DATE: February 1968
ID CODE: BPX
DRAWING: 394079 (Rev B)
LABEL: DLD
AUTHOR: STVL
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE

To load a double precision fixed point argument from memory into the software registers MNT2, MNT3.

USAGE

Calling Sequence

L-1 SMB DLD
L JSX DLD
L+1 D DARG

Where DARG is the first of two words containing the number to be stored into the software registers. The routine will return to L+2 with the contents of MNT2 in the hardware accumulator.

Argument Description

The argument will be two consecutive words of memory.

Storage Requirements

Three words of common storage: RET1, MNT2, MNT3.

METHOD

Indexed loads and direct stores constitute the entire logic.
RESTRICTIONS

Entries
DLD

Other Routines
None.

External Constants
None.

Space Used
8 words.

Timing
15 cycles
APPENDIX A

ASSEMBLY LISTING

of

DP FIXED POINT LOAD

Drawing No. ID Code
391079 (Revision B) BPX
MATH DP FIXED POINT LOAD DN3910/9 R*

2 'DP FIXED POINT LOAD DN3910/9 R*
3 BLK MATH
4 LDR DLD
5 DLD STX RET1
* 0000 0 00 FF 0 00 7F
6 LDX 0
0010 9800 91 000
7 LDW 1
0020 8801 61 001
8 STW MNT3
0030 77FF 70 7FF
9 LDW 0
0040 6800 81 000
10 STW MNT2
0050 77FF 70 7FF
11 LDX RET1
0060 9000 90 000
12 JMP 1
0070 1841 11 001
13 NTRY DLD
0070 0000 00 00 FF
14 END

X*HEF

LIB 0 000 0 DLU
EXT 0005 MNT2 0 005 0
EXT 0003 MNT3 0 003 0
EXT 0006 RET1 0 000 0 006 0

NO ERRORS

CARDS SYMBOLS LITR STACK
14 4 615 0 2
DATE: February 1968
ID CODE: BPY
DRAWING: 391081 (Rev B)
LABEL: DST
AUTHOR: STVL
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE

To store in two consecutive memory words a double precision fixed point number fetched from the software registers MNT2, MNT3.

USAGE

Calling Sequence

Where DARG is the first of two words into which the contents of the software registers will be stored. The routine will return to L+2 with the contents of MNT2 in the hardware accumulator.

L-1 SMB DST
L JSX DST
L+1 D DARG

Argument Description

The argument will be two consecutive words in memory.

Storage Requirements

Three words of common storage RET1, MNT2, MNT3.

METHOD

Direct loads and indexed stores constitute the entire logic.

RESTRICTIONS

Entries

DST
Other Routines
None

External Constants
None

Space Used
8 words

Timing
15 cycles
APPENDIX A

ASSEMBLY LISTING

of

DP FIXED POINT STORE

Drawing No. 391081 (Revision B) ID Code BPY
'DP FIXED POINT STORE DN391081 B'

2 BLK MATH
3 67FF 6 7FF
4 DSTRBLKR DST
5 9800 9 1000
6 LDX 0
7 87FF 8 0 7FF
8 STW 1
9 7B01 7 1 001
10 STW 0
11 7B00 7 1 000
12 LDX RET1
13 1801 1 1 001
14 JMP 1
15 NTHY DST
16 END

X=REF
LIB 0 0 0 0 DST
EXT 0 0 0 4 MNT2 0 0 0 4 0
EXT 0 0 0 2 MNT3 0 0 0 2 0
EXT 0 0 0 6 RET1 0 0 0 6 0

NO ERRORS
CARDS SYMBOLS LITR STACK
14 4 626 0 2
DATE: February 1968
ID CODE: BPZ
DRAWING: 391083 (Rev C)
LABEL: DAD,DSUB
AUTHOR: STVL
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE

To form the algebraic sum or difference of two double precision fixed point numbers set in the software registers MNT2, MNT3 and in two consecutive words of memory.

USAGE

Calling Sequence

The routine will return to L+2 with the result in the software registers MNT2, MNT3.

