


















































































































Revised BCPL Manual 

SECTION 10 

RUNTIME ENVIRONMENT 

10-1 ....... Procedure Frame Format 

Whenever code compiled by BCPL is being executed, AC2 points to the first word of the frame for the 
procedure which owns the code. (AC2 is not changed by "goto," so one should not jump across procedure 
boundaries; no check is made for this either at compile time or run time.) While the procedure Q is mnning 
(Le. after a call has been executed from the procedure P and Q's frame is initialized), the frame belonging to 
Q contains: 

(AC2) + 0: 
(AC2) + 1: 
(AC2) + 2: 
(AC2) + 3: 
(AC2) + 4,5, ... 

address ofP's frame 
(temp -- see below) 
(temp -- see below) 
(temp -- see below) 
arguments passed to Q by P 
dynamic variables for Q 
dynamic temps needed by Q 
vectors declared in Q 

The frame belonging to P, the procedure that called Q, contains: 

word 0: 
word 1: 
word 2: 
word 3: 
word 4,5, ... 

address of the frame ofP's caller 
address (-1) within P to which Q should return 
(address ( + 2) of the start ofP) 
(temp used by P to pass arguments to Q) 
arguments, dynamic variables, temps, vectors for P 

The frames belonging to P's caller and earlier ancestors of P have the same format as P's frame. The only 
useful information contained in the frame of the procedure currently executing (Q) is word 0; the return 
address for Q is in P's frame, not in the current frame. Words 2 and 3 ofP's frame need not be preserved by 
Q once Q's frame has been allocated. Words 1, 2 and 3 of Q's frame are available as temps for the BCPL 
runtime routines (and for users' machine-language procedures -- see below) while Q is running. 

10-2 ....... Procedure Calls 

Assume that Q is the currently executing procedure, and that Q is about to can the function R with two 
arguments: z=R(x,y). (Calls with more than two arguments will be described below.) The code in Q for 
this statement wi1llook something like this (assuming x, y and z are directly addressable): 

LDAO,x 
LDA l,y 
lSR@R 
2 
STAO,z 

Ilput arg 1 in ACO 
Ilput arg2 in AC1 
IlcaH R (R points to first instmction) 
Iinumber of arguments passed 
Iistore result passed back in ACO 

The lSR will transfer to the following code in R: 

STA 3,1,2 Iisave return address (in Q's frame) 

10.1 



Revised BCPL Manual RUNTIME ENVIRONMENT 

JSR @370 Iiset up R's frame 
n Iisize of frame needed by R 
JSR @367 II(not executed unless >3 arguments) 
(first instruction in R's body) 

The "getframe" routine, pointed to by location 370, does most of the work for entering a procedure. Its 
responsibilities are to set AC2 to point to a block of storage at least n words long for R's frame, to save the 
original contents of AC2 (Q's frame pointer) in word ° of R's frame, and to store the two arguments passed 
to R in words 4 and S of R's new frame. (If there are more than three arguments, "getframe" executes the 
JSR @367 to store the additional arguments into R's frame; otherwise the JSR @367 is skipped.) The 
"getframe" routine returns, in ACO, the actual number of arguments passed to R. If R has declared a 
"numargs" variable, the first instruction in R stores ACO into this variable. 

After "getframe" is finished, the body ofR is executed. R returns by executing JSR @366, with its result in 
ACO if it is a function. This "return" routine must deallocate R's frame, restore Q's frame pointer to AC2, 
and return to Q at the location ( + 1) pointed to by word 1 of Q's frame. 

For procedure calls which pass zero or one arguments, the above discussion applies as well; ACO and/or 
ACl are simply not loaded by Q, and are ignored by "getframe." 

For procedure calls with exactly three arguments, ACO and ACI are loaded with the first two arguments as 
above, and the third argument is passed to R by Q in word 3 of Q's frame. In tllis case, in addition to the 
chores mentioned above, "getframe" copies this word to word 6 of R's new frame (word 6 is the location for 
putting the tllird argument). The code in Q for a call a= R(x,y,z) might look like: 

LDAO,x 
LDA l,y 
LDA 3,z 
STA 3,3,2 
JSR@R 
3 
STA O,a 

Ilput argl in ACO 
Ilput arg2 in ACI 
Ilput arg3 in word 3 of 
IIQ's frame 
IlcaH R 
113 arguments to R 
Iistore result 

(The code might be more complex that this if one or more of the arguments is not a simple variable.) 

