
Volume 5, Number 4

IBM Personal System/2™ Models 50, 60, 80
VGA, BIOS and Programming Considerations

May 1987

IBM Personal System/2™
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal System/2

Published by International Business Machines Corporation
Entry Systems Division

- --- --- - - --- -- -.. ---- - - ----- ---- -·-®

Changes are made periodically to the information herein; any such changes may be reported in subsequent
Proceedings.

It is possible that this material may contain reference to, or information about IBM products (machines and
programs), programming or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such products, programming or
services in your country.

This publication could contain technical inaccuracies or typographical errors. Also, illustrations contained
herein may show prototype equipment. Your system configuration may differ slightly. IBM believes the
statements contained herein are accurate as of the date of publication of this document. However, IBM
makes no warranty of any kind with respect to the accuracy or adequacy of the contents hereof.

This information is not intended to be a statement of direction or an assertion of future action. IBM
expressly reserves the right to change or withdraw current products that may or may not have the same
characteristics or codes listed in this publication. Should IBM modify its products in a way that may affect
the information contained in this publication, IBM assumes no obligation whatever to inform any user of the
modification(s).

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever.

All specifications are subject to change without notice.

Printed in the
United States
of America

All Rights
Reserved

-===~- -- --- - ---- _,. - -- - ---- - - ---©Copyright International Business Machines Corporation 5/87 - ---- _,,_
®

Contents

Foreword ... 1

Personal System/2 Video . 2
New Modes ... 2
Character Sets . 2
Video DAC .. 2
Video Enable/Disable . 3

Personal System/2 Video Modes . 4
All Modes Supported on All Displays .. 4
Auxiliary Video Connector ... 4

AVC Signal Descriptions .. 7
Color Mapping ... 7
VGA Support Functions . 11

Horizontal Pel Panning . 11
Smooth Scrolling . 11
Split Screen . 11
Logical Memory Read and Write Modes . 12

Compatibility BIOS ... 16
Introduction . 16

Read-Only Memory (ROM) . 16
IBM BIOS Interface Technical Reference Manual . 16
Interrupt 10H (Video) .. 16
Interrupt 13H (Diskette and Disk) .. 21
Interrupt 15H (System Services) .. 21
Interrupt 16H (Keyboard) . 23

Programming Considerations . 24
Software Compatibility . 24

Video Presence Testing .. 25
Diskette Compatibility . 26
Fixed Disk Compatibility . 26

Hardware Compatibility . 26
Interrupt Handling for IRQ2 and IRQ9 . 27
Interrupt Handling for IRQ13 ... 27
Level-Sensitive Interrupts . 27
Input/Output to Interrupt Controller . 27
Accessing Hardware Registers . 27
System Identification . 28
Copy Protection . 28
Programming Considerations for IBM Personal System/2 Model 80 . 29

Power On Self Test (POST) . 32
Post Error Processor . 32
Security . 33
Automatic Configuration . 33
Adapter Description Files (ADF) . 33

IBM Cache Program .. 37
Cache Implementation . 37
Differences Between Base and Extended Storage . 37
INT 13H Extensions ... 38

Contents iii

Statistics Area . 38
Display Statistics Sample Program . 39

Advanced BIOS . 41
Introduction .. 41

Data Structures . 41
Initialization . 42
Transfer Conventions . 42
Interrupt Processing . 43

Common Data Area . 43
Function Transfer Table . 45
Device Block : . 47
Initialization . 50

Build System Parameters Table . 50
Build Initialization Table . 51
Build Common Data Area . 51
Build Protected Mode Tables . 53

Request Block . 54
Functional Parameters . 54
Service Specific Parameters . 54

ABIOS Transfer Convention . 57
Operating System Transfer Convention . 59
Interrupt Processing . 59

Interrupt Sharing . 60
ABIOS Rules . 60
Sample Interfaces . 61
Disk ... 61
Video .. 66

IBM Personal System/2 Seminar Proceedings . 72

iv Contents

Foreword

IBM Personal System/2™ Seminars and
Proceedings provide information about new product
announcements and enhancements to existing
products, and are intended to assist independent
developers in their hardware and software
development efforts.

Over the past several years, the success of the IBM
Personal Computer family was due in part to the
efforts of independent developers, whose hardware
and software products have become widely used.
For its part, IBM helped these vendors by holding
relevant technical seminars and publishing the
proceedings of those seminars. The result was a
mutually beneficial partnership and transfer of
technical knowledge.

With the advent of the Personal System/2 family,
IBM's seminar program will continue. Through these
seminars and the corresponding proceedings, IBM
will address the independent developers' need for
technical information about the latest IBM products.
In these and future proceedings, you will find
technical information about subjects such as:

Personal System/2 is a trademark of the IBM Corporation.

Foreword

• IBM computer design and architecture

• IBM computer components and their interaction

• Memory capacities, speeds, transfer rates

• Input/output device capacities, speeds, access
methods and rates

• Graphics and display technologies, programming
considerations

• Printing technologies, programming
considerations

• Operating system high level interfaces

• Development tools: capabilities, languages,
program verification aids

• Compatibility considerations

• Communications: capabilities, offerings, statistics

• Enhancements to existing IBM hardware and
software products

• Hints, tips and techniques to enhance your
productivity

Through these seminars and proceedings, IBM
intends to maintain its partnership with independent
developers and assist them in successfully producing
hardware and software products for the IBM Personal
System/2 family.

1

Personal System/2 Video

The video on the IBM Personal System/2 Models 50,
60 and 80 is generated by the IBM Video Graphics
Array (VGA) chip and its associated circuitry (see
Figure 1 on page 3). The associated circuitry
consists of the video memory and a video
Digital-to-Analog Converter (DAC). The 256K bytes of
video memory are formed from four 64K x 8 memory
maps. The red, green, and blue (RGB) outputs from
the video DAC drive any of the IBM 31.5 kHz analog
displays. Hereafter, the VGA chip and its associated
circuitry are referred to as "VGA."

All video modes available on the IBM Monochrome
Adapter, IBM Color/Graphics Adapter, and IBM
Enhanced Graphics Adapter are supported,
regardless of which analog display is connected. All
VGA modes are available on all of the supported
analog displays. Colors are displayed as shades of
grey when the monochrome analog display is
connected.

New Modes

New modes available are: 640 x 480 graphics in both
2 and 16 colors; 720 x 400 alphanumeric in both
16-color and monochrome; 360 x 400 16-color
alphanumeric; and 320 x 200 graphics with 256
colors. In addition, all 200-line modes are
double-scanned by VGA and displayed as 400 lines
on the display. This means that each one-pixel-high
horizontal scan line will be displayed twice on the
display, providing improved legibility.

The VGA chip does the interfacing between the CPU
and video memory. All data passes through the VGA
chip when the CPU writes to or reads from video
memory. The VGA chip controls the arbitration for
video memory between the CPU and the CRT
Controller function contained within the VGA chip.
The user does not need to write to the display buffer
during non-active display time to prevent snow on the
screen; the VGA chip automatically prevents this
from happening. The CPU will experience better
performance when accessing the display buffer
during non-active display times, because less
interference from the CRT Controller function is
occurring.

Video memory addressing is controlled by the VGA
chip. The starting address of the video memory is
programmable to three different starting addresses

2

for compatibility with previous video adapters. BIOS
will program the VGA chip appropriately during a
video mode set.

Character Sets

In alphanumeric modes, the CPU writes ASCII
character code and attribute data to video memory
maps o and 1 respectively. The character generator
is stored in video memory map 2 and is loaded by
BIOS during an alphanumeric video mode set. BIOS
downloads the character set font generator data from
system ROM. Three fonts are contained in ROM.
Each of these fonts contains dot patterns for 256
different characters. Two of the fonts are identical to
those provided by the IBM Monochrome Display
Adapter, the IBM Color/Graphics Adapter, and the
IBM Enhanced Graphics Adapter. The third font is a
new g x 16 character font. Up to eight 256-character
fonts can be loaded into video memory map 2 at one
time (EGA allows up to four). A BIOS interface exists
to load user-defined fonts. As on EGA, BIOS calls
select which of the fonts is actually used to form
characters and to redefine the intensity bit in the
attribute byte as a switch between two 256-character
fonts. This allows 512 characters to be displayed on
the screen at one time.

Video DAC

The VGA chip formats the information stored in video
memory into an 8-bit digital value that is sent to the
video Digital-to-Analog Converter (DAC). This 8-bit
value allows access to a maximum of 256 registers
inside the video DAG. For example, in the 2-color
graphics modes, only two different 8-bit values would
be presented to the video DAC; in the 256-color
graphics mode 256, different 8-bit values would be
presented to the video DAG. Each register inside the
video DAG contains a color value that is selected
from a choice of 256K colors; therefore, each color
displayed on the screen is selected from a choice of
256K colors.

The DAG outputs three analog color signals (red,
green, and blue) which are sent to the display's
15-pin connector. The monochrome analog display is
concerned with only the green analog output, which
is used to determine the shade of grey that will be
displayed.

Personal System/2 Video

Video Enable/Disable

A BIOS call is used to enable/disable VGA. Disable means that VGA will not respond to video memory or 110
reads or writes. The contents of registers and video memory are preserved with the values present when the
disable is invoked; VGA will continue to generate valid video output if it was doing so before it was disabled.

.----VGA CHIP VIDEO DAC
'

1----- DIGITAL VIDEO: P? - PO----"'

>-------BLANK--------t~

>-------PIXEL CLOCK------~ GREEN O~~OR RED f

- CPU ADDRESS

Figure 1. Video Subsystem

Personal System/2 Video

BLUE

~--------------------~ HSYNC

1------------------------- VSYNC

Memory
MapO

64k x 8

Memory
Map 1

64k x 8

Memory
Map 2

64k x 8

Memory
Map 3

64K X 8

3

Personal System/2 Video Modes

The following table describes the video modes supported by BIOS:

ALPHA BUFFER BOX
MODE# TYPE COLORS FORMAT START SIZE

0, 1 A/N 16/256K 40X 25 8BOOO BXB

2,3 A/N 16/256K BO x 25 8BOOO BXB

0*, 1* A/N 16/256K 40 x 25 8BOOO BX 14

2*, 3* A/N 16/256K BOX 25 8BOOO Bx 14

o+, 1+ A/N 16/256K 40 x 25 8BOOO 9X 16

2+,3+ A/N 16/256K BOX 25 8BOOO 9 x 16

4,5 APA 4/256K 40X 25 8BOOO BXB

6 APA 2/256K BO x 25 8BOOO BXB

7 A/N - BO x 25 80000 9 x 14

7+ A/N - 80 x 25 80000 9 x 16

D APA 16/256K 40 x 25 AOOOO BXB

E APA 16/256K BO x 25 AOOOO BXB

F APA - BOX 25 AOOOO BX 14

10 APA 16/256K BO x 25 AOOOO BX 14

11 APA 2/256K BOX 30 AOOOO Bx 16

12 APA 16/256K BOX 30 AOOOO Bx 16

13 APA 256/256K 40 x 25 AOOOO BXB

Figure 2. BIOS Video Modes

Modes 0 through 6 emulate the support provided by
the IBM Color/Graphics Adapter (CGA). Mode 7
emulates the support provided by the IBM
Monochrome Display Adapter (MDA). Modes D, E, F,
O*, 1*, 2*, 3*, and 10 emulate the support provided by
the IBM Enhanced Graphics Adapter (EGA).

When a color analog display is used, each color is
selected from a choice of 256K colors. When the
monochrome analog display is used, each color is
displayed as a shade of grey and selected from a
choice of 64 shades.

All Modes Supported on All
Displays

Previous adapters have required that a video mode's
corresponding display be attached. For example,
EGA requires that the Enhanced Color Display be
attached to run mode 3* and the Monochrome Display

4

MAX. VERTICAL DOUBLE
PAGES FREQ. RESOLUTION SCAN? BORDER?

B 70 Hz 320 x 200 YES NO

B 70 Hz 640 x 200 YES YES

B 70 Hz 320 x 350 NO NO

B 70 Hz 640 x 350 NO YES

B 70 Hz 360X 400 NO NO

B 70 Hz 720 x 400 NO YES

1 70 Hz 320 x 200 YES NO

1 70 Hz 640 x 200 YES YES

B 70 Hz 720 x 350 NO YES

B 70 Hz 720 x 400 NO YES

B 70 Hz 320 x 200 YES NO

4 70 Hz 640 x 200 YES YES

2 70 Hz 640 x 350 NO YES

2 70 Hz 640 x 350 NO YES

1 60 Hz 640 x 4BO NO YES

1 60 Hz 640 x 4BO NO YES

1 70 Hz 320 x 200 YES YES

to run mode 7. All Personal System/2 video modes
are available on all the supported analog displays.
Colors are displayed as shades of grey when the
monochrome analog display is connected. Circuitry
on the Personal System/2 system board detects
which type of analog display is connected (color or
monochrome). BIOS maps (sums) the colors into
shades of grey. See the BIOS Interface Manual for
more information on summing.

Auxiliary Video Connector

The Auxiliary Video Connector (AVG) is a 20-pin
connector located in line with one of the Micro
Channel Connectors on the system board. This
connector allows video data from VGA to be passed
to an option card, or allows the system board video
buffers to be turned off and video from the option
card to drive the video DAG and the 15-pin output
connector that drives the analog display. The full
Micro Channel is available for use by the option card.

Personal System/2 Video

micro
channel
connector

micro
channel
connector

Figure 3. Auxiliary Video Connector Pinout

Personal System/2 Video

B

10

9

8

7

6

5

4

3

2

Rear of System

ESYNC VSYNC
GND HSYNC
P5 BLANK
P4 GND
P3 P6

GND EDCLK
P2 DCLK
P1 GND
PO P7

GND EVIDEO

micro
channel
connector

A

10

9

8

7

6

5

4

3

2

Top view

micro
channel
connector

5

VG
PO
P1

P2
P3
P4
PS
P6
P7

DCLK

EXTCLK
BLANK

VSYNC
HSYNC

+sv 10K

A

I

t/\/\/\ /\/\/\
/\!\/ \

BUF ...
..

...

~

~

r.f>c
~

SUL

-L]
sur

r-BUF

~

LQ-J
'----

···~

...

GROUND

Figure 4. Auxiliary Video Connector Block Diagram

6

... va

...

....

..

...

DAC
PO
P1
P2 RED
P3
P4 GREEN
PS
P6 BLUE
P7

PCLK

BLANK

Analog Out puts

--
--
--
L TO J DISPLAY

~

TO
DISPLAY

.--- AUXILIARY VIDEO CONN ECTOR
PO
P1
P2
P3
P4
P5
P6
P7
DCLK
BLANK
VSYNC
HSY NC
ESYNC
EDCLK
EVIDEO
S GROUND PINS

Personal System/2 Video

AVC Signal Descriptions

VSYNC

This signal is the vertical sync signal used to drive
the display. See also the ESYNC signal description.

HSYNC

This signal is the horizontal sync signal used to drive
the display. See also the ESYNC signal description.

BLANK

This signal is connected to the BLANK input of the
video DAG and when active (= OV) tells the DAG to
drive its analog color outputs to OV. See also the
ESYNC signal description.

P7 ·PO

These eight signals contain digital video information
and comprise the pixel address inputs to the video
DAG. See also the EVIDEO signal description.

DCLK

This signal is the video pixel clock that is used by the
video DAC to latch the digital video signals (P7 • PO).
P7 • PO are latched on the rising edge of DCLK inside
the DAG.

This signal is also connected to the EXTCLK input of
the VGA chip, and may be driven by the AVC and
used as the input clock to the VGA chip. When this
configuration is used, the VGA chip may not be the
source of the digital video signals presented to the
DAG (Pl - PO); rather, Pl - PO must be driven from the
AVG. See also the EDCLK signal description.

ESYNC

This signal is the output enable signal for the buffer
that drives the BLANK, VSYNC, and HSYNC signals.
ESYNC is tied to +5V through a pull-up resistor so
that an open circuit on the ESYNC pin produces +5V.

When the ESYNC signal = + 5V, BLANK, VSYNC, and
HSYNC are sourced from the VGA chip's BLANK,
VSYNC, and HSYNC outputs respectively. When the
ESYNC signal = OV, BLANK, VSYNC, and HSYNC are
driven from the AVG.

Personal System/2 Video

EVIDEO

This signal is the output enable signal for the buffer
that drives the P7 - PO signals. EVIDEO is tied to
+ 5V through a pull-up resistor so that an open circuit
on the EVIDEO pin produces +5V.

When the EVIDEO signal = +5V, P7 - PO are sourced
from the VGA chip's P7 - PO outputs. When the
EVIDEO signal = OV, P7 - PO are driven from the
AVC.

EDCLK

This signal is the output enable signal for the buffer
that drives the DCLK signal. EDCLK is tied to + 5V
through a pull-up resistor so that an open circuit on
the EDCLK pin produces +5V.

When the EDCLK signal = +5V, the DCLK signal is
sourced from the VGA chip's DCLK output, and
received by the AVC and DAC.

When EDCLK = OV, DCLK is driven from AVC to the
EXTCLK input of the VGA chip and to the DAG. When
this configuration is used, the VGA chip may not be
the source of the digital video signals presented to
the DAC (P7 - PO); rather P7 - PO must be driven from
the AVC. If EXTCLK is to be used as the input clock
for the VGA chip, the Miscellaneous Output Register
in the VGA chip must be programmed to select clock
source 2.

Color Mapping

The Enhanced Graphics Adapter (EGA) allows a
maximum of 16 different colors to be displayed at one
time. EGA contains palette registers that allow each
color to be selected from a choice of 64 possible
colors. The six bits necessary to form the 64 possible
colors comprise the information sent to the digital
display connected to the EGA card.

A specific example is shown:

Consider 640 x 350 graphics mode (Mode hex 10).
Assume the EGA card is being used and an
Enhanced Color Display is attached. This means the
six digital color signals being driven to the display
from the EGA card are defined as (MSB)R'B'G'
RGB(LSB). Assume that palette register hex A has
been programmed to have a value of hex 3. If a dot
on the screen has attribute hex A (Light Green), then
the 4-bit attribute hex A from video memory will
select palette register hex A. The contents of register
hex A, hex 3A, are sent to the display. Note that the

7

primary and secondary green bits are turned on, but
only the secondary bits for red and blue (thus
producing light green on the display):

Color Mapping

R' 8' G' R G B

3AHEX = 1

I R GB

AHEX = l O l OBINARY

TROM VIOEO MEMORY ~A 3A

Figure 5. EGA Color Mapping Example

The VGA video system allows a maximum of 256
different colors to be displayed at one time. The VGA
video system contains a video Digital-to-Analog
Converter (DAC) that also contains color look-up
table (CLUT) registers. The VGA chip formats
information stored in video memory into an 8-bit
digita1 value that is sent to the video DAC. This 8-bit
value selects one of the CLUT registers, each of

8

0 OBI NARY

R' B' G' R G B

1---./f"-~-- TO DISPLAY---;•~ 3AHEX = 1 1 1 0 1 OBINARY

which is 18 bits wide. The 18 bits are broken down
into three 6-bit fields, one each for red, green, and
blue. This allows each color displayed to be chosen
from a choice of 256K colors. The video DAC
converts the 18-bit value contained in the CLUT
register to three analog signals (red, green, and blue)
that are sent to the analog display.

Assume the same application described previously is
running on VGA. Assume the Color Select Register
contains 0, and CLUT register hex 3A contains hex

Personal System/2 Video

15, hex 3F, and hex 15 in its red, green, and blue
fields, respectively. The 4-bit attribute hex A from
video memory will select palette register hex A as on
EGA. Two bits from the Color Select Register are
appended to the six-bit value from palette register
hex A to form the 8-bit value sent to the video DAG.
Because the Color Select Register contains 0, the
value sent to the DAG is hex 3A. The GLUT register
hex 3A in the DAG is accessed, which causes its
contents to be sent to the digital-to-analog
converters. Since the GLUT register hex 3A contains

I R G 8

AHEX = 1 0 1 0 BINARY

1FROM VIDEO MEMORY I.
I
4

Figure 6. VGA Color Mapping Example

Personal System/2 Video

:a
.. A 3A

Color
Select
Register

0

6

2

hex 15, hex 3F, and hex 15 in its red, green, and blue
fields, respectively, the value sent to the analog
display will be light green.

The mechanism described above functions in a
similar fashion for all other video modes except
mode hex 13 (256 color 320 x 200 Graphics). In this
mode the palette registers are programmed so that
the 8-bit attribute stored in video memory is sent
intact to the video DAG. Do not modify the palette
registers in this mode.

VIDEO DAG

OD
R___,........

8

6

15
3A 3F

15 6

6

I
I
I

D/A I

B~
I
I
I
I
I
I
I
I
I
I
I

L------------------------~

9

co MUX 16 x 6
C1 Graphics 0
C2 0 0
C3 4

2

3

B

G
Alpha (fgnd)

MUX
R Internal 0

4 Palette 0
4

5

2
B

G
Alpha (bgnd)

R 2 MUX
4

3 Attribute 0
Reg.10 8
Bit7 VIDEO DAC (R, G, B to Monitor)

GRAPHICS= 0 .------1
Alpha (foreground) = 1 I 25~ x 18 D/ A I

Color Select Register I Rr Alpha (background) = 2 (Attribute reg. 14)

0 Color I
Look-Up G-.

8 Table I 4
2 6 I 3 7

I B_.

I L _____ _J

Color Plane Enable
Register Overscan Register

(Attribute reg 12) (Attribute reg. 11)

0 0 0 8

2 2 2 2

3 3 3 3

4 4
O = Active Display

5 5 1 = Overscan

6 6

7 7

*Except 256 color mode: The 8-bit attribute stored in memory is sent to the DAC. DO NOT MODIFY INTERNAL PALETTE IN THIS MODE.

Figure 7. VGA Color Mapping*

10 Personal System/2 Video

VGA Support Functions

Horizontal Pel Panning

Horizontal pel panning allows the programmer to
shift the video image one or more pel positions to the
left on the analog display. The horizontal pel panning
register in the attribLlte section of the VGA chip
allows the video image to be panned up to 8, 7 or 3
pel positions depending on the video mode. In
modes that use 9 pels per character box (0 +, 1 + ,
2 +, 3 +, 7, 7 +)the video image can be panned up to
8 pel positions using the pel panning register. In all
other modes, except mode hex 13, the pel panning
register will provide for panning of up to 7 pel
positions. 3 pel positions can be panned in mode hex
13. Continuous pel panning can be achieved by
incrementing the pel panning register (once each
vertical retrace period) until the maximum value for a
given mode is reached, then resetting pel panning to
zero and incrementing the display start address in
the CRT controller subsection of the VGA chip. As
the video image is panned to the left, data will be
panned into the video image from the right. The data
panned into the image will be that which is
immediately following the normal end of line data in
video memory. This means that if the data following
the normal end of line data is the start of the next
scan line (as is the default for modes set by BIOS),
then data panned onto the right side of the display
will come from the left side of the next lower graphics
scan line or alphanumeric character line. This
wrap-back effect can be avoided by using the logical
line width register in the CRT controller subsection to
provide space between scan lines in video memory.
Normally, the logical line width register is
programmed with the scan line character width.
Increasing this value will provide extra memory bytes
between each line. Note that BIOS will not support
this feature because individual character, and pel
addressing will be changed.

Smooth Scrolling

The VGA chip provides support for vertical smooth
scrolling in alphanumeric modes via the preset row
scan register in the CRT controller subsection. This
register determines which scan line of the first
character row begins the display. When set to zero
(the default value), the display begins with the top
(zero) scan line of each character box on the first

Personal System/2 Video

row, displaying each character in its entirety. When
programmed to a non-zero value, the display starts
somewhere in the middle of each character box,
showing some lower portion of the characters.
Vertical smooth scrolling can be achieved by
stepping the preset row scan register (once each
vertical retrace period) from zero to one less than the
character box height. The second character row can
then be smooth scrolled into the first character row
by resetting the preset row scan register to zero, and
loading the start address registers with the address
of the second character row. The appearance of
vertical smooth scrolling is that the top row of
characters moves up and is scrolled off the top of the
display, while a new row of characters is scrolled
onto the bottom of the display. The new row of
characters is the character row that follows the
original last row in video memory.

