32K RAM

- Static Memory
- 9 Regulators for Excellent Heat Distribution
- Extended Addressing
- Phantom Line
- Low Power

TARBELL ELECTRONICS
950 DOYLEN PLACE, SUITE B
CARSON, CALIFORNIA 90746
(213) 538-4251, 538-2254
Tarbell 32K RAM Memory

★ S-100 BUS ★ 300ns ★ STATIC MEMORY ★
★ 9 REGULATORS PROVIDE EXCELLENT HEAT DISTRIBUTION ★
★ EXTENDED ADDRESSING (Bank Switching) ★
★ LOW POWER REQUIREMENT ★
★ PHANTOM LINE ★
★ 20 PAGE OPERATING MANUAL ★
★ FULL 1-YEAR WARRANTY ★

FULLY ASSEMBLED AND TESTED .. $125.
16K ALSO AVAILABLE, FULLY ASSEMBLED $89.

Please send check or money order. No CODs or credit will be accepted on this item. California residents please add 6% sales tax.

Tarbell Electronics
950 DOVLEN PLACE • SUITE B • CARSON, CALIF. 90746
(213) 538-4251 • (213) 538-2254
OPERATION

Introduction:

The overall scheme of the 32K Static Memory Board is shown on page 10. Notice data bit 0 is contained by the lowest chips on the board in 8-4K banks. Data bit 07 is at the top. If you were to use this 32K board as a 4K board, you could install only 8 chips in any vertical column. The TMS 4044 (MM5257) is a 4K by 1 memory device. One chip therefore at any location will store one bit, 4K deep.

The right hand vertical column is the one called “CS0” or CHIP SELECT – 0.

In the center top of the board you will notice some white letters saying “CS-76543210”.

The holes directly above these numbers are connected to the CHIP SELECT lines on all the chips in the columns so marked. The columns are marked sort of backwards. CS0 on the right has a number ‘9’ under it. CS07 on the left has a ‘1’ under it. ‘H’ row is bit 0 and ‘A’ row is bit 07. Directly below “CS76543210” you will notice a 16 pin DIP socket. The Pattern of holes and numbers are as follows:

```
32 0 0 0 0 0 0 0
64 0 0 0 0 0 0 32
```

We have decoded all 16-4K blocks. The first 4K block is of course 0. The first block over 32K would be the ‘32’ on the lower right. The last (16th) 4K block would be on the lower left.

Examples:

8K, Lowest 2 blocks

```
CS  7  6  5  4  3  2  1  0
   0  0  0  0  0  0  0  0
32 0 0 0 0 0 0 0
64 0 0 0 0 0 0 32
```

16K, Lowest 4 blocks (32K Lowest 8 blocks – Add Dotted)

```
CS  7  6  5  4  3  2  1  0
   0  0  0  0  0  0  0  0
32 0 0 0 0 0 0 0
64 0 0 0 0 0 0 32
```
16K, Lowest 4 blocks but chips in every other column

16K, From 32K to 48K (Chips in right side of board)

The placement of the chips on the board and corresponding decoded bank assignment are completely flexible. You could cross all the wires up and have any 4K section anywhere you wish. Try to think of the 32K board as 8 conventional 4K boards, all in vertical columns starting from right to left. Since there are 16-4K banks available for use in a S-100 computer, you must decide where your 8 will go.

More Examples:
If you are interested in a straightforward static memory board without memory management or more than 64K in your system at one time, do not read further or install any additional jumpers. Go on to ASSEMBLY INSTRUCTIONS.

PHANTOM LINE: If jumper marker ‘PHANTOM’ is installed, whenever S-100 BUSS pin 67 is pulled low, the entire board will be disabled.

MEMORY MANAGEMENT: Two additional address lines are decoded. These are S-100 pins 65 (A-17) and 66 (A-16).

NOTE: IF YOU DO NOT HAVE MEMORY MANAGEMENT SKIP THIS SECTION!

If memory management is not desired DO NOT connect anything to A-16, A-17, 1 2 3 4, or A,B. Otherwise use below to decode 64K, 128K or 256K Board Select.

