To Modify HDOS + Reserve

1. LF HDXXDOS,1 S100
 DS 5134 → To change disk drive ident
 DD for 2 DD 35 drives
 FF for Quad drives

2. SF HDXXDOS,1 S100

Horizon is a registered trademark of North Star Computers, Inc.
CP/M is a registered trademark of Digital Research, Inc.
Copyright © 1982 by North Star Computers, Inc.
All Rights Reserved
TABLE OF CONTENTS

1 INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 HARD DISK OPERATING SYSTEM SOFTWARE</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2 INITIAL SYSTEM STARTUP</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2.1 Inserting Floppy Disks</td>
<td>1-3</td>
</tr>
<tr>
<td>1.2.2 Initializing HDOS</td>
<td>1-4</td>
</tr>
<tr>
<td>1.2.3 Startup Procedure for Single-sided Drives</td>
<td>1-5</td>
</tr>
<tr>
<td>1.2.4 Reformating the Hard Disk</td>
<td>1-6</td>
</tr>
<tr>
<td>1.2.5 Initial System Software Recovery</td>
<td>1-8</td>
</tr>
<tr>
<td>1.2.6 Initial Complete Backup</td>
<td>1-11</td>
</tr>
<tr>
<td>1.2.7 Copy the System Disk</td>
<td>1-14</td>
</tr>
<tr>
<td>1.2.8 Using SYSGEN</td>
<td>1-15</td>
</tr>
<tr>
<td>1.3 UPGRADING HDOS TO HDOS 2.1.X</td>
<td>1-20</td>
</tr>
<tr>
<td>1.4 NORMAL SYSTEM STARTUP</td>
<td>1-22</td>
</tr>
<tr>
<td>1.5 TURNING OFF THE SYSTEM</td>
<td>1-22</td>
</tr>
<tr>
<td>1.6 HARD DISK TEST PROGRAM</td>
<td>1-23</td>
</tr>
<tr>
<td>1.6.1 The Daily Run Program</td>
<td>1-24</td>
</tr>
<tr>
<td>1.7 ADVANCED DIAGNOSTICS</td>
<td>1-27</td>
</tr>
<tr>
<td>1.7.1 Problems with the Hard Disk</td>
<td>1-27</td>
</tr>
<tr>
<td>1.7.2 Diagnosing Problems</td>
<td>1-28</td>
</tr>
<tr>
<td>1.7.3 Skips</td>
<td>1-29</td>
</tr>
<tr>
<td>1.7.4 The Skip Table</td>
<td>1-30</td>
</tr>
<tr>
<td>1.7.5 The Extended Check Program</td>
<td>1-31</td>
</tr>
<tr>
<td>1.7.6 Running the Extended Check Program</td>
<td>1-31</td>
</tr>
</tbody>
</table>

2 USING THE SOFTWARE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 OVERVIEW</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 THE LINE EDITOR</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.1 Sending a Line to the System</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2.2 Correcting Typographical Errors</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.3 Displaying the Previous Command</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2.4 Multiple HDOS Commands</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3 DISK AND FILE INFORMATION</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.1 Floppy Disk and Hard Disk Organization</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.2 Files</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.3 File types</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.4 HDOS Data Structures</td>
<td>2-6</td>
</tr>
</tbody>
</table>
3 THE HDOS COMMAND PROCESSOR

3.1 OVERVIEW 3-1

3.2 SYMBOL CONVENTIONS 3-2

3.3 ARGUMENTS 3-3

3.4 HDOS COMMANDS 3-7

3.4.1 Account Commands 3-7
AC - Account Create 3-7
AR - Account Rename 3-8
AS - Account Set 3-9
AD - Account Delete 3-10

3.4.2 File Commands 3-11
CR - Create a New File 3-11
SL - Set Length of File 3-13
TY - Change File Type and Attributes 3-14
CF - Copy File 3-16
MC - Multiple Copy 3-20
DE - Delete File 3-22
MD - Multiple Delete 3-23
RN - Rename Diskette File 3-24

3.4.3 Data Transfer Commands 3-25
LF - Load File into RAM 3-25
SF - Save File from RAM 3-25
RD - Read Disk to RAM 3-26
WR - Write RAM to Disk 3-26

3.4.4 Program Execution 3-28
GO - Load Program and Execute 3-28
JP - Jump to a RAM Address 3-29

3.4.5 Listings and Statistics 3-30
AL - Account Name List 3-30
LI - List File Directory 3-31
ML - Multiple List 3-33
WS - Work Space 3-34
ST - Display Hard Disk Statistics 3-35
3 THE HDOS COMMAND PROCESSOR (continued)

3.4.6 Memory Commands
 EM - Examine Memory 3-36
 DH - Display in Hexadecimal 3-37
 DA - Display in ASCII 3-38
 DS - Display and Substitute Memory Values 3-39
 SM - Search Memory 3-41
 FM - Fill Memory 3-42
 MM - Move Memory 3-43
 VM - Verify Memory 3-44

3.4.7 I/O Commands
 DO - Device Output 3-45
 EP - Examine Port 3-45
 PO - Send Value to an Output Port 3-46

3.4.8 Diskette Commands
 IN - Initialize 3-48
 CD - Copy a Diskette 3-48

3.4.9 Miscellaneous Commands
 IL - Initial Load 3-50
 RS - Reset the File Manager 3-50
 OF - Turn Off the Hard Disk Drive Motors 3-51
 EB - Examine Byte 3-52
 OD - Specify an Additional Output Device 3-53
 SX - Set Auto-Execute File Name 3-54
 PA - Set Listing Page Length 3-55
 HE - Help 3-56

4 BACKUP AND RECOVERY

4.1 OVERVIEW OF THE PROGRAMS 4-1

4.2 THE BACKUP PROGRAM
 4.2.1 Using BACKUP 4-1
 4.2.2 Complete Backup 4-5
 4.2.3 Incremental Backup 4-6
 4.2.4 Selected Files or Accounts 4-8

4.3 THE RECOVER PROGRAM
 4.3.1 Using RECOVER 4-11
 4.3.2 Accounts Listing 4-12
 4.3.3 Recover Files or Accounts 4-12
 4.3.4 Explanation 4-13

4.4 Using TOTREC 4-16
5 THE FILE MANAGER

5.1 INTRODUCTION TO THE FILE MANAGER 5-1
5.2 CALLING THE FILE MANAGER 5-2
5.3 FILE MANAGER OPERATION CODES 5-2
5.4 OPERATION CODE DESCRIPTION 5-4

6 PERSONALIZING HDOS

6.1 INTRODUCTION 6-1
6.2 PERSONALIZING THE CONFIGURATION BYTE 6-1
6.3 PARALLEL I/O PORT USE NOTES 6-2
APPENDICES

APPENDIX A - HDOS COMMAND SUMMARY A-1
APPENDIX B - ERROR CODES B-1
APPENDIX C - DECIMAL-HEX-BINARY-ASCII CONVERSION TABLE C-1
APPENDIX D - RAM ALLOCATION TABLE D-1
APPENDIX E - HDOS SYMBOLS AND DATA STRUCTURES E-1
APPENDIX F - HDOS ENTRY POINTS AND I/O ROUTINES F-1
APPENDIX G - DISK HANDLER FOR HARD DISK-HD18 (HDCOM) G-1
APPENDIX H - DISK HANDLER FOR FIVE INCH HARD DISKS (MWCOM) H-1
APPENDIX I - GLOSSARY I-1
INDEX X-1

North Star v HDOS Manual
FIGURES AND TABLES

FIGURES

2

Using the Software

Figure 2-1 Hard Disk Unit Structure 2-7
Figure 2-2 Hard Disk Label 2-8
Figure 2-3 DIB Tables 2-9
Figure 2-4 File Structure 2-10
Figure 2-5 File Directory Entry 2-11
Figure 2-6 Account Directory Entry 2-12
Figure 2-7 File Index Entry 2-13
Figure 2-8 Open File Block 2-14
Figure 2-9 Create Information Block 2-15
Figure 2-10 Transfer Command Block 2-16

4

BACKUP AND RECOVERY

Figure 4-1 Complete Backup Cycle 4-3
Figure 4-2 Complete Recovery from Series 2 4-4

TABLE

Table 5-1 Operation Code List 5-3
You are now licensed to use the Hard Disk Operating System (HDOS) from North Star Computers, Inc. HDOS was developed by North Star to extend the capabilities of the Disk Operating System (DOS) to work with the expanded capacity of North Star hard disks.

The material in this manual is arranged in sections. Section 1 contains procedures for an initial installation of your software. Sections 2 and 3 cover the normal operation of HDOS. Section 4 details the BACKUP and RECOVER process. Sections 5 and 6 are useful to an assembly language programmer.

The appendices contain reference material for the manual.

Every effort has been made to ensure the accuracy of the material presented here. Nevertheless, experience shows that some textual errors always go undetected. If you find any errors, or have some suggestions on how to improve this manual, please contact North Star at the following address:

NORTH STAR COMPUTERS
ATTN: TECHNICAL PUBLICATIONS
14440 CATALINA STREET
SAN LEANDRO, CA 94577 USA
1.1 HARD DISK OPERATING SYSTEM SOFTWARE

The North Star Hard Disk Operating System (HDOS) is supplied to you on two North Star floppy disks, the HDOS 2.1.x SYSTEM DISK and the HDOS INITIAL RECOVERY DISK. The software includes:

The Hard Disk Operating System (HDOS). The operating system includes the hard disk File Manager, the floppy disk drive control routines, and the standard peripheral input-output device drivers.

The Command Processor. This program accepts commands from a terminal to manipulate disk files, accounts, programs, and RAM, and to perform miscellaneous monitoring functions.

Hard Disk BASIC (HBASIC). This version of North Star BASIC allows access to files on the hard disk as well as floppy disks with little or no change to existing BASIC programs.

The BACKUP and RECOVER Programs. The programs allow convenient backup and retrieval of files stored on the hard disk drive. Using the complete and incremental data backup program protects your data in the event of power failure, hardware failure, or operator error.

You can also use floppy disk backup to preserve original data before performing major file updates on the hard disk.

The Hard Disk Test Program. This program permits testing and formatting of the hard disk drive(s) when the system is initially set up, during total system recovery, or during daily preventative maintenance.
1.2 INITIAL SYSTEM STARTUP

Once the hardware has been set up and successfully powered-on, the procedures described below must be followed to complete the initial system software installation.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you are running an earlier version of HDOS, skip these procedures and go to Section 1.3, "Upgrading HDOS to HDOS 2.1.x".</td>
</tr>
</tbody>
</table>

First test and format the hard disk with Level Two of the Hard Disk Test Program. Then, perform an initial system recovery to install the system software on the hard disk. Finally make working copies of the floppy disks for everyday use and retire the factory-supplied floppy disks to safe storage.

Normally, the complete process is performed only once, before the hard disk system is used for the first time.

1.2.1 INSERTING FLOPPY DISKS

Insert the HDOS 2.1.x SYSTEM DISK into floppy disk drive 1 (the drive closest to the center of the Horizon's front panel) with the oblong hole entering the slot first and the floppy disk's label facing away from the drive's LED indicator.

Carefully close the door on the drive. If the door does not "lock" into the closed position, re-insert the disk and try to close the door again. Never force the door shut, as this may damage the disk.
1.2.2 INITIALIZING HDOS

Press and release the red reset switch next to the cooling fan on the HORIZON's rear panel. Drive 1 should turn on (the LED indicator on the drive will light up), and this system message will appear on your terminal:

HDOS Initial Boot Procedure

This disk supplied from North Star contains two different HDOS operating systems - one for 5 inch hard disks and one for the HD-18 hard disk. The names of the files are HD5XDOS and HD18DOS, respectively.

To manually boot into the correct operating system for your disk, type:

GO HD5XDOS,1 <cr> (If you have a 5 inch hard disk)

or

GO HD18DOS,1 <cr> (If you have an HD-18 hard disk)

After you have done this, you can follow the instructions in the Hard Disk Operating System User Manual, under the heading Initial System Startup to prepare the hard disk and an automatic bootstrap disk.

+--------------------------+

When you enter the proper GO command after the "+" prompt, the HDOS sign-on message and command prompt "=" will appear on your terminal screen. If you have an HD18, you will hear the hard disk's motor start running.
1.2.3 STARTUP PROCEDURE FOR SINGLE-SIDED DRIVES

The HDOS is initially configured to operate with two-sided, fast-stepping (quad) floppy disk drives. On startup, if you have any single-sided, normal-stepping (double density) floppy disk drives, enter the following in response to the HDOS prompt (=):

```
FM 134 O [RETURN]
```

This temporarily tells your system to use single sided drives.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you have a mix of single and double-sided drives, you can use the SYSGEN program later to determine the proper configuration byte for your system.</td>
</tr>
</tbody>
</table>
1.2.4 REFORMATTING THE HARD DISK

The next step is to test and reformat the hard disk. See Section 1.7.3 for a discussion of "skips" and the "skip table".

CAUTION

This writes over any previous hard disk data. Use this procedure for an initial setup or on a completely backed up disk. To upgrade earlier versions of HDOS, see Section 1.4, "Upgrading HDOS to HDOS 2.1.x".

Procedure

STEP ACTION

1 Check that the HDOS 2.1.x SYSTEM DISK is in floppy disk drive 1.

2 IF...
 o you have a five inch hard disk then enter
 GO HD5XTEST,1 [RETURN]
 and go to step 3.
 o you have an HD18 hard disk then enter
 GO HD18TEST,1 [RETURN]
 and go to step 4.

3 Your Hard Disk code will be displayed on your terminal. You can verify the code by checking the hard disk label on the rear of the computer. If it is correct, enter Y. If it is not correct, enter N and the correct code.

4 -------------------------------
WHICH DIAGNOSTIC LEVEL TO EXECUTE:

(1) NONDESTRUCTIVE DAILY RUN

(2) SIMPLIFIED TOTAL DISK CHECK AND REFORMAT
 (DESTRUCTIVE TO ALL DATA!)

(3) EXTENDED TOTAL DISK CHECK AND REFORMAT
 (DESTRUCTIVE TO ALL DATA!)

North Star 1-6 HDOS Manual
Procedure (continued)

STEP ACTION

5 2

6 IF...

 o you have an HD18, you are prompted for the hard disk
 unit number. Enter unit # [RETURN].

 **
 **** WARNING ****

 PROCEEDING WITH THIS TEST WILL DESTROY ALL EXISTING
 DATA ON THE DISK

 HIT <RETURN> TO PROCEED OR <ESC> TO ABORT
 **

7 [RETURN]

8 When the test is complete the program displays the
 message:

 TEST COMPLETE

 POWER DOWN: (Y/N)

9 N

 The terminal displays:

 **
 HIT <RETURN> TO REBOOT
 **

10 [RETURN]

 The program displays the HDOS command prompt.

 ----=

1.2.5 INITIAL SYSTEM SOFTWARE RECOVERY

The next step in the initial startup procedure is to create the directory and install the system software on the hard disk. To do this, you will use the TOTREC program and the HDOS INITIAL RECOVERY DISK to install the basic system software in your hard disk SYSTEM account.

Procedure

STEP	**ACTION**
1 | Ensure that the HDOS 2.1.x SYSTEM DISK is loaded in floppy disk drive 1.
2 | IF...

- if you have a five inch hard disk unit, enter:
 GO HD5XDOS [RETURN]

- if you have an HD18 hard disk unit, enter:
 GO HD18DOS [RETURN]

The terminal will display the HDOS command prompt.

=

3 | IF...

- if you have any single-sided, normal-stepping (double density) floppy disk drives, then enter:
 FM 134 0 [RETURN]

4 | **GO TOTREC,1 [RETURN]**

The program informs you that proceeding with TOTREC erases all files and accounts on the hard disk, and questions whether this is in fact what you want to do.

5 | **YES [RETURN]**

The program prompts for a hard disk drive number. (Enter drive number 101 to 104. For one hard disk, enter 101.)
Procedure (continued)

STEP ACTION

6 101 [RETURN]

The program sends a list of messages to your terminal. When you receive the message:

Initialization complete

and then prompts for a listing destination for the recovered files.

7 Option #

The program prompts for the "Master backup disk" drive number.

8 IF...

o you have a system with one floppy disk drive, remove the HDOS 2.1.x SYSTEM DISK from floppy disk drive 1, insert the HDOS INITIAL RECOVERY DISK in floppy disk drive 1 and enter 1 [RETURN]

o you have more than one floppy disk drive, put the HDOS INITIAL RECOVERY DISK in floppy disk drive 2 and enter 2 [RETURN]

1. Recover all accounts.
2. Specify accounts.
3. Specify exceptions.

9 1

The program displays a message similar to:

--
Allocated space for file TRANSIENT, SYSTEM: 50 BLOCKS
Allocated space for H.basic, SYSTEM: 60 BLOCKS
--
Procedure (continued)

STEP ACTION

10 IF...

- If you have one floppy disk drive, re-insert the HDOS 2.1.x SYSTEM DISK into floppy disk drive 1 when requested and [RETURN].

11 The program creates a SYSTEM account and file directory on the hard disk and allocates disk space for your initial software files.

12 IF...

- If you are using one floppy disk drive, the program prompts for the "Master Backup Disk". Insert the HDOS INITIAL RECOVERY DISK into floppy disk drive 1 again.

At this point the data for each file is copied to the hard disk.

13 Floppy disk drive #

The program creates hard disk SYSTEM files, using the files from the HDOS INITIAL RECOVERY DISK. For each file recovered to the SYSTEM account, a dot (.) appears on your screen.

In addition to the backup data you have just used, the HDOS INITIAL RECOVERY DISK also contains several additional files which you may wish to copy onto your hard disk. If you do, use the CF (Copy File) command to copy the files to hard disk. Use the LI (List File) command to check the filenames in the HDOS INITIAL RECOVERY DISK directory.

The files REDIRECT and CP/M.FIX will be useful if you have been using HDOS Revision 1.8 on an HD18. If this is the case, see section 1.3 below.

There are also various versions of H BASIC for hardware floating point and extended precision arithmetic. Before using extended precision H BASIC, you should consult the North Star BASIC manual.
1.2.6 INITIAL COMPLETE BACKUP

Now you should perform your first COMPLETE backup. There are two reasons for doing a backup at this time.

1. You always should have a copy of your HDOS INITIAL RECOVERY DISK to use if something happens to the factory supplied floppy disk that makes it unusable.

2. The second reason is that now is the time for you to begin a formal backup procedure for your hard disk to ensure the best possible recovery situation if anything happens to your hard disk.

The procedure below is simplified and useful only for this portion of the Initial System Startup. Read Chapter 4, 'Backup and Recovery', for more information about the BACKUP and RECOVER process.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>You will need at least one blank floppy disk to run an initial complete backup.</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_____</td>
</tr>
<tr>
<td>2</td>
<td>Insert a blank floppy disk into floppy disk drive 1.</td>
</tr>
<tr>
<td>3</td>
<td>IN 1[RETURN]</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
</tr>
</tbody>
</table>

North Star 1-11 HDOS Manual
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
</table>
| 5 | GO BACKUP [RETURN]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Complete backup.</td>
<td></td>
</tr>
<tr>
<td>2. Incremental backup.</td>
<td></td>
</tr>
<tr>
<td>3. Selected files or accounts backup.</td>
<td></td>
</tr>
<tr>
<td>4. Explanation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program prompts for the date. (Do not use blanks.)</td>
<td></td>
</tr>
</tbody>
</table>

| 7 | Date [RETURN]
| | The program prompts for a listing device. If you do not want a printed copy, enter 0 to send the list to your terminal. |

| 8 | Listing device number
| | Note that selection '3' will cause the program to prompt for a printer device number. Next, the program prompts for the hard disk drive number. |

| 9 | 101 [RETURN]
| | Now the program prompts for the floppy disk drive number into which you have put the blank disk. |
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Floppy disk drive #</td>
</tr>
</tbody>
</table>

The program indicates 'BACKUP STARTED'. The hard disk directory is compressed and written to the Master disk.

As each file is copied, the filename and length is displayed. The heading BACKED UP shows how much of the file or account fit on the floppy disk.

<table>
<thead>
<tr>
<th>ACCOUNT</th>
<th>NAME</th>
<th>SIZE</th>
<th>BACKED UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM</td>
<td>BACKEXP</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>HBASIC</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>RECOVERS</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

Please remove BACKUP.M from drive 1 and label it.

File data backup complete.
File cleanup started.

A dot (.) is displayed on your screen as each file is cleaned.

11 Since this is the first floppy disk of the session, it now contains the disk directory and is labeled "BACKUP.M" by the system.

You should label the disk 'BACKUP.M' and date it.

12 When the program ends [RETURN] to HDOS command level.
1.2.7 COPY THE SYSTEM DISK

To create an "auto-boot" floppy disk to automatically initialize HDOS you must first copy the HDOS 2.1.x SYSTEM DISK onto a working disk. A working disk is a copy of the factory-supplied floppy disk that will be used daily, while the original is stored for safe keeping. If the working disk is damaged or destroyed, another copy can be made from the original. Only use factory supplied HDOS floppy disks for the initial start-up and copy.

Procedure

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>1----</td>
</tr>
<tr>
<td>2</td>
<td>Insert the HDOS 2.1.x SYSTEM DISK into floppy disk drive 1.</td>
</tr>
<tr>
<td>3</td>
<td>CF ,1 CR IMAGE [RETURN]</td>
</tr>
</tbody>
</table>

Copy the floppy disk to the hard disk default account SYSTEM with a filename of IMAGE.

After approximately 30 seconds the red drive indicator light turns on. The total copy takes about two minutes, then displays:

COPY COMPLETED

4 Remove the HDOS 2.1.x SYSTEM DISK from disk drive 1.

5 Insert a blank floppy disk into disk drive 1.

6 CF IMAGE TO ,1 [RETURN]

Copy IMAGE from hard disk to the blank floppy disk in drive 1. This creates a working copy of the HDOS 2.1.x SYSTEM DISK. Repeat this command for more copies.
1.2.8 USING SYSGEN

You can use the SYSGEN program at this point to configure your working copy of the HDOS 2.1.x SYSTEM DISK to:

- 'auto-start' your copy of the HDOS,
- set your screen length,
- enable or disable interrupts,
- and/or auto-start an application such as HBASIC.

Procedure

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ensure that the working copy of the HDOS 2.1.x SYSTEM DISK is in floppy disk drive 1.</td>
</tr>
<tr>
<td>2</td>
<td>GO HBASIC [RETURN]</td>
</tr>
<tr>
<td></td>
<td>READY</td>
</tr>
<tr>
<td>3</td>
<td>LOAD SYSGEN,1 [RETURN]</td>
</tr>
<tr>
<td></td>
<td>READY</td>
</tr>
<tr>
<td>4</td>
<td>RUN [RETURN]</td>
</tr>
<tr>
<td></td>
<td>The SYSGEN program displays an initial message and the main menu:</td>
</tr>
<tr>
<td></td>
<td>Configuration options:</td>
</tr>
<tr>
<td></td>
<td>D)os</td>
</tr>
<tr>
<td></td>
<td>B)asic</td>
</tr>
<tr>
<td></td>
<td>E)nd configuration</td>
</tr>
<tr>
<td>5</td>
<td>D [RETURN]</td>
</tr>
<tr>
<td></td>
<td>Which DOS do you want to configure:</td>
</tr>
<tr>
<td></td>
<td>H)ard disk HDOS</td>
</tr>
<tr>
<td></td>
<td>F)loppy disk DOS</td>
</tr>
<tr>
<td></td>
<td>E)xit to main menu</td>
</tr>
</tbody>
</table>
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>H [RETURN]</td>
</tr>
</tbody>
</table>

Which HDOS do you wish to configure:
A) any 5 inch hard disk
B) an HD-18 hard disk

7 IF...

0 you have a five inch hard disk, enter A [RETURN]
0 you have an HD18 hard disk, enter B [RETURN]

Is HDxxDOS,1 the desired file to be configured?
Y)es, use this name
N)o, fetch alternate name
E)xit to main menu

8 Y [RETURN]

When you boot from this disk, do you want HDxxDOS,1 to automatically begin execution?

9 Y [RETURN]

The program now prompts for the number of lines you want to appear on your terminal. This number is usually 24.

10 Number of lines [RETURN]

The program prompts for your floppy drive type:

Q) double sided (quad capacity), fast stepping
D) single sided (double density)

What type of floppy disk drive is on your system? [Q, D, or M]ixed:

North Star 1-16 HDOS Man
Procedure (continued)

STEP ACTION

11 IF...

- o you have only double sided quad capacity drives, enter:
 Q [RETURN]

- o you have single sided double density drive(s), enter:
 D [RETURN]

The program displays the highest HBASEC MEMSET for your
system, then prompts:

--
Press any key to continue ...
--

12 Any key

You now have the option of enabling or disabling
interrupts:

--
Run with interrupts E)nable or D)isable --
--

13 IF...

- o you will be running any North Star multi-user operating
system, such as TSS/A or TSS/C enter D [RETURN] to
disable interrupts

- o you wish to enable interrupts, enter E [RETURN]

NOTE

See the section titled "Configuring the HORIZON for Multi-user Operation" in
the TSS/A and TSS/C manuals for more
information on interrupt handling and
its relationship to hardware.

- o you wish to enable interrupts, enter E [RETURN]
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
</table>
| 14 | SYSGEN presents the option of automatically starting an application program.
| | HDxxDOS,1 can be configured to automatically start a program.
| | It is NOT currently set to do this.
| | Do you wish to change this? |
| 15 | IF...
| | o you would like to automatically enter a program such as HBASIC every time you boot up your system disk, enter Y [RETURN]. SYSGEN prompts for the new auto-start command. The command should be in the form: 'Gkxxxxx', such as GO HBASIC.
| | o you do not want to automatically enter a program, enter N [RETURN].
| | Press any key to return to the main menu ...
| 16 | Any key
| | -------------------
| | D)os
| | B)asic
| | E)nd configuration
| 17 | E [RETURN]
| | All changes are complete and the disk may be removed. Thank you.
| | READY

North Star 1-18 HDOS MAI
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>BYE [RETURN]</td>
</tr>
</tbody>
</table>

North Star Hard Disk Operating System, Version 2.1.x
1.3 UPGRADE HDOS TO HDOS 2.1.X

If you are running earlier versions of HDOS and want to update to HDOS 2.1.x you will need to upgrade some
files on your hard disk to make this possible.

NOTE

If you have been running CP/M on an HD-
18, you should copy the correct HDBOOT
file to your CP/M system disk. You must
do this before you rearrange the hard
disk. (You may have already done this
if you are already running HDOS 2.0.0.)

1. Connect to the HDOS system file
CP/M.FIX by specifying it as a CP/M
volume (see the North Star CP/M
Preface). If you do not have
CP/M.FIX on your hard disk, use the
CP command to copy it from the HDOS
2.1.X INITIAL RECOVERY DISK.

2. PIP the correct HDxxBOOT.COM file
from CP/M.FIX to your working copy
of the CP/M system disk. (The
correct HDBOOT name will depend on
the type of hard disk). This allows
CP/M to find HDOS files that are
volumes under the rearranged disk.

3. DElete CP/M.FIX from your SYSTEM
account.

Several files need updating. To do this, the old
versions must be deleted. There is a program on the
HDOS 2.1.X SYSTEM DISK that will automatically delete
the correct files. The program name is SHORTCUT.
Enter:

GO SHORTCUT,1 [RETURN]
A sequence of commands appear on your terminal, deleting several files. Some of the file names may not appear on your hard disk, but will be deleted anyway.

When this program has finished execution and you have the HDOS '=' prompt on your screen, run the program TOTREC, with one crucial difference from a Total Recovery. Enter:

GO TOTREC,1 [RETURN]

and in response to the first question that asks whether you want to delete all files and accounts on the hard disk, answer NO.

If you don't answer NO, all your data will be destroyed!

Answering NO leaves the hard disk directory unchanged and creates those files found on the HDOS INITIAL RECOVERY DISK.

Follow the rest of the instructions as per a normal TOTREC. (Refer to Section 4.3.3, Using TOTREC.)

If you have been using HDOS Revision 1.B on an HD18 hard disk, you can now rearrange the hard disk directory to make directory accesses faster.

