
Volume 5, Number 5 May 1987

IBM Operating System/2

IBM Personal System/2™
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal System/2

Published by International Business Machines Corporation
Entry Systems Division

- --- --- - - --- -- - ---- - - ----- ---- -·-®

Changes are made periodically to the information herein; any such changes may be reported in subsequent
Proceedings.

It is possible that this material may contain reference to, or information about IBM products (machines and
programs), programming or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such products, programming or
services in your country.

This publication could contain technical inaccuracies or typographical errors. Also, illustrations contained
herein may show prototype equipment. Your system configuration may differ slightly. IBM believes the
statements contained herein are accurate as of the date of publication of this document. However, IBM
makes no warranty of any kind with respect to the accuracy or adequacy of the contents hereof.

This information is not intended to be a statement of direction or an assertion of future action. IBM
expressly reserves the right to change or withdraw current products that may or may not have the same
characteristics or codes listed in this publication. Should IBM modify its products in a way that may affect
the information contained in this publication, IBM assumes no obligation whatever to inform any user of the
modification(s).

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever.

All specifications are subject to change without notice.

Printed in the
United States
of America

All Rights
Reserved

©Copyright International Business Machines Corporation 5/87

- --- --- - ---- _,. -- - ---- - ----- ---- _,,_
®

Contents

Foreword ... 1

IBM Operating System/2™ Overview . 2
Offerings ... 2
Highlights of Operating System/2 . 2
Operating System/2 Phased Release .. 5

Application Enablers . 5
Operating System/2 Programmer Toolkit . 5
Operating System/2 Technical Reference . 6
Languages for Operating System/2 and DOS 3.30 .. 6
Hardware Supported . 6

80286 Protected Virtual Address Mode . 1 o
Preface . 10
Introduction
Terminology
8088 Review
286 Overview

.. 10
10

. 11

. 11
Memory Management . 12
Hardware Protection . 13
Multitasking and Task Management . 14
Interrupt Processing . 14
Data Sharing . 14
Virtual Memory . 15
Programming Guidelines . 15

General Architecture of Operating System/2 . 17
Enhancements Over DOS 3.30 . 17
Memory Management ... 17
System Extensions . 20
Operating System/2 Application Program Interface . 21
Multitasking . 23
Interprocess Communication (IPC) . 24
Session Management . 26
Device Drivers . 26
Video, Keyboard, Mouse Device Interface Management . 29
Keystroke Monitor Interface . 30
Country Considerations . 31

Presentation Manager . 32
Overview . 32
Additional Advantages . 32

Consistency . 32
Expanded Use of the IBM Personal System/2 . 33
A Base For Future Growth . 33

Screen Appearance . 33
Use of Screen and Display Adapter . 34

User Shell . 34
Presentation Manager API Overview : 35

Device Independence . 35
Screen Windows ... 35
User Access Functions . 38

Contents iii

Input ... 39
Alphanumerics Output ... 41
Graphics Output ... 41
Bitmaps ... 44
Device Driver Interfaces .. 45
Toolkit .. 45

IBM Operating Syslem/2 Extended Edition . 46
Introduction . 46
IBM Operating System/2 Communications Manager . 46

Communications Manager Highlights . 46
IBM Operating System/2 Database Manager . 48

Database Manager Highlights . 48
Programming Interfaces ... 49

Structured Query Language (SOL) API . 49
Advanced Program-to-Program Communications Interface (APPC) . 49
Server-Requester Programming Interface (SRPI) . 49
Asynchronous Communications Device Interface (ACDI) . 50
IBM LAN Interfaces . 50

IBM Operating System/2 Extended Edition Planned Enhancements 50

Performance Considerations for IBM Operating System/2 Program Developers . 54
Introduction . 54
Multitasking .. 54
Thread Priority . 55

When Priority Is Not a Concern . 55
When Priority Is a Concern . 55

Memory Management . 55
Input/Output (1/0) . 55
Example Flows for Asynchronous Processing 56

IBM Personal System/2 Seminar Proceedings . 59

iv Contents

Foreword

IBM Personal System/2™ Seminars and
Proceedings provide information about new product
announcements and enhancements to existing
products, and are intended to assist independent
developers in their hardware and software
development efforts.

Over the past several years, the success of the IBM
Personal Computer family was due in part to the
efforts of independent developers, whose hardware
and software products have become widely used.
For its part, IBM helped these vendors by holding
relevant technical seminars and publishing the
proceedings of those seminars. The result was a
mutually beneficial partnership and transfer of
technical knowledge.

With the advent of the Personal System/2 family,
IBM's seminar program will continue. Through these
seminars and the corresponding proceedings, IBM
will address the independent developers' need for
technical information about the latest IBM products.
In these and future proceedings, you will find
technical information about subjects such as:

Personal System/2 is a trademark of the IBM Corporation.

Foreword

• IBM computer design and architecture

• IBM computer components and their interaction

• Memory capacities, speeds, transfer rates

• Input/output device capacities, speeds, access
methods and rates

• Graphics and display technologies, programming
considerations

• Printing technologies, programming
considerations

• Operating system high level interfaces

• Development tools: capabilities, languages,
program verification aids

• Compatibility considerations

• Communications: capabilities, offerings, statistics

• Enhancements to existing IBM hardware and
software products

• Hints, tips and techniques to enhance your
productivity

Through these seminars and proceedings, IBM
intends to maintain its partnership with independent
developers and assist them in successfully producing
hardware and software products for the IBM Personal
System/2 family.

1

IBM Operating System/2™ Overview

Offerings

IBM Operating System/2™ is a new generation of
IBM operating system providing new and expanded
function for both the end user and the application
developer. IBM Operating System/2 consists of two
offerings:

• The IBM Operating System/2 Standard Edition is
a multitasking operating system that breaks the
640 KB memory barrier, provides greater
flexibility to run multiple applications
concurrently and has a Presentation Manager for
graphics and windowing functions.

• The Operating System/2 Extended Edition
provides a Communications Manager that
supports a broad range of communications
capabilities and a Database Manager that
supports the IBM relational data base model, in
addition to the operating system function and
Presentation Manager provided by the Standard
Edition.

Highlights of Operating System/2

• 16 MB Addressable Random Access Memory
Support

• Concurrent Processing of Multiple Applications
• High-Level Programming Interface
• Presentation Manager
• Enhanced Ease of Use Facilities
• Compatibility with DOS 3.30
• Communications Manager (Extended Edition

only)
• Database Manager (Extended Edition only)
• Systems Application Architecture
• New Service and Warranty
• National Language Support

16 MB Addressable Random Access Memory Support

Operating System/2 supports up to 16 MB of
addressable random access memory, which enables
application developers to take full advantage of
memory beyond 640 KB for applications and data.
End users will have the benefit of larger and
functionally richer applications that can process

Operating System/2 is a trademark of the IBM Corporation

2

larger amounts of data such as spreadsheets and
large documents.

Operating System/2 implements virtual memory
through segment swapping. An Operating System/2
application program can be larger than available real
memory. Actual size is dependent on program
characteristics and the physical capacity of the
system. Operating System/2 manages physical
memory by swapping memory segments to a disk file
as required.

Concurrent Processing of Multiple Applications

New applications written to take advantage of the
function provided in Operating System/2 may be run
and displayed concurrently for the convenience and
increased productivity of the end user. Switching
between applications is fast and simple. Productivity
can increase because time previously spent starting,
stopping, entering and exiting applications in a single
application environment can now be spent more
productively actually processing data. Applications
also can be written without knowledge of what other
applications will coexist.

High-Level Programming Interface

IBM is addressing application development
productivity and future compatibility by providing
application developers with a high-level CALL
interface to Operating System/2. Applications written
to this interface will be compatible with successive
versions of Operating System/2. Applications also
can take advantage of a high level of device
independence. This assists in upgrading to new IBM
Personal System/2 systems or to new versions of
Operating System/2.

Application developers may choose to use a subset
of the Operating System/2 CALL interface. This
subset allows the same program to run under DOS
3.30 and under Operating System/2.

IBM Operating System/2™ Overview

Presentation Manager

The Presentation Manager provides windowing and
graphics functions along with an application enabling
interface which makes it easy to write applications
that support the common user access of the Systems
Application Architecture.

Windowing allows multiple applications to be viewed
by the end user at the same time. Each application
can support multiple windows. The user can control
window size and position, and an application can
create or delete windows. A clipboard function is
provided to enable the user or application to extract
data from one window and move it to another window
or from one application to another.

Graphics support enables the development of a broad
range of applications which take advantage of the
supported all-points- addressable (APA) devices.
There is a wide range of vector graphics, raster
operations and extensive font support, including
multiple font styles and sizes. Graphics orders can
be stored, enabling the application to manage the
picture data and facilitates fast redrawing of pictures.

Enhanced Ease-of-Use Facilities

Enhanced ease-of-use facilities in Operating
System/2 make it easier for the novice to learn and
simpler for both the novice and the experienced user
to operate. Operating System/2 provides
comprehensive Help information and descriptive
written system messages. Much of this Help
information is contextual in nature, giving the end
user the information needed to complete the task at
hand. For beginners, a tutorial assists in getting
started by showing how to perform basic operating
system tasks.

Operating System/2 also provides an interface to the
system commands that support the IBM Systems
Application Architecture conventions for Common
User Access. Through this interface, applications
can be started and stopped or added and deleted
from the system as required. The size and position of
the application windows also can be controlled. The
user can control local print out on a printer or a
plotter. Also, information and data contained in the
Operating System/2 file system can be accessed.

The Extended Edition can be tailored by installing an
individually selected mixture of Communications
Manager and Database Manager.

IBM Operating System/2™ Overview

Compatibility with DOS

Operating System/2 provides a DOS environment that
allows many existing DOS applications to run
unchanged. This assists in the transition from DOS to
Operating System/2.

Applications which may not run in the DOS
compatibility environment include time-dependent
programs such as communications and real-time
applications, hardware specific routines, such as
device drivers, and network-dependent applications.

Operating System/2 uses many commands from the
basic set of DOS commands. This also assists in the
transition from DOS to Operating System/2. The user
familiar with DOS commands need only learn the
Operating System/2 commands and concepts that
support Operating System/2 extended capabilities.

With the new Programmer Toolkit it will be possible
to create applications that run under both DOS and
Operating System/2 using a subset of the full
capability of Operating System/2.

Files created by the user under either DOS 3.30 or
Operating System/2 are interchangeable. This also
assists in the transition from DOS to Operating
System/2.

Communications Manager (Extended Edition only)

The Communications Manager provides a wide range
of concurrent connectivities and protocols,
concurrent emulation of multiple terminal types, file
transfer under terminal emulation and
Communications and Systems Management (C&SM)
support.

Included in the Communications Manager are the
following:

• Wide range of connectivities which can be used
concurrently

SDLC
DFT
IBM Token-Ring Network
IBM PC Network
Asynchronous

• Multiple protocols which can be used
concurrently

LU6.2
- IBM 3270 Data Stream
- Asynchronous

• Concurrent emulation of multiple terminal types

3

- IBM 3270
- IBM 3101 or DEC1 VT100

• File transfer under terminal emulation
• Communications and Systems Management

support (C&SM)
Communications and system management
alerts for SDLC, asynchronous, IBM
Token-Ring and PC Network data links
Problem determination data

• Programming interfaces
Advanced Program to Program
Communications (APPC)
Server-Requester Programming Interface
(SRPI) for Enhanced Connectivity Facilities
(ECF)
Asynchronous Communications Device
Interface (ACDI)
IBM NETBIOS
IEEE eo2.2

Database Manager (Extended Edition only}

The Database Manager supports the IBM relational
data base model, which provides a data structure in
simple, tabular form. Data definition, retrieval,
update and control operations are supported by the
Structured Query Language (SQL). The SQL is a
high-'level data language available to end users
interactively and through application programs
written in IBM C/2. This SOL is consistent with the
IBM family of relational data base products, DB2,
SOLIDS, QMF and the IBM Systems Application
Architecture, thus enabling the importing and
exporting of data from various IBM sources.

Application creation tools, such as customizing
display forms, menus and procedures enable the end
user to develop a complete data base application
without the need for programming. Facilities are
available to the end user for data entry, data edit,
query and report writing. Interchange with specific
PC file formats provides the capability of importing
and exporting data to the Database Manager. The
Database Manager provides record level locking and
data recovery in the event of application, system or
media failure.

1 Trademark of Digital Equipment Corporation.

4

Systems Application Architecture

Operating System/2 is a participant in IBM Systems
Application Architecture, a collection of selected
software interfaces, conventions and protocols whose
initial set of specifications is planned to be published
in 1987. IBM Systems Application Architecture is to
be the framework for development of consistent
applications across the future offerings of the major
IBM computing environments - System/370,
System/3x and the IBM Personal Computers.

IBM Systems Application Architecture consists of four
related elements, two of which are new (Common
User Access and Common Programming Interface),
plus extensions to today's existing communications
architectures (Common Communications Support),
and finally, IBM developed applications consistent
across IBM systems (Common Applications).

Operating System/2 participates in the following
elements of IBM Systems Application Architecture:

• Common User Access
• Common Programming Interface

Presentation Interface
Dialog Interface
Query Interface
Database Interface
COBOL
FORTRAN
c

• Common Communications Support

The following components of Operating System/2
support these elements of IBM Systems Application
Architecture:

• Presentation Manager
• Query Manager
• Database Manager
• Communications Manager
• IBM COBOL/2
• IBM FORTRAN/2
• IBM C/2

IBM Operating System/2™ Overview

New Service and Warranty

For the first time on an IBM personal computing
operating system, IBM is introducing service and
limited warranty for Operating System/2. In addition
to the media warranty, IBM is providing a three
month program warranty that includes replacement,
correction, or refund. Central Service will be
available for IBM Operating System/2 until the
service expiration date, which will be published at
availability.

National Language Support

Operating System/2 facilitates the translation of
machine readable information, such as panels and
messages, into various national languages, and it
also contains support for many national keyboards
and country conventions such as date and time.

Operating System/2 Phased Release

Operating System/2 will be released in several
phases to enable users to begin taking advantage of
the new enhanced operating system function.

Operating System/2 Standard Edition Version 1.0

Operating System/2 Standard Edition Version 1.0 is
an early release of Operating System/2 Standard
Edition Version 1.1 and will be replaced by version
1.1 when it becomes available.

Operating System/2 Standard Edition Version 1.0
provides all the functions of the new enhanced
operating system with the exception of the graphics
and windowing functions of the Presentation Manager
and the Database and Communications Managers of
the Extended Edition.

Operating System/2 Standard Edition Version 1.1

Operating System/2 Standard Edition Version 1.1
provides the new enhanced operating system
functions, including the graphics and windowing
functions of the Presentation Manager. It does not
contain the Data Base or Communications Managers.
Operating System/2 Standard Edition Version 1.1 wi II
continue as a separate product from Operating
System/2 Extended Edition and will satisfy the
requirements of users who do not need the advanced
functions of Operating System/2 Extended Edition.

IBM Operating System/2™ Overview

Operating System/2 Extended Edition

Operating System/2 Extended Edition is the
comprehensive operating system consisting of
Operating System/2 Standard Edition Version 1.1 and
the additional functions of the Communications
Manager and the Database Manager.

Application Enablers

Operating System/2 Programmer Toolkit

The IBM Operating System/2 Standard Edition
Programmer Toolkit contains significant programmer
productivity functions for the creation of Operating
System/2 and Family applications. The Operating
System/2 Standard Edition Programmer Toolkit
Version 1.0 contains the tools described below,
except for the Presentation Manager tools. The
Operating System/2 Standard Edition Programmer
Toolkit Version 1.1 contains all the tools. Although
the Linker is packaged with Operating System/2,
Linker information is contained in the Operating
System/2 Technical Reference and Operating
System/2 Standard Edition Programmer Toolkit
publications.

The Operating System/2 Standard Edition
Programmer Toolkit contains the following major
components:

• Presentation Manager tools. Used to create
graphics and screen windows for interaction
between application and end user.

• Link Related Functions. Includes the Operating
System/2 Linker description, Import Librarian
(IMPLIB) for creating import libraries, and the
appropriate tools (BIND utility and Family
Application Program Interface library) to create a
Family application.

• Sample Programs. Used to illustrate Operating
System/2 programming features and Operating
System/2 Standard Edition Programmer Toolkit
utilities.

• Programming Aids for IBM Macro Assembler/2
and IBM C/2 Languages. Contains files of macro
libraries, declarations and error equates which
enhance programmer productivity.

• Message Preparation Utilities. Used to:

Convert a source message file to an indexed
file accessible by an application.

5

- Bind messages to an executable module for
fast access.

• Publications.

The following Presentation Manager components
support windowing and graphics:

• Dialog Editor. Used to design a dialog box on the
display screen. The dialog box is a pop-up or
child window that contains one or more window
controls. An application can use a dialog box to
prompt a user for additional information about a
current command selection.

• Icon Editor. Used to create icons, cursors and
bitmaps that are not predefined in the Operating
System/2 Standard Edition or the Operating
System/2 Standard Edition Programmer Toolkit.
The size of the icon or cursor can be changed.

• Font Editor. Used to create application font files.
An Operating System/2 application can use a
maximum of four fonts.

• Include Files. Used when compiling programs
that need windowing capability.

• Resource Compiler. Used to compile resources
(such as icons, cursors, menus and dialog box
templates) and place them in the applications
resource file.

Operating System/2 Technical Reference

The Operating System/2 Standard Edition Technical
Reference contains technical information which
supplements the Operating System/2 and Operating
System/2 Standard Edition Programmer Toolkit
publications. The Technical Reference is available
separately. It is not included in the Operating
System/2 Standard Edition Programmer Toolkit, but it
is a prerequisite for understanding some topics
discussed in the Toolkit publications.

The Technical Reference provides the technical
information required for programming an application
for Operating System/2 Standard Edition, including
the Operating System/2 Standard Edition CALL
interface. It is arranged in typical reference format
for easy retrieval of information.