Split Screen

The VGA chip supports a dual screen display. The
top portion of the display is designated as screen A,
and the bottom portion of the display is designated as
screen B as shown in Figure 8.

SCREEN A

SCREEN B

Figure 8. Dual Screen Definition

Figure 9 on page 12 shows the screen mapping for a
system containing a 32K byte alphanumeric storage
buffer. The VGA Video Subsystem has a 32K byte
storage buffer in alphanumeric mode. Information
displayed on screen A is defined by the start address
high and low registers (hex OC and hex OD) of the
CRT Controller subsection of the VGA chip.
Information displayed on screen B always begins at
address hex 0000. Even though this example is for
an alphanumeric mode, a split screen is possible for
graphics modes also.

11

OOOOHEX

OFFFHEX

1000HEX

7FFFHEX

Screen B
Buffer Storage Area

Screen A
Buffer Storage Area

Figure 9. Screen Mapping within the Display Buffer
Address Space

The Line Compare Register of the CRT Controller
subsection is utilized to perform the split screen
function. The CRT controller subsection has an
internal horizontal scan line counter, and logic which
compares the horizontal scan line counter value to
the Line Compare Register value and clears the
memory address generator when a compare occurs.
The linear address generator then sequentially
addresses the display buffer starting at location zero.

Screen B can be smoothly scrolled onto the display
by updating the Line compare in synchronization with
the vertical retrace signal. Note that in video modes
that are double scanned (modes 0, 1, 2, 3, 4, 5, 6, hex
D, hex E, and hex 13), the line compare register
should be programmed with even numbers only. The
information on screen B is immune from scrolling
operations which utilize the Start Address registers
to scroll through the Screen A address map, and from
operations which use the preset row scan register.

The pel panning compatibility bit in the attribute
mode control register determines whether or not
horizontal pel panning operations on screen A will
affect screen 8. If this bit is logical zero, then screen
B will pan with screen A. If this bit is logical one,
then screen B will be immune to the panning
operation of screen A.

Logical Memory Read and Write Modes

The VGA chip provides various memory read and
write modes that relieve some of the burden of
graphics memory manipulation. Two read and four
write modes are available. These are described
below.

12

Read Modes

There are two ways to do video memory reads.
When read type o is selected using the Graphics
Mode Register, the video memory returns to the CPU
the 8-bit value determined by the logical decode of
the memory address, and the Read Map Select
Register if applicable. When read type 1 is selected
using the Graphics Mode Register, the 8-bit value
returned will be the result of the color compare
operation controlled by the Color Compare and Color
Don't Care Registers. The data flow for the color
compare operations is illustrated in Figure 10 on
page 13.

The color compare logic is designed for use in modes
that use the video memory maps as bit planes. In
mode hex 12, for example, maps 3, 2, 1, and 0 are
intensity, red, green, and blue bit planes respectively.
This means that a byte in a given map contains that
bit plane's value for 8 consecutive PELs on the
display. For instance the first byte of map 0 would
contain the blue bit for the first 8 PELs on the display.

The color compare logic compares a byte from each
map with that map's corresponding bit in the color
compare register. Each bit in a map's byte is
compared with the corresponding color compare bit,
yielding an 8-bit intermediate result that is a 1 in
each bit position where a match is found. If a map's
corresponding color don't care register bit is a 0, that
map's 8-bit intermediate result is forced to all 1's,
indicating valid compares in all bit positions. The
four intermediate results (one for each map) are
compared in a bit-wise fashion, returning an 8-bit
result to the CPU that is a 1 in each bit position wfiere
all four maps have a match.

For example, in mode hex 12, assume the Color
Compare Register contains 0101Binary• the Color Don't
Care Register contains 0111 Binary• and maps 2, 1, and
0 contain 01111111 Binary• 01 OOOOOOBinary• and
11011111Binary respectively. The intermediate results
for maps 3, 2, 1, and 0 would be 11111111 BinarY'
01111111 Binary• 10111111 Binary• and 11011111 Binary
respectively. The value returned to the CPU would
be 00011111 Binary·

Personal System/2 Video

COLOR
DON'T CARE
REGISTER

r--

0

I--

1

1---1

2

1---1

3 I-

'---'

COLOR COMPARE
REGISTER

[3I2I1
0

1 1

MAP3

_,va

1

L+- IN

1 T08
COMPARE

EN

7 0

Figure 10. VGA Color Compare Operations

Write Modes

MAP2

J...-8 ,,.
,

L+ IN

1 T08
COMPARE

EN

7 ••••

One of the four available write modes is selected by
programming the Graphics Mode Register.

J

0

Figure 11 on page 15 describes the data flow for
write operations and is referred to in the following
paragraphs. As with the color compare logic, the
write logic is designed to support modes that use the
video memory maps as bit planes. In mode hex 12
for example, maps 3, 2, 1, and 0 are the intensity, red,
green, and blue bit planes respectively. This means

Personal System/2 Video

MAP1 MAPO

ya ya ,,.
t

L+ IN ~ IN

1 T08 1 T08
COMPARE COMPARE

L..-....(;>EN L-......() EN

7 •••• 0 7 •••• 0

,...---

~
SITO

AND
~

·~

L--

.

,---..,

~

AND ~

-
L--...J

that a byte in a given map contains that bit plane's
value for 8 consecutive PELs on the display. For
instance, the first byte of map O would contain the
blue bit for the first 8 PELs on the display.

Write Mode 00: In write mode 008 inary• the 8 bits of
incoming CPU data are right rotated by the number of
bits specified in the Data Rotate Register, with the old
least significant bit becoming the new most
significant bit. If the set/reset function is disabled for
a map, this rotated 8-bit value is sent to the logic

13

function unit for that map. If the set/reset function is
enabled for a map, the bit contained in the Set/Reset
Register for that map is expanded to 8 bits and that
value is sent to the logic function unit for that map.
(Expanded means that the set/reset bit is repeated 8
times; if the set/reset bit is 1, its expansion is
11111111 Binary·) The set/reset function is enabled by
setting a map's corresponding bit = 1 in the Enable
Set/Reset Register.

The logic function unit inputs an 8-bit value for each
memory map as described above as well as an 8-bit
CPU latch value for each map. (The CPU latches
contain 32 bits of data from the last read from video
memory.) The logic function unit performs logical
operations based on the function specified by the
function select bits in the Data Rotate Register. The
32-bit output of the logic function unit (8 bits per map)
is operated on by the 8-bit-wide Bit Mask Register. If
any bit in the Bit Mask Register is a logical one, then
the corresponding bit in each map's 8-bit value will
take on the value stored in the CPU latches for that
bit. (This means that the corresponding bit in each
map will be unaffected by the write IF the memory
write operation was preceded by a memory read to
the same address.) The data resulting from the bit
mask operation is written to the four memory maps.

Write Mode 01: In write mode 01 Binary• the contents of
the CPU latches are written out to the four memory
maps. The CPU latches contain 32 bits of data from
the last read from video memory. This mode is
useful for filling a large number of memory locations
with the same value.

14

Write Mode 10: In write mode 10Binary• the four
least-significant bits of the 8 bits of incoming CPU
data are each expanded out to 8 bits of data and
presented to the logic function unit. CPU data bits 3,
2, 1, and 0 are expanded out to 8 bits of data for maps
3, 2, 1, and 0 respectively. The logic function unit and
Bit Mask Register operate as described in the second
paragraph under ''Write Mode 00" on page 13.

Write Mode 11: In write mode 11Binary• the 8 bits of
incoming CPU data are right rotated by the number of
bits specified in the Data Rotate Register, with the old
least significant bit becoming the new most
significant bit. This rotated value is logically "anded"
with the contents of the Bit Mask Register to form a
mask value whose use is described below.

The bit contained in the Set/Reset Register for each
map is expanded to 8 bits and that value is sent to the
logic function unit for that map. (Note that the Enable
Set/Reset Register has no effect.) The logic function
unit inputs an 8-bit value for each memory map as
described above as well as an 8-bit CPU latch value
for each map. (The CPU latches contain 32 bits of
data from the last read from video memory.) The
logic function unit performs logical operations based
on the function specified by the function select bits in
the Data Rotate Register. The 32-bit output of the
logic function unit (8 bits per map) is operated on by
the 8-bit mask value that is formed as described
above. If any bit in the mask value is a logical one,
then the corresponding bit in each map's 8-bit value
will take on the value stored in the CPU latches for
that bit. The data resulting from the bit mask
operation is written to the four memory maps.

Personal System/2 Video

GRAPHICS
DATA ROTATE

REGISTER
SET/RESET
REGISTER

ENABLE SET/RESET MODE DATA ROTATE
REGISTER REGISTER REGISTER

~ 1+11o11+1
I r--1 I
I 0..--~------J

R~
I I I I I

I I I

I I I
l L------~---D-, I • ---------1

CPU DATA

8 8

ROTATE

PLANE
'N'

r--------~--:------,--- ,,fa
I ---------~ I I

I
i---t-......... 0 S1 so ---'- l--.l'--------1.i A EN B

SET
RESET

SET
RESET

32

32

32

32

MUX
32x
3/1

2

3

LOGIC 32
FUNCTION

32
MUX
QUAD
16/8

CPU LATCHES,,__ _____ ~B
32

EN B

L---:[)-L----- -----------.
I
I
I

A'a

BIT MASK REGISTER

7 6 5 4 3 2

8

0

s

MUX
OCTAL _J

2/1

*Which maps are actually written with data is under the control of the CPU memory address
and depending on the mode selected, the Map Mask Register.

Figure 11. Data Flow for VGA Memory Write Operations

Personal System/2 Video

MEMORY
DATA

32

15

Compatibility BIOS

Introduction

The BIOS microcode for the IBM Personal System/2
differs from the IBM Personal Computer family. The
BIOS for IBM Personal System/2 Models 50, 60 and
80 supports two interfaces: the existing BIOS
interrupt driven interface and the new Advanced
BIOS (ABIOS) Call/Return interface.

The BIOS (interrupt-driven interface) has been
maintained for the IBM Personal System/2 to ensure
a high degree of compatibility. New functions have
been added to support the unique features of the IBM
Personal System/2 and to assist in masking system
hardware differences.

It is strongly recommended that application
programmers use only the BIOS and DOS interfaces
and not program directly to the hardware. This is
essential in order to achieve portability between the
IBM Personal Computer family and IBM Personal
System/2. Applications that bypass the BIOS
interface and directly access routines and/or storage
locations may work in one system but not on another.
The Advanced BIOS is intended to be accessed by
the device driver layer of an operating system. It is
riot intended to be an application programming
interface (API). Programs should interface with the
operating system API to achieve compatibility across
systems.

Read-Only Memory (ROM)

The system board ROM is made up of four 32K by
8-bit modules. The four modules are arranged in a
128K by 8-bit configuration. The ROM is assigned
address hex EOOOO through hex FFFFF. The ROM
contains Power-On Self Test (POST) code, BIOS,
ABIOS, and BASIC.

IBM BIOS Interface Technical Reference Manual

A new manual is available whose contents solely
address BIOS information. It includes BIOS and
Advanced BIOS interfaces. The BIOS section of the
document contains interface definitions and return
status for the IBM Personal Computer family and IBM
Personal System/2. This manual is intended for use

16

by software developers. Software developers may
use this information to develop software for IBM
Personal Computers and IBM Personal System/2.
The System Technical Reference Manual no longer
contains BIOS information.

Interrupt 10H (Video)

The video subsystem for IBM Personal System/2
Models 50, 60 and 80 is a highly compatible extension
of the IBM Enhanced Graphics Adapter (EGA) that is
integrated on the system board in the Video Graphics
Array (VGA) and Video Digital-to-Analog Converter
(DAC) chips. The video BIOS is based on the EGA
BIOS and provides all EGA functions with extensions
and additional functions. Extensions include support
for higher resolution text and graphics with extended
palette and character generator loading capabilities.
The video BIOS provides the interfaces shown in
Figure 12.

AH Description
(hex)

00 * Mode Set
01 Set Cursor Type
02 Set Cursor Position
03 Read Cursor Position
04 Read Light Pen Position
05 Select Active Display Page
06 Scroll Active Page Up
07 Scroll Active Page Down
08 Read Character at Current Character Position
09 Write Character(s) at Current Cursor Position
0A Write Character(s) only at Current Cursor Position
08 Set Color Palette
0C Write Dot
0D Read Dot
0E Write Teletype to Active Page
0F Return Current Video State
10 * Set Palette Registers
11 * Character Generator Load
12 * Alternate Select
13 Write String
14-19 Reserved
lA ** Display Combination Code (DCC)
18 ** Return Functionality/State Information
lC ** Save/Restore Video State

* Extensions

** New Functions

Figure 12. Video Interface Reference

Compatibility BIOS

Mode Set

The mode set function provides support for all video
modes supported by the IBM Color/Graphics Monitor
Adapter, the IBM Monochrome Display and Printer
Adapter, and the IBM Enhanced Graphics Adapter. In
addition, new mode support includes: 360x400 text in
16 colors, 720x400 text in 16 colors and monochrome,
640x480 graphics in both 2 and 16 colors, and
320x200 graphics in 256 colors. All video modes are
available independent of the display that is attached
to the system. The mode set function provides
support for the modes shown in Figure 13.

MAX ALPHA BUFFER BOX MAX DISPLAY PEL
MOOE I TYPE COLORS FORMAT START SIZE PAGES DIMENSIONS

0 A/N 16/Z56K 40X25 eaaee 8x8 8 320X200
e A/N 16/256K 40X25 eaaee 8xl4 8 320X350
e• A/N 16/256K 40X25 BB000 9xl6 8 360X400
I A/N 16/256K 40X25 B8000 8x8 8 320X200
I A/N 16/256K 40X25 B8000 8xl4 8 320X350
1• A/N 16/Z56K 4flXZ5 B8000 9xl6 8 360X408
2 A/N !6/Z56K 80X25 B8000 8x8 8 640X200
2 A/N !6/Z56K 80X25 B8800 8xl4 8 640X350
2* A/N !6/Z56K 80X25 88000 9xl6 8 720X400
3 A/N 16/256K 80X25 B8000 8x8 8 640X200
3 A/N !6/256K 80X25 B8000 8xl4 8 640X350
3* A/N 16/Z56K 80X25 88000 9xl6 8 720X400
4 APA 4/256K 40X25 B8000 8x8 I 320X200
5 APA 4/Z56K 40X25 88000 8x8 I 320X200
6 APA 2/256K 80X25 88000 8x8 I 640X200
7 A/N MONO 80X25 80000 9xl4 8 720X350
7* A/N MONO 80X25 Beee0 9xl6 8 720X400

es-ec RESERVED

00 APA !6/Z56K 46X25 A0000 8xB B 320X200
OE APA 16/256K 80X25 A0000 8x8 4 640X200
0F APA MONO 80X25 AG000 8xl4 2 640X350
10 APA 16/256K 80X25 A0000 8xl4 2 640X350
II* APA 2/256K 80X30 A0000 8xl6 I 640X480
12* APA 16/256K 80X30 AG000 8xl6 I 640x480
13* APA 256/256K 40X25 A0000 axe I 320x200 . New VGA Modes

Figure 13. Video Mode Table

The Scrolling, Read/Write Character and Read/Write
Dot functions support the new video modes.

The IBM Personal System/2 Models 50, 60 and 80
Power-On Self Test code senses the type of display
that is attached to the system. Based on this
determination, the default video mode with a IBM
8503 Monochrome Display attached is monochrome
mode 7 (720x400), and with an IBM 8512 Color
Display or IBM 8513 Color Display attached is color
mode 3 (720x400).

An IBM 8503 Monochrome Display operating in color
modes represents colors as gray shades. There are
16 out of 64 possible gray shades available in 16
color modes and 64 gray shades available in the 256
color mode (mode hex 13).

Selection between text mode scan lines (200, 350 and
400) is accomplished through the Alternate Select
function. Scan lines are the number of horizontal pel

Compatibility BIOS

lines that the hardware displays on the screen. The
system defaults to the highest scan line resolution of
400 scan lines. Selection of 200 and 350 scan lines in
text modes is provided to emulate the text support
that is available on the IBM Color/Graphics Monitor
Adapter, the IBM Monochrome Display and Printer
Adapter and the IBM Enhanced Graphics Adapter.

All 400-scan-line text modes represent characters in
a 9-pel-wide character box to improve text
readability. The BIOS mode set function loads the
8x16 character font, and then extends certain
characters to be represented in the wider character
box. The VGA hardware automatically adds a blank
9th pel for each character for all ASCII character
codes except those in the range of hex CO to hex OF.
For ASCII character codes in this range, the 8th pel is
duplicated in the 9th pel position. This allows text
graphics characters to connect across character
boxes.

The mode set function supports dynamic overrides
for alphanumeric character fonts and graphics fonts
as supported through the IBM Enhanced Graphics
Adapter save pointer function. This support has been
extended to allow alternate palette definitions, and
support for 512 alphanumeric character fonts.

Mode Set Default Palette Loading

The VGA has an internal set of 16 palette registers
that duplicate the 16 6-bit palette registers (2 bits for
each color) on the EGA. The BIOS mode set function
loads these internal palette registers with the same
values that are programmed by the EGA BIOS. The
6-bit output of the internal palette is used as an index
into the extended video DAC palette.

The video DAC contains 256 18-bit palette registers (6
bits for each color) called color registers. The first 64
color registers are loaded with emulation values such
that compatible colors are displayed on the analog
monitors when the EGA compatible palette is
programmed for the 200 or 350 scan line modes used
on the following displays:

• 5151 = IBM Monochrome Display

• 5153 = IBM Color Display

• 5154 = IBM Enhanced Color Display

This allows EGA applications to get compatible
results on VGA. The remaining 192 color registers
are not loaded or modified during a mode set and can
be used through the VGA paging capability discussed
on page 19.

17

For the 200 scan line modes the internal EGA
compatible palette is programmed such that 4 bits of
each palette register represents the Intensity, Red,
Green, and Blue bits used by the IBM Color Display
Model 5153.

For color modes with 200 scan lines, the video DAC's
color registers are loaded with the appropriate
values such that compatible colors are displayed on
analog color displays.

For monochrome modes, the video DAC's color
registers are loaded with values of black, white, and
intensified white which correspond to the
monochrome attributes of no video, normal video,
and intensified video.

For the EGA-compatible 350-line modes, the video
DAC's first 64 color registers are loaded with
appropriate values so that compatible colors are
displayed on the analog displays.

For the new mode 13H a special palette made up of
16 default colors, 16 gray levels and 216 colors
selected from a Hue-Lightness-Saturation (HLS)
model is programmed into the video DAC's color
registers. These colors cover 24 hues in 3 lightness
values (bright, medium and dark), and 3 saturation
values (pure, impure and dark). This palette defines
a wide spectrum of colors to choose from.

The 24 hues are evenly spaced around the color
wheel at 15 degree intervals with Blue at 0. These
hues are assigned numeric values from Oto 23.

8 RED MAGENTA 4

\ I
\ I
\ I
\ I
\ I

12 YELLOW - - - - - - - - - - BLUE 0
I\

I \
I \

I \
I \

16 GREEN CYAN 20

The three lightness values are bright, medium and
dark. The three saturation values are pure, impure
and grayish. Saturation or purity is a measure of
how pure a color is. A color made up of only 1 or 2
primaries (Red, Green, or Blue) is a pure color and a
color made up of 3 primaries is an impure color. As
the value of the smallest of the three primary colors
is increased the purity of the color decreases. If all
three primaries are equal, the color is an achromatic

18

gray level. Figure 14 maps lightness (LGT) and
saturation (SAT) terms into numeric values.

Lightness Saturation

Bright (:) Pure (:)

Medi um 1 Impure 1
Dark 2 Gray 2

Figure 14. Lightness and Saturation Table

A color in this HLS color space can be converted into
a color register index for use in mode 13H. The index
is calculated from the HUE, LGT, and SAT numerical
values using the following equation:

Index = (LGT*72) + (SAT*24) + (HUE+32)

For example:

medium-gray-yellow = (1*72) + (2*24) + (12+32) = 164

dark-pure-green = (2*72) + (0*24) + (16+32) = 192

bright-impure-blue = (0*72) + (1*24) + (0+32) = 56

The complete mode 13H 256-color palette is
summarized in Figure 15.

0 - 15
16 - 31
32 - 55
56 - 79
80 - 103
104 - 127
128 - 151
152 - 175
176 - 199
200 - 223
224 - 247
248 - 255

16 default colors
16 gray levels
24 bright pure hues
24 bright impure hues
24 bright grayish hues
24 medium pure hues
24 medium impure hues
24 medium grayish hues
24 dark pure hues
24 dark impure hues
24 dark grayish hues
8 user-defined

Figure 15. 256 Color Palette Table

Palette Register Loading

The BIOS palette support on IBM Personal System/2
Models 50, 60 and 80 has been extended. These
extensions include new interfaces to read the VGA's
16 internal palette registers and overscan (border)
register which are write-only registers on the EGA.
Also included are read/write interfaces for the video
DAC color registers, and support for the video DAC
paging capability.

The video DAC is external to the VGA chip and has
256 color registers. Each color register has red,

.Compatibility BIOS

green and blue components (6 bits each) that make
up an 18-bit value that allows 256K possible colors.
The BIOS interfaces support reading and writing of a
single color register or a block of color registers.

In order to support "color" modes on the
monochrome analog displays, the BIOS has a color
register summing function that represents colors as
gray shades. The BIOS summing function is
automatically enabled when an IBM 8503
Monochrome Display is attached to the system and a
color mode is selected. It can also be enabled
through the Alternate Select function when an IBM
8512 Color Display or IBM 8513 Color Display is
attached to the system.

Color summing is an algorithm that combines 30% of
the red component, 59% of the green component and
11 % of the blue component to produce an intensity
value between 0 and 63 that is loaded into all three
components of the color register.

When color summing is enabled, the 16 gray shades
corresponding to the default 16 colors are
preselected instead of using the color summing
algorithm in order to provide maximum contrast.
This provides the best possible appearance for
existing applications that use the default color
settings.

The VGA paging capability allows software to switch
between alternate color palettes loaded above the
first 64 color registers. This allows up to 256 different
colors to be accessed through page switching. There
are two different color register paging modes
supported by the VGA and BIOS: a 64-register block
mode that allows selection of up to 4 pages, and a
16-register block mode that allows selection of up to
16 pages. The mode set function defaults to the
64-register block mode, with the first block of 64 color
registers active.

Character Generator Loading

The character generator support on IBM Personal
System/2 Models 50, 60 and 80 has been extended to
include the ability to load up to 8 character fonts
simultaneously into the VGA character generator
RAM, and support for a new 8x16 ROM character
font. The EGA block specifier BIOS interface has
been extended to allow selection of any one (or two
for a 512 character set) of the 8 blocks provided in
VGA.

Compatibility BIOS

Display Combination Code (DCC)

The Display Combination Code (DCC) is a new Video
BIOS function that provides the capability to
determine which video controller and attached
display are in the system. This is accomplished by
preserving the results of the video device presence
test that occurs during the Power-On Self Test
(POST). Through this BIOS function, video device
presence can be determined.

The DCC can be read by invoking an interrupt 10H
request with (AH) = 1AH and (AL) = 0. BIOS will
return a 1AH in (AL) to indicate that the DCC function
is supported. Any other value returned in (AL)
indicates that other means should be used to
determine display type.

The DCC BIOS call returns two numbers which
represent the Active Display Device (in the BL
register) and the Alternate Display Device (in the BH
register). Each number represents a unique device
configuration as listed below:

• OOH - No Display

• 01H - IBM Monochrome Display and Printer
Adapter

• 02H - IBM Color/Graphics Monitor Adapter

• 03H - Reserved

• 04H - IBM Enhanced Graphics Adapter (color
display)

• 05H - IBM Enhanced Graphics Adapter
(monochrome display)

• 06H - IBM Professional Graphics Controller

• 07H - Video Graphics Array (VGA) (analog
monochrome display)

• 08H - Video Graphics Array (VGA) (analog color
display)

• 09H - Reserved

• OAH - Reserved

• OBH - IBM Personal System/2 Model 30 (analog
monchrome display)

• OCH - IBM Personal System/2 Model 30 (analog
color display)

19

The following programming example shows how the
DCC can be utilized to determine display types with
the DCC BIOS call and a simple table lookup.