L-1 SMB DAD (or DSUB)
L JSX DAD (or DSUB)
L+1 D DARG
L+2 return

Argument Description

DARG is the first of two consecutive memory locations containing a fixed point double precision number.

Both arguments must be in double precision format: The sign bit of the second word of both arguments must be set to zero.

Storage Requirements

RET1 and pseudo-registers MNT2, MNT3
METHOD

DAD replaces the double register with the sum double register plus memory.

DSUB replaces the double register with the differences double register minus memory.

ERROR CONDITIONS

An overflow will turn on the overflow flip flop, and carry the most significant bit of the sum or difference in the sign bit of the high word (MNT2).

RESTRICTIONS:

Entries

DAD, DSUB

Other Routines

None

External Constants

D1 (decimal 1)
M15R (15 bit mask)

Space Used

34 words of core.

Timing

Excluding calling sequence.
DAD $24 + 1$ cycles
DSUB $23 + 1$ cycles
APPENDIX A

ASSEMBLY LISTING

of

DP FIXED POINT ADD, SUBTRACT
DP FIXED POINT ADD, SUBTRACT DN391083 B'

 BLK 0005
LIBR 0006
A D D 0007
 0008
 0009
 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 0038
 0039
 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049

0000 0 67FF 6 0 7FF
0001 0 9800 9 1 000
0002 0 8901 8 1 001
0003 0 A7FF A 0 7FF
0004 0 A7FF E 0 7FF
0005 0 7003 7 0 003
0006 0 8800 8 1 000
0007 0 0800 0 800
0008 0 A7FF A 0 7FF
0009 0 0800 0 800
000A 0 1000 1 0 00F
000B 0 A7FF A 0 7FF
000C 0 7008 7 0 00B
000D 0 9000 9 0 000
000E 0 1001 1 1 001
000F 0 000C D 0 00C
0010 0 A7FF A 0 7FF
0011 0 2010 0 0 010
0012 0 100C 1 0 00C
0013 0 6000 6 0 00D
0014 0 9800 9 1 000
0015 0 8005 8 0 005
0016 0 8801 H 1 001
0017 0 0820 0820
0018 0 101E 1 0 01E
0019 0 E004 E 0 004
001A 0 7015 7 0 015
001B 0 8800 8 1 000
001C 0 0120 0120
001D 0 1008 1 0 00B
001E 0 1007 1 0 01A
001F 0 800F 8 0 00F
0020 0 8800 8 1 000
0021 0 100C 1 0 00C
0021 0******33

DSB2
J M P 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049

SUBTRACT
STX 0004
 0005
 0006
 0007
 0008
 0009
 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 0038
 0039
 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049

DSUB
STX 0004
 0005
 0006
 0007
 0008
 0009
 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 0038
 0039
 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049

END
D A D,D S U B 0004
 0005
 0006
 0007
 0008
 0009
 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 0038
 0039
 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049
X=REF

EXT 0011 B0 0 010 0 0 011 0
LIB 0 000 0 DAU
 0 00F 0 DAV0 0 00A 0
 0 009 0 DAV2 0 010 0
 0 01E 0 DSW2 0 018 0
LIB 0 013 0 DSUR
EXT 0008 DI
 0 00C 0 EXIT
 0 012 0 0 021 0
EXT 001F MNT2
 0 00E 0 0 00C 0 0 00F 0 0 01F 0
EXT 001E MNT3
 0 003 0 0 005 0 0 015 0 0 01A 0 0 01E 0
EXT 0019 M19R
 0 004 0 0 019 0
EXT 0013 RET1
 0 000 0 0 00D 0 0 013 0

NO ERRORS

CARDS SYMBOLS LITR STACK
47 12 624 0 2
DATE: January 1968
ID CODE: BLJ
DRAWING: 390664 (Rev C)
LABEL: D2C
AUTHOR: STVL
SOURCE: SYM 1 Assembly Language
OBJECT: Relocatable

PURPOSE

To form the two's complement of a two-word number set in the software Registers MNT2, MNT3.