Enter:

GO REDIRECT,1 [RETURN]
1.4 NORMAL SYSTEM STARTUP

All the programs necessary for each startup of the hard disk system should now be on your working copy of the HDOS 2.1.x SYSTEM DISK.

This disk should always be inserted into floppy disk drive 1, the drive nearest to the center of the HORIZON, to load the HDOS into the computer's memory (RAM).

When the computer is first powered up, you should press and release the red reset switch on the HORIZON's rear panel. This starts the "bootstrap" program which in turn activates the floppy disk drive and loads the HDOS into the computer's memory. The HDOS command prompt ("=") appears on the terminal screen each time HDOS is successfully loaded, unless you have configured a special auto-start.

After the computer has been powered on, whenever you want to re-boot the system from HDOS you should use the HDOS IL (Initial Load) command.

If you have an HD18, after the hard disk drive motor has started allow three minutes before any operation. The internal control system of the HD18 imposes this delay while the drive motor comes to full speed and stabilizes.

Five inch hard disks have no significant delay.

1.5 TURNING OFF THE SYSTEM

Before turning off the power to the system, remove any disks from the floppy disk drives.

If you have a system with one or more HD18 hard disks, you should use the HDOS OF command to turn off the motors. The OF command retracts the read/write heads to their special landing zones on the disk before stopping the drive motor. You can turn off the power to the computer, terminal, hard disk drives, and peripherals, in any order.

Although a North Star HORIZON with a five inch hard disk does not require you to enter the OF command when you power down the computer, there is a preferred landing zone for each type. We recommend using OF, especially when you move the machine.
1.6 HARD DISK TEST PROGRAM

The Hard Disk Test Program (HD5XTEST or HD18TEST) is a three level diagnostic test program for detecting potential hardware problems in North Star hard disk units.

The diagnostic program is contained on the factory supplied HDOS 2.1.x SYSTEM DISK.

The Level One test performs a non-data-destructive scan of the key signals and data on the disk. Run this test daily to provide early warning of possible disk problems. If the test detects no errors, assume the disk is functioning correctly and terminate the diagnostic program.

If the Level One test does detect a potential problem, the program indicates what steps to take. In most cases the program will advise the user to:

1. Perform a preventive maintenance procedure

or

2. Proceed to the Hard Disk Diagnostic Level Two test.

The Level Two test is run as above in section 1.2.4 "Reformatting the Hard Disk". Refer to the section on Advanced Diagnostics below for Level Three test procedures.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform a Level Two or Level Three diagnostic test only if the data on hard disk has been completely backed up on another medium. Level Two and Level Three destroy all data on the hard disk.</td>
</tr>
</tbody>
</table>

All hardware modifications included in the HD18 Upgrade Kit should be installed before the Hard Disk Test Program is run for the first time.

North Star 1-23 HDOS Manual
1.6.1 THE DAILY RUN PROGRAM

An important responsibility of the user is routine testing of the computer. The Non-destructive Daily Run program performs this function. It will not affect the data on the disk.

Use this program on a regular basis. Once a week should be sufficient.

The Daily Run verifies the performance of the hard disk. It will indicate a problem, called a "read error," if any exists.

You should power up your HORIZON and all peripheral hardware, then follow this procedure:

Procedure

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insert your working copy of the HDOS 2.1.x SYSTEM DISK in floppy disk drive 1.</td>
</tr>
<tr>
<td>2</td>
<td>When the floppy disk is seated in the drive, close the drive latch.</td>
</tr>
<tr>
<td>3</td>
<td>Press and release the RESET switch on the back of your computer.</td>
</tr>
<tr>
<td>4</td>
<td>Enter the appropriate command to begin the test.</td>
</tr>
</tbody>
</table>

IF...

- you have a five inch hard disk, then enter:
 GO HD5XTEST [RETURN]
 and go to step 5.

- you have an HD18, then enter
 GO HD18TEST [RETURN]
 and go to step 6.
Procedure (continued)

STEP ACTION

5 Your Hard Disk code will be displayed.

Verify the code by checking the hard disk label on the rear of the computer. If it is correct enter Y. If it is not correct, reply N and enter the correct code.

6 WHICH DIAGNOSTIC LEVEL TO EXECUTE:

(1) NONDESTRUCTIVE DAILY RUN

(2) SIMPLIFIED TOTAL DISK CHECK AND REFORMAT (DESTRUCTIVE TO ALL DATA!)

(3) EXTENDED TOTAL DISK CHECK AND REFORMAT (DESTRUCTIVE TO ALL DATA!)

7 Select 1 from the main menu.

IF...

o you have an HD18 you are prompted for a unit number. Enter the unit # [RETURN].

Level 1 test...
HARD DISK UNIT TO CHECK
(101, 102, 103, or 104)

8 Sector pulse count correct
Sector pulse timing range correct
Testing usable tracks for read errors

Number of read errors: 0
Testing reserved track

Reserved track test passed

TEST COMPLETE

Press RETURN

Procedure (continued)

STEP ACTION

9 IF...
 - the number of read errors is 0 then [RETURN] to exit the program and return to the main menu.
 - the number of read errors is greater than 0, then note the number and call a North Star service representative

10 At this point the program begins the specified diagnostic routine. The program requests no further information for the daily Level One test.
1.7 ADVANCED DIAGNOSTICS

1.7.1 PROBLEMS WITH THE HARD DISK

For purposes of this discussion, problems with the hard disk have been divided into several broad categories:

- computer failure which affects the hard disk
- loss of the skip table on the hard disk not related to a computer failure
- loss of the hard disk label

The skip table is explained in the next section.

Here is a brief list of some of the situations which might indicate or result in a computer failure:

- the computer has been dropped or jolted
- you receive an error message when you try to boot up the computer
- the results of the Daily Run show a significant number of "read errors"
- there has been a series of power failures in your building

1.7.2 DIAGNOSING PROBLEMS

There is little you can do alone if your computer has failed. If you suspect a failure, you may do the Daily Run (Level 1 Test) to confirm hard disk errors. You should then call your North Star service representative.

The Simplified (Level 2) and Extended (Level 3) Check programs have more sophisticated tests than the Daily Run. But these will destroy your data. You should not run them unless your hard disk is empty or has been successfully backed up.

In general, then, your ability to diagnose hard disk failures is limited to errors detected on the Daily Run.
1.7.3 SKIPS

A skip is a portion of the hard disk that is not reliable. Normally, a hard disk will have a few skips. They do not mean that the disk itself is defective, nor do they measurably reduce the capacity of the disk.

The hard disk is divided into cylinders and heads. Skips are identified according to the cylinder and head on which they are located. The hard disk is carefully checked and all skips are identified before it is shipped. The locations of the skips are then recorded in two places:

○ on a sticker on the back of the computer
○ on a sticker on the outside of the hard disk

Diagram

HARD DISK INFORMATION

Drive Type: HD-5
Code: S05A

SKIP TABLE

<table>
<thead>
<tr>
<th>CYLINDER</th>
<th>HEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>2</td>
</tr>
</tbody>
</table>

North Star 1-28 HDOS Manual
1.7.4 THE SKIP TABLE

The skip table is the computer's internal information about skips, and is located on sector 2 of the hard disk. The hard disk must have this information to operate properly.

Skips themselves are not serious problems. However, if the skip table is somehow lost, the hard disk will not function properly. Here is a partial list of situations in which this might occur:

- If the Level 2 or Level 3 hard disk test program is interrupted by a power failure or a system reset.

- If the hard disk has been dropped or jolted during shipping or handling. The message "CURRENT SKIP TABLE INVALID" would appear on the screen when the Level 1 test is run.

If either of these situations arises with your hard disk, you will need to replace the skip table on the disk. You must:

- Read the information on the skip sticker about the cylinder and head location of each skip.

- Run the Extended Check (Level 3) program to reformat and test the hard disk. The Extended Check program will require you to give the skip information from the sticker.

The procedure for running the Extended Check program is found in the next section.
1.7.5 THE EXTENDED CHECK PROGRAM

The Extended Total Disk Check and Reformat (Level 3) program is the most sophisticated of the Hard Disk Test programs. Its function is to place the skip table on the hard disk. It is intended primarily for North Star service representatives.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Extended Check program is destructive to data. Run this test yourself only if there is no data on your hard disk or if you have completely backed up your hard disk. In all other situations, you should call a North Star service representative.</td>
</tr>
</tbody>
</table>

You may use this test if the skip table on your hard disk has somehow been lost.

The Extended Check program is essentially the same as the Simplified Check program, which you used in Section 1.2.4. The difference is that you must answer a series of questions regarding your disk before the test is run.
1.7.6 RUNNING THE EXTENDED CHECK PROGRAM

This program presents a series of options. Most of these are useful only for North Star service representatives. This procedure shows the simplest method for running the program.

Procedure

STEP ACTION

1 Select option 3 from the main menu.
 IF...
 o you have an HDD8, you are prompted for the hard disk unit number. Enter unit # [RETURN].

 --
 **** WARNING **** Level 3 test...
 PROCEEDING WITH THIS TEST WILL DESTROY ALL EXISTING DATA ON THE DISK
 Press RETURN to proceed or ESC to abort
 --

2 [RETURN]

3 IF...
 o you see this message, then check the hard disk information sticker and go to the next step.

 --
 CURRENT SKIP TABLE
 CYLINDER xxx, HEAD xx
 CYLINDER xxx, HEAD xx
 ENTER ADDITIONAL SKIPS(Y/N)?
 --
 o you see this message, then check the hard disk information sticker and go to the next step.
 --
 SKIP TABLE INVALID
 STARTING WITH NO SKIPS
 ENTER ADDITIONAL SKIPS (Y/N)?
Procedure (continued)

STEP ACTION

4 IF...

| o the sticker shows no skips, then N and go to step #8. |
| o the sticker show skips, then go to the next step. |
| o the sticker and the display do not agree, then reset the computer and call your North Star dealer. |

5 Y

CYLINDER:

6 Enter the cylinder number of the first skip recorded on the sticker.

HEAD:

7 Enter the head number of the skip. Enter the same information for each skip recorded.

8 [RETURN] after the next CYLINDER prompt when you have finished entering the skips.

9 The skip table is complete.

Press RETURN to accept, ESC to reject skip table?

10 [RETURN]

HALT IF ERROR DETECTED (Y/N)?

11 N

REPEAT TEST CONTINUOUSLY (Y/N)?
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>RUN TEST ON SKIPS (Y/N)?</td>
</tr>
<tr>
<td>13</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>TYPE THE NUMBER OF ITERATIONS FOR EACH TEST SECTION</td>
</tr>
<tr>
<td></td>
<td>PATTERN READ/WRITE:</td>
</tr>
<tr>
<td>14</td>
<td>1 [RETURN]</td>
</tr>
<tr>
<td></td>
<td>SERVO HARMONIC TEST:</td>
</tr>
<tr>
<td>15</td>
<td>1 [RETURN]</td>
</tr>
<tr>
<td></td>
<td>SERVO RANDOM TEST:</td>
</tr>
<tr>
<td>16</td>
<td>1 [RETURN]</td>
</tr>
<tr>
<td></td>
<td>OUTPUT TO TERMINAL (0) OR PRINTER (1)?</td>
</tr>
<tr>
<td>17</td>
<td>IF...</td>
</tr>
<tr>
<td></td>
<td>o you want a printed record of the backup session, then select 1.</td>
</tr>
<tr>
<td></td>
<td>o you do not want a printed record, then select 0.</td>
</tr>
<tr>
<td>18</td>
<td>You are ready to begin the test.</td>
</tr>
<tr>
<td></td>
<td>Press RETURN to start test:</td>
</tr>
</tbody>
</table>
Procedure (continued)

<table>
<thead>
<tr>
<th>STEP</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>The test begins after the formatting is complete. This is a long test. You may want to do other work while it running.</td>
</tr>
<tr>
<td></td>
<td>[RETURN]</td>
</tr>
</tbody>
</table>

CONTROL-C CAN BE USED TO INTERRUPT TEST (EXCEPT WHILE FORMATTING)
DISK NOW BEING FORMATTED

Any errors detected will be recorded at the end of the test. These errors are rare. A small number of them is acceptable. If your disk has more than this, call your North Star dealer or service representative.

SEEK ERRORS 0
HDCOM ERRORS 0

Any skips will also be recorded.

CYLINDERS xxx, HEAD x
CYLINDERS xxx, HEAD x

TEST COMPLETE
Press RETURN

22 A [RETURN] will reboot HDOS.
2.1 OVERVIEW

The Hard Disk Operating System (HDOS) enables you to communicate with and control your floppy disk and hard disk drives. The HDOS programs reside on a floppy disk, which you must insert into a floppy disk drive and load into the computer's RAM memory each time you turn on the computer. Once the HDOS is loaded, you can enter HDOS commands to create and manipulate files, perform maintenance and debugging functions, or execute programs. You can program in assembly language, HBasic, or any other language implemented by North Star.

2.2 THE LINE EDITOR

Before you attempt to enter commands or data on the keyboard, you should know how to use the line editor. Not only does the line editor send lines of input to the system, it enables you to correct typographical errors. The editing features described here work at the HDOS command level. Additional editing features are available when you invoke various programming environments. These features are described in the manuals that accompany the programming languages.

2.2.1 Sending a Line to the System

A line typed in response to the HDOS prompt (=) is sent to the system by "typing a carriage return." Type a carriage return by pressing the RETURN key. Carriage returns are indicated in this manual by the symbol <CR>. Whenever a line of typing is shown followed by a <CR>, the operator should press RETURN.

You cannot correct an error in a line after you have pressed the RETURN key. If a command is unacceptable to the system, the system produces an error message and prompts you again. If the system accepts a command which includes incorrect parameters or data, enter a new command to correct or counteract the original
2.2.2 Correcting Typographical Errors

Typographical errors can be corrected BEFORE you type a carriage return. You can delete the entire line or you can correct individual characters within the line.

To delete a line, type an "at" sign (@) or control-N. The line is deleted and a new prompt appears.

To delete one character from the screen, use the backspace or control-H to move the cursor back to the error. As the cursor moves, each character that it encounters is erased. When you reach the character in error, re-enter that character and all the characters that follow.

To delete a character from a hard copy terminal, use the DELETE, RUBOUT, underscore, (depending on your terminal), or control-Q to produce an underscore character on the hard copy. Each underscore represents one deleted character, moving backward from the current position. When the underscores equal the character positions to be deleted, type the replacement characters.

Example:

SL PROGTSG__RAM 25_3

is read by the system as:

SL PROGRAM 23

2.2.3 Displaying the Previous Command

You can display your previous command under HDOS by typing a control-G. You can repeat the command by pressing RETURN or typing a control-J, or you can modify or delete the command using the line editor.
If the first character in a command is a '=' the command is not placed in the 'last command' buffer. A control-G typed at this point displays the previous command, not the one just sent.

Example:

1. Type: AL 102 <CR>

The system displays the accounts on Hard Disk 102.

2. Type: =LI 1 <CR>

The system lists the files on floppy disk drive 1 but does not enter the command into the last command buffer.

3. Type: Control-G

4. The system displays:

 =AL 102

2.2.4 Multiple HDOS Commands

You can key multiple HDOS commands on one line if you separate them with backslashes. Since the backslash is a legal character in filenames and accountnames, precede it with a space to make the command unambiguous. The commands are executed in the order entered and can be displayed with control-G then modified as needed.

Example:

AL 101 \LI 1

prints all account names and ID numbers from Hard Disk Drive 101 to your screen, then prints a directory listing from floppy disk drive 1.
2.3 DISK AND FILE INFORMATION

2.3.1 Floppy and Hard Disk Organization

Each hard disk or floppy disk consists of concentric TRACKS. The outermost track is identified as TRACK 0. Each track is subdivided into SECTORS, and each double-density sector holds 512 bytes of data. Every sector is identified by a unique DISK ADDRESS. Each sector has an address of \(10X+Y\), where \(x\) is the track number and \(y\) is the sector number. For example, sector 3 of track 27 on a floppy disk has the disk address of 273.

You may access data on a hard disk or floppy disk by file name, or by relative position within a named file. On a floppy disk, you can also access data by giving a physical disk address, such as 273.
2.3.2 Files

A file is an integral number of logically sequential blocks of data on a floppy or hard disk. A FILE BLOCK is defined as a unit of information equal to 256 bytes; therefore, a sector can contain two file blocks of information (one block on single-density floppy disks). Files always begin on sector boundaries. For example, a particular diskette file might occupy disk address 17 through 95 (track 1, sector 7 through track 9, sector 5).

The first four sectors on each floppy disk contain directory information; these sectors, 0 through 3 must not be specified as file addresses.

2.3.3 File Types

Each file is identified by its file type. Eleven file types are currently defined. More may be assigned in later versions of HDOS.

Type 0 - Default type. New files created by HDOS are assigned this type until explicitly changed by the TY command.

Type 1 - A file containing a machine language program (object code) that can be executed directly from HDOS with the GO command.

Type 2 - HBASIC program that can be loaded or saved from HBASIC.

Type 3 - HBASIC data file.

Type 4 - Backup diskette index.

Type 5 - Hard disk backup data.

Type 6 - CP/M workfile

Type 7 - CP/M unit

Type 18- ASP Sequential access file

Type 19- ASP Random access file
Type 20- ASP Index file

Types 32-63 - Unassigned by North Star. May be defined by user.

2.3.4 HDOS Data Structures

The following figures illustrate HDOS Data Structures on the hard disk and should be used in conjunction with the Equates listing in Appendix E. The exploded view of the hard disk in figure 2-1 is meant to show logical relationships between the structures but is not a physical representation of actual locations on the disk.
HARD DISK UNIT STRUCTURE

Sectors of a unit
0
disk label
1
DIB Table
2
Skip Table
3
free space
n
The Directory
n+128
free space

Non-destructive Testing Space

Figure 2-1

North Star 2-7 HDOS Manual
HARD DISK LABEL

<table>
<thead>
<tr>
<th>BYTE</th>
<th>Description</th>
<th>North Star</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DLILL Illegal Directory Address</td>
<td>North Star</td>
</tr>
<tr>
<td>2</td>
<td>DLAX Auto-Load-and-Execute Pathname</td>
<td>Star HD5</td>
</tr>
<tr>
<td>37</td>
<td>DLMajor Major Disk Structure Revision Level</td>
<td>and HD18</td>
</tr>
<tr>
<td>38</td>
<td>DLMINOR Minor Disk Structure Revision Level</td>
<td>hard disks</td>
</tr>
<tr>
<td>39</td>
<td>DLDSZE Disk Size (Sectors per disk)</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>DLNSRT Number of Sectors reserved for TEST</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>DLNHSZ DIB Size as a power of 2</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>DLDRSZ Directory Size (Sectors)</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>DLDIR Directory Disk Address</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>DLSST Stepping Speed</td>
<td>Other</td>
</tr>
<tr>
<td>49</td>
<td>DLMXH Head Number (Maximum)</td>
<td>North Star</td>
</tr>
<tr>
<td>50</td>
<td>DLMXC Cylinder Number (Maximum)</td>
<td>5.25"</td>
</tr>
<tr>
<td>52</td>
<td>DLPRC Precompensation Cylinder Number (Lowest)</td>
<td>hard disks</td>
</tr>
<tr>
<td>54</td>
<td>DLLCC Low Current Cylinder Number (Lowest)</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>DLOFC Safe Cylinder Number</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-2
DIB TABLES

DIB Table --- Sector 1 of the disk

0
DIBs in use
1 counter

2
510 bytes

NOTE
A 1 bit indicates a DIB in use. A 0 bit indicates a free DIB.

511
512
size

Skip Table --- sector 2 of the disk

0
bad DIB
counter

1

2
510 bytes

NOTE
This table is the same structure as the DIB Table; however, a 1 bit indicates a bad DIB. A 0 bit indicates a good DIB.

511
512
size

Figure 2-3

North Star 2-9 HDOS Manual
FILE STRUCTURE

file directory entry

The nDIB 0 address is all ones if no files allocated.

nDIB 0

Sector 0 - index block

nDIB 1 address
nDIB 2 address
etc...

250 bytes

nDIB 1

nDIB 2

Figure 2-4
FILE DIRECTORY ENTRY

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>entry type</td>
<td>DETYP</td>
</tr>
<tr>
<td>account ID number</td>
<td>DEACN, DESYM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>file name, nul file</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>attributes</td>
</tr>
<tr>
<td>file size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes in last sector</td>
</tr>
<tr>
<td>nDIB size</td>
</tr>
<tr>
<td>reserved space</td>
</tr>
<tr>
<td>nDIB 0 address</td>
</tr>
<tr>
<td>divided by SPH</td>
</tr>
<tr>
<td>file type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>type dependant data</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserved</td>
</tr>
<tr>
<td>size</td>
</tr>
</tbody>
</table>

This is the structure description. It is copied to the OFB when the file is opened.

NOTE
The nDIB 0 address (FDEHO) will be FFFFFH, if there is no disk space allotted to the file

Figure 2-5
ACCOUNT DIRECTORY ENTRY

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>Entry type</td>
</tr>
<tr>
<td>3-16</td>
<td>Two bytes that must be zero</td>
</tr>
<tr>
<td>16-18</td>
<td>Account name</td>
</tr>
<tr>
<td>19-31</td>
<td>Account ID</td>
</tr>
<tr>
<td>31-32</td>
<td>Reserved bytes</td>
</tr>
<tr>
<td></td>
<td>Size</td>
</tr>
</tbody>
</table>

Figure 2-6
FILE INDEX ENTRY

Sector 0 of nDIB 0 of a file

<table>
<thead>
<tr>
<th>Sector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nDIB 1 address</td>
</tr>
<tr>
<td>1</td>
<td>nDIB 2 address</td>
</tr>
<tr>
<td>2</td>
<td>252 bytes</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>reserved</td>
</tr>
<tr>
<td>255</td>
<td>DIB address</td>
</tr>
<tr>
<td>256</td>
<td>256 bytes unused</td>
</tr>
<tr>
<td>511</td>
<td>size</td>
</tr>
<tr>
<td>512</td>
<td>all ones if a null entry</td>
</tr>
</tbody>
</table>

Figure 2-7
OPEN FILE BLOCK

0 directory entry number OFBDE
1 disk address of directory OFBDB
2 index length OFBIL
3 attributes OFBAT, OFBSD
4 file size in 512 byte blocks OFBFZ
5 bytes in last block OFBLB
6 nDIB size OFBHS
7 unit number OFBMU
8 nDIB 0 address OFBHO
9 256 bytes
14 index OFBI
269 check byte OFBCB
270 size OFBSZ
271

The file structure description copied as a contiguous set of bytes from the directory.

Figure 2-8
CREATE INFORMATION BLOCK

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>type</td>
<td>CBTYP</td>
</tr>
<tr>
<td>1</td>
<td>attributes</td>
<td>CBATR</td>
</tr>
<tr>
<td>2</td>
<td>nDIB size</td>
<td>CBNZH</td>
</tr>
<tr>
<td>3</td>
<td>pathname address</td>
<td>CBPNA</td>
</tr>
<tr>
<td>5</td>
<td>type dependent data</td>
<td>CBTDD</td>
</tr>
<tr>
<td>6</td>
<td>size</td>
<td>CBSIZ</td>
</tr>
</tbody>
</table>

Figure 2-9
Transfer Command Block

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation code</td>
<td>TCOP</td>
</tr>
<tr>
<td>1</td>
<td>Beginning memory address</td>
<td>TCMEM</td>
</tr>
<tr>
<td>2</td>
<td>Beginning sector number</td>
<td>TCSEC</td>
</tr>
<tr>
<td>3</td>
<td>Transfer length in sectors</td>
<td>TCLEN</td>
</tr>
<tr>
<td>4</td>
<td>Ending memory address</td>
<td>TCEMA</td>
</tr>
<tr>
<td>5</td>
<td>Ending sector number</td>
<td>TCESN</td>
</tr>
<tr>
<td>6</td>
<td>Sectors not transferred</td>
<td>TCSNT</td>
</tr>
<tr>
<td>7</td>
<td>Bytes available in last sector</td>
<td>TCBLB</td>
</tr>
<tr>
<td>8</td>
<td>"or" of all dirty bits</td>
<td>TCDRT</td>
</tr>
<tr>
<td>9</td>
<td>Size</td>
<td>TCSIZ</td>
</tr>
</tbody>
</table>

Bytes 0 - 5 associated with request
Bytes 6 - 13 associated with result

Figure 2-10
3.1 OVERVIEW

The HDOS command processor allows you to work with files on diskette or hard disk(s) by typing commands on a console terminal keyboard. When you press the RETURN key, the command and its arguments are processed and, if valid, executed. If the command is invalid, the system returns an error message.

With the HDOS commands, you can:

* Initialize a diskette.
* Create, work with, and delete files and accounts.
* List file directories and accounts.
* Load and execute files.
* Access RAM addresses and I/O ports.
* Control output devices.
* Perform maintenance and debugging functions.
* Rename Diskette files.
* Copy files from diskette to diskette, hard disk to diskette, and diskette to hard disk.
3.2 SYMBOL CONVENTIONS

When the syntax of a command is given in this section, the commands and words indicated with uppercase letters are to be typed exactly as shown. Words or arguments for which you must supply a value are indicated in lowercase. For example:

AC account

means that you must type the letters AC followed by a valid account name. For example, in the command AC TEST6, the name TEST6 replaces account.

Certain optional arguments only refer to a hard disk and are not used to refer to a diskette. These arguments are always surrounded by square brackets ([]) . For example, in the command syntax:

AL [n] [d]

enter the command as shown and one, both or neither of the arguments. If you do include both arguments, enter them in this order.

Other optional arguments only refer to a diskette and never refer to a hard disk. These arguments are always surrounded by braces ({}). In the command syntax:

IN d {dens}

enter the command, a value for d, then choose whether or not to enter a value for dens.

Occasionally an argument has both braces and square brackets. In the command syntax:

LI [{n}] [account] {d}

n is optional for either diskette or hard disk; account is optional if you are referring to a hard disk and is not used otherwise; d is optional if you are referring to a diskette and is not used otherwise.
3.3 ARGUMENTS

Most HDOS command arguments and the rules that govern them are described below. Arguments that apply to only one command are described with that command.

In general, numeric values that refer to disk addresses are expressed in decimal notation. Numeric values that refer to RAM (including GO addresses) or port addresses are expressed in hexadecimal notation. Any numeric argument (except a drive number appended to a file name or an account name) can be entered in hexadecimal notation if immediately followed by an H, or decimal notation if followed by a T.

