ABSTRACT

This document describes the features of the Asynchronous Serial Interface for TERAK Model 8510 data processor systems. Cable wire lists and switch settings are presented. Detail for programming use is also included.

TERAK Publication Number 500024
THE STANDARD SERIAL INTERFACE FOR 8510 AND 8510A SYSTEMS SUPPORTS ELECTRICAL CONNECTION IN ONE OF THREE MODES:
20 MA CURRENT LOOP, RS-232C AS DATA TERMINAL EQUIPMENT, AND RS-232C AS DATA COMMUNICATION EQUIPMENT. ONLY ONE OF THESE CONNECTIONS CAN BE MADE AT A TIME. ALL CONNECTIONS AND CONTROL OF THE SERIAL INTERFACE ARE ON THE SERIAL EIB (EXTERNAL INTERFACE BOARD), REPRESENTED SCHEMATICALLY BELOW. THERE ARE THREE CONNECTORS AND SIXTEEN SWITCHES.
CONNECTOR J1 IS USED FOR RS-232C INTERFACE USING THE SERIAL INTERFACE AS DATA COMMUNICATION EQUIPMENT.
CONNECTOR J2 IS USED FOR RS-232C INTERFACE USING THE SERIAL INTERFACE AS DATA TERMINAL EQUIPMENT.
CONNECTOR J3 IS USED FOR CURRENT LOOP INTERFACE, AND ALSO FOR RS-232C INTERFACE AS DATA COMMUNICATIONS EQUIPMENT.
THIS LATER OPTION (RS-232C CONNECTION THRU J3) ALLOWS USE OF A SIMPLER CONNECTOR (NYLON SHELL TYPE) FOR RS-232C CONNECTION.
THE SIXTEEN SWITCHES ON THE SERIAL EIB (S1 & S2) CONTROL ADDRESSING AND CHARACTERISTICS OF THE SERIAL INTERFACE.

FIGURE 1

SERIAL EIB LEGEND
THIS DOCUMENT ASSUMES FAMILIARITY WITH ANSI SPECIFICATION
RS-232C FOR DATA COMMUNICATIONS, AND ALSO WITH CURRENT LOOP
INTERFACE TECHNIQUES. DETAILED SIGNAL DESCRIPTIONS
WILL NOT BE PRESENTED HERE. THE READER IS REFERED TO:
"TECHNICAL ASPECTS OF DATA COMMUNICATION" McNAMARA, DEC.

RS-232C PIN ASSIGNMENTS AND SIGNAL DEFINITIONS CONFORM
TO THE ANSI STANDARD. THEY ARE PLACED HERE FOR REFERENCE.

PIN LIST, RS-232C CONNECTION AS DATA COMMUNICATIONS EQUIPMENT. (DCE)
ALL CONNECTIONS TO J1, NO CONNECTIONS ALLOWED TO J2 OR J3.
USE THE FOLLOWING PARTS, OR EQUIVALENT IN THE CABLE ASSEMBLY:
CONNECTOR, MALE 232 PLUG CINCH # DB 25P
SHELL, PLUG CINCH # DB 5126-1

PIN # SIGNAL NAME IN/OUT
J1 - 1 FRAME GROUND
J1 - 7 SIGNAL GROUND
J1 - 8 CARRIER DETECT OUTPUT
J1 - 4 REQUEST TO SEND INPUT
J1 - 3 RECEIVE DATA OUTPUT
J1 - 20 DATA TERMINAL READY INPUT
J1 - 5 CLEAR TO SEND OUTPUT
J1 - 6 DATA SET READY OUTPUT
J1 - 2 TRANSMIT DATA INPUT
PIN LIST, RS-232C CONNECTION AS DATA TERMINAL EQUIPMENT. (DTE)

All connections to J2, no connections allowed to J1 or J3.

