

Assembler Error Messages/User Actions 8089 Assembler

J-6

*** ERROR 42: NON-POINTER REGISTER (X) IS ASSUMED TO BE REGISTER GA

This error message is provoked when an instruction requires a pointer register
operand and a non-pointer register operand is coded. For example:

LPD BC, [PP].ADDRESS

Be is assumed to beGA by the assembler, so the above is equivalent to:

LPD GA, [PP] .ADDRESS

*** ERROR 43: ILLEGAL SOURCE WIDTH; ASSUMED 8

The source operand in the WID instruction can be 8 or 16. Any other value is
assumed by the assembler to be 8. The destination operand in the WID instruc
tion is checked separately by the assembler, so two incorrect logical width
operands generate two error messages. Example:

WID 12,16

The above statement is treated as WID 8, 16 (not WID 8, 8).

*** ERROR 44: ILLEGAL DESTINATION WIDTH; ASSUMED 8

The destination operand in the WID instruction can be 8 or �1�6�~� Any other
value is assumed by the assembler to be 8. The source operand is checked
separately by the assembler, so two incorrect logical width operands generate
two error messages. Example:

WID 16,18

The assembler assumes the above to be WID 16,8 (not WID 8, 8).

*** ERROR 45: JUMP TARGET IS OUTSIDE 1-BYTE WINDOW; WRAPAROUND

The one-byte window is the range of the jump target's address from the end of
a control transfer instruction (next instruction address - 128, next instruction
address + 127). When the short form of a control transfer instruction is coded,
this error occurs when the assembler cannot determine the address of the jump
target on its first pass (i.e., the expression giving the jump target's location
contains a forward reference). The assembler assumes a signed byte displace
ment value (of the above range) is required to reach the jump target. If it later
determines that a signed word displacement is needed, the short form of the
control transfer instruction is flagged as an error.

The user must either: code the long form of the control transfer instruction in
place of the short form or eliminate the forward reference in the expression
specifying the jump target's location.

NOTE: WRAP AROUND means that the required displacement value has
wrapped around within the signed byte value. Thus, the value
generated by the assembler is incorrect. For example, if a displace
ment value of + 140 is required the assembler generates a value -116.

*** ERROR 46: JUMP TARGET IS OUTSIDE 2-BYTE WINDOW; WRAPAROUND

The two-byte window is the range of the jump target's address from the end of
a control transfer instruction (next instruction address - 32,768, next instruc
tion address + 32,767). All 8089 Assembly Language control transfer instruc
tion jump targets must be in the above range.

The user must move the location of the jump target inside the above range
(next instruction- 32,768, next instruction + 32,767). If, in the control
transfer instruction, the expression specifying the jump target's location does

8089 Assembler Assembler Error Messages/User Actions

not contain a forward reference, the short form of the control transfer instruc
tion can be coded and the assembler will generate a signed byte or word
displacement as is necessary. (Note that $ + 7 is not a forward reference.) If the
expression does contain a forward reference and the jump target is outside a
-128, +127 byte range, the long form of the instruction is required.

NOTE: WRAPAROUND means that the displacement value wraps around
within a signed word. The assembler does not generate the correct
displacement value. For example, a displacement of +65000
generates a displacement value of -536.

*** ERROR 47: MEMORY REFERENCE OFFSET IS > 255; VALUE MOD 256 IS USED

The value of 'd' in the data memory expression form [PREG].d cannot be
greater than 255. Example:

MOV GA, [PP] .300

The offset value 300 is evaluated modulo 256 and the above expression is
treated as:

MOV GA, [PP] .44

*** ERROR 48: (X) IS ALREADY DEFINED; REDEFINITION IS IGNORED

This message is provoked when a symbol is defined more than once in a source
file. Example:

Foa EQU OFFH

FOO: DB 8

The second use of Faa (as a label) provokes this error. This error might also
occur if an INCLUDEd file defines a symbol already defined in the main
source file (e.g., Faa is used as an instruction label in both the main source
file and an INCLUDEd file). Additional definitions of (X) must be eliminated.

*** ERROR 49: EXPRESSION HAS MORE THAN ONE EXTERNAL; (X) IS ASSUMEDZERO

A single external symbol can appear in an expression used in an LPDI instruc
tion or DD directive. Example:

EXTRN DOG,CAT

DD DOG + CAT

The assembler assumes the value of CAT, and any other external symbols in
the expression, to be zero.

Note that the following is valid:

EXTRN DOG,CAT

DD DOG,CAT

In this case, the external symbols appear in two different expressions.

*** ERROR 50: STATEMENT BEGINS WITH CONTINUATION

A source statement cannot begin in an INCLUDEd file and continue in the
main source file, i.e., the first source line following an INCLUDE control line
cannot begin with an &. The source statement must be contained in either the
INCLUDEd file or the main source file. It cannot be continued from one to
the other.

J-7

Assembler Error Messages/User Actions 8089 Assembler

1-8

*** ERROR 51: END-OF-FILE WITHIN QUOTED STRING

This error message is provoked by source files ending with the following state
ment (no end-of-line at end of statement):

DB 'ABC

The quoted string is assumed to end at the end-of-file.

*** ERROR 52: END-OF-FILE DOES NOT OCCUR ON A LINE BOUNDARY

This error message is generated by an END statement not followed by an end
of-line.

*** ERROR 53: LINE ENDS BEFORE QUOTED STRING

A quoted string cannot contain an end-of-line (a single carriage-return (CR), a
single linefeed, or a CR/LF sequence).

*** ERROR 54: ILLEGAL CHARACTER ENCOUNTERED

The assembler accepts all printing characters of the standard ASCII character
set. The non-printing characters horizontal tab (09H), carriage-return (ODH)
and line-feed (OAH) may also be lised with assembler-defined meanings (tab
and end-of-line). Invalid characters are treated as a blank by the assembler.

*** ERROR 55: LINE/STATEMENT ENDS BEFORE QUOTED STRING

The quoted string is assumed to close at the end-of-line or end-of-statement.

*** ERROR 56: (X) IS NOT A MEMORY REFERENCE REGISTER; REF BECOMES [GA];
SKIP TO COMMA OR END-OF-L1NE

Pointer/registers GA, GB, or GC and the PP register can be used in memory
reference expressions. This error is provoked by the following kind of
statement:

NOT [BC]

BC must be replaced with GA, GB, GC or PP.

*** ERROR 57: INDEXING ASSUMED VIA IX, NOT (X); SKIP TO COMMA OR END-OF-L1NE

Expressions of the form:

MOV GA, [PP + BC]

provoke this error. The second operand is assumed to read [PP+ IX].

*** ERROR 58: VALUE OF REGISTER (X) IN EXPRESSION SET TO ZERO

The following type of expression provokes this error:

ADD MC, [GB].IX

IX is not a valid offset. The assembler assumes a zero offset value.

*** ERROR 59: NOT ENOUGH OPERANDS IN AN EXPRESSION

This error message is provoked by the following kind of expression:

GOO EQU $ +

The assembler expects an operand following the + sign. An operand should be
provided or the + sign removed from the statement.

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 60: OPERATOR OR DELIMITER EXPECTED BEFORE'(X);
SKIP TO COMMA OR END-OF-LiNE

An operator, + or -, or a delimiter, , or ;, has been forgotten or mistyped.
This error message is provoked by statements of the form:

JMP TARGET 5

AND GA, [GC] THIS IS AN AND INSTRUCTION.

The assembler skips to the next comma or end-of-line.

