
HP 3000 Computer Systems
Turbo IMAGE

Reference Manual

F'//°dl HEWLETT
a:/.!a PACKARD

HP 3000 Computer Systems

TurbolMAGE

Data Base Management System

Part No. 32215-90050
El285

Reference Manual

~iJ~:~i:~~
19447 PRUNERIDGE AVE., CUPERTINO, CA 95014

Printed in U. S. A. 1 2/ 8 5

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright© 1985 by HEWLETT-PACKARD COMPANY

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition Dec 1985. 3221SC.00. 00

DEC 85
iii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the most recent version of each page in the manual. To
verify that your manual contains the most current information, check the dates printed at the bottom of
each page with those listed below. The date on the bottom of each page reflects the edition or subsequent
update in which that page was printed.

Effective Pages

all

Date

Dec 1985

DEC 85
v

PREFACE

This manual describes the TurboIMAGE/30(}0 Data Base Management System for HP 3000 computers.*
It is the reference document for all persons involved in designing and maintaining a data base and for
application programmers writing data base access programs.

This manual describes enhancements to IMAGE/3000 based on hardware and operating system
improvements along with information previous IMAGE/3000 users will find familiar. The first three
sections will prove helpful for new users of the IMAGE data base structure. TurboIMAGE utilities are
covered in a separate section which includes syntax and examples. New recovery processes and enhanced
MPE user logging are covered in a section which provides information on maintaining the data base.

Designers of TurboIMAGE data bases will find knowledge of the HP 3000 MPE operating and file systems
useful in determining the amount of system resources, such as disc space and computation time, needed to
maintain a specific data base. Because access to IMAGE data bases requires the use of a host
programming language, application programmers need familiarity with at least one of the programming
languages available on the HP 3000 computer: COBOL, FORTRAN, Pascal, SPL, BASIC, or RPG.

In addition to this manual, you may need to consult the following manuals:

BASIC Interpreter Reference Manual ...
BASIC/3000 Compiler Reference Manual.
COBOL/3000 Reference Manual .
Console Operator's Guide
DS/3000 Reference Manual. ...
EDIT/3000 Reference Manual ..
Error Messages and Recovery Manual.
FOR TRAN Reference Manual. .
General Information Manual
Machine Instruction Set Manual. ..
MPE Commands Reference Manual.
MPE Intrinsics Reference Manual ..
NLS/3000 Reference Manual ..
Pascal/3000 Reference Manual ..
QUERY Reference Manual ...
RPG/3000 Reference Manual. .
System Manager/System Supervisor Manual
Systems Programming Language Reference Manual.
TurboIMAGE Profiler User Guide

*This manual is for 3000 systems operating on MPE V /E or later versions.

. . 30000-90026

.. 32103-90001

. . 32213-90001
.30000-90013
.32190-90001
.30000-90012

. . 30000-90015
.30000-90040
.30000-90008
.30000-90022
.30000-90009
.30000-90010
.32414-90001
.32106-90001
.30000-90042
.32104-90001
.30000-90014
.30000-90025
.36914-91001

DEC 85
vii

NOTATION

non italics

italios

[]

{ }

CONVENTIONS USED IN THIS MANUAL

DESCRIPTION

Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces and ellipses must also be
entered exactly as shown. For example:

EXIT;

Words in syntax statements which are in italics denote a ·parameter which must be
replaced by a user-supplied variable. For example:

CLOSE filename

An element inside brackets in a syntax statement is optional. Several elements
stacked inside brackets means the user may select any one or none of these elements.
For example:

[As] User may select A or B or neither.

When several elements are stacked within braces in a syntax statement, the user must
select one of those elements. For example:

{A~} User must select A or B or C.

A horizontal ellipsis in a syntax statement indicates that a previous element may be
repeated. For example:

[,itemname] ..• ;

In addition, vertical and horizontal ellipses may be used in examples to indicate that
portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that the
delimiter must be supplied whenever (a) that parameter is included or (b) that
parameter is omitted and any other parameter which follows is included. For
example:

i tema [!~Ii temb] [, i temc]

means that the following are allowed:

itema
itema,itemb
itema,itemb,itemc
itema,, itemo

DEC 85
IX

CONVENTIONS (continued)

underlining

(COlffROL)char

DEC 85
x

When necessary for clarity, the symbol l!:J may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[(modifier)]~(variable);

When necessary for clarity in an example, user input may be underlined. For
example:

NEW NAME? ALPHA

In addition, brackets, braces or ellipses appearing in syntax or format statements
which must be entered as shown will be underlined. For example:

LET var[lsubscriptll = ~alue

Shading represents inverse video on the terminal's screen. In addition, it is used to
emphasize key portions of an example.

Th~ symbol (l may be used to indicate a key on the terminal's keyboard. For
example, (RETURN) indicates the carriage return key.

Control characters are indicated by (CONTROL) followed by the character. For example,
(CONTROL)Y means the user presses the control key and the character Y simultaneously.

Section 1
INTRODUCTION

TurboIMAGE . . .
TurboIMAGE Enhancements.

General Overview
How to Use TurboIMAGE ..
How to Use This Manual.
Data Base Personnel

Section 2
DATA BASE STRUCTURE AND PROTECTION

Data Elem en ts . .
Data Items ..

Compound Data Items .
Data Types.

Data Entries
Data Sets·

Data Set Types and Relations ...
Master Data Sets
Detail Data Sets
Paths
Automatic and Manual Masters
Manual vs. Automatic Data Sets .
Primary Paths
Sort Items
The ORDERS Data Base

Data Base Files.
Root File .. .
Data Files .. .

Record Size.
Blocks ...

Protection of the Data Base .
Privileged File Protection.
Account and Group Protection .
User Classes and Passwords ...

Read and Write Class Lists ..
Access Modes and Data Set Write Lists.
Granting a User Class Access
User Classes and Locking
Protection in Relation to Library Procedures.
Protection Provided by the TurboIMAGE Utilities.

CONTENTS

1-1
1-2
1-3
1-6
1-8
1-8

2-1
. 2-1
. 2-2

2-2
2-2
2-2

. 2-2
2-3
2-4
2-4
2-6
2-7
2-7
2-7
2-9

2-11
2-11
2-11
2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-14
2-14
2-19
2-19
2-19

DEC 85
xi

CONTENTS (continued)

DEC 85
xii

Section 3
DEFINING A DATA BASE

Data Base Description Language.
Language Conventions ..
Schema Structure .

PASSWORD PART .
ITEM PART

Data Item Length.
TurbolMAGE and Program Language Data Types ..
Data Items of Type P

Complex Numbers
QUERY and Data Types.

Data Item Identifiers .
SET PART (Master)
SET PART (Detail).

Master and Detail Search Items.
Data Set Identifiers

Schema Proces~or Operation.
Creating the Textfile
The Data Base Creator ..

Schema Processor Commands
Continuation Records.

$PAGE
$TITLE
$CONTROL

Selecting the Block Size.
Schema Processor Output

Summary Information ..
Schema Errors
Schema Processor Example .

Section 4
USING THE DATA BASE

Opening the Data Base. . . .
Data Base Control Blocks.
Passwords
Access Modes

Concurrent Access Modes
Data Base Operations ..
Selecting an Access Mode
Dynamic Locking

Transaction Logging
Entering Data in the Data Base .

Sequence for Adding En tries .

3-1
3-2
3-2
3-3
3-4
3-5
3-6
3-8
3-8
3-8
3-9

3-10
3-12
3-13
3-13
3-14
3-15
3-16
3-17
3-17
3-18
3-19
3-20
3-21
3-22
3-22
3-24
3-24

4-1
. 4-1
. 4-2
. 4-2

4-3
4-4
4-5

. 4-6
4-7
4-7
4-7

CONTENTS (continued)

Access Mode and User Class Number.
Search Items . .

Reading the Data . .
Current Path
Reading Methods . .
Directed Access.

Locking .
Serial Access . .

Locking ...
Calculated Access .
Chained Access . .

Locking
Re-Reading the Current Record .

Updating Data.
Access Modes and User Class Number
Updating Search and Sort Items

Deleting Data Entries
Access Modes and User Class Numbers .

Using the Locking Facility.
Lock Descriptors
How Locking Works
Conditional and Unconditional Locking .
Access Modes and Locking
Automatic Masters
Locking Levels
Deciding on a Locking Strategy ..
Choosing a Locking Level. . .

Locking at the Same Level. .
Length of Transactions . . .
Locking During User Dialog.

Choosing an Item for Locking .
Examples of Using the Locking Facility
Issuing Multiple Calls to DBLOCK.
Releasing Locks

Using the Logging Facility.
What Logging Does
How Logging Works ..
Logging and Logical Transactions
Transaction Numbers
Logging and Process Suspension. .

Obtaining Data Base Structure Information.
Special Uses of DBINFO
Checking Subsystem Flag

Closing the Data Base or a Data Set.
Checking the Status of a Procedure .
Interpreting Errors ...
Abnormal Termination

4-8
4-8
4-9
4-9
4-9

4-11
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-17
4-18
4-18
4-19
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-24
4-24
4-25
4-25
4-25
4-26
4-26
4-26
4-27
4-28
4-28
4-28
4-29
4-30
4-30

DEC 85
xiii

CONTENTS (continued)

DEC 85
xiv

Section 5
TurbolMAGE LIBRARY PROCEDURES

Using TurboIMAGE Library Procedures.
Intrinsic Numbers ...
Data Base Protection .
Unused Parameters .
The Status Array .

DBBEGIN .. .
DBCLOSE .. .
DBCONTROL.
DBDELETE.
DBEND ...
DBERROR ..
DBEXPLAIN.
DBFIND.
DBGET .
DBINFO.
DBLOCK.
DBMEMO.
DBOPEN ..
DBPUT ...
DBUNLOCK.
DBUPDATE.

Section 6
HOST LANGUAGE ACCESS

COBOL
Open Data Base .
Add Entry ...
Read Entry (Serially) .
Read Entry (Directly).
Read Entry (Calculated)
Read Entry (Backward Chain)
Update Entry
Delete En try
Lock and Unlock (Data Base) .

5-1
5-3
5-3
5-3
5-3
5-4
5-6
5-9

5-11
5-14
5-16
5-25
5-28
5-30
5-34
5-40
5-48
5-50
5-56
5-61
5-63

6-2
6-2
6-3
6-4
6-5
6-6
6-7
6-9

6-10
6-11

Request Data Item Information.
Rewind Data Set
Close Data Base
Print Error
Move Error to Buffer.
Sample Cobol Program ..

FORTRAN
Open Data Base
Add Entry
Read Entry (Serially) .
Read En try (Directly).
Read Entry (Calculated)
Read Entry (Forward Chain) ..
Update Entry
Delete Entry
Lock and Unlock (Data Base).
Lock (Data Entries)
Request Data Set Inf orma ti on
Rewind Data Set
Close Data Base
Print Error
Move Error to Buff er .

PASCAL
Open Data Base
Add Entry
Read Entry (Serially) .
Read Entry (Directly).
Read Entry (Calculated)
Read Entry (Backward Chain) .
Locate and Update Entry
Delete En try
Lock and Unlock (Data Base) ..
Request Data Item Information.
Rewind Data Set ...
Print Error
Move Error to Buffer.
Close Data Base.

SPL

CONTENTS (continued)

6-12
6-12
6-13
6-13
6-13
6-14
6-20
6-20
6-21
6-22
6-24
6-25
6-26
6-28
6-29
6-30
6-31
6-32
6-33
6-33
6-34
6-34
6-35
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-45
6-46
6-46
6-47
6-47
6-47
6-48

DEC 85
xv

CONTENTS {continued)

DEC 85
xvi

BASIC
String Variables.
Type-Integer Expressions as Parameters .
Doubleword Integer Parameters
Readlist, Writelist, Descriplist Parameters
The Status Parameter.
Open Data Base
Add Entry
Read Entry (Serially) .
Read Entry (Calculated)
Read En try (Back ward Chain)
Update Entry
Delete Entry (with Locking and Unlocking)
Request Data Set Information
Rewind Data Set
Close Data Base. . ..
Print Error
Move Error to Buff er.

RPG
1

• •••••

RPG Programs and TurboIMAGE

Section 7
MAINTAINING THE DATA BASE

Restructuring the Data Base
Allowed Structural Changes
Conditional or Unsupported Structural Changes .

Making a Data Base Backup Copy.
Data Base Recovery Options.
Intrinsic Level Recovery.

Using ILR
Special Considerations . . .

Logical Transactions and Locking .
Locking Requirements
Program Abort and Recovery Considerations.
Recovery Tables.

Logging Installation
1. Acquiring Logging Capability .
2. Acquiring Log Identifier
3. Setting Log Identifier and Flags .
4. Building a Logfile for Logging to Disc.

6-61
6-66
6-66
6-66
6-66
6-67
6-68
6-69
6-70
6-71
6-72
6-73
6-74
6-76
6-77
6-78
6-78
6-79
6-80
6-80

7-2
7-2
7-3
7-4
7-5
7-6
7-7
7-7
7-8
7-9

7-12
7-15
7-17
7-17
7-18
7-19
7-20

CONTENTS (continued)

Displaying Logging Status ...
Maintaining Logging.

Starting the Logging Process
Changelog Capability
Setting Data Base Enable/Disable Flags
Ending the Logging Maintenance Cycle
Notes on Logging

Roll-Back Recovery
Intrinsic Level Recovery (ILR) Requirements ..
Enabling the Roll -Back Feature .
Disabling the Roll-Back Feature.
Performing Roll-Back

Run Command.
Other DBRECOV Commands.

Control Command .
File Command . . .
Print Command . .

Roll-Forward Recovery .
Intrinsic Level Recovery (ILR) Requirements.
Enabling the Roll-Forward Feature ...
Restoring the Backup Data Base Copy ..
Recovering Data Without a Backup Copy
Performing Roll-Forward
Post - Recovery Procedures

Recover Command. . .
Run Command

Other DBRECOV Commands . . .
Control Command .
File Command . . .
Print Command ..

The Mirror Data Base . .
DBRECOV STOP-RESTART Feature.

Notes on Logging
Transferring Log Files
Performing DBRECOV STOP-RESTART

Stopping DBRECOV . .
Storing the Data Bases ..
Restarting DBRECOV ..
Aborting DBRECOV. . .
Purging a RESTART File

7-21
7-22
7-22
7-23
7-25
7-25
7-26
7-27
7-28
7-28
7-29
7-29
7-30
7-30
7-31
7-32
7-32
7-33
7-34
7-34
7-35
7-36
7-36
7-37
7-38
7-38
7-39
7-39
7-40
7-40
7-41
7-42
7-43
7-44
7-46
7-46
7-47
7-48
7-50
7-53

DEC 85
xvii

CONTENTS (continued)

DEC 85
xviii

Section 8
USING THE DATA BASE UTILITIES

Utility Program Operation.
Backup Files .
Error Messages

DBLOAD
Operation .. .

Console Messages.
Using Control Y .

DBRECOV .. .
Operation
CONTROL

Record Numbers and Table Overflow .
EXIT.
FILE
PRINT .. .
RECOVER· ..
CONTROL 1 ••

RUN
DBRESTOR ..

Operation ..
Operation Discussion .

Console Messages. .
DBSTORE

Operation
Opera ti on Discussion .

Logging
Console Messages. .

DBUNLOAD
Operation

Broken Chains . .
Operation Discussion .

Console Messages.
Using Control Y .
Writing Errors ..

DBUTIL
Operation
Opera ti on Discussion . .
ACTIVATE

Unexpected Results
CREATE
DEACTIVATE .
DISABLE.
ENABLE

8-3
8-3
8-3
8-4
8-4
8-6
8-6
8-8
8-8

8-11
8-14
8-15
8-16
8-19
8-20
8-22
8-24
8-26
8-26
8-26
8-27
8-28
8-28
8-29
8-29
8-30
8-31
8-31
8-32
8-32
8-34
8-34
8-34
8-37
8-37
8-37
8-38
8-38
8-40
8-42
8-43
8-45

CONTENTS (continued)

ERASE ...
EXIT.
HELP ..
MOVE.
PURGE.

Unexpected Results
RELEASE ..
SECURE
SET
SHOW

Format of Show Device List ..
Format of Show Locks List

VERIFY

Section 9
USING A REMOTE DATA BASE

Access Through a Local Application Program.
Method 1 .
Method 2 ...
Method 3 ..

Filename.
User Identification.
Activating a Data-Base-Access File ..
Deactivating a Data-Base-Access File.
Referencing the Data Base .. .

Using QUERY

Section 10
INTERNAL STRUCTURES AND TECHNIQUES

Data Set Structural Elements ..
Pointers
Data Chains
Media Records
Media Records of Detail Data Sets .
Chain Heads . . .
Primary En tries. .
Secondary En tries.
Synonym Chains .
Media Records of Master Data Sets.
Blocks and Bit Maps . . ,

8-47
8-48
8-49
8-50
8-52
8-53
8-54
8-55
8-56
8-59
8-62
8-62
8-65

9-2
9-2
9-3
9-4
9-8
9-8

9-10
9-11
9-11
9-13

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-3
10-4

DEC 85
xix

CONTENTS (continued)

DEC 85
xx

Run-Time TurboIMAGE Control Blocks
Local Data Base Access . .
Remote Data Base Access.
Control Block Sizes

Internal Techniques
Primary Address Calculation .
Mi gr a ting Secondaries
Space Allocation for Master Data Sets .
Space Allocation for Detail Data Sets.
Buffer Management
Locking Internals

Appendix A
ERROR MESSAGES

Schema Processor Messages
Library Procedure Error Messages.

Abort Conditions ...
Utility Error Messages

Appendix B
RESULTS OF MULTIPLE ACCESS

10-5
10-5
10-6
10-7
10-8
10-8
10-9
10-9
10-9

. . 10-10

.. 10-10

. A-1
A-12
A-13
A-32

Results of Multiple Access. ... B-1

Appendix C
SUMMARY OF DESIGN CONSIDERATIONS

Summary of Design Considerations C-1

Appendix D
MULTIPLE RIN SPECIAL CAPABILITY

Sort Sequence for Lock Descriptors .
Conditional Locks .
Remote Data Bases

. D-2

. D-2

. D-3

CONTENTS (continued)

Appendix E
TurbolMAGE LOG RECORD FORMATS

TurbolMAGE Log Record Formats . E-1

Appendix F
MPE LOG RECORD FORMATS

MPE Log Record Formats . F-1

Appendix G
RECOVERY AND LOGGING QUICK REFERENCE

Recovery Quick Reference.
Intrinsic Level Recovery
Roll-Back Recovery ..
Roll - Forward Recovery.
Recovery

Logging Device Quick Reference
Sample Job Streams

Appendix H
TurboIMAGE CONVERSION (DBCONV)

Preconversion Considerations
Converting from IMAGE/3000 to TurboIMAGE ..

Converting from TurboIMAGE to IMAGE/3000
Converting Using Job Streams
Error Message.

. . G-1
. G-1
. G-2

. .. G-3
. G-3
. G-4

.. G-5

.. H-1

. . H-3
. H-7
. H-9
H-11

DEC 85
xxi

Table

2-1. Sample Read/Write Class Lists
2-2. Granting Capability to User Class 11 ..
2-3. Enabling a User Class to Perform a Task
2-4. Sample Read and Write Class Lists
3-1. Additional Conventions , .. .
3-2. Type Designators
3-3. TurbolMAGE Type Designators and Programming Languages .
3 -4. Examples of an Item Part
3- 5. Schema Processor Files
3-6. RUN and FILE Commands, Examples. .
3-7. Data Set Summary Table Information
4-1. Access Mode Summary
4-2. Logged Intrinsics
4-3. Locking in Shared-Access Environments .
5-1. TurboIMAGE Procedures
5-2. Calling a TurbolMAGE Procedure
5-3. DBBEGIN Condition Word Values
5- 4. DBCLOSE Modes 2 and 3
5- 5. DBCLOSE Condition Word Values
5-6. DBCONTROL Condition Word Values
5-7. DBDELETE Condition Word Values
5-8. DBEND Condition Word Values
5-9. DBERROR Messages
5-10. DBEXPLAIN Message Format ..
5-11. DBFIND Condition Word Values
5-12. DBGET Condition Word Values .
5-13. DBINFO mode and qualifier Values and Results.
5-14. DBINFO Condition Word Values
5-15. Locking mode Options
5- 16. Lock Descriptor Fields
5-17. DBLOCK Condition Word Values .
5-18. DBMEMO Condition Word Values ..
5-19. DBOPEN Condition Word Values .
5-20. Special list Parameter Constructs
5-21. DBPUT Condition Word Values ..
5-22. DBUNLOCK Condition Word Values
5-23. DBUPDATE Condition Word Values
6-1. TurboIMAGE and Pascal Data Structures.
6-2. BIMAGE Procedure Calls
6-3. BIMAGE Procedure Parameters
6-4. Additional BIMAGE Condition Word Values.
8-1. TurboIMAGE Utility Programs.
10-1. Formulas for Approximating Control Block Sizes .

TABLES

Page

2-13
2-14
2-15
2-18

3-2
3-5
3-7
3-9

3-14
3-15
3-23

. 4-3

. 4-7
4-23

5-2
5-3
5-5
5-7
5-8

5-10
5-13
5-15
5-17
5-26
5-29
5-33
5-35
5-39
5-42
5-45
5-47
5-49
5-54
5-58
5-59
5-62
5-65
6-36
6-62
6-64
6-67

8-1
10-7

DEC 85
xx iii

TABLES (continued)

DEC 85
xxiv

Table

A-1. TurboIMAGE Schema Processor File Errors
A-2. TurboIMAGE Schema Processor Command Errors.
A-3. TurboIMAGE Schema Syntax Errors
A-4. TurbolMAGE Library Procedure File System

and Memory Management Errors
A- 5. TurboIMAGE Library Procedure Calling Errors .
A-6. TurboIMAGE Library Procedure Exceptional Conditions
A-7. TurboIMAGE Library Procedure Abort Condition Messages.
A- 8. TurbolMAGE Utility Program Conditional Messages.
A-9. TurboIMAGE Utility Program Unconditional Messages . . .
A-10. TurbolMAGE Extended Utility Program Unconditional Messages
B-1. Actions Resulting from Multiple Access of Data Bases ..
C- 1. Selected Prime N um be rs
H-1. DBCONV Program Conditional Messages. . .
H - 2. DBCONV Program Unconditional Messages

Page

. A-2

. A-3

. A-4

A-14
A-15
A-26
A-31
A-33
A-52
A-57
. B-2
. C-2
H-12
H-13

Figure

1-1. TurbolMAGE Flow Diagram .
2-1. CUSTOMER Data Set Sample.
2-2. Master and Detail Data Set Relations.
2-3. Master and Detail Data Sets Example.
2-4. Adding an Entry to a Sorted Chain ..
2-5. ORDERS Data Sets and Paths
2-6. Sample Entries for ORDERS Data Sets .
2-7. Security Flow-Chart
3-1. Data Base Definition Process
3-2. Sample Schema Creation Session ..
3- 3. Schema Processor Batch Job Stream. .
3-4. Data Set Summary Table
3-5. ORDERS Data Base Schema
4-1. Sample Data Entries from ORDERS Data Base . . .
4-2. Read Access Methods (DBGET Procedure)
4- 3. Lock Descriptor List.
5-1. Sample DBEXPLAIN Messages .
5-2. Qualifier Array Format ...
5- 3. Lock Descriptor Format. . . .
6-1. Inventory Update Program .
6-2. Sample RECEIVE Execution
6- 3. Supplier Modification Program .
6-4. Sample SUPPLMOD Execution .
6-5. Purchase Transaction Display Program .
6-6. Sample SHOWSALE Execution
6- 7. Sales Transaction Display Program . .
6-8. Sample SALESl Execution
7-1. Transactions and Transaction Blocks
7-2. Suppression of Transactions Due to Inadequate Locking
7- 3. Quiet Periods and Recovery Blocks
7-4. Transferring Log Files to a Secondary System.
9-1. Using a Remote Program .
9-2. Using Method 1 ..
9- 3. Using Method 2
9-4. Using Method 3
9-5. Preparing a Data-Base-Access File ..
9-6. Using a Data-Base-Access File ..
10-1. Media Record for Detail Entry . .
10- 2. Media Record for Primary En try .
10- 3. Media Record for Secondary Entry
10-4. Block with Blocking Factor of Four .
G-1. Sample Job Stream for Starting Logging Cycle ..
G- 2. Sample Job Stream for Roll-Forward Recovery
G-3. Sample Job Stream for Roll-Back Recovery ..

FIGURES

Page

1-7
2-1
2-3
2-5
2-8

2-10
2-10
2-17

. 3-1
3-16
3-17
3-22
3-25

. 4-8
4-10
4-18
5-27
5-44
5-44
6-15
6-19
6-49
6-53
6-54
6-60
6-82
6-84

... 7-8
7-10
7-14
7-45

9-1
9-2
9-3
9-4

9-12
9-13
10-2
10-3
10-3
10-4

. G-5

. G-6
. . G-7

DEC 85
xxv

L---1N_T_Ro_o_u_c_T_1o_N~~~~~~~~l~~H,

TurbolMAGE

This manual is a reference document for anyone involved in designing and maintaining a data base and
for application programmers writing data base access programs. This manual covers data base concepts
and design implementation useful to the first time IMAGE user. Previous IMAGE users will find familiar
information and instructions on how to convert current IMAGE/3000 data bases to TurboIMAGE.

TurboIMAGE provides improved data base performance, better recovery processes, and increased growth
capability. New recovery processes and enhanced MPE user logging aid in providing a data base that is
highly accessible and both logically and structurally consistent. To increase input/output rate and
performance, TurboIMAGE files may be specified to reside on different discs. The internal structure of
the control blocks has been altered to minimize application process time and improve concurrency and
performance. In addition, the lock area has been increased to an 8K word limit to enable better
concurrency for applications.

The structure of the root file and media records in master data sets has been changed in TurbolMAGE. In
addition, limitations on the number of data sets and items has been expanded to allow you to create larger
data bases. These enhancements make existing IMAGE/3000 data bases incompatible with
TurboIMAGE. An easy to use migration tool is provided which allows you to convert existing data bases
so you can take advantage of the new features in TurboIMAGE. This migration tool is a conversion
program that must be run against all IMAGE/3000 data bases before you can access them in
TurbolMAGE. There exists a temporary and potential permanent increase in disc space requirements
when converting the data base to TurboIMAGE due to TurboIMAGE's expanded limit on chain entries. It
is recommended that you read the "Pre-Conversion Considerations" in Appendix H for more information.
It is also recommended, prior to running the conversion program, that you back up (DBSTORE) all data
bases. Appendix H contains all the information necessary to run the (DBCONV) conversion program.

DEC 85
1-1

Introduction

TurbolMAGE Enhancements

• Ability to specify, during schema definition, the device class on which each data set will reside.

• Expanded (199) data sets per data base.

• Expanded (1023) data items per data base and (255) data items per data set.

• The limit on data en tries per chain and en tries per data set has been expanded to 2, 1 4 7, 4 8 3, 6 4 7.

• The lock area has been expanded to 8192 words to increase concurrency.

• DBUTIL >>MOVE command which allows TurbolMAGE files to be moved across devices.

• A user may enable automatic deferred output for a specified data base using DBUTIL. This provides
the ability to speed processing time.

• A new tracing facility in TurbolMAGE passes information on the data base to a new data base design
tool, TurboIMAGE Profiler. The information passed to Profiler is used to interpret the performance of
data bases and application programs. TurbolMAGE Profiler must be installed on the system in order to
use this tracing facility. (Refer to the TurboIMAGE Profiler User Guide for information on tracing
and use of Profiler.) /

• Intrinsic Level Recovery provides recovery after a system crash which will redo an interrupted
intrinsic. Once enabled, use of ILR is automatic and transparent to the user.

• Roll-back recovery provides rapid recovery of a data base following a "soft" system crash. Data base
recovery can be done without a data base backup copy (DBSTORE).

• A new feature of DBRECOV called STOP-RESTART provides the ability to have two identical data
bases on two computer systems. The primary system's data base can be constantly accessed while
regular maintenance and required recovery are applied to the secondary system's data base.

• TurboIMAGE uses four different types of control blocks to improve concurrency and performance.
These control blocks will provide more buffer space to reduce 1/0 activity.

• The DBUTIL >>SHOW and >>HELP commands have been expanded to include information on these
new enhancements.

DEC 85
1-2

Introduction

GENERAL OVERVIEW

A data base is a collection of logically-related files containing both data and structural information.
Pointers within the data base allow you to gain access to related data and to index data across files.

TurboIMAGE is a set of programs and procedures that you can use to define, create, access, and maintain
a data base.

The primary benefit of the TurboIMAGE data base management system is time savings. These savings are
typically provided in the following areas:

FILE CONSOLIDATION

Most information processing systems that serve more than one application area contain duplicate data.
For example, a vendor's name may appear in an Inventory File, an Accounts Payable File, and an Address
Label File.

The data stored in these three files probably varies slightly from file to file, resulting not only in wasted
file space but also inconsistent program output. Redundant and inconsistent information severely impedes
any system's capacity to deal with large amounts of data.

File consolidation into a data base eliminates most data redundancy. Through the use of pointers,
logically related items of information are chained together, even if they ar.e physically separated. In the
example of vendor names and addresses, only one set of data would be stored. Through the use of logical
associatxms, the data could be used by any program needing it. Since there is only one record to retrieve,
the work required for data maintenance is greatly reduced. Finally, all reports drawn from that item of
information are consistent.

PROGRAM FILE INDEPENDENCE

Conventional file structures tend to be rigid and inflexible. The nature of conventional file management
systems require that the logic of application programs be intricately interwoven with file design. When it
becomes necessary to alter the structure of a file, a program must be written to change the file, and
programs that access the file must be changed to reflect the file change. Since change is the rule rather
than the exception in data processing, a large percentage of total time and manpower is spent
re programming.

TurbolMAGE allows the data structure to be independent of the application program. Data item
relationships are independently defined. Changes in the data base structure need only be incorporated
into those programs that manipulate the changed data. User programs need view only that portion of the
data base description that pertains to each program's processing requirements. Since all references to the
data base are resolved at execution time, only those programs affected by changes to the data base
description need be changed.

VERSATILITY

Conventional file organization techniques allow limited access to the data they contain. Most structures
allow single key access with additional relational access available only through the implementation of
extensive application level programming support. TurboIMAGE allows data to be accessed with multiple
keys as well as through a variety of other access methods.

DEC 85
1-3

Introduction

RAPID RETRIEVAL

Conventional file organization frequently requires the use of multiple file extracts, sorts and report
programs to produce meaningful output data across file boundaries. One-time information requests
frequently require weeks to implement, during which time the usefulness of the requested data may have
eroded considerably.

QUERY, the Hewlett-Packard data base inquiry facility, or user-written inquiry programs which use the
TurboIMAGE procedures, allow instant interrogation of the data base by individuals with access to the
system.

DATA SECURITY

Conventional file management systems have extremely limited data security provisions. Access to
computer readable data may only be denied to individuals with system access by providing physical
protection for the media upon which the file is stored; for example, the use of a data vault for storage of
sensitive data stored on magnetic tape or disc.

TurboIMAGE provides security at the account, file group, and data item level. The implementation of
security at the item level allows sensitive data to be stored on-line under the control of TurbolMAGE, a
data base manager or designer, and system manager, with minimal regard for additional security
provisions. TurboIMAGE security provisions can limit even programmer or operator access to extremely
sensitive information.

Wh.en implementing a new application system, TurbolMAGE can be expected to save time .. in the
following ways:

PROGRAM DEVELOPMENT

The data base structure can be defined and built without the use of special purpose application level
programming. Since control of the linkage portion of the data base is under TurboIMAGE software
control, the programmer need not be concerned with testing the structure and can concentrate on the
functional programming task at hand. If available, QUERY can be used to build test data as well as to
interrogate the results of program and system tests. This feature eliminates the requirement that
file-related programs be completed before meaningful functional programs can be written. It is no longer
necessary to hold up functional program testing until file building or file maintenance programs are
completed. In this manner, more modules of a given system can be tested in parallel.

A specific benefit in the COBOL environment is in the area of program coding time. The programmer
need only define File Division entries for those files which exist outside the control of TurboIMAGE.
Typically, such files are concerned with original entry into the processing cycle (data entry files) and with
report files. All data under the control of TurbolMAGE is implicitly defined in every program which
accesses the data base. The programmer need not code the data division entries associated with anything
except the detail data used by a given program. The time-savings generated in correct data definition the
first time the program is coded, as well as in the correct description of the physical location of the data to
be processed, will reap significant benefits in the program test cycle.

DEC 85
1-4

Introduction

PROGRAl\·1 MAINTENANCE

Throughout the life of a system, processing requirements evolve as the usefulness of the data is explored.
As file organization concepts change with the needs of the application, some data restructuring can be
done with little impact on existing programs. Changes to the structure of an existing data base affect
only those programs that process the changed data; no other programs in the system need be recompiled to
reflect the new data base structure.

The evolution of the data base is not limited by the need to balance the cost of changing an existing
system against the benefits to be derived from the new structure. It is not necessary to do a "where-used"
evaluation on a data item carried in multiple files to assess the impact of a data change on existing
systems.

Finally, the accessibility of data need not be limited by design decisions made during initial system design.
The structure of a data base can evolve with the needs of the application user. The application designer
no longer has to attempt to anticipate the needs of the user across the full life of the system.

TurboIMAGE has some effects on existing applications. Although the external interfaces remain
unchanged, some application programs developed for IMAGE/3000 may require modifications if they
were hard-coded with any of the old (IMAGE) limitations. BASIC programs which read the chain count
may need slight modifications. This is because TurboIMAGE uses a two-word chain count whereas
existing BASIC does not support double integers. Any software that reads or modifies the root file
(operates in privileged mode), or is hard-coded with IMAGE/3000 limits may not work on TurbolMAGE,
if the TurbolMAGE limitations are used.

SPECIAL INFORMATION NEEDS

The requirement for one-time information in a format that has never been requested before is no longer
the bane of data processing users. The user with a special data requirement can get to any subset of
information on the data base, frequently without the intervention of a programmer.

Volatile analytical data requirements can be filled in a minimal amount of time by the people who need
the data. The time savings in programming overhead and report specification generation can be
enormous.

Native Language Support (NLS/3000) on TurbolMAGE enables localized applications to prompt the user
with symbols displayed in the native language of the end user. Programs can be designed to generate
multinational applications on data bases. NLS enhancements can be accessed via four TurboIMAGE
utilities: DBSCHEMA, DBUTIL, DBUNLOAD, and DBLOAD. For more information refer to the
N LS/ 3000 Reference Manual or sections in this manual covering the utilities listed above.

In summary, effective use of TurboIMAGE can remove a large portion of the overhead associated with
integrated system design from the shoulders of application analysts and programmers. It affords the
opportunity to channel system design talents into functional rather than structurally-supportive design
tasks.

DEC 85
1-5

Introduction

HOW TO USE TurbolMAGE

The following five steps provide a summarized procedure of how to use TurbolMAGE. Refer to Figure
1-1 for an illustration of each of the following steps:

1. DESIGN OF THE DATA BASE. A data base designer (system analyst) or team of designers determine
what data is required by all the application projects that will share the data base. They determine
which data should be protected from unauthorized access and how the data will be used. These design
considerations and others described in Appendix C determine the data base content and structure.

2. DESCRIPTIONS OF THE DATA BASE. Once the design is complete, it is described using the
TurboIMAGE data base definition language. This external definition is called a schema. The data base
creator processes the schema using the TurbolMAGE Schema Processor which creates an internal
definition of the data base called a root file. Section 3 contains the description language syntax and
operating instructions for the Schema Processor.

3. CREATION OF THE DATA BASE FILES. DBUTIL, a TurbolMAGE utility program, builds the data
base files according to requirements of the data base structure specified in the root file. The files
contain no data initially.

4. STORAGE AND RETRIEVAL OF THE DATA. TurbolMAGE provides a set of library procedures
which can be called from COBOL, FORTRAN, Pascal, SPL, TRANSACT/3000, or BASIC language
application programs. TRANSACT/3000 will work with TurboIMAGE as long as the IMAGE/3000
limits are not exceeded. TRANSACT/3000 is being updated to accomodate the new limits of
TurboIMAGE. The data base can also be used with RPG programs but the Report Program Generator
issues the calls to TurboIMAGE procedures. The application project members can design and write
programs in the programming language which best suits their needs and call the TurbolMAGE
procedures to store, modify, retrieve, and delete data. These procedures rapidly locate the data,
maintain pointer information, manage the allocated file space, and return status information about the
activity requested. Each procedure is described in detail in Section S and examples of calling them
from the different languages are given in Section 6.

5. MAINTENANCE OF THE DATA BASE. The TurbolMAGE utility programs may be used to
maintain backup copies of the data base and perform other utility functions such as recovering or
restructuring the data base. These programs are described in Sections 7 and 8. You may also use the
TurboIMAGE procedures to write your own maintenance programs.

DEC 85
1-6

1 Data Base Design and 2 Definition

Design

vvvv
ODO

Schema

BEGIN DATA BASE X;
PASSWORDS:

08ta Base
De.signers

4 Storage and Retrieval of Data

Data Base
Application Users

Application
Programmers

Data Base
Creator

END

: : · .· -~d~~MI(·: · ·
·faRQCE~OR· ..

r-~A-;ASE

Application
Programs

Listing of

Schema

3 Data Base Creation

Data Base
Creator

_: :-.: .. _J~:~~irr:_-·:. :. :·_·.
·: · "(C.REATE ·. · .".
.·-::~~~"~::-_·.

::·o~N~OAD:­
·::-:.:(Jtm~.--:···.·.

Data Base Creator or
Other User with Ma1nten11nce Word

Root
--~~~~~~---

: : ·ol?A:E~T.QR·: ·
-::::·:~tm~~::·.:_-.·.

Data &se Creator
or Ot/Jer User with
Maint~nance Word

·: -Tu(b9J~A~·-·.
: ·.·-~r~ur~:.:

: . ·: QBR~CQV:: · ·
: : : : : : : :~_~i~t_Y.:: . ·. ·.

. .
: . · .qss:r:-08~- ·: .
. : . : : . :~tili_t~::: :_-.-.

Introduction

5 a Maintenance (Restructuring) 5 b Maintenance <Backup and Recovery}

Figure 1-1. Simplified Flow Diagram, How To Use TurbolMAGE

DEC 85
1-7

Introduction

HOW TO USE THIS MANUAL

The information m this manual is presented in the order in which the user will begin to use the various
TurbolMAGE modules. A text discussion of the overall purpose of a module and definitions of terms used
to describe the module precede the reference specifications, which are identified by large headings to
enable the user to locate them easily.

Each section assumes a knowledge of the material presented in preceding sections. Therefore, it is
recommended that the user read the manual the first time from beginning to end, possibly skipping the
discussion of topics which are already familiar.

The internal structure of TurboIMAGE elements and the methods used to perform certain functions are
presented in the last section, Section 10. This section can be referenced at any time if you want to know
exactly how something is accomplished by TurbolMAGE, but it is not necessary to understand the
material in this section to use TurbolMAGE.

If the system has Distributed System (DS/3000) capability, refer to Section 9 for information about
accessing a data base residing on another HP 3000 system.

Appendix A contains a description of the error messages issued by the various TurbolMAGE modules and
Appendix B provides additional information about sharing the data base. A summary of important
considerations when designing the data base is provided in Appendix C. Appendix D contains information
about the special multiple RIN capability relevant to locking. Appendices E and F contain TurbolMAGE
and MPE log record formats to aid in interpreting log and user recovery files. Appendix G represents a
quick reference guide to recovery and logging processes. Information on converting IMAGE/3000 data
bases to TurbolMAGE is given in Appendix H.

The conventions used in this manual are described on page ix.

DATA BASE PERSONNEL

The terms data base administrator or manager, data base creator, and data base designer may refer to one
or more persons. Designer refers to anyone who cooperates in the design of the data base. The creator is
defined by the MPE user name, account, and group used when executing the Schema Processor to create
the root file and when executing the DBUTIL program to create the data base files. The data base
administrator is responsible for coordinating data base use. This person knows the passwords and can
authorize others to use the data base by making a password available if it is needed for a particular
application. The data base administrator is also responsible for system backup and recovery. The data
base creator and administrator may be the same person. If not, the administrator will probably have access
to the user name and account in which the data base resides or to the maintenance word which is defined
in Section 7.

DEC 85
1-8

DATA BASE STRUCTURE -
L---A_ND __ P_RO_T_E_C_T_IO_N __________ ~ __ ~(IJ

This section describes the various data elements and their relationships within the data base.

DATA ELEMENTS

A data base is a named collection of related data. It is defined in terms of data items and data sets.
Figure 2-1 shows a sample of one data set from a data base named ORDERS which will be used as an
example throughout this manual. The data set is named CUSTOMER. The information in this data set
pertains to the customers of a business. All the data about a particular customer is contained in a data
entry. Each piece of information such as account number or last name is a data item.

Data Items

A data item is the smallest accessible data element in a data base. Each data item consists of a value
referenced by a data item name, typically selected to describe the data value. In general, many data item
values are referenced by

1
the same data item name, each value existing in a different data entry.

For example, in Figure 2-1, the data item FIRST-NAME has the value JAMES in one data entry and
ABIGAIL in another data entry.

RRST-

la ACOOJ.IT LAST-NAME ~E INITIAL STREET-ADDRESS CITY

.-; 12345678 MIU£R JAMES L 1645 MARSHAU. AVENUE GL.ENOAl...E

'I

95430301 BRIGHTON .ABIGAIL s. 72 E. HAMPTON a:flVE CARMEL

la
IMS

\ 54777833 GRAZJANO I SABEL M. 113 SH.ASTA LANE SANTA a.ARA

Figure 2-1. CUSTOMER Data Set Sample

CREDIT-RATING
STATE ZIP ~

R. 85301 3.4

CA 93921 6.7

CA 95050 5.8

DEC 85
2-1

Data Base Structure and Protection

COMPOUND DATA ITEMS

A compound data item is a named group of identically defined, adjacent items within the same data
entry. Each occurrence of the data item is called a sub-item and each sub-item may have a value. A
compound item is similar to an array in programming languages such as FOR TRAN and BASIC. A data
entry might contain a compound item named MONTHLY-SALES with 12 sub-items in which the total
sales for each month are recorded.

DATA TYPES

The data base designer defines each data item as a particular type depending on what kind of information
is to be stored in the item. It may be one of several types of integers, real or floating-point numbers, or
ASCII character information. The data types are described in detail in the next section and summarized
in Tables 3-2 and 3-3.

Data Entries

A data entry is an ordered set of related data items. You specify the order of data items in an entry when
you define the data base,. Data entries may be defined with at most 255 data item names, none of which
is repeated. The length of the data entry is the combined length of the data items it contains.

Data Sets

A data base may contain up to 199 data sets. A data set is a collection of data entries where each entry
contains values for the same data items. For example, the CUSTOMER data set contains entries composed
of the same nine data items: ACCOUNT, LAST-NAME, INITIAL, STREET-ADDRESS, CITY, STATE,
ZIP, and CREDIT-RA TING. Normally, each data set is associated with some real world entity such as
orders, customers, employees, and so forth.

Each data set is referenced by a unique data set name. Each data set is stored in one disc file consisting of
storage locations called records. When you describe the data base with the data base definition language,
you specify the capacity, or number of records, of each data set. Each record is identified by a record
number which can be used to retrieve the entry within it.

DAT A SET TYPES AND RELATIONS

A TurboIMAGE data set is either a master or a detail data set. Figure 2-2 illustrates the relations
between and types of six data sets in the ORDERS data base. Master data sets are identified by triangles
and detail data sets by trapezoids. This convention is useful when diagramming the data base design.

DEC 85
2-2

Data Base Structure and Protection

Master Data Sets

Master data sets have the following characteristics:

• They are used to keep information relating to a uniquely identifiable entity; for example, information
describing a customer. The CUSTOMER data set in Figure 2-3 illustrates this type of information.

• They allow for rapid retrieval of a data entry since one of the data items in the entry, called the search
item, determines the location of the data entry. A search item may not be a compound item. In Figure
2-3, the CUSTOMER data set contains a search item named ACCOUNT. The location of each entry is
determined by the value of the customer's account number.

• They can be related to detail data sets containing similar search items and thus serve as indexes to the
detail data set. The .ACCOUNT search item in the CUSTOMER master data set is related to the
ACCOUNT search item in the SALES detail data set. The entry for a customer named Abigail
Brighton with account number 95430301 serves as an index to two entries in the SALES data set
which contain information about purchases she made.

SALES
Detail

Figure 2-2. Master and Detail Data Set Relations

INVENTORY
Detail

Although there are unused storage locations in the CUSTOMER data set, TurbolMAGE disallows any
attempt to add another data entry with account number 95430301. The search item value of each entry
must remain unique. The values of other data items in the master data set are not necessarily unique.
This is because they are not search items and are not used to determine the location of the data entry.

DEC 85
2-3

Data Base Structure and Protection

Detail Data Sets

Detail data sets have the following characteristics:

• They are used to record information about related events; for example, information about all sales to
the same account.

• They allow retrieval of all entries pertaining to a uniquely identifiable entity. For example, account
number 95430301 can be used to retrieve information about all sales made to Ms. Brighton.

• The storage location for a detail data set entry has no relation to its data content. When a new data
entry is added to a detail data set, it is placed in the first available location.

• A detail data set may be defined with from zero to 16 search items (unlike a master data set which
contains at most one search item). The values of a particular search item need not be unique.
Generally, a number of entries will contain the same value for a specific search item.

The SALES data set contains four search items: ACCOUNT, STOCK#, PURCH-DATE, and
DELIV-DATE. Two entries in the example in Figure 2-3 have identical values for the ACCOUNT item
in the SALES data set.

TurboIMAGE stores pointer information with each detail data entry which links together all entries with
the same search item value. Entries linked together in this way form a chain. A search item is defined
for a detail data set if it is desired to retrieve together all entries with a common search item value, in
other words, all entries in a chain. The SALES entries with ACCOUNT equal to 95430301 form a
two-entry chain. A single chain may consist of at most 2,147,483,647 entries.

Paths

A master data set search item can be related to a detail data set sea:r:ch item of the same type and size.
This relationship forms a path. A path contains a chain for each unique search item value. In Figure
2-3, the ACCOUNT search item in CUSTOMER and the ACCOUNT search item in SALES link the
CUSTOMER master to the SALES detail forming a path. One chain links all SALES entries for account
number 95430301. The chain for account number 12345678 consists of one entry. Both chains belong
to the same pa th.

Since a detail data set can contain as many as 16 search items, it can be related to at most 16 master data
sets. Note that each master to detail relationship must be relative to a different detail search item. The
SALES data set is related to the CUSTOMER, PRODUCT, and DATE-MASTER data sets.

A detail data set may be multiply indexed by a master data set. For example, SALES is indexed twice by
DATE-MASTER. The DATE search item forms one path with the PURCH-DATE search item and one
path with the DELIV-DATE search item.

Each master data set may serve as an index, singly or multiply, to one or more detail data sets. No master
data set may be involved in more than 16 such relationships. For each such relationship, TurboIMAGE
keeps independent chain information with each master entry. This information consists of pointers to the
first and last entries of the chain whose search item value matches the master set entry's search item value
and a count of the number of entries in the chain. This is called a chain head. The format of chain heads
is given in Section 10. For example, the DATE-MASTER data entries each contain two sets of pointers,
one for PURCH -DATE chains and one for DELIV-DA TE chains. Chain heads are maintained
automatically by TurboIMAGE.

DEC 85
2-4

Data Base Structure and Protection

MANUAL MASTER DATA SET: CUSTOMER

FIRST- CREDIT-
ACCOUNT LAST-NAME NAME INITIAL STREET-ADDRESS CITY STATE ZIP RATING

r-- 12345678 l MILLER 1 JAMES 1 L I 1645 MARSHALL AVENUE 1 GLENDALE I AZ 185301 3.4

r-- 95430301 J BRIGHTON l ABIGAIL J s. l 12 E. HAMPTON DRIVE l CARMEL l CA l 93921 6.7

54777833 I GRAZIANO J 1SABEL I MI 113 SHASTA LANE I SANTA Cl.ARA I CA l 95050 l 5.8

DETAIL DA TA SET: SALES

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCH-OATE DELIV-DATE

~
/ 95430301 r---- 35624AB3 1 450 27 477 90584 90584

'l_

~ 95430301 35624AC5 3 1530 93 1623 11584 11684

~ 12345678 35624AB3 2 900 54 954 92784 92884 /
; IT\

DATE

92884

AUTOMATIC MASTER DATA SET: DATE-MASTER
90584

92784

Figure 2-3. Master and Detail Data Sets Example

lL.

~

DEC 85
2-5

Data Base St n1cture and Protection

Automatic and Manual Masters

A master data set may be automatic or manual. These two types of masters have the following
characteristics:

MANUAL

May be stand-alone. Need not be related to
any detail data set.

May contain data items in addition to the
search item.

You must explicitly add or delete all entries. A
related detail data entry cannot be added until
a master entry with matching search item
value has been added. When the last detail
entry related to a master entry is deleted, the
master entry still remains in the data set.
Before a master entry can be deleted, all
related detail entries must be deleted.

The search item values of existing master
entries serve as a table of legitimate search
item values for all related detail data sets.
Thus, a non stand-alone manual master can be
used to prevent the entry of invalid data in the
related detail data sets.

AUTOMATIC

Must be related to one or more detail data sets.

Must contain only one data item, the search
item.

TurbolMAGE automatically adds or deletes
entries when needed based on the addition or
deletion of related detail data set entries.
When a detail entry is added with a search
item value different from all current search
item values, a master entry with matching
search item value is automatically added.
Deletions of detail entries trigger an automatic
deletion of the matching master entry if it is
determined that all related data chains are
empty.

For example, in Figure 2-3 CUSTOMER is a manual master data set and DATE-MASTER is an
automatic master. Before the SALES entry for account 1234567 8 is added to SALES, CUSTOMER must
contain an entry with the same account number. However, the DATE-MASTER entries for DATE equal
to 927 84 and 92884 are automatically added by TurboIMAGE when the detail entry is added to SALES,
unless they are already in the DATE-MASTER data set.

Note that DATE-MASTER contains only one data item, the search item DATE, while CUSTOMER, which
is a manual master, contains several data items in addition to the search item.

If the SALES entry with account number 95430301 and stock number 35624AB3 are deleted and no
other SALES entry contains a PURCH-DATE or DELIV-DATE value of 90584, the DATE-MASTER
entry with that value is deleted automatically by TurbolMAGE.

DEC 85
2-6

Data Base Structure and Protection

Manual vs. Automatic Data Sets

Data base designers may use:

• Manual masters to ensure that valid search item values are entered for related detail entries.

• Automatic masters to save time when the search item values are unpredictable or so numerous that
manual addition and deletion of master entries is undesirable.

Whenever a single data item is sufficient for a master data set, the data base designer must decide between
the control of data entry available through manual masters and the time-savings offered by automatic
masters. For example, since DATE-MASTER is an automatic data set, erroneous dates such as 3 31299
may be entered accidentally.

Primary Paths

One of the paths of each detail data set may be designated by the data base designer as the primary path.
The main reason for designating a path primary is to maintain the entries of each chain of the path in
contiguous storage locations. You do this by occasionally using the DBUNLOAD utility program to copy
the data base to tape, the DBUTIL utility program to erase the data base, and the DBLOAD program to
reload the data base from the tape. When the data base is reloaded, contiguous storage locations are
assigned to entries of each primary path chain. Therefore, the data base designer should designate the
path most frequently accessed in chained order as the primary path. This type of access is discussed in
Section 4.

A primary path also serves as the default path when accessing a detail data set if no path is specified by
the calling program. This characteristic of primary paths is described with the DBGET procedure in
Section 4.

Sort Items

For any path, it is possible to designate a data item other than the search item as a sort item. If a sort
item is specified, each of the chains of the path are maintained in ascending sorted order, based on the
values of the sort item. Different paths may have different sort items, and one path's sort item may be
another path's search item. Only data items of type logical or character can be designated as sort items.

For example, chains in the SALES data set composed of entries with identical ACCOUNT values are
maintained in sorted order by PURCH-DATE. When information about sales to a particular customer is
required, the SALES data entries for that customer's account can be retrieved in sorted order according to
purchase date. (For PURCH-DATE to be a meaningful sort item, dates must be stored in a properly
collatable form such as year-month-day rather than the order shown in preceding figures.)

The sorted order of entries is maintained by logical pointers rather than physical placement of entries in
consecutive records. Figure 2-4 illustrates the way in which sorted paths are maintained by
TurboIMAGE. When an entry is added to a detail data set it is added to or inserted in a chain. If the
path does not have a sort item defined, the entry follows all existing entries in the chain. If the path has
a sort item, the entry is inserted in the chain according to the value of that item.

DEC 85
2-7

Data Base Structure and Protection

Add to end
of chain.

No sort
~item.

®

ADD ENTRY -------

is last item.
1

Sort item

Sort item is not ~ Sort by
item only.

®

last item in entry.

~
Sort by

extended field.

If matches other extended field,
add chronologically.

If matches other
sort item, add
chronologically.

DATA ENTRY: I data item I .. 1 sort item I data item I . . . I data item I

DEC 85
2-8

Examples:
Chains (logical order) ex tended field

CD I 2228 ~
333 H

111 z entries in existing chain (no sort item)

4448

®

®

222 Z .,...<---- New entry

111 Z < Sort item and subsequent item in existing chain
222 A ~ New entry

2228~
333 H Sort item and subsequent item in existing chain
444 B

111Z ~
222 A Sort item and subsequent item in existing chain

222 A < New entry (matches existing extended field)
333H ~
444 8 ~ =-Sort item and subsequent item in existing chain

111 : ,,,,,,_::__---~=-~ Sort item last in entry 222 I~~

222 < New entry

333 ~
444 1~ Sort item last in entry

Figure 2-4. Adding an Entry to a Sorted Chain

Data Base Structure and Protection

If the entry's sort item value matches the sort item values of other entries in the chain, the position of the
entry is determined by an extended sort field consisting of the sort item value and the values of all items
following the sort item in the entry. If the extended sort field matches another extended sort field, the
entry is inserted chronologically following the other entries with the same extended sort field value. This
also occurs if the sort item is the last item in the entry and its value matches another entry's sort item
value. Native Language Support does not support extended sort items. If the data base language is other
than ASCII, extended sort fields are not used.

If you are using extended sort fields to sort a chain, you should not call DBUPDATE to modify any of the
values in the extended sort fields because the chain will not be resorted automatically according to the
new data values. Instead, call DBDELETE and DBPUT to re-enter the records with modified values.

If you do not want TurbolMAGE to sort chains by extended sort fields, structure the data record so that
the sort item is in the last field of the record.

When the data base content is copied to magnetic tape using the TurboIMAGE utility program
DBUNLOAD, the pointers that define an entry's position in a chain are not copied to the tape. When the
data is loaded back into the data base, the chains are recreated. Therefore, entries which were previously
ordered chronologically will not necessarily be in that same order. The new chronological ordering is
based on the order in which the entries are read from the tape. The chains of a primary path are an
exception; the order of these chains is preserved if the tape was created with DBUNLOAD in the chained
mode. (Section 8 contains more information about DBUNLOAD.)

NOTE

It is important to limit the use of sorted chains to paths consisting of
relatively short chains or chronologic sort items (for example, date) which
are usually added to the end of chain. It is not intended that sorted paths
be used for multiple key sorts, or for sorting entire data sets. These
functions are handled more efficiently by user-written routines or the MPE
subsystem, Sort/3000.

The ORDERS Data Base

Figures 2-5 and 2-6 illustrate the complete ORDERS data base. Figure 2-5 lists the data items that
define entries in each data set. The data type is in parentheses. (Data types are described in Section 3
with the item part of the schema.) Paths are indicated by arrows. CUSTOMER, SUPMASTER,
PRODUCT, and DATE-MASTER are master data sets and SALES and INVENTORY are detail sets.
Figure 2-6 shows a sample entry from each data set except DATE-MASTER for which it shows two
sample entries.

Chains of the path formed by CUSTOMER and SALES are maintained in sorted order according to the
value of PURCH-DATE. The primary path for INVENTORY is the one defined by SUPMASTER and
the primary path for SALES is the one defined by PRODUCT.

DEC 85
2-9

Data Base Structure and Protection

DEC 85
2-10

This JJ8/lt
Sort Item
PUAat-DAT!

MASTER SETS

CUSTOMER
ACCOUNT (J2)
LAST-NAME 0<16)
FIRST -NAME 0<10)
INITIAL (U2)
STREET-ADDRESS (X26)

OTY ()(12)
STATE CX2)
ZIP IX6)
CREDIT-RATING (R2)

SUP-MASTER
SUPPLIER CX16)
STREET-ADDRESS 0<26)
OTY 0<12)

DETAIL SET STATE 0<2>

prin18ry path

8ALE8
ZIP IX6) DETAIL SET

~ ACCOUNT {J2) tylmary path PAODUOr INVINTORY
STOCK# tuBl ~<------ STOCK# {U8) ------->~ STOCK# lJBl
QUANTITY (11) DESCRIPTION (X20) ONHANDOTY (J2)

PRICE U2l SlPPUER CX16)-"L...._._
TAX (J2) UNIT-COST (Pel
TOTAL '-J2) DATE-NASTER > LASTSHIPOATE ()(6)

PURCH-DATE 0<6) ~----~- DATE (X6) ---- BINNUM (Z.2)

DEU\1-0ATE 0<6) -~----

Figure 2-5. ORDERS Data Sets and Paths

MASTER SETS

CUSTOMER
89393899
CORCORAN
CLIFFORD
x.
6105 VAU..EY GREEN DR.
CARMEL
CA
93921
6.732

SUP-MASTER -----------------------------, H& S S~PLUS

DETAIL SET
10111 SKYLINE BLVD.
PETALUMA
CA
94952

DETAIL SET UL.El
89393899
66500225

INVENTORY
~ PRODUCr --->..,. 66500225 66500225 _____ 29 12

2000
120

BASEBALL BAT H 3 S SURPLUS -~--
1500

....------>~ 120784
2

2120 DAft-tMST!R
120584 -<------- 120584
120784 < 120784 ____ _, Note: ~TA-tl.4ASTER oontlins

two cn1m1 in 1hia eicample.

Figure 2-6. Sample Entries for ORDERS Data Sets

Data Base Structure and Protection

DAT A BASE FILES

Data base elements are stored in privileged MPE disc files. In addition to the root file which contains the
data base definition, other files called data files contain the data sets.

Root File

The root file is created by the data base creator when the Schema Processor is executed. It is catalogued
within the creator's log-on group and account with a local file name identical to the data base name.
Thus, the name of the root file for the ORDERS data base is ORDERS. Refer to the MPE Commands
Reference Manual for more information about MPE account and log-on groups.

The root file is a single-extent MPE disc file: that is, the entire file occupies contiguous sectors on the
disc. It serves as a common point of entry to, and a source of information about the data base.

Data Files

There is one data file for each data set of a data base. The size of each record and number of records in
the file are determined by the contents of the root file. The data files are created and initialized with the
TurbolMAGE utility program, DBUTIL.

Each data file is catalogued within the same group and account as the root file. Local file names are
created by appending two characters to the local name of the root file. These two characters are assigned
to the data sets according to the order in which they are defined in the schema. For example, the
ORDERS data base is defined with CUSTOMER and DATE-MASTER as the first two data sets. These
data sets are in data files ORDERSO 1 and ORDERS02. (For more information refer to "DBUTIL
>>CREA TE" command in Section 8.)

Each data file is physically constructed from one to 32 extents of contiguous disc sectors, as needed to
meet the capacity requirements of the file, subject to the constraints of the MPE file system. Each data
file contains a user label in a disc sector maintained and used by the TurbolMAGE library procedures.
The label contains structural pointers and counters needed for dynamic storage allocation and
deallocation.

RECORD SIZE

Record sizes vary between data files but are constant within each file. Each record is large enough to
contain a data entry and the associated TurboIMAGE pointer information. The amount of pointer
information depends on the way the data set is defined. Pointer information is described in Section 10.
The maximum number of records in a data set file depends on the record size, the available disc space, and
the MPE file system constrain ts.

BLOCKS

The records in a data file are physically transferred to and from the disc in groups. Each group involved
in a single disc transfer is called a block. The number of records in each block is called the blocking
factor. The Schema Processor determines the blocking factor during creation of the root file. Section 3
contains more information about block size and blocking factors in the discussion of the set part of the
schema. The format of blocks is given in Section 10.

DEC 85
2-11

Data Base Structure and Protection

PROTECTION OF THE DAT A BASE

TurboIMAGE prevents unauthorized persons from gainmg access to the data base. It provides external
protection through the MPE privileged file, account, and group structures and, in addition, provides the
data base designer and data base manager with devices for further protection of the cL1 ta base.

Privileged File Protection

All TurboIMAGE data base files are privileged files. (Refer to the MPE Intrinsics Reference Manual for
a description of the l\11PE privileged file capability.) Access by unprivileged processes or through most
MPE file system commands is not allowed. Therefore, non-privileged users are prevented from
accidentally or deliberately gaining access to the data base.

The use of MPE commands that permit copying of TurbolMAGE files to tape represent a potential breach
of data base privacy, and their use should be controlled. In particular, anyone who uses the :SYSDUMP,
:STORE, or :RESTORE commands should notify the data base manager. The :SYSDUMP and :STORE
commands permit system supervisors, system managers and other privileged users to copy files not
currently open for output to tape. The MPE RESTORE command may purge and replace a data base file
with a different file if it has the same name and is encountered on tape.

Account and Group Protection

In order to gain access to a TurbolMAGE data base, you must be able to access the files in the account and
group in which the data base resides. The system manager and account manager administer the security
levels for accounts and groups. The system manager is responsible for creating accounts and the account
manager for creating new groups and users. (The System Manager/System Supervisor Reference Manual
contains detailed information about the maintenance of MPE accounts and groups.)

The system and account managers can prevent members of other accounts from accessing the data base by
specifying access as user type AC (Account Member) for the account and group containing the data base.
They can prevent users who are members of the account, but not of the group, containing the data base
from accessing it by specifying GU (Group User) for the group. On the other hand, they can allow access
from other accounts by specifying user type ANY at both the account and group levels.

These MPE security provisions provide an account and group level of security controlled by the system
manager and account manager.

User Classes and Passwords

TurbolMAGE allows the data base designer to control access to specific data sets and data items by
defining up to 6 3 user classes and then associating the user classes with data sets and data items in read
or write class lists. This association determines which user classes may access which data elements and the
type of access that is granted.

DEC 85
2-12

Data Base Structure and Protection

Each user class is identified by an integer from 1 to 6 3 and is associated with a password defined by the
data base designer. For example, the ORDERS data base is defined with these user classes and passwords:

User Class

11
12
13
14
18

Password

CREDIT
BUYER
SHIP-REC
CLERK
DO-ALL

The magnitude of the user class number has no relation to the capability it grants. When you initiate
access to the data base, you must supply a password to establish your user class. If the password is null or
does not match any password defined for the data base, the user class assigned is zero. This does not apply
if you are the data base creator and supply a semicolon in which case you have full access to all data sets
in the data base. TurboIMAGE uses the number 64 to identify the data base creator.

READ AND WRITE CLASS LISTS

When the data items and data sets are defined in the schema, a read class list and a write class list can be
specified for each item or set. Table 2-1 contains sample lists for the CUSTOMER data set and
CREDIT-RATING data item in the ORDERS data base.

Table 2-1. Sample Read/Write Class Lists

READ CLASS LIST WRITE CLASS LIST

CUSTOMER 11 '14 11 '18

CREDIT-RATING 14 14

User class numbers included in the write class list are, by implication, included in the read class list. Since
a write class list of 14 implies that user class 14 is in the read class list, the CREDIT-RA TING read class
list is redundant. However, it may be included as a reminder in the schema of the total capability granted
to user class 1 4.

A distinction must be made between the absence of a read and write class list and a null list. When you
specify the lists in the schema, they are enclosed in parentheses and separated by a slash, for example,
(11,14/15). A null list may be one of the following:

(/)
(11,14/)

Both read and write class lists are null.
The write class list is null.

Since the existence of a write class list implies a read class list, there is no situation where only the read
class list is null.

DEC 85
2-13

Data Base Structure and Protection

The absence of both a read and write class list, and the parentheses and slash, yields the same result as a
read class list containing all user classes and write class list which is null. For example:

(0' 1 '2 '3' ... 63 /)

The effect of null and absent lists is illustrated later in this section.

Access Modes and Data Set Write Lists

Before you can gain access to a data base, you must open it specifying a password that establishes your
user class number and an access mode that defines the type of data base tasks you want to perf <.""'rm.
Access modes are described in Section 4 with the instructions for opening a data base. At this time it is
necessary only to note that some of the eight available access modes nullify the data set write list. If the
data base is opened in access mode 2, 5, 6, 7, or 8, all data set write class lists are effectively null. This
effect should be considered when you are designing the security scheme for the data base.

Granting a User Class Access

Tables 2-2 and 2- 3 illustrate the use of read and write class lists from two different perspectives. Table
2-2 shows what capability user class 11 has if it appears in the lists as shown. The same rules apply to
any user class. The access mode must be as indicated.

Table 2-2. Granting Capability to User Class 11

LIST CAPABILITY LIST CAPABlLITY LIST CAPABILITY

Control at (/11) Total access (/) No access (11) Controlled

Data Set or to set if to set or at item

Level (1V11) access mode absent level

1, 3, or 4 list

f
J

f
Control at (111) Update and (/) No access { 11) Read item
Data Item or read item to item or
Level (1V11) absent

list

A null read and write class list can be used by the data base creator at the data set level to deny access to
the data set by all user classes; that is, only the data base creator will be able to use the data set.

DEC 85
2-14

Data Base Structure and Protection

Table 2-3 presents the same rules organized by the task which the user class is to perform. It lists the
required access modes and the security rules at both the data set and data item level. For simplicity
assume there are always read and write class lists even if they are the default lists (0, 1, 2, ... 63 /) resulting
when the lists are not actually specified in the schema (absent lists).

TASK

Access Modes

Data Set
Security
Rules

Data Item
Security
Rules

Table 2-3. Enabling a User Class to Perform a Task

READ DAT A ITEM UPDATE DATA ITEM

1 - 8 1 - 4

If access mode 1, 3, 4: If access mode 1, 3, 4:
User class in write list User class in write list

OR OR

User class in read list User class in read list
and pass data item and pass data item
security. security.

If access mode 2, 5-8: If access mode 2:

User class in read or User class in read or
write list and pass write list and pass
data item security. data item security.

User class in read User class in write list.
or write list.

ADD OR DELETE
DAT A ENTRIES

1, 3, 4

User class in
data set
write list.

DEC 85
2-15

Data Base Structure and Protection

In summary, the data base designer can grant access to a data set m the following ways:

• SPECIFY THE USER CLASS NUMBER IN THE DAT A SET WRITE CLASS LIST. If the data base is
opened in access mode l, 3, 0r 4, this grants the user class complete access to the data set. Users in this
class can add and delete entries, update the value of any data item that is not a search or sort item, and
read any item, regardless of the data item read and write class lists. A user class number must be in the
data set write list in order to add and delete entries.

If the data base is opened m access mode 2, 5, 6, 7, or 8, this is the same as specifying the user class
number in the data set read class list only and the next rule applies.

• SPECIFY THE USER CLASS NUMBER IN THE DATA SET READ CLASS LIST (or omit both lists
entirely). This grants the user class a type access to the data set that is controlled at the data item level
as described below. If both read and write class lists are omitted, the user class is granted this type of
access since the lists are (0, 1, 2, ... 6 3 /) by default.

• OMIT THE USER CLASS NUMBER FROM BOTH THE SPECIFIED READ AND WRITE CLASS
LISTS. This denies the user class any type of access to the data set.

Assuming the data base designer has established control at the data set level as summarized above,
control at the data item level is established in the following ways:

• SPECIFY THE USER CLASS NUMBER IN THE DAT A ITEM READ CLASS LIST (or omit both lists
entirely). This grants the user class read access to the data item.

• SPECIFY THE USER CLASS NUMBER IN THE DATA ITEM WRITE CLASS LIST. This grants the
user class the ability to update or change the data item value, if it is not a search or sort item. Since
the user class is implied to be in the read class list, the user class can also read the item. A user class
number must be in the data item write list in order to change the value.

• OMIT THE USER CLASS NUMBER FROM BOTH THE READ AND WRITE CLASS LIST. This
denies the user class any type of access to the data item.

The protection of data set and data item values is designed so that the data base designer must explicitly
specify the user class number to allow that class to make any type of change to the data base. Read access
may be granted by default in some situations, for example, by omitting the lists entirely. To deny read
access to a data set or data item, the data base designer must specify a list, possibly a null one, and
deliberately omit the user class number.

Figure 2-7 provides a security flowchart. DBOPEN in modify access (modes 1, 3, and 4) has been passed.

DEC 85
2-16

YES

r
NO ACCESS

TO ITEM

NO ACCESS
TO SET

READ ACCESS
TO ITEM

>

>

Data Base Structure and Protection

FULL ACCESS TO SET
READ ONLY FOR SORT
A:,m SEARCH ITEMS)

READ ACCESS
ONLY TO SET

NO ACCESS
TO SET

FULL ACCESS
TO SET

NO
--7

UPDATE
ACCESS
TO ITEM

READ ACCESS
TO ITEM -EE---

Figure 2-7. Security Flow-Chart

DEC 85
2-17

Data Base Structure and Protection

For example, in the ORDERS data base only user classes 11 and 18 can add and delete CUSTOMER data
entries since these are the only user class numbers in the data set write list as shown in Table 2-1. To do
so, they must open the data base in access mo1ie 1, 3, or 4.

User class 14 can update the CREDIT-RATING data item in the CUSTOMER data set because it is in the
data item write list and the data set read list.

Table 2-4 contains more illustrations of the effects of read and write class lists. The data base creator
and user class 9 (in access mode 1, 3, or 4) have complete access to data set 1 but only the creator has
complete access to data set 2. Complete access includes the ability to read and update all items and add
and delete entries.

Data Set 1

Data Item A

Data Item B

Data Item C

Data Item D

Data Item E

Data Item F

Data Item G

Data Item H

Data Set 2

DEC 85
2-18

Data Item A

Data Item I

Table 2-4. Sample Read and Write Class Lists

(0,18, 13/9) Item Read Access Item Update Access

0, 13, 18,9 9*

(/13) 13, 9* 13' 9*

(/) 9* 9*

(/9) 9 9

(18/13) 13, 18, 9* 13, 9*

(/ 13' 18) 13, 18, 9* 13' 18' 9*

(12/0) 0, 9* 0, 9*

(13/) 13, 9* 9*

0, 1 ' ... ' 63

(13 /9) 13' 9 9

*Only if DBOPEN access
mode is 1, 3, or 4.
None of these items
are search or sort
items.

-·--'·-

Data Base Structure and Protection

User Classes and Locking

TurbolMAGE does not consider user classes when locking a data base entity. Any data set or any data
item can be referenced in a lock request by any user of a data base regardless of his or her user class.

Protection in Relation to Library Procedures

There is one Data Base System Control Block (DBS) for an entire system. All access to a data base is
achieved through a Data Base Global Control Block (DBG), the Data Base Buffer A1ea Control Block
(DBB), and one or more Data Base User Local Control Blocks (DBU) which reside in privileged extra data
segments not directly accessible to data base users. Since no user process can read or modify these control
blocks, TurboIMAGE guarantees protection of the data base from unauthorized programmatic access.
Refer to the description of the DBG, DBU, DBB and DBS in Section 10. For more information about data
segments and privileged mode, refer to the MPE Intrinsics Reference Manual.

All TurbolMAGE library procedures that structurally modify the data base execute in critical mode. This
defers any requested process termination while modifications are in progress. If any file system failures
occur during such data base modification, TurbolMAGE causes process termination since the data base
integrity is suspect.

The DBB contains buffers which are used to transfer data. All buffers whose content has been changed to
reflect a modification of the data base are always written to disc before the library procedure exits to the
calling program. This guarantees data base integrity despite any program termination that might occur
between successive procedure calls. However, output deferred mode allows the user to override this
scheme. When output deferred or AUTODEFER mode is enabled, buffers are retained within the buffer
area and are flushed only when required by space constraints or when DBCLOSE is called. For
information on output deferred mode (AUTODEFER) refer to Section 8, DBUTIL >>ENABLE command.

Protection Provided by the TurbolMAGE Utilities

The TurbolMAGE utilities perform various checks to ensure data base integrity.

• They acquire exclusive or semi-exclusive access to the data base being processed. (Section 4 contains
more information about types of access in the discussion of opening a data base.)

• Only the data base creator or a user supplying the correct maintenance word can execute the utilities.
The data base creator defines the maintenance word when the data base is created with the DBUTIL
utility program. (Refer to Section 8.) In addition, anyone running the utility programs other than
DBRECOV must be logged on to the group in which the data base resides.

• Unrecoverable disc or tape problems are treated as functional failures rather than limited successes and
result in program termination.

DEC 85
2-19

~DE_F_1N_1N_G~A_D_A_T_A_B_A_s_E~~~~~l~!MI,
Once the data base has been designed, it must be described with the data base description language and
processed by the Schema Processor to create the root file. Figure 3-1 illustrates the steps in defining the
data base.

--'70

DATA BASE DESIGN

SCHEMA
FILE

Figure 3-1. Data Base Definition Process

DATA BASE DESCRIPTION LANGUAGE

~
~

~
~

The data base description, called a schema, may exist in the MPE system as an ASCII file on cards,
magnetic tape, or as a catalogued disc file. Regardless of the actual physical record size of the file, the
Schema Processor reads, prints, and processes only the first 72 characters of each record. Any remaining
character positions in the record are available for your convenience, to be used for comments or collating
information. The data base description language is a free-format language; you can insert blanks
anywhere in the schema to improve its appearance except within symbolic names and reserved words.

DEC 85
3-1

Defining A Data Base

Language Conventions

The conventions used in describing the data base language are the same as those described on the
conventions sheet at the beginning of this manual. In addition, the conventions in Table 3-1 apply.

Table 3-1. Additional Conventions

PUNCTUATION All punctuation appearing in format statements must appear
exactly as shown.

COMMENTS Comments take the form: <<comment>>

They may contain any characters and may appear anywhere in the
schema except embedded in another comment. They are included
in the schema listing but are otherwise ignored by the
Schema Processor program.

DATA NAMES Data names may consist of from 1 to 16 alphanumeric characters,
the first of which must be alphabetic. Characters after the first
must be chosen from the set:

letters A - Z, digits 0 - 9, or
+-*/?'#%&@

UP SHIFTING All alphabetic input to the Schema Processor is upshifted (converted
to upper case, with the exception of passwords which may
contain lowercase characters).

Schema Structure

The overall schema structure is:

BEGIN DATA BASE··data base name[,LANGUAGE=language];
PASSWORDS: password part
ITEMS: item part
SETS: set part
END.

The data base name is an alphanumeric string from 1 to 6 characters. The first character must be
alphabetic.

The language is the native language definition name or number for the data base. Refer to the Native
Language Support Reference Manual for further information. The default language is the US ASCII
character set.

The password part, item part, and set part are described on the following pages. Figure 3-5 contains a
complete schema for the ORDERS data base that is used in the examples in this manual.

DEC 85
3-2

PASSWORD PART

The password part defines user classes and passwords. Section 2 contains a description of user classes and
how they are used to protect data elements from unauthorized access.

Syntax

user class number [password];

user class number [password];

Parameters

user class number

password

Example

14 CLERK
12 BUYER
11 CREDIT

Discussion

an integer between 1 and 63 inclusive. User class numbers must be unique
within the password part.

from 1 to 8 ASCII characters including lower case and excluding carriage
return, slash, semicolon, and blank. Blanks are removed by the Schema
Processor.

If the same password is assigned to multiple user class numbers, the highest numbered class is used. It is
not an error to omit the password, but the Schema Processor ignores lines containing only a user class
number.

DEC 85
3-3

ITEM PART

The item part defines data items including the data item name, length, and the user classes that have
access to the item. The data set(s) in which the data item appears is defined in the set part definition.

Syntax

item name, [sub-item count] type designator [sub-item length]

[(read class list/write class list)];

Parameters

item name

sub-item count

type designator

sub-item length

read class list

write class list

Example

the data item name. It must be a valid TurboIMAGE data name as
described in Table 3-1. It must be unique within the item part.

an integer from 1 to 255 that denotes the number of sub-items within an
item. If omitted, by default it equals one. A data item whose sub-item
count is 1, is a simple item. If the sub-item count is greater than one, it is
a compound item.

defines the form in which a sub-item value is represented in the computer.
The type designators I, J, K, R, U, X, Z, P are described in Table 3-2.

an integer from 1 to 2 5 5. It is the number of words, characters, or nibbles
(depending on the type designator) in a sub-item. If omitted, it is equal to
1 by de fa ult.

a group of user class numbers between 0 and 6 3, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0 and 6 3, inclusive, separated by
commas.

FIRST-NAME, X10 (12,14/11);

Discussion

There can be no more than 1023 data items in a data base. A data item name can appear in more than
one data set definition. For example, a data item named ACCOUNT appears in both the CUSTOMER and
SALES data sets of the ORDERS data base.

DEC 85
3-4

ITEM PART

Data Item Length

Each data item value is allotted a storage location whose length is equal to the product of the item's
sub-item length and its sub-item count. The unit of measure for the length depends upon the type
designator and may be a word, byte, or nibble. A word is a 16-bit computer word, a byte is eight bits or a
half-word, and a nibble is four bits or a half-byte. Table 3-2 defines the various type designators and
specifies the unit of measure used for each.

Table 3-2. Type Designators

WORD DESIGNATORS: I A signed binary integer in 2's complement
form.

J Same as I but QUERY allows only numbers
conforming to specifications for COBOL
COMPUTATIONAL data to be entered.

K An absolute binary quantity.
R A real (floating point) number.

CHARACTER DESIGNATORS: u An ASCII character string containing no
lowercase alphabetic characters.

x An unrestricted ASCII character string.
z A zoned decimal format number.

NIBBLE DESIGNATOR: p A packed decimal number.

A data item must be an integral number of words in length regardless of the type designator and its unit
of measure. In other words, data items of type U, X, or Z which are measured in bytes must have a
sub-item length and sub-item count such that their product is an even number. If a data item is defined
as U3, it cannot be a simple (item) and must have an even numbered sub-item count so that the data item
length is an integral number of words. Data items of type P which are measured in nibbles must have a
sub-item length and sub-item count such that their product is evenly divisible by 4, since 4 nibbles equal
1 word.

A data item cannot exceed 204 7 words in length. The entire item, whether simple or compound, is always
handled as a unit by TurboIMAGE.

DEC 85
3-5

ITEM PART

TurbolMAGE and Program Language Data Types

The type designator, sub-item count, and sub-item length you specify for a data item defines its length.
TurboIMAGE does not perform any conversions of data or examine the item to check its validity as it is
being added to the data base. The only data item values that TurboIMAGE checks are those specified as
part of a lock descriptor in calls to the DBLOCK procedure. (Refer to the discussions on locking in
Section 4.) There are no rules that a specific type of data defined by a programming language must be
stored in a specific type of TurboIMAGE data item.

Table 3- 3 relates TurbolMAGE type designators and sub-item lengths to the data types typically used to
process them in the available programming languages. Some BASIC language restrictions are noted.

Note that the UNIT-COST item in the INVENTORY data set is easier to process with COBOL or RPG
programs than with the other languages since packed data is a standard data type in COBOL and RPG.
However, the CREDIT-RATING data item in the CUSTOMER data set is easier to process with
FORTRAN, SPL, or BASIC programs since real numbers can be arithmetically manipulated in these
languages. As actual data base may be designed so that some data sets are processed by programs coded in
one language and others by programs coded in another language. Another data set may be conveniently
processed by programs written in any of the languages.

In order to specify a doubleword integer in BASIC, define a two-word array in which the first word
contains the high-order digits of values greater than 32767, or zero, and the second word contains the
low-order digits of values gre:.t ter than 3 2 7 6 7 or the en tire value if it is less than 3 2 7 6 7.

DEC 85
3-6

ITEM PART

Table 3-3. TurboIMAGE Type Designators and Programming Languages

COBOL FORTRAN RPG SPL BASIC

I COMPUTATIONAL INTEGER Binary INTEGER INTEGER**
$9 to 59(4)

12 COMPUTATIONAL INTEGER* 4 Binary DOUBLE INTEGER
S9(5) to S9(9)

14 COMPUTATIONAL Binary
59(10) to 59(18)

J COMPUTATIONAL INTEGER Binary INTEGER INTEGER**
S9 to S9C4)

J2 COMPUTATIONAL INTEGER* 4 Binary DOUBLE INTEGER
S9(5) to S9(9)

J4 COMPUTATIONAL Binary
59<10} to $9(18)

K1 LOGICAL LOGICAL ***
R2* REAL REAL REAL****

R4 DOUBLE PRECISION LONG LONG****

u DISPLAY CHARACTER Character BYTE String
PICTURE A

x DISPLAY CHARACTER Character BYTE String
PICTURE X

z DISPLAY Character
PICTURE 9

p COMPUTATIONAL-3 Numeric

*Real numbers must have a length of 2 or more words; Rand R1 (explicitly) are not supported by TurbolMAGE.
**BASIC integers cannot have the value -32768

***Type LOGICAL items> 32767 which are accessed as type INTEGER in BASIC programs are treated as
negative integers.

****BASIC REAL and LONG data cannot have the value 10-78

Refer to Section 6 for Pascal and TurboIMAGE type designators.

DEC 85
3-7

ITEM PART

Data Items of Type P

The bits used to represent the sign of a packed decimal value can vary depending on whether the value is
entered using QUERY, a COBOL program, or an RPG program. Here is a summary of what happens in
each case:

• For Values Entered Using QUERY:

NO Sign Specified:
PLUS Sign Specified:
MINUS Sign Specified:

• For Values Entered Using COBOL:

Sign is 1111 2 Sign is 11002 Sign is 1101 2

PICTURE Clause Specifies NO Sign:
PICTURE Clause Specifies PLUS Sign:
PICTURE Clause Specifies MINUS Sign:

• For Values Entered Using RPG:

Sign is 1111 2 Sign is 11002 Sign is 1101 2

NO Sign or PLUS Specified: Sign is 11002 MINUS Sign Specified: Sign is 1101 2

When using TurboIMAGE to locate all packed data items with a particular value (as described in a later
section), you must be aware that TurbolMAGE differentiates between unsigned, positive, and negative
data items with the same absolute value. For example, if you search for all data items with the value +2,
TurboIMAGE will not retrieve any items with the unsigned value 2.

In general, TurboIMAGE treats any two values with different binary representations as unequal regardless
of their type.

COMPLEX NUMBERS

Applications programmed in BASIC or FORTRAN can define and manipulate complex numbers by using
data type R2 with a sub-item count of 2, storing the real part in the first sub-item and the imaginary
part in the second sub-item.

QUERY AND DAT A TYPES

QUERY supports only a subset of the available data item types. If you intend to use QUERY you should
consult the QUERY Reference Manual for specific information about the way QUERY handles the various
TurboIMAGE data types, including compound data items.

DEC 85
3-8

ITEMS:

A,I2;

MELVIN ,3I.(1,20/44);

BLEVET,J;

COSTS,2X10;

DATE,X6;

VALUES,20R2(1/8);

PURCHASE-MONTH,UB;

MASK,K2;

TEMPERATURE,17R4;

SNOW*#@,Z4;

POPULATION, P12;

Data Item Identifiers

ITEM PART

Table 3-4. Examples of an Item Part

<<32 BIT SIGNED INTEGKR~>

<<COMPOUND ITEM. THREE SINGLE WORD SIGNED INTEGERS.
READ CLASSES ARE 1 AND ·20; WRITE CLASS IS 44.*>>

~

«SINGLE-WORD SIGNED INTEGER BETWEEN -9999 AND
9999. >>,

«COMPOUND ITEM. TWO' 10-CHARACTER ASCII STRINGS.»

<<SIX-CHARACTER ASCII STRING.>>

«COMPOUND ITEM. 20 2-WORD REAL (FLOATING-POINT)
NUMBERS. READ CLASS IS 1;WRlTE CLASS IS 8.*>>

<<EIGHT-CHARACTER ASCII STRING WITH NO LOWER CASE
ALPHABETICS.»

<<32 BIT ABSOLUTE BINARY QUANTITY.>>

<<COMPOUND ITEM. 17 FOUR WORD REAL (FLOATING­
POINT) NUMBERS.>>

<<FOUR-DIGIT ZONED DECIMAL {NUMERIC DISPLAY}
NUMBER.»

<<11 DECIMAL DIGITS PLUS A SIGN IN THE LOW ORDER
NIBBLE. OCCUPIES THREE WORDS.>>

*WRITE CLASSES CAN ALSO READ.

When using the TurboIMAGE procedures described in the next section, you can reference a data item by
name or number. The data item number is determined by the item's position in the item part of the
schema. The first item defined is item 1, the second is item 2, and so forth.

It is more flexible to use data item names since a change in the order of the item definitions or the
deletion of an item definition from the schema might require changes to all application programs
referencing the data items by number. Thus, to maintain program file independence, it is recommended
that you use data item names if possible.

DEC 85
3-9

SET PART (Master)

The set part of the schema defines data sets. It indicates which data items listed in the item part belong
to which sets and links the master data sets to the detail data sets by specifying them as search items.

Syntax

/NAME:\ t
\N: f se name, fM[ANUAL] \ [. .

'A[UTOMATIClf (read c~ass list/write class list)]
~ · [,device class];

{~~TRY:} item name [(path count)],

item name [(path count)];

{
CAPACITY:} . C: m:iximum entry count;

Parameters

set name

MANUAL (or M)

AUTOMATIC (or A)

read class list

write class list

device class

item name

path count

DEC 85
3-10

the data set name; must be a valid TurboIMAGE data name as described in
Table 3-1.

denotes a manual master data set. Each entry within a manual master
must be created manually and may contain one or more data items.

denotes an automatic master data set. Each data entry within an
automatic master is created automatically by TurbolMAGE and contains
only one data i tern.

a group of user class numbers between 0 and 6 3, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0 and 63, ·inclusive, separated by
commas.

is an MPE device class name on which the data set file resides.

the name of a data item defined in the item part.

an integer between 0 and 16, inclusive, which is used with the search item
only. It indicates the number of paths which will be established to various
detail data sets. (Ref er to Section 2 for more information about paths.) A
path count must be specified for one, and only one, item in the master set.
A zero path count may be used with a manual master data item to indicate
the search item. A manual master defined in this way is not linked to any
detail data set. An automatic master has one item that must have a path
count greater than zero.

SET PART (Master)

m:iximum entry count the maximum number of entries the data set can contain, the data set's
capacity. It must be less than 2 31 -1 (2,14 7,48 3,6 4 7).

Example

NAME:
ENTRY:

CAPACITY:

Discussion

SUP-MASTER,MANUAL(13/12,18),DISC1;
SUPPL! ER (1) ,
STREET-ADD,
CITY,
STATE,
ZIP;
200;

The example above shows the data set SUP-MASTER which will reside on Disc 1. Assigning the device
class where a data set will reside can provide greater performance for the TurbolMAGE data base and
may aid in better utilitizing system resources. An understanding of how to spread the data set files over
multiple disc devices may be obtained from your system manager. Your system manager will be able to
give you a listing of logical devices and their corresponding device class names (each logical device may
have up to eight names).

To retrieve information on where each data set resides after specifying device classes in the schema you
may run the MPE LISTDIR5 utility (after the data base is created). This utility lists the device type,
logical device number, and the device class name for each data set file in the data base. DBUTIL
>>SHOW may also be used to display the devices on which data set files reside.

DEC 85
3-11

SET PART (Detail)

The followmg provides the detail set part syntax and parameters.

Syntax

{~~ME:} set name, D[ETAIL] [(read class list/write class list)]
[,device class] ;

{~~TRY:} item name [([!)master set name [(sort item name)])],

item name [([!] rrr:ister set name [(sort item name)])];

{
CAPACITY:} . C: maxtmum entry count;

Parameters

set name

DETAIL (or D)

read class list

l.Jrite class list

device class

item name

(exclamation point)

master set name

DEC 85
3-12

the data set name. It must be a valid TurbolMAGE data name as defined
in Table 3-1.

denotes a detail data set.

a group of user class numbers between 0 and 6 3, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0 and 63, inclusive, separated by
commas.

is an MPE device class name on which the data set file resides.

the name of a data item defined in the item part. Each item defined as a
search item must be a simple item. Up to 16 items may be search items.
(Refer to master set name for more information about search items.)

denotes a primary path. Only one path in each detail data set can be
designated as a primary path. If no path is designated as primary, the first
unsorted path is the primary path by default. If all of the paths are sorted,
the default primary path is the first sorted path.

the name of a previously defined master data set. When a master set name
follows an item name, it indicates that the data item .ls a search item
linking the detail set to the named master. Up to 16 search items can be
defined for a detail data set. If no data items have a master name
following them, the detail is not related to any master. In this case, the
combined length of all data items in the data set must equal or exceed two
words.

sort item name

SET PART (Detail)

the name of a detail data item of type U, K, or X which is a part of the
data set being defined. A sort item defines a sorted path. Each entry
added to a chain of a sorted path will be linked logically in ascending order
of the sort item values. If sort item is omitted, the path order is
chronological, that is, new entries are linked to the end of chains. For
performance reasons, sorted chains should be kept short. (Refer to "Sort
Items" in Section 2.)

rrK:lximum entry counts the maximum number of entries allowed in a data set (data capacity); must
be less than 231 -1 (2,147,483,647).

Example

NAME:
ENTRY:

SALES,DETAIL(11/14,18),DISC1;
ACCOUNT(CUSTOMER(PURCH-DATE)),
STOCK#(!PRODUCT),
QUANTITY,
PRICE,
TAX,
TOTAL,
PURCH-DATE (DATE-MASTER),
DELIV-DATE (DATE-MASTER);

CAPACITY: 500;

Master and Detail Search Items

The master and detaiLsearch items that define a path between two data sets must have identical type
designators and sub-item lengths when they are defined in the item part. Since the same data item name
may appear in more than one data set, you may use the same data item name and definition for both the
master and detail search items. For example, the data item ACCOUNT is used as the search item in both
the CUSTOMER master and SALES detail data sets.

If you want to make a distinction between the search items, however, they may be defined separately. An
example of this technique is found in the ORDERS data base. The search item DATE links the
DATE-MASTER data set to the SALES data set through two paths, and two search items, PURCH-DATE
and DELIV - DA TE. These three data items look like this in the i tern part:

DATE,
DELIV-DATE,
PURCH-DATE,

XS;
XS (/14);
XS (11/14);

Each data item has type designator X and sub-item length 6. The item names, read class lists, and write
class lists differ however.

Figure 3-5 at the end of this section contains the listing printed by the Schema Processor when the
ORDERS data base schema is processed. Refer to this figure for examples of the schema parts.

Data Set Identifiers

Like data items, data sets may be referenced by name or number. The data set number is determined by
the set's position in the set part of the schema. It is more flexible to use data set names, however, in order
to maintain program file independence.

DEC 85
3-13

SCHEMA PROCESSOR OPERATION

The Schema Processor is a program which accepts a textfile containing the schema as input, scans the
schema and if no errors are detected, optionally produces a root file. The Schema Processor prints a
heading, an optional list of the schema, and summary information on a listfile.

The Schema Processor executes in either MPE job or session mode. For further information about sessions
and jobs, refer to the MPE Commands Reference Manual. In either case, you must use the following MPE
command to initiate execution of the Schema Processor:

:RUN DBSCHEMA.PUB.SYS

Table 3-5 lists the formal file designators and default actual file designators which the Schema Processor
uses for textfile and listfile. The input/output devices to which $STDINX and $STDLIST refer depend
upon the way the system is generated. However, $STDINX is the standard job or session input device and
$STDLIST is the standard job or session output device.

Table 3-5. Schema Processor :Files

FILE USE FORMAL FILE DEFAULT ACTUAL
DESIGNATOR FILE DESIGNATOR

textfile Schema and Schema DBSTEXT $STDINX
Processor Commands

listfi le output listing DBSLIST $STD LIST

If you want to equate these files to some other actual file designator, you can use the MPE :FILE
command. If a :FILE command is included in the job stream, you must inform the Schema Processor of
this in the :RUN command in the following way:

:RUN DBSCHEMA.PUB.SYS;PARM=n

where

n =

n = 2

DEC 85
3-14

n = 3

if an actual file designator has been equated to DBSTEXT.

if an actual file designator has been equated to DBSLIST.

if actual file designators have been equated to both DBSTEXT and DBSLIST.

Table 3-6 shows sample combinations of :RUN and :FILE commands which can be used to initiate
DBSCHEMA execution.

Table 3-6. RUN and FILE Commands, Examples

:RUN DBSCHEMA.PUB.SYS

:FILE DBSTEXT=ORDERSSC
:RUN DBSCHEMA.PUB.SYS;PARM=1

:FILE DBSLIST;DEV=LP
:RUN DBSCHEMA.PUB.SYS;PARM=2

, jcL ,,,.:t

:FILE DBSTEXT=OROERSSC
:FILE DBSLIST;DEV=~P
:RUN DBSCHEMA.PUB.SYS;PARM=3

Uses all default files. Prompts for
lines of schema in session mode.

Processes schema from a user disc
textfile named ORDERSSC.

Outputs the listing to a line
printer.

Processes schema from user textfile
named ORDERSSC; outputs the listing
to a line printer.

Only the first 72 characters of each textfile record are processed.

If you request a root file, and the schema is error-free, it is created, given the same name as the one
specified for the data base in the schema, initialized, and saved as a catalogued disc file.

Creating the Textfile

A convenient method for creating the input file is to use the text editor, EDIT/3000, to enter the
commands and schema in a disc file. Figure 3-2 illustrates this process in a sample session which also
executes the Schema Processor. (Refer to EDIT I 3000 Reference Manual for information about the
Editor.)

The steps followed in the sample in Figure 3- 2 are:

1 Initiate an MPE session by logging or:i with the appropriate user name and account.

2 Initiate text editor execution. Entet an Editor ADD command in response to the first prompt.

3 Enter Schema Processor commands and the schema itself into records of the Editor work file.

4 Save the work file in a disc file named ORDERSSC. Then terminate the Editor.

5 Use the :FILE command to equate the formal file designator DBSLIST to the line printer and
DSBTEXT to the disc file ORDERSSC.

6 Initiate execution of DBSCHEMA and indicate that the textfile and Iistfile have been defined in
:FILE commands. When the Schema Processor has finished processing the schema it prints the
number of error messages and verifies that the root file has been created.

Figure 3-3 illustrates the order of commands and other input required when executing the Schema
Processor in batch mode. The job can also be stored in a disc file and executed from a terminal.

DEC 85
3-15

(RETURN)

1 :HELLO USER.ACCOUNT
HP3000 / MPE V/E G.00.00.

2 :EDITOR

FRI, DEC 7, 1984, 2:07 PM

HP32201A.7.15 EDIT/3000 FRI, DEC 7, 1984, 2:07 PM
(C) HEWLETT-PACKARD CO. 1983

3 /ADD
1 $PAGE "SCHEMA OF DATA BASE ORDERS"
2 $CONTROL ERRORS=5, BLOCKMAX=256
3 BEGIN DATA BASE ORDERS;

59 END.
60 II

4 /KEEP ORDERSSC
/EXIT

5 :FILE DBSLIST;DEV=LP
:FILE DBSTEXT=ORDERSSC

6 :RUN DBSCHEMA.PUB.SYS;PARM=3

HP32215C.OO.OO
NUMBER OF ERROR MESSAGES: 0
ROOT FILE ORDERS CREATED

END OF PROGRAM
: BYE

Figure 3-2. Sample Schema Creation Session

The Data Base Creator

The person who creates the root file is identified as the data base creator and can subsequently create and
initialize the data base. To do so, the data base creator must log on with the same account, user name, and
group that he or she used to create the root file and execute the TurboIMAGE utility program DBUTIL.
This program is described in Section 8.

DEC 85
3-16

SCHEMA PROCESSOR COMMANDS

TurboIMAGE provides several commands which you may use anywhere in the schema to specify options
available while processing the schema. The commands are: $PAGE, $TITLE, and $CONTROL. The $
must always be the first character of the record, immediately followed by the command name, which must
be completely spelled out.

If a parameter list is included with the command, it must be separated from the command name by at
least one blank. Parameters are separated from each other by commas. Blanks may be freely inserted
between items in the parameter list.

Command records may not contain comments .

!JOB USER.ACCOUNT
!RUN DBSCHEMA.PUB.SYS
$PAGE
$TITLE
$CONTROL
BEGIN DATA BASE B;

!EOD
!EOJ

....,_ __ Job command
Run command

--- Schema Processor Commands (optional)

--- Schema

....,_ __ EOD command
--- EOJ command

Figure 3-3. Schema Processor Batch Job Stream

Continuation Records

To continue a command to the next record, use an ampersand (&) as the last non -blank character in the
current record. The following record must begin with a $. The records are combined and the $ and &
are deleted and replaced by one blank character. A command name or parameter cannot be broken by&.
Characters beyond the 7 2nd character of each record are ignored.

DEC 85
3-17

$PAGE

The $PAGE command causes the listfile to eject to the top of the next page, print character-strings which
you may optionally specify, and skip two more lines before continuing the listing.

Syntax

$PAGE [["character-string"], ...]

Parameters

character-string

Example

a list of characters enclosed in quotes. When the command is executed, the
quotes are stripped and the character-strings are concatenated. A quote
mark within a character-string is specified by a pair of quotes.

$PAGE "ORDERS DATA BASE SCHEMA", "VERSION 311

$PAGE "MASTER DATA SETS"&
$,"ACCOUNTING APPLICATION"

$PAGE

Discussion

The $PAGE command is effective only if the LIST option of the $CONTROL command is on. The LIST
option is on by default until a $CONTROL command sets NOLIST. The $PAGE command itself is not
listed.

The contents of the character-strings replace those specified by a previous $PAGE or $TITLE command.
If no character-strings are specified, the character-strings specified in the preceding $PAGE or $TITLE
command, if any, are printed at the top of the next page. ·

DEC 85
3-18

$TITLE

The $TITLE command specifies a list of characters to be printed each time a heading is printed on a new
page. It does not cause a page eject.

Syntax

$TITLE [["character-string"], ...]

Parameters

character-string

Example

a list of characters enclosed in quotes. When the command is executed, the
quotes are stripped and the character-strings are concatenated. A quote
mark within a character-string is specified by a pair of quotes.

$TITLE 111111 PRELIM 1111 0RDERS DATA BASE"

$TITLE "ORDERS DATA BASE SCHEMA JUNE, 198411

Discussion

The $TITLE command may be overridden by a subsequent $TITLE or $PAGE command. If no
character-string is specified, no title is printed after the command is encountered until another $TITLE or
$PAGE command specifies one.

DEC 85
3-19

$CONTROL

The $CONTROL command allows you to specify options in relation to processing the schema.

