A DESCRIPTIVE LIST
OF PLATO PROGRAMS

ELISABETH R. LYMAN

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS
This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract No. DA 28 043 AMC 00073(E); and in part by the Advanced Research Projects Agency through the Office of Naval Research under Contract No. NONR 3985-(08); and in part by the United States Office of Education under Contract No. OE-6-10-184.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Distribution of this report is unlimited. Qualified requesters may obtain copies from DDC.
Introduction

From 1960-1967 an automatic teaching system called PLATO (Programmed Logic for Automatic Teaching Operation) was developed in the Coordinated Science Laboratory at the University of Illinois in order to explore the possibilities of automation in individual instruction.4,6,7,16 In the course of development over 300 programs (using about 50 logics) have been written for the system to illustrate or demonstrate its flexibility for teaching as well as for educational and other research.

In January, 1967, the University of Illinois organized the Computer-based Education Research Laboratory. Research with the PLATO system continues in the new laboratory. The laboratory has assumed responsibility for the direction of more intensive study of the educational aspects of the PLATO teaching system with particular emphasis on the development of a large-scale computer-based educational system.

The PLATO system utilizes a high speed digital computer as the central control element for teaching a number of students simultaneously. The rules governing the teaching process are included in the program read into the central computer. A complete set of rules is referred to as a "teaching logic". Experiments have been made with several different types of teaching logics significant among which are a "tutorial logic" and an "inquiry logic."4,5,6,8

This report supersedes CSL Report R-296.17 It lists with brief descriptions the teaching lesson sequences which have been using tutorial logics, inquiry logics or combinations thereof. The version of the PLATO system for which the lessons were written is specified in each instance. PLATO I and PLATO II lessons are no longer operable because the PLATO I and PLATO II systems are now obsolete, but several of these lessons have been rewritten for the present version of the software and hardware of the system, PLATO III.

In addition to the instructive uses of the PLATO system, the system has also found application in other areas of research. These programs, each of which has its own logic, are listed in the report as research programs. They include learning theory experiments, psycholinguistic studies, on-line analysis of real experiments, etc.

In this report is also included a list of service programs which have been developed to aid PLATO authors and programmers in writing, editing, and evaluating their programs directly from PLATO terminals.

TEACHING PROGRAMS

A. Tutorial Logics

1. Perimeter of Polygons (PLATO I, II, III). A simple geometry demonstration lesson on perimeters designed to illustrate all the features of the PLATO system (i.e., control keys, help sequences, judging, evaluating, etc.), updated for each new version of the PLATO system.

2. Addition of Fractions (PLATO I, III). A demonstration lesson on fractions showing the use of the PLATO keyset and improvements (PLATO III version) in the flexibility of the teaching logic.

3. Introduction to Automatic Digital Computing (PLATO II).11,12 Three lessons comprising the first week of material taught in Math 195 (U of I): I. The Word as a Number; II. A. The Biquinary Code, B. The Storage Unit; III. A. The Arithmetic Unit, B. Instruction Format, C. The Control Unit, D. Execution of Single Instructions. Data collected from student runs provided material for studying the learning ability of each student, lesson effectiveness, and data rate requirements of the PLATO system.

4. Introduction to Computer Programming (PLATO II). Seven lessons designed to teach programming for the ILLIAC computer and written with PLATO tutor logic.

 Chapter titles included: I. Number Representations; II. Binary Arithmetic; III. Negative Number Representations; IV. The ILLIAC Order Code (Part 2); VII. The ILLIAC Order Code (Part 3).

5. Network Synthesis (PLATO II).3 Two short lessons in network synthesis for electrical engineering students demonstrating circuit diagram construction by means of the PLATO keyset and a judging routine allowing a tolerance in numerical answers and a degree of freedom in the answer form.

7. Things and Their Names (PLATO II). Two lessons in introductory secondary mathematics dealing with the subject of "Things and Their Names," designed for incoming sub-freshmen at University High School.

8. Chaos (PLATO II). An exercise on number sequences written for use with the studies on physiological correlates of mathematical discovery in which student heart rates were recorded along with the lesson responses.

9. Zoo (PLATO II). A second grade level mathematics demonstration lesson (with a zoo theme) written for primary school children visiting the PLATO project.

10. Text Tester (PLATO III). A program designed to test new text-books in which text materials are reproduced on slides with student answers inserted from the keyboard. Teacher comments and lesson modifications are also able to be inserted on line. TEXT TESTER has been used to present lessons in the following areas: a) Remedial Arithmetic from the University of Illinois Committee on School Mathematics 7th grade course (20 lessons); b) Politics Unit from experimental materials of the Social Sciences Curriculum Center (12 lessons).

