory need not be the root directory of the root file
system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a pro­
cess if one or more of the following are true:

The process's effective user 10 is super-user.

The process's effective user ID matches the user 10 of the owner of
the file and the appropriate access bit of the "owner" portion
(0700) of the file mode is set.

The process's effective user ID does not match the user ID of the
owner of the file, and the process's group ID matches the group of
the file and the appropriate access bit of the "group" portion (070)
of the file mode is set.

The process's effective user ID does not match the user ID of the
owner of the file, and the process's effective group ID does not
match the group ID of the file, and the appropriate access bit of the
"other" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3).

·5-

I

I

ACCFSS(2) ACCFSS(2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path. amode)
char .path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file for
accessibility according to the bit pattern contained in amode, using the real
user 10 in place of the effective user 10 and the real group 10 in place of
the effective group 10. The bit pattern contained in amode is constructed as
follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDlRj

Read, write, or execute (search) permission is requested for a null
path name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

Write access is requested for a file on a read-only file system.
[EROFS]

Write access is requested for a pure procedure (shared text) file
that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested access.
[EACCES]

Path points outside the process's allocated address space. [EFAULT]

The owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits, members of the file's group other than
the owner have permissions checked with respect to the "group" mode
bits, and all others have permissions checked with respect to the "other"
mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of -I is returned and e"no is set to indicate the error.

SEE AlSO
chmod(2), stat(2).

- 1 -

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acet (patb)
cbar .patb;

DESCRIPTION
Acct is used to enable or disable the system's process accounting routine.
If the routine is enabled, an accounting record will be written on an
accounting file for each process that terminates. Termination can be caused
by one of two things: an exit call or a signal; see exit(2) and signal(2). The
effective user ID of the calling J.,:"ocess must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file
format is given in acct(5).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur
during the system call.

Acct will fail if one or more of the following are true:

The effective user ID of the calling process is not super-user.
[EPERM)

An attempt is being made to enable accounting when it is already
enabled. [EBUSY)

A component of the path prefix is not a directory. [ENOTDlR)

One or more components of the accounting file's path name do not
exist. [ENOENT)

A component of the path prefix denies search permission.
[EACCES)

The file named by path is not an ordinary file. [EACCES)

Mode permission is denied for the named accounting file.
[EACCES)

The named file is a directory. [EISDlR)

The named file resides on a read-only file system. [EROFS)

Path points to an illegal address. (EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise. a value of
-1 is returned and e""o is set to indicate the error.

SEE ALSO
acct(lM), acct(5).

- 1 -

I

I

ALARM(2) ALARM(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the calling process's alarm clock to send the signal
SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed; see signal(2).

Alarm requests are not stacked; successive calls reset the calling process's
alarm clock.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the calling
process's alarm clock.

SEE ALSO
pause(2), signal(2).

- 1 -

BRK(2) BRK(2)

NAME
brk. sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *endds;

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space allocated
for the calling process's data segment; see exec(2). The change is made by
resetting the process's break value. The break value is the address of the
first location beyond the end of the data segment. The amount of allocated
space increases as the break value increases.

Brk sets the break value to endds and changes the allocated space accor­
dingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. Incr can be negative. in which case the amount of allocated
space is decreased.

Brk and sbrk will fail without making any change in the allocated space if
such a change would result in more space being allocated than is allowed by
a system-imposed maximum (see ulimil(2». [ENOMEMI

RETURN VALUE
Upon successful completion. brk returns a value of 0 and sbrk returns the
old break value. Otherwise. a value of -\ is returned and e"no is set to
indicate the error.

SEE ALSO
exec(2).

- 1 -

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *pathi

DESCRIPTION
Path points to the path name of a directory. Chdir causes the named direc­
tory to become the current working directory, the starting point for path
searches for path names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

A component of the path name is not a directory. [ENOTDIR)

The named directory does not exist. [ENOENT)

Search permission is denied for any component of the path name.
[EACCES)

Path points outside the process's allocated address space. [EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and e"no is set to indicate the error.

SEE ALSO
chroot(2).

- I -

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
int cbmod (patb. mode)
cbar .patb;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permis­
sion portion of the named file's mode according to the bit pattern contained
in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.
02000 Set group ID on execution.
01000 Save text image after execution
00400 Read by owner
00200 Write by owner
00 I 00 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the effective user ID of the process is not super-user or the effective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents
the system from abandoning the swap-space image of the program-text por­
tion of the file when its last user terminates. Thus, when the next user of
the file executes it, the text need not be read from the file system but can
simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the
following are true:

A component of the path prefix is not a directory. [ENOTDIRj

The named file does not exist. [ENOENT!

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERMj

The named file resides on a read-only file system. (EROFSj

Path points outside the process's allocated address space. (EFAULTj

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -I is returned and e"no is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

- I -

I

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char .path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and group
respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user. the set-user-ID and set­
group-ID bits of the file mode. 04000 and 02000 respectively. will be
cleared.

Chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIRJ

The named file does not exist. [ENOENTJ

Search permission is denied on a component of the path prefix.
[EACCES)

The effective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM)

The named file resides on a read-only file system. [EROFS)

Path points outside the process's allocated address space. [EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -I is returned and e"no is set to indicate the error.

SEE ALSO
chmod(2).

- 1 -

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes the named
directory to become the root directory. the starting point for path searches
for path names beginning with /.

The effective user ID of the process mllst be super-user to change the root
directory.

The •• entry in the root directory is interpreted to mean the root directory
itself. Thus, •. can not be used to access files outside the subtree rooted at
the root directory.

Chroot will fail and the root directory will remain unchanged if one or more
of the following are true:

Any component of the path name is not a directory. [ENOTDlR)

The named directory does not exist. [ENOENT)

The effective user ID is not super-user. [EPERM)

Path points outside the process's allocated address space. [EFAULT)

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. a value
of -1 is returned and e"no is set to indicate the error.

SEE ALSO
chdir(2).

- 1 -

I

I

CLOSE(2)

NAME
close - close a file descriptor

SYNOPSIS
iot close (fildes)
iot fildes;

DESCRIPTION

CLOSE(2)

Fildes is a file descriptor obtained from a creat. open. dup. fcntl. or pipe sys­
tem call. Close closes the file descriptor indicated by fildes.

Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2). dup(2). exec(2). fcntl(2). open(2). pipe(2).

- 1 -

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
iot creat (patb, mode)
cbar .patb;
iot mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and 'Hyner are
unchanged. Otherwise, the file's owner ID is set to the process's effective
user ID, the file's group ID is set to the process's effective group ID, and
the low-order 12 bits of the file mode are set to the value of mode modified
as follows:

All bits set in the process's file mode creation mask are cleared.
See umask(2).

The "save text image after execution bit" of the mode is cleared.
See chmod(2).

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned and the file is open for writing, even if the mode
does not permit writing. The file pointer is set to the beginning of the file.
The file descriptor is set to remain open across exec system calls. See
fcntl(2). No process may have more than 20 files open simultaneously. A
new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

A component of the path prefix is not a directory. (ENOTDIR)

A component of the path prefix does not exist. (ENOENT)

Search permission is denied on a component of the path prefix.
[EACCESJ

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be
created does not permit writing. [EACCES]

The named file resides or would reside on a read-only file system.
[EROfSJ

The file is a pure procedure (shared text) file that is being execu­
ted. [ETXTBSY]

The file exists and write permission is denied. (EACCES]

The named file is an existing directory. [EISDIR]

Twenty (20) file descriptors are currently open. [EMALE]

Path points outside the process's allocated address space. (EFAULTj

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and ermo is
set to indicate the error.

SEE ALSO
close(2), dup(2), !seek(2), open(2), rcad(2), umask(2), write(2).

- 1 -

I

I

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int tildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup,fcntl, or pipe sys­
tem call. Dup returns a new file descriptor having the following in common
with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share one file pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system calls. See
fcntl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Twenty (20) file descriptors are currently open. [EMFILE]

RETURN VALUE
Upon successful completion a non-negative integer, namely the file descrip­
tor, is returned. Otherwise, a value of -I is returned and e"no is set to
indicate the error.

SEE ALSO
creat(2), ciose(2), exec(2), fcntl(2), open(2), pipe(2).

- 1 -

EXEC(2) EXEC(2)

NAME
exeel, execv, execle, execve, exeelp, execvp - execute a file

SYNOPSIS
int exec! (path. argO. argl ••••• argn. 0)
char .path •• argO ... rgl •.•••• argn;

int execv (path •• rgv)
char .path •• argv! I;
int exec!e (path. argO. argl ••.•• argn. O. en,p)
char .path •• argO •• argl •••••• argn •• en,p! I;
int exec,e (path. arg'. en:'p);
char .path ... rg' [I •• en,p[I;
int exec!p (file. argO. argl ••••• argn. 0)
char .file •• argO •• argl rgn;

int exec,p (file. arg')
char .file •• argv[J;

DESCRIPTION
Exec in all its forms transforms the calling process into a new process. The
new process is constructed from an ordinary. executable file called the new
process file. This file consists of a header (see a.out(5». a text segment,
and a data segment. The data segment contains an initialized portion and
an uninitialized portion (bss). There can be no return from a successful
exec because the calling process is overlaid by the new process.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained
by a search of the directories passed as the environment line ·PATH =" (see
environ (7». The environment is supplied by the shell (see sh (l».
ArgO, arg} , ... , argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process. By
convention, at least argO must be present and point to a string that is the
same as pdth (or its last component).

Argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By con­
vention, argv must have at least one member. and it must point to a string
that is the same as pdth (or its last component). Argv is terminated by a
null pointer.

Envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. Envp is terminated
by a null pointer.

File descriptors open in the calling process remain open in the new process,
except for those whose close-on-exec flag is set; see fent/(2). For those file
descriptors that remain open, the file pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the new
process. Signals set to be ignored by the calling process will be set to be
ignored by the new process. Signals set to be caught by the calling process
will be set to terminate new process; see signa/(2).

If the set-user-ID mode bit of the new process file is set (see ehmod(2»,
exee sets the effective user ID of the new process to the owner ID of the
new process file. Similarly, if the set-group-ID mode bit of the new process
file is set, the effective group ID of the new process is set to the group ID of
the new process file. The real user ID and real group ID of the new process

- 1 -

I

I

EXEC(2) EXEC(2)

remain the same as those of the calling process.

Profiling is disabled for the new process; see pt'ojil(2).

The new process also inherits the following attributes from the calling pro­
cess:

nice value (see nice(2»
process lD
parent process lD
process group lD
tty group lD (see exit(2) and signal(2»
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alann(2»
current working directory
root directory
file mode creation mask (see umask(2»
file size limit (see ulimit(2»
utime, stime, cutime, and cstime (see times(2»

Exec will fail and return to the calling process if one or more of the fol­
lowing are true:

One or more components of the new process file's path name do
not exist. [ENOENT]

A component of the new process file's path prefix is not a directory.
[ENOTDIR)

Search permission is denied for a directory listed in the new process
file's path prefix. [EACCFS)

The new process file is not an ordinary file. [EACCFS)

The new process file mode denies execution permission. [EACCFS)

The new process file has the appropriate access permission, but has
an invalid magic number in its header. [ENOEXEC)

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY)

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM. [ENOMEM)

The number of bytes in the new process's argument list is greater
than the system-imposed limit of 5120 bytes. [E2BIG)

The new process file is not as long as indicated by the size values in
its header. [EFAULT)

Path, argv, or envp point to an illegal address. [EFAULTj

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value
will be -1 and ermo will be set to indicate the error.

SEE ALSO
exit(2), fork(2).

- 2 -

EXIT(2) EXIT(2)

NAME
exit - terminate process

SYNOPSIS
exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

SEE ALSO

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait. it is
notified of the calling process's termination ond the low order eight
bits (i.e .• bits 0377) of status are made available to it; see wait(2).

If the parent process of the calling process is not executing a wait.
the calling process is transformed into a zombie process. A zombie
process is a process that only occupies a slot in the process table. it
has no other space allocated either in user or kernel space. The
process table slot that it occupies is partially overlaid with time
accounting information (see <sys/proc.h» to be used by times.

The parent process 10 of all of the calling process's existing child
processes and zombie processes is set to 1. This means the initial­
ization process (see intro(2» inherits each of these processes.

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct (2).

If the process 10, tty group 10. and process group 10 of the calling
process are equal. the SIGHUP signal is sent to each processes that
has a process group 10 equal to that of the calling process.

signal(2). wait(2).

WARNING
See WARNING in signal(2).

- 1 -

I

I

FCNTL(2) FCNTL(2)

NAME
fcnt! - file control

SYNOPSIS
(I include <fcntl.h>

int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fentl provides for control over open files. Fildes is an open file descriptor
obtained from a creat, open, dup,fcntl, or pipe system call.

The cmds available are:

F _DUPFD Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or
equal to argo

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor
is set to remain open across exec(2) system calls.

F _GETFD Get the close-on-exec flag associated with the file descriptor
fildes. If the low·order bit is 0 the file will remain open across
exec, otherwise the file will be closed upon execution of exec.

F _SETFD Set the close-on-exec flag associated with fildes to the low­
order bit of arg (0 or 1 as above).

F_GETFL Getfile status flags.

Set file status flags to arg. Only certain flags can be set; see
fcntl(7).

Fcntl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADFl

Cmd is F _DUPFD and 20 file descriptors are currently open.
[EMFILEl

Cmd is F _DUPFD and arg is negative or greater than 20. [EINV ALl

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F _DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F _SETFD Value other than -\.
F _GETFL Value of file flags.
F _SETFL Value other than -\.

Otherwise, a value of -I is returned and e"no is set to indicate the error.

SEE ALSO
close(2), exec(2), open(2), fcnt!(7).

- 1 •

FORK(2) FORK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is
an exact copy of the calling process (parent process) except for the fol­
lowing:

The child process has a unique process 10.

The child process has .. different parent process 10 (i.e., the process
10 of the parent process).

The child process has its own copy of the parent's file descriptors.
Each of the child's file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

The child process's utime, stime, cutime, and cstime are set to 0; see
times(2).

Fork returns a value of 0 to the child process.

Fork returns the process 10 of the child process to the parent process.

Fork will fail and no child process will be created if one or more of the fol­
lowing are true:

The system-imposed limit on the total number of processes under
execution would be exceeded. [EAGAIN)

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. [EAGAIN)

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process
and returns the process 10 of the child process to the parent process. Oth­
erwise, a value of -) is returned to the parent process, no child process is
created, and e"no is set to indicate the error.

SEE ALSO
exec(2). wait(2).

- 1 -

I

GETPID(2) GETPID(2)

NAME
getpid. getpgrp. getppid - get process. process grouP. and parent process
IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCIUPTION
Getpid returns the process ID of the calling process.

Getpg;p returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

- 1 -

GETUlD(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group,
and effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()

int getgid ()

int getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

- 1 -

I

I

IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
include <sys/ioctl.b>

ioctl(fildes, req uest, arg)

DESCRIPTION

IOCTL(2)

loctl performs a variety of functions on character special files (devices).
The writeups of various devices in Section 4 discuss how ioctl applies to
them.

loctl will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF]

Fildes is not associated with a character special device. [ENOTTY]

Request or arg is not valid. See tty(4). [EINVAL]

RETURN VALUE
If an error has occurred, a value of -1 is returned and e"no is set to indi­
cate the error.

SEE ALSO
tty(4).

- 1 -

KILL(2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid. sig)
int pid. sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid. The
signal that is to be sent is specified by sig and is either one from the list
given in signal (2) , or O. If sig is 0 (the nul1 signal), error checking is per­
formed but no signal is actual1y sent. This can be used to check the validity
of pid.

The effective user ID of the sending process must match the real user ID of
the receiving process unless, the effective user ID of the sending process is
super-user, or the process is sending to itself.

The processes with a process ID of 0 and a process ID of 1 are special pro­
cesses (see intro(2» and will be referred to below as procO and proc/
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID
is equal 10 pid. Pid may equal l.

If pid is 0, sig will be sent to all processes excluding procO and proc/ whose
process group ID is equal to the process group ID of the sender.

If pid is -\ and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding procO and proc/ whose real user ID is
equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding procO and proc/.

If pid is negative but not -I, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are
true:

Sig is not a valid signal number. [EINVAL]

No process can be found corresponding to that specified by pid.
[ESRCH]

The sending process is not sending to itself, its effective user ID is
not super-user, and its effective user ID does not match the real
user ID of the receiving process. [EPERMj

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -\ is returned and e"no is set to indicate the error.

SEE ALSO
kill(l), getpid(2), setpgrp(2), signal(2).

- 1 -

I

I

LINIC(2) LINIC(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, pathl)
char .pathl, .,.th1;

DESCRIPTION
Path] points to a path name naming an existing file. Path2 points to a path
name naming the new directory entry to be created. Link creates a new
link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following are
true:

A component of either path prefix is not a directory. (ENOTDIR]

A component of either path prefix does not exist.· [ENOENT)

A component of either path prefix denies search permission.
[EACCES)

The file named by path] does not exist. [ENOENT)

The link named by path2 exists. [EEXIST)

The file named by path] is a directory and the effective user ID is
not super-user. [EPERM)

The link named by path2 and the file named by path] are on
different logical devices (file systems). [EXDEV)

Path2 points to a null path name. [ENOENT)

The requested link requires writing in a directory with a mode that
denies write permission. [EACCES)

The requested link requires writing in a directory on a read-only file
system. [EROFS)

Path points outside the process's allocated address space. [EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate .the error.

SEE ALSO
link(lM), unlink(2).

- 1 -

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long Iseek (fildes, otfset, whence)
int fildes;
long otI'set;
int whence;

DESClUmON
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system
call. Lseek sets the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in
bytes from the beginning of th!= file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not an open file descriptor. [EBADFI

Fildes is associated with a pipe or fifo. [ESPIPEI

Whence is not 0, 1 or 2. [EINVAL and SIGSYS signal)

The resulting file pointer would be negative. [EINV ALI

Some devices are incapable of seeking. The value of the file pointer associ­
ated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file poin­
ter value is returned. Otherwise, a value of -1 is returned and e,",o is set
to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

- 1 -

I

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dey)
char .path;
int mode, dey;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The
mode of the new file is initialized from mode. Where the value of mode is
interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

Values of mode other than those above are undefined and should not be
used.

The file's owner ID is set to the process's effective user ID. The file's
group ID is set to the process's effective group ID.

The low-order 9 bits of mode are modified by the process's file mode
creation mask: all bits set in the process's file mode creation mask are
cleared. See umask(2). If mode indicates a block or character special file,
deY is a configuration dependent specification of a character or block I/O
device. If mode does not indicate a block special or character special device,
dey is ignored.

Mknod may be invoked only by the super-user for file types other than
FIFO special.

Mknod will fail and the new file will not be created if one or more of the
following are true:

The process's effective user ID is not super-user. [EPERM]

A component of the path prefix is not a directory. [ENOTDIR]

A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a read­
only file system. [EROFS]

The named file exists. [EEXISTJ

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and e"no is set to indicate the error.

- 1 -

MKNOD(2) MKNOD(2)

SEE ALSO
mkdir(l), mknod(lM), chmod(2), exec(2), umask(2), fs(5).

I

- 2 -

I

MOUNT(2) MOUNT(2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwftag)
char .spec, ~ir;
int rwftag;

DESCRIPTION
Mount requests that a removable file system contained on the block special
file identified by spec be mounted on the directory identified by dir. Spec
and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the root
directory on the mounted file system.

The low-order bit of rwfiag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit­
ted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

The effective user ID is not super-user. [EPERM)

Any of the named files does not exist. [ENOENT]

A component of a path prefix is not a directory. [ENOTDIR)

Spec is not a block special device. [ENOTBLK]

The device associated with spec does not exist. [ENXIO)

Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space.
[EFAULT)

Dir is currently mounted on, is someone's current working direc­
tory or is otherwise busy. [EBUSY)

The device associated with spec is currently mounted. [EBUSY)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-I is returned and en-no is set to indicate the error.

SEE ALSO
mount(lM). umount(2).

- 1 -

NICE(2) NlCE(2)

NAME
nice - change priority of a process

SYNOPSIS
iat Dice (iDc:r)
iat iDc:r;

DESCIUPTION
Nice adds the value of incr to the nice value of the calling process. A
process's nice value is a positive number for which a more positive value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user. [EPERM)

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of -} is returned and eT17lO is set to indicate the error.

SEE ALSO
nice(l), exec(2).

- I .

I

OPEN(2) OPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
II include <fcntl.b>
int open (patb, oftagl, mode))
cbar .patb;
int oftag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor for
the named file and sets the file status flags according to the value of oflag.
Oflag values are constructed by or-ing flags from the following list (only
one of the first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and writes. See
read(2) and write(2).

When opening a FIFO with O_R DON L Y or 0_ WRONL Y set:

IfO_NDELAY is set:

An open for reading-only will return without delay.
An open for writing-only will return an error if no
process currently has the file open for reading.

If O_NDELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-only
will block until a process opens the file for reading.

When opening a file associated with a communication line:

If O_NDELA Y is set:

The open will return without waiting for carrier.

If O_NDELA Y is clear:

The open will block until carrier is present.

If set, the file pointer will be set to the end of the file prior
to each write.

If the file exists, this flag has no effect. Otherwise, the file's
owner 10 is set to the process's effective user 10, the file's
group 10 is set to the process's effective group 10, and the
low-order 12 bits of the file mode are set to the value of
mode modified as follows (see creat(2»:

All bits set in the process's file mode creation mask
are cleared. See umask(2).

The "save text image after execution bit" of the
mode is cleared. See chmod(2).

If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if the file
exists.

- 1 -

OPEN(2) OPEN(2)

Upon successful completion a non-negative integer, the file descriptor, is
returned.

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file descriptor is set to remain open across exec system calls. See
fcntl(2).

No process may have more than 20 file descriptors open simultaneously.

The named file is opened unless one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIRj

O_CREA T is not set and the named file does not exist. [ENOENT]

A component of the path prefix denies search permission.
[EACCESj

Of/ag permission is denied for the named file. [EACCES]

The named file is a directory and of/ag is write or read/write.
[EISDlR]

The named file resides on a read-only file system and of/ag is write
or read/write. [EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the
device associated with this special file does not exist. [ENXIOj

The file is a pure procedure (shared text) file that is being executed
and of/ag is write or read/write. [ETXTBSYj

Path points outside the process's allocated address space. [EF AUL T]

O_CREA T and O_EXCL are set, and the named file exists. [EEXIST]

O_NDELA Y is set, the named file is a FIFO, 0_ WRONL Y is set, and
no process has the file open for reading. [ENXIOj

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file descrip­
tor, is returned. Otherwise, a value of -1 is returned and e"no is set to
indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fcntl(2), Iseek(2). read(2), write(2).

- 2 -

I

I

PAUSE(2) PAUSE(2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from
the signal catching-function (see signal (2» , the calling process resumes
execution from the point of suspension; with a return value of -1 from
pause and e"no set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

- 1 -

PIPE(2) PIPE(2)

NAME
pipe - create an interprocess channel

SYNOPSIS
iot pipe (fildes)
iot fildes(2);

DESCRIPTION
Pipe creates an I/O mechanism called a pipe and returns two file descrip­
tors. ftldes(O] and ftldes[I]. Fildes[O] is opened for reading and ftldes[I] is
opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writing
process is blocked. A read on file descriptor ftldes(O] accesses the data writ­
ten to ftldes [I] on a first-in-first-out basis.

No process may have more than 20 file descriptors open simultaneously.

Pipe will fail if 19 or more file descriptors are currently open. [EMFILEJ

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. a value
of -1 is returned and e"no is set to indicate the error.

SEE ALSO
sh(l). read(2). write(2).

- 1 -

I

I

PROFlL(2) PROFlL(2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char '-'uff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user's program counter (pc) is examined each clock tick
(60th second); offset is subtracted from it, and the result mUltiplied by
scale. If the resulting number corresponds to a word inside buff, that word
is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary
point at the left: 0177777 (octal) gives a 1-1 mapping of pc's to words in
buff; 077777 (octal) maps each pair of instruction words together. 02(8)
maps all instructions onto the beginning of buff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a bufsiz of o. Profiling is turned off when an exec is executed, but
remains on in child and parent both after a fork. Profiling will be turned
off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(l), mo nitor(3C).

- 1 -

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execu­
tion of a child process. Its primary use is for the implementation of break­
point debugging; see adb(l). The child process behaves normally until it
encounters a signal (see signa/(2) for the list), at which time it enters a
stopped state and its parent is notified via wait(2). When the child is in the
stopped state, its parent can examine and modify its "core image" using
ptrace. Also, the parent can cause the child either to terminate or continue,
with the possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by ptrace
and is one of the following:

o This request must be issued by the child process if it is to be
traced by its parent. It turns on the child's trace flag that
stipulates that the child should be left in a stopped state upon
receipt of a signal rather than the state specified by June; see
signa/(2). The pid. addr, and data arguments are ignored.
and a return value is not defined for this request. Peculiar
results will ensue if the parent does not expect to trace the
child.

The remainder of the requests can only be used by the parent process. For
each, pid is the process ID of the child. The child must be in a stopped
state before these requests are made.

1, 1 With these requests, the word at location addr in the address
space of the child is returned to the parent process. If I and
D space are separated (as on PDP-lis), request I returns a
word from I space, and request 1 returns a word from D
space. If I and D space are not separated (as on the VAX-
11/780), either request 1 or request 1 may be used with
equal results. The data argument is ignored. These two
requests will fail if addr is not the start address of a word, in
which case a value of -} is returned to the parent process
and the parent's e"no is set to EIO.

3 With this request, the word at location addr in the child's
USER area in the system's address space (see
<sys/user.b» is returned to the parent process.
Addresses in this area range from 0 to 1024 on the PDP-lis
and 0 to 2048 on the V AX. The data argument is ignored.
This request will fail if addr is not the start address of a word
or is outside the USER area, in which case a value of -I is
returned to the parent process and the parent's e"no is set to
EIO.

4, 5 With these requests, the value given by the data argument is
written into the address space of the child at location addr. If
I and D space are separated (as on PDP-lIs), request 4 writes
a word into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on the VAX),
either request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the

- 1 -

I

I

PTRACE(2) PTRACE(2)

address space of the child is returned to the parent. These
two requests will fail if addr is a location in a pure procedure
space and another process is executing in that space. or addr
is not the start address of a word. Upon failure a value of
-I is returned to the parent process and the parent's erma is
set to EIO.

6 With this request. a few entries in the child's USER area can
be written. Data gives the value that is to be written and
addr is the location of the entry. The few entries that can be
written are:

7

the general registers (i.e .• registers 0-7 on PDP­
lis. and registers 0-15 on the VAX)

the floating point status register and six floating
point registers on PDP-11s

certain bits of the Processor Status Word on PDP-
11s (i.e. bits 0-4. and 8-11)

certain bits of the Processor Status Longword on
the VAX (i.e .• bits 0-7. 16-20. and 30-31)

This request causes the child to resume execution. If the
data argument is O. all pending signals including the one that
caused the child to stop are canceled before it resumes exe­
cution. If the data argument is a valid signal number. the
child resumes execution as if it· had incurred that signal and
any other pending signals are canceled. The addr argument
must be equal to I for this request. Upon successful com­
pletion. the value of data is returned to the parent. This
request will fail if data is not 0 or a valid signal number. in
which case a value of -1 is returned to the parent process
and the parent's erma is set to EIO.

I This request causes the child to terminate with the same con­
sequences as exit(2).

, This request sets the trace bit in the Processor Status Word
of the child (i.e .• bit 4 on PDP-lis; bit 30 on the VAX) and
then executes the same steps as listed above for request 7.
The trace bit causes on interrupt upon completion of one
machine instruction. This effectively allows single stepping
of the child.
Note: the trace bit remains set after an interrupt on PDP-lIs
but is turned off after an interrupt on the V AX.

To forestall possible fraud. ptrace inhibits the set-user-id facility on subse­
quent exec(2) calls. If a traced process calls exec. it will stop before execu­
ting the first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

SEE AlSO

Request is an illegal number. [EIO)

Pid identifies a child that does not exist or has not executed a
ptrace with request o. [ESRCH)

adb(I). exec(2). signal(2). wait(2).

- 2-

READ(2) READ(2)

NAME
read - read from file

SYNOPSIS
iat read (fildes, buf, abyte)
iat fildes;
char '-'uf;
uasigaed abyte;

DFSCRlPTlON
Fildes is a file descriptor obtained from a creal, open, dup,lcnli, or pipe sys­
tem call.

Read attempts to read nbyte bytes from the file associated with fiJdes into
the buffer pointed to by bul.
On devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with fildes. Upon return from read, the file
pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is
associated with a communication line (see ioctl(2) and ny(4», or if the
number of bytes left in the file is less than nbyte bytes. A value of 0 is
returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELA Y is set. the read will return a O.

If O_NDELAY is clear. the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELA Y is set. the read will return a O.

If O_NDELAY is clear, the read will block until data becomes availa­
ble.

Read will fail if one or more of the following are true:

Fildes is not a valid file descriptor open for reading. [EBADF)

Bul points outside the allocated address space. (EFAULT)

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise. a -1 is returned and ernw
is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioct1(2), open(2), pipc(2), tty(4).

- 1 -

I

I

SETPGRP(2)

NAME
setpgrp - set process group 10

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group 10 of the calling process to the process 10 of
the calling process and returns the new process group 10.

RETURN VALUE
Setpgrp returns the value of the new process group 10.

SEE ALSO
exec(2). fork(2). getpid(2). intro(2). kill(2). signal(2).

- 1 -

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid is used to set the real user ID and effective user ID of the calling pro­
cess.

Setgid is used to set the real group ID and effective group ID of the calling
process.

If the effective user ID of the calling process is super-user, the real user
(group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real
user (group) ID is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

Setuid will fail if the real user (group) ID of the calling process is not equal
to uid (gid) and its effective user ID is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), intro(2).

- I -

I

I

SIGNAL(2) SIGNAL(2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
'include <signal.b>

int (*signal (sig, func»()
int sig;
int (*func)();

DESCRIPTION
Signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal. Sig specifies the signal
andfunc specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGeLD
SIGPWR

01
02
03*
04*
05*
06*
07*
OS*
09
10*
11*
12*
13
14
15
16
17
IS
19

hangup
interrupt
quit
illegal instruction (not reset when caught)
trace trap (not reset when caught)
lOT instruction
EMT instruction
floating point exception
kill (cannot be caught or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user defined signal 1
user defined signal 2
death of a child (see WARNING below)
power fail (see WARNING below)

See below for the significance of the asterisk in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be ter­
minated with the following consequences:

All of the receiving process's open file descriptors will be
closed.

If the parent process of the receiving process is executing a
wait, it will be notified of the termination of the receiving
process and the terminating signal's number will be made
available to the parent process; see wait(2).

If the parent process of the receiving process is not execu­
ting a wait, the receiving process will be transformed into a
zombie process (see exit(2) for definition of zombie pro­
cess).

The parent process ID of each of the receiving process's
existing child processes and zombie processes will be set to
1. This means the initialization process (see intro(2» inher­
its each of these processes.

- 1 -

SIGNAL(2) SIGNAL(2)

An accounting record will be written on the accounting file
if the system's accounting routine is enabled; see acct(2).

If the receiving process's process 10, tty group 10, and pro­
cess group 10 are equal, the signal SIGHUP will be sent to
all of the processes that have a process group 10 equal to
the process group 10 of the receiving process.

A "core image" will be made in the current working direc­
tory of the receiving process if sig is one for which an aster­
isk appears in the above list and the following conditions are
met:

The effective user 10 and the real user 10 of the
receiving process are equal.

An ordinary file named core exists and is writable
or can be created. If the file must be created, it
will have the following properties:

a mode of 0666 modified by the file
creation mask (see umask(2»

a file owner 10 that is the same as the
effective user 10 of the receiving process

a file group 10 that is the same as the
effective group 10 of the receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal
Upon receipt of the signal sig, the receiving process is to execute
the signal-catching function pointed to by June. The signal num­
ber sig will be passed as the only argument to the signal-catching
function.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted and
the value of June for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, SIGCLD, or SIGPWR.

When a signal that is to be caught occurs during a read, a write,
an open, or an ioetl system call on a slow device (like a terminal;
but not a file), during a pause system call, or during a wait sys­
tem call that does not return immediately due to the existence
of a previously stopped or zombie process, the signal catching
function will be executed and then the interrupted system call
will return a -1 to the calling process with e177lo set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal.

Signal will fail if one or more of the following are true:

Sig is an illegal signal number, including SIGKILL. [EINVALj

Func points to an illegal address. [EFAULTj

RETURN VALUE
Upon successful completion, signal returns the previous value of June for
the specified signal sig. Otherwise, a value of -1 is returned and en-no is

- 2 -

I

I

SICiNAL(2) SIGNAL(2)

set to indicate the error.

SEE ALSO
kill(l), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above
exist in this release of the system; they are:

SIGCLD 18 death of a child (not reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of UNIX. these signals will
continue to behave as described below; they are included only for compati­
bility with other versions of UNIX. Their use in new programs is strongly
discouraged.

For these signals, Junc is assigned one of three values: SIG_DFL, SIG_IGN,
or a Junction address. The actions prescribed by these values of are as fol­
lows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also. if sig is SIGCLD, the calling
process's child processes will not create zombie processes when
they terminate; see exit(2).

Junction address - catch signal
If the signal is SIGPWR. the action to be taken is the same as
that described above for June equal to Junction address. The
same is true if the signal is SIGCLD except, that while the pro­
cess is executing the signal-catching function any received
SIGCLD signals will be queued and the signal-catching function
will be continually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and exit(2» in the
following ways:

wait If the Junc value of SIGCLD is set to SIG_IGN and a wait is exe­
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of - 1 with e"no
set to ECHILD.

exit If in the exiting process's parent process the Junc value of
SIGCLD is set to SIG_IGN. the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the pipel­
ine the parent of the proceeding processes. A process that may be piped
into in this manner (and thus become the parent of other processes)
should take care not to set SIGCLD to be caught.

- 3 -

STAT(2) STAT(2)

NAME
stat, fstat - get file status

SYNOPSIS
II include <sys/types.b>
II include <sys/stat.b>

int stat (patb, buf)
cbar .patb;
struct stat .buf;

int fstat (fildes, buf)
int fildes;
struct stat .buf;

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permis­
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. Stat obtains information about
the named file.

Similarly, fSlat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, creal, dup, fcntl, or pipe
system call.

Buf is a pointer to a sial structure into which information is placed concer­
ning the file.

The contents of the structure pointed to by buf include the following mem­
bers:

ushort st_mode; /* File mode; see mknod(2) */
ino_t st_ino; /* lnode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t sCrdev; /* ID of device */

/* This entry is defined only (or */
/* character special or block special files */

short sCnlink; /* Number of links */
ushort st_uid; /* User ID of the file's owner */
ushort st...,gid; /* Group ID of the file's group */
otCt st_size; /* File size in bytes */
time_t sCatime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t sCctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 */

sCatime Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2) , pipe (2) , utime(2), and read(2).

sCmtime Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2) , pipe(2), utime(2), and write(2).

sCctime Time when file status was last changed. Changed by the fol­
lowing system calls: chmod(2) , chown(2), creat(2), link (2),
mknod(2) , pipe(2), unlink(2), utime(2), and write(2).

Stat will fail if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDlR]

The named file does not exist. [ENOENTj

- I -

I

I

STAT (2) STAT(2)

Search permISsion is denied for a component of the path prefix.
[EACCFS]

Buf or path points to an invalid address. [EFAULT]

Fstat will fail if one or more of the following are true:

Fildes is not a valid open file descriptor. [EBADF)

Buf points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and e"no is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), unlink(2).

- 2 -

STlME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long .tp;

DESCRIPTION

STlME(2)

Slime sets the system's idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970.

Slime will fail if the effective user ID of the calling process is not super­
ust.:. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and e"no is set to indicate the error.

SEE ALSO
time(2).

- 1 -

I

SYNC(2) SYNC(2)

NAME
sync - update super-block

SYNOPSIS
sync ()

DESCR.IPTlON
Sync causes all information in memory that should be on disk to be written
out. This includes modified super blocks, modified i-nodes, and delayed
block I/O.
It should be used by programs which examine a file system, for example
fsck, df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

SEE ALSO
sync(lM).

- I -

TIME(2) TIME(2)

NAME
time - get time

SYNOPSIS
long time ((long -) 0)

long time (tloc)
long -tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT, January I,
1970.

If tloe (taken as an integel) is non-zero, the return value is also stored in
the location to which tloe points.

Time will fail if tJoe points to an illegal address. [EFAULTj

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a
value of -1 is returned and e"no is set to indicate the error.

SEE ALSO
stime(2).

- I -

I

TIMES(2) TIMES(2)

NAME
times - get process and child process times

SYNOPSIS
long times (buffer)
struct tbuffer .buffer;
struct tbuffer {

long uti me;
long stime;
long cutime;
long cstime;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting informa­
tion. This information comes from the calling process and each of its ter­
minated child processes for which it has executed a wait.

All times are in 60ths of a second.

Utime is the CPU time used while executing instructions in the user space
of the calling process.

Stime is the CPU time used by the system on behalf of the calling process.

Cutime is the sum of the utimes and cutimes of the child processes.

Cstime is the sum of the slimes and cstimes of the child processes.

