
January /February 1986

Software
1 PCWATCH

9 Handling the BOUND Range Exceeded Exception

12 Compiled BASIC Compatibility with SNA 3270

17 Windows in the Professional Debug Facility

28 Jump Tables in Assembly Language

29 Review of Application Display Management System

Getting Started
31 Memory in the IBM Personal Computer

3 3 PC Memory Organization

35 Use Care With DOS ASSIGN Command

36 Disabling Call-Waiting

Random Data
3 7 Memory Intensive Programs on the PCjr

39 Inside DOS BACKUP

42 The Last Word

Departments
43 New Products

Exchange of IBM PC Information
--------- - - --- - -- - ---- - - ---- -- ----- ·-

Exchange of IBM PC Information is a
monthly publication of the National Dis­
tribution Division, International Business
Machines Corporation, Boca Raton,
Florida, USA.

Managing Editor
Technical Editor
Associate Editor/

Design Director
Writer/ Automation

Consultant
User Group Editor
Editorial Assistant
Automation

Consultants

fllustrator

User Group
Support Manager

Michael Engelberg
Bernard Penney

Karen Porterfield

John Warnock
Steve Mahlum
Wayne Taylor

Greg Klipstein
Sherry Reardon
Jeff Jamison

Gene Barlow

Exchange of IBM PC Information is distrib­
uted at no charge to registered PC user
groups. To register with us, please write
to:

IBM PC User Group Support
IBM Corporation (2900)
P.O. Box 3022
Boca Raton, FL 33431-0922

To correspond with Exchange, please write
to:

Editor, Exchange
IBM Corporation (2900)
P.O. Box 3022
Boca Raton, FL 33431 -0922

POSTMASTER: send address changes to
Exchange of IBM PC Information , IBM
Corporation (2900), P.O. Box 3022, Boca
Raton FL 33431-0922

© 1986 International Business Machines
Corporation .

Printed in the United States of America.
All rights reserved.

IBM cannot be responsible for the security
of material considered by other firms to be
of a confidential or proprietary nature.
Such information should not be made avail­
able to IBM.

IBM has tested the programs contained in
this publication. However, IBM does not
guarantee that the programs contain no
errors.

IBM hereby disclaims all warranties as to
materials and workmanship, either
expressed or implied including without limi­
tation, any implied warranty of
merchantability or fitness for a particular
purpose. In no event will IBM be liable to
you for any damages, including any lost
profits, lost savings or other incidental or
consequential damage arising out of the use
or inability to use any information provided
through this service even if IBM has been
advised of the possibility of such damages,
or for any claim by any other party.

Some states do not allow the limitation or
exclusion of liability for incidental or con­
sequential damages so the above limitation
or exclusion may not apply to you.

It is possible that the material in this publi­
cation may contain reference to , or infor­
mation about, IBM products, programming
or services that are not announced in your
country. Such references or information
must not be construed to mean that IBM
intends to announce such IBM products,
programming or services in your country.

PCWATCH
James H. Gilliam, Jr.
Larry K. Raper
IBM Corporation

1

Editor's note: The authors of this article are the authors
of the PCWATCH program. If you have
LOADRAM.EXE (a program available through IBM's
Directory of Personally Developed Software), you can
download and run a demo of PCWATCH from our
Electronic Bulletin Board System, (305) 998-EBBS.
You must download the following programs from the
<F>iles section of the bulletin board:
PCWATCH.RAM, PCWATCH.DOC, and ST.EXE.

PCW A TCH offers a new approach to determining
software problems: it monitors your computer's
activity while your computer is running-it lets you
"see" what is happening. By displaying the inner
workings of DOS and application programs,
PCW A TCH provides an excellent way for the novice
to learn how DOS and BIOS functions are used. This
approach also gives the serious software developer a
highly flexible tool for resolving many complex pro­
gramming problems. This article discusses
PCW A TCH, explains some aspects of its design, and
gives examples of how it is used.

PCW A TCH differs from trace facilities available on
other systems in three major ways:

1. It is interactive. You choose program options and
monitoring specifications by moving a block
cursor and making selections with function keys.
Monitoring requests may be generic or specific,
and narrowed by further refinements. The key­
board is also used to activate and deactivate mon­
itoring while the computer is running.

2. All results are shown in real time (while the moni­
tored processes are active), making it easy to
match internal activity with the visible results of a
program.

3. Many aspects of its operation are user-definable,
without the need to add user-supplied program­
ming.

2

Specify PCW ATCH Parameters

.----categories~----. .------Options----..., ,--Specific Events------,

BIOS
COMMUNICATIONS
DISK/DISKETTE
DOS
EXTERNAL
FILE SYSTEM
KEYBOARD
NOISE
PRINTER
TIMER
USER DEFINED 1
USER DEFINED 2
USER DEFINED 3
VIDEO
Disabled Entry
Exit with Carry

F1 Include/ Select
FS Save Setup

Monochrome Display
Graphics Display
Spli t Screen Mode
Top to line [13)
Bottom from [13)
Printer LPT1
Max Output 9999
Wait for Keystroke
Start by Rebooting
Exit to Debugger
Regis t er Display
Input Registers
Ou t put Registers
Control Blocks
Nested Events
Int10 Curs type

F2 Exclude F3 Quit

IntOO DivByZero
Int01 SinglStep
Int03 BreakPt
Int04 Overflow
IntOS PrtSc
Int06 InvalidOp
Int08 IRQO-time
Int09 IRQ1 - keyb
IntOA IRQ2-slav
IntOB IRQ3-com2
IntOC IRQ4-com1
IntOD IRQS-fdsk
In t OE IRQ6-dskt
IntOF IRQ7-prtr
I nt10 Set mode
Int 10 Curs type

~PgDn for More---'

F6 Recall Setup F7 EGA 43 Lines
F4 Start PCWATCH
F8 Show

Figure I. The PCW ATCH Interface Showing Program Options and Event Selections

Terminology

Two terms are used with PCW A TCH for describing
interrupts: service and event. Both are roughly synon­
ymous with interrupt, but are used in different ways.

Service Service is similar to the term "software
interrupt" in that it covers the functional
system interfaces that are supplied on the
IBM PC as interrupts. But service is a more
general term than interrupt, because it also
describes interrupt subfunctions (which

Event

may be given a service name with
PCWATCH) . For example, INT 21 is
where DOS services are located. There are
over a hundred subfunctions (or services) at
this interrupt-Select disk, Open a file,
Rename a file, etc.-and each is specified
by particular values in the AH or AL regis­
ters: AH=OE, AH=3D, AH=56 respec­
tively.

Event can be equated with "hardware inter­
rupt," but also includes the specific occur­
rence of a particular service. This term
describes interrupts or programming excep­
tion conditions that take place outside the
central processor.

Exchange / Jan-Feb 86

Overview of PCW ATCH
By "watching" the use of system services,
PCW A TCH monitors activity at the system interface
level (rather than at the machine language instruction
level) , exposing the same functional abstractions that
programs use when interacting with DOS or BIOS. It
allows the user to see the invisible internal codes that
produce the visible external results.

For its level of function, the program is unusual in not
needing (and not providing) a help screen; the
PCW A TCH interface is intuitively easy to use. A col­
orful , interactive interface, reproduced in Figure 1,
lets you specify all program options and event
selections. You can set complex monitoring
instructions using a few keystrokes , and you can
review and revise these instructions before activating
PCW A TCH. Although it may appear oriented
toward the technical user, novices easily understand
the interface as well .

Categories
The Categories menu on the interface provides a fil­
tering specification that lets you select the services
you want monitored. You can include (using the Fl
key) or exclude (F2 key) monitoring services based
on categories, individual service names (found in the
Specific Events menu), or arbitrary combinations of
both.

3

You may monitor a specific service even if you previ­
ously excluded it or excluded the category to which it
belongs. For example, INT 16, AH=2, "test key" is
a part of the NOISE category, yet even after you
excluded the entire NOISE category, you could
choose to monitor INT 16.

Furthermore, since many functional categories
overlap, you may want to begin monitoring broad cat­
egories and then exclude lesser categories that are of
no interest. A particular service/ event may be
included in multiple categories; for example, interrupt
21, register AH=2C (the DOS "Get time" service), is
assigned to the categories DOS, TIMER, and NOISE.

The NOISE category is a special one that describes all
periodic events and continuously used services that
occur while the computer is idle. Because these inter­
rupts occur constantly, even when nothing significant
is going on, they are seldom of interest in determining
problems. NOISE services are interesting only in
special circumstances and are usually excluded.

Options
There are several Options that can be specified using
the PCW A TCH interface.

D:\>

Monochrome Display, Graphics Display, Split Screen
Mode, Printer: On a two-display system,
PCW A TCH can use one display while DOS or appli­
cation programs use the other. On a single-display
system, PCW ATCH splits the screen into two parti­
tions, one for its own use and one for DOS's use.
(You choose the position and size of the PCW A TCH
partition.) Figure 2 provides an example of a
PCW ATCH screen with DOS using three lines and
PCW ATCH using the rest of the screen. Optional
output is also available to a parallel printer.

With an IBM Enhanced Graphics Adapter (EGA)
and appropriate display, PCW A TCH can operate with
43 lines of output on a single screen. This allows a
full 25-line DOS partition and 18 additional lines for
PCWATCH on the same display. PCWATCH also
supports custom-made EGA fonts that permit even
greater numbers of lines on the screen.

Max Output: This option allows for automatic deac­
tivation of PCW A TCH after a specified number of
events, or at the press of a user-selected key. Simi­
larly, you can temporarily suspend PCW A TCH
output (and later resume it) via a keystroke, allowing
you to selectively monitor services in different
portions of one or more programs.

9B79:023F Dos5D Internal 5D093995 OOF933AF OB803E9D 9B790069 9B794826 0000 F246
012F:5E5D Int2F DosMulplx 11253995 OOF933AF 0B803E9D 9B790069 012F0880 0000 F212
9B79:0246 Dos5D Internal 5D083995 OOF93301 OB803E9D 9B790069 9B794826 0000 F246
012F:5E5D Int2F DosMulplx 11253995 OOF93301 OB803E9D 9B790069 012F0880 0000 F212
36B2:03A9 Int10 Read curs 03000095 OOF93B7F 9B793E9D 9B790069 9B794806 0000 F246
36B2:0370 Int10 Curs type 017F3B81 06073B7F 9B790000 00000000 9B7947FE oooc F246
4356:0181 Dos1A Set DTA 1A563B81 00000080 435600D3 4356E886 012F09C6 oooc F246
4356:0185 Int10 State OF563B81 00000080 435600D3 4356E886 012F09C6 oooc F246
012F:616B Int2F DosMulplx 1123086B 0000005C 012F0869 012F0360 012F0865 03E6 F246
0070:079F Int13 WriteSecs 03010010 00020181 00700522 09FFOBD1 012F0824 0005 F246
0070:079F Int13 Read secs 02010010 00030081 00700522 08B50BD1 012F080A 0005 F246
0070:079F Int13 Read secs 02010010 00040081 00700522 08F70BD1 012F080E 0005 F246
4356:0212 Dos1A Set DTA 1A000081 00010000 B8000162 435600EO 012F09C4 oooc F297
0070:079F Int13 WriteSecs 0307019C 2B070181 00700522 B8000BD1 012F082C 0005 F246
cs IP Service #0136 AX BX ex DX DS SI ES DI SS SP BP FL
07E9:0197 Int10 Curs posn 0202001B 00010202 07E900FD 012FOOOB 012F0852 33B1 F293
07E9:0156 Int10 WriteAttr 095C001B 00010000 07E900FD 012FOOOB 012F0852 33B1 F202
07E9:0197 Int10 Curs posn 0203001B 00010203 07E900FD 012FOOOB 012F0852 33B1 F297
07E9:0197 Int10 Curs posn 020DOOOO 00040200 07E900FD 012FOOOB 012F0852 3981 F246
07E9:0156 Int10 WriteAttr 093E001B 00010000 07E900FD 012FOOOB 012F0852 3723 F206
07E9:0197 Int10 Curs posn 0201001B 00010201 07E900FD 012FOOOB 012F0852 3723 F297

Figure 2. An Example of a Split Screen in PCW ATCH

Exchange / Jan-Feb 86

4

Wait for Keystroke: By default, all services appear as
they occur in real-time, which is the most convenient
way to watch for specific low-volume events. But
when you monitor several interrupts, you must pause
the processor !O allow adequate time to review the
output. The "slow motion" mode fills the display
with the events you have selected and then waits for
you to press a key before continuing.

Start by Rebooting: PCW ATCH has the ability to
simulate a boot sequence before activating a watch
specification. It lets you follow the computer's
actions as DOS is booted, see the loading of device
drivers , and observe the execution of the
COMMAND.COM shell. This means that you can
monitor not only DOS initialization sequences but
also many stand-alone programs.

Exit to Debugger: This option provides the capability
to trap a particular occurrence of a designated event
and invoke a resident debugging program. A "resi­
dent debugger" is already loaded in memory, lying
dormant, but ready to respond to some keyboard
sequence, pushbutton, breakpoint interrupt, or similar
mechanism. After you load a resident debugger, you
continue to see the DOS prompt (not a debug
prompt) and can operate the system normally. An
example of a resident debugger is the Resident Debug
Tool , part of the IBM Professional Debug Facility.

Also, some interactive debugging programs, such as
the Debug program in DOS 3.00 and 3.10, and
SYMDEB (included with MASM 3.00 and IBM's new
C Compiler 1.00) can be made resident by loading a
second-level command processor
(COMMAND.COM) from within the debugging
program.

This open-ended capability lets you switch to a full­
function debugger at a precisely designated moment
without requiring you to preset breakpoints in your
code. This technique works where breakpoints are
not possible (such as stopping in the middle of certain
ROM sequences) , or are not convenient (such as in
the middle of a program that has not been preloaded,
but will be fetched dynamically during execution).

Entry to the resident debugging program appears as
though an actual breakpoint had occurred. All regis­
ters and flags are preserved, and the CS:IP value is set
to permit the interrupted program to resume. In addi-

Exchange / Jan-Feb 86

tion, PCW A TCH is automatically deactivated so that
it will not interfere with the debugging program.

Register Display: An optional register display shows
the contents of all registers and flags. You can
request input registers, output registers, or both.
Whenever output registers are displayed, any registers
or flags that were changed by the service are shown
with the changes clearly highlighted. This capability
ensures that correct parameters have been supplied to
a particular service and that the results are what you
expected. Unwanted side effects in registers or flags
are easy to observe.

If you don't need a register display, PCWATCH
produces an event display (shown in Figure 3 on page
5) that lists each occurring service by name and return
address. This lets you follow several events with little
output and is especially useful if the sequence of
events is more important than the contents of the reg­
isters.

Also, a formatted display of common control blocks
can be used as arguments to many system services.
You can display File Control Blocks (FCBs), ASCIIZ
strings, diskette parameters, disk status bytes,
Network Control Blocks (NCBs), and portions of 1/0
buffers, etc.

Other Options: The PCW A TCH program provides
the following functions:

A "how does it work?" mode that waits for a par­
ticular service to occur and then monitors all of
that service 's internal functions. (Normal exclu­
sion rules let you easily suppress unwanted
NOISE events.)

Recall of previously set specifications. Because
repetition usually determines how important some
services are in addressing a particular problem,
complex sets of PCW ATCH specifications can be
saved and recalled later for further modification
or reuse.

Compatibility with Top View or PC Network
environments. Certain reservations apply when
running under Top View or other multitasking and
context-switching environments; for instance, you
can trace only input registers (not output regis­
ters) . In addition, PCW A TCH must be loaded
before TopView.

5

D: \ >

012F:6168 Int2F DosMulplx 0070:079F Int13
0070:079F Int13 WriteSecs 0070:079F Int13
3AD7:0212 Dos1A Set OTA 0070:079F Int13
9879:219C Dos1A Set OTA 0 12F:6168 Int2F
0070:079F Int13 Read secs 012F:6168 Int2F
0070: 0 79F Int13 Read secs 0070:079F Int13
007 0 : 0 79F Int1 3 Read secs 007 0 :079F Int13
007 0 : 0 79F Int13 Read secs 0070:079F Int13
00 70 : 0 79F Int 13 Read secs 007 0 :079F Int13
007 0 : 0 79F Int1 3 Read secs 0070:079F Int13
0880 : 0 12F Do s48 Execute 012F:6168 Int2F
438 5 : 0 188 Int20 Dos Exit 0 12F:5088 Int2F
012F: 33F2 Int2F DosMulplx 0880:0135 Dos4D
0880:0280 Dos48 Alloc mem 0880:0495 Dos25
0880: 04A3 Dos25 Se t IV 0880:0319 Dos37
9879 : 0 1CC Dos19 Cur disk 07E9:0156 Int10
07E9 :01 56 Int10 Write Attr 07E9:0197 Int10
0 7E9: 0 197 Int10 Curs posn 0 7E9 : 0 197 Int10
07E9: 0 19 7 Int1 0 Curs p o sn 9879:023F Dos SD
9879:0246 Do s5D Internal 0 12F:5E5D Int2F
3682: 0 370 Int1 0 Curs type 3AD7: 0 181 Dos1A

Figure 3. PCW A TCH Event Display

Customizations
To avoid specific BIOS or DOS dependencies,
PCW A TCH does not attach any semantics to a par­
ticular interrupt. All information about what an inter­
rupt represents (including its subfunctions by register
codes) is supplied in a file called PCW ATCH.TBL.

PCWATCH.TBL is an ASCIIZ file containing defi­
nitions of all system services that PCW A TCH can
intercept. It contains a comprehensive set of defi­
nitions fo r all current BIOS and DOS services
(including DOS 3. 10), but you can easily modify it to
encompass future extensions or additions using any
text editor.

PCW A TCH is supplied with a companion program
PCWTBLB, the PCW A TCH Table Builder.
PCWTBLB Jets you customize PCW A TCH's opera­
tion by reading the PCW A TCH. TBL file and incor­
porating its definitions directly into the PCW ATCH
program.

You can customize the following :

The interrupts (and their subfunctions) that
PCW A TCH monitors.

