CRAY IOS-V Commands
Reference Manual
SR–2170 8.0.3.2

Cray Research, Inc.
The illustration on the following pages highlights the major body of documentation available for Cray Research (CRI) customers. The illustration is organized into categories by audience designation:

<table>
<thead>
<tr>
<th>Audience</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>End users</td>
<td>Those who use the UNICOS operating system, products, applications, or networking software</td>
</tr>
<tr>
<td>Application and system programmers</td>
<td>Those who write or modify system or application code on a CRI system for the purpose of solving computer system, scientific, or engineering problems</td>
</tr>
<tr>
<td>System administrators</td>
<td>Those who perform system administration tasks, such as installation, configuration, and basic troubleshooting</td>
</tr>
<tr>
<td>System analysts</td>
<td>Those who perform advanced troubleshooting, tuning, and customization</td>
</tr>
<tr>
<td>Operators</td>
<td>Those who perform operational functions, such as performing system dumps, and those who administer an operator workstation</td>
</tr>
</tbody>
</table>

To use the map, find the audience designation closest to your specific needs or role as a CRI system user. Note that manuals under other audiences may also be of interest to you; manuals are listed only once, underneath the audience to which they most directly apply. Some manual titles are abbreviated. The date in the map's footer tells you when the information was last revised.

For more information

In addition to the illustration, you can use the following publications to find documentation specific to your needs:

- *Software Documentation Ready Reference*, publication SQ-2122, serves as a general index to the CRI documentation set. The booklet lists documents and man pages according to topic.

- *Software Overview for Users*, publication SG-2052, introduces the UNICOS operating system, its features, and its related products. It directs you to documentation containing user-level information.

- *User Publications Catalog*, publication CP-0099, briefly describes all CRI manuals available to you, including some not shown on the map, such as training workbooks and other supplementary documentation.

Ordering

To obtain CRI publications, order them by publication number from the Distribution Center:

Cray Research, Inc.
Distribution Center Order desk (612) 683-5907
2360 Pilot Knob Road Fax number (612) 452-0141
Mendota Heights, MN 55120
USA
- Available online with CrayDoc
 * Available online with Docview
 ▲ Man pages available with the `man` command

END USERS

Introductory
- Software Overview for Users (SG-2052)★
- User's Guide to Online Information (SG-2143)★★

General
- Software Documentation Ready Reference (SQ-2122)★
- User Commands Reference (SR-2011)▲
- User Commands Ready Reference (SQ-2056)▲
- Korn Shell Ready Reference (SQ-2115)
- UNICOS Shells Ready Reference (SQ-2116)
- UNICOS Environment Variables Ready Reference (SQ-2117)
- UNICOS Index for Man Pages (SR-2049)
- Visual Interfaces Guide (SG-3094)★★
- Tape Subsystem Guide (SG-2051)★★
- Security (MLS) Guide (SG-2111)●
- MPP Software Guide (SG-2508)★★

MVS Link
- RQS User's Guide (SG-2405)

UNIX Link
- NQE User's Guide (SG-2148)●
- NQE Ready Reference (SG-2149)
- Introducing NQE (IN-2153)●

CRL
- CRL User's Guide (SG-2126)★

Networking
- NQS Guide (SG-2105)★★
- TCP/IP and OSI Network Guide (SG-2009)★★
- FTA Guide (SG-2144)★★

Text Editing
- Text Editors Primer (SG-2050)
- vi Reference Card (SQ-2054)
- ed Reference Card (SQ-2055)

UNIX Link
- NQE User's Guide (SG-2148)●
- NQE Ready Reference (SG-2149)
- Introducing NQE (IN-2153)●

VAX/VMS Link
- RQS User's Guide (SV-3151)

- Man pages available with the `man` command
SYSTEM ADMINISTRATORS AND ANALYSTS

UNICOS
UNICOS Installation Guide (SG-2112)
Installation Ref. Card (SQ-2411)
UNICOS Installation Tool Menus and Help Files (SG-2412)
UNICOS System Administration (SG-2113)
Administrator Commands Reference (SR-2022)
Administrator Commands Ready Ref. (SQ-2413)