Times will fail if buffer points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in 60ths of
a second, since an arbitrary point in the past (e.g., system start-up time).
This point does not change from one invocation of times to another. If
times fails, a -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

- 1 -

ULIMIT(2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, ne"limit)
int cmd;
long ne"limit;

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:

1 Get the process's file size limit. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

1 Set the process's file size limit to the value of newlimit. Any process
may decrease this limit, but only a process with an effective user ID of
super-user may increase the limit. Ulimit will fail and the limit will be
unchanged if a process with an effective user ID other than super-user
attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
a value of -1 is returned and e"no is set to indicate the error.

SEE ALSO
brk(2), write(2).

- 1 -

I

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (emask)
int emask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to cmask and returns the
previous value of the mask. Only the low-order 9 bits of cmask and the file
mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), mknod(lM), sh(l), chmod(2), creat(2), mknod(2), open(2).

- I -

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system contained on the
block special device identified by spec be unmounted. Spec is a pointer to a
path name. After unmounting the file system. the directory upon which
the file system was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

The process's effective user ID is not super-user. [EPERM)

Spec does not exist. [ENXIO)

Spec is not a block special device. [ENOTBLK)

Spec is not mounted. [EINVAL)

A file on spec is busy. [EBUSY)

Spec points outside the process's allocated address space. [EFAULT)

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise. a value of
-\ is returned and errno is set to indicate the error.

SEE ALSO
mount(lM). mount(2).

- 1 -

I

I

UNAME(2) UNAME(2)

NAME
uname - get name of current UNIX system

SYNOPSIS
I include <sys/utsnaDle.b>

int uname (naDle)
struct utsnaDle -Dame;

DESCRIPTION
Uname stores information identifying the current UNIX system in the struc­
ture pointed to by name.

Uname uses the structure defined in <sys/utsnaDle.b>:

struct utsname {
char sysname[9];
char nodename[9];
char release[9];
char version[9];

};
extern struct utsname utsname;

Uname returns a null-terminated character string naming the current UNIX
system in the character array sysname. Similarly, nodename contains the
name that the system is known by on a communications network. Release
and version further identify the operating system.

Uname will fail if name points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise,
-1 is returned and errno is set to indicate the error.

SEE ALSO
uname(1).

- 1 -

UNLlNK(2) UNLlNK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be
path.

The named file is unlinked unless one or more of the following are true:

A component of the path prefix i~ not a directory. (ENOTDlR]

The named file does not exist. (ENOENT]

Search permission is denied for a component of the path prefix.
(EACCES]

Write permission is denied on the directory containing the link to
be removed. [EACCES]

The named file is a directory and the effective user ID of the pro­
cess is not super-user. (EPERM]

The entry to be unlinked is the mount point for a mounted file sys­
tem. (EBUSY]

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. (ETXTBSY]

The directory entry to be unlinked is part of a read-only file system.
[EROFS]

Path points outside the process's allocated address space. (EFAULT]

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist. If
one or more processes have the file open when the last link is removed, the
removal is postponed until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and e""o is set to indicate the error.

SEE ALSO
rm(l), close(2). link(2), open(2).

- I -

I
I

I

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
/I include <sys/types.b>
, include <ustat.b>

int ustat (de" buf)
int de,;.
strud ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a device
number identifying a device containing a mounted file system. Bul is a
pointer to a ustat structure that includes to following elements:

daddr_t Ctfree; /* Total free blocks */
ino_t Ctinode; /* Number of free inodes */
char Cfname[6]; /* Filsys name */
char Cfpack[6]; /* Filsys pack name */

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file
system. [EINV ALl

Bul points outside the process's allocated address space. [EFAULTl

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(5).

- 1 -

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
II include <sys/types.h>
int uti me (path, times)
char -path;
struct utimbur -times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and
modification times of the named file.

If tim.es is NULL. the access and modification times of the file are set to the
current time. A process must be the owner of the file or have write per­
mission to use Ulime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure
and the access and modification times are set to the values contained in the
designated structure. Only the owner of the file or the super-user may use
utime this way.

The times in the following structure are measured in seconds since 00:00:00
GMT, Jan. 1, 1970.

struct utimbuf {

J;

time_t actime;
time_t modtime;

/* access time -/
/- modification time -/

Utime will fail if one or more of the following are true:

The named file does not exist. [ENOENT)

A component of the path prefix is not a directory. [ENOTDlR)

Search permission is denied by a component of the path prefix.
[EACCES)

The effective user ID is not super-user and not the owner of the file
and times is not NULL. [EPERM]

The effective user ID is not super-user and not the owner of the file
and times is NULL and write access is denied. [EACCES]

The file system containing the file is mounted read-only. [EROFS]

Times is not NULL and points outside the process's allocated
address space. [EFAULT]

Path points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -I is returned and e"no is set to indicate the error.

SEE ALSO
stat(2).

- 1 -

I

WAIT(2) WAIT(2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (staCloc)
int $staCloc;

int wait ((int $)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be
caught (see signal(2», or until anyone of the calling process's child pro­
cesses stops in a trace mode (see ptrace(2» or terminates. If a child pro­
cess stopped or terminated prior to the call on wait, return is immediate.

If staCloc (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pointed to by
staCloc. Status can be used to differentiate between stopped and termina­
ted child processes and if the child process terminated, status identifies the
cause of termination and pass useful information to the parent. This is
accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will be
zero and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low order 8
bits of status will be zero and the high order 8 bits will contain the
low order 8 bits of the argument that the child process passed to
exit; see exit(2).

If the child process terminated due to a signal, the high order 8 bits
of status will be zero and the low order 8 bits will contain the num­
ber of the signal that caused the termination. In addition, if the low
order seventh bit (i.e., bit 200) is set, a "core image" will have
been produced; see signaJ(2).

If a parent process terminates without waiting for its child processes to ter­
minate, the parent process ID of each child process is set to I. This means
the initialization process inherits the child processes; see intro(2).

Wait will fail and return immediately if one or more of the following are
true:

The calling process has no existing unwaited-for child processes.
[ECHILD)

StaUoc points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -I is returned to
the calling process and ermo is set to EINTR. If wait returns due to a stop­
ped or terminated child process, the process ID of the child is returned to
the calling process. Otherwise, a value of -I is returned and erma is set to
indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

WARNING
See WARNING in signal(2).

- 1 -

WRITE(2) WRITE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char .buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a ereat, open, dup, fentl, or pipe sys­
tem call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write,
the file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading
by any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process's file
size limit or the maximum file size. See u/imit(2). [EFBIG]

Buf points outside the process's allocated address space. (EFAULT]

If a write requests that more bytes be written than there is room for (e.g.,
the ulimit (see u/imit(2» or the physical end of a medium), only as many
bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write of 512
bytes will return 20. The next write of a non-zero number of bytes will
give a failure return (except as noted below).

If the file being written is a pipe (or FIFO), no partial writes will be permit­
ted. Thus, the write will fail if a write of "byte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELA Y flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count of
O. Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block
until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is retur­
ned. Otherwise, -I is returned and e""o is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

- 1 -

I

INTRO(3) INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
II include <stdio.h>

II include <math.h>

DESCRIPTION

FILES

This section describes functions found in various libraries, other than those
functions that directly invoke UNIX system primitives, which are described
in Section 2 of this volume. Certain major collections are identified by a
letter after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute library libe, which is automatically loaded by the C
compiler. ee(1). The link editor Jd(1) searches this library under the
-Ie option. Declarations for some of these functions may be
obtained from II include files indicated on the appropriate pages.

(3M) These functions constitute the math library, /ibm. They are automa­
tically loaded as needed by the FORTRAN compiler f77 (1). The link
editor searches this library under the -1m option. Declarations for
these functions may be obtained from the' include file <math.b>.

(3S) These functions constitute the "standard I/O package" (see
stdio(3S». These functions are in the library Jibe, already men­
tioned. Declarations for these functions may be obtained from the * include file <stdio.b>.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

The descriptions of some functions refer to NULL. This is the value that is
obtained by casting 0 into a character pointer. The C language guarantees
that this value will not match that of any legitimate pointer, so many func­
tions that return pointers return it, for example, to indicate an error. NULL
is defined in <stdio.b> as 0; the user can include his own definition if he
is not using <stdio.b>.

/Iib/libc.a
/lib/libm.a

SEE ALSO
ar(l), ceO), f77(l), Id(l), nm(1), intro(2), stdio(3S).

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when
the function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable ermo (see intro(2» is
set to the value EDOM or ERANGE.

- 1 -

I

I

A64L(3C) A64L(3C)

NAME
a64I, 164a - convert between long and base-64 ASCII

SYNOPSIS
long a641 (5)
char *5;

char *164a (I)
long I;

DESCRIPTION

BUGS

These routines are used to maintain numbers stored in base-64 ASCII. This
is a notation by which long integers can be represented by up to six charac­
~ers; each character represents a "digit" in a radix-64 notation.

The characters used to represent "digits" are • for 0, / for I, 0 through 9
for 2 -11, A through Z for 12 - 37, and a through z for 38 -63.

A641 takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. L64a takes a leoC argument and
returns a pointer to the corresponding base-64 representation.

The value returned by 164a is a pointer into a static buffer, the contents of
which are overwritten by each call.

- 1 -

ABORT(3C) ABORT(3C)

NAME
abort ~ generate an lOT fault

SYNOPSIS
abort ()

DESCRIPTION
Abort causes an lOT signal to be sent to the process. This usually results in
termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored.

SEE ALSO
adb(l), exit(2), signal(2).

DIAGNOSTICS
Usually "abort - core dumped" from the shell.

- 1 -

I

I

ABS(3C)

NAME
abs - integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
fabs(3M).

BUGS
You get what the hardware gives on the largest negative integer.

- 1 -

ABS(3C)

ASSERT(3X) ASSERT(3X)

NAME
assert - program verification

SYNOPSIS
II include <assert.h>

assert (expression);

DFSCRIPTION
This macro is useful for putting diagnostics into programs. When it is exe­
cuted, if expression is false, it prints "Assertion failed: file XJ'Z, line nnn" on
the standard error file and exits. Xyz is the source file and nnn the source
line number of the assert statement. Compiling with the preprocessor
option - DNDEBUG (see cc (l» will cause assert to be ignored.

- 1 -

I

I

ATOF(3C) ATOF(3C)

NAME
atof, atoi, atol - convert ASCn to numbers

SYNOPSIS
double atof (nptr)
cbar .nptr;

int atoi (nptr)
cbar .nptr;

long atol (nptr)
cbar .nptr;

DESClUPTlON
These functions convert a string pointed to by nptl' to ftoating, integer, and
long integer representation respectively. The first unrecognized character
ends the string.

Alol recognizes an optional string of tabs and spaces, then an optional sign,
then a string of digits optionally containing a decimal point, then an
optional e or E followed by an optionally signed integer.

Alai and alol recognize an optional string of tabs and spaces, then an
optional sign, then a string of digits.

SEE ALSO
scanf(3S).

BUGS
There are no provisions for overftow.

- 1 -

BESSEL(3M)

NAME
jO, jI, jn, yO, yI, yn - bessel functions

SYNOPSIS
I include <math.h>

double jO (x)
double x;

double jl (x)
double x;

double jn (n, x);
double x;

double yO (x)
double x;

double yl (x)
double X;

double yn (n, x)
int n;
double x;

DESCIUPTION

BESSEL(3M)

These functions calculate Bessel functions of the first and second kinds for
real arguments and integer orders.

DiAGNOSTICS
Negative arguments cause yO, yJ , and yn to return a huge negative value.

- 1 -

I

I

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch - binary search

SYNOPSIS
char .bsearch (key, base, nel, width, compar)
char .key;
char .base;
int nel, width;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algor­
ithm B. It returns a pointer into a table indicating the location at which a
datum may be found. The table must be previously sorted in increasing
order. The first argument is a pointer to the datum to be located in the
table. The second argument is a pointer to the base of the table. The third
is the number of elements in the table. The fourth is the width of an
element in bytes. The last is the name of the comparison routine. It is cal­
led with two arguments which are pointers to the elements being compared.
The routine must return an integer less than, equal to, or greater than 0
according as the first argument is to be considered less than, equal to, or
greater than the second.

DIAGNOSTICS
Zero is returned if the key can not be found in the table.

SEE ALSO
Isearch(3C), qsort(3C).

- I -

CONV(3C) CONV(3C)

NAME
toupper. tolower. toascii - character translation

SYNOPSIS •
'include <ctype.b>

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and to/ower have as domain the range of gete: the integers from
-I through 255. If the argument of toupper represents a lower-case letter,
the result is the corresponding upper-case letter. If the argument of t%wer
represents an upper-case letter, the result is the corresponding lower-case
letter. All other arguments in the domain are returned unchanged.

_toupper and _to/ower are macros that accomplish the same thing as toupper
and t%wer but have restricted domains and are faster. _toupper requires a
lower-case letter as its argument; its result is the corresponding upper-case
letter. _t%wer requires an upper-case letter as its argument; its result is
the corresponding lower-case letter. Arguments outside the domain cause
garbage results.

Toase;i yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other systems.

SEE AlSO
ctype(3C).

- 1 -

I

I

CR.YPT(3C) CR.YPT(3C)

NAME
crypt, setkey, encrypt - DFS encryption

SYNOPSIS
char ~rypt (key, salt)
char -key, -salt;

setkey (key)
char -key;

encrypt (block, ed8ag)
char -block;
int ed8ag;

DFSCR.IPTION
Crypt is the password encryption routine. It is based on the NBS Data
Encryption Standard (DFS), with variations intended (among other things)
to frustrate use of hardware implementations of the DFS for key search.

The first argument to crypt is a user's typed password. The second is a 2-
character string chosen from the set [a-zA-ZO-9./); this salt string is used
to perturb the DFS algorithm in one of 4096 different ways, after which the
password is used as the key to encrypt repeatedly a constant string. The
returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual
DFS algorithm. The argument of setkey is a character array of length 64
containing only the characters with numerical value 0 and 1. If this string
is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64
containing O's and 1 'So The argument array is modified in place to a similar
array representing the bits of the argument after having been subjected to
the DFS algorithm using the key set by setkey. If edftag is 0, the argument
is encrypted; if non-zero, it is decrypted.

SEE ALSO
10gin(I), passwd(1), getpass(3C), passwd(5).

BUGS
The return value points to static data that are overwritten by each call.

- 1 -

CTERMID (3S) CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
'include <5tdio.b>

char *Ctermid (5)
char -5;

DESCRIPTION

NOTES

Ctermid generates a string that refers to the controlling terminal for the
current process when used as a file name.

If (int)s is zero, the string is store~ in an internal static area, the contents
of which are overwritten at the next call to ctermid, and the address of
which is returned. If (int)s is non-zero, then s is assumed to point to a
character array of at least L_ctermid elements; the string is placed in this
array and the value of s is returned. The manifest constant L_ctermid is
defined in <5tdio.b>.

The difference between ctermid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal associ­
ated with that file descriptor, while ctermid returns a magic string (ldev /tty)
that will refer to the terminal if used as a file name. Thus ttyname is
useless unless the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

- 1 -

I

I

CTIME(3C) CTlME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to ASCII

SYNOPSIS
cbar *Ctime (clock)
long *Clock;

(I include <time.b>

struct tm .Iocaltime (clock)
long *Clock;

struct tm .gmtime (clock)
long *Clock;

cbar .asctime (tm)
struct tm .tm;

tzset ()

DESCRIPTION
Ctime converts a time pointed to by cloek such as returned by time(2) into
ASCII and returns a pointer to a 26-character string in the following form.
All the fields have constant width.

Sun Sep 1601:03:52 1973\n\0

Loealtime and gmtime return pointers to structures containing the broken­
down time. Loea/time corrects for the time zone and possible daylight
savings time; gmtime converts directly to GMT, which is the time the UNIX
system uses. Asctime converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm-year;
int tm_wday;
int tm-yday;
int tm_isdst;

};

These quantities give the time on a 24-hour clock, day of month (1-31),
month of year (0-11), day of week (Sunday = 0), year - 1900, day of
year (0-365), and a flag that is non-zero if daylight saving time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5.60~0); the
external variable daylight is non-zero if and only if the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975; if necessary, a
table for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents
of the variable to override the default time zone. The value of TZ must be
a three-letter time zone name, followed by a number representing the
difference between local time and Greenwich time in hours, followed by an
optional three-letter name for a daylight time zone. For example, the set­
ting for New Jersey would be EST5EDT. The effects of setting TZ are thus

- 1 -

CTIME(3C) CTIME(3C)

to change the values of the external variables timezone and daylight; in addi­
tion, the time zone names contained in the external variable

char .tznamell) = {-EST-, -EDT-};

are set from the environment variable. The function tzset sets the external
variables from TZ; it is called by asctime and may also be called explicitly by
the user.

SEE ALSO

BUGS

time(2), getenv(3C), environ(7).

The return values point to static data whose content is overwritten by each
call.

- 2 -

•

I

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii - character classification

SYNOPSIS
include <etype.b>

int isalpba (e)
int e;

DFSCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. !saseii is defined on all
integer values; the rest are defined only where isascii is true and on the
single non-ASCII value EOF (see stdio(3S».

isa/pha

isupper

is/ower

isdigit

isxdigit

isa/num

isspaee

ispunet

isprint

isgraph

isentr/

isaseii

SEE ALSO
ascii(7),

e is a letter

e is an upper case letter

e is a lower case letter

e is a digit [0-9J

e is a hexidecimal digit [0-9], [A-F) or [a-f]

e is an alphanumeric

e is a space, tab, carriage return, new-line, vertical tab, or
form-feed

e is a punctuation character (neither control nor
alphanumeric)

e is a printing character, code 040 (space) through 0176
(tilde)

e is a printing character, like isprint except false for space

e is a delete character (0177) or ordinary control character
(less than' 040).

e is an ASCII character, code less than 0200

- 1 -

CUSERID (3S) CUSERID (3S)

NAME
cuserid - character login name of the user

SYNOPSIS
., include <stdio.h>

char ecuserid (s)
char *s;

DESCRIPTION
Cuserid generates a character representation of the login name of the owner
of the current process. If (int)s is zero, this representation is generated in
an internal static area, the address of which is returned. If (int)s is non­
zero, s is assumed to point to an array of at least L_cuse .. ;': characters; the
representation is left in this array. The manifest constant L_cuserid is
defined in <stdio.h>.

DIAGNOSTICS
If the login name cannot be found, cuserid returns NULL; if s is non-zero
in this case, \0 will be placed at *s.

SEE ALSO

BUGS

getiogin(3C), getpwuid(3C).

Cuserid uses getpwnam(3C); thus the results of a user's call to the latter
will be obliterated by a subsequent call to the former.
The name cuserid is rather a misnomer.

- 1 -

I

I

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt - output conversion

SYNOPSIS
cbar .ecvt (value. ndigit. decpt. sign)
double value;
int ndigit •• decpt, .sign;

cbar .fcvt (value. ndigit. decpt, sign)
double value;
int ndigit. *CIecpt, .sign;

cbar .gcvt (value, ndigit. buf)
double value;
cbar .buf;

DESCRIPTION
Eevt converts the value to a null-terminated string of ndigit ASCII digits and
returns a pointer thereto. The position of the decimal point relative to the
beginning of the string is stored indirectly through deept (negative means to
the left of the returned digits). If the sign of the result is negative, the
word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fevt is identical to eevt, except that the correct digit has been rounded for
Fortran F-format output of the number of digits specified by ",_ndigits.

Gevt converts the value to a null-terminated ASCII string in buf and returns
a pointer to buf. It attempts to produce ndigit significant digits in Fortran F
format if possible, otherwise E format, ready for printing. Trailing zeros
may be suppressed.

SEE ALSO
printf(3S).

BUGS
The return values point to static data whose content is overwritten by each
call.

- 1 -

END{3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting con­
tents. The address of elexl is the first address above the program text,
edata above the initialized data region, and end above the uninitialized data
region.

When execution begins, the program break coincides with end. but the pro­
gram break may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S», the profile (- p) option of cc(l), and so on.
Thus, the current value of the program break should be determined by
"sbrk(O)" (see brk (2».

These symbols are accessible from assembly language if it is remembered
that they should be prefixed by _.

SEE ALSO
brk(2), malloc(3C).

- 1 •

I

I

EXP(3M) EXP(3M)

NAME
exp, log, pow, sqrt - expoftential, logarithm, power, square root functions

SYNOPSIS
'i.dade < •• th.h>
double exp (x)
doable x;

deahle lOX (x)
deuhle x;

douttle pow (x, y)
doable x. y;

doable s .. rt (x)
double x;

DESCR.IPTlON
Exp returns the exponential function of x.

Log returns the natural logarithm of x.

Pow returns:?

Sqrt returns the square root of x.

SEE ALSO
intro(2), hypot(3M), sinh(3M).

DIAGNOSTICS
Exp and pow return a hU8e value when the correct value would overflow.
A truly outrageous argument may also result in errno being set to ERANGE.

Log returns a huge negative value and sets ermo to EDOM when x is non­
positive.

Pow returns a huge negative value and sets ermo to EDOM when x is non-
positive and y is not an integer, or when x and yare both zero. .

Sqrt returns 0 and sets ermo to EDOM when x is negative.

- I -

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, mush - close or ftush a stream

SYNOPSIS
'include <stdio.h>

int fclose (stream)
FILE -stream;

int Blush (stream)
FILE -stream;

DESClUPTION
Fclose causes any buffers for the named stream to be emptied, and the file
to be closed. Buffers allocated by the standard input/output system are
freed.

Fclose is performed automatically upon calling exit(2).

Fflush causes any buffered data for the named output stream to be written
to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were detected.

SEE ALSO
close(2), fopen(3S), setbuf(3S).

- 1 -

I

I

FERROR(3S) FERROR(3S)

NAME
ferror. feof. clearerr. file no - stream status inquiries

SYNOPSIS
II include <stdio.h>

int feof (stream)
FILE *stream;

int ferror (stream)
FILE *stream

c1earerr (stream)
FILE *stream

fileno(stream)
FILE *stream;

DESCRIPTION
Feof returns non-zero when end of file is read on the named input stream.
otherwise zero.

Fe"OT returns non-zero when error has occurred reading or writing the
named stream. otherwise zero. Unless cleared by cieare". the error indica­
tion lasts until the stream is closed.

creare" resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream. see
open (2).

Feof. fe"OT. and fileno are implemented as macros; they cannot be re­
declared.

SEE ALSO
open(2). fopen(3S).

- 1 -

FLOOR(3M) FLOOR(3M)

NAME
floor, fabs, ceil, fmod - absolute value, floor, ceiling, remainder functions

SYNOPSIS
include <matb.b>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Fobs returns Ix I.
Floor returns the largest integer (as a double precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the number j such that x = iy + j, for some integer i, and
o $j<y.

SEE ALSO
abs(3C).

• 1 •

I

I

FOPEN(3S) FOPEN(3S)

NAME
fopen. freopen. fdopen - open a stream

SYNOPSIS
include <stdio.lI>

FILE *fopen (file-name. type)
cllar *file-name, *type;

FILE *freopen (file-name, type, stream)
cllar *file-name, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
cllar *type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to be used to identify the stream in subsequent
operations.

Type is a character string having one of the following values:

"r"

'w"

"a"

"r+"
"w+"

open for reading

create for writing

append; open for writing at end of file, or create for wri­
ting

open for update (reading and writing)

create for update

"a +" append; open or create for update at end of file

Freopen substitutes the named file in place of the open stream. It returns
the original value of stream. The original stream is closed, regardless of
whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names stdin,
stdOllt, and stderr to specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup.
creat, or pipe(2). The type of the stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening/seek or rewind, and input may not be directly
followed by output without an intervening/seek, rewind. or an input opera­
tion which encounters end of file.

SEE ALSO
open(2). fclose(3S).

DIAGNOSTICS
Fopen and/reopen return the pointer NULL if file-name cannot be accessed.

- 1 -

FPTRAP(3X) (PDP-II only) FPTRAP(3X)

NAME
fptrap - floating point interpreter

SYNOPSIS
sys signal; 4; (ptrap

DESCRIPTION

FILES

Fptrap is a simulator of the 11/45 FP11-B floating point unit. It works by
intercepting illegal instruction traps and decoding and executing the floating
point operation codes.

Fp,rap is not supported under the UNIX 3.0 system; it is included only to
case conversion to other machines.

There is a fake routine in /lib/libc.a with this name; when simulation is
desired, the real version should be put in /lib/libc.a.

SEE ALSO
cc(l) (-(option), signal(2).

DIAGNOSTICS
A breakpoint trap is given when a real illegal instruction trap occurs.

BUGS
Rounding mode is not interpreted. It's slow.

- 1 -

I

I

FREAD(3S) FREAD(3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
include <stdio.h>

int fread «char .) ptr, sizeof (.ptr), nitems, strea-m)
FILE *stream;

int fwrite «char .) ptr, sizeof (.ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of .ptr
from the named input stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to
the named output stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S),
printf(3S), scanf(3S).

- 1 -

FREXP{3C) FREXP{3C)

NAME
frexp, Idexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp (,alue, eptr)
double ,alue;
int eeptr;

double ldexp (,alue, exp)
double ,alue;

double modf (,alue, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of
magnitude less than 1 and stores an integer n such that value = x*2 .. n
indirectly through eptr.

Ldexp returns the quantity value*2**exp.

Mod! returns the positive fractional part of value and stores the integer part
indirectly through iptr.

- 1 -

I

I

FSEEK(3S) FSEBK(3S)

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
"inelude <stdio.b>
int (seek (stream, otrset, ,trn.me)
FILE *stre.m;
long oft'set;
iat ,trname;

long ftell (stream)
FILE *stre.m;
rewind(stre.m)
FILE .. tream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning,
the current position, or the end of the file, according as ptmalM has the
value 0, I, or 2.

Fseek undoes any effects of ungetc(3S).

After fseek or rewind, the next operation on an update file may be either
input or output.

Ftell returns the current value of the offset relative to the beginning of the
file associated with the named stream. The offset is measured in bytes on
UNIX 3.0 and UNIX/RT; on some other systems, it is a magic cookie and is
the only foolproof way to obtain an offset for fseek.

Rewind(stream) is equivalent to fseek (stream , OL, 0).

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero.

- I -

GAMMA(3M) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
,incillde <matb.b>
extern int signgam;

double gamma (x)
double x;

DESCRIPTION
Gamma returns inlnlxl)1. The sign of nlxl) is returned in tbe external
integer signgam. The following C program fragment might be used to cal­
culate r:

DIAGNOSTICS

y = gamma (x);
if (y > 88.0)

error ();
y = exp (y) • signgam;

For negative integer arguments. a huge value is returned. and ermo is set
to EDOM.

- 1 -

I

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may
therefore be used as an argument. Fgetc runs more slowly than getc, but
takes less space per invocation.

Getw returns the next word from the named input stream. It returns the
constant EOF upon end of file or error, but since that is a valid integer
value, jeof and jerror(3S) should be used to check the success of getw.
Getw assumes no special alignment in the file.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

BUGS

These functions return the integer constant EOF at end of file or upon read
error.

A stop with message "Reading bad file" means that an attempt has been
made to read from a stream that has not been opened for reading by fopen.

Getc and its variant getchar return EOF or, end of file; this is wiser than,
but incompatible with, the older getchar(3S).
Because it is implemented as a macro, getc treats incorrectly a stream
argument with side effects. In particular, getc(*f+ +); doesn't work sensi­
bly.

- 1 -

GETENV(3C)

NAME
getenv - value for environment name

SYNOPSIS
char -getenv (name)
char -name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ(7» for a string of the
form name = value and returns value if such a string is present. otherwise 0
(NULL).

SEE ALSO
environ(7).

- 1 -

I

I

GETGRENT(3C) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
I include <grp.h>

struct group -getgrent ();.

struct group -getgrgid (gid)
int gid;

struct group -getgrnam (name)
char -name;

int setgrent ();

iot eodgrent ();

DESCRIPTION

fILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the
following structure containing the broken-out fields of a line in the group
file.

struct group {

};

char ·gr_name;
char "'gr-passwd;
int gr-&id;
char ··gr_mem;

The members of this structure are:
gcname The name of the group.
gcpasswd The encrypted password of the group.
gr,..gid The numerical group lD.
gr_mem Null-terminated vector of pointers to the individual

member names.

Getgrent reads the next line of the file, so successive calls may be used to
search the entire file. Getgrgid and getgrnam search from the beginning of
the file until a matching gid or name is found, or EOF is encountered.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is
complete.

/etc/group

SEE ALSO
getiogin(3C), getpwent(3C), group(5).

DIAGNOSTICS

BUGS

A null pointer (0) is returned on EOF or error.

All information is contained in a static area so it must be copied if it is to
be saved.

- 1 -

GETLOGIN(3C) GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION

FILES

Get/ogin returns a pointer to the login name as found in /etc/utmp. It may
be used in conjunction with getpwnam to locate the correct password file
entry when the same user ID is shared by several login names.

If get/ogin is called within a process that is not attached to a typewriter, it
returns NULL. The correct procedure for determining tlte login name is to
call cuserid, or to call get/ogin and if it fails, to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(5).

DIAGNOSTICS

BUGS

Returns NULL if name not found.

The return values point to static data whose content is overwritten by each
call.

- 1 -

I

I

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argv

SYNOPSIS
int getopt (argc, argy, optstring)
int argc;
char ... rgy;
char *Optstring;
extern char *Optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in
optstring. Optstring is a string of recognized option letters; if a letter is fol­
lowed by a colon, the option is expected to have an argument that mayor
may not be separated from it by white space. Optarg is set to point to the
start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed.
Because optind is external, it is normally initialized to zero automatically
before the first call to getopt.

When all options have been processed (i.e., up to the first non-option
argument), getopt returns EOF. The special option - - may be used to
delimit the end of the options; EOF will be returned, and - - will be skip­
ped.

DIAGNOSTICS
Getopt prints an error message on stde" and returns a question mark (1)
when it encounters an option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and b, and
the options f and 0, both of which require arguments:

main (argc, argv)
int argc;
char **Iirgv;
{

int c;
extern int optind;
extern char *optarg;

while «c = getopt (argc, argv, "abf:o:"» != EOF)
switch (c) {
case 'a':

if (bftg)
errftg++;

else
aftg++;

break;
case 'h':

if (aftg)
errftg++;

else

break;
case 'f:

bprocO;

ifile = optarg;

- I -

GETOPT(3C)

case '0':
break;

ofile = optarg;
bufsiza = 512;
break;

case ''!':
errftg++;

}
if (errftg) {

I

fprintf (stderr. "usage: ... ");
exit (2);

for(; optind < argc; optind + +) {
if (access (argv[optind). 4» {

- 2 -

GETOPT(3C)

I

I

GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char .prompt;

DESCRIPTION

GETPASS(3C)

Getpass reads a password from the file Idef Itty, or if that cannot be
opened, from the standard input, after prompting with the null-terminated
string prompt and disabling echoing. A pointer is returned to a null­
terminated string of at most 8 characters.

FILES
Idev/tty

SEE ALSO
crypt(3C).

BUGS
The return value points to static data whose content is overwritten by each
call.

- 1 -

GETPW(3C)

NAME
getpw - get name from UlD

SYNOPSIS
getpw (uid, bur)
iDt uid;
char .bur;

DESCRIPTION

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in bul
with the corresponding line; it returns non-zero if uid could not be found.
The line is null-terminated.

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO
getpwent(3C), passwd(S).

DIAGNOSTICS
Non-zero return on error.

- 1 -

I

I

G ETPWENT (3C) GETPWENT (3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file
entry

SYNOPSIS
I include <pwd.h>

struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd -getpwnam (name)
char -name;

int setpwent ();

int endpwent ();

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each returns a pointer to an object with
the following structure containing the broken-out fields of a line in the
password file.

struct passwd {
char *pw _name;
char *pw-passwd;
int pw_uid;
int pW-8id;
char *pw _age;
char *pw_comment;
char *pw-8ecos;
char *pw _dir;
char *pw_shell;

};

The PW30mment field is unused; the others have meanings described in
passwd(5).

Getpwent reads the next line in the file, so successive calls can be used to
search the entire file. Getpwuid and getpwnam search from the beginning of
the file until a matching uid or name is found, or EOF is encountered.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file when
processing is complete.

/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(5).

DIAGNOSTICS

BUGS

Null pointer (0) returned on EOF or error.

All information is contained in a static area so it must be copied if it is to
be saved.

- I -

GETS(3S) GETS(3S)

NAME
gets. fgets - get a string from a stream

SYNOPSIS
II include <stdio.h>

char .gets (s)
char .s;

char .fgets (s, n, stream)
char .s;
int n;
FILE .stream;

DESClUPTION
Gets reads a string into s from the standard input stream stdin. The string
is terminated by a new-line character, which is replaced in s by a null
character. Gets returns its argument.

Fgets reads n -} characters, or up to a new-line character (which is
retained), whichever comes first, from the stream into the string s. The
last character read into s is followed by a null character. Fgets returns its
first argument.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Gels and /gets return the constant pointer NULL upon end-of-file or error.

NOTE
Gets deletes the new-line ending its input, but/gets keeps it.

- 1 -

I

I

HYPOT(3M)

NAME
hypot - Euclidean distance

SYNOPSIS
include <math.h>

double hypot (x, y)
double x, y; .

DESCRIPTION
Hypot returns

sqrt(x*x + y*y),

taking precautions against unwarranted overflows.

SEE AlSO
sqrt(3M).

- 1 -

HYPOT(3M)

L3TOL(3C) L3TOL(3C)

NAME
13tol, lto13 - convert between 3-byte integers and long integers

SYNOPSIS
13tol (Ip, cp, n)
long .Ip;
char ~p;
int n;

ltol3 (cp, Ip, n)
char ~p;
long .Ip;
int n;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by /p.

Llo13 performs the reverse conversion from long integers (/p) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(5).

- 1 -

I

LOGNAME(3X)

NAME
logname - login name of user

SYNOPSIS
char .Iogname();

DESCRIPTION

LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it extracts the
SLOG NAME variable from the user's environment.

This routine is kept in /lib/libPW.a.

FILES
fete/profile

SEE ALSO
env(l), login (I), profile(5), environ(7).

- 1 -

LSEARCH (3C) LSEARCH (3C)

NAME
lsearch - linear search and update

SYNOPSIS
char .lsearch (key, base, nelp, width, compar)
char .key;
char .base;
int .nelp;
int width;
int (~ompar)();

DESCRIPTION

BUGS

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm
Q. It returns a pointer into a table indicating the location at which a datum
may be found. If the item does not occur, it is added at the end of the
table. The first argument is a pointer to the datum to be located in the
table. The second argument is a pointer to the base of the table. The third
is the address of an integer containing the number of items in the table. It
is incremented if the item is added to the table. The fourth is the width of
an element in bytes. The last is the name of the comparison routine. It is
called with two arguments which are pointers to the elements being com­
pared. The routine must return zero if the items are equal and non-zero
otherwise.

Unpredictable events can occur if there is not enough room in the table to
add a new item.

SEE ALSO
bsearch (3C), qsort(3C).

- I -

I

I

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char .malloe (size) UDsi&Ded size;

free (ptr)
char .ptr;

char .realloe (ptr, size)
char .ptr;
uDsigDed size;

char *Calloe (Delem, elsize)
UDsi&Ded elem, elsize;

DESCRIPTION
MaJJoe and free provide a simple general-purpose memory allocation pack­
age. MaJJoe returns a pointer to a block of at least size bytes beginning on
a word boundary.

The argument to free is a pointer to a block previously allocated by maJJoe;
this space is made available for further allocation, but its contents are left
undisturbed.

Needless to say, grave disorder will result if the space assigned by maJJoe is
overrun or if some random number is handed tofree.

MaJJoe allocates the first big enough contiguous reach of free space found
in a circular search from the last block allocated or freed, coalescing adja­
cent free blocks as it searches. It calls sbrk (see brk(2» to get more
memory from the system when there is no suitable space already free.

ReaJJoe changes the size of the block pointed to by pIT to siz~ bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

ReaJJoe also works if ptr points to a block freed since the last call of maJJoe,
reaJJoe, or caJJoc; thus sequences of free, maJJoe and reaJJoe can exploit the
search strategy of maJJoe to do storage compaction.

CaJJoe allocates space for an array of neJem elements of size ewe. The
space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
MaJJoe, realloe and caJJoe return a null pointer (0) if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. When reaJJoe returns 0, the block pointed to by ptr may
be destroyed.

- I -

MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char .mktemp (template)
char .template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces template by a unique file name, and returns the address of
the template. The template should look like a file name with six trailing
Xs, which will be replaced with a letter and the current process 10. The let­
ter will be chosen so that the resulting name does not duplicate an existing
file.

SEE ALSO
getpid(2).

BUGS
It is possible to run out of letters.

- 1 -

I

I

MONITOR(3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
monitor (Iowpc, high pc, buffer, bufsize, nfune)
int (*Iowpe)(), (*highpc)();
short buffer!);
int bufsize, nfunc;

DESCRIPTION

FILES

An executable program created by cc -p automatically includes calls for
monitor with default parameters; monitor needn't be called explicitly except
to gain fine control over profiling.

Monitor is an interface to profi/(2). Lowpc and highpc are the addresses of
two functions; buffer is the address of a (user supplied) array of bufsize
short integers. Monitor arranges to record a histogram of periodically sam­
pled values of the program counter, and of counts of calls of certain func­
tions, in the buffer. The lowest address sampled is that of lowpc and the
highest is just below highpc. At most nfunc call counts can be kept; only
calls of functions compiled with the profiling option - p of cc(I) are recor­
ded. For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etextO;

monitor(2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end(3C).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O);

prof(1) can then be used to examine the results.

mon.out

SEE ALSO
ce(I). prof(1). profil(2).