6

Languages for Operating System/2 and DOS 3.30

IBM provides the following language versions to
support both DOS 3.30 and Operating System/2:

• IBM COBOL/2
• IBM FORTRAN/2
• IBM C/2
• IBM Macro Assembler/2
• IBM Pascal Compiler/2
• IBM BASIC Compiler/2

Each language is upwardly compatible with its
previous version and provides extensive facilities for
application developers to take advantage of the
capabilities of all members of the IBM Personal
Computer family. COBOL/2, FORTRAN/2 and C/2 are
participants in the IBM Systems Application
Architecture. The following additional information is
provided for COBOL/2 and FORTRAN/2.

COBOL/2

• An intermediate level implementation of ANSI
X3.23-1985 COBOL.

• A high level implementation of ANSI X3.23-1974
COBOL.

• A subset of VS COBOL II, Release 2.0
• A subset of OS/VS COBOL, Release 2.4
• Highly upward compatible from IBM Personal

Computer COBOL Compiler, Version 1.00.

FORTRAN/2

• FORTRAN/2 supports the full standard defined in
ANSI X.9-1978. An option warns the user of
statements that are allowed by FORTRAN/2 but
which are extensions to the ANSI X.9-1978
standard.

Hardware Supported

The recommended minimum hardware configuration
for Operating System/2 Standard Edition is:

• IBM Personal Computer system unit with 1.5 MB
of memory when configured to run only Operating
System/2 applications, and 2 MB of memory
when configured to run both Operating System/2
and DOS applications:

- Personal System/2 (Models 50, 60 or 80)

IBM Operating System/2Tl\f Overview

IBM Personal Computer AT®2 (5170): Models
099, 239, 319 or 339

IBM Personal Computer AT (5170): Model 068
with fixed disk to make the system unit
equivalent to a Model 099.

IBM Personal Computer XT (TM)3 (5162):
Model 286

• One diskette drive (5.25-inch or 3.5-inch) as
described below

• One fixed disk drive as described below

• Keyboard

• Display adapter and associated display as
described below

The recommended minimum hardware configuration
for Operating System/2 Extended Edition is that
described above for Operating System/2 Standard
Edition plus:

• Recommended minimum memory of 3 MB when
configured to run only Operating System/2
applications

• For use of the Communications Manager add one
or more modems and/or communications
adapters supported by the Communications
Manager

• Users needing large data bases, large numbers
of programs and files, or execution of several
concurrent applications (requiring segment swap
areas) should assure they have the capability to
expand their fixed disk above 20 MB.

Operating System/2 supports the following devices:

• Diskette Drives

IBM 3.5-inch high-capacity diskette drive
(1.44 MB)

IBM 3.5-inch diskette drive (720 KB)

IBM 4865, Model 2. IBM Personal Computer
3.5-inch External Diskette Drive (720 KB)

IBM 5.25-inch high-capacity diskette drive
(1.2 MB)

IBM 5.25-inch diskette drive (360 KB)

Personal Computer 5.25-inch External
Diskette Drive (360 KB)

2 Personal Computer AT is a registered trademark of the IBM Corp.

3 Personal Computer XT is a trademark of the IBM Corp.

IBM Operating System/2™ Overview

• Fixed Disks

IBM 20 MB Fixed Disk Drive

IBM 30 MB Fixed Disk Drive

IBM 44 MB Fixed Disk Drive

IBM 70 MB Fixed Disk Drive

IBM 115 MB Fixed Disk Drive

Note: The 44 MB, 70 MB and 115 MB fixed
disk drives are supported as multiple
logical drives, each having a maximum
size of 32 MB.

• One of the adapter and display combinations
listed below:

IBM Color/Graphics Monitor Adapter with
IBM Color Display (5153).

IBM Enhanced Graphics Adapter with one of
the following displays: IBM Enhanced Color
Display (5154) or IBM Color Display (5153).

Personal System/2 Display Adapter (FC
#4050 for IBM Personal Computer AT or XT
286) with one of the following displays:
Personal System/2 Color Display (8513),
Personal System/2 Monochrome Display
(8503), Personal System/2 Color Display
(8512) or Personal System/2 Color Display
(8514).

Personal System/2 system unit (Models 50,
60 or 80) with one of the following displays:
Personal System/2 Color Display (8513),
Personal System/2 Monochrome Display
(8503), Personal System/2 Color Display
(8512), Personal System/2 Color Display
(8514).

Personal System/2 Display Adapter 8514/A
(FC #4054) with one of the following displays:
Personal System/2 Color Display (8513),
Personal System/2 Monochrome Display
(8503), Personal System/2 Color Display
(8512) or Personal System/2 Color Display
(8514).

Operating System/2 Standard Edition Version 1.0
support for specific adapters is as follows:

IBM Color/Graphics Monitor Adapter.
Operating System/2 only supports text mode
(25 lines) in the Operating System/2

7

environment and CGA compatibility modes in
the DOS environment.

IBM Enhanced Graphics Adapter. Operating
System/2 only supports text mode (25 or 43
lines) in the Operating System/2 environment
and CGA compatibility modes in the DOS
environment.

Personal System/2 Display Adapter (FC
#4050 for IBM Personal Computer AT or XT
Model 286). Operating System/2 only
supports text mode (25 or 50 lines) in the
Operating System/2 environment and CGA
compatibility modes in the DOS environment.

Personal System/2 system unit (Models 50,
60 or 80). Same support as for Personal
System/2 Display Adapter (FC #4050).

Personal System/2 Display Adapter 8514/A
(FC #4054). Same support as for Personal
System/2 Display Adapter (FC #4050).

The Operating System/2 Standard Edition Version
1.1 support for each adapter includes all Version
1.0 support for that adapter, plus
all-points-addressable support in the Operating
System/2 environment.

• Printers4

IBM 4201 Proprinter (TM)5, Model 1

IBM 4201 Proprinter II

IBM 4202 Proprinter XL, Model 1

IBM 4207 Proprinter X 24

IBM 4208 Proprinter XL 24

IBM 5152 Graphics Printer, Model 2

Note: The Graphics Printer is no longer
marketed

IBM 5182 Color Printer, Model 1

Note: The Color Printer is no longer
marketed

IBM 5201 Quietwriter®6 , Models 1 and 2

IBM 5202 Quietwriter Ill

IBM 5216 Wheelprinter (parallel)

IBM 5223 Wheelprinter E (parallel)

Note: Operating System/2 Standard Edition
Version 1.0 supports each of the above
printers as an IBM Graphics Printer (5152,
Model 2). Operating System/2 Standard
Edition Version 1.1 provides
all-points-addressable support to the
printers, where appropriate.

• Keyboard

• Pointing Devices

IBM Personal System/2 Mouse attached to
the system pointing device port

Serial pointing device

Microsoft®7 Mouse for IBM Personal
Computers, Part Number 039-099, 100ppi

Microsoft® Mouse for IBM Personal
Computers, Part Number 039-199, 200ppi

PC Mouse(TM)B, Part Number 900120-214,
100 ppi

Visi-On Mouse(TM)9, Part Number
69910-1011, 100 ppi

Parallel pointing device for IBM Personal
Computer AT and XT Model 286

Microsoft® Mouse for IBM Personal
Computers, Part Number 037-099, 100ppi

Microsoft® Mouse for IBM Personal
Computers, Part Number 037-199, 200ppi

lnPort Microsoft® Mouse for IBM Personal
Computers AT and XT Model 286, Part
Number 037-299, 200ppi

4 Parallel attached printers are supported in both the Operating System/2 and DOS environments. Serially (asynchronous) attached
printers are supported only in the Operating System/2 environment.

s Proprinter is a trademark of the IBM Corp.

6 Quietwriter is a registered trademark of the IBM Corp.

7 Microsoft is a registered trademark of the Microsoft Corp.

B PC Mouse is a trademark of Metagraphics/Mouse Systems.

9 Visi-On Mouse is a trademark of the Visi-On Corp.

8 IBM Operating System/2™ Overview

• Plotters10

IBM 6180 Plotter

IBM 6184 Plotter

IBM 6186 Plotter

IBM 7371 Plotter

IBM 7372 Plotter

IBM 7374 Plotter

IBM 7375 Plotter

Note: The IBM 7371, 7374 and 7375 Plotters
are no longer marketed.

• Other

IBM Personal Computer AT Serial/Parallel
Adapter Card (FC #0215, #3395, or #3400)

Personal System/2 Dual Asynchronous
Adapter/ A (FC #3033)

Personal System/2 Multiprotocol Adapter/A
(FC #3042) in asynchronous mode11

Math Coprocessor (lntel®12 80287)

Math Coprocessor (Intel® 80387)13

For additional memory for the IBM Personal
Computer AT or XT Model 286, the customer can
order one or two of the following combinations:

• FC #0209 (128 KB Memory Expansion, AT only)

• FC #3343/3339 (512 KB to 2 MB Memory
Expansion)

• FC #3395/3397 (512 KB to 3 MB Memory
Expansion)

• FC #3395/3397/3402 (512 KB to 5.0 MB Memory
Expansion)

• FC #3400/3402 (1 MB to 6 MB Memory
Expansion)

For additional memory for the Personal System/2
(Models 50 or 60), the customer can order:

• FC #3006/3012 (512 KB to 2 MB Memory
Expansion)14

• FC #3920 (2 MB Memory Expansion)14

For additional memory for the Personal System/2
(Model 80), the customer can order:

• FC #3009 (1 MB System Board Memory
Expansion)

• FC #3019/3064 (2 MB to 6 MB Memory
Expansion)

Supported Hardware for Family Applications: The
application developer can write a Family application
which is portable from Operating System/2 to DOS. A
Family application is an executable module that can
run in all three environments: Operating System/2
Application Environment that runs Operating
System/2 applications, an Operating System/2 DOS
Application Environment that runs a DOS application,
or the DOS Version 3.3 environment. A Family
application has the same or similar capabilities as a
DOS Version 3.3 application; a Family application
cannot use the new Operating System/2 capabilities,
such as larger memory·addressability, multitasking
Application Program Interface or the graphics and
windowing capabilities of the Presentation Interface.
Assuming there is sufficient memory, display and
other appropriate hardware, a Family application can
run on all the system units supported by the
Operating System/2 and DOS 3.30.

10 Plotters are asynchronously attached, and can be supported only in the Operating System/2 environment. Operating System/2
Standard Edition Version 1.1 provides plotter support. Plotter support for Operating System/2 Standard Edition Version 1.0 must be
provided by the application. For example, the Graphics Development Toolkit, Version 2.0, supports the IBM 6180, IBM 7371, and IBM
7372 plotters.

11 A maximum of three serial ports is supported on the Personal System/2 (Models 50, 60, or 80) system unit. One port is already on the
system board.

12 Intel is a registered trademark of the Intel Corp.

13 Supported as an 80287.

14 Operating System/2 supports this feature as extended memory.

IBM Operating System/2™ Overview 9

80286 Protected Virtual Address Mode

Preface

The purpose of this chapter is to provide the reader
with an introduction to the protected virtual address
mode of the Intel 80286 microprocessor. The
emphasis is on the benefits of this new mode and its
programming considerations. Some of the
information concerns only operating system
developers but is provided as additional background
for application developers. For additional
information, refer to the Intel iAPX 286 Programmer's
Reference Manual or the Intel iAPX Operating
Systems Writer's Guide.

Introduction

Since the introduction of the IBM Personal Computer,
microcomputer applications have become
increasingly complex, and their requirements tor
computer resources have grown dramatically.
Systems extensions for networking and host
connectivity, graphics and sophisticated user
operating environments require additional resources
when a personal computer is widely used as a
workstation.

Fortunately, new technology has become available to
meet these needs. Physical memory sizes,
processor speeds, and secondary storage device
capacities all have increased significantly, providing
microcomputers with far more resources at the same
or lower cost than were available five years ago.
However, the basic architecture of IBM DOS, which
was designed for "real address mode" of the Intel
8088 and 80286 microprocessors, has remained
largely unchanged during this period and is subject
to these hardware limitations:

• The "640K Barrier"

The addressing scheme restricts the amount of
physical memory the machine can actually
address

• No hardware memory management support

The processor does not provide features that
facilitate system software techniques to improve
physical memory utilization

• No hardware multitasking support

10

There are no hardware mechanisms for providing
tasks with separate address spaces or tor
maintaining and switching task state

• No hardware protection

There are no mechanisms to prevent a program
from inadvertently disrupting the execution of
system software or other programs

The Intel 80286 microprocessor provides the IBM
Personal Computer AT, the IBM Personal Computer
XT Model 286, and the IBM Personal System/2
Models 50 and 60 with features to utilize and
effectively manage resources, enhancing the
environment for developing system software, system
extensions, and application programs. These
features are available when the 80286
microprocessor operates in "protected virtual
address mode," and they include larger physical
memory addressing, virtual memory support,
hardware protection features and multitasking
support.

The IBM Personal System/2 Model 80 is based upon
the Intel 80386 microprocessor which is utilized by
Operating System/2 as if it were an 80286. Most of
the description in this chapter applies equally well to
the Model 80.

Terminology

For the sake of brevity, the following terms will be
used for the meanings indicated:

8088

The Intel 8088 (iAPX 88) microprocessor. In most
contexts, this term also refers to the 80286
microprocessor operating in real address mode.

286

The Intel 80286 (iAPX 286) microprocessor. In
most contexts, this term refers to the 80286
microprocessor operating in protected virtual
address mode.

Protect Mode

The protected virtual address mode of the 80286
microprocessor.

80286 Protected Virtual Address Mode

8088 Review

In order to better understand protect mode, it is
helpful to review certain aspects of the 8088
architecture. In particular, those areas that differ in
protect mode are mentioned here.

The 8088 operates in "real address mode," where
programs are loaded in their entirety into physical
memory and address memory directly. The registers
in the 8088 each contain 16 bits, and a segmentation
scheme is employed to combine the contents of
segment registers with offset values to produce 20-bit
addresses. This effective memory address
calculation method results in a maximum physical
address space of 1 megabyte.

When a program is loaded into memory, the loader
program selects the memory locations for the
program segments and relocates references. Since
the program has access to segment register values, it
can identify where in memory its segments have
been loaded and use alternative methods for
referencing data. Therefore, once a program has
been loaded into memory, its segments cannot be
moved.

Programs executing on the 8088 processor are free to
reference any memory location. In addition,
applications are free to execute IN and OUT
instructions, allowing them to control 1/0 devices and
other hardware components directly. While this lack
of protection mechanisms offers flexibility, it does not
assist in debugging programs and is not conducive to
having multiple programs execute concurrently.

With appropriate system software, it is possible to
effect multitasking on the 8088 processor. The
processor architecture does not provide any special
features for multitasking, so maintaining and
switching task states is the responsibility of the
system software. Furthermore, since there are no
hardware protection mechanisms, there is no method
for determining which programs may co-exist in such
a multitasking system. Exhaustive compatibility
testing is the only means to verify that combinations
of programs will operate correctly in a multitasking
system on the 8088.

80286 Protected Virtual Address Mode

286 Overview

The 286 offers two distinct operational modes. The
first of these is the "real address mode," the mode in
effect under DOS. In real address mode, the 286
processor is similar to the 8088. The execution
speed of the 286 processor in this mode is 3-5 times
faster than the 8088, and memory addressability is
still limited to 1 megabyte physical memory. There
are some minor differences between the 286 in real
address mode and the 8088, such as new instructions
and differences in the way some other instructions
work.

The second mode of the 286 is the "protected virtual
address mode," or "protect mode." In protect mode,
the 286 processor addresses up to 16 megabytes of
physical memory. Four additional address lines are
activated, to provide 24 bit physical memory
addresses. Programs no longer address physical
memory directly, and the segment register values
have no relation to the physical memory addresses at
which segments are loaded. This memory
addressing scheme provides each program with a
"logical address space" of up to 230 bytes, or 1
gigabyte.

Protect mode also provides the operating system with
special hardware features for multitasking.
Hardware primitives are available for maintaining
task state and switching tasks. The memory
addressing mechanism provides separate address
spaces for each task, and prevents one task from
corrupting the address space of another task.

The protection mechanisms of the 286 processor
provide several advantages for implementing a
multitasking system. System software and
application programs are protected from inadvertent
disruption by other application programs which may
contain errors. The protection mechanisms can help
to identify errors in system software and application
programs which might otherwise go undetected.
These mechanisms also facilitate system software
management of resources. Protection is
accomplished through the use of "privilege levels."
These levels allow system software to control access
to data and code segments and enforce a software
hierarchy of resource management and hardware
control that is beneficial to all programs in the
system.

Since application programs are protected from each
other, the need arises to allow programs to share
data. The 286 operating in protect mode provides the
ability to share data in different ways, depending on

11

the situation. A data segment can be shared among
all programs, or sharing can be limited to a specific
set of programs. The 286 allows system software to
select the appropriate type of data sharing based on
application programs' requirements.

The 286 processor, operating in protect mode,
provides a virtual memory capability which permits
programs to be larger than physical memory.
Systems software can support virtual memory in
conjunction with secondary storage devices to
provide better utilization of physical memory. This
capability also eliminates the need for specific
program memory requirements since there is no
longer a direct relationship between physical
memory size and logical address space.

Memory Management

The memory addressing method employed by the 286
is quite different from that of the 8088. From the view
of the application program, the principal difference is
in the usage of the segment register. Recall that in
the 8088, the segment register contains the upper
sixteen bits of the physical memory address of the
beginning of the segment.

116 bit segment reg I X 10H = Phys i ca 1 Memory
Segment Address

Figure 1. 8088 Effective Memory Address Calculation

In the 286, the segment register still contains a value
which identifies the segment, but this value has no
relationship to the starting address of the segment.
Instead, the value in the segment register contains an
offset into a table which the operating system
maintains, and the processor obtains the physical
memory address of the segment from this table.

12

In
s

[16-bi t segment reg J
Segment Tab 1 e

dex into
egment Table

L..+ ---. Phys i ca 1 Memory
Segment Address

Figure 2. Protect Mode Effective Memory Address
Calculation

The value placed in a segment register to identify a
segment is called a "selector." The selector contains
the index into the segment table as well as protection
information and an indication of which segment table
is to be used.

