Microsystems Options
Order Number EK-192AA-MG-001

digital equipment corporation
maynard, massachusetts
The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

The software, if any, described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software or equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation. 1988. All rights reserved.

Printed in U.S.A.

The READER'S COMMENTS form on the last page of this document requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

- DEC
- DECmate
- DECnet
- DECUS
- DECwriter
- DELNI
- DEQNA
- DESTA
- DIBOL
- MASSBUS
- MicroPDP-11
- MicroVAX
- MicroVMS
- PDP
- P/OS
- Professional
- Q-bus
- Rainbow
- RSTS
- RSX
- RT
- ThinWire
- ULTRIX
- UNIBUS
- VAX
- VAXBI
- VAXELN
- VAXcluster
- VAXstation
- VMS
- VT
- Work Processor
- digital™

FCC NOTICE: The equipment described in this manual generates, uses, and may emit radio frequency energy. The equipment has been type tested and found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such radio frequency interference when operated in a commercial environment. Operation of this equipment in a residential area may cause interference, in which case the user at his own expense may be required to take measures to correct the interference.
Preface

This guide provides reference, configuration, and maintenance information for options supported by MicroVAX and MicroPDP-11 systems.

Intended Audience

This document is intended only for DIGITAL Field Service personnel and qualified self-maintenance customers.

Organization

This guide contains an alphabetical listing of all microsystems options, an overview that explains ordering procedures and module configuration, an option section with pertinent information on each supported option, and one appendix.

• The option sections are arranged alphabetically, and each section starts on page 1.

Each option section begins with a table of ordering information and information on operating system support, diagnostic support, related documentation, and dc power and bus loads. Each option section also contains a description, configuration information, power-up self-tests, and general maintenance information, including field replaceable units (FRUs) and loopback connectors.

• Appendix A provides a list of related documentation.

Warnings, Cautions, and Notes

Warnings, cautions, and notes appear throughout this guide. They have the following meanings:

WARNING Provides information to prevent personal injury.
CAUTION Provides information to prevent damage to equipment or software.
NOTE Provides general information about the current topic.
List of Options

This guide contains descriptions of the following options, which are supported by MicroVAX and MicroPDP-11 systems:

- AAV11-D, -S Digital-to-Analog Converter
- ADQ32-A, -S Analog-to-Digital Converter
- ADV11-D, -S Analog-to-Digital Converter
- AXV11-C, -S Analog I/O Module
- CXA16/CXB16 16-Line Asynchronous Multiplexer
- CXY08 8-Line Asynchronous Multiplexer
- DELQA Ethernet Interface
- DEQNA Ethernet Interface
- DFA01 Modem
- DHV11 8-Line Asynchronous Multiplexer
- DLVJ1 4-Line Asynchronous Interface
- DMV11 Synchronous Controller
- DPV11 Synchronous Interface
- DRQ3B-A, -S High-Speed, Parallel Interface
- DRV11-J, DRV1J-S 4-Line, High-Density Parallel Interface
- DRV11-WA, DRV1W-S General-Purpose DMA Interface
- DSV11 Communications Option
- DZQ11 4-Line Asynchronous Multiplexer
- DZV11 4-Line Asynchronous Multiplexer
- IEQ11 Communications Controller
- KDA50-Q Disk Controller
- KMV1A-M, -S Programmable Communications Controller
- KWV11-C, -S Programmable Real-Time Clock
- LPV11/LP25 and LPV11/LP26 Printer Subsystems
- RA60 Disk Drive
- RA70 Disk Drive
- RA81 Disk Drive
- RA82 Disk Drive
- RC25 Disk Subsystem
- RD31 and RD32 Diskette Drives
- RD50-Series Disk Drives
- RF30 Disk Drive
- RQDX2 and RQDX3 Disk Controllers
- RQDXE Expander Module
- RRD50 Digital Disk Subsystem
- RX33 Diskette Drive
- RX50 Diskette Drive
- TK50 Tape Drive Subsystem
- TK70 Tape Drive Subsystem
- TS05 Tape Drive
- TU81-PLUS Tape Drive
Overview

This document describes options supported by MicroVAX and MicroPDP-11 systems. The options are listed alphabetically and contain the following information:

Ordering information
Operating system and diagnostic support available
Related documentation
Brief description
Configuration
Self-test
Loopback connectors
FRUs

Ordering Options

You order option parts based on the system enclosure. Field Service personnel can also order modules by the M number. (For example, M7504 is a DEQNA-M module.)

For the BA23 and BA123 Enclosure, and H9642-J Cabinet

For most options, you must order two item numbers: a module and a cabinet kit. For example, you order the following two items if you are installing a DEQNA Ethernet interface:

<table>
<thead>
<tr>
<th>Item</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (M7504)</td>
<td>DEQNA-M</td>
</tr>
<tr>
<td>BA23-A cabinet kit, including</td>
<td></td>
</tr>
<tr>
<td>Type-A filter connector and internal cable</td>
<td>CK-DEQNA-KB</td>
</tr>
</tbody>
</table>

If you are replacing an option, you order only the parts needed. For example, if the base module is faulty, order the module only. If a cable or filter is faulty, order that part separately.

For the BA200-Series Enclosure

Cabinet kits are not necessary for modules designed for BA200-series enclosures because these enclosures do not have separate I/O panels. You order the module only; the filtered I/O connector is part of the module’s handle.

You can order a module in either of two ways:

• As a system option (factory installed in BA200-series enclosures)
• In an upgrade kit, to be installed by Field Service.
The module order number ends with \(-xA\) for a system option, or \(-xF\) for a field upgrade kit. The \(x\) indicates a letter that varies from module to module. For example, CXY08–AA is a system option, and CXY08–AF is an upgrade kit. The upgrade kit includes cables, an installation manual, and any other required components.

Only those options that specifically list BA200-series enclosures are supported; check the ordering information at the beginning of each option.

Module Configuration

Each module in a system must use a unique device address and interrupt vector. The device address is also known as the control and status register (CSR) address.

Depending on the device, the CSR address and interrupt vector are either fixed or floating.

A fixed CSR address or vector is an address reserved in memory for that module. Fixed addresses and vectors are positioned at the factory. If you have only one module of a certain type in the system, you do not need to change the factory position. If you have two or more modules of the same type, you must change the address and vector on each additional module.

A floating address or vector is a location assigned within an octal (base 8) range. The exact address or vector depends on what other modules the system contains. The ranges are as follows:

- Floating CSR address: \((1776)0010\) to \((1776)3776\)
- Floating interrupt vector: \((00000)300\) to \((00000)774\)

NOTE: All CSR addresses and interrupt vectors listed in this document are octal values.

You set most addresses and vectors by positioning switches or jumpers on the module. Here is an example of the 22-bit setting for a CSR address of 17761540:

```
A 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0
|  \_____/  \_____/  \_____/  \_____/  \_____/
1  7  7  6  1  5  4  0
```

In most cases, you can set a CSR address within a typical range by using bits A12 through A03. Bits 21 through 13 are usually all ones (1), and bits
02 through 00 are usually all zeros (0). A typical switch setting shows only the following bits:

Address Bits: A12 A11 A10 A09 A08 A07 A06 A05 A04 A03
Switch Settings: 0 0 0 1 1 0 1 1 0 0
Address: 6 1 5 4

If you set bit A12 to 1, the address would be 17771540.

Similarly, you can set an interrupt vector of 320 by positioning bits V08 through V03. Bits V02 through V00 are usually all zeros (0).

Vector Bits: V08 V07 V06 V05 V04 V03
Switch Settings: 0 1 1 0 1 0
Vector: 3 2

NOTE: The number of switches or jumpers used to control address and vector bits varies among modules.

Calculating address and vector values is a complex procedure, because some modules use floating addresses and vectors. The value of a floating address depends on what other modules are in the system. For this reason, the MicroVMS and VMS SYSGEN utility has a CONFIG program to determine CSR addresses and interrupt vectors. The next section describes how to use the CONFIG program. If you do not have access to this program, you can determine some common configurations using the information in the section Finding CSR Addresses and Interrupt Vectors Manually. Use this section only when the CONFIG program is not available.

Set CSR addresses and interrupt vectors for a module as follows:

1. Determine the correct values for the module with the CONFIG program.
2. Find the section in this document that describes the module. That section lists the switch and jumper settings for different CSR addresses and interrupt vectors.

Most modules also have switches and jumpers to change their operating characteristics. For some applications, you may have to change the factory settings.

NOTE: Changing the factory settings may affect the operation of the diagnostics for the device.
Finding CSR Addresses and Interrupt Vectors with the CONFIG Program

Use the CONFIG program in the MicroVMS and VMS SYSGEN utility to determine the correct CSR address and interrupt vector for a module. Type in a list of the devices in the system, and CONFIG automatically provides CSR address and interrupt vector information. Table 1 lists the devices supported by this utility.

Table 1: Device Abbreviations Used with SYSGEN

<table>
<thead>
<tr>
<th>Device</th>
<th>Enter at DEVICE> Prompt</th>
<th>Device</th>
<th>Enter at DEVICE> Prompt</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXA16</td>
<td>DHV11</td>
<td>DZV11</td>
<td>DZ11</td>
</tr>
<tr>
<td>CXY08</td>
<td>DHV11</td>
<td>IEQ11</td>
<td>IEQ11</td>
</tr>
<tr>
<td>DEQNA</td>
<td>QNA</td>
<td>KDA50</td>
<td>UDA</td>
</tr>
<tr>
<td>DHV11</td>
<td>DHV11</td>
<td>LPV11</td>
<td>LP11</td>
</tr>
<tr>
<td>DLVJ1</td>
<td>DJ11</td>
<td>RC25</td>
<td>UDA</td>
</tr>
<tr>
<td>DMV11–M</td>
<td>DMV11</td>
<td>RQDX2</td>
<td>UDA</td>
</tr>
<tr>
<td>DMV11–N</td>
<td>DMV11</td>
<td>RQDX3</td>
<td>UDA</td>
</tr>
<tr>
<td>DPV11</td>
<td>DPV11</td>
<td>RRD50</td>
<td>VDA</td>
</tr>
<tr>
<td>DRV11–WA</td>
<td>DR11W</td>
<td>TQK50</td>
<td>TU81</td>
</tr>
<tr>
<td>DZQ11</td>
<td>DZ11</td>
<td>TSV05</td>
<td>TS11</td>
</tr>
</tbody>
</table>

The CONFIG program uses a standard Q22-bus algorithm to determine the correct CSR address and interrupt vector for a module. You must use this program so that the operating system (MicroVMS or VMS) and MDM diagnostics can recognize the CSR addresses and interrupt vectors. You can also use these settings in ULTRIX–32m and VAXELN systems.

To use the SYSGEN utility, type the following at the system command prompt:

$ MCR SYSGEN

Press [Return]. The utility responds with the prompt

SYSGEN>

At this prompt, type

CONFIGURE

Press [Return]. The utility responds with the prompt

DEVICE>

At this point, enter the abbreviation for each device you are going to use in the system. Table 1 lists the abbreviations.
Enter one abbreviation per line, then press [Return]. The DEVICE> prompt will prompt for you for another entry. If you are installing more than one unit of a particular device, enter a comma and the number of devices after the abbreviation. For example, DHV11, 2 indicates two DHV11 modules.

After you have entered all devices, type [Ctrl/Z]. The program displays the following information for each device you entered:

- CSR address and vector
- The name assigned to the device by the operating system
- The operating system support status (yes or no)

The program uses an asterisk (*) to indicate a floating address or vector. To exit from the SYSGEN utility, type EXIT at the SYSGEN> prompt and press [Return].

Example 1 shows a sample SYSGEN utility display.

Example 1: Sample Output Using the CONFIGURE Command

```
$MCR \SYSGEN
SYSGEN> CONFIGURE
DEVICE> DHV11, 2
DEVICE> DMV11
DEVICE> QNA
DEVICE> UDA, 2
DEVICE> TU81
DEVICE> CTRL/Z
Device: UDA Name: PUA CSR: 772150 Vector: 154 Support: yes
Device: TU81 Name: PTA CSR: 774500 Vector: 260 Support: yes
Device: QNA Name: XQA CSR: 774440 Vector: 120 Support: yes
Device: DMV11 Name: XDA CSR: 760320* Vector: 300* Support: yes
Device: UDA Name: PUB CSR: 760354* Vector: 310* Support: yes
Device: DHV11 Name: TXA CSR: 760500* Vector: 320* Support: yes
```

Finding CSR Addresses and Interrupt Vectors Manually

If the CONFIG program in the SYSGEN utility is not available, you can determine some CSR addresses and interrupt vectors using Table 2. This table lists some common option modules with their standard CSR address and interrupt vector settings. Go to column 4. Put a check mark next to each module in the system. An F in the table indicates a floating CSR address or interrupt vector. The next two sections describe how to determine floating CSR addresses and interrupt vectors. If you use more units of a device than are listed in the table, those units have floating CSR addresses and interrupt vectors unless otherwise specified.
<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Unit Number</th>
<th>Check (^1)</th>
<th>Vector</th>
<th>CSR Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV11-D</td>
<td>A1009</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17776420</td>
</tr>
<tr>
<td>ADV11-D</td>
<td>A1008</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17776410</td>
</tr>
<tr>
<td>DEQNA</td>
<td>M7504</td>
<td>1</td>
<td>[]</td>
<td>120</td>
<td>17774440</td>
</tr>
<tr>
<td>DHV11</td>
<td>M3104</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>DLVJ1</td>
<td>M8043</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17776500</td>
</tr>
<tr>
<td>DLVJ1</td>
<td>M8043</td>
<td>2</td>
<td>[]</td>
<td>F</td>
<td>17776510</td>
</tr>
<tr>
<td>DMV11</td>
<td>M8053</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>DMV11-CP</td>
<td>M8064</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>DPV11</td>
<td>M8020</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>DRV11-JP</td>
<td>M8049</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17764120</td>
</tr>
<tr>
<td>DRV11-JP</td>
<td>M8049</td>
<td>2</td>
<td>[]</td>
<td>F</td>
<td>17764100</td>
</tr>
<tr>
<td>DRV11-JP</td>
<td>M8049</td>
<td>3</td>
<td>[]</td>
<td>F</td>
<td>17764060</td>
</tr>
<tr>
<td>DRV11-WA</td>
<td>M7651</td>
<td>1</td>
<td>[]</td>
<td>124</td>
<td>17772410</td>
</tr>
<tr>
<td>DRV11-WA</td>
<td>M7651</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17772430</td>
</tr>
<tr>
<td>DZQ11</td>
<td>M3106</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>DZV11</td>
<td>M7957</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>IEQ11</td>
<td>M8634</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17764100</td>
</tr>
<tr>
<td>KA630</td>
<td>M7606</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>KDA50</td>
<td>M7164</td>
<td>1</td>
<td>[]</td>
<td>154</td>
<td>17772150</td>
</tr>
<tr>
<td>KMV11</td>
<td>M7500</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>KWV11-C</td>
<td>M4002</td>
<td>1</td>
<td>[]</td>
<td>F</td>
<td>17770420</td>
</tr>
<tr>
<td>LPV11</td>
<td>M8027</td>
<td>1</td>
<td>[]</td>
<td>200</td>
<td>17777514</td>
</tr>
<tr>
<td>MRV11-D</td>
<td>M8578</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>MS630-A</td>
<td>M760x</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>RC25</td>
<td>M7740</td>
<td>1</td>
<td>[]</td>
<td>154</td>
<td>17772150</td>
</tr>
<tr>
<td>RLV12</td>
<td>M8061</td>
<td>1</td>
<td>[]</td>
<td>160</td>
<td>17774400</td>
</tr>
<tr>
<td>RQDX2</td>
<td>M8639</td>
<td>1</td>
<td>[]</td>
<td>154</td>
<td>17772150</td>
</tr>
<tr>
<td>RQDX3</td>
<td>M7555</td>
<td>1</td>
<td>[]</td>
<td>154</td>
<td>17772150</td>
</tr>
<tr>
<td>TQK50</td>
<td>M7546</td>
<td>1</td>
<td>[]</td>
<td>260</td>
<td>17774500</td>
</tr>
</tbody>
</table>

\(^1\)The DLVJ1 vector can be set only at 300, 340, 400, 440, and so on. If the first available vector is 310 (or 320, 330), you should set the DLVJ1 to 340 and the next device to 400.
Floating Interrupt Vectors

Floating interrupt vectors start at 300_{16} and continue in increments of 10_{16}, with one exception. The device following a DLVJ1 uses an increment of 40_{16}. You assign floating interrupt vectors in the following order:

DLVJ1 (Increment of 40_{16} to next device)
DRV11
DZV11, DZQ11
DPV11
DMV11
Second MSCP (The first is fixed at 154_{16}.)
Second TQK50 (The first is fixed at 260_{16}.)
IEQ11
DHV11

Examples: The following examples show the floating interrupt vectors for two sample configurations:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLVJ1</td>
<td>DZQ11</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>DZV11</td>
<td>Second MSCP</td>
</tr>
<tr>
<td></td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>310</td>
</tr>
<tr>
<td>DMV11</td>
<td>DHV11</td>
</tr>
<tr>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>320</td>
</tr>
<tr>
<td>Second MSCP</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DHV11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>370</td>
</tr>
</tbody>
</table>

The CXA16 and CXY08 communications devices for the BA200-series enclosure also have floating interrupt vectors. You should assign the first floating interrupt vector in the BA213 to the CXA16.
Floating CSR Addresses

Table 3 lists floating CSR addresses for many possible system configurations. To find the configuration you want, find a column that includes all the devices in your system that need floating addresses.

Columns 1 through 9 are for systems without a KMV11 module. Columns 10 through 18 are for systems with a KMV11. A KMV11 changes the settings for the DHV11 modules below it in the column.

NOTE: The CXY08 and CXA16 communications devices for the BA213 enclosure use the same floating CSR addresses as the DHV11.

Table 3 lists devices in the correct order for assigning floating CSR addresses. If you add or remove a device with a floating CSR address, you often have to recalculate the floating CSR addresses of devices below it in the list.

However, a CSR address with an asterisk (*) in the table does not affect the other addresses in the column. For example, you could use column 1 for a system with one DHV11 module and one or two TK50 tape drives. Adding or removing a second TK50 tape drive from this system does not change the address of the DHV11.

An address without an asterisk does affect the addresses below it in the same column. For example, suppose you use column 1 to configure a system with two DHV11s. If you add a second MSCP device to this system later, you must change the CSR addresses of the DHV11s. Column 2 lists the correct CSR addresses for the new configuration.

Examples: The following examples show the correct floating CSR addresses for two sample configurations. You can find these addresses in Table 3.

Example 1
1 DZQ11: 17760100
1 DPV11: 17760310
1 DHV11: 17760500

From column 5.

Example 2
1 DPV11: 17760270
2nd MSCP: 17760354
1 KMV11: 17760460
1 DHV11: 17760520

From column 12.
Table 3: Floating CSR Addresses: Sample Configurations

<table>
<thead>
<tr>
<th>Device</th>
<th>Substitute the numbers below for the nnn in 17760nnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZV/Q 1</td>
<td>100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td>
</tr>
<tr>
<td>DZV/Q 2</td>
<td>110* 110* 110 110* 110 110* 110 110* 110* 110* 110* 110*</td>
</tr>
<tr>
<td>DZV/Q 3</td>
<td>120* 120 120</td>
</tr>
<tr>
<td>DPV11</td>
<td>270* 270* 270* 310* 330* 310* 330* 310*</td>
</tr>
<tr>
<td>DMV11</td>
<td>320* 340 360 340</td>
</tr>
<tr>
<td>2nd MSCP</td>
<td>334 354* 354* 374 374 414*</td>
</tr>
<tr>
<td>2nd TQK</td>
<td>404* 444* 444* 444* 504* 504* 504 444*</td>
</tr>
<tr>
<td>DHV11 1</td>
<td>440 500 500 500 540 540 540 540 540 540 540 540 540 540 540 540</td>
</tr>
<tr>
<td>DHV11 2</td>
<td>460 520 520 520 520 520 520 520 520 520 520 520 520 520 520 520</td>
</tr>
<tr>
<td>DHV11 3</td>
<td>500 540 540 540 540 540 540 540 540 540 540 540 540 540 540 540</td>
</tr>
<tr>
<td>DHV11 4</td>
<td>520 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560</td>
</tr>
<tr>
<td>DHV11 5</td>
<td>540 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device</th>
<th>Substitute the numbers below for the nnn in 17760nnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZV/Q 1</td>
<td>100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td>
</tr>
<tr>
<td>DZV/Q 2</td>
<td>110* 110* 110 110* 110 110* 110 110* 110* 110* 110* 110*</td>
</tr>
<tr>
<td>DZV/Q 3</td>
<td>120* 120 120</td>
</tr>
<tr>
<td>DPV11</td>
<td>270* 270* 270* 310* 330* 310* 330* 310*</td>
</tr>
<tr>
<td>DMV11</td>
<td>320* 340 360 340</td>
</tr>
<tr>
<td>2nd MSCP</td>
<td>334 354* 354* 374 374 414*</td>
</tr>
<tr>
<td>2nd TQK</td>
<td>404* 444* 444* 444* 504* 504* 504 444*</td>
</tr>
<tr>
<td>KMV11</td>
<td>420 460 460 460 460 460 460 460 520 520 520 520 520 520 520 460</td>
</tr>
<tr>
<td>DHV11 1</td>
<td>460 520 520 520 520 520 520 520 560 560 560 560 560 560 560 560</td>
</tr>
<tr>
<td>DHV11 2</td>
<td>500 540 540 540 540 540 540 540 600 600 600 600 600 600 600 600</td>
</tr>
<tr>
<td>DHV11 3</td>
<td>520 560 560 560 560 560 560 560 620 620 620 620 620 620 620 620</td>
</tr>
<tr>
<td>DHV11 4</td>
<td>540 600 600 600 600 600 600 600 640 640 640 640 640 640 640 640</td>
</tr>
<tr>
<td>DHV11 5</td>
<td>560 620 620 620 620 620 620 620 660 660 660 660 660 660 660 660</td>
</tr>
</tbody>
</table>

ML0-000263
Module Self-Tests

Module self-tests run only when you power up the system. A module self-test can detect hard or repeatable errors, but not intermittent errors.

You can repeat module self-tests by pressing [Restart]. The module’s LEDs display pass/fail test results. You can find detailed information in the command status register (CSR) of the module’s Q22-bus interface; see the user’s guide for the module.

A self-test that passes does not guarantee that the module is good, because the test checks only the controller logic. The test does not check the module’s Q22-bus interface, line drivers and receivers, or connector pins—all of which have relatively high failure rates.

A self-test that fails is accurate, because the test does not require any other part of the system to be working.

Using a Loopback Connector

You use a loopback connector with the MicroVAX Diagnostic Monitor (MDM) utilities for troubleshooting communications problems in the system. You can install the loopback connector at different points to isolate a problem to a faulty I/O panel, internal cable, or module (Figure 1).

Start at the system’s I/O panel, to see if the problem is in the system enclosure, the external cabling, or the attached device. If the test fails, move the loopback point closer to the CPU until it passes. The faulty FRU is between the point where the test last fails and the point where it passes.

If symptoms change while you are troubleshooting, check all cable connections and start again. You may have introduced a bad connection while performing the procedure.
AAV11–D, –S Digital-to-Analog Converter

Ordering Information

<table>
<thead>
<tr>
<th>Module (A1009) for BA23 BA123, and H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (A1009–PA) for BA200-series</td>
</tr>
<tr>
<td>Cabinet kit (BA23)</td>
</tr>
<tr>
<td>Cabinet kit (BA123)</td>
</tr>
<tr>
<td>UDIP parts</td>
</tr>
<tr>
<td>AAV11–D</td>
</tr>
<tr>
<td>AAV11–SA (factory installed)</td>
</tr>
<tr>
<td>AAV11–SF (field upgrade)</td>
</tr>
<tr>
<td>CK–AAV1D–KA</td>
</tr>
<tr>
<td>CK–AAV1D–KC</td>
</tr>
<tr>
<td>See Table 2 in this section.</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>MicroVMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 4.4 and later, using VAXlab Software Library</td>
</tr>
<tr>
<td>RSX–11M</td>
</tr>
<tr>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
</tr>
<tr>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>VAXELN</td>
</tr>
<tr>
<td>Version 3.0 and later</td>
</tr>
<tr>
<td>VMS</td>
</tr>
<tr>
<td>Version 5.0 and later, using VAXlab Software Library</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>MicroVAX Diagnostic Monitor XXDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.08 (release 108) and later</td>
</tr>
<tr>
<td>Version 2.1 (release 134) and later: VAAAA1.BIC, VADAC0.BIC, XAACB0.OBJ.</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
</tr>
<tr>
<td>See module documentation.</td>
</tr>
</tbody>
</table>
The AAV11-D, -S is a digital-to-analog converter (DAC) with direct memory access (DMA) capability. The AAV11-D is shown in Figure 1.

The AAV11-D is a dual-height module, with full 22-bit addressing and four interrupt levels controlled by jumpers. Outputs include two analog DAC outputs, a digital two-pulse valid data indicator, and four independent digital TTL control lines.

The AAV11 provides two possible throughput levels:

One channel 200 kHz maximum
Two channels 300 kHz
Figure 1: AAV11–D Module Layout (A1009)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Use jumpers W18 through W33 to set the CSR address and interrupt vector for the AAV11. The CSR address is fixed for the first AAV11. All interrupt vectors float. The following tables list the factory configuration for the CSR address and interrupt vector:

AAV11–D, –S CSR Address: 17776420 (factory position)
Jumpers W18 through W27

<table>
<thead>
<tr>
<th>Address Bits: A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
</table>

CSR Address:

| 17776420 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |

1 = installed, 0 = removed
AAV11-A1009

AAV11-D, -S Interrupt Vector: 330 (factory position)
Jumpers W28 through W33

Vector Bits: V8 V7 V6 V5 V4 V3
Jumpers: W28 W29 W30 W31 W32 W33

Vector Address:

<table>
<thead>
<tr>
<th>Address</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>0 1 1 0 1 1</td>
</tr>
<tr>
<td>300</td>
<td>0 1 1 0 0 0</td>
</tr>
</tbody>
</table>

1 = installed, 0 = removed.

The interrupt priority levels for the AAV11 are as follows:

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>W15</th>
<th>W16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>Out</td>
<td>In (factory)</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>Out</td>
</tr>
</tbody>
</table>

AAV11-D, -S User-Selectable Jumper Features

The AAV11-D, -S has a variety of user-selectable features, which are controlled by jumpers. These features set parameters for specific applications. The customer should select the features.

Table 1 lists the user-selectable features and the factory configuration. To change any of the features, refer to the module documentation.

Table 1: AAV11-D, -S User-Selectable Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Factory Configuration</th>
<th>Jumpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Mode DMA</td>
<td>Enabled</td>
<td>W10</td>
</tr>
<tr>
<td>DMA Wrap Mode</td>
<td>Enabled</td>
<td>W17</td>
</tr>
<tr>
<td>Digital/analog ground</td>
<td>Not connected</td>
<td>W7</td>
</tr>
<tr>
<td>X-DAC output range</td>
<td>+/-10 Volts</td>
<td>W1, W2, W3</td>
</tr>
<tr>
<td>Y-DAC output range</td>
<td>+/-10 Volts</td>
<td>W4, W5, W6</td>
</tr>
<tr>
<td>X-DAC data coding</td>
<td>Two's complement</td>
<td>W34, W35</td>
</tr>
<tr>
<td>Y-DAC data coding</td>
<td>Two's complement</td>
<td>W36, W37</td>
</tr>
<tr>
<td>Z-pulse width</td>
<td>3.5 microseconds</td>
<td>W8, W9</td>
</tr>
<tr>
<td>Z-pulse delay</td>
<td>350 nanoseconds</td>
<td>W11, W12</td>
</tr>
<tr>
<td>Z-pulse polarity</td>
<td>3.5 microseconds</td>
<td>W13, W14</td>
</tr>
</tbody>
</table>

4 Microsystems Options
To facilitate connections to the AAV11−D, −S, you can use a universal data interface panel (UDIP). This panel provides BNC cable connectors and push-tab barrier strips for making cabling connections. The panel, like other universal data interface panels, is installed in a UDIP−BA mounting box. Up to three panels can be installed in a mounting box. The mounting box/panel assembly can then be installed in any standard media mounting slot normally used for TK50, RX50, or RD50-series media devices. The mounting box can also be mounted in a tabletop (UDIP−TA) expansion box for use as an external connection box.