<table>
<thead>
<tr>
<th>LOGIC STATE</th>
<th>CONNECT JUMPERS</th>
<th>THIS BOARD IN:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A16 A17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>A to 1, B to 3</td>
<td>0K – 63K Block</td>
</tr>
<tr>
<td>1 0</td>
<td>A to 1, B to 4</td>
<td>64K – 127K Block</td>
</tr>
<tr>
<td>0 1</td>
<td>A to 2, B to 3</td>
<td>128K – 191K Block</td>
</tr>
<tr>
<td>1 1</td>
<td>A to 2, B to 4</td>
<td>192K – 256K Block</td>
</tr>
</tbody>
</table>
ASSEMBLY INSTRUCTIONS

1. () Open bag of .1 mfd capacitors and straighten leads.

2. () Refer to drawing No. 1. Install all .1 capacitors at locations shown.

3. () Turn board and solder all leads.

4. () Locate capacitors C2 in kit. BE CAREFUL TO OBSERVE POLARITY! Install each capacitor at locations shown on drawing No. 2 before soldering, go back and check against drawing for incorrectly polarized capacitors. Most boards returned for repair have contained errors in polarity. What happens is that a backward capacitor blows the regulator, which then zaps a whole column of memory chips! (boooo!!)

5. () Install 5 resistors, 1K value at places shown on drawing No. 1. Solder at this time.

6. () Locate all 64 18 pin sockets. Put them into the board one column at a time. Hold them in place with a piece of cardboard and flip board to back side. Solder or bend 2 corner pins of each chip (i.e. pins 8 & 16). Then go on to next column. To complete soldering go down a row after placing board on table long side up. This seems to be the fastest. After soldering entire board, inspect under strong light for solder splashes or webs.

7. () Locate special 16 pin socket that has molded circular receptacles. Install this socket at the decoded address position.

8. () Refer to drawing No. 2. Install remaining 14 and 16 pin sockets. First put a small piece of black tape over feed through holes at top center of board.

9. () Then mount heat sink in place using only outer 2 regulator screw holes. Make sure that the heat sink is positioned perfectly over all capacitors and other screw holes. Spend some time here and do this right. It's not impossible to misalign the sink and short the +5 on a capacitor lead. After setting everything up straight, carefully mount center 7 regulators in place as per board photo. Don't forget to apply a small dab of white heat sink compound to the underside of each regulator before bolting it down. After inside regulators are done, remove outside screws and do those two too. (?)
10. () Time now to start buzzing out the shorts. The most important ones are the +8 to +5 possibilities. Pin 1 of S-100 connector at lower left is +8. Make sure as you go from left to right across board that no pin 18 on any column has a low resistance path to +8. A buzz box can be used if a meter is not available. Address lines can be checked if necessary as well as data. We suggest removing all boards from your computer before plugging in the memory board. Check output from +5 regulators (the lower pin) on all regulators.

11. () Install all 16 and 14 pin chips. Install row of round chip select pins at ‘CS’ as per drawing No. (1). The right most pin is a pull up resistor that may be tied to any unconnected bank of chips to insure that they do not intermittently ‘select’ themselves on noise.

NOTE: ON ALL 16K BOARDS, ALTERNATE UNUSED CS’S MUST BE PULLED UP!

12. () Install a single column of 8 memory chips. Use the correct ‘CS’ for the column you have filled. They correspond to the physical location on the board of the columns except that the right most ‘CS’ pin is a pullup and is marked ‘BD’. For example if you had filled the right most column with chips, CS line 0 would access that column. If you would like to place that 4K bank at 48K+ for the purpose of test, make a jumper from CS 0 to the fourth pin on the bank decode IC socket.

