








































































































BIT 

Format: BSET 3,M 

The bit set, reset, and test instructions require two arguments: 
an argument which represents a bit position between zero and 
seven, and a single register name, A, S, C, D, E, H, L, M, d(IX), 
or d (IY). The arguments are separated by a comma (bi t number, 
register name). Only the BIT instruction modifies any 
registers. The carry flag is not changed@ 

BSET 
RES 
BIT 

Set the bit in the registere 
Reset the bit in the register. 
Copy the bit in ~he register into the zero flag. 

- 49 - ASMBLE!Z 



ROTATE, SHIFT 

Format: RLC 

The rotate A instructions do not require an argument. 
modify only the carry flag. 

RLC 

RRC 

RAL 
RLA 

RAR 
RRA 

ASMBLE/Z 

Rotate A left 8 bits. 

I I 
Cy <-- 7 •• 0· <-

Rotate A right 8 bits. 

I 
-> 7 •• 0 --> Cy 

Rotate A, carry left 9 bits. 
Same as RAL. 

1 
- Cy <-- 7 •• 0 <-

Rotate A, carry right 9 bits. 
Same as RAR. 

f. 
-) 7.~O --> Cy 

- 50 -

MSB into carry. 

LSB into carry. 

MSB into carry. 

LSB into carry. 

They 



Fa rmat: RLCR D 

The rotate and shi ft instructions requi re an argument which is G 

sing Ie reg i s t ern ame, A, B, C, 0, E, H, L, M, d ( ! X), 0 r d (I Y) • 
These instruc~ions modify all flags. 

RLCR 

RLAR 

RRCR 

RRAR 

SLAR 

SRAR 

-SRLR 

Format: RLD 

Rotate reg ister left 8 bi ts. 
See RLC. 

Rotate register left 9 bits ., 
See RAL. 

Rotate reg i.ster right 8 bits. 
See RRC. 

Rotate reg ister right 9 bits. 
See RAR. 

Shift register left 9 bits. 
Cy <- 7 •• 0 <- 0 

Shift register right 9 bits. 

1-' 
-) 7 •. 0 -) Cy 

Shift register right 9 bits. 
o -) 7 •• 0 -> Cy 

MSB into carry. 

MSB into carry. 

LSB "into carry. 

LSB into carry. 

o into LSB. 
MSB into carry. 

Sign into MSB. 
LSB into carry. 

o into MSB. 
LSB into carry. 

The rotate digit instructions do not require an ar9ument. These 
in~tructions modify all flags except carry. 

RLD Rotate four LSBs of A left with M. 
--->---------

I I 
A3 •• AO M7 •• M4 M3 •• MO 

I I I I 
---<- -<--

RRD Rotate four LSBs of A right with M. 
---<---------

I I 
A3 •• AO M7 •• M4 M3 •• MO 

I I I I 
--->- ->--

- 51 - ASMBLE/~ 



~ISCELLANEOUS 

Fo rm.at: CMA 

Several miscellaneous instructions do not requi re an argument. 
No flags are affected unless otherwise noted. 

CMA 
NEG 
DAA 
STC 
CMC 
NOP 
HLT 
EXAF 
EXX 
XTHL 
XTIX 
XTIY 
XCHG 
PCHL 
PCIX 
PCIY 
SPHL 
SPIX 
SPIY 
DI 
E1 
LDAI 

STAI 
LDAR 

STAR 
IMO 
IMl 
IM2 

ASMBLE/Z 

Complement accumulator. 
Negate accumulator. All flags modified 
Decimal adjust accumulator. All flags modified. 
Set carry. Only carry modified. 
Complement carry. Only carry modified. 
No operation. 
Halt. 
Exchange A 1, flags 1 with A 2, flags 2. 
Exchange Be 1, DE 1, HL I with BC 2, DE 2, HL 2. 
Exchange the contents of the top of the stack with HL. 
Exchange the contents of the top of the stack with IX. 
Exchange the contents of the top of the stack with IY. 
Exchange DE with HL. 
Load the program counter from HL. 
Load the program counter from IX~ 
Load the program counter from lY. 
Load the stack pointer from HL. 
Load the stack pointer from IX. 
Load the stack pointer from lY. 
Disable interrupts'. 
Enable interrupts. 
Load A with I. Zero and sign flags modified. 
p/V flag gets contents of IFF. 
Store A in I. 
Load A with R. Zero and sign flags modified. 
p/V flag gets contents of IFF. 
Store A in R. 
Set interrupt mode o. 
Set interrupt mode 1. 
Set interrupt mode 2. 

