CONTENTS

1. Introduction 2
2. Selecting the Base Port Address 2
3. Reading the Clock 4
4. Setting the Clock 6
5. Interrupt Mode Operation 8
6. Software Description 9

FIGURES

1. PORT selection switch 3
2. INT address selection switch 8

TABLES

I. Valid Base Port Addresses 4
II. Valid Interrupt Addresses 9

APPENDIX

I. RTCREAD - read the clock (Basic) 12
II. RTCSET - set the clock (Basic) 14
III. RTC - interrupt driven programs 16
IV. TIME.BAS clock in MBasic 5.0 27
V. READ.ASM clock read example for adding 31
to your I/O PROM or BIOS

SCHEMATIC & PARTS LIST 38

WARRANTY 43
All clocks have an on-board, fully charged lithium battery. Serious damage to the battery may result if the circuit board is placed on a conducting surface.

INTRODUCTION

The SciTronics Inc. S-100 Real Time Clock offers computer enthusiasts an extremely accurate time piece for their system. It employs the latest microprocessor clock chip available and is crystal-controlled to assure .002% accuracy. A lithium battery provides clock power in the event that system power is removed. The RTC-100 may be used to generate interrupts while operating in the background, providing time resolutions as fine as every second. The clock provides year, month, date, day of week, hour, minute, and second data. The RTC-100 is made to be fully compatible with the SciTronics Remote Controller for real-time control of a-c operated appliances. Interactive software packages written in BASIC provide the user with easy-to-use programs to set and read the RTC-100. There are two programs required to use your clock, RTCSET, to set the clock, and RTCREAD to read and display the clock data. In addition to Basic versions of each of these programs, an assembly language program is supplied as an example of how to use the clock in a non-Basic interrupt-driven environment.

Before the clock is installed in your system, you will have to set the base port address and, if you plan to use program interrupt, the interrupt restart address.

SELECTING THE BASE PORT ADDRESS

The S-100 clock uses four port addresses; one base address, and three additional consecutive addresses. These four ports are used to read and write various data registers within the Peripheral Interface Adaptor chip. In order to select your base address, you must set or reset the six port-select switches located on the circuit board. These switches are part of the 8-position dip switch, PORT, shown in Figure 1. The general form of the base port address is:

A0 A1 A2 A3 A4 A5 A6 A7, where A2 through A7 are user defined address bits. Putting any switch into the "ON" ("OFF") position causes that address bit to be valid when high (low).
As an example, to set the base address to 144 decimal (220 octal/90 hexadecimal), the PORT switches should be set as follows:

```
A2   A7
|   |
xx00  1001
|0Hex| |9Hex|
```

Note that address bits A1 and A0 do not get set because they are used internally to select among the clock functions. It is important that you set the switches with reference to the markings on the circuit board and the diagram of Figure 1, below. Do not use the switch markings as a guide to the identification of the address bits as they may vary from one production run to another. The only valid base addresses are those which are multiples of 4, such as: 0, 4, 8, 12, 16, 20, ... 244, 248, 252. Table I is a listing of valid port addresses in binary and decimal. Since the Basic clock software will ask you for your base port address in decimal, choose one that does not conflict with any I/O ports already assigned in your system and note it here.

```
Base Port Address = \frac{96}{24} (decimal)
```

```
0 0 0 | 1 0
+---------------------+
| [] [] [] [] [] [] [] [] |
| [] [] [] [] [] [] [] [] |
| [] [] [] [] [] [] [] [] |
+---------------------+
 2 3 4 5 6 7
```

Figure 1. - Base Port Address Switch
Table I. Valid Base Port Addresses

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0000000</td>
<td>88</td>
<td>011010</td>
<td>172</td>
<td>110101</td>
</tr>
<tr>
<td>04</td>
<td>1000000</td>
<td>92</td>
<td>111010</td>
<td>176</td>
<td>001101</td>
</tr>
<tr>
<td>08</td>
<td>0100000</td>
<td>96</td>
<td>000110</td>
<td>180</td>
<td>101101</td>
</tr>
<tr>
<td>12</td>
<td>1100000</td>
<td>100</td>
<td>100110</td>
<td>184</td>
<td>011101</td>
</tr>
<tr>
<td>16</td>
<td>0010000</td>
<td>104</td>
<td>010110</td>
<td>188</td>
<td>111101</td>
</tr>
<tr>
<td>20</td>
<td>1010000</td>
<td>108</td>
<td>110110</td>
<td>192</td>
<td>000011</td>
</tr>
<tr>
<td>24</td>
<td>0110000</td>
<td>112</td>
<td>001110</td>
<td>196</td>
<td>100011</td>
</tr>
<tr>
<td>28</td>
<td>1110000</td>
<td>116</td>
<td>101110</td>
<td>200</td>
<td>010011</td>
</tr>
<tr>
<td>32</td>
<td>0001000</td>
<td>120</td>
<td>011110</td>
<td>204</td>
<td>110011</td>
</tr>
<tr>
<td>36</td>
<td>1001000</td>
<td>124</td>
<td>111110</td>
<td>208</td>
<td>001011</td>
</tr>
<tr>
<td>40</td>
<td>0101000</td>
<td>128</td>
<td>000001</td>
<td>212</td>
<td>101011</td>
</tr>
<tr>
<td>44</td>
<td>1101000</td>
<td>132</td>
<td>100001</td>
<td>216</td>
<td>011011</td>
</tr>
<tr>
<td>48</td>
<td>0011000</td>
<td>136</td>
<td>010001</td>
<td>220</td>
<td>111011</td>
</tr>
<tr>
<td>52</td>
<td>1011000</td>
<td>140</td>
<td>110001</td>
<td>224</td>
<td>000111</td>
</tr>
<tr>
<td>56</td>
<td>0111000</td>
<td>144</td>
<td>001001</td>
<td>228</td>
<td>100111</td>
</tr>
<tr>
<td>60</td>
<td>1111000</td>
<td>148</td>
<td>101001</td>
<td>232</td>
<td>010111</td>
</tr>
<tr>
<td>64</td>
<td>0000100</td>
<td>152</td>
<td>011001</td>
<td>236</td>
<td>110111</td>
</tr>
<tr>
<td>68</td>
<td>1000100</td>
<td>156</td>
<td>111001</td>
<td>240</td>
<td>001111</td>
</tr>
<tr>
<td>72</td>
<td>0100100</td>
<td>160</td>
<td>000101</td>
<td>244</td>
<td>101111</td>
</tr>
<tr>
<td>76</td>
<td>1100100</td>
<td>164</td>
<td>100101</td>
<td>248</td>
<td>011111</td>
</tr>
<tr>
<td>80</td>
<td>0010100</td>
<td>168</td>
<td>010101</td>
<td>252</td>
<td>111111</td>
</tr>
<tr>
<td>84</td>
<td>1010100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: the binary digits are listed in the same order as they would be set into the PORT switch with the S-100 connector towards you.

READING THE CLOCK

Your Scitronics Real-Time clock keeps time continuously; powered by your system when it is on, and by its onboard lithium battery when your system is off. You may read the clock at any time when your system is running; an example of a Basic program to read and display the clock data is given in the Appendix. This program, RTCREAD, reads and displays the clock data on a continuous basis. The program elements, and, in particular, the clock read subroutine, may be incorporated as part of your own software.
Scitronics RTC-100 Real-Time Clock

SEQUENCE TO ENABLE CLOCK READ no interrupts active:

port # = dec = hex = 76 543 2 10 - binary bit order

port 1 = 240 = F0H = 11 110 0 00 - to PIA 'A' ctrl port
CA2 = low = hold high =
start of stop clock pulse

port 0 = 15 = 0FH = 0000 1111 - to PIA 'DIR' data input register
||| |||| direction information to be used
||| |||| later by F4H instruction
||| ++++++ sets b0-b3 to output
++++-------- sets b4-b7 to input

150us delay

port 1 = 244 = F4H = 11 110 1 00 - to PIA 'A' ctrl port
sets CA2 low & port direction
CA2 = low = hold high =
clock stopped

port 3 = 248 = F8H = 11 111 0 00 - to PIA 'B' ctrl port
sets CB2 high
CB2 = high = start of read pulse