- 1 -

NLlST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
include <a.out.h>
nlist (file-name, nl)
char -file-name;
struct nlist nil);

DESCRIPTION
Nlist examines the name list in the given executable output file and selec­
tively extracts a list of values. The name list consists of an array of struc­
tures containing names, types and values. The list is terminated with a null
name. Each name is looked up in the name list of the file. If the name is
found, the type and value of the name are inserted in the next two fields.
If the name is not found, both entries are set to O. See a.out(5) for a dis­
cussion of the symbol table structure.

This subroutine is useful for examining the system name list kept in the
file lunix. In this way programs can obtain system addresses that are up to
date.

SEE ALSO
a.out(5).

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid
namelist.

- 1 -

PERROR(3C) PERROR(3C)

NAME
perror, sys_errlist, sys_nerr, errno - system error messages

SYNOPSIS
perror (s)
char *s;

int sys_nerr;
char *sys_errlist[);

int err no;

DESCRIPTION
Pe"OT' produces a short error message on the standard error, describing the
last error encountered during a system call from a C program. First the
argument string s is printed, then a colon, then the message and a new­
line. To be of most use, the argument string should be the name of the
program that incurred the error. The error number is taken from the
external variable e"no, which is set when errors occur but not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings
sys_e"list is provided; e"no can be used as an index in this table to get the
message string without the new-line. Sys_ne" is the largest message num­
ber provided for in the table; it should be checked because new error codes
may be added to the system before they are added to the table.

SEE ALSO
intro(2).

- 1 -

PLOT(3X) PLOT(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char .s;

line (xl, yl, x2, y2)

circle (x, y, r)

arc (x, y, xO, yO, xl,

move (x, y)

cont (x, y)

point (x, y)

linemod (s)
char .s;

space (xO, yO, xl, yl)

closepl ()

DESCRIPTION

FILES

These subroutines generate graphic output in a relatively device­
independent manner. See plot(5) for a description of their effect. Openpl
must be used before any of the others to open the device for writing.
Closep/ flushes the output.

String arguments to label and linemod are terminated by nulls and do not
contain new-lines.

The library files listed below provide several flavors of these routines.

lusr llib/libplot.a
lusr/lib/lib300.a
lusr Ilib/lib300s.a
lusr/lib/lib450.a
lusr Ilib/lib4014.a

produces output for tplot(l G) filters
for DASI 300
for DASI 300s
for DASI 450
for Tektronix 4014

SEE ALSO
graph(lG), tplot(lG). plot(5).

- 1 -

I

I

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate I/O to/from a process

SYNOPSIS
IJ include <stdio.h>

FILE .popen (command, type)
char *Command, .type;

int pclose (stream)
FILE .stream;

DESCRIPTION
The arguments to po pen are pointers to null-terminated strings containing,
respectively, a shell command line and an I/O mode, either r for reading or
" for writing. Popen creates a pipe between the calling process and the
command to be executed. The value returned is a stream pointer that can
be used (as appropriate) to write to the standard input of the command or
read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the command.

Because open files are shared. a type r command may be used as an input
filter, and a type" as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S). system(3S).

DIAGNOSTICS

BUGS

Po pen returns a null pointer if files or processes cannot be created, or if the
shell cannot be accessed.

PcJose returns -1 if stream is not associated with a "popen ed" command.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing. e.g. withfllush; seejcJose(3S).

- I -

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - output formatters

SYNOPSIS * include <stdio.h>
int printf (format [, arg] ...)
char -format;

int fprintf (stream, format [, arg] ...)
FILE -stream;
char -format;

int sprintf (s, format [, arg] ...
char -s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places
output on the named output stream. Sprintf places "output", followed by
the null character (\0) in consecutive bytes starting at *s; it is the user's
responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the
case of sprint/), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control
of the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied to the output stream, and
conversion specifications, each of which results in fetching of zero or more
args. The results are undefined if there are insufficient args for the format.
If the format is exhausted while a'ls remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %. After the
%, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag (see
below) has been given) to the field width;

A precision that gives the minimum number of digits to appear for
the d, 0, u, x, or X conversions, the number of digits to appear
after the decimal point for the e and f conversions, the maximum
number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by a decimal
digit string: a null digit string is treated as zero.

An optional I specifying that a following d, 0, u, x, or X conversion
character applies to a long integer argo

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (-) instead of a
digit string. In this case, an integer arg supplies the field width or pre­
cision. The arg that is actually converted is not fetched until the conver­
sion letter is seen, so the args specifying field width or precision must
appear before the a'l (if any) to be converted.

The flag characters and their meanings are:

- 1 -

I

I

PRINTF(3S)

+

blank

,

PRINTF(3S)

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign
(+or-).
If the first character of a signed conversion is not a sign, a blank
will be prepended to the result. This implies that if the blank
and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alter­
nate form." For c, d,s, and u conversions, the flag has no
effect. For ° conversion, it increases the precision to force the
first digit of the result to be a zero. For x (X) conversion, a
non-zero result will have Ox (OX) prepended to it. For e, E, f,
g, and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal,
decimal, or hexadecimal notation (x and X), respectively; the
letters abalef are used for x conversion and the letters ABCDEF
for X conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be represen­
ted in fewer digits, it will be expanded with leading zeroes. The
default precision is 1. The result of converting a zero value with
a precision of zero is a null string (unless the conversion is 0, x,
or X and the' flag is present).

f The float or double arg is converted to decimal notation in the
style "[-]ddd.ddd", where the number of digits after the
decimal point is equal to the precision specification. If the pre­
cision is missing, 6 digits are output; if the precision is explicitly
O. no decimal point appears.

e.E The float or double arg is converted in the style
"[-]d.ddde±dd". where there is one digit before the decimal
point and the number of digits after it is equal to the precision;
when the precision is missing, 6 digits are produced; if the pre­
cision is zero, no decimal point appears. The E format code will
produce a number with E instead of e introducing the exponent.
The exponent always contains exactly two digits.

g,G The float or double arg is printed in style for e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent resul­
ting from the conversion is less than -4 or greater than the pre­
cision. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

C The character arg is printed.
5 The arg is taken to be a string (character pointer) and characters

from the string are printed until a null character (\0) is encoun­
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing. it is taken to
be infinite, so all characters up to the first null character are
printed.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a· conversion is wider than the field width, the field is

- 2 -

PRINTF(3S) PRINTF(3S)

simply expanded to contain the conversion result. Characters generated by
printf and/printf are printed as if putchar had been called (see putc(3S)).

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where week­
day and month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour,
min);

To print 11" to 5 decimal places:

printf("pi = %.sr, 4*litan(l.0»;

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

- 3 -

I

I

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS * include <stdio.h>
int pute (e, stream)
char e;
FILE *stream;

putehar (c)

fpute (e, stream)
FILE *stream;

putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
Pute appends the character c to the named output stream. It returns the
character written.

Putehar(c) is defined as putc(e, stdout).

Fpute behaves like pute, but is a genuine function rather than a macro; it
may therefore be used as an argument. Fpute runs more slowly than pute,
but takes less space per invocation.

Putw appends the word (i.e., integer) w to the output stream. Putw neither
assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output
does not refer to a terminal; this default may be changed by setbuj(3S).
The standard stream sIde" is by default unbuffered unconditionally, but
use of jreopen(3S) will cause it to become unbuffered; setbuj, again, will set
the state to whatever is desired. When an output stream is unbuffered
information appears on the destination file or terminal as soon as written;
when it is buffered many characters are saved up and written as a block.
See also fflush (3S).

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), getc(3S), printf(3S), puts(3S).

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good
integer,je"or(3S) should be used to detect putw errors.

Because it is implemented as a macro, pute treats incorrectly a stream
argument with side effects. In particular, pute(e, *f + +); doesli't work
sensibly.

- 1 -

PUTPWENT (3C) PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
II include <pwd.h>

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd struc­
ture created by getpwent (or getpwuid(3C) or getpwnam(3C», putpwuid wri­
tes a line on the stream! which matches the format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation,
otherwise zero.

- I -

I

I

PUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
II include <stdio.h>

int puts (s)
char .s;

int (puts (s, stream)
char .s;
FILE .stream;

DESCRIPTION

PUTS(3S)

Puts copies the null-terminated string s to the standard output stream stdout
and appends a new-line character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminating null character.

DIAGNOSTICS
Both routines return EOF on error.

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), gets(3S). printf(3S). putc(3S).

NOTES
Puts appends a new-line. fputs does not.

- I -

QSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
qsort (base, nel, width, compar)
char .base;
int nel, width;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first
argument is a pointer to the base of the data; the second is the number of
elements; the third is the width of an element in bytes; the last is the name
of the comparison routine. It is called with two arguments which are poin­
ters to the elements being compared. The routine must return an integer
less than, equal to, or greater than 0 according as the first argument is to be
considered less than, equal to, or greater than the second.

SEE AU»O
sort(l), bsearch(3C), Isearch(3C), strcmp(3C).

- 1 -

I

I

RAND(3C) RAND(3C)

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
unsigned seed;

rand ()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with
period 232 to return successive pseudo-random numbers in the range from
o to 215 _1.

The generator is reinitialized by calling sTand with 1 as argument. It can be
set to a random starting point by calling sTand with whatever you like as
argument.

- 1 -

REGEX(3X) REG EX (3X)

NAME
regex, regcmp - regular expression compile/execute

SYNOPSIS
char .regcmp(stringl(,stringl, •••],0);
char .string!, .stringl, .•• ;

char .regex(re,subject(,retO, ••. J);
char .re, .subject, .retO, •.• ;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled
form. Ma/loe(3C) is used to create space for the vector. It is the user's
responsibility to free unneeded space so allocated. A zero return from
regcmp indicates an incorrect argument. Regcmp(l) has been written to
generally preclude the need for this routine at execution time.
Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regex returns zero on failure
or a pointer to the next unmatched character on success. A global charac­
ter pointer _Ioel points to where the match began. Regcmp and regex were
mostly borrowed from the editor, ed(l) however, the syntax and semantics
have been changed slightly. The following are the valid symbols and their
associated meanings.

[I *. - These symbols retain their current meaning.

S Matches the end of the string, \n matches the new-line.

Within brackets the minus means through. For example, [a-z]
is equivalent to I abed ••• xyz]. The - can appear as itself only if
used as the last or first character. For example, the character
class expression [J - J matches the characters J and -.

+ A regular expression followed by + means one or more times.
For example, [0-9)+ is equivalent to (0-9](0-9) •.

1m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. m is the minimum
number and u is a number, less than 256, which is the max­
imum. If only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be applied. {m,} is
analogous to {m,infinity}. The plus (+) and star (.) operations
are equivalent to {I,} and {O,} respectively.

(•••)$n The value of the enclosed regular expression is to be returned.
The value will be stored in the (n + I) th argument following the
subject argument. At present, at most ten enclosed regular
expressions are allowed. Regex makes its assignments uncondi­
tionally.

(•••) Parentheses are used for grouping. An operator, e.g. ., +, (J,
can work on a single character or a regular expression enclosed in
parenthesis. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, there­
fore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *Cursor, *newcursor, *ptr;

newcursor = regex«ptr=regcmp(W-\n".O»,cursor);

- I -

I

I

REGEX(3X) REGEX(3X)

free(ptr);

This example will match a leading new-line in the subject string pointed at
by cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zO-9.JIO,7})SO·,O);
newcursor = regex(name, "123Testing321 ",retO);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (cursor+ II). The
string "Testing3" will be copied to the character array retO.

Example 3:
{; include "file.i"
char *string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in file.i (see
regcmp (1 » against string.

This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(l), regcmp(l), free(3C), malloc(3C).

The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required. The following user-supplied
replacement for ma//oc(3C) re-uses the same vector saving time and space:

/* user's program */

malloc(n) I
static int rebuf[256];

return &rebuf;

- 2 -

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
include <stdio.h>

scanf (format [, pointer] ...)
char -format;

fscanf (stream, format [, pointer]
FILE -stream;
char -format;

sscanf (5, format [, pointer] ...)
char -5, .format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each func­
tion reads characters, interprets them according to a format, and stores the
results in its arguments. Each expects, as arguments, a control string for­
mat described below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. Blanks, tabs, or new-lines, which cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character ., an optional numerical maximum
field width, and a conversion character.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding
argument, unless assignment suppression was indicated by -. An input
field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. The
following conversion characters are legal:

% a single % is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should
be an integer pointer.

o an octal integer is expected; the corresponding argument should be
an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s a character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a space
character or a new-line.

c: a character is expected; the corresponding argument should be a
character pointer. The normal skip over space characters is
suppressed in this case; to read the next non-space character, use

- I -

I

I

SCANF(3S) SCANF(3S)

%1s. If a field width is given, the corresponding argument should
refer to a character array; the indicated number of characters is
read.

e,f a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to afloat. The input format for floating point
numbers is an optionally signed string of digits, possibly containing
a decimal point, followed by an optional exponent field consisting
of an E or an e, followed by an optionally signed integer.
indicates a string that is not to be delimited by space characters.
The left bracket is followed by a set of characters and a right
bracket; the characters between the brackets define a set of charac­
ters making up the string. If the first character is not a circumflex
(-), the input field consists of all characters up to the first charac­
ter that is not in the set between the brackets; if the first character
after the left bracket is a -, the input field consists of all characters
up to the first character that is in the set of the remaining charac­
ters between the brackets. The corresponding argument must point
to a character array.

The conversion characters d, 0, and x may be capitalized and/or preceded
by I to indicate that a pointer to long rather than to int is in the argument
list. Similarly. the conversion characters e and r may be capitalized and/or
preceded by I to indicate that a pointer to double rather than to lIoat is in
the argument list. The character h will, some time in the future, indicate
short data items.

Scan! conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter case,
the offending character is left unread in the input stream.

Scan! returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between an
input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLFS
The call:

int i; float x; char name[50);
scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to i the value 25, to x the value 5.432, and name will contain
tbompson\O. Or:

int i; float x; char name[50];
scanf ("%2d%f%*<I%[l234567890]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i. 789.0 to x, skip 0123, and place the string 56\0 in name.
The next call to getchar (see getc(3S» will return a.

SEE ALSO

NOTE

atof(3C), getc(3S), printf(3S).

Trailing white space (including a new-line) is left unread unless matched in
the control string.

- 2 -

SCANF(3S) SCANF(3S)

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for missing
or illegal data items.

The success of literal matches and suppressed assignments is not directly
determinable.

- 3 -

I

I

SETBUF(3S) SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNOPSIS
'include <stdio.h>
setbuf (stream, buf)
FILE -stream;
char -buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or writ­
ten. It causes the character array buf to be used instead of an automatically
allocated buffer. If buf is the constant pointer NULL, input/output will be
completely unbuffered.

A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ);

A buffer is normally obtainecl from ma//oc(3C) upon the first getc or
putc(3S) on the file, except that output streams directed to terminals, and
the standard error stream stiJe" are normally not buffered.

A common source of error is allocation of buffer space as an "automatic"
variable in a code block, and then failing to close the stream in the same
block.

SEE ALSO
fopen(3S); getc(3S), malloc(3C), putc(3S).

- 1 -

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
'include <setjmp.b>

int setjmp (en,)
jmp_bur en,;

longjmp (en" ,.1)
jmp_bur en,;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by Jongjmp. It
returns value o.
Longjmp restores the environment saved by the last call of setjmp. It then
returns in such a way that execution continues as if the call of setjmp had
just returned the value val to the corresponding call to setjmp, which must
not itself have returned in the interim. Longjmp cannot return the value O.
If longjmp is invoked with a second argument of 0, it will return 1. All
accessible data have values as of the time /ongjmp was called.

SEE ALSO
signal(2).

- 1 -

I

I

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
'include <matb.b>

double sinb (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real
arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct
value would overflow.

- 1 -

SLEEP(3C) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be less than
that requested for two reasons: (I) Because scheduled wakeups occur at
fixed I-second intervals, and (2) because any caught signal will terminate
the sleep foJlowing e:-ecution of that signal's catching routine. Also, the
suspension time may be longer than requested by an arbitrary amount due
to the scheduling of other activity in the system. The value returned by
sleep wiII be the "unslept" amount (the requested time minus the time
actuaJly slept) in case the caJler had an alarm set to go off earlier than the
end of the requested sleep time, or premature arousal due to another
caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
before calling sleep; if the sleep time exceeds the time till such alarm signal,
the process sleeps only until the alarm signal would have occurred, and the
caJler's alarm catch routine is executed just before the sleep routine returns,
but if the sleep time is less than the time till such alarm, the prior alarm
time is reset to go off at the same time it would have without the interven­
ing sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

- 1 -

I

SSIGNAL (3C) SSIGNAL(3C)

NAME
ssignal. gsignal - software signals

SYNOPSIS
I include <signal.h>

int (.ssignal (sig, action»(
int sig, (.action)();

int gsignal (sig)
int sig;

DESCRIPTION

NOTES

Ssignal and gsignal implement a software facility similar to signaJ(2). This
facility is used by the Standard C Library to enable the user to indicate the
disposition of error conditions, and is also made available to the user for
his own purposes.

Software signals made available to users are associated with integers in the
inclusive range I through 15. An action for a software signal is established
by a call to ssignal. and a software signal is raised by a call to gsignaJ.
Raising a software signal causes the action established for that signal to be
taken.

The first argument to ssignaJ is a number identifying the type of signal for
which an act jon is to be established. The second argument defines the
action; it is either the name of a (user defined) action/unction or one of the
manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssigna/ returns
the action previously established for that signal type; if no action has been
established or the signal number is illegal. ssigna/ returns SIG_DFL.

GsignaJ raises the signal identified by its argument. sig:

If an action function has been established for sig. then that action is
reset to SIG_DFL and the action function is entered with argument
sig. GsignaJ returns the value returned to it by the action function.

If the action for sig is SIG_IGN. gsignaJ returns the value I and takes
no other action.

If the action for sig is SIG_DFL. gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig. gsig­
nal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1
through 15 which are used by the Standard C Library to indicate error con­
ditions. Thus. some signal numbers outside the range I through 15 are
legal. although their use may interfere with the operation of the Standard C
Library.

- 1 -

STDIO{3S) STDIO{3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
'include <stdio.h>
FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual consti­
tute an efficient, user-level I/O buffering scheme. The in-line macros
gete(3S) and pute(3S) handle characters quickly. The macros getchar,
putehar, and the higher-level routines fgete, fgets, fprintf, fputc, fputs ,fread,
fseanf, fwrite, gets, getw, printf, puts, putw, and seanf all use getc and pute;
they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen(3S) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. Normally, there are 3 open streams with constant pointers
declared in the "include" file and associated with the standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file.

A constant "pointer" NULL (0) designates the null stream.

An integer constant EOF (-I) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual descrip­
tions for details).

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows:

;; include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of
this manual are declared in that "include" file and need no further declara­
tion. The constants and the following "functions" are implemented as
macros (redeclaration of these names is perilous): getc, getelulr, pule,
putehar, feof, ferror, and ftleno.

SEE ALSO
open(2), close(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S),
printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system (3S),
tmpnam(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible
error conditions.

- 1 -

I

I

STRING (3C) STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
char .strcat (51, 51)
char .51, .51;

char .strncat (51, 51, n)
char .51, .51;
int n;

int strcmp (51, 51)
char .51, .51;

iDt strDcmp (51, 51, D)
char .51, .51;
iDt D;

char .strcpy (51, 51)
char .51, .51;

char .strDcpy (51, 51, D)
char .51, .51;
iDt D;

int strleD (5)
char .5;

char .strchr (5, c)
char .5, c;

char .strrchr (5, c)
char .5, c;

char .strpbrk (51, 51)
char .51, .51;

iDt strspD (51, 51)
char .51, .51;

iDt StrcSPD (51, 51)
char .51, .51;

char -strtok (51, 51)
char .51, .51;

OESCRlmON
These functions operate on null-terminated strings. They do not check for
overflow of any receiving string.

Slrcol appends a copy of string s2 to the end of string sl. Slmcol copies at
most n characters. Both return a pointer to the null-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal
to, or less than 0, according as sl is lexicographically greater than, equal to,
or less than s2. Strncmp makes the same comparison but looks at at most
n characters.

Strcpy copies string s2 to sl, stopping after the null character has been
moved. Strncpy copies exactly n characters, truncating or null-padding s2;
the target may not be null-terminated if the length of s2 is n or more.
Both return sl .

Str/en returns the number of non-null characters in s.

- I -

STRING(3C) STRING (3C)

BUGS

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c
in string s, or NULL if c does not occur in the string. The null character
terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any character
from string s2, or NULL if no character from s2 exists in sJ .

Strspn (strcspn) returns the length of the initial segment of string sl which
consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer sl specified) returns a pointer to the
first chan'cter of the first token, and will have written a NULL chara("ter
into sl immediately following the returned token. Subsequent calls with
zero for the first argument, will work through the string sl in this way until
no tokens remain. The separator string s2 may be different from call to
call. When no token remains in sl , a NULL is returned.

Strcmp uses native character comparison, which is signed on PDP-lis,
unsigned on other machines.

All string movement is performed character by character starting at the left.
Thus overlapping moves toward the left will work as expected, but overlap­
ping moves to the right may yield surprises.

- 2 -

I

I

SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
char .from, .to;
int nbytes;

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pointed to by from to the position pointed to by
to, exchanging adjacent even and odd bytes. It is useful for carrying binary
data between PDP-lIs and other machines. Nbytes should be even.

- I -

SYSTEM (3S)

NAME
system - issue a shell command

SYNOPSIS
(j include <stdio.b>

int system (string)
char .string;

DESCRIPTION

SYSTEM (3S)

System causes the string to be given to sh (1) as input as if the string had
been typed as a command at a terminal. The current process waits until the
shell has completed, then returns the exit status of the shell.

SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System stops if it can't execute sh (1).

- 1 -

I

TMPfILE(3S) TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
'include <stdio.b>

FILE .tmpfile ()

DESCIUPTION
TmpjiJe creates a temporary file and returns a corresponding FILE pointer.
Arrangements are made so that the file will automatically be deleted when
the process using it terminates. The file is opened for update.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S).

- I -

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam - create a name for a temporary file

SYNOPSIS
(I include <stdio.h>

char *tmpnam (s)
char *s;

DESCRIPTION
Tmpnam generates a file name that can safely be used for a temporary file.
H (int)s is zero, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the
contents of the area. If (int)s is nonzero, s is assumed to be the address of
an array of at least L_tmpnam bytes; tmpnam places its result in that array
and returns s as its value.

Tmpnam generates a different file name each time it is called.

Files created using tmpnam and either Jopen or creat are only temporary in
the sense that they reside in a directory intended for temporary use, and
their names are unique. It is the user's responsibility to use unlink (2) to
remove the file when its use is ended.

SEE ALSO

BUG~

creat(2), unlink(2), fopen(3S), mktemp(3C).

If called more than 17,576 times in a single process, tmpnam will start recy­
cling previously used names.
Between the time a file name is created and the file is opened, it is possible
for some other process to create a file with the same name. This can never
happen if that other process is using tmpnam or mktemp, and the file names
are chosen so as to render duplication by other means unlikely.

- 1 -

I

I

TRIG(3M) TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
linclude <matb.b>

double sin (x)
double x;

double cos (x)
double x;

double asin (x)
double x;

double acos (x)
double X;

double atan (x)
double x;

double atanl (y, x)
double x, y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The
magnitude of the argument should be checked by the caller to make sure
the result is meaningful.

Asin returns the arc sin in the range -11'"/2 to 11'"/2.

Acos returns the arc cosine in the range 0 to 11'".

Atan returns the arc tangent of x in the range -11'"/2 to 11'"/2.

Alan2 returns the arc tangent of y /x in the range -11'" to 11'".

DIAGNOSTICS
Arguments of magnitude greater than I cause asin and acos to return value
o.

- 1 -

TIYNAME(3C) lTYNAME(3C)

NAME
ttyname. isatty - find name of a terminal

SYNOPSIS
char .Uyname (tildes)

int isatty (tildes)

DESCRIPTION

FILES

Ttyname returns a pointer to the null-terminated path name of the terminal
device associated with file descriptor fiIdes.

/satty returns 1 if fi/des is associated with a terminal device. 0 otherwise.

Idev/*
DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if fiIdes does not describe a terminal
device in directory Ide,.

The return value points to static data whose content is overwritten by each
call.

- I -

I

I

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
I include <stdio.b>

int ungetc (c, stream)
cbar c;
FILE estream;

DESCRIPTION
Ungetc pushes the character c back on an input stream. That character will
be returned by the next getc call on that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered. Attempts to push
EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungelc returns EOF if it can't push a character back.

- I -

INTRO(4) INTRO(")

NAME
intro - introduction to special files

DESCRIPTION

BUGS

This section describes various special files that refer to specific DEC peri­
pherals and UNIX device driven. The names of the entries are generally
derived from DEC names for the hardware, as opposed to the names of the
special files themselves. Characteristics of both the hardware device and
the corresponding UNIX device driver are discussed where applicable.

While the names of the entries generally refer to DEC hardware names, in
certain cases these names are seemingly arbitrary for vari('us historical
reasons.

- 1 -

I

I

CAT(4) (PDP-II only) CAT(4)

NAME
cat - phototypesetter interface

DESCRIPTION
Cat provides the interface to a Wang Laboratories, Inc. C/ A/T photo­
typesetter. Bytes written on the file specify font, size, and other control
information as well as the characters to be flashed. The coding will not be
described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
trotf(I).
Wang Laboratories, Inc. specification (available on request).

- I -

DJ(4) DJ(4)

NAME
dj - OJ-II asynchronous multiplexor

DESCRIPTION

FILES

Each line attached to a OJ-II communications multiplexer behaves as
described in tty(4). Line speeds and other characteristics are not program­
mable but are set by switches in the hardware in groups of 4 lines. Only
parameters such as character delays and mapping can be altered.

Idev Itty.
SEE ALSO

tty(4).

- I -

I

DMC(4) DMC(4)

NAME
dmc - communications link with built-in DDCMP protocol

DESCRIPTION

FILES

BUGS

The DMCll allows local connection of PDP-ll systems over high-speed
(1Mb or 56kb) links and remote connection over leased (up to 19.2kb) or
dial-up (up to 4,800b) lines. It implements in hardware the DDCMP data­
link protocol, which includes error control. This driver handles two DMCII
devices.

/dev/dmc

There are quite a few bugs in the DEC microcode for the different versions
of the DMCII.

- 1 -

DN(4)

NAME
dn - DN-II ACU interface

DESCRIPTION
The dn? files are write-only. The permissible codes are:

0-9 dial 0-9
• or : dial.
, or; dial #

4 second delay for second dial tone
e or < end-of-number
w or = wait for secondary dial tone
f flash off hook for 1 second

DN(4)

The entire telephone number must be presented in a single write system
call.

FILES
/dev/dn?

SEE ALSO
dh(4), du(4).

- 1 -

I

DQS(4) (Obsolescent) DQS(4)

NAME
dqs - DQS-ll interface for two-point BSC

DESCRIPTION
This interface defines a special file that looks like a concatenation of Binary
Synchronous Communication (BSC) text blocks. This file may be both
written to and read from, but not simultaneously. Data transfer with the
two-point BSC discipline is strictly half-duplex.

The device can be opened by only one process at a time. It is expected that
a process that successfully opens the DQS will spawn separate subprocesses
to handle reading and writing. However, no distinction is made among the
several processes that may have the DQS open. For example, reads within
a message, even from a single block, may be executed by several processes
in sequence. The overriding constraint is that a complete message must be
read from or written to the DQS before any transfer of data in the opposite
direction can begin. A process that tries to write while the DQS is reading,
or vice versa, will be put to sleep until the transfer of the currently active
message has been completed.

A complete message consists of one or more text blocks. A message being
written to the DQS is terminated by a write of zero bytes, which causes an
EOT to be transmitted. A message being read from the DQS is terminated
by the reception of an EOT (which is not passed on to the reader, but is
registered as a read of zero bytes). By convention, an EOT follows each
block which ends in an ETX.

The length of a text block cannot exceed 512 bytes, including the line
prefix and appendix. These two sequences, which must be present in
blocks being written and will be passed on in blocks read, are constructed
from the control bytes SOH, STX. ETB. ETX, DLE. The DQS itself will sup­
ply leading SYN bytes and trailing block check and pad bytes. The interface
examines only the last byte of each text block received and so is unaware
of the presence of headings or transparent text. The selection and interpre­
tation of these features is the user's responsibility.

Line,control functions, such as the alternating affirmative responses (ACKO)
and ACKl), are automatically interspersed with text blocks as required by
the line discipline. The interface handles the initial line bid and the EOT
reset at the end of a transmission. A 3-second time-out is also respected.
The interface will send TID's and respond WACK's if its buffers are not
serviced fast enough. When receiving, expiration of the time-out will cause
the interface to abort the active message by sending EOT. When transmit­
ting, the failure to send a block successfully after seven tries will cause the
interface to terminate the active message prematurely. Such aborts cannot
be appealed.

Reads on the DQS will return bytes from a single text block. If one read
does not exhaust a text block, successive reads will return additional bytes
from the same block. A returned count of zero indicates the end of a mes­
sage. Until the remote station bids for the line, all reads will return zero
bytes. The error bit will never be set by the interface itself. must be read
to the end of a message before it will accept writes.

Writes to the DQS must consist of a single, entire text block. A write that
specifies a count of zero bytes defines the end of a message. The count
returned by a write call must be checked. A count of zero for the first
write of a new message indicates that it was not possible to acquire the line.
Otherwise, the DQS should return exactly the count specified in the write
call. However, the error bit is set when a line error requires that the

- 1 -

DQS(4) (ObsolcscCDt) DQS(4)

message be aborted. Notification of the error is not punctual, because data
blocks are buffered for transmission. A write of zero bytes must be issued,
or an error must occur, before the DQS will accept reads.

An open(2) will fail if the DQS is already open or not ready. The DQS
should be opened to allow both reading and writing.

The DQS interface steals a number of buffers from UNIX (currently two)
for the duration of each message. This number is specified at system gen­
eration time and may be tuned to influence overall system tbroughput.

SEE ALSO
General In/ormation-Binary Synchronous Communication, IBM Systems
Reference Library (I GA27-3004.
DQSII-A/B PDP-II Communications Controller Option Description, Digital
Equipment Corporation.

- 2 -

I

DU(4) (PDP-II obsolete) DU(4)

NAME
du - DU-II synchronous line interface

DESCRIPTION

FILES

The files duO, dul, etc., represent interfaces to synchronous modems such
as the Bell System 200-series synchronous DA TA-PHONE<IIl sets. Read and
write calls to du? are unlimited, but work best when restricted to less than
512 bytes. Each write call is sent as a single record. Seven bits from each
byte are written, along with an eighth, odd-parity, bit. The "sync" charac­
ters must be supplied by the user. Each read call returns the characters
read from a single record. Seven bits are returned unaltered; the eighth bit
is set if the byte was not received in odd parity. An error is returned if
data-set ready is not present.

jdevjdu?

SEE ALSO
dn(4).

- 1 -

DZ(4) DZ(4)

NAME
dz, dzk, dh - OZ-II, OZ-II/KMC-II, DH-II asynchronous multiplexers

DESCRIPTION

FILES

Each line attached to a OH-II or OZ-II communications multiplexer
behaves as described in tty(4). Input and output for each line may
independently be set to run at any of 16 speeds; see tty(4) for the encoding.
(For OZ-II lines, output speed is always the same as input speed. The 200
speed and the two externally clocked speeds (exta, extb) are missing on the
OZ-II.) The behavior of dzk lines is indistinguishable from that of dz lines,
except that on the dzk backspace delays are implemented using fill charac­
ters (rubouts) instead of timed delays.

Note that the OH-Il is considered obsolete and is not supported on the
VAX-llj780.

Ide v Itty.

SEE ALSO
kmc(4), tty(4).

- I -

I

ERR(4) ERR(4)

NAME
err - error-logging interface

DESCRIPTION

fILES

Minor device 0 of the e" driver is the interface between a process and the
system's error-record collection routines. The driver may be opened only
for reading by a single process with super-user permissions. Each read
causes an entire error record to be retrieved; the record is truncated if the
read request is for less than the record's length.

/ dev / error special file

SEE ALSO
errdemon (I M).

- 1 -

HP(4) HP(4)

NAME
hp - RP04/RP05/RP06 moving-head disk

DESCRIPTION

FILES

The files rpO, ••• , rp7 refer to sections of the RI'04/RP05/RP06 disk drive o.
The files rplO, ..•• rp17 refer to drive 1. etc. This slicing allows the pack to
be broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

RP04/05
section start
o 0
1 44
2 201
3 358
4
5
6
7 o
RP06
section start
0 0
1 44
2 201
3 358
4 515
5 672
6
7 0

length
18392
153406
87780
22154

171798

length
18392
322278
256652
191026
125400
59774

340670
The start address is a cylinder address, with each cylinder containing 418
blocks. It is extremely unwise for all of these files to be present in one
installation, since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise /seek calls should
specify a mUltiple of 512 bytes.

/dev/rp., /dev/rrp*
SEE ALSO

rp(4).

- 1 -

I

HS(4) (PDP-ll obsolete) HS(4)

NAME
hs - RHII/RJS03-RJS04 fixed-head disk file

DESCRIPTION

FILES

The files hsO ••••• hs7 refer to RJS03 disk drives 0 through 7. The files hs8 •
.••• hs15 refer to RJS04 disk drives 0 through 7. The RJS03 drives are each
1024 blocks long and the RJS04 drives are 2048 blocks long.

The hs files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw HS
files begin with rhs. The same minor device considerations hold for the
raw interface as for the normal interface.

In raw I/O the buffer must begin on a word boundary. and counts should
be a multiple of 512 bytes (a disk block). Likewise Iseek calls should
specify a multiple of 512 bytes.

/dev/hs*. /dev/rhs*

- 1 -

HT(4) HT(4)

NAME
ht - TUI6 magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mtO ••••• mtlS refer to the Digital Equipment Corporation TUI6
magnetic tape control and transports. The files mtO mt7 are 800bpi.
and the files mtS mtlS are 1600bpi. The files mtO ••••• mt3. mtS
mtll are designated normal-rewind on close. and the files mt4 mt7.
mtl2, "" mtlS are no-rewind on close. When opened for reading or wri­
ting, the tape is assumed to be positioned as desired. When a file is closed.
a double end-of-file (double tape mark) is written if the file was opened for
writing. If the file was normal-rewind. the tape is rewound. If it is no­
rewind and the file was open for writing, the tape is positioned before the
second EOF just written. If the file was no-rewind and opened read-only.
the tape is positioned after the EOF following the data just read. Once
opened, reading is restricted to between the position when opened and the
next EOF or the last write. The EOF is returned as a zero-length read. By
judiciously choosing mt files. it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible, the system makes it possible. if inefficient. to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with, and especially when long records are to be read or written. the "raw"
interface is appropriate. The associated files are named rmtO rmUS.
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read, the record size is passed back as the number of bytes read. up to the
buffer size specified. In raw tape I/O. the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read, with the tape positioned after the EOF. so
that the next read will return the next record.

/dev Imt., /dev /rmt.

If any non-data error is encountered. it refuses to do anything more until
closed. The driver is limited to four transports.

- I -

I

I

KL(4) (PDP-II ooly) KL(4)

NAME
kl - KL-ll or DL-II asynchronous interface

DESCRIPTION

FILES

The discussion of typewriter I/O given in tty(4) applies to these devices.

Since they run at a constant speed, attempts to change the speed are
ignored.

The on-line console typewriter is normally interfaced using a KL-ll or DL­
II.

jdevjconsole

SEE ALSO
tty(4), init(8).

BUGS
Modem control for the DL-IIE is not implemented.

- I -

KMC(4) KMC(4)

NAME
kmc - KMCII microprocessor

DESCRIPTION

FILES

The files kmc? are used to manipulate the KMCII-A or -B microprocessors.
The device handler provides the basic mechanism needed to load, run, and
debug programs on the microprocessor.

The open is exclusive; at most one open at a time. The first open deter­
mines whether the microprocessor is a KMCII-A or -8.

Addresses 0-2047 (0-8195) reference the 1024 (4096) words of instruc­
tions in the control memory of the KMCll-A (-8). This portion is word
oriented, that is, the address and byte count must be even.

Addresses 2048-3071 (8196-12211) reference the 1024 (4096) bytes of
data in the data memory of the KMCll-A (-8). The data portion may be
read or written with no restrictions on addressing.

The stty function is used to provide access to the basic microprocessor capa­
bilities.

stty(kmcfd, arg)
struct {

int code;
int *CSr;
int value;

} *arg;

The pointer CST contains the address of a 4 word buffer for the UNIBUS
Control and Status Registers associated with the microprocessor. The value
of code determines the function:

1 single step and return CSRs in CST.

2 maintenance step: execute value and then return CSRs.
3 return CSRs.
4 stop: clear the run bit.
5 reset: set then clear the master clear bit.
6 run: set the run bit and set the software state to value and

running.
7 line unit maintenance: set the line unit bits from value.

/dev/kmc?

SEE ALSO
kas(1), kun(l), dh(4).