USAGE

Calling Sequence

The routine returns to L+1 after two's complementing the double precision word in the software registers MNT2, MNT3.

SMB D2C
L JSX D2C
L+1 Return

Argument Description

The argument is in the software registers MNT2, MNT3.

Storage Requirements

External storage in the software registers MNT2, MNT3.

METHOD

The contents of MNT3 is changed to its 2's complement, while the contents of MNT2 is changed to its 1's complement, unless the lower word is zero, in which case the first word is set to its 2's complement.
RESTRICTIONS

Entries
D2C

Other Routines
None

External Constants
M15R (a mask of 15 bits, right adjusted)

Space Used
13 words

Timing
14 cycles
APPENDIX A

ASSEMBLY LISTING

of

DP FIXED POINT TWO'S COMPLEMENT

Drawing No. ID Code
390664 (Revision C) BLJ
MATH DP FIXED POINT TWOS COMPLEMENT DN390664 C' 09/27/68 PASS 2 PAGE 2

2 'DP FIXED POINT TWOS COMPLEMENT DN390664 C'
3 BLK MATH
4 LIBR D2C
5 D2C RES 0
6 LDW MNT3
7 CMP
8 SAM
9 JMP LOWZ
10 ANU M1SR
11 STW MNT3
12 LDW MNT2
13 INV
14 EXIT STW MNT2
15 JMP * 0
16 LOWZ RES 0
17 LDW MNT2
18 CMP
19 JMP EXIT
20 *******************
21 MTRY D2C
22 END

XREF

LIB 0 000 0 D2C
0 008 0 EXIT 0 00C 0
0 00A 0 LOWZ 0 005 0
EXT 000A MNT2 0 006 0 0 008 0 00A 0
EXT 0005 MNT3 0 000 0 0 005 0
EXT 0004 M1SR 0 004 0

NO ERRORS

CARDS SYMBOLS LITR STACK
22 6 625 0 2
DATE: February 1968
ID CODE: BRA
DRAWING: 391085 (Rev B)
LABEL: DSR, DSL
AUTHOR: STVL
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE
To perform the arithmetic shift operation on a two-word argument.

USAGE

Calling Sequences

SMB DSR
.jsx DSR, COUNT, ARGUMENT for a shift right
SMB DSL
.jsx DSL, COUNT, ARGUMENT for a shift left

Where COUNT is any integer and ARGUMENT is the address of the first word of the two-word argument to be shifted.

Argument Description

The first argument must be an integer. The second argument will be treated as a double precision integer.

Storage Requirements

Two words of external storage labeled RET1, TMP1 are used.

METHOD

The Double Shift Routine creates two shift instructions depending upon the size of the count. The two-word argument is loaded into the ACR and the IXR (hardware accumulator and index registers) and the shifts are executed. The shift argument is stored back in memory. A shift count greater than 30 is replaced by 30.
RESTRICTIONS

Entries
DSL, DSR

Other Routines
None

External Constants
D15 (a constant equal to decimal 15)

Space Used
40 (X' 28') words

Timing
DSL
55 cycles minimum
71 cycles maximum
63 cycles average

DSR
54 cycles minimum
70 cycles maximum
62 cycles average
DSR

LOAD RIGHT SHIFT COMMAND

STORE SHIFT COMMAND IN BOX 'SHFT'

COUNT: 15

SET SECOND SHIFT WITH COUNT

PICK UP ARGUMENT

'SHFT'

EXECUTE TWO SHIFTS

DSL

LOAD LEFT SHIFT COMMAND

COUNT: 15

SET SECOND SHIFT FOR 15 BIT SHIFT

COUNT = COUNT - 15

SET FIRST SHIFT WITH COUNT

STORE SHIFTED ARGUMENT

EXIT

SET FIRST SHIFT FOR 15 BIT SHIFT

COUNT = COUNT - 15

SET FIRST SHIFT FOR 15 BIT SHIFT
APPENDIX A

ASSEMBLY LISTING

of

DOUBLE SHIFT ARITHMETIC

Drawing No. 391085 (Revision B) ID Code BRA
DATE: May 1968
ID CODE: BSP
DRAWING: 390014 (Rev B)
LABEL: M. ZE
AUTHOR: JACQ
SOURCE: SYM I
OBJECT: Relocatable in Block "MATH"

PURPOSE
To clear the three software registers MNT1, MNT2, MNT3.