*** ERROR 63: (X) (ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO

*** ERROR 64: DOT IS ILLEGAL IN THIS CONTEXT; SKIP TO COMMA OR END-OF-LiNE

*** ERROR 65: "STRUCTURE" EXPECTS A NAME; UNNAMED STRUCTURE GENERATED

*** ERROR 66: OPERATION (X) IS ILLEGAL AFTER AN OPERATION;
SKIP TO COMMA OR END-OF-L1NE

*** ERROR 67: (X) WAS NEVER DEFINED; ADDRESS ASSUMED ZERO

*** ERROR 68: "(X)" IS ILLEGAL IN THIS CONTEXT; SKIP REST OF STMT

While the assembler does accept all printing ASCII characters, they are not
valid in all contexts. For example:

STOO EQU ($ + 5)

The open parenthesis character is not allowed in this context and provokes this
error message. The remainder of the source statement is skipped by the
assembler.

*** ERROR 69: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [GA]

*** ERROR 70: INCOMPLETE MEMORY REFERENCE IS ASSUMEDTO BE [REGISTER]

*** ERROR 71: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER+ IX]

*** ERROR 72: INCOMPLETE MEMORY REFERENCE IS ASSUMED TO BE [REGISTER+IX+]

*** ERROR 73: (X) IS ILLEGAL IN A MEMORY REFERENCE; REF BECOMES [GA];
SKIP TO COMMA OR END-OF-L1NE

*** ERROR 74: (X) IS ILLEGAL IN A MEMORY REFERENCE; "]" ASSUMED TO PRECEDE IT;
SKIP TO COMMA OR END-OF-L1NE

*** ERROR 75: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER "]";
SKIP TO COMMA OR END OF LINE

*** ERROR 76: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" +";
INDEXED REF ASSUMED; SKIP TO COMMA OR END-OF-LiNE

*** ERROR 77: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" + IX";
"]" ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-FILE

*** ERROR 78: (X) IS ILLEGAL IN A MEMORY REFERENCE AFTER" + IX + It;
"]" ASSUMED TO PRECEDE IT; SKIP TO COMMA OR END-OF-L1NE

*** ERROR 79: OPENING "]" ASSUMED TO BE [GA]; SKIP TO COMMA OR END-OF-L1NE

J-9

Assembler Error Messages/User Actions 8089 Assembler

J-lO

*** ERROR 80: "(X) EQU $" IS ASSUMED «X) IS ALREADY GLOBAL)

Public symbols cannot be equated to a register symbol. For example:

PUBLIC REG

REG EOU GA

The above EQU statement is assumed by the assembler to be:

REG EOU $

*** ERROR 81: DELIMITER EXPECTED BEFORE (X); SKIP TO COMMA OR END-OF-UNE

A comma or end-of-line sequence is missing before (X). Everything fol
lowing (X), until the next delimiter, is ignored. A delimiter must be inserted
before (X).

*** ERROR 82: OPERAND (X) FAILS IN PASS 2; ZERO USED

Assembler error-contact Intel Corporation.

*** ERROR 83: ZERO INSERTED BEFORE (X)

The assembler turns the sequences ++; +-, -+, and -- into +0+,
+0-, -0+, and -0-. This message reports that this has occurred.

"** ERROR 84: MAXIMUM "INCLUDE" NESTING EXCEEDED

Nested INCLUDEs are not allowed by the assembler. For example:

SEG89 SEGMENT

$INCLU DE(: F1: PROG1)

SEG89 ENDS

END

The above included file (PROG 1) cannot contain any INCLUDE controls.

*** ERROR 85: PRIMARY CONTROL FOLLOWS A NON-CONTROL STATEMENT

A control line containing a primary control follows a non-control statement.
The primary control, and any controls following it in the control line, are
ignored. The primary control must be placed before the first non-control line
in the source file.

*** ERROR 86: STRUCTURE (X) IS LONGER THAN 64K BYTES

*** ERROR 87: (X) (ILLEGAL IN EXPRESSION) IS ASSUMED TO BE ZERO;
SKIP TO COMMA OR ENO-OF-UNE

*** ERROR 88: NON-PROGRAMMABLE REGISTER (X) IS ASSUMED TO BE GA

The PP register is non-programmable and can only be used in data memory
expressions. This error message is provoked by the following . kind of
statements:

MOVI PP,1234H

The assembler assumes the above to read MOVI GA, 1234H.

*** ERROR 89: NO OPERAND PRESENT; STATEMENT IGNORED

A DB, DW, DD, DS, NAME, ORG, PUBLIC, or EXTRN directive has no
operands. An operand should be added to the source statement or the state
ment should be deleted.

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 90: SOURCE STATEMENT IS TOO LONG; ADDITIONAL CHARACTERS IGNORED

The maximum size of a compressed 8089 Assembly Language source statement
is 256 characters. Additional characters are ignored but do appear in the list
file.

*** ERROR 91: ILLEGAL USE OF EXTERNAL; VALUE ASSUMED ZERO

This error message is provoked by an external symbol appearing in the
operand field of an EQU directive:

EXTRN PARM

CNTRL EQU PARM

A value of zero is assigned to the symbol CNTRL by the assembler.

*** ERROR 92: EXTERNAL SYMBOL (X) IS ILLEGAL IN THIS CONTEXT; ASSUMED ZERO

An external symbol appears in an expression in a statement other than an
LPDI instruction or DD directive. The value of the external symbol is assumed
to be zero. For example:

EXTRN SUM

ADm GA, SUM + 22

The assembler assumes the value of SUM to be zero and generates an
immediate value of 22.

*** ERROR 93: ILLEGAL POST-AUTO-INCREMENT IS IGNORED

A CALL instruction cannot have a data memory expression which uses the
post auto-increment form. For example:

CALL [GA+IX+], TARGET

The data memory expression form [GA+IX+] is not allowed. Another data
memory expression form must be used in its place.

*** ERROR 94: FORWARD REFERENCE TO REGISTER SYMBOL (X) IS ASSUMED ZERO

Symbols created as alternate register names are only allowed in the same con
texts that the register symbol is allowed in. This error message is provoked by
the following kind of statement:

DB X

X EQU BC

The value of X in the DB directive is assumed to be zero.

*** ERROR95: ILLEGAL OPERAND #(X) IS ASSUMEDZERO

Operand number (X) in a DB, DW, DD, or EQU directive is a data memory
expression or a register symbol.

* ** ERROR 121: INVALID DIGIT IN CONTROL FIELD

*** ERROR 122: LINE ENDS BEFORE QUOTED STRING IN CONTROL

*** ERROR 123: CONTROL REQUIRES PARENTHESIZED VALUE

*** ERROR 124: CONTROL REQUIRES QUOTED STRING

*** ERROR 125: RIGHT PARENTHESIS EXPECTED

J-ll

Assembler Error Messages/User Actions 8089 Assembler

1-12

*** ERROR 126: CONTROL STRING IS TOO LONG

*** ERROR 127: CONTROL VALUE IS TOO LARGE

*** ERROR 128: CONTROL VALUE IS TOO SMALL

*** ERROR 129: UNRECOGNIZED CONTROL

*** ERROR 130: CONTROL REQUIRES NUMERIC VALUE

*** ERROR 131: (X) IS USED ILLEGALLY

*** ERROR 151: NAME REQUIRED; STATEMENT IGNORED

*** ERROR 152: LABEL REQUIRED; STATEMENT IGNORED

*** ERROR 153: ILLEGAL OUTSIDE SEGMENT; STATEMENT IGNORED

*** ERROR 154: ILLEGAL INSIDE STRUCTURE; STATEMENT IGNORED

*** ERROR 155: SYMBOL EXPECTED; TWO NO-OPS GENERATED

*** ERROR 156: TOO MANY EXTERNALS; BALANCE IGNORED

A maximum of 32,767 external symbols may be declared in a source file, pro
vided there is sufficient room in the dictionary. Two separate source files must
be created if more than 32,767 external symbols are needed.