Use the following parts, or equivalent in the cable assembly:

- Connector, Female 232 Plug
 - Cinch # DB 25S
- Shell, Plug
 - Cinch # DB 5126-1

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL NAME</th>
<th>IN/OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2 - 1</td>
<td>FRAME GROUND</td>
<td></td>
</tr>
<tr>
<td>J2 - 7</td>
<td>SIGNAL GROUND</td>
<td></td>
</tr>
<tr>
<td>J2 - 20</td>
<td>DATA TERMINAL READY</td>
<td>OUTPUT</td>
</tr>
<tr>
<td>J2 - 5</td>
<td>CLEAR TO SEND</td>
<td></td>
</tr>
<tr>
<td>J2 - 2</td>
<td>TRANSMIT DATA</td>
<td></td>
</tr>
<tr>
<td>J2 - 8</td>
<td>CARRIER DETECT</td>
<td></td>
</tr>
<tr>
<td>J2 - 6</td>
<td>DATA SET READY</td>
<td></td>
</tr>
<tr>
<td>J2 - 4</td>
<td>REQUEST TO SEND</td>
<td></td>
</tr>
<tr>
<td>J2 - 3</td>
<td>RECEIVE DATA</td>
<td></td>
</tr>
</tbody>
</table>

PIN LIST, RS-232C CONNECTION AS DATA COMMUNICATIONS EQUIPMENT. (DCE)

All connections to J3, no connections allowed to J1 or J2.

Use the following parts, or equivalent in the cable assembly:

- Connector, Male Plug
 - Molex # 03-06-2151
- Pins, Male Crimp
 - Use 15 EA.
 - Molex # 02-06-2103
- Shell, Plug
 - Use 2 EA.
 - Molex # 15-04-0201

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL NAME</th>
<th>IN/OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>J3 - 3</td>
<td>FRAME GROUND</td>
<td></td>
</tr>
<tr>
<td>J3 - 11</td>
<td>SIGNAL GROUND</td>
<td></td>
</tr>
<tr>
<td>J3 - 9</td>
<td>CLEAR TO SEND</td>
<td></td>
</tr>
<tr>
<td>J3 - 12</td>
<td>DATA SET READY</td>
<td></td>
</tr>
<tr>
<td>J3 - 15</td>
<td>CARRIER DETECT</td>
<td></td>
</tr>
<tr>
<td>J3 - 7</td>
<td>RECEIVE DATA</td>
<td></td>
</tr>
<tr>
<td>J3 - 6</td>
<td>DATA TERMINAL READY</td>
<td>INPUT</td>
</tr>
<tr>
<td>J3 - 14</td>
<td>TRANSMIT DATA</td>
<td></td>
</tr>
</tbody>
</table>
PIN LIST, CURRENT LOOP CONNECTION. INPUT AND OUTPUT CURRENT LEVELS (INCLUDING READER RUN SIGNAL) ARE 20 MA.

ALL CONNECTIONS TO J3, NO CONNECTIONS ALLOWED TO J1 OR J2.

EITHER INPUT OR OUTPUT LOOP MAY BE ACTIVE OR PASSIVE.

THE 20MA ENABLE SOURCE PIN MUST ALWAYS BE CONNECTED TO

THE 20MA ENABLE PIN BY A JUMPER IN THE EXTERNAL CONNECTOR.

TO CONNECT EITHER AN INPUT OR OUTPUT LOOP PAIR IN A PASSIVE CONFIGURATION, USE THE (+) AND (-) SIGNALS, LEAVING THE ASSOCIATED CURRENT SOURCE OPEN. TO CONNECT EITHER THE INPUT OR OUTPUT LOOP PAIR IN AN ACTIVE CONFIGURATION, CONNECT THE (-) SIGNAL TO GROUND WITH A JUMPER IN THE EXTERNAL CONNECTOR, USE THE (+) SIGNAL AS THE (-) SIGNAL IN THE EXTERNAL CABLE, AND USE THE ASSOCIATED CURRENT SOURCE AS THE (+) SIGNAL IN THE EXTERNAL CABLE. NOTE THAT BOTH, ONE, OR NONE OF THE TWO CURRENT LOOPS MAY BE ACTIVE OR PASSIVE.