11. Circuit Analysis (PLATO III). Lessons written for use in conjunction with a University of Illinois course for junior year electrical engineering students (Electrical Engineering 332). The PLATO material has been presented five semesters each time in a different manner with variations in either content, method of presentation, or amounts of material presented via PLATO.

14. Fortran Programming (PLATO III). Ten lessons on the Fortran programming language written for students in business and commerce in which the material is presented so as to be incorporated eventually into a programmed textbook.

15. Demo (PLATO III). A program illustrating various possible functions of the keys of a PLATO keyset, written as a preface to some of the courses given on the PLATO system.

16. Arrays (PLATO III). Four lessons for fourth grade pupils (about one hour each) using arrays of symbols.

17. Sequences (PLATO III). Nine one-hour lessons on recursive definitions for high school students.

18. Quantities (PLATO III). Test development and studies of quantitative aptitude in higher education students.

19. Text Edit (PLATO III). (Some versions called BRAILLE) A tutorial type teaching logic that permits textual slides, questions stored in memory and plotted on the "blackboard," and student inputs from an auxiliary device (such as a BRAILLE typewriter), as well as on-line editing.

20. Prognost (PLATO III). A program using PLATO to collect and analyze data on Raven's Progressive Matrices Test (non-verbal test of pattern-handling capabilities).

21. Language Instruction (PLATO III). Program designed to teach reading and writing of any major European language. Initially used for teaching reading skills in French.

22. Geom1 (PLATO III). A lesson which introduces the keys used by the PLATO student to construct geometric figures on the screen. Subsequent lessons ask questions which may be answered by the construction of such figures.

B. Inquiry Logics

1. Replab (Responsive Environment Programmed Laboratory) (PLATO II and III). A lesson in scientific inquiry based on the properties of a bimetal strip in which the students inquire into the physical phenomenon in order to describe, analyze, predict, control and explain it. Important data is provided from student input for the multi-dimensional analysis of the inquiry process. The lesson uses an auxiliary film sequence to show the bimetal strip experiment.
2. **PROOF (PLATO II and III).** A program (with several versions which enables students to compose proofs of mathematical problems in a logical manner, each solution or proof being judged only for violations in logic. The most recent version of the program allows for insertion of lemmas in the proofs. The program provides a system for collecting data on thought processes during mathematical problem-solving or for preparing instructional programs in the mechanics of rigorous mathematical proof.

3. **MEDICARE (PLATO II).** A lesson for student nurses in the care of a patient with myocardial infarction using an auxiliary film sequence to provide the background material for the problem posed the students. Student input provided data for analysis of each student’s approach to the solution of the problem.

4. **ORDER (PLATO II).** A timed exercise in numerical pattern recognition (more simple than CHAOS) used with the studies on physiological correlates of mathematical discovery.

5. **ARCH (Archimedes) (PLATO II and III).** A demonstration lesson using PLATO as a simulated laboratory in which experiments based on Archimedes’ Principle can be performed such as making volume or weight measurements.

6. **ALPHABAT (Alphabet Automatic Teaching) (PLATO III).** A program designed for experimenting with the teaching by PLATO of the letters of the alphabet to two- and three-year-old children.

7. **MAKING THINGS MOVE (PLATO II).** An elementary science lesson based on a second grade science unit written as a demonstration for primary school children.

8. **TEACHER (PLATO III).** A lesson designed to demonstrate the operation of the PLATO system to non-technical persons interested in preparing lessons for PLATO.

9. **Circuit Analysis (PLATO III).** A portion of the PLATO material for the circuit analysis course (see A-11) presented in the inquiry teaching style.

10. **GENO (PLATO III).** A simulated genetics laboratory for junior high school science students including an arithmetic computation facility for data calculations.

11. **CUTBMDOS (PLATO III).** An experimental program for on-line design of structures such as continuous beams.

12. **AUTOLAB (PLATO III).** A simulated laboratory program introducing students to the techniques of collection, recording and analysis of data derived from measuring the stretch of springs.

13. **MATRIX (PLATO III).** Sequence designed to teach step by step matrix manipulation.

C. **Combination Logics**

1. **INNURE (PLATO III).** A 12-unit course in maternity nursing for use in a 2-year diploma nursing curriculum. Emphasis is laid on inquiry training techniques although material is also presented tutorialy. The twelve units represent approximately 46 student hours of lesson material. The general inquiry-tutorial logic is adaptable to any lesson material.

2. **GENETI (PLATO III).** A program for genetics problem-solving designed for use as a basic college genetics review.