Syntax

$CONTROL [~~~isT] [ERRORS=nnn] (,LINES=nnnnn] [::g~6oT]

_ ['TABLE l (,BLOCKMAX-nnnn] ,NOTABLf~

Parameters

LIST

NOLIST

ERRORS=nnn

LINES=nnnnn

ROOT

NO ROOT

BLOCKMAX=nnnn

TABLE

NOTABLE

DEC 85
3-20

causes each source record of the schema to be printed on the listfile.

specifies that only source records with errors be printed on the listfile. An
error message is printed after these records.

sets the maximum number of errors to nnn. If more than nnn errors are
detected, the Schema Processor terminates. nnn may have a value between
0 and 999, inclusive. The default value is 100.

sets the number of lines per page on the listfile to nnnnn which can be
between 4 and 32767, inclusive. The default value is 60 if listfile is a line
printer and 3 2 7 6 7 if it is not.

causes the Schema Processor to create a root file if no errors are detected in
the schema.

prevents the Schema Processor from creating a root file.

sets the maximum physical block length (in words) for any data set in the
data base. nnnn may have a value between 128 and 2048, inclusive. The
default value is S 12. This is an important parameter and is discussed in
greater detail below.

causes the Schema Processor to write a table of summary information about
the data sets to the listfile device if no errors are detected.

suppresses the TABLE option.

$CONTROL

Discussion

The default parameters are LIST, ROOT and TABLE. If no $CONTROL command is used, the results are
the same as if the following $CONTROL command is used:

$CONTROL LIST, ERRORS=100,LINES=60,ROOT,BLOCKMAX=512,TABLE

The parameters may be placed in any order but must be separated by commas.

Selecting the Block Size

The data set records are transferred from the disc to memory in blocks. (The block format is described in
Section 10.) When you specify a maximum block size with the $CONTROL command you should
consider:

• Efficient disc space utilization.

• Minim um disc access.

• Program execution time which can be affected by the size of a privileged data segment in which
TurboIMAGE maintains a Data Base Buffer Area Control Block. (Refer to Section 4 for a definition
of the DBB.) Buffers in the DBB must be as large as the largest block of the data base, therefore, the
larger the block, the larger each buff er must be.

The Schema Processor determines the number of data records which fit in a block. Larger blocks
minimize disc access by enabling the transfer of more records at one time. In selecting a block size, the
following considerations may apply:

• If the applications using the data base will be run as batch jobs at times when few other users are
competing for system resources, particularly memory space, you may choose to use large blocks. This
will reduce the frequency of disc access if an application is accessing data sets serially, or along chains
whose members are physically contiguous or close.

• If the application programs are large and will be run while many users are operating in session mode,
large blocks and the resulting large DBG and DBB data segments may cause the program to execute
more slowly since a larger area of memory is required to execute the programs. In this case, you may
want to decrease the block size. If the application programs are small, this may not be necessary.

Note that DBSCHEMA chooses a blocksize (less than or equal to the maximum blocksize) which makes the
best use of disc space, and which may be substantially less than the maximum blocksize (as specified by
$CONTROL BLOCKMAX, or the default of 512 words). If the record size is greater than 512 words,
BLOCKMAX must be set greater than or equal to the record size.

Other factors may depend on the application requirements and a certain amount of tuning is sometimes
necessary to determine the best block size. In general, the default block size of 512 words yields
reasonable performance and should be changed only with good reason.

DEC 85
3-21

SCHEMA PROCESSOR OUTPUT

The Schema Processor prints the following heading on the first page of the listing:

PAGE 1 HEWLETT-PACKARD 32215C.OO.OO TurboIMAGE/3000 MON, DEC 10,1984, 4:32 PM

If your standard output device ($STDLIST) is different from listfile, an abbreviated product identification
is also printed on $STDLIST. Subsequent pages of listfile are headed by a page number, the data base
name if it has been encountered, and the title most recently specified by a $TITLE or $PAGE command.

If the LIST option is active, a copy of each record of the schema 1s sent to the listfile. However, if the
textfile and listfile are the same, as for example they are wht!n you enter the schema source from your
terminal in session mode, the records are not listed. If you are entering the schema in this way, the
Schema Processor prompts for each line of input with a>.

Summary Information

After the entire schema has been scanned, several types of summary information may be printed on the
listf ile.

• If not all of the items defined in the item part are referenced in the set part, and if no errors are
encountered, the message UNREFERENCED ITEMS: list of i terns is printed to the listfile. The list
includes all items defined but not referenced in a data set. ·Although they are not considered errors,
these extraneous items should be removed to reduce the size of the tables in the root file and the size of
the extra data segment used by the library procedures.

• If no errors are detected in the schema, the Schema Processor prints a table of summary information
about the data sets. Figure 3-4 contains a sample printout of this information. Table 3-7 describes
the information contained in the summary. The NOT ABLE parameter of the $CONTROL command
suppresses printing of this table.

DATA SET TYPE
NAME

EMPLOYEE M
PROJECT-MASTER M
LABOR

DEC 85
3-22

D

FLO PT ENTR MED CAPACITY BLK BLK DISC
CNT CT LGTH REC FAC LGTH SPACE

4 7 17 500 30 512 72
2 10 20 75 19 382 15
4 2 10 18 10024 28 506 1436
TOTAL DISC SECTORS INCLUDING ROOT: 1532

Figure 3-4. Data Set Summary Table

Table 3-7. Data Set Summary Table Information

DATA SET The name of the data set. CAPACITY The maximum number of
NAME entries allowed in the data

set. For detail data sets, this
number may differ from the

TYPE A for automatic, M for number of entries specified in
manual, or D for detail. the schema itself, because the

capacity of each detail is
adjusted to represent an even
multiple of the blocking
factor (see below).

FLO CNT The number of data items in BLK FAC The number of media records
each entry of the data set. which are blocked together

for transfer to and from the
disc.

PT CT Path count. For a master data
set, this is the number of
paths specified for the data BLK LGTH The total length in words of
set search i tern. For a detail the physical block as defined
data set, it is the number of in BLK FAC. This includes
search items defined for each the media records and a bit
entry of the data set. map. Bit maps are discussed in

Section 10.

ENTR LNGTH The length in words of the DISC SPACE The amount of disc space (in
data portion of the data entry 12 8-word sectors) occupied
(not including any of the by the MPE file containing
TurboIMAGE pointers or the data set.
structure information
associated with a data entry).

MED REC The total length in words of a TOTAL DISC The total number of
media record of the data set. SECTORS 128-word disc sectors which
This length includes the entry INCLUDING will be occupied by the data
length plus any of the ROOT:nnnn base, when created using the
TurboIMAGE pointers DBUTIL program.
associated with the data
entry. Media records are
discussed in Section 10.

• Two lines of summary totals are printed on the listfile. For example:

NUMBER OF ERROR MESSAGES: 0
ITEM NAME COUNT: 22 DATA SET COUNT: 6

The error count includes both errors in the schema and in the Schema Processor commands. The error
count is also sent to $STDLIST, if it is different from the listfile.

DEC 85
3-23

• If no schema syntax or logical errors are encountered, a third line is printed. The form of this line is:

ROOT LENGTH: r BUFFER LENGTH: b TRAILER LENGTH: t

ROOT LENGTH is the length in words of the body of the root file. BUFFER LENGTH is the length
in words of each of the data buffers which TurboIMAGE allocates in an extra data segment (the DBB)
for use in transferring data set blocks to and from disc. TRAILER LENGTH is the length in words of
an area in the extra data segment used by TurbolMAGE to transfer information to and from a calling
program's stack.

• If no errors are detected and the ROOT option is active, the following message is se:nt to the listfile:

ROOT FILE data base name CREATED

data base name is the name given in the BEGIN DAT A BASE statement in the schema.

Schema Errors

When the Schema Processor detects an error it prints a message to the listfile. If the LIST option is active,
it is printed immediately after the offending statement. If NOLIST is active, the current line of the
schema is printed and then the error message.

Schema Processor error messages are explained in Appendix A. The root file is not created if any of the
listed errors are detected. However, the Schema Processor attempts to continue checking the schema for
logical and syntactical correctness.

One error may obscure detection of subsequent errors, particularly if it occurs early in a data set. It may
be necessary to process the schema again after the error is corrected to find subsequent errors.
Conversely, some errors early in the schema can generate subsequent apparent errors which will disappear
after the original error has been corrected.

If schema errors prohibit creation of the root file, the following message is sent to the listfile, and to
$STDLIST if it is not the same as the listfile:

PRECEDING ERRORS -- NO ROOT FILE CREATED

A few conditions, including the number of errors exceeding the total number allowed, cause immediate
termination of the Schema Processor without the normal summary lines. In this case, the following
message is printed:

SCHEMA PROCESSING TERMINATED

Schema Processor Example

Figure 3-5 contains the listfile output printed when the schema of the sample ORDERS data base is
processed. The data base has S passwords and contains 23 data item definitions and 6 data set definitions.
The Schema Processor summary information is printed following the schema.

DEC 85
3-24

PAGE 1
HEWLETT-PACKARD 32215C.OO.OO IMAGE/3000: DBSCHEMA FRI,DEC 7

$CONTROL LIST,LINES=46
$PAGE "SCHEMA FOR DATA BASE ORDERS"
BEGIN DATA BASE ORDERS;

PASSWORDS:
14 CLERK; << SALES CLERK >>
12 BUYER; << BUYER - RESPONSIBLE FOR PARTS INVENTORY >>
11 CREDIT; << CUSTOMER CREDIT OFFICE >>
13,SHIP-REC; <<WAREHOUSE - SHIPPING AND RECEIVING>>
18 DO-ALL; << FOR USE BY MGMT >>

ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>
ACCOUNT, J2 , << CUSTOMER ACCOUNT NUMBER>>
BINNUM, Z2 (/13); <<STORAGE LOCATION OF PROD>>
c ITV ' x 1 2 (1 2 ' 1 3 ' 1 4 I 11) ;
CREDIT-RATING,R2 (/14);
DATE, X6 ;
DELIV-DATE, X6 (/14);
DESCRIPTION, X20 ;
FIRST-NAME, X10 (14/11);
INITIAL, U2 (14/11);
LAST-NAME, X16 (14/11);
LASTSHIPDATE, X6 (12/);
ONHANDQTY, J2 (14/12);
PRICE, J2 (14/);
PURCH-DATE, X6 (11/14);
QUANTITY, I (/14);
STATE, X2 (12,13,14/11);
STOCK#, ua ;
STREET-ADD, X26 (12,13,14/11);
SUPPLIER, X16 (12,13/);
TAX, J2 (14/);
TOTAL, J2 (11,14/);
UNIT-COST, P8 (/12);
ZIP, X6 (12, 13, 14/11);

SETS:

« CITY»
« CUSTOMER CREDIT RATING>>
« DATE (YYMMDD) »
« DELIVERY DATE (YYMMDD)>>
<< PRODUCT DESCRIPTION>>
« CUSTOMER GIVEN NAME>>
<< CUSTOMER MIDDLE INITIAL>>
<< CUSTOMER SURNAME>>
<< DATE LAST REC D(YYMMDD)>>
« TOTAL PRODUCT INVENTORY>>
<< SELLING PRICE (PENNIES)>>
« PURCHASE DATE (YYMMDD)>>
« SALES PURCHASE QUANTITY>>
<< STATE -- 2 LETTER ABB>>
« PRODUCT STOCK NUMBER>>
<< NUMBER AND STREET ADD>>
<< SUPPLYING COMPANY NAME>>
« SALES TAX»
« TOTAL AMOUNT OF SALE>>
« UNIT COST OF PRODUCT>>
« ZIP CODE»

NAME:
ENTRY:

CUSTOMER,MANUAL(14/11,18),DISC;
ACCOUNT(1),

<<CUSTOMER MASTER>>

LAST-NAME,
FIRST-NAME,
INITIAL,
STREET-ADD,
CITY,
STATE,
ZIP,
CREDIT-RATING;

CAPACITY: 200;

Figure 3-5. ORDERS Data Base Schema

DEC 85
3-25

PAGE 2 SCHEMA FOR DATA BASE ORDERS
NAME: DATE-MASTER,AUTOMATIC,DISC1; «DATE INDEX»
ENTRY: DATE(3);
CAPACITY: 211;
NAME: PRODUCT,MANUAL(14,13/12,18),DISC2;<<PRODUCT INDEX>>
ENTRY: STOCK#(2),

DESCRIPTION;
CAPACITY: 300;
NAME: SALES,DETAIL(11/14,18),DISC1; <<CREDIT PURCHASE>>
ENTRY: ACCOUNT(CUSTOMER(PURCH-DATE)),

STOCK# (PRODUCT) ,
QUANTITY,
PRICE,
TAX,
TOTAL,
PURCH-DATE(DATE-MASTER),
DELIV-DATE(DATE-MASTER);

CAPACITY: 500;
NAME: SUP-MASTER,MANUAL(13/12,18),DISC1; <<SUPP MASTER>>
ENTRY: SUPPLIER(1),

STREET-ADD,
CITY,
STATE,
ZIP;

CAPACITY: 200;
NAME: INVENTORY,DETAIL(12,14/13,18),DISC1; <<PROD SUPPLY>>
ENTRY: STOCK#(PRODUCT),

CAPACITY:
END.

ONHANDQTY,
SUPPLIER(!SUP-MASTER),
UNIT-COST,
LASTSHIPDATE(DATE-MASTER),
BINNUM;
450;

«PRIMARY PATH»

DATA SET
NAME

CUSTOMER
DATE-MASTER
PRODUCT
SALES
SUP-MASTER
INVENTORY

TYPE FLO PT ENTR
CNT CT LGTH

MED
REC

CAPACITY BLK BLK
FAC LGTH

M 9 1 41
A 1 3 3
M 2 2 14
D 8 4 19
M 5 1 31
D 6 3 20

TOTAL
NUMBER OF ERROR MESSAGES: 0

52 200
26 211
31 300
35 504
42 200
32 450

DISC SECTORS

ITEM NAME COUNT: 23 DATA SET COUNT: 6

7 365
19 496
16 497
14 491
12 505
15 481

INCLUDING ROOT:

DISC
SPACE

90
52
80
148
72
124
583

ROOT LENGTH: 1176 BUFFER LENGTH: 505 TRAILER LENGTH: 256
ROOT FILE ORDERS CREATED.

DEC 85
3-26

Figure 3-5. ORDERS Data Base Schema (Continued)

~us_i_NG __ T_HE __ D_AT_A~B-AS_E~--~~~~lr!MI,
After the data base is designed, the root file created, and the files built, application programs can be
written that will be run to enter and use the data. Programs written in COBOL, FORTRAN, Pascal, SPL,
or BASIC gain access to the data base through calls to TurboIMAGE procedures. RPG programs contain
specifications used by the Report Program Generator to make calls to the TurboIMAGE procedures for
you. This section contains a text discussion of the procedures used to open the data base, enter, read,
update, and delete data, as well as information on locking, transaction logging, checking procedure status
and interpreting errors. Use this section together with Section 5 which gives details about each procedure
call, its parameters, and status information.

NOTE

Before application programs can be executed, the data base must be created
using DBUTIL TurboIMAGE utility program described in Section 8.

OPENING THE DAT A BASE

Before you can gain access to the data, the process you are running must open the data base with a call to
the DBOPEN procedure. (A process is a unique execution of a particular program by a particular user at
a particular time, as described in the MPE Intrinsics Reference Manual.) In opening a data base, DBOPEN
establishes an access path between the data base and your program by:

• verifying your right to use the data base under the security provisions provided by the MPE file system
and the TurboIMAGE user class/password scheme.

• determining that the access mode you have requested in opening the data base is compatible with the
access modes of other users currently using the data base.

• opening the root file and constructing the control blocks to be used by all other TurboIMAGE
procedures when they are executed. The root file remains open until the data base is closed.

Note that DBOPEN does not open the individual data sets that compose a data base.

DBOPEN also determines if the operating system supports the native language as defined in the root file.
An error message "Language is not supported" will be returned if the language attribute of the data base is
not supported by the current system configuration. Refer to Appendix A for more information.

Data Base Control Blocks

TurboIMAGE executes using data stored in four different types of dynamically-constructed control
blocks resident in privileged extra data segments. The Data Base System Control Block (DBS), the Data
Base Globals Control Block (DBG), the Data Base Buffer Area Control Block (DBB), and the Data Base
User Local Control Block (DBU). The Data Base System Control Block is created when the first user opens
any data base on the system. The DBS is used as a system wide table to locate the current DBG and DBB
for any opened data base. There is only one DBS per system.

DEC 85
4-1

Using the Data Base

TurboIMAGE creates the Data Base Globals Control Block (DBG) and the Data Base Buffer Area Control
Block (DBB) for a particular data base when the first user's process calls the DBOPEN procedure to open
the data base. Both will remain allocated until the last user closes the data base (DBCLOSE).

The DBG contains global information required by TurboIMAGE intrinsics during run-time. There is
exactly one DBG for each open data base regardless of the number of concurrent access paths to the data
base. All TurboIMAGE procedures on a particular data base (except DBERROR and DBEXPLAIN)
reference the DBG. In addition, the DBG contains the lock table which holds user level locking
information.

The DBB contains a set of buffers which may contain data from any of the data sets. Global information
regarding logging and recovery is also contained within the DBB. The DBB is used to retrieve, log and
update data located in the data set files on disc.

There is one Data Base User Local Control Block (DBU) for each user who accesses a data base. In other
words, a unique DBU is created each time DBOPEN is successfully called. A DBU contains information
pertaining to the user's own individual access to the data base. The privileged extra data segment
containing the DBU is associated with the user's process.

All TurboIMAGE intrinsics process on the DBU except accesses for global and buffer area information
found in the two global blocks (DBG and DBB). The DBU is released when the user's process calls
DBCLOSE to close the data base.

Passwords

When you open the data base you must provide a valid password to establish your user class number. If
you do not provide one, you will be granted user class number 0. If you are the data base creator and
supply a semicolon as a password, the number 64 is used to grant you unlimited data base access privileges.
Passwords and user classes are discussed in Section 2.

Access Modes

There are eight different access modes available and each mode determines the type of operation that you
can perform on the data base as well as the types of operations other users can perform concurrently. To
simplify the definition of the various access modes, the following terminology is used:

• read access allows the user to locate and read data entries.

• update access allows read access and, in addition, allows the user to replace values in all data items
except search and sort items.

• modify access allows update and, in addition, allows the user to add and delete entries.

The procedures that can be used with each type of access are:

• read DBFIND and DBGET.

• update DBFIND, DBGET, and DBUPDATE.

• modify DBFIND, DBGET, DBUPDATE, DBPUT, and DBDELETE.

DEC 85
4-2

Using the Data Base

Table 4-1 summarizes the type of access granted in each access mode, provided the MPE security
provisions and your password permit it. Access modes 3 and 7 provide exclusive access to the data base; all
other modes allow shared access.

Table 4-1. Access Mode Summary

ACCESS TYPE OF ACCESS CONCURRENT SPECIAL
MODE GRANTED ACCESS ALLOWED REQUIREMENTS

1 modify modify Locking must be used for
(with locking) update or modify.

2 update update

3 modify none

4 modify read

5 read modify TurboIMAGE does not
(with locking) require locking but it

should be used to
coordinate access with users
who are modifying.

6 read modify

7 read none

8 read read

CONCURRENT ACCESS MODES

A data base can only be shared in certain well-defined environments. The access mode specified when a
process opens a data base must be acceptable for the environment established by others who are already
using the data base. Here is a summary of the acceptable environments:

• multiple mode 1 and mode 5 users.

• multiple mode 6 and mode 2 users.

• multiple mode 6 users and one mode 4 user.

• multiple mode 6 and mode 8 users.

• one mode 3 user.

• one mode 7 user.

DEC 85
4-3

Using the Data Base

Subsets of these environments are also allowed. For example, there may be all mode 6 users or all mode 8
users. There may be one mode 1 user or all mode 5 users and so forth.

If a mode 3 or mode 7 user is currently accessing the data base, it cannot be opened until that user closes
the data base. This is true any time an attempt is made to open a data base in a mode which is not
compatible with the modes of others using the data base.

DATA BASE OPERATIONS

The descriptions below explain in detail exactly what occurs when a data base is opened in a particular
mode. Locking is available in all modes. In the discussion that follows, brief suggestions are given as to
when locking may be used. Refer to the discussion of the locking facility for more information.

• ACCESS MODE 1. Tl\e data base is opened for shared modify access. Opening in mode 1 succeeds only
if all other current users of the data base have access modes 1 or 5.

All TurbolMAGE procedures are available in this mode. However, a program must obtain temporary
exclusive control of the data entries before calling any procedure that changes them, such as
DBUPDA TE, DBPUT, or DBDELETE. In this way, changes to the data base are synchronized and
carried out properly. This exclusive control must subsequently be relinquished to permit other access
mode 1 or mode 5 users to access these entries. Acquiring and relinquishing is referred to as locking
and unlocking, respectively. These functions are supplied by the TurbolMAGE library procedures,
DBLOCK and DBUNLOCK. The locking requirements may be met by locking the affected entries, the
sets containing the entries, or the whole data base.

A mode 1 (and mode 5) user who has all or part of the data base locked is assured that no concurrent
user is modifying that part of the data base.

It is possible to read entries in the data base using calls to DBFIND and DBGET without locking but
the calling program must provide for the possibility that another process may be simultaneously
modifying the data base. This can result in an entry being deleted from a chain which the calling
program is reading.

• ACCESS MODE 2. The data base is opened for shared update access. The opening succeeds only if all
current users of the data base have access modes 2 and 6. All TurboIMAGE procedures are available to
the mode 2 user except DBPUT and DBDELETE which are permanently disabled in this mode.
Therefore, the mode 2 user is able to read and update data entries but is not permitted to add or delete
data entries in any data set.

The programmer must be aware of the possibility that other mode 2 users are simultaneously updating
data entries. In many applications, it may be possible to arrange for each user process to update unique
data entries or data items so that the data base will correctly reflect all changes, even data items in the
same entry updated by different processes. On the other hand, if two or more processes update the
same data items of the same entry, the data base will reflect only the latest values. Locking may be
used, if desired, to coordinate update sequences to an en try or to coordinate with mode 6 readers.

• ACCESS MODE 3. The data base is opened for exclusive modify access. If any other users are
accessing the data base, it cannot be opened in this mode. All TurbolMAGE procedures are available to
the mode 3 user. No other concurrent process is permitted to gain any type of access to the data base.

DEC 85
4-4

Using the Data Base

• ACCESS MODE 4. The data base is opened for semi-exclusive modify access. Only one mode 4 user
can access the data base and all other current users must be in mode 6 (read only). The mode 4 user is
permitted to call any TurbolMAGE procedure and has complete control over data base content. This
mode differs from mode 3 only in that other read-only users are permitted concurrent access to the
data base. Locking may be used to coordinate with mode 6 readers.

• ACCESS MODE 5. The data base is opened for shared read access. All other concurrent users must be
in mode 1 or mode 5. Mode 5 operates in exactly the same way as mode 1 except the procedures that
alter the data base, DBUPDATE, DBPUT, and DBDELETE, are disabled for the mode 5 user. Locking
can be used, if desired, to ensure that data is not being modified while you are reading it.

• ACCESS MODE 6. The data base is opened for shared read access. Concurrent users must be in mode
2, 4, 6, or 8. This mode can also be used while the data base is being stored with the TurbolMAGE
utility program, DBSTORE. Some of these modes are incompatible with each other as shown in the
discussion of concurrent access modes above. All TurbolMAGE procedures that alter the data base are
disabled. Locking can be used to synchronize with users who are concurrently updating.

Mode 5 and 6 are appropriate for inquiry-type applications if they can tolerate the possibility of data
base modifications taking place simultaneously, since mode 1, 2, and 4 users can make such changes.

• ACCESS MODE 7. The data ba~;e is opened for exclusive read access. No other users may access the
data base concurrently. Mode 7 operates in exactly the same way as mode 3 except the procedures that
alter the data base are disabled for the mode 7 user.

• ACCESS MODE 8. The data base is opened for shared read access. Concurrent users must be in mode
6 or 8 or using the TurboIMAGE utility DBSTORE. TurboIMAGE procedures that alter the data base
are not permitted. Since mode 8 allows only concurrent readers, a user program with this access mode
can be assured that the data base values it reads are unchanging.

SELECTING AN ACCESS MODE

When deciding which access mode to use, two important considerations are:

• Use the least capability that will accomplish the task. For example, select a read only access mode
(5,6,7, or 8) if the program does not alter the data base in any way.

• Allow concurrent users as much capability as is consistent with successful completion of the task. If
the task is merely browsing through the data base, producing a quick report, or accessing an unchanging
portion of the data base, choose a mode which allows concurrent users to make data base modifications
to other parts of the data base. Allowing concurrent read-only access (modes 2, 4, and 8) may be
appropriate in many situations. For programs that must be assured there will be no concurrent
structural changes but can tolerate simultaneous updates to entries, mode 2 may be particularly
suitable. Locking may be used to control simultaneous updates to a data entry. If it is absolutely
necessary to make structural changes to a data base from concurrent multiple processes, modes 1 and S
must be used. Fully exclusive operation (modes 3 and 7) are available if needed.

DEC 85
4-5

Using the Data Base

The following mode selection guidelines are organized according to the task to be performed. For some
tasks, one of several modes may be selected depending on the concurrent activity allowed with each mode.

• Programs that perform all data base operations, including adding and deleting entries, should open with
mode 1, 3, or 4. Choose:

mode 1

mode 4

mode 3

if it is necessary to allow other processes to add and delete entries
simultaneously. In this case, the affected parts of the data base must be locked
while performing updates, additions, or deletions.

if exclusive ability to change the data base is required but it is possible to allow
mode 6 processes to read the data base while changes are being made.

if the program must have exclusive access.

• Programs that locate, read and replace data in existing entries but do not need to add or delete any
entries, and do not want any other processes to do so, should open the data base in mode 2. Locking can
be used to coordinate updates.

• Programs that only locate and read or report on information in the data base should open with one of
the read only modes. In this case, the mode selected depends upon either the type of the process
running concurrently or the need for an unchanging data base while the program is running. Choose:

mode 5

mode 6

DYNAMIC LOCKING

if concurrent processes will operate in modes 1 or 5. Parts or all of the data
base may optionally be locked to prevent concurrent changes during one or more
read operations.

if it is not important what other processes are doing to the data base. In this
case, mode 2 processes can replace entries, one mode 4 user can replace, add or
delete entries, or mode 6 or mode 8 users can read entries while the program is
using the data base.

Refer to the discussion of locking and unlocking later in this section for some special considerations.

DEC 85
4-6

Using the Data Base

Transaction Logging

Users accessing the data base in access modes 1 through 4 are affected by the transaction logging facility
if the data base administrator has enabled the data base for logging (a procedure described in Section 7).
In this case, calls to the TurboIMAGE intrinsics listed in Table 4-2 are automatically logged to a logfile.
Note that nothing is logged for programs opening the data base with read only access (modes 5-8),
regardless of the data base having been enabled for logging. (The logging facility is described more fully
later in this section and in Section 7.)

Table 4-2. Logged Intrinsics

DBBEGIN DBCLOSE DBDELETE DBE ND

DBM EMO DBOPEN DB PUT DBUPDATE

ENTERING DATA IN THE DATA BASE

Data is added to the data base, one entry at a time, using the DBPUT procedure. You may add data
entries to manual master and detail data sets. Entries are automatically added to automatic master data
sets when you add entries to the associated detail data sets.

To add an entry, you specify the data set name or number, a list of data items in the set, and the name of
a buffer containing values for these items. Values must be supplied for search and sort items but are
optional for other data items in the entry. If no value is supplied, the data item value is set to binary
zeroes.

Sequence for Adding Entries

Before you can add an entry to a detail data set indexed by a manual master data set, the manual master
must contain an entry with a search item value equal to the one you intend to put in the detail. If more
than one manual master is used to index the detail, entries which have a search item value identical to the
detail search item value for the same path must exist in each master. To illustrate, consider the ORDERS
data base again. Figure 4-1 contains sample data entries in four of the ORDERS data sets.

Before the SALES data entry can be added to the data set, the CUSTOMER manual master data set must
contain an entry with ACCOUNT equal to 123456 7 8 since ACCOUNT is the search item used to index
the SALES detail. Similarly, the SALES data set is indexed by the PRODUCT manual master through the
STOCK# search item, so the entry with STOCK# equal to 34624AB3 must be added to PRODUCT before
a sales transaction for that STOCK# can be entered in SALES.

Once the entry for customer account 123456 7 8 has been entered, the next sales transaction can be
entered in the SALES detail set without changing the CUSTOMER master. This entry will be chained to
the previous entry for the account. If a different customer buys a bicycle tire pump, the PRODUCT data
set will not require any additional entries, but if the customer's account is not yet in the CUSTOMER data
set it must be added before entering the sales transaction in SALES.

DEC 85
4-7

Using the Data Base

When the entry for account 123456 7 8 and stock number 3 5624AB3 is added to SALES, TurbolMAGE
automatically adds entries to the DATE-MASTER with a DATE item value of 92775 and 92875 if such
entries do not already exist. If the entries do exist, each chain head is .nodified to include the entry added
to the chain.

Access Mode and User Class Number

An entry cannot be added to a data set unless the user class number established when the data base is
opened grants this capability. The user class number must be in the data set write class list.

The data base must also be opened with an access mode allowing entries to be added. These access modes
are 1, 3, and 4. If it is opened with access mode 1, the DBLOCK procedure must be used to establish a
lock covering the entry to be inserted. For detail data sets, this may be a data entry, data set, or data base
lock.

Note that the locking mechanism will accept a request to lock a data entry that does not yet exist,
therefore, you may lock a data entry before you add it.

Manual Master CUSTOMER Data Entry

12345678 MILLER JAMES L 1645 MARSHALL AVENUE GLENDALE AZ 85301 3.4

Path deFllJt!KI /Jy ACCOUNT Search lft!Jm
Automatic Master

DATE-MASTER Data Entries

Detail SALES Data Entry

Path defined /Jy PURCH-04 TE
w OA TE Sea/'CIJ Items

12345678 35624AB3 2 900 54 954 92775 92875

35624AB3

Search Items

Maooal Master PRODUCT Data Entry

BICYCLE TIRE PUMP

Path defin«/ by OELIV-OA TE
and LJ4TE SHrch Items

Figure 4-1. Sample Data Entries from ORDERS Data Base

92875

TurboIMAGE performs checks on the values of search items before adding an entry to a data set. If the
data set is a manual master, TurboIMAGE verifies that the search item value is unique for the set, that no
entry currently contains a search item with the same value. If the data set is a detail, TurbolMAGE
verifies that the value of each search item forming a path with a manual master has a matching value in
that master. It also checks that there is room to add an entry to any automatic master data sets linked to
the detail if a matching search item value does not exist.

DEC 85
4-8

Using the Data Base

READING THE DAT A

When you read data from the data base you specifv which data set and which entry in that data set
contains the information you want. If the user class number with which you opened the data base grants
you read access, you may read the entire entry or specific data items from the entry. You specify the
items to be read and the array where the values should be stored. You can read items or entries in any
access mode if your user class grants read access to the data element.

To understand the various ways in which you can select the data entry to be read, it is important to know
a little about the data set structure. Each data set consists of one disc file and each data entry is a logical
record in that file. Each entry is identified by the relative record number in which it is stored. The first
record in the data set is record number 1 and the last is record number n, where n is the capacity of the
data set.

At any given time, a record may or may not contain an entry. TurbolMAGE maintains internal
information indicating which records of a data set contain entries and which do not.

Current Path

TurbolMAGE maintains a current path for each detail data set and for each accessor (access path). The
current path is established by the DBFIND procedure, or if no call has been made to this procedure, it is
the primary path for the data set. Each time an entry is read, no matter what read method is used,
TurbolMAGE saves the entry's backward and forward chain pointers for the current path. For more
information about how the current path is used, refer to the discussion of chained access later in this
section.

If an entry is read from a master data set, the chain pointers are synonym chain pointers and have no
relationship to a path.

Reading Methods

The methods for requesting a data entry are categorized as

• directed access

• serial access

• calculated access

• chained access

All of these methods are available through the TurboIMAGE library procedure DBGET. The chained
access method also requires the use of the DBFIND procedure. Hgure 4- 2 illustrates the access methods
using two data sets from the ORDERS data base.

DEC 85
4-9

Using the Data Base

2

3

4

5

6

7

8

g

10

INVENTORY Detail Data Set

STOCK# ONHANDQTY

6650D22S 95

4397013P 32

6650F22S 75

3739A14F B

7391Z22F 12

SUP-MASTER Master Data Set

SUPPLIER

H&S SURPLUS

ACME

H&S SURPLUS

JAKE'S SHOP

H&S SURPLUS

SUPPLIER STREET-ADDRESS

--t> 2

3

4

5

6

7

8

JAKE'S SHOP
r

ACME

Has SURPLUS

BAY PAPER CO.

---tlJ!iia~ Directed Access

-->- Serial Access (Forward)

-{> Calculated Access

~
I- - .,

K

k: - .,

Contains point6f'S
to beginning
8nd ending
chain entries.

. -- -;> Chained Access (of Details). See Section 10 for illustration of synonym chains.

DEC 85
4-10

Figure 4-2. Reading Access Methods (DBGET Procedure)

Using the Data Base

Directed Access

One method of selecting the data entry to be read is to specify its record number. This method is called
directed access. If any entry exists at the record address specified by the calling program, TurboIMAGE
returns the values for the data items requested in the calling program's buffer. If no such entry exists, the
program is notified by an exceptional condition return such as end-of-file or beginning-of-file.

This access method can be used with any type of data set and is useful in situations where the calling
program has already determined the record number of the entry to be read. For example, if a program
surveys several entries using another access method to determine which one it wants to use in a report, it
can save each record number and use the record number of the entry it selects to read the entry again
using the directed access method.

If a program performs a directed read of record 3 of the INVENTORY data set, the entry marked with a
solid black arrow in Figure 4-2 is read. If a directed read of the SUP-MASTER data set record 7 is
performed, the entry in that set marked with the same type of arrow is read.

LOCKING

If concurrent users are allowed to add to or delete from this data set, locking should be used during the
search and report sequence to ensure the record numbers do not change before they are used. In this type
of application, a data set lock is usually the most appropriate.

NOTE

When using this type of access with master data sets, you should be aware
of migrating secondaries. These are described in Section 10.

Serial Access

In this mode of retrieval, TurboIMAGE starts at the most recently accessed storage location for the data
set, called the current record, and sequentially examines adjacent records until the next entry is located.
Data items from this entry are returned to the calling program, and its location becomes the current
record.

You may use both forward and backward serial access. Forward serial access consists of retrieving the
next greater-numbered entry and backward serial access consists of retrieving the previous
lower-numbered entry. If no entry is located, TurboIMAGE returns an end-of-file if requested access is
forward, or a beginning-of-file if it is backwards.

Since there is no current record the first time a program requests an entry from a data set, a request for
forward serial access causes TurboIMAGE to search from record 1. Similarly, a backward serial retrieval
begins at the highest numbered record.

DEC 85
4-11

Using the Data Base

The entries connected by a solid line in Figure 4-2 are read by a program using the serial access method.
If a forward serial read is performed on the INVENTORY data set before any other type of read, the
entry in record number 2 is read. If another forward serial read is performed on the same data set, the
entry in record 3 is read. On the other hand, if a serial read is performed and the current record is 6, the
entry in record 9 is read. The next forward serial read returns an end-of-file.

The serial access method can be used wjth any type of data set and is very useful if most or all of the data
in the data set is to be retrieved, for example, to be used in a report. It is efficient to retrieve all the data
serially, copy it to a file, and sort it with routines external to TurboIMAGE before printing the report.
The availability of serial access effectively allows you to use a data set in the same way you would use an
MPE file. Thus, you have the advantages of TurbolMAGE data base organization and the efficiency of
serial access.

LOCKING

If concurrent users are allowed to modify the data set (access mode 1), you may wish to lock the data set
or data base before you begin the serial access sequence. Locking will prevent entries from being added,
modified, moved or removed by the other processes.

Calculated Access

The calculated access method allows you to retrieve an entry from a master data set by specifying a
particular search item value. For example, the SUP-MASTER data entry for the supplier Acme shown in
Figure 4-2, can be retrieved with this method since SUPPLIER is a search item in the SUP-MASTER data
set. TurboIMAGE locates the entry in the data set whose search item value matches the requested value.
The exact technique used to perform calculated access is described in Section 10.

Calculated access can be used only with master data sets. It is very useful for retrieving a single entry for
some special purpose. For example, a program used infrequently to get information about a particular
customer or supplier could use calculated access to quickly locate the information in the ORDERS data
base.

Chained Access

The chained access method is used to retrieve the next entry in the current chain. To perform chained
access of detail data set entries, you must first locate the beginning of the chain you want to retrieve, and
thus establish the current chain, by calling the DBFIND procedure. The calling program specifies the
name of the detail search item that defines the path to which the chain belongs and a value for the item.
TurbolMAGE determines which master set forms a path with the specified search item and locates the
entry in that master data set whose search item value matches the specified value. The entry it locates
contains pointers to the first and last entries in the desired chain and a count of the number of entries in
the chain. This information is maintained internally and defines the attributes of the current path.

DEC 85
4-12

Using the Data Base

If a program uses chained access to read the INVENTORY data set entries pertaining to the supplier H&S
SURPLUS shown in Figure 4-2, it must first call the DBFTND procedure to locate the chain head in the
SUP-MASTER data set. The program specifies the INVENTORY data set, the SUPPLIER search item in
the INVENTORY data set and the value H&S SURPLUS for that item. TurbolMAGE uses a calculated
read to locate the SUP-MASTER entry with a search item value of H&S SURPLUS. If the program then
requests a forward chained read using the DBGET procedure, the entry in record 9 of INVENTORY,
which is set at the beginning of the chain, is read. If a 1-:lackward chained read is requested, the entry in
record 5 is read.

If the last call to DBGET used chained access to read the entry in record 9, the next forward chained read
reads the entry in record 2 of the INVENTORY data set.

Once a current path, and chain, has been established for a detail data set, the calling program can use the
chained access method of retrieving data. You may use both forward and backward chained access. In
either case, if there are no more entries in the chain when you request the next one, DBGET returns an
exceptional condition, beginning-of -chain or end-of -chain for back ward and forward access,
respectively.

Chained access to master data sets retrieves the next entry in the current synonym chain. The use of
synonym chains applies to only a limited number of special situations. They are discussed in Section 10.

Chained access to detail data sets is particularly useful when you want to retrieve information about
related events such as all inventory records for the H&S Surplus supplier in the ORDERS data base.

LOCKING

If concurrent users are allowed to modify data entries in the chain you are currently accessing, you may
use locking to ensure data consistency. For example, suppose a chain consists of several data entries, each
containing a line item from a particular order. If user A is performing a series of chained reads while
user B is cancelling the order by deleting data entries one by one, user A may retrieve an incomplete
order. To prevent this from happening, a lock may be established covering the group of data entries to be
retrieved (the chain, in this case). This can usually be done with a single DBLOCK call. (Refer to the
discussion of the locking facility later in this section.)

Re-Reading the Current Record

The DBGET library procedure allows you to read the entry from the most recently accessed record again.
You may want to do this in a program that has unlocked the data entry and locked it again and needs to
check if the contents of the current entry have been changed.

Note that if a DBFIND procedure call has been made, the current record is zero and a request to re-read
the entry causes DBGET to return an exceptional condition indicating that the current record contains no
entry. Refer to the DBGET procedure Table 5-12 for more information.

DEC 85
4-13

Using the Data Base

UPDATING DATA

TurboIMAGE allows you to change the values of data items that are not search or sort items if the user
class number with which you opened the data base grants this capability to you. Before you call the
DBUPDATE library procedure to change the item values, you must call DBGET to locate the entry you
intend to update. This sets the current record address for the data set. The DBUPDATE library
procedure uses the current record address to locate the data items whose values are to be changed.

A lock may be established before the call to DBGET to guard against accidental modification of the
record by another user. This is recommended in any shared access mode (as discussed below).

When the program calls DBUPDATE it specifies the data set name, a list of data items to be changed, and
the name of a buffer containing values for the items. For example, if a program changes the street
address of a customer in the CUSTOMER data set of the ORDERS data base, the program can first locate
the entry to be changed by calling DBGET in calculated access mode with the customer's account number
and then calling the DBUPDATE procedure to change the value of the STREET-ADDRESS data item in
that entry.

Access Modes and User Class Number

To update data items, the data base must be opened in access mode 1, 2, 3, or 4. If it is open in access
mode 1, the data entry, data set, or data base must be locked while the update is happening.

TurbolMAGE guarantees that all updates to a data entry will be carried out even if they are requested by
different users concurrently and locking is not used. To ensure this, TurbolMAGE always completes the
processing of one DBUPDA TE request before it begins processing under another. However, data
consistency problems may still occur if an update is based on data values that are not current. For
example, while withdrawing 10 items from the stock, two users may read the same data entry from the
INVENTORY data set. If the current value of ONHANDQTY is 30 and they each subtract 10 from it
and then update the entry, both updates will operate successfully but the new value will be 20 rather than
10. To prevent errors such as this, a lock covering the data entry can be put in effect before it is read and
released after it is updated.

TurbolMAGE attempts to enforce this locking technique for users in mode 1 by checking to see if an
appropriate lock is in effect before executing an update. However, to have its proper effect, the lock
should be made before the call to DBGET.

The password you use to open the data base must grant update capability to the data items you intend to
change. The user class number associated with the password must either be in the write class list of the
data set containing the items to be updated or in the read class list of the data set and in the write class
list of the data item.

DEC 85
4-14

Using the Data Base

Updating Search and Sort Items

You cannot use the DBUPDATE library procedure to update a search or sort item. To change such items,
you must first delete the selected entry with DBDELETE (see "DELETING DATA ENTRIES" below), and
then write a new entry to the data base with DBPUT.

The new entry must be complete. That is, you cannot delete an entry and then add a new entry with only
the item you want changed. If you do this, the rest of the entry will be set to binary zeros by DBPUT.
Furthermore, make sure the current 1ist is truly current when using an asterisk (*) to reference the list;
otherwise, if items have been added or deleted, you may cause DBPUT to write binary zeros over existing
data. Note that using the commercial "at sign" (@) to write all the items in a data entry avoids this
problem.

DELETING DAT A ENTRIES

To delete an entry from a data set, you must first locate the entry to be deleted by reading it with the
DBGET library procedure, or the DBFIND and DBGET procedures if it is advantageous to use chained
access to locate the entry. You then call the DBDELETE procedure specifying the data set name.
TurbolMAGE verifies that your password and associated user class number allow you to delete the current
en try of the specified data set.

If the detail data entry deleted is the only member of a detail chain linked to an automatic master, and all
other chains linked to the same automatic master entry are empty, TurbolMAGE automatically deletes
the master entry.

If the data entry is in a manual master data set, TurbolMAGE verifies that the detail chains associated
with the entry's search item, if any, are empty. If not, it returns an error condition to the calling
program. For example, if a program attempts to delete the SUP-MASTER entry in Figure 4-2 that
contains a SUPPLIER value of H&S SURPLUS, an error condition is returned since a three-entry chain
still exists in the INVENTORY detail data set.

To delete the CUSTOMER data set entry with ACCOUNT equal to 7 5757 57 5, the program can call
DBGET in calculated access mode specifying the CUSTOMER data set and the search item value
757 57 57 5. If the procedure executes successfully, the program then can call DBDELETE specifying the
CUSTOMER data set to delete the current entry provided no chains in the related SALES detail data set
contain search item values of 7 5 7 5 7 5 7 5.

DEC 85
4-15

Using the Data Base

Access Modes and User Class Numbers

To update data items, the data base must be opened with access mode 1, 3, or 4. If it is opened with access
mode 1, the DBLOCK procedure must be used to lock the detail data entry, data set, or data base before
an entry can be deleted and DBUNLOCK should be called after one or all desired entries have been
deleted. As a general rule, the lock should be established before the whole delete sequence, in other words,
before the call to DBGET that establishes which record is to be deleted. This will ensure that another
user does not delete the data entry between the call to DBGET and the call to DBDELETE.

An entry cannot be deleted from a data set unless the user class number established when the data base is
opened is in the data set write class list.

USING THE LOCKING FACILITY

The DBLOCK procedure applies a logical lock to a data base or one or more data sets or data entries. The
DBUNLOCK procedure releases these locks.

Locking can be viewed as a means of communication and control to be used by mutually cooperating
users. The locking facility provides a method for protecting the logical integrity of the data shared in a
data base. With the DBLOCK procedure, application programs may isolate temporarily a subsection of
the data base in order to perform a transaction against the isolated data. Locking is not required to
protect the structure of the data base. TurbolMAGE has internal mechanisms that do this.

If a program opens the data base in access mode 1 and locks a part of the data base, it can perform the
transaction with the certain knowledge that no other user will modify the data until the application
program issues a DBUNLOCK call. This is because TurboIMAGE does not allow changes in access mode 1
unless a lock covers the data to be changed. If one process has the data base opened in access mode 1,
TurboIMAGE requires that all other processes that modify the data base must also operate in access mode
1.

The DBLOCK procedure operates in one of six modes. Modes 1 and 2 may be used for locking the data
base and modes 3 and 4 for locking a data set. In modes 5 and 6, you describe the data base entity or
entities to be locked using lock descriptors.

At the data entry level, locking is performed on the basis of data item values. For example, suppose a
customer requests a change in an order he has placed. The data entries for his account that are in the
SALES data set may be locked while his order is changed and other data base activity may continue
concurrently.

DEC 85
4-16

Using the Data Base

Lock Descriptors

A lock descriptor is used to specify a group of data entries that are to be locked. It consists of a data set
name or number, a relational operator, and an associated value. For purposes of this discussion, the
notation dset : ditem relop value is used. For example, the lock descriptor SALES:ACCOUNT = 89 393 899
requests locking of all the data entries in the SALES data set with an ACCOUNT data item equal to
89393899. Note that the result of specifying a single lock descriptor may be that none, one or many
entries are locked depending on how many entries qualify.

The following relational operators may be used:

• less than or equal (<=).

• greater than or equal(>=).

• equal (= # or # =). # indicates a space character.

The value must be specified exactly as it is stored in the data base. A lock will succeed even if no data
item with the specified value exists in the data set; no check is made to determine the existence of a
particular data item value. This allows you to use techniques such as issuing a lock to cover a data entry
before you actually add it to a data set.

With the exception of compound items, any data item may be used in a lock descriptor; it need not be a
search item.

TurbolMAGE does not require that you have read or write access to a data set or data item in order to
specify it in a lock request.

A process may specify any number of lock descriptors with a single DBLOCK call. For example, the
following lock descriptors may be specified in one DBLOCK call:

CUSTOMER: ACCOUNT = 89393899
SALES: ACCOUNT = 89393899
SUP-MASTER: STATE = AZ
INVENTORY: ONHANDQTY < = 100
INVENTORY: ONHANDQTY > = 1500

NOTE

Multiple calls to DBLOCK without intervening calls to DBUNLOCK are
not allowed unless the program has Multiple RIN (MR) capability. (Refer
to "Issuing Multiple Calls to DBLOCK" later in this section.)

DEC 85
4-17

Using the Data Base

How Locking Works

The internal implementation of locking does not involve reading or writing to the data base element to be
locked. TurbolMAGE keeps a table of everything that is locked by all processes that have the data base
opened. One table is associated with each data base. This table serves as a global list of lock descriptors.
In locking mode S or 6, a data base lock is specified with the descriptor @:@ and a data set lock with
dset:@. If you call DBLOCK in locking mode 1, 2, 3, or 4, TurboIMAGE sets up the appropriate lock
descriptor and puts it in the lock descriptor table. Figure 4-3 illustrates the contents of this list in a
situation where one process has locked all SALES data entries with ACCOUNT equal to 12121212 or
equal to 33334444. Another process has locked all INVENTORY data entries with STOCK# equal to
6650D22S. A third process has locked the whole SUP-MASTER data set. The figure illustrates what the
table represents, not the actual int~rnal format.

When a lock request is made, TurbolMAGE compares the newly specified lock descriptors with those that
are currently in the list. If a conflict exists, TurbolMAGE notifies the calling process that the entity
cannot be locked or, if the process has requested unconditional locking, it is placed in a waiting state until
the entity can be locked. If ther_e are no conflicts, TurboIMAGE adds the new lock descriptors to the list.

SALES: ACCOUNT = 12121212

SALES: ACCOUNT = 33334444

INVENTORY: STOCK# = 66500225

SUP-MASTER: @
,___~~~~~~~~~~~~~~--

.L___ Oindicat.es entire
~ data set I.I locked.

Figure 4-3. Lock Descriptor List

Conditional and Unconditional Locking

You may request conditional or unconditional locking. If you request unconditional locking,
TurbolMAGE returns control to your calling program only after the specified entity has been locked. If
you request conditional locking, TurbolMAGE returns immediately. In this case, the condition code must
be examined to determine whether or not the requested locks have been applied. If multiple lock
descriptors are specified, the status area indicates the numbers that have been applied. The calling
program should call DBUNLOCK only if a subset of the requested locks succeeded.

DEC 85
4-18

Using the Data Base

Access Modes and Locking

It is anticipated that access mode 1 will typically be used by applications implementing a locking scheme.
In this mode, TurboIMAGE enforces the following rules:

• To modify (DBPUT, DBDELETE, or DBUPDATE) a data entry, you must first issue a successful lock
covering the affected data entry. It may be a data entry, data set, or data base lock

• To add to or delete from (DBPUT or DBD.ELETE) a master data set, you must first successfully lock the
data set or data base. To update (DBUPDATE) a master data set, data entry level locks are sufficient.

If your application opens the data base in access mode 2, it is recommended that you use locking to
coordinate updates with other users.

TurboIMAGE does not prevent any process from reading data even though another process holds a lock on
it. If you want to ensure that no modifications are in progress while you are reading from the data base,
you should place an appropriate lock on the data before starting. Therefore, you may want to use locking
in access modes 2, 4, 5, and 6 to coordinate the reading and modifying sequences and ensure that they do
not occur concurrently.

Since access mode 3 and 7 users have exclusive control of the data base and access mode 8 users allow
concurrent reading only, locking need not be used in these modes.

Automatic Masters

When adding or deleting entries from a detail data set, you need not have locks covering the implicit
additions or deletions that occur in any associated automatic masters.

Locking Levels

Locking can be viewed as operating on three levels: the whole data base, whole data sets, or data entries.
TurbolMAGE allows mixed levels of locking. For example, one user may be locking data entries and
another locking the data set. In this situation, a request to lock the data set cannot succeed until all the
currently locked data entries have been released. Subsequent requests to lock data entries, those that are
made while the data set lock is pending, are placed in a queue behind the data set lock.

This principle is followed for data base locks also. If data set or data entry locks are in effect at the time
a data base lock is requested, the data base lock must wait until they are released and all subsequent
locking requests must wait behind the pending data base lock.

In either case, if the request is for a conditional lock, an exceptional condition is generated. (Refer to
Table 5-15.)

DEC 85
4-19

Using the Data Base

Deciding on a Locking Strategy

It is important, especially for on-line interactive applications, to establish a locking strategy at system
design time. In general, locking is related to the transaction, the basic unit of work performed against a
data base. Typically a transaction consists of several calls to TurbolMAGE intrinsics to locate and modify
data. For example, a transaction to add a new order with three line items may require several reads to
locate customer information and several DBPUT calls to add the order detail records.

One characteristic of a transaction is that the data in the data base is consistent both before and after the
transaction, but not while it is in progress. For example, a user reading the detail data set being modified
by the above order transaction may only see some of the line items and may get no indication that the
transaction is incomplete. This type of problem is refered to as logical inconsistency of data and can be
prevented by using the locking facilities.

The general principle that should be applied for any transaction in a shared-access environment is: At the
start of any transaction, establish locks that cover all data entries that you intend to modify (DB PUT,
DBDELETE, or DBUPDATE) and/or all data entries which must not change during the transaction.

Choosing a Locking Level

Because TurboIMAGE needs more information to lock data entries than to lock the whole data base,
program complexity tends to increase the lower the level of locks employed. Locking the whole data base
or a single data set is the simplest operation, followed in increasing order of complexity by locking
multiple data sets and locking data entries. At system design time, a compromise must be made between
the benefits of low-level locking and the extra programming effort required.

Data entry locking should give the best performance; however, there are situations in which the extra
programming effort for data entry locking is not worthwhile. Performance is least optimum at the higher
level of the lock. Performance and programming effort should be considered, some other considerations
that may effect your choice of locking level are discussed below.

LOCKING AT THE SAME LEVEL

All programs concurrently accessing a data base should lock at the same level most of the time. For
example, one process locking a data set will hold up all other processes that are attempting to lock entries
in that set. Therefore, the attempt by the process locking at the data entry level to allow other processes
to share the data base is nullified by the process locking at the data set level and the effect is as if all
processes were locking at the data set level. The rule of locking at the same level may be violated for
infrequent operations such as exception handling or rare transactions.

DEC 85
4-20

Using the Data Base

LENGTH OF TRANSACTIONS

Generally, the longer the lock is to be held, the lower the level it should be. In other words, if you are
performing lengthy transactions (more than about 8 TurboIMAGE calls), you should probably lock at the
entry level. For transactions shorter than this, data base or data set locks will give approximately the
same results.

An extreme case of a long transaction is one in which user dialog takes place while a lock is held. For
example, a program may read some data entries, interact with a terminal operator, and modify some or all
of the entries. A lock to cover this transaction may last several minutes which is an unacceptable amount
of time to stop all data base or data set activity. In this situation, data entry level locking should be used.

Since the length of different transactions varies, the longest transaction (that is also frequently used)
should guide the choice of locking level.

LOCKING DURING USER DIALOG

In the situation described above, where a lock is held during interactive dialog with a terminal operator,
the terminal timeout feature of MPE may be used to avoid having the locked entity inaccessible when the
terminal operator is interrupted in the middle of the dialog. The timeout feature may be used to cause
the terminal read to terminate automatically if no response is received within a certain time period.
Refer to the discussion of 11FCONTROL11 in the MPE Intrinsics Manuals.

Choosing an Item for Locking

An important convention to follow in designing a locking scheme is that all programs sharing the data
base concurrently use the same data item to lock data entries in a particular data set. At any one time,
TurbolMAGE allows no more than one data item per data set to be used for locking purposes. However,
several values of the data item may be locked at the same time. For example, if one process has
successfully locked SALES:ACCOUNT=54321000, another process may lock
SALES:ACCOUNT=l 1111111. If a request is made to unconditionally lock SALES:STOCK#=8888X22R,
the requesting process will be made to wait until all entries locked by ACCOUNT number are unlocked.
Furthermore, any new requests for locking other SALES:ACCOUNT values will wait until
SALES:STOCK#=8888X22R is successfully locked and unlocked again.

With this in mind, it is apparent that it is more efficient if all processes locking data entries in the SALES
data set use the same data item since it is much less likely that one process will have to wait until another
process finishes using the data. Therefore, at system design time, decide which item will be used in each
data set for lock specification purposes. (It may be useful to add comments in the schema indicating which
item is the locking item for each set.)

DEC 85
4-21

Using the Data Base

Examples of Using the Locking Facility

The following examples list the order in which TurboIMAGE intrinsics may be called when using the
locking facility while performing various transactions. The examples refer to the ORDERS data base
described in Figures 2-5 and 2-6.

• Add a New Customer

1. DBLOCK the Customer data set or the whole data base.

2. DBPUT new data entry in CUSTOMER data set.

3. DBUNLOCK.

TurboIMAGE requires a data set or data base lock to cover addition of an entry to a master data set.

• Update an INVENTORY data entry to increase UNIT-COST for part 66503225 by 12 percent

1. DBLOCK INVENTORY: STOCK#=6650D22S. (Alternatively, the INVENTORY
set or the whole data base can be locked.)

2. DBFIND and DBGET the data entry that is locked in step 1.

3. Compute new UNIT-COST = UNIT-COST + . 12 * UNIT-COST.

4. DBUPDATE the data entry that is locked.

5. DBUNLOCK.

• Insert a new product with a new supplier

1. DBLOCK the PRODUCT master data set.

2. DBPUT new product data entry in PRODUCT master data set. (For example: 4444A33B
CALIPER).

3. DBUNLOCK.

4. DBLOCK the SUP-MASTER data set.

S. DBPUT new supplier data entry in SUP-MASTER data set.

6. DBUNLOCK.

7. DBLOCK INVENTORY: STOCK#= 4444A33B.

8. DBPUT new data entry in INVENTORY data set for STOCK# = 4444A 3 3B.

9. DBUNLOCK.

This has been done in three transactions. If the user did not want other users to see the data base with
the supplier record present but with no inventory shown, one transaction with the data sets locked in
two calls to DBLOCK with modes 3 or 4 can be performed.

DEC 85
4-22

Using the Data Base

• Interactively modify an order for customer account 89393899

1. DBLOCK SALES: ACCOUNT= 89393899.

2. DBFIND the CUSTOMER master data set entry with ACCOUNT= 89393899 in order to prepare to
read the chain of SALES data entries with the same ACCOUNT value.

3. DBGET each entry in the chain and display it to user until the correct order is located.

4. Modify the contents of the data entry according to the user's request.

5. DBUNLOCK.

All data entries for ACCOUNT 89393899 in the SALES data set are locked. Note that these locks are
held while a dialog takes place with the terminal operator, therefore, the lock may be held for several
minutes. For this type of transaction, it may be best to first perform a conditional lock to determine if
the records are accessible. For example:

1. DBLOCK SALES: ACCOUNT= 89393899 with mode 6.

2. If the lock does not succeed, the fallowing message is displayed:
RECORDS BEING MODIFIED. WANT TO WAIT?
If the response is NO then go to other processing. If YES, call DBLOCK again with mode 5.

Table 4-3 contains guidelines that may be helpful in designing locking schemes for shared-access
environments which include users who might modify the data base. Although data entry level locks are
recommended in this table and illustrated in the examples above, data set or data base locks may be more
appropriate for similar tasks depending upon other application requirements.

Table 4-3. Locking in Shared-Access Environments

ACTION

Chained DBGET calls

Serial DBGET calls

Update a data entry
(DBUPDATE)

Directed reads
(DBGET calls)

Add a data entry to a
detail data set (DBPUT)

Add to or delete from a
master data set
(DBPUT and DBDELETE)

RECOMMENDED LOCKS

Lock all data entries in the chain. This usually requires one
lock descriptor.

Lock the data set.

Lock the data entry before calling DBGET to read the data
entry. Unlock after the update.

These are not recommended in a shared environment. Lock the
data set before determining which data entry is needed.

Any lock which covers this data entry, but preferably uses
the data item that was decided on as the "lock item"
for the data set.

Lock the data set or data base. This is mandatory if the
data base is open in access mode 1.

DEC 85
4-23

Using the Data Base

Issuing Multiple Calls to DBLOCK

In order to guarantee that two processes cannot deadlock, once a call to DBLOCK is made by any process
in a session or job, TurboIMAGE does not allow a second call to be made unless the locks are cancelled
with a call to DBUNLOCK first. There are two exceptions to this rule:

• A redundant call may be made to lock the whole data base with DBLOCK mode 1 or 2 provided the
call relates to the same access path. The redundant call will have no effect. (This is allowed in order
to maintain compatibility with earlier versions of IMAGE.)

• More than one DBLOCK call may be made if the program from which multiple DBLOCK calls are
issued has Multiple RIN (MR) capability. (A user cannot prepare such a program unless they also have
this capability. Refer to the System Manager /System Supervisor Reference Manual for more
inf orma ti on.)

The DBLOCK procedure is similar to MPE global RIN locks (no RINs are actually involved) in that it may
put a process into a waiting state and thus, may cause a deadlock to occur. For example, a deadlock may
occur if process A is waiting for a global RIN to be freed by process B, and process Bis waiting for a data
base entity to be unlocked by process A. Therefore, issuing a DBLOCK in conjunction with a lock applied
by MPE intrinsics such as LOCKGLORIN or FLOCK or by the COBOLLOCK procedure requires MR
capability. (The use of MR capability is not recommended unless absolutely necessary.)

Users whose programs have MR capability and issue multiple DBLOCK calls are responsible for deadlock
prevention. This type of locking must be done very carefully. Recovery from a deadlock requires a
restart of the opera ting system.

No matter how many descriptors are listed in a single DBLOCK call, TurbolMAGE guarantees that
deadlocks will never occur provided that no executing program that accesses the data base has MR
capability. Programs that execute successfully using TurboIMAGE locks in a single process environment
will not execute in a process-handling environment without MR (Multiple RIN) capability. (Refer to
Appendix D for more information on the MR capability.)

Releasing Locks

The locks held by a process for a particular access path of a data base are relinquished when the process
calls DBUNLOCK, or automatically when the process closes the data base, terminates, aborts, or is aborted
by an operator.

Failure of a program to release locks will result in other programs waiting indefinitely for any conflicting
locks. These programs, while in a waiting state, cannot be aborted by the operating system. An attempt
to abort such a waiting process will result in the abort taking effect as soon as the process obtains the lock
for which it was waiting.

DEC 85
4-24

NOTE

Any program that executes a DBGET in modes 5 or 6 should lock the data
base. This will prevent the execution of any DBPUTs or DBDELETEs in the
detail data set and will help prevent broken chains. The program should
also lock the chain in a detail set to prevent the next or previous chain in a
detail set from being DBDELETEd.

Using the Data Base

USING THE LOGGING FACILITY

TurboIMAGE has the capability of recovering a data base from a transaction -oriented logfile in the event
of a system failure. Transaction logging and recovery is fully discussed in Section 7; however, some
considerations relevant to applications are discussed here.

What Logging Does

The TurboIMAGE logging and recovery facility enables all data base modifications to be logged
automatically to a tape or disc logfile. In the event of 3 system failure the logfile is read to re-execute
transactions or identify incomplete transactions, depending on what type of recovery process is being used.
In addition, the transaction logging system can be a useful tool for auditing. The logfile is actually a
record of all modifications to the data base. The intrinsic DBMEMO, capable of logging user text,
facilitates interpretation of the logfiles for future reference.

The data base administrator is responsible for enabling or disabling the logging and recovery processes and
generating backup data base copies, thus making logging a global function controlled at the data base level
rather than at the individual user level.

A process is said to be logging if all of the following are true:

• The data base has been enabled for logging by the data base administrator.

• A logging process has been initiated from the system console.

• The user is accessing the data base in one of modes 1 through 4.

How Logging Works

The following TurboIMAGE intrinsics are automatically logged when the data Qase is enabled for logging
and a user opens the data base in a mode which permits modifications: DBOPEN, DBCLOSE, DBPUT,
DBUPDATE, DBDELETE, DBBEGIN, DBEND, and DBMEMO.

TurboIMAGE calls the MPE logging intrinsics OPENLOG, WRITELOG, and CLOSELOG in order to log
information to the logfile. When a data base is opened, DBOPEN calls the OPENLOG intrinsic using the
log identifier and password stored in the data base root file. If this call succeeds, DBOPEN calls
WRITELOG to log a DBOPEN log record containing information about the data base and the new user.

The WRITELOG intrinsic is also used to log information when the TurboIMAGE intrinsics DBPUT,
DBDELETE, and DBUPDATE are called. WRITELOG is called after all error checks are made, but
before actually modifying the working data base. Consequently, a log record is not written until the
TurboIMAGE procedure has committed itself to succeed. WRITELOG is also used by the TurboIMAGE
intrinsics DBBEGIN, DBEND, and DBMEMO.

DBCLOSE (mode 1) calls WRITELOG to log out a DBCLOSE log record, and then calls CLOSELOG to
terminate access to the logfile. If a transaction initiated with DBBEGIN fails to call DBEND, DBCLOSE
causes a special DBEND log record to terminate access to the logfile. DBCLOSE also causes a special
DBEND log record to be written if the program is aborting with a transaction unfinished.

DEC 85
4-25

Using the Data Base

Logging and Logical Transactions

A transaction can be considered as the basic work unit performed against a data base. A transaction
could consist of a single modification, but more typically might consist of several calls to TurbolMAGE
intrinsics which lock, read, modify, and unlock information. Logical transactions transfer the data base
from one consistent state to another, but in the midst of a multiple-step transaction, the data base could
be temporarily inconsistent with itself. (For an example, see Section 7.)

In the event of a system failure and subsequent recovery, only complete logical transactions are
re-executed, returning the data base to a consistent state. Therefore, it is essential that an application
program mark the beginning, and end of a sequence of calls which constitute a single logical transaction
with the intrinsics DBBEGIN and DBEND.

For reasons explained more fully under 11Logical Transactions and Locking" in Section 7, the following
sequence of operations should be followed as closely as possible when performing modifications:

1. Call DBLOCK to lock all data which must not change during the transaction. This includes data to be
read and data to be modified.

2. Read data using DBFIND and DBGET to determine the necessary modifications.

3. Call DBBEGIN to declare the beginning of modifications.

4. Make modifications using DBPUT, DBDELETE, or DBUPDATE.

5. Call DBEND to declare the end of the modifications.

6. Call DBUNLOCK to release all of the locks.

Transaction Numbers

TurbolMAGE maintains a double word transaction number for each user's access to the data base.
Transaction numbers enable the DBRECOV recovery program to associate log records with a particular
transaction. This number is initialized by DBOPEN and incremented each time DBBEGIN is called, or for
each single call to DBPUT, DBUPDA TE, or DBDELETE if it is not included in a transaction delimited by
DBBEGIN and DBEND. Transaction numbers are included in all DBBEGIN, DBPUT, DBUPDA TE,
DBDELETE, DBMEMO, and DBEND log records. The transaction number is always incremented as
described, regardless of whether the user process is actually logging. A user process may determine its
transaction count (and whether the data base and user is logging) by calling DBINFO using mode 401.

Logging and Process Suspension

The MPE logging intrinsics will suspend a calling process if the logging buffers become full.
Consequently, a user process which calls TurbolMAGE may become suspended, for example, if a tape
logfile reaches the end of a reel and logging buffers become full before a new tape can be mounted.

DEC 85
4-26

Using the Data Base

OBTAINING DAT A BASE STRUCTURE INFORMATION

The DBINFO library procedure allows you to acquire information programmatically about the data base.
It provides information about data items, data sets, or data paths. The information returned is restricted
by the user class number and access mode established when the data base is opened.

Any data items, data sets, or paths of the data base inaccessible to that user class or in that access mode are
considered to be non-existent. For example, if the access mode grants only read access, this procedure will
indicate that no data sets may have entries added. The information that can be obtained through separate
calls to DBINFO is summarized below.

In relation to data items, DBINFO can be used:

• To determine whether the user class number established when the data base is opened allows a specified
data item value to be changed in at least one data set, or allows a data entry containing the item to be
added or deleted.

• To get a description of a data item including the data item name, type, sub-item length, and sub-item
count. This information corresponds to that which is specified in the item part of the schema.

• To determine the number of items in the data base available to the current user and to get a list of
numbers identifying those items. The numbers indicate the position of each data item in the item part
of the schema. The type of access, for example read -only, can also be determined.

• To determine the number of items in a particular data set available to the current user and get a list of
those item numbers and the type of access available for each one.

In relation to data sets, DBINFO can be used:

• To determine whether the current user can add or delete entries to a particular data set.

• To get a data set description including the data set name, type, length in words and blocking factor for
data entries in the set, number of entries in the set, and the capacity.

• To determine the number of data sets the current user can access and get a list of the data set numbers
in4icating the position of the data set definition in the set part of the schema. The type of access to
each set is also indicated.

• To determine in which data sets a particular data item is available to the current user. The number of
data sets, a list of data set numbers, and the type of access available for each set is returned.

In relation to paths, DBINFO can be used:

• To get information about the paths associated with a particular data set including the number of paths.
If the data set is a master set, the information includes the data set number, search item number, and
sort item number for each related detail. If the data set is a detail set, the information includes the
master data set number of the related master data set, the detail search item number and sort item
number for each pa th.

• To determine the search item number of a master data set or the search item number for the primary
path of the detail and the data set number of the related master. In either case, if the search item is
inaccessible to the current user, no information is returned.

DEC 85
4-27

Using the Data Base

Special Uses of DBINFO

If the application program uses data items and data set numbers when calling the other TurboIMAGE
procedures, it is good practice to determine these numbers by calling DBINFO at the beginning of the
program to set up the numbers. It is not practical to code the numbers into the program since a change to
the data base structure might require extensive changes to the application programs. Likewise, it is
inefficient and time consuming to call DBINFO throughout the program to determine these numbers.
Many application programmers prefer the convenience and flexibility of using the data item and data set
names in procedure calls.

DBINFO is useful when writing general inquiry applications similar to the QUERY data base inquiry
facility. DBINFO may also be used to obtain infor,,1ation regarding the logging facility. In relation to
Native Language Support (NLS), DBINFO can be used to get the MPE number code that defines the native
language supported by the data base. (Refer to "Data Base Description Language" and "Schema Structure",
in Section 3.)

Checking Subsystem Flag

A subsystem flag can be set by the DBUTIL program's >>SET command. This flag indicates whether
subsystems, including user programs, can access the TurboIMAGE data base and, if access is allowed,
whether it is read only or both read and write. Because the flag does not actually allow or prevent access,
the subsystem or user program must include a call to DBINFO to test this flag.

CLOSING THE DATA BASE OR A DATA SET

After you have completed all the tasks you want to perform with the data base, you use the DBCLOSE
library procedure to terminate access to it. When DBCLOSE is used for this purpose, all data set files and
the root file are closed and the data segment containing the DBU is released to the MPE system. If there
are no other concurrent users of the data base, the extra data segments containing the DBB and DBG are
also released. All locks that you still have on the data base through the closed access path are
automatically released.

The DBCLOSE procedure can also be used to rewind or close, access to a data set. Rewinding consists of
resetting the dynamic status information kept by TurboIMAGE to its initial state. If a detail data set is
closed or rewound, the current path does not change when the status information is initialized.

The purpose of closing a data set completely is to return the resources required by that data set to the
MPE system without terminating access to the data base. A typical reason for rewinding a data set is to
start at the first, or last, entry again when doing a forward or backward serial read.

It is important to close the data base before terminating programs operating under control of the BASIC
Interpreter since termination of your BASIC program does not coincide with termination of the BASIC
Interpreter process.

DEC 85
4-28

Using the Data Base

CHECKING THE ST A TUS OF A PROCEDURE

Each time a procedure is called, TurboIMAGE returns status information in a buffer specified by the
calling program and sets the condition code maintained by MPE in the status register. The condition code,
or the condition word (described later), should be checked immediately after TurboIMAGE returns from
the procedure to the calling program.

A condition code is always one of the following and has the general meaning shown:

Condition Code

CCE

CCG

CCL

General Meaning

The procedure performed successfully. No
exceptional condition was encountered.

An exceptional condition, other than an
error, was encountered.

The procedure failed due to an invalid
parameter or a system error.

The first word of the status information returned in the calling program>s buffer is a condition word
whose value corresponds to the condition code as follows:

Condition Code Condition Word Value

CCE 0

CCG >O

CCL <O

The calling program must check either the condition code or the condition word to determine the success
or failure of the procedure. The condition word is also used to indicate various exceptional conditions and
errors. These are summarized in Appendix A.

The other words of status information vary with the outcome of the call and from one procedure to
another. The content of these words is described in detail with each procedure definition later in this
section and in Appendix A, which describes error conditions.

DEC 85
4-29

Using the Data Base

INTERPRETING ERRORS

TurbolMAGE provides two library procedures, DBEXPLAIN and DBERROR, which can be used to
interpret status information programmatically. DBEXPLAIN prints on the $STDLIST device an English
language error message which includes the name of the data base and the name of the procedure that
returned the status information. DBERROR performs a similar function but returns the information in a
buff er specified by the calling program.

These procedures are intended primarily for use in debugging application programs rather than in
interpreting errors in the production environment where more specific application messages are necessary.

ABNORMAL TERMINATION

Under certain conditions, the calling process may be terminated by TurbolMAGE. Conditions giving rise
to process termination and a description of the accompanying error messages are presented in Appendix A.

DEC 85
4-30

TurbolMAGE LIBRARY PROCE_o_u_R_es _ ___,1~~11•11,

USING TurbolMAGE LIBRARY PROCEDURES

This section contains the reference specifications for the TurbolMAGE procedures, arranged
alphabetically. Table 5-1 gives a summary of the procedures with a brief description of their function in
logical order.

On the following pages, the calling parameters for each procedure are defined in the order in which they
appear in the call statement. Each parameter must be included when a call is made since a parameter's
meaning is determined by its position.

DEC 85
5-1

TurbolMAGE Library Procedures

PROCEDURE

DBOPEN

DBLOCK

DB FIND

DBGET

DBBEGIN

DBMEMO

DBPUT

DBUPDATE

DBDELETE

DBE ND

DB UNLOCK

DBCLOSE

DBINFO

DBEXPLAIN

DBERROR

DBCONTROL

DEC 85
5-2

Table 5-1. TurbolMAGE Procedures

FUNCTION

Initiates access to a data base. Sets up user's access mode and user
class number for the duration of the process.

Locks one or more data entries, a data set, or an entire data base
(or a combination of these) temporarily to allow the process
calling the procedure to have exclusive access to the locked
entities.

Locates the first and last entries of a data chain in preparation for
access to entries in the chain.

Reads the data items of a specified entry.

When logging, designates the beginning of a transaction and
optionally writes user information to the logfile.

When logging, writes user information to the logfile.

Adds new entries to a data set.

Updates or modifies the values of data items that are not search or
sort items.

Deletes existing entries from a data set.

When logging, designates the end of a transaction and optionally
writes user information to the logfile.

Releases those locks obtained with previous calls to DBLOCK.

Terminates access to a data base or a data set, or resets the
pointers of a data set to their original state.

Provides inf orma ti on about the data base being accessed, such as
the name and description of a data item.

Examines status information returned by an TurboIMAGE
procedure that has been called and prints a multi-line message on
the $STDLIST device.

Supplies an English language message that interprets the status
information set by any callable TurboIMAGE procedure. The
message is returned to the calling program in a buffer.

Allows process operating in exclusive mode to enable or disable the
"deferred update" option.

TurboIMAGE Library Procedures

Table 5-2 illustrates the forms of the call statements for the four languages that can be used to call the
procedures. Section 6 contains examples of using the procedures and specifications for declaration of
parameters for each language. It also provides a sample RPG program.

Table S-2. Calling a TurbolMAGE Procedure

COBOL CALL "name" USING parameter,parameter, ... ,parameter

FORTRAN CALL name (parameter,parameter, ... ,parameter)

SPL name (parameter,parameter, ... ,parameter)

BASIC linenumber CALL name (parameter,parameter, ... ,parameter)

PASCAL name (parameter,parameter, ... ,parameter)

All procedures may be called directly from programs in any of the five host languages. However, when
using BASIC it is recommended to use the BIMAGE interface procedures. (Refer to Section 6 for more
information.) Since they are not TYPE procedures, they do not use the SPL OPTION VARIABLE
capability, and all parameters are call-by-reference word pointers.

Intrinsic Numbers

An intrinsic number is provided for each procedure except DBEXPLAIN and DBERROR. This number,
which uniquely identifies the procedure within TurbolMAGE and the MPE operating system, is returned
with other status information when an error occurs. You can use it to identify the procedure that caused
the error.

Data Base Protection

When each procedure is called, TurboIMAGE verifies that the requested operation is compatible with the
user class number and access mode established when the data base is opened.

Unused Parameters

When calling some procedures for a specific purpose, one of the parameters may be ignored, however, it
must be listed in the call statement. An application program may find it useful to set up a variable
named DUMMY to be listed as the unused parameter in these situations, as a reminder that the value of
the parameter does not effect the procedure call.

The Status Array

The status array is a communication area. If the procedure executes successfully, the contents reflect this
as described in this section. If the procedure fails, standard error information is returned as described in
Appendix A.

DEC 85
5-3

DB BEGIN

INTRINSIC NUMBER 412

Designates the beginning of a sequence of TurboIMAGE procedure calls which are to be regarded as a
single logical transaction for the purposes of logging and recovery. Text area may be used to log user
information to the logfile.

Syntax

DBBEGIN,base,text,mode,status,textlen

Parameters

base

text

mode

status

textlen

DEC 85
5-4

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is an array up to'! 256 words long which contains user ASCII or binary data
to be written to the logfile as part of the DBBEGIN log record. The text
argument is used to assign each particular transaction a distinct name.,
(Refer to "Discussion" below for more information.)

must be an integer equal to 1.

is the name of a ten-word array in which TurboIMAGE returns status
information. If the procedure executes successfully, the status array
contents are:

Word Contents

Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix_ A for a
description of this information.

Table S-3 lists the contents of Word 1 when the procedure does not
succeed.

is an integer equal to the number of words to be logged in the text
parameter, or if negative, equal to the numtjer of bytes. Length may also
be zero.

DBBEGIN

Discussion

DBBEGIN is called to designate the beginning of a sequence of TurboIMAGE procedure calls which are
jointly considered as a single logical transaction. (The end of such a sequence is designated by a matching
call to DBEND.) If the calling process is logging, DBBEGIN causes a log record to be written to the logfile
which includes such information as the time, date, and user text buffer. DBBEGIN log records are used
by the data base recovery program DBRECOV to identify the beginning of logical transactions.

If TurbolMAGE Profiler is used to gain information on the effectiveness of program calls, the text
argument is used to identify the name of each logical transaction. If text is left blank, Profiler assigns the
program name to the logical transaction. To gain the greatest use of Profiler define each logical
transaction with a name in the text argument of DBBEGIN. (Refer to the Turbo/MAGE Profiler User
Guide for further information.)

DBBEGIN will return an error condition if it is called twice without an intervening call to DBEND,
whether the process is actually logging or not.

CALLING ERRORS:

COMMUNICATIONS
FAILURES:

EXCEPTIONAL
CONDITIONS:

LOG SYSTEM
FAILURES:

Table 5-3. DBBEGIN Condition Word Values

-11 Bad data base reference.
-31 Bad mode.
-151 Text length too large.
-152 Transaction already in progress.

-102 DSWRITE failure.
-106 Remote data inconsistent.
-107 DS procedure call error.

0 Logging not enabled for this user.
62 DBCB cannot expand.
63 Bad DBG.

-111 WRITELOG intrinsic failure.

Consult Appendix A for more
information about these condition codes.

DEC 85
5-5

DBCLOSE

INTRINSIC NUMBER 403

Terminates access to a data base or terminates, temporarily or permanently, access to a data set, or rewinds
a data set.

Syntax

DBCLOSE,base,dset,mode,status

Parameters

base

dset

mode

status

DEC 85
5-6

is the name of an array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is the name of an array containing the left-justified name of the data set to
be closed or is an integer referencing the data set by number if mode equals
2 or 3. If mode equals 1, this parameter is ignored.

The data set name may be 16 characters long or, if shorter, terminated by a
semicolon or blank.

is an integer indicating the type of termination desired. If mode equals 1,
access to the data base is terminated. Any locks through the closed access
pa th are released.

If mode equals 2, the data set referenced by the dset array is closed, but
locks held in the data set are not released.

If mode equals 3, the data set referenced by the dset array is reinitialized
but not closed.

is the name of a ten-word array in which TurbolMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condi ti on word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5- 5 lists the contents of Word 1 when the procedure does not
succeed.

DBCLOSE

Discussion

You must call DBCLOSE mode 1 to terminate access to the data base when you have completed all the
tasks you want to perform. If a process has issued multiple calls to DBOPEN for the same data base, only
the access path specified in the DBCLOSE base parameter is affected by the call to DBCLOSE.

The capability to reset and close a data set is provided to perform functions such as reinitializing dynamic
status information for a process accessing a particular data set and returning system resources. In both
modes 2 and 3, status information is re.initialized, but system resources are returned in mode 2 only.
Table 5-4 summarizes the functions performed in each mode.

Table 5-4. DBLCOSE Modes 2 and 3

FUNCTION MODE 2 MODE 3

Reinitialize dynamic status information for the data
set:

such as the chain count, forward and backword pointers, YES YES
current record number and last condition word

quiesce the data set in addition YES NO

Close the data set and return system resources YES NO

Release locks held within the data set NO NO

Since mode 3 does not close and re-open a data set, it is more efficient than mode 2 if the data set is to be
accessed again before the data base is closed.

If the process is logging, a mode 1 DBCLOSE will cause a DBCLOSE log record to be written to the
logfile. DBCLOSE log records contain such information as the time, date, and user log identification
number. A DBCLOSE log record is also written if the process aborts or terminates without closing the
data base. If the process aborts before competing an active transaction, a special DBEND log record is
written prior to the DBCLOSE.

DBCLOSE will return an error condition if the process has not completed an active transaction, in other
words, has called DBBEGIN without a matching call to DBEND. Transactions which abort in this manner
are not automatically suppressed by DBRECOV during recovery in order to salvage as many subsequent
transactions that may depend on the aborted transaction as possible.

DEC 85
5-7

DBCLOSE

Table 5-5. DBCLOSE Condition Word Values

FILE SYSTEM AND
MEMORY MANAGEMENT
FAILURES:

CALLING ERRORS:

COMMUNICATIONS
ERRORS:

LOGGING SYSTEM
FAILURES:

ILR LOG FILE ERROR:

EXCEPTIONAL
CONDITIONS:

DEC 85
5-8

-2

-11
-21
-31

-101
-102
-106
-107

-111
-112
-152

-171

63

FCLOSE failure.

Bad bases parameter.
Bad data set reference.
Bad mode.

DSC LOSE failure.
DSWRITE failure.
Remote data inconsistent.
OS procedure call error.

WRITELOG intrinsic failure.
CLOSELOG intrinsic failure.
Transaction is in progress.

Cannot close ILR log file:
file system error nn.

Bad DBG.

Consult Appendix A for more information
about these condition codes.

DBCONTROL

INTRINSIC NUMBER 411

Allows a process accessing the data base in exclusive mode (DBOPEN mode 3) to enable or disable the
"output deferred" option.

Syntax

DBCONTROL,base,qualifier,mode,status

Parameters

base

qualifier

mode

status

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is currently ignored by DBCONTROL.

must be an integer equal to 1 or 2, indicating the following:

Mode 1: Turn on output deferred option (see note below).

Mode 2: Turn off output deferred option (see note below).

is the name of a ten-word array in which TurboIMAGE returns status
information. If the procedure executes successfully, the status array
contents are as follows:

Word Contents

Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5-6 lists the contents of Word 1 when the procedure does not
succeed.

DEC 85
5-9

DB CONTROL

Discussion

In the default mode of operation, TurbolMAGE writes all data base modifications (calls to DBPUT,
DBUPDA TE, and DBDELETE) to the disc before returning to the calling program. In the output deferred
mode of operation, however, TurboIMAGE will only write out modifications when necessary to free a
TurbolMAGE buffer for further use.

NOTE

If AUTODEFER is enabled on the data base (using DBUTIL >> ENABLE
command), then modes 1 or 2 are overridden by the automatic output
deferred option. AUTODEFER is disabled only by using the DBUTIL
>>DISABLE command.

A program which opens the data base exclusively may call DBCONTROL (mode 1) to enter the deferred
mode of operation. In deferred mode, data base modifications caused by calls to DBPUT, DBUPDA TE, or
DBDELETE may not be written to the disc (or may only be partially written) upon return from these
procedures. Although TurbolMAGE generally operates more efficiently in this mode, a system failure
while the data base is operating in this mode has a very high probability of causing internal structural
damage to the data base.

A call to DECONTROL (mode 2) will turn off the deferred mode of operation and will write the contents
of all modified buffers to disc.

Table 5-6. DBCONTROL Condition Word Values

FILE SYSTEM FAILURES:

CALLING ERRORS:

COMMUNICATIONS
FAILURES:

EXCEPTIONAL
CONDITIONS:

DEC 85
5-10

-4

-11
-14
-31
-80

-102

63

FREADLABEL failure.

Bad data base reference.
Illegal intrinsic in current access mode.
Bad mode.
Output deferred not allowed when ILR enabled.

DSWRITE failure.

Bad DBG.

Consult Appendix A for more information about
these condition codes.

DBDELETE

INTRINSIC NUMBER 408

Deletes the current entry from a manual master or detail data set. The data base must be open in access
mode 1, 3, or 4.

Syntax

DBDELETE,base,dset,mode,status

Parameters

base

dset

mode

status

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is the name of an array containing the left-justified name of the data set
from which the entry is to be deleted or is an integer referencing the data
set by number. The data set name may be 16 characters long or, if shorter,
terminated by a semicolon or a blank.

must be an integer equal to 1.

is the name of a ten-word array in which TurbolMAGE returns status
information about the procedure. If the procedure executes successfully, the
status array contents are:

Word Contents

Condition word is 0.

2 Zero.

3-4 Unchanged current record address.

5-6 Number of entries in a chain.

If master data set, the number is zero unless the deleted
en try was a primary en try with synonyms. In this case,
the number is one less than its previous value.

If detail data set, the number is unchanged from the
preceding procedure call.

7-10 Unchanged preceding and succeeding record numbers of
a chain. If master <la ta set and the new synonym chain
count is greater than zero, the numbers reference the
last and first synonym chain entries respectively.

DEC 85
5-11

DBDELETE

Discussion

When deleting entries from master data sets, the following rules apply:

• All pointer information for chains indexed by the entry must indicate that the chains are empty. In
other words, there must not be any detail entries on the paths defined by the master which have the
same search item value as the master entry to be deleted.

• If the data base is open in access mode 1, a lock must be in effect on the data set or the whole data
base.

Because of the way TurboIMAGE handles synonym chains, it is possible to write a routine to read and
delete all the entries in a master data set and still leave some entries in the set. If the deleted entry is a
primary with synonyms, TurboIMAGE writes the first synonym in the chain to the deleted primary's
location. A subsequent DBGET will read the next sequential entry, leaving an entry (the new primary) in
the previous location.

A solution to this problem is to check words 5 and 6 of the status parameter following each DBDELETE
call. If the synonym count in these words is not zero, reread the location (using DBGET, mode 1) and call
DBDELETE again. Repeat the reread and DBDELETE until the count is zero, then continue reading and
deleting serially. (Ref er to Section 4 for a discussion of serial access and to Section 1 0 for a discussion of
synonym chains.)

TurbolMAGE performs the required changes to chain linkages and other chain information, including the
chain heads in related master data sets. If the last member of each detail chain linked to the same
automatic master entry has been deleted, DBDELETE also deletes the master entry containing the chain
heads - in this case, the synonym chain information for the auto'matic master is set to zero (refer to
Section 10 for more information).

If the data base is open in access mode 1, you must establish a lock covering the data entry to be deleted
before calling DBDELETE.

The current record is unchanged. If a primary data entry with synonyms is deleted from a master data
set and a secondary migrates, the backward and forward pointers reflect the new primary. In all other
cases, the backward and forward pointers are unchanged when an entry is deleted.

If the process is logging, a call to DBDELETE will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of the record to be deleted.

DEC 85
5-12

DBDELETE

Table 5-7. DBDELETE Condition Word Values

FILE SYSTEM AND -1
MEMORY MANAGEMENT -3
FAILURES: -4

CALLING ERRORS: -11
-12

-14
-21
-23
-31

COMMUNICATIONS -102
ERRORS: -106

-107

LOGGING SYSTEM -111
FAILURES:

EXCEPTIONAL 17
CONDITIONS: 44

63

FOPEN intrinsic failure.
FREADDIR failure.
FREADLABEL failure.

Bad base parameter.
No lock covers the data entry to be deleted.
(Occurs only if open in access mode 1.)
Illegal intrinsic in current access mode.
Bad data set reference.
Data set not writable.
Bad mode.

DSWRITE failure.
Remote data inconsistent.
DS procedure call error.

WRITELOG intrinsic failure.

No entry.
Chain head.
Bad DBG.

Consult Appendix A for more information
about these condition codes.

DEC 85
5-13

DBE ND

INTRINSIC NUMBER 413

Designates the end of a sequence of TurbolMAGE procedure calls which are regarded as a single logical
transaction, for the purposes of logging and recovery. Text area may be used to log user information to
the logfile.

Syntax

DBEND,base,text,mode,status,textlen

Parameters

base

text

mode

status

textlen

DEC 85
5-14

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is an array up to 256 words long which contains user ASCII or binary data
to be written to the logfile as part of the DBEND log record.

must be an integer equal to 1 or 2.

Mode 1: End of logical transaction.

Mode 2: End logical transaction and write contents of the logging
buffer in memory to disc.

is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are as follows:

Word Contents

Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

S-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5-8 lists the contents of Word 1 when the procedure does not
succeed.

is an integer equal to the number of words to be logged in the TEXT
parameter, or if negative, equal to the number of bytes. Length may be
zero.

DBE ND

Discussion

DBEND is called to designate the end of a sequence of TurboIMAGE procedure calls which are
collectively considered as a single logical transaction. (The beginning of such a sequence is designated by a
previous call to DBBEGIN.) If the process is logging, DBEND causes a log record to be written to the
logfile which includes such information as the time, date, and user text buffer. DBEND log records are
used by the data ba~'~ recovery program DBRECOV to identify the end of logical transactions. Failure to
call DBEND will not cause a transaction to be suppressed in the event of a program abort and subsequent
data base recovery.

If you call DBEND with mode equal to 2;-DBEND will force the writing of the log buffer from memory
to disc before returning to the calling process. This flush of the log buffer occurs after the intrinsic has
logged the end of the logical transaction. Try to use this option only for critical transactions; too many
mode 2 DBEND calls can degrade performance by causing a disc access each time a logical transaction
ends.

DBEND will return an error condition if it is called without a prior matching call to DBBEGIN, whether
the process is actually logging or not.

CALLING ERRORS:

COMMUNICATIONS
FAILURES:

EXCEPTIONAL
CONDITIONS:

LOG SYSTEM
FAILURES:

Table S-8. DBEND Condition Word Values

-11 Bad data base reference.
-31 Bad mode.
-151 Text length too large.
-153 No transaction in progress to end.

-102 DSWRITE failure.
-106 Remote data inconsistent.
-107 DS procedure call error.

0 Logging not enabled for this user.
62 DBG cannot expand.
63 Bad DBG.

-111 WRITELOG intrinsic failure.
-113 FLUSHLOG returned error number

nn to DBEND.

Consult Appendix A for more information
about these condition codes.

DEC 85
5-15

DB ERROR

Moves an English language message, as an ASCII character string, to a buffer specified by the calling
program. The message interprets the contents of the status array as set by a call to a TurbolMAGE
procedure.

Syntax

DBERROR,status,buffer,length

Parameters

status

buff er

length

Discussion

is the name of the array used as the status parameter in the TurboIMAGE
procedure call about which information is requested.

is the name of an array in the calling program's data area, at least 36 words
long, to which the message is returned.

is an integer variable which is set by DBERROR to the positive byte length
of the message placed in the buff er array. The length will never exceed 7 2
characters.

Like DBEXPLAIN, DBERROR messages are intended and appropriate for use while debugging application
programs. The errors they describe are, for the most part, errors that do not occur in a debugged and
running program.

Some errors or exceptional conditions are expected to occur, even in a production environment. For
example, the MPE intrinsic DBOPEN may fail due to concurrent data base access. In this case, printing
the DBERROR message:

DATA BASE OPEN EXCLUSIVELY

may be perfectly acceptable, even to the person using the application program. However, in many cases a
specific message produced by the application program is preferable to the one produced by DBERROR. A
DBFIND error generated by the application program, such as:

THERE ARE NO ORDERS FOR THAT PART NUMBER

would be more meaningful to a user entering data at a terminal than the DBERROR message:

THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE

Table 5-9 lists all messages that can be returned by DBERROR with their corresponding condition word
values. Several messages may correspond to one condition word and the interpretation of the code
depends on the context in which it is returned. Variable information is represented by a lowercase word
or phrase.

DEC 85
5-16

DBERROR

Table 5-9. DBERROR Messages

CONDITION DBERROR MESSAGE
WORD

0 SUCCESSFUL EXECUTION - NO ERROR

-1 NO SUCH DATA BASE
DATA BASE OPEN IN AN INCOMPATIBLE MODE
BAD ACCOUNT REFERENCE or BAD GROUP REFERENCE
BAD ROOT FILE REFERENCE
VIRTUAL MEMORY NOT SUFFICIENT TO OPEN ROOT FILE
DATA BASE ALREADY OPEN FOR MORE THAN READ
DATA BASE IN USE
DATA BASE OPEN EXCLUSIVELY
MPE SECURITY VIOLATION
MPE FILE ERROR deaim:il integer RETURNED BY FOPEN

ON {ROOT FILE }
DATA SET # deaim:il integer

-2 MPE FILE ERROR deaim:il integer RETURNED BY FCLOSE

ON {ROOT FILE }
DATA SET # deaim:il integer

-3 MPE FILE ERROR deoim:il integer RETURNED BY FREADDIR

ON {ROOT FILE }
DATA SET # deaim:il integer

-4 MPE FILE ERROR deaim:il integer RETURNED BY FREADLABEL

ON {liOOT FILE }
DATA SET # deaim:il integer

-5 MPE FILE ERROR decim:il integer RETURNED BY FWRITEDIR

-6 MPE FILE ERROR decim:il integer RETURNED BY FWRITELABEL

-7 PREVIOUS MPE FILE ERROR deoim:il integer FOUND IN DESIRED BUFFER

-9 MPE ERROR %octal integer RETURNED BY GETDSEG OF deaim:il
integer WORDS

-11 BAD DATA BASE NAME OR PRECEDING BLANKS MISSING
BAD DATA BASE REFERENCE (FIRST 2 CHARACTERS)

-12 IMAGE procedure name CALLED WITHOUT COVERING LOCK IN EFFECT

-14 CALLS TO TurboIMAGE procedure name NOT ALLOWED IN ACCESS MODE
deciml integer

DEC 85
5-17

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION
WORD

DBERROR MESSAGE

DEC 85
5-18

-21 BAD PASSWORD - GRANTS ACCESS TO NOTHING
DATA ITEM NONEXISTENT OR INACCESSIBLE
SPECIFIED SET IS NOT ALLOWED ON A MASTER SET
DATA SET NONEXISTENT OR INACCESSIBLE
BAD MAINTENANCE WORD (CONTAINS COMMA OR·DOES NOT MATCH)

-22 MAINTENANCE WORD REQUIRED

-23 USER (CLASS) LACKS WRITE ACCESS TO DATA SET

-24 OPERATION NOT ALLOWED ON AUTOMATIC MASTER DATA SET

-31 DBGET MODE decimal integer ILLEGAL FOR DETAIL DATA SET
DBGET MODE decimal integer BAD--SPECIFIED DATA SET LACKS CHAINS
BAD (UNRECOGNIZED) TurboIMAGE procedure name MODE:
decimal integer

-32 UNOBTAINABLE ACCESS MODE: AOPTIONS REQUESTED: %octal integer,
GRANTED: %octal integer

-51 LIST TOO LONG OR NOT PROPERLY TERMINATED

-52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE
SPECIFIED SET

BAD LIST - CONTAINS ILLEGAL OR DUPLICATED DATA ITEM
REFERENCE

-53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM

-60 ILLEGAL FILE EQUATION ON ROOT FILE

-80 OUTPUT DEFERRED NOT ALLOWED WITH ILR

-90 ROOT FILE BAD: UNRECOGNIZED STATE: 3ootal integer

-91 ROOT FILE (DATA BASE) NOT COMPATIBLE WITH CURRENT TurboIMAGE
INTRINSICS

-92 DATA BASE REQUIRES CREATION (VIRGIN ROOT FILE)

-94 DATA BASE BAD: WAS BEING MODIFIED WITH OUTPUT DEFERRED,
MAY NOT BE ACCESSED IN MODE decimal integer

-95 DATA BASE BAD: CREATION WAS IN PROCESS (CREATE AGAIN)

-96 DATA BASE BAD: ERASE WAS IN PROCESS (ERASE AGAIN)

CONDITION
WORD

-97

-98

-100

-101

-102

-103

-104

Table 5-9. DBERROR Messages (Continued)

DBERROR MESSAGE

DATA BASE BAD: ILR ENABLE IN PROCESS

DATA BASE BAD: ILR DISABLE IN PROCESS

MPE ERROR decimal integer RETURNED BY DSOPEN

MPE ERROR decimal integer RETURNED BY DSC LOSE

MPE ERROR decimal integer RETURNED BY DSWRITE

REMOTE 3000 STACK SPACE INSUFFICIENT

REMOTE 3000 DOES NOT SUPPORT TurboIMAGE

-105 REMOTE 3000 MPE ERROR %octal integer RETURNED BY
GETDSEG OF decimal integer WORDS

-106 REMOTE 3000 DATA INCONSISTENT

-107 DS/3000 SYSTEM ERROR

-110 OPENLOG RETURNED ERROR NUMBER NN TO DBOPEN
LOGGING ENABLED AND NO LOG PROCESS RUNNING (3)
DATA BASE CONTAINS INVALID LOG ID PASSWORD (8)
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE (12)
MAXIMUM USER COUNT PER LOG PROCESS REACHED (13)
END OF FILE ON LOGFILE (15)
DATA BASE CONTAINS INVALID LOG IDENTIFIER (16)

-111 WRITELOG RETURNED ERROR NUMBER NN TO DBPROCEDURE
LOG PROCESS TERMINATED (3)
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE (12)
END OF FILE ON LOGFILE (15)

DBERROR

(Refer to the MPE WRITELOG intrinsic for additional error numbers)

-112 CLOSELOG RETURNED ERROR NUMBER NN TO DBCLOSE
LOG PROCESS TERMINATED (3)
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE (12)
END OF FILE ON LOGFILE (15)

-113 WRITELOG RETURNED ERROR NUMBER NN TO DBEND

-120 INSUFFICIENT STACK SPACE FOR DBLOCK

-121 ILLEGAL LOCK DESCRIPTOR COUNT

-122 BOUNDS VIOLATION ON DESCRIPTOR LIST

DEC 85
5-19

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE

DEC 85
5-20

WORD

-123 ILLEGAL RELATIONAL OPERATOR

-124 DESCRIPTOR LENGTH ERROR: MUST BE 9 OR MORE

-125 ILLEGAL SET NAME OR NUMBER IN DESCRIPTOR

-126 ILLEGAL ITEM NAME OR NUMBER IN DESCRIPTOR

-127 ILLEGAL ATTEMPT TO LOCK ON A COMPOUND ITEM

-128 VALUE FIELD TOO SHORT FOR THE ITEM SPECIFIED

-129 P28 IS LONGEST P-TYPE ITEM THAT CAN BE LOCKED

-130 ILLEGAL DECIMAL DIGIT IN TYPE 'P' DATA VALUE

-131 LOWERCASE CHARACTER IN TYPE 'U' DATA VALUE

-132 ILLEGAL DIGIT IN TYPE 'Z' DATA VALUE

-133 ILLEGAL SIGN CHARACTER IN TYPE 'Z' DATA VALUE

-134 TWO LOCK DESCRIPTORS CONFLICT IN SAME REQUEST

-135 DBLOCK CALLED WITH LOCKS ALREADY IN EFFECT IN THIS
JOB/SESSION

-136 DESCRIPTOR LIST LENGTH EXCEEDS 2047 WORDS

-151 TEXT LENGTH GREATER THAN 512 BYTES

-152 DBCLOSE CALLED WHILE A TRANSACTION IS IN PROGRESS
DBBEGIN CALLED WHILE A TRANSACTION IS IN PROGRESS

-153 DBEND CALLED WHILE NO TRANSACTION IS IN PROGRESS

-160 FILE CONFLICT: A FILE ALREADY EXISTS WITH THE ILR LOG FILE
NAME

-161 CANNOT CHECK FOR ILR LOG FILE CONFLICT: FILE SYSTEM ERROR nn

-162 CANNOT BUILD ILR LOG FILE: FILE SYSTEM ERRORnn

-163 CANNOT INITIALIZE ILR LOG FILE: FILE SYSTEM ERROR nn

-164 CANNOT INITIALIZE ILR LOG HEADER: FILE SYSTEM ERROR nn

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE
WORD

-165 CANNOT SAVE ILR LOG FILE: FILE SYSTEM ERROR nn

-166 CANNOT PURGE ILR LOG FILE: FILE SYSTEM ERROR nn

-170 CANNOT OPEN ILR LOG FILE:FILE SYSTEM ERROR nn

-171 CANNOT CLOSE ILR LOG FILE: FILE SYSTEM ERROR nn

-172 CANNOT READ ILR LOG FILE: FILE SYSTEM ERROR nn

-180 ILR LOG INVALID - INTERNAL FILE NAME DOES NOT
MATCH ROOT FILE

-181 ILR LOG INVALID - INTERNAL GROUP NAME DOES
NOT MATCH ROOT FILE

-182 ILR LOG INVALID - INTERNAL ACCOUNT NAME DOES
NOT MATCH ROOT FILE

-183 ILR LOG INVALID - INTERNAL CREATION DATE
DOES NOT MATCH ROOT FILE

-184 ILR LOG INVALID - INTERNAL LAST ACCESS DATE
DOES NOT MATCH ROOT FILE

-185 CANNOT GET EXTRA DATA SEGMENT OF SIZE
'foXXXXX FOR ILR

-187 ILR ALREADY ENABLED FOR THIS DATA BASE

-188 ILR ALREADY DISABLED FOR THIS DATA BASE

-192 INVALID DBU

-193 DBU CONTROL BLOCK IS FULL

-194 INVALID DBB

-195 INVALID DBG

-196 DBB CONTROL BLOCK IS FULL

-197 DBG CONTROL BLOCK IS FULL

DBERROR

,____ ___________________________________ _

DEC 85
5-21

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE
WORD

-200 DATA BASE LANGUAGE NOT SYSTEM SUPPORTED

-201 NATIVE LANGUAGE SUPPORT NOT INSTALLED

-202 MPE NATIVE LANGUAGE SUPPORT ERROR nn
RETURNED BY NLINFO

-203 DSCB EXTENSION FULL

-204 STACK OVERFLOW WHILE RECOVERING IN DBOPEN

-205 INCOMPATIBLE DS/3000 VERSION WHILE IN DBOPEN

-206 REMOTE TurboIMAGE DATABASE EXCEEDS IMAGE/3000 LIMITATION

-3xx INTERNAL TurboIMAGE ERROR RETURNED (#n)

DEC 85
5-22

3 GENMESSAGE ERROR: SET NOT IN CATALOG

4 GENMESSAGE ERROR: MESSAGE NOT IN CATALOG

10 BEGINNING OF FILE

11 END OF FILE

12 DIRECTED BEGINNING OF FILE

13 DIRECTED END OF FILE

14 BEGINNING OF CHAIN

15 END OF CHAIN

16 THE DATA SET IS FULL

17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
THERE IS NO ENTRY WITH THE SPECIFIED KEY VALUE
THERE IS NO PRIMARY SYNONYM FOR THE SPECIFIED KEY VALUE
NO CURRENT RECORD OR THE CURRENT RECORD IS EMPTY

(CONTAINS NO ENTRY)
THE SELECTED RECORD IS EMPTY (CONTAINS NO ENTRY)

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE
WORD

18 BROKEN CHAIN - FORWARD AND BACKWARD POINTERS
NOT CONSISTENT

20 DATA BASE CURRENTLY LOCKED BY ANOTHER USER
SETS OR ENTRIES LOCKED WITHIN DATA BASE

22 DATA SET ALREADY LOCKED

DBERROR

23 CANNOT LOCK SET DUE TO LOCKED ENTRIES WITHIN IT Conditional

24

25

41

42

43

44

50

60

61

62

63

ENTRIES CURRENTLY LOCKED USING DIFFERENT ITEM Locks Only

CONFLICTING ENTRY LOCK ALREADY IN EFFECT

DBUPDATE WILL NOT ALTER A SEARCH OR SORT ITEM

DBUPDATE WILL NOT ALTER A READ-ONLY DATA ITEM

DUPLICATE KEY VALUE IN MASTER

CAN'T DELETE A MASTER ENTRY WITH NON-EMPTY DETAIL
CHAINS

USER'S BUFFER IS TOO SMALL FOR REQUESTED DATA (ONLY
RETURNED IF BUFFER IS TOO SMALL AND THE DATA TRANSFER
WOULD WRITE OVER STACK MARKERS IN THE USER'S STACK)

DATA BASE ACCESS DISABLED

PROCESS HAS THE DATA BASE OPEN 63 TIMES;
NO MORE ALLOWED

IMAGE DATA BASE CONTROL BLOCK FULL

DBG DISABLED; POTENTIAL DAMAGE;
ONLY DBCLOSE ALLOWED

DEC 85
5-23

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE
WORD

64 NO ROOM FOR DBG ENTRY IN PCBX (MPE PORTION OF STACK)

66 DBG POINTED TO BY ROOT FILE DOES NOT MATCH

67 DBU DISABLED; POTENTIAL DAMAGE; ONLY DBCLOSE
ALLOWED

68 DBB DISABLED; POTENTITIAL DAMAGE; ONLY DBCLOSE
ALLOWED

71 LOGGING NOT ENABLED FOR THIS USER

1xx THERE IS NO CHAIN HEAD (MASTER ENTRY) FOR
PATH decimal integer: xx

2xx THE CHAIN FOR PATH decimal integer: xx
IS FULL (CONTAINS 2,147,483,647 ENTRIES)

3xx THE AUTOMATIC MASTER FOR PATH decim::r.l
integer: xx IS FULL

Others UNRECOGNIZED CONDITION WORD: decimal integer

For Condition Words -9xx, 944, 947, and 948 returned by DBERROR, please refer to the Turbo/MAGE
Profiler User Guide.