USAGE
M. ZE is called by the library routines dealing with the mid-precision floating point format, when the software registers must be set to zero, as in the case of an underflow condition.

Calling Sequence

L-1 SMB M. ZE
L JSX M. ZE
L+1 Return

REstrictions

Loading
M. ZE must be loaded in the same 2K block as the "MATH POOL".

Other Routines
None

Space Used
5 words

Timing
8 cycles
APPENDIX A

ASSEMBLY LISTING

of

MP FLOATING UNDERFLOW
MP FLOATING UNDERFLOW DN39U014 B'

2 'MP FLOATING UNDERFLOW DN39U014 B'
3 *
4 *
5 BLK MATH
6 LIBR M,2E
7 M.ZE EQU $00000000
8 CLK
9 STM MNT1
10 STM MNT2
11 STM MNT3
12 JMP #0
13 NTRY M,2E
14 END

X•REF

LIB 0 000 0 M,2E 0 000 0
EXT 0001 MNT1 0 001 0
EXT 0002 MNT2 0 002 0
EXT 0003 MNT3 0 003 0

NO ERRORS

CARDS SYMBOLS LITH STACK
14 4 826 0 2
DATE: May 1968
ID CODE: BSR
DRAWING: 390015 (Rev B)
LABEL: M.OV
AUTHOR: JACQ
SOURCE: SYM 1
OBJECT: Relocatable in Block "MATH"

PURPOSE

To flag an overflow condition in the overflow flag word OVFL, and to set the software registers MNT1, MNT2, MNT3 to the maximum magnitude of the mid-precision floating point format, keeping the sign as found in MNT2.

USAGE

M.OV is called by the library routines dealing with the mid-precision floating point format, when an overflow condition occurs.

Calling Sequence

L-1 SMB M.OV
L JSX M.OV
L+1 Return

METHOD

The flag word OVFL of the "MATH POOL" area is set to non-zero.

RESTRICTIONS

Loading

M.OV must be loaded in the same 2k block as the "MATH POOL".

Other Routines

D2C
Space Used
11 words
Timing
21 cycles
APPENDIX A

ASSEMBLY LISTING

of

MP FLOATING OVERFLOW

Drawing No. 390015 (Revision B)
MATH HP FLOATING OVERFLOW DN390015 8
09/27/68 PASS 2 PAGE 2

2 'HP FLOATING OVERFLOW DN390015 8'
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

X-REF

EXT 0008 D2C 0 008 0
EXT 0012 D255 0 002 0
LIB 0 000 M,OV 0 000 0
EXT 0003 MNT1 0 003 0
EXT 0005 MNT2 0 001 0 0 005 0
EXT 0006 MNT3 0 006 0
EXT 0004 M15R 0 004 0
EXT 0009 OVFL 0 000 0 0 009 0

NO ERRORS

CARDS SYMBOLS LITR STACK
20 8 625 0 2
DATE: March 1968
ID CODE: BRB
DRAWING: 391096 (Revision D)
LABEL: FMP, FDV, DMP, DDV
AUTHOR: JACQ
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE

DMP: To multiply two double precision fixed point numbers and return a double precision fixed point product.

DDV: To divide a double precision fixed point number by another and return a double precision fixed point quotient.

FMP: To multiply two mid-precision floating point numbers and return a mid-precision floating point

FDV: To divide a mid-precision floating point number by another and return a mid-precision floating point quotient.

USAGE

Calling Sequence

These routines will return to L+2 with the result in the software registers MNT1, MNT2, MNT3.