The entries that identify segments in physical
memory in the segment tables are known as
"descriptors." A descriptor contains information
about the segment it identifies, including the starting
address of the segment, the size of the segment and
access information for use in memory management.
These segment tables, therefore, are referred to as
"descriptor tables." At any instant, there are two
active descriptor tables in the system, the global
descriptor table (GOT) and the local descriptor table
(LDT). A bit in the selector indicates which table is to
be referenced.

The effective address calculation of the 286 can be
summarized as follows: The program specifies a
segment (selector value) and offset. The processor
uses the selector to identify a descriptor which, in
turn, indicates the physical memory address of the
segment. The effective address is generated at the
specified offset in that segment.

Typically, there will be a single GOT in use at all
times and a separate LDT for each task. The GOT
defines code and data segments which are available
to all tasks, whereas each LDT defines the code and
data segments specific to its task. When the
processor switches from executing one task to
another, the new task's LDT automatically becomes
the current LDT in the system. Therefore, as each
task executes, it sees its own address space but does
not have access to address spaces belonging to other
tasks.

80286 Protected Virtual Address Mode

Local
Descriptor
Table #1

Local Global Local
Descriptor Descriptor Descriptor
Table #2 Table Table #3

Local
Descriptor
Table #4

Figure 3. Address Space for Task 2

Hardware Protection

With multiple programs executing concurrently in the
system, hardware mechanisms must be available
that enable system software to insure that programs
do not conflict with each other and that their requests
for resources are handled in an orderly manner.
These mechanisms provide what is referred to as a
"protected system" and are intended to assure the
correct overall operation of the system. This is
accomplished by preventing application programs
from performing operations which could interfere
with system software or other application programs,
either through an inadvertent action such as a
programming error or through an intentional action.

Providing separate address spaces for programs and
confining each program to its own address space is
an essential first step in providing a protected
system. However, a complete protection scheme
involves other considerations as well.

One problem which must be addressed is the
restriction of access to 1/0 devices to trusted
software in order to provide proper resource
management. For example, if two programs
attempted to print at the same time and were allowed
to do so by simply performing 1/0 operations to the
printer 1/0 port, the result would be unpredictable.
By requiring programs to request printing through a
call to system software, these requests can be
managed appropriately by the system software to
assure the printing is performed serially.

In addition, certain instructions are intended for use
by the operating system to control memory
management and other architectural features. If
application programs execute these instructions, the
operation of the system could be disrupted.

80286 Protected Virtual Address Mode

Therefore, there must be some means to restrict
these operations to system software only.

The 286 provides this protection capability through
the use of "privilege levels." These privilege levels
denote different levels of trust and can be used to
control access to both code and data, as well as to
certain sensitive processor instructions and
operations. There are four different levels, numbered
o through 3, with 0 being the most privileged or "most
trusted." This allows different levels to be associated
with various components in a software hierarchy.
For example, one approach that system software
designers could choose would be to reserve level 0
for the system software, level 1 for 1/0 device drivers,
level 2 for system extensions and level 3 for
application programs.

Protection for data segments can be provided in
different ways. Only those segments whose
descriptors reside in a program's LDT or in the GOT
can be accessed by that program. In addition, a
privilege level is associated with each descriptor
which specifies the required privilege level at which
a program must be executing in order to access the
segment. The type of access permitted for each
segment is also checked, such as whether or not the
segment can be written, and a check is performed to
make sure the segment is not referenced beyond its
limit.

Code segments are protected in much the same way
as data segments. The 286 also provides checking to
prevent code segments from being modified and
checking which allows them to be read selectively. A
code segment cannot be called from a code segment
at a different privilege level, except through the use
of a special mechanism known as a "call gate." Call
gates are entries in either the LDT or the GOT which
permit control transfers to code at higher privilege
levels. This mechanism allows a program to call
system software or system extensions to perform
functions on its behalf. The call gate also has a
privilege level associated with it, and the privilege
level of the gate must be the same or lower
(numerically higher) than the caller to allow the
transfer. Call gates cannot be used to transfer
control to lower privilege levels.

Instructions which are required to perform 1/0
operations are restricted to code executing at or
above a specified privilege level. These instructions
include IN, OUT, INS, OUTS, CLI and STI. The
privilege level required to execute these instructions
is set by level 0 code. This approach permits
flexibility in determining the necessary privilege level
for executing 1/0 instructions, and this level would

13

normally be set to the intended level for device
drivers.

Certain instructions affect the correctness of overall
system operation and must be guarded to maintain a
secure system. An example is the LLDT instruction
which loads the local descriptor table register. If an
application program executed this instruction, it
would be possible for that program to access data in
other applications. To prevent this problem,
instructions of this type are restricted to execution by
code at privilege level 0.

Multitasking and Task
Management

In addition to maintaining a separate address space
for each task, the 286 provides other features for
efficiently handling the concurrent execution of
programs. The 286 has special hardware support for
storing the state of a task in execution and for
switching the processor from executing one task to
another. Without this hardware, these operations
would have to be performed entirely by system
software.

The 286 hardware stores the task state in a special
data structure known as the task state segment (TSS).
The TSS identifies the LDT for that task, its segment
register values, general purpose register values,
instruction pointer, flags and stack register values.
The TSS for the currently executing task is pointed to
by the task register (TR). When the processor is
directed to switch from executing one task to another
by the operating system, the state of the processor is
stored in the TSS for the currently executing task.
The processor state is then reloaded from the TSS for
the next task to execute, and that task is then brought
into execution.

A task switch can be caused by the execution of a
CALL, JMP, INT or IRET instruction. The operand
specified for the instruction determines whether or
not a task switch occurs. The operand may be a
descriptor to the TSS of the task to switch to, or it
may refer to a "task gate." While TSS descriptors
must reside in the GDT, task gates may reside in the
LDT, giving the task associated with that LDT the
ability to cause task switches to the task referenced
by the gate.

14

Interrupt Processing

The 286 processes interrupts differently than the
8088. Rather than having interrupt vectors at fixed
locations in memory, a data structure maintained by
the operating system is used by the hardware to
identify the action taken for each interrupt. This data
structure is known as the "interrupt descriptor table"
(IDT), and may contain interrupt gates, trap gates or
task gates.

The processor takes different actions when an
interrupt occurs, depending on the type of gate
specified for the interrupt. Interrupt or trap gates
cause an interrupt service routine to be invoked
under control of the task which was running when the
interrupt occurred. Task gates direct the processor
to perform a task switch to an interrupt service task
when the interrupt occurs, so that interrupt
processing is handled under control of a separate
task. When interrupt servicing is complete, the
processor returns or performs a task switch back to
the process which was interrupted, depending on the
how the interrupt is being processed.

Data Sharing

Since application programs cannot access the logical
address spaces of other programs, mechanisms must
be provided in order for data to be shared among
programs. Some types of data are appropriate for
sharing among all programs, and some should only
be shared among specific programs. Moreover, a
program may share part of its data with one program,
another part with a different program, and keep other
data private so that other programs do not have
access to it. A program also may control how shared
data is accessed by other programs, for example,
allowing the data to be read but not written. The 286
provides mechanisms for implementing all of these
data sharing capabilities.

The 286 has three different mechanisms for data
sharing, each of which is appropriate under different
circumstances. The first of these is the GOT, where a
descriptor is visible to all tasks operating in the
system. The privilege level specified in the descriptor
is the only means to restrict access to the segment
when this type of sharing is used. Any program with
the same or higher privilege level than the descriptor
may access the segment. Since all programs access
the data through the same descriptor when this type
of sharing is used, the access rights are the same for
all programs that use the segment, and all programs
view the segment as having the same type.

80286 Protected Virtual Address Mode

Another way programs can share data is to use the
same local descriptor table. With this approach,
sharing is restricted to those programs which share
all common LDT. The limitation of this mechanism is
that programs which share an LDT have access to all
of each other's segments. As with sharing through
the GDT, accesses are through the same descriptor,
so the access rights and segment type are uniform.
Because the address spaces of the tasks involved are
the same, this method is applicable only if programs
are closely cooperating.

The third mechanism for sharing data involves
duplicating descriptors for segments. These
duplicate descriptors are referred to as "aliases,"
and provide greater flexibility in controlling how
segments are shared. Through the use of aliases, it
is possible to specify exactly which segments are to
be shared and which tasks are to have access to
them. Aliases also can be used to provide different
access rights to segments or to define segments with
varying types for different programs. For example, a
single segment can be defined as a code segment for
one program and a readable data segment for
another.

Virtual Memory

Virtual memory is a technique often used in larger
computer systems to provide the characteristics of
very large physical memory. This is accomplished by
executing programs even though all of their code or
data may not be resident in memory at any one time.
The 286 processor provides the necessary hardware
support for implementing a virtual memory system.

Virtual memory offers several important benefits. In
particular, any single program or collection of
concurrently executing programs can be larger than
physical memory. Programs need not specify a
minimum memory size in order to execute since the
virtual memory system automatically simulates the
required amount of memory for the programs
executing. This is accomplished without requiring
programs to manage manual code or data overlays.
The result is improved system-wide utilization of
physical memory.

The concept of virtual memory is based on certain
assumptions about program behavior. Provided that
a large program is made up of many code and data
segments, studies often show that, over a period of
time, only a relatively small subset of the program's
segments will be referenced. As the program
continues to execute, membership in this set of

80286 Protected Virtual Address Mode

segments will gradually change. This is referred to
as "locality of reference," and it is the key to an
effective virtual memory system. If programs exhibit
this behavior, there will be a minimum set of
segments which must be in memory at any time for
programs to execute efficiently. This minimum set of
segments is known as the "working set," and
physical memory need only be large enough to
accommodate the working set for programs to
execute efficiently and to prevent segments from
being replaced too frequently.

The hardware provided by the 286 for virtual memory
includes a "present bit" in the segment descriptor
and a "segment-not-present" trap. Whenever a
program references a segment which is not currently
in memory, an exception interrupt is generated. The
system software allocates memory for the segment to
be brought into memory. If necessary, a segment to
be replaced is identified and written to disk. The
segment which generated the fault is then read from
the disk, the descriptor is updated and the instruction
restarted.

Programming Guidelines

The virtual protected address mode of the 286 is not
completely software-compatible with the 8088 or the
real address mode of the 286. While it is possible to
design programs which will run in both modes, many
programs previously written to take advantage of
certain characteristics of the 8088 will not work in
protect mode. Certain programming techniques used
with the 8088 should be avoided to facilitate a
program running either in protect mode or in both
real mode and protect mode.

Segment addressing differences have the greatest
effect on 8088 applications being considered for
protect mode. In particular:

• Do not depend on any relationship between
segment numbers and physical addresses. The
selector values in segment registers do not
indicate the physical addresses of the segments.

• Do not depend on segments overlapping.
Segments must be referenced through valid
selector values only.

• Do not use "wraparound" segment offsets.
Wraparound offsets can cause unpredictable
results.

• Do not access beyond the allocated size of a
segment. The segment size is checked during
effective address calculation.

15

• Place only valid segment numbers in segment
registers. The descriptor privilege level is
checked when a segment register is loaded, and
a fault will occur if a valid segment is not
specified.

Protect mode also places restrictions on code
segment usage to assure that code segments can be
used by multiple tasks. The following points must be
remembered about code segments in applications
running in protect mode:

• Do not put data in a code segment. A fault will
occur if an attempt is made to modify a code
segment.

• Do not modify the contents of a code segment. A
fault will occur if an attempt is made to modify a
code segment.

System services for 110 and other functions should be
used rather than performing these functions directly
from an application. In protect mode, application
programs must not attempt to perform certain
instructions or operations which are reserved for use
by system software:

• Do not attempt to issue privileged instructions.
Privileged instructions can only be executed at
privilege level 0.

• 110 instructions can be executed only with the
proper privilege level. A fault will occur if a
program attempts to execute these instructions
without the required privilege level.

There are several other differences between the 286
and the 8088:

16

• PUSH SP results in different SP values between
the two processors.

• Shift counts greater then 31 do not produce the
same results.

• Redundant or repeated prefix bytes can cause
the instruction to exceed the maximum length of
10.

• The use of undefined OP codes results in a fault.

• There is an error in the POPF instruction in the
286 processor.

In addition to the areas mentioned, programmers
should be aware of several other points about protect
mode. Programs should not depend on the execution
speed of the processor for any purpose since
multitasking may affect the behavior of an application
under varying circumstances. The flag register
should be examined only through the use of flag
specific instructions rather than depending on
specific flag register values. This is because the 286
defines additional flag register bits. Since interrupt
vectors are maintained in the IDT, which is not visible
to application programs, interrupt vectors cannot be
"hooked." Functions which would have been
performed through hooking interrupt vectors should
instead be performed through operating system or
system extension programming interfaces.

Note: "Hooking" is a process in which a program
replaces an existing interrupt vector address in the
system with an address of its own interrupt service
routine.

80286 Protected Virtual Address Mode

General Architecture of Operating System/2

Operating System/2 is a new operating system that
provides support for the Intel 80286 processor's
unique features -- protected virtual mode operation,
multiprogramming and improved memory
management. Operating System/2 particularly
emphasizes utilization of real memory above 640 KB.
In addition, the level of function in DOS 3.30 is
available as a migration aid for existing DOS
applications.

This chapter presents a conceptual overview of the
system structure, functions, features and major
components of Operating System/2. The approach is
to depict various features of Operating System/2 and
to describe the most important concepts. For a full
understanding of some of the finer points of the
Operating System/2 architecture, certain portions
assume the reader is familiar with the architecture of
the 80286 processor, covered in the previous chapter.

Enhancements Over DOS 3.30

The significant enhancements of Operating System/2
over DOS 3.30 are:

• Memory management expanded to support large
real memory above 640 KB

• Full multitasking support

• System services invoked by a CALL rather than
INT 21H with runtime resolution to the target
program

• An extensive set of console device interfaces for
the video, keyboard and mouse

• An extensive set of session management
features.

A major compatibility goal of Operating System/2 is
that applications written under previous versions of
DOS must be executable in Operating System/2. This
goal is accomplished by means of a DOS 3.30
execution environment, hereinafter referred to as the
DOS Application Environment. Programs executing
in this DOS Application Environment cannot take
advantage of the new functions of Operating
System/2.

Figure 4 depicts the overall Operating System/2
software system structure.

General Architecture of Operating System/2

l Application J tpplication J
(or Library Routine)

-- ----

[OS/2 Dynamic Link J Function Call
Interface

OS/2 System
Session
Manager

I
OS/2 Console

Device
Interface

I
OS/2

Process Management l File J Memory Management
System Program Management

Time Management
I /0 Management

Device Ori vers

Hardware

Figure 4. Overall Operating System/2 System Structure

Memory Management

One of the major features of Operating System/2 is its
segmented memory management, which exploits the
virtual segmentation hardware in the protected mode
of the 80286.

This memory management feature permits
applications to use more memory than the 640 KB
limit of previous DOS versions. A comprehensive set
of memory management functions makes it possible
to use memory up to the processor's storage limit of
16 MB.

For applications running in this new Operating
System/2 Application Environment, Operating
System/2 lets the user concurrently run more
programs than will fit in storage. In addition, any
single program and its data can be larger than real
memory. Operating System/2 maintains the most
active segments in real memory. It writes unneeded

17

segments out to disk storage, and reloads those
segments from disk when they are needed next.

The new memory management functions allow a
program to:

• Allocate a large number of data segments, each
up to 64 KB in size

• Keep each segment private or share it with other
programs

• Package an application so that the linkage to
library routines or to infrequently used routines is
not made until runtime (Dynamic Linking)

• Implement an application as a number of distinct
CALLable segments, with Operating System/2
loading the segments when they are CALLed

• Load programs explicitly if desired.

Protection Hierarchy

The segmented architecture of the 80286 enables
automatic protection between applications. In fact,
special steps must be taken to allow separate
applications to access the same memory.

The protection features used by Operating System/2
for program execution are:

• Applications run at privilege level 3

• Special-purpose routines (other than general
device drivers) requiring 1/0 privilege (IOPL)
execute at privilege level 2

• Operating System/2 and device drivers run at
privilege level 0.

For a module to have 1/0 privilege (IOPL), the
CONFIG.SYS IOPL= command must indicate that this
is permitted. The IOPL modules cannot use dynamic
linking and, therefore, cannot make Operating
System/2 function calls.

The Operating System/2 protection hierarchy takes
advantage of the 80286's ring protection architecture
to ensure that data at any level in the hierarchy can
be accessed only by programs at that level or a more
privileged level:

• An application at level 3 can access only its own
data, which is also at level 3

• A level 2 1/0 module can access both its own data
at level 2 and its clients' application data at
level 3

18

• The kernel and device drivers can access data at
all levels.

Figure 5 illustrates the protection model provided by
Operating System/2.

Appl i ca ti on Application
!!##### A B ###If#

* * * #

B :B * *
* *
* *
* * * J Privilege ------i --i ---: : - -~e~e ~ ~

Special -*
Purpose *

I/O Routine *
*
*

I/O Operations *
*
* - -
*

'

Privilege
Level 2

OS/2 and r-­
Oevice Drivers

Hardware

Privilege
Level 0

*** Control Fl ow
Data Ownership
- Data Access

Figure 5. Protection Hierarchy

Operating System/2 Application Environment
Memory Management

Figure 6 on page 19 depicts the virtual, segmented,
protected memory management of Operating
System/2. Note that each application has its own
distinct address space defined in its Local Descriptor
Table (LDT) and Global Descriptor Table (GOT). The
LDT defines a private address space for an
application, while the GOT provides addressability for
system-wide data and programs that are shared
among all applications. Together, these tables
provide a virtual address space of 1 gigabyte (230).
The LDT and GOT map this 1-gigabyte virtual address
space to the 16-megabyte (maximum) physical
address space of the 80286.