SEQUENCE TO READ CLOCK (repeat as needed):

digit address out to PIA port 'A'
6us delay
read PIA port 'A'
clear lower four bits
rotate upper four bits into lower four bits
save result
do next digit

AND 3 to month tens digit - eliminate leap year indicator
AND 3 to hours tens digit - eliminate AM/PM indicator

SEQUENCE TO RETURN CLOCK TO RUN MODE:

port 3 = 240 = F0H = 11 110 0 00 - to PIA 'B' ctrl port
sets CB2 low
CB2 = low = read pulse off

port 1 = 248 = F8H = 11 111 0 00 - to PIA 'A' ctrl port
sets CA2 high
CA2 = high = hold low =
end of clock stop pulse =
clock run mode active

Port 0 = 15 = 0FH
Port 3 = 248 = F8H 3y
SETTING THE CLOCK

Once you have installed your clock and are able to read it, you will want to set it to correspond to your local time zone. A Basic program, RTCSET, is provided for this purpose. You must tell the program your base port address (in decimal), and the current date and time. You will be asked to set the clock to the next full minute because the clock automatically resets its seconds to zero when it is set. You will be asked for the last two digits of the year, the one or two digits of the month, the date, the day of the week (Sunday = 0, etc.) and the time on a 24-hour basis. The clock is capable of handling Leap Year, although that feature is not included in the program as released.

SEQUENCE TO ENABLE CLOCK SETTING no interrupts active:

port # = dec = hex = 76 543 2 10 - binary bit order

port 0 = 255 = FFH = 1111 1111 - to PIA 'A' data input register
port 2 = 255 = FFH = 1111 1111 - to PIA 'B' data input register
data to preset both PIA ports to output

port 1 = 244 = F4H = 11 110 1 00 - to PIA 'A' ctrl port
sets CA2 to low & DIR of port CA2 = low = hold high
start of stop clock pulse

port 3 = 244 = F4H = 11 110 1 00 - to PIA 'B' ctrl port
sets CB2 to low & DIR of port CB2 = low = read off

150us delay

Continued on next page.
SEQUENCE TO SET CLOCK (repeat as needed):

port 0 = xxx = xxH =

<table>
<thead>
<tr>
<th>xxxx xxxx - digit address & data to PIA port 'A'</th>
</tr>
</thead>
<tbody>
<tr>
<td>b0 = a0 = clock digit</td>
</tr>
<tr>
<td>b1 = a1 select address</td>
</tr>
<tr>
<td>b2 = a2 bits</td>
</tr>
<tr>
<td>b3 = a3</td>
</tr>
<tr>
<td>b4 = d0 data to clock</td>
</tr>
<tr>
<td>b5 = d1 bits</td>
</tr>
<tr>
<td>b6 = d2</td>
</tr>
<tr>
<td>b7 = d3</td>
</tr>
</tbody>
</table>

port 2 = 0 = 00H = 0000 0000 - to PIA 'B' data input register
turns write pulse on

port 2 = 1 = 01H = 0000 0001 - to PIA 'B' data input register
turns write pulse off

do next digit

SEQUENCE TO RETURN CLOCK TO RUN MODE:

port 1 = 248 = F8H = 11 111 0 00 - to PIA 'A' ctrl port
sets CA2 high end of stop pulse
CA2 = high = hold low = run
INTERRUPT MODE OPERATION

As an alternative to reading the clock upon demand, you may set up your system to read the clock on an interrupt basis. If you read the clock under interrupt, the process of reading and displaying the data are separate functions. The clock is read every second in response to an interrupt request generated by the clock. At the conclusion of the instruction cycle in progress when the interrupt request was generated, the processor (if interrupt was enabled) initiates the machine interrupt cycle. This interrupt cycle resembles an ordinary instruction fetch cycle, except that the INTA (interrupt acknowledge) status bit is set high. The clock will respond during T3 of M1 by "jamming" an instruction onto the processor's data bus. This instruction, the RST (RESTART) instruction is of the form:

\[
\begin{array}{c}
B0 \\
| \\
111xxx11
\end{array}
\]

where \(xxx\) is the binary representation of the interrupt number selected for your clock. Once the processor receives the RST, control is transferred to the instruction located at the address eight times the decimal equivalent of the binary interrupt number \(xxx\).

For example, suppose the processor receives RST 2 upon interrupt; that is, the clock places 11010111 on the data bus. Then control will be transferred to \(8 \times 2 = 16\).

```
+-------------------+
| [ ] [ ] [ ] [ ] |
| [ ] [ ] [ ] [ ] |
| [ ] [ ] [ ] [ ] |
+-------------------+

3   4   5
```

Figure 2. - Interrupt Address Switch
Scitronics RTC-100 Real-Time Clock

The three bits xxx allow control to be transferred to any one of eight fixed locations; namely, 0, 8, 16, 24, 32, 40, 48, and 56. To give the user maximum flexibility in selecting any one of these eight locations, a 4-position dip switch, INT, is provided as shown in Figure 2. Please note the markings on the diagram. Also note that the switch is negative logic, that is, ON for 0 and OFF for 1. It is recommended that you avoid having all switches on (RST 0) or all switches off (RST 7) as, frequently, these addresses are used by other devices. Table II lists legal interrupt codes and their decimal equivalents.

Note your INT code here = ___________ (decimal)

Table II. - Valid Interrupt Addresses

<table>
<thead>
<tr>
<th>Interrupt Code</th>
<th>Switch Setting</th>
<th>Decimal Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0 xxx B7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 000 11</td>
<td>ON ON ON</td>
<td>0</td>
</tr>
<tr>
<td>111 100 11</td>
<td>OFF ON ON</td>
<td>8</td>
</tr>
<tr>
<td>111 010 11</td>
<td>ON OFF ON</td>
<td>16</td>
</tr>
<tr>
<td>111 110 11</td>
<td>OFF OFF ON</td>
<td>24</td>
</tr>
<tr>
<td>111 001 11</td>
<td>ON ON OFF</td>
<td>32</td>
</tr>
<tr>
<td>111 101 11</td>
<td>OFF ON OFF</td>
<td>40</td>
</tr>
<tr>
<td>111 011 11</td>
<td>ON OFF OFF</td>
<td>48</td>
</tr>
<tr>
<td>111 111 11</td>
<td>OFF OFF OFF</td>
<td>56</td>
</tr>
</tbody>
</table>

SOFTWARE DESCRIPTION

The two Basic programs, RTCREAD and RTCSET, have been described previously in brief. This section will discuss the format of the clock data as read by RTCREAD and as used by RTCSET to set the clock. This format is also used by the Scitronics a-c controller software to schedule and control a-c appliances and lights. The clock data block consists of a 13-byte area, each byte of which contains a single clock digit in its least significant 4 bits. The clock digits are in the order: year tens, year units, month tens (Leap Year flag is included with this digit), month units, day-of-week digit, hour tens (24-hour flag is included with this digit), hour units, minute tens, minute units, second tens, and second units. The read subroutine in RTCREAD places the clock board in read mode with Digit Hold on (so the digits will not change while you read them) and fills the clock data block.
The actual clock read operation requires transmitting a digit code to the clock (0=seconds units, 1=seconds tens, etc.), and then reading the clock port. At the conclusion of the read cycle, the clock is released from Hold. RTCREAD does not enable clock interrupts because it does not operate under interrupt, but reads the clock continuously. Because it cycles through the read and display portions of the program continuously, and because the speed of the various Basic programs vary considerably, the program may display the time more or less often than once per second on your system.

RTCSET uses a similar clock data block to set the clock; however, the format of the data actually used for setting the clock is somewhat different. The first part of RTCSET asks the user for the clock base port address and the clock setting information. Next the information is formatted with the data in the high order 4 bits and the digit code in the low order four bits. The digit code is the same as that used in reading the clock, that is 0=seconds units, 1=second tens, etc. The clock is set by the sequence of port operations shown in the program which transmit the data-digit/code-digit bytes to the clock and then place the clock back into normal mode. Once again, the clock interrupt is not enabled in the Basic programs.

The Appendix also contains a listing of a program demonstrating interrupt-driven use of the RTC100. This program is divided into two major sections: first, a section which is user-dependent; and second, the clock routines to set, read, start, and stop the clock. These routines, SETTER, INTR, STARTS, and STOPS should form part of any interrupt-driven software.