13. () Continue filling columns and testing with whatever memory test you have. We recommend that if you are planning only 16K of memory chips for a while, to use every other column to maximize cooling. A fully stuffed 32K board MUST have some forced cooling (at least 10 cfm) passing over the chip side of the board. Constantly check the board heat during the first 15 minutes of operation. An undercooled board will show data errors within the first hour of operation. These are caused by memory slowing down as it heats up. Usually no permanent damage results. Very hot boards do seem to crash chips more than cool ones though. Any reasonable cooling will allow 2 fully stuffed 32K boards to be run slot to slot. 16K (half stuffed) can be run with convection cooling. A fan never hurts though!

* Refer to finished board photo for IC location.
<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>32KS100</td>
<td>CIRCUIT BOARD</td>
<td>1</td>
</tr>
<tr>
<td>MM5277/TMS4044</td>
<td>MEMORY CHIP</td>
<td>64</td>
</tr>
<tr>
<td>7805</td>
<td>REGULATOR</td>
<td>9</td>
</tr>
<tr>
<td>16AUGAT</td>
<td>GOLD 16 PIN SOCKET</td>
<td>1</td>
</tr>
<tr>
<td>9S0CP</td>
<td>JUMPER SOCKET</td>
<td>9</td>
</tr>
<tr>
<td>1KRES</td>
<td>1K RESISTOR 1/4W</td>
<td>5</td>
</tr>
<tr>
<td>440SCR</td>
<td>REGULATOR SCREW</td>
<td>9</td>
</tr>
<tr>
<td>440NUT</td>
<td>REGULATOR NUT</td>
<td>9</td>
</tr>
<tr>
<td>HS9</td>
<td>HEAT SINK</td>
<td>1</td>
</tr>
<tr>
<td>18PSOC</td>
<td>18 PIN SOCKET</td>
<td>64</td>
</tr>
<tr>
<td>16PSOC</td>
<td>16 PIN SOCKET</td>
<td>4</td>
</tr>
<tr>
<td>14PSOC</td>
<td>14 PIN SOCKET</td>
<td>7</td>
</tr>
<tr>
<td>475MT</td>
<td>4.7 – 6.8 MFD TANT.</td>
<td>12</td>
</tr>
<tr>
<td>.1BYCAP</td>
<td>.1 DIPPED CERAMIC</td>
<td>41</td>
</tr>
<tr>
<td>74LS04 OR 74LS14</td>
<td>74LS04 OR 74LS14</td>
<td>5</td>
</tr>
<tr>
<td>74368</td>
<td>74368</td>
<td>2</td>
</tr>
<tr>
<td>7413</td>
<td>7413</td>
<td>1</td>
</tr>
<tr>
<td>7430</td>
<td>7430</td>
<td>1</td>
</tr>
<tr>
<td>74138</td>
<td>74138</td>
<td>2</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

1. Most troubles occurring immediately after construction are shorts. Close visual inspection is much faster than logical circuit tracing for this type of problem.

Open circuits caused by over etching of the p.c. board or bad soldering are by far the most difficult problems to locate. Memory tests run on boards with open address lines give strange results that often do not point to the real problem. A general rule of thumb is that if the problem is random and somewhat unpredictable, an open is probably at fault. If the problem is very predictable and regular, a short or bad chip is at fault.

A ‘Buzz Box’ is an absolutely indispensable tool in checking memory boards. You do not have to look up from your work each time to verify continuity. The many circuit traces on a memory board are a problem by themselves without having to lose your place each time you have to look up to a meter face.

2. If the memory board has been in service for some time and a problem with it is suspected, a memory test should be run. The Rasmussen test for diseased memory is a factory test designed to display the most common problems first and the most uncommon ones last. The test never finishes by itself. The operator may terminate it by pressing the space bar at any time.

Generally memory chip failures will be found within five seconds. The test takes about three minutes to run all phases in a 32K board. The test falls into a random numbers test at the end of the first phase and will stay there until a space bar is entered.