Table 2 lists the UDIP components required for each type of configuration.

<table>
<thead>
<tr>
<th>Module</th>
<th>Enclosure</th>
<th>Front Panel</th>
<th>Mounting Box</th>
<th>Tabletop Box</th>
<th>Other Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAV11−S</td>
<td>BA200-series</td>
<td>UDIP−DB</td>
<td>UDIP−BA</td>
<td>UDIP−TA</td>
<td>None</td>
</tr>
<tr>
<td>AAV11−D</td>
<td>BA123 media slot</td>
<td>UDIP−DA</td>
<td>UDIP−BA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AAV11−D</td>
<td>BA123 with tabletop</td>
<td>UDIP−DB</td>
<td>UDIP−BA</td>
<td>UDIP−TA</td>
<td>CK−ADV1D−KC</td>
</tr>
<tr>
<td>AAV11−D</td>
<td>BA23 with tabletop</td>
<td>UDIP−DB</td>
<td>UDIP−BA</td>
<td>UDIP−TA</td>
<td>CK−ADV1D−KA</td>
</tr>
</tbody>
</table>
ADQ32–A, –S Analog-to-Digital Converter

Ordering Information

Module (A030) for BA23, BA123, and H9642–J	ADQ32–A
Module (A030-PA) for BA200-series	ADQ32–SA (factory installed)
Cabinet kit (BA23)	CK–ADQ32–KA
Cabinet kit (BA123)	CK–ADQ32–KB
Cabinet kit (BA23 expansion box)	CK–ADQ32–KF
UDIP parts	See Table 2 of this section.

Operating System Support

| VMS | Version 5.0 and later, using VAXlab Software Library |
| MicroVMS | Version 4.5 and later, using VAXlab Software Library |

Diagnostic Support

MicroVAX Diagnostic Monitor	Version 2.10 (release 120) and later
XXDP	Version 2.1 (release 134): CZADQA0, CZADRA0, CZADSA0, CXADQA0.
Power-up self-test LEDs	See module documentation.
The ADQ32 is an analog-to-digital converter with direct memory access (DMA). The ADQ32–A is shown in Figure 1.

The ADQ32 is a quad-height module with full 22-bit addressing, and offers the following features:

- 200 kHz throughput
- DMA data transfer
- Four interrupt levels
- Thirty-two single-ended or 16 differential input channels
- Random channel sampling
- On-board clock with variety of clocking modes
- Selectable clock source (initial or external)
Figure 1: ADQ32–A Module Layout (A030)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Use DIP switchpacks 0 and 1 to set the CSR address and interrupt vector for the ADQ32. The CSR address and interrupt vectors float.
On switchpack 1, use switch 08 to set extended block mode. Extended block mode increases DMA data transfer efficiency. It cannot be used in MicroPDP-11 systems. Setting switch 08 to the ON position selects the extended block mode. Use switches 09 and 10, also in switchpack 1, to configure the interrupt priority level. The following tables list the factory configuration for the CSR address and interrupt vector:

ADQ32 CSR Address: 17761140 (factory position)

Switchpack 0

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>CSR Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17761140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17761200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 = switch on, 0 = switch off.
* Switch 10 is not used.

ADQ32 Interrupt Vector: 300 (factory position)

Switchpack 1

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V9</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Vector Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>310</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

0 = switch on, 1 = switch off.

The interrupt priority levels for the ADQ32 are as follows:

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ADQ32 Analog Input Range

The ADQ32 has two selections for analog input ranges. Unipolar signals in the range of 0 to 10 volts can be converted. Bipolar signals in the range of –10 to +10 volts can also be converted. Although the bipolar range setting includes the range covered for unipolar signals, if your signal is unipolar, you will obtain greater resolution using the unipolar setting. Jumpers on the board allow you to select the range.

Two's complement data coding is used for the bipolar input range. When you select the unipolar input range, straight binary coding is used.

Jumpers W1 through W8 on the board control the selection of the analog range. To select the bipolar input range, install jumpers W1, W3, W5, and W7. Install jumpers S2, W4, W6, and W8 to select the unipolar input range. In the bipolar setting, all of the jumpers are installed on the lower portion (closer to the bus fingers) of the jumper fields. These settings are summarized in Table 1.

<table>
<thead>
<tr>
<th>Jumpers</th>
<th>Bipolar</th>
<th>Unipolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1, W3, W5, W7</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>W2, W4, W6, W8</td>
<td>Out</td>
<td>In</td>
</tr>
</tbody>
</table>

The factory configuration is for bipolar analog input.

ADQ32 Q/CD Jumpers

Because the ADQ32 is a quad-height board, in some situations the only slots available for installation are Q/CD slots. Q/CD slots, also called Q-over-CD slots, are slots where the upper backplane slots are Q-bus slots but the bottom slots are C/D slots, which are intended for devices that are not Q-bus devices, such as system memory. When the ADQ32 is installed in a Q/CD backplane slot, jumpers R58 and R59 should be removed. Figure 1, earlier in this section, shows the location of jumpers R58 and R59.

When the ADQ32 is factory installed in a system, the factory removes jumpers R58 and R59, if necessary.
To facilitate connections to the ADQ32, you can use a universal data interface panel (UDIP). This panel provides easily removable input strips for making bare lead connections. The panel, like other universal data interface panels, is installed in a UDIP-BA mounting box. The mounting box/panel assembly can then be installed in any standard media mounting slot normally used for TK50, RX50, or RD50-series media devices. The mounting box can also be mounted in a tabletop (UDIP-TA) expansion box for use as an external connection box.

Table 2 lists the UDIP components required for each type of configuration.

Table 2: ADQ32 UDIP Components

<table>
<thead>
<tr>
<th>Module</th>
<th>Enclosure</th>
<th>Front Panel</th>
<th>Mounting Box</th>
<th>Tabletop Box</th>
<th>Other Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADQ32-S BA200 Series</td>
<td>UDIP-DD</td>
<td>UDIP-BA</td>
<td>UDIP-TA</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>ADQ32-A BA123</td>
<td>UDIP-DD</td>
<td>UDIP-BA</td>
<td>UDIP-TA</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UDIP-DD</td>
<td>UDIP-BA</td>
<td>CK-ADQ32-KA</td>
<td>CK-ADQ32-KA</td>
<td></td>
</tr>
</tbody>
</table>
ADV11–D, –S Analog-to-Digital Converter

Ordering Information

<table>
<thead>
<tr>
<th>Module (A1008) for BA23, BA123, and H9642–J</th>
<th>ADV11–D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (A1008–PA) for BA200-series</td>
<td>ADV11–SA (factory installed)</td>
</tr>
<tr>
<td>Cabinet kit (BA23)</td>
<td>ADV11–SF (field upgrade)</td>
</tr>
<tr>
<td>Cabinet kit (BA123)</td>
<td>CK–ADV1D–KA</td>
</tr>
<tr>
<td>UDIP parts</td>
<td>CK–ADV1D–KC</td>
</tr>
<tr>
<td></td>
<td>See Table 2 of this section.</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVMS</td>
<td>Version 4.2 and later, using VAXlab Software Library</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 3.0 and later</td>
</tr>
<tr>
<td>VMS</td>
<td>Version 5.0 and later, using VAXlab Software Library</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>Support Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 1.08 (release 108) and later</td>
</tr>
<tr>
<td>XXDP</td>
<td>Version 2.1 (release 134) and later: VADAC0.BIC, XADCBO.OBJ.</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>See module documentation.</td>
</tr>
</tbody>
</table>
The ADV11-D, -S is an analog-to-digital converter with direct memory access (DMA). The ADV11-D is shown in Figure 1.

The ADV11 is a dual-height module with full 22-bit addressing, and offers the following features:

- Four interrupt levels
- Sixteen single-ended or eight differential input channels
- Selectable clock source (initial or external)
- Programmed I/O or DMA operating modes (with maximum throughput of 50 kHz)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Use jumpers W7 through W22 to set the CSR address and interrupt vector for the ADV11. The CSR address is fixed for the first ADV11. All interrupt vectors float. The following tables list the factory configuration for the CSR address and interrupt vector:

ADV11-D CSR Address: 17776410 (factory position)
Jumpers W13 through W22

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumpers</td>
<td>W13</td>
<td>W14</td>
<td>W15</td>
<td>W16</td>
<td>W17</td>
<td>W18</td>
<td>W19</td>
<td>W20</td>
<td>W21</td>
<td>W22</td>
</tr>
</tbody>
</table>

| CSR Address: | 17776410 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

1 = installed, 0 = removed
ADV11-D Interrupt Vector: 320 (factory position)
Jumpers W7 through W12

Vector Bits: V8 V7 V6 V5 V4 V3
Jumpers: W12 W11 W10 W9 W8 W7

Vector Address:
320 0 1 1 0 1 0
300 0 1 1 0 0 0

1 = installed, 0 = removed

The interrupt priority levels for the ADV11 are as follows:

<table>
<thead>
<tr>
<th>Priority Level</th>
<th>W15</th>
<th>W16</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In</td>
<td>In</td>
</tr>
<tr>
<td>5</td>
<td>Out</td>
<td>In (factory)</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>Out</td>
</tr>
</tbody>
</table>

ADV11-D, -S User-Selectable Jumper Features

The ADV11-D, -S has a variety of user-selectable features, which are controlled by jumpers. These features set parameters for specific applications. The customer should select the parameters.

Table 1 lists the user-selectable jumper features and the factory configuration. To change any of these features, refer to the module documentation.

Table 1: ADV11-D, -S User Selectable Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Factory Configuration</th>
<th>Jumpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Mode DMA</td>
<td>Enabled</td>
<td>W3</td>
</tr>
<tr>
<td>DMA Wrap Mode</td>
<td>Enabled</td>
<td>W6</td>
</tr>
<tr>
<td>Input range</td>
<td>+/- 10 Volts</td>
<td>W27, W28, W30</td>
</tr>
<tr>
<td>Input mode</td>
<td>Single ended</td>
<td>W24, W25, W26, W34</td>
</tr>
<tr>
<td>Output coding</td>
<td>Two's complement</td>
<td>W39, W40</td>
</tr>
<tr>
<td>Sign Extension</td>
<td>Enabled</td>
<td>W37, W38</td>
</tr>
</tbody>
</table>
To facilitate connections to the ADV11–D, –S, you can use a universal data interface panel (UDIP). This panel provides BNC cable connectors and push-tab barrier strips for making cabling connections. The panel, like other universal data interface panels, is installed in a UDIP–BA mounting box. Up to three panels can be installed in a mounting box. The mounting box/panel assembly can then be installed in any standard media mounting slot normally used for TK50, RX50, or RD50-series media devices. The mounting box can also be mounted in a tabletop (UDIP–TA) expansion box for use as an external connection box.

Table 2 lists the EDIP components required for each type of configuration.

<table>
<thead>
<tr>
<th>Module</th>
<th>Enclosure</th>
<th>Front Panel</th>
<th>Mounting Box</th>
<th>Tabletop Box</th>
<th>Other Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV11–S</td>
<td>BA200 Series</td>
<td>UDIP–AB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>None</td>
</tr>
<tr>
<td>ADV11–D</td>
<td>BA123 media slot</td>
<td>UDIP–AA</td>
<td>UDIP–BA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>ADV11–D</td>
<td>BA123 with tabletop</td>
<td>UDIP–AB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–ADV1D–KC</td>
</tr>
<tr>
<td>ADV11–D</td>
<td>BA23 with tabletop</td>
<td>UDIP–AB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–ADV1D–KA</td>
</tr>
</tbody>
</table>
AXV11-C, –S Analog I/O Module

Ordering Information

Module (A0026) for BA23, BA123, and H9642–J
Module (A0026–PA) for BA200-series
Cabinet kit (BA23)
Cabinet kit (BA123)
UDIP parts

AXV11–D
AXV11–SA (factory installed)
AXV11–SF (field upgrade)
CK–AXV1C–KA
CK–AXV1C–KC
See Table 2 of this section.

Operating System Support

VMS
MicroVMS
VAXELN

Version 5.0 and later, using VAXlab Software Library
Version 4.4 and later, using VAXlab Software Library
Version 3.0 and later

Diagnostic Support

MicroVAX Diagnostic Monitor
XXDP V2.1
Power-up self-test LEDs

Version 1.10 (release 110) and later CVAXA, VAXAB0.BIC
See module documentation.

Documentation

AXV11–C/KWV11–C User’s Guide
Universal Data Interface Panel Reference Card

EK–AXVAB–UG
EK–UDIPD–RC

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+5 V</td>
<td>+12 V</td>
<td>Watts</td>
<td>AC</td>
</tr>
<tr>
<td>ADX11–D</td>
<td>A0026</td>
<td>2.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0.3</td>
</tr>
<tr>
<td>ADX11–S</td>
<td>A0026–PA</td>
<td>2.0</td>
<td>0.0</td>
<td>10.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NOTE: For full use of diagnostic CVAXA, an analog test fixture (30–18692) is required.
The AXV11 is an analog input/output module. The AXV11–C module layout is shown in Figure 1.

For analog input (A/D conversion), the module contains 16 single-ended or 8 differential input, either unipolar or bipolar. Programmable gain for 1, 2, 4, or 8 can be applied to the input signal. For analog output (D/A conversion), the module provides two 12-bit DACs with unipolar or bipolar output.

Figure 1: AXV11–C Module Layout (A0026)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.
Use jumpers A3 through A12 to set the CSR address and jumpers V3 through V8 to set the interrupt vector for the AXV11. The CSR address is fixed for the first AXV11, and floats for secondary units. The first interrupt vector address is fixed (at \(140_8\); the factory configuration is for \(400_8\).) Vectors for all secondary units float. The following tables list the factory configuration for the CSR address and interrupt vector:

AXV11-C, -S CSR Address: 17770400 (factory position)

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>CSR Address:</th>
<th>1 0 0 0 0 1 0 0 0 0 0</th>
</tr>
</thead>
</table>

1 = installed, 0 = removed

AXV11-C, -S Interrupt Vector: 400 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumpers:</td>
<td>V8</td>
<td>V7</td>
<td>V6</td>
<td>V5</td>
<td>V4</td>
<td>V3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector Address:</th>
<th>140</th>
<th>400</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 1 1 0 0 0</td>
<td>1 0 0 0 0 0 0</td>
<td>0 1 1 0 0 0 0</td>
</tr>
</tbody>
</table>

1 = installed, 0 = removed

AXV11-C, -S User Selectable Jumper Features

The AXV11-C, -S has a variety of user-selectable features, which are controlled by jumpers. These features set parameters for specific applications. The customer should select the features.
Table 1 lists the user-selectable jumper features and the factory configuration. To change any of these features, refer to the module documentation.

Table 1: AXV11–C, –S User-Selectable Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Factory Configuration</th>
<th>Jumpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC A data notation</td>
<td>Offset binary</td>
<td>3A and 5A</td>
</tr>
<tr>
<td>DAC B data notation</td>
<td>Offset binary</td>
<td>1B and 5B</td>
</tr>
<tr>
<td>DAC A output range</td>
<td>+/- 10 volts</td>
<td>D1, D3</td>
</tr>
<tr>
<td>DAC B output range</td>
<td>+/- 10 volts</td>
<td>D1, D3</td>
</tr>
<tr>
<td>ADC data notation</td>
<td>Offset binary</td>
<td>1D, 4D, 5D, 6D, 5E, 6E</td>
</tr>
<tr>
<td>Analog input mode</td>
<td>Single ended</td>
<td>P1, P2, P8, P9</td>
</tr>
<tr>
<td>External trigger source</td>
<td>External trigger</td>
<td>F1, F2</td>
</tr>
</tbody>
</table>

To facilitate connections to the AXV11–C or AXV11–S, you can use a universal data interface panel (UDIP). This panel provides BNC cable connectors and push-tab barrier strips for making cabling connections. The panel, like other universal data interface panels, is installed in a UDIP–BA mounting box. Up to three panels can be installed in a mounting box. The mounting box/panel assembly can then be installed in any standard media mounting slot normally used for TK50, RX50, or RD50-series media devices. The mounting box can also be mounted in a tabletop (UDIP–TA) expansion box for use as an external connection box.

Table 2 lists the UDIP components required for each type of configuration.

Table 2: AXV11–C, –S UDIP Components

<table>
<thead>
<tr>
<th>Module</th>
<th>Enclosure</th>
<th>Front Panel</th>
<th>Mounting Box</th>
<th>Tabletop Box</th>
<th>Other Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXV11–S</td>
<td>BA200 Series</td>
<td>UDIP–AY</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>None</td>
</tr>
<tr>
<td>AXV11–C</td>
<td>BA123</td>
<td>UDIP–AX</td>
<td>UDIP–BA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>media slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXV11–C</td>
<td>BA123 with tabletop</td>
<td>UDIP–AY</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–AXV1C–KC</td>
</tr>
<tr>
<td>AXV11–C</td>
<td>BA23 with tabletop</td>
<td>UDIP–AY</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–AXV1C–KA</td>
</tr>
</tbody>
</table>

4 Microsystems Options
CXA16/CXB16 16-Line Asynchronous Multiplexer

The CXA16/CXB16 is an option for BA200-series enclosures only.

Ordering Information

<table>
<thead>
<tr>
<th>Module (M3118–YA)</th>
<th>CXA16–AA (factory installed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CXA16–AF (field upgrade)</td>
</tr>
<tr>
<td>Module (M3118–YB)</td>
<td>CXB16–AA (factory installed)</td>
</tr>
<tr>
<td></td>
<td>CXB16–AF (field upgrade)</td>
</tr>
<tr>
<td>25-pin passive adapter</td>
<td>H8571–A</td>
</tr>
<tr>
<td>9-pin passive adapter</td>
<td>H8571–B</td>
</tr>
<tr>
<td>Active adapter</td>
<td>H3105</td>
</tr>
<tr>
<td>Loopback connectors (external)</td>
<td>12–25146–01 (H3101)</td>
</tr>
<tr>
<td></td>
<td>12–25083–01 (H3103)</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Micro/RSX</th>
<th>Version 4.0 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX–32</td>
<td>Version 2.2</td>
</tr>
<tr>
<td>VMS</td>
<td>Version 4.6a and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>MicroVAX Diagnostic Monitor</th>
<th>Version 2.10 (release 120) and later</th>
</tr>
</thead>
</table>
The CXA16/CXB16 asynchronous multiplexer performs data concentration, terminal interfacing, and cluster controlling. The CXA16/CXB16 is shown in Figure 1.

The CXA16/CXB16 is a quad-height module (Figure 1) that provides 16 full-duplex, asynchronous data-only channels. The CXA16/CXB16 is compatible with RS423–A and DEC423 interface standards. In addition, the CXB16 is compatible with the RS422–A interface standard.
Figure 1: CXA16/CXB16 Module (M3118-YA/-YB)
All lines have transient surge suppressors for protection against electrical overstress (EOS) and electrostatic discharge (ESD). You can program each channel separately for split transmit and receive speeds. There are 16 available baud rates:

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>Available Baud Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1800</td>
</tr>
<tr>
<td>75</td>
<td>2000</td>
</tr>
<tr>
<td>110</td>
<td>2400</td>
</tr>
<tr>
<td>134.5</td>
<td>4800</td>
</tr>
<tr>
<td>150</td>
<td>7200</td>
</tr>
<tr>
<td>300</td>
<td>9600</td>
</tr>
<tr>
<td>600</td>
<td>19,200</td>
</tr>
<tr>
<td>1200</td>
<td>38,400</td>
</tr>
</tbody>
</table>

The CXA16/CXB16 provides two throughput rates, based on the character format:

- 122,880 characters per second, at seven bits per character, with one start bit, one parity bit, and one stop bit
- 175,542 characters per second, at five bits per character, with one start bit, no parity bit, and one stop bit

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Set the CSR address and interrupt vector for the CXA16/CXB16 by using DIP switches on the module (Figure 2). The CXA16/CXB16 uses a floating CSR address and interrupt vector.
Figure 2: CXA16/CXB16 Module Layout
The CXA16/CXB16 factory positions are as follows:

CXA16/CXB16 CSR Address: 17760440 (factory position)
Switchpack E34

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E34 Switches:</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address
17760440:
0 0 0 0 1 0 0 1 0

1 = closed, 0 = open

CXA16/CXB16 Interrupt Vector: 300 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E26 Switches:</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Vector Address 300:
0 1 1 0 0 0 0

1 = closed, 0 = open

Switch E34–1 selects DHV11 or DHU11 programming mode. Select the mode appropriate to the device driver in the system. Generally, DHU11 mode gives better performance because it does not require as much CPU time. To select DHU11 mode, set switch E34–1 to 1 (closed).

For correct operation, make sure switch E27–1 is closed (1) and switch E27–2 is open (0). Closing switch E27–1 selects the onboard 14.7458-MHz oscillator. Closing switch E27–2 selects the external loopback indicator for the self-test, in both DHU and DHV modes.

Both the CXA16–AA and –AF, and CXB16–AA and –AF include a 70-24314–01 cabinet kit with the following parts:

- Two 7.6 m (25 ft) BC16D–25 cables
- Two H3104 cable concentrators
- Cable extender (null modem cable with modified modular jacks)

Both the H8571–A and H8571–B convert a D-connector to a modified modular jack. This conversion is required for connecting terminals and printers to office cables terminated with modified modular plugs. The H3105 converts EIA–232–D signals to DEC423 signals.
CXY08 8-Line Asynchronous Multiplexer

The CXY08 module is an option for BA200-series enclosures only.

Ordering Information

<table>
<thead>
<tr>
<th>Module (M3119–YA)</th>
<th>CXY08–AA (factory installed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback connectors (external)</td>
<td>CXY08–AF (field upgrade)</td>
</tr>
<tr>
<td></td>
<td>H3046</td>
</tr>
<tr>
<td></td>
<td>H3197 (12–15336–07)</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Micro/RSX</th>
<th>Version 4.0 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX–32</td>
<td>Version 2.2</td>
</tr>
<tr>
<td>VMS</td>
<td>Version 4.6.a and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

| MicroVAX Diagnostic Monitor | Version 2.10 (release 120) and later |
DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXY08-M</td>
<td>M3119-YA</td>
<td>1.8 0.3</td>
<td>12.6</td>
<td>3.2 0.5</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE: Both the CXY08-AA and -AF include a 70-24314-01 external cable.

The CXY08 asynchronous multiplexer performs data concentration, real-time processing, and interactive terminal handling. The CXY08 is a quad-height module with a BA200-series handle (Figure 1). The CXY08 option also includes two cable assemblies. The module provides eight full-duplex serial data channels. Each cable assembly has a 4-channel distributor.

All eight channels allow autoanswer dial-up operation over the public-switched telephone network. You can use AT&T 103, 113, and 212 modems, or the equivalent.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

Select the CSR address and interrupt vector for the CXY08 by using DIP switches on the module (Figure 2). The CXY08 uses a floating CSR address and interrupt vector.
Figure 1: CXY08 Module (M3119–YA)
The CX08 factory positions are as follows:

CX08 CSR Address: 17760440 (factory position)

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E36 Switches</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address 17760440:

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

1 = closed, 0 = open

CX08 Interrupt Vector: 300 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E28 Switches</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Vector Address 300:

\[
\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

1 = closed, 0 = open

Switch E36-1 selects DHV11 or DHU11 programming mode. Select the mode appropriate to the device driver in the system. Generally, DHU11 mode gives better performance because it does not require as much CPU time. To select DHU11 mode, set the switch to 1 (closed).

Switch E28-1 should be set to 1 (closed), and switch E28-2 should be set to 0 (open); these switches are used during manufacturing.
DELQA Ethernet Interface

Ordering Information

| Module (M7516) for BA23, BA123, and H9642–J | DELQA–M |
| Module (M7516–PA) | DELQA–SA (factory installed) DELQA–SF (field upgrade) |

DELQA cabinet kit	BA23	BA123	H9642–J
30-cm (12-in) cable/filter connector	CK–DELQA–YB 70–21202–01	–	–
53-cm (21-in) cable/filter connector	–	70–21202–1K	–
90-cm (36-in) cable/filter connector	–	–	70–21202–03
Loopback connectors	70–21489–01 (external) 12–22196–02 (external)		

Operating System Support

| ULTRIX–32 | Version 2.2 or later |
| VMS | Version 4.6.a and later |

Diagnostic Support

MicroVAX Diagnostic Monitor	Version 2.10 (release 120) and later
XXDP	Version 2.1 (release 134): XQNAF0.OBJ.
Power-up self-test LEDs	Three LEDs
The DELQA provides a high-speed synchronous connection between a Q-bus system and a local area network (LAN) based on the Ethernet communications system. Ethernet lets computers exchange data within a moderate distance (2.8 km; 1.74 mi). The DELQA has all the functions of the DEQNA, plus maintenance operation protocol (MOP) functions. Figure 1 shows the DELQA–S module (M7516–PA).
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

You configure the DELQA by setting five switches, shown in Figure 1. The switches are set in the closed (1) position at the factory. The DELQA supports DEQNA mode and DELQA mode, which you select with S3. Note that S4 is an option switch, whose function depends upon the position of S3.

The sanity timer enabled by S4 monitors the host for hardware or software malfunctions. Enable the sanity timer for specific applications only.

CAUTION: If you enable the sanity timer in the DEQNA mode and down-line load software or diagnostics, the sanity timer may time out before the load is complete.
The DELQA interrupt vector of 120 is written into a read/write register by software. If a second DELQA is used, its interrupt vector floats.

Table 1 lists the functions of the DELQA switches. Table 2 lists the differences between DEQNA mode and DELQA mode.

Table 1: DELQA Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Open = CSR address 17774460 (for second DELQA)</td>
</tr>
<tr>
<td>S1</td>
<td>Closed = CSR address 17774440 (factory)</td>
</tr>
<tr>
<td>S2</td>
<td>Reserved</td>
</tr>
<tr>
<td>S3</td>
<td>Open = DEQNA mode selected (lock mode)</td>
</tr>
<tr>
<td>S3</td>
<td>Closed = DELQA mode selected (normal mode)</td>
</tr>
<tr>
<td>S4</td>
<td>Open, and S3 open = sanity timer ON</td>
</tr>
<tr>
<td>S4</td>
<td>Closed, and S3 open = sanity timer OFF</td>
</tr>
<tr>
<td>S4</td>
<td>Open, and S3 closed = remote boot ON</td>
</tr>
<tr>
<td>S4</td>
<td>Closed, and S3 closed = remote boot OFF (factory)</td>
</tr>
<tr>
<td>S5</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Table 2: DELQA Modes

<table>
<thead>
<tr>
<th>Support</th>
<th>DEQNA Mode</th>
<th>DELQA Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>All DEQNA functions</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MOP functions</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Self-test support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot/diagnostic code support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sanity timer</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

4 Microsystems Options
Power-Up Self-Test

The DELQA power-up self-test runs only when the module is switched to DELQA normal mode. It is initiated at system power-up, hardware reset, network boot, or when you issue the following boot command:

```plaintext
>>> BXQAO
```

Three LEDs on the DELQA module display the test results (Table 3). To reset the LEDs, shut down the system, then power it up again.