For procedure calls with N arguments (N)3), the calling sequence is more complicated. N + 1 consecutive 
cells are reserved (as dynamic temps) in Q's frame, starting at word L of the frame. (L is not necessarily the 
same for every call.) Arguments 3 through N are stored by Q in cells L+ 3 through L+ N of Q's frame; 
arguments 1 and 2 are loaded into ACO and ACl; and the number L is stored in word 3 of Q's frame. 
(Words L, L+l and L+2 in Q's frame are available as temps for "getframe.") So the code for 
a = R(zl,z2,z3,z4,zS) might look something like: 

LDAO,z3 
STAO,L+3,2 
LDA 0,z4 
STAO,L+4,2 
LDAO,zS 
STAO,L+S,2 
LDAO,KL 
STA 0,3,2 
IJ)A O,zl 
LDA 1,z2 
JSR@R 
S 
STAO,a 

Iistore args 3,4,5 in Q's frame 

IIKL contains the number L 
Ilpass offset of args to R 
Ilput args 1 and 2 in AC's 

So for calls with more than three arguments, "getframe" must move arguments 3 through N from Q's frame 
into words 6 through 6+ N-2 of the new frame for R. This is done by the "moveargs" routine (pointed toby 
location 367) after "getframe" has created the new frame. (The "moveargs" routine is used, rather than 

10.2 



Revised BCPL Manual· RUNTIME ENVIRONMENT 

having "getframe" itself move the arguments, for historical reasons. The "moveargs" routine, like 
"getframe," must return in ACO th.e number of arguments passed to R.) 

Nothing in the above description of procedure frames and procedure calls depends on where or how frame 
space is allocated by "getframe" and deallocated by "return." In addition, the code compiled by BCPL 
makes no assumptions about frame allocation; a BCPL procedure simply assumes that the standard four­
instruction preface will set up its frame and that the standard return instruction will deallocate it andrestore 
the state of the caller. By replacing the standard "getfrarne," "moveargs" and "return" routines (e.g., by 
changing locations 366, 367 and 370), the user can tailor frame allocation strategy to special needs. 

10-3 ....... Frame Allocation on the Nova 

The standard Nova BCPL "getframe" allocates frames on a stack which starts from the final PC value seen 
by BLDR and grows toward address #77777. When "getframe" allocates a new frame, it checks to see that 
the last word of the frame is not beyond the address contained in location 335; if it is, "getframe" prints a 
message indicating that the program has r.un out of frame space, and aborts execution. Location 335 is 
initialized to point at the highest memory address available (not used by DOS). Normally, all available 
memory is assumed to be devoted to frame space. However, by adjusting the contents of location 335, a 
program can reserve storage for itself (e.g., the statement @#335=@#335-#10000 reserves #10000 
additional cells, starting at location @#335 (after the statement is executed». 

The page zero location 336 points to the location which will be the first word of the frame for the next 
procedure called. So when location 335 is adjusted, the program should check the contents of location 336 
to see if the desired space is available: @# 336 must be less than @#335. 

10.3 



Revised BCPL Manual 

SECTION 11 

NOV A 110 and UTILITY ROUTINES 

11-1 ....... Introduction 

This section describes a number of routines which have been written to provide limited but useful runtime 
support for Nova BCPL programs. In many cases, the routines are very similar to the actual assembly­
language DOS system call, or are obvious extensions of the DOS function. Routines have been written to 
do many I/O functions and a few string functions. Limited formatted 110 functions have been 
implemented using general string and integer conversion routines. 