RESEARCH PROGRAMS

1. **TALK (PLATO III).** Short program to demonstrate communication between student stations.

2. **EXPERIMENT (PLATO III).** A program which controls real-time on-line experiments in secondary emission surface physics study and immediately analyzes the experimental data, displaying the desired analysis on the PLATO screen.

3. **VERBOSPE (PLATO III).** A program making possible an elementary analysis, in real time, of a word chain generated by a subject’s free association.

4. **KEYSET I (PLATO III).** A program to provide data for assessment of the relative efficiency of different configurations of the keys on the keyset input with input by long-hand writing.
5. **KEYSET 2** (PLATO III). Sequence designed to test keyset entry devices. Measures length of time for subject input and error formats.

6. **PAVLIV** (PLATO III), replaces **CEMCODE**. Basic program providing means of running verbal learning experiments on many subjects simultaneously under a variety of procedural, timing and materials conditions.

7. **CIRCLE** (PLATO III). Program designed for use in the production with the PLATO system of short, animated films for a language-free test of interpersonal norms. Each film strip, or scenario, portrays an interpersonal intention composed of discrete sequences of visual events identified with abstract, theoretical components.

8. **CONCEPT** (PLATO III), replaces **GIR-1**. A general concept attainment program allowing up to three logical types of concept rules and four methods of presenting stimuli.

9. **COMCAT** (PLATO III). A basic program permitting participants in group negotiations from PLATO stations to read, write, send and receive information, the sending and receiving under communication rules controlled by decision makers.

10. **VRBADV** (PLATO III). A program designed to test C. E. Osgood's theory of meaning by satiating components of denoted meanings, the effects of satiation being demonstrated by disturbed performance on a non-related task. The program individually administers experimental sequences and allows measurements of latencies in situations where the speed of presentation is critical.

11. **VRBD4** (PLATO III). Program to test attention control of subjects.

12. **MOVIE** (PLATO III). Program allowing slide sequences presentations at optional speeds.

13. **SAT TWO** (PLATO III). The second in a series of experiments testing Osgood's theory of meaning (see Research Program 10).

PLATO III SERVICE PROGRAMS

1. **MONSTER**. Fast, flexible, time-shared editing system, allowing two PLATO users to edit CATO programs simultaneously using PLATO student terminals as input media. System includes subroutines for constructing PLATO FORMAT statements, and designing characters.

2. **COMMENT**. Program to sort student responses and print out comments.

3. **SPECTRE**. Simulation of subject sessions by rerunning the sessions as constructed from the recorded response data.

4. **TUDOPP** (replaces **TUDODE**). Program presenting summary information about student responses to tutorial logic either on the PLATO display or as hard copy. Lists of student responses, response latencies or listogram plots are available.

5. **DOODAD**. Diagnostic routine (giving labelled dumps of variables and subroutines) useful in debugging or interpreting CATO programs.

6. **NEWSORT**. Analysis program for selecting subsets of stored response parameters in which all records of keypushes have common characteristics. Also provides point graphs of response parameters. Records and graphs are available on the PLATO display or as hard copy.

7. **CLASSIFY**. Routine to search and classify response data for specified patterns of student input.

8. **CUTABLE**. Diagnostic routine giving labelled dumps, ordinal numbers, and absolute starting addresses of significant items in a CATO program.

9. **CHARPLT**. Routine to allow on-line design and construction of PLATO program characters on the PLATO screen, output in proper format for character listing being written onto magnetic tape.

10. **SERPLOT** and **PLOTTER**. Routines to prepare and output on the PLATO screen all information prepared by FORTRAN output statements (PRINT, WRITE, OUTPUT TAPE, PUNCH).
DISTRIBUTION LIST AS OF APRIL 1, 1967

1. Dr. Edward H. Reilly
 Asst. Director (Research)
 Ofc. of Defense Res. & Engrg.
 Department of Defense
 Washington, D.C. 20301

2. Office of Deputy Director
 (Research and Information No. 10097)
 Department of Defense
 The Pentagon
 Washington, D.C. 20301

3. Director
 Advanced Research Projects Agency
 Department of Defense
 Washington, D.C. 20301

4. Director for Materials Science
 Advanced Research Projects Agency
 Department of Defense
 Washington, D.C. 20301

5. Headquarters
 Defense Communications Agency (331)
 The Pentagon
 Washington, D.C. 20305

6. Defense Documentation Center
 Dr. Elsey
 Government Printing Office
 Alexandria, Virginia 22314

7. Director
 National Security Agency
 Attn: JTB
 Fort George G. Meade, Maryland 20755

8. Weapons Systems Evaluation Group
 Attn: Col. G. L. Danielson, D. W. McGehee
 Department of Defense
 Washington, D.C. 20305