Exchange / Jan-Feb 86

Read secs 0070:079F Int13 Read secs
Read secs 0070:079F Int13 Read secs
WriteSecs #0134
DosMulplx 0070:079F Int13 Read secs
DosMulplx 0070:079F Int13 Read secs
Read secs 012F:6168 Int2F DosMulplx
Read secs 0070:079F Int13 Read secs
Read secs 012F:6168 Int2F DosMulplx
Read secs 0070:079F Int13 Read secs
Read secs 9879:18F4 Dos49 Free mem
DosMulplx 0070:079F Int13 Read secs
DosMulplx 012F:3457 Int2F DosMulplx
Ret code 0880:0297 Dos48 Alloc mem
Set IV 0880:049C Dos25 Set IV
Switc har 07E9: 0 197 Int10 Curs posn
WriteAttr 0 7E9: 0 197 Int10 Curs posn
Curs p osn 07E9: 0 156 Int10 WriteAttr
Curs posn 0 7E9:0156 Int1 0 WriteAttr
Internal 0 12F:5E5D I nt2F DosMulplx
DosMulplx 3682:03A9 Int10 Read c urs
Se t OTA 3AD7: 0 185 Int1 0 State

The names and definitions of system services.

The assignment of system services to functional
categories, including three user-defined catego­
ries .

The types of control block formatting applied to
data passed as input to a service or returned as
output, or both. (Different formatting may be
requested for input and output data.)

The control block formatting options that may be
specified are:

The data at DS:[DX] as a DOS ASCIIZ
string.
The data at DS:[DX] as a DOS FCB.
The current BIOS diskette parameters.
Up to 13 words from the stack.
The status bytes from the disk or diskette
controller.
The data at ES:[BX] as a PC Network
Control Block.
32 bytes at DS:[BX]
32 bytes at DS:[SI]
32 bytes at DS:[DX]
32 bytes at ES:[BX]
32 bytes at ES:[DI]

6

You can designate certain services as
"ONEWA Y" . A ONEWAY service does not
return to its invoker under all circumstances. This
information affects how PCW A TCH sets and
handles traps.

Some examples of ONEW A Y services are:

Interrupt 00 - divide by zero program excep­
tion
Interrupt 20 - normal program termination
Interrupt 21 AH=4C - exit with a return
code
Interrupt 23 - DOS Control-break handler
Interrupt 24 - DOS Critical error handler
Interrupt 27 - terminate and stay resident

The keys PCW A TCH uses to suspend, resume, or
terminate its operations.

The interrupt used to interface with a resident
debugging program. Typical choices would be:

Interrupt 01 - single step
Interrupt 02 - nonmaskable
Interrupt 03 - breakpoint

but any interrupt may be specified if appropriate.

Because 40% of the current size of PCW ATCH is
information from the PCWATCH.TBL file, you can
use the PCW A TCH Table Builder program to gen­
erate customized versions of PCW A TCH that are

Exchange/Jan-Feb 86

optimized for particular situations or application
mixes.

Practical Applications of PCW ATCH
There are three main applications for PCW A TCH,
and each has a potentially different user community.

Application

1. Program debugging

2. Problem Determination

3. Learning how programs
work

Program Debugging

User Community

Software developers

Departmental PC
Administrators
PC Network Adminis­
trators
Software Evaluators
Home Users

Novices
Educators
Software Product
Reviewers

The following example, taken from a real-life situ­
ation, illustrates several of PCW ATCH's functions.

A programmer, after reading the DOS Technical Ref­
erence manual, decides to write his own special
purpose diskette copy routine. Because of the specific
nature of his program, he decides to use interrupt 25,
the DOS absolute disk read service, for his input.
From the description in the DOS manual, he knows
that starting with logical sector number X, this service
obtains Y 512-byte sectors and places them in a
passed buffer area. His program simply provides the
values of X and Y and a buffer location.

The programmer concludes that in order to copy one
double-sided 360KB diskette, it is sufficient to set X
to zero, Y to 720, and pass the address of a 360KB
buffer. He writes a small program to confirm this.
When tested, the service appears to work (no error
indications are returned), but on closer examination,
he discovers much of the buffer is unused, and most
of the expected data is missing. Furthermore, some
program storage areas preceding the buffer are com­
pletely destroyed. What went wrong?

Conventional debugging approaches, such as using
breakpoints, tracing procedure calls, or selective
display of program variables will simply verify that all
of the inputs to the DOS service have been properly
specified, and that no error flags have been returned.

7

In desperation, a programmer might proceed by trial­
and-error techniques to learn more about why the
DOS service is not functioning as described in the
manual.

PCW ATCH addresses this problem directly. Since
the internal functioning of DOS interrupt 25 is
suspect , it is a natural candidate for PCW A TCH's
"How does it work?" mode. To find out, the pro­
grammer runs PCW A TCH, includes the Int25
DosAbsRd function, excludes NOISE and
EXTERNAL categories (seldom of interest when
trying to understand the in-line actions of a function) ,
and selects the "Nested Events" option ("Nested
Events" is the program option that triggers the "How
does it work" mode of operation). Then he starts
PCW A TCH and reruns the faulty program.

When the INT 25 service is finally invoked (and not
until then) , PCW ATCH displays all of the internally
used DOS and BIOS services that are not in the
excluded categories. When the INT 25 service con­
cludes and returns to the invoking program,
PCW ATCH automatically ceases monitoring.

PCW A TCH clearly shows that the key BIOS service
employed by INT 25 is INT 13 Read Sector. By
"watching" the parameters generated by DOS and
passed in registers when using this service, the pro­
grammer observes the following:

DOS does, in fact, read all 720 sectors from the
diskette-9 sectors at a time, resulting in 80 calls
to the BIOS INT 13 Read Sector service.

The offset portion of the buffer address ori­
ginally supplied by the user program, is incre­
mented by 1200 hex (4608 decimal, equivalent to
9 x 512) on each use of the BIOS Read Sector
service.

However, the offset portion of the address overflows
when it exceeds 64KB and wraps around to zero
again, with no corresponding adjustment of the
segment portion of the address.

This explains what goes wrong. Although not men­
tioned in its description, the DOS Absolute Disk Read
service is clearly not prepared to deliver any more
than 64KB of data with one invocation. Also the full
64KB of data is obtainable only if the initial value of
the offset portion of the buffer address is set to zero.

DOS fails to detect an error and returns an indication
of successful completion.

This example illustrates how a rather subtle aspect of
DOS's behavior can be readily brought to the surface
with a simple application of PCW A TCH.

Problem Determination
Software developers frequently debug, but problem
determination is a more universal activity.

One of the strongest virtues of the IBM PC is its open
architecture. An unfortunate aspect of open architec­
ture is that the integration of separately obtained
hardware or software parts is frequently left to the
user. Generally, when used or installed correctly, all
of the pieces work together smoothly, but occa­
sionally the correct method is not clear, and hardware
or software incompatibilities result. Determining how
or why a product is not functioning properly, or
understanding its system requirements, is a common
exercise in addressing a problem.

Large organizations sometimes cope with this by
establishing focal points for problem resolution.
Departmental PC administrators, network administra­
tors, software evaluators, and others ensure that indi­
vidual PC users need not waste time wrestling with
such problems. However, the home user usually has
only limited resources for problem solving.

Exchange / Jan-Feb 86

8

Consider a user confronting a new program that
refuses to run. Perhaps the program appears to do
nothing, hangs the system, or produces an insightful
message like "Required file missing" or "Unable to
create profile." At this point that most users will
decide to read the documentation. But when the doc­
umentation does not lead to any apparent remedy,
what other answer is available?

P CWATCH can expose a host of
potential problems by showing precisely

what a program is trying to do.

A typical solution for this type of problem might
consist of the following steps :

Retry the program. Maybe the problem will go
away.
Call the dealer, supplier, or possibly a t.echnical
support number.
Find another user and ask for help.
Make random alterations in the hardware or soft­
ware configuration to see what effect they might
have.

Program developers or technical people may even
tackle the program with a debugger by tracing
through the machine code trying to understand what
the program needs.

PCW A TCH provides you with a simple alternative
that even non-technical users can apply to such prob­
lems. When confronting a problem caused by some­
thing unknown, you can monitor broad categories of
system activity, and then narrow the focus of interest
selectively until you isolate sources of conflict or point
directly to the problem.

If the problem is that the program appears to do
nothing, or causes the machine to hang, then include
the PCW A TCH categories BIOS and DOS and
exclude NOISE. This configuration displays a fairly
comprehensive overview of system activity that may

Exchange I Jan-Feb 86

lead to discovering the cause of the failure . If the
program terminates with messages that fail to isolate
the problem sufficiently, just include the category
DOS (and exclude NOISE) . This can expose a host
of potential problems, many with obvious procedural
remedies, by "showing" precisely what the program is
trying to do. (A software product reviewer using
PCW ATCH could speak with authority when com­
menting on a product's efficient use of DOS services.)

If a program is trying to open a file that doesn 't exist,
PCW A TCH displays the file name. If a leading or
trailing backslash was needed but omitted from a
command argument, sometimes it can be readily
spotted by examining path names constructed by the
program. Whatever the cause, you can observe first­
hand all directory and file references leading up to the
error.

If you have ever wondered why the diskette light has
come on , you can immediately see what is going on at
that exact point in the program. If DOS says "Abort,
retry , or ignore" while reading a hard disk or a
diskette , you can easily determine the precise sector
that has gone bad. The list of other problems you can
pinpoint goes on and on.

Limitations
For debugging or general problem determination,
PCW A TCH works best when the problem can be
repeated. Being able to repeat (i .e., re-create) the
problem will let you narrow a PCW ATCH specifica­
tion as you learn more about the problem. A problem
that cannot be recreated must be caught in the act,
and for this it may be necessary to operate the com­
puter continuously with PCW ATCH active.

Conclusions
In some sense PCW ATCH contributes to the illusion
that it is possible to see what the computer is actually
doing. For beginners, it is a giant leap from the con­
ceptual model of the computer to one of discrete con­
cepts like programs and files . For people interested in
understanding the relationship between programs, the
DOS operating system, and the more primitive BIOS
support, PCW ATCH is a natural vehicle for filling the
gaps in their knowledge. Furthermore, for experi­
enced programmers, it offers a new approach to the
perplexing problems that software developers
encounter.

I

9

Handling the BOUND
Range Exceeded
Exception

Greg Gruse
IBM Corporation

The IBM Personal Computer Macro Assembler
version 2.00 includes the BOUND instruction, which
requires the Intel 80286 main processor, available
only in the IBM Personal Computer AT.

The BOUND instruction tests to ensure that a given
value does not fall outside specified bounds. If the
value is outside the bounds, the BOUND instruction
creates a Bound Range Exceeded exception.
However, instead of handling the BOUND Range
Exceeded exception, the Personal Computer AT will
do something altogether unrelated-it will print the
screen repeatedly, and you will have to re-boot the
system.

The reason this happens, and a program for circum­
venting the situation, are given in the following text.

The 80286 Processor, Interrupt 5, and the
BIOS
The 80286 Processor uses interrupt 5 as the Bounds
Exceeded exception interrupt. When the result of a
BOUND instruction is a Bounds Exceeded exception,
the 80286 generates an interrupt 5 and sends the
interrupt to the Personal Computer A T's BIOS.

points to the Print Screen routine. Therefore, the
i~terrupt 5 generated by the Bounds Exceeded excep­
tion causes the screen to print.

Meanwhile, the 80286 is programmed to anticipate
that the exception condition has been handled and
corrected. To verify this, the 80286 returns control to
the BOUND instruction that generated the interrupt
5, and executes the BOUND instruction again. But
the original exception condition was not handled and
corrected. Therefore, the second execution of the
BOUND instruction causes another screen to print.
This situation will continue indefinitely until you
re-boot your system.

Circumventions and Solutions
The simplest way to prevent this situation from occur­
ring is to avoid using the BOUND instruction.
However, you can use it if you install .the assembly
language program shown in Figure 1, arbitrari ly
named INT5TEST.

INT5TEST is intended as a resident extension of
DOS. It must be brought up and made resident every
time you turn on your Personal Computer AT. Also,
INT5TEST must be loaded as the last routine
affecting interrupt 5 (the print screen interrupt) .

For example, if you first load INT5TEST and later
load the DOS GRAPHICS routines that also change
interrupt 5, you will get incorrect results. The
GRAPHICS code will intercept both BOUND and
PRINT SCREEN functions . But GRAPHICS knows
nothing about BOUND, so (if you're currently in
graphics mode) it will proceed to print the screen.

H t ·b·i· · h h BIOS ~ ~ INTSTEST has two parts. The part that is
· II ·th b f h IBM p 1 · - - L' executed first 1s actually at the end of the

owever, o ensure compat1 11ty wit t e

0
.,,, . .

m a o er mem ers o t e ersona ,,,---
C t f

-
1

h ·
5

" ,:;:/ hstmg. It establishes a new vector for mter-
ompu er am1 y, t e interrupt vector

· th p I c AT' BIOS rupt 5. It also loads the BOUND code and m e ersona omputer s / . .
~~i makes 1t a permanent extens10n of

~ ,,,.--..,_.,,,,- DOS through the Exit and Stay Resident

~ ('v ~ command.

\
Ll\ ~ (V' J:: /- The part that is executed second deter-\ } rr-r-lJ ".-,, _./ mines what caused the interrupt 5.

l)1_') _;.7· /d__J -- " \.""\ The section of the code labelled \ \ .) D~ "int5_determine" gains control every

\ ~
'\."'\. time an interrupt 5 occurs. If the

~:'J opcode located at the return

~7:~~-Y~ address is not a BOUND

___ cry.. :. ·. . ~~: I . ~

10

instruction, control passes to the normal interrupt 5.
However, if a BOUND instruction caused the inter­
rupt 5, INT5TEST takes two actions. First, it
advances the saved CS:IP to point to the instruction
following the BOUND instruction. The BOUND
instruction can have several different lengths, so
INT5TEST must determine how far to move the IP.
Second, TNT5TEST writes a message to the screen,
indicating that a bound exception occurred.

In INT5TEST, the code that begins at the label
11 bound_ exception 11 is given strictly as an example.

,1 32

Depending on your particular application, you may
want to take a different action when the bound excep­
tion occurs. (If you want to ignore the exception, you
should instead avoid using the BOUND instruction.)

Editor's note: IBM has written and tested the programs
that follow. However, IBM does not guarantee that
they contain no errors. The compiled version of this
program, INT5TEST.COM, is available for down­
loading from the <F>iles section of IBM's Electronic
Bulletin Board System, (305) 998-EBBS.

page
title De t e rmine if b ounds e rro r has occurred

cseg segment para
org 100h
ass ume cs: c s e g

e ntpt: jmp
int5 vector
int5 dete rmine

start
dd ?
proc f a r
bp
bp,sp
ds
bx
bx, [bp+2]
ds, [bp+4]

g o t o initializat ion code
s a ve l ocat ion for i n terrupt 5

address ing into s tack

save r egiste r s
g e t I P
g e t CS

p ush
mov
push
push
mov
mov
cmp
je

b y t e p tr [bx] , 062h
b ound_e x ceptio n

look for bound op- code

Here if print screen

pop
pop
pop
jmp

bx
ds
bp
cs: [intS_vect o r]

Here if bound e x ception

r ecover the regis t e r s

go to t he origina l

This routine l ooks at the mod-r/ m byt e t o determi ne t he l e ngth o f t he
bound instruction. The routine inc r e me nts t he IP value on the s tack to
point to the instruction f o llowing t he bound .

bound_exception:
push
mov
and
cmp
je
and
cmp
je
cmp
je

ax
al,[bx+1]
al I 11 000 111 b
al, 00000 110b
add 4
al,11000000b
al,OOOOOOOOb
add_2
al, 0 1000 000b
add 3

g e t mod-r/ m by t e
i solate mod and r/m bi t s
l ook fo r t h e s pecial cas e

l e ave o n ly the mod b i t s
look for mod 00

l ook f o r mod 01

Figure 1. INTSTEST Program Code

Exchange / Jan-Feb 86

11

Skip checking for mod= 11, since that is a register designation, and
has no meaning for a doubleword operand as required by BOUND.
Therefore, the only one left is mod = 10, which has a two-byte
extension.

add 4: add

jmp
add 3: add

jmp
add 2: add

add exit:
call
pop
pop
pop
pop
iret

word ptr [bp+2] ,4

add exit
word ptr [bp+2],3
add exit
word ptr [bp+2] ,2

show_something
ax
bx
ds
bp

add 4 to pass opcode, mod-r/ m and
two- byte displacement

add the value to IP on stack

thi s routine is just for show

; return to the bound problem

This routine is here just to display something when a bound exception
occurs. This routine and the call are unnecessary.

show_something
push
mov
mov
lea
mov
int
pop
ret

proc
dx
dx,cs

near

ds,dx
dx,bound_message
ah,9
21h
dx

simple routine to say
"Bound exception"

print a message

show_something endp

bound_message

int5 determine
code end

db

endp
label

'Bound exception' ,10,13,'$'

near

start proc near
assume cs:cseg,ds:cseg,ss:cseg,es:cseg

Reset interrupt 5 to point to bound checking code

cli
mov
int
mov
mov
mov
mov
int
sti
lea
int

start endp
cseg ends

end

no interrupts during this time
ax,3505h
21h get the current interrupt 5
word ptr intS_vector, bx
word ptr int5 vector+2, es
dx,offset intS determine
ax,2505h
21h ; set interrupt 5 interrupts back on

dx,code_end
27h

entpt

exit and stay resident

Figure 1. INTSTEST Program Code (cont.)