Example:

CR JONES 20H

This command creates a 32-block (20 Hex) file named Jones. Ordinarily the length of the file is specified in decimal notation. If you specify hex notation, the system makes the conversion.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#n</td>
<td>Refers to an I/O device number from 0 to 7 inclusive. Generally, n is optional and defaults to 0. The Hard Disk Operating System assigns specific device numbers to specific peripheral devices. If your system has been customized, your device numbers may be different. The assigned device numbers are:</td>
</tr>
<tr>
<td></td>
<td>0 = Console terminal, left serial port.</td>
</tr>
<tr>
<td></td>
<td>1 = Printer, right serial port.</td>
</tr>
<tr>
<td></td>
<td>2 = Another device, parallel port.</td>
</tr>
<tr>
<td></td>
<td>3 - 7 (not implemented)</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>d</td>
<td>Diskette or hard disk drive number. Diskette drive numbers range from 1 to 4. Hard disk drive numbers range from 101 to 104.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default if no drive number is specified is 101, the first hard disk drive.</td>
</tr>
</tbody>
</table>

<p>| accountname | Name of an account on a hard disk drive. Account names consist of 1 to 14 printing characters, and can not begin with a number. |
| account | Used to organize files on the hard disk into groups. Accounts are specified by an accountname optionally followed by a comma and a hard disk drive number. If the drive number is omitted, drive 101 is assumed. |
| filename | Name of a file on a diskette or hard disk. On a diskette, a filename may contain from 1 to 8 printing characters; on a hard disk, a filename may contain from 1 to 14 printing characters. |
| pathname | Uniquely identifies a file on a particular drive and account. On a diskette, a pathname consists of a filename followed by a comma and a drive number. A hard disk pathname consists of a filename optionally followed by a comma and an account then another comma and a drive number. If an account is not included, the current default account will be used. This is initially account SYSTEM on hard disk drive 101, but may be changed by the user. |</p>
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pathname</td>
<td>For example,</td>
</tr>
<tr>
<td>(continued)</td>
<td>TESTFILE6, ACCT5, 102</td>
</tr>
<tr>
<td></td>
<td>XINPUT, 2</td>
</tr>
<tr>
<td></td>
<td>MARCHDATA, GLACCT27</td>
</tr>
<tr>
<td></td>
<td>99INFO, 102</td>
</tr>
<tr>
<td></td>
<td>PAYROLLPROGRAM</td>
</tr>
<tr>
<td></td>
<td>JONES, ACCT1</td>
</tr>
<tr>
<td></td>
<td>jones, acct2</td>
</tr>
<tr>
<td></td>
<td>are all valid pathnames.</td>
</tr>
<tr>
<td>len</td>
<td>Length of a file or part of a file in blocks</td>
</tr>
<tr>
<td></td>
<td>of 256 bytes. len is expressed in decimal</td>
</tr>
<tr>
<td></td>
<td>notation.</td>
</tr>
<tr>
<td>dens</td>
<td>Density specification, used only when</td>
</tr>
<tr>
<td></td>
<td>referring to diskettes. Density may be</td>
</tr>
<tr>
<td></td>
<td>either S or s for single density, or D or d</td>
</tr>
<tr>
<td></td>
<td>for double density. The default is double</td>
</tr>
<tr>
<td></td>
<td>density.</td>
</tr>
<tr>
<td>alloc</td>
<td>is the size, in DIBs (Data Incremental</td>
</tr>
<tr>
<td></td>
<td>Blocks, previously called "hunk") of the</td>
</tr>
<tr>
<td></td>
<td>areas on a hard disk allocated to a file. A</td>
</tr>
<tr>
<td></td>
<td>DIB is a group of sixteen contiguous sectors.</td>
</tr>
<tr>
<td></td>
<td>The allocation factor is the number of DIBs</td>
</tr>
<tr>
<td></td>
<td>grouped into a contiguous area on the disk,</td>
</tr>
<tr>
<td></td>
<td>an area called a "segment".</td>
</tr>
<tr>
<td></td>
<td>Valid allocation factors are 1 (default), 2,</td>
</tr>
<tr>
<td></td>
<td>4, 8, and 16. An allocation factor of 8 will</td>
</tr>
<tr>
<td></td>
<td>put segments on hard disk consisting of eight</td>
</tr>
<tr>
<td></td>
<td>DIBs times sixteen sectors, for a total of</td>
</tr>
<tr>
<td></td>
<td>128 sectors each.</td>
</tr>
<tr>
<td></td>
<td>If the file uses more than one megabyte of</td>
</tr>
<tr>
<td></td>
<td>disk space, specify an allocation factor</td>
</tr>
<tr>
<td></td>
<td>greater than 1.</td>
</tr>
</tbody>
</table>

North Star 3-5 HDOS Manual
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>daddr</td>
<td>Disk address. The disk address is usually expressed in decimal notation. The format for daddr is: tracksector. For example, a diskette address of 357 means track 35, sector 7. This is sector 7 of the innermost track on side B of a double-sided diskette. On the hard disks, the address is a logical rather than a physical connection to track and sector.</td>
</tr>
<tr>
<td>paddr</td>
<td>Port address. This address is expressed in hexadecimal notation (0-FFH).</td>
</tr>
<tr>
<td>raddr</td>
<td>RAM address. The RAM address is usually expressed in hexadecimal notation (0-FFFF).</td>
</tr>
<tr>
<td>region</td>
<td>A contiguous block of random-access memory (RAM) specified in one of the following ways: 1. A single address to specify a one-byte block at the given memory address. 2. Two addresses separated by a hyphen to specify the first and last byte of the block. 3. An address and a number separated by a comma to specify the beginning address and the length of the block.</td>
</tr>
<tr>
<td>bval</td>
<td>Byte value—the value that fills a single byte. The value may be specified as either: 1. A decimal number from 0 through 255 (followed by the letter T). 2. A hexadecimal number from 0 through FF. 3. A printing character or a space enclosed in single or double quotation marks. A printing character is any character entered without using the control key or other function keys such as carriage return, line feed, tab, etc.</td>
</tr>
</tbody>
</table>
3.4 HDOS COMMANDS

3.4.1 ACCOUNT COMMANDS

Accounts are used to group files on the hard disk. All files on the hard disk are assigned to an account when they are created, and the account name becomes part of the "pathname" used to identify that particular file. The system assigns each account an account ID number. This ID number is associated with the files in that account.

HDOS provides the following commands to create, change, and delete account names.

AC Account Create

This command creates a new account name and assigns it an account ID number. The syntax of the AC (Account Create) command is:

AC account

where: account identifies the account to be created.

Example 1:

AC PROGONLY

The new account named PROGONLY is created on hard disk drive 101.

Example 2:

AC PROGTWO,102

A new account, PROGTWO, is created on hard disk drive 102.
Account Rename

This command allows you to change the name of an existing account. The syntax of the AR (Account Rename) command is:

AR account TO newaccount

where: account identifies the current account.

newaccount will be the new name of the account.

The new account name can not already exist on the same drive.

Example:

AR SOFT1 TO SOFT1A

The account name SOFT1 is changed to SOFT1A. The account ID number associated with the account is not changed.
Account Set

The HDOS assigns account SYSTEM on hard disk drive 101 as the default account. The AS command changes the default account to any other existing account name on any hard disk drive. This change remains in effect until the system is rebooted. The syntax of the AS (Account Set) command is:

AS account

where: account identifies the existing account to substitute for the current system default account.

Example:

AS TEST1CL
Account Delete

This command deletes an account name from a hard disk's account directory. Delete all files from the account before you delete the account (See the DE and MD commands). The syntax of the AD (Account Delete) command is:

AD account

where: account identifies the account to be deleted.

Example:

AD JONES

The account JONES is removed from the hard disk's directory.
3.4.2 FILE COMMANDS

These commands allow you to create new files, change the size and attributes of existing files, copy files, and delete files.

CR Create File

This command creates a new file on either a diskette or hard disk. On a diskette, CR creates a file directory entry only; no accessing of the file occurs. On a hard disk, the allocated file space is completely initialized to zeros. The syntax of the CR (Create) command is:

CR pathname len {daddr} {dens} [alloc]

where: pathname identifies the file to be created.

len is the length of the new file in file blocks of 256 bytes.

daddr is the disk address at which the file is to begin. On a diskette, the default is the address immediately after the last file.

dens is the density of the file to be created.

alloc is the allocation factor. See the section on command arguments in this chapter.

Example 1:

CR JOBDATA,4 8 56 D

A new file named JOBDATA is created on a double-density diskette in Drive 4. The file is eight blocks long, and begins at disk address 56.
Example 2:

CR BASICII,2 10

A new file named BASICII is created on the diskette in Drive 2. The file is given a length of ten blocks. Because no disk address is specified, the new file starts immediately after the end of the last file on the diskette. The file defaults to double density.

Example 3:

CR HARD.DISK.FILE,JONES,102 1200 8

A new file named HARD.DISK.FILE is created on Drive 102 and associated with account JONES. The length of the file is 1200 blocks and space is allocated in segments of eight DIBs (128 sectors) each.
SL Set Length

This command changes the length of a file to the specified length. The syntax of the SL (Set Length) command is:

SL pathname len

where: pathname identifies the file whose length is changed.

len is the new length of the file, specified in blocks.

If the file is on a hard disk, this command will succeed. If the file is on a diskette, however, this command succeeds only if the new file length is shorter than the original file length, or if all the diskette space after the specified file is unassigned.

Example:

SL JONES2 16

A file named JONES2 in the default account has its file length changed to 16 blocks of 256 bytes each.
TY Type Files

All files created by HDOS are given a file type of 0. The TY command changes the current file type to the file type specified. It also assigns attributes to hard disk files. The syntax of the TY (TYPE) command is:

TY: pathname [filetype] {raddr} [attr...]

where: pathname identifies the file whose type and/or attributes are to be changed.

filetype is a number from 0 to 63 that identifies the contents and use of the file.

raddr is the GO address of the file in RAM. It is only specified when a file type of 1 is declared.

attr is one or more attributes assigned to a hard disk file. These attributes can be:

SC = scratch file, not to be backed up.

BU = to be backed up, not a scratch file.

RW = read/write file, not write protected.

RO = read only file, write protected.

DP = delete protected, cannot be destroyed.

DE = delete enabled, can be destroyed.

The default file attributes of a newly created file are BU, DE and RW. Unspecified attributes are not changed.
If an error occurs during execution of this command no attributes, with the possible exception of file type, are changed.

Example 1:

TY NEWFILE 1 6666 SC

File NEWFILE on Drive 101 is given a file type of 1. Because the new file type is 1, it is a GO file and receives a RAM address of 6666. SC identifies this file as a scratch file. The other attributes of the file are not changed.

Example 2:

TY BASPROG,1 2

BASPROG on Drive 1 contains a BASIC program. No RAM address is permitted, since this is not a GO file. Attribute specification does not apply to diskette files.
Copy File

The command can:

1. Copy from one file into another.
2. Copy a diskette to an image file on hard disk.
3. Copy a hard disk image file to diskette.

1. Copy one file to another.

There are three variations for copying the contents of one file into another. The first copies into an existing file. The command syntax is:

CF pathnamel TO pathname2 {dens}

The second variation copies into a new file. Its syntax is:

CF pathnamel CR pathname2 {len} {dens} [alloc]
The third variation assumes that a destination file exists on a hard disk and sets its length. If the length is not specified, the destination file is set to the same length as the source file. Its syntax is:

CF pathnamel SL pathname2 [len]

where: pathnamel is the name of the file to be copied.

pathname2 is the name of the file into which the first file is copied. In CF-TO and CF-SL, pathname2 must name an existing file. In CF-CR, pathname2 must not name an existing file.

d is the diskette drive number.

len is the length of the new file. If not specified, the new file will be the same length as the old file.

dens is applicable only when writing to a diskette. The default value is double density. If the density is changed, the directory is updated to reflect the change.

alloc is the allocation factor. See the section on arguments in this chapter.

The CF-TO command does not change the length of the destination file. If the destination file is shorter than the source file, the error message:

WARNING: Making Partial Copy

is displayed at the console.

Example 1:

CF XDATA,MYACCT TO XSAVE,YOURACCT

The file named XDATA in account MYACCT is copied to the file name XSAVE in YOURACCT.
The CF-CR command creates the specified destination file only if the destination file name does not already exist. If no length is given, the new file is set to the length of the source file.

Example 2:

CF BIG,1 CR BIGGER,2 100

Create a file named BIGGER, 100 blocks long, on the diskette in drive 2, then copy the file BIG on diskette drive 1.

The CF-SL command requires that the destination file exist on the hard disk. The length of the destination file is set to the specified length; if no length is typed, it is set to the length of the source file.

Example 3:

CF SMITH,1 SL SMITH

Note that a copy from a diskette file many find some source sectors with incorrect density. These sectors are not copied as is; instead, they are initialized to ASCII blanks in the correct density to preserve relative addressing within the file.

2. Copy a Diskette to Hard Disk

As in the file to file copy, there are three variations for creating a complete diskette copy into a hard disk file. The first copies the contents of the diskette into an existing file. The command syntax is:

CF ,d {dens} TO pathname

The second variation copies into a new file. Its syntax is:

CF ,d {dens} CR pathname

The third variation assumes that a destination file exists on a hard disk and sets it to the same length as the source file. The syntax of the command is:

CF ,d {dens} SL pathname
3. Copy Hard Disk Image to a Diskette

This command will copy a diskette image file from hard disk back onto a diskette. Essentially, you are recreating a diskette, complete with diskette directory. The syntax for the command is:

CF pathname TO ,d {dens}

Example:

CF TEST,JEAN2,102 TO ,2

Copies the diskette image file TEST from account JEAN2 on hard disk 102 to the diskette in drive 2.
Multiple Copy

This command copies all or selected files from a diskette or account to another diskette or account. Any files already on the destination diskette or account are not disturbed. The syntax of the first variation of the MC (Multiple Copy) command is:

```
MC {d1} [account1] TO {d2} [account2] {len} {dens} [alloc]
```

The second variation of the MC command requires confirmation before copying each file:

```
MC {d1} [account1] YN {d2} [account2] {len} {dens} [alloc]
```

A third variation creates the destination account, then copies all files from the source diskette or account to the destination account. The syntax of the command is:

```
MC {d1} [account1] CR account2 [alloc]
```

Where:
- \(d1, \text{account1}\) is the diskette or account containing the files to be copied.
- \(d2, \text{account2}\) is the diskette or account receiving the new files.
- \(\text{len}\) is the length of the new files. If not specified, each new file will be the same length as the old file.
- \(\text{dens}\) is the density of the destination diskette.
- \(\text{alloc}\) is the allocation factor for hard disk files.

The MC - TO and the MC - CR commands display the name of each file before copying and "Copy Completed" when done. The MC - YN command displays the name of each file followed by a question mark; enter a "Y" to copy the file, or "N" to skip it.

The MC command executes the CF - CR command for each file copied. Note that the optional parameters are typically not used with the MC command.
The MC command can compress the contents of a diskette by copying all files to a freshly initialized diskette.

Any files copied from hard disk to diskette with file names from 9 to 14 characters in length will have the name truncated to the first eight characters.

If this command finds a file with the same filename, the message "Name already in use" will appear and the command will fail from that point.
DE Delete File

This command deletes any file that has the attributes, Read/Write and Deletable. The syntax of the DE (Delete) command is:

DE pathname

where: pathname identifies the file to be deleted.

If no drive is specified, the system looks for the file in the default account.
Multiple Delete

This command deletes all or selected files on a diskette or hard disk account. The syntax for MD (Multiple Delete) is:

MD {d} [account]

where: d is a diskette drive number.

account identifies an account on the hard disk.

The command displays the name of each file on the console terminal followed by a question mark. If a "y" is entered, the file is deleted; if an "N" is entered, the file is left unchanged.
Rename Diskette File

This command renames a diskette file. The syntax of the RN (Rename) command is:

RN filename1,d TO filename2

where: filename1 is the original diskette filename.
 d is a diskette drive number.
 filename2 is the new diskette filename.

Example:

RN TESTER,1 TO TEST

This sequence renames filename TESTER on diskette drive 1 to filename TEST.
3.4.3 DATA TRANSFER COMMANDS

These commands allow you to read files or parts of files from disk into RAM, and to write disk files or parts of files from RAM.

LF Load File
SF Save File

These commands transfer files directly between a specified area in RAM and a diskette or hard disk. The syntax of the LF (Load File) command is:

LF pathname raddr

The syntax of the SF (Save File) command is:

SF pathname raddr

where: pathname is the name of the file to be transferred.
 raddr is the file's address in RAM
RD
 Read Disk to RAM

WR
 Write RAM to Disk

These commands directly transfer blocks of data between a specified area in RAM and a specified portion of a diskette, or a file on either diskette or hard disk.

The syntax of the RD (Read) command is:

RD len {dens} FROM daddr{,d} {{OF Pathname }} TO raddr

The syntax of the WR (Write) command is:

WR len {dens} FROM raddr TO daddr{,d} {{OF pathnamel}}

where:
len is the length of the data to be transferred (in blocks).

dens is the data's density specification.
daddr is the disk address.

raddr is the RAM address.
d is the drive number.

pathname is the name of the file.

These commands do not support absolute addressing on a hard disk. If a pathname is specified, the disk address is used as a relative address within that file (expressed in blocks), and must fall on a sector boundary. If the pathname is omitted, then the disk is interpreted as an absolute address on a diskette and must be followed by a comma and a drive number.

Example 1:

RD 4 FROM 0,3 TO 5000

This command reads the first four blocks (the file directory) from the diskette in Drive 3 to RAM.
Example 2:

RD 2 FROM 0 OF HBASIC TO 5000

WR 2 FROM 5000 TO 0 OF HBASIC

This sequence of commands could be used to personalize your copy of HBASIC. RD reads the two blocks from sector 0 of HBASIC to RAM address 5000H. After the change, WR sends the data back to its original location.

Example 3:

RD 6 FROM 23768 OF LOTS.OP.DATA TO 5000

The RD command is also good for moving a part of a very large file into RAM for changes or reading.
3.4.4 PROGRAM EXECUTION

These commands exit from HDOS and transfer control to a program that is present in RAM, or loaded from a disk file.

GO

Load and Execute

This command loads a type 1 file into RAM from the indicated drive and begins execution of that file. This command reads the entire file into RAM beginning at the GO address, then jumps to the GO address. Therefore, the first byte of the file must be the entry point of the program. The syntax of the GO command is:

GO pathname [{args}]

where: pathname is the name of a type 1 file to load and execute.

 args are the arguments sent to a program through the command string. Maximum length of the entire command line is 80 characters.

The GO command sets the HL register pair to a value that points to the remainder of the command line (any characters typed after the pathname).

Example:

GO HBASEC

The machine language program HBASEC is loaded into RAM and executed.
JP

Jump to a RAM Address

The JP command executes programs currently in RAM by jumping to the specified RAM address. The syntax of the JP (Jump) command is:

JP raddr {[args]}

where: raddr is the RAM address.
 args are the arguments to be sent to a program through the command string.

Like the GO command, you can send arguments to the program as part of the command line. JP sets the HL register pair to point to the remainder of the command string.
3.4.5 LISTINGS AND STATISTICS

These commands enable you to list account names and, file directories, and determine the available work space in RAM.

AL Account List

This command produces a list of all accounts existing on a specified hard disk drive. The syntax of the AL (Account List) command is:

AL [n] [d]

where: n is the device number of the output device on which the list is to be printed or displayed.

d is the drive number.

Example 1:

AL #1 102

All account names and ID numbers from hard disk drive 102 are printed on the printer.

Example 2:

AL

All account names and account ID numbers from hard disk drive 101 are displayed at the console terminal.
LI List File Directory

This command produces directory listings from either a diskette or an account on hard disk. The syntax of the LI (List File Directory) command is:

LI {[#n]} {account} {d}

where: n is the output device number on which the directory is displayed or printed.

account identifies the account whose directory is displayed. If no account is specified, the current default account is assumed.

d is the diskette drive number.

For each file in a diskette directory the LI command causes the output drive to display:

. Starting disk address
. Length
. Density
. Type

For each file in a hard disk directory the LI command displays

. Filename
. Length in blocks
. Allocation factor in DIBs
. Attributes
 S = Scratch
 W = Read/Write
 U = Updated but not backed up
 D = Deletable
. File type

Certain file type dependent information is displayed, such as GO addresses for type 1 files and account ID numbers for type 5 files.

To stop listing, type a control-C.
LI List File Directory (continued)

Example 1:
LI #1 JONES

The directory for account name JONES is printed on the
printer.

Example 2:
LI

All the files in the current default account are listed
on the console.
ML Multiple List

This command produces a directory listing of all accounts on all hard disk drives. The syntax of the ML (Multiple List) command is:

ML [&n]

where: n is the output device number.
WS Work Space

The WS command displays the amount of work space available in memory. The syntax of the WS (Work Space) command is:

WS {[$n]}

where: n is the output device number.

The system lists starting and ending addresses for available work space in hexadecimal and decimal notation.
ST Display Hard Disk Statistics

This command prints hard disk statistics on the number of bad spots, system overhead on the disk, and used and unused disk space. The syntax of the ST (Statistics) command is:

ST [d]

where: d is the hard disk drive number.

The ST command displays all hard disk statistics in DIBs.
3.4.6 MEMORY COMMANDS

These commands allow you to display, search, change and move the contents of memory.

EM

Examine Memory

This command examines the contents of a specific memory address. The syntax of the EM (Examine Memory) command is:

EM {{#n}} raddr

where: n is the output device number.

raddr is the address of the memory location to be examined.

The output from the EM command consists of the RAM address (in hexadecimal) and the contents of that address, expressed in binary, decimal, hexadecimal, and ASCII notation.

Example:

EM 41FE

The system returns the following information:

41FE 1100 0111 199T C7H -G
 | | | | |
address decimal valid ASCII char.
 binary hexadecimal
Display in Hexadecimal

This command displays a region's contents in a format of two hexadecimal digits per byte, with sixteen bytes on each line. The syntax of the DH (Display In Hex) command is:

\[\text{DH } \{[\#n]\} \text{ region} \]

where: \(n \) is the output device number on which the addresses are displayed.

region is the area from which the display is taken.

Example:

DH 1200T,100T

The contents of memory from 1200 to 1299 (decimal) are printed at your console in hexadecimal notation.
Display in ASCII

This command displays the contents of a region in the same format as DH, with additional lines showing the ASCII character represented by the low order seven bits of each byte. A control code is printed as a blank and each character is preceded by a minus sign if the high order bit of the byte is a one. The syntax of the DA (Display in ASCII) command is:

DA ([#n]) region

where:

<table>
<thead>
<tr>
<th>n</th>
<th>is the output device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>region</td>
<td>is the area of memory whose contents are displayed.</td>
</tr>
</tbody>
</table>

Example:

DA 1200T-1299T

The contents of memory from 1200 to 1299 (decimal) are to be printed both in hexadecimal and as ASCII characters.
Display and Substitute Memory Values

This command displays the contents of a specified memory area one byte at a time, and allows you to substitute a new value for each byte displayed. The syntax of the DS (Display And Substitute) command is:

DS raddr

where: raddr is the starting address of the memory area from which byte values are to be displayed.

After each byte is displayed, a new hexadecimal value from 0 through FF may be entered, followed by a terminator. If you do not wish to substitute a new value, simply enter a blank, comma, or carriage return.

1. A blank displays the next byte for replacement.
2. A comma skips the next byte and goes directly to the following byte.
3. A carriage return ends the command and returns you to command level.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Since replacement takes place immediately, a typing error must be corrected with backspace commands before the terminator is entered.</td>
</tr>
</tbody>
</table>

Example:

Type:

DS 3233 <CR>
The system prompts:

3233 64=

Type: 0 <CR>

The user displays the contents of address 3233 for possible replacement. The system returns 3233 64=. The user types 0 followed by RETURN to replace 64 Hex with a zero.
SM

Search Memory

The SM command searches a specified area of memory to find and print each address of a specific byte value. The syntax of the SM (Search Memory) command is:

SM {[#n]} region bval{[,,bval,........,bval]}

where: n is the output device number.
region is the area of memory searched.
bval is the byte value searched for. If a sequence of byte values is used as the search pattern, separate the values with commas.

Example 1:

SM 2000-29FF 1

Byte values of 1 are searched for in the region from 2000 through 29FF (Hex).

Example 2:

SM 4000-5000 "M","I","N","E"

This command lists starting addresses of each occurrence of MINE in the specified region.
Fill Memory

The FM command fills a specified area of memory with an arbitrary string of byte values. The syntax of the FM (Fill Memory) command is:

FM region bval{[,bval,.........,bval]}

where: region is the area of memory to be filled.
 bval is the byte value. If a string of byte values is used, separate the values with commas.

Example:

FM 4000,100 FF

The 256 bytes of memory starting at address 4000 (Hex) are filled with the byte value "FF".
Move Memory

The MM command moves the contents of an area of memory to another area of the same size. Overlapping areas of memory are allowed. The syntax of the MM (Move Memory) command is:

```
MM region raddr
```

where: region is the memory area containing data to be moved.

 raddr is the memory area the data is moving into.

Example:

```
MM 9000T,100T F000
```

This moves the contents of the one hundred (decimal) byte region starting at address 9000 (decimal) to the area starting at F000H.
VM Verify Memory

This command compares the contents of two memory areas and prints the address and contents of all non-identical bytes. The syntax of the VM (Verify Memory) command is:

VM {[[#n]]} region raddr

where:
 n is the output device number on which the addresses are displayed.
 region is the first area to be compared.
 raddr is the starting address of the second area.

Example:

VM 3400,7 E385

The contents of the seven bytes starting at address 3400 (Hex) are compared with the seven bytes starting at address E385.
3.4.7 I/O COMMANDS

These commands allow you to directly access I/O devices and ports.

DO Device Output

This command sends any sequence of print or control characters to an output device. The DO command uses the software driver for the specified device. The syntax of the DO (Device Output) command is:

DO {{n}} {{char}}

where: n is an output device number. The default is 0.

char is a single printing character that terminates execution of the command. If a character is not specified, a RETURN terminates the command.

After the RETURN key is pressed to execute the command and the carriage return and line feed are echoed at the console terminal, no prompt appears for the next command until the selected terminator is entered again. If the second argument is omitted, the next RETURN acts as the terminator. All characters entered before the terminator, including control characters that normally activate the line editor, are sent directly to the specified or default output device.
Examine Port

The EP command examines the value at the specified input port. The syntax of the EP (Examine Port) command is:

```
EP [n] paddr
```

where:
- n is the output device number.
- paddr is the address of the input port.

The output from this command is the same as for the EM (Examine Memory) command.
Send Value to an Output Port

This command sends a byte value to the specified output port. The syntax of the PO (Port Output) command is:

PO bval TO paddr

where: bval is the value sent to the port address.

 paddr is the output port address.
3.4.8 DISKETTE COMMANDS

These commands initialize, copy, and test floppy diskettes.

IN

Initialize a Diskette

Before you can use a new diskette you must initialize it. You can also initialize a used diskette. This process removes all data on a diskette, initializes a new directory, and guarantees that no read errors will result from access to an uninitialized file block. Needless to say, choose the proper diskette before issuing this command since all the previous data on the diskette will disappear forever. The syntax of the IN (Initialize) command is:

IN d (dens)

where: d is the drive number of the uninitialized diskette.

dens specifies whether the diskette is initialized to single or double density. The default is double-density.

The IN command writes each block on the specified diskette drive with ASCII blank characters. The system initializes both sides of a double sided diskette if the drive is double sided, but only Side A if a single sided drive is used. This command takes about 45 seconds to execute.

Example:

IN 2 D

The diskette in Drive 2 is initialized to double-density.
Copy a Diskette

This command copies one diskette to another. The syntax of the CD (Copy Diskette) command is:

CD d1 TO d2 {sides}

where: d1 is the drive containing the diskette to be copied.
 d2 is the drive containing the diskette that receives the copy. Note that any previously existing data on this diskette is overwritten.
 sides indicates which sides of the diskette are copied. Y or y indicates that both sides are copied. Enter N or n if either of the diskettes is single sided or if only side A of the source diskette contains significant data. The default is Y.

Example:

CD 1 TO 3

The diskette in drive 1 is completely copied to the diskette in drive 3.

Any effort to copy the second side of a double sided diskette to a single sided diskette gives you an error message at sector 350. Also, any attempt to copy the phantom second side of a single-sided diskette results in the same message.
3.4.9 MISCELLANEOUS COMMANDS

These commands perform control and monitoring functions.

IL

Initial Load

This command performs an initial load of any operating system diskette to RAM. The syntax of the IL (Initial Load) command is:

IL

The command jumps to the bootstrap loader in ROM. Use this command instead of pressing the reset switch on the back panel of the computer.
RS Reset the File Manager

The RS command resets the File Manager and closes any open files. It also restarts the hard disk drive motors if you have turned them off. The syntax of the RS (Reset) command is:

RS
Turn Off the Hard Disk Drive Motors

The OF command turns off one or all of the HD18 hard disk drive motors. Use the OF command before you power down the HD18 hard disk unit to maintain the integrity of your data. The syntax of the OF (Off) command is:

OF [d]

where: d is the hard disk drive to be turned off.

If no drive number is specified, all hard disk drives are turned off.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five inch hard disk units are powered down without using this command. However, it is good practice to use the OF command to move the disk heads to their landing zones whenever you move either the five or eighteen inch disks units.</td>
</tr>
</tbody>
</table>

An HD-18 will survive an occasional power failure, but should not be routinely powered off without using the OF command.
Examine Byte

The EB command displays a single byte value in binary, hexadecimal, decimal, and ASCII. The syntax of the EB (Examine Byte) command is:

EB {{#n}} bval

where: n is an output device number.
 bval is a byte value.

The format of the output from EB is the same as for the EM and EP commands.
Specify an Additional Output Device

The OD command causes all output directed to the console terminal (device #0) to go to the additional output device as well. The syntax of the OD (Output Device) command is:

OD {[$n]}

where: n is the additional output device.

