
PRINCIPLES OF DESIGN IN THE OCTOPUS COMPUTER NETWORK*

John G. FLETCHER

University of California, Lawrence Livermore Laboratory,
Livermore, California 94550, U.S.A.

The concepts and methods are reviewed which have proven to be of the most value in designing and
implementing the Octopus computer network, which is one of the largest concentrations of computing
capability in the world. The discussion surmnarlzes design principles relating to the scope of system
software, privacy and security, processor organization, file structure, network connections, hard-
ware selection, programming techniques, standards, and use of resources. Differences with what
appear to be widespread belief and practice are cited, including such matters as the size of the
programmer staff, the significance of the privacy issue, the importance of the choice of languages
and language constructions, the primary causes of system failure, and efficiency.

i. INTRODUCTION

The Octopus computer network, designed and imple-
mented at the Lawrence Livermore Laboratory of the
University of California (LLL), constitutes one
of the largest (if not the largest) concentrations
of computing power and storage capacity in the
world[l]. The network currently interconnects four
C.D.C. 7600 computers; two C.D.C. STAR-100 computers
are being added at the present time. On-llne
storage includes the lOl2-bit I.B.M. Photodlgital
store, while off-llne storage is concentrated on
over 30,000 magnetic tapes. Input-output capabil-
ity includes two 18,000 llne/mlnute printers, two
I.I.I. FR-80 mlerofilm recorders, Evans and Suther-
land LDS-I displays, over 200 television monitors,
and over 750 teletypewriters. The network has
been in a continual state of change and growth for
nearly a decade, new hardware being added as
technology advances; as a consequence the system
usually has included the fastest and largest
capacity eomponents currently available.

Octopus supports over 1500 interactive and batch
users, and it is not uncommon to find 250 of them
logged into the system at one time. The programs
executed for these users range from highly inter-
active text editors and file query routines to
huge numerical simulations which can execute for
over ten hours on a C.D.C. 7600 and generate output
filling 20 or more reels of magnetic tape. A
typical daytime hour will see tens of thousands of
messages pass through the network, including over
500 log in messages.

The preceding brief summary should make it clear
that Octopus constitutes a very significant com-
puter system implementation. It would seem there-
fore that any observations made or conclusions
drawn about network and operating system design
and implementation, which derive from experience
with Octopus, should be of general interest. This
is particularly so since those observations and
conclusions are not always in agreement with widely
accepted views and practice. The remainder of this
presentation will summarize several principles
based on Octopus experience. Since it is of course
net true that all persons who work on Octopus share
identical views, the statements made here under
editorial w_~eat best represent a consensus and of
necessity reflect personal opinions of the present
author.

*Work performed under the auspices of the Energy
Research and Development Administration.

2. SYSTEM FUNCTIONS

Probably the most fundamental principle of all is
that the system be kept as small as possible.
System is here defined as the set of routines which
have full access to the capabilities of the pro-
cessor hardware, i.e., what is often called the
kernel of the system. In the case of computers
that execute user programs (which are called workers
in Octopus terminology and include the large C.D.C.
computers listed earlier), system routines execute
in a privileged mode not available to users' pro-
grams. The system should perform those functions,
and only those functions, which if a user were
allowed to perform them would permit him to damage
the system, to disturb other users, or to gain
special privilege for himself. The system performs
file accesses, controls the flow of messages through
the network, allocates resources, carries out all
I/O activity, interprets requests made by user
programs, and handles all matters relating to
accounting and security. The system does not
include utility routines (compilers, interpreters,
relocatable loaders, text editors, information
retrievers, debuggers, etc.) nor of course does it
include any application programs.

The importance of thus limiting the system is that
it keeps the network design manageable. Because
of the size of Octopus the system cannot be small,
but if it included unnecessary functions it would
become too large to keep well organized. Having a
system with limited functions also allows the
programming load to be distributed more widely. For
example, the responsibility for programming a
specialized compiler or other routine of interest
only to a small group of users can reasonably be
placed on that group and not on a central staff.