THE READER RUN SIGNAL IS ALWAYS ACTIVE (20 MA. -> RUN)

USE THE FOLLOWING PARTS, OR EQUIVALENT IN THE CABLE ASSEMBLY:

CONNECTOR, MALE PLUG MOLEX # 03-06-2151
PINS, MALE CRIMP USE 15 EA. MOLEX # 02-06-2103
SHELL, PLUG USE 2 EA. MOLEX # 15-04-0201

<table>
<thead>
<tr>
<th>PIN #</th>
<th>SIGNAL NAME</th>
<th>PASSIVE NOTE</th>
<th>ACTIVE NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>J3 - 1</td>
<td>I LOOP ENABLE</td>
<td>JUMP TO PIN 4</td>
<td>JUMP TO PIN 4</td>
</tr>
<tr>
<td>J3 - 4</td>
<td>I LOOP ENABLE SOURCE</td>
<td>JUMP TO PIN 1</td>
<td>JUMP TO PIN 1</td>
</tr>
<tr>
<td>J3 - 2</td>
<td>(-) I LOOP OUT</td>
<td>(-) IN CABLE</td>
<td>JUMP TO PIN 3</td>
</tr>
<tr>
<td>J3 - 5</td>
<td>(+) I LOOP OUT</td>
<td>(+) IN CABLE</td>
<td>(-) IN CABLE</td>
</tr>
<tr>
<td>J3 - 6</td>
<td>OUTPUT CURRENT SOURCE</td>
<td>NO CONNECTION</td>
<td>(+) IN CABLE</td>
</tr>
<tr>
<td>J3 - 10</td>
<td>(-) I LOOP IN</td>
<td>(-) IN CABLE</td>
<td>JUMP TO PIN 11</td>
</tr>
<tr>
<td>J3 - 13</td>
<td>(+) I LOOP IN</td>
<td>(+) IN CABLE</td>
<td>(-) IN CABLE</td>
</tr>
<tr>
<td>J3 - 14</td>
<td>INPUT CURRENT SOURCE</td>
<td>NO CONNECTION</td>
<td>(+) IN CABLE</td>
</tr>
<tr>
<td>J3 - 9</td>
<td>(+) READER RUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3 - 8</td>
<td>(-) READER RUN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3 - 3</td>
<td>SIGNAL GROUND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3 - 11</td>
<td>SIGNAL GROUND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DRAWING 800020, IN THE APPENDIX, PRESENTS A PIN DIAGRAM OF J3, TYPICAL INTERFACE CIRCUITS, AND OTHER INFORMATION PERTINENT TO THE CURRENT LOOP INTERFACE.
SWITCHED CONTROL OF THE SERIAL INTERFACE FUNCTIONAL

CHARACTERISTICS IS EXERCISED THRU SW1 AND SW2 (SEE FIG. 1).

THESE SWITCH BLOCKS CONTAIN SIXTEEN SWITCHES. THE DIRECTION
OF SWITCHING TO THE ON OR OFF STATE MAY VARY, AND SHOULD BE
CHECKED BEFORE SETTING THE SWITCHES. SWITCHES SHOULD NEVER
BE CHANGED WHILE THE DATA PROCESSOR POWER IS ON. THE SWITCHES
ARE REFERENCED BY NUMBERS S1 THRU S16, LEFT TO RIGHT.
THEIR FUNCTIONS ARE AS FOLLOWS:

UNIT SELECTION...SWITCHES 1 THRU 4. THESE SELECT ONE OF EIGHT
I/O ADDRESSES FOR THE CONTROL AND STATUS REGISTER, AND
DATA REGISTER OF THE SERIAL INTERFACE. UNIT 0 OCCUPIES THE
ADDRESSES NORMALLY USED AS THE CONSOLE TERMINAL FOR CONTROL
OF THE OPERATING SYSTEM. THIS SHOULD BE SELECTED (NORMALLY)
ONLY IF THE SERIAL IS TO BE USED TO INTERFACE THE CONSOLE
TERMINAL. THE FOLLOWING TABLE COVERS THE SWITCH PATTERNS.