Before calling any of the I/O runtime routines, the routine initbcplio must be cal1ed to set up several global 
variables. The 110 errors are handled by the routine whose address is in syserror. This routine is normally 
ioerror, a routine which corrects some inadequacies of the DOS error-handling facility, and optional1yprints 
proceQ.ure information. Input routines do not consider end of file to be an error and return this information 
through a byte count indicating how many bytes were actually read, or a special ASCII character. Errors 
may be captured by changing the routine in syserror to one of the user's routines or by setting syserrortrap 
to "false." If this is done, after an 110 routine is called, the location syserrorflag will be false if no error has 
occured, but otherwise will be true; syserrorvalue will have the error value from AC2 after the DOS system 
call. End of file will be shown as an error when this facility is used. For doing routine tasks, the default 
error routine will be adequate. 

DOS strings are not compatible with BCPL strings. All the I/O routines accept BCPL strings and convert 
them to DOS strings when necessary, with the exception of readline and writeline (see description of those 
procedures). " 

TIll' procedure descriptions will, in many cases carry a cross-reference note to the DOS manual of the form 
" 1':( i ') :ch-pp. In general, al1 procedure arguments must be given; in a few specific cases, optional arguments 

it i",; permitted -- these are indicated by brackets ([ D. The DOS channel for an open file is an argument to 
In,lIIy of the routines; it is always called "chno." When using routines in which the "chno" description is 
marked with an asterisk (*), if the value of "chno" given is -1, the system teletype will be used (viaPCHAR 
and GCHAR DOS functions). Thus, for simple teletype I/O it is unnecessary to open a channel. 

The routines are contained in the files 101 and 102. lOX is a file containing external definitions that can be 
included in a BCPL program with the "get" statement. 

11-2 ....... Global Names 

sysac 
The accumulators used for system calls to DOS. Not generally useful except inside the runtime 
routines. 

syserrorflag 
If set after a system call, an error has occurred. This will be true independent of the state of 
syserrortrap. "The value of the error will be in syserrorvalue until another error occurs. 

syserrorvalue 
If syserror flag is set after a system call, this static contains the value of the error. This value is constant 
until another error occurs. 

11.1 



Revised BCPL Manual NOV A I/O and UTILITY ROUTINES 

syserrortrap 
If this static is set to tme, the routine ioerror will print an appropriate error message and return to DOS 
CLI. If set to false, ioerror will simply return. If ioerror is called by the user program with a single 
parameter, ioerror is called by the user program with a single parameter, ioerror behaves as if 
syserrortrap were set to tme. For more information see ioerror(syserrorvalue). 

sysprintpc 
If set to tme, ioerror will print the addresses of the system procedure from the mntime I/O and the 
user procedure which caused the error. This is the variable which is set to tme by initbcplio(2). 

filenamelcngth 
The maximum length of DOS filenames--manifest constant which may be used for allocating vectors 
to receive DOS file names. 

11-3 ....... Procedures 

nbytes = readcomcm(chno, string [, switches]) 
Purpose: To read arguments and switches from the DOS command file, COM.CM 
chno DOS channel number, previously opened to file COM.CM 
string A BCPL vector for the name read from COM.CM (may be allocated with vec 

filenamelcngth). 
switches A 26 element boolean vector in which each element corresponds to the 

alphabetic character for the switch. 
nbytes The number of bytes actually read is returned. 

initbcplio(mode) 
Purpose: 

mode 

char = readch( chno) 
Purpose: 
chno 
char 

writech( chno,char) 
Purpose: 
elmo 
char 

To initialize various constants needed by the runtime I/O routines. Failure to 
invoke this routine will lead to system crashes at undefined times! 
1 - normal mode; error messages will be given normally. 2 - diagnostic mode; 
stack information will be printed if this mode is set. Mode 2 may also be invoked 
by setting sysprintpc to true. 

To read one 8 bit character from channel chno previously opened to a DOS file. 
* A DOS channel number 0-7. 
The 8 bit character read from the channel. 