SETTER expects to find the clock data in the low four bits of the bytes in the clock area. It shifts each to the high four bits, inserts the proper code digit and sends the digits to the clock. SETTER must be run with interrupt off to avoid having INTR affect the data being set up; also, it does not enable interrupt mode after the clock is set. It is important to realize that the clock chip keeps time even when interrupt is off.

INTR is the interrupt service routine which is invoked automatically each second to read the clock data into the data array, CLOCK. The data is placed as individual digits into the array; the Leap Year and 24-hour flags are stripped off prior to storage. As shown in the first part of the demonstration program, the clock data may be printed from the data array by adding ASCII zero to each digit and sending them to an ASCII printer. INTR restores interrupt mode when it has finished reading the clock data.
Once the clock has been set, it will keep time and may be read; however, it will not be enabled to interrupt back ground programs until the program STARTS is run. This program enables the seconds 'tick' from the clock chip through the PIA chip to cause a program interrupt request. You must have set the INT switch on your RTC100 board to a suitable address and that address must be used for the program constant, RSTART. STARTS will set up the interrupt vector at RSTART to point to the interrupt service routine, INTR, before enabling interrupt.

You must have an interrupt vector at RSTART and the service routine INTR active in memory whenever the clock is generating interrupts. If not, your computer will get 'lost' and crash whatever program you are running. The program, STOPS, is provided to disable the clock interrupts so you may use your computer in the normal manner. STOPS disables the clock interrupts in two ways; first, it disables ALL interrupts by the command, DI, and second, it programs the PIA chip to not pass on the clock 'ticks'. If you are running other interrupt-driven devices besides the RTC100, you may wish to remove the DI command from the beginning of STOPS. Once again, STOPS stops the interrupts, not the time-keeping!
SOFTWARE
Scitronics RTC-100 Real-Time Clock

APPENDIX

I. RTCREAD.BAS

10 REM **READ SCITRONICS REAL-TIME CLOCK**
20 REM **COPYRIGHT 1980 - SCITRONICS, INC.**
30 DIM TIME(13), W$(7)
40 DATA SUN, MON, TUE, WED, THU, FRI, SAT
50 FOR X=1 TO 7 : READ W$(X) : NEXT X
60 PRINT
70 PRINT "PROGRAM TO DISPLAY CLOCK DATA"
80 PRINT "SCITRONICS, INC., BETHLEHEM, PA"
90 PRINT
100 REM THIS IS THE NON INTERRUPT-DRIVEN VERSION
110 PRINT "ENTER CLOCK BASE PORT ADDRESS"
120 PRINT "IN DECIMAL INTEGER FORM - 0, 4, 8, 12, 16, 20, ETC"
130 PRINT "MAXIMUM VALUE = 252"
140 INPUT P
150 REM CHECK FOR PROPER VALUE AND RANGE
160 IF P>=256 THEN 60
170 M=INT(P/4)
180 IF (4*M-P)<0 THEN 60
190 P1=P+1
200 P2=P+2
210 P3=P+3
220 REM DISPLAY LOOP STARTS HERE
230 GOSUB 1000
240 Y=TIME(1)*10+TIME(2)
250 Mo=TIME(3)*10+TIME(4)
260 D=TIME(5)*10+TIME(6)
270 W=TIME(7)+1
280 H=TIME(8)*10+TIME(9)
290 Mi=TIME(10)*10+TIME(11)
300 S=TIME(12)*10+TIME(13)
310 PRINT Y;";":Mo;";":D;" ";
320 PRINT W$(W);".";"
330 PRINT H;";":Mi;";":S;"
340 PRINT
350 GOTO 230
360 REM

Continued on next page.
1000 REM ****************************
1010 REM THIS READS THE CLOCK DATA *
1020 REM ****************************
1030 OUT P1,240 -Fφ-
1040 OUT P1,15 -φF-
1050 OUT P3,252 -FC-
1060 OUT P1,244 -FΠ-
1070 FOR X=1 TO 13
1080 OUT P1,13-X
1090 TIME(X)=INP(P) : NEXT X
1100 REM PUT CLOCK BACK INTO RUNNING MODE
1110 OUT P1,248 -Fg-
1120 OUT P1,15 -φF-
1130 OUT P3,248 -Fg-
1140 OUT P1,252 -FC-
1150 OUT P1,15 -ΦF-
1160 FOR X=1 TO 13
1170 TIME(X)=INT(TIME(X)/16) : NEXT X
1180 REM THERE ARE SPECIAL MARKS ON HOURS AND MONTH
1190 REM STRIP THEM OFF
1200 TIME(3)=TIME(3) AND 3
1210 TIME(8)=TIME(8) AND 3
1220 RETURN
1230 REM **LATEST REVISION - 801107**
II. RTCSET.BAS

10 REM PROGRAM TO SET SCITRONICS CLOCK - 801030
20 REM **COPYRIGHT 1980 - SCITRONICS, INC**
30 DIM TIME(13)
40 PRINT "PROGRAM TO SET THE SCITRONICS CLOCK"
50 PRINT "SCITRONICS, INC., BETHLEHEM, PA 18015"
60 PRINT
70 PRINT "ENTER CLOCK BASE PORT ADDRESS"
80 PRINT "IN DECIMAL INTEGER FORM - 0,4,8,12,16,20,ETC"
90 PRINT "MAXIMUM VALUE = 252"
100 INPUT P
110 REM CHECK FOR PROPER VALUE AND RANGE
120 IF P>=256 THEN 60
130 M=INT(P/4)
140 IF(4*M-P)<0 THEN 60
150 P1=P+1
160 P2=P+2
170 P3=P+3
180 REM GET THE TIME DATA
190 PRINT
200 PRINT "ENTER DATE IN THE FORM: YR,MO,DA "
210 PRINT "ONLY LAST 2 DIGITS FOR YR!"
220 INPUT YR,MO,DA
230 PRINT
240 PRINT "ENTER DAY-OF-THE-WEEK - 0=SUNDAY "
250 INPUT W
260 PRINT
270 PRINT "ENTER TIME ON 24HR CLOCK IN THE"
280 PRINT "FORM: HR,MIN"
290 PRINT "CLOCK ALWAYS STARTS ON 00 SECONDS, SO"
300 PRINT "BE SURE TO ENTER THE NEXT MINUTE."
310 INPUT HR,MIN
320 REM PREPARE THE DATA FOR ENTRY
330 TIME(1)=16*INT(YR/10)+12
340 TIME(2)=16*(YR-10*INT(YR/10))+11
350 TIME(3)=16*INT(MO/10)+10
360 TIME(4)=16*(MO-10*INT(MO/10))+9
370 TIME(5)=16*INT(DA/10)+8
380 TIME(6)=16*(DA-10*INT(DA/10))+7
390 TIME(7)=16*W+6
400 TIME(8)=16*INT(HR/10)+5+128
410 TIME(9)=16*(HR-10*INT(HR/10))+4
420 TIME(10)=16*INT(MIN/10)+3
430 TIME(11)=16*(MIN-10*INT(MIN/10))+2
440 TIME(12)=1
450 TIME(13)=0

Continued on next page.
REM DATA IS READY, ASK FOR
REM START SIGNAL FROM USER
PRINT
PRINT "ENTER 1 AND CARRIAGE RETURN TO SET CLOCK"
PRINT "PUSH CR ON THE ZERO SECOND"

REM THIS IS THE SETTING SEQUENCE
OUT P3,244 FF
OUT P2,255 FF
OUT P3,240 FF
OUT P2,255 FF
OUT P1,240 FF
OUT P1,244 FF

FOR X=1 TO 13
OUT P,TIME(X)
OUT P2,0
OUT P2,1
NEXT X
OUT P1,248 FF
OUT P3,240 FF
PRINT "THE CLOCK IS SET"
END
Scitronics S-100 Real-Time Clock

Date - 801024

Revision - 801202

Programmer - A. I. Larky

COPYRIGHT 1980 - SCITRONICS, INC

ORG 100H

BDOS EQU 5H ;DISK SYSTEM ETP

CONIN EQU 1H ;READ CONSOLE DEVICE

PRINT EQU 9H ;PRINT LINE BUFFER

CR EQU 13

LF EQU 10

TEST PROGRAM

THE CODE WHICH FOLLOWS IS AN EXAMPLE OF THE INITIALIZATION AND DISPLAY OF CLOCK INFORMATION. IT SHOULD BE CUSTOMIZED FOR YOUR OWN APPLICATION. THE CODE WHICH FOLLOWS THE DIVIDING LINES IS COMMON TO ALL CLOCK PROGRAMS.