Exchange / Jan-Feb 86

12

Compiled BASIC
Compatibility with
Network SNA 3270
Charles Lovell
IBM Corporation

Editor's note: The information in this article applies
only to BASIC Compiler 1.00. PC Network
compatability is included in BASIC Compiler 2. 00.

~~~l 
~~\d, ~ ,?~ a 

i1EYJ:: 
l /o 

The IBM PC Network SNA 3270 Emulation Program 
(hereafter called PC Network 3270) lets you load and 
execute programs as "alternate tasks" while the emu­
lation program is operating in a stand-alone, gateway, 
or network station configuration. 

In alternate task mode, you can run almost any 
program you wish. However, BASIC programs 
normally cannot run as alternate tasks because they 
are incompatible with PC Network 3270. This article 
explains how to modify BASIC programs compiled 
with BASIC Compiler 1.00 so that you can execute 
them as alternate tasks in the PC Network 3270 envi­
ronment. 

Exchange / Jan-Feb 86 

Selecting Alternate Task Mode 
PC Network 3270's Setup menu contains an entry 
that asks if you want alternate tasks. Select "Yes" to 
activate alternate tasks. Once activated, this mode 
will remain active until you select "No" from the 
Setup menu. 

After you activate alternate tasks, reload PC Network 
3270 to handle swapping between PC Network 3270 
and the alternate task. To switch between PC 
Network 3270 and the alternate task, press Alt + Esc. 

Alternate Task Requirements 
To run as an alternate task, a BASIC program must 
abide by several rules : 

It must run under DOS 2.10 or later. 
It must be relocatable. 
It must interface with DOS and BIOS using the 
standard DOS and BIOS interrupt and function 
call interfaces (i.e., it must not CALL to DOS or 
BIOS interrupts and functions) . 
It must not alter any of the following hardware or 
software interrupts used by PC Network 3270: 

INT Name 
8 Timer Interrupt Service 

Routine (ISR) 
9 Keyboard ISR 
A Local Area Network ISR 
B Communications ISR 
c Communications ISR 
10 Video BIOS 
16 Keyboard BIOS 
21 DOS Function Call 

It should obtain the addresses of these and any 
other interrupt handling routines only with the 
DOS function GET VECTOR (35H) , which will 
ensure that the program receives the proper 
addresses. 
It should alter interrupts other than those listed 
above only by using the DOS function SET 
INTERRUPT VECTOR (25H), and it must 
restore those that it alters (using SET INTER­
RUPT VECTOR) before it terminates. 



13 

BASIC Programs 
To run as a PC Network 3270 alternate task, a 
BASIC program must be compiled (not interpreted). 
However, a compiled BASIC program is not compat­
ible with PC Network 3270 immediately after it is 
compiled and linked. To make your compiled BASIC 
program compatible, you must modify it to change 
certain things done by the BASIC Compiler. The 
modifications are relative simple. 

Your program must have been compiled with the 
native BASIC Compiler rather than with a version of 
the compiler that has been modified for timer inter­
rupt ( 1 CH) chaining. If you used any version other 
than the native BASIC Compiler, recompile and 
re-link your program with the native version first. 

If, after you apply the modifications given here, your 
program still does not work as a PC Network 3270 
alternate task, one of the following reasons may 
apply: 

1. Your program was compiled using a modified 
BASIC Compiler; you must recompile it with the 
native BASIC Compiler. 

2. Your program depends on the timer interrupt 
chaining of the modified BASIC Compiler; you 
must change your program. 

3. Your program loads and executes the BASIC 
Interpreter (either BASIC.COM or 
BASICA.COM); the BASIC Interpreter is not 
compatible with PC Network 3270. 

4. Your program does not satisfy all of the require­
ments listed above under 11 Alternate Task 
Requirements 11

• 

Before you begin applying the modifications given 
below, please be sure you understand the following 
assumptions and cautions: 

Modifications will be made to your program, not 
to the BASIC Compiler. 

You will make backup copies of your compiler 
and program diskettes before you make the mod­
ifications to your program. 

The modifications are limited in scope to the 
codes generated by the BASIC Compiler itself 
and cannot address unique situations in your 
program, such as those mentioned above, that 
may cause it to be incompatible. 

This article assumes you have some knowledge of 
the IBM PC Macro Assembler and that you 

understand the byte reversal in the Intel 
processors. 

All compiled BASIC programs have an .EXE or 
.COM file that you call by name to begin executing 
the program. That file is the one you will modify. 

One way to make modifications is to use the DOS 
Debug program, DEBUG.COM, documented in your 
DOS Reference manual. Another way is to use the 
Resident Debug Tool program in the IBM Profes­
sional Debug Facility. This article assumes you will use 
DOS Debug. 

Since Debug cannot write a file in .EXE format, you 
must first change the name of the .EXE file you are 
going to modify. Assuming your program's name is 
XYZ, rename your .EXE file using the following 
command: 

A>RENAME XYZ.EXE XYZ.TMP<Enter> 

where <Enter> indicates you should press the Enter 
key. To begin editing your file with Debug, type: 

A>Debug XYZ.TMP<Enter> 

Debug will respond with a dash, which is its prompt: 

Modification #1: Resetting BASIC 
Interrupt Offsets 
To find the first group of code to be modified, type : 

S CS : O L FFFF C7 06 00 OO<Ent er> 

Debug will respond with a location in the format 

- ssss : tttt 

where ssss is the segment address (usually the value in 
CS) and tttt is the offset address. 

Next, disassemble the code. Substitute the actual 
values that Debug gave you for ssss and tttt, and type 
the Debug command: 

U ssss: tttt<Enter> 

Debug will then display the disassembled listing 
shown below. In this listing, there are 20 bytes of 
code in the leftmost column (6 bytes on the first line, 
4 bytes on the second, 6 bytes on the third, and 4 

Exchange / Jan-Feb 86 



14 

bytes on the fourth line). The middle and right 
columns contain the disassembled commands and 
operands. Note the byte reversal; for example, on the 
fourth line, the last two bytes in the left column are 
12 00, but in the right column they have been 
reversed to 00 12. As another example, aabb is disas­
sembled into bbaa. 

Debug will display: 

C7060000aabb 
8CO E0200 
C706 1000ccdd 
8COE1200 

MOV WORD PTR [0000] ,bbaa 
MOV [0 002] , CS 
MOV WORD PTR [0010] , ddcc 
MOV [00 12] , CS 

where aabb and ccdd are offsets. The disassembled 
listing reverses the bytes to bbaa and ddcc. Make 
note of these offset values because you will use them 
in making this modification #1. 

The code you have just displayed uses MOY 
instructions to establish the offsets to the (interrupts) 
OOH and 04H BASIC routines. However, PC 
Network 3270 requires applications to use DOS func­
tion call 25H to set interrupt vectors. Modification #1 
will make this happen, but one small problem must be 
resolved first. 

The code that you are going to modify occupies 20 
bytes in memory, but the modification normally takes 
21 bytes. Therefore, to maintain the integrity of the 
registers you use in the modification, some adjust­
ments have to be made to gain the needed byte. 
Therefore: 

1. Compare aabb and ccdd. 
2. If the values for aa and cc are the same (and they 

probably are), use Choice #1 below. 
3. If aa and cc are not the same, use Choice #2 

below. 

In both Choice #1 and Choice #2, you will enter 20 
new bytes to replace the 20 bytes listed above. 
However, the 20 new bytes are different for each 
choice. 

Now go to either Choice #1 or Choice #2 in this text. 

Choice #1 : Keeping the DX Register 
You will enter 20 new bytes to replace the 20 bytes 
listed above. The new bytes you will enter are: 

1E 52 OE lF BA aa bb B8 00 25 
CD 21 B6 dd BO 04 CD 21 SA lF 

Exchange / Jan-Feb 86 

(You can see these same 20 bytes listed in the left 
column of the next disassembled listing.) 

In the 20 new bytes, substitute the actual values for 
aa, bb and dd. 

To make Modification #1, type the Debug Edit 
command: 

E ssss : tttt<Enter> 

Debug responds with: 

ssss:tttt C7 . 

Following the period, enter the first byte of the patch: 

1E<Space> 

where <Space> indicates you should press the Space 
bar. 

Now continue to enter each successive byte (52, OE, 
lF, etc.), and after each byte press <Space>. After 
you have entered the 20th byte, press <Enter> . 

To verify that you have entered all 20 new bytes cor­
rectly, you can disassemble the modification you have 
just made. To disassemble it, enter: 

U ssss : tttt<Enter > 

Debug should then list the following disassembled 
code: 

1E PUSH DS 
52 PUSH DX 
OE PUSH cs 
1F POP DS 
BAaabb MOV DX,bbaa ;offset to 

OOH BASIC 
routine 

B80025 MOV AX,2500 
CD21 INT 21 
B6dd MOV DH,dd ;low byte of 

offset 
;to 04H BASIC 

routine 
B004 MOV AL,04 
CD21 INT 21 
SA POP DX 
1F POP DS 

Of course, the disassembled listing will not contain 
the two comments I have added at the right for 
clarity. 



15 

If your modified code does not look exactly like the 
listing above, use Debug again to correct it. 

Now skip over Choice #2 and read Modification #2. 

Choice #2 : Changing the DX Register 
In choice #2, you will enter 20 new bytes to replace 
the 20 bytes listed above. This choice is less desirable 
because it does not preserve the integrity of the DX 
register. 

The bytes you will enter are : 

1E OE 1 F BA aa bb B8 00 25 CD 
21 BA cc dd BO 04 CD 21 1 F 90 

(You can see these same 20 bytes listed in the left 
column of the next disassembled listing.) 

In the 20 new bytes, substitute the actual values for 
aa, bb, cc and dd. 

To make Modification #1, type the Debug Edit 
command: 

E ssss : tttt<Ente r > 

Debug responds with: 

ssss : tttt C7 . 

Following the period, enter the first byte of the patch: 

1E<Space> 

where <Space> indicates you should press the Space 
bar. 

Now continue to enter each successive byte (OE, lF, 
BA, etc.) , and after each byte press <Space> . After 
you have entered the 21st byte, press <Enter>. 

To verify that you have entered all 20 new bytes cor­
rectly, you can disassemble the modification you have 
just made. To disassemble it, enter: 

U ssss : tttt<Enter> 

Debug should then list the following disassembled 
code: 

1E PUSH DS 
OE PUSH cs 
1F POP DS 
BAaabb MOV DX , bbaa ; offset t o OO H 

; BASIC rou t ine 
B80025 MOV AX , 2500 
CD2 1 INT 2 1 
BAccdd MOV DX , ddcc ; offset to 04H 

; BASIC routine 
B004 MOV AL , 04 
CD2 1 INT 2 1 
1F POP DS 
90 NOP 

Of course, the disassembled listing will not contain 
the two comments I have added at the right for 
clarity. 

If your modified code does not look exactly like the 
listing above, use Debug again to correct it. 

Modification #2: Using Function 
Call 25H 
The second modification is the one that permits your 
compiled BASIC program to load and execute with 
PC Network 3270. 

To find the second group of code to be modified, 
type: 

S CS : O L FFFF C7 06 90 OO<Enter> 

Debug will respond with a location in the format 

VVVV : WWWW 

where vvvv is the segment address and wwww is the 
offset address. 

Next , disassemble the code. Substitute the actual 
values that Debug gave you for vvvv and wwww, and 
type the Debug command: 

U vvvv : wwww<Enter> 

Debug will then display the following disassembled 
listing: 

C7069000eeff MOV WORD PTR [0090] , ffee 
8COE9200 MOV (0092] ,cs 
C7066C00gghh MOV WORD PTR [006C] , hhgg 
8COE6EOO MOV [006E] , CS 
C7067000iijj MOV WORD PTR (0070] , jjii 
8COE7200 MOV [0072] , cs 

Exchange / Jan-Feb 86 



16 

This code sets interrupts 24H, lBH and 1 CH respec­
tively. Just as in Modification #1 , you must change 
this code to use DOS function call 25H. 

The above code occupies 30 bytes, but Modification 
#2 requires only 28 bytes, so the modification con­
tains two extra NOP instructions at the end. 

The 30 new bytes you will enter are shown in the left­
most column of the next disassembled listing. Be sure 
to substitute the actual values for ee, ff , gg, hh, ii and 
jj. 

To make Modification #2, type the Debug Edit 
command: 

E vvvv:wwww<Ente r > 

Debug responds with: 

vvvv : wwww C7 . 

Following the period, begin entering the 30 new 
bytes, each one followed by <Space>, and the last 
one followed by <Enter> . 

To verify that you have entered all 30 new bytes cor­
rectly, you can disassemble the modification you have 
just made. To disassemble it, enter: 

U vvvv:wwww<Enter> 

Debug should then list the following disassembled 
code: 

1E PUSH DS 
52 PUSH DX 
OE PUSH cs 
1F POP DS 
BAeeff MOV DX,ffee ;offset to 24H 

;BASIC routine 
B82425 MOV AX,2524 
CD21 INT 21 
BAgghh MOV DX,hhgg ;offset to 1BH 

;BASIC routine 
B01B MOV AL, 1B 
CD21 INT 21 
BAiijj MOV DX,jjii ;offset to 1CH 

;BASIC routine 
B01C MOV AL, 1C 
CD21 INT 21 
SA POP DX 
1F POP DS 
90 NOP 
90 NOP 

Exchange / Jan-Feb 86 

As before, verify that your modification looks exactly 
like the above disassembled listing. If it does not, use 
Debug again to correct it. 

Modification #3: Leaving the 8259 
Processor Alone 
To find the third group of code to be modified, type : 

S CS : O L FFFF E4 21 OC 18<Enter> 

Debug will respond with a location in the format 

xxxx:yyyy 

where xxxx is the segment address and yyyy is the 
offset address. 

Next, disassemble the code. Substitute the actual 
values that Debug gave you for xxxx and yyyy, and 
type the Debug command: 

U xxxx:yyyy<Enter> 

Debug will then display the following disassembled 
listing: 

E421 
OC18 
E621 

IN AL , 21 
OR AL , 18 
OUT 21 , AL 

This code resets the two communication interrupts on 
the 8259 chip. When this happens, communication 
ceases. Obviously you don't want this to happen 
while PC Network 3270 is communicating. Modifica­
tion #3 ensures that the communications link will 
remain active when your compiled BASIC program 
terminates. 

The six new bytes you will enter are shown in the left­
most column of the next disassembled listing. 

To make Modification #3 , type the Debug Edit 
command: 

E xxxx:yyyy<Enter> 

Debug responds with: 

xxxx : yyyy E4 . 

Following the period, begin entering the six new 
bytes, each one followed by <Space>, and the last 
one followed by <Enter>. 



17 

To verify that you have entered all six new bytes cor­
rectly, you can disassemble the modification you have 
just made. To disassemble it, enter: 

U xxxx : yyy y<Ente r > 

Debug should then list the following disassembled 
code: 

E4 2 1 IN AL,21 
90 NOP 
90 NOP 
E6 21 OUT 2 1 , AL 

Again, verify that your modification looks exactly like 
the above disassembled listing. If not, use Debug 
again to correct it. 

Saving Your Modifications and Concluding 
After you have made and verified all three modifica­
tions, save them by typing: 

Windows in the 
Professional Debug 
Facility 
John Warnock 
IBM Corporation 

Resident Debug Tool Windowing 
The Professional Debug Facility's Resident Debug 
Tool (RDT) features extensive windowing capabili­
ties. You can use the window area (lines 12 through 
25) of the RDT screen to : 

display and alter memory 
display disassembled instructions and alter their 
hexadecimal representations 

W<Ente r > 

This command tells Debug to write the modifications 
onto your file XYZ. TMP. 

After Debug has written the modified file XYZ. TMP, 
terminate Debug by entering: 

Q<Enter> 

Finally, rename XYZ.TMP back to XYZ.EXE: 

A>RENAME XYZ.TMP XYZ.EXE<Enter> 

Unless your compiled BASIC program has its own 
inherent problems such as those listed at the begin­
ning of this article, it now should be compatible with 
the PC Network SNA 3270 Emulation Program. You 
can now load and execute it as an alternate task under 
PC Network 3270. 

display RDT's instruction trace buffer, which 
contains instructions saved according to the trace 
options you specified 
display the state of the Math Co-processor if one 
is installed 

Features Common in All RDT Display Screens 
All RDT display screens have the same information in 
the upper ten lines of the screen. Figure 1 on page 18 
shows a typical screen that displays memory. In 
Figure 1, the top line gives the program release 
number, program title, current display number 
(explained later) and program date. 

Lines 2 and 3 contain 18 scratchpad variables, Vl 
through V9 and Sl through S9, which can be set as 
breakpoints as well as variables. When used as break­
points, these variables allow you to set addresses at 
which your program will stop so you can examine its 
status. 

~----::::> ------



18 

REL 1. 00 I BM PERSONAL COMPUTER RESIDENT DEBUG TOOL 01 07/01/S4 
V1: ..... V2 : . .... V3 : ..... V4 : ..... VS : ..... V6 : ..... V7 : ..... VS : ..... V9 : .. . 
S 1: ..... S2 : .... . S3 : ..... S4 : ..... SS : ..... S6 : ..... S7 : ..... SS : .... . S9 : . . . 

DISPLAY : ASCII WINDOW: MEMORY 
AX : 0000 

0 200 
112EO 
LC: 

BX: 0000 
0000 

11 1 EO 
I NT 

EX : 112EO 

CX : OOFF 
0000 

112FO 
3 

DX : 0000 TR: OO ......... . 
SP: BP : SI : DI : 0 100 FL : F246 OF: O DF : O IF:1 TF: O 
CS : OS : SS : ES : 111EO SF : O ZF :1 AF : O PF :1 CF : O 

==> 

L1 
L2 
L3 
L4 
LS 
L6 
L7 
LS 
L9 
M1 
M2 
M3 
M4 
MS 

IP : 0000 

* 00000 
00010 
00020 
00030 
0004 0 
oooso 
00060 
00070 
oooso 
00090 
OOOAO 
OOOBO 
oooco 
00000 

4331E300 
3F017000 
ASFEOOFO 
23FFOOFO 
6SFOOOFO 
39E700FO 
OOOOOOF6 
4BFFOOFO 
FBOBE300 
E204420S 
070CE300 
00000000 
EA080CE3 
00000000 

cc 

3F0 17000 
CC0 40E06 
96070E06 
600700CS 
4DF800FO 
S9FSOOFO 
S60 100CS 
A4FOOOFO 
S001420S 
D414E300 
26017000 
00000000 
00000000 
00000000 

Figure 1. Sample ROT Memory Window Screen 

On line 4 , DISPLAY shows whether the window area 
contains ASCII or EBCDIC characters. WINDOW 
shows the current window mode ; in Figure 1 it is 
MEMORY. RDT has four other window modes: 

DISASM for disassemble 
TRACEP for partial trace 
TRACEF for full trace 
COPROC for Math Co-processor 

Lines 5, 6 and 7 display the general registers and spe­
cific registers in the leftmost four columns. 

At the right of line 5 is the trace option display, TR. 
It shows the active trace option number and (if you 
chose the range option) the starting and stopping 
addresses for the trace. (The trace options are dis­
cussed later.) 

At the right of lines 6 and 7 is the flag status display. 