- 52 -



ASSEMBLER INSTRUCTIONS 

This section contains assembler instructions. They tell the 
assembler what to do. In some cases they generate machine code. 
The first line or lines of the description of each instruction is 
an· example of the proper use of the instruction. 

- 53 - ASMBLE/: 



MACRO 

Format: -BLOTZ: MAC~O REG 
SLAR, _c REG 
ENDMAC 

A macr9 definition requires the MACRO instruction with a label, 
zero or more lines of code which are stored as the body of the 
macro definition, and an ENDMAC instruction, which marks the end 
of the macro body_ The line containing the MACRO instruction may 
also contain several. dummy arguments separated by commas. A 
macro definition may contain other macro definitions . (255 
max imum) and calls to other macros (15 max imum) _ 

Once. a macro has been defined it may be called by using the macro 
name in 'place of an instruction _ The code stored for that 
particular macro is recalled and entered in the program, 
character by character, and ~luated. 

When the MACR,O instruction is encountered, the 'label is entered 
in- the user's symbol table and marked as a macro. The dummy 
argument symbols are stored in a temporary symbol table. The 
code in the body of the macro definition is stored character by 
character in the macro stor,age space. Comments beg inning wi th 
'two semicolons.·are not stored •. If-'a symbol· in the. body· is. 
encountered which matches one of the dummy argument symbols, a 
numbered marker is, stored in the macro storage space instead of 
the symbol. If the symbol matches the first dummy symbol the 
marker is given the value one, if it matches the second symbol it 
is given the value two, etc. The exclamation point (!) is used 
a's a concatenation character. If a dummy symbol in the body is 
preceded or followed by the concatenation character, the 1 is 
removed along wi th the dummy symbol when it is replaced by a 
marker. The macro defini tion may conta in one or more embedded 
macro definitions. The dummy argument symbols are compared to 
symbols in all levels of the definition. All dummy symbols are 
replaced by markers. 

The line containing the macro call may also contain one or more 
arguments separated by commas. These arguments (actually 
cha racte r str ings) ar.e substi tuted for the marke'rs in the macro 
body. The arguments may be any length (as long as they all fit 
on one line), and may contain commas in quoted strings. The 
first argument s:tring replaces every occurrence of the first 
marker, the second string replaces the second marker, etc. 

ASMBLE!Z - 54 -



DEFINE. BYTE, WORD 

Format: DB 'ABC' 

The DB (Define Byte) and' DW (Define Word) instructions may be 
followed by one or more arguments. Each argument is evaluated as 
a separate byte or word. If a DB· argument is a text string 
enclosed in single or double quotes, the seven bit ASCII value of 
each character in the string is returned. 

EXPRESION CODE GENERATED 

DB 100 64 
DB I MOM' 40 

4F 
4D 

DW 100 ~4 

00 
DW 1234H,4S';7H 34 

12 
F,7 
45 

Fo nn at: DB S ' AB' , C R , LF 

The DBS (Define Byte Sign) and DBZ (Define Byte Zerc~:' 
instructions are similar to the DB instruction. They differ in 
the way. they treat the termination of the command 1 ine. The DBS 
instruction sets the sign bit of the last character in the linee 
The following pairs of lines generate the same code: 

DB 'ABCDE' , 'F ' +128 
DBS 'ABCDEF' 

DB f Hi. the r e' , C R , LF + 12 8 
DBS 'Hi there' ,CR, LF 

The DBZ instruction appends a zero byte to the end of the line. 
The following pairs of lines generate the same code: 

DB 'ABCDEF',Q 
DBZ 'ABCDEF' 

DB 'Hi there' ,CR,LF,O 
DBS 'Hi there' ,CR,LF 

- 55 - ASMBLE/'Z 



DEFINE STORAGE 
. ' 

Fo rmat: DS 200 

The DS .(Define Storage) -instruction requires one argument - and 
reserves the amount of space (in bytes) determined by the value 
of the argument. The instruction does not generate any code. 
The instruction is used to allocate space in memory for variables 
and tables without specifying the contents of those locations or 
generating any code in the HEX or BIN files. For example, assume 
SIZE represents the value 100. 