<table>
<thead>
<tr>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>UNIT #</th>
<th>I/O REGISTER</th>
<th>INTERRUPT VECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>77560</td>
<td>60</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>77520</td>
<td>120</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>2</td>
<td>77530</td>
<td>130</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>3</td>
<td>77570</td>
<td>150</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>4</td>
<td>76520</td>
<td>320</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>5</td>
<td>76530</td>
<td>330</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>6</td>
<td>76560</td>
<td>340</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>7</td>
<td>76570</td>
<td>350</td>
</tr>
</tbody>
</table>
CHARACTERISTICS SWITCHES...SWITCHES 5 THRU 8. THESE MAY BE SET TO ANY PATTERN. THE SETTING OF THESE SWITCHES WILL BE AVAILABLE IN BOTH THE RECEIVER STATUS REGISTER AND THE TRANSMITTER STATUS REGISTER OF THE SERIAL INTERFACE, TO BE USED AS REQUIRED BY THE I/O SOFTWARE. TYPICALLY, THESE WOULD IDENTIFY THE TYPE OF TERMINAL OR MODEM ATTACHED, OR CAN BE USED TO ENCODE A "STATION NUMBER" FOR CLUSTERS OF 8510 SYSTEMS. NOTE THAT A SWITCH SET TO THE "OFF" POSITION GENERATES A "ONE" BIT IN BOTH STATUS REGISTERS (AND "ON" GENERATES "ZERO").

<table>
<thead>
<tr>
<th>SWITCH #</th>
<th>BIT # (STATUS REGISTER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

NUMBER OF BITS...SWITCH 9. THIS SWITCH SELECTS THE NUMBER OF BITS USED IN THE SERIAL ASCII CODE, AS:

- **ON**: 7 BITS
- **OFF**: 8 BITS

PARITY ENABLE...SWITCH 10. THIS SWITCH ENABLES THE TRANSMISSION OF PARITY, OR THE TRANSMISSION OF A "SPACE" FOR THE PARITY BIT. ON INPUT, THIS SWITCH ALSO ENABLES THE VERIFICATION OF PARITY, SETTING AN ERROR CONDITION IF ENABLED.

- **ON**: PARITY IS ACTIVE
- **OFF**: PARITY DISABLED

TTY FILTER...SWITCH 11. THIS SWITCH CONNECTS THE NOISE FILTER FOR SUPPRESSION OF TRANSIENTS WHILE DRIVING AN ASR33 TYPE TELETYPETRITER USING THE CURRENT LOOP INTERFACE. THIS SWITCH MUST BE OFF EXCEPT WHEN DRIVING SUCH A TERMINAL AT LOW DATA SPEEDS (TYPICALLY 110 BAUD).

- **ON**: FILTER IS CONNECTED
- **OFF**: FILTER DISCONNECTED
Parity... Switch 12. This switch is active only if parity is enabled by switch 10. Even or odd parity for both transmission and reception of data is selected as:

<table>
<thead>
<tr>
<th>On</th>
<th>Odd Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Even Parity</td>
</tr>
</tbody>
</table>

Data rate... Switches 13 thru 16. These switches select one of the following fourteen data rates for both transmission and reception of data. The two redundant cases are included.

<table>
<thead>
<tr>
<th>S13 S14 S15 S16</th>
<th>Data Rate, Baud</th>
</tr>
</thead>
<tbody>
<tr>
<td>On On On Off</td>
<td>50</td>
</tr>
<tr>
<td>On On Off Off</td>
<td>75</td>
</tr>
<tr>
<td>Off Off Off Off</td>
<td>110</td>
</tr>
<tr>
<td>Off On On On</td>
<td>134</td>
</tr>
<tr>
<td>Off Off On Off</td>
<td>150</td>
</tr>
<tr>
<td>Off On Off On</td>
<td>200</td>
</tr>
<tr>
<td>Off Off Off On</td>
<td>300</td>
</tr>
<tr>
<td>Off On On Off</td>
<td>600</td>
</tr>
<tr>
<td>On Off Off Off</td>
<td>1200</td>
</tr>
<tr>
<td>On Off On Off</td>
<td>1800</td>
</tr>
<tr>
<td>Off On Off Off</td>
<td>2400 (Redundant)</td>
</tr>
<tr>
<td>Off Off On On</td>
<td>2400 (Redundant)</td>
</tr>
<tr>
<td>On Off Off On</td>
<td>4800</td>
</tr>
<tr>
<td>On Off On On</td>
<td>9600</td>
</tr>
<tr>
<td>On On On On</td>
<td>19200</td>
</tr>
<tr>
<td>On On Off On</td>
<td>19200 (Redundant)</td>
</tr>
</tbody>
</table>