The entire value for the flag register is shown first , 
followed by each flag bit. As with the registers, you 
can modify the contents of the flags by typing the 
appropriate flag command. 

Line 8 contains the pseudo-location counter value 
(LC) , and the disassembly of the current instruction 

STEP CT : 0001 

7 1040E06 
23FFOOFO 
23FFOOFO 
S7EFOOFO 
4 1F800FO 
2EE800FO 
6EFEOOFO 
220SOOOO 
8C02420S 
211SE300 
00000000 
6D03420S 
00000000 
00000000 

C3040E06 
23FFOOFO 
23FFOOFO 
3F017000 
S60200C8 
D2EFOOFO 
38017000 
OOOOOOFO 
9902420S 
E727E300 
00000000 
00000000 
00000000 
00000000 

OP : 
CO : ..... 

* C1 .... p . q ....... * 
* .. p ....... . ... . . * 
* .......... . .. . .. * 
* ........ W •• p .... * 
*e ... M ••• A ••• V • •• * 
*9 ... y ........ • .. * 
*· ...... n .•• 8 .. p .* 
*K ... . ....... . .. ·* 
*· .... B ... B ... B .. * 
* ... B •.. • ..•••• • • * 
* ...... P •.••••••. * 
*· ....... m. B ••••• * 
* ................ * 
* . . . ...... . ...... * 

(the one most recently executed). The instruction 
parameter address is shown under the label OP. 

The instruction pointer (IP) appears on li ne 9, fol­
lowed by the address and code of the last instruction 
executed (EX) . Also on line 9 are the step count 
(STEP CT) and code origin (CO) . 

Line 10 is the command line, where you type all your 
commands. RDT returns messages to you on line 11 . 

The remaining 14 lines are called the window area. 
The window area is different in each of the five 
window modes; for example, in memory window 
mode it is called the memory window area. 

The cursor can access the command line and the 
window area. In all five window modes, you use the 
arrow keys to move the cursor between the command 
line and the window area. You also can move the 
cu'rsor from the window area to the command line by 
pressing the Home key. 

Saving Multiple Display Screens 
You can save up to nine different display screens, 
each with its own line settings and variable values. 

Exchange / Jan-Feb 86 



19 

When you are ready to save a display, type the 
command: 

Dx [=]Dy 

or simply 

DxDy 

where y is the number (I through 9) of the display 
you want to save, and x is the new number (1 through 
9) you want to give your saved display. For example, 
if your current memory display is DI, and you want to 
save it as D4, you should type D4 D 1. D4 is a "snap­
shot" of Dl. You can now continue modifying Dl. 
At a later time, you can retrieve display D4 by simply 
typing D4 on the command line. 

Now Jet's examine the facilities offered within each 
window mode. 

Memory Windowing 
Memory windowing (MW) Jets you perform memory 
display (hexadecimal, EBCDIC or ASCII), alteration 
and scrolling functions. 

Lines Ll through MS are the memory window area. 
Each line in the memory window area contains a line 
number, memory address, hexadecimal representation 
of 16 bytes in memory, and the equivalent character 
representation (either ASCII or EBCDIC). 

The ASCII and EBCDIC character formats may be 
filtered or unfiltered. When the display of characters 
is filtered, only the letters and numbers appear; all 
other hexadecimal codes are shown as dots. When 
unfiltered, all hexadecimal codes are displayed, 
although many of them will appear as special charac­
ters. To switch between filtered and unfiltered char­
acter display, place the cursor in the memory window 
and press the F3 key. 

Displaying Memory 
The memory window area is divided into windows. 
Each window displays a contiguous block of memory. 
You can display from one to 14 windows at one time. 
A window can begin on any line, and can be as small 
as one line or as large as 14 lines. 

RDT places an asterisk after a line number when a 
new window begins on that line. The display of one 
window continues on subsequent lines until another 
window begins. 

Windows need not be ordered sequentially by 
address. A window containing a block of high 
memory can precede a window containing a block of 
low memory. 

To create a memory window and see a particular part 
of memory, type its address directly over the existing 
address on any line in the memory window area. As 
you type each digit of the new address, RDT instantly 
displays the contents of memory at the five-digit 
address it currently sees. 

For example, suppose the address on line Ll ori­
ginally shows 00000, but you want to change it to 
display memory beginning at address 1234S. When 
you type the first digit, 1, you will see memory begin­
ning at address 10000; when you type the second 
digit , 2, you will see memory at address 12000; and so 
on. (You also can enter a new address on a line by 
first storing it in one of the scratchpad variables and 
then pointing to that variable with an RDT command. 
For example, if variable S2 contains address 1234S 
and you want to enter that address on line Ll, you 
can use the command Ll =S2. The address in S2 then 
becomes the new address on line L 1.) 

M emory windowing lets you perform 
memory display, alteration and 

scrolling functions. 

When you change the address on line Ll, RDT places 
an asterisk after the line number to indicate the begin­
ning of a new memory window. 

To remove a window from the memory window area, 
move the cursor inside that window, then press the 
Del key. You also can remove a window by typing 
one of the L 1 through MS commands with no 
operand following. When a window is deleted, the 
asterisk that marked it is removed, and the window 
above it is extended. 

The following is a short scenario illustrating how the 
memory window area behaves. 

Suppose you want to see the contents of memory 
starting at address 1234S and you want these contents 

Exchange / Jan-Feb 86 



20 

to start on line LS . After you type 1234S over the 
existing address on line LS, RDT places an asterisk 
after the line number to indicate that a new window 
begins on line LS . The new window extends to the 
bottom of the memory window area, and lines L6 
through MS have the addresses 123SS, 1236S, ... , 
123DS. Now the first window is reduced to lines Ll 
through L4 with addresses 00000, 00010, 00020 and 
00030. 

T he concept of indefinite windows has 
been implemented for memory 

patching. 

Next, if you type the address OlABC on line Ml, 
another window is created on the last five lines, and 
an asterisk is placed after line number Ml. The 
addresses on lines M2 through MS become OlACC, 
OlADC, OlAEC and OlAFC. Also, the second 
window is shortened to lines LS through L9, with 
addresses 1234S through 123 8S. 

To see how the delete function works, place the 
cursor within the second window and press the Del 
key. Addresses 1234S through 1238S disappear; the 
window directly above is extended from L4 (address 
00030) to L9 (address 00080); and the asterisk is 
removed from line LS . The third window, lines Ml 
through MS , is left unchanged. 

As long as the third window exists , and you do not 
delete any part of it, it will not be overlaid when you 
create another window. To verify this , create a fourth 
window beginning on line L6 at address 34S67. An 
asterisk will be placed after line number L6; lines L 7 
through L9 will display addresses 34S77, 34S87 and 
34S97 ; and lines Ml through MS will be left intact. 

Altering Memory 
When the cursor is inside a memory window, you can 
alter the memory displayed in that window. You can 
alter memory with either hexadecimal, EBCDIC or 
ASCII input. You alter memory by moving the cursor 
to the appropriate byte in either the hexadecimal 
(left) portion or the character (right) portion of a line 
of memory. You then type in your alterations. 

Exchange / Jan-Feb 86 

Each keystroke modifies memory. Half of one byte is 
modified for each hexadecimal digit entered, and one 
full byte is modified for each EBCDIC or ASCII 
character entered. 

Note: Any memory modifications you make are tem­
porary until you make them permanent. Temporary 
modifications will be overridden when you load the 
next program into the system, turn the computer off, 
or issue the System Reset (SR) command in RDT. To 
make your changes permanent, you should issue a 
Write Diskette (WD) instruction or modify your 
source program. 

As you proceed to modify a line of memory, eventu­
ally you will come to the end of the line. The cursor 
wraps to the beginning of the next line so you can 
continue. 

RDT has a built-in safeguard that prevents you from 
altering memory when you intended only to enter a 
new address. After you type the fifth digit of an 
address, the cursor will not move to the right. To 
move the cursor into the hexadecimal data display 
area, you must use one of the arrow keys or the space 
bar. 

You can compare a line of memory as it appears now 
to the same line as it appeared previously, because 
RDT can display a "changing" line of memory next to 
a "saved" line of memory. As you type data into the 
"changing" line, memory is updated. The corre­
sponding "saved" line is not updated, allowing you to 
see its contents as they were before you modified 
them. 

Scrolling Through Memory 
The concept of indefinite windows has been imple­
mented for memory patching. When the last byte of a 
memory section has been modified, RDT automat­
ically scrolls the memory display window one byte to 
the right. This displays the next byte of memory so 
you can modify it if you wish. You can therefore 
patch a string of bytes (hex, EBCDIC, or ASCII) of 
indefinite length without entering a new address. 

The space bar and backspace key also cause auto­
matic scrolling of the memory display window. If you 
want to move the cursor without causing automatic 
scrolling, you should use one of the four cursor arrow 
keys or the tab or Caps Lock key. 



21 

The following keys control cursor motion and 
scrolling when the cursor is in the memory window 
area: 

Caps Lock: Moves the cursor to the beginning of 
the next line down. When the cursor is already 
on the bottom line, the next line it moves to is the 
command line. 

Space bar: Functions similarly to the right arrow 
key. However, the space bar is a valid data key 
for entering ASCII or EBCDIC data, and it will 
cause automatic scrolling if you press it when you 
have reached the end of a hexadecimal memory 
block. 

F3: Toggles between filtered and unfiltered dis­
plays of EBCDIC and ASCII characters. 

Ctrl + Up arrow: Scrolls a memory block up one 
line. (The cursor may be located anywhere within 
the memory section you want to scroll.) 

Ctrl + Down arrow: Scrolls a memory block 
down one line. 

Ctrl + Right arrow: Scrolls a memory block one 
byte to the right. 

Ctrl + Left arrow: Scrolls a memory block one 
byte to the left. 

Ctrl + Tab: Moves the cursor to the beginning of 
the next EBCDIC or ASCII memory block. 

Pg Up: Scrolls a memory· block up by the number 
of lines in the section. 

Pg Dn: Scrolls a memory block down by the 
number of lines in the section . 

Disassemble Windowing 
With disassemble windowing (DW), you can display 
disassembled instructions in the window area, and you 
can alter the hexadecimal representations of 
instructions and data areas in your application 
program. 

Figure 2 shows the disassemble window on lines Ll 
through MS. Each line consists of a line number, CS 
value (code segment, the starting address of a 64KB 
memory segment), IP value (instruction pointer, the 
displacement value for an instruction within that code 
segment), a disassembled instruction in hexadecimal 
form , and the corresponding character equivalent of 
the disassembled instruction. 

REL 1. 00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL Dl 07/01/B4 
Vl : .. . .. V2 : .... . V3 : . . ... V4 : . . . . . VS: . . . . . V6 : . . . . . V7 : . . . . . VB: . . . . . V9: . . . 
Sl: . .. .. S2: .... . S3 : ... .. S4 : ..... SS : ..... S6 : . .... S7 : ... .. SB: .. . . . S9: . . . 

DISPLAY : ASCII WINDOW : DISASM 
AX : 0100 BX : OOOF 

0000 
Oll FO 

CX: OOF9 
SI: 004 1 
SS : 011 FO 

DX : 007F TR : OO ... . . . ... . 
SP : OD l A BP : DI : OSSO FL : F246 OF:O DF : O IF : l TF:O 
CS : 011 FO OS : ES : OllFO SF : O ZF : l AF : O PF : l CF : O 

LC: 
IP : 4736 

==> 

RET 
EX : OS926 C3 

KEYBOARD ROT INTERRUPT 
Ll * 011F0 : 4736 C3 RET 
L2 011F0 : 4737 EBlB JMP 
L3 01 1F0 : 4739 90 NOP 
L4 011F0 : 473A BAEl MOV 
LS 011F0 : 473C EB6409 CALL 
L6 011F0 : 473F 3C01 CMP 
L7 011 F0 :474 1 7S06 JNZ 
LB 011F0 : 4743 EB30CE CALL 
L9 011F0 : 4746 E96DFF JMP 
Ml 011F0 : 4749 36B026SF03FD AND 
M2 0 11 F0 : 474F EBC6 JMP 
M3 011F0 : 47Sl 0AE4 OR 
M4 011F0 : 47S3 7423 JZ 
MS 011F0 : 47SS FECC DEC 

Figure 2. Sample RDT Disassemble Window Screen 

(S) 

Exchange / Jan-Feb 86 

OP: 
STEP CT : 0001 CO : .. . .. 

OS941 OS941 

AH , CL 
06293 06293 
AL . 01 
OS939 OS939 
02766 02766 
OSBA6 OSBA6 
BYTE PTR SS: [03SF] , FD 01S4F=03 
OS907 OS907 
AH , AH 
OS96B OS96B 
AH 



22 

The instruction that is disassembled is the one pointed 
to by the combination of the CS and IP values. It also 
may contain an operand or jump location, and a byte 
or word value if the instruction disassembly indicates 
that such a value exists for the referenced instruction. 

The disassemble window contains disassembled 
instructions from one or more contiguous blocks of 
memory. You can display up to 14 windows at one 
time. A window can begin on any line, and can be as 
small as one instruction or as large as 14 instructions. 

RDT places an asterisk after a line number when a 
new block begins on that line. The display of one 
block of disassembled instructions continues on sub­
sequent lines until a new block begins or until the last 
line is reached. 

A helpful feature in the disassemble window is the 
concept of the "current" disassemble display window. 
The first disassemble display window (beginning with 
the first line in the window area) is continually 
updated to display the next instruction(s) that your 
application program will execute. 

Windows do not have to be in sequential order. A 
window containing a block of high memory may 
precede a window containing a block of low memory. 

Displaying a Disassembly 
To create a disassemble window and see a particular 
part of your application program, type its address over 
any existing address on the screen. As you type each 
digit in the new address, RDT instantly displays the 
program segment at the location specified by the 
S-byte segment plus 4-byte offset. 

For example, suppose your code segment (CS) is 
19DAO and your instruction pointer (IP) is 07S6 . 

The combination of CS and IP produces your instruc­
tion address, 1A4F6, which is displayed as EX. 

Suppose you want the lower half of the disassemble 
window to show the program at 1F46. You can 
access this address by changing either the instruction 
pointer or the code segment. 

To change the instruction pointer, press the Down 
arrow or Caps Lock key until the cursor is at line L8 . 
Press the tab key once to move the cursor to the 
instruction pointer. Now type 1F46. As you type 
each character, the lower half of the window jumps. 
The address lines now have the addresses 
19DA0:1F46, 19DA0:1F48, etc. RDT places an 
asterisk next to the L8 to indicate the beginning of a 
new window. 

To change the code segment, on the command line 
type MS=CS+ 1F46-07S6,07S6. This sets the value 
of line MS of the display to 1BS90:07S6 (the code 
segment plus the new offset minus the old offset, at 
the old offset). Line MS looks like line L8 . 

As in memory windowing, when you press the Del 
key, the window containing the cursor is erased and 
the previous window is extended. To delete the 
window beginning at L8 , place the cursor at line L8 
using the Down arrow key, and press the Del key. 
Alternately, you can delete the window by typing (on 
the command line) L8, the number of the first line in 
the window. The window and its contents are 
removed, and the previous window is extended to and 
including line M4. Line MS is still a separate window. 

RDT displays disassembled instructions based on the 
starting address of memory in your computer, OOOOH. 
The code segment of your program is expressed as a 
number of bytes relative to OOOOH. Subsequent 
instruction addresses in your program also are based 
on OOOOH as the starting point. 

The starting address of your program can change, 
depending on where DOS loads it. For example, DOS 
might load your program starting at address OEFBH. 
The disassemble window shows your first instruction 
address as OEFBH, and each succeeding instruction is 
an ·increment of OEFBH. 

The starting address OEFBH is not the same as the 
starting address OOOOH in your assembly listing. 
However, RDT gives you a way to make the disas­
semble window look like an assembly language Usting, 
where your program's starting address is OOOOH. 

Exchange / Jan-Feb 86 



23 

On the command line, type CO=CS+IP (or the code 
segment plus whatever your program's starting dis­
placement may be) and press Enter. This sets your 
code origin (CO) variable equal to the starting 
address of your program and your pseudo location 
counter (LC) equal to OOOOH. The pseudo LC value 
matches the one in the assembly language listing. If 
an instruction is displayed in CO/ LC format, a dollar 
sign ($) is displayed to the left of the instruction. 

The rules for updating an instruction's hexadecimal 
representation and operands in CO/ LC format are 
the same as the rules for CS/ IP format. However, the 
rules for updating an instruction's address are some­
what different. In CS/ IP format, you alter either the 
code segment or instruction pointer to change the 
window address . In CO/ LC format, you can change 
only the LC values for the line. 

You update the pseudo LC value by typing over it as 
you would type over the IP value. A new disassemble 
window is created by moving the cursor to any given 
line and typing over the LC value, or by entering one 
of the label (Ll-MS) commands to specify a new LC 
for a given line. This affects the line's LC value just 
as though you had typed the "LC" command on the 
command line. 

Altering a Disassembly 
One of the most powerful features of the disassemble 
window is that it lets you interactively modify your 
program and the disassembly listing. You alter your 
program by entering new processor op-codes and 
values in hexadecimal. (This requires that you have 