ASMBLE!Z 

DS 
DS 

SIZE 
14 

Reserve 100 bytes of space in memory_ 
Reserve 14 more bytes. 

- 56 -



CONDITIONAL 

Fe rmat: IF KFLAG 
CALL BLOTZ 
ENDIF 

The IF instruction_ requires one argument. If the value of the 
argum~nt is zero, assembly of code is suppressed until an ELSE or 
ENDIF instruction is encountered at which time it resumes. If 
the val ue is non-zero, assembl y continues until an ELSE 
instruction is encountered. Then, assembly is suppressed until 
an ENDIF instruction is encountered. The use of the ELSE 
instruction is optional. For example, assume SWITCH is equal to 
zero. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- I 

IF 
INR 
ELSE 
DCR 
ENDIF 

IF 
OCR 
ENDIF 

MOV 

SWITCH 
A 

A 

Argument evaluates to zero. 
Don't assemble this code. 

Assemble this code instead. 

NOT SWITCH Argument evaluates to FFFF. 
A Assemble this code. 

C,A Always assemble this code" 

IF instructions (with optional ELSEs) may be riested- to 255 
1 evels. 

- 57 - ASMBLE/L 



ENTRY, EXT 

Fo rmat: ENTRY SIN, COS 

The ENTRY instruction requires one or more arguments which are 
symbol names. It marks those symbols as entry points. The 
symbols must be defined somewhere in the program (used as a 
label, for instance). Entry point· symbols are passed via the 
relocatable output file (REL file) to the linker to define the 
symbols for use by other modules. This instruction may be used 
anywhere in the program. The entry instruction is not valid when 
the assembler is generating a hex or binary file. 

Format: EXT TAN,COT 

The EXT instruction requi res one or more arguments which are 
symbol names·. 1'It tells the assembler that those symbols are not 
defined in the current program but will be defined later in other 
modules. EXT symbols are passed via the REL f.ile to the 1 inker 
to be defined by entry point- symbols in other modules. This 
instruction may be used anywhere in the program. The EXT 
instruction is not valid when the assembler is generating a hex 
or binary file. 

ASMBLE/Z - 58 -



ASS, PROG, DATA, CO~ 

Format: ABS 

The ABS, PROG (REL may be used instead of FROG), and DATA 
instructions do not require an argument. They tell the assembler 
to begin or continue generating code in a particular section. If 
code had been generated In that section before, the progran 
counter points to the next available byte of storage so that code 
generation continues from where it left off last time. ThesE 
instructions are not valid when the assembler is ~enerating a het 
or binary file. 

Format: COM BLOTZ 

The COM instruction may take an eight character name as ar. 
argument. If no name is oiven it is assumed to be blank (all 
spaces). It tells the ass~mbler to beg in or continue 9 eneratinq 
code in that common section in exactly the same way as the ABS" 
PROG, and DATA instructions do. There may be as many as fifteer. 
different common sections. The COM instruction is not valid whe~ 
the assembler is generating a hex or binary file. 

- 59 - ASMBLE/ 



ORG, LOAD 

Fa rmat: ORG lOOH 

The ORG instruction requires an argument which is evaluated as a 
IS bit address. The instruction sets the assembler f HEX, and BIN 
prog ram counters to that address; that is, it determines the 
starting address of the next block of code generated. The type 
of the argument (sectio~ in which it was defined) determines the 
type of the new section. For example, if GRISLY was defined. in 
the data section: 

ORG GRIBLY+lOO 

tells the assembler to continue generating code in the data 
section. 

ORG 20 

has an absolute argument and tells the assembler to generate code 
in the absolute section. 

If the line containing the ORG instruction contains a label, the 
label is set to the new value of the program c~~nter~ 

IGUM: ORG 123 GUM· has . the val t:. e 12 3 «. 