To write one 8 bit character from channel chno previously opened to a DOS file. 
* A DOS channel number 0-7. 
The 8 bit character to be written. 

rbytes = readseq(chno, bytepointer, nbytes) DOS:4-14 
Purpose: Read a number of bytes using the DOS .RDS command. 
chno A DOS channel number 0-7. 
bytepointer DOS byte pointer to the first byte involved in the lransfer. 
nbytes Number of bytes to be read. 
rbytes Number of bytes actually read--must be used to detect end of file. 

writeseq(chno, bytepointer, nbytes) DOS:4-18 
Purpose: Write a number of bytes using the DOS .WRS command. 
chno A DOS channel number 0-7. 
bytepointer DOS byte pointer to the first byte involved in the transfer. 
nbytes Number of bytes to be written. 

nbytes = readline(chno, string[, true/false]) DOS:4-13 

11.2 



Revised BCPL Manual· 

Purpose: 
chno 
string 
true/false 

nbytes 

writeline(chno, string) 
Purpose: 

chno 
string 

writestr( chno, string) 
Purpose: 

chno 
string 

writezoct(chno, number) 
Purpose: 
chno 
number 

NOV A lIO and UTILITY ROUTINES 

To read a string terminated by a carriage return from a DOS file. 
A DOS channel number 0-7. 
A BCPL vector with enough space to receive the input string. 
If tme, the TRUE DOS readline function is executed. The .RDL function 
terminates on NULL as well as fonn feed, carriage return and end of file. One 
usually does not want to deal with this function. If false or absent, the NULL 
termination is removed. 
If 1, a terminator has been received. The last character in the string received is 
either carriage return or form feed (or NULL if the tme .RDL) or carriage return 
followed by # 377 if end of file. 

DOS:4-17 
Write a string which MUST be terminated by a carriage return, nun or form feed 
to the DOS channel previously opened. DOS interprets tabs, form feeds for 
certain devices. 
A DOS channel number 0-7. 
A BCPL string or vector which must be terminated as specified for readline. 

Write any BCPL string. A line feed is unconditionally issued following every 
carriage return character. 
* A DOS channel number 0-7. 
A BCPL string or vector which must be terminated as specified above. 

Write a six digit unsigned octal number with leading zeroes. 
* A DOS channel number 0-7. 
16 bit quantity. 

writedec(chno, number[, space]) 
Purpose: Write a signed decimal number with fixed or variable spacing. 
chno * A DOS channel number 0-7. 
string 16 bit quantity. 
space N umber of spaces to be used. If missing or zero, a variable number of spaces are 

used. 

writeoct(chno, number[, space]) 
Purpose: Write a signed octal number with fixed or variable spacing. 
chno * A DOS channel number 0-7. 
number 16 btit quantity. 
space Number of spaces to be used. If missing or zero, a variable number of spaces are 

used. 

writeform(chno, formatcode, dataL fonnatcode, data ... ]) 
Purpose: W rite a group of string or 16 bit data to the channel as specified by the 

formatcodes. 
chno * A DOS channel number 0-7. 
formatcode 0 - data following is string data. 2-10 - data following is a 16 bit quantity to be 

displayed in that radix. 

writevalue(chno, number, rdx[, space]) 
Purpose: Write a 16 bit signed number in arbitrary radix (2-10) using fixed or variable 

chno 
number 
rdx 
space 

word = readbin(chno) 

spacing. 
* A DOS channel number 0-7. 
A 16 bit signed quantity. 
An arbitrary radix 2-10. 
The number of spaces to be used. If the argument is missing or 0, a variable 
number of spaces will be used. 

11.3 



Revised BCPL Manual 

Purpose: 

chno 
word 

writebin(chno, word) 
Purpose: 
chno 
word 

chno = open(name) 
Purpose: 
name 

chno 

chno = append(name) 
Purpose: 

name 

chno 

nbytes = curpos( chno) 
Purpose: 
chno 
nbytes 

setpos(chno, nbytes) 
Purpose: 
chno 
nbytes 

NOV A I/O and UTILITY ROUTINES 

Read a 16 bit quantity from the DOS channel. No end of file detection is 
provided except by capturing the error with syserrortrap. 
A DOS channel number 0-7. 
A 16 bit quantity read from the file. 

Write a 16 bit quantity to the specified channel. 
A DOS channel number 0-7. 
A 16 bit quantity to be written. 

DOS:4-10 
Open a DOS file to a channel selected by the nmtime routines. 
Any BCPL string which is a legal DOS file name. Device specifier must be 
upper case, e.g., DPO--all other characters are translated to upper case. 
A DOS channel number 0-7 returned specifying the channel number to be used. 