DEC 85
5-24

DBEXPLAIN

Prints a multi-line message on the $STDLIST device which describes a TurbolMAGE procedure call and
explains the call's results as recorded in the calling program)s status array.

Syntax

DBEXPLAIN,status

Parameters

status is the name of the array used as the status parameter in the TurbolMAGE
procedure call about which information is requested.

NOTE

The base, qualifier, dset, and password parameters, if required by the
procedure which put the results in the status area, must be unchanged when
the call is made to DBEXPLAIN since information is taken from them as
well.

Discussion

Table 5-10 contains the general format for lines 2 through 6 of the message which is sent to $STDLIST.
Elements surrounded by brackets are sometimes omitted. Braces indicate that only one of the choices
shown will be printed. Lines 5 and 6 are printed only if, during the preparation of lines 2, 3, and 4,
TurboIMAGE detects that the status array contents are invalid, unrecognizable or incomplete, or if a
message must be truncated to fit on a single line.

If the status array contents appear to be the result of something other than a TurboIMAGE procedure call
or if the array is used by the called procedure for information other than that discussed here, the second
choice for line 3 is printed. This would be the case for a successful call to DBGET which uses all ten
status words to return a condition word, lengths, and record numbers.

If the status array contains an unrecognized error code, the second line 4 choice is printed.

If the condition word is greater than or equal to zero, the word, ERROR in line 2 is replaced by RESULT
because -:-,on -negative condition words indicate success or exceptional conditions such as end-of-chain.
Condition word values are explained in Appendix A.

You can use the offset information to locate the specific call statement that generated the status array
contents if the call is made with a programming language which enables you to determine displacements
of program statements or labels within the code. The identity of the code segment is not printed because
it cannot be determined by DBEXPLAIN. Therefore, you need to be familiar with the program's
functioning in order to locate the correct call The offset portion of line 2 is printed only if the status
array appears to be set by a TurbolMAGE library procedure call and contains valid offset information.

DEC 85
5-25

DBEXPLAIN

LINE

2

3

4

5

6

7

PARAMETER

offset

con word

intrinsioname

x

set name

password

base name

DEC 85
5-26

Table 5-10. DBEXPLAIN Message Format

FORMAT

(a blank line)

{
ERROR } TurboIMAGE RESULT [AT offset]: CONDITION WORD=oonword

{

intrinsioname,MODE x,ON[setname OF]basename}
[;PASSWORD=password]

TurboIMAGE CALL INFORMATION NOT AVAILABLE

{~sm~ }
UNRECOGNIZED CONDITION WORD: oonword

[OCTAL DUMP OF STATUS ARRAY FOLLOWS]

[octal display]

(a blank line)

EXPLANATION

is the octal PB-relative offset within the user's code segment of the
TurbolMAGE procedure call. See the MPE Intrinsics Reference Manual for
a discussion of PB (program base) relative addresses.

is the condition word (from the first word of status) printed as a decimal
integer and corresponding to the condition words described in Appendix A.

is the name of the TurbolMAGE library procedure (intrinsic) which was
called and which set the contents of the status array.

is the value of the mode parameter as a decimal integer.

is the value of the second parameter, usually a data set name or number, as
passed to the procedure which set the status array contents. The second
parameter can be a data item name or number if the procedure in question
is DBINFO. If the procedure is DBOPEN, DBLOCK, DBUNLOCK, or
certain modes of DBINFO or DBLCOSE, setname is omitted.

is printed at the end of line 3 only if the error relates to the password
parameter of DBOPEN.

is the data base specified in the procedure which was called and set the l
status array contents. ____J

DBEXPLAIN

Table 5-10. DBEXPLAIN Message Format (Continued)

LINE FORMAT

message is an English language description of the result based on the condition word
and other status array information. The message is generated by the
DBERROR procedure which is also described in this section. See Table 5-2
for all possible line 4 messages.

ootal display is a listing of each word of status printed as a string of 6 octal digits.
Adjacent status words are separated by a blank and the entire line is 69
characters long.

Figure 5-1 contains four examples of messages generated by DBEXPLAIN.

IMAGE RESULT AT 3001103: CONDITION WORD=O
DBLOCK,MODE1, ON ORDERS
SUCCESSFUL EXECUTION - NO ERROR

DBLOCK=intrinsic name
ORDERS=data base name
NO ERROR=message

IMAGE ERROR AT %001057: CONDITION WORD=-12
DBPUT,MODE1, ON DATE-MASTER OF ORDERS
DBPUT CALLED WITH DATA BASE NOT LOCKED

DATE-MASTER=data set name

IMAGE RESULT AT 3001057: CONDITION WORD=16
DBPUT,MODE1, ON #1 OF ORDERS
THE DATA SET IS FULL

IMAGE RESULT: CONDITION WORD=5349
IMAGE CALL INFORMATION NOT AVAILABLE
UNRECOGNIZED CONDITION WORD: 5349
OCTAL DUMP OF STATUS ARRAY FOLLOWS:

1 =data set number

012345 054321 011111 022222 033333 044444 055555 066666 077777
......................... ootal display

Figure 5-1. Sample DBEXPLAIN Messages

DEC 85
5-27

DBFIND

INTRINSIC NUMBER 404

Locates master set entry that matches the specified search item value and sets up pointers to the first and
last entries of a detail data set chain in preparation for chained access to the data entries which are
members of the chain. The path is determined and the chain pointers located on the basis of a specified
search item and its value.

Syntax

DBFIND,base,dset,mode,status,item~argument

Parameters

base

dset

mode

status

item

DEC 85
5-28

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

is the name of an array containing the left-justified name of the detail
data set to be accessed or is an integer referencing the data set by number.
The data set name may be 16 characters long or, if shorter, terminated by a
semicolon or blank.

must be an integer equal to 1.

is the name of a ten-word array in which TurbolMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condition word is 0.

2 Zero.

3-4 Doubleword current record number set to zero.

5-6 Doubleword count of number of entries in chain.

7- 8 Doubleword record number of last entry in chain.

9-10 Doubleword record number of first entry in chain.

is the name of an array containing a left-justified name of the detail data
set search item or is an integer referencing the search item number that
defines the path containing the desired chain. The name may be 16
characters long or, if shorter, terminated by a semicolon or blank. The
specified search item defines the path to which the chain belongs.

DBFIND

argument contains a value for the search item to be used in calculated access to locate
the desire.d chain head in the master data set.

Discussion

The current values of chain count, backward pointer, and forward pointer for the detail data set
referenced in dset are replaced by the corresponding value from the chain head. A current path number,
which is maintained internally, is set to the new path number and the current record number for the data
set is set to zero. Refer to Section 10 for further information about chain heads and internally
maintained data set information.

Note that although a master set entry exists with the specified search item value, the data set chain may
be empty.

Table S-11. DBFIND Condition Word Values

FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.

CALLING ERRORS: -11 Bad base parameter.
-21 Bad data set reference.
-31 Bad mode.
-52 Bad item.

COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPTIONAL 17 No master entry.
CONDITIONS: 63 Bad DBG.

Consult Appendix A for more information
about these conditions.

NOTE

A call to DBOPEN does not open individual data sets. Thus, a call to
DBFIND (or DBGET) that accesses a data set for the first time (or after the
data set has been closed), must open the data set. This causes extra
overhead not incurred by subsequent calls to the same data set by DBFIND
or DBGET.

DEC 85
5-29

DBGET

INTRINSIC NUMBER 405

Provides eight different methods for accessing the entries of a data set.

Syntax

DBGET,base,dset,mode,status,list,buffer,argument

Parameters

base

dset

mode

DEC 85
5-30

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

is the name of an array containing the left-justified name of the data set to
be read or is an integer referencing the data set by number. The data set
name may be 16 characters long or, if shorter, terminated by a semicolon or
blank.

contains an integer between 1 and 8, inclusive, which indicates the reading
method. The methods are:

2

3

4

5

Mode

Re-read

Serial Read

Backward Serial
Read

Directed Read

Chained Read

Method

Read the entry at the internally maintained
current record address (argument parameter
is ignored).

Read the first entry whose record address is
greater than the in tern ally maintained
current address (argument parameter is
ignored).

Read the first en try whose record address is
less than the internally maintained current
address (argument parameter is ignored).

Read the en try, if it exists, at the record
address specified in the argument parameter
(argument is treated as a doubleword record
number).

Read the next entry in the current chain, the
entry referenced by the internally
maintained forward pointer (argument
parameter is ignored).

status

list

DB GET

Mode Method

6 Backward ChainedRead the previous entry in the current chain,

7

8

Read the entry referenced by the internally

Calculated Read

Primary
Calculated Read

maintained backward pointer. argument
parameter is ignored.

Read the entry with a search item value that
matches the value specified in argument.
The entry is in the master data set specified
by dset.

Read the entry occupying the primary
address of a synonym chain using the search
item value specified in argument to locate
the entry. If the entry is not a primary
entry in a master data set specified by dset, it
is not read. (Refer to Section 1 0 for
synonym chain description.)

is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condi ti on word is 0.

2 Integer word length of the logical entry read into the
buffer array.

3-4 Doubleword record number of the data entry read.

5-6 Doubleword zero, unless the entry read is a primary
entry in which case it is the number of entries in the
synonym chain.

7-8 Doubleword record number of the preceding entry in the
chain of the current path.

9-10 Doubleword record number of the next entry in the
chain of the current path.

Table 5-12 lists the contents of Word 1 when the procedure does not
succeed.

is the name of an array containing an ordered set of data item identifiers,
either names or numbers. The values for these data items are placed in the
array specified by the buffer parameter in the same order as they appear in
the list array.

DEC 85
5-31

DB GET

buff er

argument

Discussion

The list array may contain a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name may appear more than once.

When referencing by number, the first word of the list array is an integer n
which is followed by n unique data item numbers (one-word positive
integers).

The list not only specifies the data items to be retrieved immediately but is
saved internally by TurbolMAGE as the current list for this data set. The
current list is unchanged until a different list is specified in a subsequent
call to DBGET, DBPUT, or DBUPDATE for the same access path and data
set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation which may be shortened in subsequent calls by using the asterisk
construct to specify that the current list is to be used. Use of this construct
can save considerable processing time. However, be sure a current list exists
before using the asterisk or TurboIMAGE will assume a null list.

is the name of the array to which the values of data items specified in the
list array are moved. The values are placed in the same order as specified
in the list array. The number of words occupied by each value corresponds
to the number required for each data type multiplied by the sub-item
count.

is ignored except ":'hen mode equals 4, 7, or 8.

If mode is 4, argument contains a doubleword record number of the entry to
be read. (Refer to Section 6 for suggestions on using a doubleword
parameter in a BASIC program.)

If mode is 7 or 8, argument contains a search item value for the master data
set referenced by dset.

The internal backward and forward pointers for the data set are replaced by the current path's chain
pointers from the entry just read. If the data set is a master, they are synonym chain pointers (refer to
Section 10). If it is a detail with at least one path, the current path is the one established by the last
successful call to DBFIND, or if no call has been made it is the primary path. If there are no paths
defined, the internal pointers are set to zeros.

The location of the entry just read becomes the current record for the data set.

DEC 85
5-32

NOTE

A call to DBOPEN does not open individual data sets. Thus, a call to
DBFIND (or DBGET) that accesses a data set for the first time (or after the
data set has been closed), must open the data set. This causes extra
overhead not incurred by subsequent calls to the same data set by DBFIND
or DBGET.

Table 5-12. DBGET Condition Word Values

FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.

CALLING ERRORS: -11 Bad base parameter.
-21 Bad data set reference.
-31 Bad mode.
-51 Bad list length.
-52 Bad list or bad item.

COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.

-107 DS procedure call error.

EXCEPTIONAL 10 Beginning of file. (mode 3)
CONDITIONS: 11 End of file. (mode 2)

12 Directed beginning of file. (mode 4)
13 Directed end of file. (mode 4)
14 Beginning of chain. (mode 6)
15 End of chain. (mode S)
17 No entry. (modes 1, 4, 7, 8)
18 Broken chain. (modes Sor 6)

DBGET

so Buffer is too small (will only be returned if buffer

62
63

is too small and the data transfer would write over
stack markers in the user's stack).
DBG full.
Bad DBG.

Consult Appendix A for more information
about these conditions.

DEC 85
S-33

DBINFO

INTRINSIC NUMBER 402

Provides information about the data base being accessed. The information returned is restricted by the
user class number established when the data base is opened; any data items, data sets, or paths of the data
base which are inaccessible to that user class are considered to be non-existent.

Syntax

DBINFO,base,qualifier,mode,status,buffer

Parameters

base

qualifier

mode

status

buff er

DEC 85
5-34

is the array name used as the base parameter when opening the data base;
must contain the base id returned by DBOPEN. (Refer to DBOPEN for
additional base id information.)

is the name of an array containing a data set/data item name or an integer
referencing a data item/data set, depending on the value of the mode
parameter (refer to Table 5-13 for mode/qualifier relationship). This
parameter form is identical to dset and item parameters for DBPUT and
DBFIND.

is an integer indicating the type of information is desired. Refer to Table
5-13 for mode integer information (data item modes lnn, data set modes
2nn, path modes 3nn, logging modes 4nn, subsystem modes Snn).

is the name of a ten-word array in which TurbolMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condition word is 0.

2 Word length of information in buffer array.

3- 4 Unchanged from previous procedure call using this
array.

5-10 Information about the procedure call and its results.
Refer to Appendix A for a description of this
information.

Table 5-14 lists the contents of Word 1 when the procedure does not
succeed.

is the name of an array in which the requested information is returned.
The contents of the buffer array vary according to the mode parameter
used. They are also described in Table 5-13.

Table 5-13. mode and qualifier Values and Results

mode PURPOSE qualirier bu/fer ARRAY CONTENTS

101 Defines type of data item word

access available name or 1 j t data item number I for specific item. number

102 Describes specific data item word

data item. name or

} number 1

data item name

8

9 data type Di. }
10 sub-item length

} 11 sub-item count

12 0

13 0

103 Identifies all data (ignored) word

items available in 1 n } data base and type

of access allowed. 2 ± data item number

n+1 ± data item number

104 Identifies all data data set (Same as mode 103)
items available in name or
specific data set number
and type of access
allowed.

DB INFO

COMMENTS

If negative, data item
can be updated or entry
containing it can be
added or deleted in at
least one data set.

Left-justified and padded
with blanks, if necessary.

0,J.K.R.U,X,Z,P)
/:::. indicates blank

integers

n =number of data
items available

Arranged in data item
number order,
If p0sitive, read-only
access. If negative. up-
date or modify access
in at least one data set.

(Same as ll10de 103 ex-
CerJ/ arranged in order
of occurrence in data
entryJ

DEC 85
5-35

DB INFO

mode

201

202

203

204

DEC 85
5-36

Table 5-13. mode and qualifier Values and Results (Continued)

PURPOSE qualifier buffer ARRAY CONTENTS COMMENTS

Defines type of data set word

access available name or 1 I ± data set number I If negative, entries can
for specific data number be added or deleted.
set.

Describes specific data set word

data set.
.----

name or 1

} number Left-j)stified and

data set name padded with blanks.
if necessary.

6

9 set type A } (M,"0) A indicates
blank

10 entry word-length

} 11 blocking factor

12 0
integers

13 0

14 number of entries

l 15 in set

16
doubleword integers

17
capacity of set

Identifies all data Ognored} word

sets available in 1 } n = number of data
n

sets available data base and type
of access allowed. 2 ± data set number ; Arranged in data set

number order.
If pc>sitive, read and
possibly data item up-
date access.
If negative, modify

n+1 ± data set number access allowed.

Identifies all data data item (Same as mode 203) (Same as mode 203)
sets available which name or
contain specified number
data item and t}'P4i
of access allowed.

l1J()(fe

301

302

DBINFO

Table 5-13. mode and qualifier Values and Results (Continued)

PURPOSE qualifier

Identifies paths data set
defined for name or
specified data number
set.

Identifies search master data
item for specified set name
data set. or number

OR

detail data
set name

buffer ARRAY CONTENTS COMMENTS

word

1

2

3

4

3n-1

Jn

3n+1

Note:

word

1

2

word

1

2

n } n = number of paths

data set number

} search item number Repeat for each path.

sort item number
If qualifier refers to
master, set number is
for detail. If qlld!i/ier
refers to detail, set
number is for master.
Item numbers identify
items in detail.

data set number

}
Path designators pre-

search item number sented in order of their

sort item number
appearance in schema.

If sort item is zero, none exists or it is inaccessible.
A path designator is not included if user does not
have access to search item.

search item number

0

data item number }
data set number }

In master set, zero if
inaccessible

In detail set.
For primary path.
Of related master.

Both are zero if search
item is inaccessible.

DEC 85
5-37

DBINFO

mode

401

402

DEC 85
5-38

Table 5-13. mode and qualifier Values and Results (Continued)

PURPOSE Q(JIJ/ifier buffer ARRAY CONTENTS COMMENTS

word
Obtains information (ignored}
relating to logging

1

}
Left-justified and

Log Identifier
padded with blanks

Name
4 if necessary.

5 Data Base Log Flag } 1 if data base enabled
for logging, otherwise O.

6 User Log Flag } 1 if user is logging,
otherwise 0.

7 Transaction Flag } 1 if user has a transaction
in progress, otherwise O.

8 l User Transaction
Number Doubleword

9

word
Returns information Ognored>

} 1 if data base enabled
about ILR 1 ILR Log Rag for 11.R, otherwise 0.

2 Calendar Date } Date ILR enabled
(mmddyy).

3 l Time ILR enabled,
Clock Time 2 words (hhmmssttl.

4

5 ILR used } 1 if ILR was used,
otherwise 0.

6 Intrinsic I ~ } P=DBPUT;D=DBDELETE
~ indicates blank.

7 When ILR used, 8 words.
Data Set Name Left-justified and

padded with blanks
if necessary.

14 Otherwise, words 6
through 14 are ASCII

15 blanks.

Reserved

16

DBINFO

Table 5-13. mode and qualifier Values and Results (Continued)

l1J()(/e PURPOSE qualifier /Jvller ARRAY CONTENTS COMMENTS

word
501 To check subsystem (ignored)

I I }
0 =no access

access to the data 1 Subsystem Access 1 = read access
base. (Refer to 3 = read/write access
DBUTIL SHOW/SET
commands for more
information)

word
901 To obtain the Native (ignored)

I I Language attribute of 1 Language ID
the data base.
Returns MPE code for
language attribute

Table S-14. DBINFO Condition Word Values

FILE SYSTEM AND -1
MEMORY MANAGEMENT -4
FAILURES:

CALLING ERRORS: -11
-21
-31

COMMUNICATIONS -102
ERRORS: -106

-107

EXCEPTIONAL 50
CONDITIONS:

63

FOPEN intrinsic failure.
FREADLABEL failure.

Bad base parameter.
Bad base i tern reference.
Bad mode.

DSWRITE failure.
Remote data inconsistent.
DS procedure call error.

Buffer too small (will only be returned if buffer
is too small and the data transfer would write over
stack markers in the user's stack).
Bad DBG.

Consult Appendix A for more information
about these conditions.

DEC 85
5-39

DBLOCK

INTRINSIC NUMBER 409

Applies a logical lock to a data base, one or mNe data sets, or one or more data entries.

Syntax

DBLOCK,base,qualifier,mode,status

Parameters

base

qualifier

mode

status

DEC 85
5-40

is the name of the array used for the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

Modes 1 and 2:

Modes 3 and 4:

Modes 5 and 6:

Ignored.

An integer variable referencing the data set number
or the name of an array containing a data set name.
Could also be 11@11

, applying a data base lock.

The name of the array containing the lock
descriptors. The format for lock descriptors is given
in Figure 5- 2.

Use care when changing modes.
parameter may also change.

The qualifier

contains an integer indicating the type of locking desired (refer to Table
5-15).

is the name of a ten-word array in which TurbolMAGi~ returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condition word is 0.

2 The number of lock descriptors that were successfully
applied in the DBLOCK request. For successful locks in
modes 1 through 4 this will be 1.

3 If condition word = 20, this word contains 0 if data base
locked, 1 if data set or entries locked.

DBLOCK

4 Reserved: Contenh undefined.

5-10 Information about the procedure call and its results.
Refer to Appendix A for a complete description of this
information.

Table 5-1 7 lists the contents of Word 1 when the procedure does not
succeed.

NOTE

Concurrent processes running in a process-handling environment must have
MR capability if they are calling DBLOCK.

Discussion

The format of the array containing a list of lock descriptors is illustrated in Figure 5-2 and applies only
for Locking Modes 5 or 6. The number of lock descriptors (n) is a one-word binary integer. Only the
first n lock descriptors are processed.· If n is zero, DBLOCK returns without taking any action. The
format of a lock descriptor is illustrated in Figure 5- 3, and the lock descriptor fields are described in
Table 5-16.

The shortest possible descriptor is 9 words long consisting of the length field and a dset field containing @.
Although the dset field only contains an at-sign, it must still be 8 words lorig. The length of the entire
descriptor array may not exceed 204 7 words.

Lock descriptors are sorted by data set number, then by value provided for the lock item. TurbolMAGE
does not sort by item within the set, because more than one item per data set consititutes a conflicting
lock descriptor (TurboIMAGE error -134).

DEC 85
5-41

DBLOCK

LOCK
MODE

DEC 85
5-42

1

2

3

4

LOCK
LEVEL

Base

Base

Set

Set

Table 5-15. Locking mode Options

LOCKING DESCRIPTION
TYPE

Unconditional DBLOCK applies an unconditional lock to the
whole data base, returning to the calling program
only after the lock is successful (or if an error
occurs). The qualifier parameter is ignored.

Conditional DBLOCK applies a conditional lock to the data
base and returns immediately. A condition word of
zero indicates success. A non-zero condition word
indicates the reason for failure. (Refer to Table
5-1 7.)

Unconditional DBLOCK applies an unconditional lock to a data
set. The qualifier parameter must specify the name
of an array containing the left-justified name of
the data set or the name of an integer referencing
the data set number. The data set name may be 16
characters long or, if shorter, terminated by a
semicolon or blank.

The data set need not be accessible for read or
write access to the user requesting the lock.

Conditional DBLOCK applies a conditional lock of the same
type as mode 3. It always returns to the calling
program immediately. A condition word of zero
indicates success and a non-zero condition word
indicates a reason for failure. (Refer to Table
5-17.)

LOCK LOCK
MODE LEVEL

5 Entry

6 Entry

DBLOCK

Table 5-15. Locking mode Options (Continued)

LOCKING
TYPE

Unconditional

Conditional

DESCRIPTION

DBLOCK applies unwnditional locks to the data
entries specified by lock descriptors. The qualifier
parameter must specify the name of an array
containing the lock descriptors. The format of the
array is shown in Figure 5-2. It returns only when
all the locks have been acquired.

DBLOCK applies conditional locks of the same
type as mode 5. If multiple lock descriptors are
specified, a return is made when DBLOCK
encounters a lock descriptor that it cannot apply.
All locks that have been applied until that point
are retained.

Since the locks are not executed in the order
supplied by the user, it is not predictable which
locks are held and which are not after an
unsuccessful mode 6 DBLOCK. Status word 2
indicates how many lock descriptors were actually
successful. It is recommended that a DBUNLOCK
be issued after any unsuccessful mode 6 DBLOCK.

NOTE: Be careful when changing modes. The
qualifier parameter may change.

DEC 85
5-43

DBLOCK

array word

1 n =number of lock descriptors

,...v "'u Length of lock descriptors
2

~
lock descriptor 1 :t } varies. Refer to figure 5-3.

DEC 85
5-44

lock descriptor 2 ')J

.

.

"'v lock descriptor /1 "" ~ 1-'

Figure S-2. Qualifier Array Format For Locking Modes 5 and 6

lock descriptor word

2

9

10

17

18

19

22

1 = length

dset

ditem

rel op

value

1 = length

dset

dset

~

Lock
descriptor 1

Lock
descriptor 2

1

2

10

18

19

22

Figure 5-3. Lock Descriptor Format

EXAMPLE

22
s
L

s
6.
6.

6.

6.
6.

s
0

K

'
6.

6.

6.
6.

6.
6
5

0
2

A

E

;

6.
6.

6.
6.

b.

T

c

-6.

b.

b.

6.
6.

=
6
0

2

s

FIELD NAME

length

dset

ditem

rel op

DBLOCK

Table 5-16. Lock Descriptor Fields

DESCRIPTION

is a one-word binary integer specifying the physical length in words of the
lock descriptor, including the length field itself.

is always 8 words long and describes the data set in which locks are placed. It
may be one of the following:

A data set name, left-justified, 16 characters long or, if shorter,
terminated with a blank or semicolon. For example: SALES;

A data set number, a binary integer in the range of 1 to 199 stored in the
first word.

An at-sign(@) stored in the first byte of the dset and a lock descriptor
length of two will indicate that the whole data base is to be locked. All
unusual bytes are ignored. In this case, the ditem, relop, and value fields
are ignored and may be omitted if desired.

A blank or semicolon (first byte) or binary zero (first word) indicating
that the whole lock descriptor is to be ignored. (It is counted as one of the
n descriptors.)

The data set, if specified, need not be accessible for read or write access to the
user requesting the lock.

is always 8 words long unless an @ is stored in the first byte. It may be one of
the following:

A data item name, left-justified, 16 characters long or, if shorter,
terminated with a blank or semicolon.

A data item number stored as a binary integer in the first word. It may
be in the range of 1 to 2 5 5.

An at-sign(@) stored in the first byte of the dset indicating that the
whole data set specified in dset is to be locked. All unused bytes are
ignored and may be omitted if desired.

The data item need not be a search item, nor does it have to be accessible to
the user requesting the lock. However, it cannot be a compound item or a
P-type item longer than P28.

is one word long and contains one of the three relational operators
represented as two ASCII characters:

<= less than or equal
>= greater than or equal
=/J. or 6. = equal (6. indicated space character)

DEC 85
5-45

DB LOCK

Table 5-16. Lock Descriptor Fields (Continued)

FIELD NAME DESCRIPTION

value is the value of the data item to be locked. It must be stored in exactly the
same way as it is stored in the data base. IMAGE extracts as many words as
required by the corresponding data item definition (in the schema). The rest
(if any) are ignored.

If you specify a data item of type P, U, or Z m a lock descriptor, Turboll\IAGE checks that the value is
valid for that data item type. The following checks are made:

• If the data item is type P, the right half of the rightmost byte must contain a sign and all preceding
nibbles must contain decimal digits represented in Binary Coded Decimal (BCD) format. For example,
if a data item is defined as type P with a length of 20, the format must be:

2 10 ~byte
2 3 18 19 20 ~ niDble

D D D 0 D s I
D =digit S =sign

This would be declared in COBOL as 1 9 digits plus a sign or 20 nibbles (P20 in the schema):

59 (19) COMP-3

Type P data item used in a lock descriptor may not exceed 28 nibbles (7 words) in length. The locking
system treats all sign digits other than 1101

2
as identical. 1101

2
is assumed to be a negative sign.

• If the data item is type U, the value must not contain any lowercase alphabetic characters in the range
of a through z (for non-native language use only).

• If the data item is type U or X, and a lock specifies an inequality, the language of the data base will be
used.

• If the data item is type Z, each byte preceding the last one must contain an 8-bit digit represented in
ASCII format and the last byte must contain a value representing a digit and a sign. (Refer to the
description of packed decimal numbers in Section 3 of the Machine Instruction Set Manual.)

DEC 85
5-46

DBLOCK

Table S-17. DBLOCK Condition Word Values

FILE SYSTEM AND -7 FLOCK failure.
MEMORY MANAGEMENT
FAILURES:

CALLING ERRORS: -11 Bad base parameter.
-31 Bad mode value.
-120 Not enough stack to perform DBLOCK.
-121 Descriptor count error.
-122 Descriptor list bad. Is not entirely

within stack.
-123 Illegal relop in a descriptor.
-124 Descriptor too short. Must be greater than

or equal to 9.
-125 Bad set name/number.
-126 Bad item name/number.
-127 Attempt to lock using a compound item.
-128 Value field too short in a descriptor.

-129 P-type item longer than P28 specified.
-130 Illegal digit in a P-type value.
-131 Lowercase character in type U value.
-132 Illegal digit in type Z value.
-133 Illegal sign in type Z value.
-134 Two descriptors conflict.
-135 DBLOCK called with locks already in effect in

this job/session.
-136 Descriptor list exceeds 204 7 words.

COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -103 Remote stack too small.

-106 Remote data inconsistent.
-107 DS procedure call error.

EXCEPTIONAL Applicable Modes
CONDITIONS: 20 Data base locked or contains locks (2,4,6)

(Status word 3:0 = data base locked
1 = data set or entries locked) (2)

22 Data set locked by another process (4,6)
23 Entries locked within set (4)
24 Item conflicts with current locks (6)
25 Entry or entries already locked (6)
62 DBG full*. (3,4,5,6)
63 Bad DBG.

Appendix A contains more information
about these condition codes.

*NOTE: If error 62 occurs when multiple lock descriptors are specified, some of the descriptors may have
been successfully completed. If so, they are not unlocked by TurboIMAGE before returning the error.
Therefore, issue a DBUNLOCK after any positive-numbered error unless you have reason to do otherwise.

DEC 85
5-47

DBMEMO

INTRINSIC NUMBER 414

Used to log user data (ASCII or binary) to the log file.

Syntax

DBMEMO,base,text,mode,status,textlen

Parameters

base

text

mode

status

textlen

Discussion

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is an array of up to 256 words which contains user data (ASCII or binary)
to be written to the logfile as part of the DBMEMO log record.

must be an integer equal to 1.

is the name of a ten-word array in which TurboIMAGE returns status
information. If the procedure executes successfully, the status array
contents are:

Word Contents

Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5-18 lists the contents of Word 1 when the procedure does not
succeed.

is an integer equal to the number of words to be logged in the text
parameter, or if negative, equal to the number of bytes. Length may be
zero.

DBMEMO is used to log user data to the logfile when the user process is logging. No action occurs if the
process is not logging. DBMEMO may be used to add additional auditing information to the logfile or to
facilitate the identification of transactions in the event of a failure and subsequent recovery.

DEC 85
5-48

CALLING ERRORS:

COMMUNICATIONS
FAILURES:

EXCEPTIONAL
CONDITIONS:

LOG SYSTEM
FAILURES:

DB MEMO

Table 5-18. DBl\IEMO Condition Word Values

-11
-31
-151

-102
-106
-107

0
62
63

-111

Bad data base reference.
Bad mode.
Text length too large.

DSWRITE failure.
Remote data inconsistent.
DS procedure call error.

Logging not enabled for this user.
DBG cannot expand.
Bad DBG.

WRITELOG intrinsic failure.

Consult Appendix A for more information
about these conditions.

DEC 85
5-49

DB OPEN

INTRINSIC NUMBER 401

Initiates access to the data base and establishes the user class number and access mode for all subsequent
data base access.

Syntax

DBOPEN,base,mode,status

Parameters

base

DEC 85
5-50

is the name of a word array containing a string of ASCII characters. The
string must consist of a pair of blanks followed by a left-justified data base
name (maximum 6 characters) and terminated by a semicolon or blank (.ll),
for example, 11 .6.6orders;11

• If the data base is successfully opened,
TurboIMAGE replaces the pair of blanks with a value called the base id.
The base id uniquely identifies this access path between the data base and
the process calling DBOPEN. In all subsequent accesses to the data base,
the first word of base must be this base id; therefore, the array should not
be modified. Note that the base id contains a number that distinguishes
between the 6 3 access paths allowed for each process for accessing a given
data base.

NOTE

The access path to the data base is defined by
the base id returned by DBOPEN together
with the PIN of the calling process. As the
PIN defines the data base access path for that
particular process, the base id cannot be
passed between processes in an attempt to
reduce the quantity of required DBOPEN
calls.

To access a data base catalogued in a group other than the user's log-on
group, the data base name must be followed by a period and the group
name; for example, ORDERS. GROUPX. If the data base is in an account
other than the user's account, the group name must be followed by a period
and the account name; for example, ORDERS. GROUPX. ACCOUNT 1.

You may use a :FILE command before executing the application program to
equatr: the data base name or the data-base-access file name to another
data base or data-base-access file name. Only the formal file designator,
actual file designator, and the DEV= parameter may be used.

password

mode

DB OPEN

is the name of a word array containing a left justified string of ASCII
characters consisting of an optional password followed by an optional user
identifier.

The following constructs are valid for the password and user identifier (a !::,.

stands for a blank):

!J.[/USERIDENT]
;[/USERIDENT]
password[/USERIDENT]

Access Class Zero (0).
Creator Access.
Password Access.

If either the password or the user identifier strings are less than eight
characters long, they must be terminated with a semicolon or blank.

The password establishes a user class number as described in Section 2. A
semicolon supplied as the password implies creator class 64. The user
identifier is used by the program DBRECOV to distinguish between users
logged on under the same name and account.

The following are valid examples:

,
CLERK!J.
CLERK;
CLERK;/JOE;
CLERK/::,./ JOE;
!J./DBA

is an integer between 1 and 8, inclusive, corresponding to the valid
TurboIMAGE access modes described in Section 4. Here is a brief
summary:

Access
Mode

Associated Capabilities

Modify with enforced locking.
Allow concurrent modify.

2 Update, allow concurrent update.

3 Modify exclusive.

4 Modify, allow concurrent read.

5 Read, allow concurrent modify.

6 Read, allow concurrent modify.

7 Read, exclusive.

8 Read, allow concurrent read.

Concurrent
Modes Allowed

6 and
4, or 8

1,5

2,6

none

6

1,5

either 2, one

none

6,8

DEC 85
5-51

DB OPEN

status

Discussion

The table in Appendix B summarizes the results of multiple access to the
same data base. If a data base cannot be opened successfully in a particular
mode, this table can be used to determine the problem and to select an
alternate mode.

is the name of a ten-word array m which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condition word is 0.

2 User class number, 0 to 63 (or a 64 if data base creator
with 11

;
11 password).

3 Current word size of the DBG.

4 Word size of the DBU.

5-10 Information about the current procedure call and its
results. This same information is returned for all
TurbolMAGE procedures if an error occurs. It is
described in Appendix A with the summary of condition
words.

Table 5-19 lists the contents of Word 1 when the procedure does not
succeed.

A process may concurrently use the data base through independent, unique access paths by issuing as many
as 63 calls to DBOPEN and specifying different base arrays in each call. Subsequent calls to other
TurbolMAGE procedures must use the appropriate base array so that the correct base id is used.

The data base activity controlled on one access path relates to that controlled on other access paths in the
same way the data base activity of one process relates to that of another. The access modes established by
each DBOPEN call must be compatible but otherwise the activity controlled by each access path and the
pointers maintained by it are completely independent. The only exception to this access path
independence relates to locking. If a process makes a lock request on one access path it cannot issue a lock
on another access path unless the program has multiple RIN capability (CAP=MR) or first calls
DBUNLOCK to release the locks on the first access path.

DEC 85
5-52

DBOPEN

If the data base is enabled for logging, and the program calls DBOPEN in one of modes 1-4, then
TurbolMAGE will attempt to access a logfile using the MPE OPENLOG intrinsic. OPENLOG will
succeed only if the following have been completed:

1. A valid log identifier and log password have been set into the data base root file using
the DBUTIL >>SET command,

2. A corresponding system log process has been initiated by the console operator to handle
any calls to the logging system.

If OPENLOG fails, DBOPEN will also fail and return an appropriate error condition. If OPENLOG
succeeds, DBOPEN will cause a log record to be written which includes such information as time, date,
user name, user program, mode, and security class. (Refer to Appendix E for a full description of log
record contents and formats.)

A process is logging if it successfully opens a data base in one of modes 1-4, and the data base is enabled
for logging. A program does not log if it opens in one of modes 5-8, or if the data base is not enabled for
logging.

If the data base is enabled for Intrinsic Level Recovery (ILR), by using the DBUTIL >>ENABLE command,
the first DBOPEN for the data base also opens the ILR log file associated with the data base. At this time,
DBOPEN performs the following steps:

/

1. Opens the ILR log file and allocates an extra data segment (the ILCB or Intrinsic Level Control Block)
to be used for Intrinsic Level Recovery and run time storage.

2. Verifies that the ILR log file.matches the data base root file; to match, the ILR log file must have the
same name as the root file with two ASCII zeros added to the end. For example, if the root file is called
ORDERS, the associated ILR log file is called ORDERSOO. In addition, the ILR log file must have the
same creation date as the root file and the same last access date.

3. Checks whether a prior system failure interrupted a DBPUT or a DBDELETE to the data base. If so,
TurboIMAGE performs the Intrinsic Level Recovery by removing any change made by the incomplete
DBPUT or DBDELETE.

4. Checks whether the data base is opened for read-only access. If so, TurboIMAGE closes the ILR log file
for that user and releases the extra data segment. Otherwise the ILCB remains allocated because it is
used by DBPUT and DBDELETE for storage of blocks.

i

DEC 85
5-53

DBOPEN

FILE SYSTEM
AND MEMORY
MANAGEMENT
FAILURES:

CALLING ERRORS:

COMMUNICATIONS
ERRORS:

LOGGING SYSTEM
FAILURES:

DEC 85
5-54

Table 5-19. DBOPEN Condition Word Values

-1 FOPEN intrinsic failure.
-2 FCLOSE failure.
-3 FREADDIR failure.
-4 FREADLABEL failure.
-9 GE TDSEG failure.

-11 Bad base parameter.
-21 Bad password.
-31 Bad mode.
-32 Unobtainable mode.
-90 Root file bad: Unrecognized state: % octal integer.
-91 Bad root modification level.
-92 Data base not created.
-94 Data base bad: Was being modified with output

deferred, may not be accessed in mode decimal integer.
-95 Data base bad: Creation was in process (create again).
-96 Data base bad: Erase was in process (erase again).
-97 Data base bad: ILR enable in process (enable again).
-98 Data base bad: ILR disable in process (disable again).

-60 Illegal file equation on root file.
-100 DSOPEN failure.
-101 DSCLOSE failure.
-102 DSWRITE failure.
-103 Remote stack too small.
-104 Remote system does not support TurbolMAGE.
-105 MPE intrinsic GETDSEG failure on remote HP3000.
-106 Remote data inconsistent.
-107 OS procedure call error.

-110 OPENLOG intrinsic failure.
-111 WRITELOG intrinsic failure.

DBOPEN

Table 5-19. DBOPEN Condition Word Values (Continued)

-·

INTRINSIC LEVEL -163
RECOVERY FILE
ERRORS: -164

-170

-171

-172

-180

-181

-182

-183

-184

-185
-200
-201
-202

EXCEPTIONAL 60
CONDITIONS: 61

62
63
64
66

Cannot initialize ILR log file:file system
error decimal integer.
Cannot initialize ILR log header: file
system error decimal integer.
Cannot open ILR log file: file system
error decimal integer.
Cannot close ILR log file: file system
error decimal integer.
Cannot read ILR log file: file system
error decimal integer.
ILR log file invalid - internal file
name does not match root file.
ILR log file invalid - internal group
name does not match root file.
ILR log file invalid - internal account
name does not match root file.

ILR log file invalid - internal creation
date does not match root file.
ILR log file invalid - internal last
access date does not match root file.
Cannot get extra data segment of size %XXXXX for ILR.
Data Base Language not system supported.
Native Language Support not installed.
MPE Native Language Support error nn
returned by NLINFO.

Data base access disabled.
This data base opened more than 6 3 times by
the same process.
DBG full.
Bad DBG.
PCBX data segment area full.
The current DBG for the data base does not
appear correct (TurboIMAGE internal error).

Consult Appendix A for more information about
these conditions and Appendix B for results of
multiple access.

DEC 85
5-55

DB PUT

INTRINSIC NUMBER 407

Adds new entries to a manual master or detail data set. The data base must be open in access mode 1, 3,
or 4.

Syntax

DBPUT,base,dset,mode,status,list,buffer

Parameters

base

dset

mode

status

DEC 85
5-56

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

is the name of an array containing the left-justified name of the data set to
which the entry is to be added or is an integer referencing the data set by
number. The data set name may be 16 characters long or, if shorter,
terminated by a semicolon or a blank (Ll), for example: CUSTOMER; or
SALESil.

must be an integer equal to 1.

is the name of a ten -word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

Condi ti on word is 0.

2 Word length of logical entry in buffer array.

3-4 Doubleword record number of new entry.

5-6 Doubleword count of number of entries in chain. If
master data set, chain is synonym chain. If detail data
set, chain is current chain of new entry.

7- 8 If master, double word record address of predecessor on
synonym chain. If detail, doubleword record number of
predecessor on current detail chain.

9-10 If detail, doubleword record number of successor on
current chain. If master, doubleword zero.

Table 5-21 lists the contents of Word 1 when the procedure does not
succeed.

list

buff er

DB PUT

is the name of an array containing an ordered set of data item identifiers;
names or numbers. The new entry contains values supplied in the buffer
array for data items in the list array. Search or sort items defined for the
entry must be included in the list array. Fields of unreferenced items are
filled with binary zeros.

The list array can contam a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name can appear more than once. Example:
ACCOUNT,LAST-NAME,CITY,ST A TE;.

When referencing by number, the first word of the list array is an integer n
that is followed by n single positive integers identifying unique data item
numbers. Example: 4 1 10 3 16 lists for the four data item numbers 1, 10,
3, and 16.

The list specifies data items for which values are supplied in the buffer
array, and is saved internally by TurboIMAGE as the current list for the
data set. The current list is unchanged until a different list is specified in a
subsequent call to DBGET, DBPUT, or DBUPDATE for the same access
path and data set.

Some special list constructs are allowed. These are described in Table 5- 20
and illustrated in the SPL programs in Section 6. List processing is a
relatively high overhead operation which may be shortened in subsequent
calls by using the asterisk construct to specify that the current list is to be
used. Be sure a current list exists before using the asterisk construct, or a
null list is assumed.

is the name of an array containing data item values to be added. The
values are concatenated in the same order as their data item identifiers in
the list array. The number of words for each value must correspond to the
number required by its type; for example, 12 values must be 2 words long.

DEC 85
5-57

DBPUT

Table 5-20. Special list Parameter Constructs

CONSTRUCT list ARRAY CONTENTS PURPOSE

Empty O; or O~ or ; or 6. Request no data transfer.
(Note: Zero must be ASCII)

Empty 0 (n, length of data i tern Request no data transfer.
Numeric identifier list, is zero)

Asterisk *;or * 6. Requests procedure to use previous list and
apply it to same data set. This construct
saves TurboIMAGE processing time,
especially if more than one or two items
are being dealt with. If 11*11 is used to
define the list in the first call to DBGET and
DBPUT, TurboIMAGE will treat it as a zero.

Commercial @;or@~ Requests procedure to use all data items
At-Sign of the data set in the order of their

occurrence in the entry.

(Note: 6. indicates blank.)

Discussion

When adding entries to master data sets the following rules apply:

• The data set must be a manual master.

• The search item must be referenced in the list array and its value in the buffer array must be unique in
relation to other entries in the master.

• There must be space in the master set to add an entry.

• The order of data item values in the new entry is determined by the set definition in the schema and
not by the order of the items' occurrence in the list and buffer arrays.

• Unreferenced data items are filled with binary zeros.

• The caller must have a lock on the data set or the data base if the data base is opened in access mode 1.

DEC 85
5-58

Table 5-21. DBPUT Condition Word Values

-
FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.

CALLING ERRORS: -11 Bad base parameter.
-12 No lock covering entry to be added.

(DBOPEN mode 1 only.)
-14 Illegal intrinsic in current access mode.
-21 Bad data set reference.
-23 Data set not writable.
-24 Data set is an automatic master.
-31 Bad mode.
-51 Bad list length.
-52 Bad list or bad item.
-53 Missing search or sort item.

COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.

-107 DS procedure call error.

LOGGING SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:

EXCEPTIONAL 16 Data set full.
CONDITIONS: 43 Duplicate search item.

62 DBG full.
63 BadDBG.
1xx Missing chain head for path number xx.

2xx Full chain for path number xx.
3xx Full master for path number xx.

Ref er to Appendix A for more
information about these conditions.

DB PUT

DEC 85
5-59

DBPUT

When adding entries to detail data sets the following rules apply:

• The data set must have free space for the entry.

• If the data base is opened in access mode 1, the caller must have a lock covering the entry to be added.

• All search and sort items defined for the entry must be referenced in the list array.

• Each related manual master data set must contain a matching entry for the corresponding search item
value. If any automatic master does not have a matching entry, it must have space to add one. This
addition occurs automatically.

• The order of data item values in the new entry is determined by the set definition in the schema and
not by the order of the items' occurrence in the list and buffer arrays.

• Unreferenced data items are filled with binary zeros.

• The new entry is linked into one chain for each search item, or path, defined according to the search
item value. It is linked; to the end of chains having no sort items and into its sorted position according
to the collating sequence of the sort item values in the chain. If two or more entries have the same sort
item value, their position in the chain is determined by the values of the items following the sort item
in the entry.

The position of an entry on a sorted chain is determined by a backward search of the chain beginning
at the last entry. The position is maintained by logical pointers rather than physical placement in the
file.

• Maintains proper Native Language collating sequence for chain sorting.

The record in which the new data entry is placed becomes the current record for the data set. The
forward and backward pointers reflect the new entry's position. Refer to the description of status words
7 through 1 0.

If the process is logging, a call to DBPUT will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of the new record to be added.

DEC 85
5-60

DBUNLOCK

INTRINSIC NUMBER 410

Relinquishes the locks acquired by all previous calls to DBLOCK. Redundant calls are ignored. If the
calling process has the same data base open multiple times, only those locks put into effect for the
specified access pa th are unlocked.

Syntax

DBUNLOCK,base,dset,mode,status

Parameters

base

dset

mode

status

is the name of the array used for the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN.

is currently unused. Use the DUMMY variable as recommended at the
beginning of this section or any dset array used for other procedures.

must be an integer equal to 1.

is the name of a ten -word array in which TurbolMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word

1

2

Contents

Condition word is 0.

Number of lock descriptors released by this call. Each
data set lock or data base lock is counted as one
descriptor.

3-4 Reserved for internal use.

5-10 Information about the procedure call and its results.
Refer to Appendix A for more information on condition
words.

Table 5-22 lists the contents of Word 1 when the procedure does not
succeed.

DEC 85
5-61

DBUNLOCK

CALLING ERRORS:

COMMUNICATIONS
ERRORS:

EXCEPTIONAL
CONDITIONS:

DEC 85
5-62

Table 5-22. DBUNLOCK Condition Word Values

-11 Bad base parameter.
-31 Bad mode.

-102 DSWRITE failure.
-106 Remote data inconsistent.
-107 DS procedure call error.

63 Bad DBG.

Appendix A contains more information
about these conditions.

DBUPDATE

INTRINSIC NUMBER 406

Modifies values of data items in the entry residing at the current record address of a specified data set.
Search and sort item values cannot be modified. The data base must be open in access mode 1, 2, 3, or 4.
The update will always be carried out correctly against the latest version of the data, regardless of
modifications that may be made by other users.

Syntax

DBUPDATE,base,dset,mode,status,list,buffer

Parameters

base

dset

mode

status

list

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

is the name of an array containing the left-justified name of the data set to
be read or is an integer referencing the data set by number. The data set
name may be 16 characters long or, if shorter, terminated by a semicolon or
blank.

must be an integer equal to 1.

is the name of a ten-word array m which TurboIMAGE returns status
information about the procedure. If the procedure operates successfully,
the status array contents are:

Word Contents

Condition word is 0.

2 Word length of the values in buffer.

3-10 Same doubleword values set by preceding procedure call
which positioned the data set at the current entry.

Table 5-23 lists the contents of Word 1 when the procedure does not
succeed.

is the name of an array containing an ordered set of data item identifiers,
either names or numbers. Values supplied in the buffer array replace the
values of data items occupying the same relative position in the list array.
The user class established when the data base is opened must allow at least
read access to all the items included in the list array.

DEC 85
5-63

DBUPDATE

buff er

Discussion

If the corresponding buffer array values are the same as the current data
item values, the list array can include data items the user can read but is
not permitted to alter, as well as search and sort items. This feature
permits reading and updating with the same list array contents as well as
search and sort items.

The list array may contain a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name may appear more than once.

When referencing by number, the first word of the list array is an integer n
followed by n unique data item numbers (one-word positive integers).

The list not only specifies the data items to be updated immediately but is
saved internally by TurbolMAGE as the current list for this data set. The
current list is unchanged until a different list is specified in a subsequent
call to DBGET, DBPUT, or DBUPDATE for the same access path and data
set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation which may be shortened substantially in subsequent calls by using
the asterisk construct to specify that the current list is to be used.

is the name of an array containing concatenated values to replace the
values of data items occupying the same relative position in the list array.
The number of words for each value must correspond to the number of
words required by its type multiplied by the sub-item count. Search and
sort items must not be included in this update list.

Before performing an update for a data base opened in access mode 1, TurbolMAGE verifies that locks are
in effect to cover the data entry both before and after it is modified.

The current record number, forward and backward pointers are unchanged. (Refer to the description of
status words 3 through 1 0.)

If the process is logging, a call to DBUPDATE will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of both the old and new data item
values.

DEC 85
5-64

DBUPDATE

Table S-23. DBUPDATE Condition Word Values

FILE SYSTEM AND -1
MEMORY MANAGEMENT -3
FAILURES: -4

CALLING ERRORS: -11
-12

-14
-21
-31
-51
-52

COMMUNICATIONS -102
ERRORS: -106

-107

LOGGING SYSTEM -111
FAILURES:

EXCEPTIONAL 17
CONDITIONS: 41

42
62
63

FOPEN intrinsic failure.
FREADDIR failure.
FREADLABEL failure.

Bad base parameter.
No locks cover entry to be udpated.
(DBOPEN mode 1 only.)
Illegal intrinsic in current access mode.
Bad data set reference.
Bad mode.
Bad list length.
Bad list or bad item.

DSWRITE failure.
Remote data inconsistent.
DS procedure call error.

WRITELOG intrinsic failure.

No entry.
Critical item.
Read only item.
DBG full.
Bad DBG.

Appendix A contains more information
about these conditions.

DEC 85
5-65

~Ho_s __ T_L_A_N_G_u_A_G_E_A_c_c_Es_s~------~lr~l·'f,
This section is divided into six separate discussions, each covering the use of TurboIMAGE with a specific
programming language: COBOL, FORTRAN, Pascal, SPL, BASIC, and RPG.

The examples in each language are designed to illustrate simply and directly the way TurbolMAGE
procedures are called. They are not intended as modules of the best way to code the task which is
illustrated since this will vary with the application requirements and an individual programmer's coding
methods.

A knowledge of the programming language is assumed. If you have questions about the language itself,
consult the appropriate language manual:

COBOL/3000 Reference Manual
FOR TRAN Reference Manual
System Programming Language Reference Manual
Pascal/3000 Reference Manual
BASIC Interpreter Reference Manual
BASIC/3000 Compiler Reference Manual
RPG/3000 Compiler Reference and Application Manual

All examples presented in this section perform operations on the ORDERS data base. Figures 2-5 and
2-6 in Section 2 and Figure 3-5 in Section 3 should be consulted if questions about the data base
structure arise in relation to the examples.

DEC 85
6-1

COBOL

To illustrate the use of TurboIMAGE procedures through COBOL programs, sample lines of code that
perform a specific task are given. The TurboIMAGE procedure calling parameters are described by the
way they are defined in the data division and their value when the procedure is called or, in some cases,
after it is executed. All parameters must start on word boundaries.

The BASE-NAME record is described only in the first two examples. Once the data base has been opened
and the data base identifier has been moved to the first word as shown in the ADD ENTRY example, it
remains the same for all subsequent calls illustrated.

The DB-STATUS record is defined in the same way for all examples but its content varies depending upon
which procedure is called and the results of that procedure. The DB-STATUS record is defined as:

05 DB-STATUS.
05 CONDITION-WORD
05 STAT1
05 STAT2-3
05 STAT4-5
05 STAT6-7
05 STAT8-9

PIC S9999 COMP.
PIC S9999 COMP.
PIC S9(9) COMP.
PIC S9(9) COMP.
PIC S9(9) COMP.
PIC S9(9) COMP.
PIC S9(9) COMP.

The DUMMY parameter appears as a reminder when a parameter is not used by a procedure performing
the task being illustrated. DUMMY can be defined as PIC S9999 COMP.

When GOTO ASK-FOR-IP appears in the code, it indicates that the program continues and prompts the
user for further instructions, for example, it may request the type of data base operation the user wants to
perform.

Open Data Base

PROCEDURE DIVISION.
FIRST-PARAGRAPH-NAME.

CALL 11 DBOPEN 11 USING BASE-NAME, PASSWORD, MODE3, DB-STATUS.
IF CONDITION-WORD NOT = 0 DISPLAY 11 DBOPEN-FAIL 11

CALL 11 DBEXPLAIN 11 USING DB-STATUS STOP RUN.

PARAMETER DEFINITION VALUE

BASE-NAME PIC x (10) II £>.£>.ORDERS; II

PASSWORD PIC X(8) II DO-ALL ;l>. 11 or 11 DO-ALLl>.Ll 11

MODE3 PIC 9999 COMP 3

In this example, the ORDERS data base is opened in access mode 3 with the password DO-ALL that
establishes user class number 18. The value of PASSWORD may be specified in the data division or it
may be requested from the application program user and moved into PASSWORD. If the password is
fewer than 8 characters it must be followed by a blank or semi -colon. In this program, the first word of
the DB-STATUS array, CONDITION-WORD, is tested and if it is not zero a failure message is printed
and the DBEXPLAIN procedure is executed.

DEC 85
6-2

COBOL

Add Entry

CALL 11 DBPUT 11 USING BASE-NAME, DATA-SET-P, MODE1,
DB-STATUS, ALL-ITEMS, PR-BUFFER.

IF CONDITION-WORD = 43 DISPLAY "DUPLICATE STOCK NUMBER"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = 16 DISPLAY "DATA SET FULL"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = -23 DISPLAY "CANNOT ADD WITH CURRENT PASSWORD"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

BASE-NAME PIC X(B) "23 ORDERS;" (data base identifier
in first word)

DATA-SET-P PIC X(B) II PRODUCT; II

MODE1 PIC 9999 COMP 1

ALL-ITEMS PIC X(2) "@;II

PR-BUFFER

STOCK-NO PIC X(B) "7474Z74Z11

DESCRIPTN PIC X(20) "ORANGE CRATELllulluldlul"

This sample code adds a data entry to the PRODUCT manual master data set. Note that the first word of
BASE-NAME now contains the data base id. ALL-ITEMS contains an "@" sign indicating that
PR-BUFFER contains a value for all items in the data entry. The values for the STOCK# and
DESCRIPTION data items are concatenated in PR -BUFFER.

A program may be designed to prompt for both the data set name and the data item values that are
moved into PR-BUFFER and added to the data set. In the example, the condition word of the status
array is tested for a value of 43, indicating that an entry with the search item value 7474Z74Z already
exists in the data set, or 16, indicating that the data set is full. If the user class is not in the data set write
class list, a condition word of -23 is returned.

If an entry is to be added to a detail set, the program may first check to see if the required entries exist in
the manual masters linked to the detail set. Values must be provided for all search items and the sort
item, if one is defined, of a detail data set entry.

DEC 85
6-3

COBOL

Read Entry (Serially)

READ-NEXT.
CALL 11 DBGET 11 USING BASE-NAME, DATA-SET-C, MODE2, DB-STATUS,

LIST-OF-ITEMS, CU-BUFFER, DUMMY.
IF CONDITION-WORD= 11 PERFORM REWIND

GO TO READ-NEXT.
IF CONDITION-WORD = -21 DISPLAY 11 NO READ ACCESS TO DATA 11

GO TO ASK-FOR-IP.
IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

(Process entry and decide whether or not to continue.)

PARAMETER DEFINITION

DATA-SET-C PIC x (10) 11 CUSTOMER; II

MODE2 PIC 9999 COMP 2

VALUE

LIST-OF-ITEMS PIC X(80) II ACCOUNT' FIRST-NAME' LAST-NAME; .. II

CU-BUFFER

ACCT PIC 9(9) COMP 12345678
F-NAME PIC x (10) 11 GEORGE 11

values which are read.
L-NAME PIC x (16) II PADERSON II

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs the DBGET
procedure to perform a forward serial read. In the example, LIST-OF-ITEMS contains the names of
three data items. After DBGET returns to the calling program, CU-BUFFER contains the values shown.
If an end-of-file is encountered, the condition word is set to 11. In this case, the routine rewinds the data
set and tries the read again. A rewind routine is shown later in the examples of the DBCLOSE procedure.
The rewind reinitializes the current record pointer so that the next request for a forward serial read will
read the first entry in the data set. If the condition word -21 is returned, the user's password does not
grant read access to data.

The DUMMY variable merely signifies that the argument parameter is not used with mode 2.

DEC 85
6-4

Read Entry (Directly)

CALL "DBGET" USING BASE-NAME, DATA-SET-I, MODE4, DB-STATUS,
ALL-ITEMS, IN-BUFFER, RECORD-NUMBER.

IF CONDITION-WORD = 12 OR = 13 DISPLAY "INCORRECT RECORD NUMBER"
GO TO DISPLAY-STATUS.

IF CONDITION-WORD = 17 DISPLAY "RECORD CONTAINS NO DATA ENTRY"
GO TO DISPLAY-STATUS.

IF CONDITION-WORD NOT = 0 DISPLAY "DBGET FAILURE"
GO TO DISPLAY-STATUS.

PARAMETER DEFINITION

DATA-SET-I PIC x (10) "INVENTORY;"

MODE4 PIC 9999 COMP 4

ALL-ITEMS PIC X(2) "@;II

RECORD-NUMBER PIC 9(9) COMP 33

IN-BUFFER

STOCK-NO-I PIC X(8) "3333A33A"
QTY PIC 9(9) COMP 452

VALUE

SUPPLIER PIC x (16) "H & s SURPLUS II

COBOL

UNIT-COST PIC S9(7) COMP-3 0000349E (3495 in a nibbles)
LASTSHIPDATE PIC X(6) 11 841214 11

BINN UM PIC X(2) 11 03 11

The code in this example reads all data items of the entry in record number 3 3 of the INVENTORY data
set using a directed read, mode 4. The program may have saved the record number while reading down
the chain of all data entries with STOCK# equal to 3333A33A looking for the latest LASTSHIPDATE.
It then reads all data items of the entry which has the desired last shipping date. It is more efficient to
read it directly than to search down the chain again.

If the record number is less than 1, the condition word is set to 12. If it is greater than the highest
numbered record in the data set, the condition word is set to 13. The condition word is 1 7 if the record
contains no data entry.

DEC 85
6-5

COBOL

Read Entry (Calculated)

CALL "DBGET" USING BASE-NAME, DATA-SET-P, MODE7, DB-STATUS,
LIST-OF-ITEMS, DESCRIPTN, STOCK-SEARCH.

IF CONDITION-WORD = 17 DISPLAY "NO SUCH STOCK NUMBER"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = -21 DISPLAY "NO SUCH READ ACCESS TO DATA"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

DATA-SET-P PIC X(B) "PRODUCT; II

MODE7 PIC 9999 COMP 7

LIST-OF-ITEMS PIC X(80) II DESC RI PTI ON ; II

PR-BUFFER

STOCK-NO PIC X(8) - - -

DESCRIPTN PIC X(20) "CLIPBOARD II

STOCK-SEARCH PIC X(8) 11 22228228 11

To locate the PRODUCT data set entry which has STOCK# search item value of 2222B22B, a calculated
read is used. The mode is 7 and the item to be read is DESCRIPTION. After DBGET returns control to
the calling program, the description of stock number 2222B22B is in the DESCRIPTN buffer. If no entry
exists with STOCK# equal to 2222B22B, the condition word is 17. If the user does not have read access
to the DESCRIPTION data item, condition word -21 is returned.

DEC 85
6-6

Read Entry (Backward Chain)

CALL 11 DBFIND 11 USING BASE-NAME, DATA-SET-S, MODE1, DB-STATUS,
ITEM-NAME, ITEM-VALUE.

IF CONDITION-WORD = 17 DISPLAY "NO PURCHASES ON THAT DATE"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = -21 OR -52
DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 DISPLAY "DBFIND FAILURE"
GO TO DISPLAY-STATUS.

NEXT-IN-CHAIN.
CALL 11 DBGET 11 USING BASE-NAME, DATA-SET-S, MODES, DB-STATUS,

ALL-ITEMS, SA-BUFFER, DUMMY.
IF CONDITION-WORD = 14 DISPLAY "NO MORE PURCHASES ON THIS DATE"

GO TO NEXT-ACCOUNT.
IF CONDITION-WORD = 0 GO TO REPORT-SALES.

REPORT-SALES.

(Routine to print sales information)

GO TO NEXT-IN-CHAIN.

COBOL

DEC 85
6-7

COBOL

PARAMETER DEFINITION VALUE

DATA-SET-S PIC X(6) 11 SALES; 11

MODE1 PIC 9999 COMP 1

ITEM-NAME PIC x (12) 11 PURCH-DATE;"

ITEM-VALUE PIC X(6) 11 84121411

MODE6 PIC 9999 COMP 6

ALL-ITEMS PIC X(2) "@;II

SA-BUFFER

ACCOUNT-S PIC (9) COMP 12345678 '
STOCK-NO-S PIC X(8) 11 22228228 11

QUANTITY PIC 9999 COMP 3 sample values
PRICE PIC 9(9) COMP 425 > read from one
TAX PIC 9(9) COMP 25 entry in chain
TOTAL PIC 9(9) COMP 450
PURCH-DATE PIC X(6) 11 841214 11

DE LIV-DATE PIC X(6) 11 841220 11

'

First the DBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
pa th with the DA TE-MASTER data set, and the search i tern value 8 41 21 4 of both the master en try
containing the chain head and the detail entries making up the chain. If no entry in the
DATE-MASTER has a search item value 841214, the condition word will be 17. If the user's password or
access mode does not allow read access to the data, condition word - 21 or - 5 2 is returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode parameter of
6 reads the last entry in the chain. Successive calls to DBGET with the same mode read the next-to-last
entry and so forth until the first entry in the chain has been read. A subsequent call to DBGET returns
condition word 14, indicating the beginning of the chain has been reached and no more entries are
available. If an entry has been successfully read, the program executes the REPORT-SALES routine and
prints the information. It then goes to the NEXT-IN-CHAIN routine and reads another entry.

If no entries exist in the chain, the condition word is also 14.

DEC 85
6-8

Update Entry

CALL "DBGET" USING BASE-NAME, DATA-SET-C, MODE7, DB-STATUS,
ITEM-NAME, ADDRESS-VALUE, ACCT-SEARCH.

(Determine if entry successfully read, print current address, and prompt for new address.)

CALL 11 DBUPDATE 11 USING BASE-NAME, DATA-SET-C, MODE1, DB-STATUS,
ITEM-NAME, ADDRESS-VALUE.

IF CONDITION-WORD = 42 DISPLAY "NOT ALLOWED TO ALTER THIS ITEM"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

DATA-SET-C PIC x (10) "CUSTOMER; II

MODE7 PIC 9999 COMP 7

MODE1 PIC 9999 COMP 1

ACCT-SEARCH PIC 9(9) COMP 12345678

ITEM-NAME PIC x (16) "STREET-ADDRESS;"

ADDRESS-VALUE PIC X(26) 11 12 SUTTON PLACE II

COBOL

In order to update an entry it must first be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 123456 7 8. If the read is successful, the
current address is printed and the application program user is prompted for the new address which is
moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the STREET-ADDRESS
data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 is returned.

A null list can be used when calling DBGET to locate an entry to be updated.

DEC 85
6-9

COBOL

Delete Entry

(Locate appropriate entry as with DBGET.)

CALL 11 DBDELETE 11 USING BASE-NAME, DATA-SET-C, MODE1, DB-STATUS.
IF CONDITION-WORD = 44

DISPLAY "SALES ENTRIES EXIST, CANNOT DELETE CUSTOMER"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = -23 DISPLAY "PASSWORD DOES NOT ALLOW DELETE"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

DATA-SET-C PIC x (10) "CUSTOMER;"

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.
This record may be located by calling DBGET. In this example, the program may have requested the
account number of the customer to be deleted and then used a calculated DBGET to locate the
appropriate entry. If entries in the SALES data set exist which have the same account number as the
entry to be deleted, the condition word is set to 44 and the entry is not deleted. Condition word -23
indicates that the user does not have the capability of deleting an entry from the CUSTOMER data set.

A null list can be used when calling DBGET to locate an entry to be deleted.

DEC 85
6-10

COBOL

Lock and Unlock (Data Base)

CALL 11 DBLOCK 11 USING BASE-NAME, DUMMY, MODE2, DB-STATUS.
IF CONDITION-WORD = 20 DISPLAY 11 DATA BASE IS BUSY. TRY AGAIN LATER. II

GO TO CLOSE.
IF CONDITION-WORD = 0 GO TO USE-BASE.
DISPLAY 11 DBLOCK FAILURE" GO TO DISPLAY-STATUS.

USE-BASE.

CALL 11 DBUNLOCK" USING BASE-NAME, DUMMY, MODE1, DB-STATUS.
IF CONDITION-WORD NOT = 0 DISPLAY "DBUNLOCK FAILURE"

GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

MODE2 PIC 9999 COMP 2

MODE1 PIC 9999 COMP 1

In this example the program calls DBLOCK to lock the data base. Since mode 2 is used, the program must
check the condition word when DBLOCK returns control to verify that the data base is locked. If it is
locked the condition word is O; if it is busy the condition word is 20.

If the data base is successfully locked, the program goes to the USE-BASE routine. After the data base
operations have been completed, the program unlocks the data base by calling the DBUNLOCK procedure.

An example of data entry locking appears in the sample COBOL program, Figure 6-1.

DEC 85
6-11

COBOL

Request Data Item Information

CALL 11 DBINF0 11 USING BASE-NAME, ITEM-NAME, MODE, DB-STATUS,
INFO-BUFFER.

IF CONDITION-WORD NOT = 0 DISPLAY "DBINFO FAILURE"
GO TO DISPLAY-STATUS.

PARAMETER DEFINITION

ITEM-NAME PIC x (12) "PURCH-DATE;"

MODE PIC 9999 COMP 102

INFO-BUFFER

NAM-TYP PIC X(18) 11 PURCH-DATE
SUB-LENG PIC 9999 COMP 6
SUB-COUNT PIC 9999 COMP 1

VALUE

X"

The procedure call in this example obtains information about the PURCH-DA TE data item by specifying
mode 102. The item name and type are returned in the first 9 words of INFO-BUFFER and the
sub-item length and sub-item count in words 10 and 11.

Rewind Data Set

REWIND
CALL 11 DBCLOSE 11 USING BASE-NAME, DATA-SET-C. MODE3, DB-STATUS.
IF CONDITION-WORD NOT = 0 DISPLAY 11 DBCLOSE FAILURE"

GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

DATA-SET-C PIC x (10) "CUSTOMER;"

MODE3 PIC 9999 COMP 3

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for CUSTOMER is reset, including the current record number. If a serial
read request encounters an end-of-file, this call resets the current record to the beginning of the data set
and another serial read request will read the first entry in the data set.

DEC 85
6-12

Close Data Base

CLOSE.
CALL "DBCLOSE" USING BASE-NAME, DUMMY, MODE1,DB-STATUS.
IF CONDITION-WORD NOT = 0 CALL 11 DBEXPLAIN 11 USING DB-STATUS.
STOP RUN.

PARAMETER DEFINITION

MODE1 PIC 9999 COMP

Print Error

DISPLAY-STATUS.
CALL 11 DBEXPLAIN 11 USING DB-STATUS.
GO TO CLOSE.

VALUE

1

COBOL

The call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the
DB-STATUS array. This routine may be used while debugging the application if a procedure call fails.

Move Error to Buffer

CALL 11 DBERROR 11 USING DB-STATUS, ERR-BUFFER, LENGTH.

PARAMETER DEFINITION VALUE

ERR-BUFFER PIC X(72) "DATA BASE IN USE II

LENGTH PIC 9999 COMP 16

In this example, a call to DBERROR has returned one of the messages appropriate when the condition
word is equal to -1. The length of the message is 16 bytes as indicated by the value of LENGTH
returned by DBERROR.

DEC 85
6-13

COBOL

Sample Cobol Program

Figure 6-1 contains a sample data base application, a program to update the inventory records, which is
coded in COBOL. The program is called RECEIVE and updates on-hand quantities and adjusts unit costs
in the INVENTORY data set of the ORDERS data base. The data base is opened in mode 2. Sample
output from RECEIVE is illustrated in Figure 6-2.

Locking is performed at the data entry level to ensure that two users do not attempt to modify the same
data entry simultaneously. Also, presuming that transactions against the data base are being logged to a
logfile, DBBEGIN and DBEND are used to mark the beginning and end of the transaction. This
technique should always be used to delimit a multiple-step logged transaction. It is used in this example
to illustrate the proper order of calling the procedures, as outlined in Section 5.

DEC 85
6-14

**
* THIS PROGRAM ILLUSTRATES THE USE OF COBOL CALLS TO IMAGE. *
*IT USES THE DATA BASE 11 0RDERS 11

, ACCESSING THE DETAIL DATA SET *
* "INVENTORY" TO UPDATE THE ON-HAND QUANTITY AND UNIT COST TO *
* REFLECT THE RECEIPT OF A NEW SHIPMENT. NOTICE THAT THE PASS- *
* WORD USED WAS 11 BUYER" SINCE THE TWO FIELDS BEING CHANGED HAVE *
* 2 AS A WRITE CLASS. NOTICE ALSO THAT THE DATA BASE IS OPENED *
* IN MODE 2, WHICH IS ADEQUATE FOR READING AND UPDATING THE TWO *
* FIELDS INVOLVED, WHILE ALLOWING OTHERS TO ACCESS THE DATA BASE *
*CONCURRENTLY. THE USER CAN ONLY MODIFY ENTRIES WHOSE STOCK# *
* AND SUPPLIER HAVE ALREADY BEEN ESTABLISHED IN THE PRODUCT *
*MANUAL MASTER AND SUP-MASTER MANUAL MASTER RESPECTIVELY. *
* TO KEEP THIS EXAMPLE SIMPLE THE "ACCEPT" VERB HAS BEEN USED *
* FOR ENTERING TRANSACTIONS. *
* * * ENTRY LOCKS ARE USED TO ENSURE THAT TWO USERS DO NOT ATTEMPT *
*TO MODIFY SIMULTANEOUSLY AN EXISTING ENTRY BASED ON ITS OLD *
* CONTENTS. CALLS TO DBBEGIN AND DBEND ARE USED TO INDICATE *
* THE BEGINNING AND END OF A LOGICAL TRANSACTION ON THE *
* LOGFILE FOR THE RECOVERY SYSTEM IF IT IS EXECUTED. *
**

IDENTIFICATION DIVISION.
PROGRAM-ID. RECEIVE.
DATE-COMPILED.

FRI, DEC 7, 1984, 11:30 AM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 IMAGE-FIELDS.

05 BASE-NAME PIC X(10)
05 LIST-OF-ITEMS PIC X(20)

05 PREVIOUS-LIST PIC X(02)
05 PASSWORD PIC X(10)
05 MODE1 PIC S9(4)
05 MODE2 PIC S9(4)
05 MODES PIC S9(4)
05 TEXT-LENGTH PIC S9(4)
05 SEARCH-ITEM PIC X(08)
05 DATA-SET PIC X(10)
05 TEXT1 PIC X(18)

05 TEXT2 PIC X (16)

05 DB-STATUS.

VALUE II ORDERS; II.
VALUE
"ONHANDQTY,UNIT-COST; 11

•

VALUE 11 *; 11
•

VALUE 11 BUYER; 11
•

COMP VALUE 1.
COMP VALUE 2.
COMP VALUE 5.
COMP.
VALUE 11 STOCK#; II

VALUE 11 INVENTORY; 11
•

VALUE
11 BEGIN STOCK UPDATE 11

•

VALUE
11 END STOCK UPDATE 11

•

10 CONDITION-WORD
10 STAT1

PIC S9(4) COMP.
PIC S9(4) COMP.

Figure 6-1. Inventory Update Program

COBOL

DEC 85
6-15

COBOL

10 STAT2-3 PIC S9(9) COMP.
10 STAT4-5 PIC S9(9) COMP.
10 STAT6-7 PIC S9(9) COMP.
10 STAT8-9 PIC S9(9) COMP.

01 LOCK-DESCRIPTOR.
05 NUM-OF-LOCKS PIC S9(4) COMP VALUE 1.
05 LOCK-STOCK-ENTRY.

10 WORD-LENGTH PIC SS(4) COMP VALUE 22.
10 LOCK-SET-NAME PIC x (16) VALUE "INVENTORY;
10 LOCK-ITEM-NAME PIC x (16) VALUE "STOCK#;
10 RE LOP PIC X(02) VALUE 11=11

10 LOCK-VALUE PIC x (08).
01 ACCEPT-FIELDS.

05 STOCK-NO PIC X(08).
05 NEW-QUANTITY PIC 9 (08).
05 NEW-COST PIC 9 (08).

01 EDIT-FIELDS.
05 EDITED-COST PIC $$,$$$,$$$,$$$.99.
05 EDITED-VALUE PIC $$,$$$,$$$,$$$.99.
05 EDITED-QTY PIC Z(8)9.

01 IP-BUFFER.
05 ON-HAND-QTY PIC 9(9) COMP.
05 UNIT-COST PIC S9(7) COMP-3.

PROCEDURE DIVISION.

10-FIRST-PARAGRAPH-NAME.
CALL 11 DBOPEN 11 USING BASE-NAME, PASSWORD, MODE2, DB-STATUS.
IF CONDITION-WORD NOT = 0

DISPLAY 11 DBOPEN-FAIL 11

PERFORM 90-DISPLAY-STATUS
STOP RUN.

20-ASK-FOR-IP.

DEC 85
6-16

MOVE SPACES TO STOCK-NO.
DISPLAY "ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT 11

•

ACCEPT STOCK-NO FREE.
IF STOCK-NO = 11 EXIT 11

GO TO FINISH.
PERFORM 30-FIND-STOCK-RECORD.
IF CONDITION-WORD = 17 OR = 15

DISPLAY "NO SUCH STOCK NUMBER"
PERFORM 70-UNLOCK
GO TO 20-ASK-FOR-IP.

DISPLAY "NOW ENTER QUANTITY RECEIVED -
ACCEPT NEW-QUANTITY FREE.

Figure 6-1. Inventory Update Program (Continued)

II

I

DISPLAY 11 NOW ENTER UNIT COST IN CENTS - "
ACCEPT NEW-COST FREE.
PERFORM 60-UPDATE-STOCK.
PERFORM 50-DISPLAY-NEW-STOCK.
DISPLAY II II DISPLAY II II

GO TO 20-ASK-FOR-IP.

30-FIND-STOCK-RECORD.
MOVE STOCK-NO TO LOCK-VALUE.
CALL 11 DBLOCK 11 USING BASE-NAME, LOCK-DESCRIPTOR, MODES,

DB-STATUS.
IF CONDITION-WORD NOT = 0

DISPLAY "LOCK FAILED"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

CALL 11 DBFIND11 USING BASE-NAME, DATA-SET, MODE1, DB-STATUS
SEARCH-ITEM, STOCK-NO.

If CONDITION-WORD = 0
PERFORM 40-GET-STOCK-RECORD

ELSE
IF CONDITION-WORD NOT = 17

DISPLAY "FIND FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

40-GET-STOCK-RECORD.
CALL "DBGET" USING BASE-NAME, DATA-SET, MODES, DB-STATUS,

LIST-OF-ITEMS, IP-BUFFER, STOCK-NO.
IF CONDITION-WORD NOT = 0 AND NOT = 15

DISPLAY "GET FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

SO-DISPLAY-NEW-STOCK.
MOVE ON-H~ND-QTY TO EDITED-QTY.
COMPUTE EDITED-COST = UNIT-COST / 100.
COMPUTE EDITED-VALUE = ON-HAND-QTY * UNIT-COST / 100.
DISPLAY "NEW ON HAND QUANTITY= 11

, EDITED-QTY.
DISPLAY "NEW UNIT COST= 11

, EDITED-COST.
DISPLAY "NEW STOCK VALUE= 11

, EDITED-VALUE.

60-UPDATE-STOCK.
COMPUTE UNIT-COST = (UNIT-COST * ON-HAND-QTY + NEW-QUANTITY

* NEW-COST) I (ON-HAND-QTY+ NEW-QUANTITY).
COMPUTE ON-HAND-QTY =ON-HAND-QTY+ NEW-QUANTITY.
MOVE -18 TO TEXT-LENGTH

Figure 6-1. Inventory Update Program (Continued)

COBOL

DEC 85
6-17

COBOL

CALL "DBBEGIN" USING BASE-NAME, TEXT1, MODE1, DB-STATUS,
TEXT-LENGTH.

IF CONDITION-WORD NOT = 0
DISPLAY "DBBEGIN FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

CALL "DBUPDATE" USING BASE-NAME, DATA-SET, MODE1, DB-STATUS,
PREVIOUS-LIST, IP-BUFFER.

IF CONDITION-WORD NOT = 0
DISPLAY "UPDATE FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

MOVE -16 TO TEXT-LENGTH
CALL "DBEND" USING BASE-NAME, TEXT2, MODE1, DB-STATUS,

TEXT-LENGTH.
IF CONDITION-WORD NOT = 0

DISPLAY "DBEND FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

PERFORM 70-UNLOCK.

70-UNLOCK.
CALL 11 DBUNLOCK 11 USING BASE-NAME, LOCK-DESCRIPTOR, MODE1,

DB-STATUS.
IF CONDITION-WORD NOT = 0

DISPLAY "UNLOCK FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

90-DISPLAY-STATUS.
CALL 11 DBEXPLAIN 11 USING DB-STATUS.

FINISH.

DEC 85
6-18

CALL 11 DBCLOSE 11 USING BASE-NAME, DATA-SET, MODE1, DB-STATUS.
IF CONDITION-WORD NOT = 0

DISPLAY "DATA BASE CLOSE FAILED"
PERFORM 90-DISPLAY-STATUS.

STOP RUN.

Figure 6-1. Inventory Update Program (Continued)

:RUN RECEIVE

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
4397D13P
NO SUCH STOCK NUMBER
ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
12345678
NO SUCH STOCK NUMBER
ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
6650DD2S
NO SUCH STOCK NUMBER
ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
66500225
NOW ENTER QUANTITY RECEIVED -
100
NOW ENTER UNIT COST IN CENTS -
150

NEW ON HAND QUANTITY =
NEW UNIT COST =
NEW STOCK VALUE =

306
$2.44

$746.63

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
66500225
NOW ENTER QUANTITY RECEIVED -
5000
NOW ENTER UNIT COST IN CENTS -
1500

NEW ON HAND QUANTITY =
NEW UNIT COST =
NEW STOCK VALUE =

5306
$14.27

$75,716.62

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
2457A11C
NOW ENTER QUANTITY RECEIVED -
10000000
NOW ENTER UNIT COST IN CENTS -
4000

NEW ON HAND QUANTITY =
NEW UNIT COST =
NEW STOCK VALUE =

11001345
$50.31

$553,477,666.95

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
EXIT
END OF PROGRAM

:Figure 6-2. Sample RECEIVE Execution

COBOL

DEC 85
6-19

FORTRAN

In the FOR TRAN examples which follow, all variables are integer unless declared otherwise. The
DUMMY parameter is an integer and appears when a parameter is not used by the procedure for the task
which is being performed.

The code at statement 9900 closes the data base. It is not included in each example but is implied to be
there.

Since TurbolMAGE requires that the parameters be at word addresses, they must be integer arrays
equivalenced to character strings if necessary. For example, the BASE integer array is 5 words long and is
equivalenced to the CSl character string which is 10 bytes long. This array contains the name of the
ORDERS data base preceded by one word of blanks to which a data base identifier within the control
block is moved when the data base is opened.

Open Data Base

PROGRAM FTIM1
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
CHARACTER*10 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
cs 1 = II ORDERS; II
CS2 = II II

DISPLAY "ENTER PASSWORD II

ACCEPT CS2
DISPLAY "ENTER ACCESS MODE (1-8) 11

ACCEPT MODE
CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1).NE.O) GOTO 9300
DISPLAY 11 DATA BASE OPENED"
GOTO 9900

9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

In this example the ORDERS data base is opened in the access mode entered by the application user and
with the user class number corresponding to the password entered. For example, the access mode may be
3 and the password DO-ALL. Since TurbolMAGE parameters must have word addresses, the character
string must be equivalenced to an integer array before being passed to the TurbolMAGE procedure.

If the procedure fails, the first word of STATUS is an integer other than zero. In this case, the sample
program prints a message and executes DBEXPLAIN to display status information.

If the password is less than 1 0 characters long, it must be followed by a semicolon or blank. Therefore,
the character string CS2 is initialized to 8 blanks.

DEC 85
6-20

Add Entry

PROGRAM FTI M2
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETP(4),PRBUFF(14)
CHARACTER DESCRIPN*20,ALLITEMS*2
CHARACTER*10 CS1 ,CS2,CS3,STOCKNO
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (DSTEP(1),CS3), (PRBUFF(1),STOCKNO),

C (PRBUFF(5),DESCRIPN),(AI,ALLITEMS)
cs 1 = ORDERS; II

CS2 = II II

CS3 = II PRODUCT; II

MODE1=1
ALLITEMS = "@;II

(code to open data base in access mode 1, 3, or 4 and prompt for data item values)

CALL DBPUT (BASE,DSETP,MODE1,STATUS,AI,PRBUFF)
IF (STATUS(1).NE.43) GOTO 120
DISPLAY "DUPLICATE STOCK NUMBER"
GOTO 110

120 IF (STATUS(1).NE.16) GOTO 130
DISPLAY "DATA SET FULL"
GOTO 9900

130 IF (STATUS(1).NE.-23) GOTO 140
DISPLAY "PASSWORD DOES NOT ALLOW ADDING ENTRIES"
GOTO 9900

140 IF (STATUS(1).NE.O) GOTO 160
DISPLAY "NEW PRODUCT HAS BEEN ENTERED"
GOTO 9900

160 DISPLAY 11 DBPUT FAILURE"
GOTO 9310

9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

FORTRAN

This sample code adds a data entry to the PRODUCT manual master data set. The first word of the BASE
array now contains the number of the data base identifier. ALLITEMS contains an 11@11 sign indicating
that PRBUFF contains a value for all items in the data entry. The values for the STOCK# and
DESCRIPTION data items are concatenated in PRBUFF, for example, 7 4 7 4Z 7 4ZORANGE
CRATE!:i~~8f;,.f:if:if:i.

DEC 85
6-21

FORTRAN

A typical application will prompt for the data item values which are moved into PRBUFF and added to
the data set. In this example, the condition word of the STATUS array is tested for a value of 43,
indicating that an entry with search item value 7 4 7 4Z 7 4Z already exists in the data set, or 16, indicating
that the data set is full. If the user's password does not allow entries to be added, condition word -23 is
returned.

If an entry is to be added to a detail set, a value must be provided for all search items and the sort item if
one is defined The program may first check to see if the required entries exist in the manual masters
linked to the detail data set, or it can check for condition word lxx after attempting to add the detail
entry.

If the access is mode 1, the data base must be locked before an entry can be added.

Read Entry (Serially)

PROGRAM FTIM3
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5),LIST(15),CBUFF(15)
CHARACTER CS4*10,CS5*30,FNAME*10,LNAME*14
CHARACTER*10 CS1,CS2
EQUIVALENCE (DSETC(1),CS4), (LIST(1),CS5), (CBUFF(3),FNAME),

C (CBUFF(8),LNAME)
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
CS1 = II ORDERS;"
CS2 = II

CS4 = II CUSTOMER; II

css = 11 ACCOUNT,FIRST-NAME,LAST-NAME; II

DUMMY = 1
MODE2 = 2

(Code to open data base.)

200 CALL DBGET (BASE,DSETC,MODE2,STATUS,LIST,CBUFF,DUMMY)
IF (STATUS(t).NE.11) GOTO 210

DEC 85
6-22

DISPLAY "CONTINUE"
ACCEPT I
IF (I.EQ.O) GOTO 9900

(Code to determine whether to continue, if so, rewind data set.)

210 IF (STATUS(1).NE.-21.AND.STATUS(1).NE.-52) GOTO 220
DISPLAY "YOU DO NOT HAVE ACCESS TO DATA"
GOTO 9900

220 IF (STATUS(1).EQ.O) GOTO 230
DISPLAY "DBGET FAILURE"
GOTO 9310

230 WRITE (6,*) FNAME,LNAME,CBUFF(1)
GOTO 200

9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

FORTRAN

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs the DBGET
procedure to perform a forward serial read. In the example, the LIST array contains the names of three
data items. After DBGET returns to the calling program, CBUFF contains values such as:

CBUFF(1)---CBUFF(2)
CBUFF(3)---CBUFF(7)
CBUFF(8)---CBUFF(14)

12345678 (double integer)
GEORGEl.\Lilil.\
PADERSON Lililililili

If an end-of-file is encountered the condition word is set to 11. In this case, the routine rewinds the data
set and tries the read again. A rewind routine is shown later in the examples of the DBCLOSE procedure.
The rewind reinitializes the current record pointer so that the next request for a forward serial read reads
the first entry in the data set. If the user does not have read access to the data items, condition word -21
is returned.

The DUMMY variable signifies that the argument parameter is not used with mode 2.

DEC 85
6-23

FORTRAN

Read Entry {Directly)

PROGRAM FTIM 11
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS (10),PASSWORD(5),BASE(5)
DIMENSION DSTEP(4), PRBUFF(14)
CHARACTER*10 CS1,CS2,CS3,STOCKNO
CHARACTER DESCRIPN*20, ALLITEMS*2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETP(1),CS3), (PRBUFF(1),STOCKNO),

C (PRBUFF(5) ,DESCRIPN), (AI,ALLITEMS)
INTEGER*4 RECNO
CS1 = ORDERS;"
CS2 = II
CS3 = "PRODUCT;"
ALLITEMS = "@;II
MODE4 = 4

(Code to open data base.)

210 DISPLAY "REC"
ACCEPT RECNO
IF (RECNO.EQ.O) GOTO 9900
CALL DBGET (BASE, DSETP, MODE4, STATUS, AI, PRBUFF, RECNO)
IF (STATUS(1).EQ.12.0R.STATUS(1).EQ.13) GOTO 280
IF (STATUS(1).NE.17) GOTO 270
DISPLAY "RECORD CONTAINS NO DATA ENTRY"
GOTO 210

270 IF (STATUS(1).EQ.O) GOTO 290
DISPLAY "DBGET FAILURE"
GOTO 9310

280 DISPLAY "INCORRECT RECORD NUMBER"
GOTO 210

290 DISPLAY DESCRIPN
GOTO 210

9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

The code in this example reads all data items of the entry in the specified record number of the
PRODUCT data set using a directed read, mode 4. If the condition word is equal to 12 or 13, the record
number is not within the range of records in the file. If the condition word is 17 the record contains no
entry.

DEC 85
6-24

NOTE

This is not the normal method for using directed reads but is used to
simplify the example.

FORTRAN

Read Entry (Calculated)

PROGRAM FTIM4
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETP(4),LISTA(6),PRBUFF(10),STOCKSRCH(4)
CHARACTER*10 CS1,CS2,CS3,CS7
CHARACTER DESCRIPN*20, CS6*12
EQUIVALENCE (DSETP(1),CS3),(PRBUFF(1),DESCRIPN),

C (LISTA(1),CS6),(STOCKSRCH(1),CS7)
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
CS1 = II ORDERS; II
CS2 = II II

CS3 = "PRODUCT;"
CS6 = "DESCRIPTION; II
MODE7 = 7

(Code to open data base.)

20 DISPLAY "STOCK NUMBER 11

ACCEPT CS7
CALL DBGET (BASE,DSETP,MODE7,STATUS,LISTA,PRBUFF(1),STOCKSRCH)
IF (STATUS(1).NE.17) GOTO 300
DISPLAY "NO SUCH STOCK NUMBER"
GOTO 20

300 IF (STATUS(1).NE.-21) GOTO 310
DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA"
GOTO 9900

310 IF (STATUS(1).EQ.O) GOTO 320
DISPLAY 11 DBGET FAILURE"
GOTO 9310

320 (Code to use data from entry just read.)

9310 CALL DBEXPLAIN (STATUS)

A calculated read is used to locate the PRODUCT data set entry which has the STOCK# search item value
entered in CS 7. The mode is 7 and the item to be read is DESCRIPTION. After DBGET returns control
to the calling program, the description for the specified stock number is in DESCRIPN. If no entry exists
with STOCK# equal to the specified value, the condition word is 17. If the user does not have read access
to the DESCRIPTION data item, the condition word is - 21.

DEC 85
6-25

FORTRAN

Read Entry (Forward Chain)

PROGRAM FTIM5
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETS(3), INAME(6), IVAL(3), SABUFF(19)
CHARACTER CS8*6, CS9*12, CS10*6, SASTOCK*8, PURCHDT*8,

C DELIVDT*8, ALLITEMS*2
CHARACTER*10 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETS(1),CS8), (INAME(1),CS9), (IVAL(1),CS10),

C (SABUFF(1),ACCTS), (SABUFF(3),SASTOCK),
C (SABUFF(7),QTY), (SABUFF(8),PRICE),
C (SABUFF(10),TAX), (SABUFF(12),TOTAL),
C (SABUFF(14),PURCHDT),(SABUFF(17),DELIVDT),(AI,ALLITEMS)

INTEGER*4 ACCTS, PRICE, TAX, TOTAL
CS1 = II ORDERS;"
CS2 = II II

csa = 11 SALES; 11

CS9 = II PURCH - DATE; II

CS 10 = "760314" Program would normally prompt for this value.
ALL ITEMS = "@;"
MODE1 = 1
MODES = 5

(Code to open data base.)

CALL DBFIND (BASE,DSETS,MODE1,STATUS,INAME,IVAL)
IF (STATUS(1).NE.17) GOTO 345
DISPLAY "NO PURCHASES ON THAT DATE."
GOTO 9900

345 IF (STATUS(1).NE.-21.AND.STATUS(1).NE.-52) GOTO 355
DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GOTO 9900

355 IF (STATUS(1).EQ.O) GOTO 360
DISPLAY 11 DBFIND FAILURE"
GOTO 9310

360 CALL DBGET (BASE, DSETS, MODES, STATUS, AI, SABUFF, DUMMY)
IF (STATUS(1).NE.15) GOTO 365
DISPLAY "NO MORE PURCHASES ON THIS DATE"
GOTO 9900

365 IF (STATUS(1).NE.O) GOTO 380

(Code to use sales information from entry, for example, in a report.)

GOTO 360
380 DISPLAY 11 DBGET FAILURE"

GOTO 9310
9300 DISPLAY 11 DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

DEC 85
6-26

FORTRAN

First the DBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
path with the DATE-MASTER data set, and the search item value 760314 of both the master entry
containing the chain head and the detail entries making up the chain. If no entry in the
DATE-MASTER has a search item value of 760314, the condition word will be 17. If the user's password
or access mode does not grant read access to the data set or data items, condition word -21 or -5 2 is
returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode parameter of
5 reads the first entry in the chain if one exists. Subsequent calls to DBGET with the same mode read the
succeeding entries to the chain until the last entry in the chain has been read. If the condition word is 15,
the end of the chain has been reached and no more entries are available, or no entries exist in the chain.

If an entry is successfully read the program uses the information and then returns to statement 360 to
read another entry in the chain. After an entry has been read the SABUFF array contains information
like this:

SABUFF(1) - SABUFF(2) ACCTS
SABUFF(3) - SABUFF(6) SAS TOCK
SABUFF(7) QTY
SABUFF(8) - SABUFF(9) PRICE
SABUFF(10) - SABUFF(11) TAX
SABUFF(12) - SABUFF (13) TOTAL
SABUFF(14) - SABUFF (16) PURCHDT
SABUFF(17) - SA BUFF (19) DELI VDT

12345678
22228228
3
425

25
450
760314
760320

(doubleword integer)
(character string)
(integer)
(doubleword integer)
(doubleword integer)
(doubleword integer)
(character string)
(character string)

DEC 85
6-27

FORTRAN

Update Entry

PROGRAM FTIM6
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5), INAME2(8), ADDVAL(13)
INTEGER*4 ACCTSRCH
CHARACTER CS4*10, CS11*16, ADDSTRING*26
CHARACTER*10 CS1 ,CS2
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (DSETC(1),CS4), (INAME2(1),CS11),

C (ADDVAL(1),ADDSTRING)
CS1 = ORDERS; II

CS2 =
CS4 = "CUSTOMER; II

CS11 = "STREET-ADDRESS; II

MODE1 = 1
MODE7 = 1
ACCTSRCH = 12345678

(code to open data base in access mode 1, 2, 3, or 4)

CALL DBGET (BASE,DSETC,MODE7,STATUS,INAME2,ADDVAL,ACCTSRCH)

(Code to determine if read is successful and print current address.)