If you are generating a COM file you may not ORG b~low lOCH + 
BOOT and you may not ORG backwards (ORG to a lo~ation less than 
the current program counter) • 

Fa rmat: LOAD lOOOH 

The LOAD instruction is only valid when the assembler is 
generating hex code. It is not valid when 'the cssembler is 
generating relocatable code or COM file cods.. It requi res an 
argument which is evaluated as a 1~ bit address" The l:llstruction 
forces the code generated by the assembler to be loaded into 
memory whose address is different from the address set by the ORG 
instruction. This allows you to load code into one region of 
memory and later move it to another region for execution (for 
example, programming a PROM). The LOAD instructiol'l requires an 
argument. It sets the BIN and HEX program counter to the value 
of . the argument but does not change the assembly program 
counter. For example, if you were writing code to be loaded at 
24H but executed at l003H you would use the instructions: 

ASMBLE/Z - iiO -



I ORG 1003H Set assembler program counter to 1003H. 
I LOAD 24H Set binary and hex program coun ter to ,24H. 
ILOOP: DCR C OD is stored at 24H. .. :, 
I JNZ LOOP C? is stored at 25H. 
I 03 is stored at 2fiH. 
I 10 is stored at 27H. 

- (-)1 - ASMBLE/Z 



NAME 

Format: NAME TRIG 

The NAME instruction requires an eight character name as an 
argument. This name is passed via the relocatable file to the 
linker and appears in the module name listing. This instruction 
may be given more than once in' a program but only the name 
specified last is put in the REt file. If this instruction is 
not used in a program the first eight characters of the REL file 
name are used as the module name. The NAME instruction is not 
valid when the assembler is generating a hex or binary file •. 

ASMBLE/Z - 1)2 -



INCLUDE 

Fo rmat: INCLUDE <filename> 

INCLUDE tempo'rarily" changes the input file to the assembler .. 
This allows code in another file to be inserted into a program 
during assembly. When the INCLUDED file is exhausted, the 
assembler resumes reading the source lines from the original 
source file" with the line immediately after the INCLUDE 
instruction. 

Note that nested INCLUDE files are not permitted (I.E. 
which is an argument to the INCLUDE instruction may not 
any INCLUDE instruction). 

- '13 -

a fi 1 e 
contain 

ASMBLE/~ 



LIBFILE 

Format: LIBFILE ALTLIB 

The LIBFILE instruction requi res an eight character name as an 
argument. This name is passed via the relocatable file to the 
linker and tells the linker to use the file given by this command 
(with an assumed extension REL) as the library file. If no 
LIBFILE . command is given the linker uses the default library 
file, LIB.REL. This instruction may be given more than once in a 
program but only the LIBFILE name specified last is put in the 
REL file. The LIBFILE instruction is not valid when'the 
assembler is generating a hex or binary file. 

ASMBLE/Z - 64 -



EQUATE, SET 

Format: CHAR EQU • z I 

The EQU instruction requires a label and an argument which is 
evaluated as a l-=i bit number. The label is given the lli bit 
value. A symbol (the label) may be defined only once in a 
program with the EQU instruction. 

Format: CHAR SET 'X' 

The SET instruction is similar to the EQU instruction. It 
requires a label arid an argument which is evaluated as a l~ bit 
number. The label is given the 1'; bit value. The SE'I 
instruction may be used to change the val ue 0 f a sym,bol (the 
label) as often as desired. 

- '55 - ASMBLE!i 



END . 

Format: END BLOTZ 

The END instruction may be placed at the end of a program but its 
use is optional. The END statement may have one argument 
(optional) which is evaluated as a 16 bit address. The value of 
the argument is used by the operating system as the starting 
address of the program. The starting address must be in an ASS, 
PROG, or DATA section. If it is in an EXT or COM section an 
error message is printed and the starting address is ignored. If 
no starting address is given, the operating system is able to 
loa d th e p r og ram but not s tar tit. I f a s tar t i ng add res sis 
given wi th the ORG address not equal to the LOAD address, an 
error message is printed and the starting address is ignored. (A 
program cannot be executed p~operly unless it is loaded at its 
execution- address.) 

ASMBLE/Z 

El'.1D 
END 
END 

22H 
GUMBAL 

Program has no starting address. 
Program is started at 22H. 
Program is started at GUMBAL. 