Table 3: DELQA LED Self-Test Results

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>DELQA citizenship (CQ) test passed.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>External loopback test failed.</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>DELQA internal error.</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Cannot upload the BD ROM contents, or the first setup packet prefill failed.</td>
</tr>
</tbody>
</table>

NOTE: If you replace the DELQA, you must: (1) install the original station address PROM from the old DELQA, or (2) change the network data base at the host system to reflect the new station address.
DEQNA Ethernet Interface

Ordering Information

Module (M7504) for BA23, BA123, and H9642–J	DEQNA–M		
Module (M7504–PA) for BA200-series	DEQNA–SA (factory installed)		
	DEQNA–SF (field upgrade)		
Fuse, 1.5 A slow blow	90–07213–00		
30-cm (12-in) cable/filter connector	70–21202–01	–	–
53-cm (21-in) cable/filter connector	–	70–21202–1K	–
90-cm (36-in) cable/filter connector	–	–	70–21202–03
Loopback connectors	70–21489–01 (external)		
	12–22196–02 (external)		

Operating System Support

DSM–11	Version 3.3 and later
MicroVMS	Version 4.1m or later
RT–11	Version 5.4D and later
ULTRIX–32m	Version 2.0 or later
VAXELN	Version 1.1 or later

Diagnostic Support

MicroVAX Diagnostic Monitor	All versions and releases
XXDP	Version 2.1 (release 134): XPNAF0.OBJ.
Power-up self-test	Three LEDs

Microsystems Options 1
The DEQNA is a dual-height module that connects a Q22-bus system to a local area network (LAN) based on the Ethernet communications system. Ethernet lets computers exchange data within a moderate distance (2.8 km; 1.74 mi). The DEQNA can transmit data at a rate of 1.2 Mbytes/sec through coaxial cable. For high Ethernet traffic, you can install a second DEQNA.

There are two versions of the DEQNA module:

For the BA23, BA123, and H9642: DEQNA–M (Figure 1)
For BA200-series: DEQNA–SA (Figures 2 and 3)
Figure 1: DEQNA–M Module Layout (M7504)
Figure 2: DEQNA–SA Module Layout (M7504–PA)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
You configure the DEQNA by using three jumpers, W1 through W3. Jumper W1 determines the CSR address. The DEQNA CSR addresses are factory positioned as follows:

<table>
<thead>
<tr>
<th>DEQNA Module No.</th>
<th>CSR Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17774440</td>
</tr>
<tr>
<td>2</td>
<td>17774460</td>
</tr>
</tbody>
</table>

If you install two DEQNAs, move jumper W1 of the second DEQNA to the left (farthest from W3) and center pins (Figure 1 or 2).

The interrupt vector is written into a read/write register by software. The interrupt vectors are as follows:

<table>
<thead>
<tr>
<th>DEQNA Module No.</th>
<th>Interrupt Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>Floating</td>
</tr>
</tbody>
</table>

Jumper W2 is normally removed, in order to provide fair access to all DMA devices using the Q22-bus. When removed, W2 makes the DEQNA wait 5 μsec before requesting the bus again.

Jumper W3 is normally installed, in order to disable a sanity timer at initialization. Figure 4 shows the internal cabling for the DEQNA–M.
DEQNA Power-Up Self-Test

The DEQNA self-test is run by the CPU, not by the DEQNA's onboard microcomputer chip. This feature improves the accuracy of a successful test, because the test checks the Q22-bus interface. However, it reduces the accuracy of an unsuccessful test, because a CPU or Q22-bus problem can also cause the failure. The accuracy of a successful test is also improved because the test performs an external loopback test through the Ethernet transceiver or a loopback connector.
Figure 5 shows the DEQNA LEDs. Table 1 describes the LED error codes for a system that uses the DEQNA as a boot device. If the system does not use the DEQNA as a boot device, all LEDs remain on.

Figure 5: DEQNA Module LEDs

![DEQNA Module LEDs Diagram]

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Test and Possible FRU Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>DEQNA station address PROM test</td>
</tr>
<tr>
<td></td>
<td>1. DEQNA module</td>
</tr>
<tr>
<td></td>
<td>2. KA630 module</td>
</tr>
<tr>
<td></td>
<td>3. Q22-bus device</td>
</tr>
<tr>
<td></td>
<td>4. Backplane</td>
</tr>
<tr>
<td>On</td>
<td>DEQNA internal loopback test</td>
</tr>
<tr>
<td></td>
<td>1. DEQNA module</td>
</tr>
<tr>
<td>On</td>
<td>DEQNA external loopback test</td>
</tr>
<tr>
<td></td>
<td>(Requires loopback connector or working transceiver.)</td>
</tr>
<tr>
<td></td>
<td>1. DEQNA module</td>
</tr>
<tr>
<td></td>
<td>2. Cabling (shorted, opened, or not connected)</td>
</tr>
<tr>
<td></td>
<td>3. Fuse in CPU I/O insert</td>
</tr>
<tr>
<td>Off</td>
<td>DEQNA passed all power-up tests.</td>
</tr>
</tbody>
</table>
DFA01 Modem

The DFA01 is an option for BA200-series enclosures only.

Ordering Information

| Module (M3121–PA) | DFA01–AA (factory installed) | DFA01–AF (field upgrade) |

Operating System Support

Micro/RSX	Version 4.0 and later
MicroVMS	Version 4.6.a and later
ULTRIX–32	2.2

Diagnostic Support

| MicroVAX Diagnostic Monitor | Version 2.0 (release 115) and later |

Documentation

| DFA01 Modem User’s Guide | EK–CAB16–TM |
| DFA01 Modem Option Installation Guide | EK–DFA01–IN |

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+5 V</td>
<td>+12 V</td>
<td>Watts</td>
<td>AC</td>
</tr>
<tr>
<td>DFA01–A</td>
<td>M3121–PA</td>
<td>1.97</td>
<td>0.4</td>
<td>14.7</td>
<td>3.0</td>
</tr>
</tbody>
</table>

The DFA01 quad-height modem, shown in Figures 1 and 2, consists of a pair of 300/1200/2400 bits/s direct connect modems and a DZQ11 interface. This modem is designed as a Q22-bus device for BA200-series enclosures only. The DFA01 modem uses standard dial-up telephone service to transmit and receive serial binary data.

The DFA01 is a full-duplex device based on the CCITT V.22 bis technology. You can install up to eight DFA01 modules in a BA200-series enclosure for a 2- to 16-line capability in the United States and Canada.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
The DFA01 contains four switchpacks with 28 switch settings. The location of the switchpacks and their factory configurations are shown in Figure 2. The DFA01 module is configured at the factory for connection to single and multiline telephone service.

Figure 2: DFA01 Module Layout (M3121-PA)
Use switchpack S2, switches 1 through 10, to set the CSR address of the DFA01. Use switchpack S1, switches 3 through 8, to set the interrupt vector. The following tables list the factory configurations for the CSR address and interrupt vector:

DFA01 CSR Address: 17760100 (factory position)

Switchpack S2

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 Switches:</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

CSR Address 17760100:

0 0 0 0 1 0 0 0 0 0

1 = closed, 0 = open

DFA01 Interrupt Vector: 300 (factory position)

Switchpack S1

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Switches:</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Vector Address 300:

0 1 1 0 0 0 0

1 = closed, 0 = open

The remaining switches on switchpack S1 have the following functions:

<table>
<thead>
<tr>
<th>S1 Switch Function</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON = line three DCOK. Causes a pulse on the DCOK line.</td>
</tr>
<tr>
<td>2</td>
<td>ON = line three Boot/Halt. Causes a halt condition on the CPU.</td>
</tr>
<tr>
<td>9</td>
<td>ON = MTST0 asserted. All serial inputs are looped to their corresponding outputs.</td>
</tr>
<tr>
<td>10</td>
<td>ON = MTST1 asserted. All outputs are floated to a high impedance state, and the state of MST0 is invalid.</td>
</tr>
</tbody>
</table>

Switchpacks S3 and S4 contain switches for PR/PC (programmed operation) and MI/MIC (mode interconnect sense). Switchpack S3 controls these settings for modem A, and switchpack S4 controls these settings for modem B.
PR/PC is used for programmable connections such as FJ41S or RJ45S when the wall jack has a resistor (installed by the local phone company) to program the output level of each modem's transmitter. PR/PC is enabled and disabled using switch S1 in each switchpack. The factory configuration is PR/PC disabled; S2 is enabled, allowing permissive operation.

Note that S1 and S2 cannot both be enabled at the same time. To enable PR/PC (S1), you must disable MI/MIC (S2).

Use MI/MIC for keyed telephone operation from the handset. You enable MI/MIC using switches S3 and S4 in each switchpack. When MI/MIC is enabled, the modem can sense these lines. The factory configuration is MI/MIC disabled. Table 1 lists the factory positions.

Table 1: DFA01 S3 and S4 Factory Positions

<table>
<thead>
<tr>
<th>S3 and S4 Switches</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open (PR/PC disabled)</td>
</tr>
<tr>
<td>2</td>
<td>Closed (permissive operation enabled)</td>
</tr>
<tr>
<td>3</td>
<td>Open (MI/MIC disabled)</td>
</tr>
<tr>
<td>4</td>
<td>Open (MI/MIC disabled)</td>
</tr>
</tbody>
</table>
DHV11 8-Line Asynchronous Multiplexer

Ordering Information

<table>
<thead>
<tr>
<th>Module (M3104)</th>
<th>DHV11-M</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHV11 cabinet kits</td>
<td>CK-DHV11-AB</td>
<td>CK-DHV11-AA</td>
<td>CK-DHV11-AF</td>
<td></td>
</tr>
<tr>
<td>30-cm (12-in) cable</td>
<td>BC05L-01</td>
<td>-</td>
<td>BC05L-1K</td>
<td>-</td>
</tr>
<tr>
<td>50-cm (21-in) cable</td>
<td>-</td>
<td>BC05L-1K</td>
<td>-</td>
<td>BC05L-03</td>
</tr>
<tr>
<td>90-cm (36-in) cable</td>
<td>-</td>
<td>-</td>
<td>BC05L-03</td>
<td></td>
</tr>
<tr>
<td>Type-B filtered connector</td>
<td>H3173-A</td>
<td>H3173-A</td>
<td>H3173-A</td>
<td></td>
</tr>
<tr>
<td>Loopback connectors</td>
<td>H3277 (internal)</td>
<td>12-15336-07 (external)</td>
<td>H329 (internal)</td>
<td>H325 (external)</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>OS</th>
<th>Version Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.1m and later</td>
</tr>
<tr>
<td>RSTS/E</td>
<td>Version 9.5 and later</td>
</tr>
<tr>
<td>RSX-11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX-11M-PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX-11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX-32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>All versions and releases</td>
</tr>
<tr>
<td>XXDP</td>
<td>Version 2.1 (release 134): VDHAE0.BIC, VDHB01.BIC, XDHV10.OBJ.</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>One LED (On indicates correct operation.)</td>
</tr>
</tbody>
</table>
NOTE: Each cabinet kit includes two type-B filtered connectors and the appropriate pair of cables.

The DHV11 asynchronous multiplexer, shown in Figure 1, provides support for up to eight serial lines for data communications. The DHV11 is a quad-height module with the following features:

- Full modem control
- Direct memory access (DMA) or silo output
- Silo input buffering
- Split speed

The DHV11 is compatible with the following modems:

- DIGITAL—DF01, DF02, DF03, DF112
- AT&T—103, 113, 203c, 202d, 212
Figure 1: DHV11 Module Layout (M3104)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.
Use switchpacks E58 and E43 (Figure 1) to set the CSR address and interrupt vector. The CSR address and interrupt vector are floating, and depend on the other modules in the system. The following tables list the factory configurations for the CSR address and interrupt vector:

DHV11 CSR Address: 17760460 (factory position)
Switchpacks E58 and E43

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E43 and E58</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

CSR Addresses:	17760440	0 0 0 0 1 0 0 1 0
	17760460	0 0 0 0 1 0 0 1 1
	17760500	0 0 0 0 1 0 1 0 0
	17760520	0 0 0 0 1 0 1 0 1

1 = on, 0 = off

DHV11 Interrupt Vector: 300 (factory position)
Switchpack E43

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E43 Switches</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>300</th>
<th>0 1 1 0 0 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>310</td>
<td>0 1 1 0 0 1</td>
</tr>
</tbody>
</table>

1 = closed, 0 = open

* E43 switch 2 is not used.

Figure 2 shows the internal cabling for the DHV11. When installing internal cables, make sure you connect the red stripe side to pin A (pin 1) of the DHV11 connectors. Then install the other end of the cables by aligning the red stripe with the small arrow (pin 1) on the filtered connector.
Figure 2: DHV11 Internal Cabling
DHV11 Remote Distribution Cabinet Kit

Ordering Information

<table>
<thead>
<tr>
<th>Component</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-B filtered connector</td>
<td>H3176</td>
<td>H3176</td>
<td>H3176</td>
</tr>
<tr>
<td>Remote distribution panel</td>
<td>H3175</td>
<td>H3175</td>
<td>H3175</td>
</tr>
<tr>
<td>3-m (10-ft) external cable</td>
<td>BC22H–10</td>
<td>BC22H–10</td>
<td>BC22H–10</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>BC05L–01</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>–</td>
<td>BC05L–1K</td>
<td>–</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>–</td>
<td>–</td>
<td>BC05L–03</td>
</tr>
</tbody>
</table>

Operating System Support

- **Micro/RSX**: Version 4.0 and later
- **Micro/RSTS**: Version 2.2 and later
- **MicroVMS**: Version 4.1m and later
- **RSTS/E**: Version 9.5 and later
- **RSX–11M**: Version 4.3 and later
- **RSX–11M–PLUS**: Version 4.0 and later
- **ULTRIX–11**: Version 3.1 and later
- **ULTRIX–32m**: Version 1.1 and later
- **VAXELN**: Version 2.0 and later

Diagnostic Support

- **MicroVAX Diagnostic Monitor**: All versions and releases
- **Power-up self-test LEDs**: None
The DHV11 remote distribution cabinet kit, shown in Figure 3, lets you distribute eight data-only serial lines from one type-B filtered connector, by using a remote distribution panel. This option increases the number of DHV11 serial lines you can connect to an enclosure without using additional distribution inserts. Each cabinet kit includes two cables.

Figure 3: DHV11 Remote Distribution Cabinet Kit
The kit includes the following parts:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3176</td>
<td>Bulkhead panel that fits into one type-B I/O panel cutout</td>
</tr>
<tr>
<td>H3175</td>
<td>Remote distribution panel with eight 25-pin, D-subminiature connectors</td>
</tr>
<tr>
<td>H315-B</td>
<td>Loopback connector</td>
</tr>
<tr>
<td>BC22H-10</td>
<td>3-m (10-ft) cable that connects H3175 panel and H3176 panel</td>
</tr>
<tr>
<td>BC05L-xx1</td>
<td>Two cables that connect the DHV11 to the H3176 panel</td>
</tr>
</tbody>
</table>

1xx designates length of cable.

The H3176 bulkhead panel is a type-B panel with two 40-pin headers and a fully filtered female 25-pin, D-subminiature connector. The H3176 connects to a DHV11 via two BC05L-xx cables, which supply eight pairs of data signals (transmit/receive) plus the signal ground for each pair.

The H3175 remote distribution panel distributes the eight pairs of data signals and their signal grounds to eight male 25-pin, D-subminiature connectors. The H3175 connects to the H3176 panel via the BC22H-10 cable. The H3175 has teardrop cutouts on both ends. You can mount the H3175 either vertically or horizontally on a wall or floor. The H3175 measures 279 mm x 86 mm x 17.7 mm (11 in x 3.4 in x 0.7 in).
DLVJ1 4-Line Asynchronous Interface

Ordering Information

<table>
<thead>
<tr>
<th>Module (M8043)</th>
<th>DLVJ1–M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BA23</td>
<td>BA123</td>
</tr>
<tr>
<td>Type-B filter connector</td>
<td>70–19964–00</td>
<td>70–19964–00</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>70–16436–1C</td>
<td>–</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>–</td>
<td>70–16436–1K</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>MicroVAX Diagnostic Monitor</th>
<th>XXDP</th>
<th>Power-up self-test LEDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>All versions and releases</td>
<td>Version 2.1 (release 134): VDLAB1.BIC.</td>
<td>None</td>
</tr>
</tbody>
</table>
The DLVJ1 (formerly DLV11-J), shown in Figure 1, is a dual-height module that connects a Q-bus to up to four asynchronous serial lines (channels 0 through 3) for data communications. The serial lines must conform to EIA and CCITT standards. The DLVJ1 acts as four separate devices. The factory configuration of the module sets CH–3 as the console serial line unit (SLU).
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

Use wire-wrap pins, as shown in Figure 1, to set the CSR address and interrupt vector for the DLVJ1. The CSR addresses for two DLVJ1 modules are fixed.
The following table lists the factory configuration for the CSR address of the first channel (CH-0).

DLVJ1 CSR Address: 17776500 (factory position)

<table>
<thead>
<tr>
<th>Module</th>
<th>Address</th>
<th>Module Address A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17776500</td>
<td>1-x</td>
<td>1-x</td>
<td>1-x</td>
<td>0-x</td>
<td>1-x</td>
<td>R</td>
<td>x-h</td>
<td>0-x</td>
</tr>
<tr>
<td>2</td>
<td>17776540</td>
<td>1-x</td>
<td>1-x</td>
<td>1-x</td>
<td>0-x</td>
<td>1-x</td>
<td>R</td>
<td>x-h</td>
<td>1-x</td>
</tr>
</tbody>
</table>

0-x = 0, 1-x = 1
R = 0, no wire-wrap
x-h = 1, wire-wrap on pins x and h

* C1 and C2 are wire-wrapped on pins 1 and x. This sets the CH-3 CSR address to 17776500. To use CH-3 as a non-console device, wire-wrap C1 and C2 on pins 0 and x.

The CSR address of the other channels is 10^8 greater for each additional channel. For example, if CH-0 is 17776500, the CH-1 CSR address is 17776510. The CSR address for CH-2 is 17776520, and so on. There is one exception: when CH-3 is used as the console device, its address is fixed at 17777560, regardless of the setting of the other channels.

The DLVJ1 interrupt vector floats. The actual interrupt vector depends on the other modules in the system. Set the interrupt vector of channel 0 only at X00 or X40. The interrupt vector of the remaining channels is 10 (octal) greater for each channel. For example, if the module is set at 300, then the interrupt vector of CH-1 is 310. The interrupt vector for CH-2 is 320, and so on. There is one exception: when CH-3 is used as the console device, its interrupt vector is fixed at 60, regardless of the setting of the other channels. Figure 2 shows the internal cabling for the DLVJ1. The following table lists the factory configuration for the interrupt vector:

DLVJ1 Interrupt Vector: 300 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector Address:</td>
<td>300</td>
<td>--</td>
<td>x-h</td>
<td>x-h</td>
<td>0-x</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>--</td>
<td>x-h</td>
<td>x-h</td>
<td>1-x</td>
<td>--</td>
</tr>
</tbody>
</table>

x-h = 1, jumper inserted between pins x and h.
0-x = 0, jumper inserted between 0 and x.
1-x = 1, jumper inserted between 1 and x.
* CH-3 interrupt vector is 60 (receive) and 64 (transmit).
Figure 2: DLVJ1 Internal Cabling
DMV11 Synchronous Controller

Four versions of the DMV11 option are available for different types of system interfaces:

- EIA RS232-C/CCITT V.28
- CCITT V.35/DDS
- Integral modem
- RS423-A/CCITT V.24

Make sure you order the version that meets the interface requirements of your system.

Ordering Information

<table>
<thead>
<tr>
<th>Loopback connectors</th>
<th>H3251 (external)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H3255 (internal)</td>
</tr>
<tr>
<td></td>
<td>H3254 (internal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EIA RS232-C/CCITT V.28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (M8053)</td>
</tr>
<tr>
<td>DMV11-M</td>
</tr>
<tr>
<td>BC22E or BC22F</td>
</tr>
<tr>
<td>External cable</td>
</tr>
<tr>
<td>BA23</td>
</tr>
<tr>
<td>BA123</td>
</tr>
<tr>
<td>Cabinet kit</td>
</tr>
<tr>
<td>CK–DMV11–AB</td>
</tr>
<tr>
<td>70–20863–01</td>
</tr>
<tr>
<td>BC08S–01</td>
</tr>
<tr>
<td>CK–DMV11–AA</td>
</tr>
<tr>
<td>70–20863–01</td>
</tr>
<tr>
<td>CK–DMV11–AF</td>
</tr>
<tr>
<td>70–20863–01</td>
</tr>
<tr>
<td>Distribution panel</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
</tr>
<tr>
<td>BC08S–1K</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>CCITT V.35/DDS</td>
</tr>
<tr>
<td>Module (M8053)</td>
</tr>
<tr>
<td>DMV11-M</td>
</tr>
<tr>
<td>BA23</td>
</tr>
<tr>
<td>BA123</td>
</tr>
<tr>
<td>Cabinet kit</td>
</tr>
<tr>
<td>CK–DMV11–BB</td>
</tr>
<tr>
<td>BC17E–25</td>
</tr>
<tr>
<td>CK–DMV11–BA</td>
</tr>
<tr>
<td>BC17E–25</td>
</tr>
<tr>
<td>CK–DMV11–BF</td>
</tr>
<tr>
<td>BC17E–25</td>
</tr>
<tr>
<td>63-cm (25-in) external modem cable</td>
</tr>
<tr>
<td>70–20861–01</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
</tr>
<tr>
<td>–</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
</tr>
<tr>
<td>70–20861–1K</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
</tr>
<tr>
<td>70–20861–03</td>
</tr>
</tbody>
</table>

Microsystems Options 1
Ordering Information

Integral Modem

<table>
<thead>
<tr>
<th>Module (M8064)</th>
<th>DMV11-N</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet kit</td>
<td>CK–DMV11–CB</td>
<td>70–20862–00</td>
<td>CK–DMV11–CA</td>
<td>70–20862–00</td>
</tr>
<tr>
<td>Distribution panel</td>
<td>CK–DMV11–CF</td>
<td>70–20862–00</td>
<td>CK–DMV11–CA</td>
<td>70–20862–00</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>70–18250–01</td>
<td>70–18250–1K</td>
<td>70–20861–03</td>
<td></td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>70–18250–1K</td>
<td>70–20861–03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>70–20861–03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RS423–A/CCITT V.24

<table>
<thead>
<tr>
<th>Module (M8053)</th>
<th>DMV11-M</th>
<th>BC55D</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet kit</td>
<td>CK–DMV11–FB</td>
<td>70–20864–01</td>
<td>CK–DMV11–FA</td>
<td>70–20864–01</td>
<td></td>
</tr>
<tr>
<td>Distribution panel</td>
<td>CK–DMV11–FF</td>
<td>70–20864–01</td>
<td>CK–DMV11–FA</td>
<td>70–20864–01</td>
<td></td>
</tr>
<tr>
<td>38-cm (15-in) internal cable</td>
<td>70–20864–01</td>
<td>BC08S–1C</td>
<td>70–20864–01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>BC08S–1K</td>
<td>70–20864–01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>BC08S–03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating System Support

MicroVMS

Version 4.2 and later

Diagnostic Support

<table>
<thead>
<tr>
<th>MicroVAX Diagnostic Monitor XXDP</th>
<th>All versions and releases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version 2.1 (release 134):</td>
</tr>
<tr>
<td></td>
<td>VDMAC1.BIC,</td>
</tr>
<tr>
<td></td>
<td>BCMBC0.BIN, VDMCC1.BIN,</td>
</tr>
<tr>
<td></td>
<td>VDMDC0.BIN, VDMECO.BIN.</td>
</tr>
</tbody>
</table>

| Power-up self-test LEDs | None |
Documentation

DMV11 Synchronous Controller Technical Manual
DMV11 Synchronous Controller User's Guide

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power (Watts)</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMV11–M</td>
<td>M8053</td>
<td>+5 V: 3.4, +12 V: 0.4</td>
<td>21.8</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DMV11–N</td>
<td>M8064</td>
<td>+5 V: 3.4, +12 V: 0.26</td>
<td>20.12</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The DMV11 is a single-line, synchronous interface that provides local or remote interconnection between Q-bus systems and other computer systems with EIA RS-232-C/CCITT V.28, CCITT V.35, or EIA RS-423/RS-449 interfaces.

The quad-height DMV11 modules, shown in Figures 1 and 2, support the following functions:

- Full-duplex or half-duplex operations
- Direct memory access (DMA)
- Point-to-point communications
- Multipoint communications

Figure 1: DMV11–M Module Layout (M8053)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

For the DMV11–M, use switchpacks E53 and E54 (Figure 1) to set the CSR address and interrupt vector. For the DMV11–N, use switchpacks E58 and 59 (Figure 2) to set the CSR address and interrupt vector. The CSR address and interrupt vector both float. The actual settings depend on the other modules in the system.

The following tables list the factory configurations and typical switch positions for the CSR address and interrupt vector:
DMV11 CSR Address: 177760340 (factory position)
Switchpacks E53, E54, E58, and E59

<table>
<thead>
<tr>
<th>Address Bits</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchpacks</td>
<td>E53 (M8053)</td>
<td>E58 (M8064)</td>
<td>E54 (M8053)</td>
<td>E59 (M8064)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switches</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

CSR Address:
177760340
177760360

1 = on = closed, 0 = off = open

DMV11 Interrupt Vector: 300 (factory position)
Switchpacks E54 and E59

<table>
<thead>
<tr>
<th>Vector Bits</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Vector Address:
300
310

1 = on = closed, 0 = off = open

You can select several DMV11 features with a DIP switch: switch E101 on M8053, and switch E107 on M8064 (Figures 1 and 2). Table 1 lists typical switch settings and functions. Table 2 lists the different operating mode selections.

Table 1: DMV11 Switch Positions

<table>
<thead>
<tr>
<th>E101/E107 Switch†</th>
<th>Typical Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>E101–S10²</td>
<td>Off</td>
<td>Off for EIA interface, on for V.35.</td>
</tr>
<tr>
<td>S9</td>
<td>Off</td>
<td>Must be off for integral modem (M8064) or when running above 19.2 Kbaud.</td>
</tr>
<tr>
<td>S8, S7, S6</td>
<td>On</td>
<td>Select operating mode when S1 is off. See Table 2.</td>
</tr>
</tbody>
</table>

† E101 is on M8053. E107 is on M8064.
² Not used on M8064.
Table 1 (Cont.): DMV11 Switch Positions

<table>
<thead>
<tr>
<th>E101/E107 Switch</th>
<th>Typical Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5</td>
<td>On</td>
<td>When off, enables remote load detect.</td>
</tr>
<tr>
<td>S4</td>
<td>On</td>
<td>When off, enables power-on boot.</td>
</tr>
<tr>
<td>S3</td>
<td>On</td>
<td>When off, enables auto answer.</td>
</tr>
<tr>
<td>S1</td>
<td>On</td>
<td>Determines method for selecting the operating mode. Off = S6, S7, and S8 select the operating mode. See Table 2, below. On = software selects the operating mode.</td>
</tr>
</tbody>
</table>

1E101 is on M8053. E107 is on M8064.