DISPLAY "NEW ADDRESS"
ACCEPT ADDSTRING
CALL DBUPDATE (BASE,DSETC,MODE1,STATUS,INAME2,ADDVAL)
IF (STATUS(1).NE.42) GOTO 420
DISPLAY "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
GOTO 9900
DISPLAY 11 DBUPDATE FAILURE"
GOTO 9310

440 DISPLAY "ADDRESS CHANGED"
GOTO 9900

9300 DISPLAY 11 DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

Before an entry can be updated it must be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 12345678. If the read is successful, the
current address is printed and the application program user is prompted for the new address which is
moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the STREET-ADDRESS
data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry to be updated.

DEC 85
6-28

Delete Entry

PROGRAM FTIM7
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5), INAME2(8), ADDVAL(13)
INTEGER*4 ACCTSRCH
CHARACTER CS4*10, CS11*16, ADDSTRING*26
CHARACTER*10 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETC(1),CS4), (INAME2(1),CS11),

C (ADDVAL(1),ADDSTRING)
CS1 = II ORDERS;"
CS2 = II II

CS4 = "CUSTOMER; II

cs 11 = II; II
MODE1 = 1
MODE7 = 7

(Code to open data base in access mode 1, 3, or 4.)

20 DISPLAY "ACCOUNT OR ZERO TO TERMINATE"
ACCEPT ACCTSRCH
IF (ACCTSRCH.EQ.O) GOTO 9900
CALL DBGET (BASE,DSETC,MODE7,STATUS,INAME2,DUMMY,ACCTSRCH)
IF (STATUS(1).NE.O) GOTO 9310
CALL DBDELETE (BASE,DSETC,MODE1,STATUS)
IF (STATUS(1).NE.44) GOTO 530
DISPLAY "SALES ENTRIES EXIST, CUSTOMER CANNOT BE DELETED"
GOTO 20

530 IF (STATUS(1).NE.-23) GOTO 540
DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA SET"
GOTO 9900

540 IF (STATUS(1).EQ.O) GOTO 560
DISPLAY "DBDELETE FAILURE"
GOTO 9310

560 DISPLAY "CUSTOMER ENTRY DELETED"
GOTO 20

9300 DISPLAY 11 DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

FORTRAN

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.
This record may be located by calling DBGET. In this example, the program may have requested the
account number of the customer to be deleted and then used a calculated DBGET to locate the
appropriate entry. If entries in the SALES data set exist which have the same account number as the
entry to be deleted, the condition word is set to 44 and the entry is not deleted.

A null list can be used with DBGET to locate an entry to be deleted.

If the access mode is 1, the data base must be locked before the entry is deleted.

DEC 85
6-29

FORTRAN

Lock and Unlock (Data Base)

PROGRAM FTIM8
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
CHARACTER*10 'cs1,cs2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
cs 1 = II ORDERS ; II
CS2 =

(Code to open data base in access mode 1 or S.)

MODE1 = 1
MODE2 = 2
CALL DBLOCK (BASE,DUMMY,MODE2,STATUS)
IF (STATUS(1).NE.20) GOTO 640
DISPLAY "DATA BASE IS BUSY. TRY AGAIN LATER. 11

GOTO 9900
640 IF (STATUS(1).EQ.O) GOTO 680

DISPLAY "DBLOCK FAILURE"
GOTO 9310

680 (Code to use data base.)

CALL DBUNLOCK (BASE,DUMMY,MODE1,STATUS)
IF (STATUS(1).EQ.O) GOTO 9900
DISPLAY 11 DBUNLOCK FAILURE"
GOTO 9310

9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

In this example, the program calls DBLOCK to lock the data base. Since mode 2 is used, the program must
check the condition word when DBLOCK returns control to verify that the data base is locked and the
calling program has exclusive access. If this is so, the condition word is O; if it is busy the condition word
is 20.

If the data base is successfully locked, the program performs the necessary data base operations and then
unlocks the data base by calling the DBUNLOCK procedure. In the example the programs terminates
after unlocking the data base.

DEC 85
6-30

Lock (Data Entries)

PROGRAM FTIMBA
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5),IP(40)
CHARACTER*10 CS1,CS2,VAL
CHARACTER*2 RELOP
CHARACTER*16 SETNAME,ITEMNAME
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2),

C (NUM,IP(1)),
C (LENGTH,IP(2)),
C (SETNAME,IP(3)),
C (ITEMNAME,IP(11)),
C (RELOP,IP(19)),
C (VAL,IP(20))

CS1 = II ORDERS;"
CS2 =
MODE1 =

(Code to open data base.)

NUM=1
LENGTH=22
SETNAME="INVENTORY
ITEMNAME="STOCK#
RELOP="= II

VAL= 11 6650022S 11

CALL DBLOCK (BASE,IP,5,STATUS)
640 If (STATUS(1).EQ.O) GOTO 680

DISPLAY 11 DBLOCK FAILURE"
GOTO 9310

680 (Code to modify the locked data entry or entries.)

9310 CALL DBEXPLAIN (STATUS)

FORTRAN

This example illustrates locking at the data entry level. All data entries in the INVENTORY data set
with a STOCK# value of 6650D22S are locked unconditionally (mode 5). If the lock request succeeds, the
condition word is 0. If the DBLOCK procedure detects a calling error or an exceptional condition such as
DBCB full, the DBLOCK failure message is displayed and DBEXPLAIN is called.

DEC 85
6-31

FORTRAN

Request Data Set Information

PROGRAM FTI M9
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION INFOBUF(B)
CHARACTER*10 CS1,CS2
EQUIVALENCE (BASE(1),CS2),(PASSWORD(1),CS2)
CS1 = II ORDERS; II

CS2 = II

(Code to open data base.)

MODE=203
CALL DBINFO (BASE,DUMMY,MODE,STATUS,INFOBUF)
IF (STATUS(1).EQ.O) GOTO 700
DISPLAY 11 DBINFO FAILURE"
GOTO 9310

700 (Code to use data set numbers returned in INFOBUF.)

GOTO 9900
9300 DISPLAY 11 DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

The procedure call in this example obtains the numbers of the data sets available to the current user class
by specifying mode 20 3. If the user class number is 12, after the call has been successfully executed the
INFOBUF array contains:

INFOBUF(1)
INFOBUF(2)
INFOBUF(3)
INFOBUF(4)
INFOBUF(S)

If the user class number is 8 it contains:

INFOBUF(1)
INFOBUF(2)
INFOBUF(3)
INFOBUF(4)
INFOBUF(S)
INFOBUF(6)
INFOBUF(7)

4
2

-3
-5

6

6
-1
2

-3
-4
-5
-6

Access to 4 data sets.
Read access to data set 2.
Modify access to data set 3
and data set S.
Read and possibly update access to data set 6.

Access to 6 data sets.
Modify access to data set 1.
Read access to data set 2, an automatic master.
Modify access to all other data sets.

Refer to the schema in Figure 3-5 to help you interpret this procedure call in relation to the ORDERS
data base.

DEC 85
6-32

Rewind Data Set

PROGRAM FTIM3
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5),LIST(15),CBUFF(15)
CHARACTER CS4*10,CS5*30,FNAME*10,LNAME*14
CHARACTER*10 CS1,CS2

FORTRAN

EQUIVALENCE (DSETC(1),CS4), (LIST(1),CS5), (CBUFF(3),FNAME),
C (CBUFF(B),LNAME)

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
CS1 = II ORDERS;"
CS2 = II
CS4 = "CUSTOMER; II

MODE3 = 3
CALL DBCLOSE (BASE,DSETC,MODE3,STATUS)
IF (STATUS(1).EQ.O) GOTO 200
DISPLAY 11 DBCLOSE FAILURE"
GOTO 9310

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for CUSTOMER is reset, including the current record number. If a serial
read request encounters an end-of -file, this call resets the current record to the beginning of the data set
and another serial read request will read the first en try in the data set.

Close Data Base

9900 MODE1 = 1
CALL DBCLOSE (BASE,DUMMY,MODE1,STATUS)
IF (STATUS(1).EQ.O) GOTO 9980
DISPLAY "DBCLOSE FAILURE"
CALL DBEXPLAIN (STATUS)

9980 STOP
END

This call closes the data base. It is issued after the program has completed all data base operations and
before program termination.

DEC 85
6-33

FORTRAN

Print Error

CALL DBEXPLAIN (STATUS)
9980 STOP

END

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the
STATUS array.

Move Error to Buffer

PROGRAM FTIM10
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION ERBUFF(36)
CHARACTER ERSTRING*72
CHARACTER*10 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (ERBUFF(1),ERSTRING)
CS1 = II ORDERS;"
CS2 = II II

DISPLAY "ENTER PASSWORD II

ACCEPT CS2
DISPLAY "ENTER ACCESS MODE (1-8) 11

ACCEPT MODE
CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1).NE.O) GOTO 9300

9300 DISPLAY 11 DBOPEN FAILURE"
9310 CALL DBERROR (STATUS,ERBUFF,LENG)

DISPLAY ERSTRING [1:LENG]

In this example, a call to DBERROR returns one of the messages appropriate to the condition word
returned by the DBOPEN procedure if it fails. For example, the message in ERSTRING may be DAT A
BASE OPEN IN AN INCOMPATIBLE MODE if the condition word is -1. The value of LENG in this
case is 38.

DEC s·s
6-34

PASCAL

Sample lines of code that perform a specified task are given below to illustrate the use of TurboIMAGE
procedures through Pascal programs.

Type and variable declarations are defined at the beginning of the sample program. TurboIMAGE
intrinsics must be declared for Pascal as external procedures. The procedure name is followed by the word
INTRINSIC. No significant error verification is performed on the parameters by the Pascal compiler.
Because TurboIMAGE parameters do not have a fixed format, calling TurboIMAGE intrinsics in Pascal is
non-standard. Warning messages will be printed against procedure statements when the Pascal program is
compiled.

Type declarations declare names for data structure forms that will be used in allocating variables. Type
declarations may be used as parameters to procedures also. Variable declarations allocate the variables of
the program. Variables are defined with precise types or forms. Pascal string literals are delimited with
single quotes (' '). Variable name and field name are separated with a dot (.), when referenced. For
example, 11base_name. baseid11

•

Table 6-1 displays TurboIMAGE type designators and sub-item lengths and the data types typically used
to process them in Pascal. For more information on TurboIMAGE data item lengths and type designators
refer to Section 3.

DEC 85
6-35

PASCAL

IMAGE

J1

J2

I 1

12

K1

K2

P4

P8

R2

R4

Zn

Xn

Table 6-1. TurboIMAGE and Pascal Data Structures

PASCAL TYPE

-32766 .. 32767 [Subrange]

Integer

-32766 .. 32767 [Subrange]

Integer

BOOLEAN (must be either TRUE or FALSE)
TRUE= odd number; FALSE= even number

Integer*

Packed Array [1 .. 2] of CHAR *

Packed Array [1 .. 4] of CHAR *

Real

Longreal (is an extension for four-word floating point)

Packed Array [1 .. n] of CHAR *

Packed Array [1 .. n] of CHAR

*NOTE: Type does not correspond with the TurbolMAGE type,
however, storage is allocated correctly.

The following is an example of defining type declarations, variable declarations and TurboIMAGE
intrinsics in the sample Pascal program in this section:

DEC 85
6-36

$TABLES ON$
$CODE OFFSETS ON$
PROGRAM Pascal TurboIMAGE(input,output);
LABEL 100; { Error Exit }

TYPE

{ Set up Turbo!MAGE parameter date type }
single_integer = -32768 .. 32767;
base_type = RECORD

password_ type
status_type

baseid PACKED ARRAY [1 .. 2] OF char;
name_only PACKED ARRAY [1 .. 16] OF char;
terminator: PACKED ARRAY [1 .. 2] OF char;

END;
=PACKED ARRAY [1 .. 10] OF char;
= ARRAY[1 .. 10] OF single_integer;

ds _name_ type
list_ type
buffer_ type1

buffer_ type2

buffer_ type3

=PACKED ARRAY [1 .. 12] OF char;
=PACKED ARRAY [1 .. 80] OF char;
= RECORD

stock no PACKED ARRAY [1 •. 8] OF char;
description: PACKED ARRAY [1 .. 20] OF char;

END;
= RECORD

acct
f name
1 name

END;
= RECORD

integer;
PACKED ARRAY [1 .. 10] OF char;
PACKED ARRAY [1 .. 16] OF char;

stock no I PACKED ARRAY [1 .. 8] OF char;
qty integer;
supplier PACKED ARRAY [1 .. 16] OF char;
unit cost real;
lastshipdate: PACKED ARRAY [1 .. 6] OF char;
binnum : PACKED ARRAY [1 .. 2] OF char;

END;
info_buff _type ~ RECORD

sa_buff _type

key type
i tern_ type

VAR
base name
db_password
mode
db status
dataset name
item list
item-name
item-value
ds data buff 1 - -ds data buff2 - -ds data buff3
repeat _prompt
yes_no
argument

nam_typ
sub_leng
sub count
dummy1
dummy2

END;
= RECORD

account s
stock no s
quantTty­
price
tax
total
purch date
deliv-date

END;

PACKED ARRAY [1 .• 18] OF char;
single integer;
single-integer;
single-integer;
single=integer;

single integer;
PACKED-ARRAY [1 .. 8] OF char;
single integer;
integer;
integer;
integer;
PACKED ARRAY [1 .. 6] OF char;
PACKED ARRAY [1 .. 6] OF char;

= PACKED ARRAY
= PACKED ARRAY

[1 .. 40] OF char;
[1 .. 8] OF char;

base_type;
password type;
single_integer;
status type;
ds name type;
list type;
PACKED ARRAY [1 .. 16] OF char;
PACKED ARRAY [1 .. 26] OF char;
buffer_ type1 ;
buffer type2;
buffer =ty pe.3 ;
boo lean; {*}
PACKED ARRAY [1 .. 3] OF char;
PACKED ARRAY [1 .. 8) OF char;

PASCAL

DEC 85
6-37

PASCAL

err_length
err buffer
record no
stock search
sa buffer
info buffer
acct search

single integer;
PACKED-ARRAY [1 .. 80] Of char;
integer;
PACKED ARRAY [1 .. 8] OF char;
sa buff type;
info _buff_ type;
integer;

PROCEDURE dbopen; INTRINSIC;
PROCEDURE dbclose; INTRINSIC;
PROCEDURE dbget; INTRINSIC;
PROCEDURE dbput; INTRINSIC;
PROCEDURE dbfind; INTRINSIC;
PROCEDURE dbexplain; INTRINSIC;
PROCEDURE dberror; INTRINSIC;
PROCEDURE dbdelete; INTRINSIC;
PROCEDURE dbupdate; INTRINSIC;
PROCEDURE dblock; INTRINSIC;
PROCEDURE dbunlock; INTRINSIC;
PROCEDURE dbinfo; INTRINSIC;

* Type BOOLEAN variables must be either TRUE or FALSE (False= 0, True= 1).

Open Data Base

BEGIN

{ Initialize intrinsic parameters }

prompt('ENTER DATA BASE NAME ');
readln(base name.name only);
base name.baseid:= ' -, ,
base-name.terminator:= '; '
db_password:= 'DO-ALL;';
mode:= 3;

dbopen(base name, db password, mode, db_status);
IF db_status[1] <> 0-THEN
BEGIN

writeln('DBOPEN-FAIL');
GOTO 100;

END;

In the above example, the user is prompted for the data base name. The data base is then opened in mode
3 with the password DO-ALL. If the password is less than 8 characters it must be followed by a blank or
semi-colon. The first word of db_status is tested and if it is not zero a failure message is printed.

DEC 85
6-38

Add Entry

dataset name:= 'PRODUCT;';
item list:= '@;';
mode:= 1;

prompt('ENTER STOCK-NO ');
readln(ds data buff1.stock no);
prompt('ENTER DESCRIPTION');
readln(ds_data_buff1.description);

dbput(base name, dataset name, mode, db_status, item_list,
ds=data_buff1); -

IF db_status[1] <> 0 THEN
BEGIN

CASE db_status[1] OF

43: writeln('DUPLICATE STOCK NUMBER');
16: writeln('DATA SET FULL');
-23: writeln('CANNOT ADD WITH CURRENT PASSWORD');

OTHERWISE BEGIN
writeln('DBPUT failure');
GOTO 100;

END;
END; {Case}

END; {If}

PASCAL

This sample code adds a data entry to the PRODUCT manual master data set. The item_list contains an
at-sign (@) which requests TurboIMAGE to return all fields of the data set in the order defined in the
data base schema. Other valid lists are the null list ('0;,) which returns no data, and same list ('*;,) which
returns the same fields as were listed in the previous call.

The user will be prompted to enter a STOCK# and corresponding DESCRIPTION. These data items will
be moved into the specified ds_data_buff l. In the example above, the condition word of db_status is
tested for a value of 43, indicating the entry already exists in the data set, 16, indicating that the data set
is full, or -23, indicating that the add cannot be performed with the current password entry.

DEC 85
6-39

PASCAL

Read Entry (Serially)

mode:= 2;
item list:= 'ACCOUNT,FIRST-NAME,LAST-NAME;';
WHILE db_status[1]= 0 DO
BEGIN
dbget(base name, dataset name, mode, db_status, item_list,

ds=data_buff2, argument);

IF db_status[1] = 0 THEN
BEGIN

{ Display data }
wri teln ('ACCT
write 1 n (' F - NAME
wri teln ('L-NAME

ds data buff2.acct);

END;

ds data buff2.f name);
ds=data=buff2.l=name);

END; { WHILE db_status }

IF db_status[1] <> 0 THEN
BEGIN

IF db status[1] = -21 THEN
wrlteln('NO READ ACCESS TO DATA');

END;

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs DBGET to perform
a forward serial read. Item_list contains the 11ACCOUNT,FIRST-NAME,LAST-NAME11 data items.
After DBGET returns to the calling program, the ds_data_buff2 contains ACCT, F-NAME and
L-NAME. Argument is a dummy parameter for this read mode. Condition word -21 is returned if the
user's password does not grant access to read the data.

DEC 85
6-40

Read Entry (Directly)

mode:= 4;
record no:= 33;
dataset name:= 'INVENTORY;';
item_list:= '@;';

dbget(base_name, dataset_name, mode, db_status, item_list,
ds_data_buff3, record_no);

IF db_status[1] <> 0 THEN
BEGIN

CASE db_status[1] OF

12, 13:
17

OTHERWISE

END;

writeln('INCORRECT RECORD NUMBER');
writeln('RECORD CONTAINS NO DATA ENTRY');

writeln('DBGET FAILURE');

END; {If db_status}

PASCAL

This example reads all data items of the entry in record number 3 3 of the INVENTORY data set using
mode 4, directed read. The program may have saved a record number while reading down the chain
looking for the latest LASTSHIPDATE (in ds_data_buff3).

If the condition word is set to 12 or 13 the message "INCORRECT RECORD NUMBER" will be printed.
If the condition word is set to 17, "RECORD CONTAINS NO DATA ENTRY" will be printed.

DEC 85
6-41

PASCAL

Read Entry (Calculated)

mode:= 7;
dataset name:= 'PRODUCT;';
stock search:= '228228';
item_list:= 'DESCRIPTION;';

dbget(base name, dataset name, mode, db status, item list,
ds=data_buff1.description, stock_search); -

IF db_status[1] <> 0 THEN
BEGIN

CASE db_status[1] OF

17:
-21

OTHERWISE

END; {Case}
END; {If}

writeln('NO SUCH STOCK NUMBER');
writeln('NO SUCH READ ACCESS TO DATA');

writeln('DBGET FAILURE');

To locate the PRODUCT data set entry which has a STOCK# search item value of 22B22B, a calculated
read is used. Mode 7 is used and the item to be read is DESCRIPTION (item_list). If 22B22B does not
exist condition word 17 is returned "NO SUCH STOCK NUMBER". If the user does not have read access
to this data item, condition word -21 is returned and the corresponding message is printed.

DEC 85
6-42

Read Entry (Backward Chain)

dataset_name:= 'SALES;';
mode:= 1;
item name:= 'PURCH-DATE;';
item=value:= '841210';

dbfind(base name, dataset name, mode, db_status, item_name,
item value); -

IF db_status[1] <> 0 THEN
BEGIN

CASE db_status[1] OF

17: writeln('NO PURCHASES ON THAT DATE');

PASCAL

-21,-52: writeln('PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS');

OTHERWISE writeln('DBFIND FAILURE');

END; { CASE }

prompt('CONTINUE? ');
readln(yes_no);

IF NOT((yes_no[1]='Y') OR (yes_no[1]='y')
THEN GOTO 100

END;

mode:= 6;
item list:= '@;';
WHILE db status[1] = 0 DO
BEGIN -

dbget(base_name, dataset_name, mode, db status, item_list,
sa_buffer, argument {dummy});

IF db status[1] = 14 THEN
wrlteln('NO MORE PURCHASES ON THIS DATE');

IF db_status[1] = 0 THEN
BEGIN

{ Report of sales }
END;

END;

In the above example the DBFIND procedure is called to determine the location of the first and last
entries in the chain. In this program the detail dataset_name is SALES, the detail .search item is
PURCH-DATE (used to define a path with the DATE-MASTER data set), and the search item value is
841210. These call parameters belong to both the master entry containing the chain head and the detail
entries making up the chain. If no entry in DATE-MASTER has the search item value of 841210,
condition word 1 7 is returned. Condition word -21 or -52 is returned if the user's password or access
mode does not allow read access to the data.

DEC 85
6-43

PASCAL

If DBFIND is successful, a call to DBGET with mode 6 reads the last entry in the chain. Successive
DBGET calls with the same mode read the next-to-last entry and so forth, until the first entry in the
chain is read. The next call to DBGET will return the message "NO MORE PURCHASES ON THIS
DATE".

Locate and Update Entry

mode:= 7;
dataset name:= 'CUSTOMER;';
item name:= 'STREET-ADDRESS;';
item-value:= '12 SUTTON PLACE '
acct=search:= 1220;

dbget(base_name, dataset_name, mode, db_status, item_name,
item value, acct search);

IF db_status[1] <> 0 THEN
BEGIN

writeln('ITEM NOT FOUND');
GOTO 100;

END;

{Update entry}
mode:= 1;

BEGIN
prompt ('ENTER NEW ADDRESS');

dbupdate(base name, dataset name, mode, db_status, item_name,
item_value); -

if db_status[1] = 42 THEN
BEGIN

writeln('NOT ALLOWED TO ALTER THIS ITEM');
GOTO 100;

END;

The entry to be updated must be located first. In this example, the entry is located by using a calculated
DBGET to read the STREET-ADDRESS (item_name) in the CUSTOMER data set. For example, the
entry is located by using the ACCOUNT item with a value of 1220. If the read is successful, the current
address is printed and the user is prompted for the new address. The new address is moved into
item_ value. The DBUPDATE routine is called to alter the STREET-ADDRESS data item in the entry.

Condition word 42 is returned if the current user class number does not allow this item to be altered, or
the access mode does not allow updates to take place.

DEC 85
6-44

Delete Entry

mode:= 1;

dbdelete(base_name, dataset_name, mode, db status);

IF db_status[1] <> 0 THEN
BEGIN

CASE db_status[1] OF

44: writeln('SALES ENTRIES EXIST, CANNOT DELETE CUSTOMER');
-23: writeln('PASSWORD DOES NOT ALLOW DELETE');

OTHERWISE writeln('DBDELETE FAILURE');

END; {Case}
END; {If}

PASCAL

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.
In this example, the program may have requested the account number of the customer to be deleted and
then used a calculated DBGET to locate the appropriate entry. Condition word 44 is returned if the
entries in the data set do not exist and the entry is not deleted. "PASSWORD DOES NOT ALLOW
DELETE" will be printed if the user does not have the capability of deleting an entry from the specified
data set.

Lock and Unlock (Data Base)

mode:= 2;
dblock(base name, argument {dummy}, mode, db status);
IF db_statusT1J = 20 THEN
BEGIN

writeln('DATA BASE IS BUSY, TRY AGAIN LATER');
GOTO 100;

END;
IF db status[1] <> 0 THEN
BEGIN-

wri teln ('DBLOCK FAILURE');
GOTO 100;

END;

mode:= 1;
dbunlock(base name, argument {dummy}, mode, db status);
IF db_status[1J <> 0 THEN
BEGIN

writeln('DBUNLOCK FAILURE');
GOTO 100;

END;

DEC 85
6-45

PASCAL

This program calls DBLOCK to lock the data base. The program must check the condition word when
DBLOCK returns control to verify that the data base is locked, since mode 2 is used. If the data base is
locked, condition word 0 is returned. If the data base is busy, condition word 20 is returned.

After the data base operations have been completed, the program unlocks the data base by calling the
DBUNLOCK procedure.

Request Data Item Information

mode:= 102;
item list:= 'PURCH-DATE;';

dbinfo(base name, item_list, mode, db_status, info buffer);
IF db_status[1] <> 0 THEN
BEGIN

writeln('DBINFO FAILURE');
GOTO 100;

END;

The procedure call in this example obtains information about the PURCH-DA TE (item_list) data item by
specifying mode 102. The item name and type are returned in info_buffer.

Rewind Data Set

mode:= 3;
dataset name:= 'CUSTOMER';

dbclose (base name, dataset_name, mode, db status);
IF db_status[1] <> 0 THEN
BEGIN

writeln('DBCLOSE FAILURE');
GOTO 100;

END;

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode 3. The dynamic status
information in the DBU for CUSTOMER is reset, including the current record number.

DEC 85
6-46

Print Error

IF db status[1] <> 0 THEN
dbexplain(db_status);

PASCAL

The call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of
db_status. This routine may be used during debugging if a procedure call fails.

Move Error to Buffer

IF db_status[1] <> 0 THEN
BEGIN

dberror(db_status, err buffer, err_length);
writeln(err buffer);

END;

In the above example, a call to DBERROR has returned one of the messages appropriate when the
condition word is not equal to zero.

Close Data Base

mode:= 1;
dbclose(base name, dataset name {dummy}, mod~, db status);
IF db status[1] <> 0 THEN

dbexplain(db status);

END.

The data base is closed using mode 1. The program ends with a period.

DEC 85
6-47

SPL

Figures 6-3 and 6-5 illustrate the use of TurboIMAGE procedures with SPL programs. The program in
Figure 6-3 is called SUPPLMOD. It opens the data base in access mode 1 and allows the user to update,
add, and delete entries of the master data set containing information on suppliers. Sample output from
SUPPLMOD is illustrated in Figure 6-4.

Figure 6-5 contains a program called SHOWSALE, which displays credit card purchase transactions from
the detail data set containing these entries. SHOWSALE opens the data base in access mode 6 thereby
avoiding the necessity of locking and unlocking the data base. Figure 6-6 shows the output from
SHOWSALE. The following numbered sequence corresponds to the numbered call-outs in Figure 6-3 and
Figure 6-5.

1 TurboIMAGE procedures must be named in an INTRINSIC statement or, alternatively, declared as
EXTERNAL procedures.

2 OPEN DATA BASE. The ORDERS data base is opened with access mode 1 and BUYER password.
If the condition code is not zero, an error message is printed and the program terminates. (See (13)
for another example of opening a data base.)

3 MOVE ERROR TO BUFFER. A message explaining the condition word returned by DBOPEN is
moved to OUTBUF and I is set equal to the number of characters or length of the message.

4 REQUEST DATA SET INFORMATION. A call to DBINFO with mode 201 and data set name
SUP-MASTER returns the data set number in DSET. For efficiency, this is done only once at the
beginning of the program. (See (14) and (16) for other DBINFO examples.)

5 LOCK DATA SET. If the condition code is not CCE, the status information is printed indicating
that the lock could not be obtained.

6 READ ENTRY (CALCULATED). This call locates an entry in the SUP-MASTER data set based
on the search item value in SUPBUF. The entry need not be read since it is to be updated or
deleted, therefore, the list is null and no data is actually transferred. SUPBUF is also used as the
buffer parameter since no data is moved into it. If the condition word is l 7, there is no search item
with the specified value. Since the BUYER password allows access to the data, it is not necessary to
check for condition word - 21.

7 DELETE ENTRY. The entry located with DBGET is deleted. If the condition word is 44, the
detail data sets linked to SUP-MASTER contain entries with the specified search item value,
therefore, the master eritry cannot be deleted. Since the BUYER password and access mode 1 allow
the user to delete SUP-MASTER entries, it is not necessary to check for condition word -23.

DEC 85
6-48

BEGIN

<<**>>
«THIS PROGRAM OPENS THE 11 0RDERS 11 DATA BASE
<<THE USER INTERACTIVELY TO ADD, DELETE, OR
<<ADDRESSES OF) SUPPLIERS IN THE SUP-MASTER
<<USER IS PROMPTED FOR THE DESIRED FUNCTION
<<NECESSARY FIELD VALUES.

IN MODE 1 AND ALLOWS>>
UPDATE (CHANGE >>
DATE SET. THE >>
AND THEN FOR THE >>

»
»

WITH»
»

<<THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSIONS)
<<SIMULTANEOUSLY, AND CAN ACCESS THE DATA BASE CONCURRENTLY
<<OTHER PROGRAMS WHICH HAVE MODE 1 OR MODE 5 ACCESS TO IT.
<<**>>

INTEGER MODE1 := 1 ' <<MODES FOR >>
MODE4 := 4, «USE IN »
MODE7 := 7, «I MAGE CAL LS»
MODE201 := 201'
DSET, <<NUMBER OF SUP-MASTER DATA SET>>
I;

LOGICAL NULL' LIST := ; ; <<SPECIAL 11 NO DATA 11 LIST>>
LOGICAL FULL REC := "@;II; «SPECIAL 11 COMPLETE ENTRY" LIST»

ARRAY SBASE(0:4)
ARRAY PASSWORD(0:2)
ARRAY DSETNAME(O:S)
ARRAY STATUS(0:9);
ARRAY SUPBUF(0:30);

: = II ORDERS; II; «DATA BASE »
:= "BUYER; II; «QUALIFIER - PASSWORD »
:= "SUP-MASTER; II; <<QUALIFIER-DATA SET NAME>

ARRAY INBUF(0:4);
BYTE ARRAY FUNCTION(*)=INBUF;
ARRAY OUTBUF(0:39);
BYTE ARRAY BOUTBUF(*)=OUTBUF;
ARRAY FPROMPT(0:4) :="FUNCTION? II

<<STATUS AREA >>
<<BUFFER >>

<<INPUT BUFFER;FOR USER TO>>
<<INPUT DESIRED FUNCTION>>
<<OUTPUT BUFFER; FOR >>

<<MESSAGES TO USER >>

ARRAY PROMPT(O: 18) :="SUPPLIER? STREET? CITY? STATE? ZIP? 11

;

ARRAY NOSUCH(0:7) :="NO SUCH SUPPLIER";
ARRAY CHAINS(0:21) :="CAN'T DELETE:PRODUCT(S) STILL IN INVENTORY";
ARRAY SETFULL(0:17):="CAN'T ADD: SUPPLIER DATA SET IS FULL 11

;

ARRAY DUPE(0:16) :="CAN'T ADD: DUPLICATE SUPPLIER NAME";

Figure 6-3. Supplier Modification Program

SPL

DEC 85
6-49

SPL

INTRINSIC DBOPEN,DBINFO,DBLOCK,DBGET,DBUPDATE,DBPUT, 1
DBDELETE,DBUNLOCK,DBCLOSE,DBEXPLAIN,DBERROR;

INTRINSIC READ,PRINT,QUIT,TERMINATE;
<<BEGINNING OF MAIN PROGRAM>>

DBOPEN(SBASE,PASSWORD,MODE1,STATUS); 2
<<OPEN ORDERS DATA BASE IN MODE 1.>>

IF STATUS <> 0 THEN
BEGIN

3 DBERROR(STATUS,OUTBUF,I); <<GET ERROR MESSAGE>>
IF STATUS <> 0 THEN GO TO DBFAIL; <<EVEN DBERROR FAILED>>

PRINT(OUTBUF,-I,O);
TERMINATE;
END;

4 DBINFO(SBASE,DSETNAME,MODE201,STATUS,DSET);<<GET NUMBER>>
IF STATUS <> 0 THEN GO TO DBFAIL; <<OF SUP-MASTER>>
DSET :=\DSET\; <<MAKE SURE DSET# IS POSITIVE>>

ASK: PRINT(FPROMPT,0,0); <<SKIP A LINE>>

DEC 85
6-50

PRINT(FPROMPT,S,3320); <<ASK FOR FUNCTION>>
I := READ (INBUF,-10); <<READ DESIRED FUNCTION>>
IF > THEN GO TO OUT; <<EOF - MIGHT AS WELL LEAVE>>
IF I = 0 THEN GO TO ASK; <<NO INPUT OR I/O ERROR>>
IF FUNCTION = 11 /E 11 THEN GO TO OUT; «SPECIAL 11 END 11 SIGNAL»
IF FUNCTION <> 11 A11 AND FUNCTION <> 11 D11

AND FUNCTION <> 11 C11 THEN GO TO ASK;
«FUNCTION MUST BE "ADD" OR "DELETE" OR "CHANGE"»

SUPBUF : = II II; «BLANK SUP-MASTER »
MOVE SUPBUF(1) := SUPBUF,(30); <<BUFFER>>

PRINT(PROMPT,5,3320);
READ(SUPBUF,-16);
IF FUNCTION = 11 D11 THEN GO TO
PRINT(PROMPT(S),4,3320);
READ(SUPBUF(B),-26);
PRINT(PROMPT(9),3,3320);
READ(SUPBUF(21),-12);
PRINT(PROMPT(12),-7,3320);
READ(SUPBUF(27),-2);
PRINT(PROMPT(16),-S,3320);
READ(SUPBUF(28),-5);

<<REQUEST AND READ>>
<<SUPPLIER NAME >>
LOCKIT; <<DELETE:GO DO IT>>
<<REQUEST AND READ>>
<<STREET ADDRESS >>

<<CITY, >>

<<STATE, >>

<<AND ZIP CODE >>

Figure 6-3. Supplier Modification Program (Continued)

LOCKIT:DBLOCK(SBASE,DSET,MODE4,STATUS);<<ADD:GO TO DBPUT>> 5
IF STATUS <> 0 THEN GO TO DBFAIL;
IF FUNCTION = 11 A11 THEN GO TO NEWSUP; «ADD: GO TO DBPUT»

6 DBGET(SBASE,DSET,MODE7,STATUS,NULL'LIST~SUPBUF,SUPBUF);
<<PRIOR TO UPDATING OR DELETING, MUST GET>>
<<ASSOCIATIVE READ; SEARCH ITEM VALUE IN>>
<<SUPBUF;. TRANSFER NO DATA>>

IF STATUS <> 0 THEN
IF STATUS = 17 THEN

BEGIN
PRINT(NOSUCH,8,0); <<NO SUCH SUPPLIER IN SUP-MASTER>>
GO TO UNLOCKIT;
END

ELSE GO TO DBFAIL;

IF FUNCTION = 11 D11

THEN DBDELETE(SBASE,DSET,MODE1,STATUS) 7
8 ELSE DBUPDATE(SBASE,DSET,MODE1,STATUS,FULLREC,SUPBUF);

<<DELETE OR CHANGE (UPDATE),DEPENDING ON REQUEST>>
IF STATUS <> 0 THEN

IF STATUS = 44 THEN PRINT(CHAINS,-43,0) <<CAN'T DELETE>>
ELSE GO TO DBFAIL;

GO TO UNLOCKIT;

NEWSUP:DBPUT(SBASE,DSET,MODE1,STATUS,FULLREC,SUPBUF); 9
IF STATUS <> 0 THEN

IF STATUS= 16 THEN PRINT(SETFULL,18,0) <<NO ROOM >>
ELSE IF STATUS= 43 THEN PRINT(DUPE,17,0) <<DUPLICATE>>

ELSE GO TO DBFAIL;

UNLOCKIT: DBUNLOCK(SBASE,DSET,MODE1,STATUS); 10
IF STATUS = 0 THEN GO TO ASK;

DBFAIL:<<COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR>>
<<RETURNED BY ANY IMAGE PROCEDURE. THIS IS >>
<<APPARENTLY A PROGRAM BUG, SO PRINT ALL AVAIL- >>
<<ABLE INFORMATION ON THE ERROR BEFORE QUITTING.>>
DBEXPLAI N (STATUS); ' 11
QUIT(1); <<IRRECOVERABLE: GET OUT.>>

OUT: DBCLOSE(SBASE,DSET,MODE1,STATUS); 12
IF STATUS <> 0 THEN GO TO DBFAIL;
END.

Figure 6-3. Supplier Modification Program (Continued)

SPL

DEC 85
6-51

SPL

8 UPDATE ENTRY. The entry located with DBGET is updated with the data in SUPBUF. The user
is prompted for this data prior to the call to DBGET. FULLREC contains @; which indicates the
entire entry is to be updated. In this case, the search item value must equal the value that is already
in the entry. Since the BUYER password and access mode 1 allow updates to this data set, it is not
necessary to check for condition word 42.

9 ADD ENTRY. This call adds an entry to the SUP-MASTER data set using the data in SUPBUF.
The list parameter in FULLREC is @; specifying that values are provided for all data items in the
entry. If the condition word is 16, the data set is full and, if it is 4 3, there is already an entry with
the specified search item value. Since the BUYER password and access mode 1 allow adding entries
to the data set, it is not necessary to check for condition word - 2 3.

10 UNLOCK DAT A SET. This call unlocks the data set. The DSET parameter is ignored. If the call
is successful, the condition code is CCE and the program branches to ASK.

11 PRINT ERROR. A call to DBEXPLAIN prints a message interpreting the STATUS array
contents.

12 CLOSE DAT A BASE. This call closes the ORDERS data base. The DSET parameter is ignored in
mode 1.

DEC 85
6-52

:RUN SUPPLMOD

FUNCTION? ADD
SUPP LI ER? ACME
STREET? 2587 BIRD ST.
CITY? INDIANOLA
STATE? IA
ZIP? 50125

FUNCTION? ADD
SUPP LI ER? ACME
STREET? 140 CORYDON AVE.
CITY? BROOKLYN
STATE? NY
ZIP? 11208
CAN'T ADD: DUPLICATE SUPPLIER NAME

FUNCTION? CHA
SUPPLIER? ACME
STREET? 140 CORYDON AVE.
CITY? BROOKLYN
STATE? NY
ZIP? 11208

FUNCTION? DELETE
SUPPLIER? ACME

FUNCTION? DEL
SUPPLIER? ACME
NO SUCH SUPPLIER

FUNCTION? /E

END OF PROGRAM

Figure 6-4. Sample SUPPLMOD Execution

SPL

DEC 85
6-53

SPL

BEGIN

<<**>>
«TH IS PROGRAM OPENS THE "ORDERS" DATA BASE IN MODE 6 »
<<AND ALLOWS THE USER INTERACTIVELY TO REQUEST DISPLAYS OF SALES>>
<<TRANSACTIONS FROM THE SALES DATA SET. FOR EACH TRANSACTION, >>
<<THE ITEMS FROM WITHIN THE CORRESPONDING ENTRY WHICH ARE >>
<<DISPLAYED ARE ACCOUNT, QUANTITY, STOCK#, TOTAL (TOTAL PRICE >>
<<IN PENNIES), PURCH-DATE, AND DELIV-DATE. ALSO, THE DESCRIP- >>
<<TION OF THE PRODUCT IS OBTAINED FROM THE PRODUCT DATA SET AND >>
<<PRINTED NEXT TO THE STOCK#. AFTER THE SALES LINES, A GRAND >>
«TOTAL PRICE LINE IS PRINTED. »
<<THERE ARE FIVE WAYS OF SELECTING SALES ENTRIES TO BE PRINTED. >>
<<THEY ARE: 1) ALL SALES TRANSACTIONS IN THE DATA SET >>
<< 2) ALL SALES TO A PARTICULAR ACCOUNT (CUSTOMER) >>
<< 3) ALL SALES OF A PARTICULAR STOCK# (PRODUCT) >>
<< 4) ALL SALES WITH A PARTICULAR PURCHASE DATE >>
<< 5) ALL SALES WITH A PARTICULAR DELIVERY DATE >>
<<FOR (1) ABOVE, THE DATA SET IS READ SERIALLY, WITH EACH ENTRY >>
<<ENCOUNTERED BEING PRINTED. THE OTHER SELECTION METHODS >>
<<REQUIRE A SPECIFIC VALUE FOR A CERTAIN ITEM WITHIN THE ENTRY. >>
<<SINCE ALL OF THE ITEMS IN QUESTION ARE SEARCH ITEMS WITHIN THE>>
<<SALES DATA SET, THE PROGRAM MERELY CALLS DBFIND FOR THE >>
<<PARTICULAR ITEM AND VALUE, AND THEN DOES CHAINED DBGETS TO >>
<<RETRIEVE THE DESIRED ENTRIES. BEFORE DOING SO, OF COURSE, THE>>
<<PROGRAM PROMPTS THE USER FOR THE ITEM NAME AND ITS VALUE. >>
<<THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSIONS) >>
<<SIMULTANEOUSLY, AND CAN ACCESS THE DATA BASE CONCURRENTLY WITH>>
<<OTHER PROGRAMS WHICH OPEN IT IN MODE 2, 4, 6, OR 8. >>
<<**>>

INTEGER

LOGICAL

DEC 85
6-54

MODE,
MODE1
MODE2
MODE3
MODE4
MODES
MODE7
MODE201
SALES,
PRODUCT,
ARGLGTH,
I;

: = 1 '
:=2,
:=3,
:=4,
:=5,
:·=7'
: =201 '

<<MODES
« FOR
« USE
« IN
« TurboIMAGE
<< CALLS

<<DATA SET NUMBER - SALES>>
<<DATA SET NUMBER - PRODUCT>>

<<HANDY-DANDY VARIABLE>>

»
»
»
»
»
»

SAMELIST : = 11 *; II; «SPECIAL "SAME AS LAST TIME" LIST»

Figure 6-5. Purchase Transaction Display Program

DOUBLE GRANDTOTAL;

ARRAY SBASE(0:4) := II ORDERS;"; «DATA BASE»
ARRAY PASSWORD(0:2) := "CLERK;"; «QUALIFIER - PASSWORD»
ARRAY SALENAME(0:2) :="SALES;"; «QUALIFIER-DATA SET NAME»
ARRAY PRODNAME(0:3) := 11 PRODUCT; 11

; «QUALIFIER-DATA SET NAME»
ARRAY STATUS(0:9); <<STATUS AREA>>
ARRAY SALESLIST(0:25) := 11 ACCOUNT,QUANTITY,STOCK#,TOTAL, 11

,

II PURCH-DATE' DE LIV-DATE; II;
ARRAY PROD LIST (0: 5) : = 11 DESCRI PTION; II;

ARRAY ITEM(0:8);
ARRAY SALESBUF(0:14);
DOUBLE ARRAY ACCOUNT(*)=SALESBUF;
DOUBLE ARRAY TOTALCOST(*)=SALESBUF(7);
BYTE ARRAY BSALESBUF(*)=SALESBUF;
ARRAY ARG(0:4);
DOUBLE ARRAY DARG(*)=ARG;
BYTE ARRAY BARG(*)=ARG;
ARRAY INBUF(0:7);
BYTE ARRAY SELECT(*)=INBUF;
ARRAY OUTBUF(0:39);
BYTE ARRAY BOUTBUF(*)=OUTBUF;
BYTE ARRAY WORKBUF(0:10);

<<ITEM NAME FOR DBFIND>>
<<BUFFER - SALES DATA SET>>

<<ARGUMENT FOR DBFIND>>

<<INPUT BUFFER;FOR USER TO>>
<<ENTER SALES SELECT TYPE>>
<<OUTPUT BUFFER; FOR>>
<<MESSAGES TO USER>>

ARRAY SPROMPT(0:7) := 11 ALL SALES FOR? II

ARRAY WPROMPT(O:S) := "WHICH ONE? 11
;

INTRINSIC DBOPEN,DBINFO,DBCLOSE,DBFIND,DBGET,DBEXPLAIN,DBERROR,
READ,PRINT,ASCII,QUIT,DASCII,DBINARY,TERMINATE;

<<BEGINNING Of MAIN PROGRAM>>

MODE := 6;
DBOPEN(SBASE,PASSWORD,MODE,STATUS); 13

<<OPEN ORDERS DATA BASE IN MODE 6>>
IF STATUS <> 0 THEN

BEGIN
DBERROR(STATUS,OUTBUF,I); <<GET OPEN ERROR MESS.>>
IF_ STATUS <> 0 THEN GO TO DBFAIL; <<DBERROR FAILED>>
PRINT(OUTBUF,-I,O);
TERMINATE;

END;

Figure 6-5. Purchase Transaction Display Program (Continued)

SPL

DEC 85
6-55

SPL

DBINFO(SBASE,SALENAME,MODE201,STATUS,SALES); 14
<<FOR EFFICIENCY, GET NUMBER OF SALES DATA SET>>
IF STATUS <> 0 THEN GO TO DBFAIL;
SALES :=\SALES\; <<MAKE SURE DSET# IS POSITIVE>>
DARG :=OD;

15 DBGET(SBASE,SALES,MODE4,STATUS,SALESLIST,OUTBUF,DARG);
<<SET UP LIST FOR FUTURE DBGET CALLS ON SALES DATA>>
<<SET. THIS DIRECTED READ OF ENTRY #0 SHOULD FAIL,>>
<<BUT ONLY AFTER INTERNALLY RECORDING SPECIFIED >>
<<LIST. NO DATA WILL BE TRANSFERRED. >>

IF STATUS <> 12 <<DIRECTED EOF>> THEN GO TO DBFAIL;
DBINFO(SBASE,PRODNAME,MODE201,STATUS,PRODUCT); 16
IF STATUS <> 0 THEN GO TO DBFAIL;
PRODUCT :=\PRODUCT\;

DBGET(SBASE,PRODUCT,MODE4,STATUS,PRODLIST,OUTBUF,DARG); 17
IF STATUS <> 12 THEN GO TO DBFAIL;

<<ALSO SET UP FOR DBGETS FROM PRODUCT DATA SET>>

NEXT: GRANDTOTAL :=OD;
PRINT(SPROMPT,-15,3320);
I := READ(INBUF,-15);
IF > THEN GO TO OUT;
IF I = 0 THEN GO TO NEXT;
IF SELECT = 11 /E 11 THEN GO TO OUT;
IF SELECT = 11 /C 11 THEN GO TO ALL;

IF SELECT = 11 A11 THEN
BEGIN
MOVE ITEM . - II ACCOUNT; II ;

ARGLGTH := -10;
END

ELSE IF SELECT = 11 S11 THEN
BEGIN
MOVE ITEM : = 11 STOCK#; II;

ARGLGTH := -8;
END

ELSE IF SELECT = II p" THEN
BEGIN
MOVE ITEM : = II PURCH-DATE; II;
ARGLGTH := -6;
END

<<ASK FOR SALES SELECT TYPE>>
«READ IT»
<<EOF - MIGHT AS WELL STOP>>
<<NO INPUT OR I/O ERROR>>
<<SPECIAL STOP INPUT>>
<<SPECIAL ALL SALES RQST>>

Figure 6-5. Purchase Transaction Display Program (Continued)

DEC 85
6-56

ELSE IF SELECT = "D" THEN
BEGIN
MOVE ITEM : = II DE LI v- DATE ; II ;

ARGLGTH := -6;
END

ELSE GO TO NEXT; <<UNRECOGNIZED SELECT TYPE>>

<<AT THIS POINT, THE SELECT TYPE (SEARCH ITEM) HAS BEEN >>
«SPECIFIED. THAT IS, THE USER HAS -REQUESTED TO SEE ALL »
<<SALES TRANSACTIONS FOR AN ACCOUNT OR A STOCK NUMBER OR>>
<<A PURCHASE DATE OR A DELIVERY DATE. NOW, ASK FOR THE >>
<<VALUE OF THE SEARCH ITEM. >>

SI VALUE: ARG : = II ti

MOVE ARG(1) := ARG,(4);
PRINT(WPROMPT,-11,3320); <<REQUEST AND READ>>
I := READ(ARG,ARGLGTH); <<SEARCH ITEM VALUE>>
IF > THEN GO TO OUT; <<EOF - MIGHT AS WELL STOP>>
IF < THEN GO TO SIVALUE; <<I/O ERROR - ASK AGAIN>>
IF SELECT = "A" THEN

BEGIN <<ACCOUNT NUMBER:TRANSLATE>>
DARG := DBINARY(BARG,I); <<TO INTERNAL BINARY FORM>>
IF <> THEN GO TO SIVALUE;
END;

<<SEARCH ITEM NAME IS NOW IN ITEM AND SEARCH>>
<<ITEM VALUE IS IN ARG. >>
DBFIND(SBASE,SALES,MODE1,STATUS,ITEM,ARG);

<<GET TO HEAD OF CHAIN OF INTEREST>>
18 IF STATUS <> 0 THEN

IF STATUS = 17 THEN GO TO WRAPUP <<NO CHAIN FOR THIS VALUE>>
ELSE GO TO DBFAIL;

MODE := MODES; <<PREPARE FOR CHAINED DBGETS>>
GO TO GETNEXT; <<GO RETRIEVE AND REPORT>>

ALL: <<COME HERE TO REPORT ALL SALES TRANSACTIONS, RATHER>>
<<THAN A SELECTED SUBSET. >>
MODE := MODE2; <<PREPARE FOR SERIAL DBGETS>>
DBCLOSE(SBASE,SALES,MODE3,STATUS); 19

<<REWIND SALES DATA SET>>
IF STATUS <> 0 THEN GO TO DBFAIL;

Figure 6-5. Purchase Transaction Display Program (Continued)

SPL

DEC 85
6-57

SPL

GETNEXT: DBGET(SBASE,SALES,MODE,STATUS,SAMELIST,SALESBUF,ARG);
20 <<GET NEXT SALES TRANSACTION. THIS IS EITHER A >>

<<SERIAL (MODE2) OR CHAINED (MODES) DBGET. IN >>
<<EITHER CASE, ARG IS IGNORED. >>
IF STATUS <> 0 THEN

IF STATUS= 11 OR STATUS= 15 THEN GO TO WRAPUP <<NO MORE>>
ELSE GO TO DBFAIL;

<<WE HAVE A SALES TRANSACTION; FORMAT IT FOR PRINTING>>
OUTBUF : = II ; <<BLANK OUTPUT > >
MOVE OUTBUF(1) := OUTBUF,(35); <<BUFFER >>
DASCil(ACCOUNT,10,BOUTBUF); <<ACCOUNT NUMBER>>
ASCII(SALESBUF(2),-10,BOUTBUF(13)); <<QUANTITY >>
MOVE OUTBUF(8) := SALESBUF(3),(4); <<STOCK# >>

21 BGET(SBASE,PRODUCT,MODE7,STATUS,SAMELIST,OUTBUF(13),
SALESBUF(3)); <<GET DESCRIPTION FROM PRODUCT>>

IF STATUS <> 0 THEN GO TO DBFAIL; <<DATA SET >>
I := DASCII(TOTALCOST,10,WORKBUF); <<TOTAL COST >>
MOVE BOUTBUF(55-I) := WORKBUF,(I); <<RIGHT JUSTIFY >>
MOVE BOUTBUF(57) := BSALESBUF(18),(6); <<PURCHASE DATE>>
MOVE BOUTBUF(65) := BSALESBUF(24),(6); <<DELIVERY DATE>>
PRINT(OUTBUF,-71,0); <<OUTPUT SALES TRANSACTION>>
GRANDTOTAL := GRANDTOTAL + TOTALCOST; <<ACCUMULATE TOTAL>>
GO TO GETNEXT; <<GO GET NEXT SALES>>

WRAPUP: OUTBUF := II

MOVE OUTBUF(1) := OUTBUF,(15);
MOVE OUTBUF(16) := II GRAND TOTAL: '
I := DASCII(GRANDTOTAL,10,WORKBUF); <<GRAND TOTAL >>
MOVE BOUTBUF(55-I) := WORKBUF,(I); <<RIGHT JUSTIFY>>

PRINT(OUTBUF,-55,3202); <<OUTPUT GRAND TOTAL & SKIP LINE>>
GO TO NEXT; <<GO ASK FOR NEXT REQUEST>>

DBFAIL: <<COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR>>
<<RETURNED BY ANY TurboIMAGE PROCEDURE .. THERE IS >>
<<NOTHING TO DO BUT TERMINATE, SO PRINT ALL >>
<<INFORMATION ABOUT THE ERROR ON $STDLIST. >>
DBEXPLAIN(STATUS);
QUIT(1); <<IRRECOVERABLE: GET OUT>>

OUT:· DBCLOSE(SBASE,SALES,MODE1 ,STATUS);
If STATUS <> 0 THEN GO TO DBFAIL;
END.

DEC 85
6-58

Figure 6-5. Purchase Transaction Display Program (Continued)

SPL

13 OPEN DATA BASE. The ORDERS data base is opened in mode 6 with password CLERK.

14 REQUEST DATA SET INFORMATION. The data set number for SALES is requested. Note that
SALENAME is an array containing "SALES;" and the data set number is stored in the SALES
variable.

15 READ ENTRY (DIRECTLY). This call requests a directed read of the entry in record 0.
Although this read fails and returns condition word 12, the internal list of items is set up to include
ACCOUNT, QUANTITY, STOCK#, and TOTAL. No data is transferred. Subsequent calls to read
an entry from the SALES data set can use the special list construct *; indicating the list is the same
as the one used in this call. This technique saves proL.essing time since the list is set up only once
during program execution.

16 REQUEST DATA SET INFORMATION. The data set number for PRODUCT is requested.

17 READ ENTRY (DIRECTLY). This call is the same as (15) except the data set name is PRODUCT
and the list includes only the DESCRIPTION item.

18 READ ENTRY (CHAINED). A call to DBFIND locates the pointers for a chain in the SALES data
set. In the preceding code, the user is prompted for the search item (ACCOUNT, STOCK#,
PURCH-DATE, or DELIV-DATE) and its value. ITEM contains the search item name and ARG
contains the search item value. If the condition word is 17, there is no chain with the requested
value. The read is performed with the call described below in (20).

19 REWIND DATA SET. A call to DBCLOSE with mode 3 rewinds the SALES data set to prepare
for serial reads of all entries in the set. If the rewind fails, the condition code is CCL or CCG.

20 READ ENTRY (SERIAL OR CHAINED). This call is coded so that it performs either a forward
chained (mode 5) or forward serial (mode 2) read of the SALES data set. The data is read into
SALESBUF and the list is*; indicating it is the same list that was set up in calls (15) and (17). ARG
is ignored in both modes 2 and 5. If the end of the data set is reached while doing a serial read, the
condition word is 11. If the end of chain is reached while doing a chained read, the condition word
is 15. Since access mode 6 and password CLERK allow the user to read all items in the SALES and
PRODUCT data sets, it is not necessary to check for condition word -21.

21 READ ENTRY (CALCULATED). A calculated read (mode 7) is performed using the search item
value for STOCK# that is in SALESBUF(3) and (4). The data set is PRODUCT and the list
parameter is*;. The description is read into OUTBUF(13) through OUTBUF(22).

DEC 85
6-59

SPL

:RUN SHOWSALE

ALL SALES FOR? /C
24536173 4 5405T14F BAR STOOL 10300 840318
24536173 1 3586T14Y BIRDHOUSE 630 840319
24536173 2 4397D13P DRAIN OPENER 189 840320
24536173 1 7391Z22F PORTABLE WB KIT 24273 840321
54283545 27 6650D22S BASEBALL BAT 12567 840321
10293847 1 3739A14F CONVERT! BLE KIT 41722 840319
54283545 1 4397D13P DRAIN COVER 90 840322
82463761 1 3586Tl4Y BIRDHOUSE 630 840319
82463761 1 2457A11C NEHRU JACKET 271 840319
10293847 1 4397D13P DRAIN OPENER 90 840322
90542176 1 6650D225 BASEBALL BAT 517 840320
44556677 2 5404T14F BAR STOOL 5150 840319

GRAND TOTAL: 96375

ALL SALES FOR? ACCOUNT
WHICH ONE? 10293847
10293847 1 3739A14F CONVERT! BLE KIT 41722 840319
10293847 1 4397D13P DRAIN OPENER 90 840322

GRAND TOTAL: 41812

ALL SALES FOR? STOCK#
WHICH ONE? 4397D13P
24536173 2 4397D13P DRAIN OPENER 139 840321
54283545 1 4397D13P DRAIN OPENER 90 840322
10293847 1 4397D13P DRAIN OPENER 90 840322

GRAND TOTAL: 369

ALL SALES FOR? PUR
WHICH ONE? 740320
90542176 1 6650D22S BASEBALL BAT 517 840320

GRAND TOTAL: 517

ALL SALES FOR? D
WHICH ONE? 740320
10293847 1 3739A14F CONVERT! BLE KIT 41722 840319
24536173 4 5404T14F BAR STOOL 10300 840318
44556677 2 5405T14F BAR STOOL 5150 840319

GRAND TOTAL: 57172
ALL SALES FOR? ST
WHICH ONE? 9999F99F

GRAND TOTAL: 0

ALL SALES FOR? /E

END OF PROGRAM

Figure 6-6. Sample SHOWSALE Execution

DEC 85
6-60

840320
CARRY
CARRY
840322
840322
840320
CARRY
CARRY
840322
CARRY
CARRY
840320

840320
CARRY

CARRY
CARRY
CARRY

CARRY

840320
840320
840320

BASIC

To simplify your access to a TurboIMAGE data base through BASIC language programs, it is
recommended that you use the BIMAGE interface procedures provided with the TurbolMAGE software.
These routines convert all parameter byte addresses to word addresses as required by TurboIMAGE. In
addition to calling the necessary TurboIMAGE procedure, the BIMAGE procedures perform the following
functions for your convenience:

• Automatically pack, into a buff er, a list of expressions before calling the DBPUT or DBUPDA TE
procedures.

• Automatically unpack, from a buffer to a list of BASIC variables, the values of items returned by
DBGET or the values returned by DBINFO.

• Automatically update the logical length of string variables to which data is transferred from the data
base to reflect the length of the string actually transferred.

Table 6-2 lists the BIMAGE interface procedures with the TurboIMAGE procedures to which they
correspond. The parameters are described in Table 6- 3. The corresponding TurboIMAGE procedure
parameter is listed next to the BIMAGE parameter.

DEC 85
6-61

BASIC

Table 6-2. BIMAGE Procedure Calls

BIMAGE

XDBOPEN (B$,W$,mode,status(*))

XDBPUT (8$,{~$},mode,status(*),{i$}•writelist)

XDBFIND (8$,{~$},mode,status(*),{i$},{~$}>

XDBGET (8$,{~$},mode,status(*),{i$},readlist,{~$}>

XDBUPDATE (8$,{~$},mode,status(*),{i$},writelist)

XDBDELETE (8$,{~$},mode,status(*))

XDBLOCK (8$,{descriplist},mode,status(*))

XDBUNLOCK (8$,{~$},mode,status(*))

XDBCLOSE (8$,{~$},mode,status(*))

XDBBEGIN (B$,T$,mode,status(*))

XDBMEMO (8$,T$,mode,status(*))

XDBEND (B$,T$,mode,status(*))

XDBINFO {8$,{~$},mode,status(*),readlist)

XDBEXPLAIN (status(*))

XDBERROR (status(*),M$[,length])

DEC 85
6-62

CORRESPONDS TO:

DBOPEN

DB PUT

DBFIND

DBGET

DBUPDATE

DBDELETE

DB LOCK

DBUNLOCK

DBCLOSE

DBBEGIN

DBM EMO

DB END

DB INFO

DBEXPLAIN

DBERROR

Table 6-Z. BIMAGE Procedure Calls (Continued)

BIMAGE

XDBEND (B$,T$,mode,status(*))

XDBCONTROL (8$,{~$},mode,status(*))

BASIC

CORRESPONDS TO:

DBEND

DBCONTROL

DEC 85
6-63

BASIC

BIMAGE**

A$

a

8$

0$

d

desoriplist

l$

i

L$

l

length

M$

mode

Q$

q

DEC 85
6-64

Table 6-3. RIMAGE Procedure Parameters

IMAGE

argument

argument

base

dset

dset

qualifier

item

item

list

list

length

buff er

mode

qualifier

qualifier

May be any string expression.

May be a numeric expression or numeric array of any
data-type.

Must be a simple string variable. Value should not be altered
between calls to XDBOPEN and XDBCLOSE.

May be any string expression.

May be a type-INTEGER expression.*

Has same form as writelist. You should ensure that once
BASIC has concatenated the component variables, the result is
a valid lock descriptor list (or set name) as defined for
DBLOCK. (Parameter ignored for DBLOCK modes 1 and 2).

May be any string expression.

May be a type-INTEGER expression.*

May be any string expression or a string array. If it is a string
array, all of the string elements are concatenated to form one
string whose length may not exceed 25 5 characters. The
concatenated string must form a syntactically correct list
parameter. Commas must be placed appropriately.

May be an array of type INTEGER.

Must be a simple or subscripted type-INTEGER variable (if
not, parameter is ignored.) Parameter is optional but if
present, total length of TurbolMAGE message is returned.
Value may exceed length of message by BIMAGE procedure if
M$ is too small and message is truncated. Not needed when
M $ is a string variable.

Should be a simple or subscripted string variable without
substring designators. If message is larger than M$, message is
truncated on the right. Logical length of M$ is set to length
of message returned by BIMAGE and may not be equal to
length if message is truncated.

Must be type-INTEGER expression.*

May be any string expression.

May be a type-INTEGER expression.

BIMAGE**

readlist

status(*)

T$

W$

writelist

BASIC

Table 6-3. BIMAGE Procedure Parameters (Continued)

IMAGE

buff er

status

text

password

buff er

Has form similar to item list of BASIC READ or MAT READ
~tatement. May consist of one or more string or numeric simple or
subscripted variables or arrays separated by commas. String
variables with substring designators and the 11FOR-loop11 construct
are not permitted.

Must be a type-INTEGER array containing at least ten active
elements.

Must be a simple string variable.

May be any string expression.

Has form similar to item list of BASIC PRINT or MAT PRINT
statement. May consist of one or more string or numeric
expressions or arrays separated by commas. 11FOR-loop" not
permitted. Substring designators are permitted.

* See discussion of type-INTEGER expressions as parameters.

** Note that if you specify an array as a parameter you must obey BASIC syntax rules and append
parenthesis and asterisks, for example, L$(*,*) or A(*).

Refer to the TurbolMAGE procedure descriptions in Section 4 for details regarding the purpose of a
procedure and its parameters as well as available options.

BIMAGE provides some extensions to the TurboIMAGE procedure calling sequences to simplify your
access to the data base:

• BIMAGE allows you to enter a list of expressions in place of the buffer parameter. The list is
automatically packed into or unpacked from a temporary buffer constructed by the BIMAGE
procedures. This facility is also available to construct lock descriptor lists.

• String or numeric expressions are accepted for many parameters. For example, the dset parameter may
be a string expression when specifying the data set by name or a numeric expression when specifying
the data set by number.

DEC 85
6-65

BASIC

String Variables

The physical length of a string variable determines the number of characters (bytes) read by the XDBGET
procedure and the logical length of a string variable determines the number of characters written by the
XDBPUT and XDBUPDATE procedures. Thus, you should ensure that the physical length of a string
variable specified in a DIM or COM statement exactly matches the size of the item to be read by a call to
XDBGET.

On the other hand, the same string variable can be used to write items of varying sizes. Substring
designators should be used to ensure that the actual string passed to XDBPUT or XDBUPDATE fills the
item to be written. For example, if the item is 8 characters long, and substring S$(3) is 2 characters long,
S$(3,10) or S$(3;8) fills the item with the S$(3) substring and appends 6 blanks.

If the string variable is an array, the length of each string element or of the concatenated string elements
should correspond to the length of the item or sub-item to be written. You can ensure this by specifying
substring designators when assigning values to elements of the string array in your BASIC program.

Type-Integer Expressions as Parameters

Since BASIC treats integral numeric constants as type-REAL, expressions involving constants cannot be
passed directly to a type-INTEGER parameter of a BIMAGE procedure. You can define a function such
as the following to ensure that a type-INTEGER expression is passed:

10 DEF INTEGER FNI(X)=X

When a procedure call is made, the function is used in this way:

50 CALL XDBLOCK(B$,D$,FNI(expression),S(*))

The function FNI converts expression to type-INTEGER.

Doubleword Integer Parameters

In order to specify a doubleword integer in BASIC, define a two-word array in which the first word
contains the high-order digits of values greater than 32767, or zero. The second word must contain
low-order digits of values greater than or equal to 32767, or the entire value if it is less than or equal to
32767.

Readlist, Writelist, Descriplist Parameters

When specifying string expressions in a readlist, writelist, or descriplist, each string expression should
correspond to a data item or sub-item, or groups of items or sub-items in the case of string arrays. You
should not specify several string expressions as the source or destination of one item or sub-item. The
transfer of strings to or from the data base always begins on a word boundary of the buffer. Therefore,
writing from or reading into two odd-length strings is not the same as writing or reading into one
even - length string.

DEC 85
6-66

BASIC

The Status Parameter

If the status parameter is a type-INTEGER variable, a condition word is returned in the first word and
the second word is set to zero if status is at least a two-element array. The condition word will have a
value equal to those listed for the corresponding TurboIMAGE procedure and, in additon, may contain one
of the conditions listed in Table 6-4.

If the status parameter is not type-INTEGER, the BIMAGE procedures cannot return a condition word
for the common error: failure to declare the status variable type-INTEGER. This error will usually
result in the BASIC message UNDEFINED VALUE the first time the status array contents are examined.

Table 6-4. Additional BIMAGE Condition Word Values

EXCEPTIONAL CONDITIONS

51 Insufficient stack for temporary buffer.

52 Invalid number of parameters. }

53 Invalid parameter.

54 status array has less than 10 elements.

PROCEDURES

XDBGET,XDBPUT,
XDBINFO,XDUPDATE

All procedures except
XDBERROR and XDBEXPLAIN

DEC 85
6-67

BASIC

Open Data Base

10 DIM B$[10],P$[8]
20 INTEGER S[10],M
30 B$=" ORDERS;"
40 INPUT "ENTER PASSWORD: II' P$ [1 ;8]
50 IN PUT II ENTER ACCESS MODE (1 -8) : II 'M
60 CALL XDBOPEN(B$,P$,M,S[*])
70 IF S[1]<>0 THEN 9300

(code to use data base)

9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S[*])
9320 STOP

In this example, the ORDERS data base is opened in the access mode entered by the user and with a user
class number corresponding to the password entered by the user and stored in the P$ string. If the
password is less than 8 characters the P$ string is padded with blanks. The first word of the status array,
S, is tested to determine whether the procedure executed successfully. If not, an error message is printed.

DEC 85
6-68

Add Entry

10 DIM B$[10],P$[8],A$[8],C$[20]
20 INTEGER S[10],M,M1
30 B$= 11 ORDERS;"
40 INPUT 11 ENTER PASSWORD: II' P$[1 ;8]
50 INPUT 11 ENTER ACCESS MODE (3,4): 11 ,M
60 GOTO M OF 70,70,90,90
70 PRINT 11 CANNOT ADD ENTRIES IN THIS ACCESS MODE"
80 GOTO 50
90 CALL XDBOPEN(B$,P$,M,S[*])

100 IF S[1]<>0 THEN 9300
110 INPUT "ENTER STOCK# OR /TO TERMINATE: 11 ,A$[1 ;8]
120 IF A$[1,1]= 11

/" THEN GOTO 9900
130 INPUT "ENTER DESCRIPTION: II' C$ [1; 20]
140 M1=1
150 CALL XDBPUT(B$' II PRODUCT; II ,M1 ,S [*] ' 11

@; II ,A$ [1 ;8] ,C$ [1 ;20])
160 IF S[1]<>43 THEN 190
170 PRINT "DUPLICATE STOCK NUMBER"
180 GOTO 110
190 IF S[1]<>16 THEN 220
200 PRINT 11 DATA SET FULL"
210 GOTO 9900
220 IF S[1]<>0 THEN 250
230 PRINT 11 NEW PRODUCT HAS BEEN ENTERED"
240 GOTO 110
250 IF S[1]=-23 THEN 290
260 PRINT 11 DBPUT FAILURE"
270 CALL XDBEXPLAIN(S[*])
280 GOTO 9900
290 PRINT "YOUR PASSWORD DOES NOT ALLOW YOU TO ADD ENTRIES"
300 GOTO 9900

9300 (code same as example above)
9900 (close data base)

BASIC

This sample code adds an entry to the PRODUCT manual master data set. Note that the B$ string used to
open the data base is the base parameter in this call. It should not be changed after the call to XDBOPEN
since this call saves a data base identifier in the first word of B$. This list of items to be added is
specified as @; which indicates that values are specified for all items in the entry. The values for the
STOCK# and DESCRIPTION data items are stored in A$ and C$. Sample values are 11 7474Z74Z11 and
"ORANGE CRATE/J.68/~/J.666.''.

In the example, the condition word of the status array is tested for a value of 43, indicating that an entry
with the specified STOCK# search item value already exists in the data set, or 16, indicating that the data
set is full, or -2 3, indicating that the user's password does not grant write access to the data set.

If an entry is to be added to a detail set, the program may first check to see if the required entries exist in
the manual masters linked to the detail set. Values must be provided for all search items and the sort
item, if one is defined, of a detail data set entry.

DEC 85
6-69

BASIC

Read Entry (Serially)

1 0 DIM B$ [1 0] , P $ [8] , D 1 $ [1 4] , L 1 $ [2 0] , S 1 $ [1 6] , S 2 $ [2]
20 INTEGER S[10],M,M1,M2
30 B$=" ORDERS; II

40 M1=1
50 INPUT "ENTER PASSWORD: ",P$[1;8]
60 INPUT II ENTER ACCESS MODE (1-8): II ,M
70 CALL XDBOPEN(B$,P$,M,S[*])
80 IF S[1]<>0 THEN 9300

200 M2=2
210 D1$="SUP-MASTER;"
220 L1$="SUPPLIER,STATE;" eadlist
230 CALL XDBGET(B$,D1$,M2,S[*],L1$,S1$,S2$,)
240 IF S[1]<>11 THEN 270
250 GOSUB 900
260 GOTO 230
270 IF S[1]<>0 THEN 320
280 PRINT "STOCK#= II ,51$, "DESCRIPTION= II ,S2$
290 INPUT "CONTINUE (YORN)? ",X$
300 IF X$[1,1]="Y" THEN GOTO 230
310 GOTO 9900
320 IF S[1]=-21 THEN 360
330 PRINT "DBGET FAILURE"
340 CALL XDBEXPLAIN(S[*])
350 GOTO 9900
360 PRINT "YOU DO NOT HAVE ACCESS TO THIS DATA"
370 GOTO 9900

900 (routine to rewind data set)

9300 (same as XDBOPEN example)

9900 (close data base)

To read the next entry of the SUP-MASTER data set, a mode of 2 is used. This directs the XDBGET (and
DBGET) procedure to perform a forward serial read. In the example, the list in the L 1$ string specifies
two data items to be read. After returning to the calling program, the S 1 $ string contains the STOCK#
data item value and S2$ contains the DESCRIPTION data item value. The argument parameter is
ignored if mode equals 2, therefore, a null string may be used for this parameter.

If an end-of-file is encountered, the condition word is set to 11. In this case, if the user wants to
continue, the routine rewinds the data set and tries the read again. A rewind routine is shown later in the
examples of the XDBCLOSE procedure. The rewind reinitializes the current record pointer so that the
next request for a forward serial read will read the first entry in the data set.

If the user's password does not allow read access to the data, a condition word of -21 is returned.

DEC 85
6-70

BASIC

Read Entry (Calculated)

10 DIM B$[10],P$[8],C$[20],S0$[8]
20 INTEGER S[10],M1,M
30 8$= 11 ORDERS; 11

40 M1=1
50 DEF INTEGER FNI(X)=X
60 INPUT 11 ENTER PASSWORD: 11 ,P$[1;8]
70 INPUT "ENTER ACCESS MODE (1-8): 11 ,M
80 CALL XDBOPEN(B$,P$,M,S[*])
90 IF S[1]<>0 THEN 9300

300 INPUT 11 ENTER STOCK# OR/ TO TERMINATE: 11 ,S0$[1;8]
310 IF S0$[1,1]= 11

/" THEN GOTO 9900
320 CALL XDBGET(B$, 11 PRODUCT 11 ,FNI(7),S[*], 11 DESCRIPTION; 11 ,C$,SO$)
330 IF S[1]<>17 THEN GOTO 360
340 PRINT "NO SUCH STOCK NUMBER"
350 GOTO 300
360 IF S[1]=0 THEN GOTO 410
370 IF S[1]=-21 THEN 430
380 PRINT 11 DBGET FAILURE"
390 CALL XDBEXPLAIN(S[*])
400 GOTO 9900
410 PRINT SO$,C$
420 GOTO 300
430 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA REQUESTED"
440 GOTO 9900

9300 (same code as XDBOPEN example)

9900 (close data base)

To locate the PRODUCT data set entry which has a STOCK# search item value equal to the one entered
in SO$ by user, a calculated read is used. The mode is 7 and the item to be read is DESCRIPTION. After
XDBGET returns control to the calling program, the description is in C$. If no entry exists with the
specified STOCK# value, the condition word is 17. If the user does not have read access to the requested
data, a condition word of -21 is returned.

DEC 85
6-71

BASIC

Read Entry (Backward Chain)

1 0 DIM B$ [1 0] , P $ [8] , I 1 $ [6] , A$ [8] , A 1 $ [1 6]
20 INTEGER S[10] ,M1,M,M6
30 8$= 11 ORDERS; II

40 M1=1
50 M6=6
60 INPUT "ENTER PASSWORD: ",P$[1;8]
70 INPUT "ENTER ACCESS MODE (1-8): 11 ,M
80 CALL XDBOPEN(B$,P$,M,S[*])
90 IF S[1]<>0 THEN 9300

300 INPUT "ENTER LASTSHIPDATE (YYMMDD) ORE TO EXIT: ",I1$[1;6]
310 IF I1$[1,1]="E" THEN GOTO 9900
320 CALL XDBFIND(B$,"INVENTORY 11 ,M1,S[*], 11 LASTSHIPDATE; 11 ,I1$)
330 IF S[1]<>17 THEN GOTO 360
340 PRINT 11 NO SHIPMENTS ON THAT DATE"
350 GOTO 300
360 IF S[1]=0 THEN GOTO 410
370 IF S[1]=-21 OR S[1]=-52 THEN 480
380 PRINT "DBFIND FAILURE"
390 CALL XDBEXPLAIN(S[*])
400 GOTO 9900
410 CALL XDBGET(B$,"INVENTORY; 11 ,M6,S[*], 11 STOCK#,SUPPLIER; 11 ,A$,A1$)
420 IF S[1]<>14 THEN GOTO 450
430 PRINT "NO MORE SHIPMENTS ON THIS DATE"
440 GOTO 300
450 IF S[1]<>0 THEN GOTO 500
460 PRINT A$,A1$
470 GOTO 410
480 PRINT "YOUR PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS TO DATA"
490 GOTO 9900
500 PRINT 11 DBGET FAILURE"
510 GOTO 390

9300 (same as XDBOPEN example)

9900 (close data base)

First the XDBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
path with the DA TE-MASTER data set, and the search item value of both the master entry containing
the chain head and the detail entries making up the chain. The search item value is requested from the
user and stored in I 1 $, for example, the user may enter 841214.

If no entry in the DATE-MASTER has a search item value entered, the condition word will be 17. If the
user does not have read access to the data, a condition word of -21 or -5 2 is returned.

If the XDBFIND procedure executes successfully, a call to the XDBGET procedure with a mode parameter
of 6 reads the last entry in the chain. Subsequent calls to XDBGET with the same mode read backward
through the chain until the first entry has been read. If the condition word is 14, the beginning of the
chain has been reached and no more entries are available, or there are no entries in the chain.

If an entry is successfully read, the program uses the STOCK# value stored in A$ and the SUPPLIER
value stored in A 1 $ and then returns to statement 3 50 to read another entry in the chain.

DEC 85
6-72

Update Entry

10 DIM B$ [1 0] , P$ [8] , D 1 $ [12] , I 2$ [16] , A5$ [26] , S9$ [16]
20 INTEGER S[10],M
30 B$= 11 ORDERS; II

40 DEF INTEGER FNI(X)=X
50 D1$="SUP-MASTER II

60 I2$= 11 STREET-ADDRESS; 11

70 INPUT "ENTER PASSWORD: II ,P$[1 ;8]
80 M=3
90 CALL XDBOPEN(B$,P$,M,S[*])

100 IF S[1]<>0 THEN 9300
200 INPUT "ENTER SUPPLIER OR/ TO TERMINATE: ",S9$[1;16]
210 IF S9$[1,1]="/" THEN GOTO 290
220 CALL XDBGET(B$,D1$,FNI(7),S[*],I2$,A5$,S9$)
230 IF S[1]=-21 THEN GOTO 290
240 IF S[1]=0 THEN GOTO 310
250 IF S[1]=17 THEN GOTO 430
260 PRINT 11 DBGET FAILURE"
270 CALL XDBEXPLAIN(S[*])
280 GOTO 9900
290 PRINT &

BASIC

"YOUR PASSWORD OR ACCESS MODE DOES NOT ALLOW ACCESS TO THIS DATA"
300 GOTO 9900
310 PRINT "CURRENT ADDRESS: 11 ,AS$
320 INPUT "ENTER NEW ADDRESS: II ,A5$[1 ;26]
330 CALL XDBUPDATE(B$,D1$,FNI(1),S[*],I2$,A5$)
340 IF S[1]<>42 THEN GOTO 370
350 PRINT "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
360 GOTO 200
370 IF S[1]=0 THEN 410
380 PRINT "DBUPDATE FAILURE"
390 CALL XDBEXPLAIN(S[*])
400 GOTO 9900
410 PRINT "ADDRESS CHANGED"
420 GOTO 200
430 PRINT 11 NO SUCH SUPPLIER"
440 GOTO 200

9300 (same as XDBOPEN example)

9900 (close data base)

Before an entry can be updated it must be located. In this example, the entry is located with a calculated
XDBGET that reads the STREET-ADDRESS item in the SUP-MASTER data set. The entry is located by
using the SUPPLIER search item with a value supplied by the user. If the read is successful, the current
address is printed and the application program user is prompted for the new address which is moved into
A5$. The XDBUPDATE procedure is then called to alter the STREET-ADDRESS data item in the entry.

DEC 85
6-73

BASIC

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry to be updated.

Delete Entry (with Locking and Unlocking)

DEC 85
6-74

10 DIM B$(10],P$(8],D1$[12],S9$(16],AS$(16]
20 INTEGER S(10],M2,M1,M4
30 B$= 11 ORDERS;"
40 DEF INTEGER FNI(X)=X
50 D1$= 11 SUP-MASTER II

60 INPUT "ENTER PASSWORD: ",P$(1;8]
70 M1=1
80 M2=2
85 M4=4
90 CALL XDBOPEN(B$,P$,M1,S[*])

100 IF S[1]<>0 THEN 9300
110 INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9$ [1; 16]
120 IF S9$ [1 , 1] =11

/" THEN GOTO 9900
130 CALL XDBLOCK(B$,D1$,M4,S[*])
140 IF S[1]<=0 THEN 170
150 PRINT 11 DATA SET IS BUSY. TRY AGAIN LATER."
160 GOTO 9900
170 IF S[1]=0 THEN 210
180 PRINT 11 DBLOCK FAILURE"
190 CALL XDBEXPLAIN (S[*])
200 GOTO 9900
210 CALL XDBGET(B$,D1$,FNI (7) ,S[*] '"SUPPLIER; II ,A5$,S9$)
220 IF S[1]=0 THEN 330
230 IF S[1)=-21 THEN 280
240 IF S[1]=17 THEN 310
250 PRINT 11 DBGET FAILURE"
260 CALL XDBEXPLAIN(S(*))
270 GOTO 290
280 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA SET 11

290 GOSUB 9000
300 GOTO 9900
310 PRINT 11 NO SUCH SUPPLIER"
320 GOTO 430
330 CALL XDBDELETE(B$,D1$,FNI(1),S[*])
340 IF S[1]<>44 THEN GOTO 370
350 PRINT "INVENTORY ENTRIES EXIST, SUPPLIER CANNOT BE DELETED"
360 GOTO 430
370 IF S[1]=0 THEN GOTO 420
380 IF S[1]=-23 THEN 280
390 PRINT 11 DBDELETE FAILURE"
400 CALL XDBEXPLAIN(S[*])
410 GOTO 9900
420 PRINT "SUPPLIER DELETED"
430 GOSUB 9000

440 GOTO 110

9000 CALL XDBUNLOCK(B$, 1111 ,M1,S[*])
9010 IF S[1]=0 THEN RETURN
9020 PRINT 11 DBUNLOCK FAILURE"
9030 CALL XDBEXPLAIN(S[*])
9040 GOTO 9900
9300 PRINT 11 DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S[*])
9320 STOP
9900 CALL XDBCLOSE(B$," 11 ,FNI(1),S[*])
9910 IF S[1]=0 THEN STOP
9920 PRINT 11 DBCLOSE FAILURE"
9930 GOTO 9310
9999 END

BASIC

In the example above, the program calls XDBLOCK to lock the SUP-MASTER data set. Since mode 4 is
used, the program must check the condition word when DBLOCK returns control to verify that the data
set is locked and the calling program has exclusive access to it. If this is so, the condition word is 0.

If the data is successfully locked, the program performs the necessary data base operations. In this case, it
deletes an entry. Before the entry can be deleted, the current record of the data set must be that of the
entry to be deleted. This record may be located by calling XDBGET. The program may request the name
of the supplier whose record is to be deleted and use XDBGET in calculated mode to locate the
appropriate entry. If entries in the INVENTORY data set exist that have the same SUPPLIER value as
the entry to be deleted, the condition word is set to 44 and the entry is not deleted.

After the entry is deleted, the data set is unlocked by XDBUNLOCK.

A null list can be used with DBGET to locate an entry to be deleted.

DEC 85
6-75

BASIC

Request Data Set Information

10 DIM B$[10],P$[8]
20 INTEGER S[10],D2[7],M
30 B$= 11 ORDERS; II

40 INPUT "ENTER PASSWORD: 11 ,P$[1;8]
50 INPUT "ENTER ACCESS MODE (1-8): 11 ,M
60 CALL XDBOPEN(B$,P$,M,S[*])
70 IF 5[1]<>0 THEN 9300

300 M=203
310 CALL XDBINFO(B$, 1111 ,M,S[*],D2[*])
320 IF S[1]=0 THEN 350
330 CALL DBEXPLAIN(S[*])
340 GOTO 9900
350 PRINT "YOU HAVE ACCESS TO ";D2[1];"DATA SETS AS FOLLOWS:"
360 FOR I=2 TO 02[1]+1
370 PRINT D2[I]
380 NEXT I
390 GOTO 9900

9300 (same as XDBOPEN example)
9900 (close data base)

The procedure call in this example obtains the numbers of data sets that are available to the current user
class by specifying mode 203. If the user class number is 12 and the procedure executes successfully, the
D2 array contains:

DEC 85
6-76

02(1)

02(2)

02(3)

02(4)

02(5)

4

2

-3

-5

6

Access to 4 data sets.

Read access to data set 2.

Modify access to data set 3

and data set S.

Read and possibly update access to data set 6.

Rewind Data Set

1 0 DIM 8$ [1 0] , P$ [8] , D 1 $ [1 4] , L 1 $ [2 0] , S 1 $ [1 6] , S 2$ [2]
20 INTEGER S[10],M,M1,M2
30 B$= 11 ORDERS;"
40 M1=1

(open data base)

210 D1$= 11 SUP-MASTER; 11

(read data set serially)

900 INTEGER M3
910 M3=3
920 CALL XDBCLOSE(B$,D1$,M3,S[*])
930 IF S[1]=0 THEN RETURN
940 PRINT 11 DBCLOSE FAILURE"
950 CALL XDBEXPLAIN(S[*])
960 GOTO 9900

9900 (close data base)

BASIC

To rewind the SUP-MASTER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for SUP-MASTER is reset, including the current record number. If a
serial read request encounters an end-of-file, this call resets the current record to the beginning of the
data set and another serial read request reads the first entry in the data set.

DEC 85
6-77

BASIC

Close Data Base

10 DIM B$[10],P$[8]
20 INTEGER S[10],M
30 B$=" ORDERS; II
40 DEF INTEGER FNI(X)=X

9900 CALL XDBCLOSE (B$, 1111

, FN I (1), S [*])
9910 IF S[1]=0 THEN STOP
9920 PRINT "DBCLOSE FAILURE"
9930 GOTO 9310
9999 END

This call closes the data base. It is issued after the program has completed all data base operations and
before program termination.

Print Error

1 0 DIM B$ [1 0]
20 INTEGER S[10]

9310 CALL XDBEXPLAIN-(S[*])
9320 STOP

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the
status array, S. This is the routine which is called to display the status in the preceding examples.

DEC 85
6-78

Move Error to Buff er

10 DIM B$[10],P$[8],M$[72]
20 INTEGER S[10],M,M1
30 8$= 11 ORDERS;"
40 M1=1
50 INPUT "ENTER PASSWORD: 11 ,P$[1;8]
60 INPUT "ENTER ACCESS MODE (1-8): ",M
70 CALL XDBOPEN(B$,P$,M,S[*])
80 IF S[1]<>0 THEN 9300
90 PRINT "DATA BASE OPENED"

100 GOTO 9900

9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBERRORS(S[*],M$)
9320 PRINT M$
9330 STOP

BASIC

In this example, a call to DBERROR returns one of the messages appropriate to the current condition
word. For example, if the condition word is equal to 16, the message returned in M$ is THE DATA SET
IS FULL. Note that the length parameter need not be included since the logical length of M$ is set by
XDBERROR.

DEC 85
6-79

RPG

The following restrictions apply to TurboIMAGE data bases used with RPG:

l. Data is added and retrieved as complete entries, in other words, you cannot read or modify single items
through RPG. Therefore, if the RPG program is to read an entry from a data set, the specified
password must correspond to a user class number allowing read access to all data items in the entry. If
the RPG program is to write an entry to a data set, the password must correspond to a user class
number allowing write access to all data items in the entry.

2. Since entries are handled in this way, data sets to be used with RPG programs are sometimes defined
with one-item entries. However, if you intend to use QUERY with the data set you may need to
define more items.

3. Only one search item can be used to reference a data set in a program unless the data set is defined as
more than one file, or you are doing an ISAM simulation and processing between limits. (Consult the
RPG/ 3000 Reference Manual for more information.)

4. RPG supports all the DBGET procedure input modes except reread. It provides two additional modes:

• Simulated indexed sequential read, forward and backward.

• Read down chain until key changes.

S. Since RPG file names cannot exceed 8 characters and can contain no special characters, a file
specification for the SUP-MASTER data set or DATE-MASTER data set should have file names such
as SUP and DATE with the full names given in a data set name record.

CAUTION

RPG versions prior to A. 06. 04 allow only 1 to 15 characters for data set
and data item name, not the 1 to 16 characters as allowed by
TurboIMAGE.

RPG Programs and TurbolMAGE

To use a TurbolMAGE data base through RPG application programs you must describe the data base with
File Description specifications. A data set may be described by more than one File Description
specification to allow you to access it in more than one way, for example, performing both serial and
chained reads or using two different search items (keys). The File Description specification and its
continuation records specify:

• a TurboIMAGE file by naming both the data base and a data set within it.
• a search item name.
• an access mode.
• a password.
• an input/output mode for the file.

DEC 85
6-80

RPG

In addition, you can add and delete entries with special RPG Output specifications.

Complete instructions for using a TurboIMAGE data base through RPG programs are given m the
RPG/ 3000 Reference Manual.

Note that an RPG program can use any of the three modes of locking allowed for a TurbolMAGE data
base: data base locking, data set locking, and data entry locking. For a discussion of how to select and
implement the correct locking mode, refer to the RPG reference manual. (Note that the data entry
locking is called "record level locking11 in the RPG manual.)

Figure 6-7 contains a sample RPG program which reads the SALES entries associated with a particular
stock number and prints the contents in a report. The File Description specifications include:

• line 0003--a description of the SALESDS file as a chained input file with fixed length records 38
bytes long. The processing mode used for the data set is random. The key field is 8 bytes long and
contains alphanumeric data. The file organization code M signifies a TurboIMAGE file. The
SALESDS file name is a logical data set name, in other words, it can be a reminder of the actual SALES
data set name (see discussion of line 0007 below).

• line 0004- -a data base name record specifying the ORDERS data base, an access (open) mode of 3
(exclusive access), and input/output mode C (chained sequential read).

• line 0005--an ITEM name record specifying the STOCK# search item as the key.

• line 0006--a LEVEL identification record specifying the DO-ALL password.

• line 0007--a DSNAME data set name record specifying the SALES data set. This is the actual data set
name and overrides the file name (SALESDS), which is a logical name identifying the data set.

• line 0008--a description of the INPUT file as a demand file with fixed length records 8 bytes long.
The file's device is designated as $STDIN. A file equation may also be used to alter the INPUT and
PRINT files.

• line 0009--a description of the PRINT file as an output file of variable length records which are at
most 80 characters long. The file's device is designated as $STDLIST. Printing will be done at the
user's terminal screen, if the program is run interactively. A file equation may also be used to alter the
device designation.

The input specifications describe:

• lines 0010 through 0018--a SALES data entry with five binary, two numeric (ASCII), and one
character (ASCII) data i terns.

• lines 0019 through 0020--an INPUT record of 8 bytes with a field named ISTOCK.

• lines 0021 through 0032--Calculation specifications, request input from the INPUT file which was
specified $STDIN in line 0008. The INPUT file may be specified outside the program, using the MPE
:FILE command before executing the program. They also read the SALES entries with values equal to
the stock number entered, print the information, and, when the end of chain is encountered, request
another stock number. Note that in line 0030, indicator 12 (in columns 54-55) is set on whenever no
record is returned by the CHAIN operation, and indicator 11 (in columns 56-57) is set on when the end
of chain is encountered.

DEC 85
6-81

RPG

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

DEC 85
6-82

$CONTROL USLINIT,NAME=SALES1
H L x
FSALESDS IC F 38R BAM DISC
F KIMAGE ORDERS3C
F KITEM STOCK#
F KLEVEL DO-ALL
F KDSNAMESALES
FIN PUT ID F 8 $STDIN
FPRINT 0 v 80 $STDLST
ISALESDS AA
I B 1 40ACCT
I 5 12 STOCK#
I B 13 140QTY
I B 15 182PRICE
I B 19 222TAX
I B 23 262TOTAL
I 27 320PDATE
I 33 380DDATE
!INPUT BB
I 8 I STOCK
c SETOF 1211
c SETON 15
c EXCPT
c SET OF 15
c READ INPUT LR
c SETON 16
c NLR EXCPT
c SETOF 16
c LOOP TAG
c NLR I STOCK CHAINSALESDS 1211
c NLR EXCPT
c NLRN11N12 GOTO LOOP
OPRINT E 2 16
0 10 11 ACCOUNT 11

0 19 11 STOCK# 11

0 28 "QUANTITY"
0 36 11 PRICE 11

0 43 11 TAX 11

0 52 11 TOTAL 11

0 62 "PURCHASED"
0 72 11 DELIVERED 11

Figure 6-7. Sales Transaction Display Program

RPG

0042 0 E 1 N11N12
0043 0 ACCT z 10
0044 0 STOCK# 19
0045 0 TOTAL J 52
0046 0 TAX J 44
0047 0 PRICE J 36
0048 0 QTY J 26
0049 0 PDATE Y 62
0050 0 DDATE Y 72
0051 0 E 22 12
0052 0 15 11 NO SUCH STOCK#"
0053 0 E 21 15
0054 0 20 II ENTER STOCK# OR :£00 11

Figure 6-7. Sales Transaction Display Program (Continued)

• lines 0033 through 0050--0utput specifications, describe a report with column headings for each item
and one-line records for each entry. The ACCT item is edited with a Z edit specification, the TOT AL,
TAX, PRICE, and QTY items with a J edit specification, and the PDATE and DDATE items with a Y
edit specification.

• lines 0051 through 0054--last Output specifications, describe the message to be printed if there is no
entry with the requested stock number value and the message which prompts for the stock number or
the end of program ..

The following figure shows SALES 1 program execution. The user is prompted to enter stock number and
is given a report heading and data pertaining to the SALES data set records which contain stock
information.

DEC 85
6-83

RPG

:RUN SALES1

Program: SALES1 =SALES.TEST.IMAGE MON, DEC 31, 1984, 8:32 AM

ENTER STOCK# OR :EOD
11

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCHASED DELIVERED
1 1 1 1 30 100.00 6.05 106.05 12/06/84 12/17/84
12 1 1 2 110. 00 6.50 116. 50 10/11/84 12/10/84
12 1 1 35 115. 00 6.70 121.70 9/11/84 9/15/84
11 1 1 12 117. 00 6.90 123.90 12/03/84 12/05/84
11 1 1 13 130.00 7.50 137.50 10/30/84 11/02/84

ENTER STOCK# OR :EOD
16

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCHASED DELIVERED
12 16 20 120.00 6.86 126.86 12/10/84 12/24/84

ENTER STOCK# OR :EOD
15

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCHASED DELIVERED
10 15 32 15.00 1.29 16.29 12/04/84 12/17/84
11 15 10 10.00 .90 10.90 12/04/84 12/06/84
10 15 150 17.00 1. 42 18.42 10/31/84 11/05/84

ENTER STOCK# OR :EOD
19

NO SUCH STOCK#

ENTER STOCK# OR :EOD
17

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCHASED DELIVERED
10 17 100 16.50 1.36 17.86 10/11/84 11/01/84
12 17 10 16.50 1.36 17.86 10/11/84 10/27/84
13 17 10 17.50 1.48 18.98 12/10/84 12/17/84
13 17 10 17.70 1.52 19.22 11/29/84 12/01/84

ENTER STOCK# OR :EOD
:EOD

Pgm-End: SALES1 =SALES.TEST.IMAGE MON, DEC 31, 1984, 8:40 AM

Figure 6-8. Sample SALESl Execution

DEC 85
6-84

.....__M_A_1N_T_A __ 1N_1N __ G_T __ H_E_D_A_T_A_B_A_s_E ___ ____.l~l?ll,JI,

The TurboIMAGE data base is initialized and maintained through various TurboIMAGE utility programs.
The utility programs include the following:

DBUTIL

DBUNLOAD

DB LOAD

DBSTORE

DBRESTOR

DBRECOV

A utility program used to create and maintain the data base.

Copies data to specially formatted tape or serial disc volumes.

Loads data from backup volumes (DBUNLOAD tape or serial disc) into the data
base.

Stores data base to tape or serial disc.

Copies data base from backup volumes (DBSTORE tape or serial disc) to disc.

Recovers data base from a log file.

This section contains a discussion of the procedures to be followed in performing tasks such as
restructuring the data base, logging transactions, and recovering the data base in the event of a system
failure. Use this section together with Section 8 which gives the syntax of the various utility programs
and commands.

Utility programs may be run in either job or session mode. DBUTIL, DBSTORE, DBRESTOR,
DBUNLOAD, and DBLOAD all require the user to be logged on in the group and account which contains
the data base root file. Consequently, these programs may not be used with a remote data base unless you
initiate a remote session and run the utility as part of that session. These programs do not allow you to
use the :FILE command to equate a data base or data-base-access file. DBRECOV is an exception, since
:FILE commands are permissible, and since you need not be logged on under the same group and account
as the log file. However, DBRECOV has the same remote session requirement for remote data base access
as the other utility programs.

You may operate the utility programs as long as you are the data base creator, or know the maintenance
word. If no maintenance word is defined, only the data base creator can execute the other utility
programs and the DBUTIL commands that require a maintenance word.

DEC 85
7-1

Maintaining The Data Base

RESTRUCTURING THE DAT A BASE

It is possible to make certain changes to the structure of an existing data base without having to write
special programs to transfer data from the old data base to the new one. The general sequence of
operations which you use to do this is:

1. Run DBUNLOAD on the old data base, copying all the data entries to tape or serial disc.

2. Purge the old data base using DBUTIL >>PURGE.

3. Redefine the data base using the same data base name and create a new root file with the Schema
Processor.

4. Use the DBUTIL >>CREATE command to create and initialize the data sets of the new data base.

5. Run DBLOAD on the new data base using the tape or serial disc created in step 1 to put the old data
into the new data base.

The above procedure provides only limited structural changes to the schema. DBLOAD does not prohibit
other changes, however there is no guarantee the data will be consistent. Schema changes that yield
correctly transformed data bases and always result in a good transformation follow (Allowed Structural
Changes).

Allowed Structural Changes

Any of the following schema changes, alone or combined, which are acceptable to the Schema Processor
will always result in a successfully transformed data base:

• Adding, changing, or deleting passwords and user class numbers.

• Changing a data item or data set name and all references to it.

• Changing data item or data set read and write class lists.

• Adding new data item definitions.

• Removing or changing definitions of unreferenced data items.

• Increasing data set capacities.

• Adding, deleting, or changing sort item designators.

DEC 85
7-2

Maintaining The Data Base

Conditional or Unsupported Structural Changes

The following structural changes are legitimate only in some circumstances and may result in data set
discrepancies or lost data:

• Changing primary paths.

• Adding new data items to the original end of a data entry definition.

• Removing data items from the original end of a data entry definition.

• Changing an automatic master to a manual master or vice versa.

• Changing the native language definition for the data base.

• Adding or deleting a data set at the end of the schema.

These are the unsupported schema changes. DBLOAD does not prohibit other changes, however there is
no guarantee that the data will be consistent. A change must be judged in light of the particular data
base and the functioning of DBUNLOAD and DBLOAD, described later in this section. Basically, all
entries from an old data set are put into the corresponding data set, except that no entries are directly put
into automatic masters. The entries are truncated or padded with binary zeros as necessary to fit the new
data set's entry length. DBUNLOAD and DBLOAD always handle full entries, without regard to item
positions or lengths. If the new data set's entry is defined with the items in a different order than the old
data set, DBLOAD may not fail but the data set content will nevertheless be invalid. For example, data of
type real may now occupy the position of a character type item.

In some circumstances, the load completes, but data is lost, for example, if a data set's capacity has been
reduced in the new data base to a number less than the number of that data set's entries on the tape or
serial disc.