L-1 SMB DMP (DDV, FMP, FDV)
L JSX DMP (DDV, FMP, FDV)
L+1 DATA ARG
L+2 Return

Argument Description

Two arguments are necessary, one in the software registers and the other starting at the location ARG.
Storage Requirements

External storage in RET2, RET3, TMP1, TMP2, TMP3, TMP4, TMP5, TMP6, OVFL, and the software registers MNT1, MNT2, MNT3.

METHOD

In an initial sequence common to the four entries, the algebraic sign of the result is secured, then both arguments are set to their absolute value.

In a final sequence also common to all four entries, the result, quotient or product, is given its proper sign.

Two-word division

Let the dividend, divisor and quotient mantissae be N, D and Q.

\[N = N_1 + 2^{-15}.N_2 \]
\[D = Y_1 + 2^{-15}.Y_2 \]

In the floating point mode the exponent of the quotient is first computed.

\[E_Q = E_N - E_D + \text{Bias} \]

In the fixed point mode the divisor is normalized to bit 1 of its high word, and the dividend is shifted the same amount to the left.

The following condition is now satisfied:

\[0.5 \leq Y_1 < 1 \]

The dividend is then checked against the divisor. If it is not found smaller it is replaced by its difference with the divisor.

\[N \geq D \quad X = N - D \quad Q = \frac{X}{D} + 1 \]
\[N < D \quad X = N \quad Q = \frac{X}{D} \]

The condition: \(X < Y \) is now satisfied.
Let $k = 2^{-15}$

\[
\frac{X}{D} = \frac{X_4 + k \cdot X_2}{Y_1} \cdot \frac{1}{1 + k \frac{Y_2}{Y_1}}
\]

\[
\frac{X}{D} = \frac{X_4 + k \cdot X_2}{Y_1} \left[1 - k \frac{Y_2}{Y_1} + k^2 \frac{Y_2}{Y_1}^2 - k^3 \ldots \right]
\]

The remaining terms of the series are dropped.

Let $Q_1 + k \frac{R_4}{Y_1} = \frac{X_4 + k \cdot X_2}{Y_1} \quad 0 \leq Q_1 < 1 \quad 0 \leq R_1 < Y_1$

\[
\frac{X}{D} = Q_1 + k \frac{R_4}{Y_1} \left[1 - k \frac{Y_2}{Y_1} + k^2 \frac{Y_2}{Y_1}^2 \right]
\]

\[
\frac{X}{D} = Q_1 + k \frac{R_4 - Q_1 \cdot Y_2}{Y_1} \left[1 - k \frac{Y_2}{Y_1} \right]
\]

Let $Q_2 + k \frac{R_2}{Y_1} = \frac{R_4 - Q_1 \cdot Y_2}{Y_1} \quad 0 \leq Q_2 < 1 \quad 0 \leq R_2 < Y_1$

\[
\frac{X}{D} = Q_1 + k \cdot Q_2 + k^2 \frac{R_2 - Q_2 \cdot Y_2}{Y_1}
\]

The expression $(R_4 - Q_1 \cdot Y_2)$ is kept positive by decrementing Q_1 by k or $2k$ if necessary.

The expression $(R_2 - Q_2 \cdot Y_2)$ is not computed but only approximated to $\pm k^2$. If it is found negative, Q_2 is decremented by k^2.

\[
\frac{X}{D} = Q_1 + k \cdot Q_2 \pm e \quad e \leq k^2
\]
The final quotient:

\[Q = Q_1 + 2^{-15} Q_2 + e \quad \text{if } N < D \]
\[Q = 1 + Q_1 + 2^{-15} Q_2 + e \quad \text{if } N \geq D \]

The unit bit is the sign bit of the high word. If it is used in the floating mode, the quotient mantissa is shifted 1 bit to the right. In that case the quotient exponent is incremented by 1.

Before return to the caller the quotient is set to the sign secured initially.