General Architecture of Operating System/2

_r __ - 1G::1 Rea1
Memory . _ ____, _, n _code ~

Data

i~iJ R 0.SGB-

1

Code
• LDT

Code

Data

• GDT r------i
System System

Code _Jf
and
Data
~

16 MB

Secondary
Storage

-I~!:~~; l 1-1--C-od_e _
Mgmt Data

Figure 6. Operating System/2 Application Environment
Memory Management

Memory management features include:

• Storage overcommitment. The amount of virtual
memory allocated at any instant for data and
code segments can be and typically will be,
greater than the amount of real memory
available. Not only can the memory for the
system as a whole be overcommitted, but the
memory for a single application can be
overcommitted as well.

• Segment swapping. Storage overcommitment is
supported by a least-recently-used (LAU)
algorithm that makes room in real memory by
writing some segments out to a temporary file on
disk (secondary storage).

• Segment discard. Real memory occupied by pure
segments that are still in the address space of an
application but not currently in use can be
reclaimed by "discarding" the segment. When
the discarded segment is later referenced, a
fresh copy is read from the original location on
the disk.

• Segment motion. Because segments have
variable length, real memory is subject to
fragmentation due to holes of deallocated real
memory. Each hole is not large enough to satisfy
a request for memory; however, the space
occupied by all holes may be large enough.
Segment motion means that all holes are

General Architecture of Operating System/2

grouped together in order to satisfy the request
for memory.

• Protection. Applications can address only specific
memory segments authorized by the system.
Operating System/2 and each individual
application are protected against access by other
applications.

Operating System/2 Application Environment-Only
Real Memory Map

Figure 7 illustrates how real memory is used in a
Operating System/2 Application Environment-Only
system. Note the "y KB" boundary. This is a
movable boundary that separates the fixed and
movable regions of memory. The actual location of
this boundary varies, depending on the system load
and the amount of real memory installed.

n MB

1 MB

640KB

y KB

0

Real
Memory

New Application

Code and Data Segments

ROM and Video Buffers

New Application

Code and Data Segments

Operating System/2 Code

Real
Memory

I

•Movable,

Swappable
or

Non-swappable

•Movable,

Swappable
or

Non-swappab l e

• Fixed

Figure 7. Operating System/2 Application
Environment-Only Memory Map

DOS + OS/2 Application Environment Real Memory
Map

Figure 8 on page 20 depicts the use of real memory
in a DOS Application Environment system. The DOS
Application Environment allows execution of a single
DOS application (one which was originally intended
for DOS 2.00 or higher) with newer Operating
System/2 applications.

A DOS Application Environment Program can run
only below 640 KB, while an Operating System/2

19

Application Environment Program can run at any
address.

In Figure 8, the "y KB" boundary behaves as
described in Figure 7 on page 19. The "n kb"
boundary defines the logical "end of memory" for the
DOS 3.30 application and may vary up to the 640 KB
limit. Above the "n kb" boundary is Operating
System/2 Application Environment memory.

Real
Memory

nMB

New Application

Code and Data Segments

y KB ----------------

I/O Data Segments (Long Term)

Operating System/2

lMB
ROM and Video Buffers

640KB

n KB

Single
"Old" Application

Operating System/2

I

~Movable,

Swappable
or

Non-swappable

~ Fixed

~ Variable

I Size

Figure 8. DOS + OS/2 Application Environment Memory
Map

Memory Suballocation

In addition to the extensive virtual memory
management functions described above, Operating
System/2 has a mechanism for suballocating memory
within a segment. This mechanism is patterned after
the classical linked list of storage descriptors.

Figure 9 gives an example of a series of memory
suballocation requests. A succession of allocation
requests depletes the free memory within the
segment.

20

50KB
Alloc
10KB-+ 10KB

FREE FREE
=50KB =40KB

0B

Alloc
15KB-+

10KB 10KB

15kb 15KB

Alloc
FREE 20KB-+ 20KB
=25KB

FREE
=5KB

The application may now begin freeing the
storage as it is no longer needed. Adjacent free
blocks will be combined:

50KB
Free

HlKB 10KB-+ 10KB
FREE

FREE =25KB
Free =15KB
15K~ 15KB

FREE
=50KB

Free
20KB 20KB 20KB-+ 20KB

FREE FREE FREE
=5KB =5KB =5KB

0B

Figure 9. Memory Suballocation Example

System Extensions

Operating System/2 provides a base upon which
programmers can construct more complex
applications. These application solutions typically
appear to be an extension of the operating system,
and require many of the capabilities of the operating
system, such as protection, data isolation and
sharing, and an efficient means of invocation.

Operating System/2 provides functions that allow the
system extension developer to obtain these
capabilities easily.

The system extension has a callable routine which is
its application interface. The actual connection from
the application program to the system extension is
made at runtime (see the Dynamic Linking section for
details about this linkage.) When it is called, the
extension routine either performs the request directly
or passes the request to a separate process that
performs the request asynchronously. The
determination of whether to process the request
directly or under a separate process must be made

General Architecture of Operating System/2

based on the data isolation and performance
characteristics of the solution being offered.

For processing of the request under a separate
process, classical interprocess communications
techniques can be implemented using semaphores,
queues, flags, or shared memory.

Figure 10 shows the invocation of a system extension
via the runtime dynamic linking.

Figure 10 also demonstrates the program execution
flow and the data handling aspects of providing a
system extension as a callable routine. Note that the
extension may allocate private data for each of its
clients.

Application Application
A B #######

B , i : B
~---~1---__ :__J

*
*

System
1111###11 Extension *
II *

* *
Data * Data *
for * for *
11A11 * 11011 *

* * Privilege
* * Level

- - - - - - *- - - - - - - -*- - - -

Device
Driver

II

' EJ

-**

'
Kernel

II

' EJ

Figure 10. System Extension

'

Privilege
Level e

*** Contra 1 fl ow
Data ownership
- Data access

General Architecture of Operating System/2

3

Operating System/2 Appllcatlon Program Interface

Application programs' requests for Operating
System/2 services are invoked by a CALL-RETURN
interface, with the stack being used to pass the
request parameters. The most obvious benefits of
this are:

• Less need for a high-level language system
services library. The respective system call may
be made from a high-level language.

• Optimum performance. The target routine may
be invoked directly rather than first giving control
to an intermediary router.

• The same interface mechanism is available for
invoking an Operating System/2 routine as well
as a library routine.

• Function replacement is an architected and
well-defined activity rather than an ad-hoc
mechanism.

In the multiple protection ring environment of the
80286, significant performance gains can be achieved
by using a CALL programming interface when the
parameters are PUSHed onto the stack before issuing
the CALL. The hardware itself actually copies the
parameters from the requestor's stack to the
receiving program's stack, thus giving optimum
addressability and protection at minimal execution
cost. All Operating System/2 functions are invoked
via this CALL interface. Also provided are the means
to similarly call system extensions and 1/0 privilege
routines executing at privilege level 2. As shown in
Figure 4 on page 17, the application interface to
Operating System/2 Application Environment and
device drivers is strictly hierarchical, and the 80286
hardware supports and enforces this hierarchy.

Dynamic Linking

The 80286's protected mode CALL architecture also
offers some benefits of greater importance than the
hierarchical structure and data copying mentioned
above. In particular, there are definite advantages
over the typical static module structure of earlier
DOS versions:

• Application programs need only have the most
commonly used segments loaded when they are
started. Exception processing routines may be
left unloaded and be called (and be automatically
loaded by the system) only when necessary.

• Dynamic link packages can be updated
transparently to their clients; i.e., existing
applications need not change whenever functions

21

they use in a dynamic link package are
reshipped.

The actual programming steps required to use the
dynamic link feature are no different from those of a
static environment. The steps are:

1. The programmer codes a call to a subroutine to
be dynamically linked and declares it "EXTRN
FAR."

2. The compiler generates a standard external
reference.

3. When the object module is linked, the linker is
provided with the names of libraries that contain
dynamic link definition records. These records
provide a correspondence between the called
entry point and the module file that contains the
routine being called.

Family Application Model

To aid application developers who want to develop a
single product that can be used with either Operating
System/2 or DOS 3.30, a subset of the full-function
Operating System/2 Application Programming
Interface (API) maps to functions available in DOS
3.30. An application that conforms to this subset can
run under either operating system.

Library bindings provide the interface to the target
operating system as a set of modules which are
loaded when executing in DOS 3.30 but are ignored in
the Operating System/2 Application Environment.

Compatibility Considerations

Programs written to execute in the DOS 3.30
environment should have the following
characteristics:

• Run only in the DOS Application Environment of
Operating System/2

• Cannot execute as a background process

• Must use the existing INT 21H DOS API

• Must not rely on undocumented DOS interfaces

• Have 1/0 Privilege.

Programs written to execute in the Operating
System/2 Application Environment should have the
following characteristics:

22

• Cannot use the existing INT 21H DOS API

• Must use the new Operating System/2 API CALL
interface

• Can overcommit physical memory (data and
code) via Operating System/2 memory
management functions

• Cannot issue software interrupts

• Cannot process hardware interrupts

• Always reside above the Operating System/2
Application Environment memory line in
dual-mode systems

• Must obey Intel 80286 segment manipulation
rules (see "80286 Protected Virtual Address
Mode" on page 10)

• Do not have 110 privilege without special
requests to Operating System/2.

Timer Management

In Operating System/2, all time-related functions are
based on a periodically interrupting time source.
Because it would require an inordinate amount of
system overhead to service a timer at a high interrupt
frequency, the timer operates with a frequency of
approximately 32 hertz. While this rate is sufficient
for most applications, it precludes specifying a time
interval with a resolution of less than one timer tick.
Time-related discussions in this section are subject
to this limitation.

Timer Services

In addition to the Date and Time functions found in
previous versions of DOS, Operating System/2
provides the following functions:

• Asynchronous intervals. The system notifies a
task that a period of time has elapsed.

• Regularly occurring intervals. The system
continually notifies a task that a designated
period of time has elapsed.

• Sleep. A task may delay its execution for a
certain period of time.

The interval functions permit specification of the time
interval in milliseconds; however, to reduce system
overhead, the actual resolution is about 32
milliseconds.

General Architecture of Operating System/2

Multitasking

Multitasking is an integral part of Operating
System/2. Operating System/2 has a priority-based,
time-slicing scheduler that gives special
consideration to applications with critical response
time requirements.

The multitasking features of Operating System/2
enable a user to operate several applications
concurrently. For most purposes, each application
appears to run independently in a separate computer
and can be designed and coded in much the same
way as under DOS.

This case of multiple concurrent applications is the
simplest instance of multitasking; i.e., each
application's execution is managed under a process
and one thread of execution.

A process represents the execution of an application
and the ownership of any resources associated with
that execution, while a thread is the dispatchable
entity used by Operating System/2 to track processor
execution cycles.

An application may be designed as several distinct
processes or as multiple threads within a single
process. When deciding which is appropriate, the
designer should consider these points:

• The creation and termination of a thread is fast,
whereas the creation of a process is relatively
slow.

• Sharing data and resources between threads is
natural, whereas sharing between processes
takes special consideration.

For more complex application requirements, an
application can be designed to have its functions
divided among a collection of cooperating processes
(or threads).

General Architecture of Operating System/2

Figure 11 shows the process structure when the user
starts three applications: an editor, a data base
manager, and a communication handler. Because
they are independent applications, they are unaware
of each other. The fact that their files may share a
physical disk is known and managed only by
Operating System/2.

Process

ID=' Edi tor'

Resources in use:
- Display
- Disk File
- Printer

Process-Unique Information

ID
Swap information
LDT pointer
Resources in use
- Fil es
- Pipes
- Programs
- Memory

Process

ID='COMM. Handler'

Resources in use:
- Connn. Line
- Disk File

Process

ID=' Data Base Mgr'

Resources in use:
- Disk File

Figure 11. Multiple Independent Processes

Figure 12 on page 24 illustrates an application in
which multiple asynchronous execution threads are
needed. Each thread uses different devices to
accomplish a portion of the overall problem solution.

23

Process (Unit of Resource Ownership)

COMM Line
===========I

I
/====-

User
Interface
Thread

Disk File

Thread (Unit of Execution)

Communication
Handling
Thread

11 ========~ Console
and

Keyboard

'--~~-~~_:_~s-i n_g_.·········n -EJ
Process-Unique Information

ID
Swap information
LDT pointer
Resources in use
- Fil es
- Pipes
- Programs
- Memory

Thread-Unique Information

ID
Dispatching Information
Priority
Processor state
Time slice
Stack pointer

Figure 12. Multiple Threads Within a Process

Interprocess Communication (IPC)

Operating System/2 provides several methods of
interprocess communication: pipes, queues,
semaphores and shared memory.

Pipes, queues, and semaphores are created by the
using applications, and their handles or addresses
are passed among the interested processes as
necessary.

Semaphores provide serialization and signalling.
There are two types of semaphores:

• RAM semaphores are a high-performance
mechanism best used between the threads within
a process.

• System semaphores are a high-function
mechanism particularly suited for use between
processes.

Operating System/2 eases the task of managing the
resources shared between programs, by extending

24

the standardized naming conventions of the file
system to queues, system semaphores and shared
memory. This ensures that references to the same
name are resolved to the same resource.

Pipes

Pipes are used to establish file 1/0 communication
between two programs. Typically the two programs
are not aware that they are using a pipe rather than a
file.

For example, with the OS/2 command interface, a
user can produce a sorted directory listing by first
issuing a DIR command and then sending the output
of DIR, via a pipe, as the input to a SORT command.
Figure 13 depicts this use of pipes.

Command: DIR I SORT ~ CON

PIPE

aaaaaaaaa
aaaaaaaaa

eeeeeeeee
eeeeeeeee

"DIR"
Command bbbbbbbbb program

ggggggggg
ggggggggg

Figure 13. Piping Output of One Program to Another

Alternatively, pipes can be used as a form of
fixed-length, First-In-First-Out (FIFO), circular queue
that enables communication between processes.

Figure 14 on page 25 depicts the use of a pipe to
pass data to a server process X from three child
processes A, B, and C. The sending processes send
data independently of one another; process X
removes data from the pipe at will.

Operating System/2 uses the Next IN and Next OUT
pointers to keep track of the data and free space in
the pipe. When the pipe is full, the process that
writes to the pipe next will wait until process X has

General Architecture of Operating System/2

removed enough data to make room for the new
message.

PIPE
... --....

I Pro~ess I aaaaaaaaa
aaaaaaaaa

Ea'" eeeeeeeee
... --.... eeeeeeeee

bbbbbbbbb

[5:1·· ggggggggg
... -... ggggggggg

ggggggggg

I Pro~ess I". ccccccccc

Figure 14. Communication Using a Pipe

Queues

For more sophisticated applications, queues provide
a more powerful mechanism for communicating data
between processes.

Figure 15 depicts the use of a queue to pass data to
a server process Y from three child processes D, E
and F. As with pipes, the sending processes may
send data independently of one another. However,
unique to queues, outstanding elements may be
ordered by priority or by arrival order,
First-In-First-Out (FIFO) or Last-In-First-Out (LIFO).
Also, process Y may examine each element in the
queue and remove elements whenever, and in any
order, desired.

Queues have a performance advantage over pipes
because data is not copied but is passed in a shared
segment. Also, there is virtually no size limitation for
the messages themselves. While the total message
text that a pipe can contain is 64 KB, queues can
contain very large amounts of data -- each message
is a unique block of storage, and the aggregate of all
messages may be dispersed across the entire
machine.

General Architecture of Operating System/2

Queues
Data

Structure

.... -.
I Pro~ess I

r:E]"' ... -..

EE]''' ... -...
I Pro~ess I".

5J '

Figure 15. Communication Using a Queue

RAM Semaphores

Figure 16 depicts the use of semaphores for
serializing access to a serially reusable resource.
Only a single thread can enter the semaphore at a
time. The effect is that all other threads are locked
out from using the serially reusable resource until the
entering thread clears the semaphore.

1 1 1

Reentrant Code

Multiple
Concurrent
Threads

DosSemRequjes t u:::::RR

or an SRR
(Serially
Reusable
Resource) Access

~rrr Multiple
Concurrent
Threads

Figure 16. RAM Semaphores

25

Session Management

In Operating System/2, the user's application
executes under the concept of multiple screen
groups. A screen group is best seen as a routing
mechanism for user interaction via the screen and
keyboard.

The mode and contents of the screen and keyboard
are separate for each screen group. The screen
group concept does not extend beyond the user
interface. Machine resources, the file system, system
memory, interprocess communication, etc., take
place throughout the machine environment as a
whole and are independent of the screen group
concept.

An operator selects an application from a menu
presented by the shell user interface program. The
shell is the top layer of the session manager. The
shell passes the operator's request to start a
program to a lower session manager layer which
creates a screen group for the application to run in.
This layer also controls switching between screen
groups when the operator requests it.

User Application Selection
(Part of Base Session Manager)

DOS 3.30
Compatible
Application

New
Protected
Application

Display/Keyboard I/O Routing
(per Screen Group)

Display I Keyboard Hardware

Figure 17. Base Session Manager Controls

The Operating System/2 video 110 architecture makes
it possible to replace the standard video 1/0 system
calls within a screen group with the calls provided by

26

an independent video package, such as a graphics
package. This replacement is effective only for
processes that execute within that screen group.

Figure 18 is an example of replacing the base video
1/0 functions with a package offering graphics
extensions in the block labeled Advanced VIO. The
Advanced Graphics Subsystem defined these
advanced functions during its initialization so that
any applications would have these features available.

User
Switch
Trigger

• Base
Session
Manager

Screen
Switch
Mgr.

Text
Application

Screen Groups

Base VIO

1/0
Privilege

OPs

I

VIO Router

OS/2 Kernel

Display Hardware

Advanced
Graphics

Application
Screen Groups

Adv. Graph.
Application

Advanced VIO

I
I/O

Privilege
OPs

I

Figure 18. Session Management System Structure

Device Drivers

Operating System/2 device drivers can support
multiple synchronous and asynchronous 110
requests. For example, a disk device driver can
queue several read and write requests from multiple
requesters and service those requests in a sequence
that minimizes access mechanism movement across
the disk.

Device drivers are divided into two primary parts: a
strategy routine and a hardware interrupt handler.