1Unknown 1 , 1$ 1

'No Display','$'
dee 77 db
dcc-00 db
dcc-01 db
dcc-82 db
dcc-84 db
dcc-05 db
dcc-06 db
dcc-07 db
dcc-08 db
dcc-08 db
dcc-0c db
dee-no db
dee-act db
de(alt db

'Monochram Display and Printer Adapter','$'
'Color/Graphics Monitor Adapter•, 1$ 1

'Enhanced Graphics Adapter {Color)', 1$ 1

•Enhanced Graphics Adapter (Monochrome) 1 , 1 $1

'Professional Graphics Controller', 1$1

'Video Graphics Array (Monochrome)','$'
'Video Graphics Array (Color) 1 , '$ 1

'IBM Personal System/2 Model 30 (Monochrome)','$'
'IBM Personal System/2 Model 30 (Color)','$'
'No DCC infonnat1on available•, 1 $1

' (active) ', '$'
1 (alternate) 1 1 1$1

max_dcc equ 12

dee table label word
- dw offset dee ee

dw offset dee -01
dw offset dee-02
dw offset dee-77
dw offset dcc-84
dw offset dcc-05
dw offset dcc-96
dw offset dec-07
dw offset dcc-08
dw offset dee-77
dw offset dee -77
dw offset dce-08
dw offset dee)c

; --- Check if Display Con'i>ination Code is Available

Start_dcc:
mov
int
cmp
je
mov
mov
int
jmp

ax.1A00h
10h
al,lAh
found dee
dx, offset dee no
ah,09h -
2lh
Exit

; read DCC call; al •00
; call video BIOS
; al should be lA
; if lA, bx has display codes
; not available
; DOS print string$

; --- check for unknown primary display type

found_ dee:
cmp
jbe
mov
mov
int
jmp

bl ,max dee
ok dcc-
dx; offset dee 77
ah,09h -
2lh
Exit

; --- report active display nilll'e

ok_dcc:
push bx
xor bh,bh
shl bx,l
mov dx,dee_table[bx]
mov ah,09h
int 2lh
mov dx,offset dcc_act
mov ah,09h
int 2lh

; 1 s thi s>max dee or 0FF?
; if unsigned below/equal its ok
; unknown display
; DOS print string$

; save (alternate is in bh)
;
; compute word index
; display code message
; DOS print string$

; this is active display
; DOS print string$

i --- check for unknown alternate display type

pop bx
cmp bh,mu_dcc
jbe Ok alt
mov dx7offset dee_??
mov ah,09h
int 2lh
mov dx,offset dcc_alt
mov ah,09h
int 2lh
jmp Exit

; --- report alternate display name

ok_alt:
mov bl,bh
xor bh,bh
shl bx,1
mov dx,dcc_table[bxJ
mov ah,$9h
int 2lh

20

; alternate display code
; 1s th1s>max dee or 0FF?
; if unsigned below/equal its ok
; unknown display
; DOS print string$

; this is alternate display
; DOS print string$

alternate code is in bh

coqJute word index
di sp 1 ay code message
DOS print string$

mov dx,offset dee alt
mov ah,99h -
int 2lh

Exit:

; this is alternate display
; DOS print string$

The DCC is defined to be extendable by creating an
alternate DCC table through the Save Pointer BIOS
interface.

Return Functionality/State Information

The video BIOS Functionality function is defined to
return video state and functionality information to
application and system level software. One part of
the returned information defines the static
functionality of the video hardware and BIOS. (i.e.
modes supported, ROM fonts available, etc.). The
other part is dynamic information that indicates the
current state of the video hardware and BIOS (i.e.
current mode, current character height, etc.).

When the functionality call is made, the information
returned is for the currently active video function. In a
multiple display environment, the alternate video
functionality information is available when that
alternate video is active.

Save/Restore Video State

The save/restore interface is defined to save the
entire video state or selective parts of the video state.
The video state sections supported on IBM Personal
System/2 Models 50, 60 and 80 are the video
hardware state, the video BIOS data area state, and
the video DAC state.

Cursor Emulation

Cursor Emulation is invoked during a Video BIOS Set
Cursor Type call (AH= 01 H) when the VGA is active
and cursor emulation is active. The power-on default
is for cursor emulation to be active. If cursor
emulation is inactive, BIOS will set the requested
cursor type unaltered. The state of cursor emulation
can be controlled by software through the Video BIOS
Alternate Select function.

The cursor emulation code attempts to determine the
'type' of cursor being set by looking at the start value
in (CH), the end value in (CL) and the current
character height. The cursor is adjusted as
necessary for different character cell sizes.
Figure 16 on page 21 shows the recognized cursor
types.

Compatibility BIOS

Cursor Type Action

No Cursor (START Bit 5 ON/Bit 6 OFF) PASS

Split Cursor (END< START) ADJUST

Overbar Cursor (START < END =< 3) PASS

Underline Cursor (START+2 >= END) ADJUST

Full-Block Cursor (START=< 2) ADJUST

Half-Block Cursor (START> 2) ADJUST

Figure 16. Recognized Cursor Emulation Types

The algorithm first checks for the no-cursor case,
then for a split cursor. No-cursors are passed
through. Split Cursors are inverted to a Block Cursor
(VGA hardware does not support split cursors). The
algorithm then checks to see if the requested cursor
type needs any adjustment (i.e. does it match the
current character size) with the three tests shown in
Figure 17.

Adjustment Test Action

START OR END >= Character Height ADJUST

END = Character Height - 1 PASS

START = Character Height - 2 PASS

Figure 17. Three Cursor Adjustment Tests

If the cursor type requires adjustment, the algorithm
determines which type of cursor (Underline, Block,
etc) it is and adjusts it as appropriate. The
adjustment methods are shown in Figure 18.

Cursor Type Adjustment

Overbar PASS

Underline Move START/END to Bottom of Cell (BoC)

Full-Block Move END to BoC

Half-Block START = Character Height/2; move END to BoC

Figure 18. Cursor Adjustment Methods

The Underline is moved up 1 line in the character cell
for Underline Cursors and tall fonts (16 or greater
character height). This algorithm correctly
recognizes and adjusts the common cursors that are
used by most software, and is general enough to
support both bigger and smaller character sizes and
non-standard character sizes.

Compatibility BIOS

Interrupt 13H (Diskette and Disk)

The Diskette BIOS interface is maintained as defined
on the IBM Personal Computer AT. IBM Personal
System/2 Models 50, 60 and 80 use 3.5-inch diskette
drives. This difference is transparent to most
programs that use the documented BIOS and DOS
interfaces.

A new interface to set the media type for format has
been added to support new diskette drive types and
enhance usability. This function will set the correct
data rate for the format function. If the change line
status is found to be active, Diskette BIOS will
attempt to reset the change line status to the inactive
state, then set the correct data rate. If the attempt to
reset the change line fails, then Diskette BIOS will
indicate a 'Time-Out' error code hex 80 in register
(AH) and the carry flag is set.

This new function is intended to be called once
before issuing the format function and must be
recalled upon indication from the format function that
the media has been changed. Media is required to
be present in the drive in order for this function to
complete successfully.

The Fixed Disk BIOS interface is maintained as
defined on the IBM Personal Computer AT. Error
return codes were added to return values for format
failure, control data address mark and bad arbitration
level.

A new fixed disk function has been added to park the
fixed disk drive heads. This function call will position
the heads over the landing zone on the specified
drive. This landing zone may differ from the physical
park which occurs on some units when they are
powered off.

Both Diskette and Fixed Disk BIOS use direct memory
access (OMA) for data transfers and therefore
support overlapped 1/0 with other devices.

Interrupt 15H (System Services)

The System Services BIOS interfaces are maintained
as defined on the IBM Personal Computer AT.
Extensions have been added to support new features
available on IBM Personal System/2 Models 50, 60
and 80 as follows:

21

Pointing Device

The Pointing Device BIOS interface provides support
for the IBM Personal System/2 Models 50, 60 and 80
mouse and provides the following functions:

• Enable or Disable the Pointing Device

• Reset the Pointing Device

• Set sample rate

• Set resolution

• Read device type

• Interface initialization

• Read status

• Set scaling

• Device driver installation

After the device driver is installed, BIOS passes data
to the device driver on the stack as follows:

Stack
Lo

Z data

Y data

X data

Status
Hi

• Z data will always be 0

• Y data

Bit 0 = Least significant Y bit

Bit 7 = Most significant Y bit

Bit 8 - Bit 15 = 0

• X data

Bit o = Least significant X bit

Bit 7 = Most significant X bit

Bit 8 - Bit 15 = 0

• Status

22

Bit O = Left button status

Bit 1 = Right button status

Bit 2 = 0

Bit 3 = 1

Bit 4 = X data sign

Bit 5 = Y data sign

Bit 6 = X data overflow

Bit 7 = Y data overflow

Bit 8 - Bit 15 = 0

The IBM Personal System/2 Models 50, 60 and 80
pointing device interface defaults to a disabled state
at power-on time. The following sequence should be
used to setup the IBM Personal System/2 Models 50,
60 and 80 pointing device interface:

• Install the device driver

• Setup the interface

• Enable the pointing device

Program Option Select

The Program Option Select (POS} interface will
provide the following services:

• Return base POS address

• Enable an adapter in a particular slot for setup
mode

• Disable an adapter in a particular slot from setup
mode

System Configuration Parameters

This function returns a double-word pointer to a
system configuration parameters table. This table is
defined as follows:

dw
db
db
db
db

db
db
db
db

8
Model
SubModel
Revision
?

Length of table
Model byte
Sub-model byte
BIOS level

Bit 7 = DMA channel 3 use by BIOS
Bit 6 = Cascaded interrupt level 2
Bit 5 = Real time clock available
Bit 4 = Keyboard scan code hook lAh
Bit 3 = Reserved
Bit 2 = Extended BIOS data area
Bit 1 = Micro Channel bus implemented
Bit 0 = Reserved
0 Reserved
0 Reserved
0 Reserved
0 Reserved

Figure 19 on page 28 is a System Identification chart
that lists the Model and SubModel values for IBM
syste,ms.

Compatibility BIOS

Extended BIOS Data Area

This interface returns the segment of the extended
BIOS data area. This additional BIOS data area has
been allocated on new systems. The Extended BIOS
data area is allocated by reserving a block of
memory (1 K) at the top of real mode system memory.
This area may be increased as necessary on future
systems. The BIOS "Memory Size Determination"
function will return the system memory size minus
the size of the Extended BIOS data area.

Interrupt 16H (Keyboard)

The Keyboard BIOS interface is enhanced to support
new features of the 101/102-Key Keyboard. New
function codes are added to Write Keyboard Buffer
and Return Extended Keyboard information. The new
functions are Extended Keyboard Read, Extended
Keystroke Status and Extended Shift Status, which

Compatibility BIOS

can be viewed as supersets of their existing standard
counterparts. The Set Typematic Rate function is
added to fully support the programmable typematic
rates and delays available on the 101/102-Key
Keyboard. A new function, keyboard scan code
intercept, is provide through interrupt hex 15, (AH) =
4FH. This facility allows for a keystroke to be
changed or absorbed by the system without directly
accessing the hardware keyboard port. By
intercepting INT hex 15 and monitoring the (AH)
register, programs can process the keyboard scan
codes as desired. All other keyboard functions are
maintained for compatibility with the IBM Personal
Computer family.

23

Programming Considerations

Software Compatibility

The IBM Personal System/2 Models 50, 60 and 80
have a high level of programming compatibility with
the existing IBM Personal Computer family and allow
most existing software applications to run
unmodified. In order to create new programs that
will be compatible with IBM Personal Computers and
IBM Personal System/2, applications must program
to the common interfaces across all moqels, or
develop model-specific programs to take advantage
of features supported on certain models.

Normally, programs written for one microprocessor
would not run on another microprocessor. But
because the IBM Personal System/2 and IBM
Personal Computers use a common microprocessor
family, most programs need not be modified.

Compatibility among microprocessors alone is not
sufficient because applications normally use device
services {BIOS} and operating systems (DOS}. In
order to allow for maximum program compatibility,
Personal System/2 maintains the BIOS interfaces and
support for IBM DOS Version 3.30. The BIOS
microcode implementation on Personal System/2
Models 50, 60 and 80 is different from other IBM
Personal Computers. If an application bypasses the
BIOS interrupt calls and directly accesses routines
and storage locations in one model, the application
may not run in another model. Some routines may
be similar and some BIOS storage locations may be
the same; however, it is strongly recommended that
applications use only the BIOS and DOS interfaces.

The following software compatibility guidelines are
offered as suggestions for developing programs that
will work across all IBM Personal Computers and
IBM Personal System/2 models.

• Use high level languages, such as Pascal, C, or
FORTRAN, whenever possible because language
compilers are much less sensitive to the
underlying hardware than assembler language
programs.

• Programs should use only the documented
interfaces to DOS and BIOS. Programs that write
directly to hardware registers or take advantage
of undocumented "hooks" are introducing risks
that they will not run properly on the next
generation of systems.

24

Programs should use BIOS calls to derive system
configuration information. BIOS provides
interfaces that can be used to obtain
configuration information such as the number
and type of drives installed, the amount of system
memory, the type of video subsystem, and so on.
Programs that attempt to derive such information
from hardware registers run the risk of problems
in the future if the hardware unavoidably changes
as a result of function enhancements.

• Don't keep interrupts disabled any longer than
absolutely required. Communication devices in
particular are sensitive to having their interrupts
serviced promptly to avoid loss of data.

• Provide a stack that is large enough for your
application plus other system functions (uch as
BIOS and DOS calls and hardware interrupts.
You should always set up a stack that is at least
256 bytes larger than what your application would
require for itself.

• Avoid "time-critical" programming, that is,
software such as hard-coded timing loops which
depend upon such things as processor type,
processor clock speed, the number of memory
wait states, and the level of interrupt and DMA
activity within the system.

• Whenever possible, programs should not use
self-modifying code. The 80286 and 80386
processors have different degrees of instruction
pipelining. Several instructions may be
prefetched which may prevent self-modifying
code from working correctly. A JMP or CALL
instruction should be used to clear the instruction
prefetch queue before attempting to execute
self-modified code.

Programs that rely on "self-modifying" code may
require revision to run in "protected" mode
because a code segment is not writeable in
protected mode.

• The BIOS routines for the IBM Personal System/2
products have defined an Extension to the BIOS
Data Area at the top of user memory just below
the 640KB boundary. BIOS protects this memory
by decreasing the apparent system memory size.
The Memory Size Determination BIOS function
will report a memory size which is decreased by
the amount of space used for the Extended BIOS
Data Area. DOS relies on the BIOS function for
memory size and hence will not allocate memory

Programming Considerations

at addresses which conflict with the Extended
BIOS Data Area. However, if an application
blindly uses memory it may overwrite the
Extended BIOS data which could result in
improper system operation.

Using the same assembly language and the BIOS and
DOS interfaces help to achieve application
compatibility. However, there are still several factors
which need to be taken into consideration. This
section describes the major differences between the
systems in the IBM Personal Computer family and
the IBM Personal System/2. Also included are
programming considerations that should be
considered when designing application software.

Video Presence Testing

The following procedure is recommended to
determine which IBM video controllers are present,
and should be used as a guideline for writing
appropriate presence tests for application software.
It should be noted that the Read Display Combination
Code is supported on all IBM Personal System/2
products.

1. The first step is to issue an interrupt 10H request
with (AH) = 1 AH and (AL) = OOH (Read Display
Combination Code). On return from this request,
if (AL) is not equal to 1AH, the Display
Combination Code function is not supported and
step 2 should be followed to determine video
presence.

On return, if (AL) is equal to 1AH, then the
information returned in (BX) defines the video
environment. The active display code is returned
in (BL). The alternate display code (if any) is
returned in (BH). Refer to interrupt 10H interface
description for function (AH) = 1AH for display
code definitions.

2. This step should be followed to determine the
presence of an IBM Enhanced Graphics Adapter
(EGA) when the Display Combination Code
function is not supported. Issue an interrupt 10H
request with (AH) = 12H and (BL) = 10H (Return
EGA Information). On return from this request, if
(BL) is equal to 10H, an EGA is not present and
step 3 should be followed.

On return, if (BL) is not equal to 10H, then an
EGA is present. Note that an IBM Color/Graphics
Monitor Adapter or an IBM Monochrome Display
and Printer Adapter could also be present based
on the EGA switch settings.

3. This step should be followed only after steps 1
and 2 are completed. The possible video

Programming Considerations

controllers present at this point are the IBM
Color/Graphics Monitor Adapter, the IBM
Monochrome Display and Printer Adapter, or
both. Perform a presence test on video buffer
addresses OB8000H and OBOOOOH to determine
which of these video adapters is present.

It should be pointed out that the IBM Display
Adapter/A is not a CGA-compatible design and hence
is not considered here.

Video Mode Switching

The following procedure is recommended when
writing applications that switch between
monochrome and color video modes. A correct video
function presence test, as described above, is
required. A system can have one of three possible
video environments:

1. A single video controller that supports either
color video modes or monochrome video modes.
If a color display is present, then only color video
modes are available. If a monochrome display is
present then only monochrome video modes are
available.

2. Two video controllers, one that supports color
video modes, and another that supports
monochrome video modes. In this case both
monochrome and color video modes are
available. To switch from monochrome modes to
color modes or from color modes to monochrome
modes, the application should change the system
equipment flag video bits (40:10 bits 4 and 5) to
monochrome or color as desired and invoke the
appropriate video BIOS mode set request.

3. A single video controller that supports both color
video modes and monochrome video modes on
the same display. To determine if this is
supported an application can issue an interrupt
10H request for function (AH) = 1BH (Return
Functionality/State Information).

On return, if (AL) is not equal to 1 BH, then the
Return Functionality/State Bios function is not
supported. Support for both color and
monochrome video modes on a single video
display is not available.

On return, if (AL) is equal to 1 BH then use the
returned information to determine if the All
Modes on All monitors function is active. If active
then color and monochrome modes are available
and the application should change the system
equipment flag video bits to monochrome or
color, and invoke a video BIOS mode set request.
If inactive, then only color modes or monochrome

25

modes are available based on the video
presence test.

Diskette Compatibility

IBM Personal System/2 Models 50, 60 and 80 use
3.5-inch diskette drives rather than 5.25-inch drives.
The differences between these drives are transparent
to most programs that use the documented BIOS and
DOS interfaces.

Programs should assure that the parameters passed
in (DL) (drive number) and (AL) (sector count) are
valid. For the diskette format function, the value in
the AL Register does not effect the operation and is
not required on entry.

If a Reset function (AH = OOH) is called without
specifying DL, then the returned status in AH may be
invalid. It is recommended in this case to use
function Read Status of Last Operation (AH = 01H) to
obtain the correct diskette status.

Before formatting a diskette, programs should issue a
Set Media Type for Format (AH = 18H) function call.
The Read Drive Parameters (AH = 08H) function
returns the correct parameters to use for the Set
Media Type for Format function.

The diskette change line associated with the 3.5-inch
diskette drives will indicate when the media in a
drive is changed. This signal reduces the risk of
erroneous 110 to a diskette that has just been
inserted. This may also improve performance by
allowing buffers such as DOS's directory and file
allocation table to remain in memory as long as the
diskette is not changed.

Programs should use BIOS function Read DASO Type
(AH = 15H) to determine if the diskette drive
supports the diskette change line. If the drive does
not support the change line, then the program never
receives an error code of 06H (Diskette Changed)
from BIOS functions Read, Write, Verify, or Format.
In addition, the Disk Change Line Status function (AH
= 16H) will always return Change Line Active (AH =
06H).

The diskette drive controller reads and writes both
high and low-density media. When switching from
one density to another, the following changes occur:

26

• The clock rate is 8 MHz for high density media, 4
MHz for low-density media.

• The step rate value is hex QA for high-density
media, hex OD for low-density media.

Fixed Disk Compatibility

The fixed disk BIOS for the ST-506 resides in the
system ROM. A 16-byte parameter table defines the
drive type parameters used by BIOS to interface with
the drive. These drive type tables are contained in
the system ROM and the number of drive types
supported has been extended to 32 types. All drive
types available for Personal Computer AT are
supported.

The ESDI fixed disk controller BIOS resides in a ROM
chip on the ESDI adapter. The drive type information
used by BIOS is obtained directly from the drive and
is not stored in ROM.

Programs should obtain drive type parameter
information through the BIOS interface because drive
parameters are handled differently between ESDI and
ST-506. Also the BIOS interface to obtain fixed disk
operation status should be used because this status
information is stored in different BIOS Data Area
locations for ST-506 and ESDI.

The ESDI hardware interface uses a relative block
address interface. The BIOS masks this difference by
converting the head, cylinder and sector passed to
BIOS to the appropriate relative block address.

The diagnostic format for ESDI is different than the
support available for ST-506. The
"format-desired-cylinder" is not supported on ESDI
because the controller is based on a relative block
address structure and handles defects differently
than ST-506 drives. A diagnostic format unit function
has been provided to format ESDI drives.

Hardware Compatibility

System-oriented programming sometimes requires
application software to bypass operating system and
BIOS interfaces. When this occurs, the software may
be implemented based on hardware details that may
be different across existing IBM Personal Computers
and IBM Personal System/2. These situations
require software to manage the differences or be
modified when new models are introduced.

Programming Considerations

Following are some hardware considerations for
implementing system oriented software.

Interrupt Handling for IRQ2 and IRQ9

Hardware interrupt request 9 (IRQ9) is defined as the
replacement interrupt level for IRQ2 in systems
where there are two interrupt controllers. The
hardware IRQ2 becomes the cascade level for
attaching the second interrupt controller and the IRQ2
pin on the 1/0 channel is connected to IRQ9. All
devices using IRQ2 should process interrupts the
same whether residing in a single or multiple
interrupt controller environment. System software
redirects all IRQ9 interrupts to the IRQ2 interrupt
handler through a software INT OAH.

Operation of devices on IRQ2 is as follows:

1. A device drives the interrupt request active on
the IRQ2 pin on the 1/0 channel.

2. This IRQ request is mapped in hardware to the
IRQ9 input on the second interrupt controller.

3. When the interrupt occurs, the system processor
will pass control to the IRQ9 (interrupt 71 H)
interrupt handler.

4. This system interrupt handler will perform an end
of interrupt (EOI) to the second interrupt
controller and pass control to the IRQ2 (interrupt
OAH) interrupt handler.

5. The IRQ2 interrupt handler, when processing the
interrupt, will cause the device to reset the
interrupting condition (for level sensitive
systems) and issue an EOI to the first interrupt
controller which completes servicing of the IRQ2
request.

Interrupt Handling for IRQ13

The interrupt level 13 handler is used for capturing
math coprocessor exceptions and redirecting control
to the NMI vector which for compatibility reasons is
used by applications to hook in their math
coprocessor exception handlers. The interrupt level
13 handler has been carefully designed to support
math coprocessor exception handling for the IBM
Personal System/2 products.

Programming Considerations

Level-Sensitive Interrupts

Hardware interrupts are level-sensitive on IBM
Personal System/2 Models 50, 60 and 80 whereas
they a~e edge-triggered on IBM Personal Computers.
For edge-triggered interrupt systems, the interrupt
controller will clear its internal interrupt-in-progress
latch when the interrupt routine sends an End Of
Interrupt (EOI) command to the controller regardless
of whether the incoming interrupt request (to the
controller) is still active.

With level-sensitive interrupts, the interrupt condition
must be removed by the interrupt handler before the
End of Interrupt command is issued to the interrupt
controller to prevent the old interrupt from being
recognized again.

A level-sensitive interrupt handler must clear the
interrupting condition, usually by reading or writing
to an 110 port on the device. After clearing the
interrupting condition, save the interrupt flag state
(PUSHF), disable processor interrupts (CU) and delay
(JMP$+2) prior to sending the EOI to the interrupt
controller to ensure that the interrupt request is
removed prior to re-enabling of the interrupt
controller. Another delay (JMP $+2) should be
executed after the EOI is sent and before restoring
the state of the interrupt flag (POPF).