This command stays in effect for any program using the jump table, until set back to device 0.
Set Auto-Execute File Name

The SX command tells the File Manager the name of the file containing the transient part of the Hard Disk Operating System (that part of the HDOS overwritten by HBASIC and reloaded each time control returns to the operating system). The syntax of the SX (Set Auto-Execute File Name) command is:

SX pathname

where: pathname is the name of the file containing the transient part of the system.

Note that this command must not be used to Auto-Execute HBASIC. To re-load the normal transient portion of the HDOS Command Processor, enter:

SX TRANSIENT,SYSTEM,101
Set Listing Page Length

This command sets the listing page length. The syntax of the PA (Page) command is:

PA n

where:

n is the listing page length, a number between 0 and 254.
HE Help

When this command is used without an argument it lists all HDOS commands at your console. If you use an HDOS command as an argument, the command syntax is listed at your terminal. The above syntax of the HE (Help) command is:

HE [command]

where: command is the HDOS command for which you need help.

Example:

HE MC
4.1 OVERVIEW OF THE PROGRAMS

One of the most important tasks for you to do on a regular basis is to maintain backup copies of your hard disk files. You can lose data on the hard disk in several ways: you may have a hardware failure, enter an incorrect command, run a program which creates unforeseen changes, encounter a power transient or failure which destroys data. As a consequence, it is extremely important for you to backup on some type of routine cyclical basis, all data that you want maintained over time.

The HDOS BACKUP and RECOVER utility programs allow you to transfer hard disk data to diskettes. Then, if one or all of your files on hard disk becomes unusable, you can easily restore the files from backup diskette to hard disk. BACKUP records on diskettes any changes in the contents of any portion of the hard disk to the state of the data at the time of the desired BACKUP.

Section 4.2 describes the BACKUP program and provides instructions on how to use it. Section 4.3 describes the RECOVER program and provides instructions on how to recover data from backup diskettes.

4.2 BACKUP

The basic purpose of BACKUP is to copy the contents of the hard disk onto diskettes. If the information stored on the hard disk is accidentally destroyed, those files can be recovered from the diskette to the hard disk. BACKUP also extends the storage capabilities of the hard disk system by storing data off line.

HDOS provides three types of backup: COMPLETE, INCREMENTAL, and SELECTIVE.

Each run of the BACKUP program is called a SESSION. Each session creates a backup MASTER diskette, containing the hard disk account and file directory, and a series of CONTINUATION diskettes, the number of diskettes depending on how much data you have to backup from hard disk.
Each session becomes part of a SERIES. A series is a collection of sessions, always beginning with a COMPLETE backup and followed by any number of INCREMENTAL backup sessions.

A COMPLETE backup copies all sectors of all files found in the hard disk directory except those specified as SCRatch files. Once completed, the diskettes contain a complete image of the hard disk. If something happens to the hard disk, the files can be safely recovered from the backup diskettes. A COMPLETE backup should always be done before any diskettes in the previous series are erased or re-used.

An INCREMENTAL backup copies only those portions of the hard disk that have been changed since the last COMPLETE or INCREMENTAL backup. An INCREMENTAL backup is always part of a series, and the information from this backup procedure is added to the information stored in previous backup sessions. For example, one initial COMPLETE backup and two INCREMENTAL backups constitute a series of three backup sessions.

A SELECTIVE backup copies only files that you specify. It cannot be part of a series and can only be initiated outside such a series. This option is useful when there are only a few files on the hard disk that are worth saving and you do not want to spend the time or diskettes to backup the complete disk. There is, however, one disadvantage to this option. If the contents of the disk are completely destroyed, a total recovery can only be done with a series that began with a COMPLETE backup.

The SELECTIVE backup procedure can save the entire contents of individual HDOS files or CP/M units. Since each CP/M unit is associated with an HDOS file, a particular CP/M unit may be backed up using the selective backup procedure and specifying the connected HDOS file for backup. This option gives you the means for storing and transporting on diskette any file or unit which will not fit on one floppy disk.

The following figures show the order of Backup and Recovery for three series of three sessions each. North Star recommends keeping at least three complete series of Backup diskettes.
Figure 4-1
COMPLETE RECOVERY FROM SERIES 2

Series 1
- Session 1 COMPLETE
- Session 2 INCREMENTAL
- Session 3 INCREMENTAL

Series 2
- Session 1 INCOMPLETE

Series 3
- Hard Disk catastrophic failure during COMPLETE backup of SERIES 3, SESSION 1.

Figure 4-2

North Star 4-4 HDOS Manual
4.2.1 USING BACKUP

To initiate the BACKUP program,
Type: GO BACKUP <CR>
The program prompts:

HARD DISK BACKUP ON FLOPPY DISKETTES

NORTH STAR COMPUTERS, INC.
VERSION *.*.*

1. Complete backup
2. Incremental backup
3. Selected files or accounts backup
4. Explanation

Selection (or ESCAPE to exit to HDOS):

NOTE

A hard copy listing is recommended for all BACKUP procedures. It provides a ready reference for any future file recovery.
4.2.2 COMPLETE BACKUP

Execute the following procedure to run selection 1 of the BACKUP menu, COMPLETE BACKUP.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select COMPLETE Backup. The program prompts for today's date. (Do not use blanks.)</td>
</tr>
<tr>
<td>Today's date <CR></td>
<td>The program prompts for listing device.</td>
</tr>
<tr>
<td>Listing device number</td>
<td>Selection '3' causes program to prompt for printer device number.</td>
</tr>
<tr>
<td>Hard disk drive # <CR></td>
<td>Program prompts for diskette drive number.</td>
</tr>
<tr>
<td>Diskette drive #</td>
<td>The program indicates 'BACKUP STARTED' and the hard disk directory is compressed and written to the Master diskette.</td>
</tr>
</tbody>
</table>

For each file or account found in the directory, a dot appears on the screen. All sectors of all files found in the directory are copied onto the diskette except those with the attribute of SC for scratch file. The backup is done account by account; each account with its files is displayed on the screen after the copy.

After each file is copied, the filename is displayed along with the length of the file. The SIZE heading indicates the length of the file in blocks of 256 bytes. The heading BACKED UP shows how much of the entire file or account fit onto a single diskette. The following is a partial screen display from a COMPLETE backup:
<table>
<thead>
<tr>
<th>ACCOUNT</th>
<th>NAME</th>
<th>SIZE</th>
<th>BACKED UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEM</td>
<td>BACKEXP</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>FPBBASIC</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>RECOVERS</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

At the end of the COMPLETE backup, the program prompts:

Please remove BACKUP.x from drive 1 and label it

File data backup complete
File cleanup started

If the diskette is the first in the session, it contains the directory and is the MASTER diskette called BACKUP.M. Any other diskettes called for in the session are CONTINUATION diskettes and are named BACKUP.C.

The file cleanup procedure resets the dirty bits associated with each sector on the hard disk, and removes the U from the directory listing to indicate that all non-scratch files have been backed up. As soon as you alter one of these files, however, the U is restored to the directory listing for that file. This allows the INCREMENTAL backup procedure to identify files changed since the last COMPLETE backup, and to copy only those specific files in the next INCREMENTAL backup session. A dot is displayed on your screen as each file is cleaned.

The directory listing of an HDOS diskette includes a column of letters indicating the status of the files.

S = scratch file (not backed up)
W = write-enabled
U = used since last backup
D = delete-enabled
The absence of a letter indicates the opposite status. For example, if there is no S, the file is backed up. If there is no D, the file cannot be deleted.

4.2.3 INCREMENTAL BACKUP

An INCREMENTAL Backup never begins a series but is always a session within a series. The information from the INCREMENTAL backup follows information stored from previous backup sessions. Only sectors changed since the last COMPLETE or INCREMENTAL backup are copied.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Select INCREMENTAL Backup from main BACKUP menu.</td>
</tr>
<tr>
<td>Today's date <CR></td>
<td>Program prompts for today's date. (Do not use blanks.)</td>
</tr>
<tr>
<td>Listing device #</td>
<td>Program prompts for listing device.</td>
</tr>
<tr>
<td>Hard disk drive# <CR></td>
<td>Selecting a '3' for "Other printer" brings prompt for printer device number.</td>
</tr>
<tr>
<td>Diskette drive #</td>
<td>Program prompts for hard disk drive number.</td>
</tr>
<tr>
<td></td>
<td>Listing device displays drive capacity (Quad, etc), the program compresses the hard disk directory, writes it to the Master diskette, then begins the INCREMENTAL backup.</td>
</tr>
</tbody>
</table>
The INCREMENTAL backup copies the sectors of files onto the diskette account by account. For each sector that is copied, a dot (.) is printed on the screen. After each file has been copied, the filename is displayed along with the length of the file. The number found under the heading 'SIZE' is in file blocks (256 bytes).

4.2.4 SELECTED FILES OR ACCOUNTS

If you type GO BACKUP and choose Selected Files or Accounts from the main menu, each individual file or account you specify is copied onto diskette.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Choose Selected Files Or Accounts from the main menu. Program prompts for today's date. (Do not use blanks.)</td>
</tr>
<tr>
<td>Today's date <CR></td>
<td>Program prompts for listing device number.</td>
</tr>
<tr>
<td>Listing device #</td>
<td>Selecting a '3' causes a prompt for printer device number.</td>
</tr>
<tr>
<td>Hard disk drive # <CR></td>
<td>Program prompts for diskette drive number. (The first diskette is your Master for this session).</td>
</tr>
<tr>
<td>Diskette drive # <CR></td>
<td>The hard disk directory is compressed, written to diskette, the screen indicates 'Backup started', and a dot is displayed for each file found. The program prompts for the Hard disk 'Account Name' you wish to backup.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Account name <CR></td>
<td>A menu appears with the following selections.</td>
</tr>
<tr>
<td>1. The entire account</td>
<td>Searches for all files of the given account name, list the files, then backs them up.</td>
</tr>
<tr>
<td>2. List the files</td>
<td>Lists all files in a specified account with file size, then prompts for the next name to list or backup.</td>
</tr>
<tr>
<td>3. List the name and ask for confirmation</td>
<td>Lists each file in the account followed by a question mark. Type 'N' to omit a file from the backup, 'Y' to copy the file to the backup diskette. Each file backed up lists:</td>
</tr>
<tr>
<td></td>
<td>Account Name</td>
</tr>
<tr>
<td></td>
<td>File Name</td>
</tr>
<tr>
<td></td>
<td>File Size</td>
</tr>
<tr>
<td></td>
<td>Number of blocks stored on diskette.</td>
</tr>
<tr>
<td>4. Name a specific file</td>
<td>Prompts for the name of file each file to copy. As each sector of a file is copied an asterisk (*) appears on the screen. When all the files you want to select are copied:</td>
</tr>
<tr>
<td><CR></td>
<td>The program prompts for another 'accountname' to continue the Backup process.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>New Accountname <CR></td>
<td>If there are no more accounts to backup you should enter a RETURN.</td>
</tr>
<tr>
<td><CR></td>
<td>Program ends and returns you to HDOS command level.</td>
</tr>
</tbody>
</table>

4.3 RECOVERY

There are two ways to recover data from diskette to the hard disk: TOTREC and RECOVER.

The TOTREC utility program is designed for situations where the hard disk has crashed, been completely erased, or contains useless data. This program reinstates the disk directory from the master backup diskette and recovers the entire contents of the hard disk.

The RECOVER utility program is used when the hard disk as a whole remains good. This program allows you to recover a file or account after the material was accidentally deleted from the hard disk, or to reinstate an earlier version of data currently stored on the hard disk.

RECOVER retrieves data put on floppy diskette for long term storage. The program also provides portability for files too large to fit on a single floppy diskette.

A RECOVER can begin from any backup session in a series and include previous sessions of the series if these are needed. It can also recover data from a SELECTIVE backup that is not part of a series.

A RECOVER always begins with a session MASTER and is followed, in any order, by the CONTINUATION diskettes for that session. Previous sessions, if needed, always begin with the session Master for each particular session.
4.3.1 USING RECOVER

To initiate the RECOVER program, enter:

GO RECOVER <CR>

The program will prompt with the initial RECOVER menu.

--

RECOVER PROGRAM FOR FLOPPY DISKETTES

NORTH STAR COMPUTERS, INC.

VERSION * RELEASE *

1. Accounts Listing
2. Recover files or documents
3. Explanation

Selection (or ESCAPE to exit to HDOS):

--

4.3.2 ACCOUNTS LISTING

This selection searches the directory for a specified
Backup session and prints the name of each account
found.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The program prompts for a listing device. If you select '3', the program prompts for a printer device number.</td>
</tr>
<tr>
<td>The listing device #</td>
<td>The program prompts for the diskette drive number for the Master backup diskette.</td>
</tr>
</tbody>
</table>
4.3.3 RECOVER FILES OR ACCOUNTS

This option recovers all or selected files from a specified account, or lists the files in an account.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The diskette drive #</td>
<td>The program displays the Master diskette label then prints the names of every account found in the directory.</td>
</tr>
<tr>
<td>2</td>
<td>The program prompts you for a listing device. If you select '3', the program prompts for a printer device number. The program prompts for the diskette drive number in which you should insert your session backup Master.</td>
</tr>
<tr>
<td>Hard disk drive # <CR></td>
<td>The program displays the Master diskette label then prompts for the hard disk drive to RECOVER to. The program prompts for the 'Old accountname'. This name must exist on master diskette directory.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>Old accountname <CR></td>
<td>The program lists four options for recovery:</td>
</tr>
<tr>
<td>1. The entire account</td>
<td>Lists all files in an account and the accountname they will recover to. This procedure does not copy data into the files; it names the files and Creates them into a new, non-existing account.</td>
</tr>
<tr>
<td>2. List the files</td>
<td>Displays the name and file size of the files in the 'Old account name'. Will then re-prompt for Selections 1, 3, or 4.</td>
</tr>
<tr>
<td>3. List the name and ask for confirmation</td>
<td>Prompts for a new account name, then displays the name of each file in the old account followed by a question mark. A reply of 'N' indicates no desire to recover the file; 'Y' indicates you do want to recover the file.</td>
</tr>
<tr>
<td>4. Name a specific file</td>
<td>Prompts for an individual file name for recovery to the hard disk. The account name must already exist on hard disk but the filename to recover into must be new.</td>
</tr>
<tr>
<td>New Accountname <CR></td>
<td>Enter the new account name for options 1, 3, or 4.</td>
</tr>
<tr>
<td></td>
<td>If you select option 4 the program prompts for an old filename.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>New Filename <CR></td>
<td>The program prompts for an existing accountname to recover into.</td>
</tr>
<tr>
<td>Accountname <CR> (must already exist)</td>
<td>Selection 4 will not recover a file into an existing file if the file is RO (Read Only) or DP (Delete Protected). You can recover to a new filename that does not exist on the directory. The program then prompts:</td>
</tr>
<tr>
<td>1. Next file or account</td>
<td>To repeat the process for a file or account.</td>
</tr>
<tr>
<td>2. Recover files</td>
<td>To begin the recovery process. A dot (.) prints for each sector copied.</td>
</tr>
<tr>
<td>3. Top level menu</td>
<td>To return to the original Recover menu.</td>
</tr>
</tbody>
</table>

NOTE

If you Control-C out of option 2, or if you use option 3 to exit to HDOS before the message that the file recovery is complete, your recovery files are Created on hard disk, but contain no data. If you try and load these files from HBASIC you get the error: NO FILE OR PROGRAM TOO LONG.

The desired option <CR>
If you choose selection 2 the system prompts you for a diskette drive number for the Master Backup diskette.
<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskette drive # <CR></td>
<td>When selection 2, Recover Files completes you receive the system message below and the program returns you to HDOS command level.</td>
</tr>
</tbody>
</table>

Recovered "N" sectors to file "filename 2, accountname" you may remove the diskette from drive "d". File recovery complete. Thank you for waiting.

4.3.4 EXPLANATION

The Explanation option on the RECOVER menu presents a short description of the major alternatives available with the RECOVER program.

4.4 USING TOTREC

The Total Recovery Program, performs three major functions. First, TOTREC assumes that the hard disk has been completely erased or contains meaningless data, and prepares the disk for new data. Second, it reinstates the disk directory from the last session done in the backup series. Third, the program recovers all files as described for RECOVER.

<table>
<thead>
<tr>
<th>ENTER</th>
<th>ACTION OR PROMPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Insert working copy of HDOS SYSTEM DISKETTE in diskette drive 1.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>GO TOTREC,1 <CR></td>
<td>The program asks if you really want to erase all the files and accounts on the hard disk. Type "YES" to proceed with a Total Recovery of your files. A response of "NO" does not end the TOTREC program. It does leave your hard disk directory intact, and proceeds as if a normal RECOVER is in progress.</td>
</tr>
<tr>
<td>YES <CR></td>
<td>The program prompts for your hard disk drive number.</td>
</tr>
<tr>
<td>Hard disk drive # <CR></td>
<td>The program prompts for an option for a listing device.</td>
</tr>
<tr>
<td>Listing device #</td>
<td>The program prompts for a recovery of your SYSTEM account directory from the HDOS INITIAL RECOVERY DISKETTE in floppy disk drive #1.</td>
</tr>
<tr>
<td>1</td>
<td>The program prompts:</td>
</tr>
<tr>
<td></td>
<td>1. Recover all accounts.</td>
</tr>
<tr>
<td></td>
<td>2. Specify accounts.</td>
</tr>
<tr>
<td></td>
<td>3. Specify exceptions.</td>
</tr>
<tr>
<td>ENTER</td>
<td>ACTION OR PROMPT</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>The option #</td>
<td>Option 1 generates a message indicating the files to be recovered into the SYSTEM account and the number of sectors associated with each file. Options 2 and 3 do the same, only listing individual accounts or exceptions.</td>
</tr>
<tr>
<td><CR></td>
<td>The System prompts you to insert the HDOS SYSTEM DISKETTE, (remember to use your working copy) into a specific drive. Press <CR> to continue.</td>
</tr>
<tr>
<td>The diskette drive #</td>
<td>The program prompts for the diskette drive number for the Master backup diskette. This diskette should be from the last session of the series you wish to RECOVER from.</td>
</tr>
<tr>
<td></td>
<td>The system displays a message for every file recovered, and returns you to HDOS when the recovery is complete.</td>
</tr>
</tbody>
</table>
5.1 INTRODUCTION

The File Manager allows access to hard disk-resident data, and maintains the data structures necessary to support data storage on the hard disk. The File Manager is a permanent part of the HDOS, and is always resident in memory. The flow of data through the File Manager is shown below. Generally, the File Manager is of interest only to system programmers.

```
APPLICATION
PROGRAM

THE
FILE MANAGER

HARD
DISK
```

The operation codes and data structures maintained by the File Manager are listed in Appendix A.
5.2 CALLING THE FILE MANAGER

To execute an HDOS File Manager operation, use the following assembly language sequence:

```
: load parameters.
: MVI A, FMxxx ;place the specified operation
code in the A register
CALL FMNGR ;call the HDOS File Manager.
```

on return from the call, the 280's Z flag is set if no exceptional situation is encountered; otherwise, the Z flag is cleared.

With the exception of FMABT (Abort), FMPIN (Finish), and sometimes FMLX, control is always returned to the calling program.

5.3 FILE MANAGER OPERATION CODES

The operation code in the A register tells the File Manager what operation to perform. The operation codes are listed in Table 5-1. Following the table is a description of each operation and its associated input and output. Note that File Manager Message codes are listed in Appendix B.
Table 5-1
Operation Code List

<table>
<thead>
<tr>
<th>Operation code</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMCRE</td>
<td>Create a file</td>
</tr>
<tr>
<td>FMDEL</td>
<td>Delete a file</td>
</tr>
<tr>
<td>FMOPN</td>
<td>Open a file</td>
</tr>
<tr>
<td>FMCL0</td>
<td>Close a file</td>
</tr>
<tr>
<td>FMTRFR</td>
<td>Transfer data to or from a file</td>
</tr>
<tr>
<td>FMLOK</td>
<td>Look up information on a file</td>
</tr>
<tr>
<td>FMLAC</td>
<td>Look up information on an account</td>
</tr>
<tr>
<td>FMCCTY</td>
<td>Change file type</td>
</tr>
<tr>
<td>FMCAT</td>
<td>Change file attributes</td>
</tr>
<tr>
<td>FMCF5</td>
<td>Change file size</td>
</tr>
<tr>
<td>FMCAP</td>
<td>Change auto-load-and-go pathname</td>
</tr>
<tr>
<td>FMABT</td>
<td>Abort the Calling Program</td>
</tr>
<tr>
<td>FMRST</td>
<td>Reset the File Manager</td>
</tr>
<tr>
<td>FMLX</td>
<td>Load and execute a type 1 file</td>
</tr>
<tr>
<td>FMFSZ</td>
<td>Return file's size</td>
</tr>
<tr>
<td>FMCA</td>
<td>Create an account</td>
</tr>
<tr>
<td>FMDA</td>
<td>Delete an account</td>
</tr>
<tr>
<td>FMSDV</td>
<td>Switch default value</td>
</tr>
<tr>
<td>FMCIM</td>
<td>Compose message</td>
</tr>
<tr>
<td>FMFIN</td>
<td>Finish processing</td>
</tr>
<tr>
<td>FMRDS</td>
<td>Return Disk Statistics</td>
</tr>
<tr>
<td>FMADD</td>
<td>Access directory entry</td>
</tr>
<tr>
<td>FMRDV</td>
<td>Return unit and account ID defaults</td>
</tr>
<tr>
<td>FMCAN</td>
<td>Change account name</td>
</tr>
<tr>
<td>FMOP</td>
<td>Power down a unit</td>
</tr>
<tr>
<td>FMPOU</td>
<td>Power up a unit</td>
</tr>
<tr>
<td>FMPFU</td>
<td>Flag buffer used</td>
</tr>
<tr>
<td>FMINI</td>
<td>Initialize the File Manager</td>
</tr>
</tbody>
</table>

The equates for the File Manager message and operation codes are found in Appendix E, under File Manager Definitions and in the file EQUS in the SYSTEM account on hard disk.
5.4 OPERATION CODE DESCRIPTION

FMCRE

Creates a file on the hard disk. Once a file is created you can open it with the FMOPN code and allocate disk space to it with the FMCPS code.

Input:
IX - address of the Create Information Block.

Output:
IX - (preserved)
A - message code

FMDEL

Deletes a file from the directory. The file must not have any space allocated to it. An attempt to delete an open file or one that has disk space allocated to it results in an error.

Input:
HL - pathname address

Output:
A - message code
HL - address + 1 of last byte of pathname accessed by the File Manager. If there was no error in the pathname, HL points to pathname terminator +1; if there is an error, HL points to the bad character +1.

FMOPN

Opens a disk file. This makes the file's sectors accessible to a program (See FMTFR.)

Input:
IX - address of an area of memory OPBSZ bytes long in which the Open File Block (OFB) will be constructed.
HL - pathname address
Output:
A - message code
 A = MOK: H - open count: the number of times
 the file is currently open.
B - file type
CDE - type-dependent data
IY - address of the File Directory
 Entry for the opened file

FMCL0

Closes a disk file. The space occupied by the OFB may
be used for other purposes after return from FMCL0.

Input:
IX - the address of the OFB

Output:
IX - the address of a block of memory, OPBSZ bytes
 long
A - message code

FMTFR

Performs data transfer operations on sectors of a file.
The specific operation to be performed is given in the
first byte of the Transfer Command Block (TCB).

Input:
IX - OFB address
IY- Transfer Command Block address

Output:
IX - (preserved)
IY - Transfer Command Block address
A - message code
FMLOK

Searches the directory for the specified pathname's directory entry and returns the memory address of the directory entry and entry number.

Input:

HL - pathname address

Output:

HL - address of last byte of pathname accessed +1
A - message code
A = MOK: IX - directory entry memory address
DE - entry number

FMLAC

Looks up the specified account name's entry in the directory.

Input:

HL - account name address

Output:

HL - address of last byte of pathname accessed +1
A - message code
A = MOK: IX - directory entry memory address
DE - entry number

FMCTY

Changes the type and type-dependent information of file. The file must not be open. If the new file is type FTMI, then DE of the type-dependent information is the file's load-and-execute address.

Input:

B - new file type
CDE - type-dependent information
HL - pathname address

Output:

HL - address of last byte of pathname accessed +1
A - message code
FMCAT

Changes the attributes of a file. The file must not be open.

Input:
 B - new file attribute(s)
 C - attribute(s) mask
 HL - pathname address

Output:
 HL - address of last byte of pathname accessed +1
 A - message code

FMCFS

Changes the amount of disk space allocated to a file. After you have created a file and before using it, use FMCFS to allocate disk space to it. Before you can delete a file, you must remove its disk space with FMCFS.

Input:
 IX - the address of the file's OFB
 HL - the file's new size in 512-byte sectors
 DB - the number of bytes used in the last sector (1 to 512)

Output:
 A - message code
 IX - (preserved)

FMCAP

Changes the auto-load-and-execute pathname. This pathname is used by FMFIN and FMABT.

Input:
 HL - pathname address

Output:
 A - message code
 HL - address of last byte of pathname accessed +1
FMABT

Is typically used to terminate execution of a program when an unexpected error has occurred. It prints a message based on the message code in B and loads and executes the auto-load-and-execute file. The message is produced with the CHO routine using device code 0. FMABT does not return to the caller.

Input:
 B - message code

Output:
 none, does not return to the caller

FMRST

Closes all files and resets the File Manager. FMRST returns to the calling program when complete. The default drive is set to 101; the default account ID is set to 1.

Input:
 none

Output:
 A - message code
FMLX

Loads and executes the specified load-and-execute file. Only the first 128 blocks can be loaded.

Input:
HL - pathname address
DE - moved to HL for the loaded program
B - option code:
 B[6 to 0] = 0: return on load errors
 B[6 to 0] = 1: use FMABT on load errors
 B[6 to 0] = 2: return on load errors and do not execute the loaded program.
 B[7] = extended path option bit

When bit 7 (the extended path option bit) is set, it indicates that if the pathname given does not resolve to an existing file, then the pathname will be evaluated as if the default account ID number is 1 and the drive number is 101. FMFIN and FMABT use FMLX with this option set to load the command processor.

Examples:

When bit 7 = 1:

 QUEUE searches for QUEUE on the default account. If not found, then account number 1 on Drive 101 is searched.

 HEX,103 searches for HEX on the default account on Drive 103. If not found, account number 1 on Drive 101 is searched.

 DATA,Al,102 searches for DATA on account Al on Drive 102. If not found, account Al is searched for DATA on Drive 101.

 STUFF,ACCOUNT searches for STUFF on account ACCOUNT on the default drive. If not found, then account ACCOUNT on drive 101 is searched.

Output to calling program (if B[6 to 0]=2)
A - message code
 A = MOK: IX - load-and-execute address
Output to loaded program (if B[I6 to 0] <> 2):
 A - system dispatch table upper byte
 SP - same as the caller's SP with return address
 removed from the top of the stack.
 DE - the last address loaded + 1
 HL - the input value from DE

FMPSZ

Returns the size of an open file

Output:
 IX - (preserved)
 A - message code
 A = MOK: HL - the size of the file in 512-byte
 sectors
 DE - the number of bytes used in the
 last sector

NOTE: If the file is allocated no disk
 space, HL is 0 and DE is meaningless.

FMCA

Creates an account.

Input:
 HL - address of the account name

Output:
 A - message code
 HL - address of last byte of pathname accessed + 1
 DE - if A = MOK, then DE is the new account's
 account ID number
FMDA

Deletes an account. The account must not contain any files.

Input:
 HL - the address of the account name

Output:
 HL - address of last byte of pathname accessed +1
 A - message code

FMSDV

Sets the default account ID and the default drive number. It also returns the previous values for these defaults.

Input:
 B - drive number: 101 to 104
 HL - account ID number: 1 to 65535

Output:
 A - message code
 A = MOK:
 B - old default drive number: 101 to 104
 HL - old default account ID 1 to 65535

FMCM

Composes a message based on the message code in the B register.

Input:
 B - message code

Output:
 A - message code
 A = MOK:
 HL - address of the message
 BC - length of the message
FMFIN

Is called when a program is finished executing. FMFIN loads and executes the default auto-load-and execute file and executes it. FMFIN does not return to the calling program.

Input:
 none

Output:
 none, does not return to the caller

FMARDS

Returns disk statistics on the hard disk label, the number of DIBs in use, and the number of bad DIBs.