• The strategy routine is called with an 110 packet
that describes the request. If the device driver

General Architecture of Operating System/2

supports multiple outstanding requests and the
device is busy, then it can queue the request. If
the device is not busy, it starts the device.

• The hardware interrupt handler services the 110
completion. If there is new work in the queue, it
redrives the device. Then it indicates that the
previous operation is complete and unblocks any
threads which are waiting for this request to
complete.

OS/2 services are provided for device drivers to
manage the request queue, block and unblock, lock
and unlock memory, etc.

Figure 19 depicts the flow of control for synchronous
110:

1. If the device is busy, the strategy routine marks
the request incomplete and queues the request.

2. If the device is not busy, it starts the device.
3. Execution of the thread is blocked until the

interrupt routine indicates the request is done.

Application "A"

*
Synchronous I /0
* *** ._ Continue
* *

'--*-*

[*-*
I * * OS/2 Function Call Interface

-

[~
I

* * OS/2 Kernel

* *
* *
-

r---*-*

* * Strategy Routine
* *
* * Queue Request and Start Idle Device
* * Block Thread

I Return Completed Request

1

1
gQueue of

Request Packets

Device Interrupt I
===========/ l I I I /=======~ Hardware Interrupt Handler

.L

Complete Request
Run Blocked Thread
Redrive Device

Figure 19. Device Driver for Synchronous 110

General Architecture of Operating System/2

In Operating System/2, asynchronous 110 is
performed by using a separate thread. When a read
or write request asks for asynchronous processing,
the OS/2 device support creates an 110 thread. This
thread then performs the 110 request in a
synchronous (to itself) fashion while the requesting
thread continues executing. When the operation is
complete, the 110 thread posts that completion to a
RAM semaphore and terminates.

Figure 20 depicts asynchronous 1/0. The flow is
similar to that in Figure 19, except that the
requesting thread continues to execute while a
separate 110 thread executes the 1/0.

Application B

*
Asynchronous I/O

* *** ._ Continue
* *

'--*-*
-

OS/2 Function Ca 11 * * Post Semaphore
Interface * * Then Terminate

Create Thread !
** * *

-

·~]
I

OS/2 Kernel * *
* *
* *
* *
-

J
r--

Strategy Routine * *
* *

Queue Request and * *
Start Idle Device * *
Block Thread
Return Request Complete

1
g Device Queue

l Device Interrupt

1 ==========/
I

/======== .. Hardware Interrupt Handler
.L

DevDone and Redri ve Device

Figure 20. Device Driver for Asynchronous 1/0

27

Video, Keyboard, Mouse Device Interface
Management

1/0 to the console can be done via handle-based 1/0,
which is redirectable, or via video (VIO), keyboard
(KBD) or mouse (MOU) device interfaces. VIO, KBD
and MOU device drivers provide standard read/write
entry points.

Figure 21 depicts Video 1/0 that is not redirectable
(such as direct-cursor-positioned 1/0). The VIO
device interface and its device driver are a pair. A
private protocol is used to provide flexibility in
placement of function and an opportunity to exploit
hardware features.

VIO Call
Dynamic
Link

Interface

+ + +

VIO
Device

Interface

Private
Protocol

Operating System/2 j---i ~__J

Device Drivers

Figure 21. VIO Device Interface

28

Figure 22 shows function split between the VIO
device interface and its device driver.

~--~ Dynamic
VIO Call I- Link
~--~ Interface

+ + +

VIO
Device

Interface

Private
Protocol

[op,nth>g Sy«~/2 1~
Device Ori vers

Logical
Video Buffers

u;b
LI LVB

Real
Display
Buffer

IOPL
Module

Hardware
Registers

Figure 22. Display Hardware Management

Handle-based, console 1/0 is redirectable. Figure 23
on page 29 shows both handle-based and VIO.
Operating System/2 returns handle-based 1/0 to a
dynamic link layer, where the 1/0 is converted into a
VIO function call. The VIO router (not shown) routes
the VIO function call to the VIO device interface so
the 1/0 can be managed in both the real and logical
video buffers.

General Architecture of Operating System/2

loos +ritel

Dynamic
Link

Interface

1 1 1

DcsWrite

9
Dynamic

Link
Interface

1 1 1

VIO
Interface VIC>-+ Device

Layer J
.._,___

Interface

Private
Protocol

Operating System/2 J
c_______

Device Drivers

Logical
Video Buffers

~
LF

Real
Display
Buffer

IOPL
Module

Hardware
Registers

Figure 23. Both Handle-Based and VIO Device-Interface
1/0

Keystroke Monitor Interface

Some applications monitor all key strokes and
provide global system function before more
conventional applications receive the keystrokes.
Examples might include national language support
for switching the keyboard layout and for Asian
language input conversion. Other examples are
applications that provide a desk calculator or
keystroke macro expansion. Hardware-enforced
protection requires the system to provide interfaces
for such applications, which run as processes.

General Architecture of Operating System/2

Figure 24 depicts the keystroke monitor interface.
The keystroke monitors have been previously
enrolled as monitors. A monitor may pass the
keystroke through, consume the keystroke or replace
the keystroke with one or many keystrokes.

A keyboard monitor executes at process time and
can use Operating System/2 function calls. For
example, a desk calculator needs to write to the
display, and a keyboard macro expander may have
the macros stored in the file system.

PROCESS-TIME KEYSTROKE MONITOR

Key Key
Stroke Stroke

Key
Stroke

Key Key
Stroke Stroke

r''LI"'tJ'tJ''LI"'I
Interrupt •

Time •

t

Keystroke Distribution

Task Time

Keyboard Device Driver

Hardware

1
H

KIB
Queue

Figure 24. Keystroke Monitor Interface

29

Figure 25 briefly depicts the keystroke monitor
interface.

Keystroke Monitor

Jn-buffer Out-buffer
GET ---

11 I I I [- process-.[I I I I
· · GIVE ·

L.r_ -1
Move to Buffer Move from Buff er

Keystroke Monitor Keystroke Distributor

Figure 25. Process-Time Keyboard Monitor

Country Considerations

For countries outside the United States, Operating
System/2 Standard Edition includes:

• National language support for system message
files

• Country-dependent information

• Support for national keyboard layouts

• Double-Byte Character Set (DBCS) enabling

• Programming interfaces for country support

• Message retriever for message files

• Utility commands

National language support is provided for left-to-right
languages for system messages displayed to the
user.

30

Country-dependent information is available as
follows:

• Country format information includes time, date
and currency

• Lower- to upper-case character conversion tables

• Collating sequence for character sorting

• DBCS environmental vector for DBCS character
determination

• Valid single-byte characters used in file names

Different keyboard layouts are provided and are
selectable.

Double-Byte Character Set enabling exists for
DBCS-based national languages. There are specific
kernel functions for DBCS enabling for mixed single­
and double-byte character strings, but full DBCS
implementation and DBCS-based hardware support
is not provided.

A set of programming interfaces allows applications
to use the country-dependent information described
above. Applications do not need to change the
current country code of the system in order to use
this capability. The current country code for the
system is the same for all screen groups and
between DOS Application Environment and Operating
System/2 Application Environment.

The message retriever gives user applications a
programming interface for retrieving and displaying
application messages from customized message
files.

Utility commands let the user select the keyboard
layout and specify the system country code. The
Operating System/2 Installation Aid also supports
these capabilities. A message utility provides the
capability to create customized message files.

General Architecture of Operating System/2

Presentation Manager

Overview

The Presentation Manager provides additional
function in the Operating System/2 Standard Edition
Version 1.1. This function enables applications to run
in a windowing environment and provides wide
ranging programming interfaces for application
developers, a rich set of graphics functions, support
for all-points-addressable (APA) hardware, and
utilities for obtaining hardcopy and for converting
data within files for interchange with other systems.

The following summary is a brief overview of the
main features.

• This is a major enhancement to the first release
of the Operating System/2 Standard Edition,
particularly in the way in which it helps users to
interact with the system and with applications.
Operating System/2 Version 1.1 Presentation
Manager makes it possible for multiple
concurrent applications to be viewed on the
screen simultaneously via overlapping "screen
windows."

• Enhanced ease-of-use facilities which enable
users to access the services of Operating
System/2 Standard Edition Version 1.1. These
include windows, utilities and the Operating
System/2 file system. Personal Computer
applications can be easily installed, started, or
stopped, with these facilities.

• The Presentation Manager provides a high-level
CALL interface, known as the Presentation
Manager API, which enables programmers to
write applications which benefit from:

Standardized menus and dialogs
Screen windows
Input devices
Alphanumerics
Graphics
Text with typographic fonts
Bitmaps

• The all-points-addressable (APA) capabilities of
the supported display adapters and various
graphics printers and plotters are utilized.

• Users can spool and subsequently obtain
hardcopy of graphics and/or alphanumeric data.

• There are utilities for use with picture files. One
utility displays picture files; another can be used

Presentation Manager

for conversion of data where this is necessary for
files interchanged with other systems.

Additionally, the Operating System/2 Standard
Edition Version 1.1 Programmer Toolkit, is enhanced
to provide programmer aids and tools which include:

• A dialog editor

• Bitmap/cursor editors and generators

• A font editor

• Sample programs.

Additional Advantages

Apart from its rich function set, Presentation Manager
offers three other major advantages:

• Participation with other Personal System/2
computers and host systems in IBM Systems
Application Architecture

• Expanded use of the Operating System/2
supported hardware

• A base for future growth.

Consistency

In March 1987, IBM announced a collection of
selected software interfaces, conventions and
protocols to be published during 1987. The IBM
Systems Application Architecture is the framework
for the development of consistent applications across
future offerings of the major IBM computing
environments - System/370, System/3X, and the
Personal System/2. The Presentation Manager is
part of this Systems Application Architecture
evolution.

Common Programming Interface

A subset of the Presentation Manager API is the
Presentation Interface, which is one of the elements
of the evolving Common Programming Interface of
Systems Application Architecture. The initial set of
interfaces provides a base on which applications can
be developed and ported, with minimal change,
among other IBM Systems Application Architecture
operating systems.

31

Common User Access

The user interface of the Presentation Manager is
based on the Common User Access portion of
Systems Application Architecture.

The primary goal of the Common User Access is to
achieve, through consistency, transfer of learning,
ease of learning and ease of use across the range of
IBM Systems Application Architecture applications
and environments.

The Presentation Manager uses the Common User
Access definition and makes it available to
application developers.

Expanded Use of the IBM Personal System/2

Not all writers of applications for Personal System/2
are interested in developing applications that can be
ported to other operating systems. Those whose
interest lies largely in the Personal System/2
marketplace also can take advantage of the benefits
offered by the Presentation Manager to utilize the
Personal System/2 hardware.

In particular, the Presentation Manager exploits the
display hardware through the use of bitmaps. This
can be particularly useful for applications written
specifically for the Personal System/2 where key
considerations include fast screen update or full use
of the all-points-addressable hardware. Examples of
the uses for bitmaps include:

• Writing or removing menus very rapidly.

• Creating and using symbols required by the
application.

• Rapidly restoring a picture when an overlaying
window has been removed.

• Animation

A Base For Future Growth

Systems Application Architecture defines a
foundation upon which to build portable, consistent
applications systems for the future, capitalizing on
IBM hardware, control programs and the Systems
Application Architecture products.

The Presentation Manager is a Systems Application
Architecture participant. Applications written to the
programming interface of the Presentation Manager
can look forward to a flourishing Personal System/2
and host systems base on which to run.

32

Screen Appearance

Presentation Manager enables multiple applications
to be visible on the screen at the same time. It does
this by displaying applications in a series of
overlapping windows.

A window is a rectangular region on the screen that
may be surrounded by a border. Each application
displays its data in one or more of these windows. If
two windows overlap, only one is actually visible on
the screen at the point of overlap. The windows are
arranged like papers on a desktop, where one paper
can lie on top of another.

Use of multiple windows within one application
allows the application to structure its displayed data
in a logical way, making its user access easier to
understand.

In addition to applications started by the user, the
screen also can contain windows belonging to the
user shell, a Presentation Manager application which
gives access to a range of system functions.
Figure 26 shows a typical screen.

User Shell Window

Application 2 Main Window

J Appl. 2 Child Window]

Application 1 Main Window

Appl. 1 Child Window

Figure 26. Appearance of Typical Presentation Manager
Screen.

For systems which have a mouse attached, a pointer
is displayed on top of the windows and the data
displayed in them. The pointer is a small shape like
an arrow. It indicates the point of interest and
reflects mouse movements onto the screen. It can

Presentation Manager

change shape as it goes from window to window,
according to application requirements.

Within menus and dialogs, the user sees a kind of
cursor called the selection cursor. This applies to
systems with or without a mouse. This cursor applies
to items that are selectable, such as the items in a
menu, and it can be moved from item to item either
by mouse movements or by keyboard keystrokes. It
indicates the items in a window to which the user's
next action may apply.

Use of Screen and Display Adapter

Presentation Manager only supports display adapters
with APA capabilities. Presentation Manager uses
the display adapters in an APA mode, typically the
highest resolution mode available on the adapter, to
give the best possible screen appearance.

Presentation Manager supports the following display
adapters and modes, where resolution is specified in
pixels horizontally and vertically:

IBM Color/Graphics Display Adapter
640 x 200, 2 color.

IBM Enhanced Graphics Adapter
640 x 350, 16 color.

IBM Personal System/2 system unit
640 x 480, 16 grayscale or 16 color.

IBM Personal System/2 Display Adapter 8514/A

A range of modes is supported, according
to the options present on the adapter and
the display monitor attached:

• 640 x 480, 16 grayscale or 16 color.
• 640 x 480, 256 color.
• 1024 x 768, 16 color.
• 1024 x 768, 256 color.

User Shell

The Presentation Manager User Shell provides user
access to the facilities of the system. These facilities
include:

Starting Programs
where the user can view a list of the
programs installed on the system and
start one or more of them by selecting the
name in the list.

Presentation Manager

Switching Tasks
where the user can view a list of the
programs or tasks that are already
running and decide which one to work
with next.

Window Layout
where the user can control the size and
position of the windows that are visible on
the screen in order to produce a suitable
layout for whatever work is being done.

File System Access
where the user can view and operate on
the contents of the file system. The view
includes disks, directories and files, and a
powerful set of commands is available for
each of these. The commands also can
include user-supplied functions for
flexibility.

Print/Plot Control
where the user can control the printers
and plotters attached to the system. The
user can decide which options and
devices to use and can manage the queue
of print jobs for each device.

Clipboard Viewer
where the user can view data that is being
copied from one place to another using
the Cut and Paste functions.

Control Panel
where the user can control various
system features, such as the colors used
for the screen background or the mouse
double click rate.

Command Line
gives equivalent command entry
capability to that provided in DOS 3.30
and to provides the experienced user an
alternative to a menu-driven interface. It
is expected that most users will use other
parts of the User Shell for the common
functions and only use the Command Line
for specialized functions.

The User Shell is designed to give the user easier
access to the functions of the system. It makes the
data and the capabilities of the system visible on the
screen and provides direct and fast ways of getting
work done.

33

Presentation Manager API
Overview

Presentation Manager provides a very rich set of
functions to application program writers through its
Presentation Manager Application Programming
Interface (API). These functions make the tasks of
providing a good user access to presenting data and
controlling devices as easy as possible.

The API is divided into groups of related functions:

User Dialog
used to create and process dialog boxes
and menus as an important part of the
application's user interface.

Screen Windows
used to create and manipulate screen
windows as places to structure and
display data on the screen.

Input and Messages
used to receive user input from mouse
and keyboard, to receive system
messages and for inter-process
communication.

Alphanumerics
used to display simple text data.

Graphics used for APA display data, including lines,
curves, symbols, filled areas and for
typographic quality text.

Bitmaps which are in-memory representations of
APA display data generally used for rapid
screen updates.

Device Independence

An important feature of the Presentation Manager is
the high degree of device independence it offers to
the application programmer.

The systems supported by Presentation Manager
offer a wide variety of devices that can be attached to
the system, including:

• Mouse
• Keyboard
• Display and display adapter
• Printers
• Plotters.

An application which uses the Presentation Manager
interacts with these devices in a high-level manner
that does not depend on the peculiarities of the

34

device. The Presentation Manager performs the job
of mapping the high-level constructs of the API to the
devices. The system is designed to take advantage
of device features without making applications
dependent on those features.

An example of such a feature is a printer that has a
set of built-in or cartridge-loaded fonts tuned to the
printer's characteristics. The Presentation Manager
permits use of these fonts, but an application that
uses them requests the fonts in a logical way, which
does not depend on that particular printer being
attached to the system. If another type of printer
were attached to the system, the Presentation
Manager would map the application's font request to
the most closely matching font available for this other
printer.

Device independence relieves the burden of writing
new versions of an application for every new piece of
hardware that appears.

If an application wants to use features of particular
hardware, this also can be achieved. The
Presentation Manager has a number of query
functions that allow an application to learn about the
display devices attached to the system. The
application can then make full use of this data. There
also are certain Escape function calls that permit an
application to communicate directly to a Device
Driver to obtain specialized functions not available
through the Presentation Manager.

Screen Windows

Screen Windows are used to display panels of data
on the screen and are the places to which the
end-user directs input.

Window Types

Although a Window is essentially a rectangular area
on the screen, there are several types of windows
which differ in appearance and usage:

Main Windows

• Are generally long lived and really
"represent" the application on the
screen. An application typically has
one main window, but it can have
more than one if the application has
more than a single main function. For
example, a spreadsheet application
also may have a chart function to
display the data in a graphical form.

Presentation Manager

The spreadsheet can be put in one
main window and the chart in another.
The spreadsheet and chart can then
be manipulated independently by the
user.

• Are not directly related to other
windows on the screen. They are
positioned relative to the screen and
their size is not constrained by other
windows.