9. National Security Agency
 Attn: Re-James T. White
 Office of Research
 Fort George G. Meade, Maryland 20755

10. Central Intelligence Agency
 Attn: DCCI/2C, Publications Office
 Washington, D.C. 20305

11. Col. James Lee
 APGFE
 Hts., USAP
 Room 11-129, The Pentagon
 Washington, D.C. 20330

12. Col. James Lee
 Aerospace Medical Division
 Brooks Air Force Base, Texas 78235

13. AUGL-6G31
 Maxwell AFB, Alabama 36121

14. APFEC (TDR-1)
 Technical Information
 Edwards AFB, California 93512

15. Space Systems Division
 Air Force Systems Command
 Los Angeles, California 90005

16. Major General Henry
 Technical Division
 Deputy for Technology
 Space Systems Division, APFEC
 Los Angeles, California 90005

17. SES/DS/DL (Santoros)
 APFEC
 Los Angeles, California 90005

18. Mkt. Nos., OAD (ODMS)
 Air Force OIC/EO Office
 Los Angeles, California 90045

19. Systems Engineering Group (SETG)
 Technical Information Reference Branch
 Attn: DEPY
 Directorate of Engineering Standards & Technical Information
 Wright-Patterson AFB, Ohio 45433

20. AXL (ARMS)
 Wright-Patterson AFB, Ohio 45433

21. Dr. H. V. Noble
 Air Force Automations Laboratory
 Wright-Patterson AFB, Ohio 45433

22. Mr. Peter Murray
 Air Force Automations Laboratory
 Wright-Patterson AFB, Ohio 45433

23. AVAP (AVAPP/PLA)
 Wright-Patterson AFB, Ohio 45433

24. Commanding General
 Attn: STG6-81-72
 White Sands Missile Range.
 New Mexico 88002

25. NAO (OG-48-1)
 Griffin AFB
 New York 11342

26. Air Force Academy
 Colorado Springs, Colorado 80911

27. Lt. Col. Bernard S. Morgan
 1974 Project Research Laboratory
 U.S. Air Force Academy
 Colorado Springs, Colorado 80911

28. APPC (PDC-11)
 Elgin AFB, Florida 32542

29. Commanding Officer
 Naval Engineer Training Laboratory
 Aberdeen Proving Ground, Maryland 21005

30. Director
 U.S. Army Engineer Geodetic, Intelligence and Mapping
 Research and Development Agency
 Fort Belvoir, Virginia 22060

31. Commandant
 U.S. Army Command and General Staff College
 Fort Leavenworth, Kansas 66024

32. Dr. T. B. Stomps
 Deputy Chief Scientist
 U.S. Army Research Office (Durbach)
 Box 04, Duke Station
 Durbach, Baden-Wurttemberg 75706

33. Commanding Officer
 U.S. Army Research Office (Durbach)
 Attn: CRDR-1, R.P.O. 114, Durbach
 Box 04, Duke Station
 Durbach, Baden-Wurttemberg 75706

34. Librarian
 U.S. Army Military Academy
 West Point, New York 10996

35. The Valden Research Institute of
 Water Resources Development
 Washington, D.C. 20312

36. Commanding Officer
 U.S. Army Electronics Manufacturing Activity
 Fort Huachuca, Arizona 85613

37. Commanding Officer
 U.S. Army Engineer Manufacturing Laboratory
 Attn: STG6-81-72
 White Sands Missile Range, New Mexico 88013

38. Dr. E. Benedict Levin, Director
 Institute for Exploratory Research
 U.S. Army Electronics Command
 Fort Monmouth, New Jersey 07703

39. Director
 Director for Exploratory Research
 U.S. Army Electronics Command
 Attn: Mr. Robert C. Smith, Executive Secretary, STG6-81-72
 Fort Monmouth, New Jersey 07703