Input/Output to Interrupt Controller

Any code that accesses one of the internal registers
of the interrupt controller must perform this access
with interrupts disabled. The following code
fragment is an example of code that enables a
particular interrupt level by modifying the interrupt
mask register.

PUSHF ; Save current interrupt state.
CL! ; Disable interrupts.
IN AL,21H ; Input mask from controller 1.
JMP $+2 ; Small I/O delay.

; "And" with value to unmask
AND AL,UNMASK_X ; interrupt x.
OUT 21H,AL ; Output updated mask.
JMP $+2 ; Small I/O delay.
POPF ; Restore interrupt state.

Accessing Hardware Registers

A program that goes straight to the hardware should
disable interrupts around code that reads or writes to
registers which require index registers or internal
byte pointer registers, or otherwise require a specific
sequence of 1/0 operations to be performed.

27

For example, to access a VGA Attribute register, the
VGA Attribute Index register must first be set to the
desired Attribute register and then the Attribute
register can be read or written. The Video DAG and
Real Time Clock chips contains registers that are
accessed in a similar manner.

The OMA controller relies on the state of an internal
byte pointer that automatically advances for each
byte read or written to a OMA register.

Interrupts must be disabled when performing such
accesses to avoid the possibility of an interrupt
occurring during the access, which results in control
transferring to a program which accesses the same
hardware causing the index register to be corrupted.

Some hardware registers have constraints on
consecutive 1/0 operations which require that a
minimum time be provided between such operations.
To avoid violating such timing requirements it is
suggested, where practical, to insert a JMP $+2
between consecutive 1/0 operations to the same
hardware controller. The System Technical
Reference contains additional information on
hardware register timing requirements.

System Identification

The BIOS Return System Configuration function
(Interrupt 15H with register AH = GOH) should be
used to determine the system identity. Figure 19
defines the model and sub-model values for IBM
Personal Computers and IBM Personal System/2:

28

System Model Sub
Byte Model

IBM Personal Computer OFFh N/A

IBM Personal Computer XT OF Eh N/A

IBM Personal Computer XT OFBh 00
(256/640 System Board)

IBM PCjr OFDh N/A

IBM Persona 1 Computer AT OF Ch 00, 01

IBM Personal Computer Convertible OF9h 00

IBM Personal Computer XT Model 286 OF Ch 02

IBM Personal System/2 Model 30 OF Ah 00

IBM Personal System/2 Model 50 OF Ch 04

IBM Persona 1 System/2 Model 60 OF Ch 05

IBM Personal System/2 Model 80 OF8h 00, 01

Figure 19. Model Bytes

Copy Protection

The following methods of copy protection may not
work on systems using the 3.5-inch 1.44 MB Diskette
Drive.

Bypassing Diskette BIOS Routines

• Data Transfer Rate: BIOS selects the proper data
transfer rate for the media being used.

• Diskette Parameters Table: Copy protection that
creates its own Diskette Parameters Table may
not work on these drives.

• Track-to-track access time is set by BIOS for the
media being read or written.

• The diskette change signal may not be reset if
BIOS is bypassed.

• Rotational Speed: The time between two events
on a diskette is a function of the drive. The
rotational speed of the 3.5-inch 1.44 Mb Diskette
Drive is 300 RPM.

Write Current Control

Copy protection that uses write current control will
not work because the controller selects the proper
write current for the media being used.

Programming Considerations

Programming Considerations for IBM Personal
System/2 Model 80

80386 Differences

• Clock Speed

The 80386 operates at 16 MHz or 20 MHz and
hence executes instructions significantly faster
than an 80286 processor. Software programming
loops (which should be avoided where possible)
may need adjustment. Also, to assure the delay
required by some 110 devices, jump instructions
(JMP $ + 2) should be placed between
consecutive 110 operations. Programmers should
avoid writing code that makes use of assumed
delays with the system microprocessor operating
in parallel with an 80287 Math Coprocessor.
Instead the FWAIT instruction should be used to
synchronize the system microprocessor with the
math coprocessor when necessary. For
example, before accessing the result of a
coprocessor operation a FWAIT should be
executed.

• Overlap of OUT and following instructions.

Due to the pipelined design of the 80386 it is
possible for an 1/0 bus cycle to not complete until
after the 80386 has completed one or more
instructions following the 110 instruction. To
guarantee the order of execution a JMP SHORT
$+2 instruction can be placed between an 110
instruction and the following instruction.

• Order of Accessing Unaligned Operands

For unaligned word memory operands which
require two memory cycles to obtain the entire
memory operand, the 80386 transfers the
high-order byte first and then the low-order byte.
This will have no effect if real memory is being
accessed. However, it will cause improper
operation of memory-mapped 1/0 devices which
require (or expect) the memory operand to be
accessed low-order byte first. Special
programming considerations may be required for
memory-mapped 110 devices to avoid unaligned
memory accesses. One method is to perform
only byte accesses to unaligned operands.

• Lock Prefix

The 80386 restricts the use of LOCK to only those
instructions that perform a read followed by a
write to a memory operand such as Exchange
Memory with Register or Increment Memory. An
undefined opcode exception (INT 6) results from
using LOCK before any other instruction.

Programming Considerations

• 16 Megabyte Wraparound

Any program written for an 80286 system that
relies on the wrapping of addresses beyond 16M
bytes to the first megabyte address range will not
work correctly on the 80386 because such
addresses do not wrap but rather fall into the
17M byte address range.

• NT and IOPL Bits

The 80386 allows the NT and IOPL bits to be
modified in real mode unlike the 80286 which
forces these bits to be zero.

• New 80386 Descriptor Types

The 80386 introduces several new system
descriptor types to support 80386-type tasks.

• Use of 32-Bit Registers and 32-Bit Addressing
Mode

The 80386 32-bit registers and a new 32-bit
addressing mode are accessible in all the 80386
operating modes. However, it is recommended
that such features should only be used when
running on a 32-bit operating system.

Figure 20 illustrates a problem that would occur
in a multi-tasking environment with a 16-bit
Operating System when 32-bit registers were
used by more than one task.

Result: Task A Fails Since EAX Modified by Task B.

Figure 20. Multi-Tasking Environment

29

1. First let's say that Task A has been executing
for a while and is now executing an ADD
instruction, adding to the 32-bit EAX register
the contents of the 32-bit EBX register.

2. A timer tick interrupt occurs and the 16-bit
operating system switches control to Task B
after saving Task A's 16-bit registers.

3. Task B resumes its execution and executes a
subtract EAX from EAX instruction which sets
EAX equal to 0. It then stores the result to
memory location MEM. Task B continues to
execute until the next timer tick interrupt
occurs.

4. At which time, the operating system switches
control back to Task A after restoring Task
A's 16-bit registers.

5. Task A resumes execution at its next
instruction, which is Move to memory
operand VAR, the contents of EAX.

However, since EAX was modified by Task Band
not preserved across the task switch, Task A will
store the wrong result into VAR and hence will
fail to execute correctly.

One possible method to avoid such a problem is
to briefly disable interrupts while performing
32-bit operations.

80386 B-1 Stepping Level

The following items describes anomalies or errata
that apply to systems which contain the B-1 stepping
level of the 80386 microprocessor:

• Wrong CX update with REP INS

The CX register is not updated correctly in case
of REP INS (any INPut string instruction with
REPeat prefix), followed by an early-start
instruction (push, pop or memory reference
instructions). After any REP prefixed instruction
execution, CX is supposed to be 0. But in the
case of such an INS instruction, CX is not updated
correctly and is hex OFFFF. It should be noted
that INS is still executed the correct number of
times and DI is updated properly.

• LSL cannot precede PUSH/POP

30

If the instruction executed immediately after a
Load Segment Limit (LSL) instruction does a
stack operation the value of SP after the
operation may be incorrect. Stack operations
resulting from non-instruction sources like
exceptions or interrupts following the LSL do not
corrupt SP.

A work around is to follow a LSL instruction with
a NOP instruction.

• LSL/LAR/VERR/VERW malfunction with a NULL
selector.

An LSL, LAR, VERR or VERW executed with a
NULL selector (i.e. bits 15 through 2 of the
selector set to zero) will operate on the
descriptor at entry 0 of the GDT, instead of
unconditionally clearing the ZF flag.

A work around is to fill in the "NULL descriptor"
(i.e. the descriptor at entry O of the GDT) with all
zeroes which is an invalid descriptor type.

• FSAVE/FSTENV Opcode Field Incorrect

For some math coprocessor instructions the
opcode will be stored incorrectly in the
FSAVE/FSTENV Format Image. The system ROM
IRQ13 code will "fix" the problem after an
unmasked exception occurs.

• New 80386 Code

Programmers writing code that will only run on
an 80386 system should refer to the IBM Personal
System/2 Model 80 Technical Reference manual
for descriptions of the 80386 B-1 step anomalies
that apply to operating systems which support
Virtual 8086 Mode and Paging.

Math Coprocessor Considerations

The IBM Personal System/2 Model 80 Technical
Reference manual contains greater detail than is
described here and should be referenced for further
information about these items.

Math Coprocessor Presence Testing: The BIOS
Equipment Function should be used where possible
as the method for detecting the presence of the math
coprocessor.

If a programmer finds it impossible to use the BIOS
call, the following technique can be used to
determine the presence of the math coprocessor.

• First, the coprocessor is initialized by the No Wait
Floating Point Initialize instruction.

• Next, the Floating Point Store Control Word
instruction is executed to store the contents of
the control word register to a rtiemory location
previously initialized to zero.

• The stored value, after masking off undefined
bits, is compared against the expected control
word value.

Programming Considerations

• If the compare is ok, then the Floating Point Store
Status Word instruction is executed to store the
contents of the status register to a memory
location previously initialized to all 1's.

• The stored value, after masking off undefined
bits, is compared against the expected status
word value.

• If both the control and status registers contain the
expected values, the math coprocessor is
present.

Math Coprocessor Instructions With No Coprocessor:
For proper system operation, programs should not
attempt to execute math coprocessor instructions
when no coprocessor is present.

The 80386 requires a response from the 80387 during
the execution of almost all math coprocessor
instructions. The 80386 will stop processing
indefinitely waiting for a signal from the 80387 if a
math coprocessor instruction is executed with no
80387 installed.

The 80286 microprocessor uses a different protocol to
communicate with its 80287 math coprocessor. It will
proceed to execute other instructions after executing
a math coprocessor instruction even if no 80287 is
present. It signals the 80287 to perform a math
instruction but does not monitor to see if the
instruction is started or completed.

Note: If the processor is set to math coprocessor
emulation mode and a routine is present to
emulate math coprocessor instructions, then
math coprocessor instructions can be
executed.

Programming Considerations

80387 Math Coprocessor Considerations

• Infinity Model: The 80387 only supports the Affine
Infinity Model (signed infinity). It does not
support the Projective Infinity Model which is
available on 8087/80287 math coprocessors.

• Data Types

Support for the following special data types were
dropped; Pseudo-Zero, Pseudo-NaN,
Pseudo-Infinity, and Unnormal.

The 80387 splits the special data type NaN into
two data types, Quiet NaN and Signaling NaN.

• Denormalized Numbers

The 80387 for some functions will automatically
"normalize" denormalized operands.

• Real/Protect Mode Switching

The 80387 follows the mode of the 80386, i.e. it is
in protect mode whenever the 80386 is in protect
mode. However, on an 80286 system the 80287
switches to protect mode via a FSETPM
instruction and remains in protect mode until
reset.

• Loading of Internal Constants

The 80387 rounds internal constants according to
the rounding mode in effect.

• Priority of Denormal Exception

The 80387 does not treat the denormal exception
as the highest priority exception when more than
one exception is outstanding.

• FXTRACT instruction

The 80387 does not produce the same result as
an 80287 for FXTRACT of zero. The 80387
generates a zero-divide exception.

31

Power On Self Test {POST)

POST is the procedure that is automatically executed
when the system is powered on. POST is executed
out of System Board ROM.

Once invoked, POST will perform diagnostics on all
system board devices to verify the system's
capability to support user functions.

In addition to performing a basic test of the system,
POST initializes devices integrated within the system
and also any adapters that have been added to the
system.

At its conclusion, POST informs the user of any errors
detected by displaying the appropriate error codes to
the screen. POST also utilizes the speaker to
indicate success or error conditions.

POST provides a way to integrate adapters with an
on-board ROM code into the system. The address
range from C8000H thru EOOOOH is scanned in 2K
blocks to search for a valid adapter ROM. A valid
ROM has the following signature in ROM at the offset
indicated:

Byte 0: 55H

Byte 1: AAH

Byte 2: Length of ROM in 512 byte blocks

Byte 3: Entry via CALL FAR

A checksum is also performed to verify the integrity
of the ROM. Each byte, for the specified length, is
summed (modulo 100H). The resulting sum must be
zero for a valid ROM.

The following new features are supported by the IBM
Personal System/2 Models 50, 60 and 80 POST:

• Programmable Option Select

• Memory Relocation

• POST Error Processor

• Power-On Password

The IBM Personal System/2 Models 50, 60 and 80
architecture requires that all hardware switches on
the system board and adapters be replaced by
latches that are accessible by software. This feature
is known as Programmable Option Select (POS).
Every time power is turned on, POST configures the
system by writing data to the POS latches on the

32

system board and adapter cards. For IBM Personal
System/2 Model 50, POST obtains this data from
CMOS RAM. For IBM Personal System/2 Models 60
and 80, POST obtains this data from Extended 2K
CMOS RAM. Both the CMOS RAM and the Extended
2K CMOS RAM are non-volatile.

Before writing data to the POS latches, POST
determines that the battery is good and that the
checksums for the CMOS RAMs are correct. If not,
POST assumes a minimum configuration.

Data for the POS latches are stored in the CMOS
RAMs by either Automatic Configuration or the
System Configuration Utility found on the Reference
Diskette.

When a portion of memory is bad, POST disables and
relocates blocks of memory to form a contiguous
block of usable memory. For IBM Personal System/2
Models 50 and 60, relocation takes place in 16K
blocks and can only be done for memory on the
memory expansion cards. For the Model 80,
relocation takes place in 1 M blocks and is only done
for memory on the system board.

Post Error Processor

During POST, non-fatal errors are displayed as
numeric error codes. The errors are also logged in
the extended BIOS data area through an interrupt 15h
function call. A maximum of five error codes can be
logged. If the Reference Diskette is in drive A, the
diskette is booted without waiting for the user to
press the F1 key.

When the Reference Diskette is booted, a pointer to
the logged error codes is returned by a different
interrupt 15h function call. A descriptive message is
displayed for each logged error code. The error
message will guide the user in the next step to take.
For errors that indicate configuration changes, the
user will be asked to press a key to run the Automatic
Configuration utility. If the POST error processor
program does not have a message for an error code,
the program searches the diskette for a message file.
The name of the file must be @DEVICE.PEP, where
DEVICE is the three-character ASCII representation
of the decimal device number. For example, if the
network adapter had a POST error of 3015, the
Reference Diskette would search for a file by the
name of @030.PEP for error information. The POST

Power On Self Test (POST)

error processor files must be in the format defined in
the System Technical Reference manual for POST
error processor message files.

If the POST error processor program could not find a
message file for the error code, a generic message is
displayed.

Security

A physical keylock mechanism provides security for
the system covers.

Power-on Security

The system maintains power-on security by storing a
password in battery-powered CMOS RAM which is
locked by POST to restrict access to the POST
security routines. The password can be from one to
seven characters in length. It may consist of any
combination of the ASCII character keys. The
password is stored as scan codes, so the keys used
to store the password must be the same as those
entered when powering on the computer (i.e. the
numbers on the top row of the keyboard and those on
the numeric keypad are not interchangeable).

The power-on password must be initialized from an
option on the Reference Diskette. After the password
has been initialized, it can only be removed or
changed at power-on time. The user is prompted at
system power-on (by a key symbol displayed in the
upper left corner of the display) to enter the power-on
password. The user has three tries to type in the
correct password, after which the system halts. After
the password has been checked during power-on, the
area of CMOS RAM containing the password is
masked off. It cannot be read or written until the
computer is powered-off and back on again.

The password may be changed by entering the old
password, followed by a slash (/) followed by the new
password.

Network Server Mode

The Network server mode allows the system to boot
from the fixed disk with the keyboard locked. When
this mode is enabled, the user will not be prompted
for the power-on password unless a diskette is in
drive A.

The power-on password is loaded into the keyboard
controller and keyboard security is enabled. Typing
the password will unlock the keyboard. Network
server mode can be enabled or disabled through the

Power On Self Test (POST)

Set Features option on the Reference Diskette.
Network server mode can only be enabled when
there is a power-on password.

Keyboard Security

Keyboard security is a method of locking out
keyboard input until the correct password is entered.
The keyboard password is stored in the keyboard
controller and does not have to be the same as the
power-on password.

The keyboard can be locked by running the KP.COM
program, which can be installed on a DOS formatted
fixed disk or diskette by the Set Features option on
the Reference diskette. The keyboard password can
be changed by using the /c option when running the
KP.COM program.

Automatic Configuration

In the event of a 161 or 162 POST configuration error,
Automatic Configuration will configure the entire
system to the first non-conflicting values for each
item defined in the Adapter Description File (ADF) for
each adapter. If a 164 or 165 error occurs, only the
1/0 slot(s) where an adapter change occurred will be
configured. Adapters are configured in the order of
1/0 slot number in which they are installed.
Automatic Configuration will not backtrack to
previously configured adapters to resolve any
conflicts that may arise while configuring adapters in
numerically higher slot numbers. Conflicts can be
resolved by the user toggling the resource options in
the Set Configuration option on the Reference
Diskette. Any adapter that has a resource conflict
will be disabled. Resource conflicts are identified by
marking them with an asterisk.

Automatic configuration determines which system
resources an adapter is using by matching the POS
data stored in CMOS RAM to the POS data in the
adapter's ADF file. The system resources include 1/0
address space, memory address space, arbitration
level, and interrupt level.

Adapter Description Files (ADF)

Each different adapter in the system must have an
Adapter Description File that defines the system
resources and POS data used by the adapter. The
ADF file must be named @CARDID.ADF, where
CARDID is the four character ASCII representation of
the adapter's hexadecimal ID (high byte first). If the
configuration cannot find an ADF file for an adapter,
the adapter will be disabled.

33

The ADF files are written in ASCII text and must
follow the Adapter Description File Syntax rules
(defined later). Information for the system board,
ST-506 type fixed disk adapter, and memory adapters
are built into the configuration program and therefore
do not require ADF files. The ADF files are merged
from the diskette shipped with the adapter onto the
Reference Diskette through a menu option on the
Reference Diskette. A file is merged to the
Reference Diskette only if that file is dated later than
a file with the same name on the Reference Diskette
or if a particular file does not exist on the Reference
Diskette.

Merged file names are :

• *.DGS

• *.ADF

• *.PEP

• COMMAND.COM

• SC.EXE

• GMO.COM

• DIAGS.COM

Adapter Description File Syntax

The Adapter Description File Syntax is defined in
greater detail in the System Technical Reference.

Primary Keywords

• AdapterlD OXXXXh

• AdapterName "Adapter Name"

• NumBytes number

• Namedltem

• Prompt "Prompt String"

• Choice "Choice Name" POS Setting Resource
Setting

• Help "Help String"

Note: Keywords are not case-sensitive and hence
upper and lower case letters can be mixed as
desired.

The first keyword required is the AdapterlD which
must be followed by the hexadecimal representation
of the adapter ID.

The AdapterName keyword is followed by the user
name for the adapter in quotes.

34

The NumBytes keyword is followed by a number
which represents the number of POS register settings
to be defined in the adapter description file.

The Namedltem keyword, which is not required,
indicates that an adapter option will be specified
next. For adapters with resources that are fixed,
specify them in a Namedltem so that conflict checking
can be reported properly.

The Prompt keyword is used to define the Option
name that follows within quotes. An option is
something that can be specified for the adapter such
as Port Number, Arbitration Level, ROM Memory
Location, and so on.

The Choice keyword is used to define the name for a
particular choice for the option. After the Choice
Name is the POS Setting which programs the adapter
appropriately and the Resource Setting which
identifies the resources used for this choice. The
syntax for the POS Setting and Resource Setting will
be described later.

The Help keyword is used to define a block of text of
up to 1000 characters within quotes which will be
used as a help screen for the option. The help
screen will be displayed if the user presses the F1
key in the Set Configuration utility.

POS Setting

• POS[N] =XXXXXXXXb

Resource Setting

• Arbitration Level(s): ARB level

• Interrupt Level(s): INT level

• 1/0 Addresses: 10 XXXXh-XXXXh

• ROM Memory Addresses: MEM
OXXXXXh-OXXXXXh

The POS keyword is used to define the setting for a
particular POS register. POS must be followed by a
number within brackets followed by an equal sign
followed by 8 binary digits which define the setting
followed by the letter b. POS[O] through POS[3] are
used to define the POS setting for POS registers hex
102 through hex 105. More than one POS register
can be specified for a given choice statement. Bit O
of POS Byte hex 102 should always be defined as a
don't care(x) in the ADF File.

The ARB keyword is used to define one or more
arbitration levels that are required for a particular

Power On Self Test (POST)

choice. If more than one arbitration level is defined
the levels are separated by blanks.

The INT keyword is used to define one or more
interrupt levels that are required for a particular
choice. If more than one interrupt level is defined,
the levels are separated by blanks.

The 10 keyword is used to define one or more 1/0
address ranges used for registers on the adapter.
The 110 address range is defined by an 110 address
followed by a dash and a higher 1/0 address.
Additional 1/0 address ranges are separated by
blanks.

The MEM keyword is used to define one or more 1/0
ROM address ranges that identify memory used in
the hex COOOO to hex DFFFF memory space. The
ROM memory address range is defined by a memory
address followed by a dash and a higher memory
address. Additional ROM memory address ranges
are separated by blanks.

Note: The Adapter Description File Syntax is defined
in greater detail in the System Technical Reference.

Adapter Description File Example

Following is an example of an Adapter Description
File for the IBM Personal System/2 Multiprotocol
Adapter/A. The name of the file for this adapter is
@DEFF.adf. An explanation of each numbered item
begins on page 36.

Power On Self Test (POST)

Adapter Id 0DEFFh D

AdapterName "IBM Multi-Protocol Communications Adapter" I

NumBytes 2 IJ

Named Item El
Prompt "Communications Port"

choice "SOLC_l" pos [0] =XXX1000Xb i o 0380h-03Bch int 3 4
choice "SOLC_2" pos [0] =XXX1001Xb i o 03a0h-03ach int 3 4
choice "BISYNC_l" pos[0]=XXX1100Xb io 0380h-03Bgh int 3 4
choice "BISYNC 2" pos[0]=XXX1101Xb io 03a0h-03agh int 3 4
choice "SERIAL)" pos [0] =XXX0000Xb io 03f8h-03ffh int 4
choice "SERIAL_2'' pos[0]=XXX0001Xb io 02f8h-02ffh int 3
choice "SERIAL_3" pos[0]=XXX0010Xb io 3220h-3227h int 3
choice "SERIAL_4" pos[0]=XXX0011Xb io 322Bh-322fh int 3
choice "SERIAL_5" pos[0]=XXX0100Xb io 4220h-4227h int 3
choice "SERIAL_6" pos[0]=XXX0101Xb io 422Bh-422fh int 3
choice "SERIAL 7" pos[0]=XXX0110Xb io 5220h-5227h int 3
choice "SERIAL)" pos [0] =XXX0111Xb i o 5228h-522fh int 3

Help

"This port can be assigned as a: primary (SOLCl)
or secondary (SDLC2) sdlc, primary (BISYNCl) or
secondary (BISYNC2) bisync, or as a serial port (Serial
1 through Serial 8). Use the F5=Previous and the
F6=Next keys to change this assignment. Conflicting
assignments are marked with an asterisk and must be
changed."