• Typically have a standardized
appearance. This includes a number
of features which occur in a standard
place in the window and operate in a
standard way:

Child Windows

An Action Bar and associated
Pull-Down Menus

Wide borders for sizing
operations

A title bar with the program
and/or data file name

Icons for maximizing, minimizing
and restoring the window's size

An icon for accessing a menu
containing system operations

Optional scroll bars, if the data in
the window can be scrolled

• Are windows that "belong" to another
window, termed the parent window

• Typically contain data that relates to
the parent window contents

• Always appear on top of the parent
window and are contained it; if too
large, the child windows are clipped
at the edge of the parent window

• Can themselves contain child
windows

Dialog Boxes

• Are transient windows containing a
user dialog required to achieve a
specific action

• Appear on top of a window to which
the action relates (either a parent or
'owner' window)

Presentation Manager

• Normally have their contents defined
using the dialog editor utility program

• Can be updated dynamically by the
application program

Window Properties and Appearance

Windows have a number of properties and an
appearance which are designed to aid conformance
to the Common User Access definition of Systems
Application Architecture.

Windows have the following intrinsic properties:

Position the position of the top left corner of the
window relative to the screen or to the
parent window.

Size the horizontal and vertical extent of the
window. A window has three sizes:

1. its normal size. The user can change
the normal size by performing a Size
operation.

2. its maximum size. The user can get
the window to this size rapidly by
maximizing the window using the
maximize icon.

3. its minimum size. The user can get
the window to this size rapidly by
minimizing the window using the
minimize icon.

Vlsual Ordering
decides which window appears when two
or more windows overlap on the screen.

Visibility indicates whether or not the window
should be shown on the screen.

Border surrounds the window and is used to
delineate the window from other objects
on the screen. The border can have
several forms:

• Thin border for minimal delineation

• Normal border for simple delineation
of the window

• Wide border used for window sizing
operations as well as delineation

Pointer Shape
defines what the pointer looks like when
the pointer is in the window. By default,
the pointer shape is a system-defined
arrow. However, an application can
choose to use a pointer shape of its own
on a window-by-window basis.

35

Client Area
is the main area of the window where the
application draws the data it wishes to
display in the window.

Windows also can have a number of optional
features:

Title Bar which is a narrow bar across the top of
the window which contains:

Scroll Bars

Action Bar

36

• A name for the window

• Maximize/minimize/restore icons

• A system menu icon

The name is used to identify the window
and its contents. For example, the main
window of an editor application called
FRED operating on a file called JOE.DOC
would best have a name FRED-JOE.DOC.

The maximize/minimize/restore icons are
used to rapidly switch the window size
between maximum, minimum and normal.
The system menu icon is used to access a
system menu which contains a list of
system functions such as move and size.
Mouse users can do the same things more
directly.

appear on the right side and/or bottom of
the window and are used when the
displayed data is too large to fit in the
window and needs to be scrolled through
the window to be viewed. The scroll bars
contain arrows at their ends; a long
rectangle in the middle holds a small
rectangle called the thumb.

The thumb position within the rectangle
indicates the current position of the
visible data relative to the total amount of
data. The thumb can be moved with the
mouse to cause scrolling by an arbitrary
amount. Selecting the arrows causes
scrolling by fixed amounts in the direction
of the arrows.

appears at the top of the window below
the title bar, if there is one. The action
bar is a horizontally-aligned menu
containing a number of items. Each item

has a pull-down menu associated with it
which provides detailed choices relating
to the major actions held in the action bar.
The action bar thus provides a visible,
easy-to-use means of doing the actions
that relate to the window.

Dynamic Operations
are operations the user can perform on a
window while it is displayed on the
screen, including changing its size and
position. The application can control
whether the user can perform these
operations on any window it creates. If
the operations are allowed, the various
user access elements relating to the
operations are enabled. Otherwise, they
are disabled.

Window Procedure
is a section of program code associated
with a window. It has no direct relevance
to the window's appearance, but it
influences the way in which a window
operates internally. If a window has a
window procedure, the window can be
treated as an object in programming
terms.

Object-oriented programming implies that
messages sent to the window are
processed in a given way. This may
change the appearance of the window or
generate responses or messages in some
pre-defined way.

An object-oriented program can be a very
useful way of structuring an application.
The program can be partitioned into
modular sections of code, each of which is
responsible for a particular aspect of the
user interface or data display. It is
particularly useful when the application
needs to have many windows containing
the same kind of information, because all
similar windows can share the same
window procedure. This is the way in
which most of the user access controls
(tor example, the scroll bars or the push
buttons) are implemented within the
system.

A window with all the visual features described in
this section has the following appearance:

Presentation Manager

Wide Window Border

H~ Title Bar

Action Bar

1
S = System Menu Icon
A = Maximize Icon
I =Minimize Icon

Pull-
Down
Menu

Client Area

Horizontal Scroll Bar

Figure 27. Default Window Appearance.

I
JA I

s
c
r
0

l
l

B
a
r

H

The window appearance shown in Figure 27 is a
default appearance which is produced very simply
using Presentation Manager functions and conforms
to the Common User Access of Systems Application
Architecture. However, an application which needs a
specialized window appearance to meet some
specific requirements, for example, a split-client area
showing two pieces of data each with its own pair of
scroll bars, can do this using the Presentation
Manager.

User Access Functions

Presentation Manager provides a series of functions
that enable the application user interface to be
designed for ease-of-use and consistency. This is a
very important area of function for almost all
applications, and Presentation Manager provides a
rich set of functions which should meet most needs.
The Presentation Manager User Shell itself uses
these functions.

Common User Access Definition for Applications

Systems Application Architecture and Presentation
Manager encourages all application developers to
use the Common User Access. This offers
advantages to both programmers and end users.

The benefits to the programmer are:

• A toolkit which makes producing user interface
elements straightforward.

Presentation Manager

• Not worrying about which keystrokes or mouse
actions to use to achieve a given result - - these
are defined by the Common User Access.

• Not having to make all parts of an application
have the same look and feel.

The end user benefits from:

• An interface that is easy to learn and easy to use,
but gives expert users rapid access to functions

• Reduced learning time. Once the user knows
one application that conforms to the definition, it
is easy to move to another application that uses it
because all applications using the definition
present and operate their functions in a similar
way. The user can concentrate on the function
offered by the application rather than on the way
it is presented.

• No sudden breaks or jumps in the way things
work when using multiple applications
simultaneously with Presentation Manager.
Applications and the Presentation Manager
system all have the same look and feel.

Menus, Dialogs and User Interface Controls

Presentation Manager's user interface functions are
divided into two broad areas:

Action Bars
which are simple selection menus.

Dialog Boxes
which are windows containing a series of
user interface controls offering dialog that
is free-format and more complex than a
simple selection menu.

Action Bars: An action bar is a menu containing
simple selection items. The user sees a list of text
items and selects one from the list to cause some
action.

The menu consists of two parts. The first is the
action bar itself, which is a horizontally-aligned list of
items, with the first item at the left. The action bar is
positioned at the top of a window, just beneath the
window title bar. Most of the main, commonly used
functions relating to that window should be placed in
the action bar.

The action bar is often a single line of items, but if
there are too many items to fit on one line within the
window, the action bar is split into two or more lines
placed one above the other.

37

The second part of the action bar menu consists of
the pull-down menu associated with each action bar
choice. Selecting an item in the action bar causes its
associated pull-down menu to appear. Selection of
the action bar item does not cause any other action to
occur.

A pull-down menu is a vertically aligned list of items.
Each pull-down appears directly below the item in the
action bar with which it is associated. The items in
the pull-down represent either immediate actions
which take place when the item is selected, or the
start of a longer dialog as the appearance of a dialog
box.

l Files Linestyles Col ors Symbols Patterns J
Red
Green
Blue
Yellow
Purple
Orange
White
Black

L Action Bar

- Pul 1-Down Menu

Figure 28. A Typical Action Bar and Pull-Down Menu

Dialog Boxes: A dialog box is a window that contains
a series of user interface controls arranged in a
free-format layout. A dialog box supports a user
dialog functionally richer than that offered by an
action bar; in particular, it can support more than
simple selection fields. The dialog box is normally
defined using the dialog editor program, which is a
WYSIWYG (What You See Is What You Get) editor that
allows the application writer to see the dialog as it is
created.

The user access controls that can be placed within a
dialog box are:

Push Buttons
which consist of some text surrounded by
a round-cornered rectangle. The button is
normally two-state: it is selected or
not-selected. This is indicated by
highlighting when the button is selected.
Buttons often indicate actions that are
performed immediately when the button is
pressed.

Check Boxes

38

are used to indicate selection of text
items. Selection is indicated by a check
mark in a small box that appears to the

left of the text. Check boxes are used
when multiple selections are allowed.

Radio Buttons
are used to indicate mutually exclusive
selections of text items. Only one of a set
of radio buttons can be selected at once.
Selecting another item results in the
currently selected item becoming
unselected.

List Box is a vertical list of text items held within a
rectangular area. The items are
selectable. If the list of items is longer
than the rectangular area can display at
one time, a scroll bar appears at the right
of the area. This allows the user to scroll
through the list as required.

Input Field

Scroll Bars

is a single-line horizontal area where the
user can type in some alphanumeric data
from the keyboard. It can have some
initial text displayed, which can be
overtyped or modified by the user.

are similar to the scroll bars used for
scrolling data through windows.
However, they can be used for purposes
different from this, in particular the thumb
position can be used to indicate the value
of a linearly-varying property of some
kind, such as the brightness of a color.

User-Interface Controls: The various user-interface
controls are available to the application for use in
any window, not just for a dialog box. This can be
very useful when an application needs to have simple
user interaction with application data. For example,
an application displaying a window with some
graphical data may need a couple of push button
controls at the bottom of the window to allow the user
to view the next piece of data or to exit the viewing
process.

Input

Input functions concern:

• reception of input events from the mouse and
keyboard generated by the user

• reception of messages concerning system events
and conditions

• the sending and receiving of messages between
tasks

Presentation Manager

The User's View of Input

The end user communicates with the system using
the mouse and/or the keyboard. A mouse, however,
allows the user to interact more easily with objects
on the screen.

When communicating with the system, the user sends
input to one window at a time. The window is called
the input focus, while the application to which the
input focus belongs is called the active application.

The user can generally decide to change the input
focus and the active application at any time. This is
done either by a special keystroke or by moving the
mouse to put the pointer in another window and then
clicking the mouse selection button. There are also
functions in the user shell allowing the user to
change the active application.

Messages and Message Sources

The basic element of input is the message. Each
input event is delivered to the application as a
message. Each message contains data that identifies
the type of message involved and conveys the
information related to the message. Message
originate from a variety of sources:

Mouse which involves user input when the mouse
is moved and when mouse buttons are
pressed and released.

Keyboard which generates messages when the user
presses and releases keys.

System Messages
these relate to events occurring in the
system generally as the side effect of
some direct user actions. They include
the following messages:

• Size, if the user changed the size of a
window

• Move, if the user moved a window
across the screen

• Redraw, if some user action caused
part of a window to be revealed that
was not previously visible. The data
in this part of the window must be
redrawn.

• Clipboard, if the user used the cut and
paste functions of the system to copy
data from one window to another.

Presentation Manager

Timer An application can set one or more timers
running. When one of these expires, a
message is sent to notify the application.

lnlerTask Messages
Tasks in the system can send one another
messages of a general nature. Their
meaning is defined by the applications
using them.

Semaphore Messages
An application can wait for an Operating
System/2 semaphore message for some
event to occur. Semaphore messages
permit the application to tie such events to
other messages in the system.

Note that mouse, keyboard and system messages all
relate to a window. All identify the window (by
means of its handle) in the data passed with the
message. The other messages are not related to a
window.

How Applications Receive Messages - Message
Queues

Whatever messages are destined for an application,
they are first placed in an input queue. The
application has to allocate a queue when initializing
the Presentation Manager. It is possible for an
application to allocate more than one queue, but to
do this the application must be multitasking since it is
only possible to read input from one queue on a
single task thread.

The Presentation Manager input queue structure has
two levels. There is a system queue for all events
directly received from the user - - mouse and
keyboard messages. Each application also has its
own application queue that holds messages directly
relating to that application alone, such as timer
messages. Application queues do not hold user
input. The system queue is shared between all
applications in the system and, in principle, an event
could go from the system queue to any application.

Within both queues, the messages are ordered in
time sequence.

The application receives input by making a Get
Message or Peek Message function call. When
calling Get Message, the application is suspended
until a message arrives. When a message arrives,
the application resumes and the message is passed
back on the completion of the Get Message call.

When an application asks for input using the GetMsg
function, it receives the following:

39

• the first message in the application queue; or,

• if the application queue is empty and the
application has the input focus, the first message
in the system queue; or,

• if neither of the first two apply, a redrawing is
required, a redraw message; OR,

• if no message is available, the application waits
within the GetMsg function for a message.

Receiving Input - Recommended Application Style

Any application that creates an input queue should
expect to receive input messages from the user. To
do this, the application should issue calls to Get
Message or Peek Message regularly, which means
responding to user input within a short time, from 0.1
to 0.5 seconds. If the response is longer than this,
the user will notice the delay and the smooth flow of
work will be interrupted.

Not all application functions will be able to complete
within this time period. Some operations, particularly
those involving heavy computation or disk access,
take much longer. In these circumstances, the
application should have separate tasks for
responding to user input and for doing work that
takes considerable time. The user response task can
then continue to service user input messages while
the other task finishes its work.

At the very least, the user response task should
indicate to the user that the application is busy and
allow the user to switch tasks away from that
application to another one that is not busy.

Alphanumerics Output

Alphanumerics output functions are provided for the
fast output of simple textual data. The text is
displayed in a presentation space which is a fixed
grid of equal-sized characters with limited flexibility
and quality. This function of the Presentation
Manager is called Advanced VIO, or AVIO.

Migration of Non-Windowing Text Applications

The first set of functions provided by the AVIO
interface is the support of the Operating System/2
VIOxxx, KBDxxx, and MOUxxx functions within the
windowing environment. Applications that access the
display and input devices only through these
functions in the non-windowing environment of

40

Operating System/2 will, with some minor
exceptions, be able to run in a single default window
within the windowing environment without the need
for any change.

Exceptions concern the use of functions that directly
access the screen in some some way, such as
VioGetPhysBuf. These cannot be supported in the
windowing environment.

Text in Multiple Windows

The AVIO interface extends the VIOxxx functions to
enable an application to display text output in
multiple windows. Note that MOUxxx and KBDxxx
functions are not supported in this situation. Their
functions are provided by the input functions of
Presentation Manager, which should be used instead.

The AVIO interface also extends the VIO interface to
provide IBM 3270-style alphanumerics function. The
AVIO interface supports the CGA format of
presentation space, with each character having a
single attribute byte to control features such as color.
It also supports an alternative format which has two
attribute bytes per character.

The alternative format allows for:

• Underscoring
• Strike-through
• Use of up to four application-loaded fonts,

in addition to the attributes supported by the single
attribute byte format.

The AVIO functions allow the presentation space to
be updated by direct updating of the rectangular
character buffer or by text string functions.

Graphics Output

The graphics output functions provided by the
Presentation Manager are a rich set for drawing. APA
graphics. The functions themselves follow the
Systems Application Architecture making the
interchange of graphics data with other IBM systems
straightforward.

An important part of the graphics output function is
devoted to supporting typographic quality text, which
can be mixed with graphics as required.

Presentation Manager

Graphics Primitives

The following graphics primitives are supported:

Lines of various kinds:

Line a straight line between two points

Polyline successive straight lines drawn between
an array of points

Box a rectangle with optional rounded corners

Arc/Full Arc

Pie

Fillet

Spline

all or part of a circle or ellipse. Ellipse
major axis can be at an arbitrary angle.

a pie section - an arc whose end points
are joined to the arc center point by
straight lines

a succession of curves based on conic
arcs

a succession of curves similar to a fillet,
but with more elaborate variations
possible.

Filled areas
are defined as a boundary made up of
connected line sections filled with a
pattern.

Character strings
are arrays of characters

Images are rectangular arrays of pixels.
Compressed images are not supported.

Markers are symbols used to label or mark points,
for example on a graph.

Graphics Attributes: Each type of primitive has a set
of attributes that can modify its appearance. Some of
the attributes are general and apply to all primitives:

Color is the color in which the object is drawn.

Background color

Mix

is the color in which the background parts
of some objects are drawn. For example,
a character has a foreground-that
represents the shape of the character. It
also has a background that is the rest of
the rectangle which forms the character
cell.

is the way in which a primitive interacts
with previously-drawn primitives when it
is drawn. For example, it can overpaint a
previous drawing so that only the new
primitive shows through.

Presentation Manager

Background mix
is the way in which the background part of
a primitive interacts with previously
drawn objects.

Transformations
are coordinate transformations that can
be used to scale, rotate or translate
primitives before they are drawn. A
number of transformations can be used.
Some operate on the whole picture,
others only on subsections of the picture.

Clipping is used to restrict the region of the output
device in which drawing occurs. Parts of
primitives that fall outside the clipping
region are not drawn.

The following attributes are specific to types of
primitives:

Lines have:

• Linestyle - dot/dash patterns

• Line width - varying thicknesses of line

• Line ends and joins - the form of the ends and
joins of thick lines

Filled areas have:

• Variable fill patterns

Character strings have:

• Character Set/Font - a variety of character styles
can be used

• Cell Size - the size of characters

• String Angle - the angle of the string to the
horizontal

• Precision - the accuracy with which the
characters are placed.

Images have no specific attributes.

Markers have:

• A choice of marker shape

• Marker size

• Precision - the accuracy of placing of the markers

41

Typographic Text Capabilities

The Graphics functions include capabilities for
generating text output with typographic quality using
the character string functions. A wide variety of font
typefaces and styles can be supported, and a set of
fonts is supplied with the Presentation Manager for
the devices it supports.

In addition to simple character strings, which simply
place one character after another according to the
character metrics in the font, there is a function that
produces a line of text in which each character can
be individually positioned. This enables an
application to produce text output on the screen that
closely matches the output from a printer, for
example.

A variety of services enable an application to take full
advantage of typographic quality fonts:

• The API enables use of fonts supplied with the
Presentation Manager as well as fonts available
on specific hardware devices such as printers.