- '16 -



LIST, NLIST, MTLIST, .NMTLIST 

Format: .NLIST 

The NLIST and· LIST pseudo-ops turn the 1 i sting off and back on. 
When NLIST is encountered it suppresses the listing. When ·LIST 
is encountered it reenables the listing. 

NLIST 
MOV 
MOV 
LIST 
POP 

A,B 
O,E 

H 

Assemble this code but don't list. 

Resume listing. 

The NMLIST and MLIST pseudo-ops turn the listing of macro 
definitIons and expansions. off and back on. When N~LIST is 
encountered it suppresses the listing of lines containing either 
macro definitions or macro expansions. When MLIST is encounterec 
it reenables the listing. 

Format: MTLIST 

The NMTLIST and MTLIST pseudo-ops turn the 1 isting of the te~: 
part o.f macro exp~nsions. off anq back on •. When N.M.TLIST 1:': 

encountered" it suppresses the listing of' the text part of· macr:) 
expansions (the bodies of the macros), but does not suppress the 
1 isting of ~he hex code generated by the macros. When MTLIST i.3 
encountered it reenables the listing. 

- 67 - ASMBLE/Z 



ERROR MESSAGES 

Arg umen t too big 

Bad argument 

Bad arithmetic operator 

Bad base 

Bad instruction 

Bad label 

Bad· number 

The value of the argument is greater 
than-255 or less than -255 • 

. ~ 

The value of an argument in an RST 
instruction is greater than seven. 

An unknown char acter, number, 
symbol is used in an argument. 

or 

IX or IY may not be used as an 
argument with this instruction. 

An unknown character is used as an 
arithmetic operator. 

The starting address is in a section 
other than ABS, PROG, or DATA. 

An entry in the instruction field is 
not recogni zed as an instruction or 

- macro. 

The label does not start with a $, %, 
., or lei:ter. 

The rad fx· char~cter is unkn·own. 

An imprope r dig it appears in -the 
number. 

Bad symbol The symbol does not start with a $, %, 
., or letter. 

Can I t back up in COM file Attempted to ORG to a val ue less than 
the current value of the program 
counter or less then lOOH. Code in a 
COM file can only go forward. 

Displacement too big 

Division by 0 

Dummy redefined 

ASMBLE!Z 

The value of the displacement is 
greater than 127 or less than -128. 

Attempted division by zero. 

A dummy argument in the macro 
definition is used more than once. 

- ~8 -



Extra argument 

Extra ELSE 

Extra ENDMAC 

Fi 1 e not found 

Macro not defined 

MACRO symbol 

Missing argument 

Missing 

:Mul ti pIe tag 

Nested INCLUDE 

No EQU label 

No expression 

No EXT 

No MACRO label 

No relocate 

Too many arguments are given for this 
instruction. 

The ELSE instructi~n does not have c 
-matching IF instruction. 

The ENDMAC instruction does not have a 
matching MACRO instruction. 

The INCLUDE file cannot be found. 

A macro 
defined. 

is called before it is 

A macro name is used in an instruction 
argument .' 

Not enough ar.g uments are given for thE­
instruction. 

The) is missing from the name of an 
index register. 

This label has been used before. 

The INCLUDE file calls another INCLUDE 
file. 

The _ EQU instruction does not have c 
label. 

An expression is not allowed with this 
instruction, only a symbol. 

An external symbol may not be usee 
with this instruction. 

The macro defini tion does not have c. 
label. 

A relocatable symbol may not be use'-: 
with this instruction or arithmeti~ 
operation. 

If the assembler is 
a b so 1 ute ·b ina r y 0 r 
relocatable operation 

generating an 
hex file G 

is not allowed. 

A relative jump instruction jumps fro~ 
one relocatable section to another. 

- 69 - ASMBLE/Z 



No SET 1 abel 

Not allowed in COM file 

Offset not zero 

Out 0 f range 

Redefined 

String too long 

Symbol not found 

Symbol table full 

Too many arithmetic 
operators 

Too many commons 

Too many externals 

Too many index registers 

The SET instruction does not have a 
label. 

The LOAD instruction cannot be used 
when generating COM file. Generate a 
HEX file instead. 

