
Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

Xerox Universal Time-Sharing System (UTS)

© 1971, Xerox Corporation

Sigma 6/7 /9 Computers

Time-Sharing

User's Guide

FIRST EDITION

90 16 92A

April 1971

Price: $3. 75

18. SEP.1972

XEROX

Printed in U.S.A.

NOTICE

This document applies to the AOO {initial) release of UTS.

RELATED PUBLICATIONS

Title

Xerox Sigma 6 Computer/Reference Manual

Xerox Sigma 7 Computer/Reference Manual

Xerox Sigma 9 Computer/Reference Manual

Xerox Universal Time-Sharing System {UTS)/TS Reference Manual

Xerox Universal Time-Sharing System {UTS)/SM Reference Manual

Xerox Universal Time-Sharing System {UTS)/OPS Reference Manual

Xerox Batch Processing Monitor (BPM)/BP, RT Reference Manual

Xerox Symbol and Meta-Symbol/LN, OPS Reference Manual

Xerox Edit (for UTS)/Reference Manual

Xerox Delta {for UTS)/Reference Manual

Xerox BASIC/LN, OPS Reference Manual

Xerox Sort-Merge/Reference Manual

Xerox Manage/Reference Manual

Xerox FORTRAN Debug Package (FDP)/Reference Manual

Xerox Extended FORTRAN IV/LN Reference Manual

Xerox Extended FORTRAN IV/OPS Reference Manual

Xerox ANS COBO!/LN Reference Manual

Xerox 1400 Series Simulator/Reference Manual

Publication No.

90 17 13

90 09 50

90 17 33

90 09 07

90 16 74

90 16 75

90 09 54

90 09 52

90 16 33

90 16 34

90 15 46

90 l l 99

90 16 JO

90 16 77

90 09 56

90 ll 43

90 15 00

90 15 02

Manual Type Codes: BP - batch processing, LN - language, OPS - operations, RBP - remote batch processing,
RT - real-time, SM - system management, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION LINK Command 53
START Command 54

Universal Time-Sharing System 1
Terminal Executive Language 1
Scope of this Manual 2

7. DEBUGGING USER PROGRAMS 56 Notation Conventions Used in this Manual __ 2

Assembly Language Debugging (Delta) 56

2. LOGGING ON AND OFF 4
Executing in Debug Mode 56
Using Delta in Nondebug Mode 58

Dialing the Computer 4 FORTRAN Debugging (FDP) 60

Logging On and Off 4
PASSWORD Command 6

8. EXECUTING USER PROGRAMS 66

3. TERMINAL INTERFACE 9
9. GETTING IN AND OUT OF PROCESSORS 70

Introduction 9
Editing of Terminal Input 9 General 70

TERMINAL Command 10 QUIT and CONTINUE Commands 70
PLATEN Command 10 BREAK and ye 72
TABS Command 14 Program Aborts 74

4. MANIPULATING FILES 15
10. ASSIGNING DCBs 76

Files in UTS 15
Data Control Blocks 76

Edit Subsystem 17
Means of File/Device Assignment 76

How Edit Works 17
Standard System DCBs 76

File Editing Commands 18
Assign/Merge Table 77

Record Editing Commands 18
lntrarecord Command Usage 26 OUTPUT, LIST, and COMMENT Commands __ 77

SET Command 79 TEL Editing Commands vs. Edit Commands __ 29
General Usage Rules 80 PCL Subsystem 29
BASIC Subsystem Requirements 81 PC L Commands 30

5. USING LANGUAGE PROCESSORS 36 11. CONTROLLING OUTPUT 83

Introduction 36 General 83
BASIC Subsystem 36 Discontinuing and Resuming Standard

Program Building, Editing, and Execution __ 36 Outputs 83
Program Saving, Loading, and Renaming -- 38 PRINT Command 85
Additional Editing Facilities 39
Temporary Saving, Renaming, and

Renumbering of Current Program 41 12. SAVING/RESTORING CORE IMAGES
Direct Statement Execution and Desk- AND FILES 86

Calculator Mode 43
Abbreviations of BASIC Command Verbs __ 44 General 86

FORTRAN IV Subsystem {FORT4) 45 SA VE and GET Commands 86
Control I ing the Compilation Process 45 BACKUP Command 89

Meta-Symbol Subsystem (MET A) 49 COPYALL and COPY Commands 90
Saving On Tape 90

6. LOADING AND EXECUTING OBJECT
PROGRAMS 52 13. SUBMITTING BATCH JOBS 93

LINK Subsystem 52 BATCH Subsystem 93
RUN Command 52 JOB Command 94

iii

... ---------------···- - -- - - -···------ -~------- -- - - -- -- ----- -- ---- ------ ·--·-

14. COMMUNICATION WITH THE OPERATOR

MESSAGE Command ---------­
Messages from the Operator --------

INDEX

APPENDIXES

A. TEL COMMAND SUMMARY

B. FILE IDENTIFIERS AND THEIR PARTS

C. SET COMMAND CODES

D. LINK AND RUN COMMAND CODES

E. SPECIAL TERMINAL KEYS

FIGURES

1. UTS Terminal Keyboard---------

2. Typical Dialing Unit _________ _

TABLES
A-1. TEL Command Summary ________ _

95

95
95

106

97

101

102

104

105

3

4

97

B-1. File Identifiers and Their Parts ______ 101

C-1. DCB Assignment Codes - SET Command 102

C-2. Device Options - SET Command _____ 102

C-3. File Options - SET Command _______ 103

D-1. Library Search Codes --------- l 04

D-2. Error Displays------------ 104

E-1. Special Terminal Keys _________ 105

EXAMPLES

1. Logging On and Off ---------- 5

2. Logging On with a Wrong Account Number__ 6

3. Inability to Log On Due to Error in Logon File_ 6

4. Setting a Password -----------

5. Logging On with Password and then Cancelling
Password -------------

6. Setting a Password and Suppressing. Its
Printing

iv

7

7

8

7. Making Corrections to TEL Commands ___ _

8. Use of TERMINAL Command --------

9. Using PLATEN Command to Change Page
Width--------------

10. Using PLATEN Command to Change Page
Length

11. Using the TABS Command---------

12. Using EDIT to Build and Display a Source

File---------------

13. Using EDIT to Modify a Source File-----

14. Using String-Search Commands and Local­
Carriage-Return ----------

15. Using lntrarecord Commands--------

16. Keyed-File Update an_d Display, Using
PCLCOPY __________ _

17. Keyed-File Update and Display (Further
Examples)

9

10

11

12

14

18

20

25

27

31

33

18. Building and Concatenating Unkeyed Files__ 34

19. BASIC Program Building, Editing, and
Execution------------

20. Program Modification, Saving, and
Reloading ------------

37

39

21. Temporary Filing, Reloading, and Renaming__ 42

22. Use of Direct Statements - "Desk-Calculator
Mode"--------------

23. Using the EXECUTE Command -------

24. Compiling and Executing FORTRAN Input
from a File ------------

25. Submitting Terminal Input for FORTRAN
Compilation ------------

26. Using META to Assemble Terminal Input ___ _

27. Using the RUN Command ---------

28. Using the LINK Command ________ _

29. Using the START Command _______ _

43

44

46

48

50

52

54

54

30. Assembling and Loading in the Debug Mode__ 57

31. Calling Delta after Assembling and
Executing in Nondebug Mode------ 58

32. Use of FDP ON and PRINT Commands---- 61

33. Further Uses of FDP Commands 63 42. Causing Printer or Punch Output to be Queued
by Issuing a PRINT Command 85

34. Using Load-Module-Name as Command
Verb (Meta-Symbol Program) 67 43. Saving a Core Image of a Program (SAVE

Command) 86
35. Using Load-Module-Name as Command

Verb (FORTRAN Program) 68 44. Restoring a Checkpointed Program (GET
Command) 89

36. Interrupting, Continuing, and Quitting
Execution 70 45. Saving a File on the Standard System Backup

Tape 89
37. Using CONTROL/Y and the BREAK Key 73

46. Transfer of All Files in User's Account to
38. System Handling of an Abort During Execution_ 74 Labeled Tape 90

39. Control I ing the Destination of Processor 47. Submitting a Job via BATCH Subsystems for
Output 77 Execution 93

40. Setting DCB Assignments and Parameters with 48. Using the JOB Command 94
the SET Command 81

49. Sending a Message to the Operator 95
41. Discontinuing and Resuming Output by OUTPUT,

LIST, and COMMENT Commands 83 50. Receiving a Message from the Operator 95

v

1. INTRODUCTION

UNIVERSAL TIME-SHARING SYSTEM

The Universal Time-Sharing System (UTS) is a general purpose time-sharing system that operates on a Sigma 6, 7, or 9
computer, a variety of peripheral devices, and a network of remote terminals linked to the computer by telephone
lines. To gain access to the system through a remote terminal, you simply dial the number of the computer on a
telephone attached to your terminal. A wide variety of services is provided by the UTS terminal executive and its
subsystems after the terminal is connected to the system.

In addition to on-line (i.e., time-sharing) terminal services, UTS provides a full set of batch processing services.
Jobs may be submitted to the batch job stream through a card reader at the central site or through an on-line
terminal.

Since UTS can serve as many as 64 users simultaneously, the individual user obtains the results of his processing
much sooner than he would under a conventional system. Under a normal load, the response to most on-line re­
quests occurs in less than two seconds.

TERMINAL EXECUTIVE LANGUAGE

The Terminal Executive Language {TEL) is the on-line command language for UTS, a concise natural language for
performing on-line functions and calling on-line subsystems. Italso provides information services, suchasaccounting
charges and status of available system resources.

Functions performed directly by TEL commands include

• Building a file.

• Initiating a processor.

• Loading and executing a program.

• Quitting or continuing an interrupted processor.

• Copying a file.

• Deleting a file.

• Control I ing output.

• Setting DCB assignments.

• Submitting batch jobs.

• Checking the status of batch jobs.

• Saving and restoring files.

• Queuing output for symbiont devices.

• Setting tab stops for terminal I/O.

• Control ling the terminal interface {e.g., page width and length).

• Setting the log-on password.

• Communicating with the operator.

On-line subsystems and facilities available through TEL include

Extended version of FORTRAN IV.

Assembler with powerful procedure {macro) capability: Meta-Symbol.

FORT4

META

BASIC Subsystem for creating, executing, and maintaining programs written in a simple mathematical
language.

EDIT

PCL

Line/text edit.or.

Language for copying and deleting files, listing directories, and manipulating tapes.

Introduction

DELTA

FDP

Debugging subsystem used primarily for assembly-language programs.

Debugging package for FORTRAN programs.

LINK

BATCH

CONTROL

Subsystem that constructs an executable program (load module) from object-program modules.

Subsystem that submits a batch job file to the batch job stream.

Subsystem used to display performance measurements and change critical system parameters
(authorized users only).

SUPER Subsystem used to determine who may log on and with what privileges and limits (authorized
users only). ·

Subsystems are usually called explicitly by name but may also be called implicitly by the following TEL commands:

BUILD

COPY

DELETE

RUN

Calls Edit to build a file.

Uses PCL to copy files.

Uses PCL to delete files.

Uses LINK to link a program and causes the program to be loaded and executed.

SCOPE OF THIS MANUAL

This manual is designed as a simple guide for using UTS in time-sharing mode only. It is not intended as guide to
"sophisticated" usage, nor as a complete reference to TEL and other commands. Please refer to Xerox UTS/TS
Reference Manual, Publication 90 09 07 and applicable language reference manuals for complete command forms
and descriptions. However, Appendix A of this manual presents a summary of TEL commands in reference format.

The command formats shown in the text are not necessarily complete, as for example in the case of PCL COPY.
Only the more commonly used forms are given and explained. Also, knowledge of at least one of the programming
languages available under UTS is required for full understanding of this manual.

NOTATION CONVENTIONS USED IN THIS MANUAL

The following conventions are observed throughout this manua I:

l. Al I characters typed by the system are shown under! ined.

2. Special-purpose terminal control keys (Figure l) used in examples are shown circled. These keys are as
follows:

t§ Escape

@ Break

9 Rubout

@) Carriage return

e Line feed (may normally be used instead of carriage return)

3. Combinations of keys depressed simultaneously are indicated as follows:

@) Notation f~r for t§I, the "tab character".

ac Some alphabetic key (symbolized bya) and the CTRL (control) key pressed simultaneously (e.g., xc).

Note that the encircled control keys normally do not result in the printing of any character except for
Rubout(\) and xc (-or).

4. In command formats, square brackets are used to indicate optional parameters, and braces are used to indi­
cate a required choice. (These characters are not an actual part of the command. Also, lowercase letters
are employed to indicate where in a command to substitute a name, symbol, numerical value, etc. For
example, EDIT file-name indicates that the name of a file may be specified along with the verb EDIT
(separated by one or more blanks).

2 Scope of this Manual/Notation Conventions used in this Manual

z
0 er
:::?:
0
::l

n
0
::l
<
ID
::l
:::?:
0
::l

"' c

~
::l ...
::r
;;;·

~
::l c
Q

(,.)

000000000000
(US} (NUL)

~ \>-0! ... Q QQG)G)Q t::\
\::)

GCJ QQQOO
(RS)

(ESCI)

~
8

(GS)

(FS)

O f.::\
~

G GGGGG
8~888

rii\
8 OOOG

97 [SPACE IAI l
OJ These keys ore missing on some models. [!] This key is positioned elsewhere on some models.

Figure 1. UTS Terminal Keyboard

2. LOGGING ON AND OFF

DIALING THE COMPUTER

To establish connection with the computer, proceed as follows:

1. Turn on power switch for terminal and for acoustical coupler (or "modem"), as necessary.

2. Pick up telephone handset, wait for dial tone, and dial computer. A high-pitched tone will be heard
if a communication line is available.

3. Place handset on acoustic coupler (see Figure 2).

TEL (Terminal Executive Language) now responds with the following message:

UTS AT YOUR SERVICE

ON AT (time and date)

LOGON PLEASE:

You can now log onto UTS (provided you have been enrolled on the system by the system manager).

LOGGING ON AND OFF

To log on, you must have an account number, a user-ID, and possibly a possword. The account is your billing
number and the user-ID is your personal or group identification. Both are assigned by the system manager.
Password is an account-protection feature that is assigned either by the system manager or by yourself (see
PASSWORD Command, below). It can be modified periodically for security purposes.

Upon receipt of the message LOGON PLEASE:, enter your account, ID, and password, in that order, separated
by commas. The password and preceding comma are omitted if no password was assigned.

Figure 2. Typical Dialing Unit

4 Logging On and Off

For terminals operated in full-duplex mode, character echoing by the system is normally on but can be turned off
(e.g., to suppress printing of passwords or other security-related information) by striking the i§E keys. Striking
the i§E keys a second time turns echoing back on. For terminal units operated in half-duplex mode, character
echoing by the system must be turned off, as above, to suppress duplicate printing of characters.

It may not always be possible to log on. If an error prevents the reading of the logon file, the message UNRECOV­
ERABLE 1/0 ON RAD, or ABNORMAL ERROR ON LOGON FILE will be typed. Whenever you are unable to log
on, start over by striking the BREAK key and trying again. The system tries five times to log you on before dis­
missing you.

If a MAILBOX file (a message file) exists at log-on time, the message CHECK DC/MAILBOX wi II appear. You may
examine this MAILBOX file by copying it to your terminal as follows:

! COPY MAILBOX TO ME

(The underscored exclamation mark is the "prompt character" issued by TEL.)

The allowable characters for !D's, accounts, and posswords are

A-Z a-z 0-9 $ * % # @

The graphic representation of certain special characters, such as the left arrow, is terminal-device dependent, as is
the availability of the lowercase alphabetics. The character set shown above should be regarded as representative
only in this respect.

Account-number and password may each be from one to eight characters in length. The user-ID may consist of
one to 12 characters.

Example 1. Logging On and Off.

UTS AT YOUR SERVICE

ON AT 12:30 MAR 12, 1 71

LOGON PLEASE: 2232,HALL 8

12:30 03/12/71 2232 HALL 15-9[1]

!OFF 8

CPU • 0124 CON :01 INT 2 CHG 10

The user dials the computer.

The system identifies itself, states the time and date,
and requests that the user log on.

In response, the user types in his account number (2232)
and user ID (HALL). He does not use a password be­
cause the system manager has not assigned him one.

A page heading is printed by the system; the items of
information in the heading are, in order: time, date,
account number, user-ID, two internal identifiers, and
page number (enclosed in square brackets).

The Terminal Executive types its prompt character(!)
indicating that the system is ready to process a TEL
command. Since this was just an experiment for the
user, he logs off.

Summary of accounting information for session •

The user has used .0124 minutes of Central Processor Time (CPU= .0124); he has been connected to the terminal
(from dialing up to end of account-ing summary) .01 hour (CON= :01); he has interacted with the system twice
(INT= 2), logging on and the OFF command. His charge is e.g., 10 charge units, an installation-dependent value.

logging On and Of 5

Example 2. Logging On with a Wrong Account Number

UTS AT YOUR SERVICE

ON AT 02:30 MAR 12, 1 71

LOGON PLEASE: 223L,HALL @

ACCOUNT/ID 223L/HALL ?

LOGON PLEASE: 2232,HALL@)

-page heading-

!OFF@

-accounting summary-

Example 3. Inability to Log On Due to Error in Logon File

UTS AT YOUR SERVICE

ON AT 12:42 MAR 17, '71

LOGON PLEASE: C37-105,HALL@)

The user tries to log on.

ABNORMAL ERROR ON LOGON FILE

SORRY,UNABLE TO LOG YOU ON

The system cannot log him on and so informs him.

CPU = .0024 CON = :01 INT = 1 CHG = 10

The accounting summary is presented.

UTS AT YOUR SERVICE

The system repeats its logon sequence.

ON AT 12:43 MAR 17, '71

LOGON PLEASE: C37-105,HALL @)

This time the user's logon is accepted.

-page heading-

_!_OFF@)

He now logs off.

CPU = .0024 CON = :01 INT 2 CHG 15

PASSWORD COMMAND

The user dia Is the computer.

He types in the right ID but the wrong account number.

The system questions the incorrect account number, and
asks the user to log on again, which he does.

He then logs off.

The purpose of the logon password is to protect your resources and files by preventing illicit use of your ID
and account number. The PASSWORD command allows you to change your password frequently to make it
difficult for anyone else to know what it is. You can also use the command to cancel your password if you
wish.

It is important to remember your password because only the system manager is able to recover it for you if you do
not remember it.

6 PASSWORD Command

Example 4. Setting a Password

UTS AT YOUR SERVICE

ON AT 12:49 MAR 17, '71

LOGON PLEASE: 2232 ,HALL @l

The user logs on, with no password set.

J. PASSWORD SECRET @

PASSWORD CHANGE SUCCESSFUL

The Terminal Executive types its prompt character (!) indicating it is ready to process a TEL command.
The user sets his password to SECRET and must now use it whenever logging on until he or the system
manager changes it.

-page heading-

_!_OFF €t

The Terminal Executive types its prompt character and the user logs off. Password SECRET remains set.

-accounting summary-

Example 5. Logging on with Password and then Cancel ling Password

UTS AT YOUR SERVICE

ON AT 14:45 MAR 17, 1 71

LOGON PLEASE: 2232,HALL@l

The user logs on but forgets to use his new password.

PASSWORD ?

The system indicates that the password was not entered.

LOGON PLEASE: 2232, HALL, SE CERT @l

The user logs on with an incorrect password.

PASSWORD SECERT ?

The system indicates that the password is invalid.

LOGON PLEASE: 2232 ,HALL, SECRET @l

The user now logs on with the correct password.

-page heading-

_!_PASSWORD @l

He cancels his password by typing the PASSWORD command and specifying no password.

PASSWORD CHANGE SUCCESSFUL

_!_OFF @l

He then logs off. Next time he logs on, no password will be required.

-accounting summary-

PASSWORD Command 7

Example 6. Setting a Password and Suppressing Its Printing

UTS AT YOUR SERVICE

ON AT 09:05 MAR 20, '71

LOGON PLEASE: 2232,HALL@)

The user logs on.

-page heading-

..!_PASSWORD @) E ~ E (§

The Terminal Executive types its prompt character(!) indicating it is ready to process a TEL command.
The user sets his password but suppresses its printing by typing @l E before the password (the first E is
not actually echoed), then turns echoing on again. He must now use the password he has just set
whenever logging on, until he or the system manager changes it. Any sequence of 1-8 permissable
characters may be used as a password.

PASSWORD CHANGE SUCCESSFUL

_!_OFF(§

The Terminal Executive types its prompt character indicating it is again ready for a TEL command.
The user logs off. The next time he logs on, he must use the password just set.

-accounting summary-

8 PASSWORD Command

3. TERMINAL INTERFACE

INTRODUCTION

This chapter describes methods for correcting, modifying, and deleting terminal input and the use of the TERMINAL,
PLATEN, and TABS commands.

EDITING OF TERMINAL INPUT

A line of terminal input may be corrected, modified, or deleted, before the line is released to the system (with (.3).
This may be done by way of either character or line deletion:

1. Editing by Character Deletion: On detecting a typing error within a few characters of the point of error,
you may delete the last characters typed by typing a corresponding number of rubout@characters (echoed
with a\ character), and continuing the line from the (deleted) point of error. (Any n successive@char­
acters effectively delete the n successive characters immediately preceding the first@ character.)

2. Editing by Line Deletion: To delete a complete line of input - before giving a carriage return, simulta­
neously depress the CTRL and X keys (Xe in conventional notation). The system echoes xc with a - (left
arrow), effectively deletes the line, and gives a carriage-return/line-feed. (The previous prompt charac­
ter, if any, is not repeated.) The input can then be repeated in correct form.

These editing features apply to any untransmitted line of terminal input, under TEL or any other subsystem except
Delta.

Example 7. Making Corrections to TEL Commands

UTS AT YOUR SERVICE
ON AT 15:30 MAR 22, 1 71
LOGON PLEASE: 2232 ,HALK\L@)

While logging on, the user hits a K instead of an L. To delete K, he strikes the rubout key which echoes
back to the terminal as a backslash. Then he types Land completes the logon sequence. (Note that the
characters printed at the terminal are those echoed back to the terminal and are not necessarily the same
ones typed, as for example \for @.)

- page heading -

lQASSWORD Y07+

The user then types in a password command but notices an error (password misspelled) before striking the
carriage return key. Instead he depresses CONTROL and X simultaneously, which the system echoes
back as a left arrow (or possibly an underline). This causes the line to be cancelled and a carriage
return.

PASTWO\\\SWORD Y07@>

PASSWORD CHANGE SUCCESSFUL

The user notices still another error. This time he deletes three characters and then completes the
command successfully. Note that prompt character (!) is not repeated.

lOFF @l

He then logs off.

- accounting summary -

Terminal Interface 9

TERMINAL COMMAND

The TERMINAL command is used to inform the system of the type of terminal used, and is required only if the termi­
nal differs from a type of terminal unit specified as standard by the system. (This information can be obtained from
the installation manager.)

Format:

TERMINAL tc

where tc is a two-character alphanumeric terminal code:

33 for Teletype®t Model 33

35 for Teletype®t Model 35

37 for Teletype®t Model 37

(Additional terminal codes will become applicable as more types of terminal units are added to the system's
ca pa bi Ii ties.)

Example 8. Use of TERMINAL Command

UTS AT YOUR SERVICE
ON AT 11:45 MAR 23, 1 71
LOGON PLEASE: 2232,HALL,Y07

- page heading -

.!_TERMINAL 37 (§>

Indicates a Model 37 Teletype®t. The system will use this information to modify response to input/
output for different types of terminals, as necessary. For the rest of the session, the Monitor recog­
nizes the terminal as a Model 37 Teletype®t .

.!_OFF@)

- accounting summary -

PLATEN COMMAND

A page width of 72 characters and a printable page size of 54 lines are normally used for all terminal input and out­
put. The PLATEN command can be used to change the page width and/or page length. If an output line is longer
than the effective page width (as in Example 9), the system breaks the line by inserting carriage-return/line-feed
characters. Note: The minimum page width is 12 characters and the minimum page length is 12 lines.

The PLATEN command can also be used to suppress page headings by specifying a value of less than 12 for the page
length, effectively giving a page unlimited length. If a value of less than 12 is specified for the page width, the
page width is treated by the system as unlimited in size. That is, the width of a printed or displayed line is limited
only by the physical constraints of the device on which the line is produced (up to a maximum of 140 characters).

Example 9 shows how you can use PLATEN to change page width. This example contains four job steps, i.e., major
functions during a session that cause the invoking of processors such as EDIT, PCL, or META.

t ®Registered trademark of the Teletype Corporation.