DOS:4-11 
Re-open a DOS file to a channel selected by the runtime routines. Writing will 
begin following the last character in the existing file. 
Any BCPL string which is a legal DOS file name. Device specifier must be 
upper case, e.g., DPO--all other characters are translated to upper case. 
A DOS channel number 0-7 returned specifying the channel number to be used. 

Return the current byte position of a DOS file. 
A DOS channel 0-7. 
Current byte pointer for the file. 

Set the current byte position of a DOS file. 
DOS channel 0-7. 
Current byte pointer for the file. 

curposdw(chno, doublewordvector) 
Purpose: Return the current block and byte number of a DOS file in a BCPL vector to 

overcome the lack of double precision integers in BCPL. 
chno A DOS channel 0-7. 
doublewordvector A 2 word DCPL vector giving the block number in word 0 and the byte number 

in word 1. 

setposdw( chno, doublewordvector) 
Purpose: Set the current block and byte number of a DOS file in a BCPL vector to 

overcome the lack of double precision integers in BCPL. 
chno A DOS channel 0-7. 
doublewordvector A 2 word DCPL vector giving the block number in word 0 and the byte number 

in word 1. 

createfile( name) 
Purpose: 
name 

deletefile( name) 
Purpose: 
name 

initdev(name) 
Purpose: 
name 

dircctorydev(name) 

DOS:4-6 
Create a DOS file. 
A legal DOS file name. 

DOS:4-7 
Create a DOS file. 
A legal DOS file name. 

DOS:4-4 
Initialize a DOS device. 
A legal DOS device name. 

DOS:4-4 

11.4 



Revised BCPL Manual 

Purpose: 
name 

releasedev(name) 
Purpose: 
name 

NOV A 110 and UTILITY ROUTINES 

Change the default directory to the indicated device. 
A legal DOS device name. 

DOS:4-5 
Release a device. 
A legal DOS device name. 

renamefile(name,newname) DOS:4-7 
Purpose: Change the name of an existing DOS file. 
name A legal DOS file name. 

c1ose(chno) 
Purpose: 
chno 

resetfilesO 
Purpose: 

OOS:4-12 
Close an I/O channel to further use until re-opened. 
A legal DOS channel number (0-7). 

DOS:4-13 
Close all I/O channels to further use until re-opened. 

errvalue = systemcall(acO, ac1, ac2, syscallname, err) DOS:4-1 
Purpose: Generate a DOS system call directly. 
acO NOVA ac 0 to be passed as part of the system call. 
ac1 NOV A ac 1. 
ac2 NOV A ac 2. 
syscallname A name from the list of system calls contained in iox, generally, the DOS 

mnemonic preceded by "sys"--e.g., sysrdl for .RDL. These are manifest 
constants defined in lOX. . 

err The BCPL procedure to be called in the event of an error return from the system 
call. 

errvalue The error value if an error occurs, otherwise -1. The error code is returned in 
global vector SYSAC!2 and in the global variables syserrorflag and syserrorvalue. 
If syserrorflag is set, syserrorvalue contains the value of the error. syserrorvalue 
will not be changed, but SYSAC!2 will be changed with every system call. 

ioerror(syscallname, sysac) or (syserrorvalue) 
Purpose: Writes an error message to the teletype output device. Most messages are 

generated by DOS, but in a few cases, ioerror generates the correct message. If 
called with 2 parameters, the error value is taken from the vector specified by 
sysac and in some cases the name specified by sysac. If called with 1 parameter, 
the error value is taken to be the value of that parameter and if needed 
syserrorname will be used. If syserrortrap is set to false, this routine will simply 
return when called with TWO parameters. The routine is executed 
unconditionally if called with only one parameter. 
111e DOS system call used to generate the error. 
The system call accumulator vector. 

syscallname 
sysac 
syserrorvalue 

install( chno ) 
Purpose: 
chno 

chatr(chno, acO) 
Purpose: 
chno 
acO 

acO = getfileatr( chno) 
Purpose: 

The error value which may be given directly in lieu of the two above. 