- 1 -

I

I

LP(4) LP(4)

NAME
lp - line printer

DESCRIPTION

FILES

Lp provides the interface to any of the standard Digital Equipment Cor­
poration line printers. When it is opened or closed, a suitable number of
page ejects is generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the dev­
ice is treated as having a 96- or 64-character set. In half-ASCII mode, lower
case letters are turned into upper case and certain characters are escaped
according to the following table:

+
t

The driver correctly interprets carriage returns, backspaces, tabs, and
form-feeds. A new-line that extends over the end of a page is turned into
a form-feed. The default line length is 80 characters, indent is 4 characters
and lines per page is 66. Lines longer than the line length minus the indent
(i.e. 76 characters, using the above defaults) are truncated.

jdevjlp

SEE ALSO
lpr(l).

- 1 -

MEM(4) MEM(4)

NAME
mem, kmem - core memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the core memory of the computer.
It may be used, for example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to
non-existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected
results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather
than physical memory is accessed.

On the PDP-II, the I/O page begins at location 0160000 of kmem and per­
process data for the current process begins at 0140000.

/dev /mem. /dev /kmem

On the PDP-II, memory files are accessed one byte at a time, an inap­
propriate method for some device registers.

- 1 -

I

NULL(4) NULL(4)

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

I

- I -

PCL(4) PCL(4)

NAME
pcl - parallel communications link interface

DESCRIPTION

FILES

Pel provides the interface to the Digital Equipment Corporation PCL-IIB
network bus. This bus can be used to interconnect up to 16 CPU's, provi­
ding relatively fast communication without individual point-to-point con­
nections.

The interface permits simultaneous bi-directional communication between
any machines on the bus. Additionally, each such path is further subdivi­
ded into 8 independent channels. A control interface is also provided to
reduce the line monitori~~ overhead for a daemon process.

Idev Ipcl[a-z][O-7] normal machine and subchannel interface.
I dev Ipclc control interface.

- 1 -

I

I

PRF(4} PRF(4}

NAME
prf - operating system pro filer

DESCRIPTION

FILES

The file prf provides access to activity information in the operating system.
Writing the file loads the measurement facility with text addresses to be
monitored. Reading the file returns these addresses and a set of counters
indicative of activity between adjacent text addresses.

The recording mechanism is driven by the system clock and samples the
program counter at line frequency. Samples that catch the operating system
are matched against the stored text addresses and increment corresponding
counters for later processing.

The file prf is a pseudo-device with no associated hardware.

/dev/prf
SEE ALSO

config(IM), profiler(lM).

- 1 -

RF(4) (PDP-ll obsolete) RF(4)

NAME
rf - RFll/RSll fixed-head disk file

DESCRIPTION

FILES

BUGS

This file refers to the concatenation of all RS-ll disks.

Each disk contains 1024 256-word blocks. The length of the combined RF
file is 1 024X(minor+ 1) blocks. That is minor device zero is taken to be
1024 blocks long; minor device one is 2048, etc.

The rfO file accesses the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A <ingle read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The name of the raw RF
file is rrfO. The same minor device considerations hold for the raw inter­
face as for the normal interface.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise seek calls should specify
a multiple of 512 bytes.

/dev /rfO, /dev /rrfO

The 512-byte restrictions on the raw device are not physically necessary,
but are still imposed.

• 1 -

I

I

RK(4) (PDP-II obsolete) 1U(4)

NAME
rk - RK-ll/RK03 or RK05 disk

DESCRIPTION

FILES

Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its
256-word blocks are numbered 0 to 4871.

The rk files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one 1/0 operation and therefore raw 1/0 is considerably
more efficient when many words are transmitted. The names of the raw RK
files begin with rrk and end with a number which selects the same disk as
the corresponding rk file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise seek.caUs should specify
a multiple of 512 bytes.

/dev/rk*, /dev/rrk*

- 1 -

RL(4) RL(4)

NAME
rl - RL-ll/RLOI disk

DFSCRIPTION

FILFS

riO, ___ , rl3 refer to an entire RLOI disk drive as a single sequentially-
addressed file. Its 256-word blocks are numbered 0 to 10239.

The rl files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O call and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw RL files
begin with rrl and end with a number which selects the same disk as the
corresponding rl file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise /seek calls should
specify a multiple of 512 bytes.

/dev /rl., /dev /rrl.

- 1 -

I

I

RP(4) (PDP-II oblolete) RP(4)

NAME
rp - RP-ll/RP03 moving-head disk

DESCR.IPTION

FILES

The files rpO ••••• rp7 refer to sections of the RP03 disk drive O. The files
rplO ••••• rp17 refer to drive 1. etc. This slicing allows the pack to be
broken up into more manageable pieces.

The origin and size of the sections on each drive are as follows:

section start length
o 0 10000
1 50 71200
2 203 40600
3
4
5
6
7 0 81200

The start address is a cylinder address. with each cylinder containing 200
blocks. It is extremely unwise for all of these files to be present in one
installation. since there is overlap in addresses and protection becomes a
sticky matter.

The rp files access the disk via the system's normal buffering mechanism
and may be read and written without regard to physical disk records. There
is also a "raw" interface which provides for direct transmission between
the disk and the user's read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RP
files begin with rrp and end with a number which selects the same disk sec­
tion as the corresponding rp file.

In raw I/O the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise /seek calls should
specify a multiple of 512 bytes.

/dev/rp*, /dev/rrp*

SEE ALSO
hp(4).

- 1 -

ST(4) ST(4)

NAME
st - synchronous terminal interface

DESCRIPTION

FILES

The synchronous terminal interface is a pseudo-device driver that enables a
UNIX system to communicate with a TELETYPES Model 40/4 ASCII syn­
chronous terminal. The driver utilizes the Virtual Protocol Machine (VPM)
to perform the end-to-end protocol and transmission assurance for the syn­
chronous line.

The user must be familiar with the operation of the Model 40/4 terminal.
Screen management functions are completely controlled by the user pro­
cess; when for~~ting a screen, the user must supply everything from the
initial STX (Start-or-Text) character to the ETX (End-or-Text) character.

By convention, Ide'/stO is the synchronous terminal control channel, while
other Ide'/st? files represent user terminal channels. Communication with
the control channel is handled by the stcnt,1 command (see st(lM».

A user process will sleep when trying to open a channel, until a terminal
requests service. At that time, a channel will be assigned to that terminal,
and it will remain allocated until the user process closes the terminal.

In addition to the synchronous terminal equipment, a KMCll-8 micropro­
cessor, and a DMCII-DA synchronous line unit are required.

I etcl stproto
Idev/kmc?
Idev/vpm?
Idev/stO
Idev/st?

synchronous terminal prototype script
KMCII-8 microprocessor
virtual protocol machine
synchronous terminal control channel
synchronous terminal user channels

SEE ALSO
st(lM), kmc(4), trace(4), vpm(4).

- 1 -

I

I

TM(4) (PDP-II obsolete) TM(4)

NAME
tm - TMII/TUIO magnetic tape interface

DESCRIPTION

FILES

BUGS

The files mtO. •••• mt7 refer to the Digital Equipment Corporation
TMII/TUIO magnetic tape control and transports at 8OObpi. The files mtO.
.... mt3 are designated normal-rewind on close. and the files mt4 ••••• mt7
are no-rewind on close. When opened for reading or writing, the tape is
assumed to be positioned as desired. When a file is closed, a double end­
of-file (double tape mark) is written if the file was opened for writing. If
the file was normal-rewind. the tape is rewound. If it is no-rewind and the
file was open for writing, the tape is positioned before the second EOF just
written. If the file was no-rewind and opened read-only. the tape is posi­
tioned after the EOF following the data just read. Once opened. reading is
restricted to between the position when opened and the next EOF or the
last write. The EOF is returned as a zero-length read. By judiciously
choosing mt files. it is possible to read and write multi-file tapes.

A standard tape consists of several 512 byte records terminated by an EOF.
To the extent possible. the system makes it possible. if inefficient. to treat
the tape like any other file. Seeks have their usual meaning and it is possi­
ble to read or write a byte at a time (although very inadvisable).

The mt files discussed above are useful when it is desired to access the tape
in a way compatible with ordinary files. When foreign tapes are to be dealt
with. and especially when long records are to be read or written. the "raw"
interface is appropriate. The associated files are named rmtO, rmt7
Each read or write call reads or writes the next record on the tape. In the
write case the record has the same length as the buffer given. During a
read. the record size is passed back as the number of bytes read. up to the
buffer size specified. In raw tape I/O. the buffer must begin on a word
boundary and the count must be even. Seeks are ignored. An EOF is
returned as a zero-length read. with the tape positioned after the EOF. so
that the next read will return the next record.

/dev/mt? /dev/rmt?

If any non-data error is encountered. it refuses to do anything more until
closed. The driver is limited to four transports.

- 1 -

TRACE(4) TRACE(4)

NAME
trace - event-tracing driver

DESCRIPTION
Trace is a special file that allows UNIX kernel drivers to transfer. event
records to a user program, so that the activity of the driver may be moni­
tored for debugging purposes.

An event record is generated from within a kernel driver by executing the
following function:

trsave(dev, chno, buf, cnt)
char dev, chno, .buf, cnt;

Dev is the minor device number of the trace driver; chno is an integer
between I and 16, inclusive, identifying the data stream to which the record
belongs; bill is a buffer containing the bytes that make up a single event
record; and cnt is the number of bytes in bill. Calls to trsave will result in
data being saved in a clist buffer, provided that some user program has
opened the trace minor device number dev and has activated channel chno.
Event records prefaced by chno and clll are stored in a clist queue until a
system-defined maximum (TRQMAX) is reached; event records are discar­
ded while the queue is full. The clist queue is emptied by a user program
reading the trace driver. The trace driver returns an integral number of
event records; the read count must, therefore, be at least equal to the size
of a record plus two, to allow for the chno and clll bytes added to the event
record by the tTsave routine.

The trace driver supports open, close, read, and ioctl system calls. To
activate a channel, ioctl is used as follows:

SEE ALSO

(J include <ioctl.h>
ioctl(fildes, VPMTRCO, chno)

vpmstart(lC), vpm(4).

- 1 -

I

I

1TY(4) 1TY(4)

NAME
tty - general terminal interface

DESCRIPTION
This section describes both a particular special file and the general nature of
the terminal interface.

The file Ide'/tty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for
programs or shell sequences that wish to be sure of writing messages on the
terminal no matter how output has been redirected. It can also be used for
programs that demand the name of a file for output, when typed output is
desired and it is tiresome to find out what terminal is currently in use.

As for terminals in general: all of the asynchronous communications ports
use the same general interface, no matter what hardware is involved. The
remainder of this section discusses the common features of this interface.

When a terminal file is opened, it normally causes the process to wait until
a connection is established. In practice, ,users' programs seldom open these
files; they are opened by getty(8) and become a user's standard input, out­
put, and error files. The very first terminal file opened by the process
group leader of a terminal file not already associated with a process group
becomes the control terminal for that process group. The control terminal
plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a
jOl'k(2). A process can break this association by changing its process group
using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full­
duplex mode. Characters may be type£! at any time, even while output is
occurring, and are only lost when the system's character input buffers
become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been
read by some program. Currently, this limit is 256 characters. When the
input limit is reached, all the saved characters are thrown away without
notice.

Normally, terminal input is processed in units of lines. A line is delimited
by a new-line (ASCU LF) character, an end-of-file (ASCU EOT) character, or
an end-of-Iine character. This means that a program attempting to read will
be suspended until an entire line has been typed. Also, no matter how
many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any
number of characters may be requested in a read, even one, without losing
information.

During input, erase and kill processing is normally done. By default, the
character , erases the last character typed, except that it will not erase
beyond the beginning of the line. By default, the character @ kills
(deletes) the entire input line, and optionally outputs a new-line character.
Both these characters operate on a key-stroke basis, independently of any
backspacing or tabbing that may have been done. Both the erase and kill
characters may be entered literally by preceding them with the escape
character (\). In this case the escape character is not read. The erase and
kill characters may be changed.

Certain characters have special functions on input. These functions and
their default character values are summarized as follows:

- 1 -

TTY(4) TIY(4)

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent
to all processes with the associated control terminal. Normally,
each such process is forced to terminate, but arrangements may
be made either to ignore the signal or to receive a trap to an
agreed-upon location; see signaJ(2).

QUIT (Control-lor ASCII FS) generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiving
process has made other arrangements, it will not only be termina­
ted but a core image file (called core) will be created in the
current working directory.

ERASE (#) erases the preceding character. It will not erase beyond the
start of a line, as delimited by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL
character.

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file
from a terminal. When received, all the characters waiting to be
read are immediately passed to the program, without waiting for a
new-line. and the EOF is discarded. Thus, if there are no charac­
ters waiting, which is to say the EOF occurred atthe beginning of
a line, zero characters will be passed back, which is the standard
end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or
escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not nor­
mally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend out­
put. It is useful with CRT terminals to prevent output from
disappearing before it can be read. While output is suspended,
STOP characters are ignored and not read.

START (Control-q or ASCII DCl) is used to resume output which has
been suspended by a STOP character. While output is not suspen­
ded, START characters are ignored and not read. The start/stop
characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be
changed to suit individual tastes. The ERASE, KILL, and EOF characters
may be escaped by a preceding \ character, in which case no special func­
tion is done.

When the carrier signal from the data-set drops, a lumgup signal is sent to
all processes that have this terminal as the control terminal. Unless other
arrangements have been made, this signal causes the processes to ter­
minate. If the hangup signal is ignored, any subsequent read returns with
an end-of-file indication. Thus programs that read a terminal and test for
end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the ter­
minal as soon as previously-written characters have finished typing. Input
characters are echoed by putting them in the output queue as they arrive.
If a process produces characters more rapidly than they can be typed, it will
be suspended when its output queue exceeds some limit. When the queue
has drained down to some threshold, the program is resumed.

Several ioctl(2) system calls apply to terminal files. The primary calls USe
the following structure, defined in <termio.h>:

- 2 -

I

I

TIY(4) TIY(4)

I define NCC 8
struct termio {

unsigned short c_iftag; /* input modes */
unsigned short c_oftag; /* output modes */
unsigned short c_cftag; /* control modes */
unsigned short c_lftag; /* local modes */
char c_line; /* line discipline */
unsigned char c_cc[NCC]; /* control chars */

};

The special control characters are defined by the array ccc. The relative
positions and initial values for each function are as follows:

o INTR DEL
1 QUIT FS
2 ERASE ,
3 KILL @
4 EOF EOT
5 EOL NUL
6 reserved
7 reserved

The c.Jftag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.
BRKINT 0000002 Signal interrupt on break.
IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.
INPCK 0000020 Enable input parity check.
ISTRIP 0000040 Strip character.
INLCR 0000100 Map NL to CR on input.
IGNCR 0000200 Ignore CR.
ICRNL 000040O Map CR to NL on input.
IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 000400O Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data
all zeros) is ignored, that is, not put on the input queue and therefore not
read by any process. Otherwise if BRKINT is set, the break condition will
generate an interrupt signal and Rush both the input and output queues. If
IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not
ignored is read as the three character sequence: 0377, 0, X, where X is the
data of the character received in error. To avoid ambiguity in this case, if
ISTRIP is not set, a valid character of 0377 is read as 0377, 0377. If
PARMRK is not set, a framing or parity error which is not ignored is read as
the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled. This allows output parity generation without
input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise
all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.

- 3 -

1TY(4) 1TY(4)

If IUCLC is set, a received upper-case alphabetic character is translated into
the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP
character will suspend output and a received START character will restart
output. All start/stop characters are ignored and not read. If IXANY is set,
any input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the
input queue is nearly empty/full.

The initial input control value is all bits clear.

The c_oftag field specifies the system treatment of output:

OPOST
OLCUC
ONLCR
OCRNL
ONOCR
ONLRET
OFILL
OFDEL
NLDLY
NLO
NLi
CRDLY
CRO
CRI
CR2
CR3
TABDLY
TABO
TABI
TAB2
TAB3
BSDLY
BSO
BSl
VTDLY
VTO
VTl
FFDLY
FFO
FFI

0000001 Postprocess output.
0000002 Map lower case to upper on output.
0000004 Map NL to CR-NL on output.
0000010 Map CR to NL on output.
0000020 No CR output at column O.
0000040 NL performs CR function.
0000100 Use fill characters for delay.
0000200 Fill is DEL, else NUL.
0000400 Select new-line delays:
o
000040O
0003000 Select carriage-return delays:
o
0001000
0002000
0003000
0014000 Select horizontal-tab delays:
o
0004000
0010000
0014000 Expand tabs to spaces.
0020000 Select backspace delays:
o
0020000
0040000 Select vertical-tab delays:
o
0040000
0100000 Select form-feed delays:
o
0100000

If OPOST is set, output characters are post-processed as indicated by the
remaining flags, otherwise characters are tmnsmitted without change.

If OLCUC is set, a lower-case alphabetic character is tmnsmitted u the
corresponding upper-case character. This function is often used in conjunc­
tion with IUCLC.

If ONLCR is set, the NL character is tmnsmitted as the CR-NL character
pair. If OCRNL is. set, the CR character is transmitted as the NL character.
If ONOCR is set, no CR character is tmnsmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0 and the delays
specified for CR will be used. Otherwise the NL character is assumed to do
just the line-feed function; the column pointer will remain unchanged. The
column pointer is also set to 0 if the CR character is actually tmnsmitted.

-4-

TrY(4)

I

TrY(4)

The delay bits specify how long transmission stops to allow for mechanical
or other movement when certain characters are sent to the terminal. In all
cases a value of 0 indicates no delay. If OFILL is set, fill characters will be
transmitted for delay instead of a timed delay. This is useful for high baud
rate terminals which need only a minimal delay. If OFDEL is set, the fill
character is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage­
return delays are used instead of the new-line delays. If OFILL is set, two
fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position,
type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If OFILL is
set, delay type 1 transmits two fill characters, and type 2 four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position.
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be expanded
into spaces. If OFILL is set, two fill characters will be transmitted for any
delay.

8ackspace delay lasts about 0.05 seconds. If OFILL is set, one fill character
will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c3fiag field describes the hardware control of the terminal:

CBAUD 0000017 8aud rate:
SO 0 Hang up
850 0000001 50 baud
875 0000002 75 baud
8110 0000003 1I0 baud
8134 0000004 134.5 baud
8150 0000005 150 baud
8200 0000006 200 baud
8300 0000007 300 baud
8600 0000010 600 baud
81200 0000011 1200 baud
81800 0000012 1800 baud
82400 0000013 2400 baud
84800 0000014 4800 baud
89600 0000015 9600 baud
EXT A 0000016 External A
EXTB 0000017 External 8
CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.
PARENB 0000400 Parity enable.
PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, 80, is used to
hang up the connection. If SO is specified, the data-terminal-ready signal

- 5 -

1TY(4) 1TY(4)

will not be asserted. Normally, this will disconnect the line. For any parti­
cular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission and
reception. This size does not include the parity bit, if any. If CSTOPB is
set, two stop bits are used, otherwise one stop bit. For example, at 110
baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity bit
is added to each character. If parity is enabled, the PARODD flag specifies
odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be
received.

If HUPCL is set, the line will be disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal
will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with
no modem control. Otherwise modem control is assumed.

The initial hardware control value after open is 8300, CS8, CREAD,
HUPCL.

The cjflag field of the argument structure is used by the line discipline to
control terminal functions. The basic line discipline (0) provides the fol­
lowing:

ISIG
ICANON
XCASE
ECHO
ECHOE
ECHOK
ECHONL
NOFLSH

0000001 Enable signals.
0000002 Canonical input (erase and kill processing).
0000004 Canonical upper/lower presentation.
0000010 Enable echo.
0000020 Echo erase character as BS-SP-BS.
0000040 Echo NL after kill character.
0000100 Echo NL.
0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control
characters INTR and QUIT. If an input character matches one of these con­
trol characters, the function associated with that character is performed. If
ISIG is not set, no checking is done. Thus these special input functions are
possible only if ISIG is set. These functions may be disabled individually by
changing the value of the control character to an unlikely or impossible
value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase
and kill edit functions, and the assembly of input characters into lines del­
imited by NL, EOF, and EOL If ICANON is not set, read requests are
satisfied directly from the input queue. A read will not be satisfied until at
least MIN characters have been received or the timeout value TIME has
expired. This allows fast bursts Of input to be read efficiently while still
allowing single character input. The MIN and TIME values are stored in the
position for the EOF and EOL characters respectively. The time value
represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on
input by preceding it with a \ character, and is output preceded by a \
character. In this mode, the fonowing escape sequences are generated on
output and accepted on input:

- 6 -

ITY(4)

I

f..or: use:
\.

I \!
\~

{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

ITY(4)

When ICANON is set, the following echo functions are possible. If ECHO
and ECHOE are set, the erase character is echoed as ASCII BS SP OS, which
will clear the last character from a CRT screen. If ECHOE is set and ECHO
is not set, the erase character is echoed as ASCII SP OS. If ECHOK is set,
the NL character will be echoed after the kill character to emphasize that
the line will be deleted. Note that an escape character preceding the erase
or kill character removes any special function. If ECHONL is set, the NL
character will be echoed even if ECHO is not set. This is useful for ter­
minals set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

If NOFlSH is set, the normal flush of the input and output queues associ­
ated with the quit and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.

The primary ;ocII(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *tirg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and
store in the tennio structure referenced by argo

TCSETA Set the parameters associated with the terminal from
the structure referenced by argo The change is
immediate.

TCSETAW Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input
queue and set the new parameters.

Additional ioctJ(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a
break (zero bits for 0.25 seconds).

TCXONC

TCFlSH

Start/stop control. If arg is 0, suspend output; if I,
restart suspended output.

If arg is 0, flush the input queue; if I, flush the out­
put queue; if 2, flush both the input and output
queues.

- 7 -

1TY(4)

FILES
jdcvjtty
jdcvjtt'j*
jdcv jconsoic

SEE ALSO
stty(1). iocti(2).

1TY(4)

- 8 -

I

VP(4)

NAME
vp - Versatec printer

DESCRIPTION

VP(4)

Vp provides the interface to the Versatec electro-static line printer. Both
printing and plotting capabilities are implemented.

FILES
/dev/vp

SEE ALSO
vpr(l),lp(4).

- I -

VPM(4) VPM(4)

NAME
vpm - The Virtual Protocol Machine

DESCRIPTION
This entry describes a particular kind of special file and gives an introduc­
tion to the Virtual Protocol Machine (VPM).

The VPM is a software construct for implementing link protocols on the
KMCII in a high-level language. This is accomplished by a compiler that
runs on UNIX and that translates a high-level language description of a pro­
tocol into an intermediate language that is interpreted by an interpreter run­
ning in the KMCII.

The VPM driver is functionally split into two parts: a top VPM device and a
bottom VPM device. The top device may be modified or replaced to suit
particular applications; the bottom device interfaces with the VPM inter­
preter using the KMC driver. When using the mknod command to make a
directory entry and corresponding i-node for a VPM special file, the minor
device number identifies the top, bottom, and physical KMC devices to be
used for this special file. The two most significant bits of the minor device
number denote the physical KMC device; the next two bits denote the VPM
bottom device; the four least significant bits denote the VPM top device.
For example, if top device 1 is to be used with bottom device 2, which in
turn is to be used with KMC device 3, the minor device number would be
0341 (octal).

UNIX user processes transfer data to or from a remote terminal or compu­
ter system through VPM using normal open, read, write, and close opera­
tions. Flow control and error recovery are provided by the protocol
description residing in the KMCII.

The VPM software consists of six components:

1. vpmc(lC): compiler for the protocol description language; it
runs on UNIX.

2. VPM interpreter: a KMCII program that controls the overall
operation of the KMCII and interprets the protocol script.

3. vpm.c: a UNIX driver that provides the interface to the VPM.
4. vpmstart(lC): a UNIX command that copies a load module

into the KMCII and starts it.
5. vpmsnap(IC): a UNIX command that prints a time-stamped

event trace while the protocol is running.
6. vpmtrace(lC): a UNIX command that prints an event trace

for debugging purposes while the protocol is running.

The VPM open for reading-and-writing is exclusive; opens for reading-only
or writing-only are not. The VPM open checks that the correct interpreter is
running in the KMCll, then sends a RUN command to the interpreter (cau­
sing it to start interpreting the protocol script), and supplies a 512-byte
receive buffer to the interpreter.

The VPM read returns either the number of bytes requested or the number
remaining in the current receive buffer, whichever is less. Bytes remaining
in a receive buffer are used to satisfy subsequent reads. The VPM write
copies the user data into 512-byte system buffers and passes them to the
VPM interpreter in the KMCII for transmission.

The VPM close arranges for the return of system buffers and for a general
cleanup when the last transmit buffer has been returned by the interpreter.

The user command vpmtrace(lC) reads the trace driver and prints event
records. While this command is executing, the VPM driver will generate a

- 1 -

VPM(4) VPM(4)

number of event records, allowing the activity of the VPM driver and proto­
col script to be monitored for debugging purposes. The system functions
vpmopen, vpmread, vpmwrite, and vpmclose generate event records
(identified respectively by 0, r, ", and c). Calls to the vpmc(IC) primitive
trace (argl ,arg2) cause the VPM interpreter to pass argl and arg2 along
with the current value of the script location counter to the VPM driver,
which generates an event record identified by a T. Each event record is
structured as follows:

struct event {
short
char
char
short
short

e_seqn;
e_type;
e_dev;
e_shortl;
e_short2;

/*Sequence numbel'*/
I-record identifiel'*/
I-minor device numbel'*/
/~ata-/
/~ata-/

When the script terminates for any reason, the driver is notified and gen­
erates an event record identified by an E. This record also contains the
minor device number, the script location counter, and a termination code
defined as follows:

SEE ALSO

o Normal termination; the interpreter received a halt com-
mand from the driver.

1 Undefined virtual-machine operation code.
2 Script program counter out of bounds.
3 Interpreter stack overflow or underflow.
4 Jump address not even.
5 UNIBUS error.
6 Transmit butTer has an odd address; the driver tried to give

the interpreter too many transmit butTers; or a get or
rtnxbuf was executed while no transmit butTer was open,
i.e., no getxbuf was executed prior to the get or rtnxbuf.

7 Receive butTer has an odd address; the driver tried to give
the interpreter too many receive butTers; or a put or rtnrbuf
was executed while no receive buffer was open, i.e., no
getrbuf was executed prior to the get or rtnxbuf.

8 The script executed an exit.
9 A crc16 was executed without a preceding crcloc execution.

10 Interpreter detected loss of modem-ready signal.
II Transmit-butTer sequence-number error.
12 Command error; an invalid command or an improper

sequence of commands was received from the driver.
13 Not used.
14 Invalid transmit state.
15 Invalid receive state.
16 Not used.
17 Xmtctl or setal attempted while transmitter was still busy.
18 Not used.
19 Same as error code 6.
20 Same as error code 7.
21 Script to large.
22 Used for debugging the interpreter.
23 The driver's OK-check has timed out.

vpmc(IC), vpmstart(lC), trace(4).

- 2 -

INTltO(S) INTRO(S)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C stract declarations
for the file formats are given where applicable. Usually, these structures
can be found in the directories /asr/iDclade or /asr/iDclade/sys.

- I -

I

A.OUT(S) A.OUT(S)

NAME
a.out - assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler as and the link editor Id. Both
programs will make a.out executable if there were no errors in assembling
or linking, and no unresolved external references.

This file has four sections: a header, the program text and data segments,
relocation information, and a symbol table (in that order). The last two
sections may be missing if the program was linked with the -5 option of
Id (1) or if the symbol table and relocation bits were removed by strip(l).
Also note that if there were no unresolved external references after linking,
the relocation information will be removed.

The sizes of each segment (contained in the header, discussed below) are
in bytes and are even. The size of the header is not included in any of the
other sizes.

When an a.out file is loaded into memory for execution, three logical seg­
ments are set up: the text segment, the data segment (initialized data fol­
lowed by uninitiaiized, the latter actually being initialized to all O's), and a
stack. The text segment begins at location 0 in the core image; the header
is not loaded. If the magic number (the first field in the header) is 407
(octal), it indicates that the text segment is not to be write-protected or
shared, so the data segment will be contiguous with the text segment. If
the magic number is 410 (octal). the data segment begins at the first 0 mod
8K byte boundary on the PDP-II, or the first 0 mod 512 byte boundary on
the V AX-II /780 following the text segment, and the text segment is not
writable by the program; if other processes are executing the same a.out
file, they will share a single text segment. If the magic number is 411
(octal) (PDP-II only), the text segment is again pure (write-protected and
shared) and, moreover, the instruction and data spaces are separated; the
text and data segment both begin at location O. See the PDP-llj70 Processor
Handbook fer restrictions that apply to this situation.

The stack will occupy the highest possible locations in the core image: from
177776 (octal) on the PDP-ll or 80000000 (hexidecimal) on the VAX-
11/780, and growing downwards. The stack is automatically extended as
required. The data segment is only extended as requested by the brk(2)
system call.

The start of the text segment in the a.out file is hsize; the start of the data
segment is hsize+St (the size of the text), where hsize is 20 (octal) on the
PDP-ll and 20 (hexidecimal) on the VAX-II /780.

The value of a word in the text or data portions that is not a reference to
an undefined external symbol is exactly the value that will appear in
memory when the file is executed. If a word in the text or data portion
involves a reference to an undefined external symbol, as indicated by the
relocation information (di~cussed below) for that word, then the value of
the word as stored in the file is an offset from the associated external sym­
bol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the word in the
file.

- 1 -

A.OUT(S) A.OUT(S)

Header-PDP-II
The format of the a.out header for the PDP-II is as follows:

struct

};

exec
short
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

Header- VAX-II 1780

a_magic;
a_text;
a_data;
a_bss;
a_syms;
a_entry;
a_stamp;
a_flag;

1* magic number *1
1* size of text segment *1
1* size of data segment *1
1* size of bss segment *1
1* size of symbol table *1
1* entry point of program *1
1* version stamp *1
1* set if relocation info stripped *1

The format of the header on the V AX-II 1780 is as follows:

struct

};

Relocation - PDP-II

exec
short
short
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

{
a_magic;
a_stamp;
a_text;
a_data;
a_bss;
a_syms;
a_entry;
a_trsize;
a_drsize;

1* magic number *1
1* version stamp */
1* size of text segment *1
1* size of data segment *1
1* size of bss segment *1
I*·size of symbol table *1
1* entry point of program *1
1* size of text relocation info *1
1* size of data relocation info *1

If relocation information is present, it amounts to two bytes per relocatable
datum. There is no relocation information if the "suppress relocation" flag
(a...flag) in the header is on.

The format of the relocation data is:

struct r_info {

};

int r_symbolnum:ll,
r_segment:3,
r-PCJ"el:l;

The r ""pcrei field indicates, if on, that the reference is relative to the pro­
gram counter (pc) register (e.g., elr x); if off, that the reference is to the
actual symbol (e.g., elr .Sx).

The r _segment field indicates the segment referred to by the text or data
word associated with the relocation word:

00 indicates the reference is absolute;
02 indicates the reference is to the text segment;
04 indicates the reference is to initialized data;
06 indicates the reference is to bss (uninitialized data);
10 indicates the reference is to an undefined external symbol.

The field ,_symbolnum contains a symbol number in the case of external
references, and is unused otherwise. The first symbol is numbered 0, the
second I, etc.

- 2 -

I

A.OUT(5) A.OUT(5)

Relocation - V AX-ll/780
If relocation information is present, it amounts to eight bytes per relocata­
ble datum. There are no relocation bits if a_trsize +a_drsize = = O. The
format of the relocation information is:

struct

};

f_info
long
int

{
caddress;
r_symbolnum:24,
cpcrel:l.
clength:2,
cextern:l,
r_offset: I,
f-pad:3;

The r _address field gives the location of the relocatable reference relative to
the segment in which it is defined. The r _symholnum field contains a sym­
bol number in the case of an external; otherwise it contains a segment
number (expressed in the same manner as the V AX-ll /780 symbol types
above). R...{JCre/ has the same meaning as on the PDP-II. R_length indi­
cates the length of the relocatable reference:

o byte
I word
2 long

The start of the relocation information (on the PDP-ll and the V AX-
11/780) is:

hsize+a_text +a_data

Symbol Table- PDP-Ii
The symbol table on the PDP-II consists of entries of the form:

struct nlist

};

char
int
unsigned

{
n_name[8];
n_type;
n_value;

The n_name field contains the ASCII name of the symbol, null-padded. The
n_type field indicates the type of the symbol; the following values are possi­
ble:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
04 bss segment symbol
37 file name symbol (produced by Id)
40 undefined external symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

The start of the symbol table on the PDP-II is:

hsize + 2(a_text + a_data)

if relocation information is present, and

hsize+a_text +a_data
if it is not.

- 3 -

A.OUT(S)

Symbol Table-VAX-Il/780
The symbol table on the VAX consists of entries of the form:

struct

1;

nJist
char
char
char
short
unsigned

{
n_name[8];
n_type;
n_other;
n_desc;
n_value;

The possible values for n_type are:

00 undefined symbol
02 absolute symbol
04 text segment symbol
06 data segment symbol
08 bss segment symbol
37 file name symbol (produced by Id(l»
40 undefined external symbol
42 absolute external symbol
44 text segment external symbol
46 data segment external symbol
48 bss segment external symbol

The start of the symbol table on the VAX is:

hsize + a_text +a_data +a_trsize +a_drsize

A.OUT(S)

If a symbol's type (on either the PDP-II or the VAX-l 1/780) is undefined
external and the value field is non-zero, the symbol is interpreted by the
link editor Id (l) as the name of a common region whose size is indicated
by the value of the symbol.

SEE ALSO
as(l), ld(l), nm(l), strip(l).

- 4 -

I

ACCT(S) ACCT(S)

NAME
acct - per-process accounting file format

SYNOPSIS
{I include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form
defined by <sys/acct.h>, whose contents are:

1*
* Accounting structures
*/

typedef ushort comp_t;

struct acct
I

} ;

char
char
ushort
ushort
dev_t
time_t
comp_t
comp_t
comp_t
comp_t
comp_t
comp_t
char

extern struct
extern struct

ac_flag;
ac_stat;
ac_uid;
ac~d;
ac_tty;
ac_btime;
ac_utime;
ac_stime;
ac_etime;
ac_mem;
ac_io;
ac]w;
ac_comm[8];

acct
inode

IIdefine AFORK 01
II define ASU 02
II define ACCTF 0300

1* "floating point" * /
1* 13-bit fraction, 3-bit exponent */

1* accounting flag * /
1* exit status * /
1* accounting user ID * /
1* accounting group ID * /
1* control typewriter * /
1* beginning time * /
1* acctng user time in clock ticks * /
1* acctng system time in clock ticks * /
1* acctng elapsed time in clock ticks * /
1* memory usage * /
1* chars transferred * /
1* blocks read or written * /
1* command name */

acctbuf;
acctp; 1 inode of accounting file * /

1* has executed fork. but no exec */
1* used super-user privileges * /
1* record type: 00 = acct * /

In acJiag, the AFORK flag is turned on by each fork (2) and turned off by
an exec(2). The aC30mm field is inherited from the parent process and is
reset by any exec. Each time the system charges the process with a clock
tic~, it also adds to ac_mem the current process size. computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem/ac_stime can be viewed as an approximation to the
mean process size, as modified by text-sharing.

- 1 -

ACCT(S) ACCT(S)

The following structure represents the total accounting format used by the
various accounting commands:

r
* total accounting (for acct period), also for day
*/

struct tacct
uid_t
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

ta_uid; r userid * /
ta_name[8]; r login name */
ta_cpu[2]; r cum. cpu time, p/np (mins) */
ta_kcore[2]; r cum. kcore-millutes, p/np * /
ta_con[2]; r cum. conn. time, p/np, mins */
ta_du; r cum. disk usage • /
ta-pc; r count of processes • /
ta_sc; r count of login sessions • /
ta_dc; r count of disk samples * /
tajee; r fee for special services ./

};

SEE ALSO

BUGS

acct(lM), acctcom(l), acct(2).

The ac_mem .value for a short-lived command gives little information about
the actual size of the command, because ac_mem may be incremented while
a different command (e.g., the shell) is being executed by the process.

- 2 -

I

AR(S) AR(S)

NAME
ar - archive file format

DESCRIPTION
The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor
/d(l }.

A file produced by ar has a magic number at the start, followed by the con­
stituent files, each preceded by a file header. The magic number is
0177545(octal) (it was chosen to be unlikely to occur anywhere else). The
header of each file is 26 bytes long:

Idefine ARMAG 0177545
struct achdr {

};

char ar_name[l4];
long acdate;
char ar_uid;
char ar-Jid;
int ar_mode;
long arJize;

Each file begins on a word boundary; a null byte is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file
exclusive of padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO

BUGS

ar(l), arcv(l), ld(l).

The archive header structure is not compatible between the PDP-II and the
VAX-ll/780, due to the different word sizes. See 1UCV(1) to convert
between machines.

- 1 -

CHECKUST(S) CHECKLIST (S)

NAME
checklist - list of file systems processed by fsck

DESCIUPTION
Checklist resides in directory Jete: and contains a list of at most 15 special
file names. Each special file name is contained on a separate line and
corresponds to a file system. Each· file system will then be automatically
processed by thefsck(IM) command.

SEE ALSO
fsck(lM).

- I -

I

CORE(5) CORE(5)

NAME
core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various
errors occur. See signal(2) for the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-generated quit
signals. The core image is called core and is written in the process's work­
ing directory (provided it can be; normal access controls apply). A process
with an effective user ID different from the real user ID will not produce a
core image.