When initializing the test for a 32K board addressed at 0000, the correct answers to the address prompt entry would be 0000 and 7FFF. The test will do the following:

STUCK BIT: Fills test area with FF’s and checks for FF’s
Fills test area with 00’s and checks for 00’s

BIT SHORTED: Rotates a bit from LSB to MSB filling tested memory each time, checking one bit at a time

ADDRESS SHORTED: Fills all memory with 55 Hex then writes an AA Hex at 0000 (or the lowest address tested). It then tests the rest of memory for 55’s. Then it clears location of the AA and writes it into 0001. Then 0002, 0004, 0008, etc. setting a new address bit high each time and testing all of memory. If any address bit is shorted to another, the test will find an AA in another location than the place it wrote one. This test takes the most time and is run last.
RANDOM NUMBERS: A random number routine generates an eight bit number pattern and writes it through all test memory. It then re-inserts the same seed to the routine and test reads the memory. A new seed is generated and the exercise is repeated with a new pattern. This goes on and on reporting each loop through until aborted with the space bar.

The layout drawing below will help in relating a bad bit pattern to the correct chip.

To completely test for all address open and short combinations, the test should be run over a 4K boundry, 8 times (for 32K, of course). For example the first time, enter 0000 and 0FFF as the starting and ending address. When test is complete, re-run it entering 1000 and 1FFF. Then 2000 and 2FFF and so on. Then run the test from 0000 to 7FFF. There are some subtle things that get missed if you only run the last test (0000 to 7FFF) and not 4K at a time.

If your board passes these tests and will run for an hour on the random numbers test without a problem, look somewhere else for your troubles!

Memory Chip Layout
APPENDIX A
THE RASSMUSSEN TEST FOR DISEASED MEMORY

;MEMORY TEST PROGRAM
;DELTA PRODUCTS
;BY D. RASMUSSEN
;LAST EDIT 1-10-79

;MEMORY TEST WILL USE DEFAULT ADDRESS IF STARTING AND
;ENDING ADDRESS QUESTIONS ARE ANSWERED WITH "CR"
;MEMORY TEST CAN BE TERMINATED BY "SP"
;ENTERING MEMORY TEST WITH R IN TBUF WILL CAUSE
;ALL BUT RANDOM NUMBERS TEST TO BE SKIPPED

;***

0500 = DEFST EQU 500H ;DEFAULT STARTING ADDRESS (INCLUSIVE)
F5FF = DEFEND EQU 0F5FFH ;DEFAULT ENDING ADDRESS (INCLUSIVE)

;***

0100 = STACK EQU 0100H ;STACK
00F9 = COUNT EQU STACK-7 ;STORAGE FOR RETRY COUNT
000E = RETRYS EQU 14 ;# OF RETRYS
00F8 = TESTWORD EQU STACK-8 ;STORAGE
00FE = ENDD ADD EQU STACK-2 ;ENDING ADDRESS
00FC = MEM EQU STACK-4 ;STARTING ADDRESS
00FA = TESTLOC EQU STACK-6
00F7 = TBUF EQU STACK-9 ;OR 82H FOR CPM'S TBUFF
00F5 = SEED EQU STACK-11
00F3 = SEEDST EQU STACK-13
0000 = MONITOR EQU 0 ;MONITOR OR WARM BOOT ENTRY POINT

0100
ORG 0100H
START:

0100 C3A904 JMP START1
0103 C30900 JCONI: JMP CONIN
0106 C30600 JCONS: JMP CONST
CONO:
0109 D5 PUSH D
010A CDOC00 JCONO: CALL CONOT
010D D1 POP D
010E C9 RET

START2:

010F 3E0E MVI A,RETRYS ;SET RETRY COUNT
0111 32F900 STA COUNT
0114 119403 LXI D,SIG ;SIGN ON
0117 CDE601 CALL PMSG ;PRINT IT
011A 110104 LXI D,SMSG ;STARTING ADDR. MSG.
011D CDE601 CALL PMSG ;PRINT IT
LDST1:
0120 CD0003 CALL GETADD ;GET STARTING ADDR FROM CONIN
0123 D22E01 JNC LDST1 ;FLAG = 0 THEN ENTRY WAS CR
0126 210005 LXI H,DEFST ;GET DEFAULT STARTING ADDR.
0129 E5 PUSH H
012A CDDA01 CALL PHL ;PRINT DEFAULT ADDRESS
012D E1 POP H