An unsupported or conditional schema change is adding or deleting data sets. As data sets are loaded by
number, additions and deletions should be made to the end of the schema. The number of the data set is
determined by the sequence of order the data sets were entered in the schema file. Data set one would
correspond with the first data set appearing in the schema (or root file). DBLOAD will always return a
warning if it detects a descrepancy between the number of data sets defined in the schema and the
number of data sets on the DBLOAD media, but you can allow the DBLOAD to continue after the
warning if you are confident that the data base is not corrupted.

DEC 85
7-3

Maintaining The Data Base

MAKING A DAT A BASE BACKUP COPY

A backup copy of the data base should be made prior to using the data base whenever there is a possible
need for recovering the data base following a system failure. The data base administrator uses the
DBSTORE TurboIMAGE utility to store a copy of the data base with flags (access disabled, recovery
enabled, logging enabled) set as specified in Logging Installation, later in this section. In addition, since
the correspondence between log files and backup data bases is crucial, DBSTORE sets a DBSTORE flag in
the data base root file before storing the data base, along with a time stamp designating the date and time
of the DBSTORE operation.

The DBSTORE flag is cleared by the first modification to the data base (DBPUT, DBDELETE, or
DBUPDATE) indicating that the data base no longer corresponds to the stored copy. Before logging is
enabled, DBUTIL checks the DBSTORE flag to ensure that the working data base is the same as the
backup copy data base. For example, suppose a data base is stored and some modifications to the data base
are made before logging is enabled. If the administrator then tries to enable logging, DBUTIL, seeing that
the DBSTORE flag has been cleared, prints a message warning that the present state of the (modified) data
base does not correspond to the stored version. If the message is ignored, the resulting log file will not
contain all of the transactions that actually occured against the working data base. Consequently, a
recovery using the stored copy and the incomplete log file may fail or yield erroneous results. The
following is an example of how to run DBSTORE.

:RUN DBSTORE.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE STORED
END OF PROGRAM

When multiple data bases and files are involved, you can use the MPE command STORE to collectively
copy them to tape or serial disc and, if necessary, collectively restore them by using the MPE command
RESTORE. However, all data bases and files must reside in one group or account and you must have
account manager and privileged mode (PM) capability to use this method. Note that when using the
:STORE command no time stamp (signifying the date and time the backup copy was made) will be set in
the data base. For additional MPE command information refer to the MPE Commands Reference
Manual.

DEC 85
7-4

Maintaining The Data Base

DAT A BASE RECOVERY OPTIONS

Two levels of data base recovery following a system failure are provided within TurboIMAGE: Intrinsic
Level Recovery (ILR), and Roll -Back Recovery or Roll - Forward Recovery at the transaction level. These
recovery options ensure the physical and logical integrity of the data base following a system interruption
or possible system failure. The level of recovery to be used is determined by the data base administrator,
and is based upon available data base backup and logging resources in addition to user performance
requirements.

In addition to the recovery methods mentioned above, a system can be set up for constant access or "high
availability11 and have a controlled maintenance using a new feature of DBRECOV called
STOP-RESTART. Backups and down-time can be regulated with a maintenance method called the
mirror data base. This method consists of two identical data bases on two separate computer systems.
The mirror data base resides on the secondary system and is maintained with user logging, DBRECOV, and
periodic DBSTORE's.

Intrinsic Level Recovery provides recovery of intrinsics that were interrupted during execution. Execution
of ILR is automatic and transparent to the user. Roll-back and roll-forward recovery require the use of
the user logging facilities and the TurbolMAGE utility DBRECOV. Execution of the roll-back and
roll-forward recovery options are directed by the data base administrator. Appendix G "Recovery and
Logging Quick Reference11 offers a brief description of the recovery options. This appendix also lists
benefits and disadvantages of logging to disc and logging to tape, and gives sample job streams for recovery
and logging cycles. Appendix G may be used, along with information given in this section, to determine
which type of recovery to use.

DEC 85
7-5

Maintaining The Data Base

INTRINSIC LEVEL RECOVERY

When Intrinsic Level Recovery (ILR) is enabled, TurboIMAGE automatically logs each DBPUT and
DBDELETE to an internal ILR file. Since ILR is only concerned with data base structure, only the most
recent (or last) DBPUT or DBDELETE is noted in the ILR file.

The ILR file is created when ILR is enabled. TurboIMAGE opens the ILR file the first time a user
program opens the data base for access. When the last user process closes the data base, TurboIMAGE
automatically closes the associated ILR file. If recovery is needed the next time the data base is opened,
TurbolMAGE recovers the data base automatically.

A single extra data segment called the Intrinsic Level Control Block (ILCB) is allocated upon the first
DBOPEN of the data base. The ILCB is used as an intermediate staging area for the buffers that will be
modified by each DBPUT or DBDELETE. If the data base is enabled for ILR, the first access of the data
base by DBOPEN will examine the ILR file. If recovery is necessary, the buffers logged in the ILR file
are posted to the data sets and the interrupted intrinsic is redone at the end of the DBOPEN time.

If a DBPUT or DBDELETE intrinsic is interrupted by a system failure or abnormal termination of
TurboIMAGE and fails to complete execute, TurbolMAGE completes the intrinsic so that the newly
opened data base appears as if the interrupted intrinsic had completed normally. Chains are reconstituted
automatically so that the internal structure of the data base remains consistant.

As TurboIMAGE does not allow a program abort to interrupt a DBPUT or DBDELETE, ILR is not needed
following an abnormal program termination (user program abort). An interrupted DBUPDATE, however,
does not require the use of ILR, as DBUPDATE completes execution in one autonomous write.

The following is an example of enabling a data base for Intrinsic Level Recovery.

DEC 85
7-6

:RUN DBUTIL.PUB.SYS
>>ENABLE dbname FOR ILR

ILR is enabled

NOTE

ILR is enabled automatically when the roll-back feature is enabled, but
must be manually disabled (using DBUTIL) when roll-back is disabled.
Roll-forward recovery does not require ILR to be enabled, but it is
recommended in order to eliminate the possibility of broken chains since
ILR ensures physical consistency of the data base. If using roll -forward
recovery do not restart logging following a system failure until after the
roll-forward recovery process has completed. Use of ILR alone may cause
inconsistency in the log file if logging is restarted without first running
roll-forward recovery. ILR must be both manually enabled and disabled
when used with the roll-forward feature.

Maintaining The Data Base

Using ILR

To enable a data base for ILR, run DBUTIL and use the >>ENABLE command. This causes TurboIMAGE
to build and initialize an ILR file for the specified data base. At this time, TurboIMAGE sets a flag in the
data base root file, and also sets a date and time stamp in both the ILR file and in the root file. This
ensures a method of matching information logged to the ILR file with the appropriate data base root file.

The ILR file is a privileged file used only by TurbolMAGE. Its name is derived by adding two ASCII zeros
to the root file name (root file name is 110RDERS11

, ILR file name is "ORDERS0011
).

To determine if ILR has been enabled for a data base, either use the DBUTIL command >>SHOW or
programmatically call DBINFO in mode 402.

When ILR is enabled, the ILR file is stored or restored along with the data base by the the DBSTORE and
DBRESTOR utilities. This happens automatically to ensure that the ILR file is retained during data base
backups.

To discontinue using ILR on a data base, use the DBUTIL command >>DISABLE. When ILR is disabled
by the user, TurboIMAGE first checks the ILR file to see if the data base needs recovery. If ILR recovery
is pending and required, TurbolMAGE uses the existing ILR file to recover the data base, then purges the
ILR file and clears the flag in the data base root file.

Special Considerations

Before using ILR, consider the advantages and limitations of this type of recovery:

• Recovery after a system failure requires no more overhead than a single DBPUT or DBDELETE.
However, logging the intrinsics increases the overhead on each DBPUT and DBDELETE. Logging
DBPUT and DBDELETE intrinsics requires additional memory to move and write buffers to the ILCB.

• Output Deferred can not be used with ILR to defer writing modifications to the data base. However,
Output Deferred should not be used when the primary objective is to assure the structural integrity of
the data base. If you have enabled the AUTODEFER option in DBUTIL, ILR can not be used as the
recovery method on the data base. The following message will be printed at the terminal if the user is
attempting to enable ILR when AUTODEFER is already enabled on the data base:

AUTODEFER MUST BE DISABLED BEFORE ILR CAN BE ENABLED

The user should disable AUTODEFER and enable ILR using DBUTIL >>ENABLE command. (For more
information on AUTO DEFER ref er to Section 8.)

DEC 85
7-7

Maintaining The Data Base

LOGICAL TRANSACTIONS AND LOCKING

Both the roll-back and roll-forward features operate at the transaction level and are designed to restore
data bases to a consistent state, both structurally and logically following a system failure. The concept of
a "logical transaction" is central to this process. A logical transaction is defined as a sequence of one or
more procedure calls begun with a DBBEGIN and concluded with a DBEND. If DBBEGIN and DBEND
are not used, TurbolMAGE considers each DBPUT, DBDELETE, and DBUPDATE as a single logical
transaction. While a transaction is executing, the data base is considered to be in an inconsistent state.

For example, consider the manual master data set CUSTOMER in the ORDERS data base, with the
addition of a new field, YTDSALES, indicating the total value of the year-to-date sales for each
customer. A one-step transaction might involve updating a particular customer's address. However,
adding a new sales item for a customer, which involves addition of an entry to the SALES detail data set
as well as updating the YTDSALES item in the CUSTOMER master set, is a two-step transaction. The
data base is consistent before the transaction begins, because the YTDSALES value corresponds exactly
with the sum of the TOT AL values in the SALES detail set that are chained to that particular customer's
account number. However, after the first modification, which might be adding the new SALES entry, this
correspondence no longer holds, so the data base is said to be inconsistent with itself. After the second
step, modifying the YTDSALES item in the CUSTOMER data set, the data base is returned to a consistent
state.

If the system fails while the data base is being modified, two forms of damage to the data base could
result. A logical inconsistency might result if the failure occurs between modifications of a multiple-step
transaction, as the above example illustrates. Secondly, structural damage (such as broken chains) can
result if the failure occurs during the execution of a TurboIMAGE procedure.

Since the recovery system is designed to restore the data base to a consistent state, those modifications
belonging to transactions that failed to complete due to a system failure are suppressed by the recovery
system. Consequently, although one or more data base modifications may be lost upon recovery, the
resulting data base will be consistent. To this end, each user application should indicate the beginning and
end of each transaction in the log file by appropriate use of the TurbolMAGE intrinsics, DBBEGIN and
DBEND. (See Section 4 for more information.)

TRANSACTION
BLOCK

L

DBOPEN
DBPUT -<---
DBDELETE ----­
DBBEGIN

DBEND
DBUPDATE

DBCLOSE

TRANSACTIONS

Figure 7-1. Transactions and Transaction Blocks

DEC 85
7-8

Maintaining The Data Base

Locking Requirements

DBRECOV requires that all multiple-intrinsic data base transactions execute independent of all other
transactions. Transaction independence within the data base may be insured in a user program by
releasing locks on data after a DBEND is called, thus eliminating the possibility of another user modifying
the same data at the same time. An example may clarify the need for locking data to be modified.

Suppose transaction A consists of adding two records to the data base which are later modified by
transaction B. Transaction B is dependent upon transaction A, as records must exist before they can be
modified. Recall that a transaction is defined as a sequence of one or more modifications that transfer the
data base from one consistent state to another. A data base may be m an inconsistent state during a
transaction. Therefore, if transaction A and B are executing concurrently, transaction B may be viewing
the data base in an inconsistent state and consequently could be generating invalid results. If transaction
A is completed properly, this problem is avoided since transaction B cannot access the data until
transaction A has released its locks.

A second problem due to inadequate locking affects suppression of transactions by the recovery system (see
Figure 7- 2). Suppose transaction A intends to add six records to the data base, and after adding three
records, transaction B is executed by another process. Transaction B concurrently modifies one of the
records added by transaction A and then completes. Suppose that at this time, the system fails and
recovery is executed. Since transaction A failed to complete, all of its record additions will be suppressed.
Since transaction B is dependent upon the suppressed transaction A, it cannot be recovered. DBRECOV is
forced to suppress transaction B, even though it successfully completed during real-time processing. This
potential problem could be avoided if transactions modifying the data base employ locking correctly.
Transactions attempting to access the same data concurrently are serialized by the locking mechanism.

DEC 85
7-9

Maintaining The Data Base

SUPPRESSED
,...--~~~~~~~~-~~~~~~-

/ "'
B A1 A2 A3 A4 AS

BEGIN

ADD RECORD 1

END
MODIFY RECORD 1-..........,...___,,,
BEGIN ----~"'-<

PROCESS B B M1 M2 E

CRASH
~TIME

SUPPRESSED

----------,

A6 E :
I

__________ J

Figure 7-2. Suppression of Transactions Due to Inadequate Locking

DEC 85
7-10

Maintaining The Data Base

The following provides examples of two recommended schemes for locking.

Single Lock Strategy

DBLOCK for account 2,18,34
DBBEGIN
DBGET data for account 2
DBUPDATE data for account 2
DBPUT data for account 34
DBGET data for account 18
DBDELETE data for account 18
DBE ND
DBUNLOCK for all accounts

Multiple Lock Strategy

DBLOCK account 2,34
DBBEGIN
DBGET data for account 2
DBUPDATE data for account 2
DBPUT data for account 34
DBLOCK for account 34
DBGET data account 18
DBDELETE data account 18
DBE ND
DBUNLOCK for all accounts

<< begin may precede DBLOCK call >>

<< DBUNLOCK must be last call >>

<< DBUNLOCK must be last call >>

I CAUTION I
Use extreme caution when employing a multiple lock strategy requirmg
Multiple RIN (MR) capability (refer to Appendix D). Hewlett-Packard does
not accept responsibility for possible deadlocks or system lockouts that
could result from improper use of the MR capability.

In the first example (above) calling DBLOCK before DBBEGIN makes the transaction shorter in duration.
It is recommended to call DBLOCK first since there is no way of knowing how long DBLOCK will have to
wait to acquire the lock after the transaction is begun. For additional locking information refer to
Section 4, "USING THE LOCKING FACILITY".

DEC 85
7-11

Maintaining The Data Base

Program Abort and Recovery Considerations

The TurboIMAGE logging and recovery system is not intended to be a solution for transactions which fail
to complete in real time due to a program abort. Since subsequent transactions may be dependent on a
transaction interrupted by a program abort, the recovery system will not suppress transactions that fail
for this reason. Instead, TurbolMAGE will log a special DBEND to the log file so that the transaction can
be recovered. This mechanism can be overridden with the NOABORTS control option in DBRECOV as
long as all processes are stopped immediately after a program abort and the data base is restored and
recovered. Any delay in executing recovery with the NOABOR TS option could result in erroneous data or
recovery failure due to transaction interdependence. Alternatively, when using roll-forward recovery the
STOPTIME option could be used to restore transactions that logged up to a time preceding the program
abort. (See Section 8, 11DBRECOV11

.)

The utility DBRECOV can also recover transactions interrupted by an abnormal program termination if
the NOABOR TS option is used. This utility also allows you to create individual user recovery files. The
information from these files then enables you to inform each user where to resume transactions within
the data base.

Overhead required by the logging process depends on the number and type of modifications that are
logged and the data base structure. The time needed for recovery depends on the number of transactions
that were written to the log file following the last backup of the data base. Overhead and recovery time
also depends on the type of recovery being used.

As a secondary function, the transaction logging system can be a useful tool for auditing. The log file is
actually a programmatically accessible journal of all modifications to items in the data base, providing
information about previous entries as well as the current state of the data base. The logging intrinsic
DBMEMO, containing user text, provides a method of accessing and interpreting the log files for future
reference.

The data base administrator is responsible for enabling or disabling the logging and recovery processes,
generating backup data base copies, and for making logging a global function controlled at the data base
level rather than at the individual user level.

The TurboIMAGE logging and recovery system is based upon the MPE user logging system. For further
details of operation, and for the data format of log files on tape or disc, refer to MPE System
Manager /System Supervisor Reference Manual, Console Operator's Guide, MPE Commands Reference
Manual, and the MPE Intrinsics Reference Manual.

• RECOVERY FROM A STREAM FILE. A stream file may specify all of the data bases logging to one
log file for recovery. If one of the data bases has not been restored at the time the stream file is run,
recovery for that data base is prevented because recovery for that data base is disabled if the
recommended procedures have been followed. (Refer to "Roll-Forward Recovery" later in this section
for more information.) Recovery can be completed for all of the other specified data bases that have
been restored from a backup 'copy with recovery enabled, as long as >CONTROL ERRORS is set
appropriately. This means that ERRORS must be increased by one for each data base disabled for
recovery, since an error message occurs each time a data base specified in the >RECOVER command is
not enabled for recovery.

DEC 85
7-12

Maintaining The Data Base

• LOCKING AND TRANSACTION INTERD~PENDENCE. In order to max1m1ze the extent of
recovery, locking should be employed while also logging in order to eliminate concurrent transaction
interdependence. Locking by logical transaction (DBBEGIN, intrinsics, DBEND) guarantees the logical
consistency of the data base. Locking by logical transaction is required for roll-back recovery in order
to ensure that all incomplete transactions are backed out of the data base. Transaction locking is
recommended for roll-forward recovery. Intrinsic Level Recovery logs the most recent (or last)
intrinsic to a log file, and therefore does not utilize transaction interdependence.

• QUIET PERIODS, RECOVERY BLOCKS AND STAGING DISC FILE. A log file quiet period occurs
at a point in time when no transactions are in progress on the log file. The log records between one
quiet period and the next is called a recovery block (see Figure 7-3).

The recovery system reads recovery blocks into a temporary staging disc file before actually
re-executing the transactions. The recovery process then applies all transactions which were not active
(or in progress) at the time of the system failure. Only transactions within the same recovery block can
possibly be suppressed due to concurrent transaction interdependence.

It is desirable to shorten the length of the recovery blocks and maximize the number of quiet periods.
This may prove helpful in minimizing the number of transactions lost during recovery and in
preventing record table overflow (see 11DBRECOV >CONTROL" command in Section 8 for more
information).

The average size of a recovery block will be a function of the number of concurrent processes running,
the transaction rate, and the average elapsed time of each transaction.

In the event that the recovery system fails due to inadequate disc space for the staging disc size, a file
equation specifying the formal designator TEMPLOG can be used to change the default staging disc
size. The TEMPLOG is created with a default of 160,000 records. If recovery fails due to inadequate
staging disc space then create TEMPLOG with 80,000 records (or half the size of the file). Then
DBRECOV can be run again.

EXAMPLE

: FI LE TEMPLOG; DISC=40000 +--- number of records

• MULTIPLE DATA BASE TRANSACTIONS. Although the concept of a transaction has been specified
only in terms of a single data base, certain applications will undoubtedly execute transactions that
'span' two or more data bases. There is currently no mechanism within TurboIMAGE to provide for
the declaration of multi-data base transactions. Programmers may be tempted to call DBBEGIN twice
(once for each data base), update both data bases, and then call DBEND twice in an attempt to
implement this capability. However, a system failure during the 'window' between the two final calls to
DBEND will result in the recovery of the transaction for one of the data bases, and its suppression on
the other. Consequently, an application which uses this strategy should also have the capability to
examine the recovery files to determine if this problem occurred, and if so, back out one of the data
bases as needed, using >CONTROL STOPTIME or >CONTROL EOF.

DEC 85
7-13

Maintaining The Data Base

• MPE CLEANUP MODE. In the event of a system failure and subsequent 11warmstart11
, MPE will

attempt to clean-up any log files that were open at the time of the failure. The cleanup procedure
involves writing any records left in the log system disc buffer file to the end of the log file. (When
using roll-forward recovery records left in the memory buffer will still be lost.) The console operator
has the option to cancel this cleanup procedure if the log file is on tape. The advantage of the
procedure is that fewer log records written just prior to the failure are lost. The disadvantage for tape
files is the time it takes for the tape to be rewound and sequentially scanned until the end-of-file is
detected so that the remaining records can be appended to the end. In addition, a dedicated tape drive
is required when logging to tape. The TurbolMAGE recovery program DBRECOV does not require the
clean-up to be performed. If it is not performed, however, DBRECOV will most likely report a
sequence or checksum error when the discrepancy caused by the failure is encountered. This will cause
DBRECOV to assume the end-of-file has been reached.

I QUIET I I QUIET I

PROCESSES:

A

8

c ~
""

/ ""---------/
, _______ /

RECOVERY RECOVERY BLOCK
BLOCK

--~------>..,. TIME >

DEC 85
7-14

Figure 7-3. Quiet Periods and Recovery Blocks

CRASH

Maintaining The Data Base

Recovery Tables

The first three of the following four tables are returned by every execution of the recovery system. The
last table is returned only if the user recovery file feature is used.

**
* 1 PROCESS STATISTICS *
* *
*LOG# TIME NAME ACCOUNT PROGRAM DATABASE TRANS PUTS DELS UPS *
*---- ------- ------- -------- *
* 1 15.45 TST MKTG INVENTRY ORDERS 145 145 0 0 *
* 2 15.47 TST MKTG ORDENTRY ORDERS 431 431 0 0 *
**

**
* 2
*
*
*
*

NAME

ORDERS

GROUP ACCOUNT

TST MKTG

DATABASE STATISTICS

OPENS TRANS PUTS

2 576 576

DELETES

0

*
*

UPDATES *
------- *

0 *
**

**
* 3 LOGGING SYSTEM ~ *
* *
* . . . CREATOR RECORDS DEV LOGFI LE *
* LOGID NAME ACCOUNT PROCESSED TYPE NAME GROUP ACCOUNT *
* ------- --------- ------- *
* ORDERLOG TST MKTG 640 DISC ORDER001 TST MKTG *
**

**
* 4 RECOVERY SYSTEM *
* *
* FILE REFERENCE USER I DENT RM ODE FM ODE *
* -------------------- ------------- *
* PART1 SYS MKTG TST MKTG P101 *
* PART2 SYS MKTG TST MKTG P1D2 *
* PART3 SYS MKTG TST MKTG P103 *
**
END OF PROGRAM

DEC 85
7-15

Maintaining The Data Base

The tables provide the following information:

1 The PROCESS STATISTICS table lists the log number assigned to each process by the OPENLOG
intrinsic, the logon name and account, program name, and transaction statistics. In this table there is
one entry for each process that logged transactions to the log file. An asterisk will appear for any
process that issued a DBOPEN without a corresponding DBCLOSE before the system failure. In
roll-forward recovery the columns 11TRANS, PUTS, DELS, UPS11 indicate the number of transactions
recovered. In roll-back recovery these columns and numbers indicate the number of transactions
rolled-out.

2 In the table of DATABASE STATISTICS, the total number of transactions are given for each data
base recovered. The columns 11TRANS, PUTS, DELS, UPS" indicate the number of transactions
recovered in roll-forward recovery, or rolled-back if using roll-back recovery.

3 The LOGGING SYSTEM table should have only one entry. It lists the log identifier for the log file
that was accessed by the recovery system. The creator is the user who created the log indentifier
with the :GETLOG command. The number of records processed is usually greater than the number
of transactions given in the other tables because some transactions require more than one log record,
and there are header records and trailer records in each log file.

4 The RECOVERY SYSTEM table references the file to which the records were returned, the user
name and identifier, and the rmode and fmode parameters specified in the :FILE commands. Note
that all of these tables can be returned without recovering a data base by using the >CONTROL
ST A TS option when running the recovery program. Roll-back recovery ignores the rmode
parameter.

DEC 85
7-16

•

Maintaining The Data Base

LOGGING INSTALLATION

In order to prepare a data base for transaction logging, you must set a log identifier (logid) into the data
base root file. The log identifier could be one associated with an existing log file, in which case you can go
directly to Step 3 (below) if you know the log identifier and password. Note that, in order to recover a
data base from the log file, you must either be the creator of the logid or have system manager capability.
Assuming you intend to create a new log identifier, you should take the following steps:

• Acquire logging capability.
• Acquire log identifier.
• Set log identifier into data base, along with appropriate flags.
• Store a backup copy of the data base. (This step is required when using roll-forward recovery,

recommended when using roll - back recovery.)
• Build log file if logging to disc.

NOTE

This is a one-time procedure. The logging maintenance operations are
performed on regular basis, perhaps daily (refer to "Maintaining Logging"
below).

1. Acquiring Logging Capability

A user must have logging capability in order to use the following MPE commands: :GETLOG, :RELLOG,
:ALTLOG, :CHANGELOG, :LISTLOG, and :SHOWLOGST A TUS. Logging capability is acquired through
the MPE system manager and account manager commands. First the system manager provides the
account logging capability by using the command :NEWACCT, or the command :ALTACCT if a new
capability is being assigned to an established account:

:NEWACCT aootname,mgrname;CAP=capability list (include LG)
:ALTACCT aootname;CAP=capability list (include LG)

The account manager then can provide logging capability to individual users through the command
:NEWUSER, or the command :ALTUSER if a new capability is being assigned to an established user:

:NEWUSER username;CAP=capability list (include LG)
:ALTUSER username;CAP=capability list (include LG)

For example:

:NEWACCT CAPE,RICK;CAP=LG,AM,AL,GL,SF,ND,IA,BA
:NEWUSER ILSA;CAP=LG,AL,GL,SF,ND,IA,BA

(CAP=LG must be included to provide logging capability)

Refer to the MPE Commands Reference Manual for other MPE user logging commands, including
:RELLOG (removes a log identifier), :ALTLOG (alters an existing log identifier), and :LISTLOG (lists the
current log identifiers).

Any errors or messages that are followed by (ULOGERR#) or (lJLOGMSG#) are returned by MPE. Refer
to the MPE Console Operator's Guide for more information.

DEC 85
7-17

Maintaining The Data Base

2. Acquiring Log Identifier

A log identifier (logid) is an eight-character logical name that identifies a system logging process to which
log records are passed. Acquire the log identifier from MPE by using the command :GETLOG. Other
users can be allowed access to the log file by notifying them of the logid and its password. Users accessing
the logging system directly through MPE must supply the identifier and the password on the OPENLOG
intrinsic, in addition to having logging (LG) capability.

Syntax

:GETLOG logid;LOG=logfile,{DISC/TAPE/SDISC/CTAPE}

[;PASS=password] [;{AUTO/NOAUTO}]

Parameters

log id

password

log file

DISC/SDISC

TAPE/CT APE

AUTO

NOAUTO

Example

is the logging identifier to be established on the system. A string of up to
eight characters that are meaningful to the user application.

is the password to be associated with the logging identifier. This parameter
protects the log file from unauthorized access. Up to eight characters are
allowed.

is an MPE file reference that identifies the actual file to which the log
records are written. If the AUTO option is specified, the last three digits
are numeric (from 0 0 1 - 9 9 9). The first log file created with :GE TLOG
must end with the last three digits equal to 001 if the AUTO option is used.
(A warning message will be issued if the logfile does not end in 001.)

is the device on which the log file is to reside. If the log file specified for
the logid is a serial file then the AUTO/NOAUTO option will be ignored.

is the device on which the log file is to reside.

performs an automatic CHANGELOG when the disc log file becomes full.

is the default. No CHANGELOG will be performed when the disc log file
becomes full.

:GETLOG ORDERLOG;LOG=ORDER001,DISC;PASS=PASSLOG

When the disc log file becomes full the file is closed and logging is shut down. If the AUTO option is used
user logging will initiate a CHANGELOG when the current log file becomes full. A new log file will be
created with the same logfile name incremented by one in the last digit (ORDER002). This enables
logging to continue uninterrupted, also creating a sequence of log files or a log file set.

DEC 85
7-18

Maintaining The Data Base

3. Setting Log Identifier and Flags

The two previous commands were executed through the MPE user logging system. At this point, the data
base administrator mu.:;t interface TurbolMAGE to the MPE user logging system by storing the log
identifier and password into the data base root file, using the DBUTIL program >>SET command, as
shown in the example below:

:RUN DBUTIL.PUB.SYS
>>SET ORDERS LOGID = ORDERLOG

PASSWORD? *******

DBUTIL checks the validity of the logid with MPE, and reports a warning if the log identifier is not valid
or the password is incorrect:

WARNING: non-existent LOGID

Once the log identifier has been set into the data base, the log identifier parameters should not be altered
in order for the logging and recovery system to function correctly.

Next, the data base administrator uses DBUTIL to set three flags in the root file indicating that the data
base is enabled for logging, the data base is disabled for user access, and the data base is enabled for
recovery. Each of these flags is discussed below.

ENABLE LOGGING FLAG. Enabling logging ensures that a journal of all data base modifications will
be logged and available for later use by the recovery system, if necessary. When the data base
administrator enables the data base for logging, DBUTIL checks whether a backup data base copy has been
stored with DBSTORE; if not, it issues a message warning the data base administrator to store the backup
copy. When logging is first installed, since the data base is stored after logging has been enabled, the
DBUTIL warning message can be interpreted as a prompt to store the data base. The command to enable
logging,if using roll -forward recovery:

>>ENABLE dbname FOR LOGGING
WARNING: data base modified and not DBSTORED

If using roll-back recovery, >>ENABLE dbname FOR ROLLBACK. Once the logid is set and the log file
built, the >>ENABLE command for roll-back automatically enables logging and ILR for the data base.

DISABLE ACCESS FLAG. By disabling the data base for user access, the administrator ensures that
modifications can not be made to the data base. Any attempt to open the data base with an otherwise
valid call to DBOPEN will return an error message. Access to the data base should be disabled before
storing the backup copy, so that in the event of a system failure the data base will be restored with access
disabled. This will prevent users from opening the data base and making modifications before recovery is
executed.

Disabling access to the data base is also useful as a general security measure to prevent data base access at
unauthorized times. The DBUTIL command for disabling access is shown below:

>>DISABLE dbname FOR ACCESS

ENABLE RECOVERY FLAG. Enabling the data base for recovery gives the TurboIMAGE recovery
system access to the data base. The data base is stored with recovery enabled so that when it is restored, it
will be ready for recovery. The DBUTIL command for enabling recovery is:

>>ENABLE dbname FOR RECOVERY

DEC 85
7-19

Maintaining The Data Base

A DBSTORE can be done after the preceding flags have been set in the data base. A backup copy of the
data base is highly recommended. Logging status can be checked by referring to the procedure in
"DISPLAYING LOGGING ST A Tl JS 11

, later in this section.

4. Building a Logf ile for Logging to Disc

If the log file is to reside on disc rather than tape, the data base administrator must build the new file and
allocate space for it on disc by using the MPE command :BUILD.

Syntax

:BUILD logfile;CODE=LOG;DISC=[numreo] [,[numextents][,initialloo]]]

Parameters

logfile

numreo

numextents

initial loo

Example

is the name of the log file being built, as specified in the :GETLOG
command.

is the maximum number of logical records. Maximum value allowed 1s
2,147,483,647. Default is 1023.

is the maximum number of disc extents; a value of from 1 to 32. Default is
8.

is the number of extents to be initially allocated to the file at the time it is
opened; a value of from 1 to 32. Default is 1.

:BUILD ORDER001;CODE=LOG;DISC=200000,20,7

(This step is required only when logging to disc)

If the default NOAUTO option is specified in the :GETLOG command care should be taken to ensure that
disc log files are of sufficient size to prevent the end-of-file from ever being reached. This is because
MPE does not automatically switch to a new disc file, but instead causes the associated log process to
terminate when the log file is filled to capacity. Subsequent calls to TurboIMAGE intrinsics that require
log records to be written will therefore fail. If this event occurs in the middle of a transaction, the data
bases will be left in an inconsistent state. It will then be necessary to recover transactions with
roll -forward or roll-back recovery. Reaching the end of a disc log file is therefore similar in effect to a
system failure and should be carefully avoided. Consequently, disc log files should be built with a total
capacity far exceeding their required size and consisting of many extents (up to 32) of which only enough
to satisfy the expected capacity are initially allocated. The command :SHOWLOGSTATUS can be used to
determine when to perform a :CHANGELOG to open a new log file.

DEC 85
7-20

Maintaining The Data Base

DISPLAYING LOGGING ST A TUS

The DBUTIL >>SHOW command can be used to display the log identifier and the status of the flags for
access, recovery, and logging. The following example illustrates roll-forward recovery and the commands
used to set the logid and flags into the data base, as presented in this section. If the steps regarding
Logging Installation have been followed the data base can be stored. (Note that passwords will not appear
on the terminal screen).

:RUN DBUTIL.PUB.SYS
HP 32215C.OO.OO TurboIMAGE: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD CO. 1984

>>SET ORDERS LOGID=ORDERLOG
PASSWORD *******

LOGID: ORDERLOG IS VALID
PASSWORD IS CORRECT

>>DISABLE ORDERS FOR ACCESS
Access is disabled

>>ENABLE ORDERS FOR RECOVERY, LOGGING
WARNING: Data base modified and not DBRESTORed
Recovery is enabled
Logging is enabled

>>SHOW ORDERS ALL
For data base ORDERS

Maintenance word is not present.

Access is disabled.
Autodefer is disabled.
Dumping is disabled.
Rollback recovery is disabled.
Recovery is enabled.
ILR is disabled.
Logging is enabled.
Data base last stored on MON, DEC 10, 1984, 1:09 PM
Data base has not been modified since last store date.
Restart is disabled.
Subsystem access is READ/WRITE.

LOGID: ORDERLOG is valid
password is correct

The language is O:NATIVE-3000.

BUFFER SPECIFICATIONS:
30(1/120)

No other users are accessing the data base.
»

DEC 85
7-21

Maintaining The Data Base

MAINTAINING LOGGING

Each data base administrator should determine a log maintenance cycle for the data base. For example,
suppose the data base is maintained on a daily cycle. This means that at the beginning of each day, the log
process is initiated from the console with the :LOG command and flags are set by the data base
administrator (see below). At the end of the day, the console operator stops the log process and the
administrator resets the flags for storage of the backup data base. Note that the duration of this
maintenance cycle depends on at least two considerations: the amount of time needed to store the data
base periodically, and the amount of time required to recover the data base from the log file using
DBRECOV if the system fails. The more often the data base backup copy is stored, the smaller the log file
and recovery time will be. Regular backup of the data base is recommended, however a data base backup
copy is not needed when using roll-back recovery. Refer to Appendix G for a brief overview of the
disadvantages and benefits of logging to disc and logging to tape. This appendix includes sample job
streams for the logging cycle.

Starting the Logging Process

After a data base backup copy has been stored as described earlier in "LOGGING INSTALLATION", a
logging process must be allocated to the log identifier so that it can be activated. A log process is an MPE
system process responsible for buffering log records in memory. If the log file is on tape, the log process
also buffers the log records on disc before writing them to the log file. The operator initiates this process
from the console by using the command :LOG.

Syntax

:LOG logid~ RESTART
{

START }

Parameters

logid

START

RESTART

STOP

Example

STOP

is the name of the logid to be activated; the logid has been set into the data
base root file previously.

initiates a log process for the first time.

initiates a log process when appending new log records to an old log file.

terminates a log process. Termination does not take effect until all current
users have closed the log file by calling the CLOSELOG intrinsics.

:LOG ORDERLOG, START

DEC 85
7-22

Maintaining The Data Base

Note that if the log process is stopped using the :LOG command, but a backup data base copy is not
generated at that time, the console operator should use the RESTART option in order to resume logging to
the same log file.

To determine whether or not a log process is running, use the MPE command :SHOWLOGST ATUS to
determine the log identifiers of active log processes. :SHOWLOGST ATUS will display the percentage of
records in the log file if the logid output is to disc. This additional information may prove helpful in
gaining a better idea when to perform a :CHANGELOG.

Example

:SHOWLOGSTATUS

LOG ID CHANGE AUTO

DUMMY LOG NO NO
TAPE LOG YES
ORDER LOG YES YES

USERS STATE

4 INACTIVE
1 INACTIVE
2 INACTIVE

CUR-RECS

100
5738

500

MAX-REC %USED CUR-SET

1000 10% 1
1

1000 50% 2

Changelog Capability

The MPE CHANGELOG feature provides a continuous MPE user logging process, with the ability to
change log file tape or disc files when they reach capacity without stopping the user logging process. User
logging will also keep track of the order of the files in the log file set. Parts of the changelog record
contain the file set number (001-999) and device type of the file names in the record. In addition, there
are records for the previous file in a set, first file in a set, and current file in a set. This format will allow
recovery to always start at the beginning of the file set, or at any point within the file set if the sequence
number is used, and reopen the log files on the same device type that they were created. The user issuing
the :CHANGELOG command must be the creator of the logid. If the user issuing a :CHANGELOG is not
the creator of the logid either LG or OP capability is required. If the mirror data base method
(DBRECOV STOP /RESTART) is being used, CHANGELOG makes logging without interruption on the
primary system possible.

Syntax

:CHANGELOG logid(;DEV=de~ice]

Parameters

log id

device

is the name of the currently active logging process.

is the device name of the new log file (DISC, TAPE, SDISC, CT APE). If the
device specified is DISC, the file will be created in the logid creators logon
group and account.

DEC 85
7-23

Maintaining The Data Base

Example

:CHANGELOG ORDERLOG; DEV=DISC

Note that the logid specified must be that of the currently active logging process. If the logfile is changed
u~ing :AL TLOG no linkage of the log file set is provided. CHANGELOG can only be performed on a
logid set up with the :GETLOG command. The CHANGELOG command will terminate if the logging
process state is RECOVERING, STOP, INITIALIZING, or CHANGELOG is already pending. The
following message will be displayed on $STDLIST:

INVALID STATE OF PROCESS

After issuing the :CHANGELOG command, if the logid is valid, changelog records are posted to the
current log file. The current log file is closed and the new log file is opened. A message similar to the
following message is displayed on the $STDLIST and the console to confirm the change:

Log file for logid ORDERLOG has been changed from ORDER001 to ORDER002

If the new log file is a serial file the following message will appear on the console requesting the mounting
of a new log file, in this case the logid is ORDERLOG:

Mount new {tape/cartridge tape/serial disc} for logid ORDERLOG

If a :LISTLOG command is executed while the logging process is performing a CHANGELOG, the file
name displayed will be that of the current log file. The log file name will not be updated until the
CHANGELOG sequence successfully completes. The :SHOWLOGSTATUS command may be used to
display the current status of a logging process to determine if a CHANGELOG is taking place.

The following example shows the display of :LISTLOG. A CHANGELOG is currently taking place on log
file ORDEROOl, since the CHANGELOG to ORDER002 has not yet successfully completed, ORDEROOl
is displayed:

Example

DEC 85
7-24

: LISTLOG

LOG ID

DUMMY LOG
TAPE LOG
ORDER LOG

CREATOR

DATA.SYS
DATA.SYS
TST.MKTG

CHANGE

NO
YES
YES

AUTO CURRENT LOG FILE

NO DUMMY.PUB.SYS
TAPE001

YES ORDER001.MKTG.SYS

Maintaining The Data Base

Setting Data Base Enable/Disable Flags

The data base administrator now can allow users to modify the data base by running DBUTIL and
enabling data base for access. The administrator should also disable recovery at this time. This provides a
safeguard against unintended recovery if DBRECOV is executed from a stream file against several data
bases simultaneously.

Example

:RUN DBUTIL.PUB.SYS
>>ENABLE ORDERS FOR ACCESS

Access is Enabled
>>DISABLE ORDERS FOR RECOVERY

Recovery is Disabled

Ending the Logging Maintenance Cycle

At the end of the specified maintenance cycle (e.g., the end of the day) the above maintenance steps are
reversed; that is, the console operator stops the logging process, and the data base administrator disables
access, enables recovery, and stores a backup data base copy (required for roll-forward recovery).

Example

:LOG ORDERLOG,STOP
:RUN DBUTIL.PUB.SYS
>>DISABLE ORDERS FOR ACCESS

Access is Disabled
>>ENABLE ORDERS FOR RECOVERY

Recovery is Enabled
>>EXIT
END OF PROGRAM

:RUN DBSTORE.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE STORED
END OF PROGRAM

DEC 85
7-25

Maintaining The Data Base

Notes on Logging

• LOG RECORDS. The result of installing logging as described above is that all data base modifications
(DBPUT, DBUPDATE, DBDELETE) are logged, and in modes 1 through 4 calls to DBOPEN, DBCLOSE,
DBBEGIN, DBEND, and DBMEMO are logged to the log file. Each DBBEGIN and DBEND cause a log
record to be written to the log file which includes such information as time, date, and user buffer.
These log records are used by DBRECOV to identify logical transactions. All TurboIMAGE log records
are contained within MPE WRITELOG records.

DBOPEN log records contain a time stamp in the data base root file, indicating the date and the time
of the last DBSTORE (this time stamp is referenced by DBRECOV roll-forward recovery). DBOPEN
log records also include the user identifier, log identifier, and the name, group, and account of the user,
data base, and program.

DBUPDATE log records include both the new and the old data (before and after images); DBDELETE
includes a copy of the deleted data (before image); DBPUT includes the record being added (after
image).

• LOG FILE TIME STAMPS. There are two different log file time stamps; the DBSTORE time stamp set
at the time the last data base backup copy was made (used by roll-forward recovery), and the roll-back
time stamp created at the time the first DBOPEN is executed against the data base. The DBSTORE
time stamp is fixed and does not change once the data base backup copy has been made. The roll-back
time stamp is updated to the real time of the first DBOPEN following each close of the data base,
providing a roll-back termination point should a roll-back recovery be required.

• LOGGING TO TAPE OR DISC. It is the choice of the data base administrator whether to log to tape
or disc. The overhead required by the logging operation is comparable on disc or tape. However there
are other factors that should be considered. Logging to tape is the more secure option, since a log file
residing on tape is less susceptible to damage from possible system failure than a disc log file. (Refer to
Appendix G for considerations when logging to disc and tape.)

In terms of allocating resources, logging to tape requires that the system be able to make a tape drive
available as long as the data base is accessible for modification. If the decision is made to log to disc,
you must use the MPE command :BUILD to create a new file and allocate space on disc. This allocation
must be generous enough to avoid any possibility of filling the log file to capacity, as described earlier
in "Building A Logfile For Logging To Disc11

•

• DISABLING LOGGING. While the transaction logging and recovery system is being used, logging is
constantly enabled. However, in the event that logging is disabled and it is to be re-enabled, storing the
data base with DBSTORE before re-enabling logging is recommended. This ensures that the DBSTORE
flag and time stamp set when logging was first enabled are not reset when logging is re-enabled. This
applies to roll -forward recovery only.

• ERASING THE DATA BASE. The execution of utility programs is not logged. If DBUTIL is used to
erase the data base, the >>ERASE command automatically disables logging, ILR and roll-back
recovery. Therefore, if the data base is erased, store the erased data base with DBSTORE before
enabling the data base for logging once again.

DEC 85
7-26

Maintaining The Data Base

ROLL-BACK RECOVERY

Roll-back recovery provides rapid recovery of data base data integrity following a "soft" system crash
(e.g., system failure or loss of working memory). The roll-back feature is invoked through the DBRECOV
utility and requires only the current data base log files in order to restore data integrity. A data base
backup copy is not required for roll-back recovery. Regular backup of the data base is recommended,
however, and is always required for roll-forward recovery in the event of a more serious problem (e.g., a
disc head crash or problems occurred while roll-back recovery was in progress).

When invoked, the roll-back recovery feature will "roll-back", or undo, any incomplete data base
transaction as shown in the log file following a soft system crash. Intrinsic Level Recovery (ILR) must
also be enabled when using the roll-back feature to prevent the possibility of broken chains within the
data structure.

In the event of a system failure, any multiple-intrinsic data modifying transaction that was incomplete
could cause the data base contents to be logically inconsistent.

With roll-back enabled prior to the time of system failure, a record of each user transaction, in the
sequence of occurrence, is available to determine which transactions were incomplete at the time of
failure. Following a system failure all incomplete transactions as shown in the log file must then be
undone, or rolled - back.

The following diagram illustrates the transactions of three different users at the time of a system failure:

*
~== ~ ~ :i::7l~~l~1~1~~i~l~,~:~~~,~~~i~~1~~;i~~b~'~Jq::~~~~,~-~~:~,~=

SYSTEM

FAILURE
I I I I I I I I !TTTTTTTT I I I I I I I I !Ti rrrr I I I I I !TTTTTTTTfTTTTT*

time *
In the above illustration the first user has completed one transaction (Tl) and aborted another (T4) prior
to the system failure. Both users two and three have completed two transactions each and each has one
incomplete transaction at the time of failure. Individual data base transactions Tl, T2, T3, TS, and T6
were completed and are properly reflected in the data base following system failure. Transactions T7 and
TB, however, were incomplete at the time of system failure, causing an incomplete modification of data to
be reflected in the data base. These incomplete transactions (T7 and T 8) will then be rolled-back to their
beginning, returning all affected data in the data base to their state before T7 and T 8 began execution.

When transaction T4 is aborted, TurboIMAGE completes the transaction by issuing an abnormal end
(DBABEND). This transaction is then seen as completed by the roll-back feature and is not normally
rolled-back. If the aborted transaction is also to be rolled-back, the following DBRECOV command
string must be issued before issuing the DBRECOV command >RUN (refer to Section 8, 11DBRECOV11

):

>CONTROL NOABORTS

The above command string causes the aborted transaction to be treated as an incomplete transaction
during transaction roll-back. When >CONTROL NOABOR TS is issued, TurboIMAGE only rolls-back
aborted transactions which occurred during the last recovery block before the system failure. Refer to
Section 8 ,DBRECOV >CONTROL, "RECORD NUMBERS AND TABLE OVERFLOW" for considerations
when using >CONTROL command.

DEC 85
7-27

Maintaining The Data Base

Intrinsic Level Recovery (ILR) Requirements

To ensure correctness of the data base physical data links, ILR must be enabled when using the roll-back
feature. With ILR enabled when a system failure occurs TurbolMAGE will automatically reconstitute
chains. Without ILR enabled, a system failure may cause a loss of physical integrity and, as the roll-back
feature does not repair broken chains, recovery of the data base would then be difficult. Intrinsic Level
Recovery is enabled automatically when roll-back is enabled, but ILR must be manually disabled when
disabling roll - back. Refer to 11U sing ILR11

, covered ear lier in this section. Since roll -back recovery
enables ILR, output deferred mode may not currently be enabled on the data base. If the data base is
enabled for AUTODEFER (output deferred mode), the following message will be printed after the user
attempts to enable ROLLBACK:

AUTODEFER MUST BE DISABLED BEFORE !LR CAN BE ENABLED

(Refer to DBUTIL >>ENABLE in Section 8 for more information).

Enabling the Roll-Back Feature

To enable the roll-back feature complete the following sequence:

1. Set the logid and build a log file (if logging to disc) as shown in 11Logging Installation11
, steps 1 through

5, earlier in this section.

2. Enable the roll-back feature for each particular data base by entering the DBUTIL command string:

>>ENABLE dbname[/maintenance Word] FOR ROLLBACK.

3. Start the logging process and enable user access to the appropriate data bases as shown in 11Maintaining
Logging11

, earlier in this section. Once the logid has been set and log file built, DBUTIL will
automatically enable logging and ILR when roll-back is enabled. Note that logging and ILR must be
disabled manually.

If the logid was not set and/or the log file not built before issuing the >>ENABLE command for
roll-back, a WARNING message that the logid is non-existent will be printed on the screen.

When roll-back is enabled, DBUTIL sets a roll-back flag to indicate that roll-back is enabled for the data
base. DBUTIL also reserves six words in the root file for the roll-back time stamp (three words for the
previous time-stamp and three words for the current time stamp). The roll-back time stamp is updated
and logged in the log file and in the root file when the data base is first opened. Roll-back recovery then
ttses the time stamp during recovery to verify the correct log file for each data base.

DEC 85
7-28

CAUTION

In the event of a system failure, do not restart logging before running the
recovery system. Log records may have been lost due to the system failure.
If logging is E~mmed without a recovery, the resulting discontinuous log file
would cause invalid results in the event of a subsequent recovery.

Maintaining The Data Base

Disabling the Roll-Back Feature

In order to disable the roll-back feature, each involved data base must be in a quiet state with no user
accesses in progress. Disable the roll-back feature by entering the DBUTIL command string:

>>DISABLE dbname FOR ROLLBACK

When roll-back is disabled DBUTIL resets the roll-back flag and roll-back time stamp.

[_CAUTION I
DO NOT DISABLE ROLLBACK IF ROLLBACK RECOVERY MUST BE
USED LATER. This action will reset the logging time stamp. Once the
logging time stamp is reset (when roll -back is disabled). Roll-back
recovery cannot be performed with the current log file on the named data
base. The data in the data· base is considered correct and therefore cannot
be rolled-back.

When the roll-back >>DISABLE command is issued, DBUTIL prompts a warning to remind you that the
time stamp will be erased and prompts for a response as follows:

WARNING: ROLLBACK time stamp will be erased.
Please type Y to confirm your disable command>>

If you enter Y, DBUTIL will then continue the roll-back disable process. If Y 1s not entered the
>>DISABLE command is not performed.

Performing Roll-Back

To complete the transaction roll - back process following a system failure, perform the following steps:

1. Following a restart to bring-up the operating system, locate the applicable log file media to be used for
transaction roll-back. If logging to tape, the correct tape will need to be applied. If using the
CHANGELOG feature of MPE and there are multiple log file tapes, this will be the first tape of the
series. If logging to disc, TurboIMAGE will automatically locate the applicable log file by checking the
beginning of the root file for the logid.

2. Backup of the data base is recommended, in case a system failure occurs during the recovery process.

3. Enter the MPE command string:

:RUN DBRECOV.PUB.SYS

4. Enter the following DBRECOV command (where dbname is the name of individual data bases to be
rolled-back):

>ROLLBACK dbnarne [,dbname2, ,dbnameN]

DEC 85
7-29

Maintaining The Data Base

5. Enter all other desired DBRECOV commands (>FILE, >CONTROL, and >PRINT). Note that the >FILE
command optional parameter rmode is not used with the roll-back feature. (Refer to Section 8 for
more information.)

6. Enter the DBRECOV command:

>RUN

Following entry of the >RUN command, DBRECOV will ask you to mount the log tape (if the log file
media is tape). Continue the roll-back process as directed by messages returned to both the console and
the terminal screen. If using the :CH~<\ NGELOG command or :GETLOG AUTO option the following
message will be returned to both console and terminal screen:

Reply CONtinue on console when logfile is ready

The response CON would be given at the console.

RUN COMMAND

After the >RUN command is given, the DBRECOV program recovers the specified data bases, creates
specified user recovery files, and terminates. -The DBRECOV program could be terminated alternatively
without any recovery taking place with an >EXIT command.

For recovery to succeed, the person running DBRECOV (usually the data base administrator) must have
access to the log file. This implies having system manager capability or being the creator of the log
identifier with read access to the log file if it resides on disc in a different logon group and account. If the
log file is on tape, the user must be able to provide the volume identifier to the operator mounting the
tape.

Other DBRECOV Commands

Other DBRECOV commands available include:

• >CONTROL

• >FILE

• >PRINT

DEC 85
7-30

Maintaining The Data Base

CONTROL COMMAND

The >CONTROL command is used to specify the conditions for recovery. If the >CONTROL command is
not issued, the following conditions must be met for recovery to succeed:

• The data base time stamp must correspond with the time stamp in each DBOPEN log file record.

• No errors are allowed in job (batch) execution.

• Transactions which are incomplete due to program aborts are rolled-out.

The >CONTROL command can be used to override these conditions. Each override option can be negated
by specifying its default option, and vice versa:

OPTION

NOABORTS
MODE4
STATS
ERRORS=nnnn
EOF=nnnn

DEFAULT OPTION

ABORTS
MODEX
NOST ATS
ERRORS=O
*EOF=nnnn

*The initial default condition is that no end-of-file is imposed on recovery. Once a particular record
number has been specified by EOF, it can be changed by specifying a new record number.

The following provides an example of the override:

>CONTROL MODE4

MODE4 allows users read access to the data base while recovery is in process.

For discussion of options and form of the >CONTROL command, refer to the >CONTROL command
under the utility program DBRECOV.

Note that the >CONTROL command does not specify a data base. Therefore, all CONTROL options apply
to all data bases being recovered.

DEC 85
7-31

Maintaining The Data Base

FILE COMMAND

The recovery file facility is an interface between the recovery system and the application program. With
the >FILE command, DBRECOV sorts the log file by individual users and/or user identifiers, and
designates an MPE file as the destination for the log records for each user.

The recovery file facility is based on the concept of transactions within transaction blocks. A transaction
block consists of all transactions between a call to DBOPEN and DBCLOSE. Within each transaction
block, a transaction is defined as either:

1. A single call to DBPUT, DBUPDA TE, or DBDELETE if not preceded by a call to DBBEGIN, or

2. A sequence of calls beginning with a call to DBBEGIN, followed by any number of calls to DBPUT,
DBUPDATE, or DBDELETE and ending with a call to DBEND.

For each transaction block, the >FILE command returns the initial DBOPEN log record to the user
recovery file. The DBCLOSE record is returned as well, unless either:

1. Not all of the transactions within the block could be recovered, or

2. There was no DBCLOSE log record for this block on the log file. This happens when the system fails
while the data base is open.

Consequently, an application can determine the outcome of recovery to some extent by examining the
number of DBOPEN and DBCLOSE or pairs of DBBEGIN and DBEND log records returned to the user
recovery file. If there are as many calls to DBCLOSE as to DBOPEN, it is likely that all transactions were
successfully recovered. However, there is a possibility that an entire transaction block was lost due to the
system failure if the block was very short. Fewer calls to DBCLOSE indicate the possibility that some
transactions were lost and need to be re-entered. More information about recovery can be inferred from
the recovery file by using the optional f mode parameter to return transactions to the user recovery files in
addition to the intrinsics DBOPEN and DBCLOSE. Fmode refers to transactions that were rolled-out.
Refer to the DBRECOV command >FILE for details of operation.

PRINT COMMAND

The >PRINT command is an option used to display information before actually initiating recovery with
the >RUN command. If DBTABLE is specified in the command, the names of data bases specified for
recovery by >RECOVER commands are returned. If FILETABLE is specified, file references, user
references, and fmodes specified by >FILE commands are returned. These tables, along with other
statistics, are also printed when recovery is complete.

DEC 85
7-32

Maintaining The Data Base

ROLL-FORWARD RECOVERY

The roll-forward recovery system can be executed to bring data bases back to a likeness of their state at
the time of a hard system failure (e.g., disc head crash). This requires that a backup copy of the data base
has been stored and the log file is available. (Refer to "Logging Installation", earlier in this section, for
roll-forward logging information.)

When executing roll-forward recovery following a hard system failure, the TurboIMAGE utility program
DBRECOV recovers the data base physical and logical integrity by suppressing any incomplete
transactions. A backup copy of the data base is updated with the completed transactions that were
written to the log file.

Recovery of the data base requires restoring the backup copy and running the recovery system to
re-execute the data base modifications from the log file. In addition, a transaction-oriented file facility
can be used by the data base administrator to route log records back to individual user recovery files and
to return information regarding the successful recovery or suppression of transactions. Following recovery,
an application program can use these files to inform each user where to resume transactions. (Refer to the
11DBRECOV >CONTROL" command in Section 8.)

Although the logging and recovery system is designed to successfully re-execute transactions that
completed before the system failure, there is a possibility that some transactions will not be recovered.
The possible causes of this situation include the following:

• One or more records could be lost in the log system buffers if the system fails before they are written to
the log file.

• A transaction may have originally failed to complete due to the failure, and is therefore suppressed on
purpose.

• A transaction may depend upon some data base modification that was suppressed. This condition
indicates inadequate locking between processes.

• An incorrect data base was restored. Recovery will yield invalid and erroneous results or a record table
overflow if this occurs.

If any transaction fails to be recovered, all subsequent calls within the same transaction block are
suppressed as well. (For information about transaction blocks refer to 11FILE Command", later in this
section.)

I CAUTION]

In the event of a system failure, do not restart logging before running the
recovery system. Log records may have been lost due to the system failure.
If logging is resumed without a recovery, the resulting discontinuous log file
would cause invalid results in the event of a subsequent recovery. The same
is true for making modifications to the data base. The data base should be
disabled for user access until recovery has completed. Follow the
recommended steps when performing a DBSTORE. (Refer to "Making a
Data Base Backup Copy".)

DEC 85
7-33

Maintaining The Data Base

Intrinsic Level Recovery (ILR) Requirements

When using roll-forward logging for the purpose of recovery following a system failure, it is not necessary
to enable the Intrinsic Level Recovery (ILR) feature as roll-forward logging provides recovery of both
intrinsics and transactions following a system failure.

If roll-forward logging is enabled and being used to provide a log file for audit purposes only, ILR should
be enabled to ensure correctness of the data base physical data links. Without ILR enabled (when using
roll-forward logging for audit only), a system failure may cause a loss of physical integrity within the log
file due to broken chains. If logging is restarted before running roll-forward recovery on the data base,
an inconsistent log file will result. ILR should not be used as a recovery method when the data base is
enabled for roll-forward recovery.

Enabling the Roll-Forward Feature

To enable the roll-forward feature complete the following sequence:

1. Set the logid and build a log file (if logging to disc) as shown in "Logging Installation", steps 1 though 5,
earlier in this section.

2. Enable the roll-forward feature for each particular data base by entering the DBUTIL command
string:

>>ENABLE dbname FOR LOGGING

3. Start the logging process and enable user access to the appropriate data bases as shown in 11Maintaining
Logging11

, earlier in this section. The Intrinsic Level Recovery (ILR) feature must be manually enabled
at this point if desired. Use of ILR is recommended as it eliminates possible problems with oroken
chains within the data base. (Refer to 11Using ILR11

, earlier in this section.) If used, ILR must be
manually disabled.

DEC 85
7-34

Maintaining The Data Base

Restoring the Backup Data Base Copy

Before roll-forward recovery can begin, the data base administrator must restore the data base to the state
at which logging was enabled. This is done by running the DBRESTOR program after purging the
damaged data base or by using the MPE facility :RESTORE. Keep in mind that to use RESTORE all data
bases and files must reside in the same group and account, and you must have account manager capability.
You should ensure that recovery is enabled and access disabled to prevent user modifications before the
recovery system executes (refer to the DBUTIL command >>SHOW). If the flags were set as recommended
prior to storage of the backup copy, no changes will be needed.

Several data bases can log to the same log file simultaneously since each call to DBOPEN specifies the
fully qualified name of the data base. If all data bases that logged to the same log file are to be recovered
simultaneously, then all backup copies must be restored prior to running the recovery system. However, if
the recovery system begins execution before a data base has been restored, accidental recovery is prevented
if recovery has been disabled on the working data base, as specified earlier in "Maintaining Logging".

Example

:RUN DBRESTOR.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE RESTORED
END OF PROGRAM

:RUN DBUTIL.PUB.SYS
>>SHOW ORDERS FLAGS
For Data Base ORDERS
Access is Disabled
Dumping is Disabled
Logging is Disabled
Recovery is Disabled
»EXIT
END OF PROGRAM

CORRESPONDENCE BETWEEN BACKUP COPY AND LOGFILE

The TurbolMAGE logging and recovery systems depend upon the exact correspondence between the stored
backup data base copy and the working data base on disc at the time logging was initiated. The DBSTORE
flag and timestamp, properly used, will enforce this condition. Therefore, it is strongly rec9mmended that
you always use DBSTORE to generate backup copies.

For flexibility, in the event that you might use :STORE or :SYSDUMP to store the backup, the capability
exists to defeat the timestamp and DBSTORE flag mechanism, using the NOST AMP and NOSTORE
options of the >CONTROL command. In this case, you must assume responsibility for maintaining the
correspondence between backup copy and the log file. Note that a data base recovered with the wrong log
file causes DBRECOV to generate erroneous data in the data base and that this condition cannot always
be detected. Modifications to the data base with logging disabled will also cause the the recovered data
base to be incorrect. DBRECOV may also abort with a record table overflow due to the necessity of
moving transactions from the old record number to a new record number when modifications have been
made.

DEC 85
7-35

Maintaining The Data Base

Recovering Data Without a Backup Copy

If a data base structure is cfamaged, and no backup copies are available, it may be possible to salvage most
or all of the data by serially reading the data entries, writing them to a tape or a disc file, recreating the
data base, and reloading the data. If structure damage is detected by an abnormal termination of the
DBUNLOAD program running in CHAINED mode, or by a discrepancy between the number of entries
unloaded and the number expected from one or more data sets, it may be possible to unload the data base
by running DBUNLOAD in SERIAL mode, which does not depend on internal linkages. These
DBUNLOAD modes are discussed in the next section.

If all necessary existing manual master data entries are written to tape or serial disc, reloading the data
base using the DBLOAD program, after erasing the data base using DBUTIL, results in a structurally
intact approximation of the original data base.

Performing Roll-Forward

To complete the transaction roll-forward process following a hard system failure, perform the following
steps:

l. Following a restart to bring-up the operating system, locate the applicable log file media to be used for
roll-forward recovery. If logging to tape, the correct tape will need to be applied. If using the
changelog feature of MPE and there are multiple log file tapes, this will be the first tape in the series.
If logging to disc, TurboIMAGE will automatically locate the applicable log file by checking the
beginning of the root file for the logid.

2. Enter the following MPE command string:

:RUN DBRECOV.PUB.SYS

3. Enter the DBRECOV command below (where dbname is the name of the individual data bases to be
recovered):

>RECOVER dbname [,dbname2, ... ,dbnameN]

4. Enter all other desired DBRECOV commands (>FILE, >CONTROL, and >PRINT). Of the available
DBRECOV commands, only the >RECOVER and >RUN commands are necessary for recovering a data
base.

5. Enter the DBRECOV command >RUN. Following the entry of the >RUN command, DBRECOV will
ask you to mount the log tape (if the log file media is tape). Continue the roll-forward process as
directed by messages returned to both the console and the terminal screen.

6. If using the :CHANGELOG command or :GETLOG AUTO option and logging file media is tape, the
following message will appear on the terminal screen and the console:

Reply CONtinue on console when logfile is ready

The response CON would be replied to at the console.

DEC 85
7-36

Maintaining The Data Base

Post-Recovery Procedures

After a recovery has been completed, the data base administrator and system manager have three
procedural options. The option chosen determines the recovery procedure in the event of a second system
failure. Together, the data base administrator and system manager or console operator should agree upon
the best post-recovery procedure in order to avoid confusion at recovery time. The options available after
recovery include:

1. The ct_ata base administrator stores a new backup data base copy, and the system manager or operator
starts a new log file from the console. In the event of a subsequent system failure, the new backup data
base is restored and recovered against the new log file. This option allows for a straightforward
recovery procedure but delays users from accessrng the data base until the new backup copy has been
generated.

2. A new backup data base is not generated; the system manager or operator resumes transaction logging
to the same log file using the RESTART option. In the event of a subsequent system failure, the old
data base copy is restored and recovered against the log file.

This procedure is the same as the original recovery, but takes longer due to the additional log file
records. Users can access the data base after the first system failure without waiting for it to be stored.

Do not restart a log file before the data base bas been recovered after a system failure. Otherwise, since
some log records could have been lost in the system failure, the log file may not be consistent with the
true state of the data base. A recovery is necessary to bring the data base and log file into agreement
before restarting the log process.

3. A new backup data base is not generated; the system manager or operator initiates logging to a new log
file. In the event of a system failure, the old data base copy is restored and two recoveries are executed:
the first against the old log file, the second against the new log file.

Until a new data base backup copy is generated, if the system manager or operator consistently starts
logging to a new log file after a system failure, a total recovery preceded by n failures requires n
executions of the recovery system.

Note that the second and subsequent recoveries of a data base against more than one log file will be
refused unless the DBSTORE flag is disabled. This is because the first modification re-executed from
the first log file clears the DBSTORE flag from the data base rootfile. Subsequent calls to DBRECOV
can only succeed by specifying the >CONTROL NOSTORE option. Furthermore, the data base
administrator must ensure that the log files are recovered in the proper order.

This procedure is not recommended if option #2, above, is available.

DEC 85
7-37

Maintaining The Data Base

RECOVER COMMAND

The >RECOVER command designates the name of a data base to be recovered. If more than one data
base has logged to the same log file, they can be recovered concurrently by typing the data base names
separated by a comma.

If the data base copy was stored with a procedure other than DBSTORE (for example, MPE RESTORE),
the DBSTORE flag will not have been set in the data base root file. If you are sure you have restored the
correct, unmodified version of the data base, and wish to use it for recovery, the >CONTROL NOSTORE
option must be entered before the >RECOVER command can succeed (refer to >CONTROL).

Other conditions necessary for success of the >RECOVER command include:

• The data base must be accessible to you from your logon group and account.

• The log identifier must not have been altered since the log file was generated (see Setting Log Identifier
and Flags In Data Base).

• The data base must be enabled for recovery.

• All data bases specified for recovery must contain the same log identifier.

• You must be the creator of the log identifier, unless you have system manager capability.

• No other users are accessing the data base.

The last condition, above, can be overridden if users are given read access during recovery (refer to the
>CONTROL MODE4 command in "DBRECOV").

If the >RECOVER command succeeds, recovery can be initiated by typing the >RUN command.

RUN COMMAND

After the >RUN command is given, the DBRECOV program recovers the specified data bases, creates
specified user recovery files, and terminates. The DBRECOV program could be terminated alternatively
without any recovery taking place with an >EXIT command.

For recovery to succeed, the person running DBRECOV (usually the data base administrator) must have
access to the log file. This implies having system manager capability or being the creator of the log
identifier with read access to the log file if it resides on disc in a different logon group and account. If the
log file is on tape, the user must be able to provide the volume identifier to the operator mounting the
tape.

DEC 85
7-38

Maintaining The Data Base

Other DBRECOV Commands

Other DBRECOV commands available include:

>CONTROL

>FILE

>PRINT

CONTROL COMMAND

The >CONTROL command is used to specify the conditions for recovery. If the >CONTROL command is
not issued, the following conditions must be met for recovery to succeed:

• The data base time stamp must correspond with the time stamp in each DBOPEN log file record.

• The DBSTORE flag must be set in the data base root file.

• No errors are allowed in job (batch) execution.

• Transactions which are incomplete due to program aborts are recovered.

The >CONTROL command can be used to override these conditions. Each override option can be negated
by specifying its default option, and vice versa:

OPTION

NOST AMP
NOSTORE
NOABORTS
MODE4
STATS
ERRORS=nnnn
STOPTIME=dateX timeX
EOF=pppp

DErAULT OPTION

STAMP
STORE
ABORTS
MODEX
NOST ATS
ERRORS=O
*STOPTIME=dateY timeY
*EOF=qqqq

* The initial default condition is that no stoptime or end-of-file is imposed on recovery. Once a
particular date or record number has been specified by STOPTIME or EOF, it can be changed by
specifying a new date or record number.

The following provides an example of the override:

>CONTROL NOSTAMP,STAMP

Since STAMP was entered after NOST AMP, ST AMP negates NOST AMP, so that recovery proceeds with
the timestamp check intact.

For discussion of options and form of the >CONTROL command, refer to the >CONTROL command
under the utility program DBRECOV. Note that the >CONTROL command does not specify a data base.
Therefore, all CONTROL options apply to all data bases being recovered.

DEC 85
7-39

Maintaining The Data Base

FILE COMMAND

The recovery file facility is an interface between the recovery system and the application program. With
the >FILE command, you sort the log file by individual users and/or user identifiers, and designate an
MPE file as the destination for the log records for each user.

The recovery file facility is based on the concept of transactions within transaction blocks. A transaction
block consists of all transactions between a call to DBOPEN and DBCLOSE. Within each transaction
block, a transaction is defined as either:

1. A single call to DBPUT, DBUPDA TE, or DBDELETE if not preceded by a call to DBBEGIN, or

2. A sequence of calls beginning with a call to DBBEGIN, followed by any number of calls to DBPUT,
DBUPDATE, or DBDELETE and ending with a call to DBEND.

For each transaction block, the >FILE command returns the initial DBOPEN log record to the user
recovery file. The DBCLOSE record is returned as well, unless either:

1. All of the transactions within the block could not be recovered (refer to the first page of Roll-Forward
Recovery), or

2. There was no DBCLOSE log record for this block on the log file. This happens when the system fails
while the data base is open.

Consequently, an application can determine the outcome of recovery to some extent by examining the
number of DBOPEN and DBCLOSE or pairs of DBBEGIN and DBEND log records returned to the user
recovery file. If there are as many calls to DBCLOSE as to DBOPEN, it is likely that all transactions were
successfully recovered. However, there is a possibility that an entire transaction block was lost due to the
system failure if the block was very short. Fewer calls to DBCLOSE indicate the possibility that some
transactions were lost and need to be re-entered. More information about recovery can be inferred from
the recovery file by using the optional rm ode and f mode parameters. These parameters return transaction
information to the user recovery files in addition to the intrinsics DBOPEN and DBCLOSE. Rmode and
fmode refer respectively to transactions that succeeded and failed to be recovered. Refer to the
DBRECOV command >FILE for details of operation.

PRINT COMMAND

The >PRINT command is an option used to display information before actually initiating recovery with
the >RUN command. If DBTABLE is specified in the command, the names of data bases specified for
recovery by >RECOVER commands are returned. If FILETABLE is specified, file references, user
references, fmodes and rmodes specified by >FILE commands are returned. These tables, along with other
statistics, are also printed when recovery is complete.

DEC 85
7-40

Maintaining The Data Base

THE MIRROR DAT A BASE

Transaction logging and regular backups are good maintenance. However, if data bases must be accessible
at all times, and cannot be down, even for maintenance, then a new maintenance method is needed. A
system can be set up for constant access or 11high availability", and still have controlled maintenance.

The mirror data base is the fundamental element in creating a high availability data base system. This
system consists of two identical data bases on two separate computer systems. One data base is housed on
a primary system and is constantly accessible to users and application programs. The other "mirror" data
base resides on the secondary system and is used for maintenance.

To establish a mirror data base, the following requirements are necessary:

• Two identical copies of the data base(s) is needed, one copy on the primary system, one on the secondary
system.

• All transactions on the primary system must be logged to a permanent file.

• Move (or copy) the file containing the transactions to the secondary system, and update the data base(s)
on the seconary system using the transactions files.

Once the secondary system is established, it can be used to make backups of the data base. The primary
system never has to be brought down for maintenance.

DEC 85
7-41

Maintaining The Data Base

DBRECOV STOP-REST ART FEATURE

MPE CHANGELOG and GETLOG AUTO option make logging without interruption on the primary
system possible, thus increasing the availability of the data bases.

After the log files are transferred to the secondary system of the mirror data base system, they are applied
to the mirror data bases using the DBRECOV roll-forward recovery process. DBRECOV has been
modified to make the mirror data base a workable maintenance method. The STOP-RESTART feature of
DBRECOV adds the capability to CONTINUE or STOP the recovery process on the secondary system if
DBRECOV cannot find the next log file in the log set. This STOP-RESTART feature is the key to the
mirror data base system. Whenever DBRECOV cannot f i~1d the next log file in a log set, the recovery
process on the secondary system can be stopped, the data bases can be backed up, and then recovery can be
restarted from the point it was stopped. The primary system never has to be brought down for backups.

DBRECOV applies the chained log files starting with the first log file created when logging was enabled.
It continues to process each log file in the log set consecutively until it cannot find the next log file in the
set. It then prompts the user to CONTINUE or STOP the recovery process.

If the reply is CONTINUE, DBRECOV will keep searching for the next log file. When the next log file is
found DBRECOV resumes roll-forward recovery on the mirror data base. The CONTINUE or STOP
prompt will appear as long as DBRECOV cannot find the next log file in the log set. DBRECOV is
stopped if the reply STOP is entered and a RESTART file containing all the necessary information to
restart recovery is created.

Once the DBRECOV process is stopped, backup of the data base in a consistent state can be done and
limited data base maintenance on the secondary system can be performed. Some DBUTIL functions can
not be performed while the DBRECOV process is stopped. If the data base is in RESTART mode then the
following DBUTIL processes cannot be performed:

• Access is not allowed in order to keep the data base logically consistent.

• Resetting the maintenance word is not allowed. If the maintenance word were reset then RESTART
would be impossible.

• Purging or erasing the data base is not allowed. If either of these options were used in DBUTIL then
the recovery process would be invalidated. (The user must run DBRECOV,ABOR T or
DBRECOV,PURGE before purging or erasing the data base.)

DBRECOV,RESTART will restart the roll-forward recovery process from the point it was stopped.
DBRECOV uses the information in the RESTART file to restart recovery. DBRECOV will continue until,
once again, it cannot find the next log file in the log set. The prompt to CONTINUE or STOP will be
displayed and backup of the data base can again be done.

If RESTART recovery from the current STOP point cannot be done, DBRECOV,ABORT can be used.
Recovery can no longer be restarted from the same point that it was stopped once ABORTed because the
RESTART file is purged. The data base flags are returned to the same settings as before the recovery
process was started.

If ABORT fails to abort recovery because of an inconsistent RESTART file, DBRECOV,PURGE can be
used to delete the current RESTART file before beginning the mirror data base process again.

DEC 85
7-42

Maintaining The Data Base

Notes on Logging

Backups on the secondary system are made more efficient by controlling the logging processes on the
primary system. There are some important factors to consider before enabling logging on the primary
system.

• Logging to tape eliminates the step of storing log files with the data bases once they are rolled forward
on the secondary system. However, keeping track of which log file tapes go with which data base and
RESTART file backup tapes is required. Logging to tape requires a dedicated tape drive.

• Logging to disc enables storing log files and the data bases on a single tape using an MPE STORE rather
than a DBSTORE command. When logging to disc, the user must remember to backup all log files that
were processed after the last DBRECOV,RESTART along with the data bases and RESTART file.
Private volume may also be used and may be faster since you can transfer to last log file without
waiting for the primary system to be warmstarted.

• Naming conventions make storing the data bases much easier and eliminate the use of several different
tapes for the log files. If naming conventions are followed (refer to "Maintaining Logging") an MPE
STORE using the 11@11 can be used to store the log files, data base and RESTART file.

• You can either let the :GETLOG AUTO option switch to the next log file automatically and/or
manually issue a :CHANGELOG command to close the current log file and open the next file in the log
set.

• When using the STOP-RESTART option, the log file name and the logid must be different.

The data base administrator must determine how big to make the log files, based on how far behind the
secondary system will be, and how often backups will be done. To keep the secondary system as close to a
mirror image of the primary data base as possible, log files should be made small so that they will be filled
quickly and can be sent to the secondary system frequently. Of course, making the log files small means
spending more time transferring log files from the primary to the secondary system.

However, there is a disadvantage to having several small log files in the application of STOP-RESTART.
DBRECOV will only prompt to CONTINUE or STOP recovery if it is between log files in a log set, and it
cannot find the next log file. Therefore, if there are several small log files, the prompts to CONTINUE or
STOP are more frequent.

Another logging option would be to set the log file size very large and just manually change to the next
log file by issuing the :CHANGELOG command. The idea is to continually fill the log file with
transactions, and when the user is ready to copy the log file over to the secondary system, change to the
next log file and copy the current one over. This method requires someone at the system console to
monitor the logging and data base maintenance processes. If the user wants to schedule backups on the
secondary system around certain times of the day, say at the beginning and end of a work day, use this
logging procedure on the mirror data base. The user can log a full shift's transactions and then manually
issue a :CHANGELOG at the system console to create a new log file in the log set. (If the :GETLOG
AUTO option was specified when logging was enabled, a manual :CHANGELOG command can also be
issued at any time.) Then the closed log file is transferred to the secondary system and the DBRECOV
roll-forward recovery process continues on the secondary data bases.

DEC 85
7-43

Maintaining The Data Base

Once the log file has been processed, it will look for the next log file in the log set. If it is still logging to
that next log file on the primary system, the user is prompted by DBRECOV to CONTINUE or STOP. At
this point, recovery can be stopped and the secondary data base can be stored and await the arrival of the
next log file at the end of the shift. Remember to store the RESTART file and the current, unprocessed
log files with the data bases.

Transferring Log Files

The :GETLOG AUTO option and :CHANGELOG provide the capability to schedule secondary system
backups through various methods of logging. The data base administrator can control the way the log
files are transferred from the primary system to the secondary system. The method chosen should depend
on the maintenance needs. Four ways of copying log files from the primary to the secondary system
follow:

1. Copying files over a direct DSLINE from the primary to the secondary system.

2. Logging to a serial disc and physically transporting the disc to the secondary system.

3. Logging to (private or system) disc and copying disc to tape and transporting the tape over to the
secondary system.

4. Logging directly to tape and mounting the tape on the secondary system.

DEC 85
7-44

THE DSUNE
PRIMARY
SYSTEM

Users

Application
Programs

I
e!!d

DSUNE

SECONDARY
SYSTEM

DBRECOV

I
~

I

Using the DSCOPY program, you con transfer your log
flies from the primary system to the secondary
system.

DISC TO TAPE

PRIMARY
SYSTEM

Users

Application
Programs

I
~

I
~

I

SECONDARY
SYSTEM

DBRECOV

8---'
Once a log file is dosed it con be copied from disc
to tape. RESTORE the log files from tape to the
secondary system and run DBRECOV. Meanwhile
logging con continue to disc on the primary system.

Maintaining The Data Base

PRIVATE DISC VOLUMES
PRIMARY
SYSTEM

Users

Application
Programs

I
e!fJ
[w]

SECONDARY
SYSTEM

DBRECOV

I
~
[w J

I
~

Rel'l'l()voble Oise Volum~

You can copy o closed 109 file to o private volume
and move it from the primory system to the
secondory system. Run OBRECOV on the secondary
system using the log file on the private volume.

DIRECT TO TAPE

PRIMARY
SYSTEM

Users

Application
Programs

SECONDARY
SYSTEM

DBRECOV

I
~

When lo99in9 directly to tape, you must mount o new
lope whenever the log file closes or end-of-tape is
reached. Otherwise, those transactions which
overflow the log file buffer in memory will be lost.

Figure 7-4. Transferring Log Files to the Secondary System

DEC 85
7-45

Maintaining The Data Base

Performing DBRECOV STOP-REST ART

After the mirror data base system is set up the DBRECOV STOP-RESTART feature is used to maintain
the secondary data base. To start the initial DBRECOV procedure, the user must make sure logging is
enabled on the primary system and that either the MPE GETLOG AUTO option or CHANGELOG is
being used. For more information on logging options refer to "Installing Logging" and "Maintaining
Logging" earlier in this section. Appendix G provides a brief outline of logging to disc and logging to
tape.

STOPPING DRRECOV

DBRECOV will roll forward all log files in the log set on the secondary system, one at a time. When
DBRECOV cannot find the next log file in a log set, it will print this message on the console:

DBRECOV - Reply CON or STOP when filexxx is ready.

A message for tl}.e user is displayed in the $STDLIST file:

UNABLE TO OPEN LOG FILE filexxx
REPLY 'CONTINUE' OR 'STOP' ON CONSOLE.

The f ilexxx is the log file that DBRECOV is trying to find. If that log file has been closed on the
primary system and is ready to be moved over to the secondary system, transfer it to the secondary system
and reply CON or CONTINUE on the console. DBRECOV will look for f i lex xx again. The
roll-forward process will continue as long as the next log file has been copied over correctly and is
available to DBRECOV.

The next log file may not be ready yet. For example, the primary system might still be logging
transactions, the log file might have been renamed, or it might be on a tape that was not mounted. This
provides an opportunity to STOP recovery and perform maintenance on the data base. (Refer to "Storing
The Data Bases" on the next page.) To stop recovery simply reply STOP at the console. A list of the data
bases involved in recovery are displayed in the $STDLIST file. At this point, DBRECOV creates a
RESTART file containing all the necessary information to continue the recovery process when the
RESTART option is requested.

DATA BASE(S) WITH RECOVERY SUSPENDED:
base 1.group.aoot
base2.group.aoot

This is a list of the data bases that are in the RESTART file. These data base names are specified later on
when either the RESTART or ABORT options are used. The RESTART file name is the same as the logid
name entered when logging was enabled on the primary system.

DEC 85
7-46

Maintaining The Data Base

DBRECOV will then print the name of the log file it will need to restart recovery, the record number at
which the quiet block begins in the current log file, the number of records currently in the staging file,
and the actual file name of the RESTART file for that recovery process:

RESTART RECOVERY WITH LOG FILE: filexxx
QUIET BLOCK BEGINS AT RECORD recordnumber
NUMBER OF RECORDS IN STAGING FILE numrecs
RESTART FILE NAME: filename

The user is returned to MPE. DBUTIL >>SHOW data base name FLAGS displays the recovery state,
whether the data base in recovery has been set for RESTART.

When running multiple recovery processes from the same log file the user needs to equate the logid, which
is the formal file designator for the RESTART file, to a unique file name for each recovery process. The
new file name is the RESTART FILE NAME for that specific recovery process.

STORING THE DATA BASES

The data bases can be backed up at this time. It is important to store all files involved in recovery since
the last successful RESTART. In other words the data base administrator should store the data bases, the
current REST ART file, and all log files that were processed since the last successful
DBRECOV,RESTAR T. If the RESTART file is not stored with the data base backups, it will be modified
once recovery is restarted. Without the previous RESTART file or the log files, the backup data bases
cannot be used to RESTART recovery in case the current RESTART fails.

The RESTART file and the data bases have time stamps inside them which tell DBRECOV which
RESTART file goes with which data bases. Once DBRECOV is restarted, the time stamp in the RESTART
file is changed. If the RESTART file is not stored, the time stamps will not match, and the RESTART
will not be successful.

The method used to store the data bases, RESTART file, and log files depends on the medium that the user
is logging to.

If logging to tape, the log files are already stored on a transportable medium and backing them up is not
necessary. However, the user must keep the log files grouped with the data base and RESTART file
backups. If recovery must be restarted from a backup, the user will need to restore the tapes containing:

• the data bases

• the RESTART file

• all log files processed since the last successful RESTART

DEC 85
7-47

Maintaining The Data Base

If the user does not keep track of which log files go with which data bases, the RESTART of recovery
from the backups is not possible.

If logging to disc, remember to store the log files that were rolled forward since the last successful restart
along with the REST ART file and the data bases. Logging to disc makes it easier to keep the log files
grouped with the data bases and RESTART file because all the log files can be stored at the same time
when recovery is stopped. Use an MPE STORE with the 11@11 option (rather than a DBSTORE) to backup
all the files on a minimum number of tapes. If it 1s necessary to restart from a backup all the necessary
files will be together.

Using naming conventions makes storing the files to tape much easier. The logging naming conventions
should be used. For example, if the data base is ORDERS, name the logid ORDERRS (RS for RESTART),
and the log file ORDEROOl. The user can MPE STORE all the files with one command: ":STORE
ORDER@".

NOTE

To a void incompatible time stamps it is important to store the RESTART
file at the same time that the data bases are stored. If logging to disc, also
make sure to store all log files processed since the last successful restart.

RESTARTING DBRECOV

To RESTART the recovery process after the next log file in the set is transferred, or the data base
maintenance is completed, type the run command:

:RUN DBRECOV.PUB.SYS,RESTART

DBRECOV will request the name of one of the data bases in the RESTART file:

WHICH DATA BASE?

If the user types in the name of a nonexistent data base, another prompt for the data base in the
RESTART file will appear. Once again enter the name of a data base in the RESTART file. From the
data base name that is entered, DBRECOV determines the name of the RESTART file, tries to open it, and
restart the recovery process. If the RESTART file is successfully opened, but is not a RESTART file the
following error message is printed:

filename is not a DBRECOV RESTART file.

and returns the user to the MPE prompt. This error usually occurs when another file with the same name
as the RESTART file has been created on the system. Make sure the file is a RESTART file, and try the
RESTART again.

If the RESTART file cannot be located, go back to the previous tape, restore the data bases, which should
have their own RESTART file and log files stored with them, and run DBRECOV,REST ART from that
point. The log files between the previous and the current STOP point will be reprocessed and the
roll-forward process will continue with the current log file.

DEC 85
7-48

Maintaining The Data Base

When the correct RESTART file is opened, DBRECOV will look at the file to make sure that the version
numbers are compatible with the version of DBRECOV being run. If the version numbers do not match,
DBRECOV will print the error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV

and the user is returned to the MPE prompt. This message means that another version of DBRECOV is
running other than the version which created the current RESTART file. Install the correct version of
TurbolMAGE and run DBRECOV,RESTART again.

If the user logon is not the same as the logon when DBRECOV was suspended, the following message is
printed:

must be logged on as same user and account where DBRECOV was suspended.

Log on as the same user and account that was used when DBRECOV was originally suspended and run
DBRECOV again.

Once the RESTART file is opened, DBRECOV will try to open all data bases identified in the RESTART
file. For each data base that cannot be opened, DBRECOV will display the message:

Can't re-open DATABASE basename

RESTART will be terminated and the user is returned to the MPE prompt. Make sure the correct data
bases are on the system. If the data bases are the correct ones, but they still cannot be opened, use the
DBRECOV,ABOR T command and RESTART recovery from the previous STOP point.

When all the data bases have been opened, DBRECOV then checks to make sure all the data bases in the
RESTART file are set for RESTART. When DBRECOV encounters a data base not in RESTART mode it
displays the message:

DATA BASE basename IS NOT IN RESTART MODE.
RESTART TERMINATED.

RESTART is terminated and the user is returned to the MPE prompt. Make sure the correct data bases
are loaded on the system. If the data bases are the correct, but RESTART is still unaccepted recovery, use
the DBRECOV,ABOR T command and RESTART from the previous STOP point.

The following options should be used to start the recovery process again:

• Find out why the data bases are not in RESTART mode and try to correct the problem. If the problem
is irretrievable then take either of the following steps:

1. Go to the previous STOP point and use the data bases and RESTART file stored to restart
roll-forward recovery.

2. ABORT the current RESTART process. Disable user access on the primary data bases and make a
copy for the secondary system. Begin a new logging process on the primary system and a new
recovery process on the secondary system.

DEC 85
7-49

Maintaining The Data Base

If all data bases are found, and they are in RESTART mode, then the time stamps in the data base root
file will be compared to the time stamp in the RESTART file. If they do not agree, the following
DBRECOV error message is printed:

RESTART TIME STAMPS DON'T AGREE WITH DATA BASE TIME STAMPS

This indicates incompatibility of the RESTART file and the data bases The user is returned to the MPE
prompt. Use the same steps given above to recover from a time stamp error.

Once all the compatibility checks have passed, DBRECOV will print a table of the data bases to be
recovered:

DATA BASE(S) TO BE RESTARTED:
base1. group. acct
base2.group.acct

The user is then be prompted to confirm the restart:

CONTINUE WITH RECOVERY (N/Y)?

Respond 11Y11 or 11YES11 to continue, or type 11 N11 or 11 N011 (or carriage return) to return to the STOP point. If
any of the data bases cannot be opened during recovery, an MPE file error is returned and DBRECOV
RESTART is terminated. When this happens, go back to the previous STOP point and use the data bases,
log files, and the RESTART file to RESTART recovery.

ABORTING DBRECOV

If a log file in the log set has been damaged or the user cannot RESTART recovery for any reason,
ABORT the current recovery process and begin the mirror data base process again. Once the recovery
process terminates, the user is returned to the MPE prompt. There are two ways of continuing to mirror
the data bases:

1. Go to the previous STOP point and use the data bases, log files, and RESTART file stored to restart
roll-forward recovery. This option is not valid if there is a missing or damaged log file.

2. Disable user access on the primary data bases and make a copy for the secondary system. Begin a new
logging process on the primary system and a new recovery process on the secondary system.

DEC 85
7-50

WARNING

When recovery is aborted, the current RESTART file is purged and
RESTART must be done from the previous STOP point.

Maintaining The Data Base

To run the ABORT option:

:RUN DBRECOV.PUB.SYS,ABORT

Just like the RESTART option the prompt for a data base in the RESTART file appears:

WHICH DATA BASE?

If the name of a nonexistent data base is entered an error message is printed and the user is prompted once
again to enter the name of a data base in the RESTART file. From the data base entered, DBRECOV
determines the name of the RESTART file and tries to open it. If the file is opened and is not a
REST ART file the following DBRECOV error message is printed:

file name is not a DBRECOV RESTART file.

and the user is returned to the MPE prompt. This error usually occurs when another file has the same
name as the RESTART file has been created on the system. Make sure the file is a RESTART file and try
running DBRECOV,ABORT again.

When the correct RESTART file is opened, DBRECOV will look at the file to make sure that it has the
same version numbers as the version of DBRECOV being run. If the version numbers do not match then
DBRECOV will print the error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV

and the MPE prompt is returned. This message means another version DBRECOV is running other than
the version that created the current RESTART file. Install the correct version of TurboIMAGE and run
DBRECOV,ABORT again.

If the user logon is not the same as the logon when DBRECOV was suspended, the following message is
printed:

must be logged on as same user and account where DBRECOV was suspended.

Log on as the same user and account that was used when DBRECOV was originally suspended and run
DBRECOV again.

When the RESTART file is successfully opened, DBRECOV will identify all the data bases in the
RESTART file, and verify that they are in restart mode. DBRECOV will then check the time stamps in
the RESTART file and the data bases to make sure they match. If the time stamps do not match, the
following message is printed:

RESTART TIME STAMPS DON'T AGREE WITH DATA BASE TIME STAMPS

This indicates incompatibility of the RESTART file with the data bases. The MPE prompt is returned.
Locate the correct RESTART file, and run DBRECOV,ABOR T again.

DEC 85
7-51

Maintaining The Data Base

Once the RESTART file is opened, DBRECOV will try to open all data bases identified in the RESTART
file. For each data base that cannot be opened, DBRECOV will display the message:

Can't re-open DATABASE basename
CONTINUE WITH ABORT (N/~--

DBRECOV then allows the user to double check to be sure that the ABORT is desired. If not all data
bases are in the RESTART file, it may mean that this a different set of data bases. Respond 11Y11 or 11 YES11

to continue the ABORT, and 11 N11
,

11 N011 (or a carriage return) to stop the ABORT.

DBRECOV then checks to make sure all the data bases in the RESTART file are set for RESTART.
When DBRECOV encounters a data base not in RESTART mode it prompts:

DATA BASE basename IS NOT IN RESTART MODE

CONTINUE (N/Y)?

Respond "Y" or 11YES11 to continue the ABORT, and 11 N11
,

11 N011 (or a carriage return) to stop the ABORT.

Once all compatibility checks have passed, DBRECOV will display all data bases in the RESTART file:

DATA BASE(S) WITH RECOVERY TO BE ABORTED:
base1. group. acct
base2.group.acct

If not all of the data bases can be opened, DBRECOV prints an MPE file error and prompts the user to
continue with the ABORT:

CONTINUE WITH ABORT (N/Y)?

Respond 11 Y11 or 11 YES11 to continue the ABORT, and 11 N11
, "NO" (or a carriage return) to stop the ABORT.

Once ABORT is successfully completed, the current RESTART file is purged and the MPE prompt is
returned. The user can issue a DBUTIL >>SHOW command. The RESTART flag is disabled and the data
base access flag has been reset to what it was before DBRECOV was run.

DEC 85
7-52

Maintaining The Data Base

PURGING A RESTART FILE

If the RESTART option fails at the current STOP point, the user can ABORT the current recovery process
and RESTART the data bases from the previous STOP point. However, if the ABORT option fails the
DBRECOV,PURGE command can be used as a last resort to delete the useless RESTART file before
restarting with a backup of the data bases and RESTART file.

WARNING

When using PURGE on a RESTART file, RESTART must be done from
the previous STOP point.

:RUN DBRECOV.PUB.SYS,PURGE

DBRECOV will prompt you for the name of the RESTART file:

ENTER RESTART FILENAME?

Enter the file name displayed when DBRECOV was stopped. DBRECOV will open the file and verify
that it is actually a RESTART file. If DBRECOV is unable to open the RESTART file, an error message
is printed and DBRECOV is terminated. The user can either determine that the file is not a RESTART
file and delete it, or can RESTART recovery from a previous STOP point. When a RESTART file is
restored from a backup, the previous RESTART file writes over the current RESTART file.

If the RESTART file is successfully opened, DBRECOV will display the table of data bases m the
RESTART file:

RESTART FILE CONTAINS FOLLOWING DATA BASE(S):
base1.group.acct
base2.group.acct

All the data bases will be opened, and DBRECOV will check if they are all enabled for RESTART. If
they are all in RESTART mode, the following message is printed and DBRECOV is terminated:

DATA BASE base1.group.acct IS IN RESTART MODE.
DATA BASE base2.group.acct IS IN RESTART MODE.
RECOVERY SUSPENDED - USE DBRECOV,ABORT TO ABORT RECOVERY.

Run DBRECOV,ABORT to purge the RESTART file.

DEC 85
7-53

Maintaining The Data Base

If none of the data bases in the RESTART file are set for RESTART, the RESTART file will be purged
with no further confirmation.

If some of the data bases are not found it will prompt for confirmation to purge the RESTART file:

Can't re-open DATABASE basename.
CONTINUE WITH PURGE (N/Y)?

DBRECOV allows the user to double check to be sure that purging this recovery process is desired. If not
all data bases are in the RESTART file, it may mean that this is a different set of data bases.

Respond "Y11 or 11 YES11 to purge the RESTART file, or 11 N11
,

11 N011
, (or carriage return) to stop.

Occasionally, DBRECOV can terminate abnormally due to a bad log file in the log set or a system failure.
If the user cannot RESTART recovery from the previous STOP point because of a damaged or missing log
file, PURGE the current RESTART file and begin the mirror recovery process again. There are four
basic steps to reestablishing the mirror data base system after an abnormal termination of DBRECOV:

• Disable user access on the primary system and store the data bases from the primary system.

• Purge the data bases on the secondary system.

• Restore the data bases from the primary system onto the secondary system.

• Start a new log set, enable user access on the primary system and start roll-forward recovery on the
secondary system.

DEC 85
7-54

~us_1_NG~T-HE-~D-AT-A--BA_s_E~~~~~~l~'8"''''1 _UTILITIES .

The TurboIMAGE utility programs are used to create and initialize the data base files and perform
various maintenance functions. This section discusses the various utility programs and details the syntax
of each utility.

The data base creator is defined by the logon group and account that was used when the Schema Processor
created the root file. To execute the DBUTIL >>CREA TE command or to change or remove the
maintenance word with the DBUTIL >>SET command, the user must be the data base creator. To operate
the other utility programs or to enter other DBUTIL commands, the user need not be the data base creator
provided they know the maintenance word. If no maintenance word is defined, only the data base creator
can execute the other utility programs and the DBUTIL commands that require a maintenance word.

Here is a brief summary of the utility routines and their functions.

PROGRAM

DBLOAD

DBRECOV *

DBRESTOR

DBSTORE

DB UNLOAD

Table 8-1. IMAGE Utility Programs

COMMANDS

CONTROL

EXIT

FILE

PRINT

RECOVER
ROLLBACK
RUN

FUNCTION

Loads data entries copied by DBUNLOAD back into the
data sets.

Controls various options which affect execution of
DBRECOV.
Terminates DBRECOV without re-executing any
transactions.
Routes log records to individual user files and returns
information about recovery.
Prints information about data bases or user files specified
for recovery.
Designates name of data base to be roll-forward recovered.
Defines name of data base to be roll-back recovered.
Initiates recovery process.

Copies the data base to disc from magnetic tape or serial
disc volumes created by DBSTORE, or the MPE :STORE
or :SYSDUMP commands.

Copies entire data base including root file and ILR log file
to magnetic tape or serial disc volumes.

Copies data entries to specially formatted magnetic tape or
serial disc volumes; arranges entries in each data set so that
chained access along the primary path is more efficient.

DEC 85
8-1

Using the Data Base Utilities

Table 8-1. IMAGE Utility Programs (continued)

PROGRAM COMMANDS FUNCTION

DBUTIL ACTIVATE Prepares a data-base-access file used when accessing a
remote data base.

CREATE Creates and initializes a data base file for each data set.
DEACTIVATE Deactivates a data - base-access file.
DISABLE Disables logging, roll -forward recovery, roll - back

recovery, ILR, autodefer, access and dumping options.
ENABLE Enables logging, roll-forward recovery, roll-back

recovery, ILR, autodefer, access and dumping options.

ERASE Erases existing data entries from all data sets. Used
before loading stored data entries back into the data base.

EXIT Terminates DBUTIL program execution.
HELP Provides description of all other DBUTIL commands.
MOVE Moves TurbolMAGE files across devices.
PURGE Purges entire data base including root file, ILR log file, and

data set files. Used before restoring a stored data base
and before creating a new, restructured data base.

RELEASE Suspends security provisions for the root file and data
set files.

SECURE Restores security provisions suspended by RELEASE
command.

SET Changes or removes the maintenance word, specifies
numbers of buffers to be used, stores log identifier
and password in to root file. Changes the Native
Language of the data base.

SHOW Used to display information about data base maintenance.
VERIFY Used to determine whether a data-base-access file is

activated or deactivated.

*Refer to DBRECOV in this section for valid options when executing this program.

DEC 85
8-2

Using the Data Base Utilities

UTILITY PROGRAM OPERATION

The utility programs may be run in either job or session mode. DBUTIL, DBSTORE, DBRESTOR,
DBUNLOAD, and DBLOAD all require the user to be logged on under the group and account which
contains the data base root file. Consequently, these programs may not be used with a remote data base
unless you initiate a remote session and run the utility as part of that session. These programs do not
allow you to use the :FILE command to equate a data base or data-base-access file to a different file.

DBRECOV is an exception, since :FILE commands are permissible, and since you need not be logged on
under the same group and account as the data base root file. However, DBRECOV has the same remote
session requirement for remote data base access as the other utility programs.

To execute the DBUTIL >>CREA TE command or to change or remove the maintenance word with the
DBUTIL >>SET command, you must log on with the same user name that was used when the Schema
Processor created the root file; this verifies to TurboIMAGE that you are the data base creator. To
operate the other utility programs or enter other DBUTIL commands, you need not be the data base
creator provided you know the maintenance word. If no maintenance word is defined, only the data base
creator can execute the other utility programs and the DBUTIL commands that require a maintenance
word.

NOTE

To maintain compatibility with earlier versions of DBUTIL, · the
>>CREATE, >>ERASE, and >>PURGE commands may also be executed by
specifying them as DBUTIL entry points.

Backup Files

The backup files created by DBSTORE and DBUNLOAD may be written to magnetic tape or serial disc
volumes. In the discussion of the utility programs that follows, the term volume refers to either a
magnetic reel or a serial disc pack.

Error Messages

Some of the error messages are described with the operating instructions for the utility programs.
Appendix A contains a complete summary of the error messages issued by these programs.

DEC 85
8-3

DBLOAD

Loads data entries from the backup volume(s) created by the DBUNLOAD program into data sets of the
data base.

Operation

1 :FILE DBLOAD[=filename] [;DEV=de~ioe]]

2 :RUN DBLOAD.PUB.SYS

3 WHICH DATA BASE? data base name [/rraintenanoe word]

WARNING: The LANGUAGE of the data base is DIFFERENT from
the language found on the DBLOAD MEDIA.

Continue DBLOAD operation? (Y/N)

4 DATA SET n: x ENTRIES

5 END OF VOLUME m,y READ ERRORS RECOVERED
6 DBLOAD OPERATION COMPLETED

END OF PROGRAM

(Refer to the following page for Operation Discussion.)