Table 2: DMV11 Operating Modes

<table>
<thead>
<tr>
<th>E101/E107 Switch</th>
<th>Operating Mode 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8 S7 S6</td>
<td></td>
</tr>
<tr>
<td>On On On</td>
<td>HDX point-to-point, DMC compatible</td>
</tr>
<tr>
<td>On On Off</td>
<td>FDX point-to-point, DMC compatible</td>
</tr>
<tr>
<td>On Off On</td>
<td>HDX point-to-point</td>
</tr>
<tr>
<td>On Off Off</td>
<td>FDX point-to-point</td>
</tr>
<tr>
<td>Off On On</td>
<td>HDX control station</td>
</tr>
<tr>
<td>Off On Off</td>
<td>FDX control station</td>
</tr>
<tr>
<td>Off Off On</td>
<td>HDX tributary station</td>
</tr>
<tr>
<td>Off Off Off</td>
<td>FDX tributary station</td>
</tr>
</tbody>
</table>

1HDX = half-duplex, FDX = full-duplex

Another DIP switch determines the DIGITAL data communications message protocol (DDCMP) address register tributary/password: switch E113 on M8053 and switch E119 on M8064. You must set this switch to a unique site address. For more information, see the DMV11 Synchronous Controller User’s Guide.
Figures 3 and 4 show the internal cabling for the four DMV11 interfaces.

Figure 3: DMV11–M Internal Cabling (M8053)
Figure 4: DMV11–N Internal Cabling (M8064)
DPV11 Synchronous Interface

Ordering Information

<table>
<thead>
<tr>
<th>Module (M8020) for BA23, BA123, and H9642–J</th>
<th>DPV11–M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (M8020–PA) for BA200-series</td>
<td>DPV11–AA (factory installed)</td>
</tr>
<tr>
<td></td>
<td>DPV11–AF (field upgrade)</td>
</tr>
<tr>
<td>BA23</td>
<td>BA123</td>
</tr>
<tr>
<td>DPV11 cabinet kit</td>
<td>H9642–J</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>CK–DPV11–AB</td>
</tr>
<tr>
<td></td>
<td>BC26L–01</td>
</tr>
<tr>
<td>Type-A filtered connector</td>
<td>70–17261–01</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>70–17261–01</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>BC26L–1K</td>
</tr>
<tr>
<td>Loopback connectors</td>
<td>H3259 (external)</td>
</tr>
<tr>
<td></td>
<td>H3260 (internal)</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>DPV11–M: Version 4.2 and later</td>
</tr>
<tr>
<td></td>
<td>DPV11–AA/–AF: Version 4.6A and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Feature</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor XXDP</td>
<td>All versions and releases</td>
</tr>
<tr>
<td></td>
<td>Version 2.1 (release 134): VDPVC1.BIN, XDPVC0.OBJ.</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The DPV11–M is a dual-height module. It connects the Q22-bus to a modem, using a synchronous serial line. The serial line conforms to EIA standards RS232–C, RS422–A, and RS423–A. The quad-height DPV11–A consists of one DPV11–M module and a panel support with an attached bulkhead handle.

The DPV11 provides EIA compatibility for local communications only (timing and data leads). The DPV11 is intended for two types of protocols:

- Character-oriented protocols, such as DIGITAL data communications message protocol (DDCMP)
- Bit-oriented communications protocols, such as synchronous data link control (SDLC)

The M8020 module layout is shown in Figure 1. The M8020–PA module layout is shown in Figure 2.
Figure 1: DPV11–M Module Layout (M8020)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

Use jumpers, shown in Figure 1, to set the CSR address and interrupt vector of the DPV11. The CSR address and interrupt vector are both floating. The actual DPV settings depend on the other modules in the system.
The following tables list the factory configurations and other common positions for the CSR address and interrupt vector:

DPV11 CSR Address: 17760010 (factory position)

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins:</td>
<td>W31</td>
<td>W30</td>
<td>W36</td>
<td>W33</td>
<td>W32</td>
<td>W39</td>
<td>W38</td>
<td>W37</td>
<td>W34</td>
<td>W35</td>
</tr>
<tr>
<td>CSR Address:</td>
<td></td>
</tr>
<tr>
<td>17760010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17760270</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17760310</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = jumper inserted between pin Wxx and pin 29 (ground).
0 = jumper removed.

DPV11 Interrupt Vector: 300 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins:</td>
<td>W43</td>
<td>W42</td>
<td>W41</td>
<td>W40</td>
<td>W44</td>
<td>W45</td>
</tr>
<tr>
<td>Vector Address:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>310</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = jumper inserted between pin Wxx and pin 46 (ground).
0 = jumper removed.
Figure 3 shows the internal cabling of the DPV11.

Figure 3: DPV11 Internal Cabling
DRQ3B–A, –S High-Speed, Parallel Interface

Ordering Information

Module (M7658) for BA23, BA123, and H9642–J	DRQ3B–A
Module (M7658–PA) for BA200-series	DRQ3B–SA (factory installed)
Loopback connectors	DRQ3B–SF (field upgrade)
17–00861–01 (internal)	17–01481–01 (external)

Operating System Support

- **MicroVMS**: Version 4.6.a and later, using VAXlab Software Library, or standalone driver
- **VAXELN**: Version 3.0 and later
- **VMS**: Version 5.0 and later, using VAXlab Software Library
- **ULTRIX–32**: Version 2.2 and later

Diagnostic Support

- **MicroVAX Diagnostic Monitor**: Version 2.0 (release 115) and later

Documentation

- **DRQ3B Parallel DMA I/O Module User’s Guide**: EK–O47AA–UG

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRQ3B–A</td>
<td>M7658</td>
<td>4.5</td>
<td>0.0</td>
<td>22.5</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DRQ3B–S</td>
<td>M7658–PA</td>
<td>4.5</td>
<td>0.0</td>
<td>22.5</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The DRQ3B–A, –S parallel direct memory access (DMA) I/O module allows input and output of parallel digital data at transfer rates of up to 1.3 MHz of 16-bit words. It is designed to provide maximum data transfer rates with a minimum of system bus interaction.
The DRQ3B–S is shown in Figure 1.

Figure 1: DRQ3B–S Module Layout (M7658–PA)

CAUTION: *Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.*

Use DIP switchpacks 0 and 1 (Figure 1) to set the CSR address and interrupt vector on the DRQ3B. The CSR and interrupt vectors float.

Use Switch 08 of switchpack 1 to set the extended block mode. The extended block mode increases data transfer rates by approximately 20 percent to 1.3 MHz (words). It cannot be used in MicroPDP–11 systems. Setting switch 08 to ON selects the extended block mode.

The following tables list the factory configuration and positions for a second DRQ3B:

2 Microsystems Options
DRQ3B CSR Address: 17760740 (factory position)
Switchpack 9

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

CSR Address:
17760740 0 0 0 0 1 1 1 1 0
17760760 0 0 0 0 1 1 1 1 1

1 = switch on, 0 = switch off
* Switch 10 is not used.

DRQ3B Interrupt Vector: 300 (factory position)
Switchpack 1

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V9</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
<th>V2</th>
<th>V1</th>
<th>V0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Vector Address:
300 0 0 1 1 0 0 0 0
310 0 0 1 1 0 0 1

0 = switch on, 1 = switch off

Use switches 9 and 10 of switchpack 1 to configure the interrupt priority level, as follows:

<table>
<thead>
<tr>
<th>Switchpack 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority Level</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

DRQ3B Holdoff Time Selection

Whenever the DRQ3B releases the bus, it waits a short period of time (called the holdoff time) before it again requests control of the bus. The DRQ3B holdoff time can be set to 1 or 2.7 μsec.

The holdoff time of 2.7 μsec ensures that other modules installed in a system have an opportunity to acquire the bus. However, the maximum throughput rate of the DRQ3B cannot be achieved using this setting.
The maximum throughput rate is achieved using the 1 µsec holdoff time and extended block mode. However, when the holdoff time is set for 1 µsec, modules in the backplane farther from the CPU than the DRQ3B may have difficulty acquiring the bus.

Selecting the holdoff time depends on the module revision level, as follows:

<table>
<thead>
<tr>
<th>Module Revision</th>
<th>Holdoff Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level C and higher</td>
<td>1.0 µsec Jumper W4 In</td>
</tr>
<tr>
<td></td>
<td>2.7 µsec Jumper W5 In</td>
</tr>
<tr>
<td></td>
<td>Resistor R42 (12K ohms)</td>
</tr>
<tr>
<td></td>
<td>installed (factory)</td>
</tr>
<tr>
<td>Level B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistor R42 (12K ohms)</td>
</tr>
<tr>
<td></td>
<td>removed (factory)</td>
</tr>
</tbody>
</table>

NOTE: R42 can be resoldered to the module by Field Service if the 1 µsec holdoff time is needed again.

DRQ3B Q/CD Jumpers

Jumpers W2 and W3 must be removed when the DRQ3B is installed in a BA200-series enclosure.

DRQ3B Terminator Resistor Packs

The DRQ3B has replaceable terminator resistor packs. Some signals from external devices may not be strong enough to assert a high or low signal clearly, due to cabling length or to the nature of the device driver. In this case, Field Service can replace the factory resistor packs with optional packs, to allow weaker signals to be interpreted correctly.

The optional packs must be installed by Field Service. Table 1 lists the available resistor packs.

Table 1: Terminator Resistor Packs

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Resistance (ohms)</th>
<th>Current Needed (milliamps)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13–19367–01</td>
<td>220/330</td>
<td>22</td>
<td>Standard</td>
</tr>
<tr>
<td>13–11003–02</td>
<td>330/680</td>
<td>15</td>
<td>Optional</td>
</tr>
<tr>
<td>13–11003–01</td>
<td>180/390</td>
<td>28</td>
<td>Optional</td>
</tr>
</tbody>
</table>
DRV11–J, DRV1J–S 4-Line, High-Density Parallel Interface

Ordering Information

Module (M8049) for BA23, BA123, and H9642–J	DRV11–J
Module (M8049–PA) for BA200-series	DRV1J–SA (factory installed) DRV1J–SF (field upgrade)
.setWindowTitle()	DRV11–J
DRV1J–SA (factory installed)	DRV1J–SF (field upgrade)
DRV11–J cabinet kit	CK–DRV1J–KA BC06L–1C
38-cm (15-in) internal cable	CK–DRV1J–KB BC06L–1K
Type-A filter connector	12–14614–02
53-cm (21-in) internal cable	12–14614–02
90-cm (36-in) internal cable	12–14614–02
Loopback connectors	BC06L–03
BA23	BA123
H9642	

Operating System Support

DSM–11	MicroVMS
version 3.3 and later	Version 4.6 and later, using VAXlab Software Library
RSX–11M	Version 4.3 and later
RSX–11M–PLUS	Version 4.0 and later
VAXELN	Version 2.0 and later
VMS	Version 5.0 and later, using VAXlab Software Library

Diagnostic Support

| MicroVAX Diagnostic Monitor | Version 1.10 (release 110) and later Version 2.1 (release 134): VDRCC0.BIC, VDRDB0.BIC, XDRJC0.OBJ. |
| Power-up self-test LEDs | One LED (On indicates correct operation) |
DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>AC</th>
<th>DC</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV11–J</td>
<td>M8049</td>
<td>1.8</td>
<td>0.0</td>
<td>9.0</td>
<td>2.0</td>
<td>1.0</td>
<td>A (2)</td>
</tr>
<tr>
<td>DRV1J–S</td>
<td>M8049–PA</td>
<td>1.8</td>
<td>0.0</td>
<td>9.0</td>
<td>2.0</td>
<td>1.0</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: Each cabinet kit includes two type-A filter connectors and two internal cables.

The DRV11 is a dual-height module that connects a Q-bus to 64 I/O lines. These lines are organized as four 16-bit ports, A through D. Data line direction is selectable under program control for each 16-bit port. The DRV11–J is shown in Figure 1.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

The CSR address is fixed, using jumpers W1 through W9. The DRV11-J interrupt vector is set under program control. The following table lists the factory configurations and the positions for a second DRV11 module.

DRV11-J CSR Address: 17764160 (factory position)

<table>
<thead>
<tr>
<th>Module</th>
<th>Jumpers:</th>
<th>Address Bits:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W1 W2 W3 W4 W5 W6 W7 W8 W9</td>
<td>A12 A11 A10 A9 A8 A7 A6 A5 A4</td>
</tr>
<tr>
<td>1</td>
<td>0 1 0 0 0 0 0 1 1 1</td>
<td>17764160</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 0 0 0 0 1 1 0</td>
<td>17764140</td>
</tr>
</tbody>
</table>

1 = installed, 0 = removed
Figure 2 shows the internal cabling for the DRV11-J.

Figure 2: DRV11–J Internal Cabling
DRV11–WA, DRV1W–S General-Purpose DMA Interface

Ordering Information

Module (M7651) for BA23, BA123, and H9642–J	DRV11–WA
Module (M7651–PA) for BA200-series	DRV1W–SA (factory installed)
	DRV1W–SF (field upgrade)

<table>
<thead>
<tr>
<th>DRV11–WA cabinet kit</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>CK–DRV1B–KA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BC06K–1C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type-A filter connector</td>
<td>12–14614–01</td>
<td>12–14614–01</td>
<td>12–14614–01</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>-</td>
<td>BC06K–1K</td>
<td>-</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>-</td>
<td>-</td>
<td>BC06K–03</td>
</tr>
</tbody>
</table>

Operating System Support

DSM–11	Version 3.3 and later
MicroVMS	Version 4.4 and later, using VAXlab Software Library
RSX–11M	Version 4.3 and later
RSX–11M–PLUS	Version 4.0 and later
VAXELN	Version 3.0 and later
VMS	Version 4.0 and later, using VAXlab Software Library

Diagnostic Support

| MicroVAX Diagnostic Monitor | Version 1.06 (release 106) and later |
| Power-up self-test LEDs | None |
NOTE: Each cabinet kit includes two internal cables and two type-A filter connectors.

The DRV11 is a general-purpose DMA interface for transferring 16-bit data words directly between MicroVAX II systems and a user's I/O device. The DMV11-WA is shown in Figure 1.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

The factory position for the DMA interface base address is 17772410. In this case, the base address is the address of the word count register WCR, not the CSR register. The following tables list the factory positions for the device address switch and the interrupt vector. The base address and interrupt vectors float, so the factory setting must be changed.

DRV11-WA Base Address: 17772410 (factory position)

<table>
<thead>
<tr>
<th>Address Bits</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base Address:</th>
<th>17772410</th>
<th>0 0 1 0 1 0 0 0 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17760240*</td>
<td>0 0 0 0 0 1 0 1 0 0</td>
</tr>
<tr>
<td></td>
<td>17760260</td>
<td>0 0 0 0 0 1 0 1 1 0</td>
</tr>
</tbody>
</table>

1 = on, 0 = off
* First possible floating value
DRV11-W/M7651
DRV1W-S/M7651-PA

DRV11-WA Interrupt Vector
Switchpack E40

Vector Bits: \(V_9 \) \(V_8 \) \(V_7 \) \(V_6 \) \(V_5 \) \(V_4 \) \(V_3 \) \(V_2 \)
Switches: 1 2 3 4 5 6 7 8

Vector Address:
- 124: 0 0 0 1 0 1 0 1
- 300*: 0 0 1 1 0 0 0 0

1 = on, 0 = off
* First possible floating value

Switch E40-9 is not used. Switch E40-10 must be on to enable 22-bit addressing.

Table 1 lists three other features selected by jumpers. Figure 2 shows the DRV11-WA internal cabling.

Table 1: DRV11 Jumper-Selected Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Jumper Installed</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burst mode</td>
<td>W1, W4</td>
<td>Unlimited burst 4-cycle burst (factory)</td>
</tr>
<tr>
<td>Link mode</td>
<td>W3, W4</td>
<td>Normal mode (factory) Link mode</td>
</tr>
<tr>
<td>Interrupt mode</td>
<td>W5, W6</td>
<td>Independent interrupt (factory) Ready interrupt</td>
</tr>
</tbody>
</table>
Figure 2: DRV11–WA Internal Cabling
DSV11 Communications Option

Ordering Information

Module (M3108) for BA23, BA123, and H9642–J	DSV11–AA (first DSV11 option)
Module (M3108–PA) for BA200-series	DSV11–AB (extra DSV11 option)
BA23 cabinet kit	DSV11–SA (factory installed, first DSV11 option)
BA123 cabinet kit	DSV11–SB (factory installed, extra DSV11 option)
H9642–J cabinet kit	DSV11–SF (field upgrade, first DSV11 option)
Loopback connectors (external)	DSV11–SG (field upgrade, extra DSV11 option)
	CK–DSV11–UA
	CK–DSV11–UB
	CK–DSV11–UF
	H3199 (50-pin)
	H3198 (34-pin)
	H3248 (25-pin)
	H3250 (34-pin)

Operating System Support

| | VMS |
| | Version 4.7 and later |

Diagnostic Support

| | MicroVAX Diagnostic Monitor |
| | Version 2.3 (release 124) or later |
The DSV11 is a two-channel, high-speed, synchronous communications option for use on Q-bus backplanes. The DSV11–S is shown in Figure 1.

The DSV11 supports the following synchronous communications protocols:

- DDCMP
- HDLC/SDLC
- BISYNC

The DSV11 allows any of the following synchronous interfaces:

- RS–423
- RS–422
- RS–232/V.24
- V.35
Figure 1: DSV11-S Module Layout (M3108-PA)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Use switchpack E32 (Figure 1) to set the CSR address. The CSR address floats. The actual DSV11 settings depend on the other modules in the system.

The interrupt vector also floats. It is set by the software and cannot be changed by switches.

Use switchpack E89 (Figure 1) to select the DSV11 bus grant and DMA continuity.
The following tables list the configurations for the CSR address and for the bus grant and DMA continuity:

DSV11 CSR Address: 17760640 (factory position)
Switchpack E32

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E32 Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address:
- 17760640: 0 0 0 0 1 1 0 1 0 0
- 17760740: 0 0 0 0 1 1 1 1 0 0

1 = open, 0 = closed

DSV11 Bus Grant and DMA Continuity
Switchpack E89

<table>
<thead>
<tr>
<th>E89 Switches</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSV11-M, Q/Q Slots</td>
<td>0 0 0 0 0 0 (factory position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSV11-M, Q/CD Slots</td>
<td>0 0 0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSV11-SF</td>
<td>0 0 0 0 1 1 (factory position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = open, 0 = closed
DZQ11 4-Line Asynchronous Multiplexer

Ordering Information

<table>
<thead>
<tr>
<th>Module (M3106) for BA23, BA123, and H9642–J</th>
<th>DZQ11–M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (M3106–PA) for BA200-series</td>
<td>DZQ11–SA (factory installed)</td>
</tr>
<tr>
<td></td>
<td>DZQ11–SF (field upgrade)</td>
</tr>
<tr>
<td>DZQ11 cabinet kit</td>
<td>DZQ11–M</td>
</tr>
<tr>
<td>Type-B filter connector</td>
<td>CK–DZQ11–DB</td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>70–19964–00</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>BC05L–01</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>–</td>
</tr>
<tr>
<td>Loopback connectors</td>
<td>H3277 (internal)</td>
</tr>
<tr>
<td></td>
<td>12–15336–07 (external)</td>
</tr>
<tr>
<td></td>
<td>H329 (internal)</td>
</tr>
<tr>
<td></td>
<td>H325 (external)</td>
</tr>
</tbody>
</table>

Module (M3106–PA) for BA200-series	DZQ11–SA (factory installed)
	DZQ11–SF (field upgrade)
DZQ11 cabinet kit	DZQ11–M
Type-B filter connector	CK–DZQ11–DA
30-cm (12-in) internal cable	70–19964–00
53-cm (21-in) internal cable	BC05L–1K
90-cm (36-in) internal cable	–
Loopback connectors	H3277 (internal)
	12–15336–07 (external)
	H329 (internal)
	H325 (external)

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVMS</td>
<td>Version 4.1m and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Tool</th>
<th>Support Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>All revisions</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The DZQ11 is a dual-height module that connects the Q22-bus to as many as four asynchronous serial lines. The DZQ11 conforms to the RS232-C and RS423-A interface standards. The DZQ11 permits dial-up (autoanswer) operation with modems using full-duplex operations, such as AT&T models 103, 113, 212, or the equivalent.

The DZQ11–M module layout is shown in Figure 1. The DZQ11–S module layout is shown in Figure 2, and the module handle is shown in Figure 3.
Figure 1: DZQ11–M Module Layout (M3106)
Figure 2: DZQ11–S Module Layout (M3160–PA)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
Use switchpacks E28 and E13 (Figure 1 or 2) to set the module's CSR address and interrupt vector. The CSR address and interrupt vector float. The actual positions depend on the other modules in the system. The following tables list the factory configurations and other common positions for the CSR address and interrupt vector:

DZQ11 CSR Address: 17760010 (factory position)

Switchpack E28

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E28 Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address:
- 17760010 0 0 0 0 0 0 0 0 1
- 17760100 0 0 0 0 0 0 1 0 0 0
- 17760110 0 0 0 0 0 0 1 0 0 1
- 17760120 0 0 0 0 0 0 1 0 1 0

1 = closed, 0 = open

DZQ11 Interrupt Vector: 300 (factory position)

Switchpack E13

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E13 Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Vector Address:
- 300 0 1 1 0 0 0
- 310 0 1 1 0 0 1

1 = closed, 0 = open
Figure 4 shows the internal cabling for the DZQ11–M.

Figure 4: DZQ11–M Internal Cabling
DZV11 4-Line Asynchronous Multiplexer

Ordering Information

<table>
<thead>
<tr>
<th>Module (M7957)</th>
<th>DZV11-M BA23</th>
<th>BA123</th>
<th>H9642-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZV11 cabinet kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-cm (12-in) internal cable</td>
<td>70–19964–00</td>
<td>70–19964–00</td>
<td>70–19964–00</td>
</tr>
<tr>
<td></td>
<td>BC05L–01</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>53-cm (21-in) internal cable</td>
<td>–</td>
<td>BC05L–1K</td>
<td>–</td>
</tr>
<tr>
<td>90-cm (36-in) internal cable</td>
<td>–</td>
<td>–</td>
<td>BC05L–03</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th></th>
<th>Operating System Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.1m and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>UTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>UTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th></th>
<th>Diagnostic Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor XXDP</td>
<td>Version 1.06 (release 106) and later</td>
</tr>
<tr>
<td></td>
<td>Version 2.1 (release 134):</td>
</tr>
<tr>
<td></td>
<td>VDZAD3.BIC,</td>
</tr>
<tr>
<td></td>
<td>VDZBD0.BIC, VDZCB1.BIN,</td>
</tr>
<tr>
<td></td>
<td>VDZDA0.BIN</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The DZV11, shown in Figure 1, is a quad-height module that connects a Q22-bus to as many as four asynchronous serial lines. The DZV11 conforms to the RS232 interface standard. The DZV11 permits dial-up (autoanswer) operation with modems using full-duplex operations, such as AT&T models 103, 113, 212, or the equivalent.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

Use switchpack E30 to set the CSR address, and switchpack E2 to set the vector address (Figure 1). Both the CSR address and interrupt vector float; their settings depend on the other modules in the system. The following tables list the factory configuration for the CSR address and interrupt vector:

DZV11 CSR Address: 17760010 (factory position)

Switchpack E30

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E30 Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address:

<table>
<thead>
<tr>
<th>Address</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>17760010</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17760100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 = closed, 0 = open
DZV11 Interrupt Vector: 300 (factory position)
Switchpack E2

Vector Bits: V8 V7 V6 V5 V4 V3
E2 Switches: 1 2 3 4 5 6

Vector Address:
300 0 1 1 0 0 0
310 0 1 1 0 0 1

1 = closed, 0 = open

Table 1 lists the DZV11 jumpers (Figure 1) and their configurations. Jumpers W1 through W8 are used to control modems. Jumpers W1 through W4 connect data terminal ready (DTR) to request to send (RTS); these jumpers must be installed to enable you to run external test diagnostic programs. Jumpers W5 through W8 connect the forced busy (FB) leads to the RTS leads; with these jumpers installed, the assertion of an RTS lead places an on or busy signal on the corresponding forced busy lead.

Table 1: DZV11 Jumper Configurations

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>In</td>
<td>DTR to RTS, line 03.</td>
</tr>
<tr>
<td>W2</td>
<td>In</td>
<td>DTR to RTS, line 02.</td>
</tr>
<tr>
<td>W3</td>
<td>In</td>
<td>DTR to RTS, line 01.</td>
</tr>
<tr>
<td>W4</td>
<td>In</td>
<td>DTR to RTS, line 00.</td>
</tr>
<tr>
<td>W5</td>
<td>In</td>
<td>RTS to FB, line 03.</td>
</tr>
<tr>
<td>W6</td>
<td>In</td>
<td>RTS to FB, line 02.</td>
</tr>
<tr>
<td>W7</td>
<td>In</td>
<td>RTS to FB, line 01.</td>
</tr>
<tr>
<td>W8</td>
<td>In</td>
<td>RTS to FB, line 00.</td>
</tr>
<tr>
<td>W9, W12, W13, W14, W15, W16</td>
<td>In</td>
<td>Do not remove; used only for manufacturing tests.</td>
</tr>
<tr>
<td>W10, W11</td>
<td>In</td>
<td>Remove only when the module is used where the CD rows are connected to an adjacent module.</td>
</tr>
</tbody>
</table>
Figure 2 shows the DZV11 internal cabling.

Figure 2: DZV11 Internal Cabling
IEQ11 Communications Controller

Ordering Information

Module (M8634–PA) for BA200-series Loopback connector

IEQ11–SA (factory installed)
IEQ11–SF (field upgrade)
BN01A–02

IEQ11 system for BA23, BA123, and H9642–J
Module (M8634)
Internal cable
Type-B filtered connector
Optional cable for 2nd controller

IEEE
IEQ11
IEQ11–AC
IEQ11
BN11J–0C
BN11K–0C
IEQ11–AD
BN11M–0C
BN11L–0C

Operating System Support

MicroVMS
ULTRIX–32m

Version 4.2 and later
Version 2.0 and later

Diagnostic Support

MicroVAX Diagnostic Monitor

Version 1.08 (release 108) and later

Documentation

IEU11–A/IEQ11–A User's Guide
EK–IEUQ1–UG

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power Watts</th>
<th>AC</th>
<th>DC</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ11</td>
<td>M8634</td>
<td>3.0</td>
<td>0.0</td>
<td>15.0</td>
<td>2.0</td>
<td>1.0</td>
<td>B</td>
</tr>
<tr>
<td>IEQ11–S</td>
<td>M8634–PA</td>
<td>3.5</td>
<td>0.0</td>
<td>17.5</td>
<td>2.0</td>
<td>1.0</td>
<td>–</td>
</tr>
</tbody>
</table>
The IEQ11 provides interface functions with the IEC/IEEE bus, a standard instrumentation bus. Figure 1 shows the M8634 module; the M8634–PA module layout is the same, and contains an attached BA200-series bulkhead handle to connect to external devices.

Figure 1: IEQ11 Module Layout (M8634)

The following IEEE 488–1978 interface functions are available from the IEQ11 system:

- Automatic source handshake
- Automatic acceptor handshake
- Talker and extended talker, includes serial poll capability
- Listener and extended listener
- Service request
- Remote local
- Parallel poll
- Device clear
- Device trigger
- Controller
When you order an IEQ11–AC or -AD system, you receive the M8634 module, one module-to-bulkhead cable, and an I/O bulkhead panel. You can order an optional second cable to connect the second controller on the IEQ11 module to the same bulkhead panel.

When you order an IEQ11–SF, you receive the M8634–PA module and a loopback connector (BN01A–02).

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

Two DIP switchpacks and eight jumpers determine the IEQ11 module configuration (Figure 1). Use switchpack E41 to set the CSR address, and switchpack E46 to set the interrupt vector. Remove jumpers W1, W4, W5, W6, W7, and W8. Install jumpers W2 and W3.