Two-word Multiplication

Let the factor mantissae be \(X \) and \(Y \), the product mantissa be \(P \).

\[X = X_1 + 2^{-15} X_2 \]
\[Y = Y_1 + 2^{-15} Y_2 \]

In the floating point mode the exponent of the product is first computed.

\[E_P = E_X + E_Y - \text{Bias} \]

Let \(k = 2^{-15} \)

\[P = X \cdot Y = X_1 \cdot Y_1 + k \left(X_1 \cdot Y_2 + X_2 \cdot Y_1 \right) + k^2 X_2 \cdot Y_2 \]

The last term is approximated to \(+ k^2 / 4 \) to force a carry into the lower word of the product.

\[P = P_1 + k \cdot P_2 + e \quad e < k^2 \]

In the floating mode the product is normalized to bit 1 of its high word. The product exponent is decremented by 1 if the mantissa has to be shifted.

Before return to the caller the product is set to the sign secured initially.
ERROR CONDITIONS

Error conditions are detected in the floating mode only.

1) An attempt to divide by zero or by an unnormalized divisor will leave the dividend unaltered in the software register.

2) An exponent overflow or underflow will give a quotient or product off by ± 256.

In both cases the flag word "OVFL" is set to non-zero. No error message is given.

RESTRICTIONS

Except for zero, the routine cannot properly process data equal to their own 2's complement, which is the case of the negative limit:

1st word 8000 (hexadecimal)
2nd word 0000

Entries

DMP, DDV, FMP, FDV

Other Routines

ACMY, DAD, DIVS, D2C, MPYS

External Constants

B0, D1, D128, D256, M8R, M15R, N1, N128

Space Used

205 words
Timing (in cycles) Average

<table>
<thead>
<tr>
<th></th>
<th>without hardware multiply and divide</th>
<th>with hardware multiply and divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMP</td>
<td>332</td>
<td>165</td>
</tr>
<tr>
<td>DDV</td>
<td>578</td>
<td>241</td>
</tr>
<tr>
<td>FMP</td>
<td>370</td>
<td>203</td>
</tr>
<tr>
<td>FDV</td>
<td>584</td>
<td>247</td>
</tr>
</tbody>
</table>

Deduct 20 cycles if both arguments are positive.

ACCURACY

29 bits
APPENDIX A

ASSEMBLY LISTING

of

MP FLOATING, DP FIXED MPY AND DIV.
55 * WORK OUT TWO-WORD PRODUCT
56 PHQD STW TMP1 SAVE X1
57 LDW MNT3 X2
58 AND TMP4 Y2
59 STW MNT2 X2 * Y2
60 LDW TMP3 Y1
61 JSX ACMY * X2 * Y1
62 LDX MNT2
63 STW MNT2
64 STX TMP2 2ND WORD OF PARTIAL PRODUCT
65 LDW TMP1 X1
66 STW MNT3
67 LDW MNT4 Y2
68 JSX ACMY * X1 * Y2
69 LDX MNT1 X1
70 STW TMP1 3RD WORD OF FINAL PRODUCT
71 STX MNT3
72 LDW TMP3 Y1
73 JSX ACMY * X1 * Y1
74 ADD TMP2 SUM UP 2ND WORD OF PRODUCT
75 AND M15R
76 STW MNT3
77 LDW MNT2
78 SND
79 AND D1 CARRY INTO 1ST WORD
80 END STW MNT2
81 LDW RET2
82 SAO FLOATING POINT
83 JMP FEND YES
84 EXIT LDW TMP5 SIGN OF RESULT
85 SAP
86 044 0202 2 0 022
87 JSX D2C
88 LDX RET3
89 JMP * 1
90 * NEGATIVE ARGUMENT - GET ABSOLUTE VALUE
91 UXS 1
92 ADD D1
93 CMP
94 STW TMP3
95 LDW MNT3
96 CXA
97 INV
98 AND M15R
99 STW TMP4
100 JMP COM1
101 * FLOATING POINT - NORMALIZE AND CHECK EXPONENT
102 FEND LDX MNT3
103 SLL 1
104 SAP
105 LDA MNT2
106 SAP
107 JMP FIX0 OVERFLOW IN SIGN BIT
MATH, MP FLOATING, MP FIXED MPY AND DIV BN391096 C!