The first section of the core image is a copy of the system's per-user data
for the procesS, including the registers as they were at the time of the fault.
The size of this section depends on the parameter usize, which is defined in
jusr jincludejsysjparam.h. The remainder represents the actual contents
of the user's core area when the core image was written. If the text seg­
ment is read-only and shared, or separated from data space, it is not dum­
ped.

The format of the information in the first section is described by the user
structure of the system, defined in jusrjincludejsysjuser.h. The impor­
tant stuff not detailed therein is the locations of the registers, which are
outlined in jusr jincludejsysjreg.h.

SEE ALSO
adb(l), crash(lM), sdb(l), setuid(2), signal(2).

- 1 -

CPIO(5) CPIO(5)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure. when the c option is not used. is:
struct {

short

char
I Hdr;

h_magic.
h_dev.
h_ino.
h_mode.
h_uid.
hJid.
h_nlink.
h_rdev.
h_mtime[2].
h_namesize.
h_filesize[2] ;
h_name[h_namesize rounded to word];

When the c option is used. the header information is described by the sta­
tement below:

sscanf(Chdr. "%60%60%60%60%60%60%60%60% 1110%60%60%s" •
&Hdr .h_magic.&Hdr .h_dev .&Hdr.h_ino.&Hdr .h_mode.
&Hdr .h_uid.&Hdr .h....gid.&Hdr.h_nlink.&Hdr.h_rdev.
&Longtime.&Hdr.h_namesize.&Longfile.Hdr.h_name);

Longtime and LongfUe are equivalent to Hdr.h_mtime and Hdr.hJilesize.
respectively. The contents of each file is recorded in an element of the
array of varying length structures. archive. together with other items descri­
bing the file. Every instance of h_magic contains the constant 070707
(octal). The items h_dev through h-'ntime have meanings explained in
stat(2). The length of the null-terminated path name h_"ame. including
the null byte. is given by h_Mmesize.

The last record of the archive always contains the name TRAILER!!!. Special
files. directories. and the trailer are recorded with h..Jilesize equal to zero.

SEE ALSO
cpio(1). find(I). stat(2).

- 1 -

I

DIR(S) DIR(S)

NAME
dir - format of directories

SYNOPSIS
inelude <sys/dir .h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a bit
in the flag word of its i-node entry (see /s(5». The structure of a directory
entry as given in the include file is:

II ifndef DIRSIZ
IIdefine DIRSIZ 14
lIendif
struct direct
{

ino_t d_ino;
char d_name[DIRSIZ);

};

By convention, the first two entries in each directory are for. and ••. The
first is an entry for the directory itself. The second is for the parent direc­
tory. The meaning of •• is modified for the root directory of the master file
system; there is no parent, so •• has the same meaning as •.

SEE ALSO
fs(5).

- I -

DUMP(S) DUMP(S)

NAME
dump - incremental dump tape format

DESCRIPTION
The dump and restor commands are used to write and read incremental
dump magnetic tapes.

The dump tape consists of a header record. some bit mask records. a group
of records describing file system directories. a group of records describing
file system files. and some records describing a second bit mask.

The header record and the first record of each description have the format
described by t!-e structure included by

II include <dumprestor.h>

This include file has the following contents:

II define NTREC
II define MLEN
II define MSIZ

II define TS_TAPE
II define TS_INODE
II define TS_BITS
II define TS_ADDR
II define TS_END

20
16
4096

1
2
3
4
5

II define TS_CLRI
II define MAGIC
II define CHECKSUM
struct spel

6
(int)60011
(int) 84446

{

} spel;

int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t c_inumber;
int c_magic;
int c_checksum;
struct din ode c_dinode;
int c_count;
char c,Jlddr[BSIZE);

struct idates
{

char id_name[l6);
char id_incno;
time_t id_ddate;

};

NTREC is the number of 512 byte blocks in a physical tape record. MLEN is
the number of bits in a bit map word. MSIZ is the number of bit map
words.

The TS_ entries are used in the c.JYpe field to indicate what sort of head.-

- 1 -

I

DUMP(S) DUMP(S)

this is. The types and their meanings are as follows:

TS3YPE Tape volume label

TS_INODE A file or directory follows. The c_dinode field is a copy of the
disk inode and contains bits telling what sort of file this is.

MAGIC

CHECKSUM

A bit mask follows. This bit mask has a one bit for each
inode that was dumped.

A subblock to a file (TSjNODE). See the description of
c_count below.

End of tape record.

A bit mask follows. This bit mask contains a one bit for all
in odes that were empty on the file system when dumped.

All header blocks have this number in c_magic.

Header blocks checksum to this value.

The fields of the header structure are as follows:

ctype The type of the header.

The date the dump was taken.

The date the file system was dumped from.

The current volume number of the dump.

The current block number of this record. This is counting
512 byte blocks.

c_inumber The number of the inode being dumped if this is of type
TSjNODE.

c_magic This contains the value MAGIC above, truncated as needed.

c_cbecksum This contains whatever value is needed to make the block
sum to CHECKSUM.

This is a copy of the inode as it appears on the file system.

This is the count of characters following that describe the
file. A character is zero if the block associated with that
character was not present on the file system, otherwise the
character is non-zero. If the block was not present on the
file system no block was dumped and it is replaced as a hole
in the file. If there is not sufficient space in this block to
describe all of the blocks in a file, TS_ADDR blocks will be
scattered through the file, each one picking up where the last'
left off.

c_addr This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of file).
The last volume ends with a TS..,.END block and then the tape mark.

The structure idates describes an entry of the file where dump history is
kept.

SEE ALSO
dump(1M), restor(lM), fs(5).

- 2 •

ERRFILE(S) ERRFILE(S)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record is gen­
erated and passed to the error-logging daemon for recording in the error log
for later analysis. The default error log is /usr /adm/errfile.

The format of an error record depends on the type of error that was
encountered. Every record, however, has a header with the following for­
mat:

struct errhdr {
int

};

e_type;
e_len;
e_time;

/* record type *1
1* bytes in record (inc hdr) */
1* time of day *1

The permissible record types are as follows:

define E_GOlS 010 /* Start for UNIX 3.0*1
define E_GORT 011 1* Start for UNIX/RT *1
#define E_STOP 012 1* Stop */
#define E_TCHG 013 1* Time change *1
#define E_CCHG 014 /* Configuration change */
define E_BLK 020 1* Block device error *1
define E_STRA Y 030 1* Stray interrupt *1
define E_PRTY 031 1* Memory parity *1

Some records in the error file are of an administrative nature. These
include the startup record that is entered into the file when logging ;5
activated, the stop record that is written if the daemon is terminated "gra­
cefully", and the time-change record that is used to account for changes in
the system's time-of-day. These records have the following formats:

struct estart {
struct errhdr e_hdr; 1* record header *1
int e_cpu; 1* CPU type *1
int e_mmr3; 1* contents mem mgmt reg 3 *1
long e_syssize; 1* 11/70 system memory size *1
int e_bconf; 1* block dev configuration *1

};

struct eend {
struct errhdr e_hdr; 1* record header *1

};

struct etimchg {
struct errhdr e_hdr; 1* record header *1
time_t e_ntime; 1* new time *1

};

Stray interrupts cause a record with the following format to be logged in the
file:

struct estray {
struct errhdr
physadr
int

};

e_hdr;
e_saddr;
e_sbacty;

- 1 -

1* record header *1
1* stray loc or device addr *1
1* active block devices */

I

ERRFlLE(S) ERRFlLE(S)

Memory subsystem error on 11/70 processors cause the following record to
be generated:

struct eparity {
struct errhdr e_hdr; 1* record header *1
int e_parreg[4]; 1* memory subsys registers *1

};

Error records for block devices have the following format:

struct eblock {
struct errhdr
dev_t
physadr

};

int
struct iostat {

long
long
unsigned

int
int
daddr_t
unsigned
long
unsign~d
int

e_hdr;
e_dev;
e_regloc;
e_bacty;

io_ops;
io_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e_bnum;
e_bytes;
e_memadd;

1* record header *1
1* "true" major + minor dev no *1
1* controller address *1
1* other block 1/0 activity *1

1* number read/writes *1
1* number "other" operations *1
1* number unlogged errors *1

1* read/write, error, etc *1
1* logicai dev start cyl *1
1* logical block number *1
1* number bytes to transfer *1
1* buffer memory address *1
1* number retries *1
1* number device registers *1

The following values are used in the e_bflags word:

II define E_ WRITE 0 1* write operation *1
II define E_READ 1 1* read operation *1
II define E_NOIO 02 1* no 1/0 pending *1
II define E_PHYS 04 1* physical 1/0 *1
IIdefine E_MAP 010 1* Unibus map in use *1
II define E_ERROR 020 1* 1/0 failed *1

The "true" major device numbers that identify the failing device are as fol­
lows:

II define RKO
II define RPO
II define RFO
II define TMO
II define TeO
II define HPO
tldefine HTO
II define HSO

SEE ALSO
errdemon(lM).

o
1
2
3
4
5
6
7

- 2 -

FS(S) FS(S) .

NAME
file system - format of system volume

SYNOPSIS
., include <sys/filsys.h>
., include <sys/types.h>
., include <sys/paralll.h>

DESCRIPTION
Every file system storage volume (e.g., RP04 disk) has a common format
for certain vital information. Every such volume is divided into a ~rtain
number of 256 word (512 byte) blocks. Block 0 is unused and is available
to contain a bootstrap program or other information.

Block 1 is the super-block. Starting from its first word, the format of a
super-block is:

/*
* Structure of the super-block
*/

struct filsys
{

};

ushort
daddct
short
daddct
short
ino:.,J
char
char
char
char·
time~t
short
daddU·
ino_t
char
char

s_isize;
s_fsize;
s_nfree;
s_free[NICFREE);
s_ninode;
s_inode[NICINOD) ;
s_flock;
s_ilock;
s_fmod;
s_ronly;
s_time;
s_dinfo[4);
s_tfree;
s_tinode;
s_fname[6);
s3pack[6);

/* size in blocks of i-list * /
/* size in blocks of entire volume * /
/* number of addresses in s_free * /
1* free block list * /
1* number of i-nodes in s_inode * / r free i-node list -/ r lock during free list manipUlation - /
/- lock during i-list manipUlation -/
/* super block modified flag - /

. 1* mounted read-only flag -/
/- last super block update - /
1* device information - / r total free blocks-/ r total free inodes - / r file system name -/ r file system pack name -/

S_isize is the address of the first data block after th.e i-list; the i-list starts
just after the super-block, namely in block 2; thus the i-list is s.,jsize-2
blocks long. SJsize is the first block not potentially available for allocation
to a file. These numbers are used by the system to check for bad block
numbers; if an "impossible" block number is allocated from the free list or
is freed, a diagnostic is written on the on-line console. Moreover, the free
array is cleared, so as to prevent further allocation from a presumably cor­
rupted free list.

The free list for each volume is maintained as follows. The sJree array
contains, in sJree[1), ... , sJree[sJlfree-I]' up to 49 numbers of free
blocks. SJree[O) is the block number of the head of a chain of blocks con­
stituting the free list. The first long in each free-chain block is the number
(up to 50) of free-block numbers listed in the next 50 longs of this chain
member. The first of these 50 blocks is the link to the next member of the
chain. To allocate a block: decrement s_nfree, and the new block is
sJree[s_'!free). If the new block number is 0, there are no blocks left, so
give an error. If s_nfree became 0, read in the block named by the new
block number, replace s_nfree by its first word, and copy the block numbers
in the next 50 longs into the sJree array. To free a block, check if s_'!free

- I -

I

FS(S)

FILF.S

FS(S)

is 50; if so, copy s_nfree and the sJree array into it, write it out, and set
s_nfree to O. In any event set sJree[s_nfree] to the freed block's number
and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the. s_inode array. To allocate
an i-node: if s_ninode is greater than 0, decrement it and return
s_inode [s_ninode). If it was 0, read the i-list and place the numbers of all
free inodes (up to 100) into the s.Jnode array, then try again. To free an
i-node, provided s_ninode is less than 100, place its number into
s_inode[s_ninode) and increment s_ninode. If s_ninode is already 100, do
not bother to enter the freed i-node into any table. This list of i-nodes is
only to speed up the allocation process; the information as to whether the
inode is really free or not is maintained in the inode itself.

Sjinode is the total free inodes available in the file system. ,
s.Jlock and s_i1ock are flags maintained in the core copy of the file system
while it is mounted and their values on disk are immaterial. The value of
sJmod on disk is likewise immaterial; it is used as a flag to indicate that the
super-block has changed and should be copied to the disk during the next
periodic update of file system information.

SJon/y is a read-only flag to indicate write-protection.

Sjime is the last time the super-block of the file system was changed, and
is a double-precision representation of the number of seconds that have
elapsed since 00:00 Jan. I, 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the system's idea of the
time.

SJname is the name of the file system and sJpack is the name of the pack.

I-numbers begin at I, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long, so 8 of them fit into a block. Therefore, i-node i
is located in block (;+15)/8, and begins 64X((j+15) (mod 8» bytes from
its start. I-node I is reserved for future use. I-node 2 is reserved for the
root directory of the file system, but no other i-number has a built-in
meaning. Each i-node represents one file. For the format of an inode and
its flags, see inode(5).

/usr /include/ sys /filsys.h
/usr/include/sys/stat.h

SEE. ALSO
fsck(IM), fsdb(IM), mkfs(lM). inode(5).

- 2 -

FSPEC(S) FSPEC(S)

NAME
fspec - format specification in text files

DESCR.IPTION
It is sometimes convenient to maintain text files on UNIX with non­
standard tabs, (i.e., tabs which are not set at every eighth column). Such
files must generally be converted to a standard format, frequently by repla­
cing all tabs with the appropriate number of spaces, before they can be pro­
cessed by UNIX commands. A format specification occurring in. the first
line of a text file specifies how tabs are to be expanded in the remainder of
the file. .

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>. Each parameter con­
sists of a keyletter, possibly followed immediately by a value. The fol­
lowing parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The
value of tabs must be one of the following:

I. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a - followed immediately by an integer n, indicating tabs
at intervals of n columns;

3. a - followed by the name of a "canned" tab
specification.

Standard tabs are specified by t-8, or equivalently,
tl,9,17,15,etc. The canned tabs which are recognized are
(iefinedby the tabs(l) command.

ssize,The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after tabs
have been expanded, but before the margin is {)repended .

• mmargin The m parameter specifies a number of spaces to be prepended
to each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the
line containing the format specificati.on is to be deleted from
the converted file.

e The e parameter takes no value. ,Its presence indicates that the
current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8
and mO. If the s parameter is not specified, no size checking is performed.
If the first line of a file does not contain a format specification, the above
defaults are assumed for the entire file. The following is an example of a
line containing a format specification:

• <:t5,IO,15 s72:> •

If a format specification can be disguised as a comment, it is not necessary
to code the d parameter.

Several UNIX commands correctly interp-:et the format specification for a
file. Among them is gath (see send(lC» which may be used to convert
files to a standard format acceptable to other UNIX commands.

SEE ALSO
ed(I); reform(l), send(IC), tabs(l).

- I -

I

GPS(S) GPS(S)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines have been
developed to edit and display GPS files on various devices. Also, higher
level graphics programs such as plot (in stat(lG» and Vloe (in toe(1G»
produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
liaes The lines primitive has a variable number of points from which

zero or more connected line segments are produced. The first
point given produces a move to that location. (A move is a relo­
cation of the graphic cursor without drawing.) Successive points
produce line segments from the previous point. Parameters are
available to set colOf', weight, and style (see below).

arc The arc primitive has a variable number of points to which a
curve is fit. The first point produces a move to that point. If
only two points are included a line connecting the points will
result, if three points a circular arc through the points is drawn,
and if more than three, lines connect the points. (In the future,
a spline will be fit to the points if they number greater than
three.) Parameters are available to set color, weight, and style.

text The text primitive draws characters. It requires a single point
which locates the center of the first character to be drawn.
Parameters are colOf', font, textsize, and textangie.

hardware The hardware primitive draws hardware characters or gives con­
trol commands to a hardware device. A single point locates the
beginning location of the hardware string.

CODlDleDt A comment is an integer string that is included in a GPS file but
causes nothing to be displayed. All GPS files begin with a com­
ment of zero length.

GPS PARAMETERS
color ColOI' is an integer value set for arc, lines, and text primitives.

weight Weight is an integer value set for arc and lines primitives to indi­
cate line thickness. The value 0 is narrow weight, 1 is bold,
and 1 is medium weight.

style Style is an integer value set for lines and arc primitives to give
one of the five different line styles that can be drawn on Tek-
tronix 4010 series storage tubes. They are:

o solid
1 dotted
1 dot dashed
3 dashed
4 long dashed

fODt An integer value set for text primitives to designate the text font
to be used in drawing a character string. (Currently font is
expressed as a four-bit weight value followed by a four-bit style
value.)

textsize Textsize is an integer value used in text primitives to express the
size of the characters to be drawn. Textsize represents the height
of characters in absolute universe-units and is stored at one-fifth

- I -

GPS{S) GPS(S)

this value in the size-orientation (so) word (see below).

textangle Textangle is a signed integer value used in text primitives to
express rotation of the character string around the beginning
point. Textangle is expressed in degrees from the positive x-axis
and can be a positive or negative value. It is stored in the size­
orientation (so) word as a value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines
arc
text
hardware
comment

cw

point(s)

sw

so

string

cw points sw
cw points sw
cw point sw so [string]
cw point [string]
cw [string]

Cw is the control word and begins all primitives. It consists of
four bits that contain a primitive-type code and twelve bits that
contain the word-count for that primitive.

Point(s) is one or more pairs of integer coordinates. Text and
hardware primitives only require a single point. Point(s) are
values within a Cartesian plane or universe having 64K (- 32K
to + 32K) points on each axis.

Sw is the style-word and is used in lines, arc, and text primitives.
The first eight bits contain color information. In arc and lines
the last eight bits are divided as four bits weight and four bits
style. In the text primitive the last eight bits of sw contain the
font.

So is the size-orientation word used in text primitives. The first
eight bits contain text size and the remaining eight bits contain
text rotation.

String is a null-terminated character string. If the string does not
end on a word boundary an additional null is added to the GPS
file to insure word-boundary alignment.

SEE ALSO
graphics(lG).

- 2 -

I

GROUP(S) GROUP(S)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all user allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.

This file resides in directory fete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical group ID's to names.

/etc/group

SEE ALSO
newgrp(1), passwd(1), crypt(3C), passwd(5).

- 1 -

INITIAB(5) INITIAB(5)

NAME
inittab - control information for init

DESCRIPTION

FILES

When a state is entered, init reads the file /etc/inittab. Lines in this file
have the format:

state:id:ftags :command

All lines in which the state field match init's current state are recognized. If
a process is active under the same two character id as a recognized line, it
may be terminated (signal 15), killed (signal 9), or both by including the
flags t and k in the order desired. The signal is sent to all processes in the
process group associated with the id. The command field is saved for later
execution. The flag c requires the command to be continuously reinvoked
whenever the process with that id dies. Otherwise the command is invoked
a maximum of one time in the current state.

/ etc/inittab

- 1 -

I

INODE(S)

NAME
inode - format of an inode

SYNOPSIS
I include <sys/types.h>
, include <sys/ino.h>

DESCRIPTION

INODE(S)

An i-node for a plain file or directory in a file system has the following
structure defined by <sys/ino.h>.

FILES

1* Inode structure as it appears on a disk block. *1
struct din ode
{

ushort dCmode;
short
ushort
ushort
olet
char
time_t
time_t
time_t

dCnlink;
di_uid;
di...gid;
di_size;
dCaddr[40];
di_atime;
di_mtime;
dCctime;

};
1*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*1

1* mode and type of file *1
1* number of links to file *1
1* owner's user id *1
/* owner's group id *1
1* number of bytes in file *1
1* disk block addresses *1
1* time last accessed *1
1* time last modified *1
1* time created *1

For the meaning of the defined types olL' and time_, see types(7).

lusr linclude/sys lino.h

SEE ALSO
stat(2), fs(5), types(7).

- 1 -

MASTER (5) MASTER(5)

NAME
master - master device information table

DESCRIPTION
This file is used by the config(lM) program to obtain device information
that enables it to generate the configuration files. The file consists of 3
parts, each separated by a line with a dollar sign ($) in column 1. Part I
contains device information; part 2 contains names of devices that have
aliases; part 3 contains tunable parameter information. Any line with an
asterisk (.) in column I is treated as a comment.

Part 1 contains lines consisting of at least 10 fields and at most 13 fields
with the fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: interrupt vector size (decimal, in bytes).
Field 3: device mask (octal)-each "on" bit indicates that the

Field 4:

Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

handler exists:
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

device type indicator (octal):
000200 allow only one of these devices
000100 suppress count field in the eonf.e file
000040 suppress interrupt vector
000020 required device
0000 I 0 block device
000004 character device
000002 floating vector
000001 fixed vector.

handler prefix (4 chars. maximum).
device address size (decimal).
major device number for block-type device.
major device number for character-type device.
maximum number of devices per controller
(decimal).

Field 10: maximum bus request level (4 through 7).
Fields 11-13: optional configuration table structure declarations (8

chars. maximum).

Part 2 contains lines with 2 fields each:

Field 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum;

specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20
chars. maximum)

Field 2: parameter name (as it appears in the eonf.e file; 20
chars. maximum)

Field 3: default parameter value (20 chars. maximum;
parameter specification is required if this field is
omitted)

- 1 -

I

MASTER(S) MASTER(S)

Devices that are not interrupt-driven have an interrupt vector size of zero.
The 040 bit in Field 4 causes config(I M) to record the interrupt vector
although the low.s (univee.c on the VAX-II /780) file will show no inter­
rupt vector assignment at those locations (interrupts here will be treated as
strays).

SEE ALSO
config(IM).

- 2 -

MNTIAB(S) MNTIAB(S)

NAME
mnttab - mounted file system table

SYNOPSIS
struet mnttab {

};

DESCRIPTION

char mCdev(lO);
char mCfilsys(lO);
short mcro_ftg;
time_t mCtime;

Mnnab resides in directory /etc and contains a table of devices mounted by
the mount(lM) command.

Each entry is 26 bytes in length; the first 10 bytes are the null-padded name
of the place where the special file is mounted; the next 10 bytes represent
the null-padded root name of the mounted special file; the remaining 6
bytes contain the mounted special file's read/write permissions and the date
on which it was mounted.

The maximum number of entries in mnnab is based on the system
parameter NMOUNT located in /lIsr/src/uts/cf/conf.c, which defines the
number of allowable mounted special files.

SEE ALSO
mount(lM).

- 1 -

PASSWD(S) PASSWD(S)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
Gees job number, box number, optional Geos user ID
initial working directory
program to use as Shell

This is an ASCD file. Each field within each user's entry is separated from
the next by a colon. The Gees field it used only when communicating
with that system, and in other installations can contain any desired infor­
mation. Each user is separated from the next by a new-line. If the
password field is null, no password is demanded; if the Shell field is null,
the Shell itself is used.

This file resides in directory lete. Because of the encrypted passwords, it
can and does have general read permission and can be used, for example,
to map numerical user ID's to names.

The encrypted password consists of 13 characters chosen from a 64 charac­
ter alphabet (., 1,0-9, A-Z, a-z), except when the password is null in
which case the encrypted password is also null. Password aging is effected
for a particular user if his encrypted password in the password file is fol­
lowed by a comma and a non-null string of characters from the above
alphabet. (Such a string must be introduced in the first instance by the
super-user.) The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who attempts to
login after his password has expired will be forced to supply a new one.
The next character, m say, denotes the minimum period in weeks which
must expire before the password may be changed. The remaining characters
define the week (counted from the beginning of 1970) when the password
was last changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63. If m = M - 0 (derived from the
string. or ••) the user will be forced to change his password the next time
he logs in (and the "age" will disappear from his entry in the password
file). If m > M (signified, e.g., by the string .f) only the super-user will be
able to change the password.

letc/passwd

SEE ALSO
login(l), passwd(l), a64I(3C), crypt(3C), getpwent(3C), group(5).

- 1 -

PLOT(S) PLOT(S)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X) and are
interpreted for various devices by commands described in tplot(lG). A gra­
phics file is a stream of plotting instructions. Each instruction consists of
an ASCII letter usually followed by bytes of binary information. The
instructions are executed in order. A point is designated by four bytes
representing the x and y values; each value is a signed integer. The last
designated point in an I, m, a, or p instruction becomes the "current
J>oint" for the next instruction.

Each of the following descriptions begins with the name of the correspon­
ding routine in plot(3X).

m move: The next four bytes give a new current point.

a cont: Draw a line from the current point to the point given by the next
four bytes. See tplot(lG).

p point: Plot the point given by the next four bytes.

I line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t label: Place the following ASCII string so that its first character falls on
the current point. The string is terminated by a new-line.

e erase: Start another frame of output.

I linemod: Take the following string, up to a new-line, as the style for
drawing further lines. The styles are "dotted", "solid", "longdashed",
"shortdashed", and "dotdashed". Effective only for the -T4014 and
-TYer options of tplot(lG) (Tektronix 4014 terminal and Versatec: plot­
ter).

5 space: The next four bytes give the lower left comer of the plotting
area; the following four give the upper right comer. The plot wiD be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear
below for devices supported by the filters of tplot(lG). The upper limit is
just outside the plotting area. In every case the plotting area is taken to be
square; points outside may be displayabJeon devices whose face is not
square.

SEE ALSO

DASI300
DASI300s
DASI450
Tektronix 4014
Versatec plotter

space(O, 4096, 0, 4096);
space(O, 4096, 0, 4096);
space(O, 4096, 0, 4096);
space(O, 3120,0, 3120);
space(O, 2048, 0, 2048);

graph(1G), tplot(1G), plot(3X), gps(5), term(7).

- 1 -

PNCH(S) PNCH(S)

NAME
pnch - file format for card images

DESCRJPTION
The PNCH format is a convenient representation for files consisting of card
images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card record con­
sists of a single control byte followed by a variable number of data bytes.
The control byte specifies the number (which must lie in the range 0-80) of
data bytes that follow. The data bytes are 8-bit codes that constitute the
card image. If there are fewer than 80 data bytes, it is understood that the
remainder of the card image consists of trailing blanks.

- I -

PROFILE (S) PROFILE (S)

NAME
profile - setting up an environment at login time

DESCRlPTION

FILES

If your login directory contains a file named .profile, that file will be execu­
ted (via the shell's exec .profile) before your session begins; .profiles are
handy for setting exported environment variables and terminal modes. If
the file /ete/profile exists, it will be executed for every user before the
.profile. The following example is typical (except for the comments):

., Make some environment variables global
export MAIL PATH TERM
., Set file creation mask
umask 22
., Tell me when new mail comes in
MAIL /usr/mail/myname
Add my /bin directory to the shell search sequence
PATH=5PA TH:5HOME/bin
I Set terminal type
echo "terminal: \c'
read TERM
case 5TERM in

300)
300s)
450)

esac

hp)
7451735)
43)
40141tek)
.)

SHOME/ .profile
/ete/profile

stty cr2 nlO tabs; tabs;;
stty cr2 010 tabs; tabs;;
stty cr2 010 tabs; tabs;;
stty crO nlO tabs; tabs;;
stty crl nll -tabs; TERM-745;;
stty crl 010 -tabs;;
stty crO nlO -tabs trl; TERM-4014; echo "\33;-;;
echo "STERM unknown";;

SEE ALSO
env(l), login(l), mail(l), sh(l), stty(l), su(l), environ(7), term(7).

- 1 -

SCCSFlLE (S) SCCSFlLE (S)

NAME
sccsfile - format of sces file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum,
the delta table (contains information about each delta), user names (con­
tains login names and/or numerical group IDs of users who may add del­
tas), flags (contains definitions of internal keywords), comments (contains
arbitrary descriptive information about the file), and the body (contains the
actual text lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH
(start of heading) character (octal 001). This character is hereafter referred
to as the control character and will be represented graphically as @' Any
line described below which is not depicted as beginning with the control
character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between
00000 and 99999).

Each logical part of an sces file is described in detail below.

Checksum
The checksum is the first line of an sces file. The form of the line
is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h provides a magic number of (octal)
064001.

Delta table
The delta table consists of a variable number of entries of the form:

@S DDDDD/DDDDD/DDDDD
@d <type> <sces 10> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD •••
@x DDDDD •••
@gDDDDD •••
@m <MR number>

@c <comments> •••

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i. @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

- 1 -

$CCSFlLE (S) SCCSFlLE (S)

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User names

Flags

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con­
taining these login names and/or numerical group IDs are surroun.
ded by the bracketing lines @u and @U. An empty list allows
IInyone to make a delta.

Keywords used internally (see admin(l) for more information on
their use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@f v <program name>
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj

<module name>
<floor>
<ceiling>
<default-sid>

@f I <lock-releases>
@f q <user defined>

The t flag defines the replacement for the 'lIY'lI identification
keyword. The, flag controls prompting for MR numbers in addi­
tion to comments; if the optional text is present it defines an MR
number validity checking program. The i flag controls the
warning/error aspect of the "No id keywords" message. When the
i flag is not present, this message is only a warning; when the i l)ag
is present, this message will cause a "fatal" error (the file will not
be gotten, or the delta will not be made). When the b flag is
present the -b keyletter may be used on the get command to cause
a branch in the delta tree. The m flag defines the first choice for
the replacement text of the 'lIM'lI identification keyword. The f flag
defines the "floor" release; the release below which no deltas may
be added. The c flag defines the "ceiling" release; the release
above which no deltas may be added. The d flag defines the default
SID to be used when none is spccified on a get command. The D

flag causes delta to insert a "null" delta (a delta that applies no
changes) in those releases that are skipped when a delta is made in
a new release (e.g., when delta 5.1 is made after delta 2.7, releases
3 and 4 are skipped). The absence of the D flag causes skipped
releases to be completely empty. The j flag causes get to allow con­
current edits of the same base SID. The I flag defines a list of
releases that are locked against editing (get(l) with the -e keylct­
ter). The q flag defines the replacement for the 'lIQ'lI identification
keyword.

- 2 -

I

SCCSFlLE(S) SCCSFlLE(S)

Comments

Body

SEE ALSO

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's
purpose.

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to
the delta for the control line.

admin(l), delta(l), get(l), prs(l).
Source Code Control System User's Guide by L. E. Bonanni and C. A.
Salemi.

- 3 -

TP(S) TP(S)

NAME
tp - magnetic tape format

DESCRIPTION
The command tp(1) dumps files to and extracts files from magtape.

Block zero contains a copy of a stand-alone bootstrap program; sec tape­
boot(8).

Blocks 1 through 62 contain a directory of the tape. There are 496 entries
in the directory; 8 entries per block; 64 bytes per entry. Each entry has the
following format:

struct tpent {
char pathnam[32];
short mode;
char uid;
char uid;
char gid;
char spare;
char sizeO;
short size2;
long time;
short tapea; /* tape address */
short unused[8];
short cksum; /* check sum */

The pathnam entry is the path name of the file when put on the tape. If
the path name starts with a zero word, the entry is empty. It is at most 32
bytes long and ends in a null byte. Mode, uid, gill, the sizes and time
modified are the same as described under i-nodes (fs(5». The tape address
is the tape block number of the start of the contents of the file. Every file
starts on a block boundary. The file occupies (size+51l)/512 blocks of
continuous tape. The checksum entry bas a value such that the sum of the
32 words of the directory entry is zero.

Blocks 63 on arc available for file storage.

A fake entry has a size of zero. Sec 'P(l).

SEE ALSO
cpio(l). tp(l), fs(5), tapeboot(8).

- 1 -

I

UTMP(S) UTMP(S)

NAME
utmp, wtmp - utmp and wtmp entry format

DESClUPTION

FILES

The files utmp and wtmp hold user and accounting information for usc by
commands such as who(l), acctconl (sec acctcon(lM», and login(l).
They have the following structure, as defined by <utmp.II>:

struct utmp
{

};

char
char
long

/etc/utmp
/usr/adm/wtmp
/usr/include/utmp.h

uUine[8];
uCname[8];
uCtime;

/* tty name */
/* login name */
/* time on */

SEE ALSO
acctcon(lM), login(l), who(l), write(l).

- 1 -

INTR.O(6) INTRO(6)

NAME
intro - introduction to games

DFSCRIPTION
This section describes the recreational and educational programs found in
the directory /usr/games. The availability of these programs may vary
from system to system. A suggested procedure is to disallow their use
during business hours by means of cTon(lM).

- 1 -

I

ARITHMBTIC(6) ARITHMETIC (6)

NAMB
arithmetic - provide drill in number facts

SYNOPSIS
/usr/pmes/arithmetic [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to
be typed in. If the answer is correct, it types back "Right!", and a new
problem. If the answer is wrong, it replies "What?", and waits for another
answer. Every twenty problems, it publishes statistics on correctness and
the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be genera­
ted; +, -, x, and / respectively cause addition, subtraction, multiplication,
and division problems to be generated. One or more characters can be
given; if more than one is given, the different types of problems will be
mixed in random order; default is + -.
Range is a decimal number; all addends, subtrahends, differences, multipli­
cands, divisors, and quotients will be less than or equal to the value of
range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matter of educational philosophy, the program will not give correct
answers, since the learner should, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the first
learning stage, not to teach number facts tk novo. For almost all users, the
relevant statistic should be time per problem, not percent correct.

- 1 -

BACK(6) BACK(6)

NAME
back - the game of backgammon

SYNOPSIS
/usr/galnes/back

DFSCIUPTION

FlLFS

BUGS

Back is a program which provides a partner for the game of backgammon.
It is designed to play at three different levels of skill, one of which you
must select. In addition to selecting the opponent's level, you may also
indicate that you would like to roll your own dice during your turns (for the
superstitious players). You will also be given the opportunity to move first.
The practice of each player rolling one die fo: the first move is not incor­
porated.

The points are numbered 1-24, with 1 being white's extreme inner table,
24 being brown's inner table, 0 being the bar for removed white pieces and
25 the bar for brown. For details on how moves are expressed, type y
when back asks "Instructions?" at the beginning of the game. When back
first asks "Move?", type ! to see a list of move options other than enter­
ing your numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back.log in
the current directory.

/usr/games/lib/backrules
/tmp/~
back.log

rules file
log temp file
log file

The only lev~l really worth playing is "expert", and it only plays the
forward game.
Back will complain loudly if you attempt to make too mallY moves in a
turn, but will become very silent if you make too few.
Doubling is not implemented.

- 1 -

BJ(6) BJ(6)

NAME
bj - the game of black jack

SYNOPSIS
lusr 19aDles/bj

DESCRIPTION
Bj is a serious attempt at simulating the dealer in the game of black jack (or
twenty-one) as might be found in Reno. The following rules apply:

The bet is $2 every hand.

A player "natural" (black jack) pays $3. A dealer natural loses $2.
Both dealer and player naturals is a "push" (no money exchange).

If the dealer has an ace up, the player is allowed to make an
"insurance" bet against the chance of a dealer natural. If this bet is
not taken, play resumes as normal. If the bet is taken, it is a side bet
where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.

If the player is dealt two cards of the same value, he is allowed to
"double". He is allowed to play two hands, each with one of these
cards. (The bet is doubled also; $2 on each hand.)

If a dealt hand has a total of ten or eleven, the player may "double
down". He may double the bet (52 to 54) and receive exactly one
more card on that hand.

Under normal play, the player may "hit" (draw a card) as long as his
to~l is not over twenty-one. If the player "busts" (goes over
twenty-one), the dealer wins the bet.

When the player "stands" (decides not to hit), the dealer hits until
he attains a total of seventeen or more. If the dealer busts, the player
wins the bet.

If both player and dealer stand, the one with the largest total wins. A
tie is a push.

The machine deals and keeps score. The following questions will be asked
at appropriate times. Each question is answered by y followed by a new­
line for "yes", or just new-line for "no".

? (means, "do you want a hit?")
Insurance?
Double down?

Every time the deck is shumed, the dealer so states and the "action" (total
bet) and "standing" (total won or lost) is printed. To exit, hit the inter­
rupt key (DEL) and the action and standing will be printed.

- 1 -

CHESS(6) (PDP-ll oaly) CHI!SS(6)

NAME
chess - the game of chess

SYNOPSIS
/usr /games/cbess

DESCRIPTION

FILES

Chess is a computer program that plays class D chess. Moves may be given
either in standard (descriptive) notation or in algebraic notation. The sym­
bol + must be placed at the end of a line when the move on that line pla­
ces the opponent's king in check. eM) and o-CM» specify castling, king side
or queen side, respectively.

The user is prompted for a move or command by a *. To play black, type
first at the onset of the game. To print a copy of the board in play, type a
carriage return only. Each move is echoed in the appropriate notation, fol­
lowed by the program's reply. Near the middle and end games, the pro­
gram can take considerable time in computing its moves.

A ? or belp may be typed to get a help message that briefly describes the
possible commands.

Execute /usr/games/cbessrules for further explanation.

/usr /lib/book
/usr/games/chessrules

opening "book"
executable "rules" file

DIAGNOSTICS

BUGS

The most cryptic diagnostic is "eh?" which means that the input was syn­
tactically incorrect.

Pawns may be promoted only to queens.

- I -

I

I

CRAPS(6) CRAPS(6)

NAME
craps - the game of craps

SYNOPSIS
/usr/games/craps

DESCRIPTION
Craps is a form of the game of craps that is played in Las Vegas. The pro­
gram simulates the roller, while the user (the player) places bets. The
player may choose, at any time, to bet with the roller or with the House. A
bet of a negative amount is taken as a bet with the House, any other bet is
a bet with the roller.