The following tables list the factory configurations for the IEQ11 CSR address and interrupt vector:

IEQ11 CSR Address: 17764100 (factory position)

Switchpack E41

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>E41 Switches:</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>S5</td>
<td>S6</td>
<td>S7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSR Address:</th>
<th>17764100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = on, 0 = off

IEQ11 Interrupt Vector: 270 (factory position)

Switchpack E46

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E46 Switches:</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>S5</td>
<td>S6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector Address:</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = on, 0 = off

Figure 2 shows the internal cabling for the M8634 module (IEEE version). The cable that connects to J1 on the module is included with the option. The second cable is optional. IEC cabling (not shown) also uses a type-B filtered connector and two cables.
Figure 2: IEQ11 (M8634) Internal Cabling (IEEE Version)
KDA50–Q Disk Controller

This option is available for the H9642–J and H9644 cabinets only.

Ordering Information

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDA50 controller kit</td>
<td>KDA50–QA</td>
</tr>
<tr>
<td>KDA50–Q controller processor module</td>
<td>M7164–00</td>
</tr>
<tr>
<td>KDA50–Q controller SDI module</td>
<td>M7165–00</td>
</tr>
<tr>
<td>50-conductor module interconnect cable</td>
<td>70–18448–00</td>
</tr>
<tr>
<td>40-conductor module interconnect cable</td>
<td>70–18447–00</td>
</tr>
<tr>
<td>Internal SDI cable</td>
<td>17–00951–03</td>
</tr>
<tr>
<td>Type-B filter connector (2)</td>
<td>70–21937–01</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Version Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.2 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.2 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.1 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>Version Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 1.06 (release 106) and later</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>Four LEDs (M7164)</td>
</tr>
<tr>
<td></td>
<td>Four LEDs (M7165)</td>
</tr>
</tbody>
</table>
The KDA50–Q controller connects up to four 16-bit RA series drives to the Q22-bus. The KDA50–Q consists of two quad-height modules: the processor module and the standard disk interface (SDI) module. The KDA50–Q is an intelligent controller with on-board microprocessors. Host system programs communicate with the controller and drives by using the mass storage control protocol (MSCP).

Figures 1 and 2 show the jumper, switch, and LED locations on the KDA50–Q controller module set.
Figure 1: KDA50-Q Processor Module Layout (M7164)
Figure 2: KDA50–Q SDI Module Layout (M7165)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

The KDA50–Q is an MSCP device. The CSR address for the first MSCP device in a system is 17772150. Use the switchpack on the M7164 processor module (Figure 1) to set the CSR address. If you install more than one MSCP device, you must set the CSR address of the second device within the floating range. Figure 3 shows how to operate the address selector switch.
Figure 3: KDA50–Q Address Selector Switch

Rocker

- **OFF POSITION**
- **ON POSITION**

Modified Rocker

- **OFF POSITION**
- **RED BAND HERE**
- **ON POSITION**
- **RED BAND HERE**

Slider

- **OFF POSITION**
- **ON POSITION**

Note: In each illustration, switches 1 through 9 are shown in the off position, and switch 10 is shown in the on position.
The factory configuration for the CSR address is shown below.

MSCP CSR Address: 17772150 (factory position)

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M7164 Switches:</td>
<td>W1</td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S4</td>
<td>S5</td>
<td>S6</td>
<td>S7</td>
<td>S8</td>
<td>S9</td>
<td>S10</td>
</tr>
</tbody>
</table>

CSR Address:

17772150 1 0 1 0 0 0 1 1 0 1 0

Possible settings for a second MSCP device:

17760334 0 0 0 0 0 1 1 0 1 1 1
17760354 0 0 0 0 0 1 1 1 0 1 1
17760374 0 0 0 0 0 1 1 1 1 1 1

1 = switch on or M7164 jumper W1 in.
0 = switch off or M7164 jumper W1 out.

The interrupt vector for the KDA50–Q is set under program control. The first MSCP device is assigned a fixed interrupt vector of 154. If you install a second MSCP device (KDA50–Q), its interrupt vector floats.

NOTE: If you use an RQDX disk controller, always make the RQDX the first MSCP device in the backplane and give the KDA50 a floating CSR address.

Figure 4 shows the internal cabling for the module set intended for the H9642–J cabinet.
Figure 4: KDA50–Q Internal Cabling

- M7164
- M7165
- J1
- J2
- J3
- J4
- 50-CONDUCTOR FLAT RIBBON CABLE
- 40-CONDUCTOR FLAT RIBBON CABLE
- BULKHEAD ASSEMBLY
- INTERNAL SDI CABLE
- SLOT F OR G
- SLOT J OR K
- (H3490)

Microsystems Options 7
Power-Up Tests

Figure 5 shows the KDA50–Q LEDs for both the M7164 and M7165 modules. Table 1 lists the LED error codes. When the table lists two codes for the same error, both codes indicate the same failure. The order of the KDA50–Q LEDs is reversed (1 2 4 8) when you view the module with the handles placed horizontally (chips upward).

Figure 5: KDA50–Q Module LEDs

Table 1: KDA50 LED Error Codes

<table>
<thead>
<tr>
<th>M7164</th>
<th>M7165</th>
<th>Hex Value</th>
<th>Most Likely Error Symptom</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>XXXX</td>
<td>1</td>
<td>Undefined</td>
<td>Not used</td>
</tr>
<tr>
<td>0010</td>
<td>0000</td>
<td>2</td>
<td>Microcode stuck in init step 2</td>
<td>M7164 or software</td>
</tr>
<tr>
<td>0011</td>
<td>0000</td>
<td>3</td>
<td>Microcode stuck in init step 3</td>
<td>See Note 1.</td>
</tr>
<tr>
<td>0100</td>
<td>0000</td>
<td>4</td>
<td>Microcode stuck in init step 4 or Q-bus timeout error</td>
<td>M7164 or host inactive</td>
</tr>
<tr>
<td>010F</td>
<td>0000</td>
<td>4/5</td>
<td>Test successful. Normal operating display.</td>
<td>–</td>
</tr>
<tr>
<td>0110</td>
<td>XXXX</td>
<td>6</td>
<td>Undefined</td>
<td>Not used</td>
</tr>
<tr>
<td>XXXX</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>XXXX</td>
<td>7</td>
<td>Undefined</td>
<td>Not used</td>
</tr>
<tr>
<td>XXXX</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0000</td>
<td>8</td>
<td>Wrap bit 14 set in SA register.</td>
<td>M7164 or software</td>
</tr>
</tbody>
</table>

\(^1\) 1 = on, 0 = off, X = either on or off, F = flashing
Table 1 (Cont.): KDA50 LED Error Codes

<table>
<thead>
<tr>
<th>M7164 8421</th>
<th>M7165 8421</th>
<th>Hex Value</th>
<th>Most Likely Error Symptom</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001 0000</td>
<td>1001 0000</td>
<td>9</td>
<td>Board one error.</td>
<td>M7164</td>
</tr>
<tr>
<td>1010 0000</td>
<td>1010 0010</td>
<td>A</td>
<td>Board two error.</td>
<td>M7165</td>
</tr>
<tr>
<td>1011 XXXX</td>
<td>1011 XXXX</td>
<td>B</td>
<td>Undefined</td>
<td>Not used</td>
</tr>
<tr>
<td>XXXX 1100</td>
<td>XXXX 1100</td>
<td>C</td>
<td>Timeout error, check error code in SA register</td>
<td>Many causes. See Table 2-2 in KDA50-Q User’s Guide.</td>
</tr>
<tr>
<td>1101 XXXX</td>
<td>1101 XXXX</td>
<td>D</td>
<td>RAM parity error</td>
<td>M7165</td>
</tr>
<tr>
<td>1110 XXXX</td>
<td>1110 XXXX</td>
<td>E</td>
<td>ROM parity error</td>
<td>M7164</td>
</tr>
<tr>
<td>1111 1111</td>
<td>–</td>
<td>F</td>
<td>Sequencer error</td>
<td>M7164</td>
</tr>
<tr>
<td>Cycling</td>
<td>–</td>
<td>None</td>
<td></td>
<td>See KDA50 LED Error Codes below.</td>
</tr>
</tbody>
</table>

1 = on, 0 = off, X = either on or off, F = flashing

KDA50 LED Error Codes

- Error code 3 (0011) usually occurs during installation. The error indicates that the KDA50-Q tried to access memory via the Q22-bus. The module detected a problem during a direct memory access (DMA). Here are four typical causes for this error, with suggested solutions.

1. **Q22-bus routing in the backplane.**

 You may need to install grant continuity cards in unused module slots (either dual or quad), to ensure that DMA devices that are installed on the Q22-bus later will work correctly. Routing problems seldom occur when another DMA device is installed immediately after the KDA50-Q in a correctly working Q22-bus sequence.

2. **DMA access to memory.**

 The KDA50-Q may be unable to access memory because of a problem with the memory or CPU modules. This problem seldom occurs if another DMA device is installed on the same Q22-bus.
3. Grant-passing devices.

Check the applicable CPU maintenance documentation to find what installed devices come before the KDA50–Q in the Q22-bus grant continuity sequence. One or more devices may not properly pass grants to the following devices in the sequence. You must place the KDA50–Q before any such device(s) in the backplane. Grant-passing problems seldom occur if another DMA device follows the KDA50–Q in the Q22-bus sequence.

If none of the problems above is the cause of this error, the M7164 module may be at fault.

- During a cycling pattern, the M7164 LEDs flash first, then the M7165 LEDs. The LEDs flash one at a time, from the least significant bit (LSB) to the most significant bit (MSB). The LEDs turn on and off for about 0.25 second, then repeat at about a 4-second rate. The pattern happens so rapidly that it appears the LEDs are flashing at the same time.

The LEDs normally cycle while the KDA50–Q is waiting for the host to start the initialization process. At this time, the KDA50–Q responds to the initialization and the cycling pattern stops. This action normally occurs in about 4 seconds if the system software is ready to establish a connection with the KDA50–Q.

If the cycling pattern continues beyond the start of the initialization process, the KDA50–Q is not responding to the host CPU.
KMV1A–M, –S Programmable Communications Controller

Ordering Information

<table>
<thead>
<tr>
<th>Module (M7500–PA) for BA200-series enclosures RS232–C/CCITT V.23 interface</th>
<th>KMV1A–SF (field upgrade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module (M7500–PB) for BA200-series enclosures RS422–A/CCITT V.11 interface</td>
<td>KMV1A–SG (field upgrade)</td>
</tr>
<tr>
<td>Module (M7500–PC) for BA200-series enclosures RS423–A/CCITT V.10 interface</td>
<td>KMV1A–SH (field upgrade)</td>
</tr>
<tr>
<td>Module (M7500) for BA23, BA123, and H9642–J</td>
<td>KMV1A–M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabinet kits</th>
<th>BA23</th>
<th>BA123</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS232–C/CCITT V.23 interface</td>
<td>CK–KMV1A–AB</td>
<td>CK–KMV1A–AA</td>
<td>CK–KMV1A–AF</td>
</tr>
<tr>
<td>RS422–A/CCITT V.11 interface</td>
<td>CK–KMV1A–EB</td>
<td>CK–KMV1A–EA</td>
<td>CK–KMV1A–EF</td>
</tr>
<tr>
<td>RS423–A/CCITT V.10 interface</td>
<td>CK–KMV1A–FB</td>
<td>CK–KMV1A–FA</td>
<td>CK–KMV1A–FF</td>
</tr>
</tbody>
</table>

Operating System Support

| MicroVMS ULTRIX–32m | Version 4.2 and later | Version 2.2 and later |

Diagnostic Support

| MicroVAX Diagnostic Monitor Power-up self-test LEDs | Revision 1.08 and later | Three LEDs |
The KMV1A is a programmable data communications interface for systems that use the Q22-bus. The quad-height KMV1A provides the following features:

- Direct memory access (DMA) across the Q22-bus, for medium-speed transmission and reception with minimum programming overhead
- DCT11 microprocessor executing the PDP-11 base-level instruction set
- Multiprotocol serial controller chip
- 4K words of EPROM with root firmware and power-up self-test diagnostics
- Application mode operation, for customer-developed firmware using the PDP-11 instruction set
- 32 Kbytes of RAM space, for implementation of data-link protocols
- Synchronous (bit-oriented or byte-oriented) and asynchronous capabilities for application firmware
- Extensive modem signal support
- Onboard, programmable null modem clock

Figure 1 shows the module layout for the KMV1A-M and KMV1A-S. Figure 2 shows the KMV1A-S module with handle.
Figure 1: KMV1A Module Layout (Example)
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

The CSR address and interrupt vector are set using two switchpacks, E29 and E13 (Figure 1). For the CSR address, use switches 1 through 9 on switchpack E29. For the interrupt vector, use switches 1 through 7 on switchpack E13.
The CSR address for the KMV1A floats; its factory position is 17760020. The interrupt vector floats; its factory position is 320. The following tables list the factory configurations for the CSR and vector addresses:

KMV1A CSR Address: 17760020 (factory position)

Switchpack E29

<table>
<thead>
<tr>
<th>Address Bits</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E29 Switches</td>
<td>S9</td>
<td>S8</td>
<td>S7</td>
<td>S6</td>
<td>S5</td>
<td>S4</td>
<td>S3</td>
<td>S2</td>
<td>S1</td>
</tr>
<tr>
<td>CSR Address:</td>
<td>17760020</td>
<td>0 0 0 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KMV1A Interrupt Vector: 320 (factory position)

Switchpack E13

<table>
<thead>
<tr>
<th>Vector Bits</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E13 Switches</td>
<td>S7</td>
<td>S6</td>
<td>S5</td>
<td>S4</td>
<td>S3</td>
<td>S2</td>
</tr>
<tr>
<td>Vector Address:</td>
<td>320</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1 lists the positions for switches 1 through 8 on switchpack E85 (Figure 1), which determine the interfaces: RS–423–A, RS–232–C, or RS–422–A. Be sure that switches 9 and 10 on switchpack E85 remain in the On position, to enable CCITT 107 and CCITT 112.

Table 1: KMV1A Switchpack E85 Positions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>2</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>3</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>4</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>5</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>6</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>7</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>8</td>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>
The KMV1A has three self-test LEDs. Switches S8 on switchpack E13, and S10 on switchpack E29 effect self-test operation, as listed in Table 2. The KMV1A LED codes are described in Table 3.

Table 2: KMV1A Self-Test Switches

<table>
<thead>
<tr>
<th>E13 S8</th>
<th>E29 S10</th>
<th>Self-Test Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>Disabled</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Enabled (factory position, start via CSR command or at power-up, for one pass)</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Self-test manual start for continuous loop</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Extended self-test start for continuous loop</td>
</tr>
</tbody>
</table>

Table 3: KMV1A LED Codes

<table>
<thead>
<tr>
<th>Red</th>
<th>Yellow</th>
<th>Green</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Self-test started. (Should remain in this state for 10 seconds if test is enabled, and indefinitely if test is disabled.)</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Self-test in process.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Successful self-test.</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Unsuccessful self-test.</td>
</tr>
</tbody>
</table>

1When you set the module self-test switch for continuous loop, the green LED cycles on and off (10 seconds for a normal self-test and 0.05 second for an extended self-test).

Figure 3 shows the internal cabling for the KMV1A–M.
Figure 3: KMV1A–M Internal Cabling
KWV11-C, -S Programmable Real-Time Clock

Ordering Information

Module (M4002) for BA23, BA123, and H9642–J
Module (M4002–PA) for BA200-series
Cabinet kit (BA23)
Cabinet kit (BA123)
UDIP parts

KWV11–C
KWV11–SA (factory installed)
KWV11–SF
CK–KWV1C–KA
CK–KWV1C–KC
See Table 2 of this section.

Operating System Support

DSM–11
MicroVMS
Version 3.3 and later
Version 4.4 and later, using VAXlab Software Library

RSX–11M
RSX–11M–PLUS
VAXELN
VMS
Version 4.3 and later
Version 4.0 and later
Version 2.0 and later
Version 5.0 and later, using VAXlab Software Library

Diagnostic Support

MicroVAX Diagnostic Monitor
Power-up self-test LEDs
Version 1.08 (release 108) and later
See module documentation.
The KWV11 is a programmable real-time clock. You can program the KWV11 to count from one to five crystal-controlled frequencies. The frequencies can come either from an external frequency or event or from a 50 or 60 Hz line frequency on the Q-bus.

The KWV11 can either generate interrupts or it can synchronize the processor to external events. The KWV11-C module (M4002) is shown in Figure 1; module M4002-PA has the same module layout as the M4002, and contains an attached BA200-series bulkhead handle to connect to external devices.
The KWV11 has two Schmitt triggers that have three possible functions:

- Start the clock
- Serve as an external trigger for other modules (such as the ADV11–D or AAV11–D)
- Generate interrupts

A clock overflow can also serve as an external trigger to other modules.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
Use switchpacks SW1 and SW2 on the KWV11 (Figure 1) to set the CSR address and interrupt vector. The CSR is fixed for the first KWV11, and floats for secondary units. All vectors float. The following tables list the factory configurations for the CSR address and interrupt vector:

KWV11 CSR Address: 17770420 (factory position)
Switchpacks SW1 and SW2

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchpack:</td>
<td>SW1--------------------> SW2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switches:</td>
<td>1 2 3 4 5 6 7 8 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CSR Address:

| 17770420 | 0 0 0 1 0 0 0 1 0 0 |

1 = on, 0 = off

KWV11 Interrupt Vector: 440 (factory position)
Switchpack SW2

<table>
<thead>
<tr>
<th>Interrupt</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW2 Switches:</td>
<td>3 4 5 6 7 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vector Address:

| 440 | 1 0 0 1 0 0 |
| 300 | 0 1 1 0 0 0 |

1 = on, 0 = off

The two Schmitt triggers condition the input waveforms to a form the user needs. You can adjust both to trigger at any level in the ±12 V range (or at TTL fixed levels) and on either the positive or negative slope of the input signal. Switchpack SW3 consists of three switches and a potentiometer for each Schmitt trigger (Figure 1). The use of these switches and potentiometers is shown in Figure 2.
Figure 2: KWV11-C/-S Slope and Reference-Level Switches

- TTL REFERENCE
- VARIABLE REFERENCE
 - ST1 LVL ADJ
 - ST2 LVL ADJ
 - STPOT 1 (J1-29)
 - STPOT 2 (J1-31)
- OFF
- ON
- SW3
- ST LEVEL 1
 - ST LEVEL 2
 - ST SLOPE 1 (J1-25)
 - ST SLOPE 2 (J1-27)
 - EXTERNAL LEVEL CONTROL
- BOARD FINGERS
Table 1 describes the Schmitt trigger settings.

Table 1: KWV11-C/-S Schmitt Trigger Settings

<table>
<thead>
<tr>
<th>SW3 Switch Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>With this switch on and switch 2 off, ST1 fires at a level determined by the ST1 LVL ADJ potentiometer with a range of ±12 V. Switches 1 and 2 cannot be on together.</td>
</tr>
<tr>
<td>2</td>
<td>With this switch on and switch 1 off, ST1 fires at a fixed reference level for TTL logic. The potentiometer has no effect. Switches 1 and 2 cannot be on together.</td>
</tr>
<tr>
<td>3</td>
<td>With this switch on and switch 4 off, ST2 fires at a level determined by the ST2 LVL ADJ potentiometer within a range of ±12 V. Switches 3 and 4 cannot be on together.</td>
</tr>
<tr>
<td>4</td>
<td>With this switch on and switch 3 off, ST2 fires at a fixed reference level for TTL logic. The potentiometer has no effect. Switches 3 and 4 cannot be on together.</td>
</tr>
<tr>
<td>5</td>
<td>When this switch is off, ST1 fires on the negative slope (high to low transition) of the input signal. When on, ST1 fires on the positive slope (low to high transition).</td>
</tr>
<tr>
<td>6</td>
<td>When this switch is off, ST2 fires on the negative slope of the input signal. When on, ST2 fires on the positive slope.</td>
</tr>
<tr>
<td>7, 8</td>
<td>Not used.</td>
</tr>
</tbody>
</table>

To facilitate connections to the KWV11-C or KWV11-S, you can use a universal data interface panel (UDIP). This panel provides BNC cable connectors and push-tab barrier strips for making cabling connections. The panel, like other universal data interface panels, is installed in a UDIP-BA mounting box. Up to three panels can be installed in a mounting box. The mounting box/panel assembly can then be installed in any standard media mounting slot normally used for TK50, RX50, or RD50-series media devices. The mounting box can also be mounted in a tabletop (UDIP-TA) expansion box for use as an external connection box.
The KWV11 UDIP Components are listed in Table 2.

Table 2: KWV11 UDIP Components

<table>
<thead>
<tr>
<th>Module</th>
<th>Enclosure</th>
<th>Front Panel</th>
<th>Mounting Box</th>
<th>Tabletop Box</th>
<th>Other Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWV11–S</td>
<td>BA200-series</td>
<td>UDIP–KB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>None</td>
</tr>
<tr>
<td>KWV11–C</td>
<td>BA123 media slot</td>
<td>UDIP–KA</td>
<td>UDIP–BA</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>KWV11–C</td>
<td>BA123 with tabletop</td>
<td>UDIP–KB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–KWV1C–KC</td>
</tr>
<tr>
<td>KWV11–C</td>
<td>BA23 with tabletop</td>
<td>UDIP–KB</td>
<td>UDIP–BA</td>
<td>UDIP–TA</td>
<td>CK–KWV1C–KA</td>
</tr>
</tbody>
</table>
LPV11/LP25 and LPV11/LP26 Printer Subsystems (LP25 and LP26 Printers)

Ordering Information

Module (M8027–PA) for BA200-series	LPV11–SA (factory installed)
Module (M8027) for BA23, BA123, and H9642–J	LPV11–SF (field installed)
LPV11/LP25	LPV11/LP26

Printer system
- LPV11–B
- LPV11–F
- LP25–BA
- LP26–EB
- BC27A–30
- BC27A–30
- LPV11–00
- LPV11–00
- BA23
- BA123
- H9642–J

Cabinet kit
- CK–LPV1A–KA
- CK–LPV1A–KB
- CK–LPV1A–KF
- BC05L–1C
- –
- BC05L–1K
- –
- 70–20398–00
- 70–20398–00
- 70–20398–00
- 70–20398–00
- 53-cm (21-in) cable
- –
- BC05L–03

Operating System Support

- DSM–11: Version 3.3 and later
- Micro/RSTS: Version 2.2 and later
- Micro/RSX: Version 4.0 and later
- MicroVMS: Version 4.2 and later
- RSTS/E: Version 9.5 and later
- RT–11: Version 5.4D and later
- ULTRIX–32m: Version 2.0 and later
- VAXELN: Version 2.0 and later

Diagnostic Support

- MicroVAX Diagnostic Monitor: Version 1.06 (release 106) and later
- Power-up self-test LEDs: None
DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power Watts</th>
<th>AC</th>
<th>DC</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPV11</td>
<td>M8027</td>
<td>0.8</td>
<td>0.0</td>
<td>4.0</td>
<td>1.4</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>LPV11–S</td>
<td>M8027–PA</td>
<td>1.6</td>
<td>0.0</td>
<td>8.0</td>
<td>1.8</td>
<td>0.5</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE: Use cabinet kits CK–LPV1A–KA and –KB with a part revision of B1 or higher only. Use cabinet kit CK–LPV1A–KF with a part revision of A1 or higher only. The packing slip included with the cabinet kit contains the revision number. (Make sure the 70–20398 connectors are at part revision D1 or later. A label on the bottom of the module contains the part number for the connector.)
The LPV11 module controls the flow of data between the Q22-bus and a line printer. Figure 1 shows the M8027 module. Figure 2 shows the M8027-PA module, which consists of two LPV11 modules and an attached bulkhead handle.

Figure 1: LPV11 Module Layout (M8027)

NOTE: o = WIRE-WRAP PIN.
Figure 2: LPV11–SA Module Layout (M8027–PA)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
You set the CSR address and interrupt vector of the LPV11 by using jumpers.

- On the M8027 module, use jumpers W2, W3, and W4 to set the CSR address, and use jumpers W9 through W14 and jumper V7 to set the interrupt vector (Figure 1).

- On the M8027-PA module, use the LPA0 jumpers to set the CSR address and interrupt vector for the first LPV11; use the LPB0 jumpers to set the CSR address and interrupt vector for the second LPV11 (Figure 2).

The CSR addresses and interrupt vectors are fixed. The following tables list the factory configurations for a first and second LPV11.

LPV11 CSR Address: 17777514 (factory position)

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumpers:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSR Address:</th>
<th>17777514</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>17764004</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

M8027 module: 0 = installed, 1 = removed
M8027-PA module: 0 = bottom and center post
1 = top and center post

LPV11 Interrupt Vector: 200 (factory position)

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumpers:</td>
<td>W14</td>
<td>V7</td>
<td>W13</td>
<td>W12</td>
<td>W11</td>
<td>W10</td>
<td>W9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector Address:</th>
<th>200</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

M8027 module: 0 = installed, 1 = removed
M8027-PA module: 0 = bottom and center post
1 = top and center post
Figure 3 shows the LPV11 internal cabling.

Figure 3: LPV11 Internal Cabling

INSTALL W1 FOR PRINTERS WITH DAVFU OPERATIONS.
INSTALL W2 FOR PRINTERS REQUIRING NEGATIVE STROBE (LA180).
RA60 Disk Drive

The RA60 disk drive is supported in the H9642–J cabinet only. Order both the RA60 disk drive and cables and the interconnect cable when installing the RA60 option.

Ordering Information

<table>
<thead>
<tr>
<th>RA60 disk drive and cables (120 V, 240 V)</th>
<th>RA60–AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interconnect cable with connector block</td>
<td>BC26–V6</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>DSM–11</th>
<th>Version 3.3 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.2 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.2 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.1 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>MicroVAX Diagnostic Monitor</th>
<th>Revision 1.06 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The RA60 is a high-capacity, removable disk drive with 205 Mbytes of formatted storage space (Figure 1). The RA60 uses microprocessor-controlled diagnostics and a 170-bit error correction code (ECC) to ensure data reliability. The RA60 operates with the KDA50 controller set.

Figure 1: RA60 Disk Drive

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDA50–Q</td>
<td>M7164, M7165</td>
<td>+5 V 13.5, +12 V 0.03</td>
<td>67.9</td>
<td>3.0 AC, 0.5 DC</td>
<td>(2) B</td>
</tr>
</tbody>
</table>

DC Power and Bus Loads

- **Current (Amps)**
 - +5 V: 13.5
 - +12 V: 0.03
- **Power**
 - Watts: 67.9
- **Bus Loads**
 - AC: 3.0
 - DC: 0.5
- **Insert**: (2) B
The RA60/RA81 cabling is shown in Figure 2. The BC26V–6 cable includes a connector block for connecting RA60 cables. The connector block is mounted on the bracket at the lower rear of the cabinet (Figure 2).

Figure 2: RA60/RA81 Cabling, H9642–J Cabinet

* FACTORY CONFIGURATION - PORT 0. IN THIS CONFIGURATION THE PORT A SWITCHES ON BOTH DRIVES MUST BE DEPRESSED.