*** ERROR 157: "ENDS" HAS NO ANTECEDENT; STATEMENT IGNORED

*** ERROR 158: ATTEMPTED 1-BYTE BRANCH T02-BYTE TARGET;
TWO NO-OPS GENERATED

The jump target of a TSL instruction is outside the range next instruction
-128, next instruction + 127. The jump target must be relocated inside this
range.

*** ERROR 159: ILLEGAL COMBINATION OF OPERANDS; TWO NO-OPS GENERATED

*** ERROR 160: "NAME" DOES NOT ALLOW EXPRESSIONS; STATEMENT IGNORED

*** ERROR 161: SEGMENT (X) IS ALREADY DEFINED; STATEMENT IGNORED

*** ERROR 162: "SEGMENT" REQUIRES A NAME; STATEMENT IGNORED

*** ERROR 163: STRUCTURES MAY NOT BE NESTED; STATEMENT IGNORED

*** ERROR 164: UNRECOGNIZED OPERATION (X); STATEMENT IGNORED

*** ERROR 201: FAILURE DURING STATEMENT SCAN (REMAP)

*** ERROR 202: SYNTAX FAILURE AFTER INITIAL EVALUATION

*** ERROR 203: FAILURE DURING OPERAND CLASSIFICATION

*** ERROR 204: POINTER FAILURE IN PASS 2; GA ASSUMED

*** ERROR 205: DESTINATION LOST BETWEEN PASSES; WIDTH ASSUMED 8

*** ERROR 206: ATTEMPT TO SKIP TO NONEXISTENT OPERAND

8089 Assembler Assembler Error Messages/User Actions

*** ERROR 207: OPERAND #(X) FAILS IN PASS ONE; STATEMENT IGNORED

*** ERROR 208: (X) WAS PREVIOUSLY MADE A NON-SYMBOL

*** ERROR 209: UNRECOGNIZED CONSTRUCT WHILE EMPTYING META-TEXT

*** ERROR 210: REWRITTEN EXPRESSION FAILURE

*** ERROR 211: META POINTER IS PAST END OF META TEXT

*** ERROR 212: META POINTER IS BEFORE START OF META TEXT

*** ERROR 213: META NOTE OVERFLOW

*** ERROR 214: META NOTE UNDERFLOW

*** ERROR 215: ATTEMPT TO PLANT UNRECOGNIZED META CHARACTER

*** ERROR 216: ATTEMPT TO PLANT UNRECOGNIZED OBJECT CONSTRUCT

*** ERROR 217: UNRECOGNIZED CONSTRUCT WHILE SKIPPING IN META-TEXT

*** ERROR 218: FAILURE OF OPEN/CLOSE QUOTE META

*** ERROR 220: INVALID META FOUND IN INTERMEDIATE TEXT

*** ERROR 221: UNRECOGNIZED TOKEN TYPE; SKIP TO COMMA OR END-OF-L1NE

*** ERROR 222: CONTROL FAILURE IN PASS 2

*** ERROR 247: USED ILLEGALLY

*** ERROR 248: CONTROL IS INVALID IN COMMAND TAIL

*** ERROR 249: INVOCATION DOES NOT END WITH <CR><LF>

*** ERROR 250: INVOCATION LINE IS TOO LONG

*** ERROR 251: INPUT MUST BE FROM A RANDOM-ACCESS FILE

*** ERROR 252: TYPE <n>: <concise message for ISIS error <n> >

*** ERROR 253: LENGTH ERROR ON READ

*** ERROR 254: NOT ENOUGH SPACE FOR ERROR CONSTRUCTS

*** ERROR 255: PASS FAILURE DURING STATEMENT ABANDON

*** ERROR <m>: INTERNAL PROCESSING ERROR

Assembler failure-contact Intel Corporation.

***ERROR <n>: UNKNOWN ERROR TYPE

Assembler failure-contact Intel Corporation.

J-13

APPENDIX K
8089 INSTRUCTIONS IN
HEXADECIMAL ORDER

Each 8089 instruction generates a mllllmum of two bytes of object code. The
following lists the hexadecimal values for the second assembled instruction byte,
containing the operation code and the base memory address fields.

A "B" appearing in brackets in an instruction mnemonic is coded for the byte form
of the instruction.

For example:

20H is generated by both ADDI R, I and ADDBI R, I. An "L" appearing in
brackets in a control transfer instruction mnemonic is coded for the long form of the
instruction.

For example:

40H is generated by both JNZ R, Land L-JNZ R, L.

See Chapter 3 for the format of the first assembled instruction byte.

HEX

00
00
00
00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
10
1E
1F
20
20
21
22

BINARY

00000000
00000000
00000000
00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100

. 00001101
00001110
00001111
00010000
00010001
00010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
00011011
00011100
00011101
00011110
00011111
00100000
00100000
00100001
00100010

INSTRUCTION

NOP
SINTR
WID S, 0
XFER

LPOI P, I

ADO[B]I R,
[L]JMP L

BASE ADDRESS

K-l

8089 Instructions in Hexadecimal Order 8089 Assembler

HEX BINARY INSTRUCTION BASE ADDRESS

23 00100011
24 00100100 OR[S]I R, I
25 00100101
26 00100110
27 00100111
28 00101000 AND[S]I R, I
29 00101001
2A 00101010
28 00101011
2C 00101100 NOT R
20 00101101
2E 00101110
2F 00101111
30 00110000 MOV[8]1 R, I
31 00110001
32 00110010
33 00110011
34 00110100
35 00110101
36 00110110
37 00110111
38 00111000 INC R
39 00111001
3A 00111010
38 00111011
3C 00111100 DEC R
3D 00111101
3E 00111110
3F 00111111
40 01000000 [L]JNZ R, L
41 01000001
42 01000010
43 01000011
44 01000100 [L]JZ R, L
45 01000101
46 01000110
47 01000111
48 01001000 HLT
49 01001001
4A 01001010
48 01001011
4C 01001100 MOV[8]1 M, GA
40 01001101 MOV[8]1 M, GS
4E 01001110 MOV[8]1 M, GC
4F 01001111 MOV[B]I M, pp
50 01010000
51 01010001
52 01010010
53 01010011
54 01010100
55 01010101
56 01010110
57 01010111
58 01011000
59 01011001
5A 01011010
58 01011011
5C 01011100
50 01011101
5E 01011110
5F 01011111
60 01100000
61 01100001
62 01100010
63 01100011
64 01100100
65 01100101
66 01100110
67 01100111
68 01101000