• The application can specify the font(s) it requires
in a logical way. This allows the system to
perform a match to the best font(s) available on
whichever output device the text is drawn. This
also makes it easier to transmit the document to
a remote system since the it may not have the
same precise set of fonts available.

• Query functions enable the application to find out
the metrics and other attributes of every font.
These can be very important when considering
certain types of applications, such as page
layout.

• The system is extendable. More fonts can be
added to the system to give a wider range of
typeface styles, for example:

The font file format is published

A font editor utility is provided for the
production of image fonts

Applications can request that any available
font be loaded into the system and used.

Presentation Manager supplies a set of fonts for the
devices it supports. These include both
image-defined fonts and also vector or outline fonts.
The latter enable a much wider range of point sizes
to be supported across all devices. The former offer
better performance and better appearance at small
point sizes and on lower resolution devices such as
most displays.

42

Graphics Processing

The graphics processing performed by Presentation
Manager is not just confined to drawing primitives on
the screen. A much broader range of function is
supported.

Drawings can be sent to a range of output devices,
such as printers and plotters, in addition to the
display screen. Output to a file for storage or for
interchange with other applications or systems is
also supported.

The graphics API supports two other very useful
functions:

Correlation

Bounds

otherwise known as picking. This enables
an application to determine which
primitives cause drawing within a defined
rectangle. This is useful when the user
selects some item on the screen by
pointing with a cursor. The rectangle
used is a small rectangle around the
active point of the cursor, and the
application uses the Correlation function
to determine which item the user is
pointing at.

enables an application to find out the
smallest rectangle that will bound some
set of primitives which it has drawn. This
can be useful for determining the size of
some complex graphical object,
particularly when that object needs to fit
into a picture with other objects such as
text.

The application can draw various amounts of data
with a single function call across the API:

• One primitive, such as a single line or a
character string.

• A whole group of primitives and associated
attributes.

• Part or all of the Graphics Store. (See the
description of the Graphics Store Function.)

The final aspect of the drawing process is the set of
resources that are used during the drawing of
graphics. These include:

Default attributes
are values for graphics attributes that are
not explicitly set by the application during
the drawing process.

Presentation Manager

Character sets/fonts
are definitions of the symbols used when
drawing character strings. Many of these
can be available at the same time.

Linestyle sets
are application-defined linestyles, used
for specialized linestyles not directly
supported by Presentation Manager.

Color tables
are definitions of the colors required by
an application, should the system defaults
not be adequate. These are normally
mapped to the closest available colors on
the target output device.

All of the resources can be changed, added to or
deleted from by application callable functions.

Graphics Store Function

With Presentation Manager, graphics pictures can be
handled in two alternate ways: non-retained and
retained. These terms relate to the way in which the
system holds the picture for drawing:

Non-Retained Graphics
In this mode, primitives are passed from
the application via the API and are simply
drawn on the output device. The system
has no memory of the primitive once it is
drawn.

In this mode, much of the work of drawing
a picture is done by the application. The
application must have code to draw
everything it wants to output on the device
by issuing the appropriate API calls.

Retained Graphics
In this mode, the application builds up a
picture in an area of system storage
called the graphics store. It can do this by
issuing appropriate API function calls,
which are generally the same as those
used to draw lines, etc. in non-retained
mode.

Once the picture is built, the application
can cause all or part of the picture to be
drawn by issuing a single function call.

The advantages of using retained graphics mode are
in the application are:

• The picture in the picture store can be built in a
series of graphics segments, that allow the
picture to be structured. For example, if a picture
of a car is built up, the primitives representing a

Presentation Manager

wheel need only be placed in the store once, in
one graphics segment. The four wheels on the
car can then be drawn by referencing the wheel
segment four times from the overall car segment.

• Picture editing is made simpler, since the data is
present in a convenient data structure and a
series of editing functions are provided in the
API.

• Because the picture is contained in the system
rather than the application, the system can (if
requested) automatically redraw the picture
when necessary, for example, when a windowing
operation generates a Redraw message for the
window in which the picture is shown.

• Application code and data space is reduced,
since the system can take over the burden of
holding and drawing the picture. This is
particularly useful if some or all of the picture
data is obtained from a picture file on disk, since
the API provides functions to load data directly
from a disk file into the Graphics Store, requiring
minimal application involvement.

Bitmaps

A bitmap is basically a memory representation of the
data displayed on an APA device. It is normally used
to perform fast updates to a display device, but a
bitmap can be matched to any APA device.

The bitmap can be a color bitmap, with the same
color capabilities as the matched device, or a mono
bitmap. Mono bitmaps are used to save storage
when the data drawn into the bitmap does not have a
requirement for multiple colors.

Data can be drawn into a bitmap as if it were an
output device like the screen. Both graphics and
alphanumerics data can be drawn into the bitmap.

The basic operation that is performed with a bitmap
is to copy a rectangular subsection of the bitmap to
another bitmap or to a device like the screen. A third
"modifier" bitmap may be used for masking
purposes, and a full 256 logical mix combinations are
supported for this function.

The application can also access the pixel data in the
bitmap directly; i.e., it can get and put blocks of pixel
data. However, when using these functions, the data
format is device dependent and the application must
be written with this in mind. Query functions can
inform the application which format is involved for a
particular bitmap, but no assumptions should be
made which expect a specific format unless the

43

application is designed to work only with a particular
device.

Device Driver Interfaces

Presentation Manager supports an open architecture.
It is structured so that support tor new or different
input or output devices can be provided easily.

This is achieved by providing the device support code
in a package called a device driver. The device
driver communicates with the main part of
Presentation Manager via a device driver interface,
which can support a range of device drivers.

Device drivers are supplied for:

• Input devices, including the mouse and keyboard.

• Output devices, including displays, printers and
plotters.

The input device drivers are supplied with all
versions of Operating System/2. The output device
drivers only apply to Presentation Manager.

The output device driver interface of Presentation
Manager is designed to support different devices with
a wide range of capabilities. It is flexible so that it
can support a relatively simple device such as the
IBM Color/Graphics Display Adapter, but it can also
support and utilize output devices with powerful
built-in functions such as the IBM Personal System/2
Display Adapter 8514/A.

An appropriate device driver must be written and
installed if Presentation Manager is to use a new
input or output device. The device driver interfaces
tor input and output devices are documented and
enable hardware developers to get support tor new
devices.

Toolkit

The Presentation Manager provides a toolkit to aid in
the development of applications which use the
Presentation Manager. It contains a number of
components:

44

Dialog Editor
is a What You See Is What You Get
(WYSIWYG) editor that enables the
creation of dialog boxes. It allows the
application writer to define the user
interface controls to use in the dialog box
and to position them as desired.

Once defined, the dialog box definition
can be compiled and saved in a resource
file tor inclusion in the application
program.

Bitmap/Cursor Editor

Font Editor

is an editor which enables the creation of
bitmap, cursor/pointer and icon objects. It
allows the application writer to define the
pixel colors within a rectangular array.

Once created, the objects can be stored in
a disk file which can be made into
resource files using the resource
compiler.

is an editor which enables the creation of
an image font object. It allows the user to
define each character of the font in turn.

Once created, the font can be saved in a
disk file and made into a resource file
using the Resource Compiler.

Include Files
is a set of files to provide definitions tor
the API functions and data structures
needed when writing an application in the
supported languages.

Resource Compiler
is used to produce resource tiles tor
linking with an application. Input is
typically in a source format that is
generally a form of readable English text.

Sample Programs
is a set of example programs which use
the Presentation Manager. The set is
designed to illustrate various aspects of
the API which are relevant to the
programmer who wants to develop an
application using the functions provided
by the Presentation Manager.

Presentation Manager

IBM Operating System/2 Extended Edition

Introduction

The IBM Operating System/2 Extended Edition
incorporates all of the functions of the IBM Operating
System/2 Standard Edition Version 1.1 with
communications support and relational database
management. The Operating System/2 Extended
Edition is designed to provide a broad and stable
base for the development of contemporary
productivity applications. The operational
environment allows applications to function in both
standalone mode and as part of a comprehensive
system solution across a network. In addition, the
Operating System/2 Extended Edition strives for
consistency and simplicity in the interfaces designed
for both software developers and end users. At the
same time, it will allow many existing IBM Personal
Computer Disk Operating System (DOS) applications
to run unchanged in a single application
environment.

IBM Operating System/2
Communications Manager

The IBM Operating System/2 Communications
Manager portion provides comprehensive
communication capability in a single system. Thus,
functions available in various communications
programs for DOS now operate with the additional
benefits of multitasking, expanded memory, common
displays and enhanced usability. This innovative
software package provides greater flexibility in
aligning communications requirements to the
growing needs of a business.

The Communications Manager provides access to
information located in a variety of other local and/or
remote systems. Other systems may be IBM
Personal Computers, IBM Personal Systems/2, an
IBM System/36, an IBM S/370, and even a non-IBM
data servicer. This flexibility permits businesses to
receive, analyze and make decisions on an expedited
basis to respond to the needs of a fast-paced world.

Productivity is enhanced through multiple concurrent
communications connections. No longer does a user
have to wait for one type of communication session to
complete before loading another. Thus, the user of
Operating System/2 has the ability to do more than
one thing at a time. Productivity may also be

IBM Operating System/2 Extended Edition

enhanced through network management. In a
System/370 host network, Communications and
Systems Management (C&SM) alerts are issued by
the Communications Manager to enable efficient
management of communications on the network.

The Communications Manager also allows flexibility
in writing applications to multiple programming
interfaces. This helps software developers to be
more efficient and productive in effectively meeting
users' needs.

The Communications Manager is written for the
Operating System/2 Applications environment.
Services include communication to other IBM
Personal Computers and systems over a wide range
of local and remote connectivities including
Synchronous Data Link Control (SDLC), Distributed
Function Terminals (OFT) mode to an IBM 3174 or
3274, IBM Token-Ring and PC Network Local Area
Networks (LANs) and asynchronous (Async) links.
Protocols used include LU 6.2, 3270 data stream (LU
2) and asynchronous communications.

Other functions include keyboard remapping, file
transfer and concurrent emulation support for
multiple terminal types. Programming interfaces are
available to help migrate existing programs, facilitate
programmer productivity in application development
and allow programs to take advantage of the power
of an IBM Personal Computer or IBM Personal
System/2.

Communications Manager Highlights

The Communications Manager provides terminal
emulation and file transfer utilizing the added
intelligence of the IBM Personal Computer or IBM
Personal System/2 and its other applications. Both
synchronous and asynchronous terminals can be
emulated.

IBM 3270 Terminal Emulation

The following IBM 3270 terminals may be emulated:
IBM 3178 (Model 2); IBM 3278 (Models 2-5); IBM 3279
(Models S2A and S2B). All base data-stream
functions are supported, as are the multiple
interactive screen, extended attributes, extended
data stream (including seven colors and extended
highlights), file transfer and emulator keyboard
remapping.

45

IBM 3101 and oec1s VT100 Emulation

An IBM Personal Computer or IBM Personal
System/2 connected to a host supporting an
asynchronous link may emulate the IBM 3101 (Model
20) or the DEC VT100 terminal. Lines may be
switched, non-switched, or directly-connected,
compatible with 1984 CCITI V24/V28 (RS232C) as
implemented by IBM. Keyboard remapping gives
each user the flexibility of personalizing the use of
the keyboard. Emulation provides facilities to access
data services such as Dow Jones News/Retrieval
Service16 ; Compuserve Information Service17; MCI
Mail18; or The Source1e.

File Transfer

File transfer capability allows text or binary files to
be moved to and from an IBM host, IBM Personal
Computer or Personal System/2 or another supported
non-IBM host. The 3270 PC File Transfer Program
works with both 3270 and asynchronous emulation.
XModem and Pacing protocols operate with
asynchronous emulation. Pacing is not required
when receiving an ASCII file from a host.

Multiple, Concurrent Communications Connectivities

The IBM Personal Computer or IBM Personal
System/2 using the IBM Operating System/2
Extended Edition may be attached to another IBM
Personal Computer, IBM Personal System/2, a
departmental system, or to a System/370 family host.
Connectivity may be local (OFT or Token-Ring) or
remote (SDLC or asynchronous). Connectivities are
under the control of the specific architectures and
protocols shown in Figure 29 on page 51. Data
streams and other protocols that allow the IBM
Personal Computer or IBM Personal System/2 to
communicate as an emulated terminal or directly
through a program-to-program interface are
illustrated in Figure 30 on page 52.

Concurrency is a key to productivity. From a
communications standpoint, multiple protocols,
terminal emulation, program-to-program support and
programming interface support can operate

15 Trademark of Digital Equipment Corporation

16 Trademark of Dow Jones & Co. Inc.

17 Trademark of Compuserve Inc.

18 Trademark of MCI Communications Corp.

19 Service mark of Source Telecomputing Corp.

46

concurrently. Thus, communications can be active
while the user is doing another application.
Concurrent communications are dependent upon the
capabilities of the adapters in the IBM Personal
Computer or IBM Personal System/2. (See note 1 of
Figure 30 on page 52 for some limitations.)
Supported SNA links can be shared by applications,
which may use up to five 3270 SNA display and/or
multiple LU6.2 sessions.

Network Management

Network management support (for the IBM
System/370 host network) includes: Communications
and Systems Management (C&SM) alerts for SDLC,
Async, Token-Ring and PC Network data links, and
problem determination data. Both Async and PC
Network require an IBM SDLC or Token-Ring link to
communicate alerts to the host. The
Communications Manager sends alerts to the host
when errors are detected for SDLC, Async,
Token-Ring or PC Network connections. Applications
written to the Communications Manager's
programming interfaces can take advantage of the
alert sending capability.

Problem Determination

The Communications Manager provides functions for
gathering and processing problem determination
data. These functions include tracing programming
interfaces, data units, and/or system events;
displaying and printing all or selected error logs from
file; system dumping; and displaying all or selected
messages.

Subsystem Management

The Communications Manager allows a system
administrator to control and gain status information
about the SNA communication resources maintained
by the system. As a subsystem manager tool, it
displays information about which programs are being
used and which sessions are being used by the
programs, and detailed information about the
sessions and other active resources. It allows the
activation or deactivation of the sessions, data link
controls and specific links.

IBM Operating System/2 Extended Edition

IBM Operating System/2
Database Manager

The IBM Operating System/2 Database Manager
supports the relational model of data, in which data is
structured in the form of simple and
easy-to-understand tables. Data definition and
manipulation are supported by the Structured Query
Language (SOL}, used in IBM's relational database
management systems DB2 and SOLIDS on host
computers. The Database Manager provides a
common interface for users and software developers
on host systems and personal computers, facilitating
application portability across systems.

The Database Manager is designed to provide a high
degree of independence and ease-of-use
characteristics for database design, creation and
access. The simple data structure allows a user to
specify what is needed, as opposed to how to obtain
it.

Data integrity, security and concurrency controls in
the Database Manager allow for multi-application
access to a database.

End-user tools for user query and report generation,
as well as application creation, are available. The
Database Manager also includes an SOL Application
Programming Interface for software developers.

Database Manager Highlights

The Database Manager incorporates a powerful
relational database with end-user tools and
application-creation tools. Neither the user nor the
application program has to understand complex
physical data structures and access methods.

Data Control and Protection

The Database Manager includes controls for
transaction management, system and media
recovery, database security and concurrency.

The COMMIT and ROLLBACK features help to ensure
that a database will be properly updated by an
application transaction. Recovery using COMMIT
and ROLLBACK is automatically invoked when
restarting after a system failure. Backup utilities
protect against loss of data due to media failures.

The Database Manager provides password protection
for database security. It also includes record-level or
table-level locking to allow concurrent application

IBM Operating System/2 Extended Edition

access to a database. This feature ensures that
updated transactions are written to the database
before another update transaction can read the data
it intends to update.

Data Types/Storage

The Database Manager supports data types that
include integer, floating point, packed decimal, fixed­
and variable-length character strings, date, time and
timestamp. The maximum table size is limited only
by the amount of fixed disk storage available. A
database must reside completely on a single logical
fixed disk (32MB maximum) or diskette.

Utilities

The Database Manager provides a number of utility
functions in support of user database operations:

• Import - provides conversion from Operating
System/2 files in other formats to an existing
database manager table

• Export - provides conversion from a database
manager table to an Operating System/2 file in
another format

• Backup - backs up an entire database or the
changes made since the last backup to fixed disk
or diskette(s)

• Restore - restores a database that was backed up
using the backup utility

• Unload - saves a single table onto a fixed disk or
diskette(s}

• Load - restores a single table that was saved
using the Unload utility

• Reorg - reorganizes a table in user-specified
order to provide more efficient processing

• Runstats - updates statistics about the physical
characteristics of a table or its indexes (used by
the system to determine the most effective way to
access data)

Query Manager

The Database Manager includes functions that allow
the user to define, update and query data, as well as
prepare reports. Data definition enables the user to
create and delete tables, views and indexes. A data
entry/edit facility allows data insertion, update and
deletion of rows within a table.

A query facility enables the user to generate SOL
queries to retrieve data from database tables. Either

47

a prompted or a command interface may be used to
generate a query.

A report generator allows the user to prepare a
customized, formatted report using data generated
from a database query. A customized report format
can be displayed, printed or saved.

Application Creation Tools

Panels, menus and procedures may be used to
create customized and standard applications. The
panels facility allows the user to develop customized
display screens that can be used for data entry,
search and update. A complete, interactive database
application can be developed around these panels,
using menus and procedures.

The menu facility allows the user to define a
database application selection menu. Menus may be
used to allow the user to run predefined queries,
procedures, panels or another menu.

A procedure allows a user to store a sequence of
statements that can be invoked using a single
command. A procedure can invoke a query, menu,
panel, report or another procedure.

Programming Interfaces

Programming interfaces are incorporated into the
Operating System/2 Extended Edition to help
increase productivity and simplify writing
applications. The Extended Edition interfaces serve
one or more needs: migration from existing DOS
applications, common user access, common
communication support, and consistency of database
applications across the family of products supported
by IBM Systems Application Architecture.