CRL
CRL Administrator's Guide (SG-2127)

DMF
DMF Administrator's Guide (SG-2135)

Security and Licensing
UNICOS System Security Overview (SG-2141)
FLEXlm Guide (SG-2181)

UNICOS under
UNICOS
UuU Administrator's Guide (SG-2156)

CRAY EL Series
IOS Commands Reference (SR-2408)
IOS Commands Ready Ref. (SQ-2162)
UNICOS Basic Administration Guide (SG-2416)
UNICOS Installation Guide for CRAY Y-MP EL Systems (SG-5201)
IOS Messages (SQ-2402)

Networking
fy Driver Administrator's Guide (SG-2132)
MPP
CRAY T3D Administrator's Guide (SG-2507)

MVS Link
RQS Administrator's Guide (SG-2406)

UNIX Link
RQS Administrator's Guide (SG-2120)
NQE Administration (SG-2150)
NQE Installation (SG-5236)

VAX/VMS Link
RQS Administrator's Guide (SV-3152)

USCP
Front-end Protocol Internals (SM-0042)
USCP Optimization (SN-2103)

Analysts
File Formats and Special Files Reference (SR-2014)
Data Migration MSP Writer's Guide (SN-2098)
UNICOS Tuning Guide (SR-2099)
UNICOS remake Card (SQ-2146)
Installation and Configuration Tool Reference (SR-3090)

• Available online with CrayDoc
* Available online with Docview
▲ Man pages available with the man command
Record of Revision

The date of printing or software version number is indicated in the footer. Changes in rewrites are noted by revision bars along the margin of the page.

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0.3.2</td>
<td>March 1995. Original printing. UNICOS release 8.0.3.2 and CRAY J90 series IOS-V release 1.3.</td>
</tr>
</tbody>
</table>
Preface

This publication is for system administrators and operators of the CRAY J90 series systems. It contains IOS administrator commands that are specific to the CRAY J90 series IOS-V version 1.3 and UNICOS version 8.0.3.2. It is a helpful reference after the Cray Research UNICOS operating system and the IOS-V software are installed on your system.

Related publications

The following list includes Cray Research publications that are related to the CRAY J90 series, and they are available in the Distribution Center in Mendota Heights, Minnesota:

• *UNICOS Basic Administration Guide for CRAY J90 and CRAY EL Series*, publication SG–2416, contains an appendix that documents the differences between the EL IOS release 11.3.1 and the IOS-V release 1.3.

• *CRAY IOS-V Messages*, publication SQ–2172, contains information on conducting IOS and UNICOS dumps, recovering from a root (/) file system crash, and definitions of panic and warning messages.

• *UNICOS Installation Guide for the CRAY J90 Series*, publication SG–5271, contains information on how to install the UNICOS operating system and the most current release of the Cray Research J90 I/O subsystem (IOS-V) diagnostics, how to customize your configuration, and how to recover from a root (/) file system crash.

• *UNICOS Administrator Commands Reference Manual*, publication SR–2022, contains detailed information and examples of UNICOS administrator commands.
• *Software Overview for Users*, publication SG-2052, contains a brief introduction to Cray Research system hardware and an overview of the following topics: UNICOS, operating system features, networking and connectivity, program generation utilities and products, programming features, and applications.

The *User Publications Catalog*, publication CP-0099, describes the availability and content of all Cray Research hardware and software manuals that are available to customers.

To order a manual, either call the Distribution Center in Mendota Heights, Minnesota, at (612) 683–5907 or send a facsimile of your request to fax number (612) 452–0141. Cray Research employees may send electronic mail to orderdsk (UNIX system users).

Conventions

The following conventions are used throughout this manual:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td>This fixed-space font denotes literal items such as commands, files, routines, path names, signals, messages, and programming language structures.</td>
</tr>
<tr>
<td>manpage(x)</td>
<td>Man page section identifiers appear in parentheses after man page names. The following list describes the identifiers:