10 Editing of Terminal Input

Example 9. Using PLATEN Command to Change Page Width

UTS AT YOUR SERVICE
ON AT 17:24 APR 15, 1 71
LOGON PLEASE: 14777,N.U,USER@)

17:24 04/15/71 14777 N.U.USER 23-7[1]

.!_BUILD TESTl @

1.000 1234567890123456789012345678901234567890@)
2.000 @)

The user enters the BUILD command to build file TESTl. File building is described in detail in Chap­
ter 4. (This is the first job step of the session.)

.!_PLATEN 20 @

The page width is set to 20 .

.!_COPY TESTl ON ME@
12345678901234567890
12345678901234567890

File TESTl is printed at the terminal. The page width is now 20. (The COPY command, which im­
plicitly invokes the PCL subsystem, is the second job step.)

.!_PLATEN 39@

The page width is set to 39 .

.!..COPY TESTl ON ME@
123456789012345678901234567890123456789
0

File TESTl is printed again but with 39 characters per line. (This COPY constitutes a third job step.)

.!_PLATEN 12@

The page width is set to 12 .

.!_COPY TESTl ON ME@)
123456789012
3456 78901234
567890123456
7890

File TESTl is printed again but now has 12 characters per line. (This is the fourth and last job step.)

.!_OFF@

The user logs off. Note that the last PLATEN command is still in effect.

CPU = ,0097
CON= :03 INT
= 13 CHG =

42

Editing of Terminal Input 11

Example 10 shows how PLATEN is used to change page length. (This example also contains four job steps.) Note
that the page-length specification refers to the number of single-spaced lines in the body of the page, i.e., ex­
cluding top-of-page heading and spacing. Each line of double-spaced output, where double spacing occurs, counts
as two lines. Therefore if n double-spaced print lines are desired, the page-length must be specified as nx2. Oc­
casionally, only n-1 lines, or less, will be printed due to various circumstances, e.g., an intervening single­
spaced command line.

Format:

PLATEN [w][, I]

where

w is an optional integer specifying the page width, in number of characters per line (140 maximum). If the
w field is null, the prior width setting is retained.

is an optional integer specifying the page length, in number of line-positions per page, exclusive of top­
of-page heading and space (a total of 12 lines}; I may have a maximum value of 256. If the I field is null
the prior length setting is retained.

The PLATEN command may be given during a process interrupt, i.e., prior to the issuance of a CONTINUE or QUIT
command.

Example 10. Using PLATEN Command to Change Page Length

UTS AT YOUR SERVICE
ON AT 17:29 APR 15, 1 71
LOGON PLEASE: 14777,N.U.USER@l

17:30 04/15/71 14777 N.U.USER 21-9[1]

lBUILD TEST2

1.000 1@)
2 .ooo 2 @l
3.000 3@l
4.000 4@)
5 .OOQ. 5 @)
6.000 6@l
7 .ooo 7 @l
s.ooo s@l
9.000 9@l

10.000 10@)
11.000@l

The user bui Ids file TEST2.

l_PLATEN 72, 12@>

The PLATEN command sets page width to 72 characters, length to 12 lines.

17:30 04/15/71 14777 N.U.USER 21-9[2]

The system prints the second page heading, on overflow of newly set page length.

! COPY TEST2 ON ME@)

l

2

12 Editing of Terminal Input

A copy of file TEST2 is printed at the terminal. (Note that a file built at the terminal, as in this case,
is copied back to the terminal double-spaced. A later example will show how to suppress this double
spacing.)

17:31 04/lS/71 14777 N.U.USER 21-9[3]

The third page heading prints.

I

.!_PIATEN , 18 @)

This PLATEN command causes the current page to be lengthened from 12 to 18 lines. (Page width re­
mains at 72.)

.!_COPY TEST2 ON ME@>

l

17:31 04/lS/71 14777 N.U.USER 21-9[4]

I

.!_OFF@)

The 18-line page is still in effect.

17:31 04/lS/71 14777 N,U,USER 21-9[S]

CPU=,0129 CON=:OS INT = 19 CHG = SS

Editing of Terminal Input 13

TABS COMMAND

The TABS command is used to simulate typewriter-like tab stops for terminal input and output. TABS supplies the
tab-setting values that are to be used by the system when it encounters a 'tab character' in the input or output line.

You can then tabulate by typing Ic (CONTROL and I) in your input wherever you desire a tab in both the input and
corresponding output.

The tab settings can be changed by another TABS command. (Tab simulation can be turned off, and then back on,
with the key sequence§ and T.)

Example 11. Using the TABS Command

UTS AT YOUR SERVICE

ON AT 17:35 APR 15, 1 71

LOGON PLEASE: 14777 ,N .U .USER@

- page heading -

lTABS 8,22,37,45,52@)

The user sets tab-stop values for terminal input and output.

lBUILD TEST3 @)

1.000 THIS e EXAMPLE e ILLUSTRATES e USE e OF e TABS @)

2.000 @)

File TEST3 is built using tabulation (8= Ic).

lCOPY TEST3 TO ME@)

THIS EXAMPLE ILLUSTRATES USE OF TABS

This file is printed with tab simulation on.

The user now turns off tab simulation with the sequence@ T.

lCOPY TEST3 TO ME@)

THIS EXAMPLE ILLUSTRATES USE OF TABS

The file now prints with no tabbing.

lOFF@)

- accounting summary -

14 Editing of Terminal Input

4. MANIPULATING FILES

FILES IN UTS

Almost from the moment you become a user of UTS, you start accumulating data - the information upon which the
system must operate to provide the answers to the problems you pose. All of the subsystems mentioned in Chapter I
produce some kind of data; for example:

• EDIT al lows you to create the collection of statements necessary to phrase a problem-solving procedure in
the language of an assembler or compiler, called a source program, and to create input data for
such programs.

• BASIC, FORTRAN, and META allow you to translate a source program, which is only a model of the
external idea, into a form suitable for execution by the machine. This translation produces object code
as the result of either a "compilation" or "assembly" process.

• LINK prepares the relocatable object code for machine execution, in the form of a load module.

These different kinds of data have at least one characteristic in common: each must be stored in some retrievable
form, both between the steps of an information-processing operation, and between executions of the same operation.

Conventional batch systems provide the user with several ways of storing data, principally on punched cards or
magnetic tape. Although these media provide low cost, long-term storage, they require operator intervention at
the central computer site when the stored information is to be accessed or updated. This intervention may be
merely inconvenient for batch operation when the information is used frequently, but it is generally infeasible for
on-line use of a time-sharing system.

UTS file management capabilities provide an alternative and remarkably versatile medium for maintaining your
working data - a medium which greatly lessens your dependence on conventional external forms of storage,
and increases the flexibility with which the data can be manipulated. File storage in UTS is implemented
through use of the XDS Rapid Access Data Storage System (RAD). Generally speaking, a RAD is a non­
removable rotating-disk memory device containing approximately 1.5 million words of storage, any portion
of which can be accessed within a very short time. (UTS allows you, the on-line user, to access conventional
peripheral-storage devices also, if you are so authorized.)

The monitor, through its file-management system, allows information to be stored in RAD and identified symbolically,
simply by a file name chosen by the user. The files are segregated by account number (your identifying number as­
signed by the installation manager). Therefore, you cannot inadvertently generate file names that conflict with
those of other users outside your account. Certain other information about the file, such as restrictions on access
by other users, is also kept with the file.

Files can be used to store any kind of information. They can contain source-language programs built with Edit or
BASIC, translated source programs produced by a compiler (relocatable object code), or object code in executable
form (a load module) produced by the link-loader. They can also contain collections of alphanumeric data, and
natural-language text.

A file is identified by a name of I- JO characters constructed from a prescribed set of characters. (Some processors,
such as Edit, allow up to 31-character file names for special purposes.) The permissible character set contains all
of the alphabetic and numeric characters plus most of the commonly used special symbols. Typically, you will need
no more than the alphabetic and numeric characters. In the command-language formats given throughout this man­
ual, the symbol most commonly ~sed to indicate a "file name" is fid, which stands for file-identification. A file­
identification actually can include an explicit account number arnl password, as well ;;s thefile name. But in our
examples, and in most actual usage, fid is interpreted simply as a file name. Complete rules for the structure of
file-identifications are given in Appendix B.

Having created a file of information, you are completely free to access or delete it, replace it, or modify it,
through the on-line services of UTS, without any operator intervention. A general rule is that you may not delete
or modify files not in your account, though often you may access such files.

Manipulating Files 15

Sometimes files are created automatically for you by the system. It is possible to call a processor such as FORTRAN
to translate a source program without specifying a file into which to store the object code. In this case, the system
creates a unique temporary file, associated with your account, for output storage. You may refer to this file with
the single character$ under certain subsystems. The $file is temporary in the sense that when you log off, the file
is automatically released. This is useful when creating test programs where nothing of permanent value is being
created as output.

Any file that is explicitly named for output is permanent, i.e., retained in the file-management system across the
periods between on-line sessions. All files explicitly created with BUILD and COPY commands are also permanent.
Permanent-file content is maintained and updated solely by the user. However, file storage space is a chargeable
resource, and it is in your interest to delete unneeded files whenever possible.

When dealing with files throughout UTS, there are two command modifiers of importance: ON and OVER. ON
implies that the named file does not yet exist. If such a file does indeed exist and ON is used, an error message is
sent to the user. (In general, the word TO may be substituted for ON, with the same effect.)

OVER implies that the file may exist already and, if so, is to be reused for the new operation. Using OVER also
results in a completely new version of the file; any old data in the file is lost. If the file does not exist and OVER
is specified, no error is noted, and the file is automatically created. There is no limit to the number of operations
that may be performed OVER a file.

lnforma.tion about the immediate intended use of a file is called a file specification. These specifications are made
implicitly by the use of several commands, particularly COMMENT, LIST, and OUTPUT. An explicit specification
can be made by the use of the SET command. (See Chapter 10, "DCB Assignments".) For our present purposes, file
specifications may be considered to indicate that a file is an input or an output file, and if an output file, what
type(s) of output the particular file is to receive.

Once a file specification has been made, it remains in effect throughout a terminal session until changed or deleted
by another specification - the one exception concerns source-input files (operational label SI), which always default
to the user's terminal at each job step. If, for example, listing output is directed to the file "DATA", then all listing
output generated by a series of assemblies or compilations are placed on this file, one behind the other. This con­
vention is known as "file extension" and is automatically in effect for output operations on standard system-assigned
files - or more precisely, through certain system-created Data Control Blocks (DCBs). (DCBs are described in the
BPM/BP, RT Reference Manual, Publication 90 09 54, and discussed further in the TEL chapter of the UTS/TS Refer­
ence Manual, Publication 90 09 07.) References to DCBs are gradually introduced further along in this manual,
and they are treated specifically in Chapter 10, "DCB Assignments".

File extension is an important feature to keep in mind when operating at the terminal, especially when it is not
desirable to stack any output during multiple-job-step operations. File extension is reset to the beginning of the file
upon any new specification, even if the specification refers to an already existent file. For example:

!LIST ON GRUNCH

! OUTPUT ON RUN FILE

!META SOURCE

!META ME

!META TESTY

Listing output directed to file GRUNCH.

Object-code output directed to file RUNFILE.

Read input-file and assemble (job step 1).

Assemble from terminal (job step 2).

Read input-file and assemble (job step 3).

This sequence of commands results in all output being stacked on their respective files, GRUNCH or RUNFILE.

The new listing-output specification and further job step

! LIST OVER GRUNCH

!META (job step 4)

has the effect of replacing the old contents of GRUNCH with the new assembly listing as the source input is entered
from the user's terminal. The object-code output would still be stacked at the end of file RUNFILE. This basic use
of file extension logic applies independent of the manner in which file specifications are made, i.e., through the SET
command or through commands implying a specification.

16 Files in UTS

To understand certain error comments you may encounter, you will need some knowledge of file organization. This
refers to the way the file's contents, i.e., its individual records, are ordered. Two possible organizations are

• Consecutive, where the records can be accessed in sequential order only.

• Keyed, where the records may be accessed directly (randomly) or sequentially.

Files built under the Edit subsystem, having a line number associated with each record (line), are an example of a
kind of keyed file. Most files you will use will probably be keyed, but you may see a system comment stating
" ... file not keyed .•. ". Certain UTS subsystems are not keyed-Fi le oriented, e.g., BASIC and PCL, though they
handle keyed files properly in most cases. Later we indicate what you can do in other cases.

EDIT SUBSYSTEM

The Edit subsystem is a general-purpose, line-number oriented text editor. It may be used to create or modify source
programs, data files, reports, etc. for other UTS subsystems, specifically for FORTRAN, Meta-Symbol, BASIC, and
the BATCH subsystem.

Edit provides file editing capability, i.e., the ability to build, delete, copy, or merge files; to edit within a line
of a file; and to do a complex editing operation on each line in a specified range of lines.

The examples in this section illustrate how the Edit subsystem is used to perform file editing, and to access a file and
perform record (line) editing functions such as displaying (TY), inserting (IN), and deleting (DE).

One example of intrarecord, or multiline editing is also given, as a basis for general use of the intrarecord-command
group. Edit commands not covered here are described in the Edit/Reference Manual, Publication 90 16 33.

In the command descriptions that follow, the word "line" refers to a line typed by the user; the word "record" refers
to a I ine that has a I ready been transmitted to the system and exists on some file. Thus, we can say " ... the Ii ne
numbered n replaces any identically numbered record ••. " (i.e., already on the file) without ambiguity. The ex­
amples are-intended to illustrate usage of the various commands and do not necessarily show the most appropriate way
of dealing with a particular kind of file content. More appropriate means may become apparent in later chapters,
especially in regard to manipulation of BASIC program text.

HOW EDIT WORKS

Edit is a line-number oriented editor in that it automatically associates a line-sequence number with each line of a
file built under Edit. All record and intrarecord editing is performed with reference to these sequence numbers.
That is, one or more sequence numbers must be specified for record and intrarecord editing commands and also in
certain usages of the file editing commands.

To edit a file that does not have sequence numbers associated with it (e.g., a file built under BASIC or under certain
batch-mode facilities), you can add the numbers by copying the file with "resequencing" (see Example Copy and
Resequence).

Edit prompts with an asterisk(*) character to indicate that it is ready to accept a command. For file-building or
line-insertion input, it prompts with a sequence number.

FILE EDITING COMMANDS

All file editing commands explicitly name one or more files. The Edit and TEL/Edit commands at the file-editing
level are:

• ! ED IT [fid)

Calls the Edit subsystem and optionally names a file to be edited, at TEL level (!).

• *EDIT fid

Names a file to be edited, at Edit subsystem level (*).

Edit Subsystem 17

• _!_BUILD fid (n]

Cal Is the Edit subsystem and names a file to be bui It, at TEL level (!).

• _:BUILD fid (n]

Names a file to be built, at Edit subsystem level {*). The optional number (n) specifies the sequence
number with which the file is to begin. If not specified, l is assumed by Edit.

Copies contents of fid 1 either ON a new file or OVER an existing file, fid2; and, optionally, resequences
{i.e., renumbers) fid2 starting with sequence-number n. COPY can also be used to produce a sequence­
numbered {keyed) version of an unkeyed file, in which case n must be specified.

• DELETE fid

Deletes the named file from the system.

Replaces records n3 through n4 of fid2 with the contents of (or record n1 through n2 of) fidi; the merged
records - from fid 1 - are renumbered in fid2 starting with sequence-number n3· Note: If fid2 does not
already exist, the specified records on fid1 are copied to the new file and numbered starting with n3 {i.e.,
a "selective copy" operation is performed).

• END

Terminates execution of Edit and returns control to the system (TEL) level.

RECORD EDITING COMMANDS

To use any of the record or intrarecord editing commands, the applicable file must first be specified with an EDIT-fid
command either at the TEL or the Edit subsystem level. None of the record and intrarecord-level commands them­
selves can specify a file.

A useful record-editing command is TY - Type Record{s), Including Sequence Number - which displays one, several,
or all of the records in a file:

where

n l is the sequence number of the first or only Ii ne to be typed.

n2 is the optional ending sequence number of a range of lines to be typed.

More record-editing commands are described following the next example.

Example 12. Using EDIT to Build and Display a Source File

In this example, the user builds a BASIC program file, copies it to another file, displays the copy, and
deletes the original file.

UTS AT YOUR SERVICE
ON AT 15:12 MAR 28, 1 71
LOGON PLEASE: 2232, HALL @l

18 Edit Subsystem

- page heading -

!BUILD PRIME @

The user wants to create a file called PRIME. Edit is called implicitly.

1.000 10 REM GENERATE PRIMES GR THAN 3 @

Edit prompts for input by printing 1. 000. The user types the first I ine, then types I in es 2-10 in response
to more prompts by Edit.

2.000 20 p"' 1@
3.000 30 P"'P +4,S+o @
4.000 40 FOR I "' 5 TO SQR (P) "' 1 STEP 2 @>
5.000 50 Q"'INT(P/I) @
6.000 60 IF Q*I"'P THEN 80 @>
7.000 70 PRINT P11 TAB (0)@
8.000 80 IF S"'l THEN 30 @)
9.000 90 S"'l, P"'P+2@

10.000 100 GOTO 40 @>
11.000 @

The user types a carriage return immediately fol lowing the prompt character to indicate end-of-fl le,
that is, that the last line of the file has been entered. (Control returns directly to TEL, rather than
to Edit, because BUILD was given at the TEL level.)

.!_EDIT @)

TEL prompts for another command. The user calls Edit again, explicitly this time, to use a command
not available at TEL level.

EDIT HERE
::,copy PRIME ON PRIMES @)

Edit acknowledges its presence, and prompts. The user decides to change the name of his program file
from PRIME to PRIMES, so he copies it to a new file named PRIMES •

• • COPYING
•• COPY DONE

::_EDIT PRIMES @)

He then indicates that he wants to edit (actually only display) file PRIMES.

::_TY 1-10 @)

He indicates that he wants the whole file, lines l through 10, typed. (A larger ending number,
e.g., TY 1-99, would do the same job.)

1.000 10 REM GENERATE PRIMES GR THAN 3
2.000 20 P"'l
3.000 30 P"'P+4 1S"'O
4.000 40 FOR I "' 5 TO SQR{P2 + 1 STEP 2
5.000 50 Q"'INT{P/12
6.000 60 IF Q*I"'P THEN 80
7.000 70 PRINT P' 1 TAB{02
8.000 80 IF S"'l THEN 30
9.000 90 S"'l 1 P"'P+2

10.000 100 GOTO 40
_:DELETE PRIME @)

Edit displays the copy, and prompts. The user sees that the copy is OK and decides to delete the
original file, PRIME, so as not to tie up RAD space unnecessarily.

Edit Subsystem 19

•• EDIT STOPPED
•• DELETED

.:':_END @)

He then indicates that he is finished with Edit .

.!_OFF@>

and logs off.

- accounting summary -

MORE RECORD EDITING COMMANDS

Two more commonly used record-level commands are IN (Insert Records) and DE (Delete Records). The IN command
is used to insert one or more lines between two records of a file or, alternatively, to replace one record of the file
with the first (or only) insert line. (The IN command can be used to replace only one record, though more records
may be inserted immediately following the replacement.) The IN command format is

IN n(,i]

where

n is the sequence number of the first or only line to be inserted.

is the optional increment value that Edit is to add to succeeding insertion-line sequence numbers.

Detailed rules for the use of IN are given fol lowing the next example.

The DE command deletes one or more (successive) records from the file. It has the format

DE n[-m]

where

n is the sequence-number of the first or only record to be deleted.

m is the optional end sequence number of a range of records to be deleted.

Example 13. Using EDIT to Modify a Source File

In this example, the user (after "desk-checking" his initial source program) sees that a logically required
BASIC statement (NEXT) is missing, and inserts it. He then realizes that this original program will produce
an endless listing of prime numbers, and prepares a different version, using MERGE to excerpt a portion of
the original program for modification, and then to recombine this portion, after modification, with a copy
of the original (thus, retaining the original version also).

UTS AT YOUR SERVICE
ON AT 15:28 MAR 28, '71
LOGON PLEASE: 2232,HALL @J

- page heading -

J_PLATEN 72, 10 @>

The user suppresses further page headings by giving a page length of less than 12. (This practice is not
recommended for normal production work, where the page headings delimit a uniform document size
and provide useful identification: name, date, time, page number.)

20 Edit Subsystem

lEDIT PRIMES@)

He then indicates he wants to edit PRIMES.

EDIT HERE
*TY 6-99 @)

He asks for display of lines 6 through end-of-program, i.e., line number 99 is in this case sufficiently
large to include the whole file. (Note that"6-99" is equivalent to"6.0-99.0" or"6.000-99.000", etc.)

6.000 60 IF Q*I=P THEN 80
7.000 70 PRINT P''TAB(O)
8.000 80 IF S=l THEN 30
9.000 90 S=l, P=P+2

10,000 100 GOTO 40
--EOF HIT AFTER 10.

This message means: "End-of-file was found following line 10".

*IN 6.5@)

The user asks to insert a line numbered 6.5, to add the missing statement.

~65 NEXT I@

Edit prompts for the insertion-line with the line number. It then prompts for another command with
an asterisk.

:!:TY 6-7@)

The user requests a display of lines 6 through 7, to see if the insert really worked.

6.000 60 IF Q*I=P THEN 80
6.500 65 NEXT I
7.000 70 PRINT P''TAB(O)

,::MERGE PRIMES , 6 . 1-10 INTO NEWEND , 7 @)

He then asks for a portion of PRIMES to be copied on a new, empty file, NEWEND, and for the lines
to be renumbered, starting with 7 •

• . EDIT STOPPED
•. MERGE STARTED
--DONE AT 11.
*EDIT NEWEND
~TY 1-11 (§

He requests a display to see if 7-11 was "excerpted" all right.

7.000 65 NEXT I
8.000 70 PRINT P''TAB(O)
9.000 80 IF S=l THEN 30

10.000 90 S=l, P=P+2
11.000 100 GOTO 40

,::IN 7 .5@)

He requests an insert numbered 7.5, enters the insertion as shown below, and then requests an insert
attheendofthefile, i.e., line 12.

Edit Subsystem 21

7.500 66 IF P > 1000 GOTO 110@)
*IN 12@)
- 12. 000 llO END@)

13.000 @)

Edit prompts for another insertion, line 13; the user replies with an immediate@), signifying "done".

*TY 6-12@)

He then requests display of lines 7-12 (no line lower than 7 should exist).

7.000 65 NEXT I
7.500 66 IF P > 1000 GOTO 110
8.000 70 PRINT P''TAB(O)
9.000 80 IF S=l THEN 30

10.000 90 S=l, P=P+2
11.000 100 GOTO 40
12. 000 llO END

~COPY PRIMES TO LOPRIM @)

He requests an extra copy of PRIMES on new file LO PRIM .

. • EDIT STOPPED
•. COPYING
•. COPY DONE
~MERGE NEWEND, 7-12 INTO LOPRIM,6.1-lO@l

He then asks for a replacement of the original program lines 6.1-10, with the modified program end­
ing from NEWEND .

• . MERGE STARTED
--DONE AT 12.1
~EDIT LOPRIM@
~TY 5-13 @>

He requests display of lines 5 through end-of-file on LOPRIM.

5.000 50 Q=INT(P/I)
6,000 60 IF Q*I=P THEN 80
6.100 65 NEXT I
7,100 66 IF P > 1000 GOTO 110
8.100 70 PRINT P''TAB(O)
9.100 80 IF S=l THEN 30

10.100 90 S=l, P=P+2
11.100 100 GOTO 40
12 .100 110 END

--EOF HIT AFTER 12.1
~DELETE NEWEND (§

Since NEWEND is now appended, he deletes the file for the sake of economy .

• • EDIT STOPPED
•• DELETED
*IN 1, .1 @)

He then decides to replace the original 'remarks' line (1.000), and specifies a small increment to
allow room for further insertion lines before line 2.

22 Edit Subsystem

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 REM (THIS PROGRAM IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES", WHICH HAS NO
1.300 REM UPPER LIMIT BUILT IN.)
1.400

*TY 1-15@)

He requests display of result.

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 REM (THIS PROGRAM IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES", WHICH HAS NO
1.300 REM UPPER LIMIT BUILT IN.)
2.000 20 P=l
3.000 30 P=P+4,S=O

10.100 90 S=l, P=P+2
11.100 100 GOTO 40
12 .100 110 END

--EOF HIT AFTER 12,l
*END@

l_OFF@

- accounting summary -

RULES FOR USE OF IN

The rules applicable to the IN command are summarized below. For ease of reference, the IN command format
is repeated:

IN n[,i]

l. If n matches a sequence number already in the file, the first (or only) insertion line replaces the identi­
cally numbered line in the file.