The volume(s) must have been produced by the DBUNLOAD program, and the data base name on the
volume must be exactly the same as the data base name, or root file name, in the current session or in the
group and account of the job. DBLOAD issues an error message if the data base name or maintenance
word specified is different from the UNLOAD file. In addition, DBLOAD checks that the group and
account specified is the same as that in the DBUNLOAD file. To reload the identical data into the data
base, the DBUTIL >>ERASE command must be used prior to DBLOAD unless the data base has been
purged and recreated. Executing DBUTIL in this way reinitializes the data sets to an empty state while
keeping the root file and data sets as catalogued MPE files on the disc.

DBLOAD reads each entry from the backup volume and puts it into the respective data set from which it
was read by DBUNLOAD. If a data set in the receiving data base is an automatic master, no entries are
directly put into it by DBLOAD, even though there are entries on the volume associated with the data
set's number. Automatic master entries are created as needed in the normal fashion when entries are put
into the detail data sets related to the automatic master.

DBLOAD calls the DBPUT procedure to put the entries read from the backup volume into the appropriate
data sets. In every case, the DBPUT dset parameter is a data set number and the list parameter is @;.
Prior to calling DBPUT, DBLOAD moves each entry from the backup volume into a buffer. The length
of the entry is determined by the definition of entries in the target data set. When DBLOAD is calling
DBPUT, this length is less than, equal to, or greater than the length of an entry on the backup volume. If
the data set entry is larger than the backup entry, the data is left-justified and is padded out to the
maximum entry length with binary zeros. If the data entry is smaller than the backup entry, the backup
volume record is truncated on the right and the truncated data is lost.

DEC 85
8-4

DBLOAD

The location of master set entries is based on their search item value which is hashed to an internal
location. The detail data set entries are put into consecutive data set records with the appropriate new
chain pointer information.

DBLOAD requires exclusive access to the data base. If the data base is already open to any other process,
DBLOAD terminates and prints the message: DATA BASE IN USE.

Parameters

filename is the name (up to 8 characters) that replaces DBLOAD m the mount
request at the operator's console.

device is the device class name of the device from which the data entries are to be
loaded.

data base name is the name of a TurbolMAGE data base root file catalogued in the current
session or job's account and log on group.

m:iintenance word is the maintenance word defined by the data base creator. This word must
be supplied by anyone other than the data base creator.

n

m

is the number of the last data set loaded from the backup volume.

is the number of entries loaded into the specified data set. xis zero if the
data set is an automatic master. Note: this number may not represent the
total number of records in the data set if entries existed prior to DBLOAD
execution.

is the volume number.

is the number of read errors from which DBLOAD recovered.

Operation Discussion

1 Is an optional file equation which specifies the device class name for the device from which the data
entries are to be loaded. The default is device class TAPE.

2 Initiates execution of the DBLOAD program which is in the PUB group and SYS account.

3 In session mode, DBLOAD prompts for the data base name and maintenance word. In job mode, the
data base name and maintenance word, if any, must be in the record immediately following the
:RUN command.

The language ID of the data base is stored along with data when DBUNLOAD has been used to copy
the data base to tape or disc. If the data base native language (on disc) is not consistent with the
system level native language (on tape), the following message will appear (ref er to Table A-8,
Appendix A for more information):

WARNING: The LANGUAGE of the data base is DIFFERENT from
the language found on the DBLOAD MEDIA.

Continue DBLOAD operation? (Y/N):

DEC 85
8-5

DBLOAD

4 After each data set is copied, DBLOAD prints a message on the listfile device which includes the
data set number and the number of entries copied.

5 When the end of a volume is encountered, DBLOAD prints a message (where n is the logical device
number of the unit, XXXX is the data base name, and y is the volume number). DBLOAD also
instructs the operator to mount a new tape with the following message on the system console:

MOUNT DBLOAD VOLUME XXXXy ON LOGICAL DEVICE n

If the operator mounts the wrong volume, DBLOAD informs the operator with the following
message (where n is the logical device number):

WRONG VOLUME MOUNTED ON LOGICAL DEVICE n

DBLOAD then terminates and you must begin loading the data base again. This may require
running DBUTIL, >>ERASE again if any entries have already been loaded.

6 After the data entries have been successfully loaded, DBLOAD prints a completion message.

CONSOLE MESSAGES

After you supply the data base name and DBLOAD opens the input file, a message is displayed on the
system console. A tape or serial disc must be mounted on the appropriate unit and identified through an
operator reply. Refer to the Console Operator's Guide for instructions about console interaction.

USING CONTROL Y

When executing DBLOAD in session mode, Control Y can be pressed to request the approximate number
of entries in the current data set that have already been copied. DBLOAD prints the following message
on $STDLIST:

<CONTROL Y> DATA SET n:x ENTRIES HAVE BEEN PROCESSED

Example

DEC 85
8-6

:RUN DBLOAD.PUB.SYS

WHICH DATA BASE? ORDERS/SELL
DATA SET 1: 19 ENTRIES
DATA SET 2: AUTOMATIC MASTER
DATA SET 3: 25 ENTRIES
DATA SET 4: 12 ENTRIES
DATA SET 5: 32 ENTRIES
DATA SET 6: 258 ENTRIES
END OF VOLUME 1, 0 READ ERRORS RECOVERED
DATA BASE LOADED

END OF PROGRAM

DBLOAD

Initiate execution of DBLOAD. Supply the data base name and maintenance word. DBLOAD indicates
the number of entries copied. Note that data set 2 is an automatic master so 0 entries are copied; the
entries are created as related detai1 entries are copied to the data base.

One volume was copied with no read errors.

NOTE

For optimum performance, DBLOAD uses a special 11output deferred" mode
of operation when it adds entries to a data base. In this mode, data and
structural information may not be written back to disc each time DBPUT
returns to the DBLOAD program. As a result, the data base is not
considered to be logically or structurally complete on disc until the
DBLOAD is complete. During DBLOAD the data base being loaded is
marked "bad" and only at the completion of a DBLOAD run is the data base
marked 11good11 again.

If during a load, an MPE or hardware crash occurs, the data base is
definitely not structurally intact, and it returns its "bad" flag. After the
system is brought back up, TurbolMAGE does not allow the data base to be
opened for normal access. If you get a "bad" data base error in such a
situation, erase the data base with DBUTIL and then perform the load
again. (For more information on the error message "Bad Data Base" refer to
Table A-9, Appendix A). Alternatively, the data base may be purged with
DBUTIL and then restored from a backup copy. A "bad" data base may
also be stored, restored, or unloaded (in serial mode only).

Text Reference

Section 7

DEC 85
8-7

DBRECOV

The DBRECOV program usually is executed after a data base backup copy has been restored by running
DBRESTOR in the event of a system failure. DBRECOV reads the logfile containing records of all data
base modifications and re-executes the transactions against the restored data base. The DBRECOV file
facility enables individual users to be informed of the extent of recovery. (For more information on
Roll-Back Recovery, Roll-Forward Recovery and DBRECOV STOP-RESTART refer to Section 7.)

DBRECOV has been modified to make a mirror data base on a secondary system a workable maintenance
method. The options used with DBRECOV for this type of recovery and maintenance method are
RESTART, ABORT and PURGE. Example 4 shows a mirror data base maintenance step by step.

The commands associated with DBRECOV are >CONTROL, >EXIT, >FILE, >PRINT >RECOVER,
>ROLLBACK and >RUN. Each command is discussed separately on the following pages.

Operation

:RUN DBRECOV.PUB.SYS [,OPTION]

Options

RESTART

ABORT

PURGE

will restart the roll-forward recovery process. Information in the
RESTART file is used by DBRECOV to restart recovery from the point it
was stopped.

purges the RESTART file and returns the flags to the same settings as
before the recovery process was started.

deletes the current RESTART file before beginning the mirror data base
process again. PURGE can also be used if ABORT fails to abort recovery
(possibly due to an inconsistent RESTART file).

Initiates execution of the DBRECOV program which is in the PUB group and SYS account. The recovery
system will print a header indicating the version, date and time. It will then prompt for a command
input.

DEC 85
8-8

Example 1

Roll-forward recovery of data base ORDERS.

:RUN DBRECOV.PUB.SYS
>RECOVER ORDERS
DATABASE ORDERS LAST DBSTORED MON, DEC 10, 1984, 8:30 AM
>RUN

Example 2

DBRECOV

Roll-forward recovery of multiple data bases ORDERS and RETAIL. PART and SALES are filenames,
ADMIN and MKTG are accounts. The first 2 is the rmode and the second 2 is the fmode.

:RUN DBRECOV.PUB.SYS
>RECOVER ORDERS
DATABASE ORDERS LAST DBSTORED THURS, DEC 13, 1984, 6:40 PM
>CONTROL NOSTORE
>RECOVER RETAIL
DATABASE RETAIL LAST DBSTORED THURS, DEC 13, 1984, 6:40 PM
>FILE PART,JOHN.ADMIN
>FILE SALES,MARY.MKTG,2,2
>RUN

Example 3

Roll-back recovery of multiple data bases ORDERS and RETAIL.

:RUN DBRECOV.PUB.SYS
>CONTROL NOABORTS
>ROLLBACK ORDERS,RETAIL
DATABASE ORDERS LAST USED MON, DEC 3, 1984, 6:00 PM
DATABASE RETAIL LAST USED TUE, DEC 4, 1984, 8:00 AM
>RUN

DEC 85
8-9

DBRECOV

Example 4

DBRECOV STOP-RESTART recovery on data base ORDERS. The following recovery process is done on
a secondary system with the mirror data base maintenance and recovery process. The following example
begins with a prompt for the user to continue or stop the roll-forward recovery process on the secondary
system. When DBRECOV cannot find the next log file, the user can stop the recovery process and backup
the secondary system.

UNABLE TO OPEN LOG FILE ORDER005
REPLY 'CONTINUE' OR 'STOP' ON CONSOLE.

STOP

DATA BASE(S) WITH RECOVERY SUSPENDED:
ORDERS.DATAMGT.ADMIN

RESTART RECOVERY WITH LOG FILE: ORDEROOS
QUIET BLOCK BEGINS AT RECORD 1005
NUMBER OF RECORDS IN STAGING DISC 1810
RESTART FILE NAME: ORDERLOG
:FILE STORE=L;DEV=TAPE
:STORE ORDER@;*L

:RUN DBRECOV.PUB.SYS,RESTART
WHICH DATA BASE? ORDERS

DATA BASE(S) TO BE RESTARTED:
ORDERS.DATAMGT.ADMIN

CONTINUE WITH RECOVERY (N/Y)? Y

Text Reference

Section 7

DEC 85
8-10

DBRECOV
>CONTROL

Used to control various options which affect the execution of DBRECOV. The options are STAMP,
NOSTAMP, STORE, NOSTORE, ABORTS, NOABORTS, UNEND, NOUNEND, STOPTIME, ERRORS,
STATS, NOSTATS, rvtODEX, MODE4, and EOF.

Syntax

>CONTROL pa ram [, param . ..]

If the >CONTROL command is not called, the following default conditions apply:

STAMP

STORE

ABORTS

NOUN END

ERRORS=nnnn

MODEX

NOST ATS

STOPTIME

EOF=nnnn

is the data base timestamp and must correspond with those written to the
logfile.

is the DBSTORE flag set in the data base root file.

causes transactions which failed to complete due to a program abort to be
recovered.

suppresses the posting of transactions which did not complete or abort prior
to a system failure.

during job (batch) execution allows no errors (recovery fails).

DBRECOV proceeds with exclusive access to the data base, m output
deferred mode (see discussion under DBCONTROL in Section S).

if the data base is not recovered, no tabulated information will be printed.

DBRECOV will not check log record timestamps.

DBRECOV will recover all log records.

The >CONTROL command is used to override the default conditions.

If a particular parameter is not specified within a >CONTROL command, the default condition remains in
effect. Any number of parameters can be named in any order, but if more than one condition is specified
for one parameter, the last condition entered applies. For example:

>CONTROL NOSTAMP, STAMP
or

>CONTROL NOSTAMP
>CONTROL STAMP

In both cases, the STAMP condition cancels the previous NOSTAMP. Recovery proceeds with the
timestamp check intact.

If more than one data base is specified for simultaneous recovery, they are all governed by the same
>CONTROL options.

DEC 85
8-11

DBRECOV
>CONTROL
In the specifications below, default options are shown in [].

Parameters

[STAMP]

NOST AMP

[STORE]

NOS TORE

[ABORTS]

NOABORTS

(NOUNEND]

UN END

STOPTIME=rrrn/dd/yy
hh:mm

DEC 85
8-12

is the timestamp in the data base root file. It is compared with the
timestamp in each call to DBOPEN in the logfile. If the timestamps do not
match, DBRECOV returns an error message, and terminates recovery for
the offending data base.

disables the check of the data base and logfile timestamps. Allows recovery
to proceed regardless of the data base and logfile timestamps.

is the DBSTORE flag and is checked to insure that the data base has not
been modified between restoration and recovery. If the flag has been
cleared the >RECOVER command fails.

disables the check of the DBSTORE flag. Allows recovery to proceed
whether or not the DBSTORE flag is set. Useful when the data base has
been stored by :STORE or by :SYSDUMP rather than DBSTORE. Storing
the data base using :STORE or :SYSDUMP is not recommended.

when transactions do not complete due to a program abort, TurbolMAGE
appends a special DBEND to the logfile and considers the transactions
completed. This enables DBRECOV to recover these transactions and
thereby avoids suppressing all subsequent dependent transactions.

causes DBRECOV to suppress transactions not originally completed by user
programs. This option tells TurbolMAGE a user or program abort is
abnormal, or incomplete. NOABORTS should only be used if all data base
modifications were stopped immediately after the abort and recovery was
initiated. Otherwise, recovery may fail due to record table overflow (see
below). For more information on both ABORTS and NO ABORTS refer to
Section 7, "Program Abort and Recovery Considerations".

causes DBRECOV to suppress transactions which did not complete due to a
system failure. Recovery may fail due to a record table overflow (see next
page).

when transactions do not complete due to a system failure (logical
transactions which have a DBBEGIN but no corresponding DBEND or
DBABEND). These partial transactions are backed out instead of
recovered. This may cause the data base to be logically inconsistent. This
option can be used if a transaction stated early in the day and is still in
process before a system failure occurs or if a record table overflow occurs
during the DBRECOV process.

causes DBRECOV to impose an artificial end-of-file when the specified log
record timestamp (supplied by MPE) is encountered. All log records with
subsequent timestamps will not be recovered. (This feature is useful in the
event of a user program failure; the data base may be recovered to a point
in time before the suspect program began execution.)

Default condition: log record timestamps are not checked by DBRECOV.

ERRORS=nnnn

STATS

[NOSTATS]

[MODEX)

MODE4

EOF=nnnn

DBRECOV
>CONTROL

controls the maximum number of non-fatal errors allowed during a job
(batch) execution. Should nnnn be exceeded, DBRECOV terminates and sets
the job control word to -1 to indicate an error. However, this check does
not take effect until all commands have been parsed and processed.

Default condition: ERRORS=O. The number of errors allowed may be
altered by retyping the revised ERRORS parameter.

is used to obtain information from the logfile without actually recovering a
data base. Requires use of a file equation to specify the logfile.

EXAMPLE:

:FILE LOGFILE=ORDER001;DEV=TAPE;LABEL=LOG001
:RUN DBRECOV.PUB.SYS
>CONTROL STATS
>RUN

This example shows the logfile ORDEROO 1 residing on tape. The recovery
system responds by printing tabulated information from logfiles, similar to
tables printed after a data base recovery. However, no data bases are
actually opened or recovered.

negates the STATS option; tabulated information is not printed unless a
data base is recovered.

causes recovery to execute in exclusive (deferred) mode. No other users
may access the data base concurrent with recovery.

recovery proceeds in DBOPEN mode 4, allowing users in mode 6 to access
(read) the data base while recovery is in process.

causes DBRECOV to impose an artificial end-of-logfile when the specified
log record number is encountered. All log records with subsequent numbers
will not be recovered. (This feature is useful in the event of a user program
failure; the data base may be recovered up to a record number preceding
the suspect records. While logging is in progress, the MPE
:SHOWLOGST A TUS command may be used to determine the current
number of records logged before initiating a questionable program.)

Default condition: All log records are recovered by DBRECOV.

DEC 85
8-13

DBRECOV
>CONTROL

RECORD NUMBERS AND TABLE OVERFLOW

DBRECOV identifies detail records by their record number. Suppressing aborted or unended transactions
during recovery with the NOUNEND or NOABORTS options may cause subsequent detail calls to DBPUT
to use different record numbers. In order to change old record numbers into new ones, DBRECOV uses a
1000-entry internal record table. The record table provides a "before" and "after" location of the record
numbers for DBPUT calls. If more than 1000 detail records move into new locations, DBRECOV will
abort and issue this message:

RECORD TABLE OVERFLOW

To avoid table overflow when using the NOABORTS and NOUNEND options, the data base administrator
should halt all modifications against the data base and initiate recovery immediately after a user program
aborts.

Text Reference

Section 7

DEC 85
8-14

Used to terminate DBRECOV without recovering any data bases.

Syntax

>EXIT

Text Reference

Section 7

DBRECOV
>EXIT

DEC 85
8-15

DBRECOV
>FILE

Routes log records to individual user files, providing the application program with information about the
outcome of recovery; provides a useful tool for auditing previous entries. One file for each user can be
opened simultaneously by re-entering the >FILE command once for each user, or all users can be directed
to a single file.

Syntax

>FILE fileref,userref [,rmode,fmode]

Parameters

f ileref

userref

rmode

DEC 85
8-16

is an MPE f ilereference: filename [/lockword] [• group [.account]] • This
is the destination file for each user's log records.

is a user reference, specifying which user's log records to copy to this user
recovery file. The format is: username [/ident] .account.

The optional identifier, which also must be passed to DBOPEN as part of
the password parameter, uniquely identifies persons using the same logon.

is for roll-forward recovery only. Directs recovery system to return log
records associated with transactions successfully recovered. Rmode may
take one of the following values:

rmode=O

rmode=l

rmode=2

rmode=3

no records associated with recovered transactions are
returned. (Default value)

log records corresponding to the last successfully
recovered call to DBEND of each transaction block are
returned.

is the sequence of log records associated with the last
successfully recovered transaction of each transaction
block are returned. In addition, all DBMEMO log
records which immediately follow this transaction are
returned.

all log records associated with successfully recovered
transactions for each transaction block are returned.

f mode

DBRECOV
>FILE

directs recovery system to return log records associated with transactions
which failed to recover. Used with both roll-forward and roll-back
recovery.

WARNING

The (roll-forward) recovery system cannot
guarantee that all records associated with
unsuccessfully recovered transactions can be
returned, since log records which reside in
the log system's memory buffers are lost in
the event of a system failure.

Fmode may take one of the following values:

fmode=O

fmode=l

fmode=2

fmode=3

no records associated with failed transactions are
returned. (Default value)

log records corresponding to the first unsuccessfully
recovered call to DBBEGIN of each transaction block
are returned.

is the sequence of log records associated with the first
unsuccessfully recovered transaction of each
transaction block are returned.

all log records which could not be recovered are
returned.

The >FILE command copies qualified DBOPEN and DBCLOSE log records to each user's recovery file.
See "FILE COMMAND" in Section 7 for a full discussion qualifying the return of log records. The
optional rmode and /mode specify the copies of additional log records.

Once the >FILE command is entered, the user recovery file is opened and any existing records are deleted.
If the specified user file does not exist, an error is reported unless the file references the logon group and
account, in which case the file is automatically created. The state of a log record (either recovered or not)
is indicated by a flag word set by DBRECOV in the record itself. MPE WRITELOG records returned by
DBRECOV are variable length, since DBRECOV eliminates the continuation records by appending their
data to the original WRITELOG record. Consequently, DBRECOV will create recovery files with a
variable length record format. However, fixed length records are permitted if the file already exists or a
:FILE command is in effect. If a log record exceeds the record size of a user file with fixed length records,
the log record is truncated and an error message is printed.

DEC 85
8-17

DBRECOV
>FILE

Example

>FILE PART/MGR,MARY/TST.MKTG,2,2

PART is the filename. MGR is the lockword. MARY is the username and TST is the identifier. MKTG is
the account. The first 2 is the rmode and the second 2 is the fmode.

Note that the >FILE command is repeated for each recovery file to be created and for each user whose
records will be copied to a user recovery file.

Text Reference

Section 7

DEC 85
8-18

DBRECOV
>PRINT

Prints data bases specified for recovery (DBTABLE) or recovery files specified (FILETABLE). Can be used
as a check before actually initiating recovery with the >RUN command.

Syntax

{
DBTABLE }

>PRINT FILETABLE

Parameters

DBTABLE returns names of data bases specified for recovery

FI LETABLE returns filereferences, userreferences, rmodes and fmodes specified m
>FILE commands.

Example

>PRINT DBTABLE

**
*
*

DATA BASE STATISTICS *
* * NAME GROUP ACCOUNT OPENS TRANS PUTS DELETES UPDATES *

* ------- ------- *
* ORDERS TST MKG 2 576 576 0 0 *
**

Text Reference

Section 7

DEC 85
8-19

DBRECOV
>RECOVER

Used to designate the name of a data base to be roll-forward recovered; opens data base root file, validates
logid and password with MPE, checks DBSTORE flag. Multiple data bases may be roll-forward recovered
concurrently if they have all logged to the same logfile by retyping the RECOVER command once for
each data base or >RECOVER data base name, data base name.

Syntax

>RECOVER data base name[.group[.account]] [/m::cintenance word]

If the >RECOVER command is accepted, the following message is returned:

DATABASE data base name LAST DBSTORED day, date, time

The following conditions must be satisfied before the >RECOVER command will be accepted:

1. The data base must be accessible to the user (data base administrator) running DBRECOV. This user
must either be the creator of the data base or know the maintenance word. If the data base resides in a
group or account different from the user's logon, the MPE file security must permit the user read and
write access to the data base files.

2. The data base must be enabled for recovery.

3. The log identifier characteristics (name, password, logfile name and device type) must not have been
altered since the logfile was generated. This restriction applies to MPE log commands as well as those
provided for TurbolMAGE by DBUTIL. This is necessary since the MPE log identifier is used by
TurbolMAGE to obtain the name and device type of the logfile.

The >RECOVER command will not be accepted if the logid is unknown to MPE. However, if the logid
is known to MPE but specifies the wrong logfile, this condition is not sensed at this time and
>RECOVER will be accepted. DBRECOV will generate erroneous data in the data base if the data base
is recovered with the wrong log file.

4. The DBSTORE flag must be set, indicating that the data base has not been modified between
restoration and roll-forward recovery. This check can be overridden by the NOSTORE option of the
>CONTROL command.

5. No other users can be accessing the data base when >RECOVER is called. Exception: when MODE4
option of the >CONTROL command is specified, the data base may be concurrently accessed in Mode 6
(read only).

Note that the >RECOVER command itself does not initiate recovery, but makes several preparatory
checks. The recovery system is actually initiated by the >RUN command.

DEC 85
8-20

Example

>RECOVER ORDERS, RETAIL
DATABASE ORDERS LAST DBSTORED MON, DEC 3, 1984, 6:30 PM
DATABASE RETAIL LAST DBSTORED MON, DEC 4, 1984, 10:00 PM

"ORDERS" and "RETAIL" are data base names.

Text Reference

Section 7

DBRECOV
>RECOVER

DEC 85
8-21

DBRECOV
>ROLLBACK

Rolls out any incomplete transactions following a system crash. Multiple data bases may be roll-back
recovered concurrently by typing >ROLLBACK data base name, data base name.

Syntax

>ROLLBACK data base name[group[.account]] [/m:iintenance word]

Parameters

db name is the name of individual data base(s) to be rolled-back.

If the >ROLLBACK command is accepted, the following message is returned:

DATABASE data base name LAST USED day, date, time

The following conditions must be satisfied before the >ROLLBACK command will be accepted:

1. The data base must be accessible to the user (data base administrator) running DBRECOV. This user
must either be the creator of the data base or know the maintenance word. If the data base resides in a
group or account different from the user's logon, the MPE file security must permit the user read and
write access to the data base files.

2. The data base must have been enabled for roll-back recovery.

3. The log identifier characteristics (name, password, logfile name and device type) must not have been
altered since the logfile was generated. This restriction applies to MPE log commands as well as those
provided by TurbolMAGE by DBUTIL. This is necessary since the MPE log identifier is used by
TurboIMAGE to obtain the name and device of the logfile.

4. When roll-back is enabled, DBUTIL sets a roll-back flag to indicate that roll-back is enabled for the
data base. The roll-back time stamp is updated when the data base is first opened and is logged to the
log file. Roll -back recovery then uses the time stamp during recovery to verify the correct log file for
each data base.

5. No other users can be accessing the data base when >ROLLBACK is called. The data base may be
concurrently accessed by users when the >CONTROL command is specified with MODE4 option.

Note that the >ROLLBACK command itself does not initiate recovery, but makes several preparatory
checks. The recovery system is actually initiated by the >RUN command.

DEC 85
8-22

The following commands are used with roll-back:

>FILE
>PRINT
>CONTROL

The >FILE command optional parameter rmode is not used with >ROLLBACK.

The following >CONTROL options are not applicable with roll-back:

STAMP, NOSTAMP, STORE, NOSTORE, STOPTIME

Example

>CONTROL ·NOSTATS
>ROLLBACK ORDERS
DATABASE ORDERS LAST USED MON, DEC 10, 1984, 6:00 PM
>RUN

ORDERS is the data base name.

Text Reference

Section 7

DBRECOV
>ROLLBACK

DEC 85
8-23

DBRECOV
>RUN

Initiates recovery-process. The recovery system opens the logfile and validates the log identifier before
roll -forward recovery or roll - back recovery begins.

Syntax

>RUN

In order for recovery to succeed, the logfile must be accessible to the data base administrator. This means
that the data base administrator must either be the creator of the log identifier used to create the logfile,
or have system manager capability. If the data base administrator does not have system manager
capability, and if the logfile resides on disc in a group and account different from logon, then the
administrator must have read access to the logfile according to MPE file security. File equations are
permitted. However, the fully qualified file name of the expected logfile must be specified. If the logfile
resides on tape, the data base administrator must know the volume identifier, so that the operator may
respond to the logfile tape mount request.

If recovery succeeds, tabulated information is displayed and the program is terminated. A table of process
statistics includes the number of DBPUT, DBDELETE, DBUPDA TE log records processed and the total
transactions for each process.

When using roll-forward recovery an asterisk (*) may appear next to any process indicating that either a
DBCLOSE record is missing or some transactions(s) could not be recovered. Therefore, no asterisk for a
process in the table of process statistics indicates that all transactions were recovered.

The same table information is displayed when using roll-back recovery, however there is a slight
difference. The database table will list all incomplete transactions or DBPUT, DBDELETE, DBUPDATE
log records which which were 11rolled-out11

• An asterisk (*) will appear next to these processes.

A table of data base statistics includes the same information totaled for each data base. A logging system
table includes the log identifier, logfile information, and recovery file information if this facility is used.
Refer to 11Recovery Tables11 in Section 7 for more information on Process, Database, Logging and Recovery
Tables.

DEC 85
8-24

Example 1

Roll-forward recovery of data base ORDERS.

:RUN DBRECOV.PUB.SYS
>RECOVER ORDERS
DATABASE ORDERS LAST DBSTORED TUE, DEC 4, 1984, 4:00 PM
>RUN

Example 2

Roll-back recovery of data base ORDERS.

:RUN DBRECOV.PUB.SYS
>ROLLBACK ORDERS
DATABASE ORDERS LAST USED MON, DEC 10, 1984, 6:00 PM
>RUN

DBRECOV
>RUN

DEC 85
8-25

DBRESTOR

Copies a data base from the backup volume(s) created by the DBSTORF program, or the MPE :STORE or
:SYSDUMP commands, to disc.

Operation

1 [:FILE DBRESTOR [=filename][;DEV=devioe][;REC=reosize] [;{~~~UF }]]
2 :RUN DBRESTOR.PUB.SYS

3 WHICH DATA BASE? data base name [/rnaintenanoe word]
4 DATA BASE RESTORED

END OF PROGRAM

Parameters

filename

delJice

reosize

data base name

rnaintenanoe word

is a name (up to 8 characters) that replaces DBRESTOR in the mount prompt at
the operator's console.

is the device class name of the device from which the data base is to be
recorded.

is the record size of the record to be restored. recsize must be at least as large
as the record written to the device to avoid losing data.

is the name of a TurbolMAGE data base root file to be restored.

is the maintenance word defined by the data base creator. This word must be
supplied by anyone other than the data base creator.

Operation Discussion

1 Is an optional file equation which specifies the device class name for the device from which the data
base is to be restored, the record size of the records to be restored, and whether the records are
buffered or not. The default device class is TAPE.

2 Initiates execution of the DBRESTOR program which is in the PUB group and SYS account.

3 In session mode, DBRESTOR prompts for the data base name and maintenance word. In job mode,
the data base name and maintenance word, if any, must be in the record immediately following the
:RUN command.

4 After DBRESTOR has created the root file and data set files and restored the data to these files, it
prints a confirmation message. If Intrinsic Level Recovery (ILR) is enabled when you run DBSTORE,
DBSTORE stores the ILR file associated with the data base on the same tape or serial disc. When
the data base is restored with DBRESTOR, the ILR file is automatically restored along with the data
base.

DEC 85
8-26

DB RES TOR

CONSOLE MESSAGES

After you supply the data base name and DBRESTOR opens the input file, a message is displayed on the
system console. A tape or serial disc must be mounted on the appropriate unit and identified through an
operator reply. Refer to the Console Operator's Guide for instructions about console interaction.

If the data base is on more than one volume, another message is displayed on the system console. The
operator must mount the next volume in the sequence and ready the unit. If the volume which is
mounted is not the correct format, the operator is notified through a console message. If the correct
volume is available, the current one should be removed and the correct one mounted. The operator must
then enter a reply on the console.

Example

:JOB MRG.ACCOUNTA
:RUN DBRESTOR.PUB.SYS
ORDERS/SELL
:EOJ

Initiate job.
Initiate DBRESTOR.
Specify data base name and maintenance word
Terminate job.

After creating the files and restoring the file contents, DBRESTOR prints the following message on
$STD LIST:

DATA BASE RESTORED

DEC 85
8-27

DBS TORE

Stores the data base root file and all data set files to a tape or serial disc in a format compatible with
backup files created by the MPE :STORE and :SYSDUMP commands. DBSTORE differs from these
commands in that it handles only TurbolMAGE data bases.

Operation

1 [:FILE DBSTORE[=filenamel [;DEV=de~ioel [;REC=reosizel [;{~~~UF }II
2 :RUN DBSTORE.PUB.SYS

3 WHICH DATA BASE? data base name [/maintenance word]
4 DATA BASE STORED

END OF PROGRAM

Before copying the files, DBSTORE gains semi-exclusive access to the referenced data base; that is,
DBSTORE determines that the only other data base activity consists of other users executing DBSTORE or
application programs which open the data base in mode 6 or 8. If DBSTORE cannot gain semi-exclusive
access, it terminates and prints the following message: DATA BASE IN USE.

You must be the data base creator or provide the maintenance word to use DBSTORE.

Parameters

filename

delJioe

rec size

data base name

11'Klintenance word

DEC 85
8-28

is the name (up to 8 characters) that replaces DBSTORE m the mount
request at the operator's console.

is the device class name of the device on which the data entries are to be
stored.

is the record size of the record to be written to the device; recsize must
be modulo 2 56 words and less than the configured record size for the
device.

is the name of a TurboIMAGE data base to be stored or copied.

is the maintenance word defined by the data base creator. This word must
be supplied by anyone other than the data base creator.

DBS TORE

Operation Discussion

1 Is the optional file equation which specifies the device class name for the device on which the data
base is to be stored, the record size of the records written to the device, and whether records are to
be buffered. The default device class is TAPE.

2 Initiates execution of the DBSTORE program which is in the PUB group and SYS account.

3 In session mode, DBSTORE prompts for the data base name and maintenance word. In job mode, the
data base name and maintenance word, if any, must be in the record immediately following the
:RUN command.

4 After DBSTORE has copied the root file and all data set- files, it prints a message to signal
completion. If Intrinsic Level Recovery (ILR) is enabled when you run DBSTORE, DBSTORE stores
the ILR file associated with the data base on the same tape or serial disc. When the data base is
restored with DBRESTOR, the log file is automatically restored along with the data base. This
assures that the ILR file remains associated with the data base through the store and subsequent
restore.

LOGGING

NOTE

Serial disc packs must be initialized by the console operator using the
VINIT subsystem. Refer to the Console Operator's Guide.

DBSTORE updates a timestamp and store flag in the data base root file before storing the data base. The
timestamp designates the date and time of the DBSTORE operation, and is used by DBRECOV to help
identify the correspondence between logfiles and backup data bases.

The store flag is set by DBSTORE to indicate that the data base has been stored; this flag is cleared (reset)
when the first modification to the data base occurs by a call to DBPUT, DBUPDATE, or DBDELETE.
Both DBRECOV and DBUTIL interrogate the status of the DBSTORE flag. DBRECOV (roll-forward)
checks this flag to insure that no one has modified the backup data base prior to recovery. DBUTIL
checks this flag whenever logging and recovery is enabled, since a valid backup data base copy must exist
for roll-forward recovery to be possible. If the store flag is not set when a DBUTIL user enables the
logging option a warning is printed:

WARNING: data base modified and not DBSTORED

This warning does not necessarily indicate that a valid backup does not exist, since either :SYSDUMP or
:STORE may have been used instead of DBSTORE. Since neither :SYSDUMP or :STORE update the data
base timestamp and store flag, the protection afforded by these mechanisms is not available if this form of
backup is selected. For this reason, it is highly recommended to use DBSTORE as the backup facility
when logging. See Section 7 for further discussion of "Transaction Logging and Recovery11

•

DEC 85
8-29

DBS TORE

If the mirror data base maintenance method is being used, storing the data base on the secondary system
can be done differently than using the DBSTORE process. When using DBRECOV STOP-RESTART
recovery on the data base, storing the data base, RESTART file, and the log files that were processed since
the last successful RESTART can be stored with an MPE STORE. DBRECOV STOP-RESTART places a
timestamp in the RESTART file and in the data base to identify which RESTART file to apply to which
data base. If naming conventions have been followed, an MPE STORE @ can be used to store all the
necessary files and data base(s). If a DBSTORE is used, the user must remember to MPE STORE the
RESTART file and the log files. For more information on DBRECOV STOP-RESTART refer to Section 7
"The Mirror Data Base" and "Storing the Data Bases".

CONSOLE MESSAGES

After you supply the data base name and DBSTORE opens the output file, a message is displayed on the
system console. A tape or serial disc must be mounted on the appropriate unit and identified through an
operator reply. Refer to the Console Operator's Guide for instructions about console interaction.

If more than one volume is required to store the data base, a request is displayed on the console for the
next one. The next tape or disc must be mounted and the unit readied. (The serial disc unit must be
switched from RUN to STOP to RUN prior to entering a reply if a new volume has not been mounted.)
The volume which has been removed should be properly labeled with the data base name and volume
number.

Example

:JOB MGR.ACCOUNTA
:RUN DBSTORE.PUB.SYS
ORDERS/SELL
:EOJ

Initiate job.
Initiate DBSTORE program.
Supply data base name and maintenance word.
Terminate job.

After copying the ORDERS root file and all data sets, DBSTORE prints the following message on
$STDLIST:

DATA BASE STORED

DEC 85
8-30

DBUNLOAD

Copies the data entries from each data set to specially formatted tape or serial disc volumes.

Operation

1

2

3

4
5
6

[:FILE DBUNLOAD[=filename] [;DEV=devioe]]

:RUN DBUNLOAD PUB SYS [,CHAINED]
' ' [,SERIAL]

WHICH DATA BASE?data base name[/maintenanoe word]

DATA SET n: x ENTRIES EXPECTED, x ENTRIES PROCESSED.
END OF VOLUME m, y WRITE ERRORS RECOVERED
DATA BASE UNLOADED

END OF PROGRAM

(Refer to the following page for Operation Discussion.)

Parameters

filename

device

data base name

maintenance word

n

x

m

is the name (up to 8 characters) that replaces DBUNLOAD in the mount
prompt at the operator's console.

If you want information about your data set chains without actually
performing a DBUNLOAD, supply $NULL as the filename. This will cause a
simulated unloading of the data base, preventing the need to mount a tape.

is the device class name of the device to which the data entries are to be copied.
(Serial disc packs must be initialized by the console operator with the VINIT
~ubsystem. Refer to the Console Operator's Guide).

is the name of the TurbolMAGE data base to be unloaded.

is the maintenance word defined by the data base creator. This word must be
supplied by anyone other than the data base creator.

is the number of data sets in the data base.

is the number of entries (expected) and the number of entries processed or
copied from the specified data set.

is the number of the volume.

is the number of write errors from which DBUNLOAD has successfully
recovered.

DEC 85
8-31

DBUNLOAD

DBUNLOAD is necessary if you want to modify the data base structure, for example, to increase the
capacity of a data set. To increase a capacity, unload the entries, purge the data base, change the schema
and create a new root file, execute DBUTIL >>CREATE, and then reload the data entries from the
volumes created by DBUNLOAD.

The data sets are unloaded in the order that they were defined in the original schema. No data set names
are recorded on the backup volume(s); entries are merely associated with the corresponding data set from
which they are read. DBUNLOAD calls the DBGET procedure to read each entry from each set of the
data base using a list parameter of @; to read the complete entry. Values for data items appear in each
entry in the same order as the items were mentioned in the data set definition in the schema. The
Language ID is copied along with the data of the data base.

DBUNLOAD requires exclusive access to the data base. If the data base is already open by any other
process, DBUNLOAD prints the message: DAT A BASE IN USE and prompts again for a data base name.

DBUNLOAD operates in either chained or serial mode. The mode is determined by the entry point
specified with the :RUN command. The default entry, if none is specified, is chained.

• In serial mode, DBUNLOAD copies the data entries serially in record number order. 11Stand-alone11

detail data sets, those which are not tied to any master data sets through specified search item paths,
are always unloaded serially.

• In chained mode, DBUNLOAD copies all of the detail entries with the same primary path search item
value to contiguous)ocations on the backup file. The ordering of the search item values from the
primary path is based on the physical order of the matching value in the associated master data set.
Figure 8-1 illustrates the method for unloading a data set in chained mode. After the data base is
reloaded, chained access along the primary path is more efficient.

BROKEN CHAINS

If a chained DBUNLOAD encounters a broken chain, it will unload all entries in the chain down to, but
not including the break. It will then go to the end of the chain and unload all entries up to the break. In
some instances, this will save all entries in the chain. In any case, the order of the entries is preserved.
Information about each broken chain in a data set is printed before the end-of-the-data -set summary
(statement 4 below).

Operation Discussion

1 Is an optional file equation which specifies the device class name for the device on which the data
en tries are to be copied. The default is device class TAPE.

2 Initiates execution of the DBUNLOAD program which is in the PUB group and SYS account.

3 In session mode, DBUNLOAD prompts for the data base name and maintenance word. In job mode,
the data base name and maintenance word, if any, must be in the record immediately following the
:RUN command.

4 After copying a data set without detecting a broken chain, DBUNLOAD prints a message which
includes the data set number and the number of entries copied.

DEC 85
8-32

DB UNLOAD

If DBUNLOAD detects a broken chain, the following messages are also returned:

where

DATA SETn: Broken Chain at Entry #p[,following Entry #q]
Chain Head is Entry #r of Data Set #s
Key == k
l entries [expected,j entries salvaged]

p is the entry number where the break was detected.
q is the number of the entry last unloaded from the front of the chain, if any.
r is the entry number of the chain head.
s is the data set number of the chain head.
k is the value of the key of the broken chain.
l is the length of the chain according to the user label.
j is the number of entries salvaged from the chain.

These 4 message lines are repeated for every broken chain in the data set, followed by the
end-of-data-set summary which reports the number of lost entries, if any:

DATA SET n: x ENTRIES[EXPECTED, t LOST!!]

For example:

DATA SET 1: 3 ENTRIES

DATA SET 2: Broken Chain at Entry #2, following Entry #1
Chain Head is Entry #5 of Data Set #1
KEY = AA
4 entries expected, 3 entries salvaged

DATA SET 2: 11 ENTRIES EXPECTED; 1 LOST!!

5 When the end of a volume is encountered, DBUNLOAD prints this message:

END OF VOLUME a, b WRITE ERRORS RECOVERED

where a is the number of the volume and bis the number of write errors from which DBUNLOAD
successfully recovered. DBUNLOAD also instructs the operah1r to save the current volume and
mount a new one by printing the following two messages on the system console (where n is the
logical device number of the tape or disc drive and y is the volume number):

SAVE VOLUME ON LOGICAL DEVICE n AS y
MOUNT NEXT VOLUME ON LOGICAL DEVICE n.

6 After the data sets have been successfully copied, DBUNLOAD issues a completion message.

DATA BASE UNLOADED
END OF PROGRAM

DEC 85
8-33

DBUNLOAD

CONSOLE MESSAGES

After you supply the data base name and DBUNLOAD opens the output file, a message is displayed on the
system console. A tape or serial disc must be mounted on the appropriate unit and identified through an
operator reply. Refer to the Console Operator's Guide for instructions about console interaction.

USING CONTROL Y

When executing DBUNLOAD in session mode, you can press Control Y to request the approximate
number of entries in the current data set which have already been written. DBUNLOAD then prints the
following message on $STDLIST:

<CONTROL Y>DATA SET n:x ENTRIES HAVE BEEN PROCESSED

WRITING ERRORS

If an unrecoverable write error occurs, DBUNLOAD prints the message:

UNRECOVERABLE WRITE ERROR, RESTARTING AT BEGINNING OF VOLUME

and attempts to recover by starting the current volume again. It also sends this message to the system
operator (where n is the logical device number of the unit):

WRITE PROBLEMS TRY ANOTHER VOLUME ON LOGICAL DEVICE n

If an excessive number of non-fatal write errors occur, DBUNLOAD again attempts to recover from the
beginning of the volume after printing the following message on the $STDLIST and sends the same
message to the system operator as described for unrecoverable errors above:

EXCESSIVE WRITE ERROR RECOVERIES, RESTARTING AT BEGINNING OF VOLUME

Example (Session Mode)

DEC 85
8-34

:RUN DBUNLOAD.PUB.SYS

WHICH DATA BASE? ORDERS
DATA SET 1: 3 ENTRIES EXPECTED, 3 ENTRIES PROCESSED.
DATA SET 2: 11 ENTRIES EXPECTED, 11 ENTRIES PROCESSED.

END OF VOLUME 1, 0 WRITE ERRORS RECOVERED

DATA BASE UNLOADED

END OF PROGRAM

DB UNLOAD

Example (Job Mode)

:JOB MGR.ACCOUNTA
:RUN DBUNLOAD.PUB.SYS
ORDERS

Initiate JO b.
Initiate execution of DBUNLOAD.
Specify data base name.

:EOJ Initiate end of job.

Since the user in this example is the data base creator, a
maintenance word is not provided. The DBUNLOAD program is
executed in CHAINed mode by default because no entry is
specified.

As the job executes, the following information is printed
on the $STDLIST:

DATA SET 1:
DATA SET 2:
DATA SET 3:
DATA SET 4:
DATA SET 5:
DATA SET 6:

9 ENTRIES EXPECTED, 9 ENTRIES PROCESSED.
50 ENTRIES EXPECTED, 50 ENTRIES PROCESSED.
24 ENTRIES EXPECTED, 24 ENTRIES PROCESSED.
12 ENTRIES EXPECTED, 12 ENTRIES PROCESSED.
5 ENTRIES EXPECTED, 5 ENTRIES PROCESSED.
0 ENTRIES EXPECTED, 0 ENTRIES PROCESSED.

END OF VOLUME 1,0 WRITE ERRORS RECOVERED

DATA BASE UNLOADED

END OF PROGRAM

DEC 85
8-35

DBUNLOAD

SERIAL UNLOADING OF !!_DATA SETS FROM A DATA BASE

Data Set 1

entry 1

entry 2

entry 3
entry 4

Data Set!!.

entry 1

entry 2

entry~

CHAINED UNLOADING OF A DETAIL SET

File Contents

entry 1

entry 2

entry 3

entry 4

entry 1

entry 2

entry~

DBUNLOAD copies no pointer information.
Chains of detail data sets are created by
DBLOAD when the file is reloaded. There­
fore, the order of entries In the chains Is
often changed.

Note; Chained unloading of data sets from a data base varies from serial loading in the order of detail entries only. The data
sets themselves are placed in the same order, that is. the order in which they are defined in the schema.

1---

DEC 85
8-36

Primary Path Detail File Format for
Master Set Data Set Detail Set Entries

.........
7 entry 20

Chain pointers entry 1

K
entry 44

entry 28
entry 11

entry 11

Chain pointers entry 2 entry 36

Chain pointers entry 3 entry 33
entry 20

entry 28 L_

~

entry 33

~ ~ entry 36

entry 44 [Z

Figure 8-1. DBUNLOAD File, Sequence of Entries

} 1st chain primary path

} 2nd chain primary path

} 3rd chain ptimary path

When data base is
reloaded, the order
of these chains will
be preserved.

DBUTIL

The DBUTIL program performs several different functions according to the command you enter. Each
DBUTIL command is described separately on the following pages.

Operation

1 :RUN DBUTIL.PUB.SYS
2 »corrmand

Operation Discussion

1 Initiates execution of the DBUTIL program which is in the PUB group and SYS account.

2 Prompts for a DBUTIL >>command. Enter one of the following:

HELP
CREATE
ERASE
MOVE
PURGE
DEACTIVATE
ACTIVATE
EXIT

VERIFY
SET
ENABLE
DISABLE
RELEASE
SECURE
SHOW

DBUTIL commands may be abbreviated to the first three characters. For example, >>CREATE may be
abbreviated to >>CRE.

When using the >>CREATE, >>PURGE, or >>ERASE commands, you can bypass the command prompt by
specifying the full command as an entry point with the :RUN command; for example, :RUN
DBUTIL.PUB.SYS, CREATE. If you use an entry point, TurboIMAGE prompts you for the data base.
name and, optionally, for the maintenance word.

Data base name: data base name [/nuintenance word]

data base name

rrriintenance word

is the name of a TurbolMAGE data base root file catalogued in the current
session or job1s account and log on group.

is an optional ASCII string, one to eight characters long with no commas or
semicolons, which defines a password to be used by anyone other than the
data base creator to enable them to execute certain DBUTIL commands, and
operate the other utility programs. (The data base creator may also define
or change the maintenance word by using the SET command).

In job mode, the data base name and maintenance word, if any, must be in the record immediately
following the :RUN command. Note that to perform any DBUTIL command except >>SHOW, >>HELP,
or >>EXIT, you must have exclusive access to the data base or data-base-access file.

DEC 85
8-37

DBUTIL
>>ACTIVATE

Activates the data-base-access file for use with DBOPEN. Before using this command, read the
description of remote data base access in Section 9.

This command should be u;;ed to prepare a data-base-access file before accessing a remote data base
residing on another HP 3000.

Syntax

>>ACT[IVATE] data-base-access file name

For example:

ACTIVATE ORDDBA

Where ORDDBA=data-base-access file name

Parameter

data-base-access
file name

is the name of the data-base-access file that you created with the Editor.

The data-base-access file may have the same name as a data base on the remote system or it may have the
name of another data-base-access file on the remote system.

UNEXPECTED RESULTS

TurbolMAGE checks that the file code is 0, the record length does not exceed 128 characters, the file is
unnumbered, and the file has at least three records. An appropriate error message is returned if any of
these conditions is violated. If all of the conditions are satisfied, DBUTIL prints the message:

Verification follows:

and the syntax of the file is checked record by record. The monitoring messages associated with the file
records are of the form:

FI LE command:
DSLINE command:
HELLO command:

< resu 1 t >
< resu 1 t >
< resu 1 t. >

where <result> is "Looks good" if there are no errors associated with the record. Appendix A lists the
record errors (results) which would cause the file to be rejected.

DEC 85
8-38

Example

:RUN DBUTIL.PUB.SYS

>>ACT ORDDBA
Verfication follows
FILE command: Looks good
DSLINE command: Looks good
HELLO command: Looks good
HELLO command: Looks good
ACTIVATED
»

Initiate DBUTIL execution.

Enter abbreviated form of
ACTIVATE command and
data - base -access file name.

DBUTIL
>>ACTIVATE

DBUTIL checks the structure of the file named 110RDDBA11 for correct format and activates the file. You
will not be able to edit the file unless you deactivate it using the DBUTIL >>DEACTIVATE command.

DEC 85
8-39

DBUTIL
>>CREATE
Creates and initializes a file for each data set in the data base.

Once the Schema Processor has created the root file, the data base creator must build a file for each data
set in the data base using the >>CREATE command. DBUTIL initializes each data set to zeros and saves
it as a catalogued MPE file in the same log on group as the root file, on the device classes specified in the
schema. The data set file names are created by appending two digits to the root file name. If the root
file is named XXXX, then the first data set defined in the schema is in a file named XXXXOl, the second
data set file is named XXXX02. In order to save files for the maximum of 199 data sets per data base,
files are incremented from XXXX 01 - 9 9, XXXXA 1 - A 9, XXXXB 1 - B 9, up to XXXXJ 9.

To execute the DBUTIL program to create and initialize the data base you must be the data base creator;
that is, you must log on with the same user name, <1ccount and group that was used to run the Schema
Processor and create the root file. After DBUTIL has created and initialized the data base files, it prints a
confirmation message on the listfile device and prompts for another command.

Syntax

>>CRE[ATE] data base name[/m:iintenance word]

For example:

CREATE ORDERS/SELL

Where ORDERS=data base name I SELL=m:iintenance word

Parameters

data base name

maintenance word

is the name of a TurboIMAGE data base being created.

is an optional ASCII string, one to eight characters long with no commas or
semicolons, which defines a password to be used by anyone other than the
data base creator to enable them to execute certain DBUTIL commands and
operate the other utility programs. (The data base creator may also define
or change the maintenance word by using the >>SET command).

Example (Session Mode)

:RUN DBUTIL.PUB.SYS

>>CREATE ORDERS/SELL
Data base ORDERS has been CREATED

»

Initiate DBUTIL execution.

Respond to DBUTIL prompt with
>>CREATE command, data base name,
and maintenance word.

DBUTIL creates, initializes, and saves files named ORDERSO 1, ORDERS02, and so forth, one file for each
data set. These constitute the empty data base.

DEC 85
8-40

DBUTIL
>>CREATE

Example (Job Mode)

:JOB MGR.ACCOUNTA
:RUN DBUTIL.PUB.SYS
CREATE ORDERS/SELL
EXIT
:EOJ

Initiate job.
Initiate DBUTIL execution.
Enter >>CREA TE command and parameters.
Terminate DBUTIL.
Terminate job.

After the data files are created and initialized, DBUTIL prints the following message on the listfile device:

DATA BASE ORDERS HAS BEEN CREATED

NOTE

>>CREATE will fail if the native language defined for the data base is not
supported at the system level. (Refer to Table A- 3, Appendix A or
NLS/ 3000 Reference Manual for more information.)

DEC 85
8-41

DBUTIL
>>DEACTIVATE

Deactivates the data-base-access file to allow modifications to the file or to disallow remote data base
access.

This command is used before you change the contents of the data-base-access file. (Refer to Section 9 for
more information about accessing remote data bases.)

If DBUTIL successfully deactivates the file, it prints a confirmation message on the listfile device.

Syntax

.-------------··-----------

>>DEA[CTIVATE] data-base-aooess file name

For example:

DEACTIVATE ORDDBA

Where ORDDBA=data-base-aooess file name

Parameter

data-base-aooess
file name

is the name of the data-base-access file to be deactivated.

Example

DEC 85
8-42

:RUN DBUTIL.PUB.SYS

>>DEACTIVATE ORDDBA
DEACTIVATED

»

Initiate DBUTIL execution

Enter a >>DEACTIVATE command and the
data - base -access file name .

DBUTIL
>>DISABLE

Disables the access, automatic deferred output, dumping, logging and recovery options.

Syntax

>>DIS[ABLE] data base name[/m:iint word] FOR option[,option ..]

For example:

DISABLE ORDERS FOR LOGGING,RECOVERY

Where ORDERS=data base name and LOGGING, RECOVERY=opt ions

Parameter

data base name

Options

ACCESS

AUTODEFER

DUMPING

ILR

LOGGING

RECOVERY

ROLLBACK

is the name of a TurboIMAGE data base root file cataloged in the current
session or job's account and logon group.

disables user access to the data base.

disables automatic deferred output for the data base. AUTODEFER must be
disabled if ILR or roll - back recovery are to be enabled for a data base.

disables the automatic dumping of the user's stack and the data base control
block in the event of a TurboIMAGE abort. Under most circumstances
dumping should be disabled. When enabled, DUMPING creates a file (before
TurboIMAGE aborts) which may prove helpful in determining the cause of
such problems as a corrupted control block.

disables Intrinsic Level Recovery facility. ROLLBACK must be disabled first.

disables the data base roll-forward logging facility.

disables the data base roll-forward recovery facility.

disables the data base roll-back logging facility.

DEC 85
8-43

DBUTIL
>>DISABLE

Def a ult Conditions

Access is Enabled
Autodefer is Disabled
Dumping is Disabled
ILR is Disabled
Logging is Disabled
Recovery is Disabled
Roll-Back is Disabled

Example

DEC 85
8-44

:RUN DBUTIL.PUB.SYS

>>DISABLE ORDERS FOR ACCESS
Access is Disabled
»

DBUTIL
>>ENABLE

Enables the access, automatic deferred output, dumping, logging and recovery options.

Syntax

>>ENA[BLE] data base name[/m:iint word] FOR option [,option ...]

For example:

ENABLE RETAIL FOR LOGGING

Where RETAIL=data base name and LOGGING=option

Parameter

data base name

Options

ACCESS

AUTODEFER

DUMPING

ILR

LOGGING

RECOVERY

ROLLBACK

is the name of a TurboIMAGE data base being enabled.

enables user access to the data base.

enables automatic deferred output for the data base. Output deferred mode
(AUTODEFER) allows the user the ability to speed up processing time by
deferring buffer posting until it is required by buffer management. Since
AUTODEFER overrides the normal flushing of file labels and buffers on
DBPUTs, DBDELETEs and DBUPDATEs TurboIMAGE will be unable to
recover lost data in the event of a system failure. Roll-back recovery and ILR
are incompa.tible with AUTODEFER, therefore output deferred mode should be
used only in a batch situation where the data base has been backed-up prior to
batch processing. Roll-back recovery and ILR must be disabled prior to
enabling AUTODEFER.

for development and debugging only. When enabled, the TurbolMAGE abort
procedure copies the user's stack and the data base control block to a file if a
TurbolMAGE procedure aborts.

enables Intrinsic Level Recovery facility.

enables the data base roll-forward logging facility.

enables the data base roll-forward recovery facility.

enables the data base roll-back logging facility and automatically enables ILR.

DEC 85
8-45

DBUTIL
>>ENABLE

Default Conditions

Access is Enabled
Autodefer is Disabled
Dumping is Disabled
ILR is Disabled
Logging is Disabled
Recovery is Disabled
Roll-Back is Disabled

Example

DEC 85
8-46

:RUN DBUTIL.PUB.SYS

>>ENABLE ORDERS FOR RECOVERY
Recovery is Enabled

»

DB UT IL
>>ERASE

Reinitializes all data sets in the data base to their empty condition.

The data sets remain as catalogued MPE files. To execute DBUTIL to remitialize the data sets you must
be the data base creator or supply the correct maintenance word. This utility function should be
performed before data saved by DBLOAD is loaded back into the data base unless it was recreated.

After DBUTIL has completely reinitialized the data sets, it prints a confirmation message on the listfile
device.

Syntax

>>ERA[SE] data base name [/maintenance word]

For example:

ERASE ORDERS/SELL

Where ORDERS=data base name / SELL=maintenanoe word

Parameters

data base name

maintenance word

Example

is the name of a TurboIMAGE data base being erased.

is the maintenance word defined by the data base creator when the data
base is created with DBUTIL. This word must be supplied by anyone other
than the data base creator.

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution

>>ERASE ORDERS/SELL
Data base ORDERS has been ERASED

»

Enter >>ERASE command, data base name,
and maintenance word.

DBUTIL reinitializes the data set files ORDERSO 1, ORDERS02, and so forth to their original empty,
zeroed condition. In addition, the data base flags are reset to their default conditions. Logging is disabled
if it was previously enabled.

DEC 85
8-47

DBUTIL
>>EXIT

Terminates DBUTIL execution.

Syntax

»EXI [T]

Example

DEC 85
8-48

>>CREATE ORDERS
Data base ORDERS has been CREATED

>>EXIT

END OF PROGRAM

Create a data base

If no other DBUTIL functions
are to be performed, terminate,
DBUTIL with >>EXIT command.

Displays each of the DBUTIL commands.

Syntax

>>HEL[P] [co111n1ndname]

Parameter

DBUTIL
>>HELP

cormrindname is the name of a specific DBUTIL command whose format you want to
display. The name may be abbreviated to the first three letters.

If you do not specify a commandname, the >>HELP command lists the names of all valid DBUTIL
commands.

If you specify a commandname, the correct syntax for that command is displayed.

Example

>>HELP
Commands are:

HELP

ACTIVATE

SHOW

MOVE

CREATE

VERIFY

EXIT

ERASE PURGE DEACTIVATE

SET ENABLE DISABLE

RELEASE SECURE TRACE

Commands may be abbreviated to the first three letters.
For help on a particular command type: 'HELP command name'.

>>HELP CREATE

CRE[ATE] data base name [/miintenance word]

>>

For more information on TurboIMAGE Tracing refer to the TurbolMAGE Profiler User Guide.

DEC 85
8-49

DBUTIL
>>MOVE

Moves TurboIMAGE files across devices.

Syntax

>>MOVE TurboIMAGE file name TO device

For example:

MOVE ORDERS05 to DISC2

Where ORDERS05=file name and DISC2=device

Parameters

file name is a TurboIMAGE root, data set, or ILR file name. (Enter the file name
only, no group/account specification is allowed.) The user must be the
creator of the file.

del)ice is the device class name or logical device number to which the
TurboIMAGE file should be moved.

Example

>>MOVE ORDERS06 to 3
Data base last stored on TUE, DEC 4, 1984, 8:32 PM
Data base has been modified since last store date.
The data base should be backed up before doing a MOVE operation.
Do you still want to continue the MOVE operation (Y/N)? Y
Starting file copy ...
... file copy completed.
Purging old copy of file 11 0RDERS06 11

New copy of file 11 0RDERS06 11 saved as a permanent file
File 11 0RDERS06 11 moved to device 3

The data set file ORDERS06 has been moved to logical device number 3. This file contains the
INVENTORY data set and was originally assigned device class name DISC 1 in the schema. A DBUTIL
>>SHOW ORDERS DEVICE can be performed to obtain a listing of where all the data set files for the
data base reside.

DEC 85
8-50

DBUTIL
>>MOVE

It is recommended to do a DBSTORE of the data base prior to performing a MOVE. This precaution is
advisable in the event of a system failure occuring during the MOVE operation. When a MOVE has been
initialized the process will check the root file flag to determine if the data base has been modified since
the last backup copy was made. The program will prompt the user to continue or to terminate the MOVE
command and proceed with a DBSTORE of the data base before moving TurboIMAGE files to another
device. If the user responds 11N011 to the continue prompt, the message "MOVE operation stopped. 11 will be
printed on the terminal.

The following steps outline the process involved in moving TurbolMAGE files from one device to another.
The 1\.-iOVE process:

1. retrieves information from the 11old11 file. ("Old" indicates the flle on the originally specified device.)

2. checks the device specified by the user for validity and existence, and determines if there is sufficient
space for the "new" file. (11New11 indicates the file being moved to another device.)

3. checks the root file to determine the data base state.

4. copies the old file to the new file.

5. sets the flag in the root file.

6. purges the old file, then saves the new file.

7. resets the flag in the root file.

DEC 85
8-51

DBUTIL
>>PURGE
Purges the root file and all the data sets of the referenced data base.

Purging removes the files from the catalog and returns the disc space to the system. As with >>ERASE,
you must be the data base creator or must provide the maintenance word to use DBUTIL with the
>>PURGE entry. Before running the DBRESTOR program to restore a data base, you should use this
utility function to purge the data base.

If DBUTIL successfully purges the data base, it prints a confirmation message on the listfile device.

Syntax

>>PUR[GE] data base name [/maintenanoe word]

For example:

PURGE ORDERS/SELL

Where ORDERS=data base name and SELL=maintenanoe word

Parameters

data base name

maintenanoe word

DEC 85
8-52

is the name of a TurboIMAGE data base being purged.

is the maintenance word defined by the data base creator when the data
base is created with DBUTIL. This word must be supplied by anyone other
than the data base creator.

UNEXPECTED RESULTS

DBUTIL
>>PURGE

The following messages are printed if an unexpected situation occurs: Refer to Appendix A for other error
messages.

MESSAGE MEANING
--.!

No root file, >>PURGE
operation proceeding

Data set XXXXk has been
purged

Data set XXXXk is missing

Data base >>PURGE is not
complete

Example

DBUTIL was unable to locate the root file, but will
attempt to purge any data set files.

DBUTIL successfully purged the root file and then data
sets of the data base. However, DBUTIL also discovered
and purged an unexpected data set named XXXXk where
k is a number greater than the number of data sets
defined for the data base (n).

DBUTIL successfully purged the root file and all existing
data sets but data set XXXXk is unexpectedly missing.
In this case k is less than the number of data sets defined
for the data base.

A fatal error occurred while DBUTIL was attempting to
purge the data base. The fatal error message is printed
above this one. Some of the data sets have been purged.

: RUN DBUTI L. PUB. SYS Initiate DBUTIL execution.

>>PURGE ORDERS Enter >>PURGE command and data base name
Data base ORDERS has been PURGED assuming there is no maintenance word).

DBUTIL confirms that the user is logged on with the same user name, account, and group which were used
to create the data base. It then determines whether the root file exists and if so, purges the root file and
any files named ORDERSOl, ORDERS02, and so forth. Even if the root file does not exist, any data set
files with names based on the root file name are purged.

DEC 85
8-53

DBUTIL
>>RELEASE
Suspends file system security provisions for the data base root file and data set files, allowing access to the
data base from other groups and accounts.

Syntax

>>REL[EASE] data base name

Parameter

data base name is the name of a TurbolMAGE data base being released.

>>RELEASE suspends file system security provisions for all of the data base files at the file, group, and
account levels, but leaves TurboIMAGE security intact. Releasing the file system security allows the data
base to be accessed by users from other groups and accounts, without relinquishing the privacy of all other
files in the data base group. Only the creator of the data base can release security. In addition, the
group's home volume set must be mounted.

The data base file security remains suspended until the creator issues a >>SECURE command. Suspension
remains valid after job termination, or system failure followed by coldload or reload.

DEC 85
8-54

DBUTIL
>>SECURE

Restores security provisions that were released by a >>RELEASE command for the data base root file and
data set files.

Syntax

>>SEC[URE] data base name

For example:

SECURE ORDERS

Where ORDERS=data base name

Parameter

data base name is the name of a TurboIMAGE data base being secured.

The SECURE command reinstates the file system security provisions for the entire data base. (These
security provisions can only be suspended by the >>RELEASE command.) Only the creator of the data
base can successfully issue this command. In addition, the group,s home volume set must be mounted.

DEC 85
8-55

DBUTIL
>>SET

Changes or removes the maintenance word or specifies the number of input/output buffers to be allocated
by TurboIMAGE in the DBB depending on the number of users concurrently accessing the data base.
Only the data base creator can change or remove the maintenance word. Also sets the log identifier into
the root file, or modifies access class passwords, or sets a subsystem flag.

Syntax

MAINT=rmintenanoe word
BUFFSPECS"-=num buffers (from-users/to-users)

[,num buffers(from-users/to-users)] ...

>>SET data base name
[/rmint Word]

LOGID=log identifier
PASSWORD ol{a~~~~}m=[password]

For example:

SUBSYSTEMS= ~~AD

LANGUAGE=language id

>>SET ORDERS MAINT=SELL

Where ORDERS=data base name and SELL=miintenanoe word

or

>>SET ORDERS/SALE BUFFSPECS=4(1/5),7(6/10},9(11/15),10(16/20)

Where 4=num buffers (1 =from-users I S=to-users}

Parameters

data base name

rmint word

maintenance word

DEC 85
8-56

is the name of a TurbolMAGE data base root file catalogued in the current
session or job's account and log on group.

is the current maintenance word for the data base, and must be supplied by
anyone other than the data base creator.

is the new maintenance word for the data base. If omitted, the currently
defined maintenance word is removed and the data base has no
maintenance word. Only the data base creator can change or remove the
maintenance word.

num buffers

from-users

to-users

language id

log identifier

classnum

password

NONE

READ

RW

DBU·TIL
>>SET

is the number of buffers to be allocated by TurboIMAGE in the DBB for
the range of users specified between the parentheses that follow. The
minimum number of buffers allowed is 4 and the maximum is 255. To
increase performance with the >>SET statement, as a starting point the user
may want to specify that between 15 and 25 buffers be allocated in the
Data Base Buffer Area Control Block (DBB). The number of buffers
allocated and the actual amount ot performance increase obtained depends
on whether ILR is enabled, how many users are accessing the data base,
amount of main memory available and many other factors.

is the minimum number of concurrent users (access paths) for which the
preceding n.um buffers should be allocated. The minimum from-users
value allowed is 1 and the maximum is 120. The value must be less than
the immediately following to-users value.

is the maximum number of concurrent users for which the preceding num
buffers should be allocated. The minimum to-users value allowed is 1 and
the maximum 120. The value must be greater than the immediately
preceding from-users value.

is the native language assignment for the data base. This command can be
issued only on a virgin root file or an empty data base. The message
"Language changed" appears after using the SET command to change the
language id. Refer to the NLS Reference Manual for name and number
information.

is an MPE log identifier obtained using the MPE :GETLOG command.
DBUTIL first checks to insure that the log identifier is valid, and then
prompts for a password. Entry of the correct password will cause the log
identifier to be stored in the root file and used whenever the logging
capability is enabled.

is the access class whose password is being changed. A number from 1 to
63.

is the new password being assigned to a particular access class. Up to 8
characters are allowed. If omitted, any password previously assigned to that
class is removed. (You must be the data base creator.)

is the option used to prohibit use of any sub-system (for example QUERY)
on TurbolMAGE.

is the option that allows only read access to the data base by sub-systems.
The sub-system checks the root file flag to determine what access a
sub-system is allowed.

is the option that allows read/write access to the data base by sub-systems.
The sub-system checks the root file flag to determine what access a
sub-system is allowed.

DEC 85
8-57

DBUTIL
>>SET
The from-users/to-users ranges must be specified in increasing order. The ranges may not overlap but
they need not be consecutive. If num buffers is not specified for a particular number of users, the default
number of buffers is used. These are the default settings assigned by TurbolMAGE:

b(1/2)
b+ 1 (3/4)
b+2(5/6)
b+3(7/8)

b+4 (9/10)
b+S (11I12)
b+6 (, 3/14)

b+7(15/16)
b+8 (17 /18)
b+9(19/120)

The value of b is equal to either: 1) the largest number of search items in any detail data set in the data
base plus 3, or 2) whichever is larger. If p is the maximum number of search items (the path count), the
value of b can be represented as b = max (p+ 3, 8).

For example, the largest path count for a detail data set in the ORDERS data base is 4. (This is the path
count for the CUST data set.) Therefore, the value of b for the ORDERS data base is: b =max (4+3,8) =
8.

The default buffer specifications in this case are:
8(1/2),9(3/ 4), 1O(5/ 6), 11(7I8), 12(9I1O),1 3(11I12), 14(1 3/ 14), 15(1 5/ 16), 16(17I1 8), 17(19I1 20).

Example

DEC 85
8-58

:RUN DBUTIL.PUB.SYS

>>SET ORDERS MAINT=
Maintenance word changed

>>

:RUN DBUTIL.PUB.SYS

>>SET ORDERS BUFFSPECS=5(1/120)
For data base ORDERS

»

BUFFER SPECIFICATIONS:
5(1/120)

Initiate DBUTIL execution.

Remove current maintenance word.

Specify 5 buffers to be allocated for
from 1 to 120 users (access paths).
DBUTIL confirms the specifications by
listing them .

DBUTIL
>>SHOW

Displays information about the data base on a terminal or line printer. The information may include a
list of processes that have the data base open, the status of locks in the data base, the log identifier and
flags, and the current buffer specifications. This command should be used with care for data base
maintenance functions since it obtains exclusive control of the data base for several seconds preventing all
other access.

Syntax

MAI NT

>>SHO[W] data base name [/m:iint word]

ALL
BUFFSPECS
LANGUAGE
LOCKS
USERS

[OFFLINE]

For example:

LOG ID
FLAGS
PASSWORDS
DEVICE

SHOW ORDERS/SELL ALL OFFLINE

Where ORDERS=data base name I SELL=m:iintenance word

Parameters

data base name

mint word

MAI NT

ALL

BUFFS PE CS

FLAGS

LANGUAGE

is the name of a TurboIMAGE data base root file catalogued in the current
session or job's account and log on group.

is the current maintenance word for the data base. It must be supplied by
anyone other than the data base creator.

displays the maintenance word, if any.

displays all the information provided with MAINT, BUFFSPECS, LOCKS,
USERS, LOGID, and FLAGS.

displays the current buffer specifications which may either be the
TurboIMAGE default setting or the values specified with the DBUTIL
>>SET command.

displays the state (enabled or disabled) of the logging, roll-back, ILR,
recovery, restart, subsystem access, autodefer, access and dumping options.

displays state of the native language declaration for the data base. The
language attribute will have been specified either at schema processing time
or through the >>SET comn1:md. Refer to the NLS/ 3000 Reference
Manual for more information.

DEC 85
8-59

DB UT IL
>>SHOW

LOCKS

LOG ID

USERS

OFF LINE

PASSWORDS

DEVICE

displays the status of locks currently obtained (or requested).

displays the current MPE log ident1f ier for the data base.

displays a list of the processes that have the data base open with the
program file name and other information. (Refer to examples below.)

requests that the information be listed on the line printer. The formal
designator for the list file is DBUTLIST. (Passwords and maintenance word
will not be printed.)

displays the access class numbers from 1 to 6 3 together with the passwords
assigned to them. (You must be the data base creator.)

displays the TurboIMAGE root, ILR, and data set files and where files
reside (device class name or logical number) for a data base.

The >>SHOW commands may be executed at any time except when another process has the data base
opened in an exclusive access mode (mode 3 or 7).

Example (Show Users)

:RUN DBUTIL.PUB.SYS

>>SHOW ORDERS USERS

1 2 ······ 3 .. 4 5

PIN

21
22
28
29
31

PATH EXECUTING PROGRAM

INVENTRY.IMAGE.DATAMGT
BROWSE.IMAGE.DATAMGT
BROWSE.IMAGE.DATAMGT
INVENTRY.IMAGE.DATAMGT
ORDENTRY.IMAGE.DATAMGT

The columns of information are as follows:

JOBNUM

#5116
#5118
#5112
#5115
#5117

MODE

1
5
5
1
1

1 The Process Identification Number (PIN). This is a number assigned to a process by the operating
system when the process is created. The table above indicates that the process has opened the data
base ORDERS.

2 The access path number. The access paths for each process are numbered consecutively beginning
with 1. (Refer to the discussion of access paths in Section 4.)

3 The name of the program file, its group and account.

4 The number of the job or session in which the process is running.

5 The access mode in which the data base is open.

Note that DBUTIL does not call DBOPEN and therefore it is not listed as an executing program.

DEC 85
8-60

Example (Show AU)

>>SHOW ORDERS ALL Display all information for ORDERS
data base.

»

For data base ORDERS

MAINTENANCE WORD: SELL

Access is enabled.
Autodefer is disabled.
Dumping is disabled.
Rollback recovery is disabled.
Recovery is enabled.
ILR is disabled.
Logging is enabled.
Data base last stored on MON, DEC 3, 1984, 1:09 PM
Data base has not been modified since last store date.
Restart is disabled.
Subsystem access is READ/WRITE.

LOGID: ORDERLOG is valid
Password is correct

The language is O:NATIVE-3000

BUFFER SPECIFICATIONS:
5(1/120)

No other users accessing the data base

DB UT IL
>>SHOW

The listing above indicates that the current buffer specifications provide for 5 buffers to be allocated
when there are between 1 and 120 concurrent users of the data base. The list above also shows that the
data base is enabled for roll-forward recovery, logging, and user access. In this example, the Restart flag
is disabled. This flag is set by DBRECOV when the user has requested to suspend recovery between log
files. The logid is shown and the password is verified and the maintenance word is displayed. The
messages which appear during the SHOW command may vary depending on what information is available
on the data base. If the maintenance word and logid are not present the following appears:

Logid is not present.

Maintenance word is not present.

The message regarding Native Language Support will also vary. The following message will be printed if
the data base does not support NLS:

This data base has been created before support of Native Languages.

DEC 85
8-61

DBUTIL
>>SHOW

FORMAT OF SHOW DEVICE UST

The following list shows the TurboIMAGE files for data base ORDERS, along with the data set names and
the device where each resides. In the following example the root file ORDERS, ILR file ORDERSOO, and
the data set files are shown. The file devices are listed as specified, device class names, ORDERS06 data
set was moved using the DBUTIL >>MOVE command to logical device number 3.

Example (Show Device)

>>SHOW ORDERS DEVICE
For data base ORDERS

»

MPE file Name

ORDERS.IMAGE.DATAMGT
ORDERSOO.IMAGE.DATAMGT
ORDERS01 .IMAGE.DATAMGT
ORDERS02.IMAGE.DATAMGT
ORDERS03.IMAGE.DATAMGT
ORDERS04.IMAGE.DATAMGT
ORDERSOS.IMAGE.DATAMGT
ORDERS06.IMAGE.DATAMGT

FORMAT OF SHOW LOCKS LIST

Data Set Name

Customer
Date-Master
Product
Sales
Sup-Master
Inventory

Device

DISC
DISC
DISC
DISC1
DISC1
DISC1
DISC1
3

DBUTIL lists the locking information sequentially by locking level: data base locks followed by data set
locks, followed by data entry locks. The names of locked entities (for example, the data base, data set, or
lock descriptor for data entries) appear in upper case followed by a list of other processes waiting at that
locking level. DBUTIL indicates in lower case the reason each process is waiting. This message is
preceded by a hyphen so that it can be identified on terminals or listings from a line printer without
lower case.

If the term (PENDING) appears after a locked entity, it indicates that the lock has been obtained but
control cannot be returned to the caller until other locks have been released. The same process
identification will appear elsewhere in the list together with an explanation of why it is waiting.

Infrequently, the term (TEMP) may appear. TurbolMAGE places a temporary lock on a data set while it
processes an existing data entry lock request. Temporary locks occur only when a user requests data entry
locks on different items. Whenever the lock item changes, TurbolMAGE must wait until all existing locks
on the current lock item are cleared before it places a lock on the new lock item. During the wait the
lock is termed "TEMP". These locks are held very briefly and only under rare circumstances. The Process
Identification Numbers (PINs) and job/session numbers listed are the same as those shown by the MPE
commands such as :SHOW JOB and :SHOWQ.

DEC 85
8-62

Example (Show Locks)

>>SHOW ORDERS LOCKS OFFLINE

The line printer listing looks like this:

List the status of locks requested
and held in the ORDERS data base on
the line printer .

DBUTIL
>>SHOW

HP32215C.OO.OO TurboIMAGE/3000: DBUTIL MON, DEC 10, 1984, 5:06 PM

For data base ORDERS
PIN/ PROGRAM JOBNUM

LOCKED ENTITY - (- waiting process) PATH NAME

1 DATA SET SALES 30/1 BROWSE #S126
2 -waiting for data set unlock: 17 INVENTRY #S128

-waiting for data set unlock: 32 OR DE NT RY #S129
-waiting for data set unlock: 21 ORDENTRY #S118

3 DATA SET CUSTOMER .•...................... 30/1- BROWSE #S126
DATA SET INVENTORY 30/1 BROWSE #5126

1 Indicates process 30 (program BROWSE executing in session 126) has the SALES data set locked
through access path 1.

2 Shows a queue of processes waiting for the SALES data set to unlock. For example, in the first line,
process 17 (program INVENTRY executing in session 128) is waiting. Since it is listed first in the
queue, it will be the next process to resume execution after the SALES data set is unlocked. It may
be waiting to place a lock on the data set or entries in the set.

3 Indicates process 30 (program BROWSE, session 126, access path 1) has the CUSTOMER data set
locked. No processes are waiting for the lock to be released.

DEC 85
8-63

DBUTIL
>>SHOW

Here is another example of a locking list that might appear when the >>SHOW LOCKS command is
entered.

Example (Show Locks)

HP32215C.OO.OO TurboIMAGE/3000: DBUTIL MON, DEC 10, 1984, 4:20 PM

For data base ORDERS
PIN/ PROGRAM

LOCKED ENTITY / (- waiting process) PATH NAME

1 DATABASE (PEND! NG) :-2°2
-waiting for zero locks within database: ... 22

2 DATA SET INVENTORY 29/1

3 ORDERS: QUANTITY<= 50 28/1
4 CUSTOMER: CUST-NAME =DON'S MERCANTILE ... 31/1

BROWSE
BROWSE

INVENTRY

BROWSE
ORDENTRY

JOBNUM

#S118
#S118

#S115

#S112
#5117

1 Indicates process 22 (program BROWSE, session 11 8) has obtained a lock on the data base and yet it
cannot continue until existing locks held in the data base are released. In this example, the reason
for the pending lock is listed on the line below.

2 Indicates process 29 (program INVENTRY, session 115, access path 1) has the INVENTORY data set
locked.

3 Indicates that process 28 (program BROWSE, session 112, access path 1) has all entries in the SALES
data set with QUANTITY less than or equal to 50 locked.

4 Indicates process 31 (program ORDENTR Y, session 117, access path 1) has all entries in the
CUSTOMER data set with LAST-NAME equal to DON'S MERCANTILE locked.

Note that all subsequent requests for locks must be made to wait until process 22 releases its data base
lock.

DEC 85
8-64

DBUTIL
>>VERIFY

Reports whether a data-base-access (OBA) file is activated or deactivated and checks the validity of the
DBA file ..

Syntax

>>VER[IFY] data-base-access file name

For example:

VERIFY ORDDBA

Where ORDDBA=data-base-access file name

Parameter

data-base-access
file name

is the name of a data-base-access file.

Example

:RUN DBUTIL.PUB.SYS

»VERIFY ORDDBA
Data-base-access file
ORDDBA is ACTIVATED

»

Initiate DBUTIL execution.

Enter >>VERIFY command and data-base
access file name .

DEC 85
8-65

___ us_1_NG~A_R_E_M_o_TE~D-AT_A~B-AS_E~~--~1~:wri
If you want to access a data base that resides on one HP 3000 computer system while operating a session
on another HP 3000 computer system, you may do so provided both systems are configured with
Distributed Systems (DS/3000) capability. Access can also be established between a TurbolMAGE data
base and an IMAGE/3000 data base using the remote data-base-access methods described in this section.
If you are not familiar with DS/3000 you should read the DS/ 3000 Reference Manual before you begin
accessing a remote data base.

DS/3000 recognizes the computer to which your terminal is directly connected as the local HP 3000 and
the computer with which you establish a communications link as the remote HP 3000. The session that
you initiate on the local HP 3000 is a local session and a session on a remote HP 3000 is a remote session.

You can access an IMAGE/3000 data base from TurboIMAGE. Access from an IMAGE/3000 data base
to a TurboIMAGE data base is allowed also. However, if you have expanded the limits on your
TurbolMAGE data base (for example exanded to 1 99 data sets in your data base), remote access from an
IMAGE/3000 data base is not allowed. This is due to the size of the Remote Data Base Control Block in
IMAGE/3000. (Refer to "Remote Data Base Access" in Section 10 for more information.)

You may use a data base on a remote HP 3000 either from a program that is running on the remote
system or from a program running on your local HP 3 000. There are various ways to open a
communications line and initiate a remote session. For example, you can establish a communications link
and remote session and then run a remote program accessing a data base on the remote machine as
illustrated in Figure 9- 1.

Local HP 3000

<

Local Terminal

:HELLO I I I

:DSLINE ...
:REMOTE HELLO. I I

:~EMOTE RUN PROGX ...

>

Figure 9-1. Using a Remote Program

Remote HP 3000

Program PROGX

i
Data Base DBX

Refer to Sections 1 through 3 of the DS/ 3000 Reference Manual for a detailed description of this
method.

DEC 85
9-1

Using a Remote Data Base

ACCESS THROUGH A LOCAL APPLICATION PROGRAM

If you want to access a remote data base using a local application program, there are three methods you
may choose from. In all cases, a local program accesses a remote data base and the data is passed across
the communication line.

Method 1

ESTABLISHING COMMUNICATIONS LINK AND REMOTE SESSION INTERACTIVELY

To use the first method, you interactively establish a communications link and a remote session and enter
a FILE equation for each remote data base. You can access more than one data base by issuing multiple
FIND commands. The FILE equation specifies which data base is to be accessed on which remote system
and device. A local application program can now access a remotely located data base, as shown in Figure
9-2.

Local HP 3000

Program PROGX:

Calls DBOPEN
for DBX data

base and OBY
data base. <

LOCAL TERMINAL

:HELLO ...
:DSUNE .•.
:REMOTE HELLO ...
:FILE DBX;DEV=SYSX#DISCA
:FILE DBY;DEV=SYSX#DISCA
:RUN PROGX

Figure 9-2. Using Method 1

Remote HP 3000

>

SYSX

Data Base DBX
and

Data Base DBY
reside on DISCA

------·-----

For details about using this method refer to the DS/ 3000 Reference Manual.

DEC 85
9-2

Using a Remote Data Base

Method 2

USING THE COMMAND INTRINSIC

The second method is very similar to the first, but you use the MPE COMMAND intrinsic within your
application program to establish the communications link, remote session and remote data base ·access. In
order to use this method in an application program wh icli is coded in COBOL or RPG you must write a
procedure in SPL or FORTRAN and call the procedure.

To use this method you must issue a REMOTE HELLO command (either with the DSLINE parameter or
issue the DSLINE as a separate command) and a FILE equation by calling the COMMAND intrinsic for
each of these commands. Use of the COMMAND intrinsic is explained in the M PE Intrinsics Reference
Manual, and information about accessing remote files is given m the DS/ 3000 Reference Manual. Figure
9-3 contains a diagram of Method 2.

Local HP 3000

Program PROGX

Contains calls to
COMMAND 'DSUNE .. .'
COMMAND 'REMOTE HELLO .. :
COMMAND 'FILE DBX: •. .'

(program code I

COMMAND 'REMOTE dsline#BYE • .'
COMMAND 'DSUNE dsline#;CLOSE .. '

Local Terminal

:HELLO ...
:RUN PROGX

< >

Figure 9-3. Using Method 2

Remote HP 3000

Data Base DBX

If you want to access more than one remotely located data base with an application program, you must
enter one FILE equation for each remote data base. It is important to remember that a REMOTE HELLO
to the same remote computer should not be repeated within a process since the second request for a
remote session would log off the first one.

When the application program calls the DBCLOSE procedure or is ready to terminate execution, it must
programmatically issue REMOTE BYE and DSLINE commands for the communications line specified
with the foregoing COMMAND intrinsic.

If you use this method, any change in the data base name, account or password information requires
modification of the application program. Since the application program maintains logical control over
the commands that are issued it is responsible for checking all status words returned by the remote
system.

DEC 85
9-3

Using a Remote Data Base

Method 3

USING A DATA-BASE-ACCESS FILE

The third method involves creating a special file which we shall call the data-base-access file (OBA file).
This file provides TurboIMAGE with the necessary information to establish a communications link and a
remote session. It also specifies the remote data base or data - base-access file name so that the necessary
TurbolMAGE intrinsics can be executed on the remote computer.

Local HP 3000

Program PROGX:

Calls
DBOPEN with BASE array

containing DBAFY.

Data-Base-Access file

named DBAFY contains:

Local Terminal

:HELLO USERA.ACCTA,GROUPA

:RUN PROGX

<
Rec 1: FILE OBY; DEV=SYSX#DISC

Rec 2: DSLI NE SYSX; ••.
Rec 3: USERA.ACCTA,GROUPA=HELLO

USERB.ACCTB ...

Figure 9-4. Using Method 3

>

Remote HP 3000

SYSX

Data Base OBY
resides on DISC

in account ACCTB

It should be noted that with Method 3, which uses the data-base-access file only one data base can be
accessed using each data-base-access file per DSLINE. For example, if two computers are linked through
two DSLINEs, you can open one data base on each line.

When the user or an application program calls DBOPEN with the data-base-access file name, the remote
session is established and the remote data base is opened. Then other TurbolMAGE intrinsics can perform
desired operations on the data base. Under this method the remote session is automatically released when
the data base is closed (with or without an explicit DBCLOSE call).

A second REMOTE HELLO on one DSLINE terminates the previous REMOTE HELLO. For multiple
remote data base access, Method 1 or Method 2 is recommended. If the data-base-access file is used, an
automatic REMOTE BYE and DSLINE commands are issued on the communications line specified in the
data-base-access file when the application program terminates execution.

DEC 85
9-4

Using a Remote Data Base

By using this approach, the data base administrator can set up a user-table which provides more control
over the data base users, and thus, enhances data base security. To create the data-base-access file you
may use the Editor (EDIT/3000). First use the :SET LENGTH command to accommodate the largest
record to be included in the data-base-access file, if the record exceeds the default length specified in the
EDIT I 3000 Reference Manual. The length must be less than or equal to 128 characters. The content of
this file should be created in the format shown below.

Syntax

Record FILE dbnamel[=dbname2];DEV=dsdevioe#[DISC]

Record 2 DSLINE dsdevioe[;LINEBUF=buffer-size][;LOCID=looal-id-sequenoe]
[;REMID=remote-id-sequenoe][;PHNUM=telephone-number]
[;EXCLUSIVE] [;QUIET]

Record 3 lusername.laootname[,lgroupname]=HELLO rusername[/rupasw]
.raoctname[/rapasw] [,rgroupname[/rgpasw]] [;TIME=opusecs]

[PR I . .] [; H I PR I]
; =priority ;INPRI=inputpriority

Re co rd 4 through Re co rd n - Same format as Record 3.
Specifies other "user. account,group11 identification.

Parameters

dbnamel

dbname2

dsdevioe

buff er-size

the name of the data base or the data-base-access file on the remote system
you want to access, or is the formal file designator used in the program if
dbname 2 is specified. (Required parameter)

is the name of the data base or the data-base-access file on the remote
system you want to access. (Optional parameter)

is the device class name or logical device number assigned to the DS/3000
communication driver IODSO during system configuration. (Required
parameter)

is a decimal integer specifying the size (in words) of the DS/3000 line
buffer to be used in conjunction with the communication line. The integer
must be within the range 304 <buffer-size<Bl 92. The default value is the
buffer size entered in response to the PREFERRED BUFFER SIZE prompt
during system configuration. (Optional parameter)

DEC 85
9-5

Using a Remote Data Base

looal-id-sequenoe

remote-id-sequence

telephone-number

EXCLUSIVE

QUIET

lusername

DEC 85
9-6

is a string of ASCII characters contained within quotation marks or a string
of octal numbers separated by commas and contained within parentheses.
If you wish to use a quotation mark within an ASCII string, use two
successive quotation marks.

In the case of an octal sequence, each octal number represents one byte and
must be within the range 0-377. The maximum number of ASCII
characters or octal numbers allowed in the string is 16.

The supplied string of ASCII characters or octal numbers define the ID
sequence that will be sent from your HP 3000 to the remote HP 3000 when
you attempt to establish the telephone connection. If the remote HP 3000
does not recognize the supplied ID sequence as a valid one, the telephone
connection is terminated. The default value is the ASCII or octal string
entered in response to the LOCAL ID SEQUENCE prompt during system
configuration. (optional parameter)

same format as local-id-sequence. The supplied string of ASCII characters
or octal numbers define those remote HP 3000 ID sequences that will be
considered valid when you attempt to establish the telephone connection.
If the remote HP 3 000 does not send a valid ID sequence, the telephone
connection is terminated. The default set of remote ID sequences consists
of the ASCII and octal strings entered in response to the REMOTE ID
SEQUENCE prompt during system configuration. (Optional parameter)

is a telephone number consisting of digits and dashes. The maximum length
permitted (including both digits and dashes) is 20 characters. If YES was
entered in response to the DIAL FACILITY prompt during system
configuration, this telephone number will be displayed at the operator's
console of your HP 3000 and the operator will then establish the telephone
connection by dialing that number at the MODEM. The default telephone
number is the first one entered in response to the PHONE NUMBER
prompt during system configuration. (Optional parameter)

specifies that you want exclusive use of the particular communications line.
If the specified HSI or SSLC is already open and you have specified the
exclusive option, DS/3000 will deny you access to the line (you cannot open
it). Opening an EXCLUSIVE line requires the user to have CS capability.
This capability may be granted by a system manager or account manager.
(Optional parameter)

specifies that the message identifying the DS line number will be
suppressed. The messages associated with subsequent REMOTE HELLO and
REMOTE BYE commands will also be suppressed. In this case, the terminal
operator is totally unaware that remote processing is taking place.
(Optional parameter)

is a user name on the local HP 3000, as established by an account manager,
that allows you to log-on under this account. This name is unique within
the account. It contains from 1 to 8 alphanumeric characters, beginning
with a letter. An at-sign (@) may be used to indicate the log-on user name.
(Required parameter)

lacctname

lgroupname

rusername

rupasw

racctname

rapasw

rgroupname

rgpasw

TIME=cpusecs

PRI=priority

INPRI=inputpriority

HI PR I

Using a Remote Data Base

is the name of your account on the local HP 3000 as established by a system
manager. It contains 1 to 8 alphanumeric characters, beginning with a
letter. An at-sign (@) may be used to indicate the log-on account.
(Required parameter)

is the name of a file group to be used for the local file domain and central
processor time charges, as established by an account manager. It contains
from 1 to 8 alphanumeric characters, beginning with a letter. An at-sign
(@)may be used to indicate the log-on group. (Optional parameter)

is a user name on the remote HP 3000 that allows you to log on under the
remote account. It follows the same rules as username. An at-sign(@) may
be used to indicate rusername as with lususername. (Required parameter)

is the password assigned to username. (Optional parameter)

is the name of the log on account on the remote HP 3000. It follows the
same rules as lacctname. An at-sign(@) may be used to indicate racctname
is the same as lacctname. (Required parameter)

is the password assigned to racctname. (Optional parameter)

is the name of the log on group on the remote HP 3000. It follows the
same rules as lgroupname. An at-sign (@) may be used to indicate
rgroupname is same as lgroupname. (Optional parameter)

is the password assigned to rgroupname. (Optional parameter)

is the maximum central processor time that your remote session can use,
entered in seconds. When this limit is reached, the remote session is
aborted. It must be a value from 1 to 3 2 7 6 7. To specify no limit, enter a
question mark or omit this parameter. Default: No limit. (Optional
parameter)

is the execution priority class that the Command lntepreter uses for your
remote session, and also the default priority for all programs executed
within the remote session. BS is highest priority; ES is lowest. If you
specify a priority that exceeds the highest that the system permits for
racctname or i'username, MPE assigns the highest priority possible below BS.
Default: CS. NOTE: DS and ES are intended primarily for batch jobs; their
use for sessions is generally discouraged.

is the relative input priority used in checking against access restrictions
imposed by the job fence, if one exists. It takes effect at log-on time. It
must be a value from 1 (lowest) to 1 3 (highest priority). If you supply a
value less than or equal to the current job fence set by the console operator
the session is denied access. Default: 8 if logging of session/job initiation is
enabled, 13 otherwise. (Optional parameter)

is a request for maximum session-selection input priority, causing the
remote session to be scheduled regardless of the current job fence or
execution limit for sessions. NOTE: You can specify this only if you have
system manager or supervisor capability. (Optional parameter)

DEC 85
9-7

Using a Remote Data Base

Syntax Considerations

The following provides syntax rules that apply:

• No spaces are allowed around the periods in the optional file reference, or separating dsdevice and the
sign, in Record 1.

• Passwords are not allowed with the local user, account, and group names. They are not neccessary since
the local user passes the security password checks when logging on the local session.

FILENAME

NOTE

Remote logon parameters must define a valid logon known to the remote
machine. For example, if a particular user name requires a password on the
remote machine, the password parameter is required in the
data-base-access file and must be supplied in the HELLO command.

After you have created the file with the Editor, you must KEEP it UNNumbered. The file name must
follow the same rules as a data base name. It must be an alphanumeric string from 1 to 6 characters, the
first character must be alphabetic.

USER IDENTIFICATION

Records 3 through n define a table that tells TurbolMAGE which user, account, and group names on the
local computer may access which user, account, and group names on the remote computer. You may
specify remote user identification for more than one local user by creating a record for each local
"user. account,group" in the format of Record 3 shown above. An at-sign (@) may be substituted for any
user, account, or group name in the record. If an at-sign is substituted for lusername, lacctname, or
lgroupname, the name is replaced with the corresponding name specified at log-on time.

TurboIMAGE searches for a match between the local user, account and group names in the user table and
the names used to log on to the local session. When a match has been found, TurboIMAGE performs a
REMOTE HELLO using the corresponding rusername, racctname, rgroupname, and passwords, if present.
If an at-sign is found, it is replaced with the corresponding name to the left of =HELLO. For example, if
the record contains USERA. ACCTA,GROUPA=HELLO@. ACCTB,@, TurbolMAGE replaces the first
at-sign with USERA and the second with GROUPA. If an at-sign is not found, no substitutions are
made. In either case, the information to the right of =HELLO is used as the remote log-on identification.

DEC 85
9-8

The following is an example of proper syntax.

Example

Record

Record

Record

Record

Record

End of

2

3

4

5

file

FILE ORDERS;DEV=DSL1#DISC

DSLINE DSL 1

USERA.ACCTA, GROUPA=HELLO USERB.ACCTA,GROUPB

@.ACCTA,GROUPA=HELLO USERA.ACCTA,GROUPA

USERB.ACCTB,@=HELLO USERB.ACCTX,@

Using a Remote Data Base

If a user logs on with the log-on identification indicated in the first column below, TurboIMAGE will use
the corresponding USER. ACCT,GROUP identification in the second column to establish communication
with the remote system.

Example

Log-on Identification

User1
User2
User3
User4

USERA.ACCTA,GROUPA
USERB.ACCTA,GROUPA
USERB.ACCTB,GROUPB
USERA.ACCTB,GROUPB

Remote Identification

USERB.ACCTA,GROUPB
USERA.ACCTA,GROUPA
USERB.ACCTX,GROUPB
None, no match found.

The first user's log-on identification matches the local user, account, and group names specified in Record
3, so the remote names specified in that record are used. The second user's account matches Record 3 but
the user name does not, so TurboIMAGE looks for another table entry with account ACCTA. Since the
entry in Record 4 specifies any user (@) of ACCT A if their group is GROUP A, the second user's remote
identification will be that specified in Record 4.

The third user logs on to ACCTB and a match is found in Record S since it specifies the same user name
and accepts any group in the account.

The fourth user's account matches Record 5 but the user name does not match. Therefore, the fourth
user cannot access the remote data base with this application program. ·

DEC 85
9-9

Using a Remote Data Base

ACTIVATING A DATA-BASE-ACCESS FILE

After you have constructed a data-base-access file, you must use the DBUTIL utility program to activate
the file. The complete syntax for running the utility program is given in Section 8. Here is a summary of
the operating instructions:

:RUN DBUTIL.PUB.SYS

>>ACTIVATE data-base-aooess file name

Verification follows:

FILE command:
DSLINE command:
HELLO command:

ACTIVATED

>>EXIT

<result>
<result>
<result>

DBUTIL verifies that the file to be activated:

• has a file code of zero

• is an UNNUMBERED, ASCII file

• has a record length <= 1 2 8 characters

• has at least three records.

If any of these conditions is not satisfied, activation fails and one of the following messages is printed:

filename is NOT a suitable data-base-access file

filename is already ACTIVE

If all of the above are satisfied, DBUTIL prints the following message:

Verification Follows:

Then the utility program verifies the syntax of:

• Record 1

• Record 2 through dsdevice, which must be identical to the dsdevice specified in Record 1

• Records 3 through n, through the parameter rgpasw.

DEC 85
9-10

Using a Remote Data Base

This means that for Records 2 through n only the positional parameters (those whose function is
determined by their relative position within the command) are verified by DBUTIL. The remaining key
word parameters are checked by the command interpreter at DBOPEN time.

If all of the above conditions are met, DBUTIL successfully activates the data-base-access file, by
changing the file code to the TurbolMAGE reserved code -402, which makes it a privileged (PRI) file.

DEACTIVATING A DATA BASE-ACCESS FILE

In order to deactivate the data-base-access file, you use the DEACTIVATE command of the DBUTIL
utility program. Complete syntax for this program is given in Section 8. Here is a summary of the
operating instructions:

:RUN DBUTIL.PUB.SYS

>>DEACTIVATE data-base-access file name
DEACTIVATED

»EXIT

You may want to do this in order to edit the content of the data-base-access file or prevent access
through this file to the remote data base.

REFERENCING THE DATA BASE

To reference the data base from your local application program, use the data-base-access file name
instead of the root file name when calling the TurbolMAGE procedure. The word array specified as the
base parameter must contain a pair of blanks followed by the left-justified data-base-access file name
and terminated by a semicolon or blank (.1). TurboIMAGE recognizes the -402 file code and establishes a
communications link to the remote HP 3000. If the data base is successfully opened, TurbolMAGE
replaces the pair of blanks with the extra data segment number of the assigned Remote Data Base Control
Block. The base parameter must remain unchanged for the remainder of the process. When the
application program calls the DBCLOSE procedure or terminates execution, automatic REMOTE BYE and
DSLINE commands are issued to terminate the session and close the communications line.

The example in Figure 9-5 illustrates how to create and activate a data-base-access file. In this case, the
file named ORDDBA is to be used to gain access to the ORDERS data base residing on a remote system in
the PAY ACCT account. The remote system is referenced by dsdevice name MY.

After the data-base-access file is created using the Editor, it is enabled by using the DBUTIL utility
program.

DEC 85
9-11

Using a Remote Data Base

1 :HELLO MEMBER1.PAYACCT

2 : EDITOR

HP32201A.7.15 EDIT/3000 MON, DEC 3, 1984, 1:36 PM
(C) HEWLETT-PACKARD CO. 1983

3 /ADD

4 /KEEP
/END

1
2
3
4
5

FILE ORDERS;DEV=MY#
DSLINE MY
MEMBER1.PAYACCT=HELLO
MEMBER2.PAYACCT=HELLO
II

ORDDBA,UNN

5 :RUN DBUTIL.PUB.SYS
>>ACTIVATE ORDDBA

Verification follows:
FILE command: Looks good
DSLINE command: Looks good
HELLO command: Looks good
HELLO command: Looks good

ACTIVATED
»EXIT

END OF PROGRAM

MEMBER1. PAYACCT
@.PAYACCT

Figure 9-5. Preparing a Data-Base-Access File

Discussion

1 Initiate MPE session by logging on with appropriate user name and account.

2 Initiate text editor execution.

3 Enter the Editor ADD command in response to the first prompt, then enter the lines to define the
data-base-access file.