DOS:4-5 
Install a DOS on the default directory device. 
111e DOS channel previously opened to the DOS to be installed. 

DOS:4-8 
Change the attributes of a DOS file. 
A DOS channel previously opened to the file to be changed. 
The value for acO as specified in the DOS manual for file attributes: 
R = # 100000, S = #020000, P = #000002, W = #000001. WARNING: if 
#040000 (bit 1) is set and the file is permanent, it cannot be removed except by a 
full initialization of the directory!!!!!! II 

DOS:4-9 
Returns the attributes of a DOS file. 

11.5 



Revised BCPL Manual· 

chno 
acO 

incr = memavai10 
Purpose: 
incr 

memincr(incr) 
Purpose: 
incr 

dosexec(name, ac1) 
Purpose: 
name 
ac1 

dosreturnO 
Purpose: 

dosereturn( ac2) 
Purpose: 

ac2 

dosbreakO 
Purpose: 

NOV A I/O and UTILITY ROUTINES 

A DOS channel previously opened to the file in question. 
The word returned with meanings defined by the DOS manual. 

DOS:4-21 
Returns the amount of available memory for the user program. 
The increment of available memory. 

DOS:4-21 
Change the amount of user available memory. 
The increment of memory to be claimed. 

DOS:4-23 
Execute a DOS save file. 
The name of a DOS save file to be executed. 
The value for acl as specified by the DOS manual. If missing, 0 will be used so 
that the current execution level is pushed to the disk and the next save file will be 
started at its normal starting address. 

DOS:4-24 
Return control t6 DOS CLI. 

DOS:4-24 
Return control to DOS giving an error code. "The common error messages will 
be misprinted due to DOS assumptions about file names. 
The error value to be returned. 

DOS:4-25 
Create the file BREAK.SV. WARNING!!!!! All I/O channels must be closed 
with a resetfiles command if the file is to be re-executed. 

word = strtovalue(string[, radix]) 
Purpose: Convert a signed string to a 16 bit integer in the specified radix. 
string The BCPL string to be converted. 

radiifhe radix of the conversion. Ifunspecified, 8 is assumed. 
word A 16 bit word having the converted value. 

valuetostr(word, string, radix[, space]) 
Purpose: Convert a 16 bit signed value to a signed string with no leading zeros having 

word 
string 

radix 
space 

packstr( ustring, pstring) 
Purpose: 

ustring 

pstring 

either fixed or variable spacing. 
The 16 bit value to be converted. 
A vector with enough space to hold the converted value. If fixed spacing is 
specified, overflow will cause more spaces to be used in this vector. The 
maximum number of spaces used depends on the radix and is 16 for radix 2, 6 
for radices 8 and 10. 
The conversion radix. 
The number of string spaces to be used. If zero or missing, variable space is 
assumed. 

Change a BCPt string from unpacked format (one byte per word) to packed 
format (two bytes per word). 
A vector containing a BCPL unpacked string, one character per word, the first 
word specifying the length. 
A vector with enough room to receive the packed string. 

unpackstr(pstring, ustring) 
Purpose: Change a .BCPL string from packed format (two bytes per word) to unpacked 

format (one byte per word). 
pstring A BCPL string. 

11.6 



Revised BCPL Manual NOV A I/O and UTILITY ROUTINES 

ustring A vector with enough room for the BCPL unpacked string, one character per 
word, the first word specifying the length. 

movestr( stringsrc, stringdest) 
Purpose: Move a BCPL string which may be in either packed or unpacked format. 
stringsrc A BCPL string to be moved. 
stringdest A vector with sufficient room to receive the source string. 

byteptr = dostr(bcplstrig, dosstring) 
Purpose: Convert a BCPL string to a DOS string. 
bcplstring A BCPL string to be converted. 
dosstring A vector with sufficient space to receive the converted string. The only 

difference in the two formats is that DOS requires a null character at the end of 
many strings. 

byteptr A DOS byte pointer to the first character of the DOS string. 

word = lengthstr(string) Purpose: Return the length of a BCPL string. 
string A BCPL string. 
word The length of the string. 