** PORT 0: CORRESPONDS TO PORT A FOR THE PRIMARY CPU.
PORT 1: CORRESPONDS TO PORT B FOR AN EXTERNAL CPU.
RA60 Fan Filter

The fan filter is an RA60 field replaceable unit (FRU). Remove the RA60 fan filter as follows:

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

1. Remove the RA60 from the cabinet according to the procedures in the FRU section of *H9642–J Cabinet Maintenance*.

2. Remove the six screws that hold the RA60 bezel in place. The bezel is shown in Figure 3.

3. Disconnect P401 from the RA60 front panel module.

4. Pivot the bezel so the cover catch retainer clears the cross brace. Remove the bezel.

5. Remove the fan filter assembly by sliding it forward (Figure 3).
Figure 3: Removing the RA60 Fan Filter
RA70 Disk Drive

Ordering Information

RA70 drive kit

RA70-AF

Operating System Support

ULTRIX-32m
Version 2.2 and later
VMS
Version 4.6a and later

Diagnostic Support

MicroVAX Diagnostic Monitor
Version 2.11 (release 121) and later
Power-up self-test LEDs
Two LEDs

Documentation

RA70 Disk Drive Service Manual
EK-ORA70–SV

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDA50–Q</td>
<td>M7164</td>
<td>6.93</td>
<td>0</td>
<td>34.6</td>
<td>3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>KDA50–Q</td>
<td>M7165</td>
<td>6.57</td>
<td>0.03</td>
<td>33.21</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
The RA70 is a full-height, 13.1-cm (5.25-in) fixed-disk drive, with a storage capacity of 280 Mbytes. The RA70 drive has four connectors, shown in Figure 1.

Figure 1: RA70 Connectors

![RA70 Connectors Diagram](image)

The RA70 drive also has Ready and Fault indicators on the drive itself (Figure 2), but they are not visible because the RA70 is mounted with the front facing the inside of the mass storage area. The indicators on the operator console panel duplicate the indicators on the drive.

All RA70 indicators normally light on the operator control panel (OCP) when power is applied to the drive, while the drive is performing internal start-up diagnostics. This indicator should go out within 15 seconds. If any indicator remains on, or lights at any time other than during the first 15 seconds after start-up, the drive has detected a drive fault.

If the drive has detected a fault, you can press the fault indicator button to get a flashing error code from all six of the indicators on the operator console panel.

If no fault is found, you can use the fault indicator button as a lamp tester.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

The RA70 contains a Unit Select/Accept switch and a Unit Select DIP switch, both shown in Figure 2. Neither of these switches is accessible once the RA70 is installed, so you must set the Unit Select DIP switch to the correct setting before installing the drive. The Unit Select DIP switch sets the unit number by which the drive is known to the host system. It is an 8-bit binary switch, with switch 1 as the least significant bit (LSB).

WARNING: The RA70 is heavy (4.72 kg; 10.4 lb). Be prepared for the weight when handling the drive.
Set the unit number using the following DIP switches:

<table>
<thead>
<tr>
<th>Drive Number</th>
<th>DIP Switch Setting (1 = switch on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0 0 0 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0 0 0 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 0 0 0 0 0 1 1</td>
</tr>
</tbody>
</table>

The Unit Select/Accept switch is used to notify a drive that the unit number has been changed, while the system is operating. Because the RA70 drive is mounted facing the rear of the system, this switch is inaccessible during system operation and is not used.

Figure 3 shows the cabling for RA70s in a dual-cabinet configuration where two processors share RA70s.

Figure 3: RA70 Dual-Cabinet Cabling
RA70 Diagnostics

If an RA70 drive detects a fault at power-up, the Fault indicator lights. and the drive remains off line. At that point, you can press the Fault indicator, and the six indicator lights on the operator console panel flash a hexadecimal error code, in a range from 00 to 3F. The RA70 Service Guide describes each code. Figure 4 shows the indicators that form the hex display listed in the table. The lights indicate the following FRUs:

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Indicator</th>
<th>Most Probable FRU</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>000000</td>
<td>None</td>
</tr>
<tr>
<td>1F</td>
<td>011111</td>
<td>Head disk assembly (HDA)</td>
</tr>
<tr>
<td>3F</td>
<td>111111</td>
<td>System power supply</td>
</tr>
<tr>
<td>All others</td>
<td>-</td>
<td>Electronic control module (ECM)</td>
</tr>
</tbody>
</table>

Figure 4: Operator Console Panel Indicators

RA70 Error Logs

When a fault occurs, error codes are generated and stored in the host error log (if it is enabled), and the RA70 internal drive error log. The host error log captures four generic status bytes (including an error byte) and eight extended status bytes (including a drive state and error code byte). These bytes are described in detail in the RA70 Disk Drive Service Manual.

The RA70 internal drive error log also captures the error log byte. RA-series internal drive error logs are invoked through the Field Service version of the MicroVAX Diagnostic Monitor (MDM), as follows:

1. From the MDM Main Menu, select 4: Display the Service Menu.
2. Select 3: Display the Device Menu.
3. Select the KDA50: Q-bus SDI disk controller.
4. Display the Device Utilities Menu.

5. Select 3: Drive Internal Error Log Utility.

The format of the Internal Drive Error Log is shown in Example 1.

Example 1: RA70 Internal Drive Error Log Format

<table>
<thead>
<tr>
<th>Entry Loctn</th>
<th>Entry Count</th>
<th>Err Type</th>
<th>Err Code</th>
<th>Seek Count</th>
<th>Mfg Code</th>
<th>Drive Specific Hex Data (D)</th>
<th>Drive Specific Hex Data (H)</th>
<th>Drive Err Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>DE</td>
<td>39</td>
<td>453122</td>
<td>32</td>
<td>00 00 09 0A 00 00 00 04 32 58</td>
<td>wrg6off.trk.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>DE</td>
<td>E7</td>
<td>452446</td>
<td>33</td>
<td>00 00 09 04 FF FB 0B 05 42 75</td>
<td>inc.lhd.sek.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>DE</td>
<td>E9</td>
<td>452446</td>
<td>34</td>
<td>00 00 09 03 FF FB 0B 05 12 9D</td>
<td>exp.sek.tmr.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>00</td>
<td>451699</td>
<td>00</td>
<td>00</td>
<td>00 00 09 02 02 F6 05 04 79 A0</td>
<td>drv.sys.ini.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>00</td>
<td>451699</td>
<td>00</td>
<td>00</td>
<td>00 00 09 01 02 F6 05 04 7A BB</td>
<td>exp.cn1.atn.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>00</td>
<td>451616</td>
<td>00</td>
<td>00</td>
<td>00 00 09 00 00 00 00 00 00 00 40 C0</td>
<td>drv.pwr.rst.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>00</td>
<td>451616</td>
<td>00</td>
<td>00</td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 passed.test.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ten bytes of drive-specific hex data printed by the internal error log are divided by the RA70 into the following six data fields:

- Logic processor number of minutes
- Servo processor destination cylinder
- Servo processor destination logical head number
- Servo processor physical state number
- Logic processor logical state bit flags
- Logic processor fault number

Two possible occurrences are displayed in the Error Type and Error Code columns: events and errors.

An error has an Error Type such as DE and an Error Code consisting of a nonzero value, as shown in the first three lines in the sample log above.

An event has a blank Error Type and an Error Code of 00, as shown in the last five lines in the sample log above.
The error codes in the Error Code column of the internal error log are described in the *RA70 Disk Drive Service Manual*. The most probable causes of errors to the field replaceable units (FRUs) are listed in Table 1.

NOTE: The RA70 is not an FRU. The FRUs are the Electronic Control Module (ECM) and the Head Disk Assembly (HDA).

Table 1: RA70 Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Most Probable Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECM</td>
</tr>
<tr>
<td>03</td>
<td>1</td>
</tr>
<tr>
<td>06</td>
<td>1</td>
</tr>
<tr>
<td>07</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>1</td>
</tr>
<tr>
<td>09</td>
<td>1</td>
</tr>
<tr>
<td>0B</td>
<td>1</td>
</tr>
<tr>
<td>0C</td>
<td>1</td>
</tr>
<tr>
<td>0E</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>1D</td>
<td>1</td>
</tr>
<tr>
<td>1E</td>
<td>1</td>
</tr>
<tr>
<td>1F</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>3C</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
</tr>
<tr>
<td>Error Code</td>
<td>ECM</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>4B</td>
<td>1</td>
</tr>
<tr>
<td>4D</td>
<td>1</td>
</tr>
<tr>
<td>4E</td>
<td>1</td>
</tr>
<tr>
<td>4F</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>8A</td>
<td>1</td>
</tr>
<tr>
<td>8B</td>
<td>1</td>
</tr>
<tr>
<td>8C</td>
<td>1</td>
</tr>
<tr>
<td>8D</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>95</td>
<td>1</td>
</tr>
<tr>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>C6</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
</tr>
<tr>
<td>CD</td>
<td>1</td>
</tr>
<tr>
<td>DB</td>
<td>1</td>
</tr>
<tr>
<td>E0–EF</td>
<td>1</td>
</tr>
<tr>
<td>F2</td>
<td>1</td>
</tr>
<tr>
<td>FD</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2 lists part numbers for RA70 drive hardware for BA200-series enclosures.

Table 2: RA70 Part Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable, RA70 to signal distribution board</td>
<td>17-00847-06</td>
</tr>
<tr>
<td>RA70 ECM</td>
<td>70-22494-01</td>
</tr>
<tr>
<td>RA70 HDA</td>
<td>70-21946-01</td>
</tr>
<tr>
<td>RA70 operator control panel (OCP)</td>
<td>54-17232-01</td>
</tr>
<tr>
<td>RA70 shoe plate</td>
<td>70-22474-01</td>
</tr>
<tr>
<td>RA70 shock mount top (attach to drive)</td>
<td>74-24559-02</td>
</tr>
<tr>
<td>RA70 shock mount bottom (attach to drive)</td>
<td>74-24559-01</td>
</tr>
<tr>
<td>RA70 shock mount top (attach to enclosure)</td>
<td>70-23997-05</td>
</tr>
<tr>
<td>RA70 shock mount bottom (attach to enclosure)</td>
<td>70-23997-06</td>
</tr>
<tr>
<td>Screws for RA70 drive slides (4)</td>
<td>90-10155-00</td>
</tr>
</tbody>
</table>

Electronic Control Module (ECM)

The electronic control module is an RA70 field replaceable unit (FRU). Remove the ECM from the RA70 drive as follows.

WARNING: *The RA70 is much heavier (4.72 kg; 10.4 lb) than other 13.1-cm (5.25-in) drives. Be prepared for the extra weight when handling the drive.*

CAUTION: *Disk drives are susceptible to electrostatic damage. Do not handle the RA70 disk drive unless you are wearing an antistatic wrist strap that is properly grounded to the enclosure frame. Use the Antistatic Kit (29-26246). When you have removed the drive, place it on the antistatic mat.*
Refer to Figure 5 as you use the following procedure:

1. Remove the RA70 drive from the BA200-series enclosure, using the procedure in the FRU section of the appropriate enclosure maintenance documentation.

2. Remove the RA70 side slides.

3. Using a medium-sized Phillips screwdriver, carefully remove the four screws that secure the shoe plate to the mounting assembly. Removing the shoe plate exposes the ECM and the four quarter-inch nuts that secure the ECM.

4. Use a quarter-inch nut driver to remove the nut at each corner of the ECM assembly.

5. Remove the ECM by carefully pulling it away from the HDA. Because of the length of the connector pins, you may need to rock the ECM slightly to free the ECM assembly from the connectors on the HDA.

CAUTION: The ECM is a two-module set. Do not take the module assembly itself apart.
Figure 5: RA70 Components

- SHOCK ISOLATOR GROMMET
- SCREW
- GROMMET BUSHING
- SCREW FOR SHOE PLATE ATTACHMENT
- TOP COVER/HDA
- MODULE SET
- BASEPLATE CORNER POSTS
- SHOE PLATE
- MODULE RETENTION KEP NUT
- CHASSIS
Preparing the ECM for Return

You must use a special conductive container to ship a defective module assembly to a repair depot. Attach the wrist strap from the Antistatic Kit (29-26246) to the conductive container before placing the faulty FRU inside the container (Figure 6). The container itself is conductive and is therefore grounded to the surface on which it is placed.

After placing the ECM in the container, secure the snaps on the front of the container. The FRU is now ready for shipment.
Figure 6: RA70 Conductive Container
Replacing the ECM

NOTE: Use the Antistatic Kit (29-26246) when handling the ECM.

Replace the four quarter-inch nuts and finger tighten. Using the quarter-inch nut driver, tighten each nut one-quarter or one-half turn, as needed.

Head Disk Assembly (HDA)

The head disk assembly (HDA) is an RA70 FRU. Remove the ECM from the HDA and the RA70 chassis. See the procedure under Electronic Control Module (ECM).

NOTE: It is not necessary to disconnect the HDA from the chassis. The chassis is part of the head disk assembly FRU.

Before installing the new HDA, remove the shunt terminator attached to the bottom of the new HDA and install it on the old HDA.

Preparing the HDA for Return

You must use a special corrugated box with a foam rubber cushion for shipment. The normal procedure is to unpack the new HDA and to return the defective HDA in the same container.

It is not necessary to wear an antistatic wrist strap when packing an HDA for return shipment. If the HDA is defective, however, you must first place the defective unit in a plastic bag sealed with desiccant foam from the replacement HDA. You must then place the plastic bag in the contoured cutout of the foam rubber cushion, inside the corrugated box. You can then seal the box for return shipment.
RA81 Disk Drive

The RA81 disk drive is supported in an H9642–J cabinet only. When installing a new RA81 option, order both the drive and the interconnect cable.

Ordering Information

RA81 disk drive (120 V)	RA81–HA
RA81 disk drive (240 V)	RA81–HD
Interconnect cable with connector block	BC26V–6

Operating System Support

- DSM–11: Version 3.3 and later
- Micro/RSTS: Version 2.2 and later
- Micro/RSX: Version 4.0 and later
- MicroVMS: Version 4.0 and later
- RSX–11M: Version 4.3 and later
- RSX–11M–PLUS: Version 4.0 and later
- RT–11: Version 5.4D and later
- ULTRIX–11: Version 3.1 and later
- ULTRIX–32m: Version 1.2 and later
- VAXELN: Version 1.1 and later

Diagnostic Support

- MicroVAX Diagnostic Monitor: Version 1.06 (release 106) and later
- Power-up self-test LEDs: None
The RA81 (Figure 1) is a high-capacity, fixed-disk drive with 456 Mbytes of formatted storage space. The RA81 uses microprocessor-controlled diagnostics and a 170-bit error correction code (ECC) to ensure data reliability. The RA81 operates with the KDA50-Q controller set.

The BC26V-6 cable includes a connector block for connecting RA81 cables. The connector block is mounted on the bracket at the lower rear of the cabinet. (See the RA60/RA81 cabling figure in the RA60 section.)
Figure 1: RA81 Disk Drive

RA81 Fan Filter

The fan filter is an RA81 field replaceable unit (FRU). Remove the RA81 fan filter as described below.

CAUTION: Static electricity can damage integrated circuits. *Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.*
1. Remove the RA81 drive according to the FRU procedures in the \textit{H9642-J Cabinet Maintenance}.

2. Push down on the RA81 door latch (Figure 2) and lower the door to a horizontal position.

3. Pull down on the top half of the fan filter, then lift it out of the RA81 drive.

\textbf{Figure 2: Removing the RA81 Fan Filter}
RA82 Disk Drive

When installing a new RA82 option, order both the drive and the interconnect cable.

Ordering Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA82 disk drive (120 V)</td>
<td>RA82-HA</td>
</tr>
<tr>
<td>RA82 disk drive (240 V)</td>
<td>RA82-HD</td>
</tr>
<tr>
<td>Interconnect cable with connector block</td>
<td>BC26V-6</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RSX-11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX-11M-PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>ULTRIX-32m</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>VMS</td>
<td>Version 4.6a and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Feature</th>
<th>Support Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 2.10 (release 120) and later</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>

Documentation

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA82 Disk Drive Service Guide</td>
<td>EK-ORA82-SV</td>
</tr>
<tr>
<td>RA82 Disk Drive User Guide</td>
<td>EK-ORA82-UG</td>
</tr>
</tbody>
</table>

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+5 V</td>
<td>+12 V</td>
<td>Watts</td>
<td>AC</td>
</tr>
<tr>
<td>KDA50-Q</td>
<td>M7164</td>
<td>6.93</td>
<td>0</td>
<td>34.6</td>
<td>3.0</td>
</tr>
<tr>
<td>KDA50-Q</td>
<td>M7165</td>
<td>6.87</td>
<td>0.03</td>
<td>33.21</td>
<td>–</td>
</tr>
</tbody>
</table>

Microsystems Options 1
The RA82 is a high-capacity, 35-cm (14-in) fixed disk drive with 622 Mbytes of formatted storage space. The RA82 uses the KDA50-Q controller set.

The BC26V-6 cable is attached to a connector block for connecting RA82 cables. The connector block is mounted on the bracket at the lower rear of the cabinet.
RC25 Disk Subsystem

Ordering Information

<table>
<thead>
<tr>
<th>Item</th>
<th>120 V</th>
<th>240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC25 disk drive subsystem</td>
<td>RQC25-AA</td>
<td>RQC25-AB</td>
</tr>
<tr>
<td>RC25 disk drive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Removable cartridge</td>
<td>RC25K-DC</td>
<td>RC25K-DC</td>
</tr>
<tr>
<td>KLESI module</td>
<td>M7740</td>
<td>M7740</td>
</tr>
<tr>
<td>Internal cable</td>
<td>70–18652–00</td>
<td>70–18652–00</td>
</tr>
<tr>
<td>Type-A filtered connector</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>External cable</td>
<td>17–00445–03</td>
<td>17–00445–03</td>
</tr>
<tr>
<td>RC25 tabletop unit</td>
<td>RC25-AA</td>
<td>RC25-AB</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>OS</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>3.3 and later</td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>4.1m and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>1.1 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>1.08 (release 108) and later</td>
</tr>
<tr>
<td>XXDP</td>
<td>2.1 (release 134): XRCFC0.OBJ, ZRCDB0.BIN</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The RC25 is a mass storage disk subsystem with a storage capacity of 52 Mbytes. Figure 1 shows the RC25 as a standalone subsystem. You can also install the RC25 in an H9642–J enclosure. The RC25 has two 20-cm (8-in), double-sided disks, each with a capacity of 26 Mbytes. One disk is fixed and one is removable. Both disks are mounted on and driven by the same spindle.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
Figure 1: RC25 Disk Subsystem
The RC25 uses a KLESI (M7740) adapter module. Use DIP switchpack E58 on the KLESI to set the CSR address (Figure 2). The CSR address factory configuration, and an address for a second KLESI module, follow Figure 2. The interrupt vector is set under program control.

NOTE: The KLESI and RQDX controller are both MSCP devices. The first MSCP device in a system is assigned a CSR address of 17772150. If you install more than one MSCP device in the same system, you must set the CSR address of the second device within the floating range.

Figure 2: KLESI Module Layout (M7740)
KLESI (M7740) CSR Address
Switchpack E58

Address Bits: \(\begin{array}{ccccccccccc}
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & W
\end{array} \)

CSR Address:
17772150 \(\begin{array}{ccccccccccc}
1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0^* \\
\end{array} \)

Possible addresses for a second MSCP device:
17760334 \(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \)
17760354 \(\begin{array}{ccccccccccc}
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\end{array} \)

1 = switch on; 0 = switch off

* 0 = jumper on left and center pin (module edge facing you)
1 = jumper on right and center pin
RD31 and RD32 Diskette Drives

Ordering Information

<table>
<thead>
<tr>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD31 disk drive kit</td>
<td>RD31–AA</td>
</tr>
<tr>
<td>RD32 disk drive kit</td>
<td>RD32–AA</td>
</tr>
<tr>
<td>RD31 or RD32 disk drive</td>
<td>RD31–EA or RD32–EA</td>
</tr>
<tr>
<td>Extension power cable</td>
<td>17–01389–01</td>
</tr>
<tr>
<td>20-pin cable (30 cm; 12 in)</td>
<td>17–00282–01</td>
</tr>
<tr>
<td>34-pin signal cable</td>
<td>17–00286–00</td>
</tr>
<tr>
<td>Stacking bracket</td>
<td>74–33598–01</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

Power-up self-test LEDs: None

Documentation

<table>
<thead>
<tr>
<th>Documentation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD31–A Disk Drive Technical Description</td>
<td>EK–RD31A–TD</td>
</tr>
<tr>
<td>RD32 Fixed Disk Drive Technical Description</td>
<td>EK–ORD32–TD</td>
</tr>
<tr>
<td>RD31/32 Fixed Disk Drive Option Installation Guide</td>
<td>EK–RD31A–IN</td>
</tr>
</tbody>
</table>
DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD31</td>
<td>-</td>
<td>0.9</td>
<td>0.9</td>
<td>38.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RD32</td>
<td>-</td>
<td>0.9</td>
<td>0.6</td>
<td>33.0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The RD31/32, shown in Figure 1, is a 13.3-cm (5.25-in), half-height, fixed-disk drive with the following formatted storage capacities:

- **RD31**: 20 Mbytes
- **RD32**: 42 Mbytes

The RD31/32 is a random access drive that uses nonremovable hard disks. The drive is mounted in mass storage port 0 of the BA23 enclosure and interfaces with the Q22-bus through the RQDX3 controller module. You can install a second RD31/32 on top of the first drive. See the *RD31/32 Fixed Disk Drive Option Installation Guide* for procedures to install two drives in mass storage port 0.
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.
Configure the drive by installing jumpers on the drive electronics board, shown in Figure 1. Install a jumper on one of the drive selects: DS1, DS2, DS3, or DS4 (Table 1).

Table 1: RD31/32 Drive Select Jumper Connections

<table>
<thead>
<tr>
<th>Drive</th>
<th>Drive Select</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0 0 0</td>
<td>15 to 16</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 0</td>
<td>13 to 14</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 0</td>
<td>11 to 12</td>
</tr>
<tr>
<td>4</td>
<td>0 0 0 1</td>
<td>9 to 10</td>
</tr>
</tbody>
</table>

\(^11 = \text{jumper in}; 0 = \text{jumper out}\)

Table 2 lists the functions of pins 1 through 8; for the Normal mode, do not install jumpers on these pins.

Table 2: RD31/RD32 Device Electronics Board, Pins 1–8

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Jumper Location</th>
<th>Jumper In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life test</td>
<td>7 to 8</td>
<td>Factory use only</td>
</tr>
<tr>
<td>Write fault</td>
<td>5 to 6</td>
<td>Latched</td>
</tr>
<tr>
<td>Recovery mode</td>
<td>3 to 4</td>
<td>Factory use only</td>
</tr>
<tr>
<td>Radical</td>
<td>1 to 2</td>
<td>Radical mode</td>
</tr>
</tbody>
</table>

The RD31/32 drives used in most systems have the resistor terminator pack installed, as shown in Figure 1. For specific exceptions, refer to the system installation procedure.
RD50-Series Disk Drives

Ordering Information

<table>
<thead>
<tr>
<th></th>
<th>BA23 or H9642–J</th>
<th>BA123</th>
<th>BA200-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD51 kit</td>
<td>RD51A–AA</td>
<td>RD51A–BA</td>
<td>–</td>
</tr>
<tr>
<td>RD52 kit</td>
<td>RD52A–AA</td>
<td>RD52A–BA</td>
<td>–</td>
</tr>
<tr>
<td>RD53 kit</td>
<td>RD53A–AA</td>
<td>RD53A–BA</td>
<td>RD53E–SF</td>
</tr>
<tr>
<td>RD54 kit</td>
<td>RD54A–AA</td>
<td>RD54A–BA</td>
<td>RD54E–SF</td>
</tr>
</tbody>
</table>

Disk kit cables:
- 20-pin: 17–00282–00, 17–00282–01, 17–00282–03
- 34-pin: 17–00286–00, 17–00286–01, 17–00286–03

Operating System Support

- DSM–11: Version 3.3 and later
- Micro/RSTS: Version 2.2 and later
- Micro/RSX: Version 4.0 and later
- MicroVMS: Version 4.1m and later. (RD51 may be used as a data device only.)
- RSX–11M: Version 4.3 and later
- RSX–11M–PLUS: Version 4.0 and later
- RT–11: Version 5.4D and later
- ULTRIX–11: Version 3.1 and later
- ULTRIX–32m: Version 1.1 and later. (RD51 may be used as a data device only.)
- VAXELN: Version 2.0 and later

Diagnostic Support

- MicroVAX Diagnostic Monitor: Version 1.02 (release 102) and later (RD54: Version 1.14 (release 114) and later)
- Power-up self-test LEDs: None
The RD50-series are fixed disk drives with the following storage capacities:

RD51—11 Mbytes
RD52—31 Mbytes
RD53—71 Mbytes
RD54—150 Mbytes

RD50-series drives have jumpers or switches that determine which drive-select lines the drive responds to. The following sections describe the jumpers and switches on each model, along with the removal and replacement procedures for the field replaceable units (FRUs).

If you use an RD50-series drive as a single fixed-disk drive in a BA23 or BA200-series enclosure, you should have the drive respond to drive-select line 3 (DS3). This setting makes the drive number for that unit RD0.

If you use RD50-series drives in a BA123 enclosure, you must install one of the drive-select jumpers or press one of the drive-select switches down. If you use the factory configuration for the M9058 module, you can use any one of the drive-select jumpers or switches since the M9058 determines the drive number.
You must format an RD50 drive when you add it to the system. The formatting utility is available in the MicroVAX Diagnostic Monitor (MDM) and the XXDP V2 Diagnostic Monitor.

RD51 Read/Write Board

The RD51 read/write board has a DIP shunt jumper to select the drive number. The jumper has seven breakable metal strips. Figure 1 shows the jumper setting to select drive number RD0 (drive-select line DS3).

Figure 1: RD51 Disk Drive and Shunt Jumper
The read/write board is the only part of an RD51 drive that you can replace. Replace the RD51 read/write board as follows:

CAUTION: Disk drives are susceptible to electrostatic damage. Do not handle the RD51 disk drive unless you are wearing an antistatic wrist strap that is properly grounded to the enclosure frame. Use the Antistatic Kit (29-26246). When you have removed the drive, place it on the antistatic mat.

1. Remove the RD51 disk drive from the enclosure, using the procedure in the FRU section of the appropriate enclosure maintenance documentation.

2. Remove the four Phillips screws on the skid plate (Figure 2). Set the skid plate aside.

CAUTION: Do not touch the RD51 exposed head positioner flag on the front right side. Doing so can cause the head positioner flag to rotate, resulting in damage to the drive.
3. Using a 3/32-inch Allen wrench, remove the four screws that hold the read/write board to the RD51 drive (Figure 3).
Refer to Figure 4 for steps 4 through 6.

4. Disconnect connectors P6, P7, and P8 from the front of the read/write board.

5. Disconnect the P4 2-wire connector on the rear of the read/write board, next to the dc power connector.

6. Remove the read/write board.
7. Make sure the jumper configuration of the 14-pin DIP shunt pack matches Figure 1.

NOTE: You do not need to format an RD51 drive when you replace only the read/write board.
RD52 Main Printed Circuit Board

The RD52 main printed circuit board has five pairs of pins (Figure 5) used to select the drive number. To select drive number RD0, place a jumper on pins DS3. To select drive number RD1, place a jumper on pins DS4.

Figure 5: RD52 Disk Drive and Shunt Jumper

You can replace the main printed circuit board (MPCB) only on RD52 disk drives that have the part number 30–21721–02.
Remove the RD52 disk drive MPCB as follows:

CAUTION: Disk drives are susceptible to electrostatic damage. Do not handle the RD52 disk drive unless you are wearing an antistatic wrist strap that is properly grounded to the enclosure frame. Use the Antistatic Kit (29-26246). When you have removed the drive, place it on the antistatic mat.

1. Remove the RD52 disk drive from the enclosure, using the procedure in the appropriate enclosure maintenance documentation.

2. Remove the four Phillips screws that hold the slide plate and ground clip to the drive (Figure 6). Set the slide plate aside.

Figure 6: Removing the RD52 Slide Plate Screws
3. Unplug the 2-pin connector (Figure 7).

4. Remove the two Phillips screws that hold the front cover to the drive (Figure 7).

Figure 7: Removing the RD52 Front Cover Screws

5. The front cover has pop fasteners. Remove the front cover by pulling it away from the drive (Figure 8).
Figure 8: Removing the RD52 Front Cover
6. Remove the three Phillips screws from the heatsink, grounding strip, and the corner opposite the heatsink (Figure 9).