The player starts off with a "bankroll" of $2,000.

The program prompts with:

bet?

The bet can be all or part of the player's bankroll. Any bet over the total
bankroll is rejected and the program prompts with "bet?" until a proper bet
is made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed with
the roller or with the House; the odds are even). The first roll is the roll
immediately following a bet.

1. On the first roll:

7 or 11 wins for the roller;

2, 3, or 12 wins for the House;

any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:

point roller wins;

7 House wins;

any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the player
an additional $2,000. The program will prompt:

marker?

A "yes" (or "y") consummates the loan. Any other reply terminates the
game.

If a player owes the House money, the House reminds the player, before a
bet is placed, how many markers are outstanding.

If, at any time, the bankroll of a player who has outstanding markers
exceeds $2,000, the House asks:

Repay marker?

A reply of "yes" (or "y") indicates the player's willingness to repay the
loan. If only 1 marker is outstanding, it is immediately repaid. However, if
more than 1 marker are outstanding, the House asks:

How many?

markers the player would like to repay. If an invalid number is entered (or
jus~ a carriage return), an appropriate message is printed and the program

- 1 -

CRAPS(6) CRAPS(6)

will prompt with "How many?" until a valid number is entered.

If a player accumulates 10 markers (a total of 520,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed
550,000, the total amount of money borrowed will be automaticaUy repaid
to the House.

Any player who accumulates 5100,000 or more breaks the bank. The pro­
gram then prompts:

New game!

to give the House a chance to win back its money.

Any reply other than "yes" is considered "no" (except in the case of
"bet?" or "How many?"). To exit, send an interrupt (break), DEL, or
control-D. The program will indicate whether the player won, lost, or
broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds from
the time of day. Depending on system usage, these numbers, at times,
may seem strange but occurrences of this type in a real dice situation are
not uncommon.

- 2 -

I

HANGMAN(6)

NAME
hangman - guess the word

SYNOPSIS
/usr/games/haagmaa [arg]

DESCRIPTION

HANGMAN(6)

Hangman chooses a word at least seven letters long from a dictionary. The
user is to guess letters one at a time.

The optional argument arg names an alternate dictionary.

FILES
/usr/lib/w2006

BUGS
Hyphenated compounds are run together.

- 1 -

MAZE(6)

NAME
maze - generate a maze

SYNOPSIS
/usr/games/maze

DESCIlIPTION

(PDP-ll only)

Maze asks a few questions and then prints a maze.

BUGS
Some mazes (especially small ones) have no solutions.

- 1 -

MAZE(6)

I

MOO(6) MOO(6)

NAME
moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses four
distinct digits being scored on each guess. A "cow" is a correct digit in an
incorrect position. A "bull" is a correct digit in a correct position. The
game continues until the player guesses the number (a score of four bulls).

- I -

QUIZ(6) QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [category I category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks items
chosen from category} and expects answers from category2, or vice versa.
If no categories are specified, quiz gives instructions and lists the available
categories.

Quiz tells a correct answer whenever you type a bare new-line. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates.

The -t ftag specifies "tutorial" mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The - i ftag causes the named file to be substituted for the default index
file. The lines of these files have the syntax:

line = category Dew·IiDe I category: line
category = alternate I category I alternate
alternate = empty I alternate primary
primary - character I [category] I option
option -= { category }

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in each
line of the information file. Information files have the same syntax.
Backslash \ is used as with sh (1) to quote syntactically significant characters
or to insert transparent new-lines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

/usr/games/lib/quiz/index
/usr/games/lib/quiz/*

The construct "alab" doesn't work in an information file. Use "a(b}".

- 1 -

REVERSI(6) (PDP-II only) REVERSI(6)

NAME
reversi - a game of dramatic reversals

SYNOPSIS
jusr jgamesjreversi [[-r] file]

DESCRIPTION
Reversi (also known as "friends", "Chinese friends" and "Othello") is
played on an 8 by 8 board using two-sided tokens. Each player takes his
turn by placing a token with his side up in an empty square. During the
first four turns, players may only place tokens in the four central squares of
the board. Subsequently, with each turn, a player must capture one or
more of his opponent's tokens. He does this by placing one of his tokens
such that it and another of his tokens embrace a solid line of his
opponent's horizontally, vertically or diagonally. Captured tokens are
flipped over and thus can be re-captured. If a player cannot outflank his
opponent he forfeits his turn. The play continues until the board is filled
or until no more outflanking is possible.

In this game, your tokens are asterisks (.) and the machine's are at-signs
(@). You move by typing in the row and column at which you want to
place your token as two digits (l-8), optionally separated by blanks or tabs.
You can also type in:

c to continue the game after hitting break (this is only neces­
sary if you interrupt the machine while it is deliberating),

g n to start reversi playing against itself for the next n moves
(or until the break key is hit),

D to stop printing the board after each move,
o to start it up again,
p to print the board regardless,
q to quit (without dishonor),
s to print the score, and, as always,

to escape to the shell. Control-d gets you back.

Reversi also recognizes several commands which are valid only at the start
of the game, before any moves have been made. They are:

f to let the machine go first.
h n to ask for a handicap of from one to four corner squares.

If you're really good, you can give the machine a handicap
by typing a negative number.

I n to set the amount of look-ahead used by the machine in
searching for moves. Zero means none at all. Four is the
default. Greater than six means you may fall asleep waiting
for the machine to move.

t n to tell reversi that you will only need n seconds to consider
each move. If you fail to respond in the allotted time, you
forfeit your turn.

If reversi is given a file name as an argument, it will checkpoint the game,
move by move, by dumping the board onto file. The -r option will cause
reversi to restart the game from file and continue logging.

DIAGNOSTICS
"Illegal!" for an illegal move, and "Huh?" for a move that even the
machine cannot understand.

- 1 -

SKY(6) (PDP-ll only) SKY(6)

NAME
sky - obtain ephemerides

SYNOPSIS
/usr /games/sky [-I]

DESCRIPTION

FILES

Sky predicts the apparent locations of the Sun, the Moon, the planets out
to Saturn, stars of magnitude at least 2.5, and certain other celestial objec;ts.
Sky reads the standard input to obtain a GMT time typed on one line with
blanks separating year, month number, day, hour, and minute; if the year
is missing the current year is used. If a blank line is typed the current time
is used. The program pri .. !!> the azimuth, elevation, and magnitude of
objects which are above the horizon at the ephemeris location of Murray
Hill at the indicated time. The -I flag causes it to ask for another location.

Placing a "1" input after the minute entry causes the program to print out
the Greenwich Sidereal Time at the indicated moment and to print for each
body its topographic right ascension and declination as well as its azimuth
and elevation. Also, instead of the magnitude, the semidiameter of the
body, in seconds of arc, is reported.

A "2" after the minute entry makes the coordinate system geocentric.

The effects of atmospheric extinction on magnitudes are not included; the
brightest magnitudes of variable stars are marked with *.
For all bodies, the program takes into account precession and nutation of
the equinox, annual (but not diurnal) aberration, diurnal parallax, and the
proper' motion of stars. In no case is refraction included.

The program takes into account perturbations of the Earth due to the
Moon, Venus, Mars, and Jupiter. The expected accuracies are: for the SUII
and other stellar bodies a few tenths of seconds of arc; for the Moon (on
which particular care is lavished) likewise a few tenths of seconds. For the
Sun, Moon and stars the accuracy is sufficient to predict the circumstances
of eclipses and occultations to within a few seconds of time. The planets
may be off by several minutes of arc.

There are lots of special options not described here, which do things like
substituting named star catalogs, smoothing nutation and aberration to aid
generation of mean places of stars, and making conventional adjustments to
the Moon to improve eclipse predictions.

For the most accurate use of the program it is necessary to know that it
actually runs in Ephemeris time.

/usr /lib/startab, lusr llib/moontab

SEE ALSO
American Ephemeris and Nautical Almanac, for the appropriate years; also,
the Explanatory Supplement to the American Ephemeris and Nautical Almanac.

- 1 -

I

I

1Tl'(6) 1Tl'(6)

NAME
ttt, cubic - tic-tac-toe

SYNOPSIS
/usr/games/ttt
/usr /games/cubic

DESClUmON

FILES

Tn is the X and 0 game popular in the first grade. This is a learning pro­
gram that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to com­
pletely know the game.

Cubic plays three-dimensional tic-tac-toe on a 4X4X4 board. Moves are
specified as a sequence of three coordinate numbers in the range 1-4.

/usr/games/ttt.k learning file

- 1 -

WUMP(6) (PDP-II only) WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
jusr jgamesjwump

DESCR.IPTION

BUGS

Wump plays the game of "Hunt the Wumpus." A Wumpus is a creature
that lives in a cave with several rooms connected by tunnels. You wander
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile
avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per line; it will
give a more detailed description if you want.

This program is based on one described in People's Computer Company, 2, 2
(November 1973).

It will never replace Adventure.

- I -

INTRO(7)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(7)

This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

. I -

ASCII(7) ASCII (7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/aseii

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hexadecimal
equivalents of each character, to be printed as needed. It contains:

1000 nul 1001 sohl002 stxl003 etxl004 eot 1005 enql006 ackl007 bel I
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 si I
1020 dlel021 del 1022 de21023 de31024 de41025 nakl026 synl027 etbl
1030 canl031 em 1032 subl033 escl034 fs 1035 gs 1036 rs 1037 us I
1040 sp 1041 1042 • 1043 (I 1044 S 1045 % 1046 & 1047 • I
1050 (1051) 1052 • 1053 + 1054 • 1055 - 1056 • 1057 / I
1060 0 1061 I 1062 2 1063 3 1064 4 1065 5 1066 6 1067 7 I
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 = 1076 > 1077 ? I
1100 @ 1101 A 1102 B 1103 C 1104 D 1105 E 1106 F 1107 G I
1110 H III I I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 0 I
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 1127W I
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135 1 1136 • 1137 _ I
1140 • 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 1147 g I
1150 h 1151 1152 j 1153 k 1154 I 1155 m 1156 n 1157 0 I
1160 P 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w I
1170 x 1171 y 1172 z 1173 I 1174 I 1175 I 1176 • 1177 de I I

00 null 01 soh I 02 s tx I 03 etxl 04 cot I 05 enql 06 aek I 07 bell
08 bs I 09 ht I Oa nl I Ob vt I Oe np I Od er I Oe so I Of s i I
10 dlel II dc 1 I 12 de21 13 de31 14 dc41 15 nakl 16 synl 17 etbl
18 eanl 19 em I la subl Ib escl Ie fs I Id gs I Ie r s I If us I
20 sp I 21 ! I 22 • I 23 (I I 24 S I 25 % I 26 & I 27 • I
28 (I 29) I 2a • I 2b + I 2c • I 2d - I 2e . I 2f / I
30 0 I 31 I I 32 2 I 33 3 I 34 4 I 35 5 I 36 6 I 37 7 I
38 8 I 39 9 . I 3a : I 3b ; I 3e < I 3d - I 3e> I 3f ? I
40@ I 41 A I 42 B I 43 C I 44 D I 45 E I 46 F I 47 G I
48 H I 49 I I 4a J I 4b K I 4c L I 4d M I 4e N I 4f 0 I
50 P I 51 Q I 52 R I 53 S I 54 T I 55 U I 56 V I 57 W I
58 X I 59 Y I 5a Z I 5b [I 5c \ I 5d 1 I 5e

. I H_ I
60 • I 61 a I 62 b I 63 e I 64 d I 65 e I 66 f I 67 g I
68 h I 69 i I 6a j I 6b k I 6e I I 6d m I 6e n I 6f 0 I
70 P I 71 q I 72r I 73 s I 74 t I 75 u I 76 v I 77w I
78 x I 79 Y I 7a z I 7b { I 7e I I 7d I I 7e

. I 7f dell

FILES
/usr/pub/ascii

- 1 -

ENVIRON (7) ENVIRON (7)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by exec(2)
when a process begins. By convention, these strings have the form
"name=value". The following names are used by various commands:

PATH The sequence of directory prefixes that sh(1), time(l), nice(l),
nohup{l), etc., apply in searching for a file known by an incomplete
path name. The prefixes are separated by colons (:). Login (l) sets
PATH"" :/bin:/usr/bin.

HOME Name of the user's login directory, set by /ogin(1) from the
password file passwd(5).

TERM The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm(1) or tplOl(IG),
which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxnzzz where xxx is stan­
dard local time zone abbreviation, n is the difference in hours from
GMT, and zzz is the abbreviation for the daylight-saving local time
zone, if any; for example, EST5EDT.

Further names may be placed in the environment by the export command
and "name=value" arguments in sh(I), or by exec (2). It is unwise to
conflict with certain shell variables that are frequently exported by .profile
files: MAIL, PSI, PS2, IFS.

SEE ALSO
env(l), login(l), sh(l), exec(2), getenv(3C), profile(5), term(7).

- I -

I

BQNCHAll(7) BQNCHAlt (7)

NAMB
eqnchar - special character'definitions for eqn and neqn

SYNOPSIS
eqn lusr/pub/eqncbar [files I I troff [options I
neqn lusr/pub/eqnchar [files I I nroff [options I

DESCIUmON

FILES

Eqnchar contains trqQ(l) and nrqQ(l) character definitions for constructing
characters that are not available on the Wang Laboratories, Inc, CI A/T
phototypesetter, These definitions are primarily intended for use with
eqn(l) and neqn(l); eqnchar contains definitions for the following charac­
ters:

ciplus 6} .. II II square 0

citimes ~ /angle (circle 0
wig rangle) blot •
-wig - hbar 7i bullet •
> wig ~ ppd .1. prop a:

<wig ~ <-> - emp(Y tlJ

-wig - <-> .. member E -
star * 1< « nomem ~
bigstar * I>). cup U

-dot . ang L cap n -
orsign V rang L incl !:
antisign 1\ 3dot subset c
-del .:1 t/if supset :::) -
oppA

'" quarter 1/4 !subset ~

oppE 3 3quarter 314 !supset :2
0

0 angstrom A degree

lusr/pub/eqnchar

SBB ALSO
eqn (1), troff(1) ,

- 1 -

FCNTL(7)

NAME
fcntl - file control options

SYNOPSIS
include <fcntl.h>

DESCRIPTION
The fcntl(2) function provides for control over open files.
describes requests and arguments tofcntl and open (2).

r Flag values accessible to open(2) and fcntl(2) *1 r (The first three can only be set by open) *1
#define O_RDONLY 0
I define 0_ WRONLY 1

r Non-blocking 110 *1

FCNTL(7)

This include file

I define O_RDWR 2
IIdefine O_NDELAY 04
I define O_APPEND 010 r append (writes guaranteed at the end) *1

r Flag values accessible only to open(2) *1
IIdefine O_CREAT 00400 r open with file create (uses third open arg)*1
IIdefine O_TRUNC 01000 r open with truncation *1
I define O_EXCL 02000 r exclusive open *1

r fcntl(2) requests *1
I define F _DUPFD 0
I define F _GETFD I
I define F _SETFD 2
I define F _GETFL 3
I define F _SETFL 4

SEE ALSO
fcntl(2), open(2).

r Duplicate fildes *1 r Get fildes ftags *1 r Set fildes ftags *1 r Get file flags *1 r Set file flags *1

- 1 -

I

GREEK(7) GREEK(7)

NAME
greek - graphics for the extended lTY-37 type-box

SYNOPSIS
cat /usr/pub/greek [I greek -Tterminal]

DESCRIPTION

FILES

Greek gives the mapping from ASCII to the "shift-out" graphics in effect
between SO and SI on TELETYPE~ Model 37 terminals equipped with a
128-character type-box. These are the default greek characters produced by
nroff(1). The filters of greek (1) attempt to print them on various other ter­
minals. The file contains:

alpha a A beta {3 B gamma 'Y \
GAMMA r G delta 0 D DELTA A W
epsilon E S zeta r Q eta " N
THETA e T theta 8 0 lambda X L
LAMBDA A E mu I' M nu " @
xi ~ X pi r J PI n P
rho p K sigma (1 Y SIGMA ~ R
tau T I phi tP U PHI ~ F
psi

'"
V PSI \If H omega w C

OMEGA n Z nabla V [not
partial a] integral I

/usr/pub/grcek

SEE ALSO
300(1),4014(1),450(1), grcck(l), hp(1), tc(1). troff(l).

- 1 -

MAN(7) MAN(7)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
Droff - man files

troff - man [-rsl 1 files

DESCRIPTION
These troff(1) macros are used to layout the format of the entries of this
manual. A skeleton entry may be found in the file
/usr/man/manO/skeleton. These macros are used by the man(l) com­
mand.

The default page size is 8.5'')(11", with a 6.5'')(10'' text area; the -rsl
option reduces these dimensions to 6'')(9" and 4.75',)(8.375/1, respectively;
this option (which is not effective in nroff(l)) also reduces the default type
size from IO-point to 9-point, and the vertical line spacing from 12-point to
IO-point. The -rV2 option may be used to set certain parameters to
values appropriate for certain Versatec printers: it sets the line length to 82
characters, the page length to 84 lines, and it inhibits underlining; this
option should not be confused with the - Tvp option of the man (l) com­
mand, which is available at some UNIX sites.

Any text argument below may be one to six "words". Double quotes ("")
may be used to include blanks in a "word". If text is empty, the special
treatment is applied to the next line that contains text to be printed. For
example, .1 may be used to italicize a whole line, or .SM followed by .B to
make small bold text. By default, hyphenation is turned off for nroiJ, but
remains on for troff.

Type font and size are reset to default values before each paragraph and
after processing font- and size-setting macros, e.g., .1, .RB, .SM. Tab stops
are neither used nor set by any macro except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous
indent is used. This remembered indent is set to its default value (7.2 ens
in troiJ, 5 ens in nroff -this corresponds to 0.5" in the default page size) by
.TH, .PP, and .RS, and restored by .RE.

.TH t sen

• SH text
. SS text
• B text
• 1 text
. SM text
.RI a b

• P

• UP in
.TP in

.IP t in

Set the title and entry heading; t is the title, s is the section
number, c is extra commentary, e.g., "local", n is new manual
name. Invokes .DT (see below).
Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .
Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate these two
fonts for up to six arguments. Similar macros alternate
between any two of roman, italic, and bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size, and indent .
.PP is a synonym for .P.
Begin paragraph with hanging indent .
Begin indented paragraph with hanging tag. The next line that
contains text to be printed is taken as the tag. If the tag does
not fit, it is printed on a separate line.
Same as .TP in with tag t; often used to get an indented
paragraph without a tag.

- 1 -

I

MAN(7) MAN(7)

.RS in

.REk

.PMm

.DT

.PDv

Increase relative indent (initially zero). Indent all output an
extra in units from the current left margin.
Return to the kth relative indent level (initially, k=l; k-O is
equivalent to k"'" 1); if k is omitted, return to the most recent
lower indent level.
Produces proprietary markings; where m may be P for
PRIVATE, N for NOTICE, BP for BELL LABORATORIES
PROPRIETARY, or BR for BELL LABORATORIES RES­
TRICTED.
Restore default tab settings (every 7.2 ens in troff, 5 ens in
nroff).
Set the interparagraph distance to v vertical spaces. If v is
omitted, set the interparagraph distance to the default value
(O.4v in troff, 1 v in nroff).

The following strings are defined:

\-R • in troff(l), (Reg.) in nroff(l).
\eS Change to default type size.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 7.2 ens in
troff, 5 ens in nroff).

LL . Line length including IN.
PD Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned above,
there are defined a number of interntll macros, strings, and number
registers. Except for names predefined by troff(l) and number registers d,
IB, and y, all such internal names are of the form.KA, where X is one of),
I, and I, and A stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cw(l), eqn(l) (or neqn),
and/or tbl(l), it must begin with a special line (described in man(l», cau­
sing the man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index
for this Manual assume the NAME section of each entry consists of a single
line of input that has the following format:

name[, name, name ... 1 \ - explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity)
in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one can replace,
for example, the bold font by the constant-width font-see cw(l». Of
course, if the input text of an entry contains requests for other fonts (e.g.,
.1, .RB, \0), the corresponding fonts must be mounted.

/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp. [nt]. [dt].an
/usr/lib/macros/ucmp.[nt].an
/usr/man/manO/skeleton

SEE ALSO

BUGS

man(l), troff(l).

If the argument to .TH contains any blanks and is not enclosed by double
quotes (WW), there will be bird-dropping-like things on the output.

- 2 -

MM(7) MM(7)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options] [files]

nroft' - mm [options] [files]

nroft' -em [options] [files]

mmt [options] [files]

troft' - m m [options] [files]

troft' -em [options] [files]

DESCRIPTION

FILES

This package provides a formatting capability for a very wide variety of
documents. It is the standard package used by the BTL typing pools and
documentation centers. The manner in which a document is typed in and
edited is essentially independent of whether the document is to be eventu­
ally formatted at a terminal or is to be phototypeset. See the references
below for further details.

The - mm option causes nroff(1) and troff(1) to use the non-compacted
version of the macro package, while the -em option results in the use of
the compacted version, thus speeding up the process of loading the macro
package.

jusrjlibjtmacjtmac.m

jusrjlibjmacrosjmm[nt]
jusr jlibj macros j cmp. [nt]. [dt].m
jusr/lib/macros/ucmp.[nt].m

pointer to the non-compacted version of
the package
non-compacted version of the package
compacted version of the package
initializers for the compacted version of
the package

SEE ALSO
mm(l), mmt(l), troff(l).
MM- Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

- 1 -

I

MV(7) MV(7)

NAME
mv - a macro package for making view graphs

SYNOPSIS
mvt [options] [files]
trotl' - m v [options] [files]

DESCRIPTION

FILES

This package provides an easy-to-use facility for making view graphs and
projection slides in a variety of formats. A dozen or so macros are provi­
ded that accomplish most of the formatting tasks needed in making tran­
sparencies. All of the facilities of troff(I), eqn(I), and tbl(1) are available
for more difficult tasks. The output can be previewed on most terminals,
and, in particular, on the Tektronix 4014 and on the Versatec printer. See
the reference below for further details.

fusrflibftmacftmac.v

SEE ALSO
eqn(l), mvt(I), tbl(l), troff(I).
A Macro Package for View Graphs and Slides by T. A. Dolotta and
D. W. Smith (in preparation).

- 1 -

REGEXP(7) REGEXP(7)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
II define INIT <declarations>
II define GETC() <getc code>
II define PEEKC() <peekc code>
IIdefine UNGETC(c) <ungetc code>
II define RETURN(pointer) <return code>
IIdefine ERROR(val) <error code>

II include <regexp.b>

cbar .compile(instring, expbuf, endbuf, eof)
cbar .instring, .expbuf, .endbuf;

int step(string, expbuf)
cbar .string, .expbuf;

DESCRIPTION
This page describes general purpose regular expression matching routines in
the form of ed(l), defined in jusr jincludejregexp.b. Programs such as
ed(l), sed(l), grep(l), bs(l), expr(I), etc., which perform regular expres­
sion matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
.. # include <regexp.h>" statement. These macros are used by the compile
routine.

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(va/)

Return the value of the next character in the regular'
expression pattern. Successive calls to GETC()
should return successive characters of the regular
expression.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character (which should also be the next character
returned by GETC(».

Cause the argument c to be returned by the next call
to GETC() (and PEEKC(». No more that on~
character of pushback is ever needed and this charac­
ter is guaranteed to be the last character read by
GETC(). The value of the macro UNGETC(c) is
always ignored.

This macro is used on normal exit of the compile
routine. The value of the argument pointer is a poin­
ter to the character after the last character of the
compiled regular expression. This is useful to pro­
grams which have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table
below for meanings). This call should never return.

- I -

REGEXP(7) REGEXP(7)

ERROR MEANING
II Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [I imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring. expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine
but is useful for programs that pass down different pointers to input charac­
ters. It is sometimes used in the INIT declaration (see below). Programs
which call functions to input characters or have characters in an external
array can pass down a value of «char .) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the com­
piled regular expression may be placed. If the compiled expression cannot
fit in (endbuf -expbuf) bytes, a call to ERROR(50) is made.
The parameter eof is the character which marks the end of the regular
expression. For example. in ed(l), this character is usually a I.
Each programs that includes this file must have a ,define statement for
INIT. This definition will be placed right after the declaration for the func­
tion compile and the opening curly brace (0. It is used for dependent
declarations and initializations. Most often it is used to set a register varia­
ble to point the beginning of the regular expression so that this register
variable can be used in the declarations for GETC(), PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that
might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(l).

There are other functions in this file which perform actual regular expres­
sion matching. one of which is the function step. The call to step is as fol­
lows:

step(string. expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which was
obtained by a call of the function compile.

The function step returns one. if the given string matches the regular
expression. and zero if the expressions do not match. If there is a match.
two external character pointers are set as a side effect to the call to step.
The variable set in step is loeI. This is a pointer to the first character that
matched the regular expression. The variable loe2. which is set by the
function advance, points the character after the last character that matches
the regular expression. Thus if the regular expression matches the entire

- 2 -

REGEXP(7) REGEXP(7)

line, locI will point to the first character of string and loe2 will point to the
null at the end of string.

Step uses the external variable cire! which is set by compile if the regular
expression begins with -. If this is set then step will only try to match the
regular expression to the beginning of the string. If more than one regular
expression is to be compiled before the the first is executed the value of
circ! should be saved for each compiled expression and circ! should be set
to that saved value before each call to step.

The function advance is called from step with the same arguments as step.
The purpose of step is to step through the string argument and call advance
until advance returns a one indicating a match or until the end of string is
reached. If one wants to constrain string to the beginning of the line in all
cases, step need not be called, simply call advance.

When advance encounters a - or \{ \} sequence in the regular expression it
will advance its pointer to the string to be matched as far as possible and
will recursively call itself trying to match the rest of the string to the rest of
the regular expression. As long as there is no match, advance will back up
along the string until it finds a match or reaches the point in the string that
initially matched the - or \{ \}. It is sometimes desirable to stop this back­
ing up before the initial point in the string is reached. If the external
character pointer loes is equal to the point in the string at sometime during
the backing up process, advance will break out of the loop that backs up
and will return zero. This is used be ed(l) and sed(l) for substitutions
done globally (not just the first occurrence, but the whole line) so, for
example, expressions like sly-I Ix do not loop forever.

The routines ecmp and getrange are trivial and are called by the routines
previously mentioned.

EXAMPLES

FILES

The following is an example of how the regular expression macros and calls
look from grep(1):

;; define INIT
;; define GETC()
;; define PEEKC()
;;define UNGETC(c)
;; define RETURN(c)
;;define ERROR(c)

;; include <regexp.h>

register char *Sp = instring;
(*sp++)
(*Sp)
(--sp)
return;
regerr()

compile(*argv, expbuf, &expbuf[ESIZE), '\0,);

if(step(linebuf, expbuf))
succeed();

jusr jincludejregexp.h

SEE ALSO

BUGS

ed(l), grep(l), sed(l).

The handling of circ! is kludgy.
The routine ecmp is equivalent to the Standard 1/0 routine stmcmp and
should be replaced by that routine.
The actual code is probably easier to understand than this manual page.

- 3 -

I

STAT(7) STAT(7)

NAME
stat - data returned by stat system call

SYNOPSIS
(I include <sys/types.b>
(I include <sys/stat.b>

DESCRIPTION

FILES

The system calls stat and fstat(2) return data whose structure is defined by
this include file. The encoding of the field scmode is defined in this file
also.

1*
* Structure of the result of stat
*/

struct stat
{

dev_t
ino_t
ushort
short
ushort
ushort
dev_t
otCt
time_t
time_t
time_t

};

(I define S_IFMT
(I define
(I define
(I define
(I define
(I define
(I define S_ISUID
(I define S_ISGID
(I define S_ISVTX
(I define S_IREAD
(I define S_IWRITE
(I define S_IEXEC

/usr/include/sys/types.h
/usr/include/sys/stat.h

sCdev;
scino;
sCmode;
sCnlink;
scuid;
st~id;
sCrdev;
sCsize;
scatime;
st_mtime;
st_ctime;

0170000
S_IFDIR
S_IFCHR
S_IFBLK
S_IFREG
S_IFlFO
04000
02000
01000
00400
00200
00100

1* type of file * /
0040000 1* directory * /
0020000 1* character special * /
0060000 1* block special * /
0100000 1* regular */
0010000 1* fifo */
1* set user id on execution * /
/* set group id on execution * /
1* save swapped text even·after use */
1* read permission, owner * /
1* write permission, owner * /
1* execute/search permission, owner * /

SEE ALSO
stat(2).

- 1 -

TERM(7) TERM (7)

NAME
term - conventional names

DESCRIPTION
These names are used by certain commands (e.g., nroff(I), mm(I),
man (1), labs (1» and are maintained as part of the shell environment (see
sh (I), projiie(5), and environ (7» in the variable SfERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same. in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631 -c Hewlett-Packard 2631 line printer - compressed mode
2631 -e Hewlett-Pack.ard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASI/DTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE~ Model 33 KSR
37 TELETYPE Model 37 KSR
40-2 TELETYPE Model 40/2
4000A Trendata 4000A
4014 Tektronix 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments Tl735 and Tl725
745 Texas Instruments Tl745
dumb generic name for terminals that lack reverse

hp
Jp
tn1200
tn300

line-feed and other special escape sequences
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [-a-zO-9], make up a basic terminal
name. Terminal sub-models and operational modes are distinguished by
suffixes beginning with a -. Names should generally be based on original
vendors, rather than local distributors. A terminal acquired from one ven­
dor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept
arguments of the form -Tterm where term is one of the names given
above; if no such argument is present, such commands should obtain the
terminal type from the environment variable SfERM, which, in turn,
should contain term.

SEE ALSO

BUGS

mm(1), nroffO), tplot(iG), shO), stty(l), tabs(l), profile(5), environ(7).

This is a small candle trying to illuminate a large, dark problem. Programs
that ought to adhere to this nomenclature do so somewhat fitfully.

- 1 -

I

TYPES(7) TYPES(7)

NAME
types - primitive system data types

SYNOPSIS
I include <sys/types.b>

DESCRIPTION
The data types defined in the include file are used in UNIX system code;
some data of these types are accessible to user code:

typedef Struet { int r[1]; 1* physadr;
typedef long daddr_t;
typedef char * caddct;
typedef unsigned short ushort;
typedef ushort ino_t;
lifdef vax
typedef short
#else
typedef char
I endif
typedef long

cnCt;

cnCt;

lifdef vax
typedef int labeU[lO];
I else
typedef int
lendif
typedef short
typedef long
typedef long

labeU(6};

dev_t;
otr_t;
paddr_t;

The form dtJddr J is used for disk addresses except in an i-node on disk,
see Is(5). Times are encoded in seconds since 00:00:00 GMT, January I,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Otrsets are measured in
bytes from the beginning of a file. The labelJ variables are used to save
the processor state while another process is running.

SEE ALSO
fs(5).

- 1 -

INTRO(8) INTRO(I)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION

BUGS

This section outlines certain procedures that will be of interest to those
charged with the task of system maintenance. Included are discussions on
such topics as boot procedures, recovery from crashes, file backups, etc.

No manual can take the place of good, solid experience.

- 1 - I

11f70 BOOT(8) (PDP-11 oaly) 11/70 BOOT(8)

NAMB
70boot - 11/70 bootstrap procedures

DESCRIPTION
To bootstrap programs from a wide range of storage media, the PDP-ll/70
has a dedicated diagnostic bootstrap loader called the M9301-YC. The
M9301-YC contains two 256 word ROMs (17765000 to 17765776 and
17 773 000 to 17 773 776) which contain hardware verification diagnostic
routines and bootstrap loader routines.

The diagnostic portion tests the basic CPU to verify correct operation. The
branches, registers, all addressing modes, and most of the instructions are
checked. If requested, memory management and the UNIBUS map are tur­
ned on. Then memory is tested from virtual address 001 000 to 157 776
with the cache disabled. Next the cache is enabled and tested.

The physical memory tested is determined by the console switches. Con­
sole switches <15:12> are used to set physical address bits <19:16>. If
console switches <15:12> are zero, memory management and the UNIBUS
map will not be enabled, so that physical memory 0 to 157 776 will be used.
If console switches <15:12> are non-zero, then memory management, the
UNIBUS map, and 22-bit mapping will be enabled. Table I describes the
physical address ranges for each switch setting. In all cases, virtual
addresses 160 000 to 177 776 are mapped to the peripheral page, physical
addresses 17 600 000 to 17 777 776. Note that physical memory above
S12K words is not accessible by this program even though the physical
memory maximum is 1920K words.

The bootstrap portion of the M9301-YC attempts to BOOT from the device
and drive number specified in the console switches. Console switches
<7:3> select the device and console switches <2:0> select the drive
number. Table II describes the devices selected for each switch setting. If
console switches <7:0> are zero, the program will read a set of switches
on the M9301-YC, set by field service, to determine a default boot device
and drive number. These switches appear at location 17 773 024, however
bits <8:4> select the device and bits <3:1> select the drive number.

Having selected a boot device, the program will read a block of data into
memory starting at virtual address 0, and then jump to virtual address O.
Table III describes the details of booting for each device. Note that the
physical address selection is the same as described above, for the diagnostic
portion. Excluding the RXll/RXOI ftoppy disk, bootstrap programs must
fit in one block of 256 words, even though this program may read in more.

To start operation of the bootstrap loader, halt the CPU by depressing the
HALT switch, set the Address Display select switch to Console Physical, set
the Console Switch Register to 165 000, and depress the Load Address
switch. Then reset the console switches to 0 and set switches <15:12> for
the desired physical memory (normally 0) and switches <7:0> for the
desired device (normally 0 for the default boot). Put the HALT switch in
the ENABLB position and depress the START switch. The diagnostic portion
will then run followed by the boot from the selected media. This takes
approximately three seconds.

Any error during the diagnostic portion will cause the CPU to halt. Table
IV lists the addresses and error indications. Only cache errors are recovera­
ble in that by pressing the CONTINUB switch the program will disable' the
cache by forcing misses and proceed to the bootstrap section. If there is an
error in reading the boot block, the program will do a RESET instruction
and jump back to the memory test section (test 24) and then attempt to

- 1 -

11/70 BOOT (8) (PDP-ll only)

boot again.

SEE ALSO
romboot(8), unixboot(8).

Table I - Physical Memory Selection

Console switches <15:12>
00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

Physical addresses
00 000 000 - 00 157 776
00 200 000 - 00 357 776
00 400 000 - 00 557 776
00600000 - 00 757 776
01 000 000 - 01 157 776
01 200 000 - 01 357 776
01 400 000 - 01 557 776
01 600 000 - 01 757 776
02 000 000 - 02 157 776
02 200 000 - 02 357 776
02 400 000 - 02 557 776
02 600 000 - 02 757 776
03 000 000 - 03 157 776
03 200 000 - 03 357 776
03 400 000 - 03 557 776
03 600000 - 03 757 776

Table II - Device selection

Console switches <7:3>
00
01
02
03
04
05
06
07
10
11
12-37

Device
illegal
TMll/TUI0 Magnetic tape
Tell/TU56 DECtape
RKll/RK05 Disk pack
RPII/RP03 Disk pack
reserved
RH70/TUI6 Magnetic tape
RH70/RP04 Disk pack
RH70/RS04 Fixed head disk
RXll/RXOI Diskette
illegal

- 2 -

11/70 BOOT(S)

I

11/70 BOOT(8)

TUI0:

TU56:
RK05 or
R.P03:
TUI6:

R.P04:

RS04:
RX01:

(PDP-ll oaly)

Table III - Boot procedures

Select drive, wait until online,
set to 800 bpi, rewind,
space forward 1 record,
read 1 record (maximum of 256 words).
Select drive, rewind, read 512 words.

Select drive, start at block 0, read 512 words.
Select drive on first TM02, wait until online,
set to 800 bpi, PDP format, rewind,
space forward 1 record,
read 1 record (maximum of 512 words).
Select drive, read-in preset,
set to 16-bits/word, ECC inhibit,
start at block 0, read 512 words.
Select drive, start at block 0, read 512 words.
Select drive 0 or 1,
start at track 1, sector 1 (IBM standard),
read 64 words.

- 3 -

11/70 BOOT(8)

11/70 BOOT(8) (PDP-ll OGly) 11/70 BOOT(8)

Table IV - Error halts

Address displayed
17765004
17765020
17765036
17765052
17 765066
17765076
17765 134
17765 146
17765 166
17765204
17765214
17765222
17765236
17765260
17765 270
17765312
17765 346
17765360
17765374
17765450
17765474
17765510
17765520
17765530
17765542
17765 550
17765742
17765760
17776000

17713644
17773654
17773736
17773746
17773764

Test
1
2
3
4
5
6
7
10
11
12
13
14
14
15
16
16
17
20
20
21
22
23
23
23
23
23
25
25
25

26
26
27
27
25/26

Subsystem under test
Branch
Branch
Branch
Branch
Branch
Branch
Register data path
Branch
CPU instruction
CPU instruction
CPU instruction
CPU instruction
CPU instruction
CPU instruction
Branch
CPU instruction
CPU instruction
CPU instruction
CPU instruction
Kernel PAR
Kernel PDR
JSR
JSR
RTS
RTI
JMP
Main memory data compare error
Main memory data compare error
Main memory parity error;

no recovery possible from this error
Cache memory data compare error
Cache memory no bit, recoverable
Cache memory data compare error
Cache memory DO hit, recoverable
Cache memory parity error, recoverable

- 4-

CRASH (8) CRASH(8)

NAME
crash - what to do when the system crashes

DESCRIPTION
This entry gives at least a few clues about how to proceed if the system
crashes. It can't pretend to be complete.