LXI SP,STACK

CALL MSG

DW ID

CALL STOPS ;STOP THE CLOCK

CALL SETUP ;SET UP DATE AND TIME

CALL STARTS ;START THE CLOCK

AGAIN: CALL DISPLA

JMP AGAIN

ID DB '801202 - SCITRONICS REAL-TIME CLOCK'

DB CR,LF,'$'

Continued on next page.

THE DISPLAY ROUTINES BUILD AN OUTPUT STRING *
AT "LINE" WHICH CAN BE PRINTED TO SHOW DATE *
AND TIME. THE USER SHOULD INSERT HIS OWN *
PRINT ROUTINE IN PLACE OF THE BDOS CALL IN *
THE ROUTINE "MSG".

;***
; DISPLA: LXI H,OLD
MOV A,M ;EXAMINE FLAG
ANA A
JZ DISPLA ;SAME OLD DATA
DI ;DON'T INTERRUPT WHILE
;WE'RE MAKING THE LINE IMAGE
MVI M,0 ;CLEAR THE FLAG
LXI B,6
LXI D,LNE ;OUTPUT BUFFER
LXI H,CLOCK
CALL DISP8 ;DISPLAY DATE
INX H ;SKIP DAY OF THE WEEK
CALL BLANK
MVI C,6
CALL DISP8 ;SET UP TO DISPLAY TIME

; IF YOU HAVE A Z-80 CPU YOU MUST SELECT MODE 0
; INTERRUPTS BY PUTTING
; DB 0EDH
; AND
; DB 46H
; IN PLACE OF THE NOP'S BELOW.
NOP
NOP

EI ;ITS OK TO TURN INTERRUPT BACK ON
CALL CRLF
CALL MSG ;PRINT THE LINE IMAGE
DW LINE
RET

DISP8: CALL DISP9
CALL DISP9 ;PLANT 2ND DIGIT
MVI A,':'
CALL DISP9A ;PLANT COLON
JNZ DISP8
RET

Continued from previous page.
Continued on next page.
; DISP9: MOV A, M
INX H
ANI 0FH
ADI '0'
DCR C
;
DISP9A: STAX D
INX D
RET

; BLANK: MVI A, ' '
JMP DISP9A

; CRLF: MVI A, 13
CALL DISP9A
MVI A, 10
CALL DISP9A
MVI A, '$'
JMP DISP9A

; SETUP: CALL MSG
DW DOYOU
CALL READ ; GET ANSWER
CPI 'Y'
STA OLD ; UNKNOWN TIME
RNZ ; NO
CALL MSG
DW ASKFOR ; PROMPT FOR DATA
CALL NUMIN ; GET DATE AND TIME
JMP SETTER ; SET THE CLOCK

; NUMIN: LXI D,CLOCK
MVI B, 4
CALL NUMCON ; GET DATE INFO
DCX D ; ONLY ONE DIGIT TO DAY-OF-WEEK
LDAX D ; GET IT
DCX D ; BACKUP
STAX D ; PLANT IT
INX D
MVI B, 2
JMP NUMCON ; GET TIME INFO (HR. & MIN. ONLY)

Continued on next page.
; NUMCON: MVI L, 0 ;CLEAR THE NUMBER
NUMC2: CALL READ ;GET ONE DIGIT
CPI ;
JZ NUMC4 ;BLANK IS AN ENDING
CPI ;
JZ NUMC4 ;SO IS COMMA
CPI ;
JZ NUMC4 ;SO IS PERIOD
SUI '0' ;NOW WE ASSUME A DIGIT
DAD H ;BEGIN THE *16
DAD H
DAD H
DAD H
ADD L ;INSERT NEW DIGIT
MOV L,A
JMP NUMC2 ;GET MORE DIGITS
; THE CODE ABOVE ENSURES THAT WE TREAT ONE-DIGIT
; AND TWO-DIGIT ENTRIES ALIKE.
NUMC4: MOV A,L ;MOVE HIGH STUFF LOW
RRC
RRC
RRC
RRC
ANI 0FH
STAX D
INX D
MVI A, 0FH
ANA L
STAX D ;PLANT A DIGIT
INX D
DCR B ;MORE PAIRS ?
JNZ NUMCON ;YES
RET

; THE USER SHOULD INSERT HIS OWN OUTPUT
; ROUTINE CALL IN PLACE OF THE CALL TO BDOS
;
; NOTE: $ IS THE END-OF-PRINT-LINE FLAG
; FOR BDOS, NOT A PRINTABLE CHARACTER.

Continued on next page.
MSG: XTHL
 MOV E, M
 INX H
 MOV D, M
 INX H
 XTHL
 MVI C, PRINT
 JMP BDOS

; THE USER SHOULD INSERT HIS OWN CHARACTER INPUT
; ROUTINE IN PLACE OF THE CALL TO BDOS.

READ: PUSH B
 PUSH D
 PUSH H
 MVI C, CONIN
 CALL BDOS
 POP H
 POP D
 POP B
 RET

ASKFOR: DB ' ENTER DATE AND TIME', CR, LF
 DB ' (YR,MON,DAY,DATE,HR,MIN.)'
 DB CR, LF, ' IN THE FORM: 80,10,25,6,18,12.'
 DB CR, LF, ' (SUNDAY = DAY 0)', CR, LF, '$'

DOYOU: DB CR, LF, ' SET NEW TIME ? - $'

LINE: DS 25
OLD: DS 1 ; OLD CHECKSUM KEPT HERE

;**
; END OF DISPLAY EXAMPLE *
;**

; THE ROUTINES WHICH FOLLOW SHOULD BE *
; PART OF ANY CLOCK SOFTWARE. WHILE *
; THE READING OF THE CLOCK IS DONE VIA *
; PRIORITY INTERRUPT, THE USER MAY READ*
; THE CLOCK AT ANY TIME BY CALLING THE *
; ROUTINE "INTR". IF THE CLOCK IS NOT *
; TO BE READ UNDER INTERRUPT, REMOVE *
; THE 'EI' INSTRUCTION FROM THE END OF *
; THE "INTR" AND "STARTS" ROUTINES. *
;**
PORT EQU 24 ;BASE PORT ADDRESS
;
; THE VALUE FOR 'PORT' MUST MATCH THAT WHICH YOU HAVE
; SELECTED BY THE SWITCHES ON YOUR CARD. THE ONE SHOWN
; ABOVE CORRESPONDS TO SWITCH SETTINGS: 0110000
;
PORT1 EQU PORT+1
PORT2 EQU PORT+2
PORT3 EQU PORT+3
;
; THE VALUE FOR 'RSTART' MUST MATCH THAT WHICH YOU HAVE
; SELECTED BY THE SWITCHES ON YOUR CARD. THE ONE SHOWN
; BELOW CORRESPONDS TO SWITCH SETTINGS: ON OFF OFF
;
RSTART EQU 48 ;RESTART ADDRESS
;
; THIS IS THE INTERRUPT SERVICE ROUTINE WHICH IS
; INVOKED BY THE CLOCK, ONCE PER SECOND.
;
INTR: PUSH PSW ;SAVE ALL REGISTERS
PUSH B
PUSH D
PUSH H
MVI A,0F0H ;SEQUENCE TO ENABLE THE CLOCK
OUT PORT1 ;FOR READING
MVI A,0FH
OUT PORT
MVI A,07FH

LOOP1: INR A
JNZ LOOP1
MVI A,0FCH
OUT PORT3
MVI A,0F4H
OUT PORT1
LXI B,NDATA
LXI H,CLOCK+NDATA-1

Continued on next page.
LOOP2: MOV A,B ;CODE DIGIT TO SELECT CLOCK ELEMENT
OUT PORT ;WE NEED A BIT OF DELAY HERE TOO
NOP NOP
NOP NOP
NOP
IN PORT ;READ CLOCK ELEMENT
ANI 0F0H ;DROP CODE DIGIT
RRC RRC
RRC RRC
MOV M,A ;SAVE DATA DIGIT
DCX H
INR B
DCR C
JNZ LOOP2