With the serial interface EIB switches set correctly for the equipment to be interfaced, the serial is programmed internally by addressing the four I/O registers at the sequential word addresses starting at the "I/O base address" found in the unit number table above. Also, the interrupt vector address pair (address and status words) occupy four word in low memory starting at the "vector base address" found in the unit number table above. Thus, Unit 1 occupies four addresses identified as follows:

Example... Unit #1

Receiver Status Register (RSR) 177520
Receiver Data Buffer (RDB) 177522
Transmitter Status Register (XSR) 177524
Transmitter Data Buffer (XDB) 177526

Receiver Vector Address 120 / 122
Transmitter Vector Address 124 / 126
RECEIVER STATUS REGISTER CONTAINS ERROR INFORMATION, THE SETTING OF THE EIB CHARACTERISTICS SWITCHES, AND "DONE", "INTERRUPT ENABLE", AND "READER RUN" BITS. THESE ARE DEFINED BELOW:

RECEIVER STATUS REGISTER BIT MAP
ALL BITS ARE READ-ONLY UNLESS OTHERWISE NOTED

BIT # 0 | <----- READER RUN (WRITE ONLY)
BIT # 1 |
BIT # 2 |
BIT # 3 |
BIT # 4 |
BIT # 5 |
BIT # 6 | <----- INTERRUPT ENABLE (READ AND WRITE)
BIT # 7 | <----- DONE BIT
BIT # 8 |
BIT # 9 | <----- CHARACTERISTICS
BIT # 10 | <----- SWITCHES (EIB)
BIT # 11 |
BIT # 12 | <----- OVERRUN ERROR
BIT # 13 | <----- BREAK DETECTED
BIT # 14 | <----- PARITY ERROR DETECTED
BIT # 15 | <----- ERROR (INCLUSIVE OR OF BITS 14, 13, 12)

WHEN A CHARACTER IS RECEIVED, THE DONE BIT WILL BE SET, INDICATING THAT THE DATA IS AVAILABLE IN THE RECEIVER DATA BUFFER. ONLY THE LOW ORDER 7 BITS OF THE DATA BUFFER ARE VALID.

IF THE INTERRUPT ENABLE BIT HAS BEEN PREVIOUSLY WRITTEN ON, AN INTERRUPT THRU THE RECEIVER VECTOR ADDRESS WILL BE REQUESTED.

IF AN ERROR CONDITION IS DETECTED, THE ERROR BIT AND THE DONE BIT WILL BE SET, AND AN INTERRUPT REQUESTED, IF ENABLED. THREE ERROR CONDITIONS ARE DETECTED:

OVERRUN - NEW DATA HAS BEEN RECEIVED AND PLACED INTO THE DATA BUFFER BEFORE THE PROCESSOR ACCEPTED THE PREVIOUS DATA. CURRENT DATA IS VALID.

BREAK - THE SERIAL INPUT LINE WAS IN A CONTINUOUS "MARK" CONDITION. THIS IS USED SOMETIMES AS A REVERSE CHANNEL TO REQUEST DATA TRANSMISSION. IT CAN ALSO INDICATE AN OPEN LINE.

PARITY - A PARITY ERROR WAS DETECTED ON THE RECEIVED DATA.

WHEN A CHARACTER IS RECEIVED, THE READER RUN BIT IS CLEARED.

WHEN THE READER RUN BIT IS SET ON, A LINE IN THE CURRENT LOOP INTERFACE TO ASR33 TYPE TELETYPETWEETERS WILL ENABLE THE BUILT-IN PAPER TAPE READER TO READ ONE CHARACTER. TO READ PAPER TAPE CONTINUOUSLY, THE READER RUN BIT MUST BE SET FOR EACH CHARACTER.