Figure 9: Removing the RD52 MPBD Screws
7. Lift the MPCB straight up until it clears the RD52 frame; this step disconnects P4, a 12-pin plug (Figure 10).

8. Disconnect P5, a 10-pin connector (Figure 10).

Figure 10: Removing the RD52 MPCB
The RD53 device electronics board has four switches on the rear edge to select the drive number. To select drive number RD0, press switch S3 (Figure 11). To select drive number RD1, press switch S4.

Figure 11: RD53 Drive Select Switches

The device electronics board is the only part of an RD53 drive that you can replace. Remove the RD53 device electronics board as follows:

CAUTION: Disk drives are susceptible to electrostatic damage. Do not handle the RD53 disk drive unless you are wearing an antistatic wrist strap that is properly grounded to the enclosure frame. Use the Antistatic Kit (29–26246). When you have removed the drive, place it on the antistatic mat.

CAUTION: Handle any fixed-disk drive with care; dropping or bumping the drive can damage the disk surface.

1. Remove the RD53 drive from the enclosure, using the procedure in the appropriate enclosure maintenance documentation.
2. Remove the four Phillips screws that hold the slide plate and ground clip to the RD53 drive. Set the plate aside.

3. Loosen the two captive screws that hold the device electronics board in place.

4. The board pivots in hinge slots at the front of the drive. Without straining any of the connectors or cables, carefully lift the device electronics board (Figure 12). Tilt the board back until it rests against the outer frame.

 CAUTION: Flexible circuit material is fragile. Handle the device electronics board carefully to avoid damage.

Figure 12: Lifting the RD53 Device Electronics Board
5. On the read/write board, disconnect connector J8 (to the motor control board) and connector J9 (to the preamplifier board). Both connectors and cables are fragile; handle them with care.

6. Lift the device electronics board out of the hinge slots.

RD54 Device Electronics Board

The RD54 device electronics board has six pins to select the drive number (Figure 13). The pins are labeled 1 through 6 or 4 C 3 2 C 1. Both versions are electronically equivalent. To select drive number DUA0, install a jumper connecting pins 1 and 2.

CAUTION: On the RQDX3 controller, the two W23 jumpers should connect pins 1, 2, 3, and 4. Otherwise, loss of format will occur.
The printed circuit board assembly (PCBA) is the only part of an RD54 drive that you can replace. Remove the RD54 PCBA as follows:

CAUTION: Disk drives are susceptible to electrostatic damage. Do not handle the RD54 disk drive unless you are wearing an antistatic wrist strap that is properly grounded to the enclosure frame. Use the Antistatic Kit (29–26246). When you have removed the drive, place it on the antistatic mat.
CAUTION: Handle any fixed disk drive with care; dropping or bumping the drive can damage the disk surface.

1. Remove the four Phillips screws that hold the skid plate to the drive (Figure 14). Set the skid plate aside.

Figure 14: Removing the RD54 Skid Plate
Refer to Figure 15 for steps 2 through 6.

2. Disconnect the green ground wire from the J4 connector.

3. Remove the four Phillips screws that hold the small bracket to the drive. There are two screws on each side of the bracket. Set the bracket aside.

4. Using a 3/8-inch open-end wrench, turn the nut on the threaded stud until the stud is free of the casting.

5. Remove the four Phillips screws that hold the PCBA to the drive. Two of these screws have captive lock washers; note their location.

6. Carefully remove the three connectors at the front of the drive.
Figure 15: RD54 PCBA, View of Component Side

- NUT AND THREADED STUD
- SMALL BRACKET
- SCREWS HOLDING SMALL BRACKET
- COMPONENT SIDE PCBA
- THREE CONNECTORS
- SCREWS WITH CAPTIVE LOCK WASHER
- GROUND WIRE
7. Gently slide the PCBA as far as it will go in the direction shown in Figure 16.

Figure 16: Sliding the RD54 PCBA

8. Swing the board up as shown in Figure 17. You may have to pull the bracket back slightly; do not pull the bracket back more than is necessary to remove the board. Do not flex the PCBA when removing it.
9. Remove the remaining connector on the side of the PCBA. Place the PCBA aside.

10. Do not remove the paper insulator.
Installation

Install the PCBA as follows:

1. Make sure the paper insulator is in place.

2. Reconnect the last connector you removed on the side of the PCBA during the removal procedure.

3. Place the edge of the PCBA against the bracket, as shown in Figure 17. Lay the PCBA flat against the paper insulator.

4. Reconnect the other three connectors to the PCBA.

5. Replace the four screws that hold the PCBA to the drive. Make sure the two screws with captive washers are in the correct location.

6. Place the threaded stud over the hole in the casting.

7. Using a 3/8-inch open-end wrench, turn the nut on the threaded stud counterclockwise at least one-half turn. This step aligns the threads and prevents them from being stripped.

8. Tighten the threaded stud by turning the nut clockwise.

9. Replace the small bracket.

10. Reconnect the green ground wire.

11. Replace the skid plate.
RF30 Disk Drive

The RF30 disk drive is supported in BA200-series enclosures only.

Ordering Information

| Disk drive | RF30-SA (factory installed) | RF30-SF (field upgrade) |

Operating System Support

<table>
<thead>
<tr>
<th>OS</th>
<th>Support Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULTRIX-32m</td>
<td>Version 3.0 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 3.2 and later</td>
</tr>
<tr>
<td>VMS</td>
<td>Version 5.0–2A and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Monitor</th>
<th>Version 2.3 (release 124) and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td></td>
</tr>
</tbody>
</table>

Documentation

<table>
<thead>
<tr>
<th>User's Guide</th>
<th>EK-RF30D-UG</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF30 Disk Drive</td>
<td></td>
</tr>
</tbody>
</table>

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>Current (Amps)</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+5 V</td>
<td>+12 V</td>
<td>Watts</td>
<td>AC</td>
</tr>
<tr>
<td>RF30-S</td>
<td>-</td>
<td>1.25</td>
<td>2.85</td>
<td>18.3</td>
<td>-</td>
</tr>
</tbody>
</table>

The RF30 is a half-height, 13.3-cm (5.25-in) fixed-disk drive, with a storage capacity of 150 Mbytes and a maximum data transfer rate of about 1.5 Mbits per second. Figure 1 shows the RF30 drive in its installation position for BA200-series enclosures, with slides attached.

The RF30 disk drive is based on the DIGITAL Small Storage Interconnect (DSSI) architecture. DSSI supports up to seven storage devices, daisy-chained to the host system through either the KA640 CPU or a host adapter board such as the KFQSA module. You can install the RF30 with other DSSI drives.
The disk drive controller is built into the RF30 drive, rather than being a separate module. This feature enables many drive functions to be handled without host-system or adapter intervention, resulting in improved I/O performance and throughput rates.

Figure 1: RF30 Disk Drive with Attached Slides
DSSI node ID switches are located on the electronics controller module, at the connector end of the RF30 (Figure 2). Set these switches to assign a unique node ID number to each drive on the DSSI bus. Table 1 shows the switch settings for up to seven DSSI nodes.

RF30 drives are factory configured to the same unit ID. When installing an additional or replacement RF30, make sure the unit ID plug on the operator control panel (OCP) and the unit ID DIP switch on the RF30 are set to the same value. Although the OCP unit ID plugs override the RF30 unit ID DIP switch, it is good practice to set them to the same value. Doing so eliminates the possibility of a duplicate unit ID caused by disconnecting the OCP from the drives and failing to set the DIP switches to the correct value.

Figure 2: RF30 ID Switches
Table 1 shows the RF30 switch settings.

Table 1: RF30 Switch Settings

<table>
<thead>
<tr>
<th>DSSI Node ID</th>
<th>1 (MSB)</th>
<th>2</th>
<th>3 (LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Down</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>1</td>
<td>Down</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>2</td>
<td>Down</td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td>3</td>
<td>Down</td>
<td>Up</td>
<td>Up</td>
</tr>
<tr>
<td>4</td>
<td>Up</td>
<td>Down</td>
<td>Down</td>
</tr>
<tr>
<td>5</td>
<td>Up</td>
<td>Down</td>
<td>Up</td>
</tr>
<tr>
<td>6</td>
<td>Up</td>
<td>Up</td>
<td>Down</td>
</tr>
<tr>
<td>7</td>
<td>Up</td>
<td>Up</td>
<td>Up</td>
</tr>
</tbody>
</table>

The RF30 disk drive contains two LED indicators (Figure 2):

- The Ready indicator displays the activity status of the drive. This indicator lights to show the internal read/write ready and on-cylinder status.

 On power-up, the Ready indicator lights. After successful completion of the power-up diagnostics, the indicator goes out, until the media heads are on the requested cylinder and the drive is read/write ready.

- The Fault indicator displays the fault status of the drive. This indicator lights to indicate a read/write safety error or a drive error condition, regardless of its state relative to the host adapter.

 On power-up, the Fault indicator lights. After successful completion of the power-up diagnostics, the indicator goes out.
RQDX2 and RQDX3 Disk Controllers

Ordering Information

<table>
<thead>
<tr>
<th></th>
<th>BA23 or H9642–J</th>
<th>BA123</th>
<th>BA200-Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQDX2 kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td>RQDX2–AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-pin cable</td>
<td>M8639–YB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-pin cable</td>
<td>BC02D–1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal distribution board</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RQDX3 kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td>RQDX3–AA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-pin cable</td>
<td>M7555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-pin cable</td>
<td>BC02D–1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal distribution board</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating System Support

- **DSM–11**: Version 3.3 and later
- **Micro/RSTS**: Version 2.2 and later
- **Micro/RSX**: Version 4.0 and later
- **MicroVMS**
 - RQDX2: Version 4.1m and later
 - RQDX3: Version 4.2 and later
- **RSX–11M**: Version 4.3 and later
- **RSX–11M–PLUS**: Version 4.0 and later
- **RT–11**: Version 5.4D and later
- **ULTRIX–11**: Version 3.1 and later
- **ULTRIX–32m**: Version 1.1 and later
- **VAXELN**: Version 2.0 and later

Diagnostic Support

- **MicroVAX Diagnostic Monitor**
 - RQDX2: All versions and releases
 - RQDX3: Version 1.06 (release 106) and later
- **Power-up self-test LEDs**
 - RQDX2: 4 LEDs
 - RQDX3: 1 LED. (On indicates correct operation.)
RQDX2 and RQDX3 are intelligent controllers with onboard microprocessors, used to interface fixed-disk drives and diskette drives to the Q22-bus. Both controllers transfer data by using direct memory access (DMA). Host system programs communicate with the controller and drives by using the mass storage control protocol (MSCP).

The RQDX2 and RQDX3 can control a maximum of four drives. Each fixed-disk drive and each RX33 drive counts as one drive. Each RX50 drive counts as two drives. Figure 1 shows jumper and LED locations for the RQDX2.

NOTE: In BA123 enclosures, use the 17–01520–01 cable to connect the RQDX3 to the M9058 distribution board. In older BA123 systems, replace the 17–00862–01 cable with the 17–01520–01 cable.
Figure 1: RQDX2 Module Layout (M8639)
Figure 2 shows jumper and LED locations for the RQDX3.

Figure 2: RQDX3 Module Layout (M7555)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

NOTE: The RQDX2 does not support the RD54 drive.

The CSR address of the first MSCP controller is fixed. If you install a second controller, its CSR address is floating. The following table lists the factory configuration and other common settings for a second MSCP controller:
RQDX2/RQDX3 CSR Address: 17772150 (factory position)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RQDX3 Jumpers: W11 W10 W9 W8 W7 W6 W5 W4 W3 W2 W1</td>
<td></td>
</tr>
</tbody>
</table>

Starting Address:

17772150 1 0 1 0 0 0 1 1 0 1 0

Possible settings for a second controller:

<table>
<thead>
<tr>
<th>Address</th>
<th>Setting 1</th>
<th>Setting 2</th>
<th>Setting 3</th>
<th>Setting 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>17760334</td>
<td>0 0 0 0</td>
<td>0 1 1 0</td>
<td>1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>17760354</td>
<td>0 0 0 0</td>
<td>0 1 1 1</td>
<td>0 1 1 1</td>
<td></td>
</tr>
<tr>
<td>17760374</td>
<td>0 0 0 0</td>
<td>0 1 1 1</td>
<td>1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

1 = installed, 0 = removed

NOTE:

- **RQDX2**: Jumpers W1 through W4 (Figure 1) are for factory test purposes and should remain installed.

- **RQDX3**: The two W23 jumpers should connect pins 1, 2, 3, and 4 for all configurations (Figure 2). Jumpers W21 and W22 are for factory test purposes and should remain installed; these jumpers are present on etch revision D1 and later only.

The interrupt vector for the RQDX2 and RQDX3 controllers is set under program control. The first controller is assigned a fixed interrupt vector of 154. If you install a second controller, its interrupt vector floats.

NOTE: **RQDX2** and **RQDX3** controllers are mass storage control protocol (MSCP) devices. The first MSCP device in a system is assigned a CSR address of 17772150. If you install more than one MSCP device, you must set the CSR address of the second device within the floating range. In MicroVAX II systems, you should not install logical unit number (LUN) jumpers W12 through W17 on RQDX3 modules or LUN jumpers 0 through 7 on RQDX2 modules.
RQDX2 Power-Up LEDs

Figure 3 shows the RQDX2 LEDs. Table 1 lists the LED error codes.

Figure 3: RQDX2 Module LEDs

Table 1: RQDX2 LED Error Codes

<table>
<thead>
<tr>
<th>D10</th>
<th>D9</th>
<th>D8</th>
<th>D7</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Start of power-up test</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>T11 processor test</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>T11 timer/counter/address generator test</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Q22-bus timer/counter/address generator test</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Serializer/deserializer test</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>CRC generator test</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Hardware version test</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>ROM checksum test</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>RAM test</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Diagnostic interrupt test</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Shuffle oscillator test</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Valid configuration test</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Not used</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>Not used</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Not used</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>End of test</td>
</tr>
</tbody>
</table>
RQDXE Expander Module

The RQDXE expander module is an option for the BA23 enclosure or the H9642–J cabinet only.

Ordering Information

<table>
<thead>
<tr>
<th>Item</th>
<th>BA23</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>RQDXE cabinet kit</td>
<td>RQDXE–AA</td>
<td>RQDXE–FA</td>
</tr>
<tr>
<td>RQDXE module</td>
<td>M7513–00</td>
<td>M7513–00</td>
</tr>
<tr>
<td>RQDX2/3 to RQDXE cable</td>
<td>BC02D–OK</td>
<td>BC02D–OK</td>
</tr>
<tr>
<td>RQDXE to distribution board cable</td>
<td>BC02D–1D</td>
<td>BC02D–1D</td>
</tr>
<tr>
<td>RQDX2/3 to I/O panel cable</td>
<td>70–18652–01</td>
<td>–</td>
</tr>
<tr>
<td>I/O panel insert</td>
<td>70–2866–01</td>
<td>–</td>
</tr>
<tr>
<td>RQDXE to 2nd distribution board</td>
<td>–</td>
<td>BC02D–04</td>
</tr>
<tr>
<td>cable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>BA23</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
<td></td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
<td></td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
<td></td>
</tr>
<tr>
<td>MicroVMS</td>
<td>RQDX2: Version 4.1m and later</td>
<td>RQDX3: Version 4.2 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
<td></td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
<td></td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
<td></td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
<td></td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
<td></td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>BA23</th>
<th>H9642–J</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>RQDX2: All versions and releases</td>
<td></td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>RQDX3: Version 1.06 (release 106) and later</td>
<td>None</td>
</tr>
</tbody>
</table>

The RQDXE module, shown in Figure 1, connects external RD50-series or RX50 drives to an RQDX2 or RQDX3 controller in the BA23 enclosure.

Figure 1: RQDXE Module Layout (M7513)

The external drives may be tabletop (−D) or rack mount (−R) models. The RQDXE is installed in the BA23 backplane, directly under the RQDX2 or RQDX3. The RQDXE internal cabling is shown in Figure 2.
Figure 2: RQDXE Internal Cabling
In an H9642–J cabinet, the RQDXE connects one RD50-series and/or one RX50 drive in the BA23–C (bottom) enclosure to the RQDX2 or RQDX3 in the BA23–A (top) enclosure. The RQDXE is installed in the AB rows of the BA23 backplane, directly under the RQDX2 or RQDX3. The cabling is similar to that shown in Figure 2, except that the cable from the J3 connector on the RQDXE connects to the BA23–C distribution panel instead of to a mounting plate in the I/O panel.

Figure 1 shows the factory position for the jumpers. Use the factory configuration when the RQDXE connects to one of the following:

- One external tabletop or rack mount RD drive for a BA23 system
- One RD drive in the left mass storage slot of the BA23–C (bottom) enclosure in an H9642–J system

Figure 3 shows the RQDXE jumper settings for other supported configurations. These include RD50-series and RX50 drives in external tabletop or rack mount enclosures, and in the BA23–C enclosure of an H9642 system.

An external tabletop or rack mount drive has three connectors on the rear: J1, J2, and J3. Use J1 to connect drive RD1, and J2 to connect drive RD2.

NOTE: Version A1 or B1 of the RQDXE module does not support an external drive as RD0. You must use external drives as RD1 or RD2; install the first fixed-disk drive in the system (RD0) in port 0 of the BA23–A enclosure.

An updated version of the RQDXE supports an external drive as RD0. The new module has a part revision of C1 or C2 (on the handle). Jumper settings are listed in an addendum to the RQDXE Expander Module User's Guide, which is shipped with the new module.
Figure 3: RQDXE Jumper Settings

<table>
<thead>
<tr>
<th>EXTERNAL RACK MOUNT OR TABLETOP</th>
<th>BA23-C IN H9642-J</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST EXTERNAL DRIVE</td>
<td>BA23-C LEFT SLOT</td>
</tr>
<tr>
<td>RD1</td>
<td>RD1</td>
</tr>
<tr>
<td>RX50</td>
<td>X</td>
</tr>
<tr>
<td>SECOND EXTERNAL DRIVE</td>
<td>BA23-C CENTER SLOT</td>
</tr>
<tr>
<td>RD1</td>
<td>X</td>
</tr>
<tr>
<td>RD2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RDY AND WRT PROT</th>
<th>A1 A2</th>
<th>A3 A4</th>
<th>B1 B2</th>
<th>B3 B4</th>
<th>C1 C2</th>
<th>C3 C4</th>
<th>D1 D2</th>
<th>D3 D4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRV SEL</th>
<th>E1 E2</th>
<th>E3 E4</th>
<th>F1 F2</th>
<th>F3 F4</th>
<th>H1 H2</th>
<th>H3 H4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRV ACK</th>
<th>K1 K2</th>
<th>K3 K4</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EX PORT SEL</th>
<th>L1</th>
<th>L3 L4</th>
<th>M1 M2</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* M7513 FACTORY CONFIGURATION
RRD50 Digital Disk Subsystem

Ordering Information

<table>
<thead>
<tr>
<th>Component</th>
<th>120 V</th>
<th>240 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRD50 optical disk drive subsystem</td>
<td>RRD50-QA</td>
<td>RRD50-QC</td>
</tr>
<tr>
<td>RRD50 optical disk drive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KRP50 controller module</td>
<td>M7552</td>
<td>M7552</td>
</tr>
<tr>
<td>Filtered connector</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cable from drive to filtered connector</td>
<td>BC18R-6</td>
<td>BC18R-6</td>
</tr>
</tbody>
</table>

Operating System Support

MicroVMS Version 4.2 and later

Diagnostic Support

MicroVAX Diagnostic Monitor Version 1.08 (release 108) and later
Power-up self-test LEDs Two LEDs on front of RRD50
Two LEDs on the M7552 module

Documentation

RRD Subsystem Pocket Service Guide EK-RRD50-PS
RRD50 Digital Disk Drive User’s Guide EK-RRD50-UG

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>Bus Loads</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRP50</td>
<td>M7552</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>AC DC</td>
<td>-</td>
</tr>
</tbody>
</table>

Microsystems Options 1
The RRD50 subsystem, shown in Figure 1, is a read-only storage device that reads data stored on 11.8-cm (4.7-in) optical disks. One optical disk stores 600 Mbytes of data. The following table lists the CSR addresses for RRD50 systems. Figure 2 shows the switch locations on the KRP50 controller module.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.

CSR Addresses for an KRP50 Controller

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumper/ Switches:</td>
<td>W*</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSR Address:</th>
<th>17772150</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17760334</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17760354</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1 = switch on, 0 = switch off

* 1 = jumper in horizontal position
 0 = jumper in vertical position
Figure 1: RRD50 Subsystem
NOTE: If a system contains an RQDX2 or RQDX3 controller, this controller must use the first MSCP address (17772150), and the KRP50 must use a floating address.
RRD50 Power-Up Tests

Figure 3 shows the power-up self-test LEDs on the M7752 controller module. Table 1 lists the LED sequence for a successful test.

Figure 3: RRD50 (M7552) Power-Up Self-Test LEDs

![Image of M7552 controller module with LEDs](MLD-001108)

Table 1: RRD50 (M7552) Power-Up LED Sequence

<table>
<thead>
<tr>
<th>LED Sequence for Successful Test</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left LED flashes at 1-second intervals. Right LED is off.</td>
<td>No RRD50 drives are present.</td>
</tr>
<tr>
<td>A 2-second cycle occurs as follows:</td>
<td>One good RRD50 drive is present.</td>
</tr>
<tr>
<td>Left LED</td>
<td>Right LED</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Cycle repeats.</td>
<td></td>
</tr>
<tr>
<td>Both LEDs flash together at 1-second intervals.</td>
<td>Two good RRD50 drives are present.</td>
</tr>
<tr>
<td>Right LED stays on continuously.</td>
<td>One or two bad RRD50 drives are present.</td>
</tr>
</tbody>
</table>
RX33 Diskette Drive

The RX33 is an option for BA23 and BA123 enclosures only.

Ordering Information

<table>
<thead>
<tr>
<th></th>
<th>BA23</th>
<th>BA123</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX33 drive</td>
<td>RX33–A</td>
<td>RX33–BA</td>
</tr>
<tr>
<td>RX33 drive plus mounting hardware and cabling for first RX33</td>
<td>RX33A–AA</td>
<td>RX33A–BA</td>
</tr>
<tr>
<td>RX33 drive plus mounting hardware and cabling for second RX33</td>
<td>RX33A–AB</td>
<td>RX33A–BB</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 5.0 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>Support Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 2.01 (release 116) and later</td>
</tr>
</tbody>
</table>
The RX33, shown in Figure 1, is a 13.3-cm (5.25-in), dual-speed, half-height diskette drive with a formatted capacity of 1.2 Mbytes. In high-density mode, the RX33 provides industry-standard compatibility utilizing double-sided, high-density diskettes. In standard density mode, the RX33 can both read and write RX50-type standard density diskettes on a single side.

The RX33 uses the RQDX3 controller module as an interface to the Q22-bus. Only revisions E3 or E4 of the RQDX3 controller module support the RX33 in MicroVAX systems.

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Watts</th>
<th>AC</th>
<th>DC</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX33A</td>
<td>–</td>
<td>0.35</td>
<td>0.22</td>
<td>4.40</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

The RX33 Technical Description Manual

EK-RX33T-TM
CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.
You set up the RX33 by using jumpers and components on the device electronics board (Figure 2). The factory configuration for the RX33 is drive select 0 (DS0). If the system configuration contains more than two RD-type disk drives, you must configure the RX33 for DS1.

Figure 2: RX33 Jumper Settings
RX50 Diskette Drive

Ordering Information

<table>
<thead>
<tr>
<th>Internal Drive</th>
<th>BA23 or H9642–J</th>
<th>BA123</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX50 drive and cabinet kit</td>
<td>RX50A–AA</td>
<td>RX50A–BA</td>
</tr>
<tr>
<td>RX50 diskette drive</td>
<td>RX50–A</td>
<td>RX50–A</td>
</tr>
<tr>
<td>34-pin cable, RX50 to signal distribution</td>
<td>17–00285–02</td>
<td>17–00867–01</td>
</tr>
<tr>
<td>External Drive</td>
<td>RX50–DA</td>
<td>RX50–DA</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.1m and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Feature</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>All versions and releases</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>
The RX50, shown in Figure 1, is a dual-diskette drive that uses two single-sided, 13.3-cm (5.25-in) RX50K diskettes. The RX50 has a formatted capacity of 818 Kbytes (409 Kbytes per diskette). The RX50 has two access doors and slots for inserting diskettes. A light next to each slot indicates when the system is reading or writing to the diskette in that slot.

NOTE: Use one RX50 drive with one RQDX2 controller module.
Figure 1: RX50 Diskette Drive
TK50 Tape Drive Subsystem

For BA200-series enclosures, order the TK50 as a system option only.

You can install a TK50 tape drive subsystem in a BA23 enclosure, or use the TK50 as a standalone desktop unit. In a BA123 system, the TK50 is usually installed in the enclosure.

If you want a complete TK50 subsystem, you must order a TK50 drive and a TQK50 controller subsystem.

Ordering Information

<table>
<thead>
<tr>
<th>Internal Drives</th>
<th>BA23 or H9642–J</th>
<th>BA123</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK50 drive and blank cartridge</td>
<td>TK50–AA</td>
<td></td>
</tr>
<tr>
<td>TQK50 (M7546) controller subsystem</td>
<td>TQK50–AA</td>
<td>TQK50–BA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External Drives</th>
<th>BA23</th>
<th>BA123</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 V desktop drive</td>
<td>TK50–DA</td>
<td></td>
</tr>
<tr>
<td>240 V desktop drive</td>
<td>TK50–DB</td>
<td></td>
</tr>
<tr>
<td>120 V rack mount drive</td>
<td>TK50–RA</td>
<td></td>
</tr>
<tr>
<td>240 V rack mount drive</td>
<td>TK50–RB</td>
<td></td>
</tr>
<tr>
<td>TQK50 (M7546) controller subsystem</td>
<td>TQK50–AB</td>
<td></td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicrolRSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.1m and later</td>
</tr>
<tr>
<td>RSTS/E</td>
<td>Version 9.5 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.0 and later</td>
</tr>
</tbody>
</table>
Diagnostic Support

MicroVAX Diagnostic Monitor
XXDP

Power-up self-test LEDs

Version 1.03 (release 103) and later
Version 2.1 (release 134) and later:
XTKAB0.OBJ, ZTKAE0.BIC, ZTKBC0.BIC.

Two LEDs (controller module)
Two LEDs (tape drive)

Documentation

TK50 Tape Drive Subsystem User's Guide EK-LEP05-OM
TK70 Tape Drive Subsystem Owner's Manual EK-OTK70-OM

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power Watts</th>
<th>Bus Loads AC</th>
<th>DC</th>
<th>Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK50-AA</td>
<td>–</td>
<td>1.4</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK50-DA</td>
<td>–</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK50-RA</td>
<td>–</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TQK50</td>
<td>M7546</td>
<td>3.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.0</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

The TK50, shown in Figure 1, is a streaming tape drive subsystem that provides up to 95 Mbytes of backup data storage on a tape cartridge.
The TQK50 (M7546) controller module provides the interface between the TK50–AA tape drive and the Q22-bus. The M7546 has two DIP switches, shown in Figure 2, which set the following features:

- Hardware revision level (set at the factory)
- Unit number
The hardware revision level DIP switch is set to match the module revision level stamped on the back of the module. Make sure the switch setting is correct. The eight switches in this DIP switch represent a binary-weighted value, as listed in the following table:

<table>
<thead>
<tr>
<th>Revision Level</th>
<th>Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 ... 0</td>
</tr>
<tr>
<td>1 (A)</td>
<td>1 0 0 ... 0</td>
</tr>
<tr>
<td>2 (B)</td>
<td>0 1 0 ... 0</td>
</tr>
<tr>
<td>3 (C)</td>
<td>1 1 0 ... 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>1 1 1 ... 0</td>
</tr>
</tbody>
</table>

0 = open, 1 = closed
Switch 8 is nearest the module edge.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.
You can select the unit number by setting the unit number DIP switch. If the MicroVMS operating system is installed, you do not have to change the switch setting. The following table lists the unit number settings:

Unit Number Settings

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Switches 1 2 3 ... 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 ... 0 factory</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 ... 0</td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 ... 0</td>
</tr>
<tr>
<td>3</td>
<td>1 1 0 ... 0</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 1 0 ... 0</td>
</tr>
</tbody>
</table>

0 = open, 1 = closed
Switch 8 is nearest the module edge.