; NOW WIPE OUT THE LEAP YEAR AND 24HR MARKS
LXI D,HOUR-CLOCK+1
DAD D ;OFFSET TO HOUR TENS
MOV A,M
ANI 3
MOV M,A
DCX H ;BACK UP TO MONTH
DCX H
DCX H
MOV A,M
ANI 3
MOV M,A ;WIPE OUT LEAP YEAR MARK

INTR4: MVI A,0F8H ;BEGIN SEQUENCE TO RETURN LY9
OUT PORT1 ;CLOCK TO INTERRUPT MODE
MVI A,0F8H
OUT PORT
IN PORT2 ;CLEAR MINUTES INTERRUPT

Continued on next page.
; NOTE ** IF YOU WANT TO INTERRUPT EVERY MINUTE, CHANGE
; THE TWO INSTRUCTIONS BELOW TO THE VALUES IN PARENTHESES.
MVI A,0F8H ;(MVI A,0F9H) ******
OUT PORT3 ;DISABLE (ENABLE) MINUTES INTERRUPT
MVI A,0FDH ;(MVI A,0FCH) ******
OUT PORT1 ;ENABLE (DISABLE) SECONDS INTERRUPT
MVI A,0FH
OUT PORT
STA OLD ;SET DISPLAY FLAG
POP H ;RESTORE ALL REGISTERS
POP D
POP B
POP PSW
; IF YOU HAVE A Z-80 CPU, SELECT INTERRUPT MODE 0 BY
; PUTTING
; DB 0EDH
;AND
; DB 46H
; IN PLACE OF THE NOP'S WHICH FOLLOW
NOP
NOP
;
EI
RET ;RE-ENABLE INTERRUPT MODE

; TURN OFF INTERRUPT
MVI A,0F4H
OUT PORT3
MVI A,0FFH
OUT PORT2
MVI A,0F0H
OUT PORT3
MVI A,0FFH
OUT PORT2
MVI A,0F0H
OUT PORT1
MVI A,0FFH
OUT PORT
MVI A,0F4H
OUT PORT3
MVI A,0F4H
OUT PORT1

;
;**
; THE CLOCK IS PROGRAMMED BY OUTPUTTING THE *
; DESIRED DIGITS, ONE AT A TIME. EACH DIGIT *
; MUST BE IN THE UPPER HALF OF A BYTE WITH *
; A DIGIT IN THE LOWER BYTE TO IDENTIFY WHICH *
; CLOCK ELEMENT IS TO BE SET. 0=SECONDS, 1=TENS*
; OF SECONDS, 2=MINUTES, 3=TENS OF MINUTES, 4= *
; HOURS, 5=TENS OF HOURS, 6=DAY-OF-THE-WEEK, 7= *
; DATE, 8=TENS OF DATE, 9=MONTH, 10=TENS OF MON-*
; TH, 11=UNITS OF YEAR, 12=TENS OF YEAR. *
; *
; THE LOOP BELOW SHIFTS THE INFORMATION DIGITS *
; TO THE HIGH NIBBLE, AND ADDS THE CODE DIGITS. *
; *
; NOTE: THE SECONDS MUST BE ACCESSSED, EVEN *
; THOUGH THEY CAN'T BE SET, IN ORDER TO RESET *
; THEM. A MARKER IS SET ON TENS OF HOURS *
; FOR 24-HR. TIME. *
;**

LXI H,CLOCK ;SET UP CONTROL DIGITS
MVI C,NDATA

START2:
MOV A,M ;GET ONE DIGIT
ADD A ;MOVE TO HIGH END
ADD A ; *4
ADD A ; *8
ADD A ; *16
ADD C ;INSERT CODE DIGIT
DCR A ;CORRECT IT
MOV M,A
INX H
DCR C
JNZ START2
LXI D,HOUR-CLOCK-NDATA ;OFFSET TO HOUR
DAD D
MOV A,M
ORI 128 ;SET MILITARY TIME
MOV M,A

Continued on next page.
; NOW THAT WE HAVE THE PROPER FORM OF DATA IN 'CLOCK',
; WE CAN DO THE ACTUAL CLOCK SETTING OPERATION.
LXI H,CLOCK ; INITIAL DATA AREA
MVI B,NDATA
LOOP4: MOV A,M ; SET UP CLOCK
OUT PORT
MVI A,0
OUT PORT2 ; CREATE A STROBE PULSE
NOP ; WE NEED SOME DELAY
NOP
NOP
NOP
NOP
NOP
MVI A,1
OUT PORT2 ; END OF STROBE
INX H
DCR B
JNZ LOOP4
MVI A,0F8H
OUT PORT1
MVI A,0F0H
OUT PORT3
RET

; STARTS: DI
PUSH PSW ; DUMMY PUSHES TO ENABLE US
PUSH B ; TO USE THE TAIL END OF
PUSH D ; THE "INTR" ROUTINE TO
PUSH H ; ENABLE INTERRUPTS
; SET UP THE INTERRUPT VECTOR
LXI H,RSTART
MVI M,JMP
INX H
MVI M,INTR AND 0FF8
INX H
MVI M,INTR SHR 8
JMP INTR4 ; NOW DO THE ENABLING

; STOPS: DI
MVI A,0
OUT PORT1
OUT PORT3
RET

Continued on next page.
; ;CLOCK DATA AREA
;
CLOCK: DB 8CH,0BH ;YEAR DIGITS (80)
DB 0AH,99H ;MONTH (09)
DB 18H,87H ;DATE (18)
DB 26H ;DAY-OF-WEEK (2 = TUES.)
HOUR EQU $;OFFSET TO HOURS
DB 05H,94H ;HOURS (09)
DB 13H,2H ;MINUTES (10)
DB 1,0 ;SECONDS (00)
;
NDATA EQU $-CLOCK
;
DS 50
STACK: DS 0
;
END
IV. TIME.BAS

10 DEFINT A-Z
20 DIM TIME(13), WS(7), MOS(12)
30 P0=208 'CLOCK PORT 0D0H change to your port address
40 P1=P0+1
50 P2=P0+2
60 P3=P0+3
70 WS(0) ="Sunday"
80 WS(1) ="Monday"
90 WS(2) ="Tuesday"
100 WS(3) ="Wednesday"
110 WS(4) ="Thursday"
120 WS(5) ="Friday"
130 WS(6) ="Saturday"
140 '
150 MOS(1) ="January"
160 MOS(2) ="February"
170 MOS(3) ="March"
180 MOS(4) ="April"
190 MOS(5) ="May"
200 MOS(6) ="June"
210 MOS(7) ="July"
220 MOS(8) ="August"
230 MOS(9) ="September"
240 MOS(10) ="October"
250 MOS(11) ="November"
260 MOS(12) ="December"
270 '
280 PRINT CHR$(26) 'clears screen on TeleVideo 912/920 terminal
290 PRINT
300 PRINT "Enter <T> for time display ONLY"
310 PRINT "Enter <S> for time setting"
320 PRINT "Enter <E> for EXIT"
330 X1$=INKEYS
340 IF X1$<CHR$(32) THEN 330
350 IF X1$="T" THEN 1000
360 IF X1$="t" THEN 1000
370 IF X1$="E" THEN END
380 IF X1$="e" THEN END
390 IF X1$="S" THEN 420
400 IF X1$="s" THEN 420
410 GOTO 330