char = extractchar(string, index) 
Purpose: Extract a single character from a string at a specified index. 
string A BCPL string. 
index The index for the character. If out of range, garbage is returned. 
char A 16 bit word containing the value of the character. 

ans = extractstr(stringl, string2, index, lengthstring1) 
Purpose: Extract string1 from string2 beginning at the specified index. 
string1 A vector of sufficient size to receive the extracted string. 
string2 The string from which the extraction is to be made. . 
index The beginning index for extraction; if the index goes out of the range of string2 

at any time, the length of the extracted string will be adjusted accordingly. 
lengthstrl The length of the string to be extracted. 
ans The actual length of the extracted string. 

lastbyteindex = imbedchar(char, string[, index]) 
Purpose: Imbed a character into a vector containing a BCPL string. The existing character 

at that index is destroyed. If the index for the imbedded character is greater than 
the length of the string, the second string is filled with blanks up to the imbedded 

char 
string2 

index 
lastbyteindex 

character. If no index is specified, the character will be appended. 
The character to be imbedded. 
A vector or BCPL string in which the character is to be imbedded. If index 
extends the length of string2, string2 must be a vector large enough to hold the 
results. 
The index in string2 at which the character is to be imbedded. 
The last position of string2 which was modified. 

lastbyteindex = imbedstr(string1, string2[, index]) 
Purpose: Imbed stringl in string2. The existing sub-string at that index is destroyed. If 

the index for the imbedded stringl is greater than the length of the string2, 
string2 is filled with blanks up to the imbedded character. [f no index is 

string 1 
string2 

index 
lastbyteindex 

specified, string1 will be appended to string2. 
The string to be imbedded. 
A vector or BCPL string in which the first string is to be imbedded. If string1 
extends the length of string2, string2 must be a vector large enough to hold the 
results. 
The index in string2 at which string1 is to be imbedded. 
The index: of the last byte imbedded in string2. 

index = searchstr(stringl, string2[, startindex]) 

11.7 



Revised BCPL Manual 

Purpose: 
stringl 
string2 
startindex 
index 

NOV A I/O and UTILITY ROUTINES 

Search string! for string2 at the specified starting index or at the start of string 1. 
The string to be searched. 
The string to be found. 
The index in string 1 at which to begin the search. 
The index of the string if it is found; if not, then -1. 

11.8 



Revised BePL Manual· 

SECTION 12 

APPENDICES 

12-1 ....... BCPL Reserved Words 

and abort 
be by break bit byte 
case compileif compiletest 
default do docase 
eq e3v ext endcase external 
for fa se finish 
ge gr get gom 
if ifso ifnot into 
let Ie Is Iv loop 

logand logor lshift 
manifest 
ne neg nil not neqv 

newname 
or offset 
rv return resultis repeat rcpeatwhile 

rem rshift repeatuntil 
switchon static size selecton structure 
to test then true table 
unless until 
vec valof 
while word xor 

12.1 

blank 

numargs 



Revised BCPL Manual 

abort 
argument 

bit 
blank 
break 
byte 

case 
common variables 
compileif 
compiletest 
conditionals 
constants 

default 
do 
docase 
dynamic variable 

endcase 
eq 
eqv 
expressions 
external 

false 
finish 
for 
function 

ge 
get 
global declarations 
goto 
gr 

heffalump 

identifier 
if 
ifnot 
ifso 
into 

INDEX 

· ................. 5.6,7.2 
· ................. 3.4,3.7 

· ................. 6.7,6.8,6.10 
· ................. 6.10 
· • . . . . . . . . . . . . . . . . 5.2,5.3,7.2 
· ................. 6.2,6.7,6.8,6.11 

· ................. 5.4,5.5 
· ................. 3.3,3.4 
· ................. 5.3 
· ................. 5.3,5.4 
· ................. 5.2 
· ................. 4.2 

· ................. 4.7,5.4,5.5 
· . . . . . . . . . . . . . . . . . 5.1,5.2,5.4,7.1,7.2 
· ................. 5.2,5.5 
· . . . . . . . . . . . . . . . . . 3.1,3.2,3.6,3.7,4.1 