Input:
 B - drive number: 101 to 104

Output:
 A - message code
 A=MOK:IX - address of the disk label buffer
 DE - number of bad hunks
 BC - number of DIBs in usee

FMAKE

Returns a memory pointer to the directory entry for the specified directory entry number.

Input:
 DE - directory entry number
 B - drive number

Output:
 A - message code
 A = MOK: IY - address of the directory entry
FMRDV

Returns the default values for the drive and account ID.

Input: none

Output:
A - message code
 A = MOK; B - drive number: 101 to 104
 HL - account ID number: 1 to 65535

FM CAN

Changes an account name.

Input:
 DE - address of the name to which the old name should be changed.
 HL - address of the old account name

Output:
A - message code

FMPD

Powers down any specified hard disk drive.

Input:
 B - drive number: 101 to 104

Output:
A - message code

FMPU

Powers up any specified hard disk drive.

Input:
 B - the drive number (101 to 104)

Output:
A - message code
FMFBU

Is used before any program uses the File Manager's internal buffer. The diskette software uses FMFBU; it should not be considered for general use by the application programmer.

Input:
none

Output:
A - message code

FMINI

Is called by the bootstrap program to initialize File Manager. This operation also powers up all hard disk drives.

Input:
none

Output:
A - message code
6.1 INTRODUCTION

Any changes to the Operating System that customize or set options for particular hardware configurations should be done on your copy of the HDOS 2.0H SYSTEM DISKETTE. If you decide to make further changes, do them on a copy of the working copy, to provide an appropriate Backup and Recovery cycle.

The HBASE program, SYSGEN, provides an easy way to perform any personalization you are likely to need. This program is included in your SYSTEM account after you perform the INITIAL SYSTEM STARTUP procedure in Chapter 1.

The entry point and flags necessary to customize HDOS are listed in Appendix F.

6.2 PERSONALIZING THE CONFIGURATION BYTE

If your system has any single sided, normal-stepping (double-density) diskette drives, rather than double-sided fast-stepping (quad capacity) drives, you must personalize the configuration byte on your working copy of the HDOS System Diskette.

The byte configuration is:

<table>
<thead>
<tr>
<th>Bit</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

2-sided | Fast-stepping

Bits 7 and 0 correspond to Drive 1, bits 6 and 1 correspond to Drive 2, etc.
Initially, the value in the byte is FF, identifying four double-sided, fast-stepping drives. If all your drives are that type, there is no need for change. If, however, any of your disk drives is a single-sided drive, change the contents of the corresponding bits to 0. Use the chart in Appendix C to figure the appropriate Hex number.

6.3 PARALLEL I/O PORT USE NOTES

Standard I/O routines for device 0 (standard serial port), device 1 (second serial port) and device 2 (parallel output port) are included in HDOS. The standard parallel output routine controls a Centronics-type parallel printer as device 2. Connect it to P3 of the final hard disk drive rather than the parallel output port of the HORIZON. If you write your own parallel I/O routine consider the status of the hard disk controller as well as that of the peripheral. The examples of possible program modifications below assume that the headers for input-output operation are in controller 1 and the peripheral is connected to controller 1.

Input

A. The SPARE signal is not used by the peripheral. In this case it is only necessary to deselect all controllers and use the old program.

MVI A, 020H
OUT 6 ;Clear PO-FLAGS flip-flop (output)
MVI A, 0FFH ;Deselect all controller
;Old program

B. The SPARE signal is used.

MVI A, 020H
OUT 6 ;Clear PO-FLAGS flip-flop
MVI A, 0FEH
OUT 0 ;Select controller 1
MVI A, 0EH
OUT 0 ;Set I/O mode
;Old program
MV A, OFFH ;Clear I/O mode; deselect controller
OUT 0
Output

A. The FLAG output is used to strobe the data, using
the flip-flop contained in the controller.

MVI A, 020H
OUT 6 ;Clear FLAG flip-flop (Horizon)
MVI A,0FEH
OUT 0 ;Select controller 1
MVI A,0E1H
OUT 0 ;Set I/O mode
MVI A, DATA
OUT 0 ;Load proper data onto bus
MVI A, 060H
OUT 6 ;Set PO-FLAG flip-flop (Horizon)
IN 0 ;This enables data onto the output port
;Clear controller FLAG flip-flop,
;and generate FLAG output from
;controller

ALPHA:IN 2
BIT3,A
JNZ ALPHA ;Wait for ACK from peripheral to clear
;controller FLAG flip-flop
MVI A,020H
OUT 6 ;Clear FLAG flip-flop; put output
;data into high impedance
MVI A,0FFH
OUT 0 ;Deselect controller and clear I/O mode

B. The DATA MSB is used to strobe the peripheral and
the FLAG output is not used.

MVI A,020H
OUT 6 ;Clear PO-FLAG flip-flop
MVI A, 0FEH
OUT 0 ;Select controller 1
MVI A,0E1H
OUT 0 ;Set I/O mode
MVI A, 60H
OUT 6 ;Set FLAG, enable data to output port
MVI A, DATA.OR.080H
OUT 0 ;Data with MSB = 1
MVI A, DATA.AND.07FH
OUT 0 ;Data with MSB = 0
MVI A, DATA.OR.080H
OUT 0 ;Data with MSB = 1
MVI A, 20H
OUT 6 ;Clear FLAG flip-flop; put data
;to high impedance
MVI A,0FFH ;Deselect controller and clear I/O mode
Appendix A

HDOS Command Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Create</td>
<td>AC</td>
<td>account</td>
</tr>
<tr>
<td>Account Delete</td>
<td>AD</td>
<td>account</td>
</tr>
<tr>
<td>Account List</td>
<td>AL</td>
<td>[#n] [d]</td>
</tr>
<tr>
<td>Account Rename</td>
<td>AR</td>
<td>account TO newaccountname</td>
</tr>
<tr>
<td>Account Set</td>
<td>AS</td>
<td>account</td>
</tr>
<tr>
<td>Copy Diskette</td>
<td>CD</td>
<td>d1 TO d2 {sides}</td>
</tr>
<tr>
<td>Copy File</td>
<td>CF</td>
<td>pathnamel TO pathname2 {dens}</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>pathnamel CR pathname2 {len} {dens} {alloc}</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>pathnamel SL pathname2 {len}</td>
</tr>
<tr>
<td>Create File</td>
<td>CR</td>
<td>pathnamel len {daddr} {dens} {alloc}</td>
</tr>
<tr>
<td>Display ASCII</td>
<td>DA</td>
<td>[#n] region</td>
</tr>
<tr>
<td>Delete File</td>
<td>DE</td>
<td>pathname</td>
</tr>
<tr>
<td>Display Hex</td>
<td>DH</td>
<td>[#n] region</td>
</tr>
<tr>
<td>Device Output</td>
<td>DO</td>
<td>[#n] {[char]}</td>
</tr>
<tr>
<td>Display & Substitute</td>
<td>DS</td>
<td>raddr</td>
</tr>
<tr>
<td>Examine Byte</td>
<td>EB</td>
<td>[#n] bval</td>
</tr>
<tr>
<td>Examine Memory</td>
<td>EM</td>
<td>[#n] raddr</td>
</tr>
<tr>
<td>Examine Port</td>
<td>EP</td>
<td>[#n] paddr</td>
</tr>
<tr>
<td>Fill Memory</td>
<td>FM</td>
<td>region bval {[bval,bval,...]}</td>
</tr>
<tr>
<td>Go (Load & Execute)</td>
<td>GO</td>
<td>pathname {{args}}</td>
</tr>
<tr>
<td>Help</td>
<td>HE</td>
<td>command</td>
</tr>
<tr>
<td>Initial Load</td>
<td>IL</td>
<td>d {dens}</td>
</tr>
<tr>
<td>Initialize Diskette</td>
<td>IN</td>
<td>raddr {{args}}</td>
</tr>
<tr>
<td>Jump</td>
<td>JP</td>
<td>pathname raddr</td>
</tr>
<tr>
<td>Load File into RAM</td>
<td>LF</td>
<td>[#n] {account} {d}</td>
</tr>
<tr>
<td>List File Directory</td>
<td>LI</td>
<td>[#n] {account} {d}</td>
</tr>
<tr>
<td>Multiple Copy</td>
<td>MC</td>
<td>{d} {account} TO {d} {account} {len} {dens} {alloc}</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>{d} {account} YN {d} {account} {len} {dens} {alloc}</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>{d} {account} CR account {alloc}</td>
</tr>
<tr>
<td>Multiple Delete</td>
<td>MD</td>
<td>{d} {account}</td>
</tr>
<tr>
<td>Multiple List</td>
<td>ML</td>
<td>[#n]</td>
</tr>
<tr>
<td>Move Memory</td>
<td>MM</td>
<td>region raddr</td>
</tr>
<tr>
<td>Output Device</td>
<td>OD</td>
<td>[#n]</td>
</tr>
<tr>
<td>Off</td>
<td>OP</td>
<td>{d}</td>
</tr>
<tr>
<td>Set Listing</td>
<td>PA</td>
<td>n</td>
</tr>
<tr>
<td>Page Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Output</td>
<td>PO</td>
<td>bval TO paddr</td>
</tr>
</tbody>
</table>
Appendix A

HDOS COMMAND SUMMARY (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Command</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read Disk to RAM</td>
<td>RD</td>
<td>len {dens} FROM daddr{,d} {{OF pathname}} TO raddr</td>
</tr>
<tr>
<td>Rename Diskette File</td>
<td>RN</td>
<td>filename1, d to filename2</td>
</tr>
<tr>
<td>Reset</td>
<td>RS</td>
<td></td>
</tr>
<tr>
<td>Save File from RAM</td>
<td>SF</td>
<td>pathname raddr</td>
</tr>
<tr>
<td>Set Length</td>
<td>SL</td>
<td>pathname len</td>
</tr>
<tr>
<td>Search Memory</td>
<td>SM</td>
<td>{{[#n]} region bval {{,bval,bval...}}</td>
</tr>
<tr>
<td>Print Disk Statistics</td>
<td>ST</td>
<td>[d]</td>
</tr>
<tr>
<td>Set Auto-Execute File</td>
<td>SX</td>
<td>pathname</td>
</tr>
<tr>
<td>Type File</td>
<td>TY</td>
<td>pathname [filetype] {{raddr}} [attr...]</td>
</tr>
<tr>
<td>Verify Memory</td>
<td>VM</td>
<td>{{[#n]} region raddr</td>
</tr>
<tr>
<td>Write RAM to Disk</td>
<td>WR</td>
<td>len {dens} FROM raddr TO daddr{,d} {{OF pathname}}</td>
</tr>
<tr>
<td>Work Space</td>
<td>WS</td>
<td>{{[#n]}}</td>
</tr>
</tbody>
</table>
Appendix B
ERROR CODES

MFDOs RESULT CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MFNSF</td>
<td>Sync not found</td>
</tr>
<tr>
<td>2</td>
<td>MFCRC</td>
<td>CRC error</td>
</tr>
<tr>
<td>3</td>
<td>MPVFE</td>
<td>Verify compare error</td>
</tr>
<tr>
<td>4</td>
<td>MFNIP</td>
<td>Drive or diskette not available</td>
</tr>
<tr>
<td>5</td>
<td>MFDMN</td>
<td>Density mismatch on read or verify</td>
</tr>
<tr>
<td>6</td>
<td>MWWRP</td>
<td>Attempt to write on protected diskette</td>
</tr>
<tr>
<td>7</td>
<td>MFCX</td>
<td>Control-C detected from terminal</td>
</tr>
<tr>
<td>8</td>
<td>MFIDW</td>
<td>Illegal call to DWRIT</td>
</tr>
<tr>
<td>9</td>
<td>MFIDN</td>
<td>Illegal drive number</td>
</tr>
<tr>
<td>10</td>
<td>MFIDA</td>
<td>Illegal disk address</td>
</tr>
<tr>
<td>11</td>
<td>MFITL</td>
<td>Illegal transfer length</td>
</tr>
<tr>
<td>12</td>
<td>MFIDC</td>
<td>Illegal command to DCOM</td>
</tr>
<tr>
<td>13</td>
<td>MFSDM</td>
<td>Track density mismatch error</td>
</tr>
</tbody>
</table>

FILE MANAGER MESSAGE CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MOK</td>
<td>Operation okay</td>
</tr>
<tr>
<td>20</td>
<td>MANE</td>
<td>Account not empty</td>
</tr>
<tr>
<td>21</td>
<td>MDDUP</td>
<td>Attempt to create duplicate directory</td>
</tr>
<tr>
<td>22</td>
<td>MDFUL</td>
<td>Directory full</td>
</tr>
<tr>
<td>23</td>
<td>MFIND</td>
<td>Matching directory entry found</td>
</tr>
<tr>
<td>24</td>
<td>MDBAD</td>
<td>Bad directory structure</td>
</tr>
<tr>
<td>25</td>
<td>MDFNF</td>
<td>File name not found in directory</td>
</tr>
<tr>
<td>26</td>
<td>MFANF</td>
<td>Account name not found in directory</td>
</tr>
<tr>
<td>27</td>
<td>MCADS</td>
<td>Can't allocate requested disk space</td>
</tr>
<tr>
<td>28</td>
<td>MOFUL</td>
<td>Open File Table full; can't open file</td>
</tr>
<tr>
<td>29</td>
<td>MOAVL</td>
<td>Entry available in the Open File Table</td>
</tr>
<tr>
<td>30</td>
<td>MILDN</td>
<td>Illegal decimal number</td>
</tr>
<tr>
<td>31</td>
<td>MILFN</td>
<td>Illegal file name</td>
</tr>
<tr>
<td>32</td>
<td>MILAN</td>
<td>Illegal account name</td>
</tr>
<tr>
<td>33</td>
<td>MILUN</td>
<td>Illegal unit number</td>
</tr>
<tr>
<td>34</td>
<td>MILID</td>
<td>Illegal account ID number</td>
</tr>
<tr>
<td>35</td>
<td>MWRP</td>
<td>Attempt to write on write-protected file</td>
</tr>
<tr>
<td>36</td>
<td>MDEP</td>
<td>Attempt to delete a delete-protected file</td>
</tr>
<tr>
<td>37</td>
<td>MADEP</td>
<td>Attempt to delete a delete-protected account</td>
</tr>
<tr>
<td>38</td>
<td>MCCPP</td>
<td>Attempt to change a protected field in File Manager</td>
</tr>
<tr>
<td>39</td>
<td>MPARA</td>
<td>Parameter invalid or out of range</td>
</tr>
<tr>
<td>40</td>
<td>MFRT</td>
<td>Improper file type specified</td>
</tr>
</tbody>
</table>

North Star

B-1

HDOS Manual
Appendix B - ERROR CODES

FILE MANAGER MESSAGE CODES (continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>MFNO</td>
<td>File not open; open file required</td>
</tr>
<tr>
<td>42</td>
<td>MFOPN</td>
<td>File open; unopened file required</td>
</tr>
<tr>
<td>43</td>
<td>MFFAIL</td>
<td>General failure, usually indicates hardware malfunction</td>
</tr>
<tr>
<td>44</td>
<td>MEOLA</td>
<td>End of list with available space</td>
</tr>
<tr>
<td>45</td>
<td>MEOL</td>
<td>End of list with no available space</td>
</tr>
<tr>
<td>46</td>
<td>MIFMR</td>
<td>Illegal File Manager request</td>
</tr>
<tr>
<td>47</td>
<td>MFZNZ</td>
<td>File size not zero</td>
</tr>
<tr>
<td>48</td>
<td>MIFZ</td>
<td>Illegal file size</td>
</tr>
<tr>
<td>49</td>
<td>MEOF</td>
<td>End of file reached during data transfer</td>
</tr>
<tr>
<td>50</td>
<td>MPEOF</td>
<td>Transfer attempted beyond end of file</td>
</tr>
<tr>
<td>51</td>
<td>MMEMP</td>
<td>Memory protect violation</td>
</tr>
<tr>
<td>52</td>
<td>MUNPU</td>
<td>Unit not powered up</td>
</tr>
<tr>
<td>53</td>
<td>MNYI</td>
<td>Operation not yet implemented</td>
</tr>
<tr>
<td>54</td>
<td>MFMO</td>
<td>File multiply opened</td>
</tr>
<tr>
<td>55</td>
<td>MDLRE</td>
<td>Disk level revision error</td>
</tr>
<tr>
<td>56</td>
<td>MDNSL</td>
<td>Drive label mismatch error</td>
</tr>
<tr>
<td>57</td>
<td>MDNSS</td>
<td>Drive size mismatch error</td>
</tr>
<tr>
<td>103</td>
<td>MBUFRD</td>
<td>Buffer error</td>
</tr>
<tr>
<td>104</td>
<td>MMIPLS</td>
<td>Missing index pulse</td>
</tr>
<tr>
<td>105</td>
<td>MSHDR</td>
<td>PLL sync error on read</td>
</tr>
<tr>
<td>106</td>
<td>MRDPL</td>
<td>Failure to format drive</td>
</tr>
<tr>
<td>107</td>
<td>MRCER</td>
<td>Drive error during command execution</td>
</tr>
<tr>
<td>108</td>
<td>MVCRCE</td>
<td>CRC error during verify</td>
</tr>
<tr>
<td>109</td>
<td>MVDATE</td>
<td>Compare error in data during verify</td>
</tr>
<tr>
<td>110</td>
<td>MDCRCE</td>
<td>Data CRC error</td>
</tr>
<tr>
<td>111</td>
<td>MRDSHE</td>
<td>CRC error on read sector header</td>
</tr>
<tr>
<td>112</td>
<td>MFWSOR</td>
<td>Found wrong sector during read or verify</td>
</tr>
<tr>
<td>113</td>
<td>MDWRTE</td>
<td>Write unsafe or attempt to write on protected cylinder</td>
</tr>
<tr>
<td>114</td>
<td>MCNTFL</td>
<td>read/write flip-flop will not set in controller</td>
</tr>
<tr>
<td>115</td>
<td>MILLDA</td>
<td>Illegal disk address</td>
</tr>
<tr>
<td>116</td>
<td>MHDCRC</td>
<td>CRC error in header during position verify</td>
</tr>
<tr>
<td>117</td>
<td>MCYLER</td>
<td>Drive on wrong cylinder</td>
</tr>
<tr>
<td>118</td>
<td>MDSLDR</td>
<td>Head select error</td>
</tr>
<tr>
<td>119</td>
<td>MDERDS</td>
<td>Drive error during seek</td>
</tr>
<tr>
<td>120</td>
<td>MBADRV</td>
<td>Drive number too big</td>
</tr>
<tr>
<td>121</td>
<td>MTSHDR</td>
<td>Target sector has CRC error in header</td>
</tr>
<tr>
<td>122</td>
<td>MDRDFL</td>
<td>Failure in drive read electronics</td>
</tr>
<tr>
<td>123</td>
<td>MCNPTS</td>
<td>Can't find target sector</td>
</tr>
<tr>
<td>124</td>
<td>MDWNR</td>
<td>Drive went not ready after command started</td>
</tr>
<tr>
<td>125</td>
<td>MCNPR</td>
<td>Controller not there</td>
</tr>
<tr>
<td>126</td>
<td>MDNACC</td>
<td>Drive not ready for command</td>
</tr>
<tr>
<td>127</td>
<td>MDNRDY</td>
<td>Drive not ready - out of speed</td>
</tr>
</tbody>
</table>
CONVERSION TABLE

DECIMAL-ASCII-HEX-BINARY CONVERSION TABLE

The following table is intended to ease the task of conversion between the various numeric representations commonly used in programming, as well as between numbers (of any kind) and the ASCII character code.

Note that the ASCII character set only goes as far as decimal 127 (7FH, 01111111 B). Also, many "characters" in ASCII are nonprinting CONTROL CHARACTERS. Whenever a code corresponds to a printable character, that will be given. In the case of control characters, a description or name for the special character will be given in parentheses.

<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00H</td>
<td>00000000</td>
<td>(NULL)</td>
</tr>
<tr>
<td>1</td>
<td>01H</td>
<td>00000001</td>
<td>(CONTROL-A)</td>
</tr>
<tr>
<td>2</td>
<td>02H</td>
<td>00000010</td>
<td>(CONTROL-B)</td>
</tr>
<tr>
<td>3</td>
<td>03H</td>
<td>00000011</td>
<td>(CONTROL-C)</td>
</tr>
<tr>
<td>4</td>
<td>04H</td>
<td>00000100</td>
<td>(CONTROL-D)</td>
</tr>
<tr>
<td>5</td>
<td>05H</td>
<td>00000101</td>
<td>(CONTROL-E)</td>
</tr>
<tr>
<td>6</td>
<td>06H</td>
<td>00000110</td>
<td>(CONTROL-F)</td>
</tr>
<tr>
<td>7</td>
<td>07H</td>
<td>00000111</td>
<td>(CONTROL-G, RINGS BELL)</td>
</tr>
<tr>
<td>8</td>
<td>08H</td>
<td>00001000</td>
<td>(CONTROL-H, BACKSPACE)</td>
</tr>
<tr>
<td>9</td>
<td>09H</td>
<td>00001001</td>
<td>(CONTROL-I, TAB)</td>
</tr>
<tr>
<td>10</td>
<td>0AH</td>
<td>00001010</td>
<td>(CONTROL-J, LINEFEED)</td>
</tr>
<tr>
<td>11</td>
<td>0BH</td>
<td>00001011</td>
<td>(CONTROL-K)</td>
</tr>
<tr>
<td>12</td>
<td>0CH</td>
<td>00010000</td>
<td>(CONTROL-L, FORMFEED)</td>
</tr>
<tr>
<td>13</td>
<td>0DH</td>
<td>00010001</td>
<td>(CONTROL-M, CARRIAGE RETURN)</td>
</tr>
<tr>
<td>14</td>
<td>0EH</td>
<td>00010010</td>
<td>(CONTROL-N)</td>
</tr>
<tr>
<td>15</td>
<td>0FH</td>
<td>00010011</td>
<td>(CONTROL-O)</td>
</tr>
<tr>
<td>16</td>
<td>10H</td>
<td>00010100</td>
<td>(CONTROL-P)</td>
</tr>
<tr>
<td>17</td>
<td>11H</td>
<td>00010101</td>
<td>(CONTROL-Q)</td>
</tr>
<tr>
<td>18</td>
<td>12H</td>
<td>00010110</td>
<td>(CONTROL-R)</td>
</tr>
<tr>
<td>19</td>
<td>13H</td>
<td>00010111</td>
<td>(CONTROL-S)</td>
</tr>
<tr>
<td>20</td>
<td>14H</td>
<td>00011000</td>
<td>(CONTROL-T)</td>
</tr>
<tr>
<td>21</td>
<td>15H</td>
<td>00011001</td>
<td>(CONTROL-U)</td>
</tr>
<tr>
<td>22</td>
<td>16H</td>
<td>00011010</td>
<td>(CONTROL-V)</td>
</tr>
<tr>
<td>23</td>
<td>17H</td>
<td>00011011</td>
<td>(CONTROL-W)</td>
</tr>
<tr>
<td>24</td>
<td>18H</td>
<td>00011100</td>
<td>(CONTROL-X)</td>
</tr>
<tr>
<td>25</td>
<td>19H</td>
<td>00011101</td>
<td>(CONTROL-Y)</td>
</tr>
<tr>
<td>26</td>
<td>1AH</td>
<td>00011110</td>
<td>(CONTROL-Z)</td>
</tr>
<tr>
<td>27</td>
<td>1BH</td>
<td>00011111</td>
<td>(ESCAPE)</td>
</tr>
<tr>
<td>28</td>
<td>1CH</td>
<td>00100000</td>
<td>(NON-PRINTING)</td>
</tr>
<tr>
<td>29</td>
<td>1DH</td>
<td>00100001</td>
<td>(NON-PRINTING)</td>
</tr>
<tr>
<td>30</td>
<td>1EH</td>
<td>00100010</td>
<td>(NON-PRINTING)</td>
</tr>
<tr>
<td>31</td>
<td>1FH</td>
<td>00100011</td>
<td>(NON-PRINTING)</td>
</tr>
<tr>
<td>32</td>
<td>20H</td>
<td>00100100</td>
<td>(SPACE)</td>
</tr>
<tr>
<td>33</td>
<td>21H</td>
<td>00100101</td>
<td>!</td>
</tr>
<tr>
<td>34</td>
<td>22H</td>
<td>00100110</td>
<td>"</td>
</tr>
<tr>
<td>35</td>
<td>23H</td>
<td>00100111</td>
<td>#</td>
</tr>
<tr>
<td>36</td>
<td>24H</td>
<td>00101000</td>
<td>$</td>
</tr>
<tr>
<td>37</td>
<td>25H</td>
<td>00101001</td>
<td>%</td>
</tr>
<tr>
<td>38</td>
<td>26H</td>
<td>00101010</td>
<td>&</td>
</tr>
<tr>
<td>39</td>
<td>27H</td>
<td>00101011</td>
<td>*</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>HEX</td>
<td>BINARY</td>
<td>ASCII</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>40</td>
<td>28H</td>
<td>00101000</td>
<td>(</td>
</tr>
<tr>
<td>41</td>
<td>29H</td>
<td>00101001</td>
<td>)</td>
</tr>
<tr>
<td>42</td>
<td>2AH</td>
<td>00101010</td>
<td>*</td>
</tr>
<tr>
<td>43</td>
<td>2BH</td>
<td>00101011</td>
<td>+</td>
</tr>
<tr>
<td>44</td>
<td>2CH</td>
<td>00101100</td>
<td>-</td>
</tr>
<tr>
<td>45</td>
<td>2DH</td>
<td>00101101</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>2EH</td>
<td>00101110</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2FH</td>
<td>00101111</td>
<td>/</td>
</tr>
<tr>
<td>48</td>
<td>30H</td>
<td>00110000</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>31H</td>
<td>00110001</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>32H</td>
<td>00110010</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>33H</td>
<td>00110011</td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td>34H</td>
<td>00110100</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>35H</td>
<td>00110101</td>
<td>5</td>
</tr>
<tr>
<td>54</td>
<td>36H</td>
<td>00110110</td>
<td>6</td>
</tr>
<tr>
<td>55</td>
<td>37H</td>
<td>00110111</td>
<td>7</td>
</tr>
<tr>
<td>56</td>
<td>38H</td>
<td>00111000</td>
<td>8</td>
</tr>
<tr>
<td>57</td>
<td>39H</td>
<td>00111001</td>
<td>9</td>
</tr>
<tr>
<td>58</td>
<td>3AH</td>
<td>00111010</td>
<td>:</td>
</tr>
<tr>
<td>59</td>
<td>3BH</td>
<td>00111011</td>
<td>;</td>
</tr>
<tr>
<td>60</td>
<td>3CH</td>
<td>00111100</td>
<td><</td>
</tr>
<tr>
<td>61</td>
<td>3DH</td>
<td>00111101</td>
<td>=</td>
</tr>
<tr>
<td>62</td>
<td>3EH</td>
<td>00111110</td>
<td>></td>
</tr>
<tr>
<td>63</td>
<td>3FH</td>
<td>00111111</td>
<td>?</td>
</tr>
<tr>
<td>64</td>
<td>40H</td>
<td>01000000</td>
<td>@</td>
</tr>
<tr>
<td>65</td>
<td>41H</td>
<td>01000001</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>42H</td>
<td>01000010</td>
<td>B</td>
</tr>
<tr>
<td>67</td>
<td>43H</td>
<td>01000011</td>
<td>C</td>
</tr>
<tr>
<td>68</td>
<td>44H</td>
<td>01000100</td>
<td>D</td>
</tr>
<tr>
<td>69</td>
<td>45H</td>
<td>01000101</td>
<td>E</td>
</tr>
<tr>
<td>70</td>
<td>46H</td>
<td>01000110</td>
<td>F</td>
</tr>
<tr>
<td>71</td>
<td>47H</td>
<td>01000111</td>
<td>G</td>
</tr>
<tr>
<td>72</td>
<td>48H</td>
<td>01001000</td>
<td>H</td>
</tr>
<tr>
<td>73</td>
<td>49H</td>
<td>01001001</td>
<td>I</td>
</tr>
<tr>
<td>74</td>
<td>4AH</td>
<td>01001010</td>
<td>J</td>
</tr>
<tr>
<td>75</td>
<td>4BH</td>
<td>01001011</td>
<td>K</td>
</tr>
<tr>
<td>76</td>
<td>4CH</td>
<td>01001100</td>
<td>L</td>
</tr>
<tr>
<td>77</td>
<td>4DH</td>
<td>01001101</td>
<td>M</td>
</tr>
<tr>
<td>78</td>
<td>4EH</td>
<td>01001110</td>
<td>N</td>
</tr>
<tr>
<td>79</td>
<td>4FH</td>
<td>01001111</td>
<td>O</td>
</tr>
<tr>
<td>80</td>
<td>50H</td>
<td>01010000</td>
<td>P</td>
</tr>
<tr>
<td>81</td>
<td>51H</td>
<td>01010001</td>
<td>Q</td>
</tr>
<tr>
<td>82</td>
<td>52H</td>
<td>01010010</td>
<td>R</td>
</tr>
<tr>
<td>83</td>
<td>53H</td>
<td>01010011</td>
<td>S</td>
</tr>
<tr>
<td>84</td>
<td>54H</td>
<td>01010100</td>
<td>T</td>
</tr>
<tr>
<td>85</td>
<td>55H</td>
<td>01010101</td>
<td>U</td>
</tr>
<tr>
<td>86</td>
<td>56H</td>
<td>01010110</td>
<td>V</td>
</tr>
<tr>
<td>87</td>
<td>57H</td>
<td>01010111</td>
<td>W</td>
</tr>
<tr>
<td>88</td>
<td>58H</td>
<td>01011000</td>
<td>X</td>
</tr>
<tr>
<td>89</td>
<td>59H</td>
<td>01011001</td>
<td>Y</td>
</tr>
<tr>
<td>90</td>
<td>5AH</td>
<td>01011010</td>
<td>[</td>
</tr>
<tr>
<td>91</td>
<td>5BH</td>
<td>01011011</td>
<td>\</td>
</tr>
<tr>
<td>92</td>
<td>5CH</td>
<td>01011100</td>
<td>\</td>
</tr>
<tr>
<td>93</td>
<td>5DH</td>
<td>01011101</td>
<td>]</td>
</tr>
<tr>
<td>DECIMAL</td>
<td>HEX</td>
<td>BINARY</td>
<td>ASCII</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>94</td>
<td>5EH</td>
<td>01011110</td>
<td>T</td>
</tr>
<tr>
<td>95</td>
<td>5FH</td>
<td>01011111</td>
<td>OR</td>
</tr>
<tr>
<td>96</td>
<td>60H</td>
<td>01100000</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>61H</td>
<td>01100001</td>
<td>a</td>
</tr>
<tr>
<td>98</td>
<td>62H</td>
<td>01100010</td>
<td>b</td>
</tr>
<tr>
<td>99</td>
<td>63H</td>
<td>01100011</td>
<td>c</td>
</tr>
<tr>
<td>100</td>
<td>64H</td>
<td>01100100</td>
<td>d</td>
</tr>
<tr>
<td>101</td>
<td>65H</td>
<td>01100101</td>
<td>e</td>
</tr>
<tr>
<td>102</td>
<td>66H</td>
<td>01100110</td>
<td>f</td>
</tr>
<tr>
<td>103</td>
<td>67H</td>
<td>01100111</td>
<td>g</td>
</tr>
<tr>
<td>104</td>
<td>68H</td>
<td>01101000</td>
<td>h</td>
</tr>
<tr>
<td>105</td>
<td>69H</td>
<td>01101001</td>
<td>i</td>
</tr>
<tr>
<td>106</td>
<td>6AH</td>
<td>01101010</td>
<td>j</td>
</tr>
<tr>
<td>107</td>
<td>6BH</td>
<td>01101011</td>
<td>k</td>
</tr>
<tr>
<td>108</td>
<td>6CH</td>
<td>01101100</td>
<td>l</td>
</tr>
<tr>
<td>109</td>
<td>6DH</td>
<td>01101101</td>
<td>m</td>
</tr>
<tr>
<td>110</td>
<td>6EH</td>
<td>01101110</td>
<td>n</td>
</tr>
<tr>
<td>111</td>
<td>6FH</td>
<td>01101111</td>
<td>o</td>
</tr>
<tr>
<td>112</td>
<td>70H</td>
<td>01110000</td>
<td>p</td>
</tr>
<tr>
<td>113</td>
<td>71H</td>
<td>01110001</td>
<td>q</td>
</tr>
<tr>
<td>114</td>
<td>72H</td>
<td>01110010</td>
<td>r</td>
</tr>
<tr>
<td>115</td>
<td>73H</td>
<td>01110011</td>
<td>s</td>
</tr>
<tr>
<td>116</td>
<td>74H</td>
<td>01110100</td>
<td>t</td>
</tr>
<tr>
<td>117</td>
<td>75H</td>
<td>01110101</td>
<td>u</td>
</tr>
<tr>
<td>118</td>
<td>76H</td>
<td>01110110</td>
<td>v</td>
</tr>
<tr>
<td>119</td>
<td>77H</td>
<td>01110111</td>
<td>w</td>
</tr>
<tr>
<td>120</td>
<td>78H</td>
<td>01111000</td>
<td>x</td>
</tr>
<tr>
<td>121</td>
<td>79H</td>
<td>01111001</td>
<td>y</td>
</tr>
<tr>
<td>122</td>
<td>7AH</td>
<td>01111010</td>
<td>z</td>
</tr>
<tr>
<td>123</td>
<td>7BH</td>
<td>01111011</td>
<td>(</td>
</tr>
<tr>
<td>124</td>
<td>7CH</td>
<td>01111100</td>
<td>)</td>
</tr>
<tr>
<td>125</td>
<td>7DH</td>
<td>01111101</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>7EH</td>
<td>01111110</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>7FH</td>
<td>01111111</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>80H</td>
<td>10000000</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>81H</td>
<td>10000001</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>82H</td>
<td>10000010</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>83H</td>
<td>10000011</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>84H</td>
<td>10000100</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>85H</td>
<td>10000101</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>86H</td>
<td>10000110</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>87H</td>
<td>10000111</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>88H</td>
<td>10001000</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>89H</td>
<td>10001001</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>8AH</td>
<td>10001010</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>8BH</td>
<td>10001011</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>8CH</td>
<td>10001100</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>8DH</td>
<td>10001101</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>8EH</td>
<td>10001110</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>8FH</td>
<td>10001111</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>90H</td>
<td>10010000</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>91H</td>
<td>10010001</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>92H</td>
<td>10010010</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>93H</td>
<td>10010011</td>
<td></td>
</tr>
</tbody>
</table>