LDST2:
012E 22FC00 SHLD MEM ;SAVE STARTING ADDRESS
0131 112304 LXI D,EMSG ;ENDING ADDR. MSG.
0134 CDE601 CALL PMSG
0137 CD0003 CALL GETADD ;GET ENDING ADDRESS FROM KEYBOARD
013A D24501 JNC LDST2 ;FLAG = 0 THEN WAS CR
013D 21FFF5 LXI H,DEFFND ;DEFAULT END ADDR HIGH BYTE
0140 E5 PUSH H
0141 CDDA01 CALL PHL ;PRINT DEFAULT ADDRESS
0144 E1 POP H

RESTART:
0145 22FE00 SHLD ENDADD ;SAVE ENDING ADDRESS
0148 3AF700 LDA TBUF ;GET TBUF TO SEE IF RANDOM TEST ONLY
014B FE52 CPI 'R' ;IF R THEN GO DIRECTLY TO RANDOM TEST
014D CA4003 JZ RNDW ;GO DO RANDOM NUMBERS
0150 115C04 LXI D,TEST1
0153 CDE601 CALL PMSG ;PRINT TEST
0156 06FF MVI B,OFFH ;FF TEST START
0158 CDF101 CALL TESTW ;WRITE TEST BYTE
015B CD0802 CALL TESTR ;CHECK TEST BYTE
015E 0600 MVI B,0 ;ZEROS TEST
0160 CDF101 CALL TESTW ;WRITE TEST BYTE 0
0163 CD0802 CALL TESTR ;TEST
0166 116D04 LXI D,TEST3
0169 CDE601 CALL PMSG ;PRINT BIT SHORT TEST
016C 3E01 MVI A,1 ;ROTATE BIT TEST

LOOP2:
016E 47 MOV B,A ;MAKE TEST BYTE
016F CD6602 CALL ROTTST ;DO TEST
0172 D26E01 JNC LOOP2 ;DONE WITH 8 BITS?

ADDRESS LINE TEST

0175 118004 LXI D,TEST4
0178 CDE601 CALL PMSG ;PRINT ADDR. LINE TEST
017B 0655 MVI B,55H ;TEST BYTE
017D CD7202 CALL ADTEST ;TEST
0180 06AA MVI B,0AAH ;TEST BYTE
0182 CD7202 CALL ADTEST ;TEST
0185 3E52 MVI A,'R'
0187 32F700 STA TBUF ;PUT R IN TBUF - LOOP ON RANDOM TEST
018A C34003 JMP RNDW ;DO RANDOM # TEST

DONER:
018D 11F103 LXI D,MSGOK ;POINT AT TEST COMPLEAT MESSAGE

DONEA:
0190 CDE601 CALL PMSG ;START TEST AGAIN WITH OLD PARAMETERS
0193 C34801 JMP RESTART

;
ERROR:
0196 C5 PUSH B
0197 D5 PUSH D
0198 E5 PUSH H
0199 F5 PUSH PSW ;SAVE ALL REGS.
019A 1A403 LXI D,MSG1
019D CDE601 CALL PMSG
01A0 13 INX D
01A1 3AF900 LDA COUNT
01A4 FE0E CPI RETRYS
01A6 CCE601 CZ PMSG ;PRINT LABLES
01A9 CDAA01 CALL PHL ;PRINT HL REG
01AC 50 MOV D,B ;GET SHOULD BE DATA
01AD CD4702 CALL CNVT ;PRINT HEX
01B0 78 MOV A,B
01B1 CD0C03 CALL CNVTB
01B4 F1 POP PSW
01B5 F5 PUSH PSW
01B6 57 MOV D,A ;GET WAS DATA
01B7 CD4702 CALL CNVT ;PRINT HEX
01BA F1 POP PSW
01BB CD0C03 CALL CNVTB
01BE 3AF900 LDA COUNT ;GET ERROR COUNT
01C1 3D DCR A ;ONE LESS
01C2 32F900 STA COUNT ;PUT BACK COUNT
01C5 C2D601 JNZ MORET
01C8 11CB03 LXI D,MSG4
01CB CE601 CALL PMSG
01CE CD0003 CALL GETADD ;SEE IF STOP OR CONTINUE
01D1 3E0E MVI A,RETRYS
01D3 32F900 STA COUNT ;RESET COUNT