35

Named I tern II
Prompt "Arbitration Level for SOLC"

choice "Level_l" pos [l] =XXXX000lb arb l
choice "Level_0" pos[l]=XXXX0000b arb 0
choice "Leve1_2" pos[l]=XXXX0010b arb 2
choice "Level_3" pos [l] =XXXX00llb arb 3
choice "Level_ 4" pos [l] =XXXX0100b arb 4
choice "Level_5" pos [l] =XXXX0Hllb arb 5
choice "Level_6" pos [l] =XXXX0110b arb 6
choice "Level_7" pos [l] =XXXX0lllb arb 7
choice "Level_8" pos [l] =XXXX1000b arb 8
choice "Level_9" pos [l] =XXXX100lb arb 9
choice "Level - HJ" pos (1) =XXXXHJHlb arb HJ
choice "Level -11" pos (1) =XXXX10llb arb 11
choice "Level -12" pos[l]=XXXX1100b arb 12
choice "Level -13" pos[l)=XXXX110lb arb 13
choice "Level -14" pos [l] =XXXXlll0b arb 14

Help

"This assignment need only be changed if it is in
conflict with another assignment. Conflicting
assignments are marked with an asterisk. Use the
F5=Previous and the F6=Next keys to change arbitration
level assignments. Using arbitration levels, this
adapter accesses memory directly without burdening the
computer's main microprocessor. An arbitration 1eve1
of 0 has the highest priority, and increasing levels
have corresponding decreased priority"

D The AdapterlD for this adapter is hex ODEFF.
This is an ASCII representation of the ID generated
by the adapter. The high byte is followed by the low
byte. The AdapterlD is required for all ADF files.

36

El The AdapterName is "IBM Multi-Protocol
Communications Adapter". The AdapterName is
required for all ADF files.

II The NumBytes 2 in this file indicates the adapter
uses two POS bytes located at hex 0102 and 0103.

El This is the first Namedltem for the adapter. The
title of the field is "Communications Port". The user
can toggle between the 12 different NamedChoices.
Each NamedChoice has a unique PosSetting
assigned to it in bit locations 1 through 4 of POS byte
hex 0102 (pos [OJ). Also shown is a ResourceSetting
that corresponds to the PosSetting of the
NamedChoice. The resources allocated in this
Namedltem are 1/0 addresses and interrupt levels. A
help string for this Namedltem is provided below the
last NamedChoice.

II This is the second Namedltem for the adapter.
The title of the field is "Arbitration Level for SDLC".
The user can toggle between the 14 different
NamedChoices. Each NamedChoice has a unique
PosSetting assigned to it in bit locations 0 through 3
of POS byte hex 0103 (pos [1]). Also shown is a
ResourceSetting that corresponds to the PosSetting
of the NamedChoice. The resources allocated in this
Namedltem are arbitration levels. A help string for
this Namedltem is provided below the last
NamedChoice.

Power On Self Test (POST)

IBM Cache Program

Cache Implementation

The cache program (IBMCACHE.SYS) is implemented
as a DOS device driver that installs itself on interrupt
13H and 15H. It uses the character device model to
install itself, but not to have any particular interface.

Basic Cache Operation

The cache program, when installed, "hooks" interrupt
13H, which is the disk/diskette BIOS function entry
point. If the operation is not for a hard file, the cache
passes control to the original BIOS routine. If the
operation is for a hard file, the cache determines if
the requested function is one of the following:

• Read Sectors

• Write Sectors

• Write Long

• Format Track

• Format Unit

Read Sectors

When the cache is requested to perform a read, it
first checks to see how much data is to be read. If the
number of sectors is greater than or equal to two
times the page size, the cache will just pass the read
request on to BIOS directly. This is done for two
reasons. The first is to prevent the cache from being
"flushed" by a large read request. The second is
that, for large read requests, the cache "gets in the
way" because it breaks the request into page-sized
requests to the disk, and this slows down large read
operations because of the latency time required
between requests.

Write Sectors

When the cache is requested to perform a write, it
determines which pages in the cache are affected by
the write. The affected pages are updated with the
new data that is in the user's buffer. Once all of the
affected pages have been updated, the cache issues
a write request to BIOS for the originally requested
operation. In this way, write only incurs a small
overhead of updating buffers and the 1/0 operation
proceeds at full speed once the cache has been
updated.

IBM Cache Program

Write Long

When a write long is requested, the cache
determines which pages are affected and "flushes"
them; that is, they are returned to the free list. This
approach was taken because write long may be part
of DOS's error recovery on the hard file, and the
cache's interpretation of the data in the affected
sectors may no longer be valid.

Format Track and Format Unit

When any type of format command is issued to the
hard file, the entire cache is flushed. The reasoning
for this is that all of the data on the hard file will be
over-written and the cache will contain no valid data.
This will prevent previous data from appearing on the
hard disk after a format.

Differences Between Base and Extended Storage

The cache program can use either base (below 640K)
or extended (above 1 M) memory. The cache ,
organization changes subtly when extended memory
is used. Rather than keep the cache directory
structure in extended memory with the page buffer,
the buffer that is normally associated with the
directory is replaced with a GDT (Global Descriptor
Table) entry. The GDT entry points to the buffer in
extended memory. This structure allows the cache
directory to be manipulated with the same code no
matter where the data buffers are. This keeps the
differences between base and extended memory
accesses just to how the data is moved between the
user's buffer and the cache's buffer(s).

A side effect of the cache having buffers either in
base or extended memory is that the cache has an
intermediate buffer. This intermediate buffer is to
allow data being read from the device to be placed in
a known area in base storage before it is moved to
the cache buffer and user buffer. This intermediate
buffer is exactly one page in size. The size of the
page is determined when the cache is initialized.

The cache uses three techniques to prevent it from
interfering with other programs that use extended
memory. Those techniques are:

1. The cache allocates its buffers from t~e top of
extended memory to the bottom. That is, the
cache buffers start at higher addresses and go to

37

lower addresses. Most programs start at lower
addresses and go to higher ones.

2. The cache "hooks" interrupt 15H sub-function
88H which returns the amount of extended
memory in the PC. The cache returns the amount
of extended memory that it is not using.

3. The cache conforms to the VDISK standard in that
if interrupt 19H points to a VDISK device driver,
the cache will determine how much extended
memory the VDISK(s) are using and determine if
there is sufficient storage remaining for the
cache to be installed.

INT 13H Extensions

The cache provides two extensions to the interrupt
13H interface. These are provided for cache
testability and improved functionality when used with
removable media. They are as follows:

Get Cache Statistics

This function allows a program to get a pointer to a
data area that is maintained by the cache program.
This area has values of interest that relate to cache
performance. It contains other values such as cache
version number, size of a cache page, and other
miscellany. The layout of the statistics area is to
follow.

The INT 13H calling sequence for this function is:

Input:
AH = lDH
AL = OlH

Output:
CY = error
NCY = no error
AH = error code (O if CY not set)
ES:BX= pointer to statistics area (only if CY not set)

Flush Cache

This function allows a program to flush the cache.
That is, the cache can be completely reset as to data
and errors that it has encountered. This is useful
when a drive is to be formatted or if the drive
happens to be a removable drive and the drive is to
be changed.

~8

The INT 13H calling sequence for this function is:

Input:
AH = lDH
AL = 02H

Output:
CY = error
NCY = no error
AH = error code (O if CY not set)

Statistics Area

Warning: All values in this area are to be considered
read-only unless specifically noted otherwise.
Modification of values in this area by other programs
will cause the likely loss of user data on the physical
device due to incorrect operation of the cache
program.

The following data areas contain statistics about how
the cache is performing and what kind of requests
were made. These fields can be safely modified or
reset without affecting the operation of the cache.
They are maintained by the cache strictly for
information to external programs; the cache makes
no use of these fields for correct cache operation.

The following is the number of read requests that
have been made since the cache was started or was
reset. It is NOT the number of times INT 13 AH =2
has been issued.

public
num_read_req dd

num_read_req
(;)

The following is the number of read requests that
were satisfied by the cache. Hit ratio can be
determined by the following: HR = NUM_HITS I
NUM_READ_REQ

num_hits
public
dd

num_hits
0

The following is the number of times INT 13 AH =2
has been issued.

num_reads
public
dd

num_reads
0

The following is the number of sectors (total) that
have been requested during INT 13 AH=2. The
average size of a read request can be obtained by
the following: AR = NUM_SEC_REQ I NUM_READS

num_sec_req
public
dd

num_sec_req
0

The following are reserved bytes. They should not be
expected to contain any valid data. Likewise, they
should not be modified, because incorrect cache

IBM Cache Program

operation with possible loss of data on the physical
device is likely.

public
reserved_area dw

dw
dw

reserved_ area

The following are pointers to the error list. They can
be used by the statistics program to dump the error
list. The list is maintained in contiguous storage
delineated by ERROR_BUFF at the start and
ERROR_END pointing past the last structure. There
is a higher level structure imposed on the error
records, but for reporting purposes, the size of the
structure and only part of the structure will be
defined. See the end of the statistics area for a
definition of the error structure.

public error_buff
error_buff label dword

dw
dw ?
public error_end

error_end label dword
dw
dw

The following is the top of extended memory as
maintained by the cache. This value should not be
used directly, but rather the INT 15H interface that is
part of BIOS should be used to determine the top of
extended memory.

em_ top
public
dw

em_ top
0

The following is a flag that indicates if the cache is
using extended memory. Incorrect cache operation
with loss of data on the physical device is likely if this
flag is changed once the cache is in operation (0 =
base memory contains the buffers, 1 = extended
memory contains the buffers).

mem_flg
public
db

mem_flg
0

The following is the model byte of the machine that is
currently running the cache program.

model_byte
public
db

model_byte
0

The following contains the version number of the
cache program. This can be used to print out the
version number in a status program and/or it can be
used to verify the version of the cache program. The
version number will have the format of D.DA where D
is a digit from 0 to 9 and A is an alphanumeric from
A-Z and 0-9 or blank. The initial release of the cache
program has this field set to '1.0'.

version
public
db

IBM Cache Program

version

The following is the amount of storage in KB that is
allocated to the cache for its buffers. This value
should not be changed once the cache is in
operation.

cache_ram
public
dw

cache_ram

The following is the number of sectors in a page.
This field should never be changed! It is for
informational use only. Changing this field once the
cache is in operation will cause incorrect operation of
the cache and possible loss of data on the physical
device.

num_pages
public
dw

num_pages
?

The following defines the error structure that is
needed by reporting programs. Any fields that are
specific to the layout of the cache error recovery
mechanism are marked reserved and are not to be
used or modified. The entire error recovery structure
is considered READ-ONLY and must NOT be
modified.
error struct struc
error-rba dd
error-drive db
error:bits db

error reserved dw
error=struct ends

; starting RBA of page with error{s)
; drive containing RBA
; bits fndfcating which sector(s) have
; error(s). e indicates a sector with
; an error. LSB is first sector in
; page. If a page is less than 8
; sectors. unused bits are set to a.
; reserved word.

Display Statistics Sample Program

The following is a sample C program that reads and
displays the cache statistics information.

#include <stdio.h>

struct errors
{
long
char
char
short
};

struct statbuf
{
long
long
long
long
long
short
struct
short
short
char
char
char
short
short
};

mai n{argc,argv)
int argc;
char *argv[];
{

short trace indext
short trace-buf head;
short error-end;
short 1; -
short reset;

page_rba;
drive;
err_flags;
next_err;

numread;
nuntlit;
numreqi
numsecs;
'*trace_buff;
trace_head;
errors *err_list;
*err end;
em_tOp;
mem_flg;
model_byte;
version[4];
cache_ram;
num_pages;

39

1nt re;
int hitratio;
double nrd;
double nhit;
double hit_ratio;
double reqs;
double secs;
double avg read;-
struct stat'buf *stat_ptr;

reset • G;
re • getstat{&stat ptr);
switch {re) -

{
case 0:

break;
case -2:

printf{"%s: Disk Cache program is not installed\n•,argv[0]);
exit(-2);

case -1:
printf{"%s: Error getting the Cache Stat1stics\n",argv[0]);
exit(-!);

default:
printf("%s: Error %d returned from getting the Cache Statistics\n 11 1 argv[9].rc);
exit{rc);

if (argc > I)
{
if (strcmp(argv[l],"/e") •• 0)

{
printf{"Error List Address• %081X\n",(long)stat ptr->err list);
error end • *(stat ptr->err end); - -
error:end -= {((long)stat_ptr-•err_list) & 0x00e8ffff);
error end >->• 3;
printf(11 Error List End Index• %d\n•.error end)i
if (error end •= e) -

printf("No Errors Encountered by Cache\n");
else {

for (i • 0; i < error end; i++)

)

{ -
printf{"%081X •,stat ptr->err list[i].page rba);
printf{"%02X •,stat ptr->err iist(i].drive-& 0x00ff);
printf("%02X •,stat-ptr->err-list[i).err flags);
printf{"%04X \n" ,stat_ptr->err_l ist(i) .next_err);
}

if (strcmp(argv(l], "/r") •• 0)
{
reset • 1;
}

printf(•Cache Program Version •);
for

(
i • 0;
f < 4;
i++
)
pri ntf ("%c", stat ptr->versf on[f]);

printf("\n"); -

printf("Cache Size
printf("Cache Page Size

nrd • stat ptr->numread;
nhit • stat ptr->numhit;
hit ratio ~-nhit I nrd;
hiti=atio • 100. * h1t_ratio;

printf("Cache Hit Ratio

reqs • stat ptr->numreq;
secs "' stat-ptr->numsecs;
avg_ read • Secs I reqs;

• %dKB\n 11 1 stat ptr->cache ram);
"' %d Sectors\nii. stat _ptr-;num _pages);

• %d%%\n" ,hit ratio);

printf(11 Average Sectors per Read• %G\n 11 1 avg_read);

if {reset)
{

40

stat ptr->numread • 0;
sta(ptr->numhit • a;

stat_ptr->numreq • 0;
stat_ptr->nwnsecs a 0;
}

ex1t(e);
}

This code sample is used by the C program above to get the cache statistics
from the interrupt 13H function call.

60, 132 page
title
page

Disk Cache - Get Statistics

GETSTAT

; This routine w111 return the statistics that the cache has been
; gathering since it started.

Calling Sequence

char **stat_ptr;
int re;

re • getstat(stat ptr);
if (re I• 0) -

... cache not installed

_TEXT segment word public 'CODE'
assume cs:_TEXT

public _gets tat
_gets tat proc far

push bp
mov bp,sp
push di
push si
push ds

; Get a pointer to the start of the statistics

mov
mov
mov
int
jc
mov
or
jz

ah,0ldh
al ,Glh
dl,80h
13h
gets tat_ error
ax.es
ax.bx
no_cache_error

; get statistics pointer

; error?
; cache installed?

; no • error

; Cache program is installed. Return a pointer to the statistics
;
have_cache label

lds
mov
mov

; Return to the caller

sub
getstat exit label

pop
pop
pop
mov
pop
ret

near
di. [bp+6]
[di],bx
[di+2),es

ax.ax
near
ds
si
di
sp,bp
bp

; Return with an error getting the pointer

getstat_error label
mov
jmp

near
ax,-2
getstat_exi t

; point to where pointer goes

; Return indicating that the cache is not installed

no_cache_error label
mov
jmp

gets tat endp
)EXT ends

end

near
ax,-1
getstat_exi t

IBM Cache Program

Advanced BIOS

Introduction

Advanced BIOS (ABIOS) is a software layer that
isolates an operating system from the low-level
system hardware interface. The operating system
makes functional requests of ABIOS (read, write)
rather than directly manipulating the 1/0 ports and
control words of the system hardware. This allows
the details of the hardware attachments and the
timings of the hardware interfaces to be altered
without disturbing the operating system components
above the ABIOS interface.

The ROM BIOS on the IBM Personal Computer
Family (BIOS) operates as a single-tasking
component whose addressing capabilities are limited
to less than 1 megabyte of memory and only in the
real mode of the Intel microprocessor. ABIOS
supports addressing above one megabyte using the
protected mode of the Intel microprocessor. ABIOS
is contained in ROM but does not preclude a RAM
implementation. ABIOS can be operated in the real
address mode (real mode), the protected virtual
address mode (protected mode), or in a bimodal
environment using both the real mode andthe
protected mode. ABIOS provides a data structure for
implementing a protected mode operating system or
bimodal operation (real and protected modes).

The requests to ABIOS made by an operating system
fall into three categories: single-staged, discrete
multistaged, and continuous multistaged.
Single-staged requests perform the requested
function before returning to the caller. Discrete
multistaged requests start an action or operation that
involves a delay before the operation is completed.
Continuous multistaged requests start an action or
operation that also involves a delay but never ends.
For multistaged operations, control is returned to the
caller during these delays so the processing time
may be used. An interrupt from the 1/0 device
usually indicates completion of a stage of the
operation.

Intel is a trademark of Intel Corporation.

Advanced BIOS

The following figure shows the three categories of
ABIOS requests:

Single-Staged

Jstart - CompleteJ

Discrete Multi staged

Continuous Multi Staged

Figure 21. Types of Requests

Data Structures

Requests to ABIOS made by an operating system are
made through transfer conventions provided by the
ABIOS structure. These conventions require data
structures that link the Operating System to the
device function routines of each supported device.
These data structures include the common data area,
function transfer tables, and device blocks. They
reside in system memory and are initialized during
ABIOS initialization.

The transfer conventions provided by ABIOS are
defined to allow operations that use the real mode
and/or the protected mode of an Intel
microprocessor. To provide flexibility in
implementing a protected mode or bimodal operating
system, the common data area links all ABIOS
pointers into a single structure. This structure
contains the Function Transfer Table pointers, the
Device Block pointers, and the ABIOS data pointers.
The common data area links all ABIOS pointers in a
single structure to allow an operating system to
manage ABIOS requests in both operating
environments of the Intel microprocessors.

41

ABIOS entry points are stored in a vector table called
the function transfer table. Each supported ABIOS
device has an associated function transfer table. The
first three entries of the function transfer table are
structured entry points called the Start Routine, the
Interrupt Routine, and the Time Out Routine.

ABIOS routines require a permanent work area for
each device called the ABIOS device block.
Hardware port addresses, interrupt levels, and
device state information are the types of information
stored in the device block.

Initialization

Initialization is a defined protocol between ABIOS
and an operating system. The operating system
plays a major role in the initialization process,
including starting the process. Until the operating
system starts the initialization process, ABIOS cannot
be .used. This initialization process must occur in the
real mode of the microprocessor, and consists of
three steps:

1. The operating system calls BIOS to build the
system parameters table. This table describes
the number of devices available in the system,
the ABIOS common entry points, and the system
stack requirements.

2. The operating system calls BIOS to build the
initialization table. This table defines the
initialization information for each device that the
system supports. This information is used to
initialize device blocks and function transfer
tables.

3. The operating system allocates memory for the
common data area using the initialization
information returned in step 2. The memory for
device blocks and function transfer tables is
allocated and the device block and function
transfer table pointers are initialized in the
common data area. The operating system then
calls ABIOS to bui Id the device blocks and.
function transfer tables for each device.

42

The flow of the initialization process is shown in
Figure 22.

Build System Parameters Table
Interrupt lSH, {AH) = 04H

Build System Table
Interrupt lSH, {AH) = 05H

Build Common Data Area,
the Device blocks and

the Function Transfer Tables

Figure 22. Flow of the Initialization Process

Transfer Conventions

After ABIOS is initialized, requests are presented
through a parameter block called the Request Block.
The Request Block has fields that identify the target
device, requested operation, details of the request,
memory locations involved in a data transfer, and the
status of the staged/completed request.

ABIOS is implemented as a call-return programming
model using one of two methods of calling, the ABIOS
Transfer Convention, or the Operating System
Transfer Convention. These two calling conventions
allow an operating system flexibility in calling ABIOS.
Both calling conventions use the stack to pass
request information to the target ABIOS device
routine.

The ABIOS Transfer Convention is the simplest
calling sequence for the operating system. The
operating system passes the common data area
pointer and the Request Block pointer to one of three
common entry points: the Common Start Routine, the
Common Interrupt Routine, or the Common Time Out
Routine. These common entry points are returned to
the operating system during initialization. The
common entry routines use th'e Request Block
information and the common data area pointer to get
the device block pointer and the function transfer
table pointer from the common data area. The
common entry routine then gets the requested ABIOS
routine starting address from the function transfer
table, and calls the ABIOS device routine.

Advanced BIOS

The flow of the ABIOS Transfer Convention is shown in Figure 23.

Operating System
Builds Request Block

Operating System Calls
Common Routines

Common Routine
Selects and Invokes
ABIOS Functions

Figure 23. Flow of ABIOS Transfer Convention

The Operating System Transfer Convention requires
the operating system to determine the starting
address for the requested ABIOS device function.
This allows the operating system flexibility in
maintaining ABIOS device function addresses that
are called frequently. This method is useful for
handling interrupts from character and programmed
1/0 devices that call a single routine repeatedly. The
common data area, Request Block, Function Transfer
Table, and Device Block pointers are required on
entry to the ABIOS device function.

The flow of the Operating System Transfer
Convention is shown in Figure 24.

[Operating System ~I Operating System
builds Request Block Selects and Invokes

ABIOS Functions

Figure 24. Flow of Operating System Transfer Convention

Advanced BIOS

Interrupt Processing

For multistaged requests, interrupts from hardware
devices cause the microprocessor to branch to
predefined addresses in the interrupt vector table.
ABIOS expects the operating system to receive
control at interrupt time. ABIOS provides interrupt
routines for the processing of ABIOS interrupts.

Common Data Area

The Common Data Area structure contains function
transfer table pointers, device block pointers, and the
ABIOS data pointers. These data pointers are
established during initialization and contain
information for each device the system supports. The
common data area links all ABIOS pointers in a
single structure to allow an operating system to
manage ABIOS requests in both operating
environments of the Intel microprocessors. The
common data area is required in all operating
modes. These are the protected mode only, real
mode only, and bimodal implementations.

On each request to ABIOS, a segment or selector
with an assumed offset of O is passed to ABIOS,
which points to the common data area. This pointer
is referred to as the Common Data Area Anchor
pointer.

43

Figure 25 shows the common data area and its relationship with the other ABIOS data structures:

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer

•
Data Pointer

Figure 25. Flow of Common Data Area

Figure 26 shows a detailed representation of the
common data area:

Field

Offset to Data Pointer o
Count of Logical IDs
Reserved

Offset

+OOH
+02H
+04H

Device Block Pointer Logical ID 1 + 08H
Function Transfer Table Pointer Logical ID 1 +OCH
Device Block Pointer Logical ID 2 + 10H
Function Transfer Table Pointer Logical ID 2 + 14H

Device Block Pointer Logical ID n + (OSH'n)
Function Transfer Table Pointer Logical ID n + (08H"n) + 04H

Data Pointer Length p
Data Pointer Offset p
Data Pointer Segment p
Data Pointer Length p - 1
Data Pointer Offset p - 1
Data Pointer Segment p - 1

Data Pointer Length O
Data Pointer Offset O
Data Pointer Segment O

Data Pointer Count

n - is the number of Logical IDs

+ (08H'n) + 08H
+ (08H'n) + OAH
+ (08H'n) +OCH
+ (08H'n) + OEH
+ (08H'n) + 10H
+ (08H'n) + 12H

+ (OSH'n) + (06H'p) + OBH
+ (08H'n) + (06H'p) + OAH
+ (08H'n) + (06H'p) +OCH

+ (08H'n) + (06H'p) + OEH

p - is the number of Data pointers allocated minus 1

Figure 26. Common Data Area

44

Length

2
2
4

4
4
4
4

4
4

2
2
2
2
2
2

2
2
2

2

The common data area entries are described in detail
below:

Offset to Data Pointer 0: This field combined with the
Anchor pointer produces a pointer to the Data Pointer
Length O field.

Count of Logical IDs: This field contains the number
of device block and Function Transfer Table pointer
pairs.

Device Block Pointers: These fields contain the
pointers to the device blocks for the given Logical
IDs.

Function Transfer Table Pointers: These fields
contain the pointers to the function transfer tables for
the given Logical IDs.

Data Pointer Lengths: These fields contain the
lengths of the data areas that are pointed to by the
associated data pointer.

Data Pointer Offsets: These fields contain the offsets
of the data areas. Each segment is combined with its
associated Data Pointer Segment to produce a
pointer to the data area.