How to bring it back up. If the reason for the crash is not evident (see
below for guidance on "evident") you may want to try to dump the system
if you feel up to debugging. At the moment a dump can be taken only on
magtape. With a tape mounted and ready, stop the machine, load address
44(8) (on the PDP-ll), 400(16) (on the VAX-ll/780; see vaxops(8)), and
start. This should write a copy of all of core on die tape with an EOF mark.
Be sure the ring is in, the tape is ready, and the tape is clean and new.

In restarting after a crash, always bring up the sy~tem single-user, as
specified in unixboot(8) as modified for your particular installation. Then
perform an fsck(1M) on all file systems which could have been in use at
the time of the crash. If any serious file system problems are found, they
should be repaired. When you are satisfied with the health of your disks,
check and set the date if necessary. then come up multi-user.

To even boot UNIX at all, three files (and the directories leading to them)
must be intact. First, the initialization program /etc/iDit must be present
and executable. If it is not, the CPU will loop in user mode at location 6(8)
(PDP-H), 13(16) (VAX-ll/780). For ini! to work correctly, /dev/coDsole
and /biD/sil must be present. If either does not exist, the symptom is best
described as thrashing. Init will go into a fork/exec loop trying to create a
Shell with proper standard input and output.

If you cannot get the system to boot, a runnable system must be obtained
from a backup medium. The root file system may then be doctored as a
mounted file system as described below. If there are any problems with the
root file system, it is probably prudent to go to a backup system to avoid
working on a mounted file system.

Repairing disks. The first rule to keep in mind is that an addled disk should
be treated gently; it shouldn't be mounted unless necessary, and if it is very
valuable yet in quite bad shape, perhaps it should be copied before trying
surgery on it. This is an area where experience and informed courage
count for much.

Fsck(1 M) is adept at diagnosing and repairing file system problems. It first
identifies all of the files that contain bad (out of range) blocks or blocks
that appear in more than one file. Any such files are then identified by
name and fsck requests permission to remove them from the file system.
Files with bad blocks should be removed. In the case of duplicate blocks,
all of the files except the most recently modified should be removed. The
contents of the survivor should be checked after the file system is repaired
to ensure that it contains the proper data. (Note that runningfsck with the
- n option will cause it to report aU problems without attempting any
repair.)

Fsck will also report on incorrect link counts and will request permission to
adjust any that are erroneous. In addition, it will reconnect any files or
directories that are ~nocated but have no file system references to a
"lost+found" directory. Finally. if the free list is bad (out of range, mis­
sing, or duplicate blocks) fsck will, with the operators concurrence, con­
struct a new one.

- 1 -

CRASH(8) CRASH(8)

Why did it crash? UNIX types a message on the console typewriter when it
voluntarily crashes. Here is the current list of such messages, with enough
information to provide a hope at least of the remedy. The message has the
form "panic: ... ", possibly accompanied by other information. Left unsta­
ted in all cases is the possibility that hardware or software error produced
the message in some unexpected way.

blkdev
The getblk routine was called with a nonexistent major device as
argument. Definitely hardware or software error.

devtab
Null device table entry for the major device used as argument to
getblk. Definitely hardware or software error.

iinit An I/O error reading the super-block for the root file system during
initialization.

no fs
A device has disappeared from the mounted-device table. Definitely
hardware or software error.

no imt
Like "no fs", but produced elsewhere.

no clock
During initialization. neither the line nor programmable clock was
found to exist.

I/O error in swap
An unrecoverable I/O error during a swap. Really shouldn't be a
panic, but it is hard to fix.

out of swap space
A program needs to be swapped out, and there is no more swap
space. It has to be increased. This really shouldn't be a panic, but
there is no easy fix.

trap An unexpected trap has occurred within the system. This is accom­
panied by three numbers: a "ka6", which is the contents of the seg­
mentation register for the area in which the system's stack is kept;
"aps", which is the location where the hardware stored the program
status word during the trap; and a "trap type" which encodes which
trap occurred. The trap types are:

PDP-II:
o bus error
1 illegal instruction
2 BPT/trace
3 lOT
4 power fail
5 EMT
6 recursive system call (TRAP instruction)
7 11/70 cache parity, or programmed interrupt
8 floating point trap
9 segmentation violation

VAX -11 /780:
o reserved addressing fault
1 illegal instruction
2 BPT instruction trap
3 XFC instruction trap

- 2 - I

I

CRASH (B) CRASH(B)

4 reserved operand fault
5 recursive system call (CHMK instruction)
6 floating point trap
7 software level 1 (reschedule) trap
8 segmentation violation
9 protection fault
10 trace trap
11 compatibility mode fault

In some of these cases it is possible for octal 40 to be added into the trap
type; this indicates that the processor was in user mode when the trap
occurred. If you wish to examine the stack after such a trap, either dump
the system, or use the console switches to examine core; the required
address mapping is described below.
Interpreting dumps. All file system problems should be taken care of before
attempting to look at dumps. The dump should be read into the file
/usr/tmp/core; cp(l) will do. At this point, you should execute ps -el -c
/UST/tmp/core and who to print the process table and the users who were on
at the time of the crash.
Additional information for the PDP-Il. You should dump (adb(l» the first
30 bytes of /usr/tmp/core. Starting at location 4, the registers RO, RI, R2,
R3, R4, RS, SP and KDSA6 (KISA6 for 11/40s) are stored. If the dump had
to be restarted, RO will not be correct. Next, take the value of KA6 (loca­
tion 22(8) in the dump) multiplied by 100(8) and dump 2000(8) bytes star­
ting from there. This is the per-process data associated with the process
running at the time of the crash. Relabel the addresses 140000 to 141776.
RS is C's frame or display pointer. Stored at (RS) is the old RS pointing to
the previous stack frame. At (RS)+2 is the saved PC of the calling pro­
cedure. Trace this calling chain until you obtain an RS value of 141756,
which is where the user's RS is stored. If the chain is broken, you have to
look for a plausible RS, PC pair and continue from there. Each PC should
be looked up in the system's name list using adb{l) and its : command, to
get a reverse calling order. In most cases this procedure will give an idea of
what is wrong. A more complete discussion of system debugging is impos­
sible.

SEE ALSO
adb(l), fsck(lM), unixboot(8), vaxops(8).

- 3 -

DISK BOOT (8) (PDP-II 031y) DISK BOOT(8)

NAME
diskboot - disk bootstrap programs

DESCRIPTION

FILES

There are several programs available to accomplish bootstraps off of a
variety of disks. These programs reside in the directory Istaad.

The program must be located in block 0 of the disk pack. The space availa­
ble for the program is thus only one block (256 words) which severely con­
strains the amount of error handling. Block 0 is unused by the UNIX file
system, so this does not affect normal file system operation. To boot, the
program must be read into memory starting at address 0 and started at
address o. This may be accomplished by standard DEC ROM bootstraps,
special ROM bootstraps, or manual procedures.

After initial load, the program relocates itself to high core as specified when
assembled (typically 24K words, maximum of 28K). Next, memory below
the program is cleared and the prompt I is typed on the console. A one
digit field specifying the disk drive is expected. For example, 2 would
correspond to drive 2, starting at cylinder O. The last word in the boot
block contains a cylinder offset, initially zero, which may be changed to
access another section of the disk pack. No error checking is done on this
field; invalid data will cause unpredictable results. Also, there is no error
checking on disk reads.

After the file system select, the program prompts with =. The user must
then enter the UNIX path name of the desired file. The I character will
erase the last character typed, the @ character will kill the entire line, and
A through Z is translated to a through z. Also, carriage return (CR) is
mapped into line-feed (LF) on input, and LF is output as CR-LF. The
upper-case to lower-case conversion is used to handle upper-case-only ter­
minals such as the TELETYPE" Model 33 or the DEC LA30. Therefore, a
file name with upper case characters cannot be booted using this procedure.

After the name has been completely entered by typing CR or LF, the pro­
gram searches the file system specified for the path name. Note, the path
name may be any valid UNIX file system path name. If the file does not
exist, or if the file is a directory or special file, the bootstrap starts over and
prompts with #. Otherwise, the file is read into memory starting at address
o. If address 0 contains 000 407, a UNIX a.out program is assumed and the
first 8 words are stripped off by relocating the loaded program toward
address O. Finally, a jump to address 0 is done by executing jsr pc,.so.

lusrlsrc/stand source directory

SEE ALSO
a.out(5), f5(5), tapeboot(8), unixboot(8).

- 1 -

I

ETP(8) ETP(8)

NAME
etp - ~uipment Test Package

DESCRIPTION
Etp is a stand-alone program that exercises the PDP-II or VAX-II /780
hardware in a manner that simulates the load imposed by a UNIX system.
Its output consists of reports that can be formatted to resemble the output
of DEC diagnostic programs.

SEE ALSO
errpt(IM).
The UNIX Equipment Test Package: Operational Procedures by A. L. Chellis
and T. J. Kowalski.

- I -

FILESA VEe 8) FILESAVE(I)

NAME
filesave, tapesave - daily/weekly UNIX file system backup

SYNOPSIS
/etc/filesave. ?
/etc/tapesa.e

DESCRIPTION
These shell scripts are provided as models. They are designed to provide a
simple, interactive operator environment for file backup. Filesa.e.? is for
daily disk-to-disk backup and tapesave is for weekly disk-to-tape.

The suffix.? can be used to name another system where two (or more)
machines share disk drives (or tape drives) and one or the other of the sys­
tems is used to perform backup on both.

SEE ALSO
shutdown(1M), volcopy(lM).

- 1 - I

I

GETIY(8) GETIY(8)

NAME
getty - set the modes of a terminal

SYNOPSIS
fete/getty name type delay

DESCRIPTION
Getty is normally invoked by init(8) as the first step in allowing users to
login to the system. Lines in /ete/inittab tell init to invoke getty with the
proper arguments.

Name should be the name of a terminal in /dey (e.g., tty03); type should
be a single character chosen from -, 0, I, 2, 3, 4, 5, or 6 (may vary
locally) which selects a speed table in getty, or !, which tells getty to update
/ete/utmp and exit; delay is relevant for dial-up ports only. It specifies the
time in seconds that should elapse before the port is disconnected if the
user does not respond to the login: request.

First, getty types the login: message. The login: message depends on the
speed table being used, and may include the characters that put the GE Ter­
miNet 300 terminal into full-duplex, take the DASI terminals out of the plot
mode, or put a TELETYPE- Model 37 into full-duplex. Then the user's
login name is read, a character at a time.

While reading, getty tries to adapt to the terminal, speed, and mode that is
being used. If a null character is received, it is assumed to be the result of
a "break" ("interrupt"). The speed is then changed based on the speed
table that getty is using, and login: is typed again. Subsequent breaks cause
a cycling through the speeds in the speed table being used.

The user's login name is terminated by a new-line or carriage-return
character. The latter results in the system being set to treat carriage returns
appropriately. If the login name contains only upper-case alphabetic charac­
ters, the system is told to map any future upper-case characters into the
corresponding lower-case characters.

Finally, login(l) is called with the user's login name as argument.

Speed sequences for the speed tables:

8110; for 110 baud console TIY.
o 8300-8150-8110-81200; normal dial-up sequence star-

ting at 8300.
I 8150; no sequence.
2 82400; no sequence.
3 81200-8300-8150-8110; normal dial-up sequence star-

ting at 81200.
4 8300; for console DECwriter.
5 89600; no sequence.
6 84800-89600; for Tektronix 4014.

SEE ALSO
10gin(I), tty(4), inittab(5), utmp(5), init(8).

BUGS
Ideally, the speed tables would be read from a file, not compiled into getty.

- 1 -

HASP(8) (Obsolcsct:nt) HASP(8)

NAME
hasp - RJE (Remote Job Entry) to IBM

SYNOPSIS
jusr jbaspjbaspinit
jusr jbaspjbaspbalt

DESCRIPTION
Hasp is the communal name for a collection of programs and a file organ­
ization that allow a UNIX system, equipped with an appropriate driver for
the DQSII-B, to communk.ate with IBM's Job Entry Subsystems by mimick­
ing an IBM 2770 remote station.

HClsp is initiated by the command haspinit and is terminated gracefully by
the command hasphalt. While active, hasp runs in background and requires
no human supervision. It quietly transmits, to the IBM system, jobs that
have been queued by the command send(lC) and messages that have been
entered by the command rjestat(lC). It receives, from the IBM system,
print and punch data sets and message output. It enters the data sets into
the proper UNIX directory and notifies the appropriate user of their arrival.
It scans the message output to maintain a record on each of its jobs. It also
makes these messages available for public inspection, so that rjestat(lC), in
particular, may extract responses.

Unless otherwise specified, all files and commands described below live in
directory jusr/basp (first exceptions: send and rjestat).

There are two sources of data that is to be transmitted by hasp from UNIX
to an IBM Systemj370. In both cases, the data is organized as files in
pnch (5) format. The first is a single file baspmesg that is reserved for mes­
sage input. It is written by the enquiry command rjestat(1 C) and is assig­
ned a priority for transmission. The second source, containing the bulk of
the data, consists of jobs that have been entered into the xmit. queue by
the program haspqer. On completion of processing, send invokes haspqer.
As each file is queued, a subordinate info/logx. file is created to save tbe
name, user 10, login directory, and terminal ID of the user who is doing the
queuing. Upon successful transmission of the data to the IBM system,
haspdisp will move this information into the jobsout file and delete the
info/logx. file.

Each time haspinit is invoked, the xmit* xmit- queue is compacted, along
with the associated info/logx. files, and its beginning and end are calcula­
ted. A three-digit sequence number specifying the first free slot at the end
of the queue is written to file baspstat. This number is subsequently
updated by haspqer each time that a new job is entered into the queue. A
pointer to the beginning of the queue is maintained by haspmain. It is
periodically compared to the current end of the queue to determine
whether any jobs are waiting to be transmitted. A null lock-file basplock is
created with mode zero to prevent simultaneous updating of baspstat.

In anticipation of receiving output, hasp always maintains a vacant file tID,.
in its own directory. Output from the IBM system is initially written into
this file and is classified as either a print data set, a punch data set, or mes­
sage output. Print output is converted to an ASCII text fiie, with standard
tabs. Form feeds are suppressed, but the last line of each page is dis­
tinguished by the presence of an extraneous trailing space. Punch output is
converted to EBCDIC format. This classification and both conversions occur
as the output is received; tID,. files are moved or copied into the appropri­
ate user's directory and assigned the name prnt- or pncb-, respectively. or
placed into user directories under user-specified names, or used as input to

- 1 -

I

HASP(8) (Obsolescent) HASP(8)

programs to be automatically executed, as specified by the user. This pro­
cess is driven by the "usr= ... " specification. Hasp retains ownership of
these files and permits read-only access to them. Files of message output
are digested by hasp immediately and are not retained.

A record is maintained for each job that passes through hasp. Identifying
information is extracted contextually from files transmitted to and received
from the IBM system. From each file transmitted, hasp extracts the job
name, the programmer's name, the user name, the destination directory
name, and the message level. This information is temporarily stored, in
the order of submission of jobs, in file jobsout. It is retrieved, by job name
and programmer's name, when the IBM system acknowledges the job and
assigns a number to it.

The IBM system automatically returns an acknowledgement message for
each job it receives. Other status messages are returned in response to
enquiries entered by users and in response to enquiries that hasp itself gen­
erates every ten minutes. All messages received by hasp are appended to
the resp file. The resp file is automatically truncated when it reaches
32,000 bytes. Each sequence of enquiries written to the message file
haspmesg should be preceded by an identification card image of the form
/*SUX<process id>g. The IBM system will echo back the first portion of
this card image. as this is an illegal command. The appearance of process
ids in the response stream permits responses to be passed on to the proper
users. Hasp enters process id zero on all enquiries it generates on its own
behalf.

While it is active, hasp occupies at least the two process slots that are
appropriated by haspinit. These slots are used to run haspmain, that super­
vises data transfers, as well as haspdisp, that performs dispatching func­
tions; these two processes are connected by a pipe. The function of
haspmain is to cycle repetitively, looking for data to transfer either to or
from the IBM system. When it finds some, it spawns a child process, either
haspxmit or hasprecv, to effect the transfer. It waits for its child to complete
its task and then passes an event notice to haspdisp. Haspmain exits nor­
mally as soon as it detects the file haspstop (created by hasphaJt), and exits
reluctantly whenever it encounters a run of errors. An attempt is made to
manage the null file haspdead so that it exists precisely when haspmain is
not executing. Hasp;nit has the capability of dialing any remote IBM system
with the proper hardware and software configuration. A file haspsoff is
created by hasphalt to signal that the phone should be hung up by
haspmain.

Ordinarily, haspdisp waits for event completion notices from haspmain.
Haspdisp follows up the events described by directing output files, updating
records, and notifying users. It may spawn the program haspeopy to copy
output across file systems. Haspdisp references the system files
/ete/passwd and /ete/utmp to correlate user names, numeric ids, and ter­
minals. Normal termination of haspmain causes haspdisp to exit also. In
the case of error termination, haspdisp delays about one minute and then
reboots RJE by executing haspinit again.

Event notices begin with a one-digit code. The code "0" alone signals nor­
mal termination. Other event notices consist of a code in the range 1 to 6
followed by the name of a file in the /usr/hasp directory. Notices are
issued as each file in the xmi .. queue is transmitted and as each tm,. file
is filled with output. These files are moved to new temporary names before
the event notice is composed. Transmitted files (code 1) are renamed
zmit. and output files (codes 3-5) are renamed pr ... pch., or msr.

- 2-

HASP(8) (Obsolescent) HASP(8)

depending on their type. When haspdisp gets around to following up on the
events described, the files will either be deleted or moved to a permanent
destination.

Event notices are written to the log file at the time they are received by
haspdisp. A typical section of the log looks as follows:

lzmit283
5msg6l
lzmit284
5msg62
3prt63

Additional lines are written to the log by haspinit. Each reboot of haspinit is
marked by a time stamp. If the previous execution of haspmain ended in
error, an exception notice precedes the time stamp. Exception notices are
formatted by haspmain and consist of a sequence of capital letters. The
most common is AAAAA, that indicates five successive failures to acquire
the line for a transmission to the host. A sequence of time stamps alterna­
ting with AAAAA indicates that the host is not responding to RJE. Each
time the RJE facility is booted via the haspinil program, the log file is
cleaned out. A copy of its last contents is placed in Ii file named slot.

Most hasp files and directories are protected from unauthorized tampering.
The exception is the pool directory, that is provided so that send(lC) can
create temporary files in the correct file system. Haspqer and rjestat(lC).
the user's interfaces to hasp, operate in setuid mode to contribute the
necessary permission modes. Rjestat(l C). incidentally. extends to anyone
who can login as rje complete freedom to enter console commands. When
invoked with a + argument, it suppresses the cI that begins a display com­
mand and allows one: to cancel or re-route: jobs.

Some minimal oversight of each hasp subsystem is required. The: hasp
mailbox should be: inspected and cleaned out periodically. The: jolt directory
should also be checked. The ollly files placed there are Olltput files whOle
destination file systems are out of space. Users should be liveR a short
period of time (say, a Cay or two). and then these files should be removed.

Usage statistics are recorded in the: directory jasrjbs,jas". if it exists.
Six files will be created and updated. Each will contain data on • per-Wier
ID basis. File hasp.in.salll accumulates the number of blocks transmitted
by hasp; file: Itasp.in.C:llt records the number of transmissions; file
h.sp.in.lDax records the size, in blocks. of the laT!cst job sent. Files
h.Sp.Ht.sum, ".sp.out.ent and bsp.o.t x contain the: same statistics
for output received by hasp. The program usage may be used to print these
statistics; "usage file [user IDI ... J" will print out the statistics !llthered in
file. If the optional user ID list is present. only the statistics for these user
IDs will be printed.

The configuration table jalr jrjejlioes is accessed by all components of
RJE. Its six columns may be labeled .. host". "system"". "directory".
"prefix". "device". and "parameters". Each line of the table maximum of
eight) defines an RJE connection. "Host" is the name of a remote compu­
ter: A, B. C. Ul, or U3. "System" is a string of capital letters identifying
UNIX systems. The first specifies where the RJ~ connection is normally ter­
minated; the remainder specify where it may be backed-up to if the primary
RJE system goes down. "Directory" is the directory name of the servicing
RJE subsystem. "Prefix" is the string prefixed (redundantly) to several
crucial files and programs in the directory: hasp. hasp2. uvac. "Device" is
the name of the controlling DQS-llB. with jde,j excised. "Parameters"

- 3 -

HASP(I) (ObIOIesc:eDt) HASP(I)

contains information on the type of connection to make. Each subfield is
separated by the delimiter:. Any or all fields may be omitted; however,
the fields are positional. All but trailing delimiters must be present. For
example, in

1200:512::::9-555-1212

subfields 3, 4, and 5 are missing, but the delimiters are present.

The first subfield specifies the amount of space (S) in blocks that RJE tries
to maintain on file systems it touches. The default is 0 blocks. Several RJE
programs, including the send(lC) command, use the ustat(2) system call to
determine the remaining capacity of the file systems they usc. Send shuts
down and haspinit issues a warning when no more than 1.5S blocks are
available; haspmain stops accepting output from the host when the capacity
falls to 1.2S blocks; RJE becomes dormant. until conditions improve, when
the capacity falls to S blocks. If the space on the file system specified by
the user on the "usr=" card would be depleted to a point below S, the file
will be put in the "job" subdirectory of the connection's home directory
(e.g., /usr/haspl/job). rather than in the place that the user requested.
The second subfield specifies the size in blocks of the largest file that can
be accepted from the host without truncation taking placc. The default is
no truncation. The third subfield specifies burst page removal. If this
subfield contains the letter y, RJE will not try to remove any burst pages
from returned output. Any other value in this subfieid will cause RJE to
scan for and remove the leading burst pages. For UNIVAC hosts this flag is
inoperative and no burst pages are ever removed. Embedded and trailing
burst pages are never removed. The default is D. The fourth subfield
specifies what to do with undeliverable returning jobs. If an output file is
undeliverable for any reason other than file system space limitations (e.g.,
missing or invalid "usr=" card) and this subfield contains the letter y, the
output will be retained in the "job" subdirectory of the home directory
(e.g., /asr/hasp/job). If this subfield has any other value, undeliverable
output will be discarded. The default is III. The fifth subfield specifies the
status of the interactive status terminal for this line. If the subfield con­
tains an i, all console status facilities arc inhibited (e.g., rjestot(1 C) will not
behave like a status terminal, and the ten-minute automatic status inquiry
is inhibited). This subfield must contain an i for UNIVAC configurations.
In all cases, the normal non-interactive uses of rjestot(lC) will continue to
function. The default is y. Subfield six contains a telephone number to be
used to call a host machine. The telephone number may contain the digits
o thru 9 and the character - which denotes a pause If the telephone num­
ber is not present, no dialing is attempted and a leased line is assumed.

Sign-on is controlled by the existence of a signon file in the controlling
directory (e.g., /asr/has,/sigBOB). If this file is present its contents are
sent as a sign-on message to the host system.

The file /a.r/rje/s,. contains the single-letter name of the current UNIX
system. An RJE connection wiD be considered available if this is its primary
system or if this is one of its backup systems and the associated directory is
mounted. Send(lC) and rjestQt(lC) select an available connection by
indexing on the Uhost" field of the configuration table. Hasp programs
index on the "prefix" field. A subordinate directory, lMIae, exists in
/asr/rje for usc by haspdisp and slaqer programs. This directory holds
those output files that have been designated as standard input to some exe­
cutable file. This designation is done via the "usr- ••• " specification.
Haspdisp places the output files here -and updates the file log to specify the
order of execution, arguments to be passed, etc. SIrqer executes the

·4-

HASP(8) (ObIlOlcKCDt) HASP(8)

FILES

appropriate files. The shqer must be started in jetejre:. A program called
compact compacts the log file. It should be executed before shqer and RJE
have been started.

All HASP programs are reentrant; therefore, if more than one HASP is to be
run on a given UNIX system, simply link (via In(l» HASP2 program names
to HASP names in jusr.

Configuration-dependent and general-purpose RJE files:

/dev /rjei DQSII-B
jdev /uy? terminals
jetc/utmp list of active users
/ etcjpasswd user population
jusr/rjejsys UNIX system name, e.g., "A"
jusr/rje/lines UNIX RJE lines configuration table
/usr/rje/sque/log log information fer shqer
User files:
jusr/mail/* a user's mailbox
jprnt a user's print data set
/pnch a user's punch data set

Hasp files (relative to the directory entry in the RJE configuration table):
hasp* mostly programs
haspdead inactive flag
haspsoff dial-up hang-up signal
hasps top halt signal
haspmesg message slot
haspstat queue end record
hasplock lockout file
xmit* jobs queued
infojlogx* haspqer loginfo
job/* output from jobs whose file systems are out of space
jobsout fifo job store
tmp* output files
log event log
resp concatenated responses from the IBM system
status RJE message of the day
pooiJstm. send(lC) temporaries
usgj* usage statistics
sign on contains card image for signon

SEE ALSO
Jjestat(lC), send(IC), dqs(4), pnch(5), mk(8).
Guide to IBM Remote Job Entry jor PWBjUNIX Users by A. L. Sabsevitz and
E. J. Finger.
System Components: IBM 2770 Data Communication System, IBM SRL
GA27-3013.
OSJVS2 HASP 1/ Version -I System Programmer's Guide IBM SRL GC27-6992.

DIAGNOSTICS
Haspinit provides brief error messages describing obstacles to bringing up
hasp. They can best be understood in the context of the RJE source code.
The most frequently occurring one is "cannot open /dev /Jjei". This may
occur if the D<:&IIB status register shows something other than READY
(octal 200). It will also occur if another process already has the D<:&llB
open, or if the exclusive use flag Ldqsx+3, _dqsx+73. etc.) has remained
set after a close of the DQS-lIB.

- 5 -

HASP(I) (ObiolelCeat) HASP(I)

BUGS

Once hasp has been started, users should assist in monitoring its perfor­
mance, and should notify operations personnel of any perceived need for
remedial action. Rjestat(1C) will aid in diagnosing the current state of RJE.
It can detect, with some reliability, when the far end of the communica­
tions line has gone dead, and will report in this case that the host computer
is not responding to RJE. It will also attempt to reboot hasp if it detects a
prolonged period of inactivity on the DQS-11B.

The name hasp is an anachronism. It is used only as a collective name and
could represent HASP, JES2, ASP, etc.

- 6 -

INIT(8) INIT(8)

NAME
init - process control initialization

SYNOPSIS
/ete/i.it [state]

DESCltIPTION
Init is invoked inside UNIX as the last step in the boot procedure. It is pro­
cess number one, and is the ancestor of every other process in the system.
As such, it can be used to control the process structure of the system. If
init is invoked with an argument by the super-user, it will cause a change in
state of process one.

Init has 9 states, 1 through 9; it is invoked by the system in state I, and it
performs the same functions on entering each state. When a state is
entered, init reads the file /ete/inittab. Lines in this file have the format:

state:id:ftags:command

All lines in which the state field matches init's current state are recognized.
If a process is active under the same two character id as a recognized line,
it may be terminated (signal 15), killed (signal 9), or both by including the
flags t and k in the order desired. The signal is sent to all processes in the
process group associated with the id. The command field is saved for later
execution.

After reading /etc/~Ditt.b and signaling running processes as required, but
before invoking any processes under the new state, /ete/rc is invoked with
three arguments. This command file performs housekeeping such as remo­
ving temporary files, mounting file systems, and starting daemons. The
three arguments are the current state, the number of times this state has
been entered previously, and the prior state. Init will also execute /ete/re
at the reqllest of the operating system (e.g., when recovering from power
failure). In this last case, the first argument has an x appended to it.

When /ete/rc has finished executing, init invokes all commands waiting to
be executed. (A command is waiting to be executed if there is no process
currently running that has the same id as the command.) The flag c (con­
tinuous) requires the comnwnd to be continuously reinvoked whenever the
process with that id dies. The flag 0 (off) causes the command to be
ignored. This is useful for turning lines off without extensive editing. Oth­
erwiie, the command is invoked a maximum of one time in the current
state.

In;t invokes the command field read from /etc/inittab by opening / for
reading and writing on file descriptors 0, 1, and 2, resetting all signals to
system default, setting up a new process group (setpgrp{2», and execing:

jbinjsh -c exec command

DIAGNOSTICS

BUGS

FILES

When ;n;t can do nothing else because of a missing jetc/inittab or when it
has no children left, it will try to execute a shell on Ide, /console. When
the problem has been fixed, it is necessary to change states, and terminate
the shell.

Init does not complain if the state-id pairs in /etc/inittab are not unique.
For any given pair, the last one in the file is valid.

jetc/inittab
jetcjrc

• 1 -

INIT(I) INIT(I)

/bin/sh
/dcv /consoic

SEE ALSO
\ogin(l), sh(l), cxcc(2), sctpgrp(2), inittab(5), gctty(8).

- 2 -

MAKEKEY(8) MAKEKEY(I)

NAME
makekey - generate encryption key

SYNOPSIS
lusr llib/ .. akekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space. It
reads 10 bytes from its standard input, and writes 13 bytes on its standard
output. The output depends on the input in a way intended to be difficult
to compute (i.e., to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters.
The last two (the salt) are best chosen from the set of digits, ", I, and
upper- and lower-case letters. The salt characters are repeated as the first
two characters of the output. The remaining II output characters are
chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used
to select one of 4,096 cryptographic machines all based on the National
Bureau of Standards DES algorithm, but broken in 4,096 different ways.
Using the input key as key, a constant string is fed into the machine and
recirculated a number of times. The 64 bits that come out are distributed
into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(l) and
crypt (1». Usually, its input and output will be pipes.

SEE ALSO
crypt (1), ed(1), passwd(5).

- 1 -

I

MK(8) MK(8)

NAME
mk - how to remake the system and commands

DESCRIPTION
All source for UNIX is in a source tree distributed in the directory jusr jsrc.
This includes source for the operating system, libraries, commands, miscel­
laneous files necessary to the running system, and procedures to create
everything from this source.

The top level consists of the directories cmd, lib, uts, bead, and stand as
well as commands to remake each of these "directories". These com­
mands are named :mIc, which remakes everything, and :mkdir where dir is
the directory to be recreated. Each recreation command will make all or
part of the piec; over which it has control. :mIc will run each of these com­
mands and thus recreate the whole system.

The lib directory contains libraries used when loading user programs. The
largest and most important of these is the C library. All libraries are in
sub-directories and are created by a makefile or runcom. A runcom is a
Shell command procedure used specifically to remake a piece of the system.
:mIclib will rebuild the libraries that are given as arguments. The argument
\. will cause it to remake all libraries.

The bead directory contains the header files, usually found in jusr jinelude
on the running system. :mkhead will install those header files that are
given as arguments. The argument \. will cause it to install all header files.

The uts directory contains the source for the UNIX operating system.
:mlcuts (no arguments) invokes a series of makefiles that will recreate the
operating system.

The stand directory contains stand-alone commands and boot programs.
:mkstand will rebuild and install these programs.

The cmd directory contains files and directories. :mJccmd transforms source
into a command based upon its suffix (.1, .y, .c, .s, .sb), or its makefile
(see make(l» or runcom. A directory is assumed to have a makefile or a
runcom that will take care of creating everything associated with that direc­
tory and its sub-directories. Makefiles and runcoms are named
command.mk and command.rc respectively.

:mkcmd will recreate commands based upon a makefile or runcom if one of
them exists; alternatively commands are recreated in a standard way based
on the suffix of the source file. All commands requiring more than one file
of source are grouped in sub-directories, and must have a makefile or a
runcom. C programs (.c) are compiled by the C compiler and loaded strip­
ped with shared text. Assembly language programs (.s) are assembled with
jusr jineludejsys.s which contains the system call definitions. Yacc pro­
grams (.y) and lex programs (.1) are processed by yacc(l) and lex(l)
respectively before C compilation. Shell provams (.sb) are copied to
create the command. Each of these operations leaves a command in .jcmd
which is then installed by using jetcjinstall.

The arguments to :mJccmd are either command names, or subsystem
names. The subsystems distributed with UNIX are: acet, graf, rje, sces,
and text. Prefacing the :mJccmd instruction with an assignment to the Shell
variable SARGS will cause the indicated components of the subsystem to be
rebuilt.

The entire sces subsystem can be rebuilt by:

/usr/src/:mkcmd sces

- 1 -

MK(8) MK(8)

while the delta component of sees can be rebuilt by:

ARGS="delta" /usr/src/:mkcmd sees

The log command, which is a part of the stat package, which is itself a part
of the graf package, can be rebuilt by:

ARGS="stat log" /usr/src/:mkcmd graf

The argument * will cause all commands and subsystems to be rebuilt.

Makefiles, both in ./emd and in sub-directories, have a standard format. In
particular :mkcmd depends on there being entries for install and clobber.
Install should cause everything over which the makefile has jurisdiction to
be made and installed by /ete/install. Clobber should cause a complete
cleanup of all unnecessary files resulting from the previous invocation.

Most of the runcoms in ./emd (as opposed to sub-directories) relate in par­
ticular to a need for separated instruction and data (I and D) space.

In the past, dependency on the C library routine ctime(3C) was also impor­
tant. Clime had to be modified for all systems located outside of the
eastern time zone, and all commands that referenced it had to be recom­
piled. Clime has been rewritten to check the environment (see environ(7»
for the time zone. This results in time zone conversions possible on a per­
process basis. /ete/profile sets the initial environment for each user, and
/ete/Fe sets it for certain system daemons. These two programs are the
only ones which must be modified outside of the eastern time zone.

An effort has been made to separate the creation of a command from
source, and its installation on the running system. The command
/ete/install is used by :mkcmd and most makefiles to install commands in
the proper place on the running system. The use of install allows max­
imum flexibility in the administration of the system. Install makes very few
assumptions about where a command is located, who owns it, and what
modes are in effect. All assumptions may be overridden on invocation of
the command, or more permanently by redefining a few variables in install.
The object is to install a new version of a command in the same place, with
the same attributes as the prior version.

In addition, the use of a separate command to perform installation allows
for the creation of test systems in other than standard places, easy
movement of commands to balance load, and independent maintenance of
makefiles. The minimization of makefiles in most cases, and the site
independence of the others should greatly reduce the necessary main­
tenance, and allow makefiles to be considered part of the standard source.

SEE ALSO
install(lM), make(l).

- 2 -

I

RC(8)

NAME
rc - system initialization shell script

SYNOPSIS
/etc/rc

DESCRIPTION

RC(8)

The /etc/rc file is executed by init(8) whenever the init state is changed.

SEE ALSO
init(8).

- 1 -

RJE(8) RJE(8)

NAME
rje - RJE (Remote Job Entry) to IBM

SYNOPSIS
lusr Irje/rjeinit
lusr Irje/rjebalt

DESCRIPTION
RJE is the communal name for a collection of programs and a file organiza­
tion that allows a UNIX system, equipped with a KMCll-B, KMCII driver,
and associated Virtual Protocol Machine (VPM) software, to communicate
with IBM's Job Entry Subsystems by mimicking an IBM 360 remote mul­
tileaving work station.

Implementation.
RJE is initiated by the command rjeinit and is terminated gracefully by the
command rjehalt. While active, RJE runs in the background and requires
no human supervision. It quietly transmits, to the IBM system, jobs that
have been queued by the send(lC) command, and operator requests that
have been entered by the rjestat(lC) command. It receives, from the IBM
system, print and punch data sets and message output. It enters the data
sets into the proper UNIX directory and notifies the appropriate user of their
arrival. It scans the message output to maintain a record on each of its
jobs. It also makes these messages available for public inspection, so that
rjestat(lC), in particular, may extract responses.

Unless otherwise specified, all files and commands described below reside
in directory lusr/rje (first exceptions: send and rjestat).

There are two sources of data to be transmitted by RJE from UNIX to an
IBM System/370. In both cases, the data is organized as files in the
lusr Irje/squeue directory. The first are files named CO* which are created
by the enquiry command rjestat(lC). The second source, containing the
bulk of the data, are files named rd- or sq- which have been created by
send and queued,by the program rjeqer. On completion of processing send
invokes rjeqer. Rjeqer and rjestat inform the program rjexmit that a file has
been queued via the file joblog. Upon successful transmission of the data
to the IBM machine, rjexmit removes the queued file. As files are transmit­
ted and received, the program rjedisp writes an entry containing the date,
time, file name, logname, and number of records in the file acctlog, if it
exists. This file can be used for local logging or accounting information,
but is not used elsewhere by RJE. The use of this information is up to the
RJE administrator.

Each time rjeinit is invoked, the joblog file'is truncated and recreated from
the contents of the /usr/rje/squeue directory. During this time, rjeinit
prevents simultaneous updating of the job log file.

Output from the IBM system is classified as either a print data set, a punch
data set, or message output. Print output is converted to an ASCU text file,
with standard tabs. Form feeds are suppressed, hut the last line of each
page is distinguished by the presence of an extraneous trailing space.
Punch output is converted to pnch(5) format. This classification and both
conversions occur as the output is received. Files are moved or copied into
the appropriate user's directory and assigned the name prnt- or pDeb-,
respectively, or placed into user directories under user-specified names, or
used as input to programs to be automatically executed, as specified by the
user. This process is driven by the "usr== specification. RJE retains
ownership of these files and permits read-only access to them. Message
output is digested by RJE immediately and is not retained.