K-2

8089 Assembler 8089 Instructions in Hexadecimal Order

HEX BINARY INSTRUCTION BASE ADDRESS

69 01101001
6A 01101010
6B 01101011
6C 01101100
60 01101101
6E 01101110
6F 01101111
70 01110000
71 01110001
72 01110010
73 01110011
74 01110100
75 01110101
76 01110110
77 01110111
78 01111000
79 01111001
7A 01111010
7B 01111011
7C 01111100
70 01111101
7E 01111110
7F 01111111
80 10000000 MOV[B] R, M GA
81 10000001 MOV[8] R, M G8
82 10000010 MOV[8] R, M GC
83 10000011 MOV[8] R, M PP
84 10000100 MOV[8] M, R GA
85 10000101 MOV[8] M, R G8
86 10000110 MOV[B] M, R GC
87 10000111 MOV[8] M, R PP
88 10001000 LPO P, M GA
89 10001001 LPO P, M G8
8A 10001010 LPO P, M GC
88 10001011 LPO P, M PP
8C 10001100 MOVP P, M GA
80 10001101 MOVP P, M GB
8E 10001110 MOVP P, M GC
8F 10001111 MOVP P, M PP
90 10010000 MOV[8] M, M GA
91 10010001 MOV[8] M, M G8
92 10010010 MOV[B] M, M GC
93 10010011 MOV[8] M, M PP
94 10010100 TSL M, I, L GA
95 10010101 TSL M, I, L GB
96 10010110 TSL M, I, L GC
97 10010111 TSL M, I, L PP
98 10011000 MOVP M, P GA
99 10011001 MOVP M, P G8
9A 10011010 MOVP M, P GC
98 10011011 MOVP M, P PP
9C 10011100 [L]CALL M, L GA
90 10011101 [L]CALL M, L G8
9E 10011110 [L]CALL M, L GC
9F 10011111 [L]CALL M, L PP
AO 10100000 AOO[B] R, M GA
A1 10100001 AOD[B] R, M G8
A2 10100010 AOO[B] R, M GC
A3 10100011 AOO[B] R, M PP
A4 10100100 OR[B] R, M GA
A5 10100101 OR[8] R, M G8
A6 10100110 OR[B] R, M GC
A7 10100111 OR[B] R, M PP
A8 10101000 ANO[B] R, M GA
A9 10101001 ANO[B] R, M G8
AA 10101010 ANO[B] R, M GC
A8 10101011 ANO[B] R, M PP
AC 10101100 NOT[B] R, M GA
AO 10101101 NOT[B] R, M G8
AE 10101110 NOT[B] R, M GC

K-3

8089 Instructions in Hexadecimal Order 8089 Assembler

HEX BINARY INSTRUCTION BASE ADDRESS

AF 10101111 NOT[B] R, M pp
BO 10110000 [L]JMCE M, L GA
B1 10110001 [L]JMCE M, L GB
B2 10110010 [L]JMCE M, L GC
B3 10110011 [L]JMCE M, L pp
B4 10110100 [L]JMCNE M, L GA
B5 10110101 [L]JMCNE M, L GB
B6 10110110 [L]JMCNE M, L GC
B7 10110111 [L]JMCNE M, L pp
B8 10111000 [L)JNBT M, b, L GA
B9 10111001 [L]JNBT M, b, L GB
BA 10111010 [L]JNBT M, b, L GC
BB 10111011 [L]JNBT M, b, L pp
BC 10111100 [L] JBT M, b, L GA
BD 10111101 [L]JBT M, b, L GB
BE 10111110 [L]JBT M, b, L GC
BF 10111111 [L] JBT M, b, L pp
CO 11000000 ADD[B]I M, I GA
C1 11000001 ADD[B)I M, I GB
C2 11000010 ADD[B]I M, I GC
C3 11000011 ADD[B]I M, I pp
C4 11000100 OR[B]I M, I GA
C5 11000101 OR[B]I M, I GB
C6 11000110 OR[B]I M, I GC
C7 11000111 OR[B]I M, I pp
C8 11001000 AND[B]I M, I GA
C9 11001001 AND[B]I M, I GB
CA 11001010 AND[B]I M, I GC
CB 11001011 AND[B]I M, I pp
CC 11001100
CD 11001101
CE 11001110
CF 11001111
DO 11010000 ADD[B] M, R GA
D1 11010001 ADD[B] M, R GB
D2 11010010 ADD[B] M, R GC
D3 11010011 ADD[B] M, R pp
D4 11010100 OR[B] M, R GA
D5 11010101 OR[B] M, R GB
D6 11010110 OR[B] M, R GC
D7 11010111 OR[B) M, R pp
D8 11011000 AND[B] M, R GA
D9 11011001 AND[B] M, R GB
DA 11011010 AND[B] M, R GC
DB 11011011 AND[B] M, R pp
DC 11011100 NOT[B] M GA
DD 11011101 NOT[B] M GB
DE 11011110 NOT[B] M GC
DF 11011111 NOT[B] M pp
EO 11100000 [L]JNZ[B] M, L GA
E1 11100001 [L)JNZ[B] M, L GB
E2 11100010 [L]JNZ[B] M, L GC
E3 11100011 [L]JNZ[B] M, L pp
E4 11100100 [L]JZ[B] M, L GA
E5 11100101 [L]JZ[B] M, L GB
E6 11100110 [L]JZ[B] M, L GC
E7 11100111 [L)JZ[B] M, L pp
E8 11101000 INC[B] M GA
E9 11101001 INC[B] M GB
EA 11101010 INC[B] M GC
EB 11101011 INC[B] M pp
EC 11101100 DEC[B] M GA
ED 11101101 DEC[B] M GB
EE 11101110 DEC[B] M GC
EF 11101111 DEC[B] M pp
FO 11110000
F1 11110001
F2 11110010
F3 11110011
F4 11110100 SETB M, b GA

K-4

8089 Assembler

HEX

F5
F6
F7
F8
F9
FA
FB
Fe
FD
FE
FF

BINARY

11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

INSTRUCTION

SETB M, b
SETB M, b
SETB M, b
CLR M, b
CLR M, b
CLR M, b
CLR M, b

8089 Instructions in Hexadecimal Order

BASE ADDRESS

GB
GC
pp
GA
GB
GC
pp

K-5

INDEX

The entries in this index are shown as they appear in the text of the book, i.e., lower
case words are lowercase in the text, uppercase words are uppercase in the text.
When more than one reference is given for an entry, the primary reference is listed
first.

SYMBOLS

$

&

+

/

?

@

**

location counter reference, 2-8
in relative instruction addresses, 2-10
in assembly control lines, 5-2

continuing source statements, 3-2
continuing assembler invocation lines, 5-2

assembly time operator, unary or binary addition, 2-8

assembly line operator, unary or binary addition, 2-8
in the list file, 5-7

symbol special character, 2-5

in the list file, 5-7

in label definition, 2-6

in commentf:, 3-2

in list file, 5-7

symbol special character, 2-5

symbol special character, 2-5

assembler prompt, continue invocation line, 5-2

in symbol table, 5-7

[PREG] data memory operand, 2-11

[PREG].d data memory operand, 2-12,4-7

[PREG+IX] data memory operand, 2-12

[PREG+IX+] data memory operand, 2-12

8086
addresses

110, 1-15
Memory, 1-15

formation of 20-bit addresses, 1-9
host processor and RQ/GT, 1-13

8088
host processor and RQ/GT, 1-13

Index-l

A

AA, field in assembled instructions
in CALL and LCALL instructions,

3-27, 3-51
memory address mode, 3-2, 3-3

ADD, 3-11, 3-9
ADDB,3-8

AD DB M, R, 3-13
ADDB R, M, 3-12

ADDBI,3-8
ADDBI M, I, 3-15
ADDBI R, I, 3-14

ADDI, 3-16, 3-9
addition, 3-8, 3-9

ADD, 3-11, 3-9
ADDB, 3-12, 3-13, 3-8
ADDBI, 3-14, 3-15, 3-8
ADDI, 3-16, 3-9
and 20-bit pointer/registers, 3-9