Advanced BIOS

Data Pointer Segments: These fields contain the
segments of the data areas. Each is combined with
its associated Data Pointer Offset to produce a
pointer to the data area.

Data Pointer Count: This field contains the number of
data pointers.

Data Pointers Offset
Number of Logical IDs

Device Block Pointer

Function Transfer Table

ABIOS entry points are stored in a vector table called
the function transfer table. This table contains the
doubleword address pointers for each ABIOS
function. Reserved function pointers are initialized to
0:0. Each Logical ID (entry in the common data area)
has a function transfer table pointer. Multiple Logical
IDs can have function transfer table pointers that
point to the same function transfer table.

Figure 27 shows a function transfer table and its
relationship with the common data area.

Function Transfer Table Pointer
•

Data Pointer

•
Function 1 Pointer
Function 2 Pointer
Function 3 Pointer

Figure 27. Flow of Function Transfer Table

The operating system allocates and fills in a Request
Block, including the Logical ID (defines which device)
and Function (defines which function). Based on the
information contained in the Request Block, the
function transfer table pointer and device block
pointer can be located in the common data area for
the requested device. The operating system uses the
function transfer table pointer to start requests,
process interrupts, and handle any timeouts that
occur. Each pointer in the function transfer table is a
doubleword pointer to a function routine. Figure 28
shows the function transfer table.

Advanced BIOS

•
Function 1
Function 2
Function 3

function Offset

Start Routine Pointer +ee
Interrupt Routine Pointer +04
Time Out Routine Pointer +08
Function Count +ec
Reserved +fJE
Function 1 Pointer +10
Function 2 Pointer +14

Function n Pointer +0C+(4*N)

Figure 28. Function Transfer Table

Length

4
4
4
2
2
4
4

4

45

Descriptions of the function transfer table entries
follow:

Start Routine: The Start Routine pointer is a
double-word pointer, and is called (using call far
indirect) to start a request. This routine validates the
Function field, the Request Block Length field, and
the Unit field. All registers are saved and restored
across a call to this routine.

Interrupt Routine: The Interrupt Routine pointer is a
double-word pointer, and is called (using call far
indirect) to resume a multistaged request upon
indication from the hardware. All multistaged
requests are resumed through this routine if the
operation is not complete. All registers are saved
and restored across a call to this routine. If this
Function Transfer Table corresponds to a device that
does not interrupt, the Interrupt Routine Pointer field
is initialized to 0:0.

Time Out Routine: The Time Out Routine pointer is a
double-word pointer, and is called (using call far
indirect) to terminate a request that fails to receive a
hardware interrupt in a specified time. This routine

46

aborts the request and leaves the hardware
controller in a known, initial state. All registers are
saved and restored across a call to this routine. If
this function transfer table corresponds to a device
that does not interrupt, or a device that interrupts but
never times out, the Time Out Routine Pointer field is
initialized to 0:0.

Function Count: This is the word count of functions.

Reserved: This is a reserved word (allocated even if
count of functions equal 0).

Function 1: This is a doubleword pointer to the
Function 1.

Function 2: This is a doubleword pointer to the
Function 2.

Function n: This is a doubleword pointer to the
Function n routine.

Advanced BIOS

Device Block

ABIOS routines require a permanent work area per
device called the ABIOS device block. Hardware port
addresses, interrupt levels, and device status
information are the types of information stored in the
device block.

The Device Block contains both public and private
data. The public data in the device block is a
readable area whose format is common across all

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer

device blocks. This area should not be altered by the
operating system. Private data in the device block is
used internally by ABIOS and its format and content
may not be identical in all implementations of ABIOS.
The operating system should neither examine nor
alter private data, and IBM reserves the right to alter
the contents of the private portion of the device block.

Figure 29 shows a device block and its relationship
with the common data area:

Function Transfer Table Pointer
•

Data Pointer

Figure 29. Flow of Dev,ice Block

Advanced BIOS 47

Every ABIOS device has an associated device block.
The device block is shown in the following figure, and
an explanation of each field follows:

Field Offset Length Access

Device Block Length +OOH 2 Public Read
Revision +02H 1 Public Read
Secondary Device ID +03H 1 Public Read
Logical ID +04H 2 Public Read
Device ID +06H 2 Public Read
Count of Logical ID Exclusive Port Pairs +OSH 2 Public Read
Count of Logical ID Common Port Pairs +OAH 2 Public Read

Logical ID Exclusive Port Pairs o ? 4 Public Read
Logical ID Exclusive Port Pairs 1 ? 4 Public Read

Logical ID Exclusive Port Pairs N ? 4 Public Read

Logical ID Common Port Pairs 0 ? 4 Public Read
Logical ID Common Port Pairs 1 ? 4 Public Read

Logical ID Common Port Pairs N ? 4 Public Read

Device Unique Data Area Length ? 2 Private
Device Unique Data Area 7 ? Private

Count of Units 7 2 Private

Unit Unique Data Area Length 7 2 Private
Unit Unique Data Area ? ? Private

? · is a placeholder for variable values
N ·is the count of port pairs

Figure 30. Device Block

Device Block Length: This field is a word containing
the number of bytes in the device block, including the
Device Block Length field. The maximum specifiable
length is 64KB minus 1. The required size of the
device block for a particular device is returned during
ABIOS initialization.

Revision: This byte is used to indicate the level of
the supporting code for a device. The initial value of
the base level is O. For each succeeding version of
ABIOS code for a particular Device ID and Secondary
Device ID, the Revision field is increased by 1. That
is, the Revision field is increased by 1 if a new level
of ABIOS code is developed for existing hardware.

Secondary Device ID: This byte is used to determine
the level of hardware that an ABIOS implementation
supports. The initial value of the base level is 0. The
Secondary Device ID field is increased by 1 when a
new level of code is developed for a previously
defined Device ID that supports new hardware. When
the Secondary Device ID field is increased, the
Revision field reverts to 0.

Logical ID: Logical ID indicates the logical name of
the device associated with a Device Block. It is
analogous to the software interrupt number used by
BIOS to access different device types. Logical ID
fields are built dynamically during initialization and

48

the Logical ID for a given device is determined by the
index of its entry in the Common Data Area.

Device ID: Device ID indicates the type of device
addressed by a function request and the level of
ABIOS function that is supported.

The assigned values of this field are shown in the
following figure.

Device

ABIOS Internal Calls
Diskette
Disk
Video
Keyboard
Parallel Port
Asynchronous Communications
System Timer
Real Time Clock Timer
System Services
Nonmeskable Interrupt
Pointing Device
Reserved
Reserved
Nonvolatile Random Access Memory (NVRAM)
Direct Memory Access (OMA)
Programmable Option Select (POS)
Reserved
Keyboard Security
Reserved

Figure 31. Device ID Values

Device ID Value

OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
OCH
OOH
OEH
OFH
10H
11H • 15H
16H
17H-FFFFH

The value hex 00 of the Device ID field is reserved for
ABIOS internal calls; that is, ABIOS calling ABIOS.

Count of Logical ID Exclusive Port Pairs: This is the
count of Logical ID exclusive port pairs. Logical ID
exclusive ports are ports used exclusively by a
particular Logical ID. Examples are the diskette
ports, disk ports, asynchronous communication ports,
parallel ports, and video ports. If the Count of Logical
ID Exclusive Port Pairs field equals 0, no space is
allocated for the Count of Logical ID Exclusive Port
Pairs field.

Count of Logical ID Common Port Pairs: This is the
count of Logical ID Common Port Pairs. The Logical
ID common ports are ports that are shared across
more than one Logical ID field. Examples are the
DMA controller ports, keyboard controller ports, and
NVRAM ports. Each Logical ID that uses one of these
ports contains an entry in the Logical ID Common
Port Pair fields of the device block. If.this field equals
0, no space is allocated for the Logical ID Common
Port Pair fields.

Logical ID Exclusive Port Pairs: These are the
Logical ID Exclusive Port Pairs. The first word of the
doubleword is the starting 110 port number of a range
of 110 port numbers. The second word is the ending
1/0 port number of the range.

Advanced BIOS

Logical ID Common Port Pairs: These are the Logical
ID common port pairs. The first word of the
doubleword is the starting 1/0 port number of a range
of 1/0 port numbers. The second word is the ending
1/0 port number of the range.

Note: Every port that an ABIOS Logical ID inputs
from or outputs to is contained in either the
Logical ID exclusive port pair fields or the
Logical ID common port pair fields.

Device Unique Data Area Length: This field contains
the length, in bytes, of the device unique data area
for this device.

Device Unique Data Area: This field is reserved for
data unique to a device. Parameters describing the
device and working data that span the Device ID are
kept in this area. This area contains private data for
ABIOS and its content or format may change.
Examples of the data kept in this area are interrupt
level, arbitration level, and device status.

Advanced BIOS

Count of Units: This field contains the count of the
unit unique data areas in the device block. If this
field equals 0, the Count of Units field is the last field
in the device block.

Unit Unique Data Area Length: This field contains the
length, in bytes, of a single entry in the repeatable
unit unique data area, excluding the Unit Unique Data
Area Length field. This field exists only if the Count
of Units field is greater than 0.

Unit Unique Data Area: This field is a private
repeatable area reserved for each unit of the Device
ID. For example, if diskette is the Device ID, a
particular diskette drive is a unit. Parameters
describing the unit and working data that span
individual requests are kept in this area. This area is
private data for ABIOS and its content or format may
change. This field exists only if the Count of Units
field is greater than 0.

49

Initialization

ABIOS is initialized in an "on demand" fashion. The
Operating System makes specific calls to BIOS and
ABIOS to achieve the startup. The real mode
common data area must be initialized before any
requests can be made to ABIOS. Initialization is
performed in the real mode of the microprocessor,
and includes building the System Parameters Table,
the Initialization Table, and the ABIOS Common Data
Area.

Figure 32 shows the flow of the real mode common
data area initialization.

Start

T
Operating system calls BIOS to build
the System Parameters Table

Operating System calls BIOS to build
the Initialization Table

Operating System builds the Real
Mode Common Data Area, and allocates
memory for the Device Blocks, and
the Real Mode Function Tables

Operating System calls initialize
Device Block and Function Transfer
Table Routine for each Initialization
Table Entry to build Function
Transfer Tables and Device Blocks

Fi_gure 32. Flow of Real Mode Common Data Area
Initialization

Build System Parameters Table

The operating system allocates a hex 20-byte area
and calls BIOS to build the system parameters table.
This table describes the number of devices available
in the system, the ABIOS common entry points, and
system stack requirements.

50

INT 15H, (AH) = 04H BUILD SYSTEM PARAMETERS TABLE

Invocation:
Software Interrupt, Operating System calls BIOS.

(ES:Dl) = Pointer to call er' s memory
where System Parameters Table is
to be built.

(OS) = Segment with assumed 0 Offset
to RAM extension area (points to
a RAM extension with length=O for
no RAM extensions).

On Return:
(CY) = l Indicates an exception error
(AH) = Error code, 0 for no errors
(All registers except AX and FLAGS are restored.)

Figure 33. Build System Parameters Table BIOS Function

Once the system parameters table information is
obtained, the memory allocated for this table may be
deallocated and reused by the operating system.

The system parameters table is shown below:

Field Offset Length

Common Start Routine Pointer +OOH 4
Common Interrupt Routine Pointer +04H 4
Common Time Out Routine Pointer +08H 4
Stack Required +OCH 2
Reserved +0EH 4
Reserved +l2H 4
Reserved +16H 4
Reserved +lAH 4
Number of Entries +lEH 2

Figure 34. System Parameters Table

The system parameters table entries are described in
more detail below:

Common Start Routine Pointer: This is a doubleword
address pointer to the Common Start routine entry
point.

Common Interrupt Routine Pointer: This is a
doubleword address pointer to the Common Interrupt
routine entry point.

Common Time Out Routine Pointer: This is a
doubleword address pointer to the Common Time Out
routine entry point.

Stack Required: This field is a word containing the
amount of stack memory, in bytes, that is required for
the particular ABIOS implementation.

Number of Entries: This field is a word containing the
number of entries required in the initialization table.

Advanced BIOS

Build Initialization Table

The initialization table defines the initialization
information tor each device the system supports.
This information is used to initialize the device blocks
and the function transfer tables.

The operating system allocates memory and calls
BIOS to build the initialization table. The amount of
memory required for the initialization table in bytes is
hex 18 times the number of entries in the initialization
table. The Number of Entries field in the system
parameters table is used for this calculation. When
the initialization process is complete the memory
allocated tor the initialization table can be
deallocated and reused by the operating system.

INT 15H, (AH) = 05H BUILD INITIALIZATION TABLE

Invocation:
Software interrupt, operating system ca 11 s BIOS.

{ES:Dl) = Pointer to caller's memory
where initialization table is to
be built.

(OS) = Segment with assumed 0 offset
to RAM extension area (points to
a RAM extension with length=0 for
no RAM extensions).

On Return:
(CY) = 1 Indicates exception error
(AH) = Error code

(All registers except AX and FLAGS are restored.)

Figure 35. Build Initialization Table BIOS Function

The initialization table structure, shown in the
following figure, is repeated for each entry:

Field Offset Length

Device ID +00H 2
Number of Logical IDs +02H 2
Device Block Length +04H 2
Initialize Device Block and Function

Transfer Table Routine Pointer +06H 4
Request Block Length +0AH 2
Function Transfer Table Length +0CH 2
Data Pointers Length +0EH 2
Secondary Device ID +10H l
Revision +llH l
Reserved +12H 2
Reserved +14H 2
Reserved +16H 2

Figure 36. Initialization Table

The Initialization Table entries are described in more
detail below.

Device ID: There may be more than one entry in the
initialization table with the same Device ID.

Advanced BIOS

Number of Logical IDs: This is a word containing the
maximum number of devices that require individual
device blocks but are operated by the same code.
The Number of Logical IDs field tells the Operating
System the maximum number of Logical IDs that this
initialization table entry allows.

Device Block Length: This is a word containing the
length, in bytes, of the storage allocation required tor
the device block tor this device.

Initialize Device Block and Function Transfer Table
Routine: This is a doubleword address pointer (real
mode segment:offset) to the routine to initialize the
device blocks and function transfer tables for an entry
in the initialization table.

Request Block Length: This is a word containing the
length, in bytes, of the storage allocation required for
the Request Block for this device. When making a
request to ABIOS, any Request Block size greater
than the size returned is valid.

Function Transfer Table Length: This is a word
containing the length, in bytes, of the function
transfer table.

Data Pointer Length: This is a word containing the
length, in bytes, of the storage allocation required for
the Data Pointer fields in the common data area.

Secondary Device ID: This is a byte used to
determine the level of hardware that an ABIOS
implementation supports.

Revision: This byte is used to indicate the level of
the supporting code for this device.

Build Common Data Area

After the system parameters table and the
initialization table are built, the Operating System
has all the necessary information required to build
the ABIOS common data area and its associated data
structures. The size of the common data area, the
size of each function transfer table, and the size of
each device block can be determined from the
initialization table.

The operating system builds the common data area
at offset O within a segment, and allocates memory
for each device block and each function transfer
table. Memory is allocated within the common data
area for the data pointers. The offset to the Data
Pointer 0 field is initialized to point to the Data

51

Pointer Length 0 field within the common data area.
The Data Pointer Count field is initialized to 0. The
Count of Logical IDs field is filled in with the number
of device block and function transfer table pointer
pairs. Each device block pointer and each function
transfer table pointer is initialized to point to the
memory that has been allocated.

Logical ID numbers are assigned by their order in the
initialization table. For example, if the Number of
Logical IDs field is 1 for each entry in the initialization
table, the first entry corresponds to Logical ID 2, the
second entry corresponds to Logical ID 3, and so on.
If the Number of Logical IDs field is greater than 1 for
the first initialization table entry, that entry
corresponds to Logical ID 2 through Logical ID 2 plus
the Number of Logical IDs field - 1. The second
initialization table entry corresponds to the next
succeeding Logical ID.

Multiple function transfer table pointers can point to
the same function transfer table. This occurs when
the Number of Logical IDs field in an entry in the
initialization table entry is greater than 1. The
Operating System must ensure that the function
transfer table pointers for the succeeding Logical IDs,

52

corresponding to a single initialization table entry,
point to the same function transfer table.

The operating system calls the Initialize Device Block
and Function Transfer Table routine once for each
entry in the initialization table. The Operating
System passes the following parameters: the Anchor
Pointer, the Starting Logical ID, and the Number of
Logical IDs to Initialize.

INITIALIZE DEVICE BLOCK AND
FUNCTION TRANSFER TABLE ROUTINE

Invocation:
Call FAR, operating system calls
ABIOS on system board ROM, depending on device.

(CX) =Number of Logical IDs to Initialize
(up to the Number of Logical IDs
from initialization table)

(DX) = Starting Logical ID
(DS) = Anchor pointer to beginning of

common data area
On Return:

(AL) = Exception condition, 0 for no errors
00 Successful completion
01-FF Device initialization failure

All registers except AX are restored.

Figure 37. Initialize Device Block and Function Transfer
Table Routine

Advanced BIOS

Build Protected Mode Tables

For protected mode or bimodal implementations, it is
necessary to build the protected mode Common Data
Area and Function Transfer Tables using the
information built in the real mode Common Data Area
and Function Transfer Tables. The operating system
must create selectors in the protected mode Common

Data Area and Function Transfer Tables whose
effective address is identical to their corresponding
segments in the real mode Common Data Area and
Function Transfer Tables.

The following diagram describes the steps necessary to build the protected mode common data area:

Start

I
Operating System Builds the Real Mode Common Data Area

1
Operating System Allocates Memory for the Protected Mode
Common Data Area and the Protected Mode Function Transfer
Tables

1
Operating System Converts Each Real Mode Device Block Pointer
to a Protected Mode Device Block Pointer

1
Operating System Creates a Protected Mode Function Transfer
Table Pointer for Each Protected Mode Function Transfer Table

T
Operating System Converts Each Real Mode Function Pointer
within Each Real Mode Function Transfer Table to a Protected
Mode Function Pointer

I
Operating System Converts Each Real Mode Data Pointer to a
Protected Mode Data Pointer

I
End

Figure 38. Flow of Protected Mode Common Data Area Initialization

Advanced BIOS 53

Request Block

The ABIOS Request Block is a parameter block used to communicate information bidirectionally between the
caller and an ABIOS service. Parameters are passed by the caller (IN) and returned by ABIOS (OUT).

The following diagram shows the Request Block and its relationship with a Common Data Area:

Request Block

•
Logical ID

Data Pointers Offset
Number of Logical IDs

•
Device Block Pointer
Function Transfer Table Pointer

•
Data Pointer

Figure 39. Flow of Request Block

All input parameters (IN) are unaltered by ABIOS
throughout the duration of a request. All output
parameters (OUT) and work areas need not be set to
any predefined value before ABIOS is called. This
allows Request Blocks to be reused after requests
are completed. This requires that any work area
fields containing request state information be
initialized by the ABIOS Start routines to the
predefined values. Only input (IN) or input/output
(IN/OUT) parameters that change between requests
are required to be initialized before the Request
Block is re-used. All reserved input fields must be
set to 0 by the caller of ABIOS. The parameters are
divided into two categories: functional parameters
and service specific parameters.

54

Functional Parameters

Functional parameters are common to all ABIOS
service requests. They convey information to ABIOS
about which service should be invoked on which
device. Each input parameter is initialized by thee
caller and, once initialized, must remain unaltered
until the requested operation is complete. Functional
parameters include the Request Block Length field
through the Time Out field.

Service Specific Parameters

Service specific parameters are specific to an ABIOS
request. The details of parameters passed by the
caller and parameters returned by ABIOS depend on
the service requested. The service specific
parameters include the Data Pointer 1 field through
the Work Area field.

Advanced BIOS

Request Block Structure

The structure of a Request Block containing
functional parameters and service specific
parameters is shown below:

Field Offset Length

Functional Parameters

Request Block Length (IN} +OOH 2
logical ID (IN} +02H 2
Unit(IN} +04H 2
Function (IN) +06H 2
Reserved +08H 2
Reserved +OAH 2
Return Code (IN/OUT} +OCH 2
Time Out (OUT} +oEH 2

Service Specific Parameters

Reserved +10H 2
Data Pointer 1 (IN) +12H 4
Reserved +16H 2

Reserved +18H 2
Data Pointer 2 (IN) +1AH 4

Reserved +10H+(N-1}'8 2
Data Pointer N (IN) + 12H + (N-1)'8 4

Parameters (IN/OUT) + 18H + (N-1)'8
Work Area ?

? - undefined initial value

Figure 40. Request Block

Request Block Length (IN): The Request Block
Length field contains the length, in bytes, of the
Request Block including the Request Block Length
field itself. The maximum specifiable length is 64KB
minus 1. Request block length is a fixed value
initialized by the caller for the specific Logical ID.
The size of the Request Block for a Logical ID is
returned at ABIOS initialization time and by the
Return Logical ID Parameters function (hex 01).
However, the Request Block may be larger than the
returned size.

Logical ID (IN): The Logical ID field indicates the
particular device that is addressed by a function
request. It is analogous to a software interrupt
number used by BIOS to access different device
types.

Unit (IN): The Unit field is a parameter that
addresses a particular unit of a device within a
Logical ID. The range of valid values is limited by the
number of units attached to a single controller. The
maximum unit number is n-1, where n is the count of
units attached to the controller. The minimum
number of units is one, resulting in a Unit field equal
to 0.

Advanced BIOS

Function (IN): The Function field is a parameter used
to request a particular category of operation. The
assignment of functions is:

Function Function Performed

OOH Default Interrupt Handler - This function is
called with no service specific parameters
for each Logical ID by way of the Interrupt
routine. The Request Block for the default
interrupt handler has a fixed length of hex
10 bytes, and the Return Code field is
updated on return with hex 0000 for
Operation Completed Successfully or hex
0005 for Not My Interrupt. This handler is
used to process spurious interrupts in the
system.

01H Return Logical ID Parameters - This
function is a standard, single-staged
function common to all ABIOS Device IDs.
It returns information pertaining to the
Logical ID and its Request Block has a
fixed length of hex 20 bytes. It returns the
following parameters:

Service Specific Input

Size Offset Description

Word lAH Reserved
Word lCH Reserved
Word lEH Reserved

Service Specific Output
SIZE OFFSET

Byte 10H

Byte llH

Word l2H
Word 14H
Word l6H

Word IBH

Byte !AH
Byte IBH
Word !CH
Word !EH

DESCRIPTION

Hardware interrupt level
FFH • non-interrupting logical ID
FEH • special case for NMI

Arbitration level
FFH • not applicable

Device ID
Count of Uni ts
Logical ID flags
Bit 15-4 • Reserved
Bit 3 • Overlapped I /0 across units

0 - Not supported
I - Supported

Bit 2 = Reserved
Bits 1-0 • Function Read/Write/Additional Data

Transfer Data Pointer mode
00 - No Read/Write/Additional Data Transfer

Fune ti ons supported
01 - Data Pointer I, Logical

Data Pointer Z. Reserved
10 - Data Pointer 1, Reserved

Data Pointer Z, Physical
11 - Data Pointer 1, logical

Data Pointer 2, Physical
Request Block Length
For functions other than Default Interrupt Handler and
Return logical ID Parmeters. Variable by Logical ID.

Secondary Device IO
Revision
Reserved
Reserved

Logical ID flags contain 2 bits that
indicate the mode (physical vs. logical)
of the data pointer for the Read (hex 08),
the Write (hex 09), and the Additional
Data Transfer (hex OA) functions. If this

55

02H

03H

04H

05H

06H

07H

08H

09H

OAH

parameter indicates that the pointer
should be a logical pointer, then Data
Pointer 1 is a logical pointer and Data
Pointer 2 is reserved. If this parameter
indicates that the pointer should be a
physical pointer, Data Pointer 2 is a
physical pointer and Data Pointer 1 is
reserved. If this parameter indicates that
both a logical pointer and a physical
pointer are to be passed, Data Pointer 1
is the logical pointer and Data Pointer 2
is a physical pointer. If the parameter
indicates neither, this Logical ID does
not support functions hex 08, 09, and OA,
or these functions require no address
pointers. There is no space reserved for
data pointers in the Request Block in this
event.