WHEN A SYSTEM RESET, POWER CYCLE, OR RESET INSTRUCTION OCCUR, THE DONE BIT WILL BE CLEARED. IF THE INTERRUPT ENABLE BIT IS SET WHILE THE DONE BIT IS CLEARED, NO IMMEDIATE INTERRUPT WILL OCCUR. IF THE INTERRUPT ENABLE BIT IS SET WHILE THE DONE BIT IS SET, AN IMMEDIATE INTERRUPT WILL BE REQUESTED.
TRANSMITTER STATUS REGISTER CONTAINS ERROR INFORMATION, THE SETTING OF THE EIB CHARACTERISTICS SWITCHES, AND "DONE", "INTERRUPT ENABLE", AN BREAK TRANSMISSION CONTROL BITS. THESE ARE DEFINED BELOW:

TRANSMITTER STATUS REGISTER BIT MAP
ALL BITS ARE READ-ONLY UNLESS OTHERWISE NOTED

BIT # 0 -- TRANSMIT CONTINUOUS BREAK (WRITE ONLY)
BIT # 1
BIT # 2
BIT # 3
BIT # 4
BIT # 5
BIT # 6 -- INTERRUPT ENABLE (READ AND WRITE)
BIT # 7 -- DONE BIT
BIT # 8
BIT # 9 -- CHARACTERISTICS
BIT # 10 -- SWITCHES (EIB)
BIT # 11
BIT # 12
BIT # 13
BIT # 14
BIT # 15 -- ON -> MODEM READY

A CHARACTER IS TRANSMITTED WHEN THE TRANSMITTER DATA BUFFER IS WRITTEN. TRANSMISSION IS CONSIDERED COMPLETE WHEN THE SERIAL BIT STREAM HAS BEEN COMPLETELY GENERATED. THEN, THE DONE BIT WILL BE SET, INDICATING THAT THE TRANSMITTER CAN ACCEPT ANOTHER CHARACTER. ONLY THE LOW ORDER 7 BITS OF THE DATA BUFFER ARE VALID. IF THE INTERRUPT ENABLE BIT HAS BEEN PREVIOUSLY WRITTEN ON, AN INTERRUPT THRU THE TRANSMITTER VECTOR ADDRESS WILL BE REQUESTED. THE MODEM READY BIT IS THE REVERSE LOGIC OF THE RECEIVER ERROR BITS; ON SAYS THE MODEM IS READY. THIS BIT DOES NOT GENERATE AN INTERRUPT. IT IS GENERALLY A STATIC INDICATION THAT A MODEM IS PRESENT AND CONNECTED TO THE SERIAL INTERFACE.

THE "TRANSMIT CONTINUOUS BREAK" BIT, WHEN SET ON, WILL DO JUST THAT. THIS IS USED TO INDICATE AN INACTIVE STATE TO THE RECEIVER OF THE TRANSMITTED DATA. THE BREAK STATE WILL BE CONTINUOUS UNTIL THE BIT IS CLEARED OFF.

WHEN A SYSTEM RESET, POWER CYCLE, OR RESET INSTRUCTION OCCUR, THE DONE BIT WILL BE SET. IF THE INTERRUPT ENABLE BIT IS SET WHILE THE DONE BIT IS CLEARED, NO IMMEDIATE INTERRUPT WILL OCCUR. IF THE INTERRUPT ENABLE BIT IS SET WHILE THE DONE BIT IS SET, AN IMMEDIATE INTERRUPT WILL BE REQUESTED.
J3 VIEWED FROM REAR OF 8510