2. If n does not match a sequence number in the file, the first {or only) insertion linen is inserted immedi­
ately following the next lower-numbered line (or at the beginning of the file if a lower line number does
not exist).

3. If the insertion sequence number increment, i, is not specified, Edit assumes as a default value for i either
the increment specified in the most recent record-level command given during the current Edit session, or
the value l if no increment has been previously specified.

4. Following each record insertion, Edit prompts for further insertion lines with incremented sequence num­
bers, until either the incremented sequence number equals or exceeds a sequence number already existing
in the file, or the user responds with a carriage return only. (In the first case, Edit rings the console bell
and returns immediately to command-input mode, issuing an asterisk.)

RULES FOR USE OF MERGE

A more complete form of the MERGE command than initially presented is

MERGE fid 1 [,n1-n2]INTO fid2,n3 [-n4][,i]

The optional increment value, i, was not previously presented. It is used to control renumbering of merged records.
For example, by specifying a small fractional {decimal) increment it is possible to pack more records into the desti­
nation file than might otherwise be possible. The rules for MERGE are as follows:

l. The sequence numbers n3 - n4 specify the range of records to be deleted from the destination file (fid2) 1

whether or not a one-for-one replacement occurs. (If n4 is omitted only record n3 is deleted, i.e., n3 is
assumed as the value for n4.)

Edit Subsystem 23

2. Sequence numbers n1 -n2 specify the maximum range of lines to be transmitted from the source file (fid1);
default value of n1 -n2 isl through EOF. (The actual number of records moved is controlled by the next
sequence value above n4; see rule 4 below.)

3. Renumbering of the records from fid 1 in fid 2 proceeds from n3, incrementing either by i or the default
value, 1.

4. Records nl through n2 are moved into the interval n3 - n4 on fid 2, renumbered, until either the incre­
mented sequence number of a moved record equals or exceeds the sequence number of the successor of n4,
or the range of records n1 - n2 is exhausted.

5. Value n2 may equal n1; n4 may equal n3.

Note these characteristics of MERGE: (1) the number of fid1 records moved is largely independent of the number of
fid2 records deleted; (2) sequence number discontinuities may be introduced into fid2; and (3) by adjusting the in­
crement value, the set of deleted records may be replaced by a much larger set of records. Note also that though it
is a file-level command, MERGE has record-editing capabilities.

The rules for IN and MERGE can be used as a general guide to the operation of other record-level commands with
similar formats.

STRING SEARCH COMMANDS

The string-search type of command involves an automatic search by Edit for the occurrence of a certain string of
characters within specified columns of a range of records. The records are searched one at a time and, if a "hit" is
made on one or more of the records, the action specified by the command is performed (type or delete record). You
specify the range of records to be searched, the string to search for, and the record columns within which the search
is to be made ("all" by default). Edit does the rest. Note that the line number is not considered a part of the rec­
ord, and that column l is the character position following the line number and single space issued by Edit.

Two string-search commands are available at the record-editing level.

• Find and Type Records.

• Find and Delete Records.

The command formats are

and

where

n1 is the sequence number of the first or only record to be searched.

n2 is the sequence number of the last of a range of records to be searched (default value = n1).

string delimited by slashes (/ ... /), is any sequence of characters that may exist in the file.

c 1 is the number of the column at which the search is to start in each record (default value= 1).

c2 is the number of the column (inclusive) at which the search is to end in each record (default value = 140).

The specified string must be found entirely within the columns specified. The columns of a record (or line) are
numbered from l through 140, and though 72 is the upper limit for a Teletype® line, columns 73-140 may exist in
a record, as discussed below. (Other string-search commands are avai I able at the intrarecord-editing level, and
are generally more useful and efficient than those described above.)

24 Edit Subsystem

HOW TO ENTER MULTILINE RECORDS

On a terminal unit having an inherent line-width limit of less than 140 (e.g., Teletype® models 33, 35, and 37),
a single, multi line record may be entered into a file (using the BUILD or IN commands, for example} in either of
two ways:

l. Using the local-carriage-return key marked LOC CR, if present, to "break" the input line without releasing
it to the system.

2. Using the simulated local-carriage-return sequence !§@for the same purpose.

Either method permits entering a record of up to 139 characters plus@on virtually any terminal unit.

Example 14. Using String-Search Commands and Local-Carriage-Return

.!_EDIT@
EDIT HERE
::':_COPY LOPRIM TO SCRATCH@

The user copies his program to a new file in order to experiment with FG, FD, and IN.

~<EDIT SCRATCH@>
*FT 2-15,/P=/@)

He requests a search of records 2 through 15, al I columns, for the character string "P=", with the
record displayed on each hit.

2.000 20 P=l
3.000 30 P=P+4,S=O

10.100 90 S=l, P=P+2
--EOF HIT AFTER 12.1
::':_FT 1-13,/=P/@l

He then asks for a search on "=P" in Ii nes l through 13.

3.000 30 P=P+4,S=O
6 , 000 6 0 IF Q>~ I=P THEN 80

10.100 90 S=l, P=P+2
--EOF HIT AFTER 12.1
*FT 1-2, /PR/@l

He now changes the string to "PR", lines l and 2.

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.100 REM (THIS PROGRAM IS A LIMITED VERSION OF
1.200 REM MY PROGRAM "PRIMES", WHICH HAS NO

::':_FT 1-2,/REM/ ,4,60@)

He tries a "negative" test of the column-delimiting capabilities,

--NONE
*FD 1.1-2, /REM/@

then a find-and-delete of records 1. l through 2, inclusive, containing "REM".

--003 RECS DLTED
*TY 1-4@)

He requests display of results.

Edit Subsystem 25

1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
2.000 20 P=l
3.000 30 P=P+4,S=O
4.000 40 FOR I= 5 TO SQR(P)+l STEP 2.

*IN l.5@l
- 1.500 REM (THIS PROGRAM IS A LIMITED VERSION OFl@@l
PROGRAM "PRIMES", WHICH HAS NO SET UPPER LIMIT .•)@l

He tries to reenter former lines 1.1and1.2 as one record, with a local line-break (@@)).

*FT 1-3,/REM/ @l
1.000 REM GENERATE PRIMES OVER 3 AND UNDER 1000
1.500 REM (THIS PROGRAM IS A LIMITED VERSION OF PROGRAM "PRIMES", WHIC

H HAS NO SET UPPER LIMIT.)

Note, (1) that the user neglected to supply a blank (or space} following "of" prior to or after the
local carriage-return, and (2) that the system "folds" the record indiscriminately when the physical
line-width limit is reached .

.::_END@l

INTRARECORD COMMAND USAGE

As a group, intrarecord commands are characterized by not indicating the record(s) on which they are to operate;
the exceptions are the specific record-selection commands SE, SS, and ST, which supply this indication. Therefore,
one of the record-selection commands must precede any of the other intrarecord commands.

The SE (Select Intrarecord Mode} command simply selects a range of records, and optionally a field within each rec­
ord, for subsequent intrarecord "processing" commands to operate on. The selection remains in effect for any number
of subsequent commands unti I a new selection is made, or a record editing command is given.

After the SE is given, Edit prompts for further commands. You can then issue one processing command, or several
commands separated by semicolons (;) on the same input line.

If one command is issued per line, the processing specified by that command is performed against each record in the
range specified by the SE. However, if more than one command is issued per line the whole set of commands will be
processed successively against the first record, then against the second record, etc. (Obviously, if the range selected
is only one record, the result is the same in either case.}

The format of the SE command is

where the meanings and defaults of the record and column selection parameters are the same as for the FT and FD
string-searching commands.

Two very useful and similar processing commands are S (String Substitution} and D (Delete String}. The S command
format is

[j]/stri ng/S/string/

where

string1

stri ng2

is the string to be searched for.

is the string to be substituted in place of string1•

26 Edit Subsystem

is an integer that indicates that only the jth occurrence of string1 within the search field of each record
is to be replaced by string2 (default value= 1). If all occurrences of string1 are to be replaced, j must be
specified as zero.

The D command format is

[j]/string/D

where

string is the string to be deleted.

has the same meaning as in the S command.

Note that when substituting a longer string for a shorter string, the remainder of the line (if any) is moved right only
as far as needed to preserve a single-blank separator if at least one blank existed to the right of the original string.
That is, in certain cases multiple blanks to the right of the insert may be lost. (This is useful in preserving columnar
alignment.)

In this regard, you may include initial, embedded, or terminal blanks (i.e., spaces) in either string. Edit treats the
blank in general like any other printing character, the major exception being the suppression of multiple blanks in
certain cases of string substitution and deletion. (A Blank-Preservation-Mode command, BP, in intrarecord opera­
tions provides for cases where multiple blanks must not be lost, as in "quoted" character-string literals.)

A number of other very useful, more specialized intratrecord commands exist for record modifications, but most of
these are logical shortcuts to results that can usually be achieved with S and D commands only.

The two intrarecord display commands, TY(Type, Including Sequence Number)and TS(Type, Suppressing Sequence
Number) are analogous to their record-level counterparts, but do not specify record numbers (i.e., you enter TY or
TS only). With or without sequence numbers, the commands display the currently active record(s), as illustrated by
the following example.

Example 15. Using Intrarecord Commands

lEDIT SCRATCH @l

EDIT HERE

:::.Fr 1-2,/PROG/@l

The user enters the FT command to find and type lines containing PROG, within the range l through 2,
inclusive. (Only line 1.5 should satisfy the requirement.)

1,500 REM (THIS PROGRAM IS A LIMITED VERSION OFPROGRAM "PRIMES", WHIC

H HAS NO SET UPPER LIMIT.)

*SE 1.5@)

He then enters the intrarecord mode selection command, which is required to fix the error in the line
by string substitution.

:::./OFPRO/S/OF PRO/ @)

He substitutes OF PRO for OFPRO (first instance only: j = l by default).

:::.TY@l
1.500 REM (THIS PROGRAM IS A LIMITED VERSION OF PROGRAM "PRIMES", WHI

CH HAS NO SET UPPER LIMIT.)

:'.:_TS@)

To see if the line-break problem in line 1.5 would disappear if the line were displayed without its se­
quence number(as will happen under the BASIC subsystem), he uses the TS command.

Edit Subsystem 27

REM (THIS PROGRAM IS A LIMITED VERSION OF PROGRAM "PRIMES", WHICH HAS NO
SET UPPER LIMIT.)

~O/P/S/N/@)

This does in fact solve the problem. Now he wants to change all program variables named P to Ns.
(This will have no effect on the program, since we have no variables named N.)

1.500 REM (THIS NROGRAM IS A LIMITED VERSION OF NROGRAM "NRIMES", WHI
CH HAS NO SET UNNER LIMIT.)

He forgot to reset the range selection (SE).

*O/N/S/P/@)
*sE 2-13 @J
~O/P/S/N/@J

He reverses the N for P substitution in line 1.5, then sets proper range, and tries his original substi­
tution again;

--EOF HIT AFTER 12.1
~TY@J

and checks the result.

2.000 20 N=l
3.000 30 N=N+4,S=O
4.000 40 FOR I=5 TO SQR(N)+l STEN 2
5.000 50 Q=INT(N/I)
6.000 60 IF Q*I=N THEN 80
6.100 65 NEXT I
7.100 66 IF N > 1000 GOTO 110
8.100 70 NRINT N11 TAB(O)
9.100 80 IF S=l THEN 30

10.100 90 S=l, N=N+2
11.100 100 GOTO 40
12 .100 110 END

--EOF HIT AFTER 12.1

The substitution worked, except that it was not possible to delimit the search string narrowly enough;
STEP to STEN, and PRINT to NRINT, were changed as well.

~/STEN/S/STEP/;/NRI/S/PRI@J

This reverses the change.

--Cl:NO SUCH STRG
~SE 4;TY@J

(The meaning of this message is that the searched-for string was not found in
at least one of the records in the range of the search. As in this case, it
does not necessarily indicate an error condition.)

The user requests a display of line 4 and, below, of line 8.1.

28 Edit Subsystem

4.000 40 FOR I=S TO SQR(N)+l STEP2

2_SE 8.l;TY@

8.100 70 PRINT N' 'TAB(O)

2_DELETE SCRATCH@)

Since he did not actually need this file, he deletes it .

• • EDIT STOPPED

•• DELETED

::':_END@)

lOFF @J

- accounting summary -

TEL EDITING COMMANDS VS EDIT COMMANDS

The TEL command .!_EDIT fid implies the sequence

!EDIT

*EDIT fid

The TEL command !BUILD implies the sequence

!EDIT

*BUILD

*END
T

Both are, therefore, shortcuts provided for your convenience. However, note that the TEL EDIT command must
be given before the Edit COPY command can be used, as distinct from the TEL COPY command. The TEL COPY
command implies a cal I to the PCL subsystem; the COPY command under PCL is different from the Edit COPY
command in scope, intent, and format.

TEl/PCL COPY and other PCL commands are described in the next section.

PCL SUBSYSTEM

The peripheral Conversion Language, PCL, provides you with on-line facilities for initiating and controlling:

• Movement of files between peri phera I storage devices.

• Movement of files between peripheral storage devices and RAD storage (or other forms of secondary storage).

• Movement of files within RAD storage.

• Concatenation of files and selection of records from files during file movement.

• Data-record formatting and code conversion during file movement.

• Deletion of files.

• File building on any type of device or storage media from an on-line terminal.

PCL Subsystem 29

• Display of peripheral input-device files or RAD files on an on-line terminal.

• Listing of a RAD file directory or of file names on a labeled magnetic tape.

• Positioning (and releasing) of magnetic-tape volumes.

The peripheral storage devices referred to may be

1. Magnetic-tape drives: labeled or unlabeled tape.

2. Unit-record devices: card punch and line printer (card reader cannot be requested on-line).

As mentioned before, one common characteristic of peripheral devices is that they generally require operator inter­
vention, e.g., for the mounting and dismounting of physical file volumes. Therefore, an on-line user must be specially
authorized in order to be able to use these devices via PCL (or any other on-line means); otherwise he will simply
receive an error message on any attempt to do so.

Many of the facilities listed above are mainly of interest to the experienced on-line user doing the kinds of pro­
gramming that were heretofore necessarily restricted to central-site batch operations: commercial and large-scale
scientific applications involving large volumes of input and output data, system development, etc. Actually, the
complete set of PCL facilities, plus the TEL SET command and direct user-to-operator messages, provide control of
total system resources analogous to that obtainable only with "hands on", central-site batch operations under pre­
vious systems.

We will describe only the PCL functions, commonly used by all on-line users. These include keyed-file merging,
building of unkeyed files, concatenation of unkeyed files, terminal display of either type of file, listing of file
names, and file deletion.

PCL COMMANDS

The PCL COPY command may be given at TEL level, but PCL must be called explicitly (IPCL) for all other PCL
commands. PCL prompts for command input with the less-than (<) character, and for fil;input and responses to
questions with a period.

The PCL commands covered here are COPY, LIST, DELETE, and DELETEALL. COPY allows a vast array of options in
its variable field; it is the workhorse of the PCL language. Therefore, only a subset of the possible variations of the
command is described here.

The COPY command format is

COPY [d] (;fid 1 [,fid2, ..• , fidn]] [{g~R}[d][/fidmJ]
where

d is a device-identification code, which may include

DC - RAD file storage (default value ford).

ME - User's terminal.

LP - Line printer.

CP - Card punch.

LT [#reel no.

FT [#reel no.

#reel no.] - labeled magnetic tape (reel no. default is "scratch tape").

#reel no.] - free-form magnetic tape, i.e., unlabeled.

fid is a file identification, for DCorLT files only; normally only a file name. Each device codeorfid can be
followed immediately by one or more special options in parentheses: i.e., d(option)ord/fid(option). One
such option is NC, which we will show in use further on. If the default device code DC is not explicitly
specified, the slash(/) preceding fid 1 should be omitted; see the following example.

30 PCL Subsystem

The choice of ONorOVER is made as for the Edit COPYcommand(TO may be substituted for ON). The ON/OVER
clause is optional following a prior COPY specifying an ON/OVER destination file or device (during the same ses­
sion with PCL). If the ON/OVER clause is omitted under these circumstances, the last-named file will be extended
according to the file-extension convention. A subsequent ON/OVER clause or an exit from PCL terminates
file extension.

If multiple source files - e.g., FILA, FILB, FILC - are specified, the several file contents are either concatenated,
i.e., joined end to end, on the destination file in the case of unkeyed files, or merged on the basis of record-key
values in the case of keyed files. Both cases are illustrated in the following examples.

Even compared to just a partial version of the COPY command, the full LIST, DELETE, and DELETEALL commands
are simple:

or

LIST - lists all your RAD-file names (i.e., all names in your account directory).

LIST LT #reel no •.•• [#reel no.] - lists all labeled-tape file names on the specified reels.

DELETE fid 1 [,fid2, ... ,fidn] - deletes the named files.

DELETEALL - causes PCL to ask for a confirmation:

DELETEALL?

.:.. YES$ - then it deletes al I of your RAD files. ("YES$" is the only correct positive response.)

Example 16. Keyed-File Update and Display, Using PCL COPY

The user wants to produce another version of the PRIMES program that will allow him to set, via the terminal,
the range of the prime numbers produced during each run. He creates the modification files using Edit BUILD,
but uses PCL COPY to achieve the actual file updating.

!BUILD MODl, 1, .125

The user wants to build a file starting with sequence number land incrementing by only .125, instead
of the standard (default) increment of l. Note that we have added an i parameter (.125) to BUILD that
corresponds to that of MERGE and INsert.

1.000 10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS@)
1.125 11 PRINT'ENTER LOWER BOUND FOR PRIMES'@)
1.250 12 INPUT L@)
1.375 13 PRINT'ENTER UPPER BOUND FOR PRIMES'@)
1 • 500 14 INPUT U @)
1.625 @)

!BUILD MOD2, 7 .1, .5@)

He requests a second new file, starting with sequence number 7.1, but incrementing by .5 in this case.

7.100 67 IF P < L THEN 80@)
7 .600 68 IF P > U THEN 110@)
8.100 @)

lCOPY LOPRIM,MOD1,MOD2 TO VPRIM@)

He requests PCL to copy files LOPRIM, MODl, and MOD2, in succession to form new file VPRIM.
Note that these are keyed files, and as such are not simply linked together end-to-end on VPRIM.
MODl is merged with LOPRIM, records from MODl replacing any records from LOPRIM having
matching keys, and all nonmatching records falling into their natural sequence. The same process is
repeated between MOD2 and the results of LOPRIM,MODl - and so on if more files were specified.
(The source files themselves are not modified in any way.)

PCL Subsystem 31

lCOPY VPRIM TO ME (NC)@l

He displays the results directly, using the PCL COPY command. Note that ME is a device code, not
a name; VPRIM, not being a device code, is understood by default as DC/VPRIM. The NC option ef­
fectively prevents double-spacing of the terminal display by stripping the"redundant" carriage-control
characters that are included in any file built with the Edit subsystem.

10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS
11 PRINT 'ENTER LOWER BOUND FOR PRIMES'
12 INPUT L
13 PRINT 'ENTER UPPER BOUND FOR PRIMES'
14 INPUT U
20 P=l

65 NEXT I
67 IF P<L THEN 80
68 IF P>U THEN 110
70 PRINT P''TAB(O)

llO END

lEDIT VPRIM @l
EDIT HERE
*TY 1-13 @l

The user then di splays the same resu I ts using Edit.

1,000 10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS
1.125 11 PRINT 'ENTER LOWER BOUND FOR PRIMES'
1,250 12 INPUT L
1.375 13 PRINT 'ENTER UPPER BOUND FOR PRIMES'
1,500 14 INPUT U
2.000 20 P=l
3,000 30 P=P+4,S=O
4,000 40 FOR I=5 TO SQR(P)+l STEP 2
5,000 50 Q=INT(P/I)
6.000 60 IF Q*I=P THEN 80
6.100 65 NEXT I
7.100 67 IF P<L THEN 80
7.600 68 IF P>U THEN 110
8.100 79 PRINT P''TAB(O)
9,100 80 IF S=l THEN 30

10.100 90 S=l, P=P+2
11.100 100 GOTO 40
12 .100 llO END

--EOF HIT AFTER 12.1
::_END@)

The last example points to several differences between the Edit COPY and the PCL COPY: The Edit Copy can only
specify RAD filenames; the PCL COPY can specify or imply devices (e.g., ME, DC, LT) and filenames, either
singly or in combination as appropriate. Note that the specification DC/ME is possible and results in no ambiguity,
though in this case "DC/" must be specified. A second difference is that the PCL COPY TO ME, though it accepts
keyed files, does not display the keys as sequence numbers as does Edit TY; it is functionally the same as Edit TS in
this respect.

32 PC L Subsystem

The next example is designed simply to illustrate these differences as well as to further clarify the merging action
of PCL COPY on keyed files.

Example 17. Keyed-Fi le Update and Display (Further Examples)

l_BUILD FILA @J

1.000 LINE 1 IN FILA@)
2 .000 LINE 2 IN FILA(§}
3 .000 LINE 3 IN FILA @J

4 .000 LINE 4 IN FILA @J
5 .ooo @J

l_BUILD FILE, .5, ,5@J

Here the user requests a new file starting with sequence number .5 and incrementing by .5 also

0.500 LINE 1 IN B @J
1.000 LINE 2 IN B @J
1.500 LINE 3 IN B @J

2.000 LINE 4 IN B @J

2.500 LINE 5 IN B @J
3 .000 LINE 6 IN B @J

3.500 LINE 7 IN B @J

4 .ooo @J
l_BUILD FILC, 2, .75

and a new file starting at 2 and incrementing by .75.

2 .000 LINE
2. 750 LINE
3 .500 LINE
4.250 LINE
5.000 LINE

1
2
3
4
5

INC @J
INC@)
IN C @J
IN C@)
IN c@J

5. 7 50 LINE 6 IN C @)

6 .500 @)
l_COPY FILA, FILB, FILC TO DC/ME@J

He combines the three files on new (RAD) file ME.

l_COPY DC/ME (NC)@J

With PCL COPY he displays file ME on device ME, with the NC (no carriage-controls) option specified.

LINE 1 IN B
LINE 2 IN B
LINE 3 IN B
LINE 1 IN C
LINE 5 IN B
LINE 2 IN C
LINE 6 IN B
LINE 3 IN C
LINE 4 IN FILA
LINE 4 IN C
LINE 5 IN C
LINE 6 IN C

!EDIT ME @J
EDIT HERE

*TY .5-6 @J

Then he displays it with Edit.

PCL Subsystem 33

0,500 LINE 1 IN B
1.000 LINE 2 IN B
1.500 LINE 3 IN B
2.000 LINE 1 IN C
2.500 LINE 5 IN B
2.750 LINE 2 IN C
3.000 LINE 6 IN B
3.500 LINE 3 IN C
4.000 LINE 4 IN FILA
4.250 LINE 4 IN C
5,000 LINE 5 IN C
5.750 LINE 6 IN C

--EOF HIT AFTER 5.75
:'.:_END@)

Note that the merging action of the multiple-file PCL COPY eliminates duplicately keyed records on
file ME by successive replacement: record n from FILB replaces record n from FILA, and is in turn re­
placed by record n (if any) from FILC. Only record 4.000 survives from FILA, for example.

l_PCL@J
PCL HERE
.:::.LIST DC@)

Now he asks for a listing of current RAD-file names, to see which are deletable.

FILA
FILB
FILC
LOPRIM
ME
MOD!
MOD2
PRIMES
VPRIM

DELETE FILA,FILB,FILC,ME,MOD1,MOD2@>
6 FILES DELETED

.:::_END@>

Example 18. Building and Concatenating Unkeyed Files

In this example, the user creates two unkeyed files using PCL COPY; in most real instances of file concatena­
tion, however, the files are outputs of other processors, e.g., FORTRAN. The user copies the files in the
desired order to a single new file. A display of the resultant file shows the ordering of records produced by a
multiple unkeyed-file copy. This example also shows how to copy a file to the system line printer. (Note
that permission for such use of central-site peripherals requires explicit installation authorization; the system
carries a record of this authorization.)

l_PCL@)
PCL HERE

.:::.copy ME TO A@>

The user requests a copy of terminal input to file A.

34 PC L Subsystem

.!..lST LINE IN A @)
.!..2ND LINE IN A'@)

.!..3RD LINE IN A@)

.!..4TH LINE IN A@)
~ @F@)

He enters input to new file A from the terminal. PCL prompts for input of each data line. An Escape-F
sequence ends the data input, i.e., indicates end-of-file.