09/27/68

PASS 2

PAGE 6

- 0 00H 0 80AD 8 0 0AD 214
 LD W TMP6
 YES
- 0 00H 0 80BF 8 0 05F 215
 SUB D1
 DECREMENT D1
- 0 00H 0 7088 7 0 0H8 216
 HIGQ
 STW TMP6
- 0 00H 0 07FF 2 0 7FF 217
 JSX DAD
 ADD Y TO NEW DIVIDEND
- 0 00H 0 30AB 30AB 218
 D TMP3
- 0 00H 0 1006 1 0 0B6 219
 JMP DVD1
- 0 00H 0 0086 8 0 086 220
 DVD2
 LD W TMP3
- 0 00H 0 20A9 2 0 0A9 221
 JSX DIV5
- 0 00H 0 08AD 08AD 222
 SNO
- 0 00H 0 10CB 1 0 0CB 223
 JMP DVD4
 QUOTIENT LOWER WORD Q2
- 0 00H 0 1300 1300 224
 CA X
- 0 00H 0 0090 9 0 090 225
 AND TMP4
 Q2 * Y2
- 0 00H 0 0858 8 0 085 226
 SUB MNT2
 REMAINDER R2
- 0 00H 0 0110 10 0 010 227
 CMP
 R2 - Q2 * Y2
- 0 00H 0 0810 8010 228
 SAP
 IS QUOTIENT TOO BIG
- 0 00H 0 0501 05 0 01 229
 DXS 1
 YES - DECREMENT Q2
- 0 00H 0 0A76 6 0 0A7 230
 DVD3
 STX MNT3
 STORE QUOTIENT LOWER WORD
- 0 00H 0 08A8 8 0 08A 231
 LD W TMP6
 Q3
- 0 00H 0 1036 1 0 036 232
 JMP EXIT
- 0 00H 0 0A69 9 0 0A6 233
 DVD4
 LD X M15R
 LIMIT FOR Q2
- 0 00H 0 10CB 1 0 0CB 234
 JMP DVD3

**

X*REF

EXT 0037 ACHY 0 028 0 0 032 0 0 037 0
 0 0A5 0 HIUW 0 09F 0
 0 09A 0 HIUW 0 04 0

EXT 0041 HI 0 0AC 0 1 0 07 0
 0 060 0 CMK 0 057 0
 0 019 0 CMK 0 10 0
 0 020 0 CMK 0 04F 0

EXT 0086 DIVS 0 086 0
 0 014 0 DCM 0 012 0

LIB 0 011 0 DDV 0 011 0

EXT 008F DIVS 0 049 0
 0 0BF 0

LIB 0 013 0 JMP 0 013 0
 0 060 0 DVCK 0 06D 0
 0 0A8 0 DVU 0 099 0
 0 06E 0 DVU 0 08D 0
 0 0BF 0 DVU 0 087 0
 0 0C8 0 DVD 0 0C0 0
 0 0CB 0 DVD 0 0C1 0