<table>
<thead>
<tr>
<th>J3 PIN</th>
<th>CURRENT LOOP</th>
<th>DESCRIPTION</th>
<th>EIA RS-232-C AS DCE</th>
<th>INPUT</th>
<th>EIA CKT</th>
<th>EIA PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I LOOP ENABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(-) I LOOP OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SIGNAL GROUND</td>
<td>FRAME GROUND</td>
<td></td>
<td></td>
<td>AA</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>I LOOP ENABLE SOURCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(+) I LOOP OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT CURRENT SOURCE</td>
<td>DATA TERMINAL READY</td>
<td>I</td>
<td>CD</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>RECEIVED DATA</td>
<td>O</td>
<td>BB</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(-) READER RUN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(+) READER RUN</td>
<td>CLEAR TO SEND</td>
<td>O</td>
<td>CB</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(-) I LOOP IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SIGNAL GROUND</td>
<td>SIGNAL GROUND</td>
<td></td>
<td></td>
<td>AB</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>DATA SET READY</td>
<td>O</td>
<td>CC</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(+) I LOOP IN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>INPUT CURRENT SOURCE</td>
<td>TRANSMITTED DATA</td>
<td>I</td>
<td>BA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>DATA CARRIER DETECT</td>
<td>O</td>
<td>CF</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

EIA -

- POSITIVE VOLTAGE EQUALS BINARY ZERO, SPACE, ON
- NEGATIVE VOLTAGE EQUALS BINARY ONE, MARK, OFF

8000ZO
TERAK CORPORATION
8510 SINGLE SERIAL
J3 CONNECTOR
BRIAN J. BENZAR
5-18-76

SHEET 1 OF 4

REV B
I LOOP ENABLE SOURCE
I LOOP ENABLE
OUTPUT CURRENT SOURCE
(+) I LOOP OUT
(-) I LOOP OUT
SIGNAL GROUND
INPUT CURRENT SOURCE
(+) I LOOP IN
(-) I LOOP IN
SIGNAL GROUND
(+) READER RUN
(-) READER RUN

FULL DUPLEX CURRENT LOOP INTERFACE
ACTIVE CONFIGURATION
(8510 SUPPLIES CURRENT SOURCE)
I LOOP ENABLE SOURCE
I LOOP ENABLE
(+) I LOOP OUT
(-) I LOOP OUT
(+) I LOOP IN
(-) I LOOP IN
(+) READER RUN
(-) READER RUN

FULL DUALPLEX CURRENT LOOP INTERFACE
PASSIVE CONFIGURATION
(TERMINAL SUPPLIES CURRENT SOURCE)
NOTE

SWITCH SETTINGS ON THE VIDEO EXTERNAL INTERFACE BOARD (EIB) AND SERIAL EXTERNAL INTERFACE BOARD ARE PRESET PRIOR TO SHIPMENT. THESE SETTINGS SHOULD BE VERIFIED DURING SYSTEM INSTALLATION TO ASSURE PROPER SYSTEM RESPONSE.

VIDEO EIB: Switch #1 is not used at present and is set in the OFF position.

Switch #2 should be set to the OFF position for SYSTEM CONSOLE use with the 8532 Display/Keyboard (177560)

SERIAL EIB: Switch Positions are preset as follows for Unit #1

Switch #: 1 ON 2 OFF 3 ON 4 OFF 5 ON 6 ON 7 ON 8 ON 9 OFF 10 OFF 11 OFF 12 OFF 13 ON 14 OFF 15 ON 16 ON

UNIT 1

NOT IN USE

8 bits (Data)

NO PARITY

NO TTY FILTER

EVEN PARITY

9600 Baud
NOTICE

First, remove the end cushion panel closest to the rear of the unit (see Figure 1) by grasping wood portion and by pulling straight up.

Remove system by sliding the unit to the rear and lifting straight up holding bottom of chassis at the front and rear.
NOTICE

First, remove the end cushion panel closest to the rear of the unit (see Figure 1) by grasping wood portion and by pulling straight up.

Remove system by sliding the unit to the rear and lifting straight up holding bottom of chassis at the front and rear.

Insure that System Terminator (Beckman #699-1-R150 Resistor Network is installed in 8510 chassis. Terminators are installed on 8510's at the factory, located at the left side of daisy chain cable connector. Device must be installed with black dot (pin one) at the bottom. Pin number six has been removed at the factory.