The starting address is given with the 
LOAD address not equal to the ORG 
address. 

The destination is too far for a 
reI at i v e j um p • 

The value of the label is changed. 

A macro name is used as a non-macro 
label. 

The string contains more than two 
characters. 

An undefined symbol is used in an 
argument. 

There is no more room to add symbols 
to the symbol table or to define more 
macros. 

More than one arithmetic operator is 
used in front of a symbol or number. 

More than 15 common sections have been 
defined. 

More than one external symbol has been 
used in an expression. 

An index register 
both arguments in a 

is specified for 
MOV instruction. 

Too many macro nest levels More than 15 macro definitions or 255 
macro expansions are nested. 

ASMB LE/Z - 70 -



WORKED EXAMPLE 

This section contains assembler listings of three modules. The 
first module contains the main part of the program which reads a 
string of characters from the keyboard and prints them. The 
second and third modules contain subroutines which communicate 
wi th ei ther the CP/M operating system (second module) or the K3 
operating system (thi rd module). This program may be run wi th 
either operating system simply by linking the main module with 
the appropriate subroutine module. 

- 71 - ASMBLE/2 



Str ing Echo. 

OOOD 
OOOA 

-. 
; String Echo. 

CR 
LF 

EQU 
EQU 

13 
10 

, ~ > • 

; Carriage return. 
; Lin,e feed. 

ASMBLE v-5b Page 1 

0001 PRINT: - MACRO TEXT;' Print a'text string. 

0000+21 002~' 
0003+CD OOOOi 
0006'21 0000" 
OOC9'CD OOOOi 
000C'77 
0000'23 
OOOE'FE 00 
0010'20 F7 
0012'36 OA 
0014'23 
00lS'3fi 00 

0017+21 0-036' 
OOlA+CD 0(104# 

aOlD+21 0000" 
0020+CD 001B# 
0023'C3 00004 

START: 

LOOP: 

LXI H,TEXT. _ 
CALL TXTYP' 

ENDMAC 

EXT CI,TXTYP,MONITOR 

PRINT 
LXI 
CALL 

LXI 
CALL 
MOV 
INX 
CPI 
JRNZ 
MVI 
INX 
MVI 
PRINT 

LXI 
CALL 

FRINT 
LXI 
CALL 

JMP 

TITLE 
H,TITLE 
TXTYP 

H,BUFFER; Point to the line buffer. 
CI Get a character. 
M,A Store it. 
H ; Bump pointer. 
CR End of line? 
LOOP Not yet. Keep going. 
M,LF ; Add a line feed. 
H 
M,a Mark the end of the line. 
CRLF 

H,CRLF 
TXTYP 

BUFFER i Echo the buffer. 
H,BUFFER 
TXTYP 

MONITOR; And return to the monitor. 

002~'44 ~5 ~D 6FTITLE: DBZ 
20 50 72 +SF 

'Demo program' ,CR,LF,'*' 

57 72. fi 1 fiD 
OD OA 2A 00 

003~'OD OA-OO CRLF: DBZ 

oooott 
0000"0080 

0000' 

ASMBLE/Z 

DATA 
BUFFER:DS 

END 

CR,LF 

128 
START 

- 72 -

String buffer. 



CP/M Opera~ing, System Subroutines. ASMBLE v~5b Page 1 

0001 

0000 
0001 
0002 

OOOO'ES 

OOOl+OE 01 
0003+CD 0005 
OOO(.)'EI 
on07'C9 

0OO8'7E 
0009'?'3 

'OA t B 7 
--_JOB t e8 
OOOC'SF 
nOOD'E5 

onOE+OE 02 
OOlO+CD 0005 
0013'El 
0014'18 F2 

0016+0E no 
0018+CD 0005 

; . CP/M' Op~rating System Subroutines. 
; These subroutines talk to the CP/M operating system. 

IOP: MACRO . FUNCTION; Call an I/O processor function. 
MVI· C,FUNCTION 
CALL 5 

ENDMAC 

MON EQU 
CREAD EQU 
CWRITE EQU 

o 
1 
2 

Return to the monitor. 
Read a character. 

; Write a character. 