addresses (physical length), 1-15
addressing data. See also data memory

operands
indirect, 1-15,2-11
Local (110) addresses, 1-15, 2-11
LOCAL configuration address space, 1-4
REMOTE configuration address

space, 1-4
system (memory) addresses, 1-15,2-11
tag bit in, 1-15

ampersand (&)
in continuing source statements, 3-2
in continuing the assembly invocation

line, 5-2
AND, 3-17, 3-18, 3-9
ANDB,3-8

ANDB M, R, 3-20
ANDB R, M, 3-19

ANDBI,3-8
ANDBI M, I, 3-22
ANDBI R, I, 3-21

ANDI, 3-23, 3-24,3-9
arithmetic and logical instructions, 3-8, 3-9

ADD, 3-11, 3-9 .
ADDB, 3-12, 3-13, 3-8
ADDBI, 3-14, 3-15, 3-8
ADDI, 3-16, 3-9
AND, 3-17, 3-18, 3-9
ANDB, 3-19, 3-20, 3-8
ANDBI, 3-21, 3-22, 3-8
ANDI, 3-23, 3-24, 3-9
DEC, 3-29, 3-9
DECB, 3-30, 3-8
INC, 3-32, 3-9
INCB, 3-33, 3-8
NOT, 3-84, 3-85, 3-9
NOTB, 3-86, 3-87, 3-8
OR, 3-88, 3-89,3-9
ORB, 3-90, 3-91,3-8
ORBI, 3-92, 3-93, 3-8
ORI, 3-94, 3-95, 3-9
registers affected by 8-bit

operations, 3-8
using pointer/registers in, 3-9

ASM89,1-5

Index-2

compression of source statements,
3-2,4-2

controls
DATE, 5-4
EJECT,5-4
INCLUDE,5-4
LIST,5-4
NOLIST,5-4
NOOBJECT,5-3
NOPAGING,5-4
NOPRINT, 5-3
NOSYMBOLS, 5-3
OBJECT,5-3
PAGING,5-4
PAGELENGTH, 5-4
PAGEWIDTH, 5-4
PRINT, 5-3
SYMBOLS, 5-3
TITLE, 5-4

default controls, table 5-2, 5-5
displacements generated by

short control transfer instructions, 3-7
long control transfer instructions, 3-7

double asterisk prompt, 5-2, 5-5
invocation, 5-2, 5-5
list file, 5-6thru5-8, 1-5, 1-6
location counter, 4-3, 2-8
object file, 1-5, 1-6
primary versus general controls, 5-2
source file, 5-1, 1-5

assembled instructions, 3-2 thru 3-4
additional assembled bytes

displacement value field, 3-2, 3-3
immediate value field, 3-2
offset field, 3-2, 3-3

format of initial two bytes, 3-3
memory to memory move

operations, 3-72 thru 3-76, 3-3
TSL instruction, 3-99, 3-100, 3-3

assembler. See ASM89
assembler control defaults, Table 5-2,

5-5
assembler control lines, 5-2
assembler directives

Assembly Termination
END,4-12

Data Definition and Memory
Reservation

DB, 4-4, 4-5
DD,4-6
DS,4-7
DW, 4-5, 4-6

list of, 4-2
Location Counter Control

EVEN,4-9
ORG,4-9

Program Linkage
EXTRN,4-11
NAME,4-1O
PUBLIC, 4-11
SEGMENT/ENDS, 4-10, 4-11

source statement format, 4-1
structure definition

STRUC/ENDS, 4-7, 4-8
symbol definition

EQU, 4-3, 4-4

assembler invocation, 5-2, 5-5
Assembler Termination directive

END,4-12
assembler's location counter, 4-3

and DS directive, 4-7
and EVEN directive, 4-9
and ORG directive, 4-9
and STRUC/ENDS directive, 4-8
location counter reference symbol

($),2-8
value assigned to labels, 4-3

assembly language instructions. See also
instruction mnemonics

assembled instructions, 3-2 thru 3-4
by functional group, 3-4 thru 3-10
execution time, 3-1
fetch time, 3-1
in encyclopedia of instructions, 3-1
operands, 2-1, 2-2
source statement format, 3-1, 3-2

assembly time operators, 2-8

B

base address. See data memory operands
base memory address select. See MM field

(of assembled instructions)
BC

channel register, 1-14
functions, 1-15
in DMA transfer, 1-16, 1-14
register operand, 2-3

binary constants, 2-7
Bit Manipulation and Test Instructions,

3-10. See also Data Memory Bit
Operands

CLR,3-28
JBT, 3-34,3-35
JNBT, 3-42, 3-43
LJBT, 3-52, 3-53
LJNBT, 3-59,3-60
SETB,3-96

Bus Load Limit (BLL), 1-7
BUSY flat byte

c

in Channel Control Block, 1-6
in 8089 initialization, 1-8, 1-13
indicating a channel's activity status, 1-8

call instruction
CALL, 3-25 thru 3-27
LCALL, 3-50, 3-51

carriage return (ODH)
terminates source line, 3-2

carriage return followed by line-feed
(ODOAH)

terminates source line, 3-2
CC

and chained task block program instruc-
tion execution, 1-16

channel register, 1-14
function, 1-15
register operand, 2-3
role in DMA transfer, 1-16, 1-17
use of, example, 1-18 thru 1-25

chained task block program instruction
execution

control by CC register, 1-16, 1-17
operation, 1-16

channel attention (CA)
first CA after reset, 1-12
in 8089/host processor communica

tions, 1-7
use of, example, 1-22

Channel Control Block (CB)
address of, 1-6
BUSY flag byte, 1-6
Channel Con.trol Word, 1-6
format, 1-7
inspection by a channel, 1-7
use of, example, 1-18 thru 1-25

Channel Control Word (CCW), 1-6,
figure 1-8

Bus Load Limit, 1-7
Command Field, 1-7
inspected by a channel, 1-7
Interrupt Control Field, 1-7
Priority Field, 1-7
use of, example, 1-18 thru 1-25

character string constants, 2-8
cannot be continued on another

source line, 3-2
containing one or two characters

as numeric constants, 2-8
in DW directives, 4-5

in DB directives, 4-4
clear data memory bit, 3-28
CLR, 3-28
Command Field (CF)

continue (resume) channel operation
command, 1-8, 1-11

halt channel command, 1-8, 1-7
in Channel Control Word, 1-8
start channel command, 1-7 thru 1-10
suspend (HALT and SAVE) channel

operation command, 1-7 thru 1-11
Command Parameter Block, 1-8, 1-6

accessing user-defined area through
PP,2-11,1-9

address placed in PP register, 1-8
format, 1-8
use of, example, 1-18 thru 1-25
used by channel HALT and SAVE

command, 1-8, 1-9
user-definable area, 1-9

comments
in assembler invocation lines, 5-2, 5-5
in source lines, 3-2

commerical at (@)
symbol special character, 2-5

communication. See also (sample task
block program), 1-18 thru 1-25

channel attention in, 1-7, 1-12
Channel Control Block in, 1-6
Channel Parameter Block in, 1-6
8089/host processor, 1-6

complement
data memory byte, 3-86, 3-87
NOT, 3-84, 3-85
NOTB, 3-86, 3-87
register or data memory word, 3-84, 3-85