4 Save the work file in a disc file named ORDDBA. Then terminate Editor.

5 Initiate execution of DBUTIL and activate the data-base-access file ORDDBA. Verification
messages will follow (in session mode). Exit from DBUTIL.

DEC 85
9-12

Using a Remote Data Base

Figure 9-6 illustrates u~e of the data-base-access file through a program named APPLICAN. After
logging on to the local system, the user runs the program named APPLICAN from the local session. The
base array in this program contains 66. ORDDBA. When a call to DBOPEN is executed, TurbolMAGE
establishes a communication line and remote session. When the program closes the data base,
TurboIMAGE closes the line and terminates the remote session.

1 :HELLO MEMBER2.PAYACCT

2 :RUN APPLICAN

3 OS LINE NUMBER =
HP3000 / MPE V/E

#L4
G.00.00

4 WELCOME TO SYSTEM B.

MON, DEC 3, 1984,

CPU=2. CONNECT=1. MON, DEC 3, 1984, 1:59 PM
1 DS LINE WAS CLOSED

5 : BYE

1: 56 PM

Figure 9-6. Using a Data Base-Access File

Discussion

1 Initiate MPE session on the local system by logging on with the appropriate user name and account.

2 Execute application program APPLICAN.

3 TurbolMAGE establishes a communications line and remote session.

4 When the data base is closed, TurboIMAGE closes the communications line and terminates the
remote session.

5 Log off local system.

USING QUERY

When you use QUERY to retrieve information from a data base, you must specify a data base name,
password and access mode before you can actually access the data base. The "DAT A BASE=" prompt can
be answered with a remote data base name or the data-base-access file name. Note, however, that
performance can be significantly improved if you run QUERY in remote session, thereby accessing the
data base on the system where it resides, rather than run QUERY locally to access a remote data base. A
detailed description of QUERY /DS is provided in the QUERY Reference Manual.

DEC 85
9-13

INTERNAL STRUCTURES -
~A_ND~T_EC_H_N_ta_u_E_S~--------~~~~

In addition to the data elements discussed in Section 2, data bases comprise a number of structure
elements. TurboIMAGE creates and uses these, along with various internal techniques, to provide rapid
and efficient access to the data base content. This section describes these structures and techniques to
give you a complete understanding of the way TurboIMAGE works. A summary of design considerations
is included at the end of this section.

DAT A SET STRUCTURAL ELEMENTS

The following internal structures are used by TurbolMAGE to manage the information in data sets.

Pointers

TurbolMAGE uses pointers to link one data set record to another. A pointer is a two word entity
(doubleword) containing the block number in the first three bytes plus one byte which contains the offset
record number.

Data Chains

A data chain is a set of detail data set entries that are bi-directionally linked together by pairs of
pointers. All entries having a common search item value are placed in the same chain. Each chain has a
first and a last member. The pointer pairs constitute backward and forward pointers to the entry's
predecessor and successor within the chain. The first member of a chain contains a zero backward pointer
and the last member of a chain contains a zero forward pointer. A single chain may consist of at most
231-1 (2,147,483,647) entries.

Media Records

TurboIMAGE transfers information to and from a storage location on disc in the form of a media record.
A media record consists of both an entry and its pointers or a null record if no data entry is present.

DEC 85
10-1

Internal Structures and Techniques

Media Records of Detail Data Sets

For each detail entry, the media record consists of the entry itself preceded by all of its related data chain
pointer pairs. The number of pointer pairs corresponds to the number of paths specified for the data set
within the schema. Figure 10-1 illustrates a media record for a detail data set defined with two paths.
The first set of pointers corresponds to the first path defined in the set part of the schema and the second
set corresponds to the second path.

backward forward backward forward
pointer pointer pointer pointer entry ...
path 1 path 1 path 2 path 2

Figure 10-1. Media Record for Detail Entry

Chain Heads

TurboIMAGE locates the first or last member of a chain within a detail data set by using a chain head.
The chain head for a particular chain is stored with an entry in the corresponding master data set whose
search item value is the same as the detail search item value defining the chain. Each chain head is six
words long. The first word is a double integer count of the number of member entries in the referenced
chain. The count is zero if the chain is empty. The remaining four words contain two doubleword
pointers. One points to the last chain entry, the other to the first chain entry. If the count is zero, these
pointers are both zero. If the count is 1, these pointers have the same value.

Primary Entries

Selection of record addresses for master entries begins with a calculated address determined by an
algorithm applied to the value of each entry's search item. The algorithm is described later in this
section. Each such calculated address is known as a primary address and each entry residing at its
primary address is called a primary entry.

Secondary Entries

A new entry with a unique search item value will be assigned the same primary address as an existing
primary entry whenever the search item values of both entries generate the same calculated address.
When this occurs, the entries are called synonyms. TurboIMAGE assigns the new entry a secondary
address obtained from unused records in the vicinity of the primary entry. All entries residing at
secondary addresses are called secondary en tries.

Synonym Chains

A primary entry may have multiple synonyms. A synonym chain consists of the primary entry and all of
its synonyms. Each synonym chain is maintained by a five-word chain head in the media record of the
primary entry and five-word links in the media records of the secondary entries. Note that a master data
set entry may contain both a synonym chain head and multiple detail chain heads. These are two distinct
types of chain heads.

DEC 85
10-2

Internal Structures and Techniques

If no secondary entries are present, the synonym chain count is 1 and the pointers to the first and last
secondary entries are zeros. If N secondaries are present, the chain count is N + 1 and the pointers
reference the first and last secondary entries.

The first word of the five-word link in the media record of each secondary entry is always zero. The
remaining four words consist of two doubleword pointers bi-directionally linking the secondary entries of
the synonym chain to each other. As with detail chains, the first member of the synonym chain contains
a zero backward pointer and the last member of the chain contams a zero forward pointer.

Media Records of Master Data Sets

Media records of master data entries are composed of the following:

• A five-word field serving as a synonym chain head for primary entries or a synonym chain link for
secondary en tries.

• A 6 times n word field in which the chain heads of all related detail chains are maintained. n is the
number of relationships defined for the master data set. There may be between 0 and 16 relationships.

• The entry itself.

Figure 10-2 illustrates the media record for a primary entry of a master data set with two paths defined.

synonym chain head path 1 detail chain head path 2 detail chain head

synonym last first detail last frst ~tail last first
chain entry ~ntry chain entry entry chain entry entry entry •.•
count pointer pointer COIJ1t pointer pointer count pointer pointer

Figure 10-2. Media Record for Primary Entry

Figure 10-3 illustrates a media record for a secondary entry of a master data set with two paths defined.

synonym chain link path 1 detail chain head path 2 detail chain head

'

ba~kward forward detail last frst d~tail last first
zero svnonym synonym chain entry entry chain entry entry entry •••

i pointer pointer count pointer pointer count pointer pointer

Figure 10-3. Media Record for Secondary Entry

When more than one detail chain head is present, they are physically ordered left-to-right in the order
that the associated paths are specified in the schema.

DEC 85
10-3

Internal Structures and Techniques

Blocks and Bit Maps

Each group of media records involved in a single disc transfer is a block. The first word or words of each
block contain a bit map employed by TurboIMAGE to indicate whether a particular media record of the
block contains a data set entry or is empty. There is one bit for each record in the block. The bits occur
in the bit map in the same order that the records occur in the block. The bit map occupies as many
integral words as are required to contain one bit for each record in the block. If a bit is zero, the
corresponding record is empty. If a bit is one, the record contains a data entry preceded by the associated
structure information.

The format of a block is illustrated in Figure 10-4. The sample block contains four records and the third
record contains no entry.

DEC 85
10-4

bit map

110100 ... 0 media entry media entry empty record media record

Figure 10-4. Block with Blocking Factor of Four

Internal Structures and Techniques

RUN-TIME TurbolMAGE CONTROL BLOCKS

As mentioned in Section 4, TurbolMAGE uses dynamically-constructed control blocks resident in
privileged extra data segments to provide and control user access to a data base through the TurboIMAGE
procedures. The contents of these control blocks are maintained by TurbolMAGE, and it is not necessary
to know the details in order to use the TurbolMAGE procedures. However, the following descriptions are
provided for those who prefer to understand the control blocks and their functions.

Local Data Base Access

Four structures are involved in local data base access:

• The Data Base System Control Block (DBS),

• the Data Base Globals Control Block (DBG),

• the Data Base Buffer Area Control Block (DBB),

• the Data Base User Local Control Block (DBU).

The DBS is created when the first user opens any data base on a system. There is only one DBS per system
and it is used as a system wide table to locate the current DBG and DBB for any previously opened data
base.

Both the DBG and the DBB are created when the first user opens the data base (DBOPEN). They remain
allocated until the last user closes the data base. There is only one DBB and DBG per each opened data
base, regardless of the number of users.

The DBG is derived mostly from the root file and contains global information required by TurboIMAGE
intrinsics during run-time. In addition, the DBG contains the lock table which holds user level locking
information. The DBG is used as a reference area for global data and lock information.

The DBB contains a set of (1/0) buffers which are shared by all concurrent users accessing the data base.
These buffers may contain data from any of the data sets. The number of 1/0 buffers vary in number
with the number of concurrent users and can be controlled by the data base administrator. (Refer to the
DBUTIL >>SET command in Section 8.) Each buffer is as large as the largest block of the data base. The
DBB also contains information pertaining to logging and recovery. The DBB is used to retrieve, log and
update data located within the data set files.

A two level resource priority locking scheme is used withirt the DBB to allow single-buffer operations to
access the control block concurrently. This involves DBGET, DBFIND and DBUPDATE processes.
DBPUT and DBDELETE operations are unable to access the DBB concurrently. These multi-buffer
operations must hold a global lock on the DBB throughout the operation.

DEC 85
10-5

Internal Structures and Techniques

The DBU is created when a user issues a DBOPEN, and remains allocated until the corresponding
DBCLOSE is issued. One DBU exists for each user of each open data base. The DBU contains
information pertaining to the users own individual access to the data base. This includes information
about the user's access mode, record position, list specifications and security table. All TurbolMAGE
intrinsics process on the DBU except accesses for global and buffer area information found in the DBG
and DBB.

When accessing a local data base, the TurboIMAGE procedures usually make use of, and may modify
information, in the DBG, the DBB, and the specific user's DBU for this data base.

Remote Data Base Access

TurboIMAGE provides the capability of accessing a data base on a remote HP3000 from a user program
running on the local HP 3000, as described in Section 9. This capability is provided in conjunction with
DS/3000 and is accomplished by transmitting TurboIMAGE data base access requests (DBGET, DBPUT,
and so forth) to the remote computer where they are executed and the results returned to the local calling
process. The control block structures used by TurboIMAGE on the remote computer which contains the
data base are those described in the preceding paragraphs.

On the local computer running the user application program, a structure called the Remote Data Base
Control Block (RDBCB) is constructed and used by TurboIMAGE. One RDBCB exists for each user
accessing a remote TurbolMAGE data base (each access path to a remote data base). The RDBCB is
created when the user opens the data base and is released when the user closes the data base. It resides in
a privileged extra data segment associated with the user application process on the local computer. The
RDBCB contains data base, set, and item information plus the work areas necessary on the remote
computer. Access between a TurboIMAGE data base and an IMAGE/3000 data base residing on
different computers is allowed. If the new limitations have been used on the TurbolMAGE data base then
access from an IMAGE/3000 data base will not be successful. This is because the IMAGE/3000 RDBCB
will be too small to handle TurboIMAGE's expanded limitations. However, remote access from
TurboIMAGE to IMAGE/3000 will always be allowed. Returned data and status information is also
processed in the RDBCB and is transferred to the appropriate user stack areas before TurbolMAGE
returns to the local calling process.

DEC 85
10-6

Internal Structures and Techniques

Control Block Sizes

It is impossible to predict the exact length of the control blocks used by TurboIMAGE to manage user
access to data bases. However, Table 10-1 contains formulas that provide a way of approximating their
sizes.

The exact length of the DBU and the exact current length of the DBG are returned in the status array by
DBOPEN. (These lengths do not include the few words of overhead used by MPE.)

Table 10-1. Formulas for Approximating Control Block Sizes

CONTROL BLOCK

DBG

DBB

DBU

RDBCB

in which

r

b

n

i

s

APPROXIMATE LENGTH (IN WORDS)

4000 + r + i + s

4000 + 26s + n(b + 13)

4000 + 25s + i + i*s

4000 + 12i + 1 3s

is the ROOT LENGTH as reported by the Schema Processor.

is the BUFFER LENGTH as reported by the Schema Processor.

is the number of 1/0 buffers in the DBCB. This number normally
varies with the number of concurrent users of a data base. DBUTIL
can be used to display and change the values which TurboIMAGE
will use.

is the number of data items in the data base.

is the number of data sets in the data base.

DEC 85
10-7

Internal Structures and Techniques

INTERNAL TECHNIQUES

Although it is not necessary to know the following techniques to use TurboIMAGE, an understanding of
them may help you design a more efficient data base.

Primary Address Calculation

TurboIMAGE employ::; two distinct methods of calculating primary addresses in master data sets. The
first method applies to master data sets with search items of type I, J, K, or R. The low order (rightmost)
31 bits of the search item value, are used to form a 32-bit doubleword value. This doubleword value is
then decremented by one, reduced modulo the data set capacity and incremented by one to form a
primary address. For example, if an integer search item has a value of 529 and the data set capacity is
200, the primary address is 12 9. The calculation is as follows:

529-1 = 528
-400

128
+1

129

(200x2)

The second method of primary address calculation applies to master data sets with search items of type U,
X, Z, or P. In this case, the entire search item value regardless of its length is used to obtain a positive
doubleword value. This value is reduced modulo the data set capacity and then incremented by one to
form a primary address. The algorithm used to obtain the doubleword intermediate value attempts to
approximate a uniform distribution of primary addresses in the master data set, regardless of the bias of
the master data set search item values.

The intent of the two primary address algorithms is to spread master entries as uniformly as possible
throughout the record space of the data file. This uniform spread reduces the number of synonyms
occurring in the master data set.

DEC 85
10-8

NOTE

In general, a master data set with a capacity equal to a prime number or to
the product of two or three primes may yield fewer synonyms than master
data sets with capacities consisting of many factors.

Internal Structures and Techniques

Migrating Secondaries

In some cases, secondary entries of master data sets are automatically moved to storage locations other
than the one originally assigned. This most often occurs when a new master data entry is assigned a
primary address occupied by a secondary entry. By definition, the secondary entry is a synonym to some
other primary entry resident at their common primary address. Thus, the new entry represents the
beginning of a new synonym chain. To accommodate this new chain, the secondary entry is moved to an
alternate secondary address and the new entry is added to the data set as a new primary entry. This move
and the necessary linkage and chain head maintenance is done automatically.

A move can also occur when the primary entry of a synonym chain having one or more secondary entries
is deleted. Since retrieval of each entry occurs through a synonym chain, each synonym chain must have
a primary entry. To maintain the integrity of a synonym chain, TurboIMAGE always moves the first
secondary entry to the primary address of the deleted primary entry.

Space Allocation for Master Data Sets

Space allocation for each master data set is controlled by a doubleword free space counter resident in the
user label of the data set, and by all the bit maps, one in each block of the data set.

When a new entry is added, TurbolMAGE decrements the free space counter and sets the bit
corresponding to the newly assigned record address to a 1. If the bit is a zero before the record is added,
the assigned record address is the primary address. If the bit is a one before the record is added, it
indicates that an entry already exists. A secondary address is determined by a cyclical search of the bit
maps for a 0 indicating an unused record and this address is assigned to the entry being added.

Space Allocation for Detail Data Sets

Space allocation for each detail data set is controlled by a doubleword free space counter, a doubleword
end-of-file pointer and a double word pointer to a delete chain. The end-of-file pointer contains the
record address of the highest-numbered entry which has existed so far in the data set. The delete chain
pointer locates the record address of the entry which was most recently deleted. When each detail data
set is first created, the end-of-file pointer and delete chain pointer are both zero.

When a new entry is added to a detail data set, TurbolMAGE assigns to it the record address referenced by
the delete chain pointer, unless the pointer is zero. If the chain pointer is zero, the end-of-file pointer is
incremented and then used as the assigned record address. The free space counter is decremented in either
case.

When an existing entry is deleted, its media record is zeroed, the first two words are replaced with the
current delete chain pointer, and the block is written to disc. The delete chain pointer is set to the address
of the newly deleted entry and the free space counter is incremented.

The delete chain is, in effect, a last in -first out linked list reusable media record space. Reusable space is
always allocated in preference to the unused space represented by the record addresses beyond the
end-of-file pointer.

Addition and deletion of data entries also requires data chain maintenance and turning on or turning off
the corresponding bit of the appropriate bit map. Both of these are necessary for retrieval integrity but
neither play a role in space allocation for detail data sets.

DEC 85
10-9

Internal Structures and Techniques

Buffer Management

TurboIMAGE maintains buffers in the DBB for all users of an open data base. The intrinsics of DBFIND,
DBGET, DBUPDATE, DBPUT and DBDELETE use these buffers for data transfers. When an intrinsic
issues a request for a data block, TurbolMAGE will search the buffer area for the block. If the data block
is not found then TurboIMAGE must pick an overlay candidate buffer. The candidate buffer will hold a
copy of the data set block read in from dlsc. This selection process uses a "modified,
Least-Recently-Used" (LRU) buffer replacement algorithm. The purpose of this algorithm is to delay
writing dirty buffers out to disc while retaining those buffers which will most likely be reused. Three
criteria are used to determine the selection of the buffer. The selection process is listed below in
descending priority:

• Is the buff er dirty?
• What is the possibility that the buffer will be needed again?
• When was the buffer last used?

TurboIMAGE buffer management provides the capability to issue buffer writes as either MPE waited 1/0
or MPE no-wait 1/0. The user may alter the buffer posting mechanism by changing options in
TurbolMAGE or MPE. In TurboIMAGE Output Deferred Mode (AUTODEFER) can be used along with
MPE disc caching to increase 1/0 performance, however ILR, and roll-back recovery must be disabled.
The user must take into consideration performance, type of 1/0 and data recoverability when determining
which options to use for buffer management.

Locking Internals

Within the DBG is a lock area which is initially 128 words long and may be expanded to 8192 words in
length subject to system availability of the necessary resources. It contains a fixed area of 64 words. The
remaining area is managed dynamically and provides space for the following entries:

ACCESSOR ENTRIES

Each of these is 8 words long. One is created for each successful call to DBOPEN (each access path).
Although located in the lock area, this is the link with which TurboIMAGE controls access to the data
base. It is deleted when DBCLOSE is called for the access path, and the space is reused.

SET ENTRIES

Each of these is 16 words long. One is created for every data set that is specified in a lock request.
Therefore, the maximum number of set entries is equal to the number of data sets in the data base. These
are never deleted.

DESCRIPTOR ENTRIES

These entries contain the internal form of the lock descriptors specified in locking mode 5 or 6. Each
entry is 8 + V words long rounded up to the next multiple of 8. V is the number of words required to
hold the value of the data item used for locking. These entries disappear when the locks are released
(when DBUNLOCK is called) and the space is reused.

DEC 85
10-10

~ER_R_o_R_M_E_ss_A_G_E_s~~--~~--~lr'!M,
TurbolMAGE issues three different types of error messages:

• Schema Processor Error Messages listed in Tables A-1 through A-3.

• Library Procedure Error Messages listed in Tables A -4 through A- 7.

o Utility Error Messages listed in Tables A- 8 through A-10.

Schema processor error messages result from errors detected during processing of the data base schema.
The library procedure error messages consist of condition words returned to the calling program from the
library procedures. The utility error messages are caused by errors in execution of the data base utility
programs.

SCHEMA PROCESSOR MESSAGES

The Schema Processor accesses three files:

• The textfile (DBSTEXT) containing the schema records and Schema Processor commands for processing.

• The listfile (DBSLIST) containing the schema listing, if requested, and error messages, if any.

• The root file, if requested, created as a result of an error-free schema.

Any file error which occurs while accessing any of these files causes the Schema Processor to terminate
execution. A message indicating the nature of the error is sent to $STDLIST (and to the listfile, if listfile
is different from $STDLIST).

Table A-1 lists the various file error messages. Each such message is preceded by the character string:

******FILE ERROR******

Additionally, the Schema Processor prints a standard MPE file information display on the $STDLIST file.
Refer to MPE Intrinsics Reference Manual or Error Messages and Recovery Manual for the meaning of
MPE file information displays.

Schema Processor command errors may occur. They neither cause termination nor do they prohibit the
creation of a root file. In some cases, however, the resultant root file will differ from what might have
occurred had the commands been error free. Command errors are added to an error count which, if it
exceeds a limit (see Section 3), will cause the Schema Processor to terminate execution.

DEC 85
A-1

Error Messages

Table A- 2 lists the various Schema Processor command error messages. Each such message is preceded by
the character string:

*****ERROR*****

Data base definition syntax errors may be detected by the Schema Processor. Their existence does not
cause termination but does prohibit root file creation. Discovery of one may trigger others which
disappear after the first is corrected. Also, detection of one may preclude detection of others which appear
after the first is corrected. Syntax errors are also added to an error count which, if excessive, will cause
Schema Processor termination.

Table A-3 lists the various syntax error messages. As with command errors, each syntax error is preceded
by the character string:

*****ERROR*****

If the LIST option is active (see Section 3), error messages for command errors and syntax errors appear in
the listfile following the offending statement. If the NOLIST option is active, only the offending
statement, followed by the error message, is listed.

Table A-1. TurbolMAGE Schema Processor File Errors

MESSAGE

READ ERROR ON
file name

UNABLE TO CLOSE
file name

UNABLE TO USE
file name

UNABLE TO WRITE
LABEL OF
file name

UNEXPECTED
END-OF-FI LE
file name

WRITE ERROR
file name

DEC 85
A-2

ON

ON

MEANING ACTION

FREAD error occurred on the Check textfile or :FILE command.
specified file.

FCLOSE error occurred on Change data base name or purge
specified file. May be ca used by file of same name. Or, be sure
duplicate file in group with same correct file and file name used.
name as root file. Check :FILE commands used. If

other cause, consult Intrinsics
Reference Manual for similar
message.

Specified file cannot be FOPENed Same as above.
or its characteristics make it
unsuitable for its intended use.

FWRITELABEL error occurred Same as above.
on specified file.

Call to FREAD or FWRITE on Same as above.
specified file has yielded
unexpected end of file condition.

FWRITE error occurred on the Same as above.
specified file.

Error Messages

Table A-2. TurboIMAGE Schema Processor Command Errors

MESSAGE

COMMAND
CONTINUATION
NOT FOUND

COUNT HAS BAD
FORMAT

ILLEGAL
COMMAND

IMPROPER
COMMAND
PARAMETER

MISSING
QUOTATION MARK

SPECIFIED TITLE IS
TOO LONG

MEANING

If the schema processor command
is continued to the next record,
the last non -blank character of
the preceding line must be an
ampersand (&) and the
continuation record must start
with a dollar sign($).

The numbers in ERRORS, LINES,
or BLOCKMAX parameters of
the $CONTROL command are
not properly formatted integer
values.

The Schema Processor does not
recognize the command. Valid
commands are $PAGE, $TITLE,
and $CONTROL.

One of the commands in the
parameter is not valid.

Character string specified in
$PAGE or $TITLE command
must be bracketed by quotation
marks (11

).

Character string in $TITLE or
$PAGE command exceeds 104
characters.

ACTION

Examine the schema textfile to
find any incorrect commands.
Edit the textfile and run the
Schema Processor again.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

DEC 85
A-3

Error Messages

MESSAGE

AUTOMATIC
MASTER DATA SET
MUST HAVE
SEARCH ITEM
ONLY

BAD CAPACITY OR
TERMINATOR

BAD DEVICE CLASS
NAME

BAD DEVICE CLASS
NAME OR
TERMINATOR

BAD LANGUAGE

BAD PATH COUNT
OR TERMINATOR

BAD CHARACTER
IN USER CLASS
NUMBER

BAD DAT A BASE
NAME OR
TERMINATOR

DEC 85
A-4

Table A-3. TurboIMAGE Schema Syntax Errors

MEANING ACTION

AUTOMATIC master data sets Same as above.
must contain entries with only
one data item. The data item
must be a search item.

Either the number in the Examine the schema textfile to
CAPACITY: statement is not an find the error and edit the file.
integer between 1 and 2 -1, or a Run the Schema Processor again.
semicolon is missing

The device class name specified Same as above.
contains an invalid character.
The name must be less than 8
characters and begin with a
letter.

The device class name specified Same as above.
contains an invalid character or
was not ended with a semi-colon
II.II

) .

Language name contains invalid Same as above.
characters, or the language
number is not a valid integer.

The path count in the master data Same as above.
set definition is not an integer
from 1 to 16 (for an automatic),
or 0 to 1 6 (for a manual). This
message may also mean the path
count is not followed by a (11

).

User class number in password is Same as above.
not an integer from 1 to 6 3.

Data base name in BEGIN DATA Same as above.
BASE statement is not a valid
data base name beginning with an
alphabetic character and having
up to 6 alphanumeric characters.
Or, the name is not followed by a
semicolon (;).

Error Messages

Table A-3. TurbolMAGE Schema Syntax Errors (Continued)

MESSAGE

BAD DATA SET
TYPE

BAD PATH
CONTROL PART
DELIMITER

BAD PATH
SPECIFICATION
DELIMITER

BAD READ CLASS
OR TERMINATOR

BAD SET NAME OR
TERMINATOR

BAD SUBITEM
COUNT OR
TERMINATOR

MEANING

The data set type designator is not
AUTOMATIC (OR A), MANUAL
(OR M), or DETAIL (OR D).

Data item defined as sort item in
detail data set is not properly
delimited with parentheses().

Name of master data set
following search item name in
detail data set definition is not
followed by a 11

)
11

, or by a sort item
name in parentheses.

Read user class number defined
for either a data set or data item
is not an integer from 0 to 6 3, or
it is not terminated by a comma
(,) or slash (/).

The data set name does not
conform to the rules for data set
names (1 to 1 6 characters
beginning with a letter. The
name may include+ - *I?'#%
& @), or it is not terminated by
the correct character for the
context it in which it appears.

Subitem count for a data item
defined in schema item part is not
an integer from 1 to 2 5 5.

ACTION

Same as above

Same as above.

Same as above.

Same as above.

Same as above.

Same as a hove.

DEC 85
A-5

Error Messages

Table A-3. TurboIMAGE Schema Syntax Errors (Continued)

MESSAGE

BAD SUBITEM
LENGTH OR
TERMINATOR

BAD TERMINATOR-
';' OR ',' EXPECTED

BAD
TERMINATOR-';'
EXPECTED

BAD TYPE
DESIGNATOR

BAD WRITE CLASS
OR TERMINATOR

'CAPACITY'
EXPECTED

DATA BASE HAS NO
DATA SETS

DATA BASE NAME
TOO LONG

DEC 85
A-6

MEANING ACTION

Subitem length for data item Examine schema textfile to find
defined in schema item is not an the error and edit the file. Run
integer from 1to255. Schema Processor again.

Items within an entry definition Same as above.
must be separated from each
other with commas and
terminated with a semicolon.

Password or capacity was not Same as above.
followed by a semicolon.

Data item defined in schema item Same as above.
part is not defined as type
I,J,K,R,U,X,Z, or P.

Write user class number shown Same as above.
for the data set or data item is
not an integer from 0 to 6 3, or it
is not terminated by a right
parenthesis ')' or comma.

CAPACITY statement must Same as above.
follow entry definition in the
definition of data sets in the set
part of schema.

No data sets were defined in the Same as above.
set part of schema. The data base
must contain at least one data set.

Data base name has more than six Same as above
characters.

Error Messages

Table A-3. TurbolMAGE Schema Syntax Errors (Continued)

MESSAGE

DUPLICATE ITEM
SPECIFIED

DUPLICATE SET
NAME

'ENTRY:' EXPECTED

ENTRY TOO BIG

ENTRY TOO SMALL

MEANING

The same data item name was
used more than once in the entry
definition of data sets.

The same data set name was used
to define more than one data set
in the set part of schema.

Each set defined in the set part of
schema must contain ENTRY:
statement followed by the data
item names of the data items in
entry.

The number and size of the data
items defined for an entry makes
an entry too big for maximum
block size. The block size is
specified by $CONTROL,or
BLOCKMAX= command or
default.

A detail data set that is not
linked to any master data set
must have a data entry length of
two or more words. This length is
determined by adding the size in
words of each data item defined
in the data entry.

ACTION

Examine the Schema textfile to
find the error and edit the file.
Run the Schema Processor again.

Same as above.

Same as above.

Same as above.

Same as above.

DEC 85
A-7

Error Messages

Table A-3. TurbolMAGE Schema Syntax Errors (Continued)

MESSAGE

ILLEGAL USER
CLASS NUMBER

ILLEGAL ITEM
NAME OR
TERMINATOR

ITEM TOO LONG

LANGUAGE
EXPECTED

LANGUAGE NOT
SUPPORTED

MASTER DATA SET
LACKS EXPECTED
DETAILS

MASTER DATA SET
LACKS SEARCH
ITEM

MORE THAN ONE
KEY ITEM

DEC 85
A-8

MEANING

User class number defined in
schema password part is not an
integer between 1 and 6 3.

The data item name does not
conform to naming rules. (Names
must start with a letter and may
have up to 16 alphanumeric
characters including + - ? I # $
& *@). Or if in the item part, it
is not followed by a comma.

The length of a single data item
may not exceed 204 7 words.

The Schema Processor expected to
find a LANGUAGE statement
after the comma following the
BEGIN DATA BASE name
statement.

Language specified is not
currently supported on your
system, or it is not a valid
language.

Master data set was defined with
a non-zero data count, but the
number of detail search items
which back-referenced the
master is less than the value of
the path count.

A master data set was defined
without defining one of the data
items in the set as a search item.

A master data set cannot be
defined with more than one
search i tern.

ACTION

Examine schema textf ile to find
incorrect statement and edit the
textfile. Run Schema Processor
again.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Error Messages

Table A-3. TurbolMAGE Schema Syntax Errors (Continued)

MESSAGE

MORE THAN ONE
PRIMARY MASTER

'NAME:' OR 'END.'
EXPECTED

NATIVE
LANGUAGE
SUPPORT ERROR

'PASSWORDS:' NOT
FOUND

PASSWORD TOO
LONG

REFERENCED SET
NOT A MASTER

MEANING

User has defined more than one
primary path for a detail data set.

Schema Processor expected , at
this point, to find the beginning
of another data set definition, or
the end of schema.

NLS/ 3 000 returned an error.

'PASSWORDS:' statement must
immediately follow the BEGIN
DAT A BASE statement in
schema. If it does not,
DBSCHEMA terminates
execution.

A password defined in data
schema cannot exceed eight
characters.

The data set referenced by the
detail data set search item is
another detail data set instead of
a master data set.

ACTION

Examine the Schema textfile to
find the incorrect statement and
edit the file. Run the Schema
Processor again.

Same as above.

Notify the System Manager

Examine the schema textfile to
find the incorrect statement and
edit the textfile. Run Schema
Processor again.

Same as above.

Same as above.

DEC 85
A-9

Error Messages

Table A-3. TurboIMAGE Schema Syntax Errors (Continued)

MESSAGE

SCHEMA
PROCESSOR LACKS
NEEDED TABLE
SPACE

SEARCH ITEM NOT
SIMPLE

SEARCH ITEMS NOT
OF SAME LENGTH

SEARCH ITEMS NOT
OF SAME TYPE

SET HAS NO PATHS
AVAILABLE

SORT ITEM OF BAD
TYPE

SORT ITEM NOT IN
DATA SET

DEC 85
A-10

MEANING

Schema Processor is unable to
expand its data stack to
accommodate all of the translated
information which will make up
the root file. It continues to scan
the schema for the proper form,
but will not perform all of the
checks for correctness nor will it
create a root file. To process the
schema correctly, the operating
system must be configured with a
larger maxim um stack size.

All data items defined in data
schema as search items must be
simple items.

Master search item must be the
same length as any related detail
data set search item.

Master search item must be of the
same type as any related detail
data set search item.

More detail data set search items
have specified a relationship with
a master data set than the
number specified in the master
sets's path count.

Data item defined as sort item
must be of type U,K, or X.

Detail data set's entry definition
does not include an item which is
specified as a sort item for
another item in the entry.

ACTION

Ask system manager to increase
maximum stack size.

Examine the schema textfile to
find the incorrect statement and
edit it. Run the Schema Processor
again.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Error Messages

Table A-3. TurboIMAGE Schema Syntax Errors (Continued)

MESSAGE

SORT ITEM SAME
AS SEARCH ITEM

TOO MANY DAT A
ITEMS

TOO MANY DAT A
SETS

TOO MANY ERRORS

TOO MANY ITEMS
SPECIFIED

TOO MANY PATHS
IN DATA SET

UNDEFINED ITEM
REFERENCED

UNDEFINED SET
REFERENCED

MEANING
·-·

The same item rn nnot be both a
search and a sort item for the
same path.

The item part of schema cannot
have more than 1023 data item
names

The data base cannot have more
than 1 9 9 data sets.

The specified or default number
of errors has been exceeded.
Processing is terminated.

The data set entry cannot have
more than 255 data items.

Detail data set entries cannot
have more than 16 search i terns.

A data item appearing in the data
set definition was not previously
defined in the i tern part of
schema.

Master data set referenced by
detail search item was not
previously defined in the set part
of schema.

ACTION

Examine the Schema text file and
find the incorrect statement and
edit it. Run the Schema Processor
again.

Same as above.

Same as above.

Correct the errors, or increase the
ERROR parameter value.

Examine the schema textfile and
find the incorrect statement.
Edit it and run Schema Processor
again.

Same as above.

Same as above.

Same as above.

DEC 85
A-11

Error Messages

LIBRARY PROCEDURE ERROR Mf:SSAGES

The success of each call to a TurboIMAGE library procedure is reflected upon return to the user by the
hardware condition code and the value of a condition word returned in the first word of the status area.

If the procedure fails to execute properly, the hardware condition code is set to CCL (Condition Code Less)
and the procedure returns a negative integer in the condition word. Table A-4 describes the negative
condition words resulting from file system and memory management failures, while Table A-5 describes
the negative condition words resulting from calling errors and communications errors respectively.

If the procedure operates properly but encounters an exceptional condition, such as end-of-file, the
hardware condition code is set to CCG (Condition Code Greater) and the procedure returns a positive
integer in the condition word. Table A-6 describes the positive condition words resulting from exceptional
conditions.

If the procedure operates properly and normally, the hardware condition code is set to CCE (Condition
Code Equal) and the procedure returns zero in the condition word.

In addition to returning a condition word, all TurboIMAGE library procedures put information about the
procedure call into the fifth through tenth words of the status area. This information may be useful in
debugging your programs, because it describes the conditions under which the particular results were
obtained. This information is used by DBEXPLAIN and DBERROR when they are interpreting the results
of TurboIMAGE calls.

In a few cases this information is not returned by the TurbolMAGE procedure because it uses the same
words in the status area for returning other data. Specifically, successful execution of DBFIND, DBGET,
DBUPDA TE, DBPUT, or DBDELETE puts the other information here as described in Section 5 of this
manual.

For all other returns, from a library procedure, the specified words of the status area have the following
contents:

DEC 85
A-12

Word

s

6

Contents

The PB-relative offset within the calling program's code segment
of the current procedure call to the TurboIMAGE library
procedure (the location of the PCAL instruction in the SPL code).

Bits 7-15: The intrinsic number of the called library procedure.
Bits 0- 3: Zero or the access mode in which the data base is
opened.

7 The DB-relative word address of the base parameter.

8 The DB-relative word address of the password, qualifier, or dset
parameter.

9 The value of the mode parameter.

10 The PB-relative offset within the library procedure code segment
at which return to the calling program was initiated (for HP use
only).

Error Messages

Consult the MPE Commands Reference Manual for a discussion of PB and DB registers, and the Systems
Programming Language Reference Manual for more information about the PCAL instruction.

Abort Conditions

In general, four types of error conditions can cause TurboIMAGE to abort the calling process:

1. A call from a user process with the hardware DB register not pointing to the process stack.

2. A faulty calling sequence.

3. An internal error in an MPE file intrinsic which the calling procedure cannot correct.

4. An internal inconsistency in the data base or the DBG, DBB, or DBU discovered by a library procedure.

In case 1, the procedure prints the standard MPE run-time abort message described in Section 2, of the
Error Messages and Recovery Manual. In cases 2, 3, and 4, TurboIMAGE prints additional information on
the standard list device about the error prior to printing the standard MPE abort message. The first line
of this inf orma ti on is:

ABORT: procedure name ON DATA BASE name;

where procedure name is the name of the library procedure which caused the abort and name is the name
of the data base being accessed at the time of the abort. Table A-7 describes additional lines of
information which may appear prior to the standard MPE abort message.

Some of the abort conditions are due to an error in one of the MPE file intrinsics FOPEN, FREADLABEL,
FREADDIR, FWRITELABEL, FWRITEDIR, or FCLOSE. Aborts of this type generally occur after the
procedure has possibly altered the data base so that the data base structure has been damaged in some
way. Each of the messages in Table A-7, which refer to a TurboIMAGE data file, is followed by an MPE
file information display which lists all of the characteristics of the MPE data set or root file where the
error occurred, along with an MPE error number. For more information about file error codes consult
Section 2 of the Error Messages and Recovery Manual and for the file information display, consult
Appendix A of that manual.

I FILES. When TurboIMAGE detects an internal inconsistency or other abnormal situation, it may create
a special 111'1 file before it terminates. The 11111 file consists of the user's stack and TurboIMAGE's data base
control blocks. TurboIMAGE only creates these 11111 files if a data base user has run DBUTIL and specified
ENABLE FOR DUMPING. So, if you want an 11111 file, you must specifically request it through this
DBUTIL command. Note that 11111 files are useful for debugging only if the data base is known to be
structurally sound.

DEC 85
A-13

Error Messages

Table A-4. TurboIMAGE Library Procedure File System and Memory Management Errors

CCL

-1

-2

-3

-4

-5

-6

DEC 85
A-14

PROCEDURE

MPE intrinsic
FOPEN failure

MPE intrinsic
FCLOSE FAILURE

MPE intrinsic
FREADDIR failure

MPE intrinsic
FREADLABEL
failure

MPE file error nn
returned by
FWRITEDIR

MPE file error nn
returned by
FWRITELABEL

MEANING ACTION
--

For DBOPEN, error may indicate that Determine which of
data base could not be opened. Possible probable causes
reasons: applies and either

modify application
• Data base name string not ter- program or see
minated with semicolon or blank system manager

• Data base does not exist or is about file system
secured against access by its group error.
or account security

• Data base is already opened
exclusive or in mode incompatible
with requested mode

• MPE file system error occurred.

For DBOPEN, DBINFO, DBFIND,
DBGET, DBUPDA TE, DBPUT, and
DBDELETE, error may occur if:

• The process has too many files open
external to the data base

• Data set does not exist or is secured
against access

• Some other MPE file system error
has occurred.

This is an exceptional error (should Notify system
never happen) and is returned only by manager of error.
DBOPEN or DBCLOSE. Indicates a
hardware or system software failure.

This is an exceptional error (as - 2 Same as above.
above) and is returned by DBOPEN,
DBFIND, DBGET, DBUPDA TE,
DBPUT, DBDELETE.

This is an exceptional error (as - 2 Same as above.
above) and is returned by DBOPEN,
DBINFO, DBFIND, DBGET,
DBUPDA TE, DBPUT, DBDELETE.

This exceptional condition could be Same as above.
returned when DBPUT, DBDELETE,
DBUPDA TE, or DBCLOSE calls
FWRITEDIR.

This exceptional condition could be Same as above.
returned when DBPUT, DBDELETE, or
DBCLOSE calls FWRITELABEL.

' Error Messages

Tab1e A-4. TurbolMAGE Library Procedure Fi1e System and Memory Management Errors (Cont.)

·-
CCL PROCEDURE MEANING ACTION

-9 MPE intrinsic This is an exceptional error and is Notify system
GETDSEG failure returned by DBOPEN when it cannot manager of problem

obtain extra data segment for use as or wait until system
Data Base Control Block. This occurs is less busy.
if required virtual memory space is
unavailable or if required DST entry is
unavailable.

Second word of user's status area is size
(in words) of data segment which
memory management was unable to
supply. Third word is MPE failure
code returned by GETDSEG intrinsic.

NOTE: For condition words -1 through -6, second word of calling program's status area is the data set
number for which file error occurred (zero indicates root file). Third word is MPE failure code
returned by FCHECK intrinsic. Refer to Error Messages and Recovery Manual, Section 2, for
meaning of this code.

CCL

-11

-12

Table A-5. TurbolMAGE Library Procedure Calling Errors

CONDITION MEANING

Bad base parameter For DBOPEN, the first two characters
in base are not blank, or data base
name contains special characters other
than period. For all other procedures,
either first two characters in base do
not contain the value assigned by
DBOPEN, or exceptionally, the
parameters passed to procedure are
incorrect in type, sequence or quantity.

No covering lock For DBUPDATE, DBPUT, and
DBDELETE, data base has been opened
in DBOPEN Mode 1 but there is no
lock to cover entry in question.
DBPUT or DBDELETE to master
requires data set or data base be locked.
In all other cases, entry, set, or data
base can be locked.

-

ACTION

Check application
program's procedure
call. Correct error
in call.

Modify program to
apply proper lock or
change mode.

DEC 85
A-15

Error Messages

CCL

-14

-21

-21

-21

DEC 85
A-16

Table A-5. TurboIMAGE Library Procedure Calling Errors (Continued)

CONDITION

Illegal intrinsic in
current access mode

Bad password

Bad data set
reference

Bad data item
reference

MEANING

For DBPUT and DBDELETE data base
has been opened in DBOPEN Mode 2, 5,
6, 7, or 8. These procedures may not be
used with these access modes. For
DBUPDATE, data base has been opened
in DBOPEN Mode 5, 6, 7, or 8.
DBUPDA TE may not be used with
these modes.

For DBOPEN, user class granted does
not permit access to any data in data
base. This is usually due to incorrect or
null password.

For DBINFO (modes 104, 201, 202,
301, and 302), DBCLOSE, DBFIND,
DBGE~DBUPDAT~DBPU~
DBDELETE, when data set reference is:

• Numeric but out of range of the
number of data sets in data base

.An erroneous data set name

.A reference to data set which is
inaccessible to user class established
when data base opened.

For DBFIND, this error is also returned
if referenced data set is a master.
Erroneous data set name may arise
when a terminating semicolon or blank
is omitted.

For DBINFO (modes 101, 1 02, and
204), data item reference is:

• Numeric but out of range of the
number of data items in data base

• An erroneous data i tern name
.A reference to data item which is
inaccessible to user class established
when data base opened.

An erroneous data item name may arise
when a terminating semicolon or blank
is omitted.

ACTION

Modify program.
Alter either mode or
procedure call or
notify current user
that operation
cannot be
performed.

Supply correct
password.

Check application
program's procedure
call. Correct error
in call .

Check application
program's procedure
call. Correct error
in call .

CCL

-23

-24

-31

-32

-51

-52

Error Messages

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

-
CONDITION

Data set not
writable

Data set is an
au to ma tic master

Bad mode

Unobtainable mode

Bad list length

Bad list or bad item

MEANING
-

For DBPU
has been o

T and DBDELETE, data base
pened in DBOPEN Mode 1, 3,
er has read but not write or 4 and us

access to th e referenced data set.

For DBPU T, the referenced data set is
tic master. an automa

This error
when the

occurs in all procedures
mode parameter is invalid.

For DBGE T, mode is 7 or 8 and
referenced data set is a detail, or mode

nd referenced data set is a
out search items.

is 5 or 6 a
detail with

For DBOP
FOPENed

EN, root file cannot be
with access options

(A OPTION S) required for the specified
mode: Sec
status area

ond word of calling program's
is required AOPTIONS, and
is the AOPTIONS granted to
y MPE file system.

third word
DBOPEN b

This error usually occurs either due to
data base access by other concurrent

users or du e to MPE account or group
ovisions. security pr

For DBGE
the list is t
list is not t

T, DBUPDATE, and DBPUT,
oo long. This may occur if
erminated with a semicolon
It may also occur for
egitimate lists which are too

or blank.
otherwise 1
long for T urboIMAGE's work area.

It will nev er occur for numeric lists.

For DBGE T, DBUPDATE, or DBPUT,
ameter is invalid. list either
orma t or contains a data

the list par
has a bad f
item ref ere nee which:

ACTION

Modify access mode
set in procedure call
or notify current
user operation
cannot be
performed.

Modify data set
name in call or in
data set type in
schema.

Correct mode in
procedure call.

See the MPE
Intrinsics Ref ere nee
Manual for meaning
of AOPTIONS
words.

Action depends on
program's design.
Normally notify
user that requested
access mode is not
available.

Shorter list array
contents. If
necessary, change to
numeric list.

Check procedure
call. Correct error
in call or parameter.

DEC 85
A-17

Error Messages

CCL'

-52

-53

-60

-80

-90

-91

-92

DEC 85
A-18

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION

(continued)

Missing search or
sort item

Illegal file equation
on root file

Output Deferred not
allowed with ILR
enabled

Root file bad:
unrecognized state:
%octal integer

Bad root
modification level

Data base not
created

MEANING

.Is out of range of the number of data
i terns m the data base

.Reference an inaccessible data item

.Duplicates another reference in the
list.

For DBFIND, the item parameter
contains data item reference which
either:

.Is out of range of the number of data
items in the data base

• Is not a search item for referenced
data set.

For DBPUT, a search or sort item of
referenced data set is not included in
list parameter.

When using a :FILE command with the
data base name or a data-base-access
file name, only the file designators and
DEV= parameters are allowed.

DBCONTROL (mode 1) was used to
request deferred output, but deferred
output cannot be used when ILR or
ROLLBACK are enabled. Output
deferred is not initiated.

For DBOPEN, this error is returned if
the root file is in an unrecognized state.
The octal integer represents an ASCII
rrror code.

For DBOPEN, the software version of
the DBOPEN procedure is incompatible
with version of schema processor which
created root file.

For DBOPEN, the referenced data base
has not yet been created and initialized
by the DBUTIL program (in CREA TE
mode).

ACTION

Check procedure
call. Correct error
in call or parameter.

Re-enter :FILE
command without
illegal parameters.

Do not use deferred
output; or run
DBUTIL and disable
ILR or ROLLBACK.

Restore old copy of
the root file for the
data base.

Check with system
manager that you
have correct
TurboIMAGE
software. If
necessary ask HP
support personnel
about con version.

Run DBUTIL to
create data base.
Try application
program again.

Error Messages

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CCL CONDITION MEANING ACTION
-

-94 Data base bad For DBOPEN, referenced data base was Either DBLOAD
damaged while being modified in from backup tape; or
output deferred mode. DBUNLOADto

ERASE data and
then DBLOAD.

-95 Data base bad For DBOPEN, data base was damaged Since data base was
by a file system failure, system failure, not created, run
or TurboIMAGE abort while DBUTIL DBUTIL CREA TE
CREA TE command was creating the command to create
data base. the data base.

-96 Data base bad For DBOPEN, data base was damaged Since data was not
by a file system failure, system failure, erased, run DBUTIL
or TurbolMAGE abort while DBUTIL ERASE command to
ERASE command was erasing the data erase the data from
base. the data base.

-97 Data base bad - ILR DBOPEN attempted to open data base, Run DBUTIL with
enable in process but the prior ENABLE of ILR log file ENABLE command
(enable again) was not complete. to enable ILR log

file.

-98 Data base bad - ILR DBOPEN attempted to open a data Run DBUTIL with
disable in process base, but prior disable of ILR log file DISABLE command
(disable again) was not complete. to disable ILR log

file.

-100 DSOPEN failure While executing a DBOPEN, Try opening the
TurbolMAGE has encountered a data base again. If
hardware failure trying to obtain a error persists contact
communications line. your HP Customer

Engineer.

-101 DSCLOSE failure This is an exceptional error returned by Notify system
DBOPEN or DBCLOSE. It indicates a manager of problem.
hardware or system software failure.

-102 DSWRITE failure A line failure has occurred while Try calling the
attempting an operation on a remote procedure again. If
data base. May be returned by error persists notify
DBOPEN, DBFIND, DBGET, DBPUT, system manager.
DBUPDATE, DBDELETE, DBLOCK,
DBUNLOCK, DBINFO, or DBCLOSE.

NOTE: Condition Codes -100 through -107 are communication errors.
For condition codes -100 through -102, third word of calling program's status area is MPE failure
code returned by DSCHECK intrinsic.

DEC 85
A-19

Error Messages

CCL

-103

-104

-105

-106

-107

-110

-111

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION

Remote stack too
small

Remote system does
not support
TurboIMAGE

MPE intrinsic
GETDSEG failure
on remote HP 3000

Remote data
inconsistent

DS procedure call
error

MPE OPENLOG
intrinsic failure

MPE WRITELOG
Intrinsic failure

MEANING

Command Interpreter on remote HP
3000 cannot obtain stack space
necessary to execute a DBOPEN or
DBLOCK.

Remote HP 3000 does not contain
TurboIJ\1AGE software. May be
returned by DBOPEN.

This is an exceptional error and is
returned by DBOPEN on the remote
system when it cannot obtain an extra
data segment for the DBG. Second
word of status array is size of data
segment.

This is an exceptional error returned by
same intrinsics as -102 (see above). It
indicates a hardware or system software
failure.

This is an exceptional error returned by
same intrinsics as -102 (see above). It
indicates a hardware or system software
failure.

This error may occur following a call to
DBOPEN when a data base is enabled
for logging. Refer to MPE Intrinsics
Manual for listing of second values of
status array and error messages.

OPENLOG returned error number NN
to DBOPEN.

When a data base is enabled for logging,
this error may be returned by
DBOPEN, DBCLOSE, DBPUT,
DBUPDATE, DBDELETE, DBMEMO,
DBBEGIN, DBEND. Refer to MPE
Intrinsics Manual for listing of second
values of status array and error
messages.

ACTION

Ask system manager
of remote system to
increase available
stack size.

Ask system manager
of remote system to
obtain and load
TurboIMAGE
software.

Notify system
manager of problem.

Notify system
manager of problem.

Notify system
manager of problem.

Notify system
manager or HP
support.

Notify data base
administrator.

NOTE: Condition Codes -100 through -107 are communication errors.

DEC 85
A-20

CCL

-112

-113

-120

-121

-122

-123

-124

-125

-126

Error Messages

Table A-S. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION MEANING

MPE CLOSELOG When a data base is enabled for logging,
intrinsic failure this error may be returned by

DBCLOSE. Refer to MP E Intrinsics
Manual for listing of second second
values of status array and error
messages.

CLOSELOG returned error number NN
to DBCLOSE.

FLUSHLOG User called DBEND in mode 2 to write
returned error the logging buffer to disc, but the MPE
number nn to logging facility returned an error.
DBE ND

Not enough stack to DBLOCK cannot obtain enough stack
perform DBLOCK space.

Descriptor count DBLOCK detected an error in the
error descriptor count (first word of qualifier

array) in locking mode 5 or 6.

Descriptor list bad. DBLOCK checked the list and found
Is not entirely that it did not lie between DL and the
within stack top of stack. May be caused by a bad

length field.

Illegal relop in a DBLOCK encountered a relop field
descriptor containing characters other then >=, <=,

=Ii or Ii=.

Descriptor too short. DBLOCK encountered a lock descriptor
Must be greater less than 9 words long.
than or equal to 9

Bad set DBLOCK qualifier array contains an
name/number invalid data set name or number.

(Refer to error - 2 1 for rules.)

Bad item DBLOCK qualifier array contains an
name/number in valid data i tern name or number

(Ref er to error - 21 for rules.)

ACTION

Notify data base
administrator.

Look up the error
message in table
10-12 of the MPE
Intrinsics manual.

:RUN or :PREP with
STACK= or
MAXDATA= to get
more stack space.

Count must be a
positive integer.

Check length of
each descriptor, and
descriptor count.

Check con ten ts of
qualifier array.

Check contents of
qualifier array.

Check contents of
qualifier array. Be
sure names delimited
by semicolon or
space if less than 16
bytes long.

Same as above.

DEC 85
A-21

Error Messages

CCL

-127

-128

-129

-130

-131

-132

-133

-134

-135

DEC 85
A-22

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION MEANING ACTION

Attempt to lock DBLOCK does not allow compound Modify locking
using a compound items in lock descriptors. strategy to lock on a
item non -compound

item.

Value field too short A value field in a DBLOCK lock Perhaps the length
in a descriptor descriptor must be at least as long as word is too small in

the data item for which it is specified. the descriptor.

P-type item longer DBLOCK does not allow P-type data Modify locking
than P 2 8 specified items longer than 2 8 in lock descriptors strategy to lock on a

(2 7 digits plus sign). different item.

Illegal digit in a DBLOCK has encountered a P-type Check qualifier
P-type value value in a lock descriptor with and array contents to

invalid packed decimal digit. determine why data
is invalid. Correct
data representations
are described in the
Machine Instruction
Set Manual, Section
III.

Lowercase character DBLOCK has encountered a lower-case Same as above.
in type-U value character in a type-U value specified

in a lock descriptor.

Illegal digit in type Lock descriptor value specified to Same as above.
Z value DBLOCK contains an invalid zoned

decimal digit.

Illegal sign in type Z Lock descriptor value specified to Same as above.
value DBLOCK contains an invalid zoned

decimal sign.

Two descriptors DBLOCK has detected two lock Check qualifier
conflict descriptors in the same call that lock array contents for

the same or part of the same data base conflicting lock
entity. (For example, lock on set and desc ri pt ors.
data base in same request.)

Second lock without A second call to DBLOCK has been Read discussion of
CAP= MR made without an intervening multiple calls to

DBUNLOCK call and program does not DBLOCK in Section
have MR capability. 4 of this manual if

you plan to use
CAP= MR.

CCL

-136

-151

-152

-153

-160

-161

-162

-163

-164

-165

Error Messages

Table A-S. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION

Descriptor list
exceeds 2 0 4 7 words

Text length greater
than 5 1 2 bytes

DBCLOSE called
while a transaction
is in process;
DBBEGIN called
while a transaction
is in process

DBEND called while
no transaction in
progress

File Conflict: a file
already exists with
the ILR log file
name

Cannot check for an
ILR log file conflict:
file system error nn

Cannot build ILR
log file: file system
error nn

Cannot initialize
ILR log file: file
system error nn

Cannot initialize
ILR log header: file
system error nn

Cannot save ILR log
file: file system
error nn

MEANING

DBLOCK allows at most 204 7 word
long lock descriptor lists (qualifier
array).

Returned by DBBEGIN, DBEND, or
DBMEMO.

A transaction is in process.

DBUTIL ENABLE command was
unable to build ILR log file because of
a duplicate file name.

DBUTIL ENABLE comnund was
physically not able to check for file
conflict; for example, a private volume
was not mounted.

DBUTIL ENABLE command could not
build the ILR log file because of a file
system error.

DBUTIL ENABLE command or call to
DBOPEN was not able to perform 2nd
phase of initialization because of file
system error.

DBUTIL ENABLE command or call to
DBOPEN was not able to perform 1st
phase of initialization because of file
system error.

DBUTIL ENABLE command could not
save the ILR log file as a permanent
file because of a file system error.

ACTION

Change qualifier
array contents so
lock descriptor list is
shorter.

Modify program.

Call DBEND before
DBCLOSE. Call
DBEND before the
next DBBEGIN.

DBBEGIN must
preceed a call to
DBEND.

Purge or rename the
duplicate file.

Check file system
error number.

Check file system
error number.

Check file system
error number.

Check file system
error number.

Check file system
error number.

DEC 85
A-23

Error Messages

CCL

-166

-170

-171

-172

-180

-181

-182

-183

DEC 85
A-24

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION

Cannot purge ILR
log file: file system
error nn

Cannot open ILR log
file: file system
error nn

Cannot close ILR log
file: file system
error nn

Cannot read ILR log
file: file system
error nn

ILR log invalid -
internal file name
does not match root
file

ILR log invalid -
internal group name
does not match root
file

ILR log invalid -
internal account
name does not
match root file

ILR log invalid -
internal creation
date does not match
root file

MEANING

DBUTIL DISABLE, PURGE, or ERASE
command could not purge an ILR log
file because of a file system error.

DBUTIL DISABLE command or call to
DBOPEN was not able to open ILR log
file due to file system error.

DBUTIL DISABLE command or call to
DBCLOSE was not able to close ILR log
file due to file system error.

DBUTIL DISABLE command or call to
DBOPEN was not able to read ILR log
file due to file system error.

DBUTIL DISABLE command or call to
DBOPEN attempted to open ILR log
file, but file names inconsistent.
Unlikely to occur unless disc corrupted,
or TurboIMAGE root file or ILR log
file altered by privileged mode user.

DBUTIL DISABLE command or call to
DBOPEN attempted to open ILR log
file, but group names do not match.
(See -180 for possible cause.)

DBUTIL DISABLE command or call to
DBOPEN attempted to open ILR log
file, but account names do not match.
(See -180 for possible cause.)

DBUTIL DISABLE command or call to
DBOPEN was unable to open ILR log
file because its creation date was not
the same as the creation date of the
TurboIMAGE root file. Could be
caused by storing the data base
followed by a partial restore with MPE
:RESTORE that excluded either the
root file or the ILR log file. If there
was an intervening ENABLE or
DISABLE, the creation dates will not
match and only a partial
DBSTORE/DBRESTOR occurred.

ACTION

Check file system
error number.

Check file system
error number.

Check file system
error number.

Check file system
error number.

Use DBRESTOR to
restore data base.

Use DBRESTOR to
restore data base.

Use DBRESTOR to
restore data base.

To avoid this
problem always store
data base with
DBSTORE and
restore with
DBRESTOR. Using
these utilities assures
that root file and
ILR log file are
consistent.

CCL

-184

-185

-187

-188

-200

-201

-202

Error Messages

Table A-5. TurbolMAGE Library Procedure Calling Errors (Continued)

CONDITION

ILR log in valid -
internal last access
date access data does
not mate~ root file

Cannot get extra
data segment of size
%XXXXX for ILR

ILR is already
enabled for this data
base

ILR is already
disabled for this
data base

Data Base Language
not system supported

Native Language
Support not installed

MPE Native
Language Support
error # 1 returned
by NLINFO

MEANING

DBUTIL DISABLE command or call to
DBOPEN was unable to open ILR log
file because its last access date does not
match the date in the TurbolMAGE
root file. Possible caused by a store and
then a partial restore (using MPE
:RESTORE) of data base.

When ILR is enabled TurboIMAGE
allocates an extra data segment of
%XXXXX words; subsequently, this size
is reduced to the actual size needed.

DBUTIL ENABLE command attempted
to enable a data base for ILR when ILR
was already enabled.

DBUTIL DISABLE command
attempted to disable a data base for
ILR when ILR was already disabled.

DBOPEN attempted to open the data
base and found that the language of the
data base is not currently configured.
The collating sequence of the language
is unavailable; DBOPEN cannot open
the data base.

NLS/3000 internal structures have not
been built at system start-up. The
collating sequence table of the language
of the data base is unavailable;
DBOPEN cannot open the data base.

The error number given was returned
by NLS/3000 on a NLINFO call in
DBOPEN.

ACTION

Always store data
base with DBSTORE
and restore with
DBRESTOR. To
assure consistent
dates in root file and
log file.

Run again.

Warning only.

Warning only.

Notify system
manager.

Notify system
manager.

Notify system
manager.

DEC 85
A-25

Error Messages

CCG

0

10

11

12

13

1 5

16

17

17

Table A-6. TurbolMAGE Library Procedure Exceptional Conditions

CONDITION

Logging not enabled
for this user

Beginning of file

End of file

Directed beginning
of file

Directed end of file

End of chain

Data set full

No master en try

No entry

MEANING

User has called DBBEGIN, DBMEMO,
or DBEND but user was not currently
logging to the data base.

DBGET has encountered beginning of
file during a backward serial read.
(There are no en tries before the one
previously accessed.)

DBGET has encountered the end of file
during a forward serial read. (There
are no entries beyond the most recently
accessed one.)

DBGET has been called for a directed
read with a record number less than 1.

DBGET has been called for a directed
read with a record number greater than
the capacity of data set.

DBGET has encountered end of chain
during a forward chained read.

DBPUT has discovered that data set is
full.

DBFIND is unable to locate master data
set entry (chain head) for specified
detail data set's search item value.

DBGET has been called to reread an
entry, but no "current record" has been
established or a call to DBFIND has set
the current record to 0. DBGET is
unable to locate master data set entry
with specified search item value.

ACTION

In order to log, user
must be changing
the data base, and
this user opened the
data base for read
only access (modes
5-8).

Appropriate action
depends on program
design.

Same as above.

Same as above.

Same as above.

Same as above.

Restructure data
base with larger
capacity for this
data set. (See
Section 7).

Appropriate action
depends on program
design.

Appropriate action
depends on program
design.

NOTE: CCG means "Condition Code Greater than."

DEC 85
A-26

CCG

17

18

20

Error Messages

Table A-6. TurbolMAGE Library Procedure Exceptional Conditions (Continued)

·-

CONDITION MEANING

(continued) DBGET has discovered that selected
record is empty (does not contain an
entry).

DBUPDATE or DBDELETE was called
when the "current record" was not
established or was empty.

Broken chain For DBGET with mode parameter
equal to S (forward chained read), the
"next entry" on current chain (as
designated by internally maintained
forward pointer for data set) contains
backward pointer which does not point
to most recently accessed entry (or zero
for first member of a chain).

For DBGET with mode parameter
equal to 6 (backward chained read), the
"next entry" on current chain in a
backward direction (as designated by
internally maintained backward
pointer for data set) contains a forward
pointer which does not point to most
recently accessed entry (or zero for last
entry in a chain).

This error can arise in DBOPEN access
modes 1, S, and 6 because another user
can make data base modifications
concurrent with this user's accesses.
When this error occurs, no data is
moved to user's stack, although internal
pointers maintained by TurboIMAGE
in the DSCB are changed to new
"offending" entry. (It becomes the
current entry.) Note that this error
check does not detect all structural
changes. DBGET (mode 5 or 6) makes
check only when preceding call on data
set was successful DBFIND or DBGET.

Data base locked or DBLOCK Mode 2: The data base
contains locks cannot be locked. Refer to value of

status word three: if 0, data base
already locked; if 1, data base contains
locked sets or entries.

ACTION

Appropriate action
depends on program
design.

Same as above.

Begin reading chain
again from first or
last entry.

Same as above.

Appropriate action
depends on program
design.

DEC 85
A-27

Error Messages

Table A-6. TurboIMAGE Library Procedure Exceptional Conditions (Continued)

CCG

20

22

23

24

25

41

42

43

44

DEC 85
A-28

CONDITION

(continued)

Data set locked by
another process

Entries locked
within set

Item conflicts with
current locks

Entries already
locked

Critical item

Read only item

Duplicate search
item value

Chain head

MEANING

Mode 4, 6: The lock cannot be granted
because the whole data base is already
locked.

DBLOCK has detected that the data set
is locked by another process or this
process through a different access path.
Returned in DBLOCK modes 4 and 6
only.

DBLOCK has detected that data entries
within requested data set are locked by
another process or this process through
a different access path. Returned in
DBLOCK mode 4 only.

Lock descriptors passed to DBLOCK
specify a data item that is different
than one used to set existing locks.
TurbolMAGE allows no more than one
data item per data set to be used at one
time for locking purposes. Returned in
DBLOCK mode 6 only.

DBLOCK has detected that data entries
requested to be locked are already
locked by another process or this
process through a different access path.
Returned in DBLOCK mode 6 only.

DBUPDATE has been asked to change
value of search or sort item.

DBUPDATE has been asked to change
value of a data item for which the user
does not have write access.

DBPUT has been asked to insert data
entry into a master data set with a
search item value which already exists
in data set.

DBDELETE has been asked to delete
master data set entry which still has
one or more non -empty chains.

ACTION

Appropriate action
depends on program
design.

Same as above.

Same as above.

Same as above.

Correct call or
notify user cannot
update item.

Notify user, cannot
update item. Or
change password in
program.

Appropriate action
depends on program
design.

Same as above.

CCG

50

51

52

53

54

60

61

62

Error Messages

Table A-6. TurbolMAGE Library Procedure Exceptional Conditions (Continued)

CONDITION MEANING
--

Buffer too small Calling program's buffer (identified by
buffer parameter) is too small to
accommodate the amount of
information that DBGET or DBINFO
wishes to return without extending into
the parameters area. This message is
returned only if the buffer is the last
1 tern in the user's stack, and will
overflow the stack boundaries.

Insufficient stack The stack size is not large enough for
for BIMAGE the temporary buff er used by the
temporary buffer BASIC TurbolMAGE interface

routines: XDBGET, XDBPUT,
XDBUPDA TE, and XDBINFO.

Invalid number of Call to BIMAGE interface procedure
parameters has either too many or too few

parameters.

Invalid parameter Call to BIMAGE interface procedure
has an invalid parameter, for example,
a parameter of wrong type.

Status array too The status array specified in call to
small BIMAGE interface procedure has less

than 1 0 elements.

Data base access DBOPEN has been called when the data
disabled base has been disabled for access.

Data base opened DBOPEN has been called when the
more than 6 3 times specified data base has already been
by same process. opened 6 3 times by the same process.

DBG Control Block TurboIMAGE is unable to expand the
is Full trailer area in the DBG by enough to

process a DBGET, DBPUT, or
DBUPDA TE list.

Or, if DBLOCK returned condition:

Lock area within DBG is full or system
would not allow TurbolMAGE to
expand DBG, or trailer could not be
expanded to hold descriptor list.

--··-

ACTION

Correct procedure
call, or change
buffer name or size.

Ask system manager
to increase
maximum stack size.

Correct procedure
call.

Correct parameter
name in call or
parameter itself.

Dimension status
array with 10
elements.

Notify data base
administrator.

DEC 85
A-29

Error Messages

Table A-6. TurboIMAGE Library Procedure Exceptional Conditions (Continued)

CCG

63

64

CONDITION

Bad DBG

PCBX data segment
area full

66 The current DJ3G
for the data base
does not appear
correct
(TurbolMAGE
internal error)

lxx

2xx

3xx

DEC 85
A-30

Missing chain head

Full chain

Full master

MEANING

Another process sharing data base has
aborted because of logical inconsistency
or internal error in TurboIMAGE,
leaving DBG in potentially inconsistent
state. All user accesses through existing
DBG are disabled texcept for
DBCLOSE, mode 1). Returned by all
intrinsics.

DBOPEN is unable to open data base
because there is no room for DBG entry
in PCBX area (MPE portion of data
stack).

User has attempted to add detail data
en try with a search i tern value that
does not match any existing search item
value in corresponding manual master
data set. The digits xx identify the
offending path number established by
order in which their search items occur
in set part of schema.

User has attempted to add detail data
entry to a chain which already contains
the maximum allowable
(2,147,483,647) entries. The digits xx
identify the offending path number (as
described in 1 xx).

User has attempted to add detail data
entry with a search item value in
corresponding automatic master data
set and new master entry cannot be
created because automatic master data
set is full. xx is offending path
number, (as described in lxx).

ACTION

Notify user cannot
add en try or add
manual master entry
and try again.

Consult with data
base manager. May
need to delete some
en tries from chain
or restructure data
base.

Restructure data
base, increasing
capacity of
automatic master.
(See Section 7).

Error Messages

Table A-7. TurbolMAGE Library Procedure Abort Condition Messages

MESSAGE

BUFFER SUPPLY
CRISIS

CRITICAL LABEL
READ ERROR ON
data set

CRITICAL READ
ERROR ON data set

LABEL WRITE
ERROR ON data set

LOST FREE SPACE
IN data set

NEGATIVE MOTIVE
ATTEMPT: n

UNABLE TO CLOSE
DATA SET

UNABLE TO OPEN A
data set

WRITE ERROR ON
data set

MEANING

Internal software inconsistency
caused TurboIMAGE to
mismanage its buffer space.

Procedure was unable to read the
label of the data base file.

Procedure encountered an MPE
file read error while reading the
data base file.

Procedure was unable to complete
the writing of a user label on a
data base file.

Internal software inconsistency
caused unused record locations in
a data set to become lost or
unavailable. TurboIMAGE prints
out file information display for
the data set file.

An internal software
inconsistency has been found by
TurboIMAGE while attempting
to move data to or from a user's
stack.

Procedure was unable to close a
data base file.

Procedure was unable to open a
data base file.

Procedure found an MPE file
write error while writing into
data base file.

ACTION

Notify the system manager and
possibly HP support personnel of
the error. Save FID information
if it is printed.

You may need to perform data
base recovery procedures (See
Section 7).

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

DEC 85
A-31

Error Messages

Table A-7. IMAGE Library Procedure Abort Condition Msgs. (Cont.)

MESSAGE MEANING ACTION

WRONG NUMBER An address referenced by one of Same as above.
OF PARAMETERS the parameters is not within the
OR BAD ADDRESS user's stack area in memory
FOR PARAM #n (roughly between the DL and Q

registers). The n is a positional
number of the parameter in the
procedure's calling sequence. The
first parameter is # 1, the second
2, and so on.

UTILITY ERROR MESSAGES

Two types of error messages are generated by the Utility programs. The first type consists of conditional
errors associated with accessing the desired data base. For all utility programs except DBUTIL, errors
generating these messages can be corrected without terminating the run if you are in session mode.
DBUTIL errors of this type may terminate the program. After printing the error message the DBUTIL
program reprompts with two greater than symbols (>>). Other utilities reprompt with the message:
"WHICH DATA BASE?11

, allowing you to re-enter the data base reference. If you wish to terminate the
utility program at this point you may type a carriage return with or without leading blanks. If you are in
job mode, conditional errors always cause program termination. Conditional error messages and their
meanings are described in Table A- 8.

Unconditional errors occur in utility programs after successful execution has already begun. These errors
usually cause program termination. The accompanying messages and their meanings are described in Table
A-9.

Certain errors, external to the utilities, can result in utility program termination. Those caused by the
operating system or initiated by the console operator are explained in Section 2 or Section 7 of the Error
Messages and Recovery Manual. Errors initiated by the library procedures called by the utilities are
described in Table A-4 through A-7 of this manual.

DEC 85
A-32

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages

MESSAGE MEANING
-

ACCESS DISABLED
UNTIL RECOVERY
HAS COMPLETED

ACCT name more The acctname part of DBNAME2
than 8 characters is too long.

APPARENT A call to DBPUT, DBUPDA TE, or
BACKUP/LOGFILE DBDELETE, that apparently
MISMATCH succeeded when logging has failed

during recovery.

AUTODEFER must be AUTODEFER option in DBUTIL
disabled before ILR has been enabled for the data
can be enabled base. ROLLBACK or ILR cannot

be enabled while output deferred
mode is enabled.

BAD DATA BASE Data base reference following the
REFERENCE utility program :RUN command

has a syntax error.

BAD User invoking the utility is not
MAINTENANCE the creator of the referenced data
WORD base and has not supplied the

correct maintenance word.

cannot open data base The data base cannot be opened
at this time. It may already be
open in a mode that does not
allow concurrent access.

CAN'T RECOVER The CONTROL ST A TS command
DAT A BASES IN was entered su bseq uen t to a
ST A TIS TI CAL MODE RECOVER command.

CAN'T OPEN DAT A
BASE- dberror
message

----·-

ACTION

Users will be able to access the
data base after the recovery
process has completed.

Use the EDITOR to change the
FILE command.

Make sure the proper backup data
base was restored and that the
matching logfile was used for
recovery.

Run DBUTIL and >>DISABLE
AUTODEFERand>>ENABLE
ILR or ROLLBACK for the data
base.

Correct the error in session mode
or press return to terminate the
program.

Same as a hove.

Try the DBUTIL command again
later.

Rerun DBRECOV without using
sta tis ti cal mode, or use statistical
mode without specifying data
bases or recovery

Check the DBERROR message to
determine the problem.

DEC 85
A-33

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

CHECKSUM
FAILURE ON LOG
RECORD #n -EOF
ASSUMED

Data - base -access file
name may not be
qualified

data-base-access file
does not exist

data-base-access
filename too long

DATA BASE
ALREADY
CREATED

Data base already
DISABLED for option

Data base already
ENABLED for option

Data base can·not be
erased until recovery
has completed

Data base cannot be
purged until recovery
has completed

DEC 85
A-34

MEANING ACTION

May occur if the system failed You may want to use a warmstart
and a warmstart recovery is not recovery in the future, but this is
performed. Also may occur if a not absolutely necessary.
statistical recovery is used against
an open logfile.

The DBA file name can not be Log on in the same group and
qualified with group and account. account as the data - base-access

file.

No such file exists in the log-on Check the files in group to
user or account. determine the correct filename.

The filename has more than six Rename the file and try DBUTIL
characters. again.

You have invoked DBUTIL in the In session mode, correct the error
CREA TE mode and specified the or press return to terminate
name of a data base which program.
already exists.

The option has already been Press return to terminate the
disabled for this data base. program.

The option has already been Same as above.
enabled for this data base.

Press return to terminate
program. After the recovery
process has completed the user
can run DBUTIL again.

Same as above.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

DATA BASE
CONTAINS INV AUD
LOGGING
IDENTIFIER

DAT A BASE HAS
BEEN MODIFIED
SINCE LAST
RESTORE

DATA BASE n
HASN'T BEEN
CREATED YET

DAT A BASE IN USE

DAT A BASE IS NOT
EMPTY.
LANGUAGE
CANNOT BE
CHANGED

DATA BASE IS
REMOTE

MEANING

The log identifier is the data base
root file does not exist in the MPE
table.

The DBSTORE flag has not been
reset. This may mean a back up
data base has not been restored, or
that there have been
modifications since the last
restoration.

The data base creator must run
DBUTIL and CREA TE the data
base.

Utility program cannot get
ex cl usi ve access to the referenced
data base due to other current
users.

The language can be changed only
on a virgin root file or an empty
data base.

You must be logged on to the
same group and account
containing the root file to use
DBUTIL.

ACTION

Use DBUTIL to set a valid log
identifier in to the data base.

Restore the backup data base, or
use the CONTROL NOSTORE
option and reenter the RECOVER
command.

In session mode, correct the error
or press return to terminate the
program.

In session mode, press return to
terminate the program.

Same as above.

Do a remote logon and run
DBUTIL from your remote
session.

DEC 85
A-35

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

DATA BASE NAME
MAY NOT BE
QUALIFIED

DATA BASE NAME
TOO LONG

DATA BASE NOT
ENABLED FOR
RECOVERY

DATA BASE
LANGUAGE NOT
SYSTEM
SUPPORTED

data base or access file
does not exist

DATA BASE OR FILE
ACCESS NAME
REQUIRED

DATA BASE OR FILE
ACCESS NAME TOO
LONG

DATA BASE
REQUIRES
CREATION

DATA BASE TABLE
OVERFLOW

DEC 85
A-36

MEANING ACTION

The data base name can not be Log on to the same group and
qualified with group and account. account as the data base and

reenter the command.

The data base name you specified Try the command again with the
has more than six characters. correct name.

The recovery flag in the data base Be sure you are running recovery
root file is disabled. against the appropriately restored

data base. You can override the
disable flag with DBUTIL if
necessary.

The· language of the data base is Notify the system manager.
not currently configured on your
system.

No such file exists in log-on Check the files in your group to
group or account. find the correct file name.

The command must include the Reenter the command.
data base or access file name.

File name has more than six Reenter the command with the
characters. correct name.

The data base creator must run In session mode, correct the error
the DBUTIL program in CREA TE or press return to terminate the
mode prior to executing program.
DBUNLOAD, DBLOAD, or
DBUTIL in ERASE mode.

You tried to recover more than Run DBRECOV for the
2 0 data bases at the same time. remaining data bases.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

DATA SET n IS
MISSING

dbname DBSTORE OF
time, date REQUIRED

DBLOAD to different
Data Base
Name/Maintenance
Word is not allowed

DBLOAD to different
group or account is
not allowed.

DUPLICATE FILE
NAME

DBNAMEl MORE
THAN SIX
CHARACTERS

'DEV' MISSING

DEVICE NOT 'DISC'

MEANING

The data set may have been
purged, or was not restored from
a STORE or SYSDUMP.

DBSTORE timestamp in data base
does not match those in DBOPEN
records.

The DBLOAD data base name
and maintenance word must be
the same as those used for
DBUNLOAD.

DBLOAD must be done from the
same group and account as the
DBUNLOAD file.

The required file name is already
assigned to another
file. Example: if data base
ORDERS requires six data sets
(ORDERSO l -ORDERS06), then a
previously defined file
ORDERS03 will trigger this
message. This can occur if a data
base is not purged before running
DBRESTOR.

dbname 1 is too long.

Either the keyword DEV or the
following 11=11 was not found.

The string following the 11# 11 sign
was not "DISC".

ACTION

Contact your data base
administrator or system manager.

Restore the proper data base or
use the proper logfile. You can
also use the NOST AMP option in
recovery.

Use a data base name and
maintenance word which were
used for the DBUNLOAD.

Log on to the same group and
account from which the
DBUNLOAD was done. Then use
DBLOAD again.

In session mode correct the error
or press return to terminate the
program.

Use EDITOR to change the FILE
command.

Same as above.

Same as above.

DEC 85
A-37

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

DSDEVICE DOESN'T
MATCH FILE
COMMAND

DSDEVICE NAME
MORE THAN 8
CHARACTERS

EMBEDDED BLANK
IN DBNAME2

ERROR READING
ROOT FILE LABEL

ERROR READING
ROOT FILE RECORD

ERROR WRITING
ROOT FILE LABEL

ERROR WRITING
ROOT FILE RECORD

EXCEEDS ACCOUNT
DISC SPACE

EXCEEDS GROUP
DISC SPACE

DEC 85
A-38

MEANING ACTION

The dsdevice name in the Use Edi tor to change the
DSLINE command was not the command which is in error.
same as the dsdevice name in the
FILE command.

DSDEVICE name is too long. Same as above.

One of the periods separating Use EDITOR to change the file
username from groupname or command.
groupname from acctname was
preceded or followed by a blank.

DBUTIL is unable to read the Contact your HP systems
root file. engineer.

DBUTIL is unable to read a root Same as above.
file record.

DBUTIL found an error while Same as above.
writing the root file label.

DBUTIL found an error while Same as above.
writing to a root file record.

Amount of space required by the Request system manager to
data base plus the space already increase account's disc space.
assigned to other files exceeds the
disc space available to the
account.

The amount of disc space required Request the system manager to
by the data base pl us the space increase the group's disc space.
assigned to other files in the
group exceeds the amount of disc
space available to the account.

Error Messages

Table A-8. IMAGE Utility Program Conditional Messages (Continued)

MESSAGE

FCHECK FAILURE
FCLOSE FAILURE
FCONTROL
FAILURE FENTRY
FAILURE FGETINFO
FAILURE

FILE CODE IS NOT
0.#

FILE EQUATES ARE
ILLEGAL FOR
DATA BASE AND
DAT A BASE ACCESS
FILE

FILE filename
RECSIZE TOO
SMALL: LOG(S)
TRUNCATED.

FILE NAME MAY
NOT BE QUALIFIED

FILE NAME MORE
THAN SIX
CHARACTERS

FOPEN FAILURE ON
logfilename:fermsg

FREAD ERROR ON
ASCII ACCESS FILE

FWRITE ERROR ON
f ilename:f errmsg

GROUP NAME
MORE THAN 8
CHARACTERS

MEANING

These are exceptional errors
indicating a hardware or software
failure.

The data base acces~ file to be
activated has a file code of other
than 0.

DBUTIL does not allow you to
equate the name of the data base
or data base access file to another
file with the :FILE command.

User recovery file size is too small
to hold the largest log record.

The file name may not be
qualified with group and account.

The filename part of dbname2 is
too long.

You cannot open the logfile.

Exceptional errors indicate ·a
hardware or software failure.

FWRITE failure on user recovery
file.

The groupname part of dbname2
is too long.

ACTION

Notify your system manager of
the failure.

Be sure you have the correct
EDITOR file.

Use the :RESET command to
cancel the :FILE command. You
can either break and resume
execution or exit DBUTIL and
run it again.

Increase record size or use
variable length records.

Log on to the same group and
account and reenter the
command.

Use the EDITOR to change the
FILE command.

Examine the ferrmsg to
determine the ca use.

Notify the system manager of the
error.

Check ferrmsg to determine the
cause.

Use the EDITOR to change the
FILE command.

DEC 85
A-39

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

ILR must be disabled
before A UTODEFER
can be enabled

INCOMPLETE
PURGE
RELEASE
SECURE

INCOMPLETE
DBNAME2

INCOMPLETE
LOCAL PART

INCOMPLETE
REMOTE PART

INSUFFICIENT DISC
SPACE

INSUFFICIENT
VIRTUAL MEMORY

DEC 85
A-40

MEANING

Output deferred option
(AUTODEFER) can not be used
when the data base has been
enabled for ILR or ROLLBACK.

The operation was interrupted
while in process.

The filename or or groupname is
followed by a period and the rest
of the record is empty. Or the
next character is a semi -colon (;).

The period following the local
user name was missing, or the
account name was missing, or a
comma followed the account
name and the group name was
missing.

The period following the
rusername was missing, or the
raccoun tname was missing, or the
raccountname was followed by a
comma and the rgroupname was
missing.

The amount of disc space required
for the data base is not available
on the system.

There is not enough virtual
memory available to open and
access the data base.

ACTION

Disable ILR or ROLLBACK and
enable AUTODEFER using
DBUTIL. (Ref er to Sections 7
and 8 for more information on
AUTODEFER.)

Contact your system manager.

Use the EDITOR to change the
FILE command.

Use the EDITOR to change the
HELLO command.

Same as above.

Consult with the system manager
about disc space requirements.

Try running the utility later
when the system is not as busy.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

INVALID ACCESS
CLASS NUMBER

INVALID
CHARACTER IN
PASSWORD

INVALID
COMMAND

INVALID
CONTENTS OF
ASCII ACCESS
FILE
activation failed
deactivation
failed

INVALID DAT A
BASE CONTROL
BLOCK

INV AUD DAT A
BASE ACCESS FILE
NAME

MEANING

The access class should be a
number between 1 and 63.

The file specified is either, l) not
a data-base-access file, or 2) it
does not contain the valid format
and parameters.

TurbolMAGE encountered an
inconsistency in the control
blocks.

The file name or data base name
must be 1 to 6 characters starting
with a letter.

ACTION

Reenter with a valid access class
number.

Check the password specified and
reenter the command.

Check spelling or see manual for
legal commands.

1) Verify the correct
data-base-access file, or 2) use
EDITOR to make the required
changes and try accessing again.

Contact your system engineer.

Reenter the command with the
correct name.

DEC 85
A-41

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

INVALID DAT A
BASE NAME

INVALID DAT A
BASE NAME OR
ACCESS FILE NAME

INVALID
DELIMITER

INVALID IMAGE
LOG RECORD
DETECTED

INVALID
MAINTENANCE
WORD

INVALID NUMBER
OF BUFFERS
SPECIFIED

INVALID NUMBER
OF USERS
SPECIFIED

INVALID
SUBSYSTEM ACCESS
FLAG IN ROOT FILE

DEC 85
A-42

MEANING ACTION

Same as above. Reenter the command with the
correct name.

Same as above. Same as above.

The command or a space is Use HELP to check command
incorrectly positioned. syntax and reenter the command.

DBRECOV encountered an Notify the system manager and
undefined log record code. HP support personnel.

Check the mani tenance word
specified and reenter the
command.

The number of buffers must be Reenter DBUTIL >>SET
between 4 and 2 5 S. command with a valid number.

The minimum number of users Same as above.
allowed is 1 and the maximum is
120. The ranges of users
specified must be in ascending
order.

TurboIMAGE detected an invalid Reset the subsystem access flag
value for the subsystem access in using DBUTIL >>SET command.
the root file. Valid accesses are
READ, R/W, and NONE.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

INVALID
LANGUAGE

INVALID
PARAMETER

INVALID
PASSWORD FOR
DATA BASE
LOGGING
IDENTIFIER

INVALID
TRANSACTION
SEQUENCE
DETECTED

INVALID (x) IN
COLUMNy

LANGUAGE MUST
NOT BE LONGER
THAN 16
CHARACTERS

LANGUAGE NOT
SUPPORTED

LESS THAN 3
RECORDS IN FILE!

LOCAL ACCT NAME
IS TOO LONG

MEANING
·-

Language name or number has
invalid characters.

You specified an incorrect
parameter.

~

The transaction numbers are not
consecutive.

The x represents the invalid
character found in column y.

The language name is too long
and therefore, must be incorrect.

The language is not supported on
your system or is not a valid
language name.

The data base access file does not
contain a FILE, DSLINE, and
HELLO command.

acctname is more than 8
characters.

ACTION

Retype the correct language name
or number.

Use HELP to check the command
format and reenter the command.

Use DBUTIL to set the valid log
identifier password into the data
base.

Notify your system manager and
HP support personnel.

Use the EDITOR to change the
data base access file record which
returns the error message.

Retype the correct language name

Check with your system manager
for the configuration of the
language, or enter a valid
language name or number.

Use the EDITOR to create the
missing records.

Use the EDITOR to change the
lacctname.

DEC 85
A-43

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

LOCAL GROUP
NAME IS TOO LONG

LOCAL USER NAME
TOO LONG

LOG BUFFER
OVERFLOW

LOGFILE AND
DATA BASE LOGID'S
DO NOT MATCH

LOG FILE IS EMPTY

LOG FILE RECORD
SIZE IS IMPROPER

LOG ID:logid IS
INVALID

DEC 85
A-44

MEANING ACTION

lgroupname has more than 8 Use the EDITOR to change the
characters. lgroupname.

lusername has nore than 8 Use EDITOR to change the
characters. I username.

There is insufficient buffer space Notify the system manager and
to build the log record. HP support personnel.

The restored data base does not Be sure the logfile and the backup
match the logfile. data base are properly attached.

The logfile has no records. Be sure you have correctly
identified the logfile.

The records are not 2 5 6 bytes Be sure this file is actually a
with a fixed length. logfile.

The data base logid has been Set the data base to an existing
removed from the MPE table. logid, or use the GETLOG

command to establish the data
base logid on the MPE table.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE MEANING

LOGID MUST NOT The logid name is too long
BE LONGER THAN 8 therefore, it is incorrect.
CHARACTERS

LOGID PASSWORD The password has been altered, or
IS INCORRECT you are using the wrong

password.

LOGGING IS The logid can not be changed
ENABLED, CAN while logging is in process in
NOT CLEAR LOGID order to insure validity of

recovery and logging.

MAINTENANCE
WORD CANNOT BE
CHANGED UNTIL
RECOVERY HAS
COMPLETED

MAINTENANCE The user invoking the utility is
WORD REQUIRED not the creator of the referenced

data base and has not supplied a
maintenance word.

MAINTENANCE The specified maintenance word
WORD TOO LONG has more than 8 characters.

max errorcount Too many errors occurred in
exceeded batch execution.

MISSING!! The key word FILE is not found
in the first record; or the keyword
DSLINE is not found in the
second record; or the keyword
HELLO is not found in any of the
remaining records.

ACTION

Retype the correct logid to set
in to the data base.

Set the logid with the correct
password into the data base.

Change the logid after the
recovery process has completed.

After the recovery process has
completed use the DBUTIL
>>SET command to change the
maintenance word.

If DBUTIL, reenter the command
with the maintenance word.
Otherwise correct correct the
error or press return to terminate
the program.

Reenter the command with the
correct maintenance word.

Correct the errors or use
CONTROL ERRORS= command
to ignore the errors.

Use the EDITOR to modify the
record in the data base access file
that returned the error message.

DEC 85
A-45

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

MISSING DBNAMEl

MISSING DBNAME2

MISSING DSDEVICE

MISSING LOCAL
PART

MISSING REMOTE
PART

MISSING REMOTE
PASWD

MISSING
SEMI-COLON

MISSING# SIGN

MULTIPLE LOG
IDENTIFIERS NOT
ALLOWED

NLS RELATED
ERROR

DEC 85
A-46

MEANING

An equals sign(=), semi-colon(;),
or end of line followed the
keyword FILE.

dbnamel= followed by a
semi -colon (;) or end of line.

DEV= was followed by a
semi-colon (;), #, or the rest of the
record was blank.

No characters preceded the
=HELLO.

The remote-id-sequence of the
data-base-access file is missing.

HELLO was not followed by text,
or was followed by a semi -colon
(;).

DEV= was not preceeded by a
semi-colon (;)

dsdevice was not followed by a #.

You tried to simultaneously
recover data bases that logged to
different logfiles.

An error was returned by
NLS/3000 on a DBOPEN on the
data :nse.

ACTION

Use the EDITOR to change the
FILE command.

Use EDITOR to change the FILE
command.

Use the EDITOR to change the
FILE command.

Use the EDITOR to change the
HELLO command.

Use the EDITOR to add the
remote part.

Using the EDITOR, change the
HELLO command.

Use the EDITOR to change the
file command.

Same as above.

Run DBRECOV once for each
logfile.

Notify the system manager.

Error Messages

Table A-8. TurboIMAGE Utility Program Conditional Messages (Continued)

MESSAGE MEANING

NLINFO FAILURE An error was returned by
NLS/3000

NO DAT A BASE HAS RUN command has been entered
BEEN SPECIFIED and no data bases have been
FOR RECOVERY specified for recovery.

NON-CREATOR You must be the data base creator
ACCESS NOT to perform this function.
PERMITTED

NONEXISTENT You are trying to set an
LOG ID unrecognized logid into the data

base, or the data base logid has
been removed from MPE.

NO SUCH DATA Specified data base does not exist
BASE in users log on group.

NOT A DATA BASE The specified file is not a data
ACCESS FILE base access file.

NOT A DATA BASE
OR DATA BASE
ACCESS FILE

NOT A DATA BASE
ROOT FILE

NOT A PRIVILEGED The data base access file has not
DATA BASE ACCESS been activated.
FILE

NOT ALLOWED; The user invoking the utility is
MUST BE CREA TOR not the creator of the data base

and the data base has no
maintenance word.

ACTION

Notify system manager.

Use the RECOVER command to
specify data base(s) or EXIT to
terminate.

Use GETLOG to put the data
base logid into the MPE Table, or
set an existing logid in to the data
base.

Check base name and log on
account and group. Press return
to terminate the program.

Check the file name and try the
command again.

Check the data base or file name
and try the command again.

Check the specified data base
name and try the command
again.

Check the command and reenter
it correctly.

Log on with correct user name,
account and group.

DEC 85
A-47

Error Messages

Table A-8. TurboIMAGE Utility Program Conditional Messages (Continued)

MESSAGE

NOT AN
UNPRIVILEGED
DAT A BASE ACCESS
FILE

OUTMODED ROOT

PARAMETER
EXPECTED

PARAMETER MUST
BEA COMMAND

PARAMETER
SPECIFIED TWICE

PASSWORD IS
INCORRECT

PASSWORD MUST
NOT BE LONGER
THAN 8
CHARACTERS

PREMATURE EOF
ON ASCII ACCESS
FILE

PROCESS TABLE
OVERFLOW

DEC 85
A-48

MEANING

The data base access file is
already activated.

The root file of the specified data
base corresponds to a different
version of IMAGE software and is
not compatible with the utility
program currently executing.

The command you specified calls
for another parameter.

Only command names may be
specified with the HELP
command.

The command specified requires
only one parameter en try.

The logid password in the data
base is not the same as the
password in the MPE table.

The password is too long so it is
incorrect.

DBUTIL encountered an end of
file mark before at least one
=HELLO record in the data base
access file.

At some point more than 128
processes (or 180 in B. 03. 06 or
later version) were logging at the
same time.

ACTION

Check the command and reenter
it if necessary.

Consult with your -system
manager to verify the correct
version of the software. Ask HP
support personnel about
con version process.

Use HELP to find the correct
command syn tax.

Reenter the command.

Reenter the command.

Set the logid and correct password
into the data base. Or, use the
MPE AL TLOG command to alter
the password in the MPE table so
it matches the one in the data
base.

Retype the correct logid and
password.

Use the EDITOR to change the
ASCII file.

Notify your system manager and
HP support personnel.

Error Messages

Table A-8. TurboIMAGE Utility Program Conditional Messages (Continued)

MESSAGE

RECORD SIZE
EXCEEDS128
CHARACTERS!

RECORDS ARE
NUMBERED!

RECORD TABLE
OVERFLOW

RECOVERY TABLE
OVERFLOW

REMOTE ACCT name
TOO LONG

REMOTE ACCT
PASSWORD TOO
LONG

REMOTE GROUP
NAME TOO LONG

REMOTE GROUP
PASSWORD TOO
LONG

REMOTE USER
NAME TOO LONG

MEANING

The longest record in the data
base access file exceeds the
allowable length.

The data base access file is
numbered.

More than 1000 detail records
have been added and they have
been given relative record
numbers different from those
originally assigned. Wrong data
base may have been restored, or
not all modifications to the data
base were logged.

You tried to specify more than
1 00 user recovery files.

racctname is more than 8
characters long.

rupasw is more than 8 characters.

rgroupname is more than 8
characters.

rgpasw is more than 8 characters.

rusername is more than 8
characters.

ACTION

Use the EDITOR to modify the
data base access file.

Use the editor to keep the file
unnumbered.

Run DBRECOV without the
NOABORTS option or recover to
a point before the occurrence of
the error. OR restore the correct
data base, or restore data base and
perform DBUNLOAD/DBLOAD.

Reduce the number of recovery
files needed.

Use the EDITOR to change the
HELLO command.

Use the Editor to change the
HELLO command.

Same as above.

Same as above.

Same as a hove.

DEC 85
A-49

Error Messages

Table A-8. TurboIMAGE Utility Program Conditional Messages (Continued)

MESSAGE

REMOTE USER
PASSWORD TOO
LONG

ROLLBACK must be
disabled before ILR
can be disabled

ROLLBACK must be
disabled before
LOGGING can be
disabled

ROOT FILE DOES
NOT EXIST

SEQUENCE ERROR
ON LOG RECORD
#n - EOF ASSUMED

ST AGING FILE
OVERFLOW

TIMESTAMP OUT OF
SEQUENCE ON LOG
RECORD #n - EOF
ASSUMED.

TOO MANY
PARAMETERS

UNKNOWN
COMMAND, TRY
HELP

DEC 85
A-50

MEANING ACTION

rupasw is more than 8 characters. Use the EDITOR to change the
HELLO command.

Use DBUTIL »DISABLE the
data base for ROLLBACK. ILR
will be automatically disabled.

Use DBUTIL >>DISABLE the
data base for ROLLBACK, then
LOGGING.

A root file with the name of the Check the data base name you
specified data base does not exist specified and reenter the
in the log on group and account. command.

Log record numbers are out of Notify the system manager and
sequence. HP support personnel.

The staging file is not large Use a file equation to increase the
enough. file size.

Log record timestamps are out of Notify the system manager and
sequence. HP support personnel.

Reenter the command with the
correct number of parameters.

DBUTIL does not recognize the Enter the HELP command to get
command you specified. the list of DBUTIL commands.

Error Messages

Table A-8. TurbolMAGE Utility Program Conditional Messages (Continued)

MESSAGE

USER IS NOT
CREATOR OF
LOGGING
IDENTIFIER

WARNING: DAT A
BASE MODIFIED
AND NOT
DBSTORED

WARNING: THE
LANGUAGE OF THE
DATA BASE IS
DIFFERENT FROM
THE LANGUAGE
FOUND ON THE
DBLOAD MEDIA.
CONTINUE DBLOAD
OPERATION I (Y /N):

WARNING: THE
NUMBER OF DATA
SETS DEFINED IN
THE SCHEMA IS
LESS THAN (OR
GREATER THAN)
THE NUMBER OF
DATA SETS FOUND
ON THE DBLOAD
MEDIA.

MEANING

The data base has been enabled
for logging but a backup copy has
not been made by executing
DBS TORE.

The user has changed the
language of the data base between
DBUNLOAD and DBLOAD.
DBLOAD wants the user to be
aware of potential differences in
sorted chains of the collating
sequence of the two languages.
(The language of the data base on
disc and the data base on tape are
different).

In session mode you are asked if
you want to continue the
operation. If you are in job mode,
DBLOAD will terminate
execution.

You have added or deleted data
sets from the data base between a
DBUNLOAD and a DBLOAD.
DBLOAD will continue with the
load, but data may be lost or put
into the wrong sets due to an
in valid set change.

ACTION

Log on to the system as the user
who created the log identifier or
as a user with system manager
capability.

Execute DBSTORE to make a
backup copy of the data base.

After looking at the information
DBLOAD returns and what the
result on the sorted chains in the
data base, continue the operation
by answering YES.

Stop the DBLOAD, correct the
SCHEMA and DBLOAD again.
Or, if you are sure the data base is
not corrupt, allow DBLOAD to
continue.

DEC 85
A-51

Error Messages

Table A-9. TurbolMAGE Utility Program Unconditional Messages

MESSAGE

AUTOMATIC
MASTER IS FULL
ON PATH #n

***BAD DATA
BASE***

BROKEN FILE
EQUATION CHAIN
FOR TAPE FILE

CANNOT GET
EXTRA DATA
SEGMENT
NECESSARY FOR
RESTORE
OPERATION

DEC 85
A-52

MEANING

DBLOAD is unable to load a
detail entry because the
automatic master set associated
with path n of the detail set is
full.

This message is issued by
DBSTORE, DBRESTOR, and
DBUNLOAD. It means the data
base is flagged 11bad11 because of a
known structural error due to an
abnormal termination or to a
system crash during DBLOAD or
some other 11output deferred11

operation. The current operation
(DBSTORE, DBRESTOR,
DBUNLOAD) continues to
function normally. DBLOAD
additionally prints the message
11SERIAL UNLOAD FOLLOWS11

and automatically operates in
serial mode. The data base on
disc retains its 11bad11 flag and
cannot be accessed through
DBOPEN.

Issued by DBSTORE if, in a chain
of file equations, the actual
device designator cannot be
found.

DBRESTOR was unable to get the
extra data segment it needed for
the buffers used in the restore
operation.

ACTION

Recreate the root file with a
larger capacity for automatic
master. Rerun the necessary
utilities.

The data base is not usable in its
current state. Purge it and
restore a backup copy, or erase it
and then load a tape or serial disc
written by DBUNLOAD or
another external copy of the data.

Check your :FILE commands and
reenter them correctly before
running DBSTORE.