ENTRY CI,TXTYP,MONlTOR 

; Read a character from the keyboard wi th echo. 
CI: PUSH H ; Save HL. 

lOP CREAD 
MV! C,CREAD 
CALL 5 

POP H 
RET 

Write a text string po in ted to by HL. . The str ing' ends with a null. I 

TXTYP: MOV A,M ; Get a character. 
INX H 
ORA A Null? 
RZ ; Yes. Qui t. 
MOV E,A Not yet. 
PUSH R ; S a v e po in t e r • 
lOP CWRITE ; Write' character. 

MVI C,CWRlTE 
CALL 5 

POP H 
JR TXTYP ; Keep going. 

Return to the monitor. 
MONlTOR:IOP MON 

MVI C,MON 
CALL 5 

- 73 - ASMBLE/Z 



K3~ .. Operating .. System Subroutines. 

0001 

DOOO 
0037 
D030 

OOOO+CD 0037 
0003' 4F' 

0004+CD D03D 
0007'79 
0008'C9 

0OO9'7E 
OOOA t 23 
00OB'B7 
oaoc'cs 
OOOD'4F 
OOOE'ES 

OOOF+CD D03D 
0012'EI 
0013'18 F4 

0015+CD 0000 

~SMBLE/Z 

; K3 Operating System Subroutines. 
i These subroutines talk to the K3 operating system. 

rop: MACRO 
CALL. 

FUNCTION; Callan I/O processor functio~ 
FUNCTION 

ENDMAC 

Return to the monitor. 
Read a character. 

MON EQU 
CREAD EQU 
CWRITE EOU 

ODOOOH 
MON+37H 
MON+3DH ; Write a character. 

ENTRY CI,TXTYP,MONITOR 

; Read a character from the keyboard with echo. 
CI: lOP CREAD 

CALL CREAD 
MOV C,A 
lOP CWRITE; Echo. 

CALL a~RITE . 
MOV A,C' 
RET 

Write a text string pointed to by HL. 
; The string ends with a null. 
TXTYP: MOV A,M . Get (~ character. , 

INX H 
ORA A i Null'? 
RZ ; Yes. Quit. 
MOV C,A i Not yet. 
PUSH H ; Save po inter. 
rop CWRITE Write character. 

CALL· CWRlTE 
POP H 
JR TXTYP Keep go i ng. 

; Return to the monitor. 
MONITOR:IOP MON 

CALL MON 
END 

- 74 -



RUNNING THE ASSEMBLER UNDER CP/M 

To run the assembler type: 

where 

ASMBL <fn>.<opts>,<fn>.<opts>,<fn>.<opts> /<type> 

<fn> is a text file with the extension SRC 

<opts> is an optional list of options up to three letters 
long. 

first letter: drive to get source from. 

second letter: drive to send output file to. 

third letter: drive to send listings to. If thi3 
letter is omitted, no listing is 
generated. If the letter is X, the 
1 isting is sent to the consol·e 
instead of the disk. 

<type>· spec i fi es the type 0 f the output file. It must be 
/COM, IHEX, or /REL. If no type is specified /COM is 
assumed. 

If more than ·one file is specified, the files wi!"l be assembled 
as though they were one large file. The order in which they ar? 
1 isted in the command 1 ine is the order in which they would 
appear in this large file (note: no "large file" is actua11? 
created). The name of the last input file is used as the name 0: 
the output file. If an option is not specified, or if a space is 
used in pIa ceo f ale t t e r , th e d e fa ul t d r i v e· i s us e d • Th i! 
exception to this is the listing file: If a space is used, a. 
listing file is created on the default drive, if nothing is 
specified, no file is created. For example: 

A>ASMBL INIT,NAVAGAT/HEX 

Assemble INIT.SRC with NAVAGAT.SRC. Get both files from drive ~ 
and send NAVAGAT.HEX to drive A. No listing file is generated 
because no listing driva letter was specified. 

C)ASMBL INIT.A,NAVAGAT. ax 

Assemble the file INIT.SRC on drive A with NAV~GAT.SRC on drivE 
C. Send NAVAGAT.COM to drive B. Send the· listing to the 
console. 