<COPY ME TO B @l
-:-1sT LINE IN B@)

~2ND LINE IN B@)

.!..3RD LINE IN B @)

.!..4TH LINE IN B@l

.!.. §F

He enters input to new file B from the terminal.

~COPY DC/A,B TO DC/C@)

He copies files A and Bin succession to form new file C, incidentally showing the syntax of explicit
device identification (optional) in the case of multiple-file specification.

~COPY C TO ME(NC)@)

He now copies the contents of file C to the terminal.

lST LINE IN A

2ND LINE IN A

3RD LINE IN A

4TH LINE IN A

lST LINE IN B
2ND LINE IN B
3RD LINE IN B

4TH LINE IN B

~COPY A TO LP@)

He then asks PCL to print file A on the system printer.

~DELETE A@)

1 FILES DELETED

~END@)
!

PCL Subsystem 35

5. USING LANGUAGE PROCESSORS

INTRODUCTION

The term "language processor" refers to a UTS subsystem that processes a specific programming language. Such
processing consists essentially of some form of translation of the source language to the internal language of the
computer, or machine language. (This machine-language translation is also commonly referred to as "object
code".)

The language processors available under UTS in on-line mode are BASIC, Extended FORTRAN IV, and Meta­
Symbol. Although these processors are also available for batch-mode operations, this guide is limited to a descrip­
tion of their on-line usage.

It is important at this point to distinguish between a programming language and the on-line command language
associated with it. You use statements (i.e., sentences) of the programming language to form a program, whereas
the commands are used to control what is done to or with that program. This chapter is intended to illustrate ele­
mentary uses of the command languages. (Succeeding chapters cover increasingly complex usages.) Therefore, to
understand the program content of any of the following examples, knowledge of the relevant programming languages
is necessary.

The following manuals contain descriptions of the languages processors:

Xerox BASIC/LN, OPS Reference Manual, Publication 90 15 46.

Xerox Extended FORTRAN IV/LN Reference Manual, Publication 90 90 56.

Xerox Extended FORTRAN IV/OPS Reference Manual, Publication 90 11 43

Xerox Symbol and Meta-Symbol/LN, OPS Reference Manual, Publication 90 09 52.

BASIC SUBSYSTEM

The UTS BASIC processor is a compiler for a significantly extended and enhanced XDS version of the standard
BASIC language (Beginner's All-Purpose Symbolic Instruction Code), a mathematical language designed specifically
for time-sharing uroge. - - - -

BASIC is particularly suited to small and medium scale computational applications. The outstanding advantage of
BASIC is that it is easy to learn and simple to use. It is an ideal "starter" language, even though it does offer
sophisticated problem-solving capabilities.

The BASIC subsystem is called with the TEL command BASIC. The subsystem then prompts for either BASIC program
statements or BASIC commands with a "greater than" (>)character; during program execution, it prompts for program­
requested terminal input (if any) with a question mark(?). When you have finished using BASIC, you exit back to
TEL by giving the SYS(tem) command.

Since BASIC includes a program-building and editing facility, a program file need not be built under EDIT (as is
the general case for FORTRAN and Meta-Symbol programs).

A useful XDS enhancement of BASIC is its capability for direct execution of individual statements. This allows you
to operate UTS BASIC in the "desk-calculator mode", without building a program; it also provides a powerful on-line
debugging feature. These topics are discussed in a later section of this chapter.

PROGRAM BUILDING, EDITING, ANO EXECUTION

Having called BASIC, you build a source program simply by entering BASIC program statements -each beginning
with the required one-five digit step number (see following example)-in response to the prompt character(>).
Typing error corrections can be made before the line is released with the Sor xc controls as usual. Program state­
ments entered in this fashion reside in an internal program-text area and constitute the current program.

36 Using Language Processors

.The complete set of statements that are to constitute a given program need not be entered consecutively (e.g.,
BASIC commands may intervene), or entered in a sequence corresponding to their step numbers. The step numbers
of the individual statements completely control the logical ordering of the statements within the program, providing
for automatic insertion, replacement, and deletion of single statements on the basis of relative step numbers, as
follows:

• Insertion - A statement entered with a step number falling in numerical sequence between the step numbers
of two previously entered statements is automatically inserted between those two statements.

• Replacement - A statement entered with a step number matching the step number of a previously entered
statement automatically replaces that previously entered statement.

• Deletion -A step number followed immediately by@, i.e., a "null statement", causes any previously
entered statement having a matching step number to be deleted.

{Explicit editing commands that can affect more than one statement are covered in a subsequent section.)

After entering a program in this manner, you can have it compiled, error-checked, and executed (if no detectable
errors exist) by issuing the RUN command. Syntax (i.e., language) errors, if any, wi II be reported by the subsys­
tem, and a prompt character(>) issued. You may at this point correct these errors, via statement insertion, re­
placement, or deletion as described above. Note that when terminal input is requested by your program during its
execution, a question mark (?) is issued as a prompt character.

Once a program has been tested and is known to be working correctly, you can request subsequent executions with
the command FAST instead of RUN. FAST bypasses the checking of indices for subscripted variables.

The following example illustrates these elementary operations. In the sample program, three intrinsic -or built in -
functions are used: DEG(x) - convert x from radians to degrees; ASN(x) - calculate arcsin of x, in radians; and
ABS(x) - use'absolute value of x. The first two, DEG and ASN, are specific UTS additions to the standard BASIC
language. Also used in this example is the >SET commanq (distinct from the TEL SET), which affects the maximum
size of strings assigned to character-string v;riables within the program. This type of variable is another signifi­
cant UTS BASIC extension. The SET command usage in the example is self-explanatory. (SET is also used to set
maximum array dimensions.)

Example 19. BASIC Program Building, Editing, and Execution

lBASIC

The user calls the BASIC subsystem, and begins to build a program, entering a BASIC statement in
response to each prompt character.

>10 REM SAMPLE PROGRAM@

~15 REM $A IN STM:r 20 IS A STRING VARIABLE @

~20 $A = "COMPUTE ARCSINE OF X, IN DEGREES" @
_::30 PRINT $A @

~40 FOR I -\= 1 TO 5 @

After typing the minus-sign (or dash) character by mistake - i.e., by forgetting to shift- he uses a(§,
echoed as\, to erase it and continues.

~so INPUT x@

~60 PRINT DEG (ASN(X)) " = ARCSIN OF "X @)

~70 NEXT I@)

~80 END@

~RUN@

He enters the final statement (step 80) and then requests compilation and execution with the RUN
command.

BASIC Subsystem 37

16 :13 NOV 09 RUNIDAA •••
COMPUTE ARCSINE OF
1_.5@)

He notes that the complete character string assigned to $A was not printed (the default maximum string
length being 18 characters), but he proceeds to test the program by entering a commonly-known sine
value, .5 (sine 30° = .5).

30.0000 = ARCSIN OF .500000

He gets a correct answer, then ha Its further execution with a@> response to an input prompt, which is
echoed by a "-". This returns him to editing/command level.

~SET $ = 40@)

With a SET $command he resets the maximum string length for a character variable to 40, from its
default value of 18.

~RUN@)
16:18 NOV 09 RUNIDAA •••
COMPUTE ARCSINE OF X, IN DEGREES
1_.001@)

5.72958E-02 = ARCSIN OF 1.00000E-03
1_.707@)

44.9913 = ARCSIN OF .707000
1.-0. 707 @)
-44.9913 = ARCSIN OF -.707000
1_3.246@)

He now tries a va I ue that is much too large.

60 ASN-ACS ARG ERROR

He gets a subsystem error message, and a return to editing/command level (where he will enter
additional program statements for detecting the out-of-range condition).

~55 IF ABS(X) > 1 THEN 90 @)
~90 PRINT X; "VALUE OUT OF RANGE" @)
~95 GOTO 70@)
~RUN @)

After inserting steps 55, 90, and 95, he tests again.

16:27 NOV 09 RUNIDAA,,,
COMPUTE ARCSINE OF X, IN DEGREES
1.1.5 @)

1,50000 VALUE OUT OF RANGE

He gets the desired result on the exception condition, and terminates execution.

PROGRAM SAVING, LOADING, AND RENAMING

Programs created under BASIC can be saved on either a temporary or permanent file with the SAVE command, and
can be subsequently reloaded for execution with the LOAD command. The command form SAVE ON filename (where
filename does not name an already-existing file) creates a temporary file named as specified, on which your current
program is copied. Being temporary, a file so created is released automatically at log-off, but can be retrieved by

38 BASIC Subsystem

name anytime before log-off. If, on the other hand, you use the command SA VE OVER filename, your current pro­
gram is copied on the named file. If the specified name is not that of an already existing file, a new permanent
file is created. If the SAVE OVER command specified an existing temporary file, e.g., one created by a SAVE ON
during the current session, the program will be copied on it but the file will remain a temporary one.

To retrieve a saved program, whether from a permanent or temporary file, you use the command LOAD filename.
In general, the LOAD command causes loading of the named program into the program-text area, but the results of
this loading will depend upon the state of this area at the time the command is given. If the program-text area
is empty, i.e., no current program has been entered or loaded during the current BASIC session, the saved pro­
gram simply becomes the current program.

If, however, the program-text area is not empty at the time of the LOAD, the result depends on the current
operating mode, or status. If the status is not "running", i.e., not execution mode, then the statements of the
saved program are "woven" into the current program, on the basis of step numbers. This "weaving" process is
analogous to a linked-file PCL COPY f1, f2 to f3 •

The result is not usually the one desired; it can be circumvented by using the command CLEAR, prior to the LOAD.
The CLEAR command clears the contents of the program-text area, i.e., the current program. This command may
be given at any time. If the subsystem is in execution mode, or "running", the program-text area is automatically
clear prior to loading. The operating mode can be ascertained at any time by use of the STATUS command. Use
it frequently to become familiar with mode transitions. (The responses to STATUS are EDITING, COMPILING, or
RUNNING.)

ADDITIONAL EDITING FACILITIES

Two BASIC editing commands that facilitate the display and deletion of current-program statements are LIST and
DELETE, respectively. These two commands have identical formats; LIST is shown:

where s. is a step number.
I

If one or more pairs of dash-separated step numbers (s1-s21 etc.) are specified, the corresponding range(s) of state­
ments are listed or deleted. If only s1 (,s3, etc.) is specified, only the corresponding individual statement(s)
is I isted or deleted. If no step number is specified in a LIST command, the entire current program is I isted.
Note: The command form DELETE @),is ignored; to delete the entire program you must use the CLEAR command.

Example 20. Program Modification, Saving, and Reloading

(This example takes up at the point at which we left Example 19.)

>10 8
.::_15 8

The user def etes the two REM statements (which are not necessary to the program's operation) and,
below, requests a display (LIST) of the current program.

_::LIST @l
20 $A = "COMPUTE ARCSIN OF X, IN DEGREES"

30 PRINT $A

40 FOR I = 1 TO 5
50 INPUT X

55 IF ABS(X) > 1 THEN 90
60 PRINT DEG(ASN(X)) ' ARCSIN OF 'X

70 NEXT I

80 END

90 PRINT X; "VALUE OUT OF RANGE"

95 GOTO 70

BASIC Subsystem 39

~25 REM NEXT STMT SHOWS STRING CONCATENATION (+) @
~30 PRINT $A + ", TESTING FOR OUT-OF-RANGE VALUES"@)
~40 FOR I =l TO 2 @)
~LIST 20-40 @)

He inserts step 25, replaces steps 30 and 40, and lists steps 20 through 40 to observe the results.

20 $A = "COMPUTE ARCSIN OF X, IN DEGREES"
25 REM NEXT STMT SHOWS STRING CONCATENATION (+)
30 PRINT $A + ", TESTING FOR OUT-OF-RANGE VALUES"
40 FOR I = 1 TO 2
~RUN@)
14:51 NOV 10 RUNIDAA .••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING
19~

He breaks off execution, noting that the maximum string-length limit, which he set previously to 40,
is sti II too sma II for concatenated string that he has now assigned to $A.

~SET $=72 @
~RUN @)
14:53 NOV 10 RUNIDAA •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
l_.253877 @
14:7071 = ARCSIN OF .253877
1-.00000009 @
-5.15662E-06 = ARCSIN OF -9.00000E-08

80 HALT

~45 PRINT "ENTER SINE VALUE, PLEASE" @)

He inserts a final modification, then saves the program on new permanent file ARCSINE.

~SAVE OVER ARCSINE @)
~CLEAR @)
~LOAD ARCSINE @)

After clearing the program-text area, he loads the saved copy back in, and tries it once more (note
the new current-program name when he executes it again).

~RUN@
15:04 NOV 10 ARCSINE •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER SINE VALUE, PLEASE
l_.001@

5.72958E-02 = ARCSIN OF l.OOOOOE-03
ENTER SINE VALUE, PLEASE
]_.002@)

.114592 = ARCSIN OF 2.00000E-03

80 HALT

40 BASIC Subsystem

TEMPORARY SAVING, RENAMING, AND RENUMBERING OF CURRENT PROGRAM

The FILE and NAME commands, used in conjunction with CLEAR and LOAD, provide a convenient short-cut means
of temporarily saving the current program, e.g., for "back-up" purposes prior to extensive modification, and of
renaming the current program for the execution-report heading. (You will have noticed a default program name,
i.e., RUNIDAA, in the previous examples - this default name varies from session to session.)

The command FI LE simply causes the current program to be copied onto a temporary file (known as the "runfi le" in
other XDS operating-system environments). This copy of the program can be explicitly named by using the command
NAME newname prior to the FILE command. If the NAME command is not used {or no name is specified) the default
program name applies. At any point after a program has been FILEd, a CLEAR and then a LOAD, with no filename,
reestablishes the filed copy as the current program. The copy will remain on file during the whole terminal session
until another program is FILEd over it.

When using FILE and LOAD (no name), it is important to remember that these commands always refer to the last
runfile referred to with a NAME command, if one or more have been issued. If not, the default runfile name is
"current". (The default runfile name can be reestablished with a null NAME command, i.e., simply NAME@).)
Multiple runfiles can exist concurrently, resulting from multiple pairs of NAME newname and FILE commands having
been issued; they can be selectively retrieved by a LOAD name command. Note: If NAME newname is used,
newname may not also be used as the name of a permanent file during the same terminal session.

The command sequence for changing the execution name of a current program would be:

>NAME newname
>FILE
>CLEAR
>LOAD

Note that in this instance the CLEAR command that precedes the LOAD is functionally unnecessary since the current
program and the filed program are identical, but it is included because of resultant savings in processing time and
space.

At any time you can cause your current program to be automatically renumbered by giving a RENUMBER (or REN)
command. Its format is

REN (UMBER] [s1 [,s2 [,i]]]

where

s1 is the initial new step number (default value= 100).

s2 is the old step number at which to begin renumbering {default value= l, i.e., "first statement").

is the increment by which successive new step numbers are to be increased (default value= 10).

(For example, REN alone is equivalent to RENUMBER 100, l, 10; REN, 10 equivalent to RENUMBER 100, 10, 10;
REN,, 5 to RENUMBER 100, l, 5.)

This command allows you to clean up, or regularize, the numbering of your program with full control over the
starting value, the point in the program at which to begin, and the step-value spacing. During the renumbering
process, proper replacements are made for a II step-number references, i.e., in GOTO statements, THEN clauses,
etc., within the program. If the renumbered program was loaded from a permanent file, simply resaving it over the
same file will make the renumbering "permanent".

BASIC Subsystem 41

Example 21. Temporary Filing, Reloading, and Renaming

(Continued from previous example.)

2FILE @

The user files the current program (ARCSINE) on a temporary "runfile", under the default "runfile"
name - whatever that is.

~CLEAR @

He then clears the current program, to play safe.

~LOAD VPRIM@
~RUN@

He loads and executes the program VPRIM, previously built under Edit. (If it were now to be resaved
over VPRIM, that file would no longer be keyed, as BASIC is not a keyed-file oriented subsystem -
BASIC step numbers are part of the file records, not record keys.)

18 :30 NOV 12 VPRIM •••
ENTER LOWER BOUND FOR PRIMES
1.100 @
ENTER UPPER BOUND FOR PRIMES
1.250 @

101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191

193 197 199 211 223 227 229 233 239 241
180 HALT

~STATUS@

Following a successful execution of VPRIM, he requests the current subsystem status.

RUNNING
~LOAD@

He now loads the default-named temporary file, without a preceding CLEAR, since clearing is
automatic in execution mode.

~RUN@
18:05 NOV 12 RUNIDAA •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER SINE VALUE, PLEASE
19~
~AME ARC@

He breaks off execution, names another temporary "runfile", and (below) files the current program on it.

~FILE@
~CLEAR@)
~LOAD@

Note here that LOAD with no name specified will refer to the last-named "runfile" (if any -otherwise
to the default-named "runfi le") •

.'.:_RUN@>
18:09 NOV 12 ARC •••
COMPUTE ARCSIN OF X, IN DEGREES, TESTING FOR OUT-OF-RANGE VALUES
ENTER SINE VALUE, PLEASE
1_.4 @>

42 BASIC Subsystem

23.5782 = ARCSIN OF X
ENTER SINE VALUE, PLEASE

1. 09~
~SYS @I

This command, SYS, causes an exit from BASIC and a return to TEL.

l_OFF @I

DIRECT STATEMENT EXECUTION ANO DESK-CALCULATOR MODE

Direct statements are BASIC statements entered without a step number either in editing or execution mode. They can
be executed eitherwith or without a current program -the latter being cal led "desk-calculator mode". In normal
execution mode, i.e., with a current program, direct statements are used for on-line debugging, or program verification.

Direct statements are recognized as such by the subsystem and are executed {if possible) immediately. The most com­
monly used forms of direct statements in editing or desk-calculator mode are PRINT statements containing an arithmetic
expression, and one or more LET statements followed by a PR! NT statement. For on-I ine debugging, GOTO, LET, and
PRINT are commonly used, singly or in combination, referring to variables and statements in the current program.

Most BASIC statements can be issued as direct statements; the few exceptions, e.g., FOR, NEXT, are statements
that cannot be expected to "execute" by themselves in any meaningful way.

A further enhancement of the direct-statement execution capability is the EXECUTE {or EXE) command, which is
provided specifically for convenience in on-line debugging and verification. The command format is

where s1 and s2 refer to step numbers in the current program.

In either editing or execution mode, a step number reference causes one statement or a range of statements of the
current program to be executed. Note that if a range is specified, the last statement in the range, s21 is not
executed. (You can achieve the same effect by combinations of direct statements, but the EXECUTE command is
significantly faster and more convenient.)

Example 22. Use of Direct Statements - "Desk-Calculator Mode"

l_BASIC @I
_::PRINT DEG(ASN(.5)) @I

The user calls BASIC and immediately enters a direct statement, i.e., one with no line number. Note
that {l) there is no current program, and (2) the user doesn't have to be in execution mode.

30.0000
_::PRINT DEG(ASN(l.l)) @)

Now he tries one that should result in an error comment.

ASN-ACS ARG ERROR
>LET X=SQR(2)/2 @I

Then he tries a sequence of two statements with a common variable.

_::PRINT DEG(ASN(X)) @I
45.0000

~SYS @I
!OFF @I

-accounting summary-

BASIC Subsystem 43

ABBREVIATIONS OF BASIC COMMAND VERBS

All of the BASIC command verbs may be shortened to the first three letters, i.e., CLE(ar), DEL(ete), LOA(d), etc.
In addition, you may use the following short forms of the SAVE command: SAY N for SAVE ON, and SAY VER for
SAVE OVER.

Another direct-statement execution example follows, illustrating EXECUTE command usage.

Example 23. Using the EXECUTE Command

lBASIC @)
~LOAD VPRIM @)
_::1 PRINT 'P='P;'I='I;'Q='Q;'s='s@)

The user inserts a statement that facilitates inspection of variable values as he executes selected
portions of it below •

.:_LIST@)
1 PRINT 'P='P;'I='I;'Q='Q;'S='S
10 REM GENERATE PRIME NUMBERS (>3) WITHIN USER-SET LIMITS
20 PRINT "ENTER LOWER BOUND FOR PRIMES"
30 INPUT L
40 PRINT "ENTER UPPER BOUND FOR PRIMES"
50 INPUT U
60 P=l
70 P=Pt-4 I S=O
80 FOR I=5 TO SQR(P)+l STEP 2
90 Q=INT (P/I)
100 IF Q*I=P THEN 150
110 NEXT I
120 IF P<L THEN 150
130 IF P>U THEN 180
140 PRINT P''TAB(O)
150 IF S=l THEN 70
160 S=l, P=Pt-2
170 GOTO 80
180 END
~@)
13:02 NOV 18 VPRIM •.•
P=O I=O Q=O S=O

ENTER LOWER BOUND FOR PRIMES
117@)
ENTER UPPER BOUND FOR PRIMES
117@)

17
180 HALT

.:.EXE 1 @)
P= 19 I= 5 Q= 3 S= 1
>EXE 70-120@)

120 -EXEC- HALT
.:.EXE 1 @)
P= 23 I= 5 Q= 4 S= 0
.:.LET U=50@)

Here the user enters a direct statement to change the upper-bound parameter.

>EXE 110-150 @)
23

150 -EXEC- HALT

44 BASIC Subsystem

~EXE 150-180 @)
29 31 37 41 43 47

180 -EXEC- HALT
~SYS @l

lOFF @>

-accounting summary-

FORTRAN IV SUBSYSTEM (FORT4)

The Extended FORTRAN IV processor is a mathematical-language compiler that processes an extended version of
the standard FORTRAN IV language. It is appropriate to the solution of medium-to-large scale computational
problems, and offers full file input/output capabilities. Uni ike BASIC - compile-and-execute processor - it
produces savable and reusable object programs, eliminating the need to recompile frequently used programs.

A related facility, the FORTRAN Debug Package (FDP), permits on-line debugging during program development and
checkout. Use of FDP is covered in Chapter 7, "Debugging User Programs". FORT4 accepts source-program input
either from a previously built source file or directly from the user's terminal, a line at a time. Normally, the
former method is employed, the file having been built under the Edit subsystem.

The line-at-a-time method has an advantage for novice FORTRAN users in that "conversational" syntax-error diag­
nostic comments are issued immediately following input of the line to which they refer, an effective learning device.
(When using this method, a source file can be preserved for subsequent modification and recompilation by means of
the special compilation option SO, and an appropriate !SET command, as shown in a subsequent example.)

The standard outputs of the compilation process are the compiled object program, called the relocatable object
module (ROM), and error comments. A listing of the source program may be (and generally is) requested, with the
LS compilation option, described below.

CONTROLLING THE COMPllATION PROCESS

FORT4 is called with the TEL command FORT4. The format of this command is:

I FORT 4 [source] roN rrom1 (,list]l
. ME LOVER I.! ci ~

where

source specifies a RAD file containing the source program.

ME indicates source input from the user's terminal (the default assumption for this field).

rom specifies the RAD file that is to receive the object program (the default temporary file name
is "$").

list specifies the destination of source-listing output: either a RAD file (fid), the terminal (ME), or
central-site line printer (LP) - no default assumption is made.

Note that the ON or OVER qualifier refers only to the rom file, but one of the two must be given if either rom ~
list is specified. For example: FORT4 ME ON ,LISTFIL.

This command, then, serves to call the subsystem, identify the input source, and direct the compiler outputs.

Note that you can direct the compiler outputs prior to giving the FORT4 command with the !OUTPUT, !LIST, and
!COMMENT commands (the latter allows a separation of source-listing and error-commentary destination). If the
OUTPUT command is used, the default value for the rom given above does not apply.

FORTRAN IV Subsystem (FORT4) 45

After the FORT4 command, the subsystem responds with the question OPTIONS>, at which point you may enter one or
more compilation options. These control the compilation process and are used primarily to request optional outputs or
suppress standard outputs. The options control I ing listing of outputs are:

LS - Produce source-program listing and full compilation summary.

LO - Produce source- and object-program listing, and ful I compilation summary.

PS - Produce partia I instead of fu 11 compilation summary {defau It option).

NS - Suppress compilation summary.

Note that if none of the above are specified, a partial summary only is produced, as if the PS option were specified.
The PS or NS option can be used in conjunction with LS or LO, or NS alone may be specified {no listing, no summary).
If you use the LS or LO option, a destination for this output must be assigned, as discussed above.

There are many other options, mostly having to do with the nature of the source input and the object output. These
are described in the UTS/TS Reference Manual, Publication 90 09 07, and the FORTRAN IV/OPS Reference Manual,
Pub I ication 90 11 43.