· ................. 5.2,5.5,7.2 
· . . . . . . . . . . . . . . . . . 4.3,4.4,4.6 
· ................. 4.3,4.6 
· ................. 4.3 
· ................. 2.4,3.1,3.2,3.3,3.4,3.5,7.1 

· ................. 4.2 
· ................. 5.6,7.2 
· ................. 5.2,7.2 
· ................. 3.4,3.5 

· ................. 4.3,4.6 
· ................. 5.4,7.1 
· ................. 3.1 
· ................. 5.2,5.4,7.2 
· ................. 4.3,4.6 

· ................. 6.9 

· ................. 1.1 
· . . . . . . . . . . . . . . . . . 5.1,5.2,7.2 
· ................. 5.2,5.4 
· ................. 5.2,5.4 
· ................. 4.3,5.4 

12.2 



Revised BCPL Manual 

label 
Ie 
left-lump 
let 
loop 
Is 
Ishift 
Iv 

manifest 
mul 

ne 
newname 
nil 
not 
numargs 

offset 
Operators 
or 

parameter 
procedure 

rem 
repeat 
repeatuntil 
repeatwhile 
resultis 
return 
right-lump 
routine 
rshift 
rv 

selecton 
size 
static variable 

string 
structure 

switchon 

table 
test 
then 
true 

· . . . . . . . . . . . . . . . . . 3.3,3.4,5.4,5.5,7.1,9.3 
· ................. 4.3,4.6 
· .. : .............. 6.8 
· ................. 3.5,3.7 
· ................. 5.2,5.3,7.2 
· ................. 4.3,4.6 
· . . . . . . . . . . . . . . . . . 4.3,4.5,6.2 
· ................. 4.3,4.5 

· . . . . . . . . . . . . . . . . . 2.4,3.1,3.2,3.3,5.3,7.1,8.3 
· ................. 4.3 

· ................. 4.3,4.6 
· ................. 4.7,8.3 
· . . . . . . . . . . . . . . . . . 3.3,3.4,3.6,3.7 
· ................. 4.3,5.1 
· ................. 3.7 

6.10 
4.4,6.1,6.10 
5.2,5.4 

3.4,3.5 
3.3,3.4,3.5,9.3 

· ................. 4.3,4.5 
· ................. 5.2 
· ................. 5.1,5.2 
· ................. 5.1,5.2 
· . . . . . . . . . . . . . . . . . 3.4,3.6,3.7,4.6,4.7,5.2,5.4,7.2 
· . . . . . . . . . . . . . . . . . 3.4,3.5,5.2,5.4,7.2 
· ................. 6.1 
· . . . . . . . . . . . . . . . . . 3.4,3.5,5.1 
· . . . . . . . . . . . . . . . . . 4.3,4.5,6.2 
· . . . . . . . . . . . . . . . . . 4.2,4.3,4.5 

· ................. 4.3,4.6,5.5 
· ................. 6.5,6.10 
· ................. 2.4,3.1,3.2,3.3,3.4,3.7,4.1,4.2,4.5, 

5.4,9.3 
· ................. 4.4,6.4 
· . . . . . . . . . . . . . . . . . 3.1,3.2,6.1,6.2,6.3,6.4,6.5,6.7,6.8, 

6.10,7.1 
· . . . . . . . . . . . . . . . . . 5.2,5.4,5.5,7.2 

· ................. 4.4 
· ................. 5.1,5.2,7.2 
· ................. 5.2,5.3,5.4,7.2 
· ................. 4.2 

12.3 

INDEX 



Revised BCPL Manual· INDEX 

unless .................. 5.1,5.2,7.2 
until .................. 5.1,5.2,7.2 

valof . . . . . . . . . . . . . . . . . . 3.4,3.6,4.4,4.6 
vee . . . . . . . . . . . . . . . . . . 3.6,4.3,6.10 
vector .................. 3.7,4.1,6.1 

while .................. 5.1,5.2,7.2 
word .................. 6.1,6.2,6.3,6.6,6.7,6.9 

xor . . . . . . . . . . . . . . . . . . 4.3,4.6 

12.4 