Reserved.

Read Device Parameters - device
specific parameters are returned.

Set Device Parameters - device specific
parameters are set.

Reset/Initialize - device is placed in a
known state.

Enable - device is enabled for interrupts
(not at interrupt controller).

Disable - device is disabled for interrupts
(not at interrupt controller).

Read - data is transferred from device to
memory. Data Pointer mode is
determined by the function Return
Logical ID Parameters.

Write - data is transferred from memory
to device. Data Pointer mode is
determined by the function Return
Logical ID Parameters.

Additional Data Transfer Function - Data
Pointer mode is determined by the
function Return Logical ID Parameters.

OBH and up Additional Functions - as necessary.

Return Code (IN/OUT): Return code is a field that
contains the results of the current stage of the
requested operation. For those operations that are
single-staged or those that are on the final stage of a
discrete multlstaged operation, the Return Code field
indicates the results of the entire operation.

56

The values for the Return Code field are shown in the
following figure.

Return Code Value• Definition

0001H
0002H
0005H
0009H
0081H

BOOOH
8001-BFFFH

9000-90FFH
9100-91FFH
9200-9FFFH

AOOO-AOFFH
A100-A1FFH
A200-AFFFH

BOOO·BOFFH
B100-B1FFH
B200-BFFFH

COOOH
C001H
C002H
C003H
C004H
C005-C01FH
C020-FFFEH
FFFFH

Stage On Interrupt
Stage on Ti me
Not My Interrupt. Stage On Interrupt
Attention, Stage On Interrupt
Unexpected Interrupt Reset, Stage On Interrupt

Device in Use, Request Refused
Service Specific Unsuccessful Operation

Device Error
Retryable Device Error
Device Error

Timeout Error
Retryeble Timeout Error
Timeout Error

Device Error with Timeout
Retryable Device Error with Timeout
Device Error with Timeout

Invalid Logical ID
Invalid Function
R·eserved
Invalid Unit Number
Invalid Request Block Length
Invalid Service Specific Parameter
Service Specific Unsuccessful Operation
Return Code Field Not Valid

Figure 41. Possible Values for Return Code Fields

The bits within the Return Code fi~ld are defined in
the following figure.

Bit

0
1
2
3

4to6
7
8

9to11
12
13
14
15

Notes:

Definition

Stage On Interrupt
Stage on Time
Not My Interrupt
Attention
Reserved
Unexpected Interrupt Reset
Retryable Error
Reserved
Device Error
Timeout Error
Parameter Error
Unsuccessful Operation

1. Bits 0-7 are defined as above only when Bit 15 equals o.

2. Bits 8-14 are defined as above only when Bit 15 equals 1.

3. ff all bits equal 1, the Return Code field is not valid.

Figure 42. Return Code Field Bit Definitions

The caller of ABIOS must initialize the Return Code
field to Return Code Field Not Valid (hex FFFF) before
calling any ABIOS Start routine. If the Operating
System has an outstanding Request Block at interrupt
time, it first checks for a Return Code field equal to
Return Code Field Not Valid (hex FFFF), and if it is,
the Operating System considers the Return Code
field as not set and does not attempt to resume this
request. The ABIOS routine sets the Return Code

Advanced BIOS

field to its appropriate value when the interrupt is
expected.

When ABIOS is processing a request that causes a
hardware interrupt, interrupts are disabled between
the time of writing to the interrupt enable port and
changing the Return Code field from a value of
Return Code Field Not Valid (hex FFFF) to a Return
Code value of Stage On Interrupt bit (bit 0) set. After
changing the Return Code field, the interrupt flag is
restored to the value contained prior to disabling it.

When the hardware interrupt occurs, the caller only
responds to those requests that have a value of the
Return Code field with the Stage On Interrupt bit (bit
0) set. In other words, the outstanding requests with
a Return Code field equal to Return Code Not Valid
(hex FFFF) are not called.

The caller should also maintain a flag that indicates
whether or not a request has completed the Start
routine to the point at which the Return Code field is
interrogated. This allows for the situation when the
interrupt occurs after the Return Code field is valid
(not hex FFFF) but before the Return Code field is
interrogated by the caller. At this point there could
be a Start routine and an Interrupt routine operating
on the same Request Block within different stack
frames, necessitating the caller's flag.

Attention (hex 0009) and Stage on Time (hex 0002)
are values of the Return Code field that need only be
tested by services that require them. Attention (hex
0009) indicates that there is data available in a
service specific output parameter although the
function is not complete. Stage on Time (hex 0002)
indicates that the operation is incomplete and must
be resumed when a certain amount of time has
elapsed. This amount of time is contained in a
service specific output parameter depending on the
service. In addition, the values of the Return Code
field with Bit 15 equal to 1 are service specific.

The return code value Device In Use, Request
Refused (hex 8000) is used for device serialization. If
a Logical ID/Unit combination is a serially reusable
device, ABIOS returns this return code value when
there is an outstanding request on this device.

Time Out (OUT): The Time Out field contains the
expected duration of the requested stage. This is
used to detect when an operation has timed out and
needs to be reset by the Time Out routine. The unit
of time is 1 second, and the value occupies bits 15
through 3. Bits 2 through 0 of this field are reserved.
A value of 0 indicates the operation has no timeout

Advanced BIOS

value. The Time Out field is valid for Stage On
Interrupt (hex 0001), when the Stage on Interrupt bit
(bit 0) is set.

Parameters (IN/OUT): Parameters communicate
operands and, in some cases, results of ABIOS
functions. Parameter requirements vary by device
and function requested.

Data Pointer 1 and Data Pointer 2 (IN): Data Pointers,
if required, are doubleword pointers to the 1/0 buffer
area for this request. The effective address must be
addressable in the current mode of the
microprocessor in a bimodal environment. The
address may be a 32-bit physical address for OMA, or
segmented for programmed 110. Return Logical ID
Parameters returns a parameter that indicates the
mode (physical or logical) of the data pointer for the
functions Read (hex 08), Write (hex 09), and
Additional Data Transfer (hex OA). If this parameter
indicates that the pointer should be a logical pointer,
Data Pointer 1 is a logical pointer and Data Pointer 2
is reserved. If this parameter indicates that the
pointer should be a physical pointer, Data Pointer 2 is
a physical pointer and Data Pointer 1 is reserved. If

this parameter indicates that both a logical pointer
and a physical pointer are to be passed, Data Pointer
1 is the logical pointer and Data Pointer 2 is a
physical pointer. If the parameter indicates neither,
this Logical ID does not support functions hex 08, 09
and OA, or these functions require no address
pointers. No space is reserved for data pointers in
the Request Block in this event.

Work Area: Work Area fields are an optional data
area reserved for ABIOS. No user data may be
stored here. Their contents is variable by the type of
request and the particular device routine involved.
These fields are not required to be initialized to any
value. Their content must not be altered by the caller
of ABIOS across multistaged requests. Work Area
fields are those fields that are not defined as service
specific input or service specific output parameters.

ABIOS Transfer Convention

The ABIOS Transfer Convention places the
requirement on ABIOS to access the effective
address of a particular ABIOS function. ABIOS
indexes into the Common Data Area based upon the
Logical ID to access the necessary pointers including
the effective Function Routine pointer (Start,
Interrupt, or Time Out). The ABIOS Transfer
Convention is the simplest calling sequence for the
operating system.

57

The flow of an ABIOS Transfer Convention request is
shown below:

Operating System
Builds Request Block

Operating System Calls
Common Routines

Common Routine
Selects and Invokes
ABIOS Functions

Figure 43. Flow of ABIOS Transfer Convention

For this transfer convention, there are only three
routines by which the caller can transfer control to
ABIOS. The pointers to these 3 routines are returned
in the System Parameters Table at initialization time.
They are also contained in the function transfer table
for Logical ID 2. These routines are:

• Common Start Routine - This routine is called
(using a call far indirect) to start a request. The
Logical ID field within the Request Block is
validated. If this Logical ID value is greater than
the value of the Count of Logical IDs field in the
common data area, or if this Logical ID value
pertains to a null common data area entry, the
Return Code field is set to Invalid Logical ID (hex
COOO).

• Common Interrupt Routine - This routine is called
(using a call far indirect) to resume a multistaged
request.

• Common Time Out Routine - This routine is
called (using call far indirect) to terminate a
request that fails to receive a hardware interrupt
in a specified time. The Time Out routine aborts
the request and leaves the hardware controller in
a known, initial state.

The parameter passing convention for the ABIOS
Transfer Convention is a set of two parameters, two
reserved doublewords, and a return address on the
stack. The first parameter is the common data area
anchor pointer segment or selector with assumed 0
offset. The second parameter is the doubleword
pointer to the request block. The third parameter is a
reserved doubleword placeholder for the function
transfer table pointer. The fourth parameter is a
reserved doubleword placeholder for the Device
Block pointer.

58

The ABIOS common routines expect the addresses
from high to low (the order of pushing) as shown in
the following figure:

Displacement
Contents (from Stack Pointer)

Return Address +OOH
Reserved for Device Block Pointer +04H
Reserved for Function Transfer Table Pointer +08H
Request Block Pointer +0CH
Common Data Area Anchor Pointer +10H

(Segment or Selector only)

Figure 44. ABIOS Transfer Convention Stack Frame

The following pseudo code instructions are
suggested:

PUSH Anchor Pointer Segment or Selector
PUSH Request Block Segment or Selector
PUSH Request Block Offset
SUB Stack Pointer,8
CALL Common Start Routine

Pseudo Code - ABIOS Transfer Convention

The common routines use the Logical ID from the
Request Block and the Anchor pointer to determine
which Device Block pointer and Function Transfer
Table pointer pair is to be used. These routines take
this pair of pointers and place them in the stack
placeholder positions allocated by the caller. Then
the common routines transfer control to the Start,
Interrupt or Time Out routines whose pointers are
contained in the function transfer table for the
requested Logical ID field. The common data area
segment or selector, the Request Block pointer, the
Function Transfer Table pointer and the device block
pointer are passed on the stack as in the Operating
System Transfer Convention. For the ABIOS Transfer
Convention, it is the responsibility of the caller to
remove the parameters from the stack upon return.

Advanced BIOS

Operating System Transfer
Convention

This convention places the requirement on the
Operating System to determine the effective address
of a particular routine. This method is most useful for
handling interrupts from character and programmed
110 devices that call a single routine repeatedly.

There are two different methods to accomplish
operating system transfers. In the first method, the
Operating System indexes into the common data area
based upon the Logical ID to access the necessary
pointers including the effective Routine pointer (Start,
Interrupt, or Time Out). The advantage of this
approach over the ABIOS Transfer Convention is one
of performance.

In the second method, the operating system stores
the necessary pointers as it sees fit and accesses
them without indexing into the common data area.
An Operating System might want to use this method if
that Operating System is a real-mode-only or
protected-mode-only Operating System. The
common data area is provided to access the
necessary pointers as quickly as possible in a
bimodal environment. In a single mode environment
there is no advantage to accessing the pointers by
indexing into the common data area. In fact there is
a small performance loss.

The flow of an Operating System Transfer Convention
request is shown below:

[
--- }-
Operating System Operating System
builds request Block selects and Invokes

- ABIOS Functions

Figure 45. Flow of Operating System Transfer Convention

The parameter passing convention for the Operating
System Transfer Convention is a set of four
parameters and a return address on the stack. The
first is the anchor pointer segment or selector of the
Common Data Area with assumed O offset. The
second is a doubleword pointer to the Request Block.
The third is a doubleword pointer to the function
transfer table, and the fourth is a doubleword pointer
to the Device Block.

The Start, Interrupt, and Time Out routines for each
Logical ID expect the addresses from high to low (the
order of pushing) as shown in the following figure:

Advanced BIOS

Displacement
Contents (from Stack Pointer)

Return Address +00H
Device Block Pointer +04H
Function Transfer Table Pointer +08H
Request Block Pointer +0CH
Common Data Area Anchor Pointer +10H

(Segment or Selector only)

Figure 46. Operating System Transfer Convention Stack
Frame

The following pseudo code instructions are
suggested:

PUSH Anchor Segment or Selector
PUSH Request Block Segment or Selector
PUSH Request Block Offset
PUSH Function Transfer Table Segment or Selector
PUSH Function Transfer Table Offset
PUSH Device Block Segment or Se 1 ector
PUSH Device Block Offset
CALL Logical ID Start Routine

Pseudo Code • Operating System Transfer
Convention

For the Operating System transfer convention, it is
the responsibility of the caller to remove the
parameters from the stack upon return.

Interrupt Processing

The Operating System that interfaces with ABIOS
provides interrupt handlers that receive control
through the hardware interrupt vector. The interrupt
handler is required to retain the Logical IDs of the
devices that operate on the given interrupt level.
ABIOS provides routines that are called by the
Operating System interrupt handlers.

Each device has a Logical ID that is known to the
Operating System. A Logical ID may have one or
more Request Blocks active when the interrupt is
processed by the interrupt handler in the Operating
System. Each active Request Block of the Logical ID
is processed by calling ABIOS at its interrupt entry
point. The Return Code field is set by ABIOS to
indicate whether or not the interrupt was associated
with the Request Block.

The Operating System can call ABIOS for interrupt
processing with interrupts enabled or disabled.
ABIOS restores the state of the interrupt flag after
any period that interrupts are required to be disabled.
If there are no Request Blocks that have the Stage On
Interrupt bit (bit 0) of the Return Code field set to 1,
and an interrupt occurs, the default interrupt handler
is provided to remove the interrupt at the device.

59

Interrupt Sharing

Where more than one Logical ID or Logical ID-unit
combination share an interrupt level, the process is
repeated for each Logical ID until all are processed
or the first Logical ID with an interrupt is completely
processed.

ABIOS expects the Operating System to manage the
end of interrupt (EOI) processing at the interrupt
controller. The method used for EOI processing is
entirely up to the Operating System. ABIOS does not
reset the interrupt controller. The Operating System
can choose its desired strategy for resetting the
interrupt controller after all outstanding Request
Blocks for a particular Logical ID are processed
through the Interrupt routine and at least one request
responds that the interrupt was serviced. A serviced
interrupt request returns from the Interrupt routine
with the Return Code field having any value other
than Not My Interrupt, Stage On Interrupt (hex 0005).

ABIOS Rules

The following rules are presented for programmers
writing operating systems and device drivers.

Rule 1 The Device Block Pointer field, the Function
Transfer Table Pointer field and all Data
Pointer fields for a given Logical ID within
the ABIOS Common Data Area must not be
altered by the Operating System during a
particular stage of a request to that Logical
ID.

Rule 2 ABIOS, after being interrupted within a
given stage of a request, returns to that
stage in the mode that it was running at the
time of interrupt.

Rule 3 ABIOS device blocks are owned by ABIOS
and only the public portions are accessed by
the Operating System. There is no
guarantee of compatibility of the Device
Block private area contents across ABIOS
implementations.

Rule 4 ABIOS Request Blocks are shared by ABIOS
and the operating system.

Rule 5 ABIOS must traverse the Common Data
Area to retrieve necessary pointers. It must
not store pointers in one request or stage of
a request to be used on another request or
stage of a request.

60

Rule 6 ABIOS function X, running in protected
mode, can be interrupted, and function Y
can be invoked in real mode, and vice
versa. X can equal Y. After being
preempted in the middle of a request stage
in mode X, ABIOS can be called through the
START routine in mode Y.

Rule 7 ABIOS does not change the state of the
interrupt flag. ABIOS can temporarily
disable the interrupt flag, but must restore it
to its original state.

Rule 8 A Request Block pointer that is passed on a
request is valid for the duration of that stage
of the request.

Rule 9 The effective memory address of a physical
address pointer must not be moved for the
duration of a single request. When a
function requires the data pointer to be
passed as a physical address within
memory it is assumed that an external
process is performing the read or write to
memory, therefore across stages this
address cannot change.

Rule 10 The effective memory address of a logical
address pointer (those pointers in the
Request Block in the form segment:offset or
selector:offset) can be changed or moved
across stages of a request. In real mode,
the segment and/or offset can be changed.
In protected mode the selector and/or offset
can be changed as well as the physical
address located in the descriptor.

Rule 11 ABIOS does not do End of Interrupt
processing. In a level-sensitive interrupt
environment, the device condition causing
the interrupt is reset by ABIOS.

Rule 12 The caller of ABIOS can perform EOI
processing when the Return Code field is
any value other than Not My Interrupt, Stage
On Interrupt (hex 0005) and all Request
Blocks are serviced on the Logical ID. The
caller can assume that the interrupt was
serviced and process the EOI.

Rule 13 The caller of ABIOS must call each
outstanding request per Logical ID at
interrupt time until the first Logical ID with
an interrupting condition is completely
processed.

Rule 14 Operating System device numbers are
allocated by the Operating System based on
increasing units within increasing Logical
IDs. For example; the first Logical ID with

Advanced BIOS

Device ID = printer, unit 0 is lpt1 :, unit 1 is
lpt2:. If unit 1 does not exist, the second
Logical ID with Device ID = printer, unit 0 is
named lpt2:, and so on.

Rule 15 ABIOS in a protected mode or bimodal
implementation must have 1/0 privilege
when operating in protected mode.

Sample Interfaces

This section describes the service specific
parameters for Disk and Video ABIOS interfaces.
Each interface description includes the interface
functions and the values of the return code field.
Programming considerations are also included where
appropriate.

Parameters are passed to ABIOS functions in the
request block. All input parameters are set by the
caller and all output parameters are returned by
ABIOS functions.

Disk

Functions

The following shows the disk functions with an
explanation of each function performed.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns disk drive information based
on the unit requested and the disk device control
information.

• Possible return codes

Service Specific Input

Fde Offset

E 28H

Description

Reserved

Advanced BIOS

hex 0000.

Service Specific Output

Size Offset Description

Word 10H Sectors/Track associated
with unlt in request block

Word 12H Size of sectors in bytes
02H - 512-byte sectors
All other values are reserved

Word 14H Device control flags
Bits 15 ta 13 - Reserved
Bits 12. 11 - Format support (values in binary)

00 - Format not supported
Ell - Fonnat track supported
10 - Format unit supported
11 - Femat track/unit supported

Bit 10 - ST5El6 Ori ve
0 - Not ST506
l - ST506

Bit 9 - Concurrent unit requests per Logical IO
0 - Not concurrent
l - Concurrent

Bit 8 - Ejecting capability
0 - Not ejectabl e
1 - Ejectable

Bit 7 - Media organization
0 - Random
1 - Sequential

Bit 5 - Locking capability
0 - Not lockable
l • Lockable

Bit 5 - Read capabi 1 i ty
0 - Not readable
1 - Readable

Bit 4 - Caching support
O - No caching
1 - Caching

Bit 3 - Write frequency
El - Write once
1 - Write many

Bit 2 - Change signal support
0 - No change signal supported
1 - Change signal supported

Bits 1, o - Reserved
DWord !SH Physical number of cylinders associated

with unit in request block
Byte !CH Phys i ca 1 number of heads associated

with unit in request block
Byte !DH Suggested number of software

retries for retryable operations
DWord 20H Number of relative block addresses

associated with unit 1n request block
OWord 24H Reserved
Word 28H Reserved
Word 2CH Maximum number of blocks to transfer per one call

04H - Set Device Parameters (Reserved)

05H - Reset/Initialize

• This function resets the disk system to an initial
state.

• All Return Code values listed in the Disk Return
Codes table are possible for this function.

Service Specific Input

Size Offset Oescription

Word lOH Reserved

Service Specific Output

Size Offset Des cri pt ion

DWord 28H Time to wait before resuming
request in microseconds

06H - Enable (Reserved)

07H - Disable (Reserved)

OSH - Read

61

• The Read function transfers data from the
specified relative block address to the specified
memory location. The Number of Blocks to Read
field contains the amount of data to transfer.

• If the Number of Blocks to Read field is 0, no
action is performed.

• If the Number of Blocks to Read field is greater
than the maximum number of blocks, then no
action is performed. The Number of Blocks to
Read field contains the amount of data
transferred.

• When a parameter error is returned, the Number
of Blocks to Read field is not updated.

• All Return Code values listed in the Disk Return
Codes Table are possible for this function.

Service Specific Input

Size Offset Description

Word 10H Reserved
DWord 12H Data pointer 1
Word 16H Reserved
Word 18H Reserved
DWord lAH Data pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to read
Byte 2EH Bits 7 to l - Reserved (set to 0)

Bit 0 - Caching
O - Caching is OK for this request
l - Don't cache on this request

Service Specific Output

Size Offset Description

DWord 28H Time to wait before resuming
request in microseconds

Word 2CH Number of blocks read
Word 2FH Indicates if a soft error occurred

= 0 - Soft error did not occur
f 0 - Soft error occurred

09H -Write

• The Write function transfers data from the
specified relative block address to the specified
memory location. The Number of Blocks to Write
field contains the amount of data to transfer.

• If the Number of Blocks to Write field is 0, no
action is performed.

• If the Number of Blocks to Write field is greater
than the maximum number of blocks, no action is
performed.

62

• The Number of Blocks Written field contains the
amount of data transferred.

• When a parameter error is returned, the Number
of Blocks Written field is not updated.

• All Return Code values listed in the Disk Return
Codes table are possible for this function.

Service Specific Input

Size Offset Des cri pt ion

Word 10H Reserved
DWord 12H Data pointer 1
Word 16H Reserved
Word lBH Reserved
DWord lAH Data pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to write
Byte ZEH Bits 7 to l - Reserved (set to 0)

Bit 0 - Caching
0 - Caching is OK for this request
1 - Don't cache on this request

Service Specific Output

Size Offset Description

DWord 28H Time to wait before resuming
request in microseconds

Word 2CH Number of blocks writ.ten
Word 2FH Indicates if a soft error occurred

= 0 - Soft error did not occur
f 0 - Soft error occurred

OAH - Write Verify

• The Write Verify function operates similar to the
Write function {hex 09) with the addition of a
Verify function (hex OB).

• If the Number of Blocks to Write/Verify field is 0,
no action is performed.

• If the Number of Blocks to Write/Verify field is
greater than the maximum number or blocks,
then no action is performed.

• The Number of Blocks Written field contains the
amount of data transferred.

• When a parameter error is returned, the Number
of Blocks Written field is not updated.

• All Return Code values listed in the Disk Return
Codes Table are possible for this function.

Advanced BIOS

Service Specific Input

Size Offset Description

Word lOH Reserved
DWord 12H Data Pointer 1
Word 16H Reserved
Word 18H Reserved
DWord lAH Data Pointer 2
Word lEH Reserved
DWord 20H Relative block address
DWord 24H Reserved
Word 2CH Number of blocks to write/verify
Byte 2EH Bits 7 to 1 - Reserved (set to 0)

Bit 0 - Caching
0 - Caching is OK for this request
1 - Don't cache on this request

Word 31H Reserved for subfunct ion

Service Specific Output

Size Offset Description

OWord 28H Time to wait before resuming
request in microseconds

Word 2CH Number of blocks written
word 2FH Indicates if a soft error occurred

= 0 - Soft error did not occur
f 0 - Soft error occurred

Advanced BIOS

OBH - Verify

• The Verify function reads from the specified
relative block address without transferring any
data to system memory. This function verifies
the readability of the data.

• If the Number of Blocks to Verify field is 0, no
action is performed.

• If the Number of Blocks to Verify field is greater
than the maximum number of blocks, no action is
performed.

• All Return Code values listed in the Disk Return
Codes Table are possible for this function.

Service Specific Input

Size Off set Description

Word 16H Reserved
Word 18H Reserved
Word lEH Reserved
DWord 20H Relative Block Address
DWord 24H Reserved
Word 2CH Number of blocks to verify

63

Service Specific Output

Size Offset Description

DWord 28H Time to wait before resuming
request in microseconds

Word 2FH Indicates if a soft error occurred
= 0 - Soft error did not occur
f 0 - Soft error occurred

OCH • Interrupt Status

• This function returns the Disk Interrupt Pending
status. It does not reset the interrupt condition.

• The Interrupt Status field is associated with the
Logical ID as opposed to the Unit field. This field
represents the current interrupt pending state of
the disk controller. The Unit field is tested for
validity.