Index-3

conceptual view of the 8089 II 0 processor,
1-5

constants. See numeric constants
control defaults, table 5-2, 5-5
control lines, 5-2
Control Transfer Instructions

and TP pointer/register, 3-6
conditional instructions, 3:-8

JMCE, 3-36, 3-37
JMCNE, 3-38, 3-39
JNZ, 3-44, 3-45
JNZB,3-46
JZ, 3-47, 3-48
JZB,3-49
LJMCE, 3-54, 3-55
LJMCNE, 3-56, 3-57
LJNZ, 3-61, 3-62
LJNZB, 3-63, 3-64
LJZ, 3-65, 3-66
LJZB, 3-67, 3-68

j urn p targets
operand form, 2-10
range, 3-6, 3-7

short and long forms, 3-7
short form errors, 3-7
unconditional instructions

CALL, 3-25 thru 3-27
JMP, 3-40, 3-41
LCALL, 3-50, 3-51
LJMP, 3-58

CR (ODH), 3-2
CRLF (ODOAH), 3-2

D

Data Definition and Memory Reservation
Directives

DB, 4-4, 4-5
DD,4-6
DS,4-7
DW,4-5,4-6
labels in, 4-4

Data Memory Bit Operands, 2-12,2-13
Data Memory Operands, 2-11,2-12

forms of
[PREG],2-11
[PREG].d,2-12
[PREG+IX],2-12
[PREG+IX+], 2-12

indirect addressing, 2-11, 1-15
post auto-incremented, 2-12

data memory reservation. See DS directive
Data Transfer Instructions, 3-5

and 20-bit pointer/registers, 3-5
LPD,3-69
LPDI, 3-70, 3-71
MOV, 3-72, 3-73
MOVB, 3-74 thru 3-76
MOVBI, 3-77, 3-78
MOVI,3-79
MOVP, 3-80 thru 3-82

date
DATE control, 5-4, 5-5
in list file header line, 5-6

DATE assembler control, 5-4 thru 5-6
DB directive, 4-4, 4-5

Index-4

character string constants in, 4-4
expressions in, 4-4
format of, 4-4

DD directive
expressions in, 4-6
external symbols in, 4-6
format of, 4-6
LINK86 and LOC86 processing of, 4-6

DEC, 3-29
DECB,3-30
decimal constants, 2-7
decrement

data memory byte, 3-30
DEC, 3-29
DECB,3-30
register or data memory word, 3-29

define byte. See DB directive
define double word. See DD directive
define word. See DW directive
DEFN,5-7
directive mnemonics

list of, 4-2
DB, 4-4, 4-5
DD,4-6
DS,4-7
DW, 4-5, 4-6
END,4-12
ENDS, 4-7,4-8,4-10,4-11
EQU, 4-3, 4-4
EVEN,4-9
EXTRN, 4-11
NAME,4-10
ORG,4-9
PUBLIC, 4-11
SEGMENT, 4-10,4-11
STRUC, 4-7, 4-8

displacement value
and control transfer instructions

long form, 3-7
short form, 3-7

and TP pointer/register, 3-6
and WB field of assembled instruction,

3-3
in assembled instruction, 3-2, 3-3
in TSL instruction, 3-100, 3-3

displacement value field
in assembled instruction, 3-2, 3-3
in TSL instruction, 3-100, 3-3

DMA transfer, 1-16
CC register'S role in, 1-16, 1-17
channel registers used in, 1-16
example, 1-18 thru 1-25
initiation, 1-17
special task block program instructions

WID, 3-101,1-17
XFER, 3-102, 1-17

dollar sign ($)
in assembler control line, 5-2
in relative instruction addresses, 2-1 °
location counter reference symbol, 2-8

double asterisk prompt (**), 5-2, 5-5
DS directive

expressions in, 4-7
format of, 4-7
memory reservation, 4-7

DW directive

E

character strings of one or two characters
in, 4-5

expressions in, 4-5
format of, 4-5
storage of 16-bit addresses, 4-5
storage order of 16-bit values, 4-5

EJECT,5-4
END directive, 4-12

and included files, 4-12,5-1,5-4
format of, 4-12
within a source program, 4-12

ENDS directive, 4-2
EQU directive

defining register name synonyms
with,4-3

expressions in 4-4
format of, 4-3

error messages. See Appendix J
in list file, 5-7

EVEN directive, 4-9
execution time (instruction), 3-1
expressions, 2-5

assembly time operators, 2-8, 2-9
character string constants containing one

or two characters, 2-8
external symbols allowed in

DD directive, 4-6
LPDI instruction, 3-70

location counter reference, 2-8
numeric constants, 2-6, 2-7
permissible range of values, 2-9
symbols, 2-5, 2-6

EXT,5-8
EXTRN directive, 4-11

format of, 4-11
within a source file, 4-11

F

fetch time (instruction), 3-1
use of one byte queue, 3-1

formation of 20-bit addresses by 8089
hardware, 1-9. See also segment
address and offset value

G

GA
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer / register operand, 2-4
register operand, 2-3

GB
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer/register operand, 2-4
register operand, 2-3

GC
channel pointer/register, 1-14
function, 1-14
in data memory operands, 2-11
in DMA transfer operations, 1-16
pointer/register operand, 2-4
register operand, 2-3

general controls, 5-4
defaults, table 5-2, 5-5

H

primary versus general controls, 5-2
EJECT,5-4
INCLUDE,5-4
LIST,5-4
NOLIST,5-4

hexadecimal constants, 2-7
HLT,3-31

I

immediate data operands, 2-5 thru 2-9
expressions, 2-5

assembly time operators
character string constants containing

one or two characters, 2-8
location counter reference, 2-8
numeric constants, 2-6, 2-7
permissible range of values, 2-9
symbols, 2-5, 2-6

external symbols in
LPDI instruction, 3-70

immediate value
and WB field of assembled instruction,

3-3
in assembled instruction, 3-2
in TSL instruction, 3-99, 3-3

immediate value field
in assembled instruction, 3-2
in TSL instruction, 3-99,3-3

INC, 3-32
INCB,3-33
INCLUDE control, 5-4

included source lines in listing file, 5-7
increment

data memory byte, 3-33
INC, 3-32
INCB,3-33
post auto-incremented data memory

operands
[PREG+IX+], 2-12

register or data memory word, 3-32
indirect addressing, 2-11, 1-15
initialization (of 8089), I-II, figure 1-12

indication of completion,· 1-13
initializing multiple 8089s, 1-13
linked list, 1-11
System Configuration Block, 1-13
System Configuration Pointer, 1-12

instruction labels. See labels
instruction mnemonics, 2-1

by functional group, 3-4 thru 3-10
Arithmetic and Logical, 3-8, 3-9
Bit Manipulation and Test, 3-10
Control Transfer, 3-6

Index-S

Data Transfer, 3-5
Special and Miscellaneous, 3-10

instruction opcodes
in assembled instructions, 3-3

instructions. See assembly language
instructions

instruction set, 1-5
encyclopedia, 3-11 thru 3-102

Interrupt Control Field (lCF)
enable, acknowledge, disable interrupts,

1-7,1-8,1-18
in Channel Control Word, 1-7,1-8
use with SINTR task block program

instruction, 1-7, 1-18
interrupts, 1-18

and Interrupt Control Field, 1-7, 1-8,
1-18

and SINTR task block program
instruction, 1-7, 1-18

enabled, acknowledged, disabled, 1-7,
1-8, 1-18

invocation line, 5-2, 5-5
continuation of, 5-2, 5-5

110 channel, 1-1, 1-4
IX

J

channel register, 1-14
function, 1-15
in data memory operands, 2-12
post auto-increments, 2-12
register operand, 2-3