(DELETE, RUB OUT)
<table>
<thead>
<tr>
<th>DECIMAL</th>
<th>HEX</th>
<th>BINARY</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>94H</td>
<td>10010100</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>95H</td>
<td>10010101</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>96H</td>
<td>10010110</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>97H</td>
<td>10010111</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>98H</td>
<td>10011000</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>99H</td>
<td>10011001</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>9AH</td>
<td>10011010</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>9BH</td>
<td>10011011</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>9CH</td>
<td>10011100</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>9DH</td>
<td>10011101</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>9EH</td>
<td>10011110</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>9FH</td>
<td>10011111</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>A0H</td>
<td>10100000</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>A1H</td>
<td>10100001</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>A2H</td>
<td>10100010</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>A3H</td>
<td>10100011</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>A4H</td>
<td>10100100</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>A5H</td>
<td>10100101</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>A6H</td>
<td>10100110</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>A7H</td>
<td>10100111</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>A8H</td>
<td>10101000</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>A9H</td>
<td>10101001</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>AAH</td>
<td>10101010</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>ABH</td>
<td>10101011</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>ACH</td>
<td>10101100</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>ADH</td>
<td>10101101</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>AEH</td>
<td>10101110</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>AFH</td>
<td>10101111</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>B0H</td>
<td>10110000</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>B1H</td>
<td>10110001</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>B2H</td>
<td>10110010</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>B3H</td>
<td>10110011</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>B4H</td>
<td>10110100</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>B5H</td>
<td>10110101</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>B6H</td>
<td>10110110</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>B7H</td>
<td>10110111</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>B8H</td>
<td>10111000</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>B9H</td>
<td>10111001</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>BAH</td>
<td>10111010</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>BAH</td>
<td>10111011</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>BCH</td>
<td>10111100</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>BDD</td>
<td>10111101</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>BEH</td>
<td>10111110</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>BFH</td>
<td>10111111</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>C0H</td>
<td>11000000</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>C1H</td>
<td>11000001</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>C2H</td>
<td>11000010</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>C3H</td>
<td>11000011</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>C4H</td>
<td>11000100</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>C5H</td>
<td>11000101</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>C6H</td>
<td>11000110</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>C7H</td>
<td>11000111</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>C8H</td>
<td>11001000</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>C9H</td>
<td>11001001</td>
<td></td>
</tr>
<tr>
<td>DECIMAL</td>
<td>HEX</td>
<td>BINARY</td>
<td>ASCII</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>202</td>
<td>CAH</td>
<td>11001010</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>CBH</td>
<td>11001011</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>CCH</td>
<td>11001100</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>CDH</td>
<td>11001101</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>CEH</td>
<td>11001110</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>CPH</td>
<td>11001111</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>D0H</td>
<td>11010000</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>D1H</td>
<td>11010001</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>D2H</td>
<td>11010010</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>D3H</td>
<td>11010011</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>D4H</td>
<td>11010100</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>D5H</td>
<td>11010101</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>D6H</td>
<td>11010110</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>D7H</td>
<td>11010111</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>D8H</td>
<td>11011000</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>D9H</td>
<td>11011001</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>DAH</td>
<td>11011010</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>DBH</td>
<td>11011011</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>DCH</td>
<td>11011100</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>DDH</td>
<td>11011101</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>DEH</td>
<td>11011110</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>DFH</td>
<td>11011111</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>E0H</td>
<td>11100000</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>E1H</td>
<td>11100001</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>E2H</td>
<td>11100010</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>E3H</td>
<td>11100011</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>E4H</td>
<td>11100100</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>E5H</td>
<td>11100101</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>E6H</td>
<td>11100110</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>E7H</td>
<td>11100111</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>E8H</td>
<td>11101000</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>E9H</td>
<td>11101001</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>EAH</td>
<td>11101010</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>EBH</td>
<td>11101011</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>ECH</td>
<td>11101100</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>EDH</td>
<td>11101101</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>EEH</td>
<td>11101110</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>EIH</td>
<td>11101111</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>F0H</td>
<td>11110000</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>F1H</td>
<td>11110001</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>F2H</td>
<td>11110010</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>F3H</td>
<td>11110011</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>F4H</td>
<td>11110100</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>F5H</td>
<td>11110101</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>F6H</td>
<td>11110110</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>F7H</td>
<td>11110111</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>F8H</td>
<td>11111000</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>F9H</td>
<td>11111001</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>FAH</td>
<td>11111010</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>FBH</td>
<td>11111011</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>FCH</td>
<td>11111100</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>FDH</td>
<td>11111101</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>FEH</td>
<td>11111110</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>FFH</td>
<td>11111111</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX D

RAM ALLOCATION TABLE

The table below gives the allocation of the 64K-byte RAM address space for the standard HDOS system software and hardware.

<table>
<thead>
<tr>
<th>RAM ADDRESS</th>
<th>CONTENTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>Dispatch Table</td>
<td>A table of entry points.</td>
</tr>
<tr>
<td>0200</td>
<td>2-block buffer</td>
<td>Shared by File Manager and the diskette DOS.</td>
</tr>
<tr>
<td>0400</td>
<td>I/O Routines</td>
<td>May be modified by the user.</td>
</tr>
<tr>
<td>0500</td>
<td>HDCOM</td>
<td>Origin of the HDCOM, not necessarily the entry point.</td>
</tr>
<tr>
<td>0D00</td>
<td>File Manager</td>
<td>Origin of the File Manager, not necessarily the entry point.</td>
</tr>
</tbody>
</table>

Transient System

1F00 MFDOS Diskette DOS and the Line Editor. (Includes a Jump Table at 2000 to enable compatibility with some existing North Star software.)

2600 Command Processor Origin of the HDOS Command Processor.
Whenever you initialize (boot) the system, either with a power up or the IL command, the Hard Disk Operating System is read from the HDOS 2.0.0H SYSTEM DISK and loaded into RAM at the addresses shown above. Everything from address 1F00 also resides on the hard disk. HBASEIC loads at 2600, overwriting the HDOS Command Processor. When you return to the system, everything from 1F00 to the end of the table loads from the hard disk and overwrites the current contents of RAM at the same addresses. This method of overwriting the same areas for HBASEIC and the Command Processor gives you more memory for application programs.
APPENDIX E

HDOS SYMBOLS AND DATA STRUCTURES

EQUIS
JULY 19, 1982

These equates include revision 2.0 of the disk label structure.

This file contains the equates for use in all modules of the North Star Hard Disk Operating System.

```assembly
0023  ==  #TRAC   ==  35 ; Number of tracks per side on a Micro Disk
0024  ==  #INITVR ==  16*35+35+1 ; Initial track counter value for Micro Disks
0026  ==  #MAXI   ==  7 ; Maximum legal I/O device number
0028  ==  #INL    ==  80 ; Length of input line for Command Processor
002A  ==  #SPFP   ==  26 ; Default processor speed constant (160A)
```

SYSTEM DISPATCH TABLE ADDRESSES

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>#TRAK</td>
</tr>
<tr>
<td>0108</td>
<td>#REP</td>
</tr>
<tr>
<td>010C</td>
<td>#CHOG</td>
</tr>
<tr>
<td>010E</td>
<td>#SINIT</td>
</tr>
<tr>
<td>0110</td>
<td>#RTTH</td>
</tr>
<tr>
<td>0112</td>
<td>#IOMA</td>
</tr>
<tr>
<td>0114</td>
<td>#CBOOT</td>
</tr>
<tr>
<td>0116</td>
<td>#XCHI</td>
</tr>
<tr>
<td>0118</td>
<td>#XCHI</td>
</tr>
<tr>
<td>011C</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0120</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0122</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0124</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0126</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0128</td>
<td>#DCMK</td>
</tr>
<tr>
<td>012A</td>
<td>#DCMK</td>
</tr>
<tr>
<td>012C</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0130</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0132</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0134</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0136</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0138</td>
<td>#DCMK</td>
</tr>
<tr>
<td>013A</td>
<td>#DCMK</td>
</tr>
<tr>
<td>013C</td>
<td>#DCMK</td>
</tr>
<tr>
<td>013E</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0140</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0142</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0144</td>
<td>#DCMK</td>
</tr>
<tr>
<td>0146</td>
<td>#DCMK</td>
</tr>
</tbody>
</table>

MFOS result codes

```assembly
0001  ==  #MFDSNF  ==  1 ; sync not found
0002  ==  #MFSCRC  ==  2 ; CRC error
0003  ==  #MFVVF   ==  3 ; verify compare error
0004  ==  #MFVFP   ==  4 ; no index pulse found
0005  ==  #MFDMF   ==  5 ; density mismatch on read or verify
0006  ==  #MFVWP   ==  6 ; attempt to write on protected diskette
0007  ==  #MFVCC    |
0008  ==  #MFVDM    |
0009  ==  #MFVDP    |
000A  ==  #MFVID    |
000B  ==  #MFVIT    |
000C  ==  #MFVDC    |
000D  ==  #MFVDT    |
```

North Star E-1 HDOS Manual
File Manager Definitions

File Manager Operation Codes

0000 == $FMCRE == 00H ; create file
0001 == $FMDELO == FMCRE+1 ; delete file
0002 == $FMDELM == FMDELO+1 ; open file
0003 == $FMCLO == FMDELM+1 ; close file
0004 == $FMWTPO == FMCLLO+1 ; transfer sectors to/from file
0005 == $FMLOK == FMWTPO+1 ; lookup file information
0006 == $FMALCL == FMLOK+1 ; lookup account information
0007 == $FMWCT == FMALCL+1 ; change file type
0008 == $FMWCST == FMWCT+1 ; change file attributes
0009 == $FMCAP == FMWCST+1 ; change file size
000A == $FMCST == FMCAP+1 ; change the auto-load-and-go pathname
000B == $FMADT == FMCST+1 ; abort the calling program
000C == $FMADT == FMADT+1 ; reset the File Manager
000D == $FMPU == FMADT+1 ; load and execute a file of type PTO
000E == $FMPES == FMPU+1 ; return a file's size to the caller
000F == $FMPCA == FMPES+1 ; create account
0010 == $FMPDA == FMPCA+1 ; delete account
0011 == $FMPDAD == FMPDA+1 ; set/default return default values
0012 == $FMPCH == FMPDAD+1 ; compose a standard message code message
0013 == $FMPFM == FMPCH+1 ; finish executing the calling program
0014 == $FMPMDS == FMPFM+1 ; return disk statistics to the calling prog
0015 == $FMPMDM == FMPMDS+1 ; access directory entry
0016 == $FMPMD == FMPMDM+1 ; return default values to the calling prog
0017 == $FMPMAD == FMPMD+1 ; change account name
0018 == $FMPMAD == FMPMAD+1 ; power down a specific unit
0019 == $FMPMAD == FMPMAD+1 ; power up a specific unit
001A == $FMPMAD == FMPMAD+1 ; flag buffer used
001B == $FMPMAD == FMPMAD+1 ; initialize after bootstrap
001B == $FMPMAD == FMPMAD+1 ; end of FM list

Message Codes

0000 == $EMOE == 00H ; ok, must be zero!
0014 == $EMON == 20 ; account not empty
0015 == $EMON == MONE+1 ; directory: attempt to add duplicate symbol
0016 == $EMON == MONE+1 ; directory: directory is full
0017 == $EMON == MONE+1 ; directory: matching symbol found
0018 == $EMON == MONE+1 ; directory: bad directory structure
0019 == $EMON == MONE+1 ; directory: file name not found
001A == $EMON == MONE+1 ; directory: account name not found
001B == $EMON == MONE+1 ; can't allocate disk space, disk possibly full
001C == $EMON == MONE+1 ; can't open file, Open File Table full
001D == $EMON == MONE+1 ; OPT entry available
001E == $EMON == MONE+1 ; illegal decimal number
001F == $EMON == MONE+1 ; illegal file name
0020 == $EMON == MONE+1 ; illegal account name
0021 == $EMON == MONE+1 ; illegal unit number
0022 == $EMON == MONE+1 ; illegal account ID
0023 == $EMON == MONE+1 ; write protect
0024 == $EMON == MONE+1 ; delete protect
0025 == $EMON == MONE+1 ; account delete protected
0026 == $EMON == MONE+1 ; can't change protected field
0027 == $EMON == MONE+1 ; promote in error or out of range
0028 == $EMON == MONE+1 ; file of wrong type specified
0029 == $EMON == MONE+1 ; file not open
002A == $EMON == MONE+1 ; file is open
002B == $EMON == MONE+1 ; general failure
002C == $EMON == MONE+1 ; end of list with available space
002D == $EMON == MONE+1 ; end of list with no available space
002E == $EMON == MONE+1 ; illegal File Manager request
002F == $EMON == MONE+1 ; file size not zero
0030 == $EMON == MONE+1 ; end of file reached during transfer
0031 == $EMON == MONE+1 ; transfer attempted past EOF
0032 == $EMON == MONE+1 ; memory protect violation
0033 == $EMON == MONE+1 ; unit not powered up
0034 == $EMON == MONE+1 ; function not yet implemented
0035 == $EMON == MONE+1 ; file is already opened
0036 == $EMON == MONE+1 ; execute file revision error
0037 == $EMON == MONE+1 ; drive label mismatch error
0038 == $EMON == MONE+1 ; drive is not read-only
0039 == $EMON == MONE+1 ; drive not ready out of speed
003A == $EMON == MONE+1 ; drive not ready for command
003B == $EMON == MONE+1 ; controller not there
007C == &181D0108 == 124 ; drive went not ready after command started
0076 == &181D0118 == 123 ; can not find target sector
007A == &181D0122 == 122 ; failure in drive read electronics
0079 == &181D0121 == 121 ; target sec has crc error in header
0078 == &181D0120 == 120 ; drive number too big
0077 == &181D0119 == 119 ; drive error during seek
0074 == &181D0118 == 118 ; head select error
0075 == &181D0117 == 117 ; drive on wrong cylinder
0074 == &181D0116 == 116 ; crc error in header during position verify
0073 == &181D0115 == 115 ; illegal disk address used
0072 == &181D0114 == 114 ; read/write ff will not set in controller

Message Codes (continued)
0071 == &181D0113 == 113 ; write unsafe or attempt to write on prot cyl
0070 == &181D0112 == 112 ; found wrong sector during read or verify
006F == &181D0111 == 111 ; crc or PLL sync error on read sector header
006E == &181D0110 == 110 ; data crc error
006D == &181D0109 == 109 ; compare error in data during verify
006C == &181D0108 == 108 ; crc error on data during verify
006B == &181D0107 == 107 ; drive error during command execution
006A == &181D0106 == 106 ; failure to be able to format drive
0069 == &181D0105 == 105 ; F11 sync error on read
0068 == &181D0104 == 104 ; Missing index pulse
0067 == &181D0103 == 103 ; Buffer error

Unit Structure
0080 == &181D0128 == 128 ; sectors per directory
0034 == &181D0104 == 4 ; sectors per DIS as a power of 2
0061 == &181D0131 == 151*4
0000 == &181D0100 == 0 ; DISA disk address
0001 == &181D0101 == 1 ; DISA table disk address
0002 == &181D0102 == 2 ; bad DISA table disk address
0200 == &181D0132 == 512 ; bytes per sector

File Attributes
0001 == &181D0131 == 1 ; backupable flag, bit 0, backupable when 0
0032 == &181D0105 == 128 ; file dirty flag, bit 7, dirty when 1
0002 == &181D0102 == 2 ; write protect flag, bit 1, protected when 1
0004 == &181D0104 == 4 ; deletable file flag, bit 3, not deletable when 1

Directory Entry Type Codes
0000 == &181D0100 == 0 ; never used entry
0001 == &181D0101 == 1 ; entry in use (account or file)
0002 == &181D0102 == 2 ; deleted entry

File Types
0001 == &181D0101 == 1 ; memory image file
0031 == &181D0103 == 2 ; BASIC program file
0001 == &181D0101 == 3 ; BASIC data file
0004 == &181D0104 == 4 ; BACKUP/RECOVERY compressed directory
0005 == &181D0105 == 5 ; BACKUP/RECOVERY packets
0006 == &181D0106 == 6 ; CP/M work file
0007 == &181D0107 == 7 ; CP/M unit
000A == &181D0110 == 10 ; PASCAL connection table
000B == &181D0111 == 11 ; PASCAL volume
000C == &181D0112 == 12 ; plot data
0007 == &181D0115 == 15 ; pie chart data
0012 == &181D0118 == 18 ; ASP sequential file
0013 == &181D0119 == 19 ; ASP random file
0014 == &181D0120 == 20 ; ASP index file

FMLX Option Codes
0000 == &181D0100 == 0 ; return load errors, execute loaded code
0001 == &181D0101 == 1 ; use FMLX for load errors, execute code
0002 == &181D0102 == 2 ; return on load errors, don't execute
0003 == &181D0103 == 3 ; extended path option bit

FMWTR Operation Codes
0001 == &181D0101 == 1 ; read
0002 == &181D0102 == 2 ; verify
0003 == &181D0103 == 3 ; write 'clean'

North Star E-3 HDOS Manual
Disk Label Structure

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>$DILL</td>
<td>illegal directory address</td>
</tr>
<tr>
<td>0002</td>
<td>$DILAX</td>
<td>DILL+2</td>
</tr>
<tr>
<td>0003</td>
<td>$DILAS</td>
<td>auto-load-and-execute path name</td>
</tr>
<tr>
<td>0005</td>
<td>$DLN</td>
<td>DILL+12</td>
</tr>
<tr>
<td>0006</td>
<td>$DMajor</td>
<td>major disk structure revision level</td>
</tr>
<tr>
<td>0007</td>
<td>$DMinor</td>
<td>minor disk structure revision level</td>
</tr>
<tr>
<td>0009</td>
<td>$DSize</td>
<td>disk size</td>
</tr>
<tr>
<td>0010</td>
<td>$DNRS</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0011</td>
<td>$DNR2</td>
<td>number of sectors reserved for testing</td>
</tr>
<tr>
<td>0012</td>
<td>$DNR3</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0013</td>
<td>$DNR4</td>
<td>base disk address for the unit's directory</td>
</tr>
<tr>
<td>0014</td>
<td>$DReturn</td>
<td>stepping delay in units of 12.5 microseconds</td>
</tr>
<tr>
<td>0015</td>
<td>$DMax</td>
<td>maximum head number</td>
</tr>
<tr>
<td>0016</td>
<td>$DMax1</td>
<td>maximum cylinder number</td>
</tr>
<tr>
<td>0017</td>
<td>$DMin</td>
<td>minimum cylinder with low current on write</td>
</tr>
<tr>
<td>0018</td>
<td>$DMin1</td>
<td>cylinder to seek when sequencing down</td>
</tr>
<tr>
<td>0019</td>
<td>$DMin2</td>
<td>reserved space</td>
</tr>
<tr>
<td>0020</td>
<td>$DMin3</td>
<td>reserved space</td>
</tr>
</tbody>
</table>

DIB Table Structure

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>$HALC</td>
<td>the count of allocated DIBs</td>
</tr>
<tr>
<td>0002</td>
<td>$HMAP</td>
<td>the bit map of DIBs, a 1 bit means in use</td>
</tr>
</tbody>
</table>

Directory Entry Structure

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>$NTYPE</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>$NSTM</td>
<td>DNRN+1</td>
</tr>
<tr>
<td>0002</td>
<td>$NACN</td>
<td>the account number</td>
</tr>
<tr>
<td>0003</td>
<td>$NACN2</td>
<td>the name portion of the symbol</td>
</tr>
<tr>
<td>0004</td>
<td>$NLEN</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0005</td>
<td>$NEBS</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0006</td>
<td>$NCS</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0007</td>
<td>$NSIZ</td>
<td>DNRN+2</td>
</tr>
<tr>
<td>0008</td>
<td>$NEOS</td>
<td>DNRN+2</td>
</tr>
</tbody>
</table>

File Structure Descriptor

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>$SFSIZ</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>$SFSIZ</td>
<td>FSFSIZ+1</td>
</tr>
<tr>
<td>0002</td>
<td>$SFSIZ</td>
<td>FSFSIZ+2</td>
</tr>
<tr>
<td>0003</td>
<td>$SFSIZ</td>
<td>FSFSIZ+3</td>
</tr>
</tbody>
</table>

File Directory Entry

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>$NTDO</td>
<td>0</td>
</tr>
<tr>
<td>0012</td>
<td>$NTDO</td>
<td>FSDD+FSDAT</td>
</tr>
<tr>
<td>0013</td>
<td>$NTDO</td>
<td>FSDD+FSDD+FSAT</td>
</tr>
<tr>
<td>0014</td>
<td>$NTDO</td>
<td>FSDD+FSDD+FSDD</td>
</tr>
<tr>
<td>0015</td>
<td>$NTDO</td>
<td>FSDD+FSDD+FSDD</td>
</tr>
</tbody>
</table>

Account Directory Entry

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>$AEN</td>
<td>AEN+2</td>
</tr>
<tr>
<td>0012</td>
<td>$AEN</td>
<td>AEN+2</td>
</tr>
</tbody>
</table>

Index Block

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>$BSS</td>
<td>0</td>
</tr>
<tr>
<td>0081</td>
<td>$EPI</td>
<td>128</td>
</tr>
</tbody>
</table>

North Star E-4 HDOS Manual
Open File Block (OFB)

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>OFBDE</td>
<td>Directory entry number</td>
</tr>
<tr>
<td>0002</td>
<td>OFBD</td>
<td>Base disk address for directory</td>
</tr>
<tr>
<td>0004</td>
<td>OFBL</td>
<td>Index length (i.e., EPB)</td>
</tr>
<tr>
<td>0005</td>
<td>OFBS</td>
<td>File's structure descriptor</td>
</tr>
<tr>
<td>0006</td>
<td>OFBAT</td>
<td>Attributes</td>
</tr>
<tr>
<td>0008</td>
<td>OFPFS</td>
<td>File size in sectors</td>
</tr>
<tr>
<td>000A</td>
<td>OFRSL</td>
<td>Bytes in last sector</td>
</tr>
<tr>
<td>000C</td>
<td>OFRMS</td>
<td>File size divided by SPH</td>
</tr>
<tr>
<td>000E</td>
<td>OFRBI</td>
<td>Index block</td>
</tr>
<tr>
<td>0102</td>
<td>OFRCB</td>
<td>OFB1 = ISIZ</td>
</tr>
<tr>
<td>0106</td>
<td>OFBEB</td>
<td>OFB2 + ISIZ</td>
</tr>
<tr>
<td>0108</td>
<td>OFBUN</td>
<td>OFH</td>
</tr>
</tbody>
</table>

Create Information Block

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>CBTPY</td>
<td>File type</td>
</tr>
<tr>
<td>0002</td>
<td>CBTR</td>
<td>Attributes</td>
</tr>
<tr>
<td>0004</td>
<td>CBHIS</td>
<td>nDB size as a power of 2</td>
</tr>
<tr>
<td>0006</td>
<td>CBHRA</td>
<td>Pathname address</td>
</tr>
<tr>
<td>0008</td>
<td>CBTPD</td>
<td>Type dependent data</td>
</tr>
<tr>
<td>000A</td>
<td>CBISZ</td>
<td>Create block size</td>
</tr>
</tbody>
</table>

Transfer Command Block

<table>
<thead>
<tr>
<th>Offset</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>TCMOP</td>
<td>Operation code</td>
</tr>
<tr>
<td>0002</td>
<td>TCHEM</td>
<td>Beginning memory address</td>
</tr>
<tr>
<td>0004</td>
<td>TCMNC</td>
<td>Beginning sector number</td>
</tr>
<tr>
<td>0006</td>
<td>TCMPH</td>
<td>Transfer length in sector</td>
</tr>
<tr>
<td>0008</td>
<td>TCMEN</td>
<td>Ending memory address</td>
</tr>
<tr>
<td>000A</td>
<td>TCMAR</td>
<td>Ending sector number</td>
</tr>
<tr>
<td>000C</td>
<td>TCMER</td>
<td>Sectors not transferred</td>
</tr>
<tr>
<td>000E</td>
<td>TCMER</td>
<td>Sectors in use in the last sector</td>
</tr>
<tr>
<td></td>
<td>TCMER</td>
<td>the '0' of all dirty bits seen</td>
</tr>
<tr>
<td></td>
<td>TCMER</td>
<td>TC size</td>
</tr>
</tbody>
</table>

North Star E-5 HDOS Manual
APPENDIX F

HDOS ENTRY POINTS AND I/O Routines

NORTH STAR HARD DISK OPERATING SYSTEM
SYSTEM DISPATCH TABLE

; THE ORIGIN OF THIS TABLE MUST ALWAYS
; BE A MULTIPLE OF 168H

0000' C3 0000$; GOSMT:
0000' 300000$; JMP GOSMT+HOLD; DOWTLES AS "GO" ENTRY POINT
0003' 59 ; INITIAL VALUE

; THIS SEQUENTIAL REVISION NUMBER CHANGES
; WITH EACH NEW RELEASE OF THE SOFTWARE
0004' 21 ; LOC RENV-DSPCH+BASE

; THE FOLLOWING BYTE IS RESERVED FOR FUTURE USE
0005' 00 ; EEPROM EQU .