some knowledge of 8088 and 80286 processor 
instructions.) 

To do this, move the cursor to the hexadecimal 
instruction on any line. As you type a new 
hexadecimal instruction, each keystroke modifies a 
half-byte of memory. As this happens, RDT dynam­
ically updates the following lines of disassembled code 
to reflect your change. The cursor does not automat­
ically wrap around to the next hexadecimal instruction 
as it does in memory windowing. RDT allows you to 
modify only the hexadecimal instructions, not the dis­
assembled portion of the code. 

When doing program modification, you should split 
the window into two matching windows by typing the 
same address halfway down. Use one window for 
changes and keep the "original" in case you need to 
restore any values. 

Although you normally cannot modify the disassem­
bled instructions, you can modify the operand values 
of instructions that reference bytes or words in 
memory. From the last half-byte in the hexadecimal 
instruction, press the Right arrow key to move the 
cursor to the byte or word within the disassemble 
window instruction. Then type the new operand 
value over the old one. 

A nother powerful f eature of the disas­
semble window is its ability 
to scroll down, left, or right. 

Note: Any memory modifications you make are tem­
porary until you make them permanent. Temporary 
modifications will be overridden when you load the 
next program into the system, turn the computer off, 
or issue the System Reset (SR) command in RDT. To 
make your changes permanent, you should issue a 
Write Diskette (WD) instruction or modify your 
source program. 

Scrolling Through a Disassembly 
Another powerful feature of the disassemble window 
is its ability to scroll down, left, or right. You scroll 
by pressing the Ctrl key in combination with the 
Down, Left, or Right arrow keys, with the cursor any­
where in the window to be scrolled. Scrolling down 
causes the current IP value at the top of the disas­
semble window to be replaced with the value of what 
would be the next instruction in the window, and the 
entire window is updated to reflect the scroll opera­
tion. Similarly, scrolling left or right causes 1 to be 
subtracted from or added to the window's beginning 
IP value, and the disassemble display window is 
updated. 

Use the PgDn key to scroll the disassemble display 
window down one full screen. The last instruction in 
the window is found, its IP value retrieved, and its 
length determined. This value is added to the 
retrieved IP value, and the result becomes the IP value 
of the first instruction in the disassemble window. 

Exchange / Jan-Feb 86 



24 

Trace Windowing 
Trace windowing (TW) displays the program 
instructions and other information placed in the RDT 
trace buffer as the computer steps through the 
program. These instructions appear in the window 
area of the RDT display screen, according to trace 
options you specify with the "TR " and the "TW" 
commands. 

When you start RDT, you can define a larger or 
smaller trace buffer with the "T size" parameter, 
where size is a hex value for the number of program 
instructions to store. For DOS 1.10 the minimum size 
is hex 20, and the maximum is hex DO. DOS 2.00 and 
higher versions allow values from hex 20 to hex 924. 
If you do not use the parameter, hex 20 (32 
instructions) is the default. Each instruction takes up 
28 bytes of memory. 

Starting a Trace 
You may initiate a trace from any window. The 
format of the "TR " command is: 

TR [= option[ , begin , end)) 

where 

option is the type of trace activity: 

00 no tracing 
01 trace all instructions 
02 trace all application instructions 
04 trace instructions within a range 
08 break on buffer entry 
10 trace JUMP instructions 
20 trace CALL instructions 
40 trace INTERRUPT instructions 
80 break on buffer full 

begin is the beginning instruction address for RDT 
to place in the trace buffer (option 4 only) . 

end is the last instruction address for RDT to place 
in the trace buffer (option 4 only) . 

You can use options 10, 20, and 40 in combination 
with options 01, 02, and 04 for greater control. You 

REL 1. 00 IBM PERSONAL COMPUTER RESI DENT DEBUG TOOL 01 07/0 1/84 
Vl: ..... V2: .... . V3 : ..... V4: ..... VS: ..... V6 : ..... V7 : ..... V8 : .. .. . V9 : .. . 
S 1: ..... S2: .... . S3 : ..... S4: ..... SS: ..... S6 : ..... S7 : ..... S8 : ..... S9 : .. . 

AX: 0200 
SP: OCEE 
CS: 112EO 

LC: 

BX: 
BP: 
OS: 

0001 CX: 
0000 SI: 

lllEO SS: 

IP: EFD7 
PUSH 

EX:FEFD7 
==> 

TB: 0000 
TB: OOOC 
TB: OOOB 
TB: OOOA 
TB: 0009 
TB: 0008 
TB: 0007 
TB: 0006 
TB: OOOS 
TB: 0004 
TB: 000 3 
TB: 0002 
TB: 0001 
TB: 0000 

01FF0:47 36 
00700:01AS 
011F0 :485A 

C3 
741A 
E8BCD6 

OOOE 
0000 

112FO 
BX 
53 

Figure 3. Sample RDT Partial Trace Window Screen 

DISPLAY: ASCI I WINDOW: TRACEP 
DX: 0000 TR: OO 00000 - 00000 
DI: 0807 FL:FA83 OF:1 DF: O IF:l TF: O 
ES: ll l EO SF:l ZF:l AF: O PF : O CF :l 

RET 
JZ 
CALL 

STEP CT: 000 1 

008C l 
03 109 

OP : 
CO : ..... 

008Cl 
03109 

Exchange / Jan-Feb 86 



25 

REL 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL 01 07/01/84 
V1 : ..... V2 : ..... V3 : ..... V4: ..... VS : ..... V6: ..... V7: ..... VB: ..... V9: . . . 
S1 : ..... S2 : ..... S3: ..... S4: ..... SS: ..... S6 : ..... S7: ...... S8: ..... S9: .. . 

DISPLAY : ASCII WINDOW: TRACEF 
AX : 0200 BX: 0001 CX : OOOE DX : 0000 TR:OO 00000-00000 
SP : OCEE BP: 0000 SI: 0000 DI: 0807 FL :FA83 OF :1 DF : O IF: 1 TF:O 
CS : 112EO OS : 111 EO SS: 112FO ES : 111EO SF :1 ZF:1 AF:O PF:O CF : 1 

LC : PUSH BX OP : 
IP : EFD7 EX : FEFD7 S3 STEP CT: 0001 CO : ..... 

==> 

CS : 011FO DS : 011FO ES:011FO SS : 011FO AX : 0100 BX: OOOF CX : OOF9 DX : 007F 
IP : 4736 SI : 0041 DI : OSSO SP : 0D1A BP: 0000 FL: F246 EX:OS926 
TB: 0002 01FF0 :4736 C3 RET 

CS : 00700 DS : 00700 ES : 011FO SS : 0 11FO AX: 1COD BX: 03SB CX : 0001 DX : 0000 
IP: 01AS SI: 0044 DI: OSS9 SP : OCFO BP : OOOE FL: F246 EX : OOBAS 
TB: 0001 00700 : 01AS 74 1A JZ 008C1 008C1 

CS :011FO 
IP : 48SA 
TB: 0000 

DS : 00700 ES : 011FO 
SI : 01SD DI : OSSO 
011F0:48SA EBBCD6 

SS : 011FO AX: 8400 
SP : ODOE BP : 0000 

CALL 03109 

BX: 0371 
FL : F246 

CX : OOF9 DX : 007F 
EX : OSA4A 

03109 

Figure 4. Sample ROT Full Trace Window Screen 

might mentally add the options you want to include 
and use the hexadecimal result in the command. A 
simpler method of combining options is to type each 
desired option separated by a plus sign. Options 01, 
02, and 04 are mutually exclusive. 

Displaying a Trace 
There are two kinds of trace windows: a partial trace 
window and a full trace window. Typing TW or TW 
0 on the command line places you into partial trace 
window mode. The WINDOW variable on line 4 
shows the value "TRACEP". 

Figure 3 is an example of an RDT display screen in 
partial trace window mode. The display window area 
contains 14 trace buffer entries, one to a line. Each 
line, if not empty, contains the hexadecimal and disas­
sembled representation of an instruction in the RDT 
trace buffer. The instruction is preceded by the CS 
and IP register values which, when combined, deter­
mine the address of the instruction at the time it was 
placed in the trace buffer. 

Typing TW 1 at the command line places RDT in full 
trace window mode. The WINDOW variable on line 
4 shows the value "TRACEF" . 

Figure 4 is an example of an ROT display screen in 
full trace window mode. The display window area 

contains three trace buffer entries. Each entry is 
three lines long. If not empty, an entry displays the 
code segment and instruction pointer, along with the 
instruction in hexadecimal and disassembled form. In 
addition, each entry has two lines that show all of the 
8088 processor registers at the time the instruction 
was stepped. 

In both trace windowing modes, the "TB" value for 
each trace buffer entry shows the relative position of 
the instruction in the RDT trace buffer. The value of 
the "TB" variable is the hex offset from the end of 
the RDT trace buffer for that trace entry. For 
example, an entry with the "TB" variable of hex 
"0000" is the last instruction that was placed in the 
trace buffer. An entry with the "TB" variable of hex 
"0001" is the second-to-last instruction placed in the 
trace buffer, and so on. 

Each time a new buffer entry is added, the old TB 
variables are incremented by 1 and moved down in 
the buffer. This lets you view instructions in the trace 
buffer in a natural top-to-bottom fashion, where the 
latest instruction in the trace window appears at the 
bottom of the screen. 

Instructions accumulate in the trace window as they 
are trapped. You can tell the Resident Debug Tool to 

Exchange / Jan-Feb 86 



26 

interrupt when the buffer is full; otherwise, the 
instructions will continue to roll forward, the oldest 
instruction being pushed out of the buffer. You can 
issue a clear trace buffer command (TC) to clear the 
buffer yourself. 

Scrolling Through a Trace 
You can move through the trace window area to the 
limits of the size of the RDT trace buffer. Move the 
cursor off the command line, using the Down arrow 
or Up arrow keys . This moves the cursor to the 
bottom "TB" variable of the trace window area. 
From there you can change the window view of the 
trace buffer in two ways. 

The first method is to scroll the trace buffer window. 
To move the window up or down one entry, press the 
Ctr! key plus either the Up or Down arrow keys. To 
scroll a full screen, press the PgUp or PgDn key. You 
can use either method until you reach either end of 
the buffer. 

The second method is to type over the "TB" variable 
with a new value. RDT allows you to change this 
bottom "TB " variable only if the new value allows all 
the "TB" variables in the window area to fit within 
the valid RDT trace buffer range. This is the only 
modification you may make in the trace window area. 

An asterisk next to a line in the trace display window 
area indicates that one or more instructions may be 
missing from that trace buffer. Hardware limitations 
on certain Intel 8088 processors cause the trap flag 
not to be recognized immediately after a MOY or 
POP into a segment register. Therefore, when you 
single-step through a MOY or POP into a segment 
register, one or more instructions may appear to be 
skipped. The instructions actually execute; however, 

Exchange / Jan-Feb 86 

control does not return to RDT until two instructions 
past the MOY or POP instruction (or one instruction 
past if the MOY or POP is not itself a MOY or POP 
into a segment register) . RDT places an asterisk on 
the trace buffer line to indicate the possible missing 
instruction(s) immediately following the marked 
instruction. 

Here is a summary of some of the keys you use to 
control cursor motion and scrolling when the cursor is 
in the disassemble window area: 

Right arrow Moves the cursor right to the next avail­
able position into which keystrokes may 
be entered. When the cursor reaches 
the last valid input position of the "TB" 
input field, it moves no farther. 

Left arrow Moves the cursor left to a position into 
which keystrokes may be entered. 
When the cursor reaches the first valid 
input position of the "TB" input field , it 
moves no farther. 

Tab Moves the cursor to the beginning of 
the "TB" input field, which is the last 
trace buffer line displayed in the RDT 
trace windowing area. 

Ctr! + Up arrow 
Scrolls the RDT trace buffer display 
window up one trace buffer entry, to 
the limits of the RDT trace buffer. 

Ctr! + Down arrow 

Pg Up 

Pg On 

Scrolls the RDT trace buffer display 
window down one trace buffer entry, to 
the limits of the RDT trace buffer. 

Scrolls the RDT trace buffer display 
window up by the number of trace 
buffer entries displayed in the window, 
to the limits of the RDT trace buffer. 

Scrolls the ROT trace buffer display 
window down by the number of trace 
buffer entries displayed in the window, 
to the limits of the RDT trace buffer. 

Math Co-Processor Windowing 
Math Co-processor windowing (CW) lets you display 
the state of the Math Co-processor (if one is 



27 

installed) in the display window area of the RDT 
display screen. 

Figure 5 shows an RDT display screen in Math Co­
processor window mode. The window area contains 
the current state of the Math Co-processor, including 
the control word, status word, exception pointers and 
register stack. The control word and status word are 
displayed in hexadecimal and binary formats . There 
are no values to modify for this window. (For more 
information on the content of the Math Co-processor 
control word, status word, exception pointers or reg­
ister stack, refer to the IBM Technical Reference 
manual.) 

RDT can distinguish a software or Math Co-processor 
NMI interrupt 2 from other types of NMI interrupts 
such as an NMI switch depression, memory parity 
error or 1/0 channel check. When an exception 
occurs and interrupts are enabled for the Math Co­
processor, an Interrupt 2 (NMI interrupt) occurs on 
the main processor (8088 or 80286). 

If the user has directed RDT to handle soft NMI 
interrupts, either by way of the "n" Joadtime option 

or the "SN" (Set NMI) command, then RDT contains 
the logic required to handle the Math Co-processor 
exception. This may circumvent any exception han­
dling routines you may have written. 

If RDT is handling NMI interrupts, a Math Co­
processor is installed, and a software or Math Co­
processor exception NMI interrupt occurs, then RDT 
is immediately placed in Math Co-processor win­
dowing mode. In this case, when the RDT display 
appears, the message line indicates the type of NMI 
interrupt, and the Math Co-processor state is dis­
played. This lets you immediately see which Math 
Co-processor exception (if any) occurred, by 
checking the exception bits of the status word. 

After RDT displays the state of the Math Co­
processor, RDT clears the exception condition. Sub­
sequent displays will show that the exception has been 
cleared. When you debug a Math Co-processor 
exception handler, do not instruct RDT to handle 
NMI interrupts; your exception handler will then be 
invoked when an NMI occurs. 

REL 1 . 00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84 
V1: ..... V2 : . ... . V3 : . . . . . V4 : . . . . . VS : . . . . . V6 : . . . . . V7 : . . . . . VS: . . . . . V9 : .. . 
S1 : ..... S2 : . ... . S3 : ..... S4 : ..... SS : .. ... S6: ..... S7 : ..... S8 : ..... S9: .. . 

AX : OEOO 
SP : OD08 
CS : 01270 

LC : .... 
IP : 46FC 

==> 

BX: 
BP: 
DS: 

0002 
0000 

01270 
MOV 

EX : OS96C 

CX: OS86 
SI: 0041 
SS : 01270 

BX , 03SB 
BB5B03 

DISPLAY : ASCII WINDOW : COPROC 
DX: 0127 TR : OO ......... . 
DI : OSSO FL : F202 OF : O DF : O IF:1 TF:O 
ES : 01270 SF : O ZF : O AF:O PF:O CF : O 

OP : ..... 
STEP CT : 0001 CO : ..... 

MATH COPROCESSOR STATE 

CONTROL WORD 03FF IC:O RC : OO PC : 11 IEM : 1 PM: 1 UM: 1 OM : 1 ZM: 1 DM : 1 IM : 1 
STATUS WORD 41 00 B:O CC: 1001 ST : OOO IR : O PE:O UE:O OE : O ZE:O DE:O IE:O 

SIGN EXPONENT SIGNIFICAND TAG 
ST 1 3FF7 1700 81CD 3DOS 3E02 11 

EXCEPTION POINTERS ST ( 1) 0 1C92 007C F8C1 0187 FC11 11 
ST(2) 0 SC82 4127 9D1D 7D98 8COO 11 

INSTRUCT I ON ADDRESS FFFFF ST(3) 1 7FD1 S414 9187 04SD CC 17 11 
INSTRUCTION OPCODE D800 ST(4) 1 1D40 10CF 3F04 BCCF OC7S 11 
OPERAND ADDRESS : FFFFF ST(S) 0 7EES CF38 E3E7 FC01 FF74 11 

ST(6) 1 3C36 8807 0170 11FD 8C67 11 
ST(7) 0 SDS2 4E3F F897 1900 1F76 11 

Figure 5. Sample RDT Math Co-Processor Window Screen 

Exchange / Jan-Feb 86 



28 

Jump Tables in 
Assembly Language 
Bill Claff 
Boston Computer Society IBM PC Users ' Group 

If you have a program with several options that are 
selected by pressing a single key , your program must 
determine which key is pressed and then jump to an 
appropriate section of code. If you use INT 16 for 
retrieving a keystroke, AH will contain the code. 
Assuming that you are going to process the cursor 
keypad (i.e ., Home key, arrow key, PgUp key, etc.), 
the brute force approach is to do many comparisons 
and jumps as shown in Figure 1. 

MOV AH,0 ;clear AH 
INT 16 ;get new keycode 

;place it in AH 
CMP AH , 0 47H ; i s it Home key 
JNE K2 ; 

your code for Home key 
jump to getting next key 

K2 CMP AH,048H ; is it arrow key 
JNE K3 

your code for arrow key 
jump to getting next key 

etc . 

Figure l. Assembly Code for Keystroke Selection 

There are several limitations to the above technique. 
The major restriction is that the Jump Not Equal 
(JNE) is limited to distances of 128 bytes. The 
second limitation is that the code is hard to patch. I 
suggest the technique shown in Figure 2. 

As the first line of code indicates, use only the BX 
register as a holding register when using jump tables 
(MOY BL,AH) . The second line of code (MOY 
BH,O) resets the register to 0. The third line (SUB 
BX,04 7H) starts the table with the Home and key 
and above. The next line (SHL BX, 1) gets a word 
address by multiplying by 2, for example, if you are 4 

Exchange I Jan-Feb 86 

keys away from the Home key, you need to jump 8 
bytes into the jump table to get the correct address of 
the service routine for that key. The rest of the code 
should be self explanatory. 

MOV BL,AH 
MOV BH,0 
SUB BX,047H 
SHL BX, 1 

JMP TBL[BX] 
TBL LABEL WORD 

DW HOME KEY 
DW UP ARROW 
etc . 

HOME KEY LABEL NEAR 

. .. your handler here 

... exit back to routine to get 
next keystroke 

UP ARROW LABEL NEAR 

... your handler here 

... exit back to routine to get 
next keystroke 

etc . 

Figure 2. Alternate Code for Keystroke Selection 

Also, there is a neat trick for processing the cursor 
keypad scan codes. Read the scan code, subtract 9, 
read the first two bits and store that result, and read 
the second two bits and store that result. Those two 
numbers determine the row and column of the key. 
Treating the two-bit numbers as twos-complement's 
signed arithmetic, they both take on the values of -1, 
0 and 1. The keypad is then represented as : 

-1 0 1 

-1 Home up Pg Up 

0 <-- --> 
I End DN PgDn 



29 

Review of Application 
Display Management 
System 

Stan Fellers 
Phoenix IBM PC User Group 

If you have moved beyond writing programs in 
BASIC and understand the assembly level of pro­
gramming on the IBM PC, you certainly understand 
the amount of time necessary to write programs in 