Several programming interfaces are accessible
through the Operating System/2 calls. Previously
written programs must be recompiled or revised if
they are to migrate to the supported DOS interfaces.
The supported programming interfaces are described
in the following text.

Structured Query Language (SQL} API

The Operating System/2 Extended Edition includes an
SQL Application Programming Interface (API), in
addition to application creation tools. This interface
is an extensive subset of that announced as part of
the common programming interface of the Systems
Application Architecture. The SQL is a powerful,

48

high-level data definition and manipulation language.
Users can imbed SQL statements in IBM C/2
language source programs. The imbedded SQL
statements are converted by a precompiler for
subsequent application program compilation and
execution.

Advanced Program-to-Program Communications
Interface (APPC}

This programming interface implements the LU6.2
architecture and is designed to save the programmer
from the detail and complexity of communications
links. It controls conversation with the remote
partner. It also controls communications services,
and it supports both mapped (data stream
independent) and basic (data stream dependent)
verbs. Applications that use APPC may be written to
IBM host computers with MVS/CICS and VSE/CICS;
System/36; System/38; System/88; another Personal
System/2; IBM Personal Computers; the IBM
Personal Computer RT; and Series/1 systems. It
provides the function of the Advanced
Program-to-Program Communication Program that is
available today with DOS but modified to take
advantage of the Operating System/2 calls. Any
existing programs written to this interface on DOS
will need to be revised. This interface supports the
Macro Assembler/2, Pascal Compiler/2, and C/2
compilers.

Server-Requester Programming Interface (SRPI)

This programming interface is part of the Enhanced
Connectivity Facilities (ECF). It enables the writing of
communications-independent, requester program
calls to a server program. It is supported over links
using the LU2 protocol. Host server support is
available under MVS/TSO and VM/CMS. The same
function is provided in the IBM PC 3270
Communications Family Programs. Any existing
programs written to this interface on DOS will need to
be recompiled or revised. This interface supports the
Macro Assembler/2, Pascal Compiler/2, and C/2
compilers.

Asynchronous Communications Device Interface
(ACDI}

This programming interface is designed to achieve a
high degree of asynchronous hardware
independence to allow applications to exchange data
over asynchronous links. Device-specific
programming modules are required for each
supported device type and are included in the

IBM Operating System/2 Extended Edition

Operating System/2 Extended Edition. Supported
functions include the ability to manipulate the line
characteristics and connection control (connect and
disconnect) without having to deal with physical
device-specific characteristics. This interface
supports the Macro Assembler/2, Pascal Compiler/2,
and C/2 compilers.

IBM LAN Interlaces

The IBM NETBIOS and the IEEE 802.2 data link
control interfaces are provided for communicating
across the IBM LANs. Applications already written to
these interfaces for DOS will need to be revised.
This interface supports the Macro Assembler/2,
Pascal Compiler/2, or C/2 compilers.

IBM Operating System/2
Extended Edition Planned
Enhancements

Planned enhancements to the Communications
Manager will include SNA LAN gateway support, ECF
enhancements, 5250 workstation feature, X.25

IBM Operating System/2 Extended Edition

support and a high-level language 3270 program
interface. Applications written to the Entry Emulator
High-Level Language Application Program Interface
(EEHLLAPI) of the IBM PC 3270 Emulation Program,
Entry Level 1.1 can be recompiled to work on the
Operating System/2 Extended Edition. The 3270 data
stream will be enabled for double-byte character set
language translation.

Planned enhancements to the Database Manager will
include Remote Data Services to provide support for
an IBM Personal Computer or Personal System/2 on
Token-Ring or PC Network. This function will allow
multiple workstations to access a common database
and a single workstation to access a database
located elsewhere on a LAN.

Other enhancements to the Database Manager
include IBM Pascal/2 and IBM COBOL/2 precompiler
support for SOL statements embedded in application
programs and the Import Utility support of
non-delimited (ASCII) flat files to assist in exchanging
data with other applications. Enhanced support for
fixed disks to support partitions, as well as
application development facilities for the Dialog
Manager interface, also are planned.

49

.~1111111-1-1

Personal Computer

SDLC
ASYNC

SERIES/1

CHANNEL SNA
l---.----.........--...---'I OR NON-SNA

SYSTEM/38
or

SYSTEM/88

Figure 29. IBM Operating System/2 Connectivity

RTPC

LAN

9370

.~111111 E::El
Personal Computer

or
Personal System/2

50 IBM Operating System/2 Extended Edition

SUPPORTED INTERFACE OR FI LE
SYSTEMS EMULATION PROTOCOL TRANSFER LINK'

IBM System/370 APPC LU6.2 -- SDLC (3720, 3725, 3705,
Architecture 3726 and 9370

including 9370 Integrated Cont roll er)

Token-Ring (3720, 3725,
3726 and 9370
Integrated Cont roll er)

Token-Ring Using
3174's 3270 Gateway
Feature (#3025)

for PU2.0

SRPI LU2 -- OFT via 3174/3274
3270 LU2 3270-PC (TO SDLC, BSC,

FI LE Or Channel and
TRANSFER 9370 Workstation
PROGRAM Controller)

SDLC (3720, 3725,
3705, 3726, and
9370 Integrated
Controller)

Token-Ring (3720,
3725, 3726, and
9370 Integrated
Contra 11 er)

Token-Ring Using
3174's 3270
Gateway Feature
(#3025) for PU2.0

3101,VTlOO -- 3270-PC ASYNC 2
FI LE
TRANSFER
PROGRAM

IBM PC and APPC LU6.2 -- SDLC, Token-Ring,
IBM Persona 1 PC Network
System/2 -- -- XMODEM, A sync

PACING+

IBM Sys tem/36 APPC LU6.2 -- SDLC, Token-Ring

IBM System/38 and APPC LU6. 2 -- SDLC
IBM Sys tem/88

IBM Seri es/l APPC LU6.2 -- SDLC
3101 -- -- A sync

IBM RT PC APPC LU6.2 -- SDLC
VTlOO -- XMODEM A sync

OTHER HOSTs2 VTlOO -- XMODEM Async
PACING+

3101* -- XMODEM Async
PACING+

* Character mode
+Sending an ASCII text file to another system
1, 2, 3 - See notes on following page.

Figure 30. Data Link and Data Stream Matrix

IBM Operating System/2 Extended Edition 51

Notes:

1. The IBM Operating System/2 Communications
Manager will support combinations of these links
subject to the limitations imposed by installed
adapters, memory size and processor capacity.
All supported SNA links can be shared by
applications which may use up to five 3270
display sessions per workstation over IBM SDLC,

52

Token-Ring, and OFT links. A maximum of 255
concurrent SNA LU6.2 sessions are supported
over remote SDLC or local Token-Ring LAN links.
Asynchronous links are serially reusable.

2. Asynchronous users requiring SNA support must
use a protocol converter on the link.

3. Appropriately programmed

IBM Operating System/2 Extended Edition

Performance Considerations for IBM Operating
System/2 Program Developers

Introduction

This is a guide for designers of programs that will
use Operating System/2 Standard or Extended
Editions.

There are often several choices to be made in many
areas when programming to take advantage of a
multitasking, virtual memory operating system. This
guide suggests ways to consider program and system
performance (speed) when making these choices.

None of the rules listed here are hard and fast. Some
may seem to penalize single program performance
while benefiting overall system performance. When
these conflict, remember that better system
performance tends to make users happier overall.
The assumption here is that the typical Operating
System/2 user will be using multiple screen groups
(sessions) and will not want a program in one
session to monopolize system resources.

Multitasking

For this discussion, "task" is used generically for
either "thread" or "process" or both.

1. Use as few processes and threads as possible.
Multitasking has the following advantages:

• Structure with lots of logical separation of
function

• "Asynchronous-ness" (independence)

• Priority favoritism

• Memory protection

Don't use multitasking just for structure; it is an
unnecessary expense. Use Call/Return; it is just
as structured as multitasking and frequently less
complicated.

If some of your functions can run independently
of each other, use multiple processes and/or
threads; however use only as many as you have
functions that actually run independently and

concurrently. This promotes overlapping usage
of various computer resources.

If some functions need to be favored over others
(for example, supporting time-sensitive 1/0
devices), you can isolate them into a separate
thread and set its priority high. Don't group
performance-sensitive functions that should
operate at high priority with low-priority
functions. (See also the separate section below
on priority.)

For memory protection requirements, you may
want multiple processes in order to have
independent descriptor tables. Remember, there
is some protection in not exposing the names and
segment handles of memory segments and files.

2. Try not to create and destroy tasks frequently.
Build your tasking structure at initialization. The
task creating services, DOSCreateThread and
DOSExecPgm, have a lot of system work to
accomplish. They are not nearly as fast as the
task shoulder-tapping services such as
DOSSemClear matched with DOSSemWait.

3. When you really need independent tasks on a
timely basis, try to choose threads rather than
processes because DOSCreateThread has much
less system work to accomplish than
DOSExecPgm.

4. Do as little processing as possible in Device
Driver interrupt handlers. Code on the interrupt
level is a sort of super-priority "task" that
monopolizes the processor at the expense of all
the threads and system performance. It also can
also cause timeout problems with other devices.

If your device requires complex interrupt
processing, your device driver interrupt handler
can issue a ProcRun Device Driver Helper
Service (DevHelp) to schedule a piece of the
device driver strategy routine to do interrupt
processing while not on the hardware interrupt
level.

Remember, even if you never create multiple tasks in
your program, Operating System/2 will multitask
between your program's thread and those of other
programs the user is running.

Performance Considerations for IBM Operating System/2 Program Developers 53

Thread Priority

When Priority Is Not a Concern

Many user environments will not make priority a
concern. If no threads alter their priority from the
default, the only priority effect the user notices is that
the foreground session generally gets priority over
any other sessions, and these other sessions will fare
evenly with each other.

If your program does not use any time-critical
devices (fixed disks, diskettes and printers are
generally not time-critical), then priority is of no
concern. Your threads will run at regular class and
at a nominal level.

When Priority Is a Concern

You may have some time-critical requirements (for
example, robotics, process control and
communications). In this case use DOSSetPrty to
change your thread's priority class to time-critical
during important processing or maintain a separate
thread that has been initialized to time-critical class,
and use this thread for the time-critical function.

If one thread processes both regular and time critical
code, and you plan to change the level for the
time-critical portion, save the level of the regular
portion for restoring after the time-critical portion is
finished.

Because your program might be sharing the
computer with other programs that have time critical
functions, the question of which level to use when
performing these functions is important. Some
program designers might choose 31 just to be sure.
Don't do this arbitrarily because the user may be
running another program that is more important than
yours. Here is an example:

Criticality Priority Level

Robotics, Process Contra 1 20 - 31

Communications 1(:) - 19

Other 0 - 9

Figure 31. Example of Time Critical Requirements

During your program's initialization, you might
prompt the user to tell you which priority levels to
use for regular and time-critical classes.

Memory Management

1. Use the Memory Segment Suballocation
Services, DOSSubAlloc and DOSSubFree, for
your data, if you allocate and deallocate a lot. A
suballocation request is faster than a segment
allocation request. Allocating fewer large
segments saves overhead in allocating and
freeing memory, swapping segments, etc.
Remember, if you have lots of segments, you
have to keep juggling the segment registers.
This costs processor overhead, and requires
more complex code.

2. Don't use the DevHelp lock memory segment call
to lock buffers any longer than your hardware
needs them locked.

3. Don't use the long-term option in the DevHelp
lock memory segment call, unless absolutely
necessary. This causes a move to the fixed area
(and possibly another move back after you unlock
the segment) that costs you unnecessary
overhead.

If you decide that some of your areas really need
to stay locked for a long time, then use the
long-term option. (Don't leave short term areas
locked for a long time because this fragments the
movable/swappable section of memory.)

4. Remember that swapping is done by segment
and not by suballocated chunk. Organize your
segments, if possible, to have the more
frequently used data/code all in one (or a few)
segments; and the less frequently used data/code
all in one (or a few) segments. This way, if
swapping is necessary, it will tend to hit only
your less frequently used functions. For
example, put all your error handling code for all
functions in one segment by itself.

Input/Output (1/0)

1. Organize your disk block sizes on 512-byte
boundaries, if possible. This eliminates the
problem of extra 1/0 requests to/from the
CONFIG.SYS buffers.

2. Use asynchronous 1/0 if there is anything else
your thread can process during 110. If nothing
else can be done in parallel, don't use
asynchronous 1/0. Operating System/2 will let
other threads process while your thread is doing
1/0.

3. Since the system creates and destroys a thread
for each invocation of the asynchronous forms of

54 Performance Considerations for IBM Operating System/2 Program Developers

DOSRead and DOSWrite, you may want to use a
separate thread and two semaphores to
accomplish asynchronous 1/0 (see Figure 32 on
page 56).

4. Use moderately large buffers. For example,
reading a lot of data 512 bytes at a time from a
disk is much more costly than reading it in 4K
chunks. This is because each disk access has its
own seek and rotation overhead.

5. Use "read ahead" or even "write behind" double
buffering where applicable (see Figure 32 on
page 56 or Figure 33 on page 56).

Example Flows for Asynchronous
Processing

The following figures are coarse flowcharts for using
multiple threads and RAM semaphores to accomplish
asynchronous processing. The Set/Wait/Clear logic
is identical if system semaphores are used. The
general flow is also applicable to other forms of
interprocess communication.

Performance Considerations for IBM Operating System/2 Program Developers 55

Have two doubleword storage locations that are the
RAM Semaphores for controlling the 1/0. Name one
"do1read" (do one read); the other, "done." You will
need a location for passing return codes.

Thread 1
Main Thread

I
DOSSemSet
11 dolread 11

I
DOSSemSet

11 done 11

I
DOSCreateThread

Thread 2
for the 1/0

+-Initialization

I- - - - - - - - - - -

Ready to Start
a Read

I
DOSSetPrty

+l

I~
DOSSemWait

11 dolread 11

DOSSemCl ear - - - - - - -.. .
"dolread" I

(Do Unrelated Work)

I
DOSSemWait

"done"

-- - -
DOSSemSet

11 done 11

I
Check the

Return Code
I

Process the Buffer
That wr Read

DOSSemSet
11 dolread 11

I
DOS Read

(synchronous)
I

Store the
return code

I
- - - DOSSemCl ear

Figure 32. Using Multiple Threads To Do Your
Asynchronous 1/0.

Have two doubleword storage locations that are the
RAM Semaphores for controlling the 1/0. Name one
"do1read" (do one read); the other, "done." Have two
buffers equal to your block size; call these "buf1" and
"buf2." Have a general buffer pointer, "userbuf,"
which GET will flip back and forth between "buf1"

and "buf2." You need a location for passing return
codes.

Thread 1
Main Thread

I
Call GETINIT

GET! NIT ------,1
DOSOpen

I
DOSSemSet

11 dolread 11

I
DOSSemSet

11 done 11

I
i obuf=bufl

userbuf=buf2
I Thread 2 to

DOSCreateThread Do the 1/0
!11

DOSSemClear•..
"dol read"

.J-~ '
Call

GETI

DOSSemWait
11 done"

GET

DOSSetPrty
+l

1~
I

DOSSemWai t
11 dolread 11

....... -----...

........ -----...
DOSSemSet
11 dol read"

·..,.._··········
I I

DOSSemSet
11 done 11

I
Swap the iobuf

and userbuf Pointers
I

DOSSemClear
"dolread"

I l Return

Check the
Return Code

I
Process the

I "'"b"; ,, ". p until
of File

DOS Read
iobuf

i
Store the

Return Code

I
..•.•.•... DOSSemCl ear

Figure 33. A GET Routine for Double-buffered
"read-ahead" Processing of an Input
Sequential File.

56 Performance Considerations for IBM Operating System/2 Program Developers

Have two doubleword storage locations that are the
RAM Semaphores for controlling the 1/0. Name one
"do1write" (do one write); the other, "done." Have
two buffers equal to your block size; call these "buf1"
and "buf2." Have a general buffer pointer, "userbuf,"
which PUT will flip back and forth between "buf1" and
"buf2." You need a location for passing return codes.

Thread 1
Main Thread

I
Ca 11 PUT! NIT

PUTINIT ---~
DO SO pen

I
DOSSemSet
"dolwrite"

I
DOSSemClear

11 done 11

I
iobuf=bufl

userbuf=buf2
I Thread 2 to

DOSCreateThread Do the I/O
1 ••••.•••••••••••••••• ·l

~--- Return DOSSetPrty

Fi 11 the
userbuf Block

I
PUT Call

PUT------,

DOSSemWait
11 done 11

....................
I

DOSSemSet
11 done 11

I
Swap the i obuf

and userbuf Pointers •
I

+1

I
DOSSemWait

"dolwrite"
....... -.....

DOSSemSet
"dolwri te"

I
DOSWrite

iobuf
I

Store the
Return Code

DOSSemCl ear ••••••••
I 11 dolwrite 11

I "
1111111111 DOSSemCl ear

Return 11done 11

Check the
Return Code

I PUT END
Loop unti 1

End of Data
to write DOSWrite

iobuf
I

DOSClose
Call PUTEND I

Return

Figure 34. A PUT Routine for Double-Buffered
"write-behind" Processing of an Output
Sequential File.

Performance Considerations for IBM Operating System/2 Program Developers 57

IBM Personal System/2 Seminar Proceedings

Publication
Number Vol. Topic

6360-2653 V5.1 IBM Personal System/2 Model 30
IBM Personal Computer DOS, Version 3.30

6360-2678 V5.2 IBM Persona 1 System/2 Displays and Display Adapters

6360-2637 V5.3 IBM Personal System/2 Models 50, 60, 80
Micro Channel™ Architecture,

Hardware Features and Design Considerations

6360-2747 V5.4 IBM Personal System/2 Models 50, 60, 80
VGA, BIOS & Programming Considerations

6360-2756 V5.5 IBM Operating System/2

58

G360-2756

IBM Corpgration
Editor, IBM Personal System/2™ Seminar Proceedings
Internal Zip 3636
Post Office Box 1328
Boca Raton, Fl 33429-1328

- --- --- - - --- _... - -- - ---- - - ---- ---- -T-@