Continued on next page.
420 PRINT CHR$(26)
430 PRINT
440 PRINT "Enter DATE in the form:"
450 PRINT " YY,MM,DD"
460 INPUT YR,MO,DA
470 PRINT
480 PRINT "Enter DAY-OF-THE-WEEK"
490 PRINT
500 PRINT " 0 = Sunday"
510 PRINT " 1 = Monday"
520 PRINT " 2 = Tuesday"
530 PRINT " 3 = Wednesday"
540 PRINT " 4 = Thursday"
550 PRINT " 5 = Friday"
560 PRINT " 6 = Saturday"
570 PRINT
580 INPUT W
590 PRINT
600 PRINT "Enter TIME on 24HR clock in the form of:"
610 PRINT " HH,MM"
620 INPUT HR,MIN
630 'PREPARE THE DATA FOR ENTRY
640 TIME (1) =16*INT(YR/10)+12
650 TIME (2) =16*(YR-10*INT(YR/10))+11
660 TIME (3) =16*INT(MO/10)+10
670 TIME (4) =16*(MO-10*INT(MO/10))+9
680 TIME (5) =16*INT(DA/10)+8
690 TIME (6) =16*(DA-10*INT(DA/10))+7
700 TIME (7) =16*W+6
710 TIME (8) =16*INT(HR/10)+5+128
720 TIME (9) =16*(HR-10*INT(HR/10))+4
730 TIME(10) =16*INT(MIN/10)+3
740 TIME(11) =16*(MIN-10*INT(MIN/10))+2
750 TIME(12) =1
760 TIME(13) =0
770 'DATA IS READY, ASK FOR
780 'START SIGNAL FROM USER
790 PRINT
800 PRINT "Press any key to set and start clock with zero seconds"
810 X$=INKEY$
820 IF X$< CHR$(32) THEN 810
830 IF LEN(X$)=0 THEN 810

Continued on next page.
840 'THIS IS THE SETTING SEQUENCE
850 OUT P3,244
860 OUT P2,255
870 OUT P3,240
880 OUT P2,255
890 OUT P1,240
900 OUT P0,255
910 OUT P3,244
920 OUT P1,244
930 FOR X=1 TO 13
940 OUT P0,TIME(X)
950 OUT P2,0
960 OUT P2,1
970 NEXT X
980 OUT P1,248
990 OUT P3,240
1000 ' READ CLOCK
1010 PRINT CHR$(26)
1020 '
1030 ' THIS READS THE CLOCK DATA
1040 '
1050 OUT P1,240
1060 OUT P0, 15
1070 OUT P1,244
1080 OUT P3,252
1090 FOR X=1 TO 13
1100 OUT P0,13-X
1110 TIME(X)=INP(P0)
1120 NEXT X
1130 ' PUT CLOCK BACK INTO RUNNING MODE
1140 OUT P3,240
1150 OUT P1,248
1160 FOR X=1 TO 13
1170 TIME(X)=INT(TIME(X)/16)
1180 NEXT X
1190 ' THERE ARE SPECIAL MARKS ON HOURS AND MONTH
1200 ' STRIP THEM OFF
1210 TIME(3) = TIME(3) AND 3
1220 TIME(8) = TIME(8) AND 3
1230 '

Continued on next page.
1240 Y$ = CHR$(TIME(1)+48)+CHR$(TIME(2)+48)
1250 MO = TIME(3)*10+TIME(4)
1260 IF TIME(5)>0 THEN D$=CHR$(TIME(5)+48)+CHR$(TIME(6)+48):GOTO 1280
1270 D$ = CHR$(TIME(6)+48)
1280 W = TIME(7)
1290 H$ = CHR$(TIME(8)+48)+CHR$(TIME(9)+48)
1300 MI$ = CHR$(TIME(10)+48)+CHR$(TIME(11)+48)
1310 S$ = CHR$(TIME(12)+48)+CHR$(TIME(13)+48)
1320
1330 X$=INKEY$
1340 IF X$<CHR$(32) THEN 1330
1350 IF LEN(X$)<0 THEN 280
1360 IF S$=S$ THEN 1050 ELSE S$=S$
1370
1380 PRINT CHR$(30); 'Cursor home command
1390 PRINT " ";
1400 PRINT W$(W);
1410 PRINT H$; ";MI$; ";S$
1420 PRINT MO$(MO); D$; " ;"19"; Y$
1430 PRINT CHR$(30);
1440 GOTO 1050
V. READ.ASM

--- Note ---

Interrupts not used

; PGM by Harry Kaemmerer 810220

PROM EQU xxxxH ; ADD START OF PROM ADDRESS
CONOUT EQU xxxxH ; ADD YOUR CONOUT CALL ADDRESS
PORT EQU xxH ; ADD BASE PORT ADDRESS FOR CLOCK

PORT1 EQU PORT+1
PORT2 EQU PORT+2
PORT3 EQU PORT+3

SECU EQU 0 ; SECONDS UNITS
SECT EQU SECU+1 ; SECONDS TENS
MINU EQU SECT+1 ; MINUTES UNITS
MINT EQU MINU+1 ; MINUTES TENS
HRSU EQU MINT+1 ; HR'S UNITS
HRST EQU HRSU+1 ; HR'S TENS
DAYW EQU HRST+1 ; DAY OF THE WEEK
DAYU EQU DAYW+1 ; DAY UNITS
DAYT EQU DAYU+1 ; DAY TENS
MONU EQU DAYT+1 ; MONTH UNITS
MONT EQU MONU+1 ; MONTH TENS
YEAU EQU MONT+1 ; YEAR UNITS
YEAT EQU YEAU+1 ; YEAR TENS

ASCII EQU 30H ; OFFSET TO MAKE CHAR. ASCII

ORG PROM

TIME: CALL TSTART ; DO CLOCK INIT SUB
CALL DAY0 ; DISPLAY TIME
CALL TIMED ; RESET CLOCK BOARD
RET

Continued on next page.
SUB ROUTINES START HERE

; D A Y 0
LXI H,STR3 ; POINTS TO LOOKUP TABLE FOR DAY
LXI B,ØH ; CLEAR B&C REGISTERS
MVI A,DAYW ; DAY READ INSTRUCTION
CALL GETDIG1 ; GET IT
MOV C,A ; MOVE DAY OF WEEK POINTER IN C.
DAD B ; ADD B&C TO H&L REGISTERS
MOV C,M ; GET OFFSET ADDRESS
LXI H,STR4 ; GET DAY NAME
DAD B ; POINT TO NAME
CALL MESAG ; SEND IT TO TERMINAL

; H R S 1
MVI A,HRST ; SELECT HR'S TENS DIGIT
CALL GETDIG1 ; GET DIGIT
ANI 3 ; ELIMINATE EXTRA BIT
CALL SENDCH ; SEND IT TO TERMINAL

; H R S 2
MVI A,HRSU ; SELECT HR'S UNITS DIGIT
CALL GETDIG ; SEND IT TO TERMINAL

; H R S 3
MVI A,'::' ; LOAD "::" SEPERATOR
CALL SENDIT ; SEND IT TO TERMINAL

; M I N 1
MVI A,MINT ; SELECT MINUTES TENS DIGIT
CALL GETDIG ; SEND IT TO TERMINAL

; M I N 2
MVI A,MINU ; SELECT MINUTES UNITS DIGIT
CALL GETDIG ; SEND IT TO TERMINAL

; M I N 3
MVI A,'::' ; LOAD "::" SEPERATOR
CALL SENDIT ; SEND IT TO TERMINAL

; S E C 1
MVI A,SECT ; SELECT SECONDS TENS DIGIT
CALL GETDIG ; SEND IT TO TERMINAL

; S E C 2
MVI A,SECU ; SELECT SECONDS UNITS DIGIT
CALL GETDIG ; SEND IT TO TERMINAL

Continued on next page.
Continued from previous page.

MON1
MVI A,MONT
CALL GETDIG1 ;SELECT MONTH TENS DIGIT
ANI 3 ;GET DIGIT
LXI H,STR5 ;ELIMINATE EXTRA BIT
CPI 1 ;POINT TO OFFSET LOOKUP TABLE
CZ LAB1 ;SEE IF IT IS A MONTH AFTER SEPT.
;IF IT IS A ONE THEN CALL

MON2
MVI A,MONU ;SELECT MONTH UNITS DIGIT
CALL GETDIG1 ;
DCR A ;DECR. MONTH VALUE BY ONE JAN.=0 THEN
LXI B,0 ;CLEAR B&C REGISTERS
MOV C,A ;PUT CLOCK DIGIT IN C REGISTER
DAD B ;ADD B&C TO H&L REGISTERS
MOV C,M ;PUT OFFSET NUMBER IN C REGISTER
LXI H,STR6 ;LOAD MONTH NAME POINTER
DAD B ;ADD OFFSET TO H&L REGISTERS
CALL MESAG ;SEND MESSAGE

DAY1
MVI A,DAYT ;SELECT DAY TENS DIGIT
CALL GETDIG1 ;
CPI 0 ;TEST FOR ZERO
JZ DAY2 ;JUMP TO DAY IF ZERO
PUSH PSW ;SAVE RESULT ON STACK
ADI ASCII ;MAKE IT ASCII
MOV C,A ;PUT IN C REGISTER
CALL CONOUT ;SEND IT
POP PSW ;RESTORE A REGISTER

DAY2
MVI A,DAYU ;SELECT DAY UNITS DIGIT
CALL GETDIG ;SEND IT TO TERMINAL

YEAO
LXI H,STR7 ;LOAD FIRST TWO DIGITS OF YEAR
CALL MESAG ;SEND IT TO TERMINAL

YEAI
MVI A,YEAT ;SELECT YEAR TENS DIGIT
CALL GETDIG ;SEND IT TO TERMINAL

YEAE2
MVI A,YEAU ;SELECT YEAR UNITS DIGIT
CALL GETDIG ;SEND IT TO TERMINAL

Continued on next page.
Scitronics RTC-100 Real-Time Clock

Continued from previous page.