MORET:
01D6 E1 POP H ;GET ALL REGS. BACK AND CONTINUE TEST
01D7 D1 POP D
01D8 C1 POP B
01D9 C9 RET

;PRINT H,L REGISTER
;PHL:
01DA 54 MOV D,H ;MAKE ADDRESS OF ERROR ASCII
01DB CD4702 CALL CNVT ;MAKE ADDRESS OF ERROR ASCII
01DE 55 MOV D,L
01DF CD4702 CALL CNVT
01E2 CD2E03 CALL TAB
01E5 C9 RET

;PRINT STRING POINTED TO BY D,E
;PMMSG:
01E6 1A LDAX D ;GET BYTE TO BE PRINTED
01E7 B7 ORA A ;END OF TEXT?
01E8 C8 RZ
01E9 4F MOV C,A ;CONVENTION
01EA CD0901 CALL CONO ;GOTO OUTPUT
01ED 13 INX D
01EE C3E601 JMP PMSG

-A3-
; FILL TEST MEMORY WITH TEST WORD
;
TESTW:
01F1 CD0002 CALL LOAD
WLOOP:
01F4 CD3902 CALL ADCK
01F7 D8 RC
01F8 70 MOV M,B ; PUT TEST WORD IN MEMORY
01F9 CD4002 CALL INXH
01FC D8 RC
01FD C3F401 JMP WLOOP
LOAD:
0200 2AFE00 LHLDENDADD ; GET ENDING ADDRESS
0203 EB XCHG ; PUT ENDING ADDRESS IN DE
0204 2AFC00 LHLDMEM ; GET STARTING ADDRESS
0207 C9 RET
;
; READ AND CHECK TEST MEMORY FOR TEST WORD
;
TESTR:
0208 2AFC00 LHLDMEM
020B 22FA00 SHLD TESTLOC
TESTADR:
020E CD2102 CALL CSTAT
RLOOP:
0211 CD3902 CALL ADCK
0214 D8 RC
0215 7E MOV A,M
0216 B8 CMP B ; CHECK SHOULD BE
0217 C49601 CNZ ERROR
021A CD4002 CALL INXH
021D D8 RC
021E C31102 JMP RLOOP
;
; QUERY CONSOLE FOR STATUS
;
CSTAT:
0221 E5 PUSH H
0222 C5 PUSH B
0223 CD0601 CALL JCONS ; SEE IF KEY STRUCK
0226 B7 ORA A ; SET FLAGS
0227 CA3202 JZ NOKEY
022A CD0301 CALL JCONI ; GET KEY
022D FF20 CPI ' ' ; EXIT IF SPACE
022F CA8E03 JZ RETURN
NOKEY:
0232 C1 POP B
0233 2AFE00 LHLDENDADD ; GET STARTING ADDRESS
0236 EB XCHG
0237 E1 POP H
0238 C9 RET
;
; ADDRESS LIMIT CHECK
;
ADCK:
0239 7A MOV A,D
023A 94 SUB H
023B D8 RC
023C C0 RNZ
023D 7B MOV A,E
023E 95 SUB L
023F C9 RET

INXH:
0240 C5 PUSH B
0241 010100 LXI B, 1
0244 09 DAD B
0245 C1 POP B
0246 C9 RET

; CONVERT REG. D TO HEX ASCII
;
CNVT:
0247 7A MOV A,D
0248 0F RRC
0249 0F RRC
024A 0F RRC
024B 0F RRC
024C E60F ANI OFH
024E CD5802 CALL CNV
 ; MAKE NIBBLE ASCII
0251 3E0F MVI A, OFH
0253 A2 ANA D
 ; GET LOW NIBBLE
0254 CD5802 CALL CNV
 ; MAKE ASCII NIBBLE
0257 C9 RET