The effect of this principle is that the system
programming staff at LLL has over the years averaged
about 30 persons. This figure includes those who
program the most widely used compilers (e.g.,
Fortran, Algol, Cobol) and other utility routines
as well as those who program the system proper.
Further, this staff is responsible not only for
maintaining and modifying the system, it has
designed the entire network from scratch. (Octopus
does not employ manufacturers' or other commercial
software, a primary reason being that that software
neither adheres to the principles outlined here not
provides for network activity, and is therefore
inadequate for LLL needs[2]). It is so clear from
the Octopus experience that one or two persons are

325

sufficient to program a minicomputer and that no
more than half a dozen are needed for a worker
computer operating system or a major compiler that
we find it difficult to imagine how tens or hundreds
of persons are kept busy on similar projects at
other installations.

3. PRIVACY

It is really the issue of privacy that dictates
which functions are assigned to the system. It
is undesirable that the carelessness (or mali-
ciousness) of one user interfere with the activity
of another user or allow unauthorized access to
that user's private data base. All system routines
must be written with the intent of assuring privacy;
we have found that this is not difficult to do.
Except for the questions of programmer oversights
and careless implementation, Octopus software
appears to be entirely secure. A good analogy that
has been suggested in regard to this is that it is
not difficult to build a leak-proof container for
liquid if one uses solid plates and not wire mesh
in the design. The analogy suggests, moveover,
that it may not be easy to fix the leaks in an
improperly designed and already implemented system.
The surprising thing is that so many commercially
available systems are built of wire mesh.

Briefly, Octopus uses a combination (or password)
to verify that a user logging in is in fact who
he claims to be. Thereafter, the system relies
on records associated with that user to determine
which files and other resources may be made avail-
able to him.

4. SYSTEM ORGANIZATION

The network is fully interactive, the worker com-
puters being time-shared and multlprogrammed. The
vastly reduced turnaround time obtained by such
operation very significantly improves efficleney
from the users' viewpoint. Batch-like operation
is included as a special case.

Processor hardware permitting memory partitioning
and automatic program relocation is essential.
Only with such hardware can the users be permitted
to program freely in whatever language they choose
and still execute their programs at full processor
speed. Denying such capability would constitute
an intolerable burden on the users. More advanced
memory hardware (such as two-segment relocation or
paging) which permits reentrant programs and other
forms of memory sharing has been found to be a
worthwhile improvement over simpler schemes, since
more efficient utilization of memory is possible.

The central Octopus filing system, called Elephant,
which uses the 10*2-bit Photostore [3] , is accessed
through a system of directories [4] . A directory is
a special kind of file which associates pointers to
other files with symbolic names for those files;
the files so listed may be either simple (data or
program) files or other directories. The entire
directory structure is of the form of a general
directed graph. A user can access only that por-
tion of the structure accessible by a chain of
pointers starting at a root directory associated
with him. This scheme has proven a considerable
success, particularly since it provides the
opportunity for very general information sharing
arrangements among users, as well as permitting
each user to logically structure his data in a
convenient way.

5. NETWORK ORGANIZATION

Octopus is currently organized as a superposition
of partially independent subnetworks that use store
and forward protocol. Each subnetwork is centered

326

on a minicomputer, the concentrator of the subnet-
work, which is connected to all the worker computers
and to whatever other gear is appropriate to the
function of that subnetwork. Ideally, each sub-
network has a single function such as central file
storage, teletypewriter message handling, remote
Job entry, ere. This organization permits new
facilities to be added to Octopus or existing
facilities to be modified with only minimal dis-
ruption of activities unrelated to the change. A
highly centralized network, such as the original
Octopus design which placed all non-worker functions
into a single concentrator or head of the network,
suffers because continual growth requires continual
hardware and software modification of the head.
This causes the head to be frequently unreliable
or inoperative, and when the head is not functioning
properly the entire network is unusable. The pre-
sent trend is toward even greater decentralization:
Eventually the network will consist of a number of
computers, each with its own functions such as the
worker function, file storage, message switching,
etc. A pair of computers will be directly connected
wherever necessary as dictated by data traffic load.

Octopus is not designed around a particular manu-
facture of hardware and in fact includes computers
and other hardware from many different manufacturers.
Only with this freedom can the network be assured
of including the most eost-effeetlve equipment as
the system grows in response to changing technology.
It is necessary for LLL to employ an engineering
staff which designs and implements the interfaces
between the various pieces of hardware. This has
had the benefit that there can be close interaction
between the hardware designers and the system
programmers who will use the hardware, resulting
in designs which represent excellent compromises
between hardware complexity and software overhead,
a situation which unfortunately does not obtain for
many commercially available devices.