If you enter source lines directly from the terminal {i.e., FORT4 ME •••), you may want to use the SO option, which
requests that the source program be reproduced as an output; in this case you must assign this output {the M:SO DCB)
to a file with a !SET command {see Chapter 11, "DCB Assignments"). Several examples are given below.

Following a successful compilation, link-loading and execution of the resulting object program can be requested with
the !RUN command. This command, as well as the related !LINK and !START commands are described in Chapter 6,
"Loading and Executing Object Programs". Simple uses of ! RUN are shown in the following examples.

In the following example, the user employs Edit to create a file, INPUT, containing the source program. Note that the
source lines contain a tab character: for FORT 4, only one tab per line is accepted, and its value is fixed by the com­
piler as column 7 (regardless of specified setting). The example program computes the length of a three-dimensional
vector, D, for input values of X, Y, and Z. Execution-time input to the program is initially from file DATA; input
is terminated by a zero value for X. Output is initially directed to the terminal.

The user then decides to execute again with new X, Y, and Z values from the terminal. Accordingly, he changes
the DCB assignments for FORTRAN 1/0 units 5 and 6 so that data input is from the terminal and program output goes
to the RAD file VALUES. To examine this output, he issues a !COPY command to copy this file to the terminal.

Example 24. Compiling and Executing FORTRAN Input from a File

lTABS7 @)

The user sets a tab value of 7, so that he can see the tab effect as he builds the file.

l.BUILD INPUT @)
1,000 @>
2 .ooo 10 @>
3 .ooo @>
4.000 20 @>
5.000 @>
6.000 @>
7 .ooo 50 @>
8 .ooo 100 @>
9 .ooo 200 @>

10.000 300 @>
11.000 @>
12.000 @)

WRITE (6,100) @)
READ (5,200) X,Y,Z @)
IF (X) 20,50,20@)
D = SQRT(X**2+Y**2+Z**2) @)
WRITE (6,300)X,Y,Z,D@)
GO TO 10 @)
STOP@)
FORMAT (7X,lHX,llX,lHY,llX,lHZ,llX,lHD) @)
FORMAT (3E) @)
FORMAT (4(1X,Ell,3))@)
END @)

He builds a file of source input, named INPUT.

46 FORTRAN IV Subsystem (FORT4)

! BUILD DATA@)
- 1.000 1.0,2.0,3.0 i§

2. 000 1. 0' 1. 0' 1. 0 @)
3.000 o.o <§
4.000 @

He bui Ids a program-data file.

J_ COMMENT ON ME @

and requests error commentary at the terminal.

!FORT4 INPUT ON BIN @

He asks for a compilation of INPUT, with ROM output on BIN.

OPTIONS> @

and accepts the default option, partial summary.

1: WRITE (6,100)
11: END

HIGHEST ERROR SEVERITY: 0 (NO ERRORS)

DEC HEX
WORDS WORDS

GENERATED CODE: 56 00038
CONSTANTS: 0 00000

LOCAL VARIABLES: 4 00004
TEMPS: 2 00002

TOTAL PROGRAM: 62 0003E

The partial summary prints at the terminal.

J_SET F:S /DATA;IN.@

The user assigns the file DAT A to the F :5 DCB, and defines it as an input file. (This is a "file
assignment".)

!SET F:6 UC @)

He assigns the user's terminal to the F:6 DCB, via the operational label UC. (This is a "device
assignment".)

l_RUN @)

He requests a run, i.e., I ink-load and execution, of the program. Since the RUN command assumes
as its input the results of the latest compilation or assembly if no input file is specified, he does not
need to specify BIN.

LINKING $
Pl ASSOCIATED

The loader's messages print.

FORTRAN IV Subsystem (FORT4) 47

x y z D

.lOOE 01 .200E 01 .300E 01 .374E 01

.lOOE 0 .lOOE 01 .lOOE 01 .173E 01
STOP 0

Then the program's output appears, and a normal program-halt is indicated,

lSET F:5 UC(§

The user resets the input unit to the terminal

lSET F:6 /OUTPUT;OUT @!

and the output unit to a file, named OUTPUT.

lRUN BIN@!

He reruns, this time specifying the ROM name (not actually required in this case, as explained above).

LINKING BIN
Pl ASSOCIATED
1.4.4,5.5,6 .6 @!
10.0 @!

The program-input-request prompt is given, and the user enters a set of values and a zero value to
indicate end of data.

STOP 0

A normal program halt is indicated.

lCOPY OUTPUT TO ME @J

The user requests a copy of the output file to the terminal.

x y z D

.440E 01 .550E 01 .660E 01 .965E 01

The next example shows a very simple program entered directly from the terminal. The user requests the source pro­
gram to be reproduced (SO), and uses a ! SET command to assign a source-output file, SOURCE. He also uses the
!SET command to assign FORTRAN unit 6, the program output, to the terminal.

Example 25. Submitting Terminal Input for FORTRAN Compilation

!SET M:SO /SOURCE @l

The user sets the DCB for source output produced by the compiler, M:SO, to the file SOURCE, Here,
since he does not specify a file function (e.g., IN, OUT), OUT is assumed by default.

lFORT4 ME @!

He asks for a compilation of direct terminal input.

OPTIONS> NS,SO {§)

He suppresses the partial summary (NS), and requests source output (SO).

48 FORTRAN IV Subsystem (FORT4)

~C THIS EXAMPLE ILLUSTRATES HOW SOURCE LINES ARE ENTERED @

::::_C DIRECTLY FROM THE TERMINAL, AND HOW A LINE IS CONTINUED. @

~@) WRITE (6, 100) @

~100 @l FORMAT (lX,: @

~ C25HTHIS IS A CONTINUED LINE,) @

~@) END@

FORTRAN prompts for source input with>. Note that the C in the fifth line is in column 6, the rest
following a tab starting in column 7. (The user assumes that the tab setting of 7 from the previous
example is still in effect.)

lSET F:6 uc@

He sets the output unit to the terminal (operational label UC),

lRUN@

and requests a run.

LINKING $
Pl ASSOCIATED

THIS IS A CONTINUED LINE.

STOP 0

!COPY SOURCE TO ME @)

He displays the reproduced source file.

C THIS EXAMPLE ILLUSTRATES HOW SOURCE LINES ARE ENTERED

C DIRECTLY FROM THE TERMINAL, AND HOW A LINE IS CONTINUED.

WRITE (6,100)

100 FORMAT (lX,

C25HTHIS IS A CONTINUED LINE.)

END

Note that the "to be continued" marker (:) in the fourth line has been stripped off by the subsystem.

lOFF@

-accounting summary-

META-SYMBOL SUBSYSTEM [META)

Meta-Symbol is a macro-assembler that processes an assembly language, Symbol, (which is a symbolic representation
of the machine language) and macro-procedure language, Meta-Symbol (which is a powerful logical extension of
the assembly language). Assembly language is the "lowest level" language normally used for programming.

The advantage of Meta-Symbol programming is the maximum speed and efficiency that is possible in the resultant
object programs. Its disadvantage is that it is more time-consuming to learn and to use than "higher-level" languages
such as FORTRAN.

Also available is an extensive and sophisticated debugging subsystem, Delta, designed specifically- though not ex­
clusively- for degubbing Meta-Symbol object programs. Its use is covered in Chapter 7 and in Example 43.

The META subsystem is called by the TEL command MET A. There are many examples throughout the following chap­
ters that illustrate the use of META:

Example 34 shows an assembly and execution.

Example 39 shows use of OUTPUT, LIST, and COMMENT commands.

Example 40 shows use of SET commands before calling META.

Example 41 shows discontinuation and resumption of output while assembling with META.

Meta-Symbol Subsystem (MET A) 49

These examples all illustrate the use of META to assemble from a source file. META can also be used to assemble
source lines directly from the terminal, as shown in the following example. Unlike the FORT4 subsystem however,
diagnostics are not produced until after the END statement is received. ("Diagnostic" is a general term for the
warning and error commentaries resulting from the error checking performed by the assembler.)

The format of the META command is

where

source specifies a RAD file containing the source program.

ME indicates source input from the terminal (the default assumption for this field}.

rom specifies the RAD file that is to receive the object program (the default temporary-file name is "$").

list specifies the destination of the source-program listing: either a RAD file (fid), the terminal (ME), or
the line printer (LP)- ME is assumed by default but no listing output is produced (unless !LIST is issued
during a subsequent interruption of the assembly).

Note that the ON or OVER qualifier refers only to the rom file, but one of the two must be given if either rom or
list is specified.

The effect of the META command variable field is to assign the M:SI (source input) DCB, the M:GO ("go", or object
output) DCB, and the M:LO (listing output) DCB to the source, rom, and list specifications, or tb their defaults.
Note also that if these DCBs have been assigned previously in the session, either by an !OUTPUT, !LIST, !FORT4,
or prior META command, the corresponding default values given above do not apply. (The effect of the !COMMENT
command is to explicitly assign the M:DO (diagnostic output) DCB; i.e., to specify a destination for diagnostics
separate from the source listing, if any.)

After the META command is given, the subsystem asks for assembly options: WITH>. A description of these options
for on-line usage can be found in the UTS/TS Reference Manual, Publication 90 09 07, Chapter 4. The only options
we need mention here are SO (source output), which functions exactly as in a FORTRAN compilation - shown in the
previous section - and SD (symbolic-debugging), which is covered in Chapter 7. Note that source-listing output is
implicitly requested or suppressed by the list parameter in the META command, unless a LIST command is given be­
fore the MET A command.

Note also that the format of the assembler source listing is not very suitable for display at the terminal, and is best
directed to the line printer (LP), or omitted, Comments go to the terminal (by default) in either case.

Example 26. Using META to Assemble Terminal Input

lMETA ME @)

The user asks for an assembly of terminal input, with no source listing.

He doesn't request any assembly options and, below, begins to type in the source lines following
META's prompt character(>). (A tab setting and tab characters could be used to achieve the desired
starting columns as shown in later examples.)

.'.:*THIS EXAMPLE ILLUSTRATES DIRECT INPUT FROM TERMINAL. @)
~*IT ALSO SHOWS HOW TO CONTINUE A LINE. @)

SYSTEM BPM @)
SYSTEM SIG7 @)
REF M:UC@
M:WRITE M:UC,(BUF,M;

50 Meta-Symbol Subsystem (MET A)

(CONTINUED LINE) @)

~ ES),(SIZE,26) (CONTINUATION) @)
~ M:EXIT @)
~MES TEXT "EXAMPLE OF CONT",; @)
~ "INUED LINE." @)
~ END START@)

* ERROR SEVERITY LEVEL: 0
* NO ERROR LINES

lRUN (NP)

Here the library-search option NP is used to suppress association of the default public library, Pl, by
the loader, as it is only required for FORTRAN programs.

LINKING $
EXAMPLE OF CONTINUED LINE.

The program executes, printing its output, and control returns to TEL.

lOFF

Meta-Symbol Subsystem (MET A) 51

6. LOADING AND EXECUTION OBJECT PROGRAMS

LINK SUBSYSTEM

The LINK subsystem consists of a one-pass I ink-editor/loader, or I inking loader. The essential functions of the
linking loader are to combine a number of separate program elements into a single executable entity called a load
module (LM), and to load it for execution. You can request these two functions together with the RUN command,
or separately with the LINK and (e.g.) START commands, respectively. In its linking operation, LINK merges
internal symbol tables of several relocatable object modules (ROMs) presented to it and searches one or more sub­
routine libraries to satisfy external references, where required. It makes full use of the UTS Sigma 7 hardware
memory-mapping, allocating virtual data space as needed for association of a public core library such as the
FORTRAN PO or Pl libraries.

The linking loader must be used both to link-edit and load one ROM, i.e., the output of one compilation or as­
sembly, along with any necessary system-supplied service procedures and I ibrary subroutines, or to I ink two or more
ROMs from separate compilations or assemblies, with their combined system-related references, into one load
module.

RUN COMMAND

The TEL command RUN requests linking, loading, and executing of one or more ROMs. Forms of the RUN command
are as fol lows:

l. RUN (or RUN $)

These forms simply request that the ROM created by the last compilation or assembly be linked, loaded,
and executed. The two forms shown are synonymous. (Input is taken from the file last assigned to the
M:GO DCB; LM output is placed on a special temporary file.)

2. RUN rom

The ROM stored on the RAD file specified by rom is to be I inked, loaded, and executed. (LM output is
placed on a special temporary file.)

ROM input maybe specified as in 2, above, but the LM output mayalso be directed to the file named lmn.

In each case, the LM output is available for a subsequent reexecution via the START command. In al I three cases,
the public core library Pl is implicitly associated with the object program to satisfy any external references, if
possible.

The general formats of the RUN and LINK commands are identical; thus the more complicated form shown for LINK
in the next section is equally applicable to RUN, and vice versa.

Example 27. Using the RUN Command

.l.EDIT @)

The user cal Is Edit.

EDIT HERE

.l.TA M@)

He uses the Edit Tabs command (TA) and specifies the Meta-Symbol (M) tab setting (10, 19,
and 37). (Other sets are available; see Edit manual.) He then builds a source file, INPUT.

52 Loading and Executing Object Programs

::_BUILD INPUT

1.000 9
2.000 9
3.000 9
4.000 BEGIN @>
s.ooo 9
6 .000 MESS @>
7 ,000 o@>
8,000 9
9.000 9

10 .ooo @>
!:END@)

SYSTEM@>

SYSTEM@>

REF@>
M:WRITE @>
M:EXIT @>
TEXT@>

'PRINT AT

DATA@>

END@>

_LMETA INPUT ON BIN @>

SIG7 @>
BPM@)

M:UC @>
M:UC, (BUF,MESS), (SIZE,43) @>

1 THIS MESSAGE SHOULD 1 , ; @>
THE TERMINAL. 1 @>

X 1 15000000 1 @> NEW LINE CHARACTER @>
BEGIN @>

META is called to assemble source file INPUT with ROM output going to file BIN and no assembly
I isting produced.

No assembly options are desired.

_LRUN @>

A run is requested from the last compilation/assembly output, i.e., BIN in this case.

LINKING $

The system acknowledges the LINK function (the LINK subsystem is imp I icitly cal led).

DEFAULT CORE LIBRARY IS NOT NEEDED

See Example 28 for meaning of this message.

THIS MESSAGE SHOULD PRINT AT THE TERMINAL

The program's output is printed.

_LOFF @>

The user logs off. The temporary file containing the load-module output of RUN is now lost. (The
ROM file BIN is permanent, however.)

LINK COMMAND

The LINK command requests link-editing, as does RUN, but does not cause loading and execution of the resulting
load module. A more complex variable-field format than those shown in the previous section for RUN is given here:

where

rom. specifies a RAD file containing a ROM.
I

lmn specifies a RAD file for the LM output.

lid. specifies a RAD file containing a user's subroutine-library.
I

In the format above, the several ROMs specified will be linked into one LM, with user's libraries lid] through lidn
searched (prior to any public or system libraries) to satisfy external references, and the result placed ON or OVER
lmn if specified.

LINK Subsystem 53

In addition to the above, a parenthesized library-search code may be given. It is conventionally placed after the
command verb, as in LINK (code) ...• These codes request or suppress searching of system-supplied libraries, and
are listed in Appendix D. Also, internal symbol tables for several ROMs may be merged or selectively deleted in
the load module (see the UTS/TS Reference Manual, Publication 90 09 07, for these formats).

Example 28. Using the LINK Command

!LINK BIN ON LOAD i§

A I ink-edit of the ROM on file BIN is requested, with the resultant LM placed on LOAD.

LINKING BIN

The system responds to the LINK command.

DEFAULT CORE LIBRARY IS NOT NEEDED

!OFF i§

The absence of a I ibrary search code (see Appendix D) in the LINK command causes this message if
the default library (Pl) is not required. The specification of search code NP will suppress associa­
tion of Pl and also suppress this message.

Since the user does not want to execute the program at this time, he logs off. Files BIN and LOAD
are permanent and can be accessed in subsequent sessions.

- accounting summary -

START COMMAND

The !ST ART command can be used to load and execute a load module produced by a prior LINK command, or to
reexecute an LM already RUN (or STARTed). Three forms are applicable:

1. START

This form causes the last LM produced, either via a LINK or RUN, to be loaded and executed. Note that
the prior LINK or RUN must have been given during the current terminal session; the load-module file may
have been explicitly named (lmn), or named by default($).

2. START$

This form causes the last LM produced on the temporary file $ to be loaded and executed; the load-module
file must have been named by default ($).

3. START lmn

This form causes the load module contained on the specified file to be loaded and executed. The LM may
have been the result of either a LINK or RUN operation.

See Chapter 8, User Programs, for an alternate way of loading and executing user-developed object
programs:

Example 29. Using the START Command

lSTART LOAD i§

The load module LOAD created in Example 28 is loaded into core and execution begun.

54 LINK Subsystem

THIS MESSAGE SHOULD PRINT AT THE TERMINAL

The program's output is printed.

lOFF (§

- accounting summary -

LINK Subsystem 55

7. DEBUGGING USER PROGRAMS

Two dynamic debugging facilities are available for on-line use under UTS:

• Delta Subsystem for debugging Meta-Symbol programs.

• FORTRAN Debug Package (FDP) for debugging Extended FORTRAN IV programs.

"Debugging" is a general term for program-error detection and correction; dynamic debugging implies that the de­
bugging process is carried out during the execution of an assembled or compiled program (as opposed to "desk
checking"). Both Delta and FDP allow symbolic, i.e., source-program level references to elements of the object
program.

ASSEMBLY LANGUAGE DEBUGGING (DELTA)

The Delta subsystem provides conversational debugging capability for checkout and modification of Meta-Symbol
programs at execution time. Delta allows full use of symbolic references to elements of the object program, and
enables you to

• Control program execution, i.e., stop and restart it at any point, by means of breakpoints that you may
insert in the program at your discretion. These breakpoints may be unconditional ("always stop"), condi­
tional ("stop under certain circumstances"), or based on changes in data values.

• Examine, modify, and insert various program elements: instructions, constants, variable values, and en­
coded data of all types and formats. This can be done both prior to execution and during any halt in
execution (e.g., due to a breakpoint).

• Trace continuo1.!s program execution by requesting a repeated display of specified sets of related informa­
tion: register contents, switches, data values, etc., at specified points in the program.

• Search programs and data for specific elements and values.

Please refer to the Delta (for UTS)/Reference Manual, Publication 90 16 34, for a comprehensive description and
explanation of the commands available under Delta.

EXECUTING IN DEBUG MODE

To initiate execution of a program in debug mode, you must append the clause UNDER DELTA to your RUN or
START command. Also, you must specify the SD (symbolic debugging) assembly option in response to WITH> to
preserve the internal symbol table(s) of your program, if you want to refer to internal symbols with Delta commands -
the normal case. (Internal symbols are those whose point of definition and points of use are entirely within one
ROM.)

Note that the global (or external) symbols of your program are always available for reference (see the following
section).

When UNDER DELTA has been specified, the Delta subsystem intervenes between program loading and initial exe­
cution. At this point you can issue debugging commands to examine or modify locations, insert breakpoints, start
execution at specified point, etc. Delta also assumes control at any halt in execution.

The following example illustrates the usual method of using Delta in the debug mode of execution. A simple pro­
gram is assembled with the SD option, run UNDER DELTA, and patched to create a missing M:EXIT statement. Note
that before you refer to internal symbols you must tell Delta the name(s) of the desired symbol table(s) by ROM-file
name (even though only one ROM may have been assembled).

To leave Delta and return to TEL at the end of execution, you issue a Ye control combination.

56 Debugging User Programs

Example 30. Assembling and Loading in the Debug Mode.

J.META ME ON BFILE @)

fil.'.!'.&. SD @)

The user calls META to assemble statements from the terminal. He uses the SD option to cause an
internal symbol table to be produced.

~ SYSTEM SIG7 @)

.:!. SYSTEM BPM@)

~ REF M:UC@)
.:!.BEGIN M:WRITE M:UC,(BUF,MES),(SIZE,9)

.:!.MES TEXT "GREETINGS" @)

~ END BEGIN@)

* ERROR SEVERITY LEVEL: 0

* NO ERROR LINES

Although there are no assembly errors, the user notes that he forgot to include an M:EXIT in the
program, and decides to make this correction with patches.

J.RUN BFILE UNDER DELTA (NP) @)

LINKING BFILE

He links and loads UNDER DELTA, suppressing loading of the default library with the code NP.

DELTA HERE

"ring"

Delta identifies itself and prompts with a ring of the console bel I.

BFILE;S @)

The user selects the internal symbol table associated with ROM BFILE.

BEGIN/ CALl,l MES+,3@)

This command opens the eel I at location BEGIN and displays its contents.

BEGIN(X/ .410C004 @>

A command is now entered to cause the contents of BEGIN to be displayed in hexadecimal format.
The user terminates the command with the tab-key sequence, CONTROL and I, which causes the cell
addressed by this command (location C004) to be opened and displayed.

MES+.3/ .11009000 (0
MES+,4/ ,30000000 (0
MES+.s/ .coo1 <0
"""ME~S+_.._. 6 / _ _. • ..-..9 @)

The contents of the function parameter table (FPT) referenced by the M:WRITE (at location BEGIN) is
displayed. Note that location C004 is shown symbolically as MES+.3. A line feed causes the next
eel I to be opened and displayed. A carriage return terminates the sequence. Note that the hexa­
decimal conversion format is maintained over the @>and 0.

BEGIN\ B MES+20, @)

The user issues a command to open the eel I at BEGIN and enters a branch to location MES+20, a
patch area he has chosen that is wel I beyond the main program and the FPT displayed above.

Assembly Language Debugging (Delta) 57

MES+20\ CALl' 1 MES+3 G

He enters symbolic code for the M: WRITE instruction {as originally contained in BEGIN, displayed
above). The line feed causes the next cell to be opened for modification.

MES+.lS/ .O CALl,9 1 @)

The next location prints with a hexadecimal displacement. He then enters symbolic code
corresponding to an M:EXIT. He has now entered all his patches.

BEGIN;G @)

He initiates execution.

GREETINGS

ABORT CODE = 0 SUBCODE = 0

The output message prints, and Delta reports execution of the M: EXIT.

The user interrupts with Yc and then logs off.

!OFF

The system informs him that Delta was terminated.

- accounting summary -

USING DELTA IN NONDEBUG MODE

Delta may also be called for use when you have not initially executed in debug mode, i.e., you did not specify
UNDER DELTA in your RUN or START command. The next example illustrates this type of usage.

Note that only the global symbol table is available, and that the user's first Delta command must be ;S to cause
this symbol table - associated with the load module as a whole - to be loaded. Otherwise, no symbols wil I be
available for reference. {If rom;S is specified, as was possible in the preceding example, the global table is loaded
implicitly.)

Example 31. Calling Delta after Assembling and Executing in Nondebug Mode

The user wants to assemble lines from the terminal and to default all options.

lMETA ME@)

~@)
.?.. SYSTEM SIG7 @)

.?.. SYSTEM BPM@)

.?.. DEF START @)

.?.. REF M:UC@)

.?.START LI,3 SS@)

.?.. M:STIMER (SEC,S) ,XY@)

,?.AB LI,4 0 @)

.?.. STW,4 X@)

58 Assembly Language Debugging (Delta)

2 LW,4 X@

.2:. CI,4 0 @

.2:. BE $-2 @

.2:. M:STIMER (SEC,5),XY@

.2:. M:WRITE M:UC,(BUF,MES),(SIZE,14)@

2 BDR,3 AB(§

.2:. M:EXIT@
>XY LI,4 1@

.2:. STW,4 X@

.2:. M:TRTN@)

.2:.X RES 1@

~MES TEXT "5-SEC INTERVAL" @

.2:. END START @)

* ERROR SEVERITY LEVEL: 0
1, NO ERROR LINES

_!_RUN (NP) @)

LINKING $

He initiates loading and execution of the program.

5-SEC INTERVAL

5-SEC INTERVAL

5-SEC INTERVAL

5-SEC INTERVAL

5-SEC INTERVAL

5-SEC INTERVAL

5-SEC INTERVAL

The program output begins to print.

The user notes that the program is looping more than was intended, and notices that an error was
made in the first statement (he typed 55 instead of 5), and decides to interrupt with ye and cal I
Del ta to enter a patch.

_!_DELTA @)

Control goes to TEL. The user calls the Delta subsystem.

DELTA HERE

"ring"

;S <§

Delta identifies itself and prompts with a bell.

The user loads the global symbol table. The only symbol that can be referred to is START which is
the only DEF in the program.