CNV:
0258 C630 ADI 30H
025A FE3A CPI 3AH
025C FA6102 JM DONE
025F C607 ADI 7

DONE:
0261 4F MOV C, A
0262 CD0901 CALL CONO
0265 C9 RET

; ROTTTST:
0266 F5 PUSH PSW
0267 CDF101 CALL TESTW
026A F1 POP PSW
026B F5 PUSH PSW
026C CD0802 CALL TESTR
026F F1 POP PSW
0270 07 RLC
0271 C9 RET

ADTEST:
0272 CDF101 CALL TESTW
 ; FILL MEMORY WITH TEST WORD
0275 78 MOV A, B
0276 32F800 STA TESTWORD
 ; SAVE TEST WORD
0279 CD0002 CALL LOAD
027C 2F CMA
027D 77 MOV M, A
027E 22FA00 SHLD TESTLOC
0281 23 INX H
0282 CD0E02 CALL TESTADR
0285 010100 LXI B, 1
 ; START ADDR. LSB ON

-A5-
LOOP4:
0288 2AF00 LHLD MEM
028B 09 DAD B
028C D8 RC
028D 7A MOV A,D
028E 94 SUB H
028F D8 RC
0290 C29602 JNZ INXHA
0293 7B MOV A,E
0294 95 SUB L
0295 D8 RC

INXHA:
0296 3AF800 LDA TESTWORD
0299 C5 PUSH B
029A 47 MOV B,A
029B 2F CMA
029C 77 MOV M,A
029D 22FA00 SHLD TESTLOC
02A0 CD4002 CALL INXH
02A3 DAB102 JC OVERFL
02A6 CD0E02 CALL TESTADR ;TEST
02A9 E1 POP H
02AA 29 DAD H
02AB D8 RC
02AC 44 MOV B,H
02AD 4D MOV C,L
02AE C38802 JMP LOOP4

OVERFL:
02B1 C1 POP B
02B2 C9 RET ;

GETBYT:
02B3 CDD702 CALL CHAR
02B6 C8 RZ
02B7 FE20 CPI ' ' ;EXIT IF SPACE
02B9 CA8E03 JZ RETURN
02BC CDE502 CALL ATOH
02BF F2F902 JP REENTER
02C2 0F RRC
02C3 0F RRC
02C4 0F RRC
02C5 0F RRC
02C6 5F MOV E,A
02C7 D5 PUSH D
02C8 CDD702 CALL CHAR
02CB D1 POP D
02CC CAF902 JZ REENTER
02CF CDE502 CALL ATOH
02D2 F2F902 JP REENTER
02D5 B3 ORA E
02D6 C9 RET

CHAR:
02D7 CD0301 CALL JCONI
02DA FE0D CPI ODH
02DC 37 STC ;SET CARRY FLAG (MAYBE CR)
02DD C8 RZ
02DE F5 PUSH PSW
02DF 4F MOV C, A
02E0 CD0901 CALL CONO
02E3 F1 POP PSW
02E4 C9 RET

ATOH:
02E5 D630 SUI 30H
02E7 FAF702 JM BAD
02EA FEOA CPI OAH
02EC F8 RM
02ED D607 SUI 7
02EF FEOA CPI OAH
02F1 FAF702 JM BAD
02F4 FE10 CPI 10H
02F6 F8 RM

BAD:
02F7 AF XRA A ; SET ZERO FLAG
02F8 C9 RET

REENTER:
02F9 E1 POP H ; FIX STACK
02FA 114504 LXI D, IEMSG
02FD CDE601 CALL PMSG

; INPUT 4 HEX VALUES FROM CONSOLE
; GETADD:
0300 CDB302 CALL GETBYT
0303 D8 RC
0304 67 MOV H, A
0305 E5 PUSH H
0306 CDB302 CALL GETBYT
0309 E1 POP H
030A 6F MOV L, A
030B C9 RET