• If there is a parameter error, the Interrupt Status
field is undefined.

• Possible return codes hex 0000.

Service Specific Input

Size Offset Description

Word 16H Reserved

Service Specific Output

Size Offset Description

Byte +10H Interrupt Status
00H - Interrupt not pending
GlH - Interrupt pending

64

Return Codes

The following figure lists the Disk Return Codes:

Value Description

0000H
0001H
0002H
0005H
8000H
800FH
9001H
9002H
9004H
9005H
9007H
900AH
900BH
900DH
900EH
9010H
9020H
9021H
9040H
9080H
90AAH
90BBH
90CCH
90FFH
A000H
A001H
A002H
A004H
A005H
A007H
A00AH
A00BH
A00DH
A00EH
A010H
A011H
A020H
A021H
A040H
A080H
A0AAH
A0BBH
A0CCH
A0FFH
B001H
B020H
B021H
B080H
BOBBH
B0FFH
C000H

C001H
C003H
C004H

Operation Completed Successfully
Stage on Interrupt
Stage on Ti me
Not My Interrupt, Stage on Interrupt
Device Busy, Request Refused
OMA Arbitration Level Out of Range
Bad Function
Address Mark Not Found
Record Not Found
Reset Failed
Controller Parameter Activity Failed
Defective Sector
Bad Track
Invalid Sector on Format
CAM Detected During Read or Verify
Uncorrectable ECC or CRC Error
Bad Contra ll er
Equipment Check
Bad Seek
Device Did Not Respond
Ori ve Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Timeout Occurred - No Other Error
Bad Command
Address Mark Not Found
Record Not Found
Reset Fai 1 ed
Parameter Activity Failed
Defective Sector
Bad Track
Invalid Sector on Format
CAM Detected During Read or Verify
Uncorrectable ECC or CRC Error
ECC Corrected Data Error
Bad Contra ll er
Equipment Cheek
Bad Seek
Device Did Not Respond
Drive Not Ready
Undefined Error
Write Fault
Incomplete Sense Operation
Contra ll er Bad Command
Bad Controller
Equipment Check
Device Did Not Respond
Undefined Error
Sense Failed
lnval id Logical ID (ABIOS Transfer
Convention only)

Invalid Function
Invalid Unit Number
Inv al id Request Block Length

Figure 47. Disk Return Codes

Advanced BIOS

Programming Considerations

• The Disk ABIOS interface requires the use of the
DMA ABIOS interface, therefore, if the disk
ABIOS is initialized and used, the DMA ABIOS
must not be initialized.

• Read Device Parameters returns the number of
software retries to attempt for any one operation
when an error occurs that is retryable.

• In the event of an error, ABIOS resets the disk
system when required.

• For the functions Read (hex 08}, Write (hex 09),
and Write/Verify (hex OA}, the output parameter
at hex 2C represents the number of blocks
transferred as determined from the hardware.
This value is supplied in the event that the
request ended in error before the data transfer
was complete. If no error is reported this value
equals the number of blocks that were requested
for transfer. It is only valid when the request is
completed.

• When error recovery procedures are invoked by
the adapter, and are successful, disk ABIOS
attempts to determine the nature of the recovery
performed. It sets the Soft Error Occurred field in
the request block with the recovered error code.

• Relative block addresses begin ordering with the
ti rst block assigned the value 0. For hardware
devices that do not support relative block
addresses, the equivalent is Cylinder 0, Head 0,
and Sector 1. In the formulas below, sectors per
track, sector ID, heads, and cylinders refer to
physical (1-based) entities. Cylinder and head
refer to ID values as actually sent to the
controller (0 based). Disk ABIOS returns physical
values for number of sectors per track, number of
heads, number of cylinders on the Read Device
Parameters function (hex 03), which should be

Advanced BIOS

used for relative block address calculations.
ABIOS uses the following to break down the
Relative Block Address (RBA):

Sector ID = (RBA MOD Sectors Per Track) + 1

Head = (RBA \ Sectors Per Track) MOD Heads

Cylinder = (RBA \Sectors Per Track) \ Heads

The RBA may be calculated by the following:

RBA = (Sectors Per Track* Heads* Cylinder) +
(Sectors Per Track * Head) + Sector ID - 1

The number of RBAs is:

RBAs = Cylinders* Heads* Sectors Per Track

This is the value returned by Read Device
Parameters.

The maximum allowable RBA is:

Max RBA = cylinders• heads• sectors per track
- 1.

• When issuing Disk ABIOS and Disk BIOS
requests, the following rules should be followed:

Do not attempt an ABIOS call while there is
an outstanding BIOS call.

Do not attempt a BIOS call while there is an
outstanding ABIOS call.

The Reset/Initialize function (hex 05) must be
the first ABIOS request immediately following
a BIOS request

The Reset Disk System BIOS function
(Interrupt 13H, (AH) = OOH) must be the first
BIOS request immediately following an
ABIOS request.

The Reset/Initialize function (hex 05) must be
issued after ABIOS initialization has been
completed.

65

Video

Functions

The following shows the video functions with an
explanation of each function performed.

OOH - Default Interrupt Handler

01 H - Return Logical ID Parameters

02H - Reserved

03H - Read Device Parameters

• This function returns parameters that indicate the
current video state.

• The Character Block Specifier field returns the
active character generator blocks in map 2. The
Character Block Select A field specifies the block
used to generate alpha characters when bit 3 of
the Attribute byte is a 1. The Character Block
Select B field specifies the block used to
generate alpha characters when attribute bit 3 of
the Attribute byte is a O. When the Character
Block Select A field is equal to the Character
Block Select B field, the Character Select function
is disabled and bit 3 of the Attribute byte
determines the foreground intensity state (1 =
on, 0 = off).

• The Save/Restore Header Size, Hardware State
Size, Device Block State Size, and DAC State
Size fields are used in calculating the size of the
Save buffer for the Save Environment function
(hex OC). Refer to the Save Environment function
(hex OC), on page 67 for more information.

• The possible return code = hex 0000.

Service Specific Input

Offset Size Description

+28H Word Reserved

66

Service Specific Output
OFFSET SIZE OESCRI PT! ON

+!CH Byte Humber of scan 1 ines on the screen
00H • 200 scan lines
01H - 350 scan lines
02H - 409 scan l i nes
93H - 480 scan lines
04H to BFFH .. Reserved

+!EH Word Video mode setting
+20H Word

Bits 15 to 1 - Reserved
Bit 0 - Type of monitor attached

0 - Color monitor
1 - Monochrome monitor

+22H Word Character height (bytes/character)
+24H Word Character block specifier

Bi ts 15 to 12 - Reserved
Bits 11 to 8 - Character Block Select A
Bi ts 7 to 4 - Reserved
Bits 3 to 0 - Character Block Select B

+2AH Word Size of ROM fonts. Data buffer required
for the Return ROM Fonts function

+2EH Word Size of the save/restore buffer header in bytes
+30H Word Size of the save/restore hardware state in bytes
+32H Word S1ze of the save/restore device block state in bytes
+34H Word Size of the save/restore DAC state in bytes

04H - Set Device Parameters (Reserved)

05H - Reset/Initialize

• This function initializes the video controller to the
requested mode. (See page 71).

• The Character Blocks to Load field tells which
character blocks will be loaded with the default
ROM character font for the requested mode and
scan lines. This parameter is only required when
setting an alpha mode (0, 1, 2, 3, 7).

• Scan lines are only specified when setting an
alpha mode (0, 1, 2, 3, 7).

• The Character Blocks Specifier field is only
specified when setting an alpha mode (0, 1, 2, 3,
7).

• The Device Control Summing flag is only
required when a color monitor is attached.
Summing is done automatically for monochrome
monitors.

• When using a monochrome display in a color
mode, the colors are displayed as shades of
gray. There are 16 of 64 gray shades available in
all modes except mode 13H, where all 64 gray
shades are available.

• For the Character Blocks Specifier field, the
Character Block Select A field specifies the block
used to generate alpha characters when bit 3 of
the Attribute byte is a 1. The Character Block
Select B field specifies the block used to
generate alpha characters when bit 3 of the
Attribute byte is 0. When the Character Block
Select A field is equal to the Character Block
Select B field, the Character Select function is
disabled and bit 3 of the Attribute byte
determines the foreground intensity state (1 =
on, 0 = off).

Advanced BIOS

• Modes 0, 2 and 5 are identical to modes 1, 3 and
4 respectively.

• The possible return code

Service Specific Input
OFFSET SIZE OESCRI PT! ON
r---
+!AH Word Video device control flag

Bi ts 15 to 3 - Reserved
Bit 2 - Surrming

0 - Surrming disabled
1 - Su!Jllling enabled

hex 0000.

Bit 1 - Initialize digital-to-analog converter
(OAC) to default

O - Do not initialize DAC to default
1 - Initialize DAC to default

Bit 0 - Regenerative buffer flag
0 - Don't clear buffer
l - Cl ear buffer

+lCH Byte Requested number of scan 1 i nes
OOH - 200 scan lines (modes 0, I, 1, 3)
OlH - 350 scan lines (modes 0, I, 1, 3, 7)
02H - 400 scan 1 ines (modes 0, 1, 2, 3, 7)
03H to FFH - Reserved

+lEH Word Video mode to set
+24H Word Character block specifier

Bits 15 to 12 - Reserved
Bits 11 to 8 - Character Block Select A
Bi ts 7 to 4 - Reserved
Bits 3 to 0 - Character Block Select B

+16H Word Character blocks to load with default ROM font
Bit 1n' - Block 1n 1 flag

El - Don't update font
1 - Update font

+18H Word Reserved

Service Specific Output

Offset Size Description

None

06H - Enable (Reserved)

07H - Disable (Reserved)

08H - Read (Reserved)

09H - Write (Reserved)

OAH - Additional Data Transfer Function (Reserved)

OBH - Return ROM Fonts Information

• This function returns the following information
about each of the ROM fonts: the pointer to the
ROM font, the size of character (row and column),
whether it is a total or partial font, and if a partial
font, which font it relates to.

• There are 12 bytes of information per ROM font.
They are stored sequentially in the specified data
area.

• The following shows the format of a ROM font
entry:

Advanced BIOS

word - Reserved
DWord - Pointer to ROM font
Word - Reserved
Byte - Size of character (number of columns)
Byte - Size of character (number of rows)
Byte - Total/partial font indicator

OOH - Total font
01H - Partial font
02H to fFH - Reserved

Byte· - Related font
If this is a partial font, th1s byte contains a
number to indicate which font this font goes with.
The font number is based on the place a particular
font occupies in the ROM font entries.

• The Read Device Parameters function (hex 03)
should be issued before issuing this function to
find the size of the buffer required to save the
ROM fonts information to be returned.

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+JOH Word Reserved
+12H DWord Pointer to buffer to store ROM

fonts information
+16H Word Reserved

Service Specific Output

Offset Size Description

None

OCH - Save Environment

• This function stores the caller's requested video
states in the buffer.

• The video environment consists of the following
states:

Hardware state
Device block state
DAG state

• To calculate the size of the save buffer that is
required, the Read Device Parameters function
(hex 03) must be issued. It gives the individual
sizes of the possible states to be saved and the
size of the save/restore header. Then:

Save Buffer Size = (A+ B + C + D)

where:

A
B
c
D

Size of the Save/Restore header.
Environment(bit 0) • (size of hardware state).
Environment(bit 1) • (size of device block state).
Environment(bit 2) • (size of DAG state).

• Possible return code = hex 0000.

67

Service Specific Input

Offset Size Description

+l0H Word Reserved
+l2H DWord Pointer to environment save area
+l6H Word Reserved
+2CH Word Video environment states to be saved

Bits 15 to 3 - Reserved and should be set to 0
Bit 2 - DAC state
Bit 1 - Device block state
Bit 0 - Hardware state

Service Specific Output

Offset Size Description

None

OOH - Restore Environment

• This function restores the video environment
from the given buffer location. Refer to the Save
Environment function (hex OC) for more
information on the contents and structure of the
video environment.

• Unexpected results may occur if you restore a
particular state not previously saved.

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+lOH Word Reserved
+l2H DWord Pointer to environment restore area
+l6H Word Reserved
+lAH Word Device Control flag

Bi ts 15 to l - Reserved
Bit 0 - Regenerative buffer flag

0 - Don't cl ear buffer
l - Cl ear buffer

+2CH Word Video environment states to be restored
Bi ts 15 to 3 - Reserved
Bit 0 - Hardware state
Bit 2 - DAC state
Bit l - Device block state
Bit 0 - Hardware state

Service $Peclflc Output

Off set Size Description

None

OEH - Select Character Generator Block

• This function selects up to two character
generator blocks.

• For the Character Block Specifier field, the
Character Block Select A field specifies the block
used to generate alpha characters when bit 3 of
the Attribute byte is a 1. For the Character
Blocks to Make Active field, the Character Block
Select B field specifies the block used to

68

generate alpha characters when bit 3 of the
Attribute byte is a 0. When the Character Block
Select A field is equal to the Character Block
Select B field, the Character Select function is
disabled and bit 3 of the Attribute byte
determines the foreground intensity state (1
on, 0 = off).

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+16H Word Reserved
+24H Word Character block specifier

Bits 15 to 12 - Reserved
Bits 11 to 8 - Character Block Select A
Bi ts 7 to 4 - Reserved
Bits 3 to 0 - Character Block Select B

Service Specific Output

Offset Size Description

None

OFH - Alpha Load

• This function loads the requested character
generator or part of one to the specified
character blocks.

• This function does not update the hardware
registers. Refer to the Enhanced Alpha Load
function (hex 10) if hardware updating is
required.

• When loading any of the ROM character
generators (the Character Generator Type field is
equal to 1, 2 or 3), the full set of characters (hex
100) is loaded. Thus, the only parameters
required to invoke this function are the Character
Generator Type field and the Character Block
Specifier field.

• When loading a user font (the Character
Generator Type field is equal to 0) all parameters
are required.

• When loading a user font, if the Count of
Characters field is equal to 0, no character will
be loaded and the Return Code field is set to
Operation Completed Successfully (hex 0000).

• When loading a user font, the sum of the Count of
Characters field and the Character Offset field
should not exceed the maximum number of
characters in a set (hex 100). If it does, the
Return Code field is set to Invalid Video
Parameter (hex C005).

• Possible return codes = hex 0000 and C005.

Advanced BIOS

Service Specific Input

OFFSET SIZE DESCRIPTION

+lOH Word Reserved
+12H DWord Pointer to user font
+16H Word Reserved
+18H Word Count of characters

1 - lOOH - Valid count of characters
+lDH Byte Character generator type

OOH - User's alphanumerics font
OlH - 8 x 8 alphanumerics ROM font
02H - 8 x 14 alphanumerics ROM font
03H - 8 x 16 alphanumerics ROM font
04H to FFH - Reserved

+22H Word Character height (bytes/character)
+24H Word Character block to load

Bits 15 to 12 - Reserved
Bits 11 to 8 - Character Block Select A
Bits 7 to 4 - Reserved
Bits 3 to 0 - Character Block Select B

+28H Word Character offset into the table

Service Specific Output

Offset Size Description

None

1 OH - Enhanced Alpha Load

• This function loads the requested character
generator or part of one to the specified
character block and updates the hardware
registers.

• When loading any of the ROM character
generators (the Character Generator Type field is
equal to 1, 2, or 3), the full set of characters (hex
100) are loaded. Thus, the only parameters
required to invoke this function are the Character
Generator Type field and the Character Blocks to
Load field.

• When loading a user font (the Character
Generator Type field is equal to 0) all parameters
are required.

• When loading a user font, if Count of Characters
field is equal to 0, no character is loaded and the
Return Code field is set to Operation Completed
Successfully (he~ 0000).

• When loading a user font, the sum of the Count of
Characters field and the Character Offset field
should not exceed the maximum number of
characters in a set (hex 100). If it does the Return
Code field is set to Invalid Video Parameter (hex
COOS).

• Possible return codes = hex 0000 and COOS.

Advanced BIOS

Service Specific Input

Offset Size Description

+10H Word Reserved
+12H DWord Pointer to user font
+16H Word Reserved
+18H Word Count of characters

1 - 100H - Valid count of characters
+lDH Byte Character generator type

OOH - User's alphanumerics font
OlH - 8 x 8 alphanumerics ROM font
02H - 8 x 14 a 1 phanumeri cs ROM font
03H - 8 x 16 alphanumerics ROM font
04H to FFH - Reserved

+22H Word Character height (bytes/character)
+24H Word Character block to load

OOH to 07H - Valid character blocks to load values
08H to FFFFH - Reserved

+28H Word Character offset into the table

Service Specific Output

Offset Size Description

None

11 H - Read Palette Register

• This function reads a palette register.

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+16H Word Reserved
+32H Word Palette register read

OOH to OFH - Valid palette register to read values
lOH to FFFFH - Reserved

Service Specific Output

Offset Size Description

+34H Word Palette value read.

12H - Write Palette Register

• This function writes a value to a palette register.

• Executing this function when the mode is set to
mode hex 13 is not allowed. It is a hardware
requirement to have these registers remain
programmed as set by the Reset/Initialize
function (hex OS). Changing these registers can
cause unpredictable results.

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+16H Word Reserved
+32H Word Palette register to write

OOH to OFH - Valid pallette register to write values
lOH to FFFFH - Reserved

+34H Word Palette value to load
OOH to 3FH - Val id
40H to FFFFH - Reserved

69

Service Specific Output

Offset Size Description

None

13H - Read Color Register

• This function reads the red, green, and blue
values of a color register from the video
Digital-to-Analog Converter (DAC).

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+16H Word Reserved
+2AH Word Color register to read

OOH to FFH - Valid color register to read values
lOOH to FFFFH - Reserved

Service Specific Output

Offset Size Description

+2CH Word Red value read
+2EH Word Green value read
+30H Word Blue value read

14H - Write Color Register

• This function loads a DAC color register with the
specified red, green and blue values.

• For the Device Control Flags field, the summing
flag is disregarded when a monochrome display
is attached. Summing always occurs with a
monochrome display when in color modes.

• Possible return code = hex 0000.

Service Specific Input

Offset Size Description

+16H Word Reserved
+lAH Word Device control flags

Bits 15 to 3 - Reserved
Bit 2 - Summing

O - Summing disabled
l - Summing enabled

Bit l to 0 - Reserved
+2AH Word Color register to write

00H to FFH - Valid color registers to write
l 00H to FFFFH - Reserved

+2CH Word Red value to write
00H to 3FH - Valid red value to write
40H to FFFFH - Reserved

+2EH Word Green value to write
00H to 3FH - Val id green value to write
40H - FFFFH - Reserved

+30H Word Blue value to write
00H to 3FH - Valid blue value to write
40H - FFFFH - Reserved

70

Service Specific Output

Off set Size Description

None

15H - Read Block of Color Registers

• This function reads a block of DAC color registers
into the specified save area beginning at the
requested color register.

• The format of the data returned is (red value,
green value, blue value), (red value, green value,
blue value), , (red value, green value, blue
value).

• The range for the red, green, or blue values is
hex 00 to 3F.

• If the Count of Color Registers to Read field
equals 0, no action is performed and the Return
Code field is set to Operation Completed
Successfully (hex 0000).

• If the First Color Register to Read field plus the
Count of Color Registers to Read field h:; greater
than the maximum number of color registers, no
action is performed and the Return Code field is
set to Invalid Video Parameter (hex C005).

• Possible return codes = hex 0000 and C005.

Service Specific Input

Offset Size Description

+10H Word Reserved
+12H DWord Pointer to read save area
+16H Word Reserved
+lBH Word Count of color registers to read
+2AH Word First color register to read

00H to FFH - Valid first color register to read values
1000H to FFFFH - Reserved

Service Specific Output

Offset Size Description

None

16H - Write Block of Color Registers

• This function loads a block of DAC color registers
with the requested values beginning with the
requested color register.

• The format of the data to be written is (red value,
green value, blue value), (red value, green value,
blue value), , (red value, green value, blue
value).

• If the Count of Color Registers to Write field
equals zero, no action is performed and the

Advanced BIOS

Return Code field is set to Operation Completed
Successfully (hex 0000).

• If the first Color Register to Write field plus the
Count of Color Registers field is greater than the
maximum number of color registers, no action is
performed and the Return Code field is set to
Invalid Video Parameter (hex C005).

• For the Device Control Flags field, the summing
flag is disregarded when a monochrome display
is attached. Summing will always occur with a
monochrome display when in color modes.

• Possible return codes = hex 0000 and C005.

Service Specific Input

Offset Size Description

+10H Word Reserved
+12H DWord Pointer to write save area
+16H Word Reserved
+1811 Word Number of color registers to write
+lAH Word Device control flags

Bits 15 to 3 - Reserved
Bit 2 - Summing

0 - Summing disable
1 - Summing enabled

Bits 1, 0 - Reserved
+2AH Word First color register to write

00H to FFH - Valid first color register to write
lOOH to FFFFH - Reserved

'----

Service Specific Output

set E
E e

Size Description

Advanced BIOS

Return Codes

The following figure lists the Video Return Codes:

Value Description

OOOOH Operation Completed Successfully
COO OH Invalid Logical ID (ABIOS Transfer Convention only)
COOlH Invalid Function
C003H Invalid Unit Number
C004H Invalid Request Block Length
C005H Invalid Video Parameter

Figure 48. Video Return Codes

The following figure shows the supported Video
Modes:

Max Alpha Buffer Box Max Display Pel
Mode # Type Colors Format Start Size Pages Dimensions

0 A/N 16/256K 40X25 B8000 8x8 8 320X200
0 A/N 16/256K 40X25 B8000 8xl4 8 320X350
0 A/N 16/256K 40X25 B8000 9xl6 8 360X400
1 A/N 16/256K 40X25 B8000 Bxs 8 320X200
1 A/N 16/256K 40X25 88000 8xl4 8 320X350
1 A/N 16/256K 40X25 B8000 9xl6 8 360X400
2 A/N 16/256K 80X25 B8000 8xB 8 640X200
2 A/N 16/256K 80X25 68000 8xl4 8 640X350
2 A/N 16/256K 8C:lX25 68(:)(:)(:) 9xl6 8 72C:lX40C:l
3 A/N 16/256K BC:lX25 BBC:lOC:l BxB 8 64C:lX2C:lC:l
3 A/N 16/256K 8C:lX25 B8000 8x14 8 640X350
3 A/N 16/256K 8C:lX25 B8C:l00 9xl6 8 720X400
4 APA 4/256K 4C:lX25 B8C:l00 8x8 1 320X200
5 APA 4/256K 40X25 B8000 8x8 I 320X200
6 APA 2/256K 80X25 B8000 8x8 I 640X200
7 A/N MONO 80X25 60000 9x14 8 720X350
7 A/N MONO 80X25 60000 9x16 8 720X400

08-0C RESERVED

OD APA 16/256K 40X25 AOOOO 8x8 8 320X200
OE APA 16/256K 80X25 AOOOO 8x8 4 640X200
OF APA MONO 80X25 AOOOO 8xl4 2 640X350
10 APA 16/256K 80X25 AOOOO 8x14 2 640X35C:l
11 APA 2/256K 80X30 A0000 8xl6 I 640X480
12 APA 16/256K 80X30 A0000 8xl6 I 640x480
13 APA 256/256K 40X25 A0000 8x8 I 320x200

Figure 49. Video Mode Table

71

IBM Personal System/2 Seminar Proceedings

Publication
Number Vol. Topic

G360-2653 V5.1 IBM Personal System/2 Model 30
IBM Personal Computer DOS, Version 3.30

G360-2678 V5.2 IBM Personal System/2 Displays and Display Adapters

G360-2637 V5.3 IBM Personal System/2 Models 50, 60, 80
Micro Channel™ Architecture,
Hardware Features and Design Considerations

G360-2747 V5.4 IBM Personal System/2 Models 50, 60, 80
VGA, BIOS and Programming Considerations

72 Advanced BIOS

Notes

G360-2747

IBM Corporation
Editor, IBM Personal System/2 Seminar Proceedings
Internal Zip 3636
Post Office Box 1328
Boca Raton, Fl 33429-1328

===~~ i:: - - - --- --------- - ---- - - ---- ---- -T-@