START(X/ .22300037 .22300005 @)

He enters a Delta command to display the contents of ST ART in hexadecimal format, and changes
this value to the hexadecimal equivalent of LI, 3 5.

START;G @)

He directs execution to the beginning of the program (location ST ART).

Assembly Language Debugging (Delta) 59

5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL
5-SEC INTERVAL

Th is time the program executes as was intended.

ABORT CODE = 0 SUBCODE = 0

Delta reports execution of the M: EXIT, i.e., normal termination.

CONTROL and Y interrupts Delta and returns control to TEL.

_lOFF @>

The user logs off.

The system informs him that Delta was terminated.

- accounting summary -

FORTRAN DEBUGGING (FDPJ

The FORTRAN Debug Package provides a powerful conversational facility for convenient and rapid checkout of
FORTRAN IV programs. The debugging features provided are dynamically controllable from the terminal atprogram­
execution time, and include the fol lowing:

• Statement stepping.

• Conditional breakpoints.

• Data-change breakpoints.

• Execution-flow tracing and event-history recording.

• Display and modification of scalar and array-element values.

• Branching.

• Program restart.

• Statement skipping and deletion.

• Automatic calling-argument display.

You may refer to variables by name and to statements by source-line number or statement label. These references
may be further qualified by subprogram name.

The FDP facility consists of a sublibrary of run-time subroutines (a portion of public library PO), plus the necessary
symbol tables and in-line coding generated by the compiler when debug-mode is requested. (FDP can be used only
when debug-mode compilation has been performed.} Programs compiled in debug mode should not be used indis­
criminately, as they require approximately 2. 5 times the amount of memory required for nondebug runs and may
even double normal execution times.

60 FORTRAN Debugging (FDP)

In order to use FDP, you must do the following:

1. Specify the DEBUG compilation option when FORT4 prompts for options.

2. Issue the SET command shown below, prior to issuing the LINK or RUN command (but not prior to FORT4),
if M:SI has been previously set toa file either explicitly or implicitly (i.e., for a compilation or assembly):

!SET M:SI UC

3. Specify in the RUN or LINK command either one of the I ibrary-search options (FDP or PO), or the clause
UNDER FDP (the three forms are synonymous).

The two examples given here illustrate, in addition to TEL command usage, some of the more commonly used FDP
commands. See the FDP/Reference Manual, Publication 90 16 77, for a complete description of the FDP commands,
and a full explanation of their use.

In the following example, the user compiles file INPUT, created in a previous example, in debug mode. Values
for X, Y, and Z are read from file DATA (also created in the prior example). The ON debugging command causes
values of D, X, Y, and Z to be displayed whenever D is computed.

Example 32. Use of FDP ON and PRINT Commands

lFORT4 INPUT ON ,ME @)

The user compiles filelNPUTand directs the listing and compilation summary to the terminal.

OPTIONS >DEBUG,LS @)

Note the specification of DEBUG as an option.

1: WRITE (6,100)
2: 10 READ (5,200) X,Y,Z
3: IF (X) 20,50,20
4: 20 D = SQRT(X**2+Y**2+Z**2)
5: WRITE (6,300) X,Y,Z,D
6: GO TO 10
7: 50 STOP
8: 100 FORMAT (7X,1HX,11X,1HY,11X,1HZ,11X,1HD)
9: 200 FORMAT (3Ell.3)

10: 300 FORMAT (4(1X,Ell.3))
11: END

HEX DEC HEX DEC
NAME TYPE CLASS LOC WORDS NAME TYPE CLASS LOC WORDS

D R SCALR 00003 v 1 SQRT R SPROG INTRIN
x R SCALR 00000 v 1 y R SCALR 00001 v 1
z R SCALR 00002 v 1

HEX HEX HEX HEX
LABEL LOC LABEL LOC LABEL LOC LABEL LOC

10 00008 20 00017 50 00036 100 0003A
200 00043 300 00046

LOCAL VARIABLES (4 WORDS):

00000 x 00001 y 00002 z 00003 D

FORTRAN Debugging (FDP) 61

BLANK COMMON (0 WORDS)

INTRINSIC SUBPROGRAMS USED:

SQRT

EXTERNAL SUBPROGRAMS REQUIRED:

F:UF
9BCDWRIT
9ENDIOL

F:108
9DBDCKIN
9IODATA

M:DO
9DBFHGO
9SQRT

HIGHEST ERROR SEVERITY: 0 (NO ERRORS)

DEC HEX
WORDS WORDS

GENERATED CODE : 120 00078
CONSTANTS: 0 00000

LOCAL VARIABLES: 4 00004
TEMPS: __ 4 00004

TOTAL PROGRAM: 128 00080

M:OC
9DBFHIF
9STOP

M:SI
9DBINIT

The program listing and compilation summary is printed.

lSET F:6 /VECTORS;OUT @)

The user directs the program output to file VECTORS.

lSET F :5 /DATA; IN @)

Program input will be read from file DATA

lSET M:SI UC @l

9BCDREAD
9DBSCKIN

This command is necessary because the debug routines read directives from the terminal. (M:SI was
set to DC/INPUT by the FORT4 command above.)

lRUN (FDP) @)

The user loads and executes in the debug mode. Alternatively he could have specified:

lRUN UNDER FDP or
lRUN (PO)

LINKING $

The loader's message prints.

~ON D;PRINT X,Y,Z@)

FDP prompts with @. The user enters commands to cause the value for D to be displayed each time
it is stored into, and at the same time to display values for X, Y, and Z.

The user does not want to enter any more debug commands at this point and issues a GO command
to start execution.

/4(20S): D=3.74166
Y=2,00000
2=3.00000

62 FORTRAN Debugging (FDP)

X=l,00000

4(20S): D=l.73205
Y=l.00000
Z=l.00000

X=l.00000

Values for D, X, Y, and Z are displayed. The slash V) indicates main program and is fol lowed
by line number and statement number (if present) in parentheses.

STOP 0

This message is produced by the I ibrary subroutine STOP.

7(50S): RDY TO STOP

This message is produced by the debugger.

~QUIT@

The QUIT command causes return to the monitor.

lOFF @)

- accounting summary -

In the next example, the user enters a FORTRAN source program from the terminal without initializing variables,
setting loop control, and providing for 1/0. He runs in the debug mode and issues FDP commands to provide the
omitted functions.

This program generates a Fibonacci sequence, in which the value of any number (beyond the second) in the sequence
is equal to the sum of the values of the two preceding numbers, e.g., 1, 1, 2, 3, 5, 8, 13,21,34,55,

Example 33. Further Uses of FDP Commands

lFORT 4 ME ON ,LP@

OPTIONS >DEBUG @

~10 I=I+J@)
..::_20 J=I+J @>
~30 GO TO 10 @)
?_40 END @)

· HIGHEST ERROR SEVERITY: 0 (NO ERRORS)

lRUN UNDER FDP @)

Th is command causes the user's program to be loaded and executed, with public I ibrary FDP associated.

LINKING $

~I=O @>
~J=l@)

~ON I @>
~ON J @>

FDP prompts with@. The user initializes I and J.

These ON commandswillcausevaluesfor land J tobedisplayedwhenthesevariablesarestored into.

FORTRAN Debugging (FDP) 63

~STOP AT 31F5 @l

This command causes execution to halt the fifth time that statement 3 (the GO TO statement) is encountered.

~GO@l

Execution is now begun with the above commands in effect.

fl{10S2:
2{20S2:
1pos2:
2~2os2:

1{10S2:
2~2os2:
1pos2:
2{20S2:
1pos2:
2~2os2:

3(30S2:

~KILL @l

I=l
J=2
1=3
J=5
1=8
J=13
1=21
J=34
1=55
J=89

Values for I and J are displayed. The slash (/)indicates main program and is followed by line
number and statement number (in parentheses).

The program halts the fifth time that statement 3 is reached.

FDP prompts for a command. This KILL cancels all previous FDP commands.

~STOP ON 1>500 (§')

A conditional stop, or breakpoint, is set.

~AT 3; PRINT I,J @l

These commands will cause values of I and J to print each time statement 3 is reached.

~RESTART @l

Th is specifies restart of program from beginning.

~GO@l

The user resumes execution.

/3(30S2: 1=144
J=233

3(30S 2: 1=377
J=610

Values for I and J are displayed each time statement 3 is reached.

1(10S2: 1=987

At statement 1, the value for I exceeds 500 and the program halts.

~KILL ON I @l

This command cancels the last ON I, effectively the last STOP command issued.

~STOP ON J>lOOOO @l

Another conditional stop is issued.

64 FORTRAN Debugging (FDP)

~GO@

Execution is resumed at statement 3, which is where the previous stop occurred.

/3(308): I-987
J=l597
3(308): !=2584

J=4181
2(208): J=10946

Values for I and J print until J exceeds 10000 which occurs at statement 2.

~PRINT I @
6765

Since statement 3 was not reached to cause the current value for I to be displayed, the user gives
a PRINT command to cause this value to print.

~QUIT @

The user now leaves FDP and returns to TEL.

_!_OFF@

- accounting summary -

FORTRAN Debugging (FDP) 65

8. EXECUTING USER PROGRAMS

An object program stored on a file in load-module form may be called by its load-module name (lmn) used as a TEL
command verb. The load-module file may be stored either in your own account, someone else's account, or the
system account. Thus far, the lmn-as-verb command is synonymous to the !START lmn command (except for a dif­
ference in account-number defaults). Within the limn command, however, you can also very conveniently make
file or device assignments for three standard system DCBs: M:SI, M:GO, and M:LO.

The format of the variable field of the command is analogous to that of the FORT4 and META commands; the full
format is

where

lmn is the fid of an LM that can take the ful I form:

name[. (account](. password]]

(see below for special defaults)

input may be a fid or ME to be assigned to the input DCB M:SI.

output 1 may be a fid to be assigned to the output DCB M:GO.

output2 may be a fid, ME, or LP to be assigned to the output DCB M:LO.

(Normal default assignments apply. That is, the M:SI and M: LO DCBs, if referenced, default to the user's terminal,
and M: GO to a temporary file named $.)

The called program must, of course, directly or indirectly utilize one or more of the above-mentioned DCBs for any
of these assignments to make sense.

You can imply or specify the account number under which the LM file is stored, and specify a password, as follows:

1. filename - (alone, with no period) implies the system account.

2. filename:... - implies your account (i.e., the log-on account value).

3. filename.account-specifies an account number.

4. filename.account .password - specifies an account number and password.

5. filename .• password - implies your account and a password.

Note that this particular convention of default account-number values is not the standard one that applies to most
fid specification in TEL and other commands, as described in Appendix B. The reason for the system-account de­
fault in particular is that installations may want to include, at system-generation time, certain user-developed
"production" programs in the system account; special forms of these may then be accorded preferential RAD-storage
and loading, depending upon frequency of use and programming characteristics. (META and FORT4 commands, for
example, are actually special instances of limn commands.)

The two examples following show very simple programs, developed wholly within the example for purposes of illus­
tration. Actual uses of the command may, of course, call a program developed some time in the past, and possibly
by another programmer.

The program in Example 34 reads a Meta-Symbol source program via M:SI, and writes out any comment lines (asterisk
in column l)contained in the program, viaM:LO. The input file and output device are assigned within the calling
command. As a test, the user specifies as input the source programfromwhich the calledobject-programwasassembled.

Example 35 merely shows a simple FORTRAN IV program call by its load-module name. Since the compiler automati­
cally provides (indirectly) program-file DCBs identified with names of the form F:n, file/device assignments cannot
also be made within the limn command for FORTRAN object programs.

66 Executing User Programs

Example 34. Using Load-Module-Name as Command Verb (Meta-Symbol Program)

!EDIT@>
EDIT HERE
~TAM@>

The user sets tabs for META. Then he builds a Meta-Symbol Program to extract comments lines from
Meta-Symbol source programs. (Usage of tab control not shown.)

~BUILD SOURCE @>
. 1. 000 * ***UTILITY PROGRAM "EXTRACT"*** @>

2 .000 * THIS ROUTINE LISTS ONLY THE COMMENTS LINES, IF ANY, FROM@
3.000 * A META SOURCE-PROGRAM FILE. IT ISSUES A BLANK@>
4.000 * LINE TO INDICATE ONE OR MORE CODING LINES@>
5. 000 * INTERVENING BE TWEEN COMMENTS . IT READS ITS INPUT @>
6.000 * FROM M:SI, AND WRITES TO M:LO.@l
7 • 000 SYSTEM BPM @)
8 .000 SYSTEM SIG7@>
9 .000 REF M:SI,M:LO@)

10.000 * ***INPUT BUFFER***@>
11.000 INN RES 20@)
12 .000 * ***80 BLANKS***@)
13 • 000 BLANKS EQU $ @)
14.000 DOl 20@
15.000 TEXT •@>
16.000 * WE GIVE A TOP-OF-PAGE AT BEGINNING (AND END)@>
17.000 START M:DEVICE M:LO, (PAGE)@)
18 .000 * SWITCH: "HAVE WE ISSUED A BLANK LINE ?": 0 = YES/1 = NO @)
19.000 LW,4 =O
20.000 RDNXT M:READ M:SI,(BUF,INN),(SIZE,80),(ABN,EXIT)
21.000 LB,5 INN
22.000 CI,5 "*"
23.000 BE PRINT
24.000 CI,4 0
25.000 BE RDNXT
26.000 M:WRITE M:LO,(BUF,BLANKS),(SIZE,72)
27.000 * WE SET THE SWITCH: "BLANK LINE ISSUED SINCE LAST
28.000 *
29.000
30.000

COMMENT"
LI,4
B

0
RDNXT

31. 000 * WE RESET THE SWITCH: "BLANK LINE NOT ISSUED SINCE THE
32.000 * LAST COMMENT"
33.000 PRINT LI,4 1
34.000 LW,1 M:SI+4
35.000
36.000
37 .ooo
38.000 EXIT
39.000
40.000
41.000

J_META SOURCE@>

WITH> @>

SLS,1 -17
M:WRITE M:LO,(BUF,INN),(SIZE,*1)
B RDNXT
M:DEVICE M:LO,(PAGE)
M:CLOSE M:LO,(SAVE)
M:EXIT
END START

* ERROR SEVERITY LEVEL: 0
* NO ERROR LINES

l_LINK (NP) ON EXTRACT@>

LINKING $

Executing User Programs 67

lCOPY SOURCE TO SORCNC(NC)

The user copies the source file using the NC option to strip the carriage-return off each record;
otherwise the output below would be double spaced.

lEXTRACT. SORCNC ON ,ME§

Here he calls the LM EXTRACT, with a following period to indicate "my account", and assigns the
input file, SO RC NC, and directs M:LO output to the terminal.

'°' *"'"'UTILITY PROGRAM "EXTRACT">'d<*

"' THIS ROUTINE LISTS ONLY THE COMMENTS LINES, IF ANY, FROM

>'< A META SOURCE-PROGRAM FILE. IT ISSUES A BLANK

>'< LINE TO INDICATE ONE OR MORE CODING LINES

"' INTERVENING BETWEEN COMMENTS. IT READS ITS INPUT

'°' FROM M:SI, AND WRITES TO M:LO.

>'< "'**INPUT BUFFER"'*'°'

'°' ***80 BLANKS***

"' WE GIVE A TOP-OF-PAGE AT BEGINNING (AND END)

* SWITCH: "HAVE WE ISSUED A BLANK LINE ?": 0 = YES/l = NO

"' WE SET THE SWITCH: "BLANK LINE ISSUED SINCE LAST

"' COMMENT"

'°' WE RESET THE SWITCH: "BLANK LINE NOT ISSUED SINCE THE

* LAST COMMENT"

The program's output has printed and control reverts to TEL.

l

Example 35. Using Load-Module-Name as Command Verb (FORTRAN Program)

-page heading-

lTABS 7

The user sets a tab stop for terminal input and turns on tab simulation.

lBUILD FILEl (§

1.000 9
2 .ooo 9
3.000 9
4.000 9
5.000 10@
6.000 20@
7 .ooo 30@'

s.ooo 9
9 .ooo 8

I=l@>

WRITE (6 ,20) §

DO 10 J=l,10@)
I=I*3@>

WRITE (6,30) I@

FORMAT (1X,15HPOWERS OF THREE)@

FORMAT (5X,I7)@)

END@)

l.COMMENT ON ME @J

68 Executing User Programs

lFORT4 FILEl ON OUTFILE@l

FORT4 is called to compile source program FILEl, with ROM output going to OUTFILE.

OPTIONS> NS @l

FORT 4 prompts for options. The user suppresses the partial-summary output.

_LSET F :6 UC @l

This command wi II cause output to device 6 to be directed to the terminal.

_LLINK OUTFILE ON POW3@)

Call LINK to create load module POW3.

LINKING OUTFILE

The LINK subsystem responds.

Pl ASSOCIATED

J_POW3 .@)

Load module POW3 is loaded into core and executed. The log-on account is used.

POWERS OF THREE

3
9

27
81

243

729
2187
6561

19683
59049

-!'STOP>~ 0

The program's output is printed.

lOFF@)

-accounting summary-

Executing User Programs 69

9. GETTING IN AND OUT OF PROCESSORS

GENERAL
Once having logged on, you are always in one of three states of processing:

1. In a Job Step: You are in a system (or user) processor, i.e., in "normal" user-program execution.

2. In an Interrupt of a Step: You are at TEL level but have an interrupted processor associated.

3. Between Steps: You are at TEL level with no processor associated.

If you are in a processor, you can return control to TEL by depressing the CONTROL and Y keys (see BREAK and
ye, below). Many TEL commands can then be issued to perform minor operations after which control can be re­
turned to the processor that was interrupted. The issuance of certain other commands wi 11 cause either an abort of
the previous job step or a diagnostic message. For example, interrupting META to call Edit will result in an abort
of MET A; however, interrupting META to issue a DO NT COMMENT command does not cause an abort and al lows
return of control to MET A. For a summary of the TEL commands and their effect when used during a job step inter­
rupt, see Chapter 3 of the UTS/TS Reference Manual, Publication 90 09 07. A partial list is given in Chapter 11,
"Output Control".

QUIT and CONTINUE COMMANDS

After you have interrupted a processor and have optionally issued one or more commands, you have three alternative
courses of action:

1. Return to the interrupted processor by issuing a CONTINUE command.

2. Discontinue the previous operation by issuing a QUIT command.

3. Call another processor, which has the effect of aborting the previous operation.

Each of these actions is ii I ustrated in the fol lowing example.

Note that both END and STOP are equivalent to QUIT, and that GO is equivalent to CONTINUE.

Example 36. Interrupting, Continuing, and Quitting Execution

lBUILD INPUT @)
1.000 SYSTEM ye.!.

The user wishes to build file INPUT but forgot to set tab stops before building the file. So he
now interrupts Edit by simultaneously depressing CONTROL and Y which the system echoes as
a left arrow. Control is given to TEL.

!TABS 10,19,37 ~

He now sets tab stops for the terminal VO.

J_ CONTINUE @)

He issues a CONTINUE command which takes him back to Edit (with no prompt). He retypes
his first line, since he interrupted while typing this line.

70 Getting In and Out of Processors

SYSTEM@> SIG7@l

SYSTEM @J BPM@)

3,000 START @l M:PRINT @J(MESS,MES)@)

M:EXIT @)

5.000 MES@l TEXT @J "MESSAGE TO TERMINAL 11 @)

6.000 @! END @J START@)

_lMETA INPUT ON BOFILE,LP@l

c y:::.

_lEDIT @l

EDIT HERE

He coils META to assemble the program, but then spots on error in the program and interrupts
with ye.

He calls Edit to correct the error.

The system informs him that META hos been aborted.

.:_EDIT INPUT @l

He wonts to retype I ine 5 to change TEXT to TEXTC .

.:_ms @l

He issues on Insert command (IN) to correct the I ine.

5 .000 MES @J TEXTC @J "MESSAGE TO TERMINAL"@)

.:_END@)

!META INPUT OVER BOFILE,LIST@)

He again calls META to assemble file INPUT and request on output listing. Note use of
OVER to reset file extension, ensuring that any output from the previous aborted assembly
is overwritten.

_lLINK (NP) BOFILE ON MES@)

LINK is col led to create load module MES.

LINKING BOFILE

! EDIT INPUT @)

EDIT HERE

2TY1-6 @l

He now wishes to see the corrected source and calls Edit to display the file.

General 71

1.000

2.000

.lMES.@

SYSTEM SIG7

SYSTEM BPM

He decides he does not want to see the entire file after all, so he simultaneously depresses
CONTROL and Y to interrupt Edit and return control to TEL The system did not echo a left
arrow since it was active, i.e., not in a wait state •

He now wants to load and execute program MES.

PROCESS NOW ACTIVE: QUIT OR CONTINUE

The system informs him that the program cannot be loaded without erasing the previous process
(Edit), and that he must issue either a QUIT or a CONTINUE command .

.lQUIT @)

This QUIT command now allows him to issue anyTELcommandsinceit hascausedEdit tobegivenup .

.lMES.@)

He now loads and executes.

MESSAGE TO TERMINAL

The program output prints .

.lOFF @)

- accounting summary -

BREAK and Y c

Any UTS subsystem or processor, as wel I as a user's object program, can be interrupted by depressing the BREAK
key. Use of the BREAK causes one of the fol lowing to occur:

1. If you are in a processor that has no command language (e.g., assembling with MET A), control is given
to TEL whenever a convenient interrupt point is reached. TEL then prompts for a command.

2. If you are in communication with a subsystem that has break control (e.g., Edit, BASIC), and in a sub­
process such as listing or copying, control is given to the subsystem, which prompts for its next command
or possibly issues an interrupt message.

3. If an object program or subsystem is in a process that does not have break control (i.e., has not used the
M:INT Monitor service) control is given to TEL

The control combination Ye always returns control to TEL. This type of interrupt can also be caused by depressing
the BREAK key more than three times. (Certain subsystems may take special action on receipt of two or three break
signals.)

The next example illustrates use of the different types of interrupts.

72 General

Example 37. Using CONTROL/Y and the BREAK Key

!EDIT FILES @)

EDIT HERE

The user decides to make changes to FILES.

!IN 7 ,1 @)

7.000 yC~

.l.PCL@)

PCL HERE

~LIST@>

ARCSINE

CONWAY

DATA

FILES

INPUT

He starts to modify the file but changes his mind and interrupts by hitting CONTROL and Y
simultaneously. The system echoes a left arrow .

Control returns to TEL. The user cal Is the PCL subsystem.

The system informs him that the previous process (Edit) has been terminated.

PC L identifies itself.

The user asks to have listed the names of the files that are currently in his RAD directory.

5 FILES LISTED.

He does not want to see the entire I ist, so he hits BREAK to stop the output.

~COPY FILES TO LP @)

~END @>

Return is made to the command state of PCL. The user issues a COPY command to copy file
FILES to the line printer.

He leaves PCL.

.l.EDIT FILES @>

EDIT HERE

!TYl-7 @>

He calls the Edit subsystem and issues commands to type lines in file FILE.

General 73

1.000 * THIS PROGRAM SEARCHES NAME/ADDRESS-RECORD FILES ORDERED BY

2.000 *ZIP-CODE LOCALITIES. IT ALSO INSERTS AND DELETES N/A RECORDS. THE

3 • 000 * CALLING SEQ 9 9 9 9 :::_

He does not want to see the entire file, so he returns to TEL by hitting BREAK four times. He
could also have returned to TEL by depressing CONTROL and Y.

--ENTER X TO ABORT COMMAND. ANY OTHER CHARACTER CONTINUES •

The Edit subsystem has break control and types this message in response to the first break. The
subsequent breaks cause direct return to TEL.

lOFF@)

- account summary -

PROGRAM ABORTS

Many conditions can cause your program to be aborted, e.g., an invalid operation code. When an abort occurs,
the system prints an abnormal or error code (e.g., 4AOO) followed by a message telling you the reason for the abort.
The UTS/TS Reference Manual, Publication 90 09 07, Appendix B, contains listings and explanations of the Monitor
error messages.

The following example shows a program that will simply read two records of predetermined size from a file and print
them at the terminal. However, a misspelled label in I ine 8 (BUF instead of BUFF - not a syntax error} causes an
attempt at execution time to read into relative location 12. Since this location is in a write-protected procedure
area of the program (i.e., the area cannot be stored into), the program is aborted and an appropriate message issued
by the system. (Note that the program in this example is not intended to be realistic, but is designed solely to
illustrate as simply as possible the "bug", and thereby the point of the example.)

In the following example and in all .succeeding ones, we will no longer explicitly indicate carriage return and tab­
character usage except as necessary to avoid possible ambiguity.