TSTART MVI A,0F0H ;SEQUENCE TO ENABLE THE CLOCK
OUT PORT1
MVI A,0FH
OUT PORT

MVI A,0F0H ;LOAD DELAY CONST.
CALL DELAY ;DO SOME DELAY

MVI A,0FCH
OUT PORT3
MVI A,0F4H
OUT PORT1
RET

TIMED MVI A,0F8H ;RETURN CLOCK TO RUN MODE
OUT PORT1

MVI A,0FH
OUT PORT
MVI A,0F8H
OUT PORT3
MVI A,0FCH
OUT PORT1
MVI A,0FH
OUT PORT
RET

MESAG MOV A,M ;GET CHARACTER FROM MEMORY
CPI 0 ;TEST FOR ZERO
JZ MSS1 ;IF ZERO EXIT
CALL CONOUT ;SEND CHARACTER
INX H ;MOVE POINTER TO NEXT CHARACTER
JMP MESAG ;DO IT AGAIN UNTILL DONE
MSS1 RET ;RETURN

GETDIG CALL GETDIG1 ;READ CLOCK
SENDCH PUSH PSW ;SAVE FLAGS AND ACC.
ADJ ASCII ;MAKE IT ASCII
MOV C,A ;PUT IN ACC
CALL CONOUT ;SEND IT TO TERMINAL
POP PSW ;RESTORE ACC. AND FLAGS
RET ;RETURN TO CALLER

Continued on next page.
Scitronics RTC-100 Real-Time Clock

Continued from previous page.

SENDIT PUSH PSW ;SAVE FLAGS AND ACC.
MOV C,A ;PUT IN ACC
CALL CONOUT ;SEND IT TO TERMINAL
POP PSW ;RESTORE ACC. AND FLAGS
RET ;RETURN TO CALLER

GETDIG1 OUT PORT ;CODE DIGIT TO SELECT CLOCK ELEMENT
MVI A,0FAH ;DELAY FACTOR
CALL DELAY ;DELAY SOME TIME HERE
IN PORT ;READ CLOCK ELEMENT
ANI 0F0H ;DROP CODE PART OF DIGIT
RRC ;MOVE DATA TO LOW NIBBLE
RRC
RRC
RET ;NUMBER RETURNED IN ACC.

LAB1 LXI D,0 ;CLEAR D&E REGISTERS
MVI E,0AH ;IF THE RESULT WAS OCTOBER OR LATER
DAD D ;ADD X10 OFFSET
RET ;LOAD POINTER OFFSET AND RETURN

DELAY: INR A ;
JNZ DELAY ;NOT DONE DELAY SOME MORE
RET

STR3 DB 00H,08H,10H,19H ;OFFSET LOOKUP TABLE
DB 24H,2EH,36H ;FOR DAY OF THE WEEK

STR4 DB 'Sunday',0 ;
DB 'Monday',0 ;
DB 'Tuesday',0 ;
DB 'Wednesday',0 ;
DB 'Thursday',0 ;
DB 'Friday',0 ;
DB 'Saturday',0 ;

Continued on next page.
Scitronics RTC-100 Real-Time Clock

Continued from previous page.

STR5 DB 00H,0AH,15H,1DH ;OFFSET LOOKUP TABLE
DB 25H,2BH,32H,39H ;FOR MONTH NAME
DB 42H,4FH,59H,64H ;

STR6 DB ' January ',0 ;
DB ' February ',0 ;
DB ' March ',0 ;
DB ' April ',0 ;
DB ' May ',0 ;
DB ' June ',0 ;
DB ' July ',0 ;
DB ' August ',0 ;
DB ' September ',0 ;
DB ' October ',0 ;
DB ' November ',0 ;
DB ' December ',0 ;

STR7 DB ' 19',0 ; YEAR LEADING MESSAGE.
END PROM
VI. NORTHSTAR SOFTWARE

REM**************************RTCSET******************************
REM**NORTH STAR BASIC******************************
REM PROGRAM TO SET SCITRONICS CLOCK - 801003*
REM **COPYRIGHT 1980 - SCITRONICS, INC******
REM**CONV BY RICE COMMUNICATIONS INC******
REM !"PROGRAM TO SET THE SCITRONICS CLOCK"\INT(13)
REM !"SCITRONICS, INC., BETHLEHEM, PA 18015"
REM !"ENTER CLOCK BASE PORT ADDRESS"
REM !"IN DECIMAL INTER FORM - 0,4,8,16,20,ETC"
REM !"MAXIMUM VALUE = 252"\INPUT P
REM CHECK FOR PROPER VALUE AND RANGE
IF P>256THEN80\M=\INT(P/4)\IF(4*M-P)<0THEN80\P1=P+1\P2=P+2\P3=P+3
REM GET THE TIME DATA
REM !"ENTER DATE IN THE FORM: YR,MO DA"!"ONLY LAST TWO DIGITS FOR YR!"
REM INPUTY,M,D!"ENTER DAY-OF-THE-WEEK - 0=SUNDAY"\INPUTW!"
REM !"ENTER TIME ON 24HR CLOCK IN THE"!"FORM: HR,MIN"
REM !"CLOCK ALWAYS STARTS ON 00 SECONDS, SO"
REM !"BE SURE TO ENTER THE NEXT MINUTE."\INPUT,M1\REM PREPARE THE DATE
REM T(1)=16*\INT(Y/10)+12\T(2)=16*(Y-10*\INT(Y/10))+11\T(3)=16*\INT(M/10)+10
REM T(4)=16*(M-10*\INT(M/10))+9\T(5)=16*\INT(D/10)+8\T(6)=16*(D-10*\INT(D/10))+7
REM T(7)=16*M+6\T(8)=16*\INT(H/10)+5+128\T(9)=16*(H-10*\INT(H/10))+4
REM T(10)=16*\INT(M1/10)+3\T(11)=16*(M1-10*\INT(M1/10))+2\T(12)=1\T(13)=0
REM DATA IS READY, ASK FOR START SIGNAL FROM USER
REM !"ENTER 1 AND CARRIAGE RETURN TO SET CLOCK"
REM !"PUSH CR ON THE ZERO SECOND"\INPUTJ\REM THIS IS TO SET SEQUENCE
REM OUTP3,244\OUTP2,255\OUTP3,240\OUTP2,255\OUTP1,240\OUTP,255\OUTP3,244
REM OUTP1,244\FORX=1TO13\OUTP,T(X)\OUTP2,0\OUTP2,1\NEXTX\OUTP1,248\OUTP3,240
REM THE CLOCK IS SET"\CHAIN"RTCREAD"