EXT 009H D1 0 011 0
 0 03D 0 0 048 0 0 05F 0 0 089 0

EXT 0093 D12R 0 03D 0

EXT 0044 D2C 0 022 0 0 044 0
 0 03E 0 ENU 0 0CA 0
 0 042 0 EXIT 0 06E 0
 0 000 0 FCMD 0 06 0

LIB 0 001 0 FDV 0 001 0
MATH MP FLOATING, DP FIXED MPY AND DIV DN391096 C1

0 050 0 FEND 0 041 0
0 067 0 FIXN 0 060 0
0 061 0 FIXP 0 059 0
0 059 0 FIXQ 0 054 0
0 069 0 FIXZ 0 05A 0
LIB 0 007 0 TPM 0 007 0
EXT 0071 0 M,OV 0 071 0
EXT 0070 0 M,KE 0 070 0
EXT 006A 0 MNT0 0 00C 0 0 0D0 0 0 068 0 0 069 0 0 06A 0
EXT 00C4 0 MNT2 0 019 0 0 018 0 0 020 0 0 029 0 0 02C 0 0 02D 0 0 038 0 0 03E 0
EXT 00C6 0 MNT3 0 052 0 0 05C 0 0 061 0 0 08F 0 0 091 0 0 095 0 0 0A0 0 0 0A5 0
EXT 00C8 0 MNT4 0 0AE 0 0 0A3 0 0 0B5 0 0 0C4 0
EXT 00C9 0 MNT5 0 027 0 0 030 0 0 035 0 0 03A 0 0 03C 0 0 050 0 0 05D 0 0 05E 0
EXT 00B2 0 MABS 0 082 0
EXT 00B4 0 MDEL 0 039 0 0 04D 0 0 0A3 0 0 0A6 0 0 0CB 0
0 047 0 NEW 0 01D 0
0 076 0 NRM 0 081 0
0 07D 0 NRM 0 083 0
0 07F 0 NRM1 0 079 0
0 083 0 NRM2 0 078 0
0 095 0 NUM 0 075 0
EXT 0066 0 N1 0 013 0 0 066 0
EXT 0009 0 N12B 0 009 0
0 06F 0 OUTE 0 0D0 0
0 026 0 PRED 0
0 072 0 QUOT 0 025 0
EXT 003F 0 REF2 0 004 0 0 00A 0 0 014 0 0 023 0 0 03F 0
EXT 0045 0 REF3 0 001 0 0 007 0 0 019 0 0 045 0
0 088 0 SFT1 0 083 0
0 090 0 SFT2 0 084 0
0 000 0 SH1 0 07C 0
EXT 00B4 0 TMP1 0 026 0 0 02F 0 0 033 0 0 034 0 0 064 0 0 0AF 0 0 0B4 0
EXT 0038 0 TMP2 0 02E 0 0 038 0
EXT 00RE 0 TMP3 0 016 0 0 02A 0 0 036 0 0 04A 0 0 072 0 0 087 0 0 089 0 0 096 0
EXT 00C3 0 TMP4 0 01F 0 0 028 0 0 031 0 0 04E 0 0 085 0 0 08C 0 0 09C 0 0 0B0 0
EXT 0042 0 TMP5 0 014 0 0 042 0
EXT 00C9 0 TMP6 0 097 0 0 0AA 0 0 0AD 0 0 088 0 0 0BA 0 0 0C9 0

NO ERRORS

CARDS SYMBOLS LITH STACK
238 61 911 0 6
DATE: March 1968
ID CODE: BRC
DRAWING: 391088 (Rev B)
LABEL: FCM, DCM
AUTHOR: STVL
SOURCE: SYM I Assembly Language
OBJECT: Relocatable

PURPOSE

To compare an argument in memory, set either in mid precision floating point (FCM), or in double precision fixed point (DCM) form, to the number set, in the same format, in the pseudo-registers MNT1, MNT2, MNT3, (FCM) or MNT2, MNT3 (DCM).

USAGE

Calling Sequence

L-1 SMB FCM (DCM)
L JSX FCM (DCM)
L+1 DATA ARG
L+2 Return

Storage Requirements

External words RET1, MNT1, MNT2, MNT3

METHOD

DCM: compare most significant words and if equal compare least significant words.

FCM: if signs are different call DCM, otherwise compare exponents, if they are the same call DCM.

Both routines exit with the machine comparison flip-flops set to indicate the results of the compare. Skip instructions (SEQ, SLE, SGR, etc.) should be used to test the results of the compare.
RESTRICTIONS

Entries
FCM, DCM

Other Routines
None

External Constants
None

Space Used
28 words

Timing
FCM 26 cycles
DCM 15 cycles
APPENDIX A

ASSEMBLY LISTING

of

MP FLOATING, DP FIXED COMPARE