- 1 -

I

VE(S) VE(S)

A record is maintained for each job that passes through RJE. Identifying
information is extracted contextually from files transmitted to and received
from the IBM system. This information is stored and used by the rjedisp
program for IBM job acknowledgements and delivery of output files.

The IBM system automatically returns an acknowledgement message for
each job it receives. Other status messages are returned in response to
enquiries entered by users. All messages received by RJE are appended to
the resp file. The resp file is automatically truncated when it reaches
70,000 bytes. Each enquiry is preceded and followed by an identification
card image of the form "SUX <process id>". The IBM system will echo
this back as an illegal command. The appearance of process ids in the
response stream permits responses to be passed on to the proper users.

While it is active, RJE occupies at least the three process slots that are
appropriated by rjeinit. These slots are used to run rjexmit, the transmitter,
rjerecv, the receiver, and rjedisp, the dispatcher. These three processes are
connected by pipes. The function of each is as follows:

rjexmit Cycles repetitively, looking for data to transmit to the IBM system.
After transmission, rjexmit passes an event notice to rjedisp. If rjex­
mit encounters a stop file, (created by rjehalt), it exits normally. In
the case of error termination, rjexmit reboots RJE by executing
rjeinit.

rjerecv Cycles repetitively, looking for data returning from the IBM
machine. Upon receipt of data, rjerecv notifies either rjexmit or
rjedisp of the event (transfer information is sometimes passed to
rjexmit). Rjerecv exits normally at the first appropriate moment
when it encounters the file stop, or exits reluctantly when it
encounters a run of errors.

rjedisp Follows up event notices by directing output files, Updating records,
and notifying users. Rjedisp references the system files
/ete/passwd and /ete/atmp to correlate u,ser names, numeric ids,
and terminals. Termination of rjerecv causes rjedisp to exit also.

Rjeinit has the capability of dialing any remote IBM system with the proper
hardware and software configuration.

Most RJE files and directories are protected from unauthorized tampering.
The exception is the spool directory. It is used by send(lC) to create tem­
porary files in the correct file system. Rjeqer and rjestat(lC), the user's
interfaces to RJE. operate in seruid mode to contribute the necessary permis­
sion modes.

Administration.
Some minimal oversight of each RJE subsystem is required. The RJE mail­
box should be inspected and cleaned out periodically. The job directory
should also be checked. The only files placed there are output files whose
destination file systems are out of space. Users should be given a short
period of time (say, a day or two), and then these files should be removed.

The configuration table /usr /rje/lines is accessed by all components of
RJE. Each line of the table (maximum of 8) defines an RJE connection. Its
seven columns may be labeled host, system, directory, prefix, device, peri­
pherals and parameters. These columns are described as follows:

bost
The name of a remote IBM computer (e.g., A B C). This string can
be up to 5 characters.

- 2 -

RJE(8)

system

RJE(8)

The name of a UNIX system. This name should be the same as the
system name from uname(1).

directory

prefix

device

This is the directory name of the servicing RJE subsystem (e.g.,
jusrjrjel).

This is the string prefixed (redundantly) to several crucial files and
programs in directory (e.g., rjel, rje2, rje3).

This is the name of the controlling VPM device, with Ide, j excised.

peripberals
This field contains information on the logical devices (readers, prin­
ters, punches) used by RJE. Each subfield is separated by:, and is
described as follows:

(I) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem
must agree with the number of peripherals which have been descri­
bed on the remote machine for that line.

parameters
This field contains information on the type of connection to make.
Each subfield is separated by:. Any or all fields may be omitted;
however, the fields are positional. All but trailing delimiters must
be present. For example, in

1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each
subfie1d is defined as follows:

(1) space

(2) size

This subfield specifies the amount of space (S) in blocks
that RJE tries to maintain on file systems it touches. The
default is 0 blocks. Send will not submit jobs and rjeinit
issues a warning when less than 1.5S blocks are available;
rjerecv stops accepting output from the host when the capa­
city falls to S blocks; RJE becomes dormant, until conditions
improve. If the space on the file system specified by the
user on the "usr=" card would be depleted to a point
below S, the file will be put in the job subdirectory of the
connection's home directory, rather than in the place that
the user requested.

This subfield specifies the size in blocks of the largest file
that can be accepted from the host without truncation tak­
ing place. The default is no truncation.

(3) badjobs
This subfield specifies what to do with undeliverable retur­
ning jobs. If an output file is undeliverable for any reason
other than file system space limitations (e.g., missing or
invalid "usr=" card) and this subfield contains the letter y,
the output will be retained in the job subdirectory of the

- 3 -

II

RJE(8) RJE(8)

home directory, and login rje is notified. If this subfield
contains an R or has any other value, undeliverable output
will be discarded. The default is D.

(4) console
This subfield specifics the status of the interactive status
terminal for this line. If the subfield contains an i, all con­
sole status facilities arc inhibited (e.g., rjestat(l C) will not
behave like a status terminal). In all cases, the normal
non-interactive uses of rjestat(1 C) will continue to function.
The default is y.

(5) dial-up
This subfield contains a telephone number to be used to call
a host machine. The telephone number may contain the
digits 0 thru 9 and the character - which denotes a pause.
If the telephone number is not present, no dialing is
attempted and a leased line is assumed.

Sign-on is controlled by the existence of a signOR file in the home direc­
tory. If this file is present, its contents arc sent as a sign-on message to the
host system. If this file docs not exist, a blank card is sent. Sign-off is
controlled in the same way, except that the signoft' file is sent by rjehalt if it
exists. If the signoft' file docs not exist, a "/osiIDOft''' card is sent. These
files should be ASCII text and no more than 80 characters.

Send(lC) and rjestat(lC) select an available connection by indexing on the
host field of the configuration table. RJE programs index on the prefix
field. A subordinate directory, SGlue, exists in /oar/rje for usc by rjedisp
and shqer programs. This directory holds those output files that have been
designated as standard input to some executable file. This designation is
done via the "usr= _'0" specification. Rjedisp places the output files here
and updates the file log to specify the order of execution, arguments to be
passed, etc. Shqer executes the appropriate files.

All RJE programs are shared text; therefore. if more than one RJE is to be
run on. a given UNIX system, simply link (via In(l)) RJE2 program names
to RJE names in /usr.

SEE ALSO
rjestat(1C), send(lC), vpm(4), pnch(5), mk(8).
UNIX Remote Job Entry User's Guide by K. A. Kelleman.
UNIX Remote Job Entry Administrative Guilk by M. J. Fitton.
Setting Up UNIX.

DIAGNOSTICS
Rjeinit provides brief error messages describing obstacles encountered while
bringing up RJE. They can best be understood in the context of the RJE
source code. The most frequently occurring one is "cannot open
/dev/vpm?". This may occur if the VPM script has not been started, or if
another process already has the VPM device open.

Once RJE has been started, users should assist in monitoring its perfor­
mance, and should notify operations personnel of any perceived need for
remedial action. Rjestat(lC) will aid in diagnosing the current state of RJE.
It can detect, with some reliability, when the far end of the communica­
tions line has gone dead. and will report in this case that the host computer
is not responding to RJE. It will also attempt to reboot RJE if it detects a
prolonged period of inactivity on the KMC-llB.

- 4 -

ROM BOOT(8) (PDP-II oaly) ROM BOOT(8)

NAME
romboot - special ROM bootstrap loaders

DESCRIPTION
To bootstrap programs from various storage media. standard DEC ROM
bootstrap loaders are often used. However. such standard loaders may not
be compatible with UNIX bootstrap programs or may not exist on a particu­
lar system. Thus. special bootstrap loaders were designed that may be cut
into a programmable ROM (M792 read-only-memory) or manually toggled
into memory.

Each program is position-independent. that is. it may be located anywhere
in memory. Normally. it is loaded into high core to avoid being overwrit­
ten. Each reads one block from drive 0 into memory starting at address 0
and then jumps to address O. To minimize the size. each assumes that a
system INIT was generated prior to execution. Also. the address of one of
the device registers is used to set the byte count register or word count
register. In each case. this will read in at least 256 words. which is the
maximum size of bootstrap programs.

On disk devices. block 0 is read; on tape devices, one block from the
current position. Thus. the tape should be positioned at the load point
(endzone if DECtape) prior to booting. Also. the standard DEC bootstrap
loader for magnetic tape may be emulated by positioning the tape at the
load point and executing the bootstrap loader twice.

By convention. on PDP 11/45 systems. address 773000 is the start of a
tape bootstrap loader. and 773 020 the start of a disk bootstrap loader. The
actual loaders used depend on the particular hardware configuration.

SEE ALSO
70boot(8), unixboot(8).

CODE
Tell - DECtape

012700 mov $tcba,rO
177346
010040 mov rO,-(rO) luse tc addr for wc
012740 mov $3,-(rO) Iread bn forward
000003
105710 1 : tstb (rO) Iwait for ready
002376 bge Ib
112710 movb $5,(rO) Iread forward
000005
105710 1 : tstb (rO) Iwait for ready
002376 bge Ib
005007 clr pc Itransfer to zero

TUIO - Magnetic Tape
012700 mov Smtcma,rO
172526
010040 mov rO,-(rO) luse mt addr for be
012740 mov $60003, - (rO) Iread, 800 bpi, 9 track
060003
105710 1: tstb (rO) Iwait for ready
002376 bge lb
005007 clr pc Itransfer to zero

- I -

ROM BOOT(8) (PDP-ll ollly) ROM BOOT(8)

TV 16 - Magnetie Tape
012700 mov Smtwe.rO
172442
012760 mov S 1300.30(rO) /set 800 bpi. PDP format
001300
000030
010010 mov rO.(rO) fuse mt addr for we
012740 mov S71.-(rO) /read
000071
105710 I: tstb (rO) /wait for ready
002376 bge Ib
005007 elr pc /transfer to zero

RK05 - Disk Paek
012700 mov Srkda.rO
177412
005040 eli -(rO)
010040 mov rO.-(rO) fuse rk addr for we
012740 mov S5.-(rO) /read
000005
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pc /transfer to zero

RP03 - Disk Paek
012700 mov Srpmr,rO
176726
005040 elr -(rO)
005040 elr -(rO)
005040 elr -(rO)
010040 mov rO.-(rO) fuse rp addr for we
012740 mov S5.-(rO) /read
000005
105710 1 : tstb (rO) /wait for ready
002376 bge Ib
005007 elr pc /transfer to zero

RP04 - Disk Pack
012700 mov Srpcsl.rO
176700
012720 mov S21.(rO)+ fread-in preset
000021
012760 mov SlOOOO.30(rO) /8et to 16-bits/word
010000
000030
010010 mov rO.(rO) fuse rp addr for we
012740 mov S71.-(rO) /read
000071
105710 I: tstb (rO) /wait for ready
002376 bge Ib
005007 elr pc /transfer to zero

I - 2 -

RP6FMT(8) (VAX-1I/7&O stanll-alone only) RP6FMT(8)

NAME
rp6fmt - format and/or check RP06 disk packs

DESCRIPTION
rp6fmt will format new RP06 packs and check used packs (with write inhibi­
ted). The program reports the location and type of errors encountered,
including ECC correctable error burst sizes.

EXECUTION
The following example shows how to load rp6fmt on a VAX-l 1/780 with a
UNIX 3.0 updated floppy disc:

»>H<cr>
HALTED AT nnnnnnnn

»>B<cr>

ss

CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT nnnnnnnn
LOAD DONE, nnnnnnnnn BYTES LOADED

To execute rp6fmt, type /staad/rp6f.t after the standalone shell prompt
SS. The formatter will print out its command vocabulary, and proceed
inter-actively. If one wishes to format a pack on disk drive 1, for example,
the command is dU. The program will double check format requests, as
pack contents will be destroyed.

COMMANDS

FILES

m n MBA with drive doing the format is n. (defaults to 0)
d n drive with the pack to be formatted or checked is 11. (drive num-

ber must be between I and 7)
f format pack
c cbeck pack format
q quit
v prillt vocabulary
R 11 set the error report level to 11.

X will tell you about the available report levels.

The X command will explain the Report Level options the first time it is
executed. Subsequent execution by the operator or by the program during
error logging, will merely print the information defined by the current
report level.

/stand/rp6fmt

SEE ALSO
vaxops(8).

·1-

I

SAR(8) SAR(8)

NAME
sar - system activity report package

DESCRIPTION

FILES

SaT is the first (tentative) piece of an overall UNIX measurement and statis­
tics package; the data that are collected and the output formats are not yet
final.

The operating system contains a number of counters that are incremented
as various system actions occur. These include several time counters (that
are incremented each 60th of a second depending on the CPU mode), I/O
activity counters, switching and system-call counters, and file-access coun­
ters. The system activity package writes system activity parameters periodi­
cally on a binary file. It also generates a daily system activity report that
covers the prime period (from 8:00 to 18:00).

The data collection and report generation are controlled by entries in cron­
tab (see cTon(lM». The data collection program is normally activated
every hour on the hour; the report generation once a day.

Every time the system is booted, a special record is written to the daily data
file, since all the system activity counters restart from zero at that time.
This process is done while executing /etc/rc see (init(8» during UNIX ini­
tialization. It produces an entry on the daily report showing the restart
time.

The daily reports are deposited in /usr/adra/sa/sardd where dd are digits
representing the day of the month. A report can be printed (e.g., cat
/usr/adlD/sa/sar05) any time before it is removed the following week.

The structure of the binary daily data file is:

struct sa {
struct sysinfo si; /* defined in /usr/include/sys/sysinfo.h */
long dO; /* number of reads and writes of disk 0 */
long dl; /* number of reads and writes of disk 1 */
long d2; /* number of reads and writes of disk 2 */

};
long ts; /* time stamp in time_t format */

/usr/adm/sa/sadd
/usr/adm/sa/sardd
/tmp/sa.adrfl

daily data file
daily report file
address file

- 1 -

TAPE BOOT (8) (PDP-II only) TAPE BOOT(8)

NAME
tape boot - magnetic tape bootstrap program

DESCRIPTION

FILES

Tapeboot handles the problem of booting a PDP-II /45 or PDP-II /70 from a
TUIO or TUI6 tape transport. In both cases, the tape density is 800 bpi.
The complete program fits in one 512 byte block, but is duplicated so that
one copy resides in block 0 and another in block 1. Thus, both the stan­
dard DEC ROM bootstrap loaders and the special ROM loaders will work.
For example, to create a boot tape, execute:

cat /stand/tapeboot program-to-boot > /dev /mtO

To boot from magnetic tape, read the first record of the tape into memory
starting at address 0 and then jump to address 0, using a special ROM or
some manual procedure (toggle in the program). The bootstrap program
relocates itself to high core as specified when assembled (typically 24K
words, maximum of 28K). It then determines whether to use the TUIO
code or the TUl6 code. The TUIO is used if the TMll command register
(772 522) exists and the function (bits <3:1» is non-zero, otherwise the
TU16 is used. It then types on the console UNIX tape boot loader, rewinds
the tape, reads two blocks to skip past itself on the tape, clears memory,
and reads the rest of the tape, to the tape mark, into memory starting at
address O. If address 0 contains 000 407, a UNIX a.out program is assumed
and the first 8 words are stripped off by relocating the loaded program
toward address O. Finally, a jump to address 0 is done by executing
jsr pe,.SO.

If there is an error while reading the tape, the bootstrap program will type
tape error and attempt to read the record again.

/stand/tapeboot
/usr /src/stand

SEE ALSO
unixboot(8).

TUIO/TUI6 magtape bootstrap
source directory

- 1 -

I

UNIX BOOT (8) (PPP-ll oaly) UNIX BOOT (8)

NAME
unix boot - UNIX startup and boot procedures

DESCRIPTION

FILES

How to start UNIX. UNIX is started by placing it in core at location zero and
transferring to zero. Since the system is not reenterable, it is necessary to
read it in from disk or tape. See diskhoot(8) or tapehoot(8).

The switches. On systems with console switches, the switches are examined
60 times· per second, and the contents of the address specified by the
switches are displayed in the display register. If the switch address is even,
the address is interpreted in kernel (system) space; if odd, the rounded­
down address is interpreted in the current user space.

lnit. The operating system invokes init(8) as process number 1. It comes
up in state one which is conventionally single-user.

/unix UNIX code

SEE ALSO
70boot(8), diskboot(8), init(8), romboot(8), tapeboot(8).

- 1 -

UVAC(8) (Obsolcsccnt) UVAC(8),

NAME
uvac - RJE (Remote Job Entry) to UNIVAC

SYNOPSIS
/usr /uvac/uvacinit

/usr /uvac/uvachalt

DESCRIPTION
Uvac is the communal name for a collection of programs and a file organ­
ization that allow a UNIX System, equipped with an appropriate driver for
the DQSll-A, to communicate with a UNIVAC 1100 Series processer. This
facility includes code that must run on the UNIVAC processor, under any
Level 32 (or later) UNIVAC 1100 Executive that supports the Remote Sym~
biont Interface (RSI).

Uvac is initiated by the command uvacinit and is terminated gracefully by
the command uvachalt. While active, uvac runs in background and requires
no human supervision. It quietly transmits to the UNIVAC system jobs that
have been queued by the command send (1 C). It receives from the
UNIVAC system print data sets. It enters the data sets into the proper UNIX
directory and notifies the appropriate user of their arrival.

Other than name changes (uvac in place of hasp), non-existence of tran­
sparent mode (no punch files), non-existence of interactive rjestat(1 C)
capabilities, and use of ASCII format in place of EBCDIC format, hasp(8)
should be referenced for information on this facility.

- 1 -

VAXOPS(8) (VAX-ll/780 oBly) VAXOPS(I)

NAME
vaxops - VAX-ll/780 console operations.

DESCRIPTION
The procedures described here include the major operational sequences
involved in running UNIX on the VAX-ll/780 system. The following nota­
tion is used:

I. Special characters are enclosed in < > (e.g., <ctl> represents the
"control" key, and <u> stands for the "carriage return" key).

2. Items within {Is are mandatory substitutions.

DAILY PROCEDURES
Disk Boot

This procedure can be used only on a system with a Hoppy disk updated for
use with UNIX. If the Hoppy disk has not been so updated. the sequences
shown below under UNIX Floppy Update must be performed.

When the system is first turned on, the console prompt »> is printed. If
UNIX has been shut down, but not halted (see Brillgillg the System Dowll),
the operator must type <ctl>p to get into console mode. After the
prompt, type H <u> to halt the system.

With the system halted, any of the console commands may be executed as
described below under Console Operatioll.

To boot the stand-alone shell (sash) the operator types B<u>. The fol­
lowing is an example of this operation as seen on the console, picking up
after the <ctl>p:

»>H<cr>
HALTED AT 1111111111111111

»>B<cr>

SS

CPU HALTED
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT 1111111111111111

LOAD DONE, 1111111111111111 BYTES LOADED

The $S prompt indicates that the stand-alone shell (sash) is ready to accept
commands. If it is desired to run stand-alone fsck(1M) (or other stand­
alone functions), this is the time to do it. The commands have the form
/su-ad/program where program can be any name from a limited list ~f
UNIX commands found in the directory /su-ad. To perform a file system
consistency check, type:

SS /stand/fsck /dev /rpO
To bring up UNIX, the operator must type lIaix<er>. The system will
come up through iait 1 (see ;";t(8».

This is the appropriate time to do file system backups, andfsck(1M) should
be executed if it was not executed in the stand-alone section of the boot.
One must never operate the system with a defective file system.

After successful completion of fsck(lM) and setting the date and time (see
date (I », the operator can bring the system to multi-user operation by exe­
cuting iait 1.

- 1 -

VAXOPS(8) (VAX-I 1/780 081y) VAXOPS(I)

Bringing the System Down
The shutdown procedure is designed to gracefully tum off all processes and
bring the system back to single user state with all buffers flushed. To do
this the operator can execute shutdown(lM) or the following sequence of
commands:

killall
sync
init 1
fsck (optional)

The system may then be halted by typing the <ctl>p and H<cr>
sequence.

System Dumps
After a system crash, the following procedure should be used to get a sys­
tem dump on tape.

1. Mount a tape with write ring and bring it on-line.
2. Enter console mode with <ctl>p.
3. After the »> prompt, halt the system with H<cr>.
4. Issue the following command sequence, each command followed by

<cr>:
E ROjN:F
ESP

(ExDmine RO thru R15)
(Get the stack pointer lor the next command)

E/V @jN:3F (ExDmine virtual memory beginning at the address from the
previous instnlCtion, and continuing lor the next 63 loca-
tions; i.e., exomine the stack)

ST 400 (Stan execution at 400, i.e., dump to tape)
5. Before returning to UNIX, execute the stand-alonelsck(lM).

System Faults
On occasion, the UNIBUS or its devices rail in such a manner as to flood the
console with error messages and suspend operations on UNIBUS devices. It
may be possible under these conditions to bring the system down gracefully
from an internal point-of-view, by inhibiting UNIBUS interrupts and run­
ning a normal shutdown. The following sequence can be executed:

<ctl>p
»>H
»> E 20006004 (Look at UIlA control register)
»> D • 1 (Clear the UBA)
»> C (Return to UNIX)

You should now be able to login as root and run a normal shutdown
sequence. Reboot the system by normal means, ensuring/.rck(lM) is per­
formed.

·INSTALLA nON BOOT PROCEDURES
Tape Boot

The floppy disk delivered with the VAX-1l/780 does not have tape-boot
capability. The user must type in the rollowing program to read the first
record on tape drive O. Type <er> at the end of each input line:

»>H
»>U
»>1

INIT SEQ DONE

»> D 20000 20008FDO
»> D + 00502001
»> D + 3204AOOl

- 2-

VAXOPS(8) (VAX-Il/780 only)

»> D + C003COSF
»> D + AOD40424
:>t» D + SFDOOC
»> D + COSOOOOO
»> D + 8F320S00
»> D + lOAOFEOO
»> D + COO7DO
»> D + C039D004
»> D + 400
»> S 20000 (Start tape load)

HALT INST EXECUTED
HAL TED AT 0002002F

VAXOPS(8)

»>S 2 (Execute. boot J1'0gram loaded from tape)

From this point the loader initiates a question and answer sequence to con­
trol the remainder of the load process.

Disk Boot
The floppy disk delivered with the VAX-ll/7S0 does not have UNIX disk­
boot capability. The user must type in the following program to read the
first block on disk drive O. Type <u> at t.be end of each line.

»>H
»>LINK

«<H
«<U
«<I

(Save the followillg sequence Oil the floppy)
(The prompt should challge to «<)

«< D 20000 00009FDE (Boot J1'0gram for MBA O. drive 0)
«< D + D0512001
«< D + DOO4AIOI
«< D + 0400Cl13
«< D + IOOOSF32
«< D + D40424Cl
«< D + SFDOOCAI
«< D + SOOOOOOO
«< D + 320S00Cl
«< D + Al FEOOSF
«< D + 2SCl D410
«<D + 14CID404
«< D + C139DOO4
«< D + 00000400
«<S 20000
«<S 2
«< <dl>C (Exit UNK mode)
»>

You are now ready to boot UNIX. Each time it is necessary to boot (or
reboot) UNIX, simply follow the sequence:

»> P<cr> (Execute the commands saved ill floppy lillk file; the
console should echo each command ill the file.)

$$ unix<cr> (Load and execute lube:)
UNIX Floppy Update

To update the console floppy for UNIX operation, one must have brought
UNIX up by one of the initial-load procedurc:s described above. The fol­
lowing sequence can then be executed.

- 3 -

VAXOPS(8) (VAX-ll/780 only) VAXOPS(8)

II cd /stand/conflp
II sh update

Update prints commentary during the update operation indicating the files
that are being replaced or added. Finally, a new table of contents is printed
and the available space is indicated.

CONSOLE OPERATION
The following is condensed from Chapter 2 of the VAX-llfl80 Hardware
Handbook, DEC, 1978.

The following are the standard console commands. The most abbreviated
form is shown in parentheses.

<ctl>P Causes console to exit Program 1/0 mode (talking to the
VAX-ll/780 program). This does not halt the VAX CPU.

<cti>U Deletes the current input line.

 Deletes the previous character.

<cti>C Interrupts printout.

(HE)LP Prints "help" file of which this is a part.

(E)XAMINE {address}
Displays 8-digit hexadecimal address and its contents. See
"help" file for qualifiers.

(D)EPOSIT {address} {datal
Enters data to address.

(I)NITIALIZE Initializes CPu.

(U)NJAM Unjams the SBI.

(SH)OW Displays console and CPU state.

(H)ALT Halts execution of V AX CPU instructions.

(S)TART {address}
Initializes CPU, enters address to PC, issues CONTINUE to
CPU, and puts console into Program I/O mode.

(C)ONTINUE Starts execution of VAX CPU instructions.

(SE)T (T)ERMINAL (P)ROGRAM
Puts console into Program I/O mode.

@{fiIel Causes the named floppy file to be printed and executed.

WARNINGS

FILES

Only <ctl>p can be executed from Program I/O mode. It does not stop
the VAX CPU from running. Only HALT can be executed while the VAX
CPU is running and not in Program I/O mode; therefore, the sequence to
stop the VAX-ll/780 while running UNIX (Program I/O mode) is:

<ctl>p
»>H<cr>

/etc/shutdown
/stand/.

SEE ALSO
fsck(1M), shutdown(lM), filesave(8), init(8), tapeboot(8).

- 4 -

	00_001
	00_002
	00_003
	00_004
	00_005
	00_006
	00_007
	00_008
	00_009
	00_010
	01_001
	01_002
	01_003
	01_004
	01_005
	01_006
	01_007
	01_008
	01_009
	01_010
	02_001
	02_002
	02_003
	02_004
	02_005
	02_006
	02_007
	02_008
	02_009
	02_010
	02_011
	02_012
	02_013
	02_014
	02_015
	02_016
	02_017
	02_018
	02_019
	02_020
	02_021
	02_022
	02_023
	02_024
	02_025
	02_026
	02_027
	02_028
	02_029
	02_030
	02_031
	02_032
	1_001_intro
	1_002_300
	1_003
	1_004_4014
	1_005_450
	1_006_acct
	1_007
	1_008_acctcms
	1_009_acctcom
	1_010
	1_011_acctcon
	1_012_acctmerg
	1_013_acctprc
	1_014_acctsh
	1_015
	1_016_adb
	1_017
	1_018
	1_019
	1_020
	1_021
	1_022_admin
	1_023
	1_024
	1_025
	1_026_ar
	1_027
	1_028_arcv
	1_029_as
	1_030
	1_031_awk
	1_032
	1_033
	1_034_banner
	1_035_basename
	1_036_bc
	1_037
	1_038_bcopy
	1_039_bdiff
	1_040_bfs
	1_041
	1_042
	1_043_bs
	1_044
	1_045
	1_046
	1_047
	1_048
	1_049
	1_050
	1_051
	1_052_cal
	1_053_calendar
	1_054_cat
	1_055_cb
	1_056_cc
	1_057
	1_058_cd
	1_059_cdc
	1_060
	1_061_chmod
	1_062_chown
	1_063_chroot
	1_064_clri
	1_065_cmp
	1_066_col
	1_067_comb
	1_068_comm
	1_069_config
	1_070
	1_071
	1_072_cp
	1_073_cpio
	1_074
	1_075_crash
	1_076
	1_077_cref
	1_078
	1_079_cron
	1_080_crypt
	1_081_csplit
	1_082
	1_083_ct
	1_084_cu
	1_085
	1_086_cut
	1_087_cw
	1_088
	1_089
	1_090_date
	1_091_dc
	1_092
	1_093_dd
	1_094
	1_095_delta
	1_096
	1_097_deroff
	1_098_devnm
	1_099_df
	1_100_diff
	1_101_diff3
	1_102_diffmk
	1_103_dircmp
	1_104_dpd
	1_105
	1_106_dpr
	1_107_du
	1_108_dump
	1_109_echo
	1_110_ed
	1_111
	1_112
	1_113
	1_114
	1_115
	1_116
	1_117
	1_118_efl
	1_119
	1_120_env
	1_121_eqn
	1_122
	1_123_errdead
	1_124_errdemon
	1_125_errpt
	1_126_errstop
	1_127_expr
	1_128
	1_129_f77
	1_130
	1_131_factor
	1_132_fget
	1_133
	1_134_fget.demon
	1_135_file
	1_136_find
	1_137
	1_138_fsck
	1_139
	1_140_fscv
	1_141_fsdb
	1_142
	1_143
	1_144_fsend
	1_145
	1_146_fwtmp
	1_147_gcat
	1_148
	1_149_gcosmail
	1_150_gdev
	1_151_ged
	1_152
	1_153
	1_154
	1_155
	1_156
	1_157_get
	1_158
	1_159
	1_160
	1_161
	1_162_getopt
	1_163_graph
	1_164_graphics
	1_165_greek
	1_166_grep
	1_167
	1_168_gutil
	1_169
	1_170_help
	1_171_hp
	1_172
	1_173_hyphen
	1_174_id
	1_175_install
	1_176_join
	1_177_kas
	1_178_kill
	1_179_kun
	1_180_ld
	1_181
	1_182_lex
	1_183
	1_184_line
	1_185_link
	1_186_lint
	1_187
	1_188_login
	1_189_logname
	1_190_lorder
	1_191_lpr
	1_192_ls
	1_193
	1_194_m4
	1_195
	1_196
	1_197_mail
	1_198
	1_199_make
	1_200
	1_201
	1_203
	1_204
	1_205_man
	1_206
	1_207_mesg
	1_208_mkdir
	1_209_mkfs
	1_210
	1_211_mknod
	1_212_mm
	1_213
	1_214_mmcheck
	1_215_mmt
	1_216_mount
	1_217_mvdir
	1_218_ncheck
	1_219_newgrp
	1_220_news
	1_221_nice
	1_222_nl
	1_223
	1_224_nm
	1_225_nohup
	1_226_od
	1_227_orjestat
	1_228_pack
	1_229
	1_230_passwd
	1_231_paste
	1_232_pr
	1_233
	1_234_prof
	1_235_profiler
	1_236_prs
	1_237
	1_238
	1_239_ps
	1_240
	1_241_ptx
	1_242_pwck
	1_243_pwd
	1_244_ratfor
	1_245_reform
	1_246
	1_247
	1_248_regcmp
	1_249_restor
	1_250
	1_251_rjestat
	1_252_rm
	1_253_rmdel
	1_254_rsh
	1_255_runacct
	1_256
	1_257_sact
	1_258_sag
	1_259_scc
	1_260_sccsdiff
	1_261_sdb
	1_262
	1_263
	1_264
	1_265_sdiff
	1_266_sed
	1_267
	1_268
	1_269_send
	1_270
	1_271
	1_272
	1_273
	1_274
	1_275_setmnt
	1_276_sh
	1_277
	1_278
	1_279
	1_280
	1_281
	1_282
	1_283_shutdown
	1_284_size
	1_285_sleep
	1_286_sno
	1_287_sort
	1_288
	1_289_spell
	1_290_spline
	1_291_split
	1_292_st
	1_293_stat
	1_294
	1_295
	1_296_strip
	1_297_stty
	1_298
	1_299
	1_300_su
	1_301_sum
	1_302_sync
	1_303_sysdef
	1_304_tabs
	1_305
	1_306_tail
	1_307_tar
	1_308
	1_309_tbl
	1_310
	1_311_tc
	1_312_tee
	1_313_test
	1_314_time
	1_315_timex
	1_316_toc
	1_317
	1_318_touch
	1_319_tp
	1_320
	1_321_tplot
	1_322_tr
	1_323_troff
	1_324
	1_325_true
	1_326_tsort
	1_327_tty
	1_328_typo
	1_329_umask
	1_330_uname
	1_331_unget
	1_332_uniq
	1_333_units
	1_334_uuclean
	1_335_uucp
	1_336
	1_337_uustat
	1_338
	1_339_uusub
	1_340_uuto
	1_341_uux
	1_342_val
	1_343
	1_344_vc
	1_345
	1_346
	1_347_vlx
	1_348_volcopy
	1_349_vpmc
	1_350
	1_351
	1_352
	1_353
	1_354
	1_355
	1_356
	1_357
	1_358
	1_359_vpmstart
	1_360_vpr
	1_361_wait
	1_362_wall
	1_363_wc
	1_364_what
	1_365_who
	1_366_whodo
	1_367_write
	1_368_xargs
	1_369
	1_370_xref
	1_371_yacc
	2_001_intro
	2_002
	2_003
	2_004
	2_005
	2_006_access
	2_007_acct
	2_008_alarm
	2_009_brk
	2_010_chdir
	2_011_chmod
	2_012_chown
	2_013_chroot
	2_014_close
	2_015_creat
	2_016_dup
	2_017_exec
	2_018
	2_019_exit
	2_020_fcntl
	2_021_fork
	2_022_getpid
	2_023_getuid
	2_024_ioctl
	2_025_kill
	2_026_link
	2_027_lseek
	2_028_mknod
	2_029
	2_030_mount
	2_031_nice
	2_032_open
	2_033
	2_034_pause
	2_035_pipe
	2_036_profil
	2_037_ptrace
	2_038
	2_039_read
	2_040_setgrp
	2_041_setuid
	2_042_signal
	2_043
	2_044
	2_045_stat
	2_046
	2_047_stime
	2_048_sync
	2_049_time
	2_050_times
	2_051_ulimit
	2_052_umask
	2_053_umount
	2_054_uname
	2_055_unlink
	2_056_ustat
	2_057_utime
	2_058_wait
	2_059_write
	3_001_intro
	3_002_a64l
	3_003_abort
	3_004_abs
	3_005_assert
	3_006_atof
	3_007_bessel
	3_008_bsearch
	3_009_conv
	3_010_crypt
	3_011_ctermid
	3_012_ctime
	3_013
	3_014_ctype
	3_015_cuserid
	3_016_ecvt
	3_017_end
	3_018_exp
	3_019_fclose
	3_020_ferror
	3_021_floor
	3_022_fopen
	3_023_fptrap
	3_024_fread
	3_025_frexp
	3_026_fseek
	3_027_gamma
	3_028_getc
	3_029_getenv
	3_030_getgrent
	3_031_getlogin
	3_032_getopt
	3_033
	3_034_getpass
	3_035_getpw
	3_036_getpwent
	3_037_gets
	3_038_hypot
	3_039_l3tol
	3_040_logname
	3_041_lsearch
	3_042_malloc
	3_043_mktemp
	3_044_monitor
	3_045_nlist
	3_046_perror
	3_047_plot
	3_048_popen
	3_049_printf
	3_050
	3_051
	3_052_putc
	3_053_putpwent
	3_054_puts
	3_055_qsort
	3_056_rand
	3_057_regex
	3_058
	3_059_scanf
	3_060
	3_061
	3_062_setbuf
	3_063_setjmp
	3_064_sinh
	3_065_sleep
	3_066_ssignal
	3_067_stdio
	3_068_string
	3_069
	3_070_swab
	3_071_system
	3_072_tmpfile
	3_073_tmpnam
	3_074_trig
	3_075_ttyname
	3_076_ungetc
	4_001
	4_002_cat
	4_003_dj
	4_004_dmc
	4_005_dn
	4_006_dqs
	4_007
	4_008_du
	4_009_dz
	4_010_err
	4_011
	4_012_hs
	4_013_ht
	4_014_kl
	4_015_kmc
	4_016_lp
	4_017_mem
	4_018_null
	4_019_pcl
	4_020_prf
	4_021_rf
	4_022_rk
	4_023_rl
	4_024_rp
	4_025_st
	4_026_tm
	4_027_trace
	4_028_tty
	4_029
	4_030
	4_031
	4_032
	4_033
	4_034
	4_035
	4_036_vp
	4_037_vpm
	4_038
	5_001
	5_002_a.out
	5_003
	5_004
	5_005
	5_006_acct
	5_007
	5_008_ar
	5_009_checklist
	5_010_core
	5_011_cpio
	5_012_dir
	5_013_dump
	5_014
	5_015_errfile
	5_016
	5_017_fs
	5_018
	5_019_fspec
	5_020_gps
	5_021
	5_022_group
	5_023_inittab
	5_024_inode
	5_025_master
	5_026
	5_027_mnttab
	5_028_passwd
	5_029_plot
	5_030_pnch
	5_031_profile
	5_032_sccsfile
	5_033
	5_034
	5_035_tp
	5_036_utmp
	6_001
	6_002_arithmetic
	6_003_back
	6_004_bj
	6_005_chess
	6_006_craps
	6_007
	6_008_hangman
	6_009_maze
	6_010_moo
	6_011
	6_012_reversi
	6_013_sky
	6_014_ttt
	6_015_wump
	7_001
	7_002_ascii
	7_003_environ
	7_004_eqnchar
	7_005_fcntl
	7_006_greek
	7_007_man
	7_008
	7_009_mm
	7_010_mv
	7_011_regexp
	7_012
	7_013
	7_014_stat
	7_015_term
	7_016_types
	8_001
	8_002_1170_boot
	8_003
	8_004
	8_005
	8_006_crash
	8_007
	8_008
	8_009_disk_boot
	8_010_etp
	8_011_filesave
	8_012_getty
	8_013_hasp
	8_014
	8_015
	8_016
	8_017
	8_018
	8_019_init
	8_020
	8_021_makekey
	8_022_mk
	8_023
	8_024_rc
	8_025_rje
	8_026
	8_027
	8_028
	8_029_rom_boot
	8_030
	8_031_rp1_fmt
	8_032_sar
	8_033_tape_boot
	8_034_unix_boot
	8_035_uvac
	8_036_vax_ops
	8_037
	8_038
	8_039