Error Messages

Table A-9. TurboIMAGE Utility Program Unconditional Messages (Continued)

MESSAGE

CANNOT OPEN
TERMINAL,
TERMINATING

Can't create new copy
of file x (FS error#)

Can't get
specifications via
FGETINFO for this
file x (FS error #)

Can't open file x (FS
error #)

Can't purge old copy
of file x (FS error #)

Can't reset move flag
for file x in the root
file

Can't save new copy
of file x (FS error #)

Can't set move flag
for file x in root file

CHAIN IS FULL ON
PATH #n

MEANING

DBUTIL is unable to access the
terminal.

MPE intrinsic FOPEN failed
while creating a temporary file.

MPE intrinsic FGETINFO failed.
DBUTIL can not get information
for the specified file.

MPE intrinsic FOPEN failed.

MPE intrinsic FCLOSE failed
while purging the 11old11 file.

Error occurred while writing root
file label to reset the data base
condition word.

MPE intrinsic FCLOSE failed
while saving the temporary file.

DBUTIL set the root file flag, and
an error occurred while writing
the root file label.

DBLOAD is unable to load a
detail entry because the chain
count for path number n of detail
set exceeds 2 31 -1 (or
2,14 7,48 3,64 7 entries).

ACTION

Call HP systems engineer.

Check the file system error.
Possible reasons: the specified
device does not exist, or there may
be insufficient space on the
device specified.

Check the file system error to
determine cause.

Same as above.

Same as above.

Contact your system manager.

Check file system error to
determine the cause.

Contact your system manager.

Delete some of the entries and
reload or change the data base
design.

DEC 85
A-53

Error Messages

Table A-9. TurbolMAGE Utility Program Unconditional Messages (Continued)

MESSAGE

COPY FAILED

Couldn't open the data
base

Data base state does
not allow MOVE to be
done

DAT A SET FULL

***DBSTORE
FAILED - NO DATA
BASE STORED***

EOF SEEN,
PROGRAM
TERMINATING

FGETINFO failure

FILE EQUATE FOR
DBSTORE
DBRESTOR
DBLOAD
DBUNLOAD ONLY
MAY USE DEV

DEC 85
A-54

MEANING

An error occurred while copying
the file. DBUTIL has
encountered a problem reading or
writing the files. (It is possible
the disc pack is bad.)

There is no root file for the
specified file. It is possible that
the file specified is not part of the
data base.

The data base is in a state in
which MOVE cannot be
performed.

Data set currently being loaded is
full.

A file error or other message
follows explaining the problem.

A :EOF has been entered.

DBUTIL received an error when
calling MPE FGETINFO.

If you specify an input/output
file with a :FILE command for
any of these utility programs,
only the file designators and
DEV= parameters are allowed.

ACTION

Restore the data base and try the
move again. Contact your system
manager if the copy fails again.

Check the file or data base. Try
the operation again with the
correct file name.

Check the data base. If the data
base has not been created, run
DBUTIL >>CREATE. If the data
base is damaged run recovery.

Recreate root file, increase the
data set's capacity and run the
utilities again.

Con tact your HP systems
engineer.

Run DBUTIL again.

Contact your system manager.

Enter :FILE command again and
rerun program.

Error Messages

Table A-9. TurbolMAGE Utility Program Unconditional Messages (Continued)

MESSAGE

FILE NOT ON TAPE

File x already resides
on device x

FREADDIR failure

HARD TERMINAL
READ ERROR,
TERMINATING

***INVALID SET
COUNT***

MOVE of file x not
allowed: file is not
correct type (file code
#)

NO MANUAL
ENTRY FOR DETAIL
ON PATH #n

RECSIZE MUST BE
MODULO 256 <=xxxx
FOR THIS DEVICE

MEANING

Issued by DBRESTOR if the data
base to be restored is not on the
tape.

The file specified already resides
on the device.

This is an MPE exceptional
failure and is returned when
DBUTIL calls FREADDIR.

DBUTIL cannot read input from
terminal.

TurboIMAGE found an
inconsistency in the data set
count.

The file specified is not a data
base file.

DBLOAD is attempting to load
detail data set entry n which is
the number of the detail data set
path referencing the manual
master in question.

Issued if REC= recsize parameter
for DBSTORE specified a record
size not modulo 256 words, or
greater than the configured
record size of the device.

ACTION

Check your :FILE command
and/or the tape you mounted.

Contact your system manager.

Notify HP systems engineer

Same as above.

Try the MOVE operation again
with the correct file name.

Add entry to manual master with
application program or QUERY.
Run DBLOAD again.

Check the REC= recsize
parameter and correct it before
running DBSTORE again.

DEC 85
A-55

Error Messages

Table A-9. TurbolMAGE Utility Program Unconditional Messages (Continued)

MESSAGE

UNABLE TO
CONTINUE

Unable to obtain file
label information for
file x

Unexpected root file
state

MEANING

DBUTIL program (operating in
PURGE mode) cannot continue
execution due to exceptional error
in file system. This information
is followed by MPE file
information display.

MPE internal procedure failed.
DBUTIL cannot obtain
information for the specified file.

The MOVE process was unable to
reset the data base flag. The data
base may be in an inconsistent
state.

ACTION

Save the file information. Consult
with system manager and HP
support personnel.

Contact your system manager.

Same as above.

A set of messages may be returned when an unusual condition causes TurbolMAGE to fail while an
TurbolMAGE utility is executing. In each of the following messages in Table A-10, the value xxxxx is the
octal location where TurboIMAGE failed.

DEC 85
A-56

-3

-4

-64

-66

-70

-74

Error Messages

Table A-10. TurboIMAGE Extended Utility Program Unconditional Messages

MESSAGE

TurbolMAGE failure
due to FREADDIR
failure on root file at
xxxxx

TurboIMAGE failure
due to FREADLABEL
failure on root file at
xxxxx

SET NUMBERS ARE
OUT OF SEQUENCE.
TurbolMAGE
FAILED AT xxxxx

BLOCK NUMBERS
ARE OUT OF
SEQUENCE.
TurbolMAGE
FAILED AT xxxxx.

ENTRY NUMBERS
ARE OUT OF
SEQUENCE.
TurboIMAGE
FAILED AT xxxxx

THE RECORD JUST
READ IS
UNRECOGNIZABLE
TurbolMAGE
FAILED AT xxxxx

MEANING

Root file was not readable.
Problem may be in hardware.

User's label was not readable.
Problem may be in hardware.

The next set number on the
backup volume was not what
DBLOAD expected. Status
word 0 has the expected set
number; status word 1 has the
next set number on the
backup volume.

The next block on the backup
volume was not what
DBLOAD expected. Status
words 0, 1 have the expected
block number; words 2,3 have
the actual next block number
on the backup volume; word 4
has the set number on the
backup volume.

Same as above

The record just read from the
backup volume was not what
DBLOAD expected. The
record could be an EOF, EOT,
etc. The status word 0 has
one of the following codes for
the record expected:

O=tape head,
1 =data file head,
2= data file block,
3=data file end,
4=tape end.

ACTION

Notify the system manager
of the error.

Same as above.

The schema may have been
changed since the last
DBUNLOAD and this
DBLOAD. Add any new set
the the end of the schema.

An error for a known value
that was written to tape
with FWRITE was found.
There may be a defect in
the tape or the tape drive.

Same as above.

Same as above.

DEC 85
A-57

Error Messages

Table A-10. TurboIMAGE Extended Utility Program Unconditional Messages (Continued)

97

98

101

401

402

403

404

405

DEC 85
A-58

MESSAGE

ZSIZE ERROR
WHILE
CONTRACTING AT
xx xx

ZSIZE ERROR
WHILE EXPANDING
AT xxxxx

DBRESTOR
FAILURE IN
DBRESTOR AT xxxxx

DBOPEN FAILURE
AT xxxxx

DBINFO FAILURE
AT xxxxx

DBCLOSE FAILURE
AT xxxxx

DBFIND FAILURE
AT xxxxx

DBGET FAILURE AT
xxxxx

MEANING ACTION

A TurboIMAGE utility called
ZSIZE to contract the Z to
DB area of the stack. xxxxx is
the octal location where
TurbolMAGE failed.

A TurbolMAGE utility called
ZSIZE to expand the Z to DB
area of the stack. xxxxx is the
octal location where
TurbolMAGE failed.

The DBRESTOR utility called Take appropriate action
MPE RESTORE which depending on the detail
encountered problems while message. If it looks like:
restoring the data base. A FILE SYSTEM ERROR
detailed error message should #nnn, look up the error in
follow this message. Error Messages and

Recovery Manual.

Error messages 401 through For more information see
414 are all TurboIMAGE the TurboIMAGE Library
utility failures caused by Procedure Error Messages
failure of the TurbolMAGE earlier in this appendix, or
intrinsic specified in the see the Error Messages and
message. Recovery Manual.

A detail error message can be
retrieved by calling
DBEXPLAIN.

Same as above. Same as above.

Same as above. Same as above.

Same as above. Same as above.

Same as above. Same as above.

Error Messages

Table A-10. TurbolMAGE Extended Utility Program Unconditional Messages (Continued)

MESSAGE

406 DBUPDATE
FAIL URE AT xxxxx

407 DBPUT FAILURE AT
xxxxx

408 DBDELETE
FAILURE AT xxxxx

409 DBLOCK FAILURE
AT xxxxx

410 DB UNLOCK
FAILURE AT xxxxx

411 DBCONTROL
FAILURE AT xxxxx

412 DBBEGIN FAILURE
AT xxxxx

413 DBEND FAILURE
AT xxxxx

414 DBMEMO FAILURE
AT xxxxx

MEANING

Error messages 406 through
414 are all TurbolMAGE
utility failures caused by
failure of the TurboIMAGE
intrinsic specified in the
message.

A detail error message can be
retrieved by calling
DBEXPLAIN.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

ACTION

For more information see
the TurboIMAGE Library
Procedure Error Messages
earlier in this appendix, or
refer to the Error Messages
and Recovery Manual.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

Same as above.

DEC 85
A-59

.______RE_s_u_L_T __ s_o_F_M_u_L_T_1P_L_E_A_c_c_E_ss __ ____.1r
1
1:11.1i

When opening a data base with DBOPEN, TurbolMAGE returns information in the status array
describing the results of the procedure call. Table B-1 can be used to interpret these results when
multiple processes are using the data base.

Each box in Table B-1 is associated with a requested mode or TurbolMAGE utility routine identified at
the far left of the row in which the box appears. It is also associated with a possible current access mode
or utility routine identified at the top of the column in which the box appears. The contents of the boxes
can be used to determine the results of a DBOPEN call.

If access is granted, condition code CCE is returned and the first word of the status array contains a zero.
The boxes containing "G" represent this situation.

If access is not granted, and the reason relates to current data base activity, the results are like those
shown in the other boxes. There are two types of situations:

• If the first two words of status contain -1 and 0 respectively, the third word of status will contain a
single number. This number is the MPE failure code returned from the FCHECK intrinsic. See the
MPE Intrinsic Reference Manual for MPE failure code meanings. If that number is 48, 90, or 91, the
failure occurred because current access to the data base does not permit it to be opened in the requested
mode. Find the boxes in the requested mode row which contain a number equal to the third status
word. The possible modes and utility routines which other processes may be using are the ones which
label the columns containing these boxes. For example, if the third status word contains 48 and the
requested mode is 2, the possible current modes are 1 and 5.

To find an alternate mode for accomplishing the task, look down the columns containing these boxes
for one containing a "G". If the requested mode labeling the row in which the 11G 11 resides can be used,
try opening the data base with that mode. In the example above, alternate modes would be 1 or 5 since
these rows contain 11G 11 in columns 1 and 5.

If the box with contents matching the third status word is in a column associated with a utility, usually
the only choice is to wait until execution terminates. When DBSTORE is being run, it is possible to
open the data base with mode 6 or 8.

• If the first word in the status array contains -32, the failure occurred because the root file could be
opened but not with the necessary AOPTIONS. This value can also be returned in situations not
related to multiple access. See Appendix A in this manual and the description of the AOPTIONS
parameter of the FOPEN intrinsic in the MPE Intrinsics Reference Manual. Use the same technique
described above to determine the possible current modes or other activity and to select a course of
action. For example, if the requested mode is 2 and the first word of status equals - 32, possible current
modes are 4 and 8, and the DBSTORE utility may be executing.

Messages enclosed in quotes are printed when the situation represented by the row and column headings
occurs.

DEC 85
B-1

Results of Multiple Access

Table B-1. Actions Resulting From Multiple Access of Data Bases

w 2
()
0
'.:! 3
z
w a..

4 0
CD
Cl
Cl 5 w
I-
ff)
w 6 :::::>
0
w a: 7

a

:RUN DBSTORE

:RUN DBRESTOR

:RUN DBUNLOAD
OR

:RUN DBLOAD

G

48

90

90

G

48

90

90

2 3 4 5

48 91 48 G

G 91 -32 48

90 91 90 90

90 91 90 48

48 91 48 G

G 91 G 48

90 91 90 90

90 91 90 48

'DATA BASE
IN USE'

CURRENT DBOPEN MODE

6

48

G

90

G

48

G

90

G

G

7

91

91

91

91

91

91

91

91

'DATA
BASE

INUSE'

8

48

-32

90

-32

48

G

90

G

G

BEING
DBSTOREd

48

-32

90

-32

48

G

90

G

G

'DUPLICATE FILE NAME'

'DATA BASE IN USE'

BEING
DBRESTORed

91

91

91

91

91

91

91

91

BEING
DBUNLOADed

OR
DBLOADed

91

91

91

91

91

91

91

91

'DATA BASE IN USE'

Note: 48, 90, and 91 are values returned in the third status word and -32 is a value returned in the first
status word. G indicates access is granted.

DEC 85
B-2

SUMMARY OF DESIGN -
L---c_o_NS_l_DE_R_A_T_IO_N_S~~~~~~~~[§J

1. Keep one-of-a-kind information in master data sets, such as, unique identifiers. Keep duplicate
information in detail data sets, such as, records of events (sales, purchases, shipments).

2. Define a search item in a detail data set if you want to retrieve all entries with a common value for
that data item.

3. Use manual master data sets to prevent entry of invalid data in the detail search item linked to the
master through a path. Use automatic master data sets to save time if the detail search items are
unpredictable or too numerous to enter manually.

4. Limit the use of sort items to paths with relatively short chains in order to reduce the time required
to add and delete entries.

5. Select the path most frequently accessed in chained order as the primary path.

6. Remember that data items must be an integral number of words in length.

7. When selecting the maximum block size, consider the environment in which the data base will be
used. (Refer to Section 3, $CONTROL command for more information.)

8. If you intend to use QUERY with your data base, refer to the QUERY Reference Manual for the
data types that QUERY supports.

9. In application programs either reference data items and data sets by name or use DBINFO at the
beginning of the program to initialize the data item and data set numbers in order to maintain data
independence of the programs.

Refer to the discussion in Section 4 to decide on appropriate access modes to use for your application
programs.

10. Analyze the time required to maintain the data base, for example, the time required to unload and
load the data base.

11. The capacity of each data set should be defined as realistically as possible since a capacity that is too
large wastes disc space. The capacity can be increased when necessary by restructuring the data base
as described in Section 7.

12. A master data set capacity equal to a prime number or to the product of two or three primes may
yield fewer synonyms than a master data set capacity of many prime factors. See Table C-1 for a
partial list of prime n um be rs.

13. The account and group in which the data base resides must have enough file space available to
contain all the data base files.

14. If your application uses sorted paths, plan to add or delete entries (DPUT, DBDELETE) to sorted
chains when the system is not very busy. If it is very busy, limit the data base activity on sorted
chains to reading and updating (DBUPDATE).

15. Do all or most of your locking at one level (data base, data set, or data entry).

DEC 85
C-1

Summary of Design Considerations

16. If locking at the data entry level, do all or most of the locking using the same item in each data set.
Otherwise, performance will be the same as if you were locking at the data set level.

l 7. Avoid holding locks around a terminal read.

DEC 85
C-2

101
503

1 ,009
5,003

10,007
15,013
20,011
25,013
30,011
35,023
40,009
45,007
50,021
55,001
60,013
65,003
70,001
75,011
80,021
85,009
90,001
95,003

100,003
110,017
121 '001
130,003
140,009
150,001
160,001
170,003
180,001
190,027
200,003
210,011
220,009
230,003
240,007
250,007
260,003
270,001

Table C-1. Selected Prime Numbers

280,001 680,003 1,800,017
290,011 690,037 1,900,009
300,007 700,001 2,000,003
310,019 710,009 2,100,001
320,009 720,007 2' 200 '013
330,017 730,003 2,300,003
340,007 740,011 2,400,001
350,003 750,019 2,500,009
360,007 760,007 2,600,011
370,003 770,027 2,700,023
380,041 780,029 2,800,001
390,001 790,003 2,900,017
400,009 800,011 3,000,017
410,009 810,013 3' 100 '011
420,001 820,037 3,200,003
430,007 830,003 3,300,001
440,009 840,023 3,400,043
450,001 850,009 3,500,017
460,013 860,009 3,600,001
470,021 870,007 3,700,001
480,013 880,001 3,800,021
490,001 890,003 3,900,067
500,009 900,001 4,000,037
510,007 910,003 4,100,011
520,019 920,011 4,200,013
530,017 930,011 4,300,003
540,041 940,001 4,400,021
550,007 950,009 4,500,007
560,017 960,017 4,600,003
570,001 970,027 4,700,021
580,001 980,077 4,800,007
590,021 990,001 4,900,001
600,011 1,000,003 5,000,011
610,031 1,100,009 5,100,071
620,003 1,200,007 5,200,007
630,017 1,300,021 5,300,003
640,007 1,400,017 5,400,001
650,011 1,500,007 5,500,003
660,001 1,600,033 5,600,027
670,001 1,700,021 5,700,007

5,800,019
5,900,047
6,000,011
6' 100' 001
6,200,003
6,300,011
6, 400, 013
6,500,003
6,600,001
6,700,007
6,800,033
6,900,001
7,000,003
7,100,003
7,200,007
7,300,001
7,400,011
7 ,500,013
7 ,600,013
7,700,071
7,800,017
7,900,001
8,000,009
8,100,073
8,200,007
8,300,009

~M-UL_T_1P_L_E_R_1N __ s_PE_c_1_A_L_c __ A_PA_e_1_L1_T_v~~1r1~1•1i

For the purpose of deadlock prevention, the system views any call to DBLOCK in which something is
actually locked as a lock on a single resource, even though the call may have specified multiple lock
descriptors. Any program which does not have the Multiple RIN (Resource Identification Number)
capability (CAP=MR) can only have one resource locked at a time, and thus can only call DBLOCK once
without an intervening call to DBUNLOCK.

It may be necessary for some applications to violate this rule. The purpose of this appendix is to tell you
how to avoid problems that may arise if you prepare your application programs with MR capability
(CAP= MR).

Some typical situations in which CAP=MR may be required are the following:

• A program has two or more data bases open and wishes to lock part or all of each data base
simultaneously. (One or more of the data bases may be on a remote HP 3000.)

• A program wishes to lock an MPE file and a data base simultaneously.

• A program wishes to lock data entries in a data base and, after reading their contents, to apply further
locks. This is very dangerous and is not recommended, since deadlocks can occur very easily.

The danger in all cases is that a deadlock may occur. For example, suppose process A has data set 1 locked
and is trying to lock data set 9, and process B has data set 9 locked and is waiting for data set 1. In this
case, a deadlock has occurred and the only way to break it is to restart the operating system.

TurbolMAGE avoids deadlocks within single calls to DBLOCK by first sorting the lock descriptors into an
internally-defined sequence. It then applies the locks in ascending order sorted by data set number, then
by the value provided for the lock item. You can use the same strategy in avoiding deadlocks. First
define an order in which entities should be locked and then impose a rule on all programmers that this
order be adhered to. The sequence of unlocking is not important. The rule that you establish should
apply to all lockable entities:

• Data bases, data sets, and data entries.

• Remote data bases, data sets, and data entries.

• MPE files (FLOCK), global RINs (LOCKGLORIN), KSAM files (FLOCK), and files locked with the
COBOLLOCK procedure.

When applying multiple DBLOCK calls to the same data base, extreme caution should be exercised since
the deadlock situations can be very subtle. For example, if a process locks a data set and then attempts to
lock the data base, the process will wait for itself forever.

If it is absolutely necessary to make multiple DBLOCK calls, the following information about how
TurboIMAGE performs locking may be useful.

DEC 85
D-1

Multiple RIN Special Capability

SORT SEQUENCE FOR LOCK DESCRIPTORS

TurbolMAGE internally sorts the lock descriptors in the order as follows:

• ascending data set number

• lower bound of data item value for each data set number

If a lock descriptor's relop field contains <=, it collates before any other lock descriptors for the data set
since it has the lowest possible lower bound for it's value. For example, a lock of descriptor of
SALES:QUANTITY <= 10 collates before a lock descriptor of SALES:QUANTITY = 5, since the lower
bound of the former is the lowest possible integer for an I-type data item.

CONDITIONAL LOCKS

During a DBLOCK, if TurboIMAGE discovers a lock descriptor that is identical to one previously put into
effect by the same user through the same access path, it ignores the latest lock descriptor. For example,
the lock descriptor SALES:ACCOUNT = 89393899 is ignored if SALES:ACCOUNT = 89393899 was
locked earlier on the same access path. However, it will not be ignored if a lock descriptor such as SALES:
@ has been specified earlier.

If multiple lock descriptors are specified with mode 6 (conditional data entry locking), TurbolMAGE
indicates how many locks have been applied when it returns (status word 1) to the calling process. It does
not release the successful locks even though all the requested locks have not been applied. Since
TurbolMAGE ignores identical lock descriptors specified a second time, it is possible to call DBLOCK
again with the same descriptor list (if the program has MR capability). Those lock descriptors that are
already in effect will be ignored and the others will be tried again. The second word of the status array
contains the number of descriptors successfully locked in each call. This technique will not cause
deadlocks provided the lock descriptor list is not altered.

It is not recommended that this technique be used in a tight program loop since system performance will
degrade markedly. However, it can be used to retry the locks in a situation where the program prompts
the user to determine whether the locks should be tried again, and the user indicates that they should. (If
the user does not want to continue trying to lock all the entities, be sure to unlock the ones that
succeeded.) DB UNLOCK need only be called once to unlock everything you have locked.

DEC 85
D-2

Multiple RIN Special Capability

REMOTE DAT A BASES

Locking remote data base entities is the same as locking data base entities with the following exception.
If the local system has a user-created process structure, and each process is locking a remote data base
independently, the programs must have Multiple RIN capability since they are in the same job/session.
The only effect using MR capability has on the local system is that the rule prohibiting multiple DBLOCK
calls is not enforced. However, to access remote data bases each local process must issue a separate
REMOTE HELLO to ensure that it has a corresponding process in the remote system.

The system does not force you to establish corresponding remote processes, but failure to do so can result
in the remote session permanently suspending and requires a remote system restart to recover.

WARNING

Hewlett-Packard does not accept responsibility for system lockouts and
deadlocks when Multiple RIN capablity is in use with
TurbolMAGE/3000.

The DBUTIL command >>SHOW data base name LOCKS may be useful in tracing deadlocks that occur
when CAP=MR is used.

DEC 85
D-3

.___T_ur_b_o1_M_A_G_E_L_o_G_R_E_c_o_R_D_F_o_R_M_A_T_s _ ___,1rj

1
1:1···i

NOTE: All TurbolMAGE records are contained within MPE "WRITELOG" records. Consequently, all
information contained in the header portion of each WRITELOG record is available, in addition to the
information provided by TurbolMAGE.

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11)
WORD(12)
WORD(13)
WORD(15)
WORD(16)

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11)
WORD(12)
WORD(16)
WORD(20)
WORD(24)
WORD(28)
WORD(31)
WORD(35)
WORD(39)
WORD(40)
WORD(41)
WORD(45)
WORD(48)
WORD(52)
WORD(56)
WORD(60)
WORD(61)
WORD(63)
WORD(65)
WORD(66)
WORD(69)
WORD(72)
WORD(73)

DBBEGIN

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBBEGIN LOG RECORD CODE ("BE")
DATA SEGMENT NUMBER
RECOVERY FLAG (11 N0 11 -FAILED, 11 0K 11 -RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
LENGTH OF USER BUFFER
START OF USER BUFFER

DBOPEN

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBOPEN LOG RECORD CODE ("OP")
BASE ID
USER NAME
USER GROUP
USER ACCOUNT
USER IDENTIFIER
DATA BASE NAME
DATA BASE GROUP
DATA BASE ACCOUNT
SECURITY CLASS
DBOPEN MODE PARAMETER
LOGGING IDENTIFIER
DBSTORE TIME STAMP (3 WORDS)
USER PROGRAM NAME
USER PROGRAM GROUP
USER PROGRAM ACCOUNT
MODE FROM WHO INTRINSIC
CAPABILITY FROM WHO INTRINSIC
LOCAL ATTRIBUTE FROM WHO INTRINSIC
LOGICAL DEVICE OF JOB/SESSION INPUT
PREVIOUS ROLLBACK TIME STAMP (3 WORDS)
CURRENT ROLLBACK TIME STAMP (3 WORDS)
RESERVED FOR DBRECOV RUN TIME USE
RESERVED FOR DBRECOV RUN TIME USE

DEC 85
E-1

TurbolMAGE Log Record Formats

DEC 85
E-2

WORD(0-8) -
WORD(9)
WORD (10) -
WORD(11) -
WORD(12)
WORD (13) -
WORD (15) -
WORD(16)
WORD(17) -
WORD(19)
WORD(20)
WORD(21)
WORD(22) -
WORD(23) -

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11) -
WORD(12)
WORD(13) -
WORD(15)
WORD(16) -
WORD(17)
WORD(19)
WORD(20)
WORD(21) -
WORD{22)
WORD(23)
WORD(24) -

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11)
WORD(12) -
WORD(13)
WORD(15) -
WORD(16) -
WORD(17)
WORD(19) -
WORD(20)
WORD(21) -
WORD(22) -

DBPUT

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBPUT LOG RECORD CODE (11 PU 11

)

DATA SEGMENT NUMBER
RECOVERY FLAG (11 N0 11 -FAILED, 11 0K 11 -RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
DATA SET NUMBER
DATA SET TYPE (11 MA 11 -MASTER, 11 DE 11 -DETAIL)
RECORD NUMBER (2 WORDS)
MODE PARAMETER
OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)
OFFSET TO ITEM LIST
OFFSET TO DATA
BEGIN OF KEY,ITEM LIST,AND DATA BUFFER

DBUPDATE

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBUPDATE LOG RECORD CODE (11 UP 11

)

DATA SEGMENT NUMBER
RECOVERY FLAG (11 N0 11 -FAILED, 11 0K"-RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
DATA SET NUMBER
DATA SET TYPE (11 MA"-MASTER, 11 DE"-DETAIL)
RECORD NUMBER (2 WORDS)
MODE PARAMETER
OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)
OFFSET TO ITEM LIST
OFFSET TO NEW DATA
OFFSET TO OLD DATA
BEGIN OF KEY,ITEM LIST,AND DATA BUFFER

DBDELETE

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBDELETE LOG RECORD CODE (11 DE 11

)

DATA SEGMENT NUMBER
RECOVERY FLAG (11 NO"-FAILED, 11 0K"-RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
DATA SET NUMBER
DATA SET TYPE {11 MA 11 -MASTER, 11 DE"-DETAIL)
RECORD NUMBER (2 WORDS)
MODE PARAMETER
OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)
OFFSET TO DELETED DATA
START OF KEY AND DATA BUFFER

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11)
WORD(12)
WORD(13)
WORD(15)
WORD(16)

WORD(0-8) -
WORD(9)
WORD(10)
WORD(11)
WORD(12)
WORD(13)
WORD(14)

WORD(0-8) -
WORD(9)
WORD(10)

WORD(11)
WORD(12)
WORD(13)
WORD(15)
WORD(16)

DBMEMO

MPE WRITELOG RECORD
LOG RECORD LENGTH

TurbolMAGE Log Record Formats

DBMEMO LOG RECORD CODE ("ME 11
)

DATA SEGMENT NUMBER
RECOVERY FLAG (11 N0 11 -FAILED, 11 0K 11 -RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
LENGTH OF USER BUFFER
START OF USER BUFFER

DBCLOSE

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBCLOSE LOG RECORD CODE (11 CL 11

)

BASE ID
USER PROCESS ABORT INDICATOR
RESERVED FOR DBRECOV RUN TIME USE
RESERVED FOR DBRECOV RUN TIME USE

DBE ND

MPE WRITELOG RECORD
LOG RECORD LENGTH
DBEND LOG RECORD CODE (11 EN 11

), OR
(

11 AE 11
) IF ABORTED

DATA SEGMENT NUMBER
RECOVERY FLAG (11 N0 11 -FAILED, 11 0K 11 -RECOVERED)*
TRANSACTION NUMBER (2 WORDS)
LENGTH OF USER BUFFER
START OF USER BUFFER

* The recovery flag will always be zero in the log file records. It is used during recovery if user recovery
files are created.

DEC 85
E-3

'----M-PE_Lo_G_RE_c_o_R_D_F_o_R_M_A __ Ts ___ _____.lr4':''·1i

MPE Log Record Formats for log files and user recovery files.

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)
WORD(11)
WORD(12)
WORD(24) -

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)
WORD(8)
WORD(9)

HEADER

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 4)
TIME
DATE
LOGGING IDENTIFIER

OPEN LOG

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 1)
TIME
DATE
LOGGING IDENTIFIER
LOG NUMBER
USER NAME,GROUP,ACCOUNT
PIN#

WRITE LOG

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (!ST BYTE)
LOG RECORD CODE (2ND BYTE - 2)
TIME
DATE
LOG NUMBER
USER BUFFER LENGTH
USER BUFFER AREA

DEC 85
F-1

MPE Log Reocrd Formats

DEC 85
F-2

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)
WORD(B)
WORD(9)

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)
WORD(11)
WORD(12)
WORD(24)

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)
WORD(11)
WORD(12)
WORD(14)
WORD(15)
WORD(33)
WORD(34)
WORD(34)
WORD(52)
WORD(52)
WORD(53)
WORD(71)

WRITELOG CONTINUATION

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (lST BYTE)
LOG RECORD CODE (2ND BYTE - 7)
TIME
DATE
LOG NUMBER
USER BUFFER LENGTH
USER BUFFER AREA

CLOSE LOG

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 3)
TIME
DATE
LOGGING IDENTIFIER
LOG NUMBER
USER NAME, GROUP, ACCOUNT
PIN#

CHANGE LOG

RECORD NUMBER (2 WORDS)
CHECKSUM
12 RECORD CONTAINS THE previous FILE IN THE SET
13 RECORD CONTAINS THE next FILE IN THE SET
TIME
DATE
LOGID
SEQUENCE NUMBER OF THE CURRENT FILE
CREATION TIME OF THE FIRST FILE
CREATION DATE OF THE FIRST FILE
NAME OF THE FIRST FILE IN THE SET
LOG TYPE OF THE FIRST FILE IN THE SET
NAME OF THE next FILE IN THE SET
NAME OF THE previous FILE IN THE SET
LOG TYPE OF THE next FILE IN THE SET
LOG TYPE OF THE previous FILE IN THE SET
NAME OF THE CURRENT FILE IN THE SET
LOG TYPE OF THE CURRENT FILE IN THE SET

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)

WORD(O)
WORD(2)
WORD(3)

WORD(O)
WORD(2)
WORD(3)
WORD(3)
WORD(4)
WORD(6)
WORD(7)

RESTART

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 6)
TIME
DATE
LOGGING IDENTIFIER

CRASH

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 9)
TIME
DATE

NULL

RECORD NUMBER (2 WORDS)
CHECKSUM
RECORD CODE ('"' (BLANK))

TRAILER

RECORD NUMBER (2 WORDS)
CHECKSUM
SUBSYSTEM IDENTIFIER (1ST BYTE)
LOG RECORD CODE (2ND BYTE - 5)
TIME
DATE
LOGGING IDENTIFIER

MPE Log Reocrd Formats

DEC 85
F-3

RECOVERY AND LOGGING -
___ a_u1_c_K_R_E_F_ER_E_N_C_E~~~~~~~[TI

RECOVERY QUICK REFERENCE

The following two pages offer a very brief outline of the recovery options in TurboIMAGE. For more
inf orma ti on regarding Intrinsic Level Recovery (ILR), Roll - Forward Recovery and Roll - Back Recovery
refer to Section 7 "Maintaining the Data Base" and Section 8 "Using the Data Base Utilities". The data
base administrator should determine which type of recovery to use based on the size of the data base,
frequency of system failures, equipment available, and other considerations.

Intrinsic level Recovery

• is automatic and transparent to the user.

• returns the data base physical consistency by completing the last interrupted DBDELETE or DBPUT.

• when enabled, automatically logs each DBPUT and DBDELETE call to an internal ILR file (only the
most recent call is noted). Data base is recovered automatically if recovery is needed next time the
data base is opened.

• when enabled, the ILR file is stored and restored automatically along with the data base, using
DBSTORE and DBRESTOR utilities.

• when disabled by a user, TurbolMAGE checks the ILR file to see if the data base needs recovery. If ILR
is pending or required, TurbolMAGE uses the existing ILR file to recover the data base. The ILR file is
purged and the flag in the data base root file is cleared.

• can't use output deferred mode (AUTODEFER). This ensures the structural integrity of the data base.

• can't defer writing modifications to the data base since output deferred can not be used.

• is intrinsic driven, transaction locking is not necessary.

• incurs a slight overhead on DBPUT's and DBDELETE's due to logging intrinsics to the ILR log file.

• after a system failure requires no more overhead than a single DBPUT or DBDELETE.

• can be used with user logging.

DEC 85
G-1

Recovery and Logging Quick Reference

Roll-Back Recovery

• provides rapid recovery of data base integrity following a soft system crash and restores the data base to
a consistent state, physically and logically by backing out any incomplete transactions.

• requires logging, however only the current log file is required to restore data base integrity. DBSTORE
is recommended but not required. (Logging is automatically enabled.)

• automatically enables ILR. ILR is required to ensure correctness of data base physical data links, to
prevent the possibility of broken chains.

• is initiated by using DBRECOV, >ROLLBACK command.

• when disabled, both ILR and logging must be manually disabled using DBUTIL.

• requires all multiple-intrinsic data base transactions execute independently, using logical transaction
locking.

• uses the time stamp during recovery to verify the correct log file for each data base being recovered.
The time stamp is updated when the data base is first opened and is logged to the log file and the root
file.

• should not be disabled if roll-back recovery must be used later because it will reset the logging time
stamp, therefore recovery cannot be performed. The data base will be considered correct and cannot be
rolled -back.

• transactions are not lost during a W ARMST ART since they are not held in the memory buff er. (A
W ARMST ART must be performed after a system crash.)

• process finishes then the RESTART option in user logging can be used or a new logging cycle can be
started. Remember to purge the log file before starting the new logging cycle.

DEC 85
G-2

Recovery and Logging Quick Reference

Roll-Forward Recovery

• provides recovery of a data base, both structurally and logically, to a likeness of its state at the time of
a hard system failure.

• uses DBSTORE and DBRESTOR to restore the data base to a consistent state.

• requires logging be enabled. During recovery all log files smce the last data base backup copy must be
applied.

• and TurbolMAGE logging depend upon exact correspondence between the stored backup data base copy
and the working data base on disc at the time logging was interrupted. The DBSTORE flag and log file
time stamp will enforce this condition.

• does not require ILR be enabled, however, enabling ILR is recommended to eliminate the possibility of
broken chains and to provide a log file for audit purposes. ILR must be manually enabled and disabled.

• and logging provide recovery of both intrinsics and transactions following a system failure.

• is initiated using DBRECOV, >RECOVER command. The data base must be purged and restored before
recovery is initiated.

• during a WARMSTART all transactions in the memory buffer will be lost.

• does not require logical transaction locking, however it is recommended.

• process finishes the RESTART option in user logging can be used or a new logging cycle can be started.
Remember to purge the log file before starting the new logging cycle.

• may not recover all transactions. If using MPE V /P or DBEND mode 2 transactions will be flushed to
the log file at DBEND time, therefore transactions will not be lost.

• the data base administrator should consider how often to store the data base. The more frequent the
DBSTORE the smaller the log files will be, thus cutting the time required for recovery.

Recovery

• without a data base backup copy can be performed using DBUNLOAD (chained) and DBLOAD to
salvage all or most of a data base.

DEC 85
G-3

Recovery and Logging Quick Reference

LOGGING DEVICE QUICK REFERENCE

The lists below outline both the benefits and disadvantages of logging to disc and logging to tape. Refer
to Section 7 "Maintaining the Data Base" for more informat on user logging. The data base administrator
must determine which type of logging device to use based on equipment, operations staff, number of users
and size of the data base, and other considerations listed on this page.

LOGGING TO TAPE

• does not take up disc space.

• requires a dedicated tape drive.

• requires a reliable tape drive and a library of 11good11 tapes.

• is more secure in terms of a hard crash.

• is more time consuming. After a system failure the tape must be rewound and sequentially scanned
until the end of file is detected. Remaining records are then appended to the file.

• the console operator must be available to respond to requests for tape mounts. If a request is ignored
and you run out of memory buffer space, logging will stop. Applications requiring logging will get a
WRITELOG error and wil terminate.

• does not provide any security measures to prevent overwriting the current tape. The console operator
should use care to mount a new tape before placing on-line.

• has overhead similar to logging to disc.

LOGGING TO DISC

• files are susceptible to a hard crash.

• the integrity of the log file may be no better than the current data base state. The log file may contain
inconsistencies, bad characters or other invalid data.

• if not using the AUTO option or :CHANGELOG command the data base administrator must make sure
disc file space of the current log file is sufficient so that end of file is not reached. If end of file is
reached logging will stop. Applications requiring logging will get a WRITELOG error and will
terminate.

• during a WARMSTART the console operator can respond with an option to override or cancel the
clean-up procedure on log files. Fewer log records written just prior to system failure are lost.

• has overhead comparable to logging to tape.

DEC 85
G-4

Recovery and Logging Quick Reference

SAMPLE JOB STREAMS

The following pages list sample job streams which can be used to initiate a logging cycle and to recover a
data base using either roll-forward recovery or roll-back recovery. The data base administrator must
decide which recovery method to use and how often the data base should be stored.

:JOB MGR.DATAMGT
:GETLOG ORDERLOG;LOG=ORDER001,DISC

:BUILD ORDER001;DISC=200000,20,7

:RUN DBUTIL.PUB.SYS
SET ORDERS LOGID=ORDERLOG
ENABLE ORDERS FOR LOGGING
DISABLE ORDERS FOR ACCESS
ENABLE ORDERS FOR RECOVERY
EXIT
:RUN DBSTORE.PUB.SYS
ORDERS

:LOG ORDERLOG,START

:RUN DBUTIL.PUB.SYS
ENABLE ORDERS FOR ACCESS
DISABLE ORDERS FOR RECOVERY
EXIT
:EOJ

<<Aoquire log identifier>>

<<Build new log file>>

<<Set the data base flags>>
<<in the root file>>
<<*>>

<<Store the data>>
«base»

<<Start the logging process,>>
<<logid is ORDERLOG>>

<<Set the data base>>
<<flags in the root file>>

Figure G-1. Sample Job Stream for Starting Logging Cycle

The job stream above builds a new log file, in this case the log file resides on disc, and sets the data base
flags. A backup copy of the data base is made (this sets the logid in the root file), logging is initiated with
"ST ART" and the data base is enabled for access and recovery is disabled.

*Roll-forward recovery is being used in the above example. If using roll-back recovery, replace the line
with >>ENABLE ORDERS FOR ROLLBACK. This enables the data base for logging, ILR and
ROLLBACK recovery.

At the end of the logging cycle the data base administrator stops logging, stores the current log file on
tape for back -up, purges the current log file, builds a new log file and stores a data base backup copy. To
end the logging cycle, the steps in Figure G-1 are completed after initiating the following:

:LOG ORDERLOG,STOP

:PURGE ORDER001

<<Stop logging.>>
<<:STORE the log file to tape.>>
<<Purge the current log file.>>

DEC 85
G-5

Recovery and Logging Quick Reference

:JOB MGR.DATAMGT
:RUN DBUTIL.PUB.SYS
DISABLE ORDERS FOR ACCESS
ENABLE ORDERS FOR RECOVERY
EXIT
:RUN DBSTORE.PUB.SYS
ORDERS

:RUN DBUTIL.PUB.SYS
PURGE ORDERS
EXIT
~RUN DBRESTOR.PUB.SYS
ORDERS

:RUN DBUTIL.PUB.SYS
DISABLE ORDERS FOR ACCESS
ENABLE ORDERS FOR RECOVERY
EXIT
:RUN DBRECOV.PUB.SYS
RECOVER ORDERS
FILE PART1,SYS/P1D1.MKTG,0,3
FILE PART2,SYS/P1D1.MKTG,0,3
FILE PART3,SYS/P1D1.MKTG,0,3
RUN
EXIT
:LOG ORDERLOG,RESTART
:RUN DBUTIL.PUB.SYS
ENABLE ORDERS FOR ACCESS
DISABLE ORDERS FOR RECOVERY
EXIT
:EOJ

<<If the data base is to be>>
<<stored prior to recovery,>>
<<set flags in the data>>
<<base and run DBSTORE*>>

<<Purge the current data>>
<<base, and restore the>>
<<backup copy of the>>
<<data base>>

<<Set the flags in the>>
<<data base*>>

<<Use roll-forward>>
<<recovery on data>>
<<base ORDERS. File>>
<<corrrrK1.nd is used to>>
<<route log records>>
<<to indi~idual log>>
«user files»
<<Restart current>>
<<log file and set>>
<<the data base>>
«flags»

Figure G-2. Sample Job Stream for Roll-Forward Recovery

Storing the data base prior to purging it and restoring the data base backup copy is optional. After
recovery has completed logging can either be restarted (from the current log file) or the log file can be
purged and a new log file built.

* If all recommended procedures have been followed, the data base backup copy will have flags set for
enabling recovery and disabling access, therefore this step would be unnecessary. If this process is being
done interactively a >>SHOW data base name FLAGS in DBUTIL will show if the flags for recovery and
access are correctly set

DEC 85
G-6

:JOB MGR.DATAMGT
:RUN DBUTIL.PUB.SYS
DISABLE ORDERS FOR ACCESS
ENABLE ORDERS FOR RECOVERY
EXIT
<<A DBSTORE of the data base at this
:RUN DBRECOV.PUB.SYS
ROLLBACK ORDERS
FILE PART1 ,SYS/P101 .MKTG,0,3
FILE PART2,SYS/P1D1.MKTG,0,3
FILE PART3,SYS/P101.MKTG,0,3
RUN
EXIT
:LOG ORDERLOG,RESTART
:RUN DBUTIL.PUB.SYS
ENABLE ORDERS FOR ACCESS
DISABLE ORDERS FOR RECOVERY
EXIT
:EOJ

Recovery and Logging Quick Reference

<<Set the flags in the data>>
<<base root file*>>

time is recommended.
<<Use roll-baok recovery>>
<<on data base ORDERS. File>>
<<comrrand is used to route>>
<<log records to individual>>
«user files»

<<Restart the current log>>
<<file and set the data>>
«base flags»

Figure G-3. Sample Job Stream for Roll-Back Recovery

After recovery has completed logging can either be restarted (from the current log file) or the log file can
be purged and a new log file built.

* If all recommended procedures have been followed the data base will have flags set for enabling
recovery and disabling access, therefore this step would be unnecessary. If A DBSTORE of the data base
can be done at this time, this is optional however. If this process is being done interactively a >>SHOW
data base name FLAGS in DBUTIL will show if the flags for recovery and access are correctly set.

DEC 85
G-7

L---Tu_r_bo_1_M_AG_E~c_o_Nv_E_R_s_1o_N~<o_e_c_o_N_v_>~lri~l·'1

PRE CONVERSION CONSIDERATIONS

After TurboIMAGE is installed, existing IMAGE/3000 data bases must be converted before they can be
accessed. The DBCONV utility performs a conversion which involves restructuring the root file and all
master sets. Detail data sets remain unchanged. It is recommended that you DBSTORE data bases and
consider disc space requirements prior to converting the data bases with DBCONV.

There is a temporary and potential permanent increase in disc space requirements when converting from
IMAGE/3000 to TurbolMAGE data bases. The extra space is needed to accommodate increasing the
chain limit capabilities. DBCONV adds one word for each path in a master data set media record. The
temporary extra disc space is equal to the largest master set in the data base. This space is returned when
the conversion process completes.

Since the smallest amount of memory TurbolMAGE can allocate is a sector, the permanent extra disc
space requirements could increase by as much as a sector per block. When DBCONV encounters such
cases, the additional sectors are added automatically, and, in effect, the physical block size is increased.

The blocking effectiveness of each master data set is the major factor in determining this potential
increase. In some cases no extra disc space is required to accommodate the added word per path. If you
are currently nearing capacity on your discs, it is recommended that you evaluate the potential increase in
disc space for any data bases to be converted to TurboIMAGE.

In addition to any permanent disc space requirements, some temporary disc space is needed for the
conversion. During this process the master sets are converted, one at a time, into a temporary holding
space of equal size. Therefore, the largest space needed is equal to the largest master set (plus any
potential increase as determined above).

Before converting the data bases, you can use the DBCONV option, VERIFY, to analyze the following:

• Total extra disc space required by the converted database.

• Temporary disc space required by DBCONV for conversion of the database.

• The database root file for inconsistencies in data set definitions.

DEC 85
H-1

TurboIMAGE Conversion (DBCONV)

An example of DBCONV with the VERIFY option is shown below.

:RUN DBCONV.PUB.SYS,VERIFY

Database name? INVNTY

Starting conversion disc space analysis and verification.

For database INVNTY.

Total extra disc space required for converted database: 1 sectors

The temporary disc space required: 13 sectors

Inconsistency is not detected in the root file.

Conversion disc space analysis and verification is done !!!!

END OF PROGRAM

If an inconsistency is detected, refer to the error messages at the end of this section.

It should be noted that a potential problem of less effective blocking only affects converted IMAGE/3000
data bases. New data bases created in a TurboIMAGE environment will be blocked automatically by
DBSCHEMA, with the increased chain count taken into consideration. As a work-around to a potential
blocking problem, you may perform a DBUNLOAD of the converted data base, run DBSCHEMA on the
schema (which will block more effectively), and then perform a DBLOAD of the data.

DEC 85
H-2

I CAUTION I
As a result of the potential increase in disc space requirements, if you are
nearing capacity on your discs, conversion and migration to TurboIMAGE
may not be advisable without the addition of disc space.

TurbolMAGE Conversion (DBCONV)

CONVERTING FROM IMAGE/3000 TO TURBOIMAGE

TurbolMAGE enhancements provide the capability for growth in the data base by changing the
limitations and adding new tables in the root file. Because TurboIMAGE data base internal structure is
different from IMAGE/3000, the databases must be converted with DBCONV before they can be
accessed. On the following pages are examples and information on running the DBCONV utility. Tables
H-1 and H-2 may be referenced for any errors which occur during conversion.

A creator or user with AM or SM capability can run DBCONV to convert the data base. DBCONV will
not run if ILR is enabled on the data base. A DBUTIL >>SHOW data base name FLAGS can be used to
determine what is enabled or disabled for the data base. If ILR is enabled, a DBUTIL >>DISABLE should
be performed to disable ILR before TurboIMAGE is installed and the conversion program is run. It is
recommended that the data base administrator back up (DBSTORE or MPE STORE) the data base and
schema file prior to the installation of TurboIMAGE.

An alternative method is available to disable ILR or convert each data base individually. Users can utilize
an Editor use file which creates a master job stream that can be used to convert all the data bases on the
system. Refer to "Converting Using JOB STREAMS11 later in this appendix for more information.

If TurboIMAGE is installed and ILR has not been disabled, the user can run DBUTILB. DBUTILB works
the same way DBUTIL does, however, it has been modified to disable flags in an IMAGE/3000 data base
once TurboIMAGE has been installed. Example 2 on the following page shows how to use DBUTILB.

I CAUTION I
If it is necessary to return to IMAGE/3000 after data bases have been
converted to TurboIMAGE, the DBCONV option, BACKWARD, is
available. This backward conversion process will not be successful if the
new TurbolMAGE data base limits have been applied to the data base.
DBCONV, BACKWARD should be run while TurbolMAGE is installed on
the system.

DEC 85
H-3

TurboIMAGE Conversion (DBCONV)

To convert an individual data base either interactively or in batch mode, use the following program:

Syntax

:RUN DBCONV.PUB.SYS

DATABASE NAME? data base name [/miintenance ~ord] [.group]

Parameters

data base name is the name of the data base to be converted.

m:iintenance word is the maintenance word for the data base being converted. If the user is
not the data base creator, then the maintenance word must be specified.

group is the group where the data base resides. This is an optional parameter.

Example 1

DEC 85
H-4

:RUN DBCONV.PUB.SYS

HP32215C.OO.OO TurboIMAGE:DBCONV (C) COPYRIGHT HEWLETT-PACKARD CO. 1984

DATABASE NAME? ORDERS

Database has not been modified since last DBSTORE.
Continue (YES/NO)? YES

ORDERS01 has been converted.
ORDERS02 has been converted.
ORDERS03 has been converted.
ORDERS OS has been converted.
ORDERS has been converted.

Detail sets don't need to be converted.

Conversion is done !!!!

END OF PROGRAM

TurbolMAGE Conversion (DBCONV)

Example 2

:RUN DBCONV.PUB.SYS

HP32215C.OO.OO TurboIMAGE: DBCONV (C) COPYRIGHT HEWLETT-PACKARD CO. 1984

DATABASE NAME? RETAIL

ILR is on, disable it first

END OF PROGRAM

:RUN DBUTILB.PUB.SYS

>>DISABLE RETAIL FOR ILR
I LR is Disabled

»EXIT

END OF PROGRAM

:RUN DBCONV.PUB.SYS

DATABASE NAME? RETAIL

Database has not been modified since last DBSTORE
Continue (YES/NO) ? YES

RETAIL01 has been converted.
RETAIL has been converted.

Detail sets don't need to be converted.

Conversion is done!!!!

END OF PROGRAM

Discussion

The first example shows conversion of the data base ORDERS. Since the user running DBCONV was the
data base creator, no maintenance word was entered. The user is prompted for the data base name.
DBCONV will terminate and print the message DAT A BASE IN USE if it cannot gain exclusive access to
the specified data base. The conversion program will check the data base 11dirty11 flag in the root file to
determine if the data base has been modified since the last DBSTORE was made.

DEC 85
H-5

TurbolMAGE Conversion (DBCONV)

NOTE

It is highly recommended that the data base administrator perform a
DBSTORE of data bases and MPE STORE of schema text files prior to
updating the system to TurbolMAGE. Backup copies of data bases and
schema files may save considerable time if any problems occur during
conversion. DBCONV checks the root file flag to determine the state of
the data base. If the data base is in an inconsistent state, DBCONV will
terminate and the data base will not be converted.

If the data base has not recently been stored, and the user determines it is unnecessary, then DBCONV can
be continued with the response 11YES11 and conversion will complete. The following message will appear
after the data base name is entered:

Database has been modified since last DBSTORE.

The user will be prompted to continue whether or not the data base has been recently DBSTORE'd. The
reason for this is to provide consistency so that conversion may be run in job (batch) mode. Running the
conversion utility in job mode will facilitate data base conversion at night, or when best suited for system
operation.

DBCONV will list the data set files converted, along with the data base root file. Notice that the detail
data set files need no conversion, ORDERS04 and ORDERS06 were not converted because they are detail
data set files.

The second example shows the conversion of the data base RETAIL. ILR was not disabled prior to
running DBCONV, an error message is printed and DBCONV is terminated. Since the RETAIL data base
is still an IMAGE/3000 data base, the DBUTILB program is run and ILR is disabled on the data base.
This utility program accepts an IMAGE data base and allows the disabling of ILR when TurbolMAGE has
been installed on the system. ILR is disabled and DBCONV is run again and completes successfully. Note
that DBUTILB can be used to change the flags and to erase or purge a data base prior to running the
conversion program after TurboIMAGE has been installed.

The following is a sample job stream for DBCONV using data bases ORDERS and RETAIL:

Example (Job Mode)

DEC 85
H-6

:JOB MGR.ACCOUNTA,ADMIN
:RUN DBCONV.PUB.SYS
ORDERS/SELL.DATAMGT
YES
:RUN DBCONV.PUB.SYS
RETAIL
YES
:EOJ

<<Maintenance word and group are>>
<<entered. ORDERS resides in a different>>
<<group than the log on group.>>

<<Creator's log on is used, so no>>
<<m:iintenance word is required.>>

TurbolMAGE Conversion (DBCONV)

Converting from TurbolMAGE to IMAGE/3000

In case a problem occurs after the data base is converted to TurbolMAGE, the following utility may be
used to return the data base to IMAGE/3000. The conversion utility is run similar to DBCONV,
however, the internal structure of the data base will be converted from TurboIMAGE to IMAGE/3000.
DBCONV, BACKWARD must be run on all data bases on the system. Then the system must be updated
to reinstall IMAGE/3000.

I CAUTION I
This backward conversion process may not be successful if the new
TurbolMAGE data base limits have been used in the data base. Backward
conversion should be done while TurbolMAGE is installed on the system.

Syntax

:RUN DBCONV.PUB.SYS,BACKWARD

DATABASE NAME? data base name [/m:iintenance word] [.group]

Parameters

BACKWARD

data base name

m:iintenance word

group

is the option which indicates the conversion process to convert a
TurboIMAGE data base back to an IMAGE data base.

is the name of the data base to be converted.

is the maintenance word for the data base being converted. If the user is
not the data base creator, then the maintenance word must be specified.

is the group where the data base resides. This is an optional parameter.

DEC 85
H-7

TurboIMAGE Conversion (DBCONV)

Example

:RUN DBCONV.PUB.SYS,BACKWARD

HP32215C.OO.OO TurboIMAGE/3000: DBCONV (C) COPYRIGHT HEWLETT-PACKARD CO. 1984

DATABASE NAME? ORDERS

Database has not been modified since last DBSTORE.
Continue (YES/NO) ? YES

ORDERS01 has been converted back.
ORDERS02 has been converted back.
ORDERS03 has been converted back.
ORDERS OS has been converted back.
ORDERS has been converted back.

Detail sets don't need to be converted.

Conversion is done ! ! ! !

END OF PROGRAM

Discussion

The above example shows conversion of the data base ORDERS back to IMAGE/3000. The user is
prompted for the data base name. The conversion program will check the data base "dirty" flag in the
root file to determine if the data base has been modified since the last DBSTORE. The user is prompted
to continue with the conversion whether or not the data base has been DBSTORE'd. As with DBCONV,
the data base administrator must determine whether a backup copy of the data base is necessary.

The backward conversion program works the same way the conversion program to convert from IMAGE
to TurbolMAGE does. The program may be run in batch mode or interactively. The job streams to
disable ILR and convert either all data bases on the system or data bases in each account can be used with
backward conversion also.

DEC 85
H-8

TurbolMAGE Conversion (DBCONV)

Converting Using Job Streams

Data bases can be prepared for and converted using an Editor use file. This use file creates a master job
stream that converts all data bases on a system. This master job stream creates multiple job streams to
run DBCONV on the data bases for each group and account on the system. In addition, a job stream that
disables ILR for each data base before conversion can be done. An offline listing is produced which
provides a listing of each data base converted after the job streams run.

This job stream method provides a convenient way to convert data bases without having to first check
data base flags, disable ILR (if enabled), and then convert each data base separately. The package that
builds the job streams to convert all IMAGE/3000 data bases to TurbolMAGE data bases consists of files
CONVUDC, MASTUSE, TMPCONVl, TMPCONV3, TMPCONVX, and VSTREAM. As recommended
earlier in this appendix, all data bases should be backed up prior to running DBCONV.

To start the conversion process using the Editor use file:

1. Log on as MANAGER. SYS,CONV ALL.

2. MPE SETCATALOG CONVUDC. (Reset after using the job streams.)

3. Run Editor and enter USE MASTUSE.

4. Respond to the prompts issued by MASTUSE.

The MASTUSE file issues complete on-line instructions and prompts the user for information needed in
the conversion process.

MASTUSE streams a job stream called JMASTCON. JMASTCON streams a job stream called JALLACCT
which creates a job stream for each account on the system. Note that a job stream will be created for a
data base on a private volume only if the private volume has been mounted before the use of MASTUSE.
Each job stream has the same name as the account and converts the data bases in that account. The job
stream JSTREAMS is also created. This is the master stream file that streams all the account job streams.

JALLACCT creates a job stream even if the account contains no data bases. In this case, the job stream is
an empty file. When the user streams JSTREAMS to convert the data bases on the system, the following
warning will be issued for each empty file encountered in JSTREAMS:

NO :JOB OR :DATA COMMAND ENCOUNTERED. (CIWARN 1406)

The user can ignore this warning.

DEC 85
H-9

TurbolMAGE Conversion (DBCONV)

The user may either convert all the data bases on the system or convert data bases by account. To convert
all the data bases on the system, stream the JSTREAMS job stream. To convert data bases by account,
stream the job stream with the name of the account.

The following error messages may occur during the job stream Jlaccount-name:

END OF FILE (FSERR 0)
FILE SYSTEM ERROR 0 ENCOUNTERED ON LIST FILE. (CIERR 425)

If you receive these errors while converting the data bases, perform the following steps:

1. Logon as MANAGER.SYS,CONVALL

2. Run EDITOR and TEXT TMPCONV3

3. Change line 4 from DISC=SOOO to DISC=X where:

X = 5 + [(#groups in account) * 7] + [(#databases in account) * 18]

4. Keep TMPCONV3 and exit from EDITOR

S. Use MASTUSE again to recreate the job streams

DEC 85
H-10

TurboIMAGE Conversion (DBCONV)

The job streams corresponding to account names include jobs to disable ILR. To insure the orderly
processing of the jobs, it is recommended to allow one job to be executed at a time. (If converting each
data base individually is preferred, then run the DBCONV utility as decribed in the beginning of this
appendix.)

CAUTION

DBCONV requires disc space as large as the largest master data set and
additional space for chain expansion. If the number of data bases on the
system is large, there will be a large number of job streams. It may be
necessary to partition the JSTREAMS file accordingly

These job streams may also be used for backward conversion, from TurboIMAGE to IMAGE/3000, with
slight modifications. If you want to use the job streams for backward conversion the following minor
modifications must be made to the TMPCONV3 file:

1. Change RUN DBUTILB.PUB.SYS to RUN DBUTIL.PUB.SYS (lines 88 and 122)

2. Change RUN DBCONV. PUB. SYS to RUN DBCONV. PUB. SYS,BACKWARD (line 131)

Once these modifications have been made, the job stream can be run and conversion of TurbolMAGE data
bases back to IMAGE data bases will begin.

DEC 85
H-11

TurboIMAGE Conversion (DBCONV)

Error Messages

Two types of error messages are generated by the DBCONV utility. Conditional errors occur before the
utility program has begun execution. These errors are described in Table H-1. Unconditional errors
occur after successful execution of the utility program has already begun. Unconditional errors are
described in Table H -2.

Table H-1. DBCONV Program Conditional Messages

MESSAGE

Bad character for
data base name

Bad database group
reference

Bad database name
reference

Bad maintenance word

Data base group too
long

Data base name too
long

Maintenance word too
long

DEC 85
H-12

MEANING ACTION

The data base name specified Run DBCONV again with the
contains an invalid character. correct name.

The data base group specified is Same as above.
incorrect.

The data base name specified is Same as above.
incorrect.

Maintenance word specified is Run DBCONV again and specify
incorrect. the correct maintenance word.

The group name specified is Run DBCONV again with the
longer than 8 characters. correct group name.

The data base name specified is Run DBCONV again with the
longer than 6 characters. correct name.

The specified maintenance word Same as above.
has more than 8 characters.

TurboIMAGE Conversion (DBCONV)

Table H-2. DBCONV Program Unconditional Messages

MESSAGE

Data base bad,
conversion was in
process

Database bad, creation
was in process

Database bad, data set
file moving was in
process

Data base bad, erase
was in process

Data base bad, ILR
disable was in process

Data base bad, ILR
enable was in process

Data base bad, ILR was
in process

MEANING

DBCONV process was interrupted
while in progress. The data base
may be damaged.

The data base was damaged while
being creatf:d. The data base is in
a state where it cannot be
converted.

Process was interrupted while a
data set file was being moved (via
DBUTIL >>MOVE command).
The data base is in a state where
it cannot be converted.

Data base was damaged while
being erased. The data base is in
a state where it cannot be
converted.

Process was interrupted while ILR
was being disabled. The data base
is in a state where it cannot be
converted.

Process was interrupted while ILR
was being enabled. The data base
is in a state where it cannot be
converted.

Process was interrupted while
Intrinsic Level Recovery was in
progress. The data base may be
damaged.

ACTION

The data base creator should
perform an MPE RESTORE of
the data base, then run DBCONV
again.

The data base creator should
purge the data base using
DBUTILB. Run DBSCHEMA and
then DBUTIL >>CREATE. This
will create a TurbolMAGE data
base - conversion is not necessary.

The data base creator should do
an MPE RESTORE of the data
base, then run DBCONV again.

The data base creator should erase
the data base using DBUTILB,
then run DBCONV. OR the data
base creator can purge the data
base using DBUTILB, run
DBSCHEMA and then DBUTIL
>>CREA TE. (Converting the
data base will not be necessary if
the latter option is used.)

The data base creator should do
an MPE RESTORE of the data
base, then run DBCONV again.

Same as above.

Same as above.

DEC 85
H-13

TurboIMAGE Conversion (DBCONV)

Table H-2. DBCONV Program Unconditional Messages (Continued)

MESSAGE

Data base bad,
modification was in
process

Database has not been
created

Database incompatible

Database is already in
the right format

Data base is in an
unknown state

Data base maintenance
word is required for
non-creator

Data entries per chain
exceeds IMAGE limit,
65536 entries per
chain

Data i terns per
database exceeds
IMAGE limit, 255
items

Data items per set
exceeds IMAGE limit,
12 7 items per set

DEC 85
H-14

MEANING

Data base was damaged while
being modified in output deferred
mode.

The data base specified has a root
file but no data set files. IMAGE
DBSCHEMA has been run, but
DBUTIL >>CREATE has not.

The data base referenced is not a
version of IMAGE which can be
converted to TurbolMAGE. OR
the data base referenced is not a
version of TurbolMAGE which
can be converted back to IMAGE.

The specified data base has
already been converted.

The data base is in a state where
conversion cannot be performed.
The data base may be damaged.

The user invoking the DBCONV
program is not the creator and
has not supplied the correct
maintenance word.

Con version was in process before
it terminated. The data base is in
an inconsistent state.

The data base is in a consistent
state, however, it cannot be
converted back to IMAGE.

Con version was in process before
it terminated. The data base is in
an inconsistent state.

ACTION

Data base creator should 1) MPE
RESTORE and run recovery on
the data base or, 2) reinstall
IMAGE/3000 and DBUNLOAD
and erase the data base, install
TurbolMAGE, run DBCONV then
DBLOAD the data base.

The data base creator should
purge the data base root file using
DBUTILB. Run DBSCHEMA and
DBUTIL >>CREATE.
Conversion will not be necessary.

Determine if the version is
"HP3221 SB" OR 11HP32215C11

•

Contact your system manager.

Run the con version program
again and supply the correct
maintenance word.

The data base creator should
perform an MPE RESTORE of
the data base, then contact your
system manager.

Contact your system manager.

The data base creator should
perform an MPE RESTORE of
the data base, then contact your
system manager.

TurboIMAGE Conversion (DBCONV)

Table H-2. DBCONV Program Unconditional Messages (Continued)

MESSAGE

Data sets per database
exceeds IMAGE limit,
99 sets

File system internal
error

ILR is on, disable it
first

Inconsistent Blocking
Factor, Media Length
or Block Length in
Root file for
<datasetname>

Inconsistent Media
Length, Path Count,
En try Length in the
Root file for
<datasetname>

Incorrect database
maintenance word

Non-creator access is
not permitted

MEANING

The data base is in a consistent
state, however, it cannot be
converted back to IMAGE.

This is an MPE file system error.

DBCONV has detected root file
corruption.

DBCONV has detected root file
corruption.

The user invoking the program is
not the creator of the data base
and has not supplied the correct
maintenance word.

The user invoking the program is
not the creator of the data base.

ACTION

Contact your system manager.

Contact your system manager.

Disable ILR using DBUTILB
>>DISABLE command. Run
DBCONV again.

The root file must be corrected or
recreated. Contact your system
manager for assistance in
correcting the root file, then
RUN DBCONV. PUB. SYS again.

Same as above.

Run the conversion program
again and supply the correct
maintenance word.

Log on with the creator's user
name, account and group and run
DBCONV again.

DEC 85
H-15

A

Abnormal termination of a procedure, 4-30
Abort conditions, A-1 3, A- 31
Aborts and recovery, 7-1 2
ABORTS parameter, 8-11
Absent list, 2-14
Access

Calculated, 4-12
Chained, 4-12
Directed, 4-11
Gran ting, B- 1
Mode, 2-14
Modes and user class number, 4-8, 4-14, 4-16
Modes, 4-2
Option, 8-43
Path, 4-9
Serial, 4- 11

Access class password, modify, 8- 5 6
ACCESS option, 8-43, 8-45
Account manager, 2-12
Account member, 2-12
Account protection, 2-12
ACTIVATE command, 8-38
Activate DBA file, 8-38
Actual file designators, 3- 1 4
Adding entries, sequence for, 4- 7
Address, Primary, 1 0- 2
Algorithms, primary address calculation, 10-8
Array, 2-2
ASCII characters, 2-2
At sign in DBA file, 9 - 8
Audit trail, 7-12
AUTODEFER, 2-19, 8-45
Automatic masters, 2-6, 4-19

B

Backup copies, 1-6, 7-4
Backup files, 8-3
BASIC, 1-6

Examples, 6 - 61
BIMAGE, 6-64

Procedure parameters, 6-6 4
BIMAGE interface procedures, 6-61
Bit map, 10-4
Blocking factor, 2-11
BLOCKMAX=option, 3-20
Blocks, 2-11, 10-4

INDEX

Blocks and bit maps, 1 0-4
Broken chains, 8- 3 2

Message returned, 8- 3 2
Buff er length, 3- 2 3
Buff er management, 1 0- 1 0
BUFFSPECS=option, 8- 5 6
BUILD command, 7-20
Byte, 3-5

c
Calculated access, 4-12
Call statements, Procedure, 5- 3
Calling errors, A - 1 3
Calls to BIMAGE procedures, 6-61
Capacity, 2-2

Data set, 3-10
Master data set, C-1
Maximum, 3-11

CCE, 4- 2 9, A - 1 2
CCG, 4-29, A-12
CCL, 4-29, A-12
Chain head, 2-4, 10-2
Chained access, 4-12

And current path, 4-9
And locking, 4- 1 3

Chains
Data, 10-1
Definition, 2-4
Sorted, C-1
Synonym, 10- 2

CHANGELOG command, 7-23
Checking status of a procedure, 4-29
Checking the subsystem flag, 4-28
Class number, user, 4- 2
Cleanup mode, MPE, 7- 14
Closing the data base or data set, 4-28
COBOL, 1-6

Sample program, 6- 14
COBOL examples, 6- 2
COMMAND intrinsic and DS, 9- 3
Commands, Schema Processor, 3-17
Comments in schema, 3-2
Communication area of DBG, 10-5
Complex numbers, 3-8
Compound data items, 2- 2
Concurrent access modes, 4-3
Condition code, 4- 2 9
Condition word, 4-29

DEC 85
INDEX-1

Index

Condition word values, BIMAGE, 6-6 7
Conditional locks, D-2
Continuation records, 3-1 7

Schema Processor, 3- 1 7
CONTROL, DBRECOV command, 8-11
CONTROL, Schema Processor Command, 3-20
Control blocks, 10-7

Size of, 10-7
Control Block, User Local, 4-2
Control blocks, Overview of, 4-1
Convention~languag~ 3-1
Converting data base, H -1, H- 5

Back to IMAGE/3000, H-7
Considerations, H - 1
Disc space requirements, H - 1
To TurboIMAGE, H-3
Using job streams, H - 11

Copying data entries
From serial device, 8 - 4
To serial disc, 8-31

Copying en tire data base
From serial disc, 8-2 6
To serial disc, 8-2 8

Correspondence, Backup copy and logfile, 7 - 3 5
CREA TE command, 8-40
Creating data base, 7-1
Creating the textfile, 3-15
Creator, 2-11

Data base, 1-8, 3-16
Creator's log-on group, 2-11
Critical mode, 2-19
Current pa th, 4-9

And DBGET, 5-32
Definition, 4-12
Number and DBCLOSE, 5-7
Number and DBFIND, 5-29

Current record
Number and DBFIND, 5-29
Rereading, 4-13

D

Data, reading the, 4-9
Data base, 1-3, 2-1

Access mode and user class number, 4-8
Access modes, 4-2
Adding en tries, 4- 7
Backup copy, 7-4
Closing the, 4-28
Control blocks, 4-1
Conversion, H-1, H-3, H-7
Creating, 7-1
Crea tor, 1 - 8, 3-16

DEC 85
INDEX-2

Definition of, 2-1
Description language, conventions, 3-1
Designer, 1 - 8
Elem en ts, 2- 1
Entering data in the, 4- 7
Manager, 1 - 8
Name, syn tax, 3- 1
Opening the, 4-1
Personnel, 1 - 8
Protection, 2-12, 5-3
Recovery options, 7 - 5
Remote, 9-1, D-3
Restructure, 7 - 2
Statistics, 7-1 5
Structure, 2- 1
Structure, obtaining information, 4-27
Utilities, 8-1

Data base administrator, 1-8
Access to logfile, 8- 24

Data base backup, prior to conversion, H-6
Data base creator, 1-8, 2-13
Data base designer, 1-8
Data base manager, 1 - 8
Data base structure, 2-1
Data chains, 10-1
Data entries, 2-2
Data entry, 2-1

And access mode, 4- 9
And user class number, 4-8
Deleting, 4-15
Length, 2-2
Locking, 4-16, 4-21
Numbers, 4-9
Sequence for adding, 4-7

Data files, 2-11
Data integrity, 2-19
Data item, 2-1

Compound, 2- 2
Identifiers, 3-9
Information about, 4-2 7
Length, 3-5
Numbers, 3-9
Packed, 3-8
Types, 3-6
Validating checking, 5-46

Data names, 3-10
Data set, 2-1

Capacity, 2-2
Closing the, 4- 2 8
Control block, 10-7
Create, 8-40
Definition of, 2-2
Detail, 2-4
Detail, adding en tries to, 5- 6 0

Detail, deleting, 5-12
Identified, 2-2
Identifiers, 3-13
Location, 2-4
Locking, 4-16
Master, 2-2
Master, adding entries to, 5-58
Master, deleting, 5-12
Maximum, 3-10
Purge, 8-52
Reinitialize, 8- 4 7
Spilce allocation, 10-9
Storage, 2-4
Summary table, 3-22
Write list, 2-14

Data sets, 2-2
Detail, 2-4
Rewinding, 5- 7

Data types, 2-2
Data -base-access (DBA) file

Activate, 8-38
Changing, 9- 11
Code, 9-11
Content, 9-5
Deactivate, 8-42
Name, 9-8
Reporting, 8-65
Syntax rules, 9-10
Syntax verification, 9-10
Using, 9-4

DBB
Allocating buffers, 8-56
Use of, 10-5

DBBEGIN
Calling sequence, 5-4
COBOL example, 6- 1 4
Description, 4-26

DBCLOSE
Calling sequence, 5-6
COBOL example, 6- 1 3
FOR TRAN example, 6- 3 3
Pascal example, 6-46
SPL example, 6- 5 2

DBCONTROL, Description, 5- 9
DBCONV program, H-1

BACKWARD, H-7
DBDELETE

Calling sequence, 5-11
COBOL example, 6- 1 0
FORTRAN example, 6-29
Pascal example, 6-45

DBE ND
Calling sequence, 5 - 1 4
COBOL example, 6-14

Description, 4-26
Mode 2 option, 5-1 5

DBERROR
Calling sequence, 5-16, 6-62
COBOL example, 6-13
Description, 4-30
FORTRAN example, 6-34
Pascal example, 6 - 4 7
SPL example, 6- 5 2

DBEXPLAIN
Calling sequence, 5- 2 5
COBOL example, 6-1 3
Description, 4-30
FORTRAN example, 6-34
Pascal example, 6-4 7
SPL example, 6- 5 2

DBFIND
Calling sequence, 5- 2 8
Description, 4-9, 4-12
Pascal example, 6-4 3

DBG, Use of, 10-5
DBGET

Calculated, COBOL example, 6-6
Calculated, FORTRAN example, 6-25
Calculated, Pascal example, 6-42
Calculated, SPL example, 6- 5 3
Calling sequence, 5-30
Chained, COBOL example, 6- 7
Chained, FORTRAN example, 6-26
Chained, Pascal example, 6-4 3
Chained, SPL example, 6- 5 3
Description, 4-9, 4-12
Direct, COBOL example, 6-5
Direct, FORTRAN example, 6-24
Direct, Pascal example, 6- 41
Direct, SPL example, 6- 5 3
Serial, COBOL example, 6- 4
Serial, FORTRAN example, 6-22
Serial, Pascal example, 6-40
Serial, SPL example, 6- 5 3

DBINFO
Calling sequence, 5 - 3 4
COBOL example, 6-12
Description, 4-2 7
FORTRAN example, 6-32
Pascal example, 6-46
Special uses of, 4-28
SPL example, 6- 5 2

DBLOAD utility, 8-4
DBLOAD, 2-7
DBLOCK

Calling sequence, 5-40
COBOL example, 6-11
Description, 4-16

Index

DEC 85
INDEX-3

Index

FORTRAN example, 6-30
Pascal example, 6-45
SPL example, 6-52

DBMEMO, Calling sequence, 5-4 8
DBOPEN

Calling sequence, 5- 50
COBOL example, 6-2
Description, 4-1
FORTRAN example, 6-20
Logging, 5- 5 2
Pascal example, 6- 3 8
SPL example, 6-52

DB PUT
Calling sequence, 5-56
COBOL example, 6-3
Description, 4- 7
FORTRAN example, 6-21
Logging, 5 - 6 0
Pascal example, 6-39
SPL example, 6- 5 2

DBRECOV utility, 8-8
ABORT option, 8-8
CONTROL command, 8-11
EXIT command, 8- 1 5
FILE command, 8- 16
PRINT command, 8- 1 9
PURGE option, 8-8
RECOVER command, 8-20
RESTART option, 8-8
ROLLBACK command, 8-22
RUN command, 8- 2 4

DBRECOV, STOP-RESTART feature, 7-41
DBRESTOR utility, 8-26
DBS, Use of, 10- 5
DBSTORE flag, 7-4, 7-35, 8-28

Override, 8- 1 2
DBSTORE utility, 8-28
DBT ABLE option, 8-1 9
DBU, Use of, 10- 5
DBU (Control Block), 4- 2
DBUNLOAD, 2-7
DBUNLOAD utility, 8-31

And broken chains, 8- 3 2
DB UNLOAD utility progr:i m, 2- 7
DB UNLOCK

Calling sequence, 5-61
COBOL example, 6-11
FORTRAN example, 6-30
Pascal example, 6- 4 5
SPL example, 6- 5 2

DBUPDATE, 5-63
Calling sequence, 5- 6 3
COBOL example, 6-9
Description, 4-14

DEC 85
INDEX-4

FORTRAN example, 6-28
Locking, 5- 6 3
Logging and locking, 5- 6 4
Pascal example, 6-44
SPL example, 6-52

DBUTIL utility, 8-3 7
ACTIVATE command, 8- 3 8
CREATE command, 8-40
DEACTIVATE command, 8-42
DISABLE command, 8- 4 3
ENABLE command, 8-45
ERASE command, 8- 4 7
EXIT command, 8- 4 8
HELP command, 8-49
MOVE command, 8-50
PURGE command, 8-4 7, 8-52
RELEASE command, 8- 5 4
SECURE command, 8- 5 5
SET command, 8 - 5 6
SHOW command, 8- 5 9
VERIFY command, 8 - 6 5

DBUTIL, 1-6
DEACTIVATE command, 8- 4 2
Deadlocks, 4-24 ·

Prevention, D-1
Debugging, A-12

DBERROR, 5-16
Defaults

CONTROL command, 7-31, 7-39
$CONTROL command, 3-20

Delete chain, 10-9
Deleting data, 4-15
Description language conventions, 3-1
Design considerations, C-1
Designer, data base, 1 - 8
Detail data sets

Adding entries to, 5- S 8
Deleting, 5- 1 2
Media records, 10-1
Space allocation, 10-9

Device class, assigning the, 3- 1 1
Device list, 8-62
DEVICE option, 8-59
Directed access, 4-11
Directed access, reading data, 4- 11
Disable

Access, 8- 4 3
AUTODEFER, 8-43
Dumping, 8-43
ILR, 8-43
Logging, 8- 4 3
Recovery, 8 - 4 3
ROLLBACK, 8··43

DISABLE, DBlJTlL command, 8-43

DISABLE command, 8-43
Display DBUTIL commands, 8- 4 9
Displaying information

About data base, 8-59
About locks, 8-62

Distributed Systems (DS/3000), 1-8, 9-1
Doubleword integer parameters, BASIC, 6-66
DS messages, suppress, 9-6
DS user identification, 9-5
Dset DBFIND, 5-28
Dummy parameters, 5- 3
Dumping option

Disable, 8-43
Enable, 8-45
Show, 8-59

Dynamic locking, 4- 16

E

Enable
Access, 8 - 4 5
AUTODEFER, 8-45
Dumping, 8-45
ILR, 8-45
Logging, 8- 4 5
Recovery, 8-45
ROLLBACK, 8-45

ENABLE command, 8-45
Entering data in the data base, 4- 7
Entries

Migrating secondaries, 1 0- 9
Primary, 10-2
Secondary, 10-2

EOF=parameter, 8-11
ERASE command, 8- 4 7
Erasing the data base, and logging, 7- 26
Error messages, 1 - 8

DBCONV program, H - 11
Errors

Abort condition messages, A- 31
Calling, A - 1 5
Conditional utility messages, A-32
DBCONV messages, H - 11
Exceptional conditions, A-26
File system, A - 1 4
Library procedures, A - 12, A -14
Memory management, A-14
Unconditional utility msgs, A-32, A-52, A-57

Errors, interpreting, 4-30
ERRORS=option (DBSCHEMA), 3-20
ERRORS=parameter, 8-11
Examples

BASIC, 6-61

COBOL, 6-2
FORTRAN, 6-20
Locking facility, 4-22
Pascal, 6- 3 5
RPG, 6-80
Schema Processor, 3-24
SPL, 6-48

EXIT command, 8-48
Expressions, BASIC, 6-66
Extended sort field, 2- 9
Extents, file, 2-11

F

Failure to recover transactions, 7- 3 3
Failures, system, 7 - 2 7, 7- 33
FILE command, 8 - 16

DBRECOV, 8-16
In DBA file, 9-5
MPE, 3-14

File designators, actual, 3-14
File designators, formal, 3- 1 4
File errors, Schema Processor, A -1
File name, 2- 11
File system and memory management

Error messages, A -1 4
Files, data, 2- 11
FILE TABLE option, 8- 1 9
Flags

Checking the subsystem, 4- 2 8
DBSTORE, 7-4, 7-26, 8-29
Disable, 8-43
Displaying, 7-3 5
Enable, 8-45
Installing logging, 7-19
Maintaining logging, 7 - 2 5

FLAGS option, 8-59
Floating-point numbers, 2-2
Flow chart, security, 2-1 7
Fmode, 8-16
Formal file designator, 3-14
FORTRAN examples, 6-20
FORTRAN, 1-6

G

GETLOG command, 7 -1 8
Gran ting a user class acess, 2- 1 4
Group protection, 2-1 2
Group user, 2-12

Index

DEC 85
INDEX-5

Index

H

Hardware condition code, A-12
HELP command, 8-49
Host language access, 6-1

I files, 8-45,A-13
Identifiers, data item, 3-9
ILR for audit purposes, 7 - 3 4
ILR Quick Reference, G- 1
ILR, special considerations, 7 - 7
IMAGE/3000 and TurbolMAGE

Compatibility, 1-1, H-1
Inconsistency, 7 - 8
Information, data base structure, 4-2 7
Initiating data sets, 8-40
Integers, 2 - 2
Integrity, 2-1 9
Interactive locking, 4- 21
Internal structure, 1-8

And techniques, 10-1
Internal techniques, 10-8
Interpreting errors, 4-30
Intrinsic Level Recovery, 7-6
Intrinsic numbers, 5-3
Item part, 3 - 4

L

Language conventions, 3 - 1
Languages, examples of, 6-1
Language, native, 1-5
Library procedure, 1-6
Library procedures

Abort condition messages, A-31
Calling error messages, A - 1 5, A - 3 0
Error messages, A - 1 2
Exceptional conditions, A- 26
File system error messages, A - 1 4
Memory management error messages, A-14
Summary of, 5-2

LINES= option, 3-20
LIST option and $PAGE command, 3-18
LIST option, 3-20, 3-22
Listfile, Schema Processor, 3-14
Lock area, 10-10
Lock descriptors, 4-1 7

Array format of, 5-44
Sort sequence, D-2

Locking and transactions, 7 - 1 3

DEC 85
INDEX-6

Locking levels, 4-19
Locking requirements, 7-9
Locking/unlocking

Access modes, 4-19
And chained access, 4- 1 3
And direct access, 4-11
And logging, 7-12
And serial access, 4-12
And user classes, 2- 1 2
Conditional and unconditional, 4-18
Conditional, D- 2
DBUPDATE, 5-64
Deadlocks, 4-24
Deciding on a strategy, 4-20
During user dialog, 4- 21
Dynamic, 4-16
Examples of, 4-22
Interactive dialog, 4-21
Internal tables, 4-18
Internals, l 0-1 0
Issuing multiple locks, 4-24
Levels, 4-1 9
Overview, 4- 1 6
Performance, C- 1
Release, 4-24
Remote data bases, D-3
Shared access, 4-2 4

Locking, 1-8, 4-11
Choosing a level, 4-20

LOCKS option, 8- 5 9
LOG command, 7-22
Log file time stamps, 7- 26
Log identifier

Acquiring, 7-18
Setting in root file, 7 - 1 9, 8- 5 6

Log process, Initiate, 7 - 2 2
Log record, 7-26

Formats, MPE, F- 1
Formats, TurboIMAGE, E-1

Logfile, building, 7- 20
Logging

And access modes, 4-7
And locking, 7 - 1 2
And logical transactions, 4-26
And process suspension, 4-26
Capability, 7-1 7
CHANGELOG capability, 7-23
COBOL example, 6-14
Cycle, 7-25
Cycle, sample job stream, G-5
DBCLOSE, 5-7
DBDELETE, 5-12
DBOPEN, 5-52
DBPUT, 5-60

DBSTORE flag, 8- 2 9
DBUPDA TE and locking, 5- 6 4
Description, 7 - I 2
Disable, 8-43
Disabling, 7-26
Displaying status, 7-21
Enable, 8-45
Erasing the data base, 7 - 2 6
Flags, 7 - 1 9, 7 - 2 5
Format records, 7- 26
How it works, 4-25
Installation, 7 - 1 7
Intrinsics, 4- 2 5
Intrinsics, calling sequence, 4-26
Locking and unlocking, 7- 26
Maintaining, 7 - 2 2
Overview, 7-12
Recovery blocks, 7 - 1 3
Sequence of operations, 7-13
Special DBEND, 5- 1 5
Statistics, 7-1 5
Tape or disc, 7-26
Timestamp, 7-26, 8-12
To disc,quick reference, G-4
To tape,quick reference, G-4
Transaction numbers, 4-26
What it does, 4-25

Logging Device Quick Reference, G-4
LOGGING option, 8-43
Logical transactions and locking, 7 - 8
Logical transactions, 4- 26
Logical transactions, defined, 7 - 8
LOGID=option, 8-56, 8-59

M

Magnetic tape, 2-9
MAINT=option, 8- 5 6, 8- 5 9
Maintenance word, 2-1 9

Changing or removing, 8- 5 6
Making a data base backup copy, 7-4
Manager, data base, 1-8
Manual master, 2-6
Master and detail search items, 3-12, 3-13
Master data set, 2-4, 2-6

Adding en tries to, 5- 5 8
Automatic, 2-6
Deleting, 5- 1 2
Index, 2-4
Manual, 2-6
Media records, 1 0- 3
Space allocation for, 10-9

Maximum records in data set, 2-11

Maximum, Data items, 3-4
Maximum, data set capacity, 3-11
Media records, 10-1
Memory management, error messages, A -14
Methods, Remote data-base-access, 9-2
Migrating secondaries, En tries, 1 0-9
Mirror data base, 7 - 41
MODE4 parameter, 8-1 3
MODEX parameter, 8-1 3
MOVE command, 8-50
MPE account and log-on group, 2-11
MPE cleanup mode, 7 -14
MPE disc files, 2-11
MPE log record formats, F-1
MPE RESTORE command, 2-12
MPE subsystem, SORT/3000, 2-9
MPE STORE command, 2-12
MPE SYSDUMP command, 2- 12
MPE WRITELOG records, E-1
MPE :FILE command, 3- 14
MR capability, D-1
Multiple access, B-1
Multiple data base transactions, 7-35
Multiple RIN capability, D-1
Mutiple data base transactions, 7-1 3

N

Names
data set, 3-10
Data base, syn tax, 3 - 1
Data, 3-10

Native Language Support (NLS), 1-5
Nibble, 3-5
NOABOR TS parnmeter, 8-12
NOLIST option, 3-20
NOROOT option, 3-20
NOST AMP parameter, 8- 12
NOSTATS parameter, 8-1 3
NOSTORE parameter, 8- 12
NOTABLE option, 3-20
Notes on logging, 7 - 4 3
NOUNEND parameter, 8-11
Null list, 2-14
Null password, 2-13
Null read/write class lists, 2-13
Numbers, data item, 3-8

0

Opening data base more than once, 5-52
Opening the data base, 4- 1

Index

DEC 85
INDEX-7

Index

Operating instruction
Recovery options, 7 - 5
Utility programs, 7- 1

ORDERS data base, 2-9
Output deferred, 8-7
Output, Schema Processor, 3-22
Overview, TurboIMAGE, 1-1

p

PAGE command, Schema Processor, 3-18
Parameters

Procedure, 5 - 3
Unused, 5-3

Pascal examples, 6- 3 5
PASSWORD option, 8-56, 8-59
Password part, 3 - 3
Password syn tax, 3 - 2
Password, access class, modify, 8- 5 7
Passwords, 1-8, 4-2
Paths, 2-4

Access, 4-9
Current, 4-9
0 btaining information about, 4- 2 7

Performance analysis, TurboIMAGE, C-1
Pointers, 1-3, 10-1

Data set, 5-32
Post-recovery procedures, 7- 3 7
Primary address, 1 0- 2

Calculation, 10-8
Primary entries, 10-2
Primary path DBGET procedure, 2-7
Primary path, 2-7, C-1
Prime numbers, C-2
PRINT command, 8- 1 9
Privileged file protection, 2- 1 2
Procedure

Abort conditions, A- 3 1
Call statement, 5 - 3
Calls, BIMAGE, 6-62
Calls, status information, 4-29
Errors messages, A - 1 2
Exceptional conditions, A-26
Parameters, 5-3
Parameters, BIMAGE, 6-64

Procedure status, checking, 4-29
Procedures, Summary of, 5-2
Process statistics, recovery program, 7 -1 5
Process suspension, logging and, 4-26
Program aborts and recovery, 7-12
Protection

Account, 2-12
Data base, 5- 3

DEC 85
INDEX-8

Group, 2-12
Library procedure, 2 - 1 9
Privileged file, 2-12
Utilities, 2-1 9

PURGE command, 8-47, 8-52
Purging the data base, 8-52

Q

QUERY
Data types, 3-8
Remote data base access, 9-13

QUERY, definition of, 1-3
Quick Reference, Logging Device, G-4
Quiet periods, 7 - 1 3

R

Read and write class list, 2-12, 2-13
Reading

Data, calculated access, 4-12
Data, chained access, 4- 1 2
Methods, 4-9
The data, 4-9

Real numbers, 2-2
Record table overflow, 7- 2 7, 8-14
Records, 2- 2

In data set, maximum, 2-11
Media, 10-1
Rereading, 4-1 3
Size, 2-11

RECOVER command, 8- 2 0
Recovering without a backup copy, 7- 36
Recovering, 1 - 6
Recovery

Blocks, 7 - 1 3
Considerations, 7-12
CONTROL command, 7-31, 7-39
DBRECOV STOP-RESTART, 7-41
Determining success of, 7 - 3 9
Determining the success of, 7- 31
Disable, 8-43
Disabling roll-back, 7-29
Enable, 8-45
Enabling roll-back, 7-28
Enabling roll -forward, 7 - 3 4
FILE command, 7 - 3 2, 7 - 4 0
Files, 7-32, 7-40
Files, staging disc size, 7 -- 1 3
From a stream file, 7 - 1 2
ILR, 7-6
MPE cleanup mode, 7-13

Multiple data base transactions, 7-13
Overview, 7 - 5
Performing DBRECOV STOP-RESTART, 7-46
Performing roll - back, 7 - 2 9
Performing roll-forward, 7- 36
Post recovery procedures, 7 - 3 7
PRINT command, 7 - 3 2, 7 - 4 0
Quick reference, G- 1
Record n um be rs, 8- 1 4
RECOVER command, 7 - 3 8
Roll -back and ILR, 7 - 2 8
Roll - back timestamp, 7 - 2 8
Roll-back, 7-27
Roll-forward and ILR, 7-34
Roll-forward, 7 - 3 3
Rollback, 7-27
RUN command, 7-30, 7-3 8
Statistics, 8-12, 8-24
Stream file, 7 - 12
Suppress transactions, 7-13
Table overflow, 8-14
Tables, 7-15
Transferring log files, 7-44

Recovery file, Statistics, 7-15
Recovery files, 8- 1 7
RECOVERY option, 8-43, 8-45
Reinitialize data sets, 8-4 7
RELEASE command, 8- 5 4
Release data base, 8- 5 4
Releasing locks, 4- 24
Remote data base, D- 3
Remote data base access, 10-6

IMAGE/3000 and TurboIMAGE, 9-1
Local application, 9-1
Log-on identification, 9-8
Methods, 9-1
Referencing, 9-11
Using QUERY, 9-13
Utility programs, 7-1

Remote Data Base Control Block, 9-1, 10-6
Rereading data, 4- 1 3
Resetting data sets, 5-7
Resource identification number (RIN), D-1
RESTART option, 8- 8
RESTORE command, MPE, 2-12
Restoring from backup data base copy, 7- 3 5
Restrictions, RPG, 6- 8 0
Restructuring, 1-6

Allowed structural changes, 7 - 2
Unsupported structural changes, 7 - 3

Rewinding data sets, 5-7
RIN, 1-8, D-1
Rmode, 8-16
ROLLBACK command, 8-22

Roll-Back Recovery, Quick Reference, G-2
Roll-Forward Recovery, Quick Reference, G-3
Root file, 2- 11

Purge, 8-52
ROOT option, 3-20
RPG examples, 6-80
RPG, 1-6

relation to TurboIMAGE, 6-80
RUN command, 8-24

s
Sample JOb stream

DBCONV, H-6
Recovery, G-5
Roll-Back Recovery, G-7
Roll-Forward Recovery, G-6
Starting Logging Cycle, G-5

Sample job streams, recovery and logging, G-5
Schema

Changes, 7 - 2
Comm en ts, 3-2
Definition of, 1-5, 3-1
Structure, 3-2

Schema Processor, 2-11, 3-14
Command error messages, A- 3
Commands, 3- 1 7
Continuation records, 3-17
Creating the textfile, 3-15
Errors, 3 - 2 4
Example, 3-24
File error messages, A - 2
Messages, A - 1
Operating instructions, 3-14
Operation, 3-14
Output, 3-22
Summary information, 3-22

Search items, 2-3, 2-4
Adding entries, 4-8
Creating, 3-13
Definition, 2- 3
Design considerations, C-1
Number per detail, 2-4
Updating, 4-1 S

Secondary address, 1 0- 2
Secondary entries, 10-2

Deleting data, 5-12
SECURE command, 8- 5 5
Secure data base, 8-5 5
Security flow chart, 2-1 7
Security provisions, 2-1 2
Security, file system

Release: 8 - S 4

Index

DEC 85
INDEX-9

Index

Secure, 8- 5 5
Selecting the block size, 3- 21
Sequence for adding entries, 4-7
Sequence of entries, DBUNLOAD, 8-36
Serial access, reading the data, 4- 11
SET command, 8- 5 6
Set part

Details, 3- 1 2
Masters, 3 - 1 0

Sharing data base, B-1
SHOW command, 8-59
Show locks, 8-62
SHOWLOGST A TUS command, 7 - 2 3
Sort items, 2-7, 3-13

Design considerations, C- 1
Updating, 4-15

Sort sequence for lock descriptors, D- 2
Sorted chains, C- 1
Sorted entries, maintenance of, 2-7
Space allocation for

Detail data sets, 10-9
Master data sets, 10- 9

Special capability, Multiple RIN, D-1
SPL examples, 6- 4 8
SPL, 1-6
Staging disc

Altering size of, 7-1 3
Definition, 7 - 1 3
Recovery file, 7- 1 3

STAMP parameter, 8-12
STATS parameter, 8-12
Status area

Information and multiple access, B-1
Information, A-12
Information, procedure calls, 4-29
Register, 4-29

Status array, 5-3
Status parameter, 6-67
STOPTIME parameter, 8-12
Storage locations, 2-2
STORE command, MPE, 2-12
STORE parameter, 8-12
Storing entire data base, 8 - 2 8
String variables, BASIC, 6-66
Sub-items, 2-2

Count, 3-4
Length, 3-4

Subsystem flag, checking the, 4-28
Summary

Data set table, schema processor, 3-22
Description, 3-23
Of access modes, 4-3
Of Ii brary procedures, 5 - 2
Of utilities, 7-1

DEC 85
INDEX-10

Summary information, 3-22
Summary table description, 3-22, 3-23
Suppress DS messages, 9-6
Synonym chains, 10- 2
Synonyms, 10- 2
Syn tax, Schema Processor Commands, 3- 1 7
Syn tax errors, Schema Processor messages, A - 1
SYSDUMP command, 2-12
System failures, 2-19
System manager, 2- 1 2

T

TABLE option, 3-20
Textfile, Schema Processor, 3-14
Timestamp

Data base, 8-11
Log records, 8- 11

Transaction block, 7 - 8
Transaction logging, 4-7
Transaction numbers, logging, 4-26
Transactions, logical, defined, 7-8
TurboIMAGE conversion, H-1
TurbolMAGE enhancements, 1-2
TurboIMAGE utility program, DBUTIL, 1-6, 2-11
TurboIMAGE, effect on programs, 1-6
Type designators, 3-4

And programming languages, 3-6
Pascal table of, 6-36
Table of, 3-5

Type integer expressions, BASIC, 6-66
Type integer variable, BASIC, 6-66
Types, data, 2- 2
Types, uses of, 3-5, 3-8

u
Unconditional utility error messages, A- 52
UNEND parameter, 8-12
Unrecoverable disc, 2-19
Unrecoverable tape, 2-19
Unused parameters, 5-3
Updating data, 4-14

Access modes, user class number, 4-14
Search and sort items, 4-15

User class, 2-12, 2-19
Locking, 2-1 9

User class number, 4-8
Deleting data, 4-1 6
Opening the data base, 4-2
Setting, 3 - 3
Updating data, 4-14

User class password, 2-13
User file label, 2-11
User Local Control Block, 2-19, 4-2
User type AC or GU, 2-12
USERS option, 8-59
Utilities, protection, 2-16
Utility program

Conditional error messages, A- 3 3
Error messages, A - 3 2
Extended unconditional messages, A- 5 7
Protection, 2-16
Unconditional error msgs, A- 5 2

Utility programs, 1-6
Operation, 7-1, 8-3
Summary, 7-1

v
Validity checking, 5-46
VERIFY command, 8-6 5
Volume, 8-4

w
WARMSTART, 7-14
Word, 3-5
Write class list, 2-12, 2-13
WRITELOG records, MPE, E-1

x
XDBBEGIN, calling sequence, 6-62
XDBCLOSE

BASIC example, 6- 7 8
Calling sequence, 6 -6 2

XDBDELETE

BASIC example, 6 - 7 4
Calling sequence, 6-62

XDBEND, calling sequence, 6-62
XDBERROR, BASIC example, 6-79
XDBEXPLAIN

BASIC example, 6-7 8
Calling sequence, 6-62

XDBFIND, calling sequence, 6-6 2
XDBGET

Calculated, BASIC example, 6-71
Calling sequence, 6- 6 2
Chained, BASIC example, 6-72
Serial, BASIC example, 6-70

XDBINFO
BASIC example, 6-76
Calling sequence, 6-6 2

XDBLOCK
BASIC example, 6-7 4
Calling sequence, 6-62

XDBMEMO, calling sequence, 6-62
XDBOPEN

BASIC example, 6-68
Calling sequence, 6-6 2

XDBPUT
BASIC example, 6-6 9
Calling sequence, 6-62

XDBUNLOCK
BASIC example, 6 - 7 4
Calling sequence, 6- 6 2

XDBUPDATE
BASIC example, 6-7 3
Calling sequence, 6-6 2

SPECIAL CHARACTERS

$CONTROL, 3-20
$PAGE, 3-18
$TITLE, 3-19

Index

DEC 85
INDEX-11

READER COMMENT SHEET

HP 3000 Computer Systems

TurboIMAGE
Reference Manual

32215-90050 December 1985

We welcome your evaluation of this manual. Your comments and suggestions help us to improve our
publications. Please explain your answers under Comments, below, and use additional pages if necessary.

Is this manual technically accurate?

Are the concepts and wording easy to understand?

Is the format of this manual convenient in size, arrangement, and readability?

Comments:

D Yes D No

D Yes D No

D Yes D No

This form requires no postage stamp if mailed in the U.S. For locations outside the U.S., your local HP
representative will ensure that your comments are forwarded.

FROM: Date

Name

Company

Address

FOLD

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 1070 CUPERTINO, CALIFORNIA

POSTAGE WILL BE PAID BY ADDRESSEE

Publications Manager
Hewlett-Packard Company
Information Technology Group
19447 Pruneridge Avenue
Cupertino, California 95014

FOLD

FOLD

NO POSTAGE
NECESSARY
IF HAILED

IN THE
UNITED STATES

FOLD

Part No. 32215-90050
Printed in U.S. A. 12/ 8 5
E1285

F/jga HEWLETT
~1:.9 PACKARD

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	06-81
	06-82
	06-83
	06-84
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	08-45
	08-46
	08-47
	08-48
	08-49
	08-50
	08-51
	08-52
	08-53
	08-54
	08-55
	08-56
	08-57
	08-58
	08-59
	08-60
	08-61
	08-62
	08-63
	08-64
	08-65
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	replyA
	replyB
	xBack