JBT
JBT (short form), 3-34, 3-35
LJBT (long form), 3-52, 3-53

JMCE
JMCE (short form), 3-36, 3-37
LJMCE (long form), 3-54, 3-55

JMCNE
JMCNE (short form), 3-38, 3-39
LJMCNE (long form), 3-56, 3-57

JMP
JMP (short form), 3-40, 3-41
LJMP (long form), 3-58

JNBT
JNBT (short form), 3-42, 3-43
LJNBT (long form), 3-59, 3-60

JNZ
JNZ (short form), 3-44, 3-45
LJNZ (long form), 3-61, 3-62

JNZB
JNZB (short form), 3-46
LJNZB (long form), 3-63, 3-64

jump instructions. See Control Transfer
Instructions

jump target
program location operands, 2-10
range for

JZ

long form control transfer
instructions, 3-6, 3-7

short form control transfer
instructions, 3-6, 3-7

JZ (short form), 3-47, 3-48
LJZ (long form), 3-65, 3-66

Index-6

JZB
JZB (short form), 3-49
LJZB (long form), 3-67, 3-68

L

labels
as jump targets, 2-10
defined,2-6
on instructions, 3-2, 4-3
on data definition and memory reserva

tion directives, 4-4
LF (OAH), 3-2
line-feed (OAH)

terminates source line, 3-2
LINK86, 1-6, 4-10

and DD directive, 4-6
and LPDI instruction, 3-70

LIST,5-4
list file, 1-5, 1-6

assembler controls for
DATE,5-4
EJECT,5-4
LIST INOLIST, 5-4
P AGELENGTH, 5-4
P AGEWIDTH, 5-4
PAGING/NOPAGING, 5-4
PRINT INOPRINT, 5-3
SYMBOLS/NOSYMBOLS, 5-3
TITLE,5-4

error messages in, 5-6
format of, 5-6 thru 5-8

date, 5-6
header, 5-6
listing banner, 5-6
title, 5-6

source lines from an included file in, 5-7
split listing lines in, 5-7
symbol table in, 5-7, 1-5, 1-6

listing banner, 5-6
LOC86, 1-6,4-9,4-10

and 8089 segments, 1-6,4-9
and DD directive, 4-6
and LPDI instruction, 3-70

LOCAL configuration, 1-2
addresses in, 2-11, 1-15
address space, figure 1-4B

local (1/0) addresses, 1-4, 1-15
and data memory operands, 2-11
stored in data memory, 4-5

location counter. See assembler's location
counter

location counter control directives
EVEN,4-9
ORG,4-9

location counter reference ($),2-8
in assembly control lines, 5-2
in relative instruction addresses, 2-10

logical instructions, 3-8, 3-9
AND, 3-17, 3-18, 3-9
ANDB, 3-19, 3-20, 3-8
ANDBI, 3-21, 3-22, 3-8
ANDI, 3-23, 3-24, 3-9
NOT, 3-84, 3-85, 3-9
NOTB, 3-86, 3-'87, 3-8

OR, 3-88, 3-89, 3-9
ORB, 3-90, 3-91, 3-8
ORBI, 3-92, 3-93, 3-8
ORI, 3-94, 3-95,3-9
registers affected by 8-bit operations, 3-8
using pointer/registers in, 3-9

logical widths. See entry in Glossary
long (form) control transfer instructions,

3-7
assembler-generated displacements, 3-7
coded in place of short form, 3-7
jump targets, 3-6, 3-7

LPD, 3-69, 3-5
and data memory operand, 2-11
and pointer/register tag bits, 3-5

LPDI, 3-70,3-71,3-5
and data memory operands, 2-11
and pointer /register tag bits, 3-5

M

MASTER
designating an 8089 as, 1-13
in request! grant circuitry operation, 1-13

MC. See also JMCE, JMCNE
channel register, 1-14
function, 1-15
in DMA transfer operations, 1-16

memory address mode
and AA field in assembled instruction,

3-2,3-3
in CALL instructions, 3-27
in LCALL instructions, 3-51

memory-to-memory move operations. See
also MOV, MOVB

assembled instructions, 3-3
MM field (of assembled instructions)

base memory address select, 3-3
mnemonic. See instruction mnemonics and

directive mnemonics
MOV, 3-72, 3-73

and data memory operands, 2-11
MOVB, 3-74 thru 3-76

and data memory operands, 2-11
MOVBI, 3-77, 3-78

and data memory operands, 2-11
move instructions, 3-5

and data memory operands, 2-11
and 20-bit pointer/registers, 3-5
MOV, 3-72, 3-73
MOVB, 3-74 thru 3-76
MOVBI, 3-77, 3-78
MOVI,3-79
MOVP, 3-80 thru 3-82

MOVI,3-79
and data memory operands, 2-11

MOVP, 3-80 thru 3-82
MUL TIBUS interface, 1-2, 1-3

N

name
defined,2-6

NAME (in list file symbol table), 5-8

NAME directive, 4-10
format of, 4-10
in the list file listing banner, 5-6
use of, example, 1-18 thru 1-25
valid module-names, 4-10

negative numbers (values)
in numeric constants, 2-6
in expressions, 2-9

NOLIST,5-4
NOOBJECT, 5-3
NOP, 3-83
NOPAGING, 5-4, 5-5
NOPRINT, 5-3
NOSYMBOLS, 5-3, 5-5
NOT, 3-84, 3-85
NOTB, 3-86,3-87
numeric constants

as program location operands, 2-10
binary number system, 2-7
character string constants of one or two

o

characters, 2-8
decimal number system, 2-7
hexadecimal number system, 2-7
negative numbers, 2-7,2-9
octal number system, 2-7
permissible range of values, 2-9

OBJECT, 5-3, 5-5
object file, 1-5, 1-6

assembler controls
OBJECT/NOOBJECT,5-3

octal constants, 2-7
offset field (in assembled instructions), 3-2,

3-3
offset value

and STRUC/ENDS assembler directives,
4-7,4-8

in 20-bit addresses, figure 1-9, 4-6
in assembled instructions, 3-2, 3-3
in Command Parameter Block, 1-9
in data memory operands

[PREG].d,2-12
template of, 4-7, 4-8

opcodes, See instruction opcodes
operands

general form, 2-1
types, 2-1

data memory, 2-11,2-12
data memory bit, 2-12, 2-l3
immediate data, 2-5 thru 2-9
pointer/register, 2-4, 2-5
program location, 2-1 °
register, 2-3, 2-4

OR, 3-88, 3-89
ORB

ORB M, R, 3-91
ORB R, M, 3-90

ORB I
ORBI M, I, 3-93
ORBI R, 1,3-92

ORG directive, 4-9
ORI, 3-94, 3-95

Index-7

p

P AGELENGTH, 5-4
P AGEWIDTH, 5-4, 5-5
PAGING,5-4
permissible range of expression

values, 2-9
pointer/registers, 1-14

and tag bits, 1-14, 1-15
as 16-bit registers, 1-14
GA, 1-14,2-11
GB, 1-14,2-11
GC, 1-14,2-11
in arithmetic and logical operations,