; IF MDOS STORES CURRENTLY SELECTED
; TAPE NUMBER HERE
0006' 00 ; LOC GEREIT-DSPCH+BASE

; THE OFTEN ROUTINE IS CALLED FREQUENTLY DURING
; USE OF THE DISK SYSTEMS
; OFTEN IS ALWAYS CALLED WITH INTERRUPTS DISABLED
; ONLY ACC AND FLAGS MAY BE MODIFIED
; ONLY 2 BYTES OF STACK CAN BE USED
; MUST NOT BRANCH ANYWHERE DURING COLD BOOT
0007' C9 ; LOC OFSW-DSPCH+BASE
0006' 0000 ; RET; JUST RET DURING BOOT

; THIS ENTRY POINT IS USED
; WHEN THE SYSTEM IS BOoted DIRECTLY
; FROM A MICRO DISK
000A' C3 010A$; JMP CBOOT-DSPCH+BASE

; THIS IS THE CHARACTER OUTPUT ROUTINE
; IT IS CALLED WITH THE CHARACTER IN B AND
; WITH THE DEVICE # IN A
; ONLY ACC AND FLAGS MAY BE MODIFIED
000D' C3 0000$; LOC CHI-DSPCH+BASE

; THIS IS THE CHARACTER INPUT ROUTINE
; IT IS CALLED WITH THE DEVICE # IN A
; ONLY ACC AND FLAGS MAY BE MODIFIED
0010' C3 0000$; LOC CHI-DSPCH+BASE

; THIS NEXT ROUTINE IS CALLED ONCE AT INIT TIME
; IT CAN THEN USE ALL REGISTERS AND SHOULD
; PERFORM ANY NEEDED INITIALIZATION
0013' C3 0000$; LOC INIT-DSPCH+BASE

; THIS IS THE CONTROL C ROUTINE
; EITHER THIS OR ISSTAT IS CALLED FREQUENTLY
; DURING EXECUTION OF ANY NORMAL SOFTWARE
; ALL REGISTERS MAY BE USED
; IF NO INPUT DATA AT DEVICE 0 THEN
0017' C3 0000$; RETURN EOT AND C FLAGS FALSE

North Star F-1 HDOS Manual
; IF DATA IS AVAILABLE IT IS RETURNED
; IN A WITH C FLAG true
; RETURNS I TRUE ONLY IF DATA IS CONTROL C
; .LOC CON-DESPCH+BASE
0016' C3 0000$; JMP CONTC
0016' C3 0000# ;
;
; MICRO DISK ERRORS JMP THRU THIS OR OTHER ERROR JMP
; .LOC HDERR-DESPCH+BASE
0019' C3 0000$; JMP HD
0019' C3 0000# ;
;
; THIS IS THE MICRO DISK FILE LOOKUP ROUTINE
; A MUST CONTAIN DEFAULT DRIVE (NORMALLY 1)
; HL=pointer to FILE NAME IN RAM
; WITH OPTIONAL DRIVE NUMBER
; TERMINATED WITH BLANK OR CR
; DRIVE NUMBER RETURNED IN A IF FILENAME
; SYNTAX OK, ELSE ZERO RETURNED
; IF FOUND IN DIRECTORY THEN
; CARRY RETURNED FALSE AND
; HL=pointer TO BYTE 3 OF ENTRY
; IF NOT FOUND THEN
; CARRY RETURNED TRUE AND
; HL=FIRST FREE DISK ADDRESS
; .LOC DLK+DESPCH+BASE
001C' C3 0000$; JMP NDLK
001C' C3 0000# ;
;
; THIS ROUTINE WRITES UPDATED DIRECTORY TO MICRO DISK
; MUST FOLLOW DLOAD
; .LOC DMRIT-DESPCH+BASE
001F' C3 0000$; JMP DWR
001F' C3 0000# ;
;
; GENERAL MICRO DISK COMMAND ROUTINE
; ACC= NUMBER OF SECTORS
; H= COMMAND (0=WR, 1=RO, 2=VERIFY)
; C= DRIVE, BIT 7=DENSITY OR RATING
; D= STARTING RAM ADDRESS
; H= STARTING DISK ADDRESS
; RDMS WITH CARRY TRUE IF BAD ARG
; .LOC DCMP-DESPCH+BASE
0022' C3 0000$; JMP DCO
0022' C3 0000# ;
;
; THIS ROUTINE LISTS MICRO DISK DIRECTORIES
; ACC= DRIVE NUMBER
; L= OUTPUT DEVICE NUMBER
; .LOC DLIST-DESPCH+BASE
0025' C3 0000$; JMP LIST
0025' C3 0000# ;
;
; THIS IS THE RESTART ENTRY POINT
; IT WILL ORDINARILY LOAD AND EXECUTE
; THE HDOS COMMAND PROCESSOR
; .LOC RSTT-DESPCH+BASE
0028' C3 0000$; JMP RET0
0028' C3 0000# ;
;
; BIT 0 OF THIS FLAG CONTROLS THE
; HEAD AFTER WRITE CHECK OPTION ON
; MICRO DISK ONLY
; HEAD AFTER WRITE IS ALWAYS DONE
; ON THE HARD DISK
; IF 1 THEN CHECK ON FLOPPIES ALSO
; BIT 7 OF THIS FLAG IS 1 ONLY IF
; INTERRUPTS SHOULD BE LEFT ENABED
; AFTER ANY CODE WHICH MUST DISABLE THEM
; .LOC CHKCR-DESPCH+BASE
002B' 01 ; BYTE 1
002B' 00 ;
;
; MICRO DISK ERRORS JMP THRU THIS OR OTHER ERROR JMP
; .LOC DSRCH-DESPCH+BASE
002C' C3 0000$; JMP DSRK
002C' C3 0000# ;
;
; THIS BYTE SET TO DENSITY OF DIRECTORY
; BY DLOAD CALLS
; 0 IF SINGLE, 80H IF DOUBLE
; .LOC DSN-DESPCH+BASE
002F' 00 ; BYTE 0
002F' 00 ;
;
; THIS FLAG BYTE CONTROLS THE AUTOSTART FEATURE
; OF THE COMMAND PROCESSOR. THIS BYTE IS TESTED
; AND SET TO ONE WHENEVER THE COMMAND PROCESSOR
; IS EXECUTED. IF THIS BYTE WERE ZERO THE COMMAND
; PROCESSOR WILL AUTOMATICALLY EXECUTE THE COMMAND
; IN ITS INPUT BUFFER. THIS FEATURE SHOULD BE

North Star F-2 HDOS Manual
; USED FOR TURKEY STARTUP OF ANY SYSTEM.
; LOC AUTO-DSPCH+BASE
0030' 01
; BYTE 1

; THIS WORD POINTS TO THE TEXT LINE BUFFER USED BY
; THE COMMAND PROCESSOR. THIS DATA IS PROVIDED FOR
; USE BY THE PERSON WHO PERSONALIZES A BOOTSTRAP
; DISKETTE FOR TURKEY STARTUP.
.WORD CLINE

; THIS BYTE IS SCREEN LENGTH OF CONSOLE
; USE ZERO IF HARD COPT TERMINAL
; LOC PAGES-DSPCH+BASE
0031' 0180
; BYTE 24

; THIS BYTE SHOWS MICRO DISK DRIVE COMBINATION
; SEE INSTRUCTIONS FOR FORMAT
; LOC CONFIG-DSPCH+BASE
0032' FF
; BYTE OFFH

; THE RESULT CODE OF EACH USE OF THE FILE MANAGER
; OTHER THAN FN0RT IS STORED HERE FOR USE BY THE COMMAND
; PROCESSOR OR OTHER SOFTWARE WHICH REPORTS ERRORS
; LOC RESEL-DSPCH+BASE

0033' 00
; BYTE MOK

; THIS BYTE CONTAINS THE LAST ERROR CODE NUMBER
; RETURNED TO THE FILE MANAGER BY EDCOM
; WHEN THE ERROR IS REPORTED
; LOC FILEM-DSPCH+BASE

0036' 00
; BYTE 0

; THIS WORD CONTAINS THE ADDRESS OF THE LAST
; SECTOR ACCESS ATTEMPTED BY THE FILE MANAGER
; LOC DBEDM-DSPCH+BASE

0037' 0000
; BYTE 0

; THIS THE NUMBER OF THE LAST HBD DISK
; DRIVE ACCESSED BY THE FILE MANAGER
; LOC DBEDM-DSPCH+BASE

0038' 00
; BYTE 0

; THIS BYTE SHOWS THE ORIGIN OF THE
; MICRO DISK CONTROLLER BOARD WITH WHICH
; THIS SYSTEM OPERATES
; LOC MBDC-DSPCH+BASE

0039' 28
; BYTE BA0H/256

; THE BOOTSTRAP STORES A SPEED CONSTANT HERE
; FOR USE BY EDCOM ONLY
; DON'T EVEN THINK ABOUT TRYING TO USE IT
; LOC FPFP=0-DSPCH+BASE

003A' 1A
; BYTE D51P

; THIS BYTE CONTAINS THE ADDRESS OF THE FIRST
; PAGE OF MEMORY WHICH SHOULD BE CONSIDERED
; BY USER SOFTWARE TO BE BEYOND THE UPPER LIMIT
; LOC RERK-DSPCH+BASE

003B' 00
; BYTE MTOF/256

; THIS BYTE CONTAINS THE ADDITIONAL OUTPUT DEVICE NUMBER.
; WHEN THIS BYTE IS NONZERO, ALL OUTPUT TO THE MAIN CONSOLE
; (DEVICE ZERO) WILL BE ECHOED TO THE DEVICE SPECIFIED HERE.
; THIS BYTE IS SET BY THE OD COMMAND.
; LOC ADNY-DSPCH+BASE

003C' 00
; BYTE 0

; TO ENABLE THE ADDITIONAL OUTPUT DEVICE FEATURE, THE JUMP
; TO THE ACTUAL CHARACTER OUTPUT ROUTINE IS PLACED HERE,
; INSTEAD OF AT CH0, ABOVE.
; LOC AOUT-DSPCH+BASE

003D' C1 0000
JMP COUT

; THIS IS THE INPUT STATUS ROUTINE
; IT IS CALLED WITH THE DEVICE # IN A
; RETURNS NUMBER OF DEVICE TESTED IN A
; RETURNS $ FLAG TRUE IF INPUT DATA AVAILABLE
; NO OTHER REGISTERS MAY BE USED

0041' C3 0000#
 .LOC ISTAT-DSPCH+BASE
 JMP IST

; THIS IS THE OUTPUT STATUS ROUTINE
; IT IS CALLED WITH THE DEVICE # IN A
; RETURNS NUMBER OF DEVICE TESTED IN A
; RETURNS $ FLAG TRUE IF OUTPUT DEVICE READY
; NO OTHER REGISTERS MAY BE MODIFIED
; ISTAT AND OSTAT MAY BE USED BY SOFTWARE TO
; DETERMINE WHICH DEVICE NUMBERS ARE IMPLEMENTED

0044' C3 0000#
 .LOC OSTAT-DSPCH+BASE
 JMP IST

; THIS IS THE NORTH STAR LINE EDITOR
; ON ENTRY:
; B= I/O DEVICE NUMBER
; C= LENGTH OF INPUT BUFFER
; DE= ADDR OF OLD LINE
; TERMINATED WITH CR
; HL= ADDR OF INPUT BUFFER
; ON EXIT:
; HL, DE, AND B RESTORED
; C= SPACE UNUSED IN INPUT BUFFER
; A= RESULT CODE:
; 0: RETURN ENTERED
; 1: CONTROL C ENTERED
; 2: # OR CONTROL B ENTERED
; 3: TOO MANY CR'S ENTERED
; OLD LINE IS NOT CHANGED
; CR LF IS NOT ECHOED
; NEW LINE ENDS WITH A CR

0047' C3 0000#
 .LOC LINED-DSPCH+BASE
 JMP LINED

; THIS IS THE ENTRY POINT TO THE
; HARD DISK FILE MANAGER

004A' C3 0000#
 .LOC FMAN-DSPCH+BASE
 JMP FME

; THIS IS THE LOW LEVEL HARD DISK
; ACCESS ROUTINE
; THIS ROUTINE SHOULD NOT BE USED
; BY ANY NORMAL SOFTWARE

004D' C3 0000#
 .LOC HDCALL-DSPCH+BASE
 JMP BEGIN

; ***********************
I/O ROUTINES FOR STANDARD NORDON COMPUTER

0100 == IOBSI == 256 ;SIZE OF USER I/O BLOCK
0000 == P0 == PADDR+0
0001 == P1 == PADDR+1
0002 == P2 == PADDR+2
0003 == P3 == PADDR+3
0004 == P4 == PADDR+4
0005 == P5 == PADDR+5
0006 == P6 == PADDR+6
0007 == P7 == PADDR+7

0300 == IST == CPI 1 ;INPUT STATUS ROUTINE
0301 == 2801 == JRE 1871 ;TEST FOR DEVICE 1 POSSIBILITY
0302 == 2808 == JRE 1871 ;JUMP TO SECOND SERIAL PORT STATUS TEST

ASSUME DEVICE 0 WAS INTENDED

0304 == IST0 == IN P3 ;FIRST SERIAL STATUS PORT
0305 == DB03 == CPI 1 ;INVEST STATUS FOR PROPER RESULT
0306 == 2F == CMA 2 ;TEST RECEIVER DATA AVAILABLE BIT
0307 == ED02 == AMI A,0 ;SHOW WHICH DEVICE WAS TESTED
0308 == E300 == MV3 2 ;RETURN WITH INPUT STATUS IN 2 FLG
0309 == 2F == RET

030C == IST1 == IN P5 ;ALTERNATIVE ENTRY TO CIN
030C == DB05 == CMA 2
030E == 2F == AMI A,1
0311 == E301 == MV3 A,1
0313 == 2F == RET

0314 == SCIN == MV3 A,0 ;CHARACTER INPUT ROUTINE
0314 == E300 == CPI 1
0316 == CIN == CALL IST ;CHECK STATUS OF SPECIFIED DEVICE
0316 == 20FB == JRE CIN ;LOOP UNTIL DATA AVAILABLE
0318 == CIN1 == CPI 1 ;CHECK FOR DEVICE 1 POSSIBILITY
031A == 2801 == JRE CIN1 ;JUMP IF SECOND SERIAL PORT SPECIFIED

ASSUME PORT 0 (STANDARD SERIAL PORT) DESIRED

031F == CINO == IN P2 ;INPUT THE CHARACTER
0321 == E67F == AMI 7FH ;MASK OFF PARITY BIT
0322 == 2F == RET ;RETURN WITH CHARACTER IN A

0324 == CINO == IN P4
0324 == DB04 == CMA 2
0326 == E67F == AMI 7FH
0328 == 2F == RET

0329 == OST == CPI 1 ;OUTPUT STATUS ROUTINE
0329 == FE02 == JRE OST2 ;TEST FOR DEVICE 2 POSSIBILITY
0331 == E301 == JRE OST1 ;JUMP TO PARALLEL PORT STATUS TEST
0332 == 2808 == JRE OST1 ;JUMP TO SECOND SERIAL PORT STATUS TEST

ASSUME DEVICE 0 WAS INTENDED

0331 == OSTD == IN P3 ;FIRST SERIAL STATUS PORT
0333 == DB03 == CPI 1 ;INVEST STATUS FOR PROPER RESULT
0334 == E601 == AMI A,0 ;SHOW WHICH DEVICE WAS TESTED
0336 == E300 == MV3 2 ;RETURN WITH INPUT STATUS IN 2 FLG
0338 == 2F == RET

0339 == OSTD == IN P5
0339 == DB05 == CMA
033C == E601 == AMI 2
033E == E301 == MV3 A,1
0340 == 2F == RET

North Star F-5 HDOS Manual
0398' EE80
0399' D300
 XRI BOH
 OUT P0
 MVI P6
 MVI A,OFFH
 OUT P0
 MOV A,B
 RET

 ;TOGGLE STROBE
 ;SET COMMAND MODE
 ;DESELECT CONTROLLER
 ;GET CHARACTER FOR RETURN

039E' ==
039F' 3E00
03A0' ==
03A1' CD 0329'
03A2' 20F8
03A3' FR01
03A4' 2800
03A5' FB02
03A6' 28E8

 SROUT ==
 MVI A,0
 ;CHARACTER OUTPUT ROUTINE
 ;CHECK STATUS OF SPECIFIED DEVICE
 ;LOOP UNTIL READY FOR DATA
 ;SECOND SERIAL PORT OUTPUT
 ;PARALLEL PORT OUTPUT

 ASSUME STANDARD SERIAL PORT OUTPUT

03A7' 7B
03A8' D3C2
03A9' C9

 COUT ==
 CALL OBT
 JNZ COUT
 CPI 1
 JKE COUT1
 CPI 2
 JRE COUT2

 MOVE CHARACTER TO A
 OUTPUT THE CHARACTER

03A0' ==
03A1' 7B
03A2' 3DC2
03A3' C9

 COUT1 ==
 MOV A,B
 OUT P2
 RET

03A4' 7B
03A5' D394
03A6' C9

 RET

03AB' 7E

 LOC USOE+05FH-DSPCH+BASE

 MODE TWO INTERRUPT VECTOR FOR RESTART FIVE

03C0' 0550'

 WORD PERR

03C1' ==
03C2' 3E00
03C3' CD 0300'
03C4' 37
03C5' 3F
03C6' CD 0316'
03C7' FF03
03C8' 37
03C9' C9

 CONTC ==
 MVI A,0
 CALL 1ST
 ;MAIN CONSOLE DEVICE NUMBER
 ;TEST STATUS OF CONSOLE
 ;ENSURE CARRY FALSE
 ;RETURN IF NO CHARACTER TYPED
 ;INPUT THE CHARACTER THAT WAS FOUND AVAILABLE
 ;SEE IF CHARACTER IS CONTROL-C
 ;TELL SOFTWARE A CHAR WAS TYPED (OPTIONAL)
 ;RETURN WITH S-FLAG PROPERLY SET

 03A8' C9

North Star
F-7
HDOS Manual
I/O ROUTINES FOR STANDARD HORIZON COMPUTER

0100 ** I/OBSI ** 256 ;SIZE OF USER I/O BLOCK
0090 ** P0 ** PADDR+0 ;ADDRESSES OF MOTHERBOARD I/O PORTS
0091 ** P1 ** PADDR+1
0092 ** P2 ** PADDR+2
0093 ** P3 ** PADDR+3
0094 ** P4 ** PADDR+4
0095 ** P5 ** PADDR+5
0096 ** P6 ** PADDR+6
0097 ** P7 ** PADDR+7

0300 ** IST ** . ;INPUT STATUS ROUTINE
0300' ** PE01 ** CPI 1 ;TEST FOR DEVICE 1 POSSIBILITY
0302' ** 2808 ** JRE IST1 ;JUMP TO SECOND SERIAL PORT STATUS TEST

ASSUME DEVICE 0 WAS INTENDED

0304' ** IST0 ** . ;FIRST SERIAL STATUS PORT
0304' ** D003 ** IN P3 ;INVERT STATUS FOR PROPER RESULT
0306 ** 2F ** CMA ;TEST RECEIVER DATA AVAILABLE BIT
0307 ** E002 ** ANI 2 ;SHOW WHICH DEVICE WAS TESTED
0309 ** E000 ** MVI A,0 ;RETURN WITH INPUT STATUS IN 2 FLAG
030B ** C9 ** RET

030C' ** IST1 ** .
030C' ** D005 ** IN P5
030F ** 2F ** CMA
0310 ** E002 ** ANI 2
0311 ** E001 ** MVI A,1
0313 ** C9 ** RET

0314' ** ICIN ** . ;ALTERNATIVE ENTRY TO CIN
0314' ** E000 ** MVI A,0 ;SUBSTITUTE FIXED DEVICE NUMBER
0316 ** CIN ** . ;CHARACTER INPUT ROUTINE
0316' ** CD 0360' ** CALL IST ;CHECK STATUS OF SPECIFIED DEVICE
0319' ** 20F8 ** JRE CIN ;LOOP UNTIL DATA AVAILABLE
031B ** E001 ** CPI 1 ;CHECK FOR DEVICE 1 POSSIBILITY
031D' ** 2805 ** JRE CIN1 ;JUMP IF SECOND SERIAL PORT SPECIFIED

ASSUME PORT 0 (STANDARD SERIAL PORT) DESIRABLE

031F' ** CIN0 ** . ;INPUT THE CHARACTER
0321' ** D002 ** IN P2 ;MAKE OFF PARITY BIT
0323 ** E0F ** ANI 7FH ;RETURN WITH CHARACTER IN A
0323 ** C9 ** RET

0324' ** CIN1 ** .
0324' ** D004 ** IN P4
0326' ** E0F ** ANI 7FH
0328 ** C9 ** RET

0329' ** OST ** . ;OUTPUT STATUS ROUTINE
0329' ** F002 ** CPI 3
032B ** 2814 ** JRE OST2 ;JUMP TO PARALLEL PORT STATUS TEST
032D' ** F001 ** CPI 1
032F' ** 2808 ** JRE OST1 ;JUMP TO SECOND SERIAL PORT STATUS TEST

ASSUME DEVICE 0 WAS INTENDED

0331' ** OST0 ** . ;FIRST SERIAL STATUS PORT
0333' ** D003 ** IN P3 ;INVERT STATUS FOR PROPER RESULT
0333' ** 2F ** CMA
0334' ** E001 ** ANI 1 ;SHOW WHICH DEVICE WAS TESTED
0336' ** E000 ** MVI A,0 ;RETURN WITH INPUT STATUS IN 2 FLAG
0338' ** C9 ** RET

0339' ** OST1 ** .
0339' ** D005 ** IN P5
033B' ** 2F ** CMA
033C' ** E001 ** ANI 1
033E' ** E001 ** MVI A,1
0340' ** C9 ** RET

0341' ** OST2 ** . ;SET SELECTED CONTROLLER TO 1/0 MODE
0341' ** E020 ** MVI A,20H
0343' ** D006 ** OUT P6
0345' ** E0FE ** MVI A,0FH
0347' ** D000 ** OUT P0
0349' ** E0B1 ** MVI A,0BH
034B' ** D000 ** OUT P0

North Star F-8 HDOS Manual
0340' E360
0346' D306
0351' DB06
0353' F2
0354' CF
0356' E20
0358' D306
035A' 3FF
035C' D300
035E' 3E02
0360' C9

MVI A, 60H
OUT P6
IN P6
CRA
BIT 3, A
MVI A, 20H
OUT P6
MVI A, 0FFH
OUT P0
MVI A, 2
RET

TINIT FIRST REWRITES ALL RAM TO SET PARITY CORRECT

0361' E340
0363' 21'
0368' 80
0369' 54
036A' 01
036D' 30B4
036F' 3C
0370' D3C0

MVI A, 40H
OUT OC0H
LXI B, 6666H+1024
MOV D, H
MOV E, L
LXI D, -1024
LDIR A
INR A
OUT OC0H

TINIT **

DISABLE PARITY LOGIC
BEFORE READING UNWRITTEN RAM
FIRST BYTE TO CLEAR
NUMBER OF BYTES TO CLEAR
SET PARITY ON ALL RAM
TO AIR, PARITY ENABLE CODE
RESET PARITY LOGIC

NOW INITIALIZE MOTHERBOARD AND SET UP BOTH SERIAL PORTS

0372' AP
0373' D306
0375' D306
0377' D306
0379' D306
037B' E8C8
037D' D303
037F' E8C8
0381' D305
0383' E837
0385' D305
0387' E3E7
0389' D305
038B' DB02
038D' DB02
0390' D804
0391' DB04

XRA A
OUT P6
OUT P6
OUT P6
MVI A, OCER
OUT P3
OUT P3
MVI A, 37H
OUT P3
OUT P3
OUT P3
IN P2
IN P2
IN P4
IN P4

SECOND PORT
CLEAR STANDARD SERIAL PORT INPUT BUFFER
CLEAR SECOND SERIAL PORT INPUT BUFFER

0392' O600
0393' 21 012B
0398' C97E
039A' 2867
039C' E844
039E' ED47
03A0' ED5E
03A2' EB

MVI B, 13
LXI B, 8888H
BIT 7, M
JNC CONT2
INR A
MVI A, UIOB/256
STAL IN2
EI

TINIT MODE TWO
CARRIAGE RETURN TO INIT PRINTER
TEST INTERRUPT ENABLE FLAG
PAGE ADDRESS OF I/O BLOCK

03A3' **
03A5' 3220
03A7' 3EF7
03A9' D300
03AB' 3E61
03AD' D300
03AF' E850
03B1' D306
03B3' D800
03B5' 7B
03B7' E800
03B9' D300
03BA' EE00
03BB' E800
03BC' D300
03BE' E800
03C1' D300
03C2' E20
03C4' D306
03C6' 3E0F
03C8' D300
03CA' 78
03CB' C9

MVI A, 20H
OUT P6
MVI A, 0FH
OUT P0
MVI A, 0FH
OUT P6
MVI A, 20H
OUT P6
MVI A, 0FFH
OUT P0
MOV A, B
OUT P0
MOV A, B

COUT2 **

SET COMMAND MODE
SELECT CONTROLLER 101 AGAIN
SET SELECTED CONTROLLER TO I/O MODE
CLEAR DATA MODE
CHARACTER TO SEND
SET STROBE FALSE
TOGGLE STROBE
TOGGLE STROBE

PRINTER PARALLEL OUTPUT ROUTINE

SET COMMAND MODE
SET SELECTED CONTROLLER TO I/O MODE
CLEAR CONTROLLER'S PO FLAG
CHARACTER TO SEND
SET STROBE FALSE
TOGGLE STROBE
TOGGLE STROBE

North Star F-9 HDOS Manual
03CC' == ICOUT == .; ALTERNATIVE ENTRY TO COUT
03CC' 3800 MOV A, 0 ; SUBSTITUTE FIXED DEVICE NUMBER
03CF' == COUT == .; CHARACTER OUTPUT ROUTINE
03C0' CD 0329' CALL OUT ; CHECK STATUS OF SPECIFIED DEVICE
03D1' 20FB JNB COUTP ; LOAD UNTIL READY FOR DATA
03D2' FF61 CPI 1
03D5' 2068 JRE COUT1 ; SECOND SERIAL PORT OUTPUT
03D7' FF02 CPI 2
03D9' 2B68 JRE COUT2 ; PARALLEL OUTPUT

ASSUME STANDARD SERIAL PORT OUTPUT

03DB' == CO00 == . ; MOVE CHARACTER TO A
03DC' 0302 MOV A,B ; OUTPUT THE CHARACTER
03DE' C9 RET

03DF' == COUT1 == . ; MOV CODE TWO INTERRUPT VECTOR FOR RESTART FIVE
03E0' 78 NOV A,B
03E1' C9 RET

03E2' C9

03EF' .LOC UIOB+SEFH-DEPC1+BASE

03EF' 0050' .WORD PERR

03F1' == CONTC == . ; MAIN CONSOLE DEVICE NUMBER
03F2' 2000 MOV A, 0 ; STATUS OF CONSOLE
03F3' CD 0300' CALL IFT
03F5' 37 STC
03F6' 3F CMC
03F8' C0 RHE ; RETURN IF NO CHARACTER TYPED
03F9' CD 0316' CALL CIN ; IF CHARACTER THAT WAS FOUND AVAILABLE
03FB' F003 CLI 3 ; SEE IF CHARACTER IS CONTROL-C
03FC' 37 STC ; TELL SOFTWARE A CHAR WAS TYPED (OPTIONAL)
03FD' C9 RET ; RETURN WITH I-FLAG PROPERLY SET
APPENDIX G

DISK HANDLER FOR THE HARD DISK-HD18 (HDCOM)

CALLING SEQUENCE DEFINITION:

LXI R, FILEID ;PUT FILE ID ON STACK
PUSH H
LXI H, SECONUM ;PUT STARTING SECTOR NUMBER ON STACK
PUSH H

NOTE:*** THE ABOVE TWO QUANTITIES ARE RETURNED WHEN A READ OR VERIFY OPERATION ARE PERFORMED. THEN CONTAIN THE VALUE FROM THE LAST SECTOR READ OR VERIFIED.