Example 38. System Handling of an Abort during Execution

lEDIT
EDIT HERE

lBUILD READ

The user builds files READ and LINES (fol lowing line 14).

1.000 SYSTEM SIG7

2.000 SYSTEM BPM

3.000 REF M:SI

4.000 REF M:UC

s.ooo BUF EQU 10

6.000 START M:READ M:SI,(BUF,BUFF),(SIZE,16)

7.000 M:WRITE M:UC,(BUF,BUFF),(SIZE,17)

74 General

8.000 M:READ M:SI,(BUF,BUF+2),(SIZE,8)

9.000 M:WRITE M:UC,(BUF,BUFF+2),(SIZE,9)

10.000 M:EXIT

11.000 BUFF RES 4

12.000 DATA, 1 X'l5'

13.000 END START

14.000 e
J.BUILD LINES

1.000 HELLO, TERMINAL!

2.000 GOODBYE

lCOMMENT ON ME

lMETA READ

'' ERROR SEVERITY LEVEL: 0

'~ NO ERROR LINES

He calls META to assemble the source file. META produces summary messages indicating that
there were no assembly errors.

J.SET M:SI DC/LINES;IN

He sets M:SI to the input file.

lRUN (NP) @l

LINKING

DEFAULT CORE LIBRARY

HELLO, TERMINAL!

The first record is written.

4AOO THAT'S NOT YOUR BUFFER

The system returns an abort message with an error code when the user tries to read the second record
into location 12, which is in a protected area.

l

General 75

10. ASSIGNING DCBs

DATA CONTROL BLOCKS

A data control block (DCB) is a standardized table of information about the characteristics of an existent data-file
or one to be created. The system's file-management service routines use the DCBs essentially to obtain detailed
information both about the file, (i.e., the data) and the physical storage media assigned to it. This, combined
with information supplied in a given service request, completely defines the requested operation. These routines
also use the DCB to post or update dynamically-variable "historical" information concerning the data file (specific
results of the last 1/0 operation performed, for example) to which the user's program and other system routines may
refer.

The DCB also is, effectively, the connecting link between the user's input/output service requests, file-management
commands, etc., and the actual RAD-storage space or peripheral device from which or on which a given data file
is to be read, written, copied, saved, deleted, and so on. Sometimes the reference to this "link" is explicit at
the user's level, as for example in an M:READ or M:WRITE monitor procedure in a Meta-Symbol program, or in a
SET command when the user needs to assign or reassign program input or output DCBs to specific RADfilesordevices.

MEANS OF FILE/DEVICE ASSIGNMENT

The !SET command may be used to explicitly assign any DCB (excepting M:UC, M:OC, and M:XX) to a file or
device, as seen in a number of preceding examples. (SET can also be used for setting and resetting various param­
eters, or relatively fixed items of information in a DCB, e.g., file options, but a general discussion of this usage
does not concern us here.)

The !OUTPUT, ! LIST, and !COMMENT commands can be used to implicitly assign several standard system DCBs
commonly used by system processors: M: GO, M: LO, and M: DO, respectively. Usage of these commands was also
shown and described for specific cases in preceding chapters. And, summarizing topics covered in Chapters 5
and 8, the source, rom, and list parameters of META, FORT4, and Im-name commands implicitly assign the M:SI,
M: GO, and M: LO DCBs.

In general, the SET command need only be used to assign user-program files for DCBs that have no default assign­
ment (or an undesired one), or to assign standard system DCBs, other than the ones named above, for special-option
processor outputs, e.g., the CO, BO, and SO options and the corresponding M:CO, M: BO, and M:SO DCBs. To
assign M:SI, M: GO, M: LO, and M:DO, the choice between the several means described above is simply a matter
of the user's convenience, as they each "do the same job", excepting that SET cannot be used in a job-step inter­
ruption. (See SET Command below, for specific information concerning BASIC.)

STANDARD SYSTEM DCBs

The system includes an extensive set of standard DCBs that provide for the majority of system- and user-program
needs. The link-loader supplies a uniform loader-constructed copy of these DCBs to the user's program as required
to satisfy references thereto. These DCBs al I have names of the form M:xy, where xy generally corresponds to a
system-defined operational label (discussed under SET Command below). These DCBs, when used on-line, have the
on-line default assignment (if any) defined by the system for the corresponding operational label. Note that the
default assignments for M:UC and M:OC, the user's terminal in both cases, are really fixed assignments, i.e., you
cannot change them. (The default assignments can vary with individual installations, and most of them differ for
batch operations.)

Although a number of system DCBs default to the user's terminal, the M:UC DCB is unique because (1) its fixed
assignment is to the terminal - like M:OC, and (2) output through it is treated differently by the Monitor than out­
put to the terminal via any other DCB - unlike M:OC. For terminal output via any DCB other than M:UC, the
Monitor's COC (Character-Oriented Communications) routines automatically append a carriage-return/I ine-feed
combination to each record written (with or without a terminating carriage return). The COC routines do not append
such a combination to output written via M: UC; it wil I substitute that character combination, however, for any
carriage-return or line-feed character in the record. This difference allows you, when using M:UC, to produce one
physical line at the terminal with a series of records. (See UTS/TS Reference Manual, Publication 90 09 07,
Chapter 8, for details.)

76 Assigning DCBs

In addition to the standard system DCBs, the link-loader will supply a uniform loader-constructed DCB for any M:ab
DCB reference where M:ab is not known to the system, and for any DCB reference of the form F:ab, such as pro­
duced by FORTRAN IV for program files, where ab corresponds to the FORTRAN unit number. In these cases, the
DCBs neither have a default assignment nor are they automatically defined for input or output - excepting F:lOl
through F: 108, the FORTRAN standard units. They are also not defined for final disposition, and an 1/0 function
and disposition parameter (e.g., IN, SAVE) may need to be set as well if the assignment is to a file or labeled tape.
(These settings are described below.)

ASSIGN/MERGE TABLE

DCB assignments, excepting those for M:SI, automatically remain in effect across job steps unti I reset or negated.
Assignments can be reset or negated between job steps. The mechanism for setting and resetting assignments is the
assign/merge table, during an on-line session. An M:SI assignment is effective only for a single job step; following
that step it always reverts to its default assignment, the user's terminal.

Any assignment made by any of the means described above causes an entry to be made in your assign/merge table.
At the beginning of any job step involving a processor (including LINK) or a user's program, the entries in the
assign/merge table are merged into the corresponding DCBs. (An entry in the table is deleted by a !SET deb 0.)

The apparent negation of an assignment achieved specifically by means of a DONT ... command, e.g., DONT
LIST, bypasses the assign/merge table and affects only a switch in the user's JIT (and not the imp I ied DCB) at the time
the command is issued, whether between job steps or during a job-step interruption. Only the standard processor
outputs written via M: GO (OUTPUT), M: LO (LIST), and M: DO (COMMENT) DCBs can be affected in this way.

OUTPUT, LIST, COMMENT COMMANDS

Control over output from MET A, or FORT4, or a standardized user-processor may be exercised with the fol lowing
commands before the processor command is issued:

• OUTPUT ON or OUTPUT OVER followed by a file name. This command specifies the destination of the
relocatable-object output (ROM) from the processor via the M:GO DCB. M:GO defaults to a special
file, which you may refer to in some cases with a dollar sign ($).

• LIST ON or LIST OVER followed by ME, LP, or file names. This command specifies the destination of the
listing output from the processor, via the M:LO DCB. For META and FORT4, M:LO effectively has no
default assignment. Either an explicit assignment must be made or the !LIST command given to turn on the
LO-output switch in the user's JIT. Apart from META and FORT4, M:LO defaults to the terminal.

• COMMENT ON or COMMENT OVER followed by ME, LP, or file name. This command specifies the
destination of error commentary from the processor, via the M:DO DCB. M:DO defaults to the user's
terminal. Therefore, COMMENT need not be used unless you want to direct error commentary to a
destination other than your terminal.

In the following example, we specify destination files for the META output by using the LIST and OUTPUT com­
mands, and (for purposes of ii I ustration only) turn off the diagnostic output. We then assemble and execute the
subprogram, but trap. We do not detect any errors in the source program, so in order to find out if we have as­
sembly errors (which do show on the listing, however) we issue a COMMENT command to turn error comentary back
on. We reassemble, find that we have a syntax error, and correct the I ine before reassembling.

Example 39. Controlling the Destination of Processor Output

!BUILD COUNTER

SYSTEM SIG7

SYSTEM BPM

3,000 BEG LI,l 100

OUTPUT, LIST, COMMENT Commands 77

4.000

5.000

6.000 x
7 .ooo
s.ooo e

! LIST ON LOFILE

STW 1,X

M:EXIT

RES 1

END BEG

Before calling META, the user directs listing output to file LOFILE.

! OUTPUT ON BIN

He specifies that the ROM output is to go to file BIN.

_!_DONT COMMENT

He overconfidently turns off error commentary .

.!.META COUNTER

.!.RUN BIN ON CNTRlOO

He requests load-module output on file CNTRlOO.

LINKING BIN

DEFAULT CORE LIBRARY IS NOT NEEDED

A400 YOU TRAPPED

An abort message prints indicating the program would not execute properly .

.!.COMMENT

The user does not spot any errors in the source, so he issues a COMMENT command to cause
error commentary from MET A to appear at the terminal.

.!.META COUNTER OVER BIN,LOFILE

He calls META again. Files BIN and LOFILE were created when META was previously called,
so they must be respecified in order to be recreated or written over, rather than extended. This
time the error commentary prints at the terminal and indicates that statement 4 is in error.

4 01 0000 1 35060001 N STW l,X

**** ILLEGAL CF

* ERROR SEVERITY LEVEL: 3

.!.EDIT COUNTER

EDIT HERE

.'.:IN 4

He wants to change I ine 4 and uses the Insert (IN) command to enter a corrected statement.

78 OUTPUT, LIST, COMMENT Commands

4.000 STW,l X

*END

lMETA COUNTER OVER BIN,LOFILE

He calls META again. Error commentary will still be directed to the terminal, since the previous
COMMENT command is still in effect.

'~ ERROR SEVERITY LEVEL: 0

* NO ERROR LINES

!RUN (NP) BIN OVER CNTRlOO

LINKING BIN

Since there ore no errors in the assembly, he reloads and reexecutes the program, to recheck and
get on updated load module.

Normal execution is indicated by a return to TEL with no message.

!OFF

- accounting summary -

SET COMMAND

The general form of the !SET command is given in the UTS/TS Reference Manual, Publication 90 09 07, with de­
scriptions of its many options and varied examples of its use. It is a complex command. Several forms, selected for
particular uses, ore as follows:

• To Assign a RAD File

SET deb /fid [;fi I opt ... ;filopt]

where

filopt is one of the file-option parameters given in Appendix C, Table C-3. Some of these are

IN input file

OUT output file
function

I NO UT update file

OU TIN scratch fi I e

REL ,. I ea<o oo cl D'• }
disposition

SAVE save on close

The defaults for the function and disposition parameters are interrelated, as follows: for IN or INOUT
files, SAVE is the default; for OUT or OUTIN files, REL is the default. (Note that for an OUT or OUTIN

SET Command 79

file the SAVE parameter does not actually cause the file to be permanently saved, but merely allows
SAVE to be effectively specified in an M:CLOSE operation.)

• To Assign a Labeled-Tape File

SET deb tc (#nnnn [I]] /fid[;fi I opt ..• ;fi I opt]

where

tc is a magnetic-tape device code: MT - any unit; 9T - 9-track; 7T - 7 track.

nnnn is a tape-header serial number (i.e., an internal reel number).

indicates. that nnnn is an input serial number (INSN). If I is not specified nnnn is an output
serial number (OUTSN).

fid is the file identification of a file on the tape.

filopt is as above, under RAD-file assignment.

Note that the serial number, #nnnn, is the reel-identifying number that is to be read from the tape-header
sentinel record of either an input or output tape. (Also, the disposition file options, SAVE and REL, have
specialized meanings for tape operations, as described in Appendix J of the BPM/BP, RT Reference Manual,
Publication 90 09 54.)

• To Assign a Peripheral Device (Other Than Magnetic Tape)

SET deb {:;~b} [;devopt ... ;devopt]

where

dev is a symbiont-output device code: LP - line printer, CP - card punch.

oplb is a system-defined operational label. These are given in Appendix C, Table C-1 (see also
below).

devopt is a device-dependent device option; these are given in Appendix C, Table C-2, and
mainly concern format control and read/write codes and modes.

The system-default value of an operational label, e.g., SI, LO, or CO, is set by the individual installa­
tion, and normally wil I differ from on-line to batch mode. In UTS as distributed, the fol lowing operational
labels and correspondingly named DCBs default on-line to the user's terminal: C, DO, EI, LL, LO, OC,
SI, SL, and UC. Excepting the special label NO, all other operational labels have no "as-directed" de­
fault value. The operational label NO has the fixed meaning "no assignment", and while it is in force,
effectively prevents any default assignment from being applied. This causes any output via a so-assigned
DCB to be lost, and an immediate end-of-file return on input.

• To Clear a User-Set Assignment

SET deb 0

This form causes any prior assign/merge table entry for the named DCB to be deleted from the table. Thus,
any system-default assignments are al lowed to take effect in subsequent job steps.

GENERAL USAGE RULES

The following usage rules apply in general:

1. File or device' options can be added or respecified, between job steps, for an already assigned DCB if the
assignment was made by a previous SET, OUTPUT, LIST, or COMMENT command, or a processor-call
parameter.

80 SET Command

2. As stated earlier in this chapter, when assigning a file to any nonsystem-defined, loader-constructed DCB
(excluding F: 101, F: 102, •.. F: 106 for FORTRAN standard units) you must also specify one of the file-option
function parameters (IN, OUT, INOUT, OUTIN), and also the disposition parameter unless the default
is desired. Thus, an output-file assignment for, say, FORTRAN unit 6 would be as fol lows:

ISET F:6 /OUTFIL;OUT;SAVE

3. No more than 12 concurrent DCB assignments can be in effect via the assign/merge table. (If necessary,
clear any not-currently-needed entries via SET deb O).

BASIC SUBSYSTEM REQUIREMENTS

The BASIC subsystem uses the following DCBs for its VO, with each normally assigned to the user's terminal:

• M:SI - for reading editing-mode input; it must be reset to UC if previously changed.

• M:DO - for both editing- and execution-mode diagnostic output; it must be reset to UC if previously
changed.

• M: LO - for output written by the PRINT statement and LIST command.

• M:CI - for input read by the INPUT statement.

The M:CI DCB must be explicitly assigned to a file if file input is desired, and M:LO might be set to the line printer
if so desired. In any case, if any of these DCBs have been affected inappropriately by any of the means discussed
in this section, they may effectively be reset to normal BASIC assignments by means of the "SET deb 0" form.

Example 40. Setting DCB Assignments and Parameters with the SET Command

This example illustrates use of the SET command to direct input to and output from an assembly. The user
obtains source output on tape, a compressed-output deck, a double-spaced output listing on the printer, and
ROM output on a RAD file.

lSET M:SO Kr.#Al23/Z

This command will cause the source output from META to go to file Z on the magnetic tape having the
serial number Al23.

lSET M:LO LO;SPACE=2

The user wants the output listing double-spaced. Note that he must first assign M:LO. (But, see the
META command below, where this assignment is changed.)

lSET M:BO /BINOUT

He wants the binary output to go to RAD file BINOUT. He could alternatively have used the command:

!OUTPUT ON BINOUT

lSET M:CO CP

This command assigns the DCB for compressed output to the card punch (utilization privilege is required).

lMETA INFILE ON ,LP

WITH>SO,CO

The user now calls META to assemble a source file. He requests a source listing on the line printer
(privilege required) and a compressed output deck.

SET Command 81

lRUN (NP) BINOUT

He now calls RUN to load and execute the program.

LINKING BINOUT

Control returns to TEL, with no error messages having been issued.

82 SET Command

11. CONTROLLING OUTPUT

GENERAL

The several outputs from a compilation or assembly {or "standardized" user processor) can be selectively turned off
by a DONT LIST, DONT OUTPUT, or DONT COMMENT command, either before calling a processor or during an
interrupt of the processor. These specifications retain their effect across job steps, until reset or negated. Outputs
may be resumed by a LIST, OUTPUT, or COMMENT command, or by specifying output destinations in a MET A,
FORT4, or user-processor command. LIST affects the M:LO DCB, normally used for listing output; OUTPUT affects
the M:GO DCB, normally used for ROM output, and COMMENT affects the M:DO DCB, normally used for diagnostic
output. (M:DO cannot be affected with the META, FORT4, etc., command parameters.)

If you have assigned output to a "symbiont device", such as line printer or card punch, the output is stored on RAD
until you give an explicit or implicit indication that it is complete and ready to be printed or punched. You do this
explicitly by issuing the TEL command PRINT, or implicitly by logging off. {Note that utilization privilege is
required for these centra 1-s i te uni ts, however.)

DISCONTINUING ANO RESUMING STANDARD OUTPUTS

You may interrupt META or FORT4 and turn off output by one of the following commands:

• DONT LIST turns off list output.

• DONT OUTPUT turns off binary output.

• DONT COMMENT turns off error commentary.

The DONT LIST and DONT OUTPUT commands may also be given before calling META or FORT4 if these outputs
are not desired.

Output may be resumed by one of the following commands:

• LIST resumes list output as previously specified.

• OUTPUT resumes binary output as previously specified.

• COMMENT resumes error commentary as previously specified, or at the terminal by default.

Each of the above commands remains in effect during a session until you issue another command to redirect output.

The forms of these commands for explicitly directing or redirecting outputs are given in Chapter 10.

Example 41. Discontinuing and Resuming Output by OUTPUT, LIST, and COMMENT Commands

!BUILD INFILE

The user bui Ids a source file of Meta-Symbol statements.

1.000 SYSTEM BPM

2.000 SYSTEM SIG7

3.000 START --- LI,Rl 1

4.000 SLS·,Rl 24

5.000 LW,R2 Rl

6.000 STW,R2 y

Controlling Output 83

8.000 y

10.000 @

lOUTPUT ON OUTFILE

lLIST ON LFILE

M:EXIT

RES 1

END START

The user specifies the destination files for binary output and object listing.

lDONT OUTPUT

!DONT LIST

For his first assembly, he only wants to test for assembly errors, and so he turns off the OUTPUT and
LIST options.

lMETA INFILE

WITH>@

He calls META to assemble the source file.

3 01 00000 22000001 N START

3.000
'~*** UNDEF SYM

4 01 00001 25000018 N

4.000

**** UNDEF SYM

5 01 00002 32000000 N

5.000

lQUIT

LI 1 Rl 1

SLS 1 Rl 24

LW ,R2 Rl

The user notices that he forgot to define Rl and R2, and so he interrupts by depressing ye and aborts
MET A by typing a QUIT command.

FINI

lEDIT INFILE

EDIT HERE

He calls Edit to insert definitions into the source file.

~IN2.5,.l

2.500 Rl

2 .600 R2

2.700@

;:_END

EQU

EQU

He then leaves Edit.

84 General

1

2

! OUTPUT

!LIST

This time he believes that the program is error-free, and so he now resets the OUTPUT and LIST options.

!META INFILE

He now reassembles. File INFILE must be respecified since M:SI defaults to the terminal at each new
job step.

WITH>@)

'~ ERROR SEVERITY LEVEL: 0

·1< NO ERROR LINES

PRINT COMMAND

Output directed to the symbiont output devices (card punch and printer) is normally not queued for actual output
on those devices until you log off. This feature has the advantage of causing all of the output for one job to come
out together.

However, you may want some of your output printed or punched immediately. The PRINT command causes your
symbiont files to be closed and queued for output at once (if you have the required utilization permission).

Example 42. Causing Printer or Punch Output to be Queued by Issuing a PRINT Command

!COPY ME TO LP @l

The user wants to enter lines at the terminal to be copied to the line printer •

. THESE LINES ARE DIRECTED TO THE LINE PRINTER

~THEY ARE NORMALLY NOT QUEUED FOR PRINTING UNTIL THE USER LOGS OFF .

. THE FOLLOWING PRINT COMMAND WILL CAUSE THEM TO BE PRINTED.

The Escape/F signals end-of-input.

!PRINT @l

This command causes the line printer output to be queued immediately.

The session continues.

General 85

12. SAVING/RESTORING CORE IMAGES AND FILES

GENERAL

A core image of a program in process, along with relevant program context, can be saved on a RAD file during an
interruption of execution. You might often want to save the core image of a patched program at one or several
stages of a complex debugging process, e.g., to ensure against errors in ensuing patches. The saving and reloading
of core images is achieved with the !SAVE and !GET commands, shown in the first two examples to follow.

Although program-1/0 file identification information is saved along with the core image, file-positioning information
is not saved (and the files themselves may not be saved if closed automatically by the system). If, however, a given
program is not sensitive to these considerations, then SAVE/GET can also be used as a production checkpoint-restart
mechanism.

RAD storage is the predominant file-storage medium for the on-line user, because of the nature of remote on-line
operation and the central role p!ayed by this type of storage in integrated batch/time-sharing operating systems
such as UTS. The advantages of RAD storage over other types of file media were discussed briefly in Chapter 4.
RAD files are, however, susceptible to loss in certain types of catastrophic system failures, or "crashes", that
sometimes occur. Although the system provides extensive, automatic protection against complete file loss(as
described below), generally on an "all files" basis, you can selectively create backup files anytime you feel this
action is indicated. (For example, after creating an important file when working with a relatively new installation
that has not yet ironed out all the wrinkles.)

Files may be saved or backed up either on the standard system save/restore magnetic tape, or on your own private
tape (or on punched cards) by means of the !BACKUP, s_COPYALL, and :::_COPY commands.

Another characteristic of RAD storage is that its capacity is fixed in a sense that magnetic-tape or punched-card
storage is not, and that you can easily misuse it: (1) by not promptly deleting unneeded files (you are normally
charged for permanent RAD space actually used, not the total extent allowed for your use), and (2) by allowing
little-used files to remain on RAD. You can transfer files of the latter class to tapes by the same means used to
create backup copies - but do not forget to delete them from RAD after verification of the copying!

SAVE AND GET COMMANDS

You can take a "checkpoint" of a core image at some desired point by interrupting the execution and issuing a
SA VE command. The core image of the program and other information that enables the system to reconstruct the
program's environment (other than 1/0-file positioning) are then saved on RAD. After you issue the SAVE command,
the interrupted program can be resumed by a GO or CONTINUE command.

Later you can restore the checkpointed program to core by issuing a GET command. Fol lowing the GET command
byaGOorCONTINUEcommandcauses processing to be resumed at the point at which the checkpoint was taken.

In the next example, we assemble a program with MET A but discover coding errors when it does not execute prop­
erly. Instead of editing the source file and reassembling, we choose to enter patches with DELTA (see Chapter 7).
To preserve a patched version of the program, we interrupt prior to execution and issue a SAVE command. The
patched version is restored by a GET command in Example 44 and executed again.

Example 43. Saving a Core Image of a Program (SAVE Command)

! BUILD INPUT@

1.000 SYSTEM BPM

SYSTEM SIG?

86 Saving/Restoring Core Images and Files

3.000

4.000 START

5.000

6.000

7.000

8.000

9.000 RETURN

10.000

11.000

12.000

13.000

14.000

15 .000

16 .ooo
17.000

18.000

19.000 ERROR

20.000

21.000

22.000 ERR

23.000 REGS

24.000 SUBR

25.000

26 .ooo
27.000 EXIT

28.000

29.000 e

lMETA INPUT ON BO

WITH>SD

REF

LI,l

STW ,1

LCI

STM,0

B

cw, 15

BNE

CW,14

BNE

LI,14

LI,15

SLS, 15

CBS,14

BNE

M:EXIT

LB,2

M:WRITE

M:EXIT

TEXTC

RES

LI,2

BDR,2

B

RES

END

M:UC

RETURN

EXIT

0

REGS

SUBR

REGS+l5

ERROR

REGS+l4

ERROR

BA(REGS)

56

24

0

ERROR

ERR

M:UC, (BUF ,ERR), (SIZE,''<2), (BTD,l)

"REGISTERS NOT PRESERVED IN SUBR"

16

100

$

>'<EXIT

1

START

The user assembles the program, and asks for symbolic debugging code to be produced.

~< ERROR SEVERITY LEVEL: 0

* NO ERROR LINES

!RUN BO

LINKING BO

DEFAULT CORE LIBRARY IS NOT NEEDED

REGISTERS NOT PRESERVED IN SUBR

The program error message prints.