REM**************************RTCREAD******************************
REM THIS PROGRAM IS IN NORTH STAR BASIC******
REM **CONV BY RICE COMMUNICATIONS INC******
REM ** READ SCITRONICS REAL-TIME CLOCK******
REM *COPYRIGHT 1980 - SCITRONICS, INC.******
REM *****PRESS (ESC) TO STOP READ OUT********
REM DIM T(13),W$(21)\W"="SUNMONTUEDTHFRSAT"
REM !"PROGRAM TO DISPLAY CLOCK DATA"
REM !"SCITRONICS, INC., BETHLEHEM, PA"
REM THIS IS THE NON INTERRUPT-DRIVEN VERSION
REM !"ENTER CLOCK BASE PORT ADDRESS"
REM !"IN DECIMAL INTER FORM - 0,4,8,12,16,20,ETC"
REM !"MAXIMUM VALUE = 252"\INPUT P
REM CHECK FOR PROPER VALUE AND RANGE
REM IF P>256THEN80\M=\INT(P/4)\IF(4*M-P)<0THEN80\P1=P+1\P2=P+2\P3=P+3
REM DISPLAY LOOP STARTS HERE
REM Y=T(1)*10+T(2)\MO=T(3)*10+T(4)\D=T(5)*10+T(6)\W=T(7)+1\H=T(8)*10+T(9)
REM M1=T(10)*10+T(11)\S=T(12)*10+T(13)
REM !"Y,":"M0,":":D,"",!WS(W#3-2,W#3),",",",!H,"","M1,"","S,"","!GOTO160
REM**
REM REM THIS READS THE CLOCK DATE *
REM**
REM OUT P1,240\OUTP,15\OUTP3,252\OUTP1,244\FORX=1TO13\OUTP,13-X
REM T(X)=\inp(P)\NEXT X
REM**
REM REM PUT CLOCK BACK INTO RUNNING MODE***
REM**
REM OUT P1,248\OUTP,15\OUTP3,248\OUTP1,252\OUTP,15\FORX=1TO13
REM T(X)=\INT(T(X)/16)\NEXT X\T(X)=\INT(T(X)/16)\NEXT X\T(X)=\INT(T(X)/16)\NEXT X

Page 37
RTC-100 PARTS LAYOUT: Refer to Parts List for parts description
<table>
<thead>
<tr>
<th>LAYOUT #</th>
<th>SCIITRONICS P/N</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 1</td>
<td>17031</td>
<td>3 V Lithium Battery</td>
</tr>
<tr>
<td>C 1</td>
<td>12024</td>
<td>.1mF @ 12V Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 2</td>
<td>12024</td>
<td>.1mF @ 12V Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 3</td>
<td>12024</td>
<td>.1mF @ 12V Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 4</td>
<td>12024</td>
<td>.1mF @ 12V Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 5</td>
<td>12024</td>
<td>.1mF @ 12V Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 6</td>
<td>12014</td>
<td>4.7mF @ 10V Solid Tantallum Capacitor</td>
</tr>
<tr>
<td>C 7</td>
<td>12031</td>
<td>15pF Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 8</td>
<td>12031</td>
<td>15pF Ceramic Disc Capacitor</td>
</tr>
<tr>
<td>C 9</td>
<td>12032</td>
<td>5-30pF Variable Ceramic Capacitor</td>
</tr>
<tr>
<td>CR 1</td>
<td>13011</td>
<td>IN6263 Diode</td>
</tr>
<tr>
<td>D 1</td>
<td>20079</td>
<td>8 Position DIP Switch</td>
</tr>
<tr>
<td>D 2</td>
<td>20084</td>
<td>4 Position DIP Switch</td>
</tr>
<tr>
<td>DS 0</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 1</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 2</td>
<td>17032</td>
<td>18 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 3</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 4</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 5</td>
<td>17034</td>
<td>40 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 6</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 7</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 8</td>
<td>17012</td>
<td>14 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 9</td>
<td>17033</td>
<td>20 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 10</td>
<td>17033</td>
<td>20 Pin DIP Socket</td>
</tr>
<tr>
<td>DS 11</td>
<td>17033</td>
<td>20 Pin DIP Socket</td>
</tr>
<tr>
<td>LAYOUT #</td>
<td>SCITRONICS P/N</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>HS 1</td>
<td>17030</td>
<td>Heat Sink for Voltage Regulator</td>
</tr>
<tr>
<td>J 1</td>
<td>22010</td>
<td>Jumper (seconds)</td>
</tr>
<tr>
<td>Q 1</td>
<td>18001</td>
<td>2N4124 Transistor</td>
</tr>
<tr>
<td>Q 2</td>
<td>18003</td>
<td>2N4126 Transistor</td>
</tr>
<tr>
<td>Q 3</td>
<td>18006</td>
<td>MPSA13 Transistor</td>
</tr>
<tr>
<td>Q 4</td>
<td>18006</td>
<td>MPSA13 Transistor</td>
</tr>
<tr>
<td>VR 1</td>
<td>14041</td>
<td>+5 V Voltage Regulator</td>
</tr>
<tr>
<td>R 1</td>
<td>11013</td>
<td>1K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 2</td>
<td>11013</td>
<td>1K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 3</td>
<td>11022</td>
<td>51K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 4</td>
<td>11001</td>
<td>10K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 5</td>
<td>11001</td>
<td>10K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 6</td>
<td>11028</td>
<td>3.3K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 7</td>
<td>11028</td>
<td>3.3K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 8</td>
<td>11028</td>
<td>3.3K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 9</td>
<td>11012</td>
<td>20K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 10</td>
<td>11012</td>
<td>20K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 11</td>
<td>11012</td>
<td>20K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 12</td>
<td>11012</td>
<td>20K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 13</td>
<td>11028</td>
<td>3.3K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>R 14</td>
<td>11028</td>
<td>3.3K (\Omega) Carbon Film Resistor</td>
</tr>
<tr>
<td>SR 1</td>
<td>11033</td>
<td>3.3K SIP Resistor Network</td>
</tr>
<tr>
<td>U 0</td>
<td>14047</td>
<td>7474 Dual D Flip Flop</td>
</tr>
<tr>
<td>U 1</td>
<td>14046</td>
<td>7408 Quad 2-in AND Gate</td>
</tr>
<tr>
<td>U 2</td>
<td>14045</td>
<td>MSM5832 OKI Clock Chip</td>
</tr>
<tr>
<td>LAYOUT #</td>
<td>SCI TRONICS P/N</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>U 3</td>
<td>14046</td>
<td>7408 Quad 2-in AND Gate</td>
</tr>
<tr>
<td>U 4</td>
<td>14030</td>
<td>74LS04 Hex Inverter</td>
</tr>
<tr>
<td>U 5</td>
<td>14048</td>
<td>6821 Peripheral Interface Adaptor</td>
</tr>
<tr>
<td>U 6</td>
<td>14030</td>
<td>74LS04 Hex Inverter</td>
</tr>
<tr>
<td>U 7</td>
<td>14049</td>
<td>74LS136 Quad Exclusive OR Gate (O.C.)</td>
</tr>
<tr>
<td>U 8</td>
<td>14049</td>
<td>74LS136 Quad Exclusive OR Gate (O.C.)</td>
</tr>
<tr>
<td>U 9</td>
<td>14050</td>
<td>74LS241 Octal Bus/Line Driver</td>
</tr>
<tr>
<td>U 10</td>
<td>14050</td>
<td>74LS241 Octal Bus/Line Driver</td>
</tr>
<tr>
<td>U 11</td>
<td>14050</td>
<td>74LS241 Octal Bus/Line Driver</td>
</tr>
<tr>
<td>HW 1</td>
<td>21001</td>
<td>6-32 ⅛" Screw</td>
</tr>
<tr>
<td>HW 2</td>
<td>21030</td>
<td>6-32 Hex Nut</td>
</tr>
<tr>
<td>PC 1</td>
<td>17012</td>
<td>S-100 Real Time Clock PC Board</td>
</tr>
<tr>
<td>X 1</td>
<td>17035</td>
<td>Crystal (32.768KHz)</td>
</tr>
</tbody>
</table>
WARRANTY

All SciTronics Inc. computer boards are assembled and fully tested at the factory before shipment. Your Real Time Clock is warranted against defects in material and workmanship for a period of six (6) months from date of delivery. SciTronics will repair or replace products found to be defective during the warranty period, provided they are returned to SciTronics Inc. No other warranty is expressed or implied. We are not liable for improper use or inconsequential damages. We reserve the right to refuse to repair any product that in our opinion has been subjected to abnormal electrical or mechanical abuse. Products out of warranty are subject to a minimum service fee. Contact SciTronics before sending your unit in for repair. Please fill out the enclosed self-addressed warranty card to validate your warranty.

For your records:

Date Purchased ____________________

Serial # __________________________

(located on board)