LXI B, DSEKED ;H=DISK ADDRESS OF FIRST SECTOR TO TRANSFER
LXI D, RAMADD ;R=RAM ADDRESS OF DATA FOR TRANSFER
NV1 C, DRIVE ;C=DRIVE NUMBER 0-3
NV1 A, NUMSEC ;A=NUMBER OF SECTORS TO TRANSFER
NV1 B, CMD ;B=COMMAND DEFINED AS FOLLOWS:

BIT 0 - SET TO 1 TO PERFORM A WRITE OPERATION
BIT 7 = 1 WRITE WITH DIRTY BIT SET
BIT 6 = 0 WRITE WITH DIRTY BIT CLEAR
BIT 5 = 1 DO A VERIFY AFTER WRITE
BIT 6 = 0 NO VERIFY

BIT 1 - SET TO 1 TO PERFORM A READ OR VERIFY OPERATION
BIT 7 = 1 READ 256 BYTES FROM EACH SECTOR
BIT 6 = 0 READ FULL 410 BYTES PER SECTOR
BIT 6 = 1 DO A VERIFY
BIT 6 = 0 DO A READ

BIT 2 - SET TO A 1 TO CLEAR OR MODIFY COUNTERS AS FOLLOWS:
BIT 7=0=0 RETURN THE BYTE COUNTERS AS FOLLOWS:
REG B = NUMBER OF HEADER ERRORS
REG C = NUMBER OF INCORRECT READ SELECTS
REG D = NUMBER OF INCORRECT SEK'S
REG E = NUMBER OF CRC ERRORS
REG H = NUMBER OF VERIFY ERRORS
REG L = NUMBER OF WRONG SECTORS FOUND
REG R = LOGICAL OR OF THE OTHER REGISTERS
FLAGS = 1 OF ALL BYTE COUNTERS ARE ZERO

BIT 7=0,6=1 RETURN COUNTERS AS FOLLOWS:
REG DE = NUMBER OF SOFT ERRORS
REG HL = NUMBER OF HARD ERRORS

BIT 7=1,6=0 CLEAR THE BYTE COUNTERS
BIT 7=6=1 CLEAR THE HARD AND SOFT ERROR COUNTERS
BIT 3 - SET TO A 1 TO IGNORE READ VERIFY BEFORE DOING THE OPERATION REQUESTED BY THE OTHER BITS. (GENERALY USED FOR INITIALIZING A DISK).
BIT 5 - SET TO A 1 TO PERFORM A DRIVE SEQUENCING OPERATION
BIT 4 = 1 PERFORM A HARDWARE RESET ON THE SELECTED DRIVE
BIT 4 = 0 PERFORM THE SEQUENCE UP OR DOWN AS CONTROLLED BY BIT 7

BIT 7 = 1 PERFORM A SEQUENCE UP OPERATION
 NOTE: IF DRIVE IS ALREADY SEQUENCED UP
 THIS WILL PERFORM A RESET TO DRIVE

 THE ROUTINE WILL RETURN A DRIVE NOT READY
 FOR COMMAND ERROR (126), UNTIL THE DRIVE IS
 UP TO SPEED AND READY. WHEN FIRST POWERING
 A DRIVE UP, IT IS REQUIRED THAT HDCOM BE
 CALLED WITH A SEQUENCE UP COMMAND UNTIL IT
 RETURNS WITH OUT ERROR. THE LENGTH OF ANY
 SINGLE CALL WILL BE LESS THAN 5 MILLISECONDS.

BIT 7 = 0 PERFORM A SEQUENCE DOWN OPERATION

CALL HDCOM
; PERFORM THE CALL TO HDCOM
; THE DISK ADDRESS (HL), RAM ADDRESS (DE)
; SECTOR NUMBER (STACK) AND NUMBER OF SECTORS (A)
; ARE ALL UPDATED BY HDCOM. AT THE END OF AN OPERATION
; THEY CONTAIN THE VALUES OF THE NEXT CONSECUTIVE
; SECTOR IF NO ERROR OCCURRED, OR POINT TO THE
; SECTOR IN ERROR IF AN ERROR DID OCCUR.

JNZ ERROR
; THE I FLAG IS SET TO 0 ON AN ERROR
; THE B REGISTER CONTAINS AN ERROR NUMBER IN
; THE 7 LSB AND THE MSB = 1 IF ANY SECTOR READ OR
; VERIFIED WAS DIRTY.
APPENDIX H

DISK HANDLER FOR THE FIVE INCH HARD DISK (MWCOM)

CALLING SEQUENCE DEFINITION:

LXI H,FILEID ;PUT FILE ID ON STACK
PUSH H
LXI H,SECHN ;PUT STARTING SECTOR NUMBER ON STACK
PUSH H

NOTE** THE ABOVE TWO QUANTITIES ARE RETURNED WHEN A READ
OR VERIFY OPERATION ARE PERFORMED. THEY CONTAIN THE VALUE
FROM THE LAST SECTOR READ OR VERIFIED.
LXI H,OSKADS ;RAM ADDRESS OF FIRST SECTOR TO TRANSFER
LXI D,RAMADD ;DRIVE RAM ADDRESS OF DATA FOR TRANSFER
MVI C,DRIVE ;C=DRIVE NUMBER 0-3
MVI A,NUMSEC ;A=NUMBER OF SECTORS TO TRANSFER
MVI B,CMD ;B=COMMAND DEFINED AS FOLLOWS:

BIT 0 - SET TO 1 TO PERFORM A WRITE OPERATION
BIT 1 - WRITE WITH DIETT BIT SET
BIT 2 - 0 WRITE WITH DIETT BIT CLEAR
BIT 6 = 1 DO A VERIFY AFTER WRITE
BIT 6 = 0 NO VERIFY

BIT 1 - SET TO 1 TO PERFORM A READ OR VERIFY OPERATION
BIT 7 = 1 READ 256 BYTES FROM EACH SECTOR
BIT 7 = 0 READ FULL 512 BYTES PER SECTOR
BIT 6 = 1 DO A VERIFY
BIT 6 = 0 DO A READ

NEW FEATURES

BITES 1 AND 0 BOTH ON CAUSE THE PSEUDO INDEX TO BE WRITTEN
ON THE SELECTED SURFACE. THE SECTOR COUNT IS IGNORED

BIT 2 - SET TO A 1 TO CLEAR OR MODIFY COUNTERS AS FOLLOWS:

BIT 7=6=0 RETURN THE BYTE COUNTERS AS FOLLOWS:
REG B - NUMBER OF HEADER ERRORS
REG C - NUMBER OF POSITION ERRORS
REG D - NUMBER OF PULL STREC ERRORS
REG E - NUMBER OF CRC ERRORS
REG H - NUMBER OF VERIFY ERRORS
REG L - NUMBER OF WRONG SECTORS FOUND
REG A - LOGICAL OR OF THE OTHER REGISTERS
FLAGS 2=1 OF ALL BYTE COUNTERS ARE ZERO

North Star H-1 HDOS Manual
BIT 7=0, 6=1 RETURN COUNTERS AS FOLLOWS:
REG BC - NUMBER OF MONDATA ERRORS
REG DE - NUMBER OF SOFT ERRORS
REG HL - NUMBER OF HARD ERRORS

BIT 7=1, 6=0 CLEAR THE BYTE COUNTERS

BIT 7=0 CLEAR THE HARD AND SOFT ERROR COUNTERS
BIT 6 = 1 SET TO A 1 TO IGNORE READ VERIFY BEFORE DOING THE
OPERATION REQUESTED BY THE OTHER BITS. (GENERALLY
USED FOR INITIALIZING A DISK). CAUSES M4COM TO USE INDEX
PULSE AND SECTOR PULSES TO LOCATE SECTORS.

BIT 5 = SET TO A 1 TO PERFORM A DRIVE SEQUENCING OPERATION
BIT 4 = 1 POSITION DRIVE OVER TRACK 0
BIT 4 = 0 PERFORM THE SEQUENCE UP OR DOWN AS CONTROLLED
BY BIT 7
BIT 7 = 1 PERFORM A SEQUENCE UP OPERATION
NOTE: THIS MEANS TO POSITION OVER TRACK 0
BIT 7 = 0 DESSELECT DRIVE

CALL M4CON
;PERFORM THE CALL TO M4CON
;THE DISK ADDRESS (HL), RAM ADDRESS (DE)
;SECTOR NUMBER (STACK) AND NUMBER OF SECTORS (A)
;ARE ALL UPDATED BY M4CON, AT THE END OF AN OPERATION
;THEY CONTAIN THE VIABLES OF THE NEXT CONSECUTIVE
;SECTOR IF NO ERROR OCCURRED, OR POINT TO THE
;SECTOR IN ERROR IF AN ERROR DID OCCUR.
;THE 3 FLAG IS SET TO 0 ON AN ERROR
;THE B REGISTER CONTAINS AN ERROR NUMBER IN
;THE 7 LSB AND THE MSB = 1 IF ANY SECTOR READ OR
;VERIFIED WAS DIRTY.
APPENDIX I

GLOSSARY

The following are basic terms used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESS</td>
<td>The process of obtaining data from a diskette or hard disk.</td>
</tr>
<tr>
<td>ACCOUNT</td>
<td>A grouping of files on hard disk. An account can be considered logically equivalent to the group of files on a single diskette.</td>
</tr>
<tr>
<td>APPLICATION PROGRAM</td>
<td>A program written to perform a specific task such as word processing or maintaining a general ledger.</td>
</tr>
<tr>
<td>BACKUP</td>
<td>Additional copies of system or data files that protect you against information loss from power transients, equipment malfunction, or operator error.</td>
</tr>
<tr>
<td>BOOTSTRAP</td>
<td>The process of initializing an operating system on your computer.</td>
</tr>
<tr>
<td>CHARACTER</td>
<td>Any letter, number or special symbol that is displayed on the screen, placed in memory or stored on a diskette or hard disk.</td>
</tr>
<tr>
<td>DATA</td>
<td>Any information that can be processed by computer.</td>
</tr>
</tbody>
</table>
DATA DISKETTE
A diskette used to store data generated by the user. For example, a word processing data diskette stores documents, and a mailing list data diskette stores mailing list information.

DIB
Data Incremental Block (previously called hunk.) The smallest unit of storage that can be allocated/flagged on the hard disk. A DIB is composed of 16 sectors.

DIRECTORY
A table of information about individual files.

DISK
See HARD DISK.

DISKETTE
The flexible magnetic media on which programs and data are stored. North Star diskettes are 5-1/4" in diameter.

DISKETTE DRIVE
The unit that comprises the spindle, recording/playback heads, drive actuators, etc. This unit contains the openings into which your diskettes are inserted.

DUAL
A dual capacity diskette is single-sided, with double-density. Both dual and quad capacity data and program diskettes can be used with HDOS.
FILE

A unit of storage on a diskette or hard disk, that is grouped, and accessed, under one name. A file is a logical subdivision while a SECTOR is a physical portion of the diskette or hard disk.

FILE BLOCK

A unit of information equal to 256 bytes.

FLOPPY DISK

See DISKETTE.

FORMATTING A DATA DISKETTE

The process that creates the file structures on a diskette that must be present before a blank diskette can be used for storing data.

HARD COPY

The printed output of stored or processed data.

HARD DISK

A storage medium offering greater storage capacity, and considerably shorter access time than a diskette. Backup is performed via diskette or tape.

HUNK

Synonymous with DIB.

INITIAL RECOVERY DISKETTE

Contains prerecorded North Star Application Software.
Abbreviation of input/output, meaning either or both operations.

The part of the computer that can store information. Because the program for any function being performed must be in main memory during operation, the size of the computer memory (measured in bytes) is a good indication of a computer's potential. A byte can store one character; so, for example, 64K bytes of memory represents storage for approximately 64,000 characters.

The two most common types of main memory are "Read-Only Memory" (ROM) and "Random Access Memory" (RAM), also called Read/Write Memory.

Other types of memory are Programmable Read-Only Memory (PROM), which is a ROM which may be altered, and Erasable Programmable Read-Only Memory (EPROM), which is a PROM that can be reused several times.
The contents of main memory can be permanently stored on media such as diskettes, hard disks, tape cartridges, reel to reel tape, and punched or encoded cards.

MENU

A list of possible activities a program can perform. This list is presented on the video screen so the user can choose from its alternatives.

NUMERIC

Means 'pertaining to numbers.' A numeric field is one where only numbers, blanks, and certain symbols such as commas, periods, dollar signs, percent signs, etc., can be entered.

OPERATING SYSTEM

The programs designed to monitor and coordinate tasks created by application programs. The operating system controls input and output of data between peripherals and memory, governs file management on hard disk by performing utility functions such as copy, delete and create, and loads and executes application programs.
PROGRAM
A set of logically ordered instructions designed to direct the computer through a particular operation or set of operations. Also referred to as "software."

QUAD
A quad capacity diskette is double-sided, with double density. It can store twice as much information as a dual density diskette.

RAM
Random Access Memory, also known as Read/Write Memory.

READ
The process of picking up stored data and transferring it to the internal memory. Reading always occurs from a peripheral unit to the internal memory.

RECORD
Basically a group of fields. For example, a list containing the name, address and phone number of everyone at a party of 20 people is a list of 20 records, with each record containing three fields.

RETURN
This key has many uses, depending on the program. Generally the RETURN key indicates the end of a data input operation.
ROM
Read-Only Memory.

SCRATCH DISKETTE
A new blank diskette or one that contains material you don't wish to keep permanently.

SECTOR
A contiguous 512 byte section of a hard disk or diskette track.

SOFTWARE
The computer instructions that direct computer hardware to perform tasks. There are different categories of software: application software, operating systems, language compilers, etc.

SYSTEM DISKETTE
Contains the prerecorded programs that make up the North Star System or Application Software you purchased.

WRITE
The process of recording information in internal memory; the transfer of information from internal memory to an external storage or output medium, such as a diskette, hard disk, or printer.
INDEX

Account, 3-4
Account commands
 Account Create, 3-7
 Account Delete, 3-10
 Account Rename, 3-8
 Account Set, 3-9
Account Create
 AC, 3-7
Account Delete
 AD, 3-10
Account List
 AL, 3-30
Account Rename
 AR, 3-8
Account Set
 AS, 3-9
Accountname, 3-4
Accounts Listing
 RECOVER, 4-12
Accounts or Files
 RECOVER, 4-13
Alloc, 3-5
Allocation Factor, 3-5
auto-boot, 1-14
Auto-Execute
 Set File Name, 3-55
Backspace, 2-2
BACKUP, 1-2
 Complete, 4-6
 Incremental, 4-8
 Initial menu, 4-5
 Scratch file, 4-7
 Select and list files, 4-10
 Select entire account, 4-10
 Select filename for confirmation, 4-10
 Select specific file name, 4-10
 Selected Files or Accounts, 4-9
 Series, 4-2
 Session, 4-1
BACKUP.C, 4-7
BACKUP.M, 1-13, 4-7
BASIC
 Hard Disk, see HBASIC
Bval, 3-6
Byte
 examine byte command, 3-53
 change account name, 5-13
Character
 delete, 2-2

North Star X-1
HDOS Manual
Command
 display previous, 2-2
Command arguments, 3-3
 account, 3-4
 Accountname, 3-4
 alloc, 3-5
 bval, 3-6
 daddr, 3-6
 dens, 3-5
 floppy disk drive number, 3-4
 filename, 3-4
 hard disk drive number, 3-4
 I/O device number, 3-3
 len, 3-5
 optional floppy disk convention, 3-2
 optional hard disk convention, 3-2
 paddr, 3-6
 pathname, 3-4
 raddr, 3-6
 region, 3-6
Command Processor, 1-2
Commands
 multiple, 2-3
COMPLETE backup, 4-2, 4-6
 Initial, 1-11
Configuration byte, 6-1
Control-C, 3-31, 4-15
Control-G, 2-2, 2-3
Control-H, 2-2
Control-Q, 2-2
Copy
 floppy disk to hard disk, 3-18
 hard disk to floppy disk, 3-19
HDOS SYSTEM DISK, 1-14
 Initial Complete BACKUP, 1-11
 multiple files, 3-20
 one file to another, 3-16
Copy a Floppy Disk
 CD, 3-49
Copy File
 CF, 3-16
CP/M, 1-20
CP/M.FIX, 1-20
Create File
 CR, 3-11
Daddr, 3-6
DATA MSB
 strobe with, 6-3
Data transfer commands
 Load file, 3-25
Read Disk to RAM, 3-26
Save file, 3-25
Write RAM to Disk, 3-26
Default file attributes, 3-14
DELETE, 2-2
Delete character, 2-2
Delete File
DE, 3-22
Dens, 3-5
Density, 3-5
Device Output
DO, 3-45
terminates, 3-45
Diagnostic, see also Hard Disk Test Program
DIB, 3-5
Directory
create, 1-8
file status, 4-7
Leave Intact In TOTREC, 4-17
Directory listings, 3-31
Dirty bits, 4-7
Disk
HDOS SYSTEM, 1-22
Disk address, 2-4
physical, 2-4
relative, 2-4
Disk, floppy
Backup Continuation, 4-7
Backup Master, 4-7
HDOS INITIAL RECOVERY, 4-17
RECOVER Continuation floppy disk, 4-11
RECOVER Master floppy disk, 4-11
Recovery Backup Master, 4-15
Floppy Disk Commands
Initialize Floppy disk, 3-48
Disk image file, 3-19
Disks, floppy
BACKUP and RECOVER, 4-1
Display and Substitute Memory Values
DS, 3-39
Display Hard Disk Statistics
ST, 3-35
Display in ASCII
DA, 3-38
Display in Hexadecimal
DH, 3-37
Drives
single-sided, 1-5
EQUUS, 5-3
Errors
correcting, 2-1, 2-2
Examine Byte
EB, 3-53
Examine Memory
EM, 3-36
Examine Port
EP, 3-46
Fast directory access, see also REDIRECT
File
Delete Protected (DP), 4-15
Read Only (RO), 4-15
File attributes, 3-31
BU, 3-14
DE, 3-14
DP, 3-14
RO, 3-14
RW, 3-14
SC, 3-14
File Blocks, 2-5
File commands
Copy File, 3-16
Create File, 3-11
Delete File, 3-22
multiple copy, 3-20
Multiple Delete, 3-23
Rename Floppy Disk File, 3-24
Set Length, 3-13
Type, 3-14
File Manager, 5-1
calling, 5-2
operation codes, 5-3
operation codes and data structures, see Appendix A
reset command, 3-51
File Types
list of, 2-5
Filename, 3-4
Files or Accounts
RECOVER, 4-13
Fill Memory
FM, 3-42
FLAG output
strobe, 6-3
Floppy disk
HDOS INITIAL RECOVERY, 1-9, 1-10
HDOS SYSTEM, 1-3, 1-8, 1-9, 1-10
Inserting, 1-3
FMABT, 5-7
terminate execution, 5-8
FMADE
directory entry number, 5-12
FMCA
 create account, 5-10
FMCAP
 change auto-load pathname, 5-7
FMCAT
 change attributes, 5-7
FMCFPS
 change disk space, 5-7
FMCL0, 5-5
 close file, 5-5
FMCM
 compose message, 5-11
FMCRE
 create file, 5-4
FMCTY
 change file type, 5-6
FMDA
 delete account, 5-11
FMDEL
 delete file, 5-4
FMFBU, 5-14
FMFIN, 5-7, 5-12
FMFSZ
 return file size, 5-10
FMINI
 initialize File Manager, 5-14
FMLAC
 lookup account, 5-6
FMLOK
 search directory, 5-6
FMLX, see also FMFIN, see also FMABT
 load-and-execute, 5-9
FMOPN
 open file, see also FMTFR
FMPO
 power down disk, 5-13
FMPU
 power up disk, 5-13
FMRDS
 return disk statistics, 5-12
FMRDV
 default drive and account ID values, 5-13
FMREST
 Reset File Manager, 5-8
FMSDV
 set default values, 5-11
FMTFR
 transfer operations, 5-5
Hard disk
 test and reformat, see also Hard Disk Diagnostic Program

North Star X-5

HDOS Manual
turn off, 3-52
Hard Disk Test Program, 1-2, 1-23
HBASIC, 1-2
HDOS
 Boot, 1-4
 configuration byte, 6-1
 earlier version, 1-6
 earlier versions, 1-3
 Initializing, 1-4
 multiple commands, 2-3
 personalizing, 6-1
 SYSGEN, 6-1
 Software, 1-2
 transient part, 3-55
 upgrade to HDOS 2.1.x, 1-20
HDOS Command Processor, 3-1
HDOS Commands
 Help, 3-57
HDTEST, 1-23, see also Hard Disk Test Program
Help
 HE, 3-57.
I/O Commands
 Device Output, 3-45
 Examine Port, 3-46
 Output Port Values, 3-47
I/O device number, 3-3
INCREMENTAL backup, 4-2, 4-8
Initial Load
 IL, 3-50
Initialize Floppy Disk
 IN, 3-48
Jump to a RAM address
 JP, 3-29
Len, 3-5
Line editor, 2-1
List File Directory
 LI, 3-31
Listing commands
 Account List, 3-30
 List File Directory, 3-31
 Multiple List, 3-33
 Work Space, 3-34
Load
 Initial, 3-50
Load and Execute
 GO, 3-28
Load File
 LF, 3-25
Memory Commands
 Display and Substitute Memory Values, 3-39
Display in ASCII, 3-38
Display in Hexadecimal, 3-37
Examine Memory, 3-36
Fill Memory, 3-42
Move Memory, 3-43
Search Memory, 3-41
Verify Memory, 3-44
Move Memory
 MM, 3-43
Multiple commands, 2-3
Multiple Copy
 compress, 3-21
 MC, 3-20
Multiple Delete
 MD, 3-23
Multiple List
 ML, 3-33
Numeric values, 3-3
Output Device
 specify additional, 3-54
Paddr, 3-6
Page Length
 set, 3-56
Pathname, 3-4
Power
 turn off, 1-22
Power down
 hard disk, 3-52
Program Execution
 Jump to a RAM address, 3-29
 Load and Execute, 3-28
Raddr, 3-6
Read Disk to RAM
 RD, 3-26
RECOVER, 1-2, 4-11
 Accounts Listing, 4-12
 Backup Master, 4-15
 Continuation floppy disk, 4-11
 Empty Data Files, 4-15
 Explanation, 4-16
 Initiate, 4-12
 Master floppy disk, 4-11
RECOVER Files or Accounts, 4-13, 4-14
 List Files, 4-14
 List Name and Confirm, 4-14
 Name Specific File, 4-14
REDIRECT, 1-21
Region, 3-6
Rename Floppy Disk File
 RN, 3-24

North Star X-7 HDOS Manual
Reset File Manager
 RS, 3-51
RETURN key, 2-1
RUBOUT, 2-2
Save File
 SF, 3-25
Search Memory
 SM, 3-41
Sector, 2-4
SELECTIVE backup, 4-2
Send Values to an Output Port
 PO, 3-47
Set Auto-Execute File Name
 SX, 3-55
Set Length
 SL, 3-13
Set Listing Page Length
 PA, 3-56
SHORTCUT
 upgrade HDOS 1.B, 1-21
Skip, 1-6
SPARE signal, 6-2
Specify additional output device, 3-54
Statistics
 Display Hard Disk Statistics, 3-35
 Work Space, 3-34
Strobe
 flag output, 6-3
 with DATA MSB, 6-3
SYSGEN, 1-15
 auto-start HBasic, 1-15
 Enable/disable interrupts, 1-15
SYSTEM files, 1-10
System Startup
 Initial, 1-3
Total Recovery
 TOTREC, 4-11
Total Recovery Program, see also TOTREC
TOTREC, 1-8, 1-21, 4-11
 Leave Directory Intact, 4-17
Track, 2-4
Transfer, see Data Transfer Commands
Transfer Command Block, 5-5
Turn Off Hard Disk Drive Motors
 OF, 3-52
Type Files
 TY, 3-14
Typographical errors, 2-2
Underscore, 2-2
Verify Memory
 VM, 3-44
Work Space
 WS, 3-34
Write RAM to Disk
 WR, 3-26
Reader Comments

Please use this postpaid mailer to make us aware of the strengths and weaknesses of this North Star manual. Specific errors or deficiencies should be referenced by page numbers and paragraph headings. Attach additional sheets if you require more space for your comments.

We will carefully consider your suggestions for incorporation in future versions of this manual. Thank you.

Do you find the manual easy to use and understand? □ YES □ NO
Do you think certain aspects should be organized differently? If so, please explain below.

__
__
__
__
__
__

Are there specific points or issues in the manual that need clarification or correction? Please give reference page numbers and paragraph/table/figure headings and describe the problem below.

__
__
__
__
__
__

Additional comments:

__
__
__
__
__
__

NAME OF MANUAL ______________________________________ PART NUMBER ________________________
NAME ___ DATE ________________________________
COMPANY NAME ________________________________ STREET ADDRESS __________________________
CITY ________________________________ STATE ________ ZIP CODE ____________