It might be worth voicing a public complaint about
how poorly many manufacturers understand the ways
in which their own products are used and about the
design shortcomings that thereby result. Many
devices are such that it is difficult or impossible
to insulate users and assure privacy; for example,
multiterminal output display systems often have
terminal selection instructions embedded in their
display lists, thus requiring the system software
to examine and censor all lists - a eonslderable
overhead. Other devices lack obviously important
status registers; for example, there is a paged
processor that does not provide the offending
virtual address at the time of a page fault, thus
requiring interpretive reexecution of the trapped
instruction (which, moreover, is not always pos-
sible). Many large storage devices have unaccept-
ably small random access times, since they combine
very slow mechanical fetching mechanisms with
negligible facilities for overlapping operations[5].

A related problem is that of useful hardware that
is not manufactured at all. For example, because
of the large amounts of data involved, Octopus
must use rotating storage for buffering information
while it awaits its turn to move further through
the network over a particular channel. Ineffi-
ciencies arise because of delays while read/wrlte
heads are moved back and forth between the area
being written and the area being read. A disk that
could be simultaneously read and written via two
independently moveable heads would seem to con-
stitute a reasonable and economic solution to the
problem.

6. PROGRAMMING TECHNIQUES

Defensive programming seems to be the most important
programming technique in Octopus. No computer in
the network should rely on data received from

another computer to the extent that errors in that
data could affect activities unrelated to the data
or could cause the computer to malfunction. The
same rule should apply to some extent between
programming modules in a single computer, particu-
larly when the modules are written by different
persons. A computer being out of service should
inhibit only those functions for which that computer
is essential.

There are other programming concepts which seem to
receive an inordinate amount of attention in the
programming literature and should therefore be
mentioned chiefly because they are only partially
applied, or are not applied at all, in Octopus.
Octopus system programs are written either in
assembly language (more frequently without macros
than with them) or in an LLL-desi~ned, Fortran-
derived language called LLLTRAN[6~. The system
programmers tend to divide somewhat sharply into
advocates of the two classes of languages, and a
consensus does not exist. It seems fair to say,
however, that there is no objective evidence that

the programs written in the higher-level and lower-
level languages differ significantly in logical
quality, understandability, speed of programming,
or adaptability to new situations; it is mainly a
question of what is familiar to a given programmer.

It might seem reasonable to suppose that, if the
entire system were written in a single language,
there would be less difficulty in transferring a
program from one programmer to another. This view
of course is based on the dubious assumption that
programmers can be skilled in only one language.
Moreover, at LLL, there is relatively little trans-
ferring of programs because there is relatively
system programmer turnover. This situation, which
apparently does not obtain at most installations,
is probably not unrelated to the LLL policy of
offering considerable programmer responsibility and
freedom (such as in the choosing of the language to
be used). There is no two-level structure of system
analysts and programmers. A single person, working
closely with the small group involved in the same
project, designs and implements a given program or
routine. All that is required is adherence to a

few simple standard Octopus conventions and
protocols.

There is no widespread feeling among Octopus pro-
grammers that the "go to" construction is a source
of difficulty or that every program must he block-
structured. The problem of deadlocks (in which
two interrelated activities await interminably for
one another to proceed) has rarely manifested itself
and, when it has, has been quickly discovered and
resolved. Little, if any, interest has been aroused
by the possibility of "proving" that the system is
"correct." Such an effort would appear to be pro-
hibitively time-consuming and would involve proofs
whose own correctness would be suspect. The best
guarantees of good software seem to be careful
original design, conscientious observation during
use, and prompt debugging. Experience has shown,
moreover, that hardware failure is a greater problem
than software failure. Both are subject to design
flaws, but software once fixed remains fixed, while
hardware continues to fatigue and wear out.

Since the Octopus programmers are present at the
site where their system is used and can therefore
observe the running system firsthand, little simu-
lation is done. It is much easier and more certain
to simply try out a new idea, preferably in a
limited way (e.g., on one worker). It is important
that a thorough effort be made to foresee and pro-
vide for all possible anomalies that may occur when
a new program is executed hut it has been found
unprofitable to include in the initial design de-
tailed automated responses to all unusual conditions,
since it is very difficult to predict which com-
binations of unusual conditions will arise in

327

practice. For example, if a processor proves so
reliable that it seldom if ever experiences a hard-
ware failure requiring a complete deadstart, it is
not worth the effort required to make the deadstart
soft (i.e., such that users experience minimal dis-
comfort). On the other hand, if hardware failure
proves to be a serious matter, it then becomes
important to provide software defenses against its
consequences. We have found that nearly all hard-
ware failures result in highly erratic behavior that
is readily apparent to users and operators. Quick
observation of failures is enhanced by software-
generated messages when anomalies are noted. We
have not found, however, that it is worthwhile to
design elaborate defenses against particular con-
sequences of failure; we do not, for example, make
all decisions relating to critical matters in two
independent places.

Our own observation as to the area which must re-
receive the most attention when designing a network
is the matter of net effective data transfer rates.
It appears that all components eventually become
overloaded and must be augmented or replaced. The
issue which should most dominate a designer's think-
ing is arranging efficient use of available capacity
so as to prolong the llfe of the parts of the
system.

7. STANDARDS

Octopus network standards have been selected by a
learning process. The first time a type of facility
is put into the network, protocols and formats are
designed ad hoc by the engineers and programmers.
Then, whenever it becomes clear that several faci-
lities are being developed that have common charac-
teristics, a standard is adopted to satisfy them
all (as well as any foreseeable future developments),
even if this means reworklng some software already
implemented. Any redundant effort implied by this
approach is more than compensated for by the fact
that design is not hampered nor degraded by adher-
ence to standards adopted before the real nature of
the problem had been observed. This principle, as
well as several others noted previously, may he
summarized by stating that Octopus uses an experi-
mental approach. We do not adopt nor even define
general principles before we have actually had
experience with the situations to which they apply.
This approach is of course made easier because of
reliance on locally designed software and, to some
extent, hardware, which are readily modifiable.

There are Octopus standards for interface protocols,
message headings, file formats, command languages,
and many other matters. One standard may be of
particular interest: All network messages consist-
ing of characters are in ASCII embedded in 8-bit
bytes, even though no large computer prior to the
STAR-IO0 is oriented toward 8-bit units. This is
an example of setting a standard based on an esti-
mate as to what most computers will be llke in
years to come. In many Octopus computers, the
ASCII is repacked (with suitable escape conventions)
into 7- or 6-bit fields, whatever is most conven-
ient to the word-size and instruction set. (The
ASCII is never converted to EBCDIC or other code,
which would seem to be a complete waste of effort.)

8. RESOURCES

Probably the most important observation about
Octopus is that it works; it improves the speed,
efficiency, and quality of computation at LLL and
thereby of most activity at LLL. This does not
mean that all users of the system are fully satis-
fied, the reason being that, for Octopus as for
all systems, resources are limited. The large
hardware inventory summarized at the beginning of
this article does not imply that Octopus users have
access to practically unlimited computing power and
storage capacity. The hard fact is that even - no,

especially - at large installations it is econo-
mically unsound to supply computing capacity much in
excess of actual need. Those who suggest that
modern computers have such a surfeit of resources
that computational efficiency can be indiscriminat-
ely sacrificed to achieve allegedly higher purposes
are not fully in touch with all practical realities.

REFERENCES

[I] J. G. Fletcher, The Octopus computer network,
Datamation, vel. 19, no. 4, April 1973, 58-63.

[2] J. E. Requa, In-house vs. vendor-supplled
software: a case study at Lawrence Livermore
Laboratory, Atomic Energy Systems, Operations
and Programming Association Meeting, October
1972.

[3]

[4]

[5]

[6]

J. D. Kuehler and H. R. Kerby, A photodigltal
mass storage system, Proc. AFIPS FJCC, vol.
29, November 1966, 733-742.

R. C. Daley and F. G. Neumann, A general
purpose filing system for secondary storage,
Proc. AFIPS FJCC, vol. 27, November 1965,
213-229.

G. B. Houston, Trillion Bit Memories,
Datamation, vol. 19, no. i0, October 1973,
5 2 - 5 8 .

S. F. Mendicino, R. A. Hughes, J. T. Martin,
F. H. Mc Mahon, J. E. Ranelletti, and R. G.
Zwakenberg, The LRLtran Compiler, Comm. A.C.M.,
vol. ii, no. ii, November 1968, 747-755.

328