The M7546 controller is a tape mass storage control protocol (TMSCP) device. The CSR address for the first controller is fixed, using jumpers shown in Figure 2. If you add a second subsystem, the CSR address of the second controller floats. The following table lists the fixed CSR address for the first controller and typical settings for a second controller:

Controller Module M7546

Default for first TMSCP device: 17774500

<table>
<thead>
<tr>
<th>Address Bits (Jumpers*)</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSR Address:</td>
<td>17774500</td>
<td>1 1 0 0 1 0 1 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possible addresses for second controller:

<table>
<thead>
<tr>
<th>Address Bits (Jumpers*)</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>17760404</td>
<td>0 0 0 0 1 0 0 0 0 0 1</td>
<td></td>
</tr>
<tr>
<td>17760444</td>
<td>0 0 0 0 1 0 0 1 0 0 1</td>
<td></td>
</tr>
</tbody>
</table>

1 = jumper installed, 0 = jumper removed
* A2 is the jumper nearest the module edge.

The interrupt vector for the M7546 is fixed at 260, set under program control.
TK50

TQK50 Power-Up Tests

Figure 3 shows the LEDs on the TQK50 controller (M7546). Table 1 lists the LED codes and probable FRU failures.

Figure 3: TK50 Module LEDs

Table 1: TK50 LED Error Codes

<table>
<thead>
<tr>
<th>LEDs</th>
<th>Test and Probable FRU Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>On On</td>
<td>Power-up test</td>
</tr>
<tr>
<td></td>
<td>1. TQK50 module</td>
</tr>
<tr>
<td>Off On</td>
<td>U/Q port initialization</td>
</tr>
<tr>
<td></td>
<td>1. Controller</td>
</tr>
<tr>
<td></td>
<td>2. Interconnect cable</td>
</tr>
<tr>
<td></td>
<td>3. TK50 drive</td>
</tr>
<tr>
<td>Flashing</td>
<td>Fatal error detected by controller.</td>
</tr>
<tr>
<td>Flashing</td>
<td>1. Interconnect cable (incorrectly keyed)</td>
</tr>
<tr>
<td></td>
<td>2. Controller</td>
</tr>
<tr>
<td></td>
<td>3. TK50 drive</td>
</tr>
<tr>
<td>Off Off</td>
<td>Normal operation</td>
</tr>
</tbody>
</table>

6 Microsystems Options
TK70 Tape Drive Subsystem

For BA200-series enclosures, order the TK70 as a system option only.

If you want a complete TK70 subsystem, you must order a TK70 drive and a TQK70 controller subsystem.

Ordering Information

<table>
<thead>
<tr>
<th>Tape drive, BA200-series</th>
<th>TK70E–SA (factory installed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQK70 (M7559) controller subsystem</td>
<td>TK70E–SF (field upgrade)</td>
</tr>
<tr>
<td>Tape drive, BA23, BA123,</td>
<td>TQK70–SA (factory installed)</td>
</tr>
<tr>
<td>and H9642–J enclosures</td>
<td>TQK70–SF (field upgrade)</td>
</tr>
<tr>
<td>TQK70 (M7559) controller subsystem,</td>
<td>TKQ70–AA</td>
</tr>
<tr>
<td>plus 75-cm (30-in) cable for BA23</td>
<td></td>
</tr>
<tr>
<td>TQK70 (M7559) controller subsystem,</td>
<td>TKQ70–BA</td>
</tr>
<tr>
<td>plus 75-cm (30-in) cable for BA123</td>
<td></td>
</tr>
</tbody>
</table>

Operating System Support

ULTRIX–32 | Version 2.2 and later |
VMS | Version 4.6a and later |

Diagnostic Support

MicroVAX Diagnostic Monitor | Version 1.03 (release 103) and later |
XXDP | Version 2.1 (release 134) and later: ZTKAE0.BIC, ZTKBC0.BIC. |
Power-up self-test LEDs | Two on controller module, two on tape drive |
The TK70 is a streaming tape drive subsystem that provides up to 296 Mbytes of backup data storage on a tape cartridge. Figure 1 shows the TK70 in its installation position, with attached sliding tracks.

The TK70 can read from, but cannot write to, cartridges that have been formatted by a TK50 tape drive. The TK50 tape drive cannot read from cartridges that have been formatted on the TK70 drive.

DIGITAL recommends that you use CompacTape II cartridges with the TK70 drive.
The TQK70 controller module (M7559) provides the interface between the TK70 tape drive and the Q22-bus. The TQK70 has jumpers used to set the following:

- CSR address
- Unit number
- Clock signals

CAUTION: Static electricity can damage integrated circuits. *Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.*

Select the unit number by setting the jumpers shown in Figure 2. If the VMS operating system is installed, you do not have to change the jumper.
Figure 2: TQK70 Module Layout (M7559)

The unit number is set as follows:

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Jumpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>8 ... 3 2 1</td>
</tr>
<tr>
<td>0</td>
<td>0 ... 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 ... 0 0 1</td>
</tr>
<tr>
<td>2</td>
<td>0 ... 0 1 0</td>
</tr>
<tr>
<td>3</td>
<td>0 ... 0 1 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
</tr>
<tr>
<td>and so on</td>
<td></td>
</tr>
</tbody>
</table>

0 = jumper on bottom and center post
1 = jumper on top and center post
(module fingers to the right)
Three other jumpers on the M7559 module are installed by the factory. Their functions are as follows:

- W1: jumper IN connects 9-MHz 80186 CPU clock
- W2: jumper IN connects the 18-MHz system clock
- W22: jumper IN connects a 3-MHz clock to TxCB and RxCB pins (pins 7 and 4)

The M7559 controller is a tape mass storage control protocol (TMSCP) device. The CSR address for the first M7546 is fixed, using jumpers shown in Figure 2. If you add a second TK70 subsystem, the CSR address of the second controller floats. The following table lists the fixed CSR address for the first controller and typical settings for a second controller:

<table>
<thead>
<tr>
<th>Controller Module M7559 CSR Address: 17774500 (factory position)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Address Bits (Jumpers)**: A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2</td>
</tr>
<tr>
<td>CSR Address: 17774500 1 1 0 0 1 0 1 0 0 0 0</td>
</tr>
</tbody>
</table>

Possible addresses for second controller:

- 17760404 0 0 0 0 1 0 0 0 0 1
- 17760444 0 0 0 0 1 0 0 1 0 0 1

* 1 = jumper installed, 0 = jumper removed
* A2 is the jumper nearest the module edge.

The interrupt vector is fixed at 260, set under program control.
TS05 Tape Drive

Ordering Information

<table>
<thead>
<tr>
<th>BA23 Enclosure</th>
<th>BA200-Series Enclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV05–ZA/ZB</td>
<td>TS05 subsystem in rack mount kit, which includes controller module (TSV05–A), cables, and top access cover.</td>
</tr>
<tr>
<td>TSV05–BA/BB</td>
<td>TS05 subsystem mounted in a 106-cm (41.7-in) H9642-type cabinet with controller module.</td>
</tr>
<tr>
<td>BA200-Series Enclosures</td>
<td></td>
</tr>
<tr>
<td>TSV05–SE/SF</td>
<td>TS05 subsystem mounted in a 106-cm (41.7-in) H9642-type cabinet with controller module.</td>
</tr>
<tr>
<td>TSV05–SK/SL</td>
<td>TS05 subsystem in rack mount kit, which includes controller module (TSV05–S) and top access cover.</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Support Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM–11</td>
<td>Version 3.3 and later</td>
</tr>
<tr>
<td>Micro/RSX</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>Micro/RSTS</td>
<td>Version 2.2 and later</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.2 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.1 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Support</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 1.06 (release 106) and later</td>
</tr>
<tr>
<td>XXDP</td>
<td>Version 2.1 (release 134) and later: VTSAC0.BIN, VTSBE0.BIN, VTSCD0.BIN, VTSDE0.BIN, VTSED0.BIN, XTSVA0.OBJ</td>
</tr>
<tr>
<td>Power-up self-test LEDs</td>
<td>None</td>
</tr>
</tbody>
</table>

Microsystems Options
TS05

Documentation

TS05 Pocket Service Guide
TSV05 Tape Transport System User's Guide

DC Power and Bus Loads

<table>
<thead>
<tr>
<th>Option</th>
<th>Module</th>
<th>+5 V</th>
<th>+12 V</th>
<th>Power</th>
<th>Bus Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV05–A</td>
<td>M7196</td>
<td>6.5</td>
<td>0.0</td>
<td>32.5</td>
<td>3.0</td>
</tr>
<tr>
<td>TSV05–S</td>
<td>M7696</td>
<td>6.5</td>
<td>0.0</td>
<td>32.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

NOTE: A tape drive system includes two of each type cable and two type-A filtered connectors.

The TS05, shown in Figure 1, is a magnetic streaming tape drive that provides 40.5 Mbytes of backup data storage. You install the TS05 in the top 26.3-cm (10.5-in) mass storage shelf of the H9642–J or H9644 cabinet.

The TS05 reads or writes up to 160 Kbytes/s in standard ANSI format. The drive uses automatic read after write to verify that data is accurately recorded.
Figure 1: TS05 Tape Drive

Tape data is buffered in 3.5 Kbytes of RAM on the drive’s TSV05 controller (M7196). The TSV05 is a tape mass storage control protocol (TMSCP) device.
Figure 2 shows a TSV05 with a BA200-series handle.

Figure 2: TSV05 (M7196) Controller Module (Example)

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29-26246) when you work with the internal parts of a computer system.
Use switchpacks E57 and E58 to set the CSR address and interrupt vector for the TSV05 (Figure 2). The following tables list the factory configurations for the CSR address and interrupt vector, which are both fixed:

TSV05 Controller Module (M7196)

CSR Address: 17772520 (factory position)

Switchpack E57 and E58

<table>
<thead>
<tr>
<th>Address Bits:</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
<th>A9</th>
<th>A8</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchpacks:</td>
<td>E58</td>
<td></td>
</tr>
<tr>
<td>Switches:</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

CSR Address:
17772520

1 = switch on, 0 = switch off

TSV05 Controller Module (M7196)

Interrupt Vector: 224 (factory position)

Switchpack E57

<table>
<thead>
<tr>
<th>Vector Bits:</th>
<th>V8</th>
<th>V7</th>
<th>V6</th>
<th>V5</th>
<th>V4</th>
<th>V3</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E57 Switches:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Vector Address:
224

If you use a TSV05 controller in the H9642–J cabinet, you must install it in slot 4 of the top BA23 backplane. The TS05 tape drive connects to the TSV05 controller through two type-A insert panels installed in the H9642–J I/O panel. Two 50-conductor cables run between the TS05 and the insert panels. Two 50-conductor cables also run internally between the insert panels and the TSV05 controller.

If you use a TSV05 controller in the H9644 cabinet, the TS05 tape drive connects to the TSV05 through the TSV05 handle (Figure 3).
The fan filter is a field replaceable unit (FRU) on the TS05 tape drive. Remove the TS05 fan filter as follows:

1. Remove the TS05 from the cabinet, using the procedure in the appropriate cabinet maintenance documentation.
2. For the TS05 sandcast unit:
 a. Raise the unit to the service access position.
 b. Replace the filter. See Section 5.2.2 of the TS05 Pocket Service Guide.

3. For the diecast unit:
 a. Remove the fan filter from inside the air duct opening at the lower-left of the front panel, as shown in Figure 4.
 b. If the fan filter only needs to be cleaned, use low-pressure compressed air or vacuum in the direction opposite to the air flow.

Figure 4: Removing the TS05 Fan Filter
TU81–PLUS Tape Drive

Ordering Information

<table>
<thead>
<tr>
<th></th>
<th>120 V, 60 Hz</th>
<th>240 V, 50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU81–PLUS tape drive</td>
<td>TU81–PLUS</td>
<td>TU81–PLUS</td>
</tr>
<tr>
<td>KLESI–S adapter module</td>
<td>M7740–PA</td>
<td>M7740–PA</td>
</tr>
<tr>
<td>for BA200-series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KLESI–A adapter module</td>
<td>M7740</td>
<td>M7740</td>
</tr>
<tr>
<td>for BA23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-cm (36-in) cable to</td>
<td>70–19923–04</td>
<td>70–19923–04</td>
</tr>
<tr>
<td>signal distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable from signal</td>
<td>BC17Y–xx</td>
<td>BC17Y–xx</td>
</tr>
<tr>
<td>distribution to drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O panel insert</td>
<td>74–28666–01</td>
<td>74–28666–01</td>
</tr>
</tbody>
</table>

Operating System Support

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Version Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVMS</td>
<td>Version 4.3 buffer support only by backup utility</td>
</tr>
<tr>
<td>MicroVMS</td>
<td>Version 4.4 and later</td>
</tr>
<tr>
<td>RSTS/E</td>
<td>Version 9.5 and later</td>
</tr>
<tr>
<td>RSX–11M</td>
<td>Version 4.3 and later</td>
</tr>
<tr>
<td>RSX–11M–PLUS</td>
<td>Version 4.0 and later</td>
</tr>
<tr>
<td>RT–11</td>
<td>Version 5.4D and later</td>
</tr>
<tr>
<td>ULTRIX–11</td>
<td>Version 3.1 and later</td>
</tr>
<tr>
<td>ULTRIX–32m</td>
<td>Version 1.2 and later</td>
</tr>
<tr>
<td>VAXELN</td>
<td>Version 2.3 and later</td>
</tr>
</tbody>
</table>

Diagnostic Support

<table>
<thead>
<tr>
<th>Diagnostic Tool</th>
<th>Version Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Diagnostic Monitor</td>
<td>Version 1.14 (release 114) and later</td>
</tr>
<tr>
<td>XXDP</td>
<td>Version 2.1 (release 134) and later: ZTU1A0.BIN, XTUCB0.OBJ</td>
</tr>
<tr>
<td>Power-up self-tests</td>
<td>None</td>
</tr>
</tbody>
</table>
The TU81-PLUS, shown in Figure 1, is a dual-speed, 9-track magnetic streaming tape subsystem. The drive is microprocessor-controlled and includes a 256-Kbyte cache buffer memory. The buffer increases the amount of time that the drive is streaming, which reduces backup and copy time.
The TU81–PLUS is installed in a separate 48.3-cm (19-in) H9643 rack mount cabinet, similar to the H9642–J. For removal and replacement procedures, see the *TU81 Magnetic Tape Subsystem Pocket Service Guide*.

CAUTION: Static electricity can damage integrated circuits. Use the wrist strap and antistatic mat found in the Antistatic Kit (29–26246) when you work with the internal parts of a computer system.

The TU81–E subsystem includes a KLESI Q22-bus adapter module, two cables, and an I/O panel insert. You set the CSR address for the KLESI...
module (M7740) by using DIP switch E58 (Figure 2 for BA200-series enclosures; Figure 3 for the BA23 enclosure). The table under Figure 3 lists the CSR address to use. The interrupt vector is set under program control.

NOTE: When you order a KLESI module, check the setting of the CSR address. If necessary, reset the CSR address before installing the module.

The TU81–PLUS drive is powered by the 874–D (120 V, 60 Hz) or the 874–F (240 V, 50 Hz) power controller. The drive uses 300 VA when loaded or on standby, and up to 550 VA when starting and stopping.

Figure 2: KLESI Module Layout (M7740), BA200-Series
Figure 3: KLESI Module Layout (M7740)

KLESI (M7740) CSR Address: 17774500 (factory position)
Switchpack E58

Address Bits:

<table>
<thead>
<tr>
<th>Address Bits</th>
<th>E58 Switches</th>
<th>Jumper</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2</td>
<td>1 2 3 4 5 6 7 8 9 10 W</td>
<td></td>
</tr>
</tbody>
</table>

CSR Address:

<table>
<thead>
<tr>
<th>CSR Address</th>
<th>1 1 0 0 1 0 1 0 0 0 0 0*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17774500</td>
<td>1 1 0 0 1 0 1 0 0 0 0 0*</td>
</tr>
</tbody>
</table>

1 = switch on, 0 = switch off

* 0 = jumper on left and center pin (module edge facing you)
* 1 = jumper on right and center pin
Appendix A

Related Documentation

The following documents contain information relating to MicroVAX or MicroPDP-11 systems.

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules</td>
<td></td>
</tr>
<tr>
<td>CXA16 Technical Manual</td>
<td>EK-CAB16-TM</td>
</tr>
<tr>
<td>CXY08 Technical Manual</td>
<td>EK-CXY08-TM</td>
</tr>
<tr>
<td>DEQNA Ethernet User’s Guide</td>
<td>EK-DEQNA-UG</td>
</tr>
<tr>
<td>DHV11 Technical Manual</td>
<td>EK-DHV11-TM</td>
</tr>
<tr>
<td>DLV11–J User’s Guide</td>
<td>EK-DLV1J-UG</td>
</tr>
<tr>
<td>DMV11 Synchronous Controller Technical Manual</td>
<td>EK-DMV11-TM</td>
</tr>
<tr>
<td>DMV11 Synchronous Controller User’s Guide</td>
<td>EK-DMV11-UG</td>
</tr>
<tr>
<td>DPV11 Synchronous Controller Technical Manual</td>
<td>EK-DPV11-TM</td>
</tr>
<tr>
<td>DPV11 Synchronous Controller User’s Guide</td>
<td>EK-DPV11-UG</td>
</tr>
<tr>
<td>DRV11–J Interface User’s Manual</td>
<td>EK-DRV1J-UG</td>
</tr>
<tr>
<td>DRV11–WA General Purpose DMA User’s Guide</td>
<td>EK-DRVWA-UG</td>
</tr>
<tr>
<td>DZQ11 Asynchronous Multiplexer Technical Manual</td>
<td>EK-DZQ11-TM</td>
</tr>
<tr>
<td>DZQ11 Asynchronous Multiplexer User’s Guide</td>
<td>EK-DZQ11-UG</td>
</tr>
<tr>
<td>DZV11 Asynchronous Multiplexer Technical Manual</td>
<td>EK-DZV11-TM</td>
</tr>
<tr>
<td>DZV11 Asynchronous Multiplexer User’s Guide</td>
<td>EK-DZV11-UG</td>
</tr>
<tr>
<td>IEU11–A/IEQ11–A User’s Guide</td>
<td>EK-IEU1J-UG</td>
</tr>
<tr>
<td>KA630–AA CPU Module User’s Guide</td>
<td>EK-KA630-UG</td>
</tr>
<tr>
<td>KA640–AA CPU Module User’s Guide</td>
<td>EK-KA640-UG</td>
</tr>
<tr>
<td>KA650–AA CPU Module User’s Guide</td>
<td>EK-KA650-UG</td>
</tr>
<tr>
<td>KDA50–Q CPU Module User’s Guide</td>
<td>EK-KDA5Q-UG</td>
</tr>
<tr>
<td>KDJ11–B CPU Module User’s Guide</td>
<td>EK-KDJ1B-UG</td>
</tr>
<tr>
<td>KDJ11–D/S CPU Module User’s Guide</td>
<td>EK-KDJ1D-UG</td>
</tr>
<tr>
<td>KDF11–BA CPU Module User’s Guide</td>
<td>EK-KDFEB-UG</td>
</tr>
<tr>
<td>KMV11 Programmable Communications Controller User’s Guide</td>
<td>EK-KMV11-UG</td>
</tr>
<tr>
<td>KMV11 Programmable Communications Controller Technical Manual</td>
<td>EK-KMV11-TM</td>
</tr>
</tbody>
</table>
Modules

LSI-11 Analog System User's Guide EK-AXV11-UG
Q-Bus DMA Analog System User's Guide EK-AV11D-UG
RQDX2 Controller Module User's Guide EK-RQDX2-UG
RQDX3 Controller Module User's Guide EK-RQDX3-UG

Disk and Tape Drives

RA60 Disk Drive Service Manual EK-ORA60-SV
RA60 Disk Drive User's Guide EK-ORA60-UG
RA81 Disk Drive Service Manual EK-ORA81-SV
RA81 Disk Drive User's Guide EK-ORA81-UG
SA482 Storage Array User's Guide (for RA82) EK-SA482-UG
SA482 Storage Array Service Manual (for RA82) EK-SA482-SV
RC25 Disk Subsystem Pocket Service Guide EK-ORC25-PS
RRD50 Subsystem Pocket Service Guide EK-RRD50-PS
RRD50 Digital Disk Drive User's Guide EK-RRD50-UG
RX33 Technical Description Manual EK-RX33T-TM
RX50-D, -R Dual Flexible Disk Drive Subsystem Owner's Manual EK-LEP01-OM
TK50 Tape Drive Subsystem User's Guide EK-LEP05-UG
TS05 Tape Transport Pocket Service Guide EK-TSV05-PS
TS05 Tape Transport Subsystem Technical Manual EK-TSV05-TM
TS05 Tape Transport System User's Guide EK-TSV05-UG
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Order Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroVAX Special Systems Maintenance</td>
<td>EK-181AA-MG</td>
</tr>
<tr>
<td>630QB Maintenance Print Set</td>
<td>MP-02071-01</td>
</tr>
<tr>
<td>630QE Maintenance Print Set</td>
<td>MP-02219-01</td>
</tr>
<tr>
<td>630QY Maintenance Print Set</td>
<td>MP-02065-01</td>
</tr>
<tr>
<td>630QZ Maintenance Print Set</td>
<td>MP-02068-01</td>
</tr>
<tr>
<td>BA23 Enclosure Maintenance</td>
<td>EK-186AA-MG</td>
</tr>
<tr>
<td>BA123 Enclosure Maintenance</td>
<td>EK-188AA-MG</td>
</tr>
<tr>
<td>BA213 Enclosure Maintenance</td>
<td>EK-189AA-MG</td>
</tr>
<tr>
<td>BA214 Enclosure Maintenance</td>
<td>EK-190AA-MG</td>
</tr>
<tr>
<td>BA215 Enclosure Maintenance</td>
<td>EK-191AA-MG</td>
</tr>
<tr>
<td>H9642-J Cabinet Maintenance</td>
<td>EK-187AA-MG</td>
</tr>
<tr>
<td>H9644 Cabinet Maintenance</td>
<td>EK-221AA-MG</td>
</tr>
<tr>
<td>KA630 CPU System Maintenance</td>
<td>EK-178AA-MG</td>
</tr>
<tr>
<td>KA640 CPU System Maintenance</td>
<td>EK-179AA-MG</td>
</tr>
<tr>
<td>KA650 CPU System Maintenance</td>
<td>EK-180AA-MG</td>
</tr>
<tr>
<td>KDF11-B CPU System Maintenance</td>
<td>EK-245AA-MG</td>
</tr>
<tr>
<td>KDJ11-D/S CPU System Maintenance</td>
<td>EK-246AA-MG</td>
</tr>
<tr>
<td>KDJ11-B CPU System Maintenance</td>
<td>EK-247AA-MG</td>
</tr>
<tr>
<td>MicroPDP-11 Hardware Information Kit (for BA23)</td>
<td>00-ZYAAA-GZ</td>
</tr>
<tr>
<td>MicroPDP-11 Hardware Information Kit (for BA123)</td>
<td>00-ZYABB-GZ</td>
</tr>
<tr>
<td>MicroPDP-11 Hardware Information Kit (for H9642-J)</td>
<td>00-ZYAE-GZ</td>
</tr>
<tr>
<td>MicroPDP-11 Hardware Information Kit (for BA213)</td>
<td>00-ZYAS-GZ</td>
</tr>
<tr>
<td>MicroPDP-11 Hardware Information Kit (for BA23)</td>
<td>EK-192AA-MG</td>
</tr>
<tr>
<td>Microsystems Options</td>
<td>EK-067AB-PG</td>
</tr>
<tr>
<td>MicroVAX II Hardware Information Kit (for BA23)</td>
<td>00-ZNAAA-GZ</td>
</tr>
<tr>
<td>MicroVAX II Hardware Information Kit (for BA123)</td>
<td>00-ZNAAB-GZ</td>
</tr>
<tr>
<td>MicroVAX II Hardware Information Kit (for H9642-J)</td>
<td>00-ZNAAE-GZ</td>
</tr>
<tr>
<td>MicroVAX 3500 Customer Hardware Information Kit</td>
<td>00-ZNAES-GZ</td>
</tr>
<tr>
<td>MicroVAX 3600 Customer Hardware Information Kit (for H9644)</td>
<td>00-ZNAEF-GZ</td>
</tr>
<tr>
<td>VAXstation 3200 Owner’s Manual (BA23)</td>
<td>EK-154AA-OW</td>
</tr>
<tr>
<td>VAXstation 3500 Owner’s Manual (BA213)</td>
<td>EK-171AA-OW</td>
</tr>
<tr>
<td>VAXstation II/GPX Owner’s Manual (BA23)</td>
<td>EK-106AA-OW</td>
</tr>
<tr>
<td>VAXstation II/GPX Owner’s Manual (BA123)</td>
<td>EK-105AA-OW</td>
</tr>
<tr>
<td>Document Title</td>
<td>Order Number</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
</tr>
<tr>
<td>DEC/X11 Reference Card</td>
<td>AV-F145A-MC</td>
</tr>
<tr>
<td>XXDP User's Manual</td>
<td>AZ-GNJAA-MC</td>
</tr>
<tr>
<td>XXDP DEC/X11 Programming Card</td>
<td>EK-XXDP-MC</td>
</tr>
<tr>
<td>MicroVAX Diagnostic Monitor Reference Card</td>
<td>AV-FMXAA-DN</td>
</tr>
<tr>
<td>MicroVAX Diagnostic Monitor User's Guide</td>
<td>AA-FM7AB-DN</td>
</tr>
<tr>
<td>Networks</td>
<td></td>
</tr>
<tr>
<td>Ethernet Transceiver Tester User's Manual</td>
<td>EK-ETHTT-UG</td>
</tr>
<tr>
<td>VAX/VMS Networking Manual</td>
<td>AA-Y512C-TE</td>
</tr>
<tr>
<td>VAX NI Exerciser User's Guide</td>
<td>AA-HI06A-TE</td>
</tr>
</tbody>
</table>
Your comments and suggestions will help us improve the quality of our future documentation. Please note that this form is for comments on documentation only.

I rate this manual’s:

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (product works as described)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Completeness (enough information)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Clarity (easy to understand)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Organization (structure of subject matter)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Figures (useful)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Examples (useful)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Index (ability to find topic)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>Page layout (easy to find information)</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

What I like best about this manual: ___

What I like least about this manual: __

My additional comments or suggestions for improving this manual: __

I found the following errors in this manual:

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please indicate the type of user/reader that you most nearly represent:

- [] Administrative Support
- [] Computer Operator
- [] Educator/Trainer
- [] Programmer/Analyst
- [] Sales
- [] Scientist/Engineer
- [] Software Support
- [] System Manager
- [] Other (please specify) __________________________

Name/Title ___ Dept. ___________________________
Company ___ Date ____________
Mailing Address ______________________________________ Phone _________________________

10/87