languages other than BASIC, and you understand the 
determination and commitment required to program 
screens that are complete and understandable as well 
as easily modifiable. If you fit in this category, IBM 
has a product for you-the Application Display Man­
agement System (ADMS). ADMS is a very sophisti­
cated development package about which I have a 
great deal of good to say. Having programmed on an 
IBM 4341 using CICS and DLl, I was a bit surprised 
to find IBM has provided somewhat the same power 
for the PC. 

This program, actually a runtime program, allows you 
to paint screens, choose field definitions, choose 
colors, etc. You can also display the time on a 
dynamic clock and choose floating-point decimal 
notation. 

One of the really powerful features of ADMS is that it 
can interface with the BASIC Interpreter, BASIC 
Compiler, COBOL, FORTRAN, Macro Assembler or 
IBM Pascal programs. 

Like most other screen design programs, this one is 
menu operated, but extensive help screens are avail­
able if something doesn't seem clear. 

All menu operations are chosen using the function 
keys. The function key assignments are displayed on 
the 25th screen line, removing your access to that 
line. One plus about this feature is that you can edit 
any field before pressing the function key you desig­
nate as the EXIT key. For error-prone operators, this 
can be a blessing. 

You are first presented with a menu that requests the 
disk drive you want to retrieve screen information 
from or store information to . If you are unsure of 

J 

I 
j 

what to enter, you can press the Fl key to get an 
explanation of each requested field. You are also 
required to select a screen to edit or create along with 
an extension. The default extension is .SCR. 

If you can't remember the screen name you want to 
edit , you have an option of viewing a directory of the 
default disk. 

Next, a list of all screens connected with the "master 
screen" is displayed. This is a very comprehensive 
list, containing: 

1. Amount of disk storage required for each screen 
2. Amount of memory required to display the screen 
3. Number of fields in each screen 
4. Date and time of last update 
5. A description of each screen (more on this later) 

You can either choose one of the existing screens to 
edit or enter a new name. Either choice will present 
you with the next menu, which contains: 

Text allows you to lay out the screen's appear­
ance. 

Messages describes the messages that will be avail­
able for this screen. 

Fields positions and defines the input, output and 
display fields. This definition includes 
minimum and maximum values , the 

Exchange / Jan-Feb 86 



30 

message number that will be displayed if 
the entered information is not in that 
range, and message number if nothing is 
entered in a required field . 

Function Keys 
gives a value to the function keys you 
want to use. All 40 keys arc available for 
use. Function keys can be defined to 
allow switching between color and 
monochrome monitors. 

Interrupt Keys 
defines the keys that will return control to 
your program. 

Highlighting 
determines the colors that will be used for 
text, fields and messages. A total of 16 
colors are available, plus blinking, under­
lining, and reverse image. 

General Features 
determines sound and border color. You 
are also given the option of entering a 
description for this screen that will display 
on the screen selection screen. 

T he Application Display Management 
System is easy to use and is 

consistent. It 's a very useful and 
power/ ul product. 

A brief explanation of field definition is in order. 
Besides the user defined fields, system variables are 
available. These include: 

TIME static time 
TIMEU dynamic time 
DATE system date from boot-up 
NUML status of Num Lock key 
SCRL status of Scroll Lock key 
CAPL status of Caps Lock key 

Exchange I Jan-Feb 86 

CROW cursor row 
CCOL cursor column 
FfYP cursor type ( CHR, INT, FPT) 

You can choose to protect any field by not allowing 
any input. This is necessary for displaying the time, 
date, etc. Available field types are : 

C any character 
U any character with conversion to uppercase 
I whole number, minus signs 
Fn floating point decimal with up to 4 decimal 

places 
S system variables mentioned above 

The documentation gives an in-depth explanation of 
fields and would be worthwhile for any serious use of 
this product. 

Since the screens created with the ADMS are external 
to your program, screens can be changed and edited 
without changing the program if fields are not deleted 
or added. 

The program interface is created by defining and 
giving a value to specific fields and then "calling" 
ADMS. Control is then assumed by ADMS. When 
control is returned to your program, you must check 
the value of the completion code to determine if 
control was returned without an error. Data fields are 
returned as alpha characters and must be converted if 
numeric fields are needed for calculations. 

For BASIC programmers, a facility on one of the 
disks can start your programs with all "include" files 
that are necessary when you decide to compile your 
program. That is true for all the supported languages. 

The documentation contains enough information to 
get you started, with a section devoted to each of the 
supported languages. 

If you have plans to market software created using 
ADMS, IBM has a stipulation that you register your 
package and purchase a distribution license for $100. 
This is a one-time charge. 

The Application Display Management System is easy 
to use and is consistent. It 's a very useful and pow­
erful product. 



Memory in the 
I BM Personal 
Computer 

Milt Hull 
Sacramento PC Users Group 

Computer memory is an internal 
part of the computer that stores 
information where the processor 
can directly access it. The heart 
of the IBM PC, the Intel 8088 
microprocessor, has the capability 
of internally accessing a megabyte 
(MB) of memory {1 ,048,576 
bytes) . 

Little Boxes 
Think of the PC's memory as a 
million little boxes stacked on top 
of each other, each of them with 
eight lights mounted on the side. 
Each box can be thought of as a 
byte, and each of the eight lights 
on the box can be thought of as 
bits. The eight lights (bits) on 
each box can be either on or off in 
various combinations to represent 
the byte of information stored in 
the box. Thus each byte has eight 
bits; since a bit has the value of 
either being on or off, each byte 
has 256 possible combinations 
(that's 2 multiplied by itself 8 
times) . A kilobyte (KB) is 1024 
bytes (where 1024 is 2 multiplied 
by itself 10 times), so 64KB is 
actually 65,536 bytes (rather than 
exactly 64,000 bytes) . 

Memory Allocation on the 
Personal Computer 
Memory starts at location zero 
and goes to 1,048,576 (FFFFFH, 

31 

where the H stands for 
hexadecimal). Each box or byte 
has a number assigned to it, like 
an address on a mailbox. The 
memory segments discussed below 
are also shown on the chart in 
Figure 1. 

Exchange/ Jan-Feb 86 

Start d 

Random Access Memory (RAM): 
This portion of memory ranges 
from zero to 655,360 (AOOOOH), 
which is the limit of the disk oper­
ating system (DOS). The first 
part of this RAM is used by DOS 
itself for interrupt vectors, data for 
the basic input and output (BIOS) 
control routines, and working 
storage. The rest of the RAM {up 
to 640KB, depending on how 
much you have installed) is avail­
able for your programs to read 
and write. 

Display Memory: After AOOOOH 
comes a 16KB block of memory 
that is not used; it ends at location 
A4000H, where the display 
memory begins. From location 
A4000H to location COOOOH, 
memory is reserved for the dis­
plays. The displays actually use 
only a small portion of this 
memory. The monochrome uses 
4KB to drive its screen, while the 
Color I Graphics Display uses 
16KB. Even if you have both a 
color display and a monochrome 
display, 92KB of this reserved 
memory is left unused. It appears 
that IBM left room for expansion 
without requiring changes to the 
PC. (The IBM Enhanced 
Graphics Adapter can use more, 
perhaps one reason why so much 
memory was set aside for the 
display.) 

Read-Only Memory: The read 
only memory (ROM) begins at 
location COOOOH and goes to the 
end, location FFFFFH. However, 
little is used until location 
F6000H, which is where the first 
of four BASIC ROM chips begins. 
The four BASIC ROM chips are 
internal to the machine, and each 



takes up 8KB. These chips 
contain the cassette BASIC that 
appears when you start your com­
puter without a system disk. 
When you invoke BASIC from a 
disk after loading DOS, it just 
enhances the ROM BASIC with 
functions not already contained in 
the chips. 

After the memory reserved for the 
four BASIC ROM chips comes the 
last ROM chip, in the last memory 
location: the Basic Input and 
Output System (BIOS) chip. 
Since each of these ROM chips is 
only eight kilobytes, the PC has a 
total of 40KB of ROM. Even at 

Segment Address 

Decimal Hex Function 

0 00000 
to to 

640KB AOOOO 

656KB A4000 

672KB A8000 

688KB ACOOO 

32 

this memory address there is room 
for expansion, because the empty 
socket next to the BASIC ROMs 
on the system board can be used 
for the 8KB just before location 
F6000H. 

Memory Addresses 
But just how do you point at any 
one location in memory? The PC 
contains a 16-bit processor, so you 
could start with a 16-bit number 
such as "0000 0000 0000 0101" 
in binary or 0005H (remember 
hexadecimal?). This number 
points to the sixth byte because 
the PC starts counting from zero. 
The binary number 11 1111 1111 

1111 1111 " (or FFFFH) would 
point to the 65,536th box, which 
is the number that actually corre­
sponds to the well-known 64KB. 
But this is as big as a 16-bit binary 
number can get, and it's nowhere 
near the millionth byte. 

Segment Address: The designers 
of the PC microprocessor decided 
to use two 16-bit numbers to label 
memory locations. The first 
16-bit number is multiplied by 16 
(binary) which moves it to the left 
four places (it has four zero bits 
added to the end of it), so that it 
really represents a 20-bit number. 
This 20-bit number is called the 

640KB 

Random Access Memory (RAM) 

128KB 

Reserved for 

704KB BOOOO Monochrome Display 
Displays 

720KB B4000 

736KB B8000 Color/Graphics Display 

752KB BCOOO 

768KB coooo 

784KB C4000 

800KB c0000 Fixed Disk Control 

816KB ccooo 
192KB 

832KB DOOOO 

848KB D4000 Read Only Memory 

864KB 08000 

880KB DCOOO 
Expansion and Control 

896KB EOOOO 

912KB E4000 

928KB E8000 

944KB ECOOO 

960KB FOOOO 
64KB 

976KB F4000 
Base System ROM 

992KB F8000 BASIC ROM 

1008KB FCOOO BIOS ROM 

Figure 1. Memory Table 

Exchange/Jan-Feb 86 



33 

segment address. Notice that 
multiplying 65,536 by 16 gives 
1,048,576, a full megabyte. But 
the segment address has only 
zeros in its last four places (notice 
that if you write the segment 
address in hexadecimal, the last 
digit is always 0), so it can actually 
label every sixteenth byte. These 
sixteen byte segments are called 
paragraphs. 

graph, but to find the exact 
memory location within the para­
graph, a second 16-bit number, 
called the relative address, is 
added to the segment address. So 
the 20-bit number (segment 
address) is added to a 16-bit 
number (relative address) to get 
the exact location within the entire 
memory space. Here's an example 
in hexadecimal: 

This is why, when you are in 
Debug, you get numbers that look 
like "1234:5678". 

Use Debug to read the date of 
your BIOS chip. Load Debug and 
give the command "D FOOO:FFF5 
L 8 " . This will display the con­
tents of the eight bytes that start 
at segment address FOOOH and 
relative address FFF5H. You 
should recognize the result as a 
calendar date when it appears on 
your display screen. 

Relative Address 
The segment address narrows the 
memory location down to a para-

123 4 0 
56 78 

179 B8 

segme nt address 
r e lative a ddress 
a c tual l ocatio n 

PC Memory 
Organization 

David Betts 
San Francisco PC Users Group 

The amount of usable memory in the IBM Personal 
Computer is limited to the amount the microprocessor 
can address . At the hardware level , this is set by the 
number of address lines or wires the chip's designers 
chose to use. 

Each line represents one binary digit of the address; 
each wire either conducts (on) or does not conduct 
(off). This is represented in binary as either a 1 (on) 
or a 0 (off). Therefore, the more lines, the larger the 
binary address number that can be used. In the case 
of the 8088 / 6 chips, this is 20 lines, or 2 raised to the 
20th power, which is 1,048,576 bytes or 1 megabyte 
(MB). 

Imagine yourself as a postman with the job of putting 
a letter in a specific one of 1,048 ,5 7 6 different 
pigeon-holes! To divide this chore into manageable 
chunks, memory is divided into "pages" or segments. 
A memory page contains 64 kilobytes (KB), or 
65,536 bytes, and there are 16 pages within the lMB 
address space. Each page is further divided into four 
"paragraphs" of 16KB per paragraph. 

in me mory 

Segment Addressing 
To read or write the contents of a particular byte of 
RAM, the microprocessor has to calculate its address. 
That is, while the set of address lines-the address 
"bus"-is 20 bits wide, the arithmetic registers inside 
the 8086/ 8 are only 16 bits wide. Thus, the scheme 
is to use two registers added together in a special way. 
These registers always include one of either the code, 
data, stack or extra segment registers (CS, DS, SS, or 
ES registers) plus any one of the other registers. 

These registers are combined by multiplying the 
segment register by 16 (binary) or "left shifting" it 
one hexadecimal place, then adding it to the contents 
of the other register, commonly called the offset. This 
produces the five-digit hex number or a 20-bit binary 
number which is a byte's absolute address. 

Visualize twenty boxes in a row. The segment part of 
the address first fills the rightmost 16 boxes with 
either ones or zeros. Then the contents of the boxes 
are shifted left four places so that the right four boxes 
are empty. This is what the segment part of the 
address looks like. Its least significant digit is in the 
fifth place in the boxes. Incrementing or decre­
menting that digit is like counting by 16s. 

Then in comes the offset. It's also 16 bits wide. It is 
put into the boxes like the segment, except each digit 
is added to the existing contents of each box 
according to the rules of binary addition. 

Exchange/Jan-Feb 86 



34 

The 640KB Limit to RAM 
This method of segment addressing can point to each 
byte of the PC's full megabyte. So why is there a 
640KB limit to random access memory? Where is the 
rest? 

The answer is that the PC reserves sections or blocks 
of this memory space for certain dedicated functions. 
The IBM read-only memory (ROM) BIOS is located 
in a specific location. So is the data used for the 
screen display. That's not to say you can't access 
these blocks of memory; you just can't store programs 
in them and expect the disk operating system to func­
tion properly or the programs to work. If data or 
program information is loaded into the section of 
memory reserved for the screen display, the monitor 
instantly reflects the intrusion. 

The simple program in Figure 1 illustrates how to 
access various memory locations within the computer. 
This program loads the full IBM character set from 
ROM into the display memory location. The program 
shown below is for a color monitor. If you want this 
to run on a monochrome monitor, change the first 
command to read MOV AX, BOOO. 

This program will fill the visible part of video memory 
with the ASCII characters burned into the permanent 
storage (the ROM). 

MOV AX, 8800; MOV DS, AX 
This moves the video segment address into the DS 
segment register. Video has its own memory page 
that begins at B800 (hexadecimal) for color, and 
BOOO for monochrome. 

MOV AX, 0000; MOV SI, 0002 ; MOV ex, 07DO 
The SI (source index) register will be used as an offset 
into the video segment. It will iterate just enough 
times to fill all the visible page, or 7DO (hex) times. 

INC AX; ADD SI, 0002 
This pair of instructions increments the character to 
print (AX) and the next address to put it in (SI) . 

Note that SI is incremented by two each time. Why? 
A byte in video memory that holds a character to 
print is followed by a byte that holds the information 
about how the character is to be printed. The char­
acter attribute bytes are odd and the character bytes 
are even. 

Exchange/Jan-Feb 86 

MOV AX, B800 
MOV DS, AX 
MOV AX, 0000 
MOV SI, 0002 
MOV ex, 07DO 

010E INC AX 
MOV [SI), AX 
ADD SI, 0002 

LOOP 10E 

INT 20 

CP-This pro­
gram prints all 
pc characters on 
a color display 

in various 
colors. 

This program may 
be used freely. 

move the video 
seg addr into DS 
initialize AX 
initialize SI 
initialize ex 
set loop counter 
increment AX 
move the char 
point SI at 
next addr 
decrement ex , 
check for zero 
end gracefully 
return to DOS 

machine code: 
B8 00 BO 8E D8 
B8 00 00 BE 02 
00 B9 DO 08 40 
89 04 83 C6 02 
E2 F8 CD 20 

Figure I. Program to Display IBM Character Set 

LOOP lOE 
This is the loop action. The CX register is decre­
mented by 1. When the CX register is zero, the 
program moves to the next command. When CX is 
not zero, the program jumps back to OlOE. 

INT 20 
The INT 20 terminates the program (and returns to 
DOS). 

Assemble this program using Debug, either with the 
(A)ssemble command or with (E)nter command using 
the machine code above. Remember to save the 
program before you run it. 

You can experiment by putting different values into 
the AX register. The top byte of the AX register ends 
up in the attribute byte mentioned above, so if you 
want to examine some funny effects, change the line 
above to read MOV AX, 0100 or 0200, etc. Have 
fun . 



Use Care With 
DOS ASSIGN 
Command 

Ralph Keuler 
Pacific Northwest IBM PC Users 
Group 

The ASSIGN command in DOS 
3.00 and 3.10 reroutes all disk 
input/ output requests for one 
drive to a different drive. This 
allows you to run programs from 
your fixed disk or from a virtual 
disk that would otherwise run only 
in drive A or B (reASSIGNing 
does not apply to copy-protected 
software) . Software designed to 
perform all disk operations only 
on drives A or B can be redirected 
to the specified drive. 

However, you should use the 
ASSIGN command only when 
SUBST and JOIN won't do. 

35 

During normal operations, the 
computer gives no indication that 
a drive has been reassigned, and 
any filing or copying operations 
done to a reassigned drive will 
actually be done on the drive it 
has been reassigned to. The 
warning in the DOS Reference 
manual states that the BACKUP, 
RESTORE, LABEL, JOIN, 
SUBST, or PRINT commands may 
cause problems if used when 
ASSIGN is active. 

For example, if drive A has been 
assigned to C, and drive A is the 
target disk when you invoke 
BACKUP, BACKUP will erase the 
directory of your fixed disk and 
replace it with entries of 
backed-up versions of your fixed­
disk files . Also, normal commands 
like COPY C: \MYFILE.TXT A: 
become hazardous 

J 
) 

Exchange /Jan-Feb 86 

when drive A is reassigned to C. 
DOS will write a copy of 
MYFILE.TXT, not on A, but 
right over itself on C, and it may 
scramble the File Allocation 
Table, as well. 

To safely ASSIGN one drive to 
another, use BATch files to call all 
programs that require the ASSIGN 
command. The BA Tch file will 
set the proper ASSIGN parame­
ters and then reset them when the 
program exits. For example : 

ASSIGN A=C 
DATABASE 
ASSIGN 

The ASSIGN command entered 
without parameters resets 
ASSIGNed drives to their normal 
values and avoids potential prob­
lems. 

To be completely safe, use BA Tch 
files to reset any ASSIGNed drives 
to the default values before you 
invoke other DOS commands that 
might create problems if invoked 
while a drive is reassigned. For 
instance, use a BA Tch file to 
invoke the BACKUP procedure. 
This can be done as follows: 1) 
Rename the BACKUP.COM file 
to BKUP.COM; 2) Create and 
run the following BA Tch file 
named BACKUP.BAT: 

ASSIGN 
BKUP.COM %1 %2 %3 %4 



Disabling 
Call-Waiting 

Bob Hutchinson 
Lilly Computer Club 

The problem with having both a 
modem and call-waiting is that 
when your modem is on line, the 
beep that announces a second call 
interrupts the carrier tone long 
enough to cause your modem to 
break the connection. There are 
at least three ways to deal with 
this problem. 

Flexible Call-Waiting 
In many areas the phone compa­
nies have activated an enhance­
ment to the call-waiting feature 
that allows you to temporarily turn 
it off before placing a call. To 
suspend call-waiting on touch­
tone phones, dial *70; for rotary 
phones, dial 1170. You will hear a 
double beep followed by lhe dial 
tone. Then just dial the number 
you want to call. Call-waiting will 
be suspended until you hang up. 

36 

You can incorporate this in an 
auto-dial sequence so that you will 
not be interrupted while on line. 

This feature is part of the conver­
sion the phone companies are 
making to the 
11 equal-access/1-plus 11 service for 
alternate long-distance carriers. It 
may not yet be available in your 
area, even by special order. 
Check with your local phone 
company to see if your exchange 
has installed this feature . If not, 
you may want to try one of the 
other ways to work around call­
waiting. 

Extend the Carrier-Loss 
Detection Time 
This method works, but unless you 
have good communications soft­
ware that checks the data trans­
mission, it won't be satisfactory. 

Most communications software 
packages allow you to increase the 
amount of time the carrier can be 
lost without breaking the con­
nection. If you set this value to a 

Easy End-of-File Marker 

Philip Mayes 
Santa Barbara IBM PC VG 

In the July issue of Exchange, Sig 
Rosenthal describes how various 
software applications often have 
difficulty reading files created 
using the redirect features of 
DOS 3.00 and 3.10, as well as 
files created using the DOS 
COPY command. He correctly 
identifies the problem as stem-

ming from the file's not having 
an end-of-file marker. However, 
there is an easier way to add the 
end-of-file marker than having to 
use DOS Debug. 

The I a parameter of the DOS 
COPY command adds the end­
of-file marker to any file copied. 

Exchange / Jan-Feb 86 

duration longer than that of the 
beep, the connection will be main­
tained. Unfortunately, unless you 
are using an error-free protocol, 
you will experience some loss of 
data and the addition of extra­
neous noise characters in your 
data because of the beep. 

Call-Forwarding 
If you also have the call­
forwarding feature, you can put 
your phone on call-forwarding to 
another number (time of day, 
weather, your office, your mother­
in-law) , and all incoming calls will 
automatically be forwarded 
without causing a beep on your 
line. 

While your phone is on call­
forwarding, it will attempt to 
produce a short ring to indicate 
that call-forwarding was in effect 
when the call came through. This 
ring is handled differently from 
the call-waiting beep and will not 
cause a problem. Don't forget to 
deactivate call-forwarding when 
you're through, or you won't 
receive your calls. 

For example, to add an end-of­
file marker to the ANYNAME 
file, type the following: 

COPY ANYNAME TEMPFILE /A 
ERASE ANYNAME 
RENAME TEMPFILE ANYNAME 

The new ANYNAME file will 
have the end-of-file marker 
added. 



37 

Memory Intensive 
Programs on the PCjr 

Jack Spitznagel 
Boston Computer Society IBM PC Users' Group 

If I needed a personal productivity setup for my home 
today, I would still buy a PCjr, as much memory as I 
could add to it, and a copy of the program I needed. 

Why? Because with only a slight modification to the 
IBMDOS.COM file, you can run large, memory­
intensive programs like Symphony, the program I am 
currently running on my PCjr. It runs well on my 
PCjr and it saves having to buy several programs of 
moderate expense to do all the same tasks, not to 
mention the time it takes to learn unfamiliar software. 

Modification to IBMDOS.COM 
I was mystified at first by the apparent inability of the 
PCjr to run Symphony. I had my PCjr set up with 
640KB of RAM on a multifunction card, and there 
was no logical reason for the random problems I was 
experiencing. The program seemed to lockup period­
ically during COPY, MOVE, and ERASE command 
procedures. 

I had almost given up when I noticed an article by 
Don Awalt in the November, 1984 PC Tech Journal. 
I realized that the IBM-supplied patch reproduced 
there in that article would cure the problem I was 
having. 

Unlike the other PCs, the PCjr uses the non-maskable 
interrupt (NMI) to check its keyboard for input. 
Apparently, IBMDOS.COM (one of the two hidden 
disk operating system files) does not properly restore 
the segment register and stack pointer after encount­
ering a non-maskable interrupt (NMI) . The problem 
often causes the PCjr keyboard to lock, and the com­
puter must be restarted to recover from the lockup. 
By using Debug to modify the IBMDOS.COM file as 
shown in Figure 1, you can solve the problem. 

The following procedure assumes that a DISKCOPY 
of the DOS 2.10 system diskette is in drive A. Enter 
the commands shown in normal type. Debug's 
responses are shown in blue type. If this is to work 
reliably, you must first enter the Debug corrections, 
then transfer the modified operating system files to 
your other system diskettes using the SYS command. 

A>DEBUG 
- L 100 0 5 1 
- D 12B L4 
XXXX:012B 27 00 00 00 
- E 12B 
XXXX:012B 27. 20 
-w 100 0 5 1 
- Q 

A>DEBUG IBMDOS.COM 
- UCAC L A 
XXXX:03AC 
XXXX:03AD 
XXXX:03B1 
XXXX:03B2 
- A3AC 
XXXX:03AC 
XXXX:03B1 
XXXX:03B6 
- UCD1 L A 
XXXX:OCD1 
XXXX:OCD2 
XXXX:OC06 
XXXX:OC07 
- ACD1 
XXXX:OC01 
XXXX:OC06 
XXXX:OCOB 
- U1522 L A 
XXXX:1522 
XXXX: 1523 
XXXX:1527 
XXXX:1528 
- A 1522 
XXXX:1522 
XXXX:1527 

CS: 
MOV 
CS: 
MOV 

SP, [02A6] 

SS, [02A8] 

CS : MOV SS , [02A8] 
CS : MOV SP , [02A6] 
[ENTER] 

CS: 
MOV 
CS: 
MOV 

SP,(0201 ] 

SS, (0203] 

CS : MOV SS, [02D3] 
CS : MOV SP, [02D1] 
[ENTER] 

SS: 
MOV SP, (0201 ] 
SS: 
MOV SS, (0203] 

CS : MOV SS , [02D3] 
CS : MOV SP , [02D 1] 

Figure 1. Modification for DOS 2.10 

Exchange / Jan-Feb 86 



XXXX:152C 
- 031 10 L 8 
XXXX:3110 
XXXX:3121 
-A3 11D 
XXXX:3110 
XXXX:0121 
XXXX:3125 
-U325F L 4 
XXXX:325F 
XXXX:3261 
- A325F 
XXXX:325F 
XXXX:3261 
XXXX:3263 
-U409B L 7 
XXXX:409B 
XXXX:409E 
XXXX:40AO 
-A409B 
XXXX:409B 
XXXX:4090 
XXXX:40A2 
XXXX:40A5 
-w 

38 

[ENTER] 

MOV SP, [0201) 
MOV SS, [0203] 

MOV SS , [020 3] 
MOV SP, [020 1] 
[ENTER] 

MOV SP,ES 
MOV SS,SP 

MOV BP,ES 
MOV SS ,BP 
[ENTER ] 

MOV SP,4325 
MOV AX,CS 
MOV SS,AX 

MOV AX , CS 
MOV SS , AX 
MOV SP , 4235 
[ENTER] 

WRITING 4280 BYTES 
- Q 

A>OEBUG 
-L 100 0 5 1 
-0 12B L 4 
XXXX:012B 20 00 00 00 
- E 12B 
XXXX:012B 20. 27 
-w 100 0 5 
- Q 

Figure 1. Modification for DOS 2.10 (cont.) 

Note: The segment of code marked XXXX:409B 
may show some variation from the addresses shown 
after the first one (XXXX:409B) . I experienced this 
and the result was just fine. 

Save this diskette and use it to format all disks in the 
future. You can also use it with the SYS command to 
transfer the modified system files to your other system 
diskettes. 

Symphony runs well with my configuration, but it also 
works well using the IBM memory boards with at 
least 512KB of memory. Be sure to use the technique 
described in the notes on the enhancement disk. In 
brief, you will have to create a CONFIG.SYS file with 
the following line or add the following line to your 
existing CONFIG.SYS file : 

DEVICE=PCJRMEM.COM 

Then add the appropriate commands to your 
AUTOEXEC.BAT file to have your program load 
and execute properly. 

Be sure your program diskette contains all of the files 
your BA Tch file executes. Also, if you use a Personal 
Computer AT to set this up, do not use the high­
capacity drive . The PCjr may not properly read 
diskettes written using the high-capacity drives. 

Setting Environment Space 
Dave Hoagland 
Lawrence Livermore National Laboratory 

Editor's note: The method of 
setting the memory reserved for 
environment information described 
in this article is not documented in 
the DOS Reference manual and is 
not supported by IBM. Because 
this method is undocumented and 
unsupported, it is subject to change 
or removal in the future. 

When you increase the number of 
subdirectories on your fixed disk, 
path statements tend to grow ever 
longer. These, along with prompt 
definitions and other SET com­
mands, all occupy ''environment 
space." 

Exchange/ Jan-Feb 86 

One of the features of DOS 3.00 
and 3.10 is that the environment 
space automatically increases to 
meet requirements until you load a 
memory-resident program. Unfor­
tunately, DOS considers the 
AUTOEXEC.BAT file to be a 
memory-resident program. 



39 

Inside DOS BACKUP 
Carrington Dixon 
Central Texas I BM PC Users Group 

When you back up your disk files using DOS 
BACKUP, the program creates a 
BACKUPID.@@@ file on each backup disk and 
also puts a header on each file written to the backup 
disk. This ID file and file header enable the system to 
keep track of which files were backed up, when they 
were backed up, and which directory to RESTORE 
them to. Until you restore the back up copy of your 
files, this header remains on each file, preventing you 
from using the files as you would if you had made a 
copy of the file using the DOS COPY or DISKCOPY 
command. 

Byte 

00 

01-02 

03-04 

05 

06 

07-0A 

OB-7F 

Value Use 

00/ FF Indicates whether or not 
this is the last diskette of 
the backup group. 

nn Diskette number in low 
byte, high byte, decimal 
format (e.g. "10" is stored 
as 00 01). 

nnn Full year in low byte, high 
byte format 

1-31 Day of the month 

1-12 Month of the year 

nnnn Standard DOS time if / T 
parameter used 

00 Not used 

Each backup disk contains a 128-byte file named 
BACKUPID.@@@. Figure 1 contains the format 
for the BACKUPID.@@@ file . 

Figure 1. The BACKUPID.@@@ File 

Figure 2 shows the format of the 128-byte header 
that DOS BACKUP places on each file. 

Byte 

OOH 

01-02H 

03-04H 

05-52H 

53H 

54-7FH 

Value 

00/ FF 

nn 

00 

nn 

nn 

00 

Use 

Indicates whether or not 
this is the last diskette on 
which this file resides 

Diskette number 

not used 

Full Filespec except for the 
drive designator 

Length of the filespec + 1 

not used 

If you are using DOS 3.00, the BACKUP command 
will occasionally fail to update the 
BACKUPID.@@@ file on one or more of the 
backup diskettes. The most common symptom 
(perhaps the only one) is for BACKUPID.@@@ to 
appear as zero bytes in the directory when you enter 
the DOS DIRectory command. When this happens 
RESTORE is not able to open the file to read the 
diskette number and therefore cannot continue. 
RESTORE will reject the diskette and prompt you to 

Figure 2. The 128-Byte File Header 

And many of the statements that 
use this space are included in the 
AUTOEXEC.BAT file. By then, 
it's too late-the size of the envi­
ronment space is frozen, usually at 
127 bytes (characters) . 

Many computer users have discov­
ered that 127 bytes is not suffi­
cient for all statements that 
occupy the environment space. I 

have been greeted with the error 
message "Out of environment 
space" too often for my liking. 

The DOS SHELL command pro­
vides a simple and elegant sol­
ution. I have tried this 
successfully with DOS 3.10, but it 
may not work in other versions of 
DOS. Include the following state­
ment in your CONFIG.SYS file: 

Exchange/Jan-Feb 86 

SHELL=C:\COMMAND.COM / P/ E:nn 

where C: \COMMAND.COM 
tells DOS to load the command 
processor; / P makes 
COMMAND.COM permanent in 
memory, and /E:nn specifies the 
number of 16 byte paragraphs 
reserved for the environment 
space. The value of nn can be any 
value between 10 (160 bytes) and 
62 (992 bytes). 



40 

insert the correct one. At this point, there is nothing 
you can do but Ctrl-Break out of RESTORE with 
only some of your files restored. 

IBM has fixed the problem and has issued a revised 
BACKUP.COM that has been available from any 
IBM Authorized Personal Computer Dealer since 
fourth quarter 1984. The best way to avoid this 
problem is to upgrade to DOS 3.10. However, getting 
an updated version of BACKUP.COM does not help 
much after you notice that a BACKUPID.@@@ file , 
done under DOS 3.00, shows 0 bytes. However, you 
can repair the faulty ID file. 

Even though the directory entry for the 
BACKUPID.@@@ file reads 0 bytes, the complete 
BACKUPID.@@@ file is really out there on the 
disk. All you have to do is fill in the information 
missing in the directory. This is not as formidable as 
it might sound, because every BACKUPID.@@@ 
files is the same size, and each is in the same place on 
all diskettes . You can correct the file with any 
program that lets you read and modify specific sectors 
on the disk (e.g., DOS Debug, IBM Professional 
Debug Facility, Norton Utilities, etc). Take a look at 
the entry for BACKUPID.@@@ on one of the 
diskettes that shows a normal 128 bytes for its 

A>debug 
- 1 ds : 100 1 5 6 
- d ds : 100 

BACKUPID.@@@ file . You will see the informa­
tion displayed as follows: 

4241434B 55504944 40404020 00000000 
00000000 OOOODA60 7 AOB0200 80000000 

The incorrect directory listing will look like this: 

4241434B 55504944 40404020 00000000 
00000000 00000861 7 AOBOOOO 00000000 

Notice that there are two numbers in the last two 
groups of the correct entry that are zeros in the incor­
rect one. The 11 02 11 is the starting cluster number and 
the 11 80 11 is the file size in bytes. On every diskette 
backed up with dos 3.00, the size of the 
BACKUPID.@@@ file is always 80 hexadecimal or 
128 decimal bytes, and the starting cluster is always 
02. The other numbers that differ between the two 
entries are the time and date the respective 
BACKUPID.@@@ files were created. Obviously, 
the time and date entries do not have to be changed. 

If you have the Norton Utilities or the Disk Repair 
utility of IBM's Professional Debug Facility, you 
should have no problem changing the faulty directory 
entry. However, since DOS Debug is more unwieldy 

5EDF:0100 42 41 43 4B 55 50 20 44-49 53 4B 28 00 00 00 00 
5EDF:0110 00 00 00 00 00 00 72 5F-7A OB 00 00 00 00 00 00 
5EDF:0120 42 41 43 4B 55 50 49 44-40 40 40 20 00 00 00 00 
5EDF:0130 00 00 00 00 00 00 08 61-7A OB 00 00 00 00 00 00 
5EDF:0140 43 48 49 4D 45 4E 45 20-53 43 52 20 00 00 00 00 
5EDF:0150 00 00 00 00 00 00 EB 05-70 08 03 00 A9 07 00 00 
5EDF:0160 50 49 4E 54 45 20 20 20-53 43 52 20 00 00 00 00 
5EDF:0170 00 00 00 00 00 00 D4 09-70 08 05 00 13 13 00 00 
The first two lines contain the diskette label, BACKUP DISK. 

BACKUP DISK( ...• 
...... r_z ...... . 
BACKUPID@@@ •.•• 
...... a.r ...... . 
CHIMENE SCR •••• 
...... k.p ... ) ... 
PINTE SCR •••• 
...... T.p. • ... •. 

If your diskette does not have a label, the BACKUPID.@@@ file would 
appear on the first two lines. 

In the example above, the offset address 013A is the beginning cluster. 
It reads 00 and needs to be changed to 02. The address 013C reads 00 
and needs to be changed to 80 using the Debug Enter Command: 
- e 013a 
5EDF:013A 00. 02 00.00 00.80 
Before you quit Debug, you must write your changes to the disk using the 
Debug Write command: 
- w ds : 1 00 1 5 6 
- q 
A> 

Figure 3. Debug Instructions for Changing Faulty BACKUPID.@@@ File 

Exchange / Jan-Feb 86 



41 

than the other debugging utilities, the instructions 
shown in Figure 3 will allow you to change the faulty 
directory entry using DOS Debug. Enter the code 
shown in black type. The blue type indicates Debug's 
response. The comments interspersed between the 
instuctions have been added for better understanding. 
A copy of DEBUG.COM must be on your disk in 
drive A, and the disk with the faulty 
BACKUPID.@@@ file entry must be in drive B. 

Once you finish correcting the directory entry, the 
only thing left to do is check the data in 
BACKUPID.@@@ itself. The first byte of the file 
will probably be "FF" . The FF is correct only if this 
is the last diskette of the backup set; all other 
diskettes would have "00" in their first byte (see 
Figure 4 on page 41) . When a BACKUPID.@@@ 
file entry has the "zero length" problem, it usually has 
an "FF" in its first byte as well. 

To check the file using DOS Debug, enter Debug and 
the file name: 

That 's all there is to it. Once you have corrected the 
directory and checked the first two bytes of the 
BACKUPID.@@@ file , you may want to see if 

A>debug b:backupid.@@@ 
-a 

RESTORE.COM will accept the disk by "restoring" 
some non-existent file off the backup: 

RESTORE A: C:\SUBDIR\ANYFILE.TXT 

If the only error message displayed is "file not 
restored," then your backup disk is in good shape. A 
more demanding check would be to rename your hard 
disk files that are backed up across two diskettes 
(especially those that had "problems") restore them 
and then compare the restored and renamed files with 
the DOS COMP command. 

Alternate Method 
Another method is to (1) load a good 
BACKUPID.@@@ file (using DEBUG) from the 
diskette that preceded the faulty one, (2) use the 
Enter command to change the second byte of the file 
to the correct diskette number (see Figure 2 on page 
39), then (3) write the corrected BACKUPID.@@@ 
file to the diskette that had the bad file. 

When you're finished, see if you can get the fixed 
version of BACKUP.COM from your dealer or 
upgrade to DOS 3.10. 

5EDF:0100 FF 02 00 C1 07 12 OB 00-00 00 00 00 00 00 00 00 
5EDF:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
5EDF:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
If this is the last diskette in backup set, leave the FF; if 
the FF to 00 using the Enter command: 

••• A •••••••••••• 

not, change 

- e 0 100 
5EDF:0100 FF. 00 
Then write your changes to the diskette: 
- w 0100 
Writing 0080 bytes 
- q 
A> 

Figure 4. Instructions for Changing the First Byte of the BACKUPID.@@@ File 

Exchange / Jan- Feb 86 



The Last Word 

Hugh Christian 
Athens PC User Group 

I've been smiling quite a bit since I 
got my first IBM Personal Com­
puter. It hooked me; I loved it. 
After experimenting with several 
PCs, I finally bought an IBM Per­
sonal Computer AT. The world of 
the hard disk is a whole new 
world-almost as big a step as my 
first computer. And it is won­
derful. 

I dreamed about having access to 
a computer when I was just a little 
guy reading science fiction . All I 
dreamed about was having my 
own terminal. (At the time, 
owning a computer wasn't some­
thing you could even dream 
about.) And here, still in my 
youth, I've already owned six 
computers. It's even better than a 
dream come true, and it makes me 
happy whenever I think about it, 
and especially happy when I'm at 
the keyboard. 

Now for the big question: How do 
I justify spending $10, 000 to have 
a computer balance my checkbook? 
Well, I don't. In fact, I don't even 
try to use the computer to balance 
my checkbook. I have an 
accounting degree, and it takes 
only two minutes to do it by hand, 
so why bother the computer with 
it? It was meant for bigger and 
better things. 

I don't understand all this concern 
with financially justifying a hobby. 
Does a fisherman ever figure out 
the cost per pound of catching, 
rather than buying, fish? 

42 

In addition to the time he 
spends-which might be days-he 
should add up the costs of the 
boat, the trailer, the four-wheel­
drive truck, the cabin at the lake, 
and the divorce settlement. 

Hobbies aren't meant to be finan­
cially justified. The mistake that 
computers make is that they are 
useful at work. What should be a 
bonus is turned into a liability. I 
mean, the reason you never ask a 
fisherman to justify his fishing is 
because no matter how well he 
catches fish, no one asks him to 
bring his boat to work. ----
I 

Exchange / Jan-Feb 86 

On the other hand, as soon as 
people know you have a computer, 
everyone is thinking of ways for 
you to use it-for work, not just 
for fun. I have found a few 
worthwhile uses for my computer, 
but I refuse to let them interfere 
with the enjoyment I get from 
playing with it. Yes, playing with 
it. I play with it just like I used to 
play with my electric train, and I 
have just as much fun. 



Hardware 

IBM 3812 Pageprinter 
The IBM 3812 Pageprinter provides 
non-impact, letter-quality, sheet-fed 
printing for the IBM Personal Com­
puter family. All-points-addressable 
240 x 240 dots-per-inch output at 12 
pages per minute (maximum) give the 
Pageprinter extensive graphics capa­
bilities and text output at reasonable 
speed. Two paper cassettes (500 
sheets and 300 sheets) support auto­
matic sheet feeding for different paper 
types and sizes. 

The 3812 Pageprinter emulates the 
basic functions of the IBM Personal 
Computer Graphics Printer. A 3 812 
PC Demo Diskette shipped with each 
Pageprinter includes printer 
description tables to support 
DisplayWrite 3 versions 1.00 and 
1.10. The diskette also includes a 
device driver to access programs 
written to the virtual device interface 
(VDI) . The Pageprinter currently 
supports 61 different type fonts, 
including eight typographic fonts. Its 
easy-to-replace toner cartridge, 
photoconductor unit, developer unit, 
and fuser unit make maintaining the 
Pageprinter a simple task. 

The Pageprinter attaches to a single 
Personal Computer through an asyn­
chronous adapter, and supports up to 
eight Personal Computers with an 
optional Sharing Card. 

IBM Wheelprinter E 
The IBM Wheelprinter E is an impact 
printer that provides letter-quality 
output for the IBM Personal Com­
puter family. Printing at speeds up to 
16 characters per second, the 
Wheelprinter E supports four type 
pitches, multiple type styles, a 13.2 
inch writing line and a drop-in ribbon 
cartridge. Wheelprinter E accepts 
paper 2-1 / 2 to 14-1 / 2 inches wide 
and 3 to 15 inches long. Options 

43 

New Products 

include a sheet feeder to handle 8-1 / 2 
inch paper or a pinwheel feeder to 
handle continuous forms. 

The IBM Wheelprinter E requires the 
IBM Personal Computer Printer 
Attachment Cable and the appropriate 
printer adapter feature . 

IBM Token-Ring Network 
The IBM Token-Ring Network is a 
high-speed communications network 
designed to connect IBM Personal 
Computers and other data processing 
equipment at a local site. The Token­
Ring Network uses the IBM Cabling 
System for physical interconnection of 
up to 260 coaxial, twinaxial, loop, and 
Token-Ring Network devices; or type 
3 specified telephone media for phys­
ical interconnection of 72 coaxial and 
Token-Ring Network devices. The 
network is a baseband Token-Ring 
Network that conforms to the IEEE 
802.5 and IEEE 802.2 standards as 
well as the ECMA 89 standards. 

IBM Token-Ring Network 
PC Adapter 
The IBM Token-Ring Network PC 
Adapter is an IBM Personal Computer 
feature adapter containing a micro­
processor that lets the adapter 
transmit and receive information at 4 
million bits-per-second over the IBM 
Token-Ring Network. Adapter resi­
dent microcode controls the processor 
and performs simple diagnostics and 
error detection. The adapter comes 
with a diskette that includes a diag­
nostic program. 

The Token-Ring Network PC Adapter 
is available for the IBM Personal 
Computer, IBM Personal Computer 
XT, IBM Portable Personal Com­
puter, or IBM Personal Computer AT 
and must be attached to the IBM 
Cabling System with the optional IBM 
Token-Ring Network PC Adapter 
Cable, or to type 3 telephone media 
with the optional Type 3 Media filter. 

Exchange / Jan-Feb 86 

To run on the Token-Ring Network, 
each Personal Computer requires DOS 
3.10. Two application program inter­
faces are included. One supports the 
IEEE 802.2 data link control pro­
gramming interface, the other sup­
ports the IEEE 802.2 direct physical 
control programming interface. Each 
requires 7KB of memory in addition 
to DOS and application program 
requirements. 

Software 

IBM Token-Ring Network 
NETBIOS Program 
The IBM Token-Ring Network 
NETBIOS (Network Basic 
Input/Output System) Program pro­
vides a programming interface to let 
application programs run on both the 
IBM Token-Ring Network and the 
IBM PC Network. NETBIOS, the 
network control program for the IBM 
PC Network, allows communications 
programs like the IBM PC Network 
Program to access the IBM PC 
Network. The IBM Token-Ring 
Network NETBIOS Program lets pro­
grams written for the NETBIOS of the 
IBM PC Network Program run on the 
Token-Ring Network by translating 
NETBIOS functions into Token-Ring 
Network protocol requests. 

The IBM Token-Ring Network 
NETBIOS Program requires an IBM 
Personal Computer, IBM Personal 
Computer XT, IBM Portable Personal 
Computer, or IBM Personal Computer 
AT; the IBM Token-Ring Network 
Personal Computer Adapter; one 
double-sided diskette drive; and DOS 
3.10. The IBM Token-Ring Network 
NETBIOS Program requires 46KB of 
memory with an additional 7KB of 
memory for the network adapter 
handler program in addition to the 
memory requirements for DOS and 
any application programs. 



The IBM Advanced Program 
to Program Communication 
for the IBM 
Personal Computer (APPC/PC) lets 
an IBM Personal Computer support 
the Systems Network Architecture 
(SNA) programming interface for 
logical unit (LU) type 6.2, and phys­
ical unit (PU) type 2.1. These stand­
ards let programs communicate over 
the IBM Token-Ring Network and 
over synchronous data link control 
(SDLC) communication links with 
application programs running on other 
IBM computers. 

The APPC/ PC includes an applica­
tion interface that supports two con­
versation modes, and has assembly 
language macros to support it. The 
APPC/ PC supports multiple logical 
units, parallel sessions, security for 
user applications at session and con­
versation levels, and concurrent mul­
tiple logical links on the IBM 
Token-Ring Network and/or SDLC 
adapters. System configuration 
parameters are set through menus and 
stored in a configuration file . 

The IBM Advanced Program to 
Program Communication for the IBM 
Personal Computer (APPC/ PC) 
requires an IBM Personal Computer, 
IBM Personal Computer XT, IBM 
Portable Personal Computer, or IBM 
Personal Computer AT; one double­
sided diskette drive; the IBM Token­
Ring Network Personal Computer 
Adapter and/ or SDLC Adapter; DOS 
3.10; and 185KB memory for SDLC 
operation, or 195KB memory for 
Token-Ring Network operation, or 
208KB memory for combined opera­
tion. The IBM Token-Ring Network 
Personal Computer Adapter handler 
program requires an additional ?KB of 
memory. 

IBM Token- Ring 
Network/IBM PC Network 
Interconnect Program 
The IBM Token-Ring Network/ IBM 
PC Network Interconnect Program 
lets IBM Personal Computers attached 
to the IBM Token-Ring Network 
exchange 

44 

information with IBM Personal Com­
puters attached to the IBM PC 
Network. A dedicated IBM Personal 
Computer, running only the intercon­
nect program, is attached to both net­
works to permit communications. 
Applications on either network must 
use NETBIOS communication proto­
cols to communicate with each other. 

The IBM Token-Ring Network/ IBM 
PC Network Interconnect Program 
requires an IBM Personal Computer 
XT or IBM Personal Computer AT 
with 256KB memory, one double­
sided diskette drive, an IBM 
Monochrome display or IBM Color 
Display and appropriate adapter, the 
IBM Token-Ring Network Personal 
Computer Adapter and adapter 
handler program, the IBM PC 
Network Adapter, and DOS 3.10. 

IBM Asynchronous 
Communications Server 
Program 
The IBM Asynchronous Communi­
cations Server Program lets IBM Per­
sonal Computers attached to the IBM 
PC Network or IBM Token-Ring 
Network share one or more network 
PC's acting as an ASCII communi­
cations server and its switched com­
munications lines. The program can 
access the Rolm CBX II, a PBX 
(private branch exchange), or public 
switched network (by modem) and 
acquire data from information pro­
viders like the IBM Information 
Network, Dow Jones News/ Retrieval 
Service, Compuserve, or others. 

Individual Personal Computers do not 
require a telephone or modem con­
nection to access dial-up applications. 
Each computer executes a user­
supplied program that establishes a 
connection with the Asynchronous 
Communications Server Program. 
The communications request is then 
queued to the first available communi­
cations server on the network. Per­
sonal Computers acting as 
communications servers can still be 
used to run other application pro­
grams. 

Exchange/Jan-Feb 86 

The Asynchronous Communications 
Server Program supports both digital 
and analog data switching systems, 
allowing personal computers to share 
and switch between ASCII applica­
tions (e.g., information services, 
ASCII hosts, and other Personal 
Computers). Each Personal Com­
puter must have an asynchronous 
communications program that uses the 
IBM Asynchronous Communications 
Server Program protocol through the 
Network's basic input/ output system 
(NETBIOS) interface. 

Personal Computers running the IBM 
Asynchronous Communications 
Server Program require one or two 
identical communications ports. Each 
communications server must have a 
DCM, IPCI, IPCI/ AT, or DTI to 
attach to the CBX II. The CBX II 
must be an 8004 or 9004 system at 
the current software level and have 
the CBX II Data Communication soft­
ware feature installed for use with the 
DCM, IPCI, IPCI/ AT, or DTI. These 
products are available through the 
Rolm Corporation. 

Otherwise , the IBM Personal Com­
puter or IBM Personal Computer XT 
require either the Asynchronous Com­
munications Adapter, RS-232-C 
cable, and IBM 5841 Modem ; or IBM 
Personal Computer 1200 BPS internal 
modem; and an analog telephone line. 
The IBM Personal Computer AT 
requires either a Serial/ Parallel 
Adapter, serial 10 inch connector or 
serial 10 foot cable and IBM 5841 
modem; or the IBM Personal Com­
puter 1200 BPS internal modem; and 
an analog telephone line. 

Each Personal Computer acting as a 
server must also have an IBM 
Monochrome Display, IBM Color 
Display, and appropriate adapter. In 
addition to DOS 3.10, each server 
requires the appropriate network 
support program (the IBM Token­
Ring Network requires the Token­
Ring Network NETBIOS program) 
and appropriate memory. The IBM 
Asynchronous Communications 
Server Program requires 160KB 
memory in addition to the previous 
requirements. 



Copyrights, Trademarks, and Service Marks 

ColorPaint by Marek and Rafa! Krepec 
Incorporated. 

Color Plus is a trademark of Plantronics 
Corporation. 

CompuServe is a trademark of Compu­
Serve, Incorporated . 

CP/M is a registered trademark of Digital 
Research , Incorporated . 

CP/M-86 is a trademark of Digital 
Research , Incorporated. 

Data Encoder and its associated docu­
mentation are under the U.S. Department 
of State Munitions list , Category XIIl(b) 
and, as such , must be licensed by the 
U.S. Department of State prior to export 
from the United States. 

DIF is a trademark of Software Arts , 
Incorporated. 

Dow Jones News/Retrieval Service is a 
registered trademark and Dow Jones is a 
trademark of Dow Jones & Company. 
Incorporated. 

Easy Writer is a trademark of Information 
Unl imited Software, Incorporated. 

Electric Poet is a registered trademark of 
Control Color Corporation. 

Fact Track is a trademark of Science 
Research Associates. Incorporated . 

Home Word is a trademark of Sierra 
On-Line, Incorporated . 

IBM is a registered trademark of 
International Business Machines Corp. 

INTERACTIVE and IS/5 are trademarks 
of Interactive Systems Corporation. 

Jumpman is a trademark ofEPYX, 
Incorporated. 

King 's Quest is a trademark of Sierra 
On-Line, Incorporated . 

Logo is a trademark of Logo Computer 
Systems Incorporated . 

Lotus and 1-2-3 are trademarks of Lotus 
Development Corporation . 

Managing Your Money is a trademark of 
MECA (TM). 

MECA is a trademark of Micro 
Education Corporation of America, 
Incorporated. 

Microsoft and the Microsoft logo are 
registered trademarks of Microsoft 
Corporation. 

Multi plan is a U .S. trademark of 
Microsoft Corporation. 

NEC is a trademark of Nippon Electric 
Co .. Ltd. 

PCjr is a trademark of International 
Business Machines Corp. 

PC Mouse is a trademark of 
Metagraphics/Mouse Systems. 

Peachtcxt is a trademark of Peachtree 
Software Incorporated, an MSA company. 

Personal Computer AT is a trademark of 
International Business Machines Corp. 

Personal Computer XT is a trademark of 
International Business Machines Corp. 

pfs : is a registered trademark of Software 
Publishing Corporation. 

PlannerCalc is a trademark of Comshare . 

REALCOLOR is a trademark of Micro 
Developed Systems. Inc. 

SHAMUS is a trademark of SynSoft(TM). 

SMARTMODEM is a trademark of 
Hayes Microcomputer Products. Inc. 

Synonym information in PCWriter and 
Word Proof is based on the American 
Heritage Dictionary Data Base, Roget's 
II. The New Thesaurus. owned by 
Houghton Mifflin Company and used 
with permission. Copyright 1982 by 
Houghton Mifflin Company. 

The Learning Company reserves all 
rights in the Rocky, Bumble, Juggles and 
Gertrude characte rs and their names as 
trademarks under copyright law. Rocky's 
Boots, Bumble Games, Bumble Plot. 
Juggles' Butterfly. Gertrude's Puzzles. 
Gertrude's Secrets and The Learning 
Company are trademarks of The Learn­
ing Company. 

THE SOURCE is a service mark of 
Source Telecomputing Corporation. 
a subsidiary of The Reader's Digest 
Association. Incorporated. 

Time Manager is a trademark ofThc 
Image Producers, Incorporated. 

TopYiew is a trademark of International 
Business Machines Corp. 

UCSD. UCSD p-System and UCSD 
Pascal arc trademark::. of the Regents of 
the University of California. 

UNIX is a trademark of AT&T Bell 
Laboratories. 

YisiCalc is a trademark of YisiCorp. 

Yisi On is a trademark of YisiCorp. 

WD212-X is a trademark ofWolfdata. Inc . 

Word is a U.S. trademark of Microsoft 
Corporation. 

WordStar is a trademark nf M icroPro 
International Corporation. 

XENIX is a trademark of Microsoft 
Corporation . 

Z-80 is a registered trademark of Zilog. 



PCW A TCH can expose a host of potential problems 
by showing precisely what a program is trying to do. 
(page 8) 

Memory windowing Jets you perform memory display, 
alteration and scrolling functions. (page 19) 

The concept of indefinite windows has been imple­
mented for memory patching. (page 20) 

Another powerful feature of the disassemble window 
is its ability to scroll down, left, or right. (page 23) 

The Application Display Management System is easy 
to use and is consistent. It's a very useful and pow-
erful product. (page 30) 

G320-0848-00 