- 75 - ASMBLE/~ 



RUNNING THE ASSEMBLER UNDER K3 

The assembler recognizes two additional instructions under the K3 
operating system. They are as follows: 

Fo rmat: JSW 1000H 

The JSW instruction only generates' code' when the assembler is 
producing a BIN file under the K3 operating system. It requires 
one argument which is evaluated as a 16 bit number. The value of 
the a rg ument is used by the operating system as the job status 
word. If the lOODH bit is set, the program may be started at the 
starting address with the operating system RUN or START 
commands. If the 2000B bit is set, the program may be restarted 

. at a location three less than the starting address wi th the 
operating. system restart command. If the JSW instruction is not 
given, the operating system assumes a default value for the job 
status word. 

JSW lOOOH Allow the prog ram to be started 
but not restarted. 

Fo rmat: VER '1',' 2' , , c' 

The VER instruction requires three arguments which are evaluated 
as three ASCII characters. These three characters are stored 
only in the K3 BIN or K3 HEX file, and are read only by the K3 
LIMITS program. It is recommended that the first two characters 
be used fo r a two dig it version number and that the thi rd 
character be used for a single revision letter.· If your program 
has only a single digit version number, the first character 
should be a space. 

ASMBLE/Z 

VER 
VER 

t ','7' ,'b' 
'2' ,'7' ,'x' 

- 7Ft -

version 7b. 
; version 27x. 



Wh e nth e' ass em b 1 e r' iss ta r ted ita s k s yo ufo r : a"':' f i 1 e 
specifi~~tion. The specification is in the following format: 

DEV:NAMEl.BIN(,REL, or HEX) ,DEV:NAME2.LST=DEV:NAME3.SRC/B/RE/H/L/G/RU/E 

Not everything in the specification line needs to be typed in. 
For example, the extensions (BIN, REL, HEX, LST, SRe) are always 
filled in by the assembler and should not be typed in. This 
means that the source file must always have a SRe extension. The 
listing file always has a LST extension, etc. 

The first entry in the specification determines the device and 
file name (if necessary) to which the BIN, REL, or HEX file is 
sent. If the output device is non-file structured (paper tape 
punch, for example) , a file name is not needed. If the output is 
sent to a file structured device and the file name is not given, 
it is given the name of the last source file. 

The '/B, IRE, or IH option determines which file is generated, . 
BIN, REL, or HEX. If no option is specified /B is assumed. If 
no device and file name is specified but the /B, /RE, or /H 
option is given a BIN, REL, or HEX file is assumed using the last 
source file name. Here are some examples of proper file 
specifications: 

PP:=BLOTZ Output is sent to the paper tape punch. 
DK3:TRIG=BLOTZ Output is ·sent to TRIG. BIN on DK3. 
DKO:=B~OTZ ,Output is sent to BLOTZ.BIN qn DKO. 

If the /G (get) or /RU (run) options are specified the assembler 
automatically sets the /B option (clears the IRE and /H options) 
and generates a BIN file. At the end of the assembly the 
operating system is asked to get (/G) or run (/RU) the BIN file. 
If any errors are detected in the' assembly, the get cr run 
request is suppresSed. 

The second entry in the specification determines the device and 
file name (if necessary) to which the listing file is sent. If 
the output device is non-file structured (line printer, for 
example) a file name is not needed. If the output is sent to a 
file structured device and the file name is not given, it is 
given the name of the last source file. If the /L option is 
given without a listing file specification a LST file is assumed 
with the name of the last source file. The listing entry is 
always the second entry in the specification line and is 
separated from the first entry by a comma. If no BIN, REL, or 
HEX file is desired, the line must start with a comma. 

- 77 - ASMBLE/Z 



I • R ASM'BLE DK2: =TEST/RU 

'This command loads and runs the assembler, assembles DKO:TEST.SRC 
into DK2:TEST.BIN, loads, and runs DK2:TEST.BIN. 

The IE option 'sends error messages to the line printer. This is 
useful for generating a printed record of assembly errors. 

If control C is typed while the program is running, the assembly 
stops, all files are closed, and control returns to the monitor. 

If control a is typed while the program is running, the 1 isting 
of error messages is suppressed. If any other key is typed, the 
printing resumes. 

ASMBLE!Z - 78 -