3-9
in data memory addressing, 1-15,

2-11
TP, 1-14

pointer/register operands, 2-4, 2-5
post auto-incremented. See data

memory operands
PP, 1-14, 1-15

in data memory operands, 2-11
loaded by a start channel command,

1-8, 1-14
use, example of, 1-18 thru 1-25
used to access user-defined portion

of PB, 2-11, 1-9
primary controls, 5-3, 5-4

DATE
defaults, table 5-2, 5-5
NOPAGING
NOOBJECT
NOPRINT
NOSYMBOLS
OBJECT
PAGELENGTH
PAGEWIDTH
PAGING
primary versus general controls, 5-2
PRINT
SYMBOLS
TITLE

PRINT, 5-3, 5-5
Priority field

in Channel Control Word, 1-7
use in resolving conflicting channel

requests, 1-7
Program Linkage Directives

EXTRN,4-11
NAME,4-1O
PUBLIC, 4-11
SEGMENT/ENDS, 4-10, 4-11

Program Location Operands
instruction labels, 2-10
jump targets, 2-10
numeric constants, 2-lO
relative instruction addresses, 2-10

Program Status Word (PSW)
changes to, 1-9, 1-10
format of, l-lO
stored by suspend (HALT and SAVE)

channel command, 1-9
PUB,5-8
PUBLIC directive, 4-11

within a source program, 4-11

Index-8

Q

question mark (?)
symbol special character, 2-5

R

REG,5-8
register operands, 2-3
registers, 1-13

Be, 1-14, 1-15
CC, 1-14, 1-15
GA, 1-14
GB,I-14
GC, 1-14
in 8-bit arithmetic and logical opera-

tions, 3-8
IX, 1-14, 1-15
MC, 1-14, 1-15
PP, 1-14,1-15
synonyms defined using EQU direc

tive, 4-3
TP, 1-14, 1-15
used in DMA transfer operations,

1-16
relative instruction address, 2-10

See also dollar sign ($)
REMOTE configuration, 1-2, 1-3

addresses in, 1-15,2-11
address space, figure 1-4A

request/grant (RQ/GT) circuity, 1-2
MASTER/SLAVE, 1-13
operation mode specified in SOC,

1-13
resume channel operation command,

1-7, 1-8, figure 1-11

S

segment
defined in 8089 source program, 4-10,

4-11
LOC86 and, 1-6, 4-9
paragraph aligned, 4-9, 1-6

segment address
in 20-bit addresses, figure 1-9, 4-6

SEGMENT/ENDS directives, 4-10,4-11
placement in source file, 4-lO

set bit, 3-96
SETB, 3-96
short (form) control transfer instructions,

3-7
assembler-generated displacements, 3-7
jump targets, 3-6, 3-7
short form errors, 3-7

single quote (')
delimiting character string constants, 2-8
within character string constants, 2-8

SINTR, 3-97, 3-98
and Interrupt Control Field, 1-7, 1-18

slave
designating an 8089 as, 1-13
in request! grant circuitry operation, 1-13

source file, 1-5
END directive in, 4-12
elements in, 5-1

end of, 4-12
INCLUDE control, 5-4
must reside on, 5-1
placement of SEGMENT/ENDS

directives in, 4-10
task block programs in, 1-5, figure 1-6

source line, 3-2
first character an ampersand (&), 3-2
from an included file, 5-4
in list file, 5-6, 5-7
termination, 3-2

source program. See source file
source statements

assembler compression of, 3-2
assembler directive format, 4-1
assembler instruction format, 3-1
continuing, 3-2
maximum number of characters in, 3-2,

5-1
special and miscellaneous instructions

HLT,3-31
NOP, 3-83
SINTR, 3-97, 3-98
TSL, 3-99, 3-100
WID,3-101
XFER,3-102

split source file line, 5-7
start channel command, 1-7, 1-8

task block program in
local (I/O) space, 1-9, 1-10
system (memory) space, 1-9, 1-10

STR,5-8
STRUC/ENDS directives, 4-7, 4-8, 1-9

and the assembler's location counter, 4-8
format of structures, 4-7
instructions/ directives not allowed

in, 4-8
no object code generated by, 4-8

structure definition
STRUC/ENDS directives, 4-7, 4-8

Structures
defined. See STRUC/ENDS directives
use of, 1-9

suspend (HALT and SAVE) channel
operation command, 1-7, 1-8

stores TP, tag bit and PSW, 1-9
SYM,5-8
SYMBOLS, 5-3
symbols. See list at beginning of this Index
symbols, 2-5,2-6,4-3

external symbols, 4-11
in list file symbol table
label,2-6
name, 2-6
reserved, See Appendix G
user-defined

instruction or directive label, 4-3
by EQU directive, 4-3, 4-4

Symbol table. See also SYMBOLS and
NOSYMBOLS

DEFN,5-7
NAME,5-8
TYPE

EXT,5-8
PUB,5-8
REG,5-8

STR,5-8
SYM,5-8

VALUE,5-7
format in rist file, 5-7, 5-8

SYSBUS byte, 1-12
system bus, 1-12

defined in SYSBUS byte of SCP, 1-12
System Configuration Block, 1-13

System Operating Command in, 1-13
System Configuration Pointer

address of System Configuration Block
in, 1-12

inspected by the 8089, 1-12
location, 1-12
SYSBUS byte in, 1-12

system configurations
LOCAL configuration, 1-2
REMOTE configuration, 1-2, 1-3

system (memory) address, 1-15, 1-4
and data memory operands, 2-11
defined via a DD directive, 4-6

System Operation Command (SOC), 1-13
and remote bus width, 1-13

T

and request/grant circuitry operation,
1-13

tab character (09H), 5-1
tag bit

and data memory operands, 2-11
and LPD, LPDI instructions, 3-5
and MOV, MOVB, MOVBI, MOVI

instructions, 3-5
and pointer/registers, 1-14
in addressing data memory, 1-15,2-11

task block program, 1-5. See also Appendix
H

16- and 20-bit addresses in, 1-15
example program, 1-18 thru 1-25
in source file, 1-5

template of offset values
STRUC/ENDS directives, 4-7
used in data memory operands, 2-12

TITLE, 5-4
title (in assembler list file), 5-4 thru 5-6
TP pointer/register

and control transfer instruction, 3-6
channel pointer/register, 1-14
function, 1-11, 1-15
loaded by a start channel

task block program in local (110)
space, 1-9 thru 1-11

task block program in system
(memory) space, 1-9 thru 1-11

pointer/register operand, 2-4
register operand, 2-3
restored

by MOVP command, 3-80 thru 3-82
by resume channel operation

command, 1-10, 1-11
stored

by CALL and LCALL instructions,
3-25 thru 3-27, 3-50, 3-51, 1-11

by suspend (HALT and SAVE)
channel command, 1-8, 1-9

Index-9

use of, example, 1-18 thru 1-25
TSL, 3-99, 3-100
TYPE (in list file symbol table), 5-8

u

underline (_)
special symbol character, 2-5

v

VALUE,5-7

Index-lO

w

WB field (of assembled instruction)
and displacement values, 3-3
and immediate values, 3-3

WID,3-101
word value storage order, 4-5

x

XFER,3-102

z

09H,5-1

REQUEST FOR READER'S COMMENTS

8089 Assembler Users Guide
9800938-01

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME ____________________ _ DATE ____________ _

TITLE _____ _

COMPANY NAME/DEPARTMENT ________________________ _

ADDRESS _________________ __

CITY _____________ _ STATE ____ , ZIP CODE ______ _

Please check here if you require a written reply. [J

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987·8080

Printed in U.S.A.