; PRINT REG-A IN BINARY
; CNVTB:
030C 5F MOV E, A ; SAVE A
030D 1602 MVI D, 2 ; TWO SPACES
030F CD3003 CALL TLOP
0312 0602 MVI B, 2 ; NIBBLE COUNT
0314 1604 MVI D, 4

PNIBB:
0316 7B MOV A, E ; RESTORE A
0317 17 RAL
0318 5F MOV E, A
0319 0E30 MVI C, 30H ; 0
031B D22003 JNC ZERO
031E 0E31 MVI C, 31H ; 1

ZERO:
0320 CD0901 CALL CONO
0323 15 DCR D
0324 C21603 JNZ ALLBIT
0327 CD3803 CALL SPACE ; PRINT SPACE
032A 05 DCR B
032B C21403 JNZ PNIBB

-A7-
TAB: MVI D, 4
TLOP: CALL SPACE
0330 CD3803 DCR D
0333 15 JNZ TLOP
0334 G23003 RET
0337 C9

SPACE: MVI C, ' ' '
0338 0E20 PUSH B
033A C5 CALL CONO
033C C1 POP B
033E C9 RET

; RANDOM NUMBER TEST
; WRITE RANDOM NUMBERS
RNDW: LXI D,RMSG
0340 119404 CALL PMSG
0343 CDE601 LHLD SEED ; GET OLD SEED
0346 2AF500 SHLD SEEDST ; SAVE IT FOR LATER
0349 22F300 SHLD TESTLOC
034C 22FA00 CALL LOAD
034F CD0002

RNDWL: CALL RND
0352 CD7E03 MOV M,B
0355 70 CALL ADCK
0356 CD3902 JZ RNDR
0359 CA6003 INX H
035C 23 JMP RNDWL

; READ AND CHECK RANDOM NUMBERS
RNDR: CALL CSTAT
0360 CD2102 LHLD SEEDST ; START WITH SAME SEED
0363 2AF300 SHLD SEED ; PASS SEED TO GENERATOR
0366 22F500 CALL LOAD ; GET TEST ADDRESS
0369 CD0002

RNDRL: CALL RND
036C CD7E03 MOV A,M
036F 7E CMP B
0370 B8 CNZ ERROR
0371 C49601 CALL ADCK
0374 CD3902 JZ DONER
0377 CA8D01 INX H
037A 23 JMP RNDRL
037B C36C03 ; GENERATE RANDOM NUMBER FORM SEED

; RND:
037E E5 PUSH H
037F 2AF500 LHLD SEED
0382 7D MOV A,L
0383 AC XRA H
0384 47 MOV B,A
0385 07 RLC
0386 6F MOV L,A
ADD H
MOV H,A
SHLD SEED
POP H
RET

LXI SP,STACK-15 ;FIX STACK
JMP MONITOR

;MESSAGES

DB OAH,ODH,'MEMORY TEST',ODH,OAH,0
DB OAH,ODH,'LOCATION' ,0
DB ' SHOULD BE ',WAS'
DB OAH,ODH,0
DB OAH,ODH,",CR" TO CONTINUE TEST "SP" TO STOP ',0
DB OAH,ODH,'TEST COMPLETE',0
DB OAH,ODH,'STARTING ADDRESS (HEX OR "CR") ',0
DB OAH,ODH,'ENDING ADDRESS (HEX OR "CR") ',0
DB OAH,ODH,'INPUT ERROR RETYPE-',0
DB OAH,ODH,'BIT STUCK TEST',0
DB OAH,ODH,'SHORTED BIT TEST',0
DB OAH,ODH,'ADDRESS LINE TEST',0
DB OAH,ODH,'RANDOM NUMBER TEST',0

;INSERT CUSTOM I/O ROUTINES HERE

;AND ANY INITIALIZATION ROUTINES HERE

LXI SP,STACK-15 ;SET STACK

; THESE ROUTINES ARE FOR CPM USERS

LDA 2 STA JCONS+2 ;GET BASE OF JUMP TABLE
STA JCONI+2
STA JCONO+2
JMP START2
END START