SAVE and GET Commands 87

lRUN BO UNDER DELTA

The user now runs under Delta because he wants to add patches to the program before executing again.

LINKING BO

DEFAULT CORE LIBRARY IS NOT NEEDED

DELTA HERE

"ring"

The Delta debugging processor identifies itself and prompts with a bell.

BO;S@)

The user identifies the symbol table associated with the ROM (BO).

EXIT+20\ STW, 1 EXIT+l9 @

EXIT+.15/ LI,l 100@

EXIT+.16/ BDR,l $ @

EXIT+.17/ LW,l EXIT+l9 (0

EXIT+.18/ B *EXIT @)

SUBR\ B EXIT+20 @)

He enters patches into the program (see Example 30 for meaning of these commands).

He depresses CONTROL and Y after the prompt to interrupt Delta. The system echoes a left arrow.

lSAVE MYJOB

He issues a SAVE command to save the patched program on file MY JOB.

lGO

The GO command takes him back to Del ta.

START;G

He issues a Delta command to start execution of the program. (No prompt is given:)

ABORT CODE = 0 SUBCODE = 0

Delta prints this message on execution of an M:EXIT.

The user now leaves Delta.

88 SAVE and GET Commands

Example 44. Restoring a Checkpointed Program (GET Command)

!GET MYJOB

The user restores the checkpointed core image (the patched program on file MY JOB). This file was
created by the SAVE command in Example 43.

!GO

The GO command causes a return to Delta, the processor that was interrupted to perform the SAVE.

START;G

The user initiates execution. (No prompt is given for this line.)

ABORT CODE = 0 SUBCODE = 0

The program completes execution.

BACKUP COMMAND

The BACKUP command provides a means of creating backup files. Files are copied to the standard system backup
tape. Note that the usage of BACKUP may be subject to rules and restrictions conditioned by specific installation
practices concerning the saving/restoring of files.

A keyed file ca lied MAILBOX in the user's account wi II contain completion messages resulting from the backup process.

The next example illustrates use of the BACKUP command. This example also shows that we must wait for the backup
process to complete before finding out what is in the MAILBOX file.

Example 45. Saving a File on the Standard System Backup Tape

lBUILD MYFILE

The user builds file MYFILE.

lBACKUP MYFILE

He issues a BACKUP command to copy the file on the system backup tape.

lCOPY MAILBOX TO ME @l

300 FILE DOES NOT EXIST.

He wants to see what is in the MAILBOX file, but this file does not yet exist because the backup process
is not complete.

lCOPY MAILBOX TO ME @)

He waits a minute or so for the backup process to complete then issues the COPY command again.

16:18 MAY 25, 1 71 BY ABCD BACKED UP FILE MYFILE

The completion message in file MAILBOX now prints.

BACKUP Command 89

COPYALL AND COPY COMMANDS

SAVING ON TAPE

Many times you will want to save one, several, or all of your files on magnetic tape, in addition to those implied
by the "proper usage" guideline offered near the beginning of this chapter. For instance, if you were going on
an extended vacation, you might want to copy all your RAD files to tape and thus save RAD-storage charges. Or,
if you are making many versions of a file, perhaps many assemblies, you may want to back up the original file on
tape. In the next example, the user transfers all the files in his account to tape and pulls them off as needed in
the session. He also transfers a single, additional file to the tape. The example shows the use of labeled tape
rather than free-form tape. Using labeled tape, the user can request his files by name from the tape, as he would
cal I them by name from his RAD directory. With free-form tape, he would have to know the ordinal positions of
the files on the tape, and space forward or backward the appropriate number of files before he could read or write
the files he wanted. (This example is illustrative of what can be done, but not necessarily of what may normally
be done, since it implies usage of a central-site resource in a manner that may or may not be allowed in a given
installation.} Note that copying one file or the entire account to tape does not automatically delete the file(s)
from RAD; RAD files must be explicitly deleted by command. Also, tape files are no longer "in the system". That
is, the system "knows" only of files in the user's account on RAD; the user is responsible for knowing the tape's
label or number, and for notifying the central-site operator of the same (see Chapter 14).

Remember that any utilization of magnetic tape, as well as any other central-site resource, requires a prior
permission by the installation.

See the UTS/TS Reference Manual, Pub I ication 90 09 07, Chapter 5, for a description of the Rewind (REW) and
Space-to-EOT (SPE) commands shown in the next example.

Example 46. Transfer of All Files in User's Account to Labeled Tape

lPCL

PCL HERE

=:_LIST DC

ARCSINE

DATAFIL

JOBFIL

ROMFIL

SOURCE

VPRIME

The user lists the names of the files in his RAD account.

=:_REW 1fa3B96

He rewinds the tape (#3096) he is going to write on, to be certain it is positioned to start of tape.
This assumes, of course, that the tape has been mounted at the computer site. See Chapter 14 on
user-operator communication. If the tape already contained files he wanted to keep, he would
instead want to skip to the position following the last file on the tape by issuing the command
~SPE L T#3096.

s_COPYALL DC TO LT#3B96 (§}

He copies al I the files in his account, in succession, to labeled tape (LT) #3096.

=:_REW 1fa3B96

He winds tape #3096 that he has just written on before listing it. He visually compares the list with
the one he received when he I isted the RAD directory.

90 COPYALL and COPY Commands

~LIST LT1fo3B96

ARCSINE

DATAFIL

JO BF IL

ROMFIL

SOURCE

VPRIME

~COPY ME TO NEW

..:.

..:..@F

The user creates a new file from the termina I.

_SPE LT1f3B96

He spaces labeled tape #3096 to the mark fol lowing the last file on the tape .

.S..COPY NEW TO LT1fo3B96/NEW

He adds file NEW to labeled tape #3096 .

.s_REW 1f3B96

~LIST LT1f3B96

ARCSINE

DATAFIL

JO BF IL

ROMFIL

SOURCE

VPRIME

NEW

He rewinds tape #3096 and lists the names of its files. PCL has successfully added file NEW after the
last file written to tape, VP RIME.

~DELETEALL

DELETEALL?
~YES$

7 FILES DELETED

Satisfied that our files are safely stored on tape, he now deletes all files in his RAD account. PCL
requires a "YES$" verification of the DELETEALL request, and upon its receipt, PCL deletes all of the
user's files and so notifies him.

COPYALL and COPY Commands 91

.s.REW /f3B96

.s.COPY LT/f3B96/NEW TO DC/INPUT@)

The user wishes to use file NEW as input to a processor later in the session. He calls it from the tape
back to his account with a new name, INPUT •

.s_REMOVE /f3B96

<END

He issues the REMOVE command, which rewinds the tape and automatically issues a "dismount" message
to the control-site operator.

92 COPYALL and COPY Commands

13. SUBMITTING BATCH JOBS

BATCH SUBSYSTEM

The BATCH Job-Entry Subsystem is used to submit a batch job deck stored on a file to the batch input stream. Th is
job deck must include all appropriate batch control cards that would be needed for normal batch job submission.
Later you may ask for the status of the job (e.g., WAITING, RUNNING, COMPLETED) by issuing the ! JOB
command. (This command is illustrated in the second example.)

Example 47. Submitting a Job via BATCH Subsystems for Execution

_!_EDIT

EDIT HERE

*BUILD BATCHIN

The user builds a source program that he wishes to assemble in the batch environment.

1.000 SYSTEM SIG7

2.000 SYSTEM BPM

3.000 REF M:LO

4.000 START M:WRITE M:LO, (BUF,MES), (SIZE,9)

5.000 M:EXIT

6.000 ERROR THIS LINE CONTAINS AN ERROR

7.000 TEXT "IT WORKS."

8.000 END START

9 .ooo @l

*BUILD JOBA

He builds a file containing a batch job-control deck that will assemble the file called BATCHIN.

1.000 !JOB 2232, JONES

2.000 !ASSIGN M:SI, (FILE, BATCHIN)

3.000 !ASSIGN M:BO, (FILE, BINARY)

4.000 !ASSIGN M:DO, (FILE, ERRORS)

5.000 !METASYM SI, BO, LO

6 .ooo @l

2_END @J

_!_BATCH JOBA @J

ID=0028 SUBMITTED 9:13 MAY 26, '71

He submits the batch job he has just created. The job identification (ID) prints as a hexadecimal value.

Submitting Batch Jobs 93

JOB COMMAND

The JOB command is used to ask for the status of a batch job. The system responds that the job is either completed,
running, or still waiting to be run. The format of the command is

!JOB xxxx

where xxxx is a hexidecimal job ID from one to four characters in length (leading zeros may be omitted.)

Example 48. Using the JOB Command

lJOB 28

The user requests the status of the job submitted in the previous example. The job identification 0028
is the same as the one reported when the job was submitted using the BATCH command.

WAITING: 1 TO RUN

The system answers that there is one batch still to be run before this job is run.

lJOB 28

Later the user asks again.

COMPLETED

Now the job is complete

lCOPY ERRORS ON ME

The user displays the diagnostics from the job at the terminal. Note that M:DO was assigned to file
ERRORS in the job-deck JOBA.

6 ERROR THIS LINE CONTAINS AN ERROR

**** UNDEF SYM

**** ILLEGAL AF

* ERROR SEVERITY LEVEL: 3

94 JOB Command

14. COMMUNICATION WITH THE OPERATOR

MESSAGE COMMAND

The MESSAGE command causes a message to be sent to the central-site computer operator. The message length is
limited to 50 characters.

The format of the command is

! MESSAGE message-text

In the next example, the user informs the operator that he needs a scratch tape.

Example 49. Sending a Message to the Operator

lMESSAGE READY SCRATCH TAPE TO BECOME #9055.

The user sends a message to the computer operator requesting that he be ready to mount a scratch tape .

.!.BUILD DATAPOINTS

He builds file DATAPOINTS.

lCOPY DATAPOINTS TO FT#9055

He requests that the file to be copied to a free-form tape with the serial number 9055. The system
informs the operator where to mount the requested scratch tape.

MESSAGES FROM THE OPERATOR

The computer operator can send a message to an individual terminal or broadcast a message to all users. When he
broadcasts a message, the message is placed into the right-hand part of the terminal page title, and it will be seen
by a user when he receives a new page heading. A message sent to an individual terminal may appear anywhere in
the user's output.

Note: If the PLATEN command was used to turn page headings off, the broadcast message wil I not appear.

In the next example, the user receives a message informing him that the system will soon go off. He issues a BACKUP
command before logging off to insure that his latest files will be saved. This action may not really be necessary, de­
pending on installation practice; the system normally will save all files automatically before going off.

Example 50. Receiving a Message from the Operator

lBUILD XYZ

The user builds a source file.

Communication with the Operator 95

1.000

2.000

3.000

SYSTEM

SYSTEM

REF

BPM

SIG7

M:UC,M:LO

He wants to continue file building (or processing) on a new page, so he simultaneously depresses
CONTROL and L to cause a page eject.

(page eject)

23:45 05/26/71 JONES ABC 1BB-F[17] UTS WILL GO OFF AT 2400

Included as part of the page heading is the message from the operator UTS WILL GO OFF AT 2400.
This message has been sent to all users.

!BACKUP XYZ

!OFF

The user decides to terminate his processing at this time, and he uses a BACKUP command to save his
last file.

-accounting summary-

96 Messages from the Operator

APPENDIX A. TEL COMMAND SUMMARY

Table A-1 is a summary of TEL commands. The first column gives the command format, the second column gives the
command's function and option codes. For the structure of file names (fid, rom, lmn) see Table B-1.

Table A-1. TEL Command Summary

Command Description

BACKUP fid Saves the specified file on a system tape. In case
of a crash in which files are lost, files on the tape
wil I be restored.

BATCH fid Enters the specified file in the batch job stream.

BUILD fid Accepts a new file from the terminal.

COMMENT {~~ER} list
Directs error commentary to the specified device.

Options: I ist may be fid, LP, or ME.

CONTINUE Continues processing from the point of interruption.

COPY d[(s)][/fid[{s)][, fid[(s)]] ...][;d[{s)] I Copies file between devices or between RAD

L [/Ad[(<)]]~ fld [(•)]] ... J ... [6~ER I
storage and devices:

Options:

[d[(s)][/fid[(s}]]]
d may be CP, DC, FT, LP, LT, or ME.

s may be a data ~ode (E, H); a dak1 format
(X); a mode (BCD, BIN, 7T, 9T, PK, UPK,
SSP, DSP, VFC, NC) or selection (x-y).

DELETE fid Deletes the specified file.

DELTA Calls the DELTA subsystem.

DISPLAY Lists the current values of various system
parameters.

DONT COMMENT Stops error commentary output.

DONT LIST Stops listing output.

DONT OUTPUT Stops object output.

EDIT fid Calls Edit to modify a file.

END Terminates the current job step.

FORT4[sp] [g~R (rom][, list]]
Compiles an XDS Extended FORTRAN IV source
program.

Options:

sp may be fid or ME.

rom may be fid only.

I ist may be fid, LP, or ME.

Appendix A 97

Table A-1. TEL Command Summary (cont.)

Command

FORT4[sp] [g~R [rom][,listJ] (cont.)

GET fid

GO

JOB jid

LINK (ood"']mfl (, mfl] ••• (, mfl] [g~ER I mn] =1
L [;lid[, lid] ... [, lid]] [UNDER FDP]

lmn[sp] [g~ER [rom][, list]]

98 Appendix A

Description

Output may be interrupted and continued by the
following commands:

LIST
OUTPUT
COMMENT
CONTINUE

DONT LIST
DONT OUTPUT
DO NT COMMENT
GO

Restores the previously saved core image.

Continues processing from point of interruption.

Requests the status of remotely entered jobs.

Forms the load module as specified.

Options:

I ibrary search: (L), (NL), (Pi), (FDP), (NP)

default: (NL), (Pl)

display: (D), (ND), (C), (NC), (M),
(NM)

default: (D), (C), (NM)

symbol tables: (I), (NI)

de fa u I t: (I)

mfl may be fid or $; parentheses enclosing mfls
cause merge of symbol tables.

I id must be a I ibrary fid.

Directs the I isting output to the specified device.

Options: list may be fid, LP, or ME.

Initiates execution of a load module.

Options:

lmn has the form:

name [. [account][. password]]

absence of period and account specifies
system account.

presence of period and absence of account
specifies log-in account.

M:SI DCB is assigned to sp.

M: GO DCB is assigned to rom.

M:LO DCB is assigned to list.

Table A-1. TEL Command Summary (cont.)

Command Description

MESSAGE text Sends the specified message to the operator.

META[sp] [g~R [rom][, list]]
Assembles the specified source program.

Options:

sp may be fid or ME.

rom may be fid only.

list may be fid, LP or ME.

Output may be interrupted and continued by the
following commands:

LIST DONT UST
OUTPUT DONT OUTPUT
COMMENT DONT COMMENT
CONTINUE

OFF Disconnects terminal from system and provides
accounting summary.

OUTPUT{g~R}rom Directs object output to the specified device.

Options: rom may be fid only.

PASSWORD xxxx Assigns a new log-in password for the user. xx xx
is 1-8 characters. Any of the fol lowing characters
may be used: A-Z, a-z, 0-9, _! $, *, %, :, #,
<§;!, -, backspace.

PLATEN w[, I] Sets the value of the terminal platen width and
page length.

PRINT Sends print output to the line printer and punch
output to the punch.

QUIT Terminates the current job step.

RUN[codes]mfl [,mfl] ... [, mfl] [g~ER lmn] [;lid I Loads the specified load module and starts
execution.

L [, Ud] ••• [, lid]J[UNDER ~~~T~ Options:

I ibrary search: (L), (NL), (Pi), (FDP), (NP)

default: (NL), (Pl)

display: (D), (ND), (C), (NC), (M),
(NM)

default: (D), (C), (NM)

symbol table: (I), (NI)

default: (I)

mfl may be fid or $; parentheses enclosing mfls
cause merge of symbol tables.

I id must be a I ibrary fid.

Appendix A 99

Table A-1. TEL Command Summary (cont.)

Command Description

SAVE{g~ER} fid
Saves the current core image on the designated
file.

SET deb 0

[oplo~I] Assigns file or device to a DCB or sets DCB
SET deb device [;dopt (;dopt] ... [;dopt]]

tapecode [tapeid]
parameter.

eapecode [tapeid]/fid][[[]]
Options: see Tables C-1, C-2, and C-3.

SET deb filecode/fid ;fopt ;fopt] ... fopt

START[~mn] (UNDER DELTA]
Begins execution of the program just loaded,
either with or without an associated debugger.

STOP Terminates the current job step.

STATUS Displays the current accounting values.

Subsystem Calls These cal Is are entered while TEL is in control of
the terminal. They tum over control of the

BASIC terminal to the subsystem.

CONTROL

DELTA

EDIT

FORT4

META

PCL

SUPER

lmn (user's program)

TABS sG s] •.. [, s] Sets the simulated tab stops at the terminal.

TERMINAL type Sets the terminal type for proper 1/0 translations.
Type may be 33, 35, or 37.

100 Appendix A

APPENDIX B. FILE IDENTIFIERS AND THEIR PARTS

A file identification {fid) consists of a file name and optionally an account and/or a password. Special types of
files are an lmn (load module) which is produced as a result of a LINK or RUN command, and a rom (reloeatable
object module) which is produced by an assembler or compiler. Table B-1 illustrates the structure of a fid.

Table B-1. File Identifiers and Their Parts

Symbol Structure

lmn a file identifier {fid) that names a load module.

rom a file identifier {fid) that names a relocatable object module.

fid name [. [account] [. password]]
t

name 1 to 10 characters of the X character set.

account 1 to 8 characters of the X character set.

password 1 to 8 characters of the X character set.

X character set A-Z a-z 0-9 $ * % : @ --

tThe usage "name." is valid only when the fid is an lmn used as a command verb (see Chapter 8).

Appendix B 101

APPENDIX C. SET COMMAND CODES

Tables C-1 through C-3 define the codes which may be used as options in the SET command.

Table C-1. DCB Assignment Codes - SET Command

Type Codes Description

Operational Label BI, BO, C, CI, CO, DC, When the DCB is assigned to one of the system
DO, EI, EO, GO, LL, operational labels, the actual device con-
LO, PO, SI, SL, SO, nected to the DCB is that implied by the
UC operational label, if any, for on-line mode.

NO No assignment, i.e., no default is to be
applied.

Device CP Card punch.
pp Paper tape punch.
LP Line printer.

Magnetic Tape (tapecode) 9T 9-track tape.
7T 7-track tape.
MT Any magnetic tape.

Secondary Storage (fi I ecode) DC Any data file. (This is the default code if no
other code is given.)

Table C-2. Device Options - SET Command

Format Description

TAB = tab[, tab J ... [,tab J Specifies simulated tab stops and is followed by a list of up to 16 decimal
numbers, separated by commas, giving the column position of the stops. If
al I 16 stops are not specified, the stops given are assigned to the first stops
and the remainder are reset.

LINES= value Gives the number of printable lines per page and is a single decimal value.
The maximum value is 255.

SPACE= value Gives the number of lines of space after printing and is a single decimal value.
Values of 0 or 1 result in single spacing. The maximum value is 255.

DRC, NOD RC Turns the special formatting of records on and off. DRC specifies that the
Monitor is not to do special formatting of records on read or write operations.
NODRC specifies the Monitor is to do special formatting. If neither DRC nor
NODRC is specified, NODRC is assumed by default.

VFC, NOVFC Controls the formatting of printing by using the first character of each record.
VFC specifies that the first character of each record is a format-control char-
acter. NOVFC specifies that records do not contain a format-control char-
acter. NOVFC is assumed by default.

COUNT= value Turns on page counting and specifies the column number at which the page
number is to be printed.

BCD, BIN Controls the binary-EBCDIC mode for device read and write operations.

102 Appendix C

Table C-2. Device Options - SET Command

Format Description

FBCD, NOFBCD Controls the automatic conversion between external Hollerith code and
internal EBCDIC code (FORTRAN BCD conversion). NOFBCD is assumed
by default.

PACK, UNPACK Controls the packed or unpacked mode of writing 7-track tape. PACK is
assumed by default.

DATA= value Controls the beginning column for printing or punching and is a decimal
value. The maximum value is 144.

SEQ= value Specifies that sequence numbers are to be punched in columns 77-80 of
punched output. Four characters of nonblank sequence identification may be
given for columns 73-76. Fewer than four characters are left-justified and
filled with blanks.

L, NOL Identifies the device type. L specifies that the device must be listing type.
NOL specifies that it need not be listing type. NOL is assumed by default.

Table C-3. File Options - SET Command

Type Format Description

Organization CONSEC Consecutive record organization.

KEYED Keyed record organization.

Access SEQUEN Records wil I be accessed sequentially.

DIRECT Records wil I be accessed by key.

Function IN File is read only.

OUT File is write only.

IN OUT File is to be updated.

OUTIN File is scratch.

Disposition REL File is to be released on closing.

SAVE File is prepared to be saved on closing.

Appendix C 103

APPENDIX D. LINK AND RUN COMMAND CODES

Tables D-1_ and D-2 define the codes that may be used in the LINK and RUN commands.

Table D-1. Library Search Codes

Code Meaning

(L) Specifies that the system I ibrary is to be searched to satisfy external references that
have not been satisfied by the program. (This is the default option.)

(NL) Specifies that a system I ibrary search is not required.

(Pi) Specifies that the ith public core library is to be searched for unsatisfied external
references. Default is to Pl if no other public core library is specified. Only one
public library may be associated with a program.

(FDP or (PO) Specifies that the FORTRAN Subprogram library PO, that includes the Debug rou-
tines, is required.

(NP) Specifies that a public core library is not required.

Note: The sequence of the library search is as follows: -- User I ibraries are searched first, the pub Ii c I ibrary
is associated, then the system library is searched.

Table D-2. Error Displays

Code Meaning

(D) Specifies that al I unsatisfied internal and external symbols are to be displayed at
the completion of the linking process (including library searches, if specified). The
unsatisfied symbols are identified as to whether they are internal or external and to
which module they belong.

(ND) Specifies that the unsatisfied internal and external symbols are not to be displayed.

(C) Specifies that al I conflicting internal and external symbols are to be displayed. The
symbols are displayed with their source (module name) and type (internal or external).

(NC) Specifies that the conflicting symbols are not to be displayed.

(M) Specifies that the load map is to be displayed upon completion of the linking process.
The symbols are displayed by source with type resolution and val!,!e.

(NM) Specifies that the load map is not to be displayed.

Note: The normal default options are D, C, and NM.

104 Appendix D

APPENDIX E. SPECIAL TERMINAL KEYS

Certain terminal keys, key sequences, and key combinations cause action to be taken other than simple transmission
of the character. Table E-1 illustrates these key sequences and the action produced.

Key Sequence

(§E

§F

@s

@U

®or@)

Table E-1. Special Terminal Keys

Action Produced

Sets or resets the flag that controls echoplex output.

Causes end-of-file action on input.

Functions as a tab key.

Causes spacing to a new page and printing of new page
heading.

Simulates a local line feed. No activation occurs.

Sets or resets the flag that controls space-insertion mode.

Sets or resets the flag that controls tab simulation.

Sets or resets the flag that controls translation of lower
case characters.

Erases current partial input I ine.

Causes an interrupt and return of control to processor, if
processor has break control; otherwise control goes to TEL.
More than three BREAKs cause return of control to TEL.

Causes a carriage return.

Deletes the last character received.

Causes an interrupt and return of control to TEL.

Appendix E 105

Xerox Data Systems

READER COMMENT FORM XEROX
We would appreciate your comments and suggestions for improving this publication.

Publication No. lRev. Letter l Title lCurrent Date

How did you use this publication? Is the material presented effectively?

D Learning D .tnsta 11 ing D Operating D Fully covered D We 11 i II ustrated

D Reference D Maintaining D Sales D Clear D Well organized

What is your overall rating of this publication? What is your occupation?

D Very good D Fair 0 Very poor

D Good D Poor

Your other comments may be entered here. Piease be specific and give page, column, and
line number references where applicable. To report errors, please use the XDS Software
Improvement or Difficulty Report (1188) instead of this form.

Thank you for your interest. Your name and return address.

Fold and fasten as shown on back.
No postage needed if mailed in U.S.A.

2190(5/71) Xerox Data Systems

STAPLE

FOLD

FOLD

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

Xerox Data Systems

701 South Aviation Boulevard
El Segundo, California 90245

ATTN: PROGRAMMING PUBLICATIONS

STAPLE

FIRST CLASS
PERMIT NO. 229

EL SEGUNDO. CALIF.

I
I

1

I
--------------j

w
z
...J

(!)
z
0
...J
<(

1-
::J
u