40. Commanding General
 U.S. Army Electronics Command
 Fort Monmouth, New Jersey 07703

41. Chief of Naval Research
 Department of the Navy
 Washington, D.C. 20360

42. Chief of Naval Research
 Department of the Navy
 Washington, D.C. 20360

43. Naval Electronics Systems Command
 ELML 01
 Washington, D.C. 20360

44. Naval Ship Systems Command
 SHIP 031
 Washington, D.C. 20360

45. Naval Ordnance Systems Command
 ORD 32
 Washington, D.C. 20360

46. Naval Air Systems Command
 NAV 03
 Washington, D.C. 20360

47. Commanding Officer
 Office of Naval Research Branch Office
 Durbach, R.P.O. 114
 New York, New York 10010

48. APFEC Technical Library
 CDFY, MO-1034
 120 Patrick AFB, Florida 32915

49. APFEC (TDR-1)
 STEPS Office (For Library)
 Patrick AFB, Florida 32915

50. Dr. L. M. Hanks
 APFEC (LPS)
 L.G. Hanks Field
 Bedford, Massachusetts 01731

51. APFEC (GEBRA)
 APFEC Research Library, Stg. 99
 L.G. Hanks Field
 Bedford, Massachusetts 01731

52. Col. Robert C. Stobbs
 Department of Electrical Engineering
 Air Force Institute of Technology
 Wright-Patterson AFB, Ohio 45433

53. Col. A. R. Birts
 (Past)
 Boeing Air Force Base, D.C. 20232

54. Dr. R. T. Rinman
 APFEC (GEBRA)

55. Col. J. W. Weatherman
 APFEC (GEBRA)
 Andrews AFB, Maryland 20331

56. Lt. Col. J. A. Reeves
 APFEC (GEBRA)
 Andrews AFB, Maryland 20331

57. EEF (SOL)
 L.G. Hanks Field
 Bedford, Massachusetts 01731

58. ARDC (GEBRA)
 Attn: Library/Secretary
 Arnold AFB, Tennessee 37032

59. European Office of Aerospace Research
 Shell Building
 47 Rue Consulat
 Brussels, Belgium

60. Lt. Col. Robert R. Keisch
 Chief, Electronics Division
 Directorate of Engineering Sciences
 Air Force Office of Scientific Research
 Arlington, Virginia 22209

61. U.S. Army Research Office
 Physical Sciences Division
 3045 Columbia Pike
 Arlington, Virginia 22204

62. Research Plan Office
 U.S. Army Research Office
 3045 Columbia Pike
 Arlington, Virginia 22204

63. Commanding General
 U.S. Army Material Command
 Attn: AVARM/11-C
 Washington, D.C. 20315

64. Commanding General
 U.S. Army Strategic Communications Command
 Washington, D.C. 20315

65. Commanding Officer
 U.S. Army Materials Research Agency
 Watertown Arsenal
 Watertown, Massachusetts 02172

66. Commanding Officer
 U.S. Army Research Laboratory
 Attn: T. R. E. Nichols
 Aberdeen Proving Ground
 Aberdeen, Maryland 21005

67. Commandant
 U.S. Army Air Defense School
 Air Force Missile Division, GAC Dept.
 P.O. Box 9390
 Fort Bliss, Texas 79916

68. Radome Scientific Information Center
 Attn: Chief, Document Section
 Radome Arsenal, Alabama 35409

69. Commanding General
 Frankford Arsenal
 Attn: GM-1200 (Dr. Sidney Ross)
 Philadelphia, Pennsylvania 19137

70. U. S. Army Munitions Command
 Technical Information Branch
 Picatinny Arsenal
 Dover, New Jersey 07801

71. Commanding Officer
 Berry Diamond Laboratories
 Attn: Dr. Donald White (WDS-119)
 Connecticut Avenue and Van Ness Street, N.W.
 Washington, D.C. 20348

72. Commanding Officer
 D. S. Army Security Agency
 Arlington, Virginia 22212

73. Commanding Officer
 D. S. Army Security Agency
 Arlington, Virginia 22212

74. Commanding Officer
 D. S. Army Security Agency
 Office of Naval Research Branch Office
 Durbach, R.P.O. 114
 New York, New York 10010
A DESCRIPTIVE LIST OF PLATO PROGRAMS

Lyman, Elisabeth R.

June, 1966 (Revised July, 1967)

DA 28 043 AMC 00073(E)

20014501B31F

NONR 3985-(08)

OE-6-10-184

Distribution of this report is unlimited

Joint Services Electronics Program
thru U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703

This report supersedes CSL Report R-186 and CSL Report R-296 (June, 1966).

It lists with brief descriptions the teaching lesson sequences which have been
using tutorial logics, inquiry logics, or combinations thereof. The version
of the PLATO system for which the lessons were written is specified in each
instance. PLATO I and PLATO II lessons are no longer operable because the PLATO I
and PLATO II systems are now obsolete, but several of these lessons have been
rewritten for the present version of the software and hardware, PLATO III.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer-assisted instruction</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
<tr>
<td>teaching programs</td>
<td>WT</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>tutorial logics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inquiry logics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>learning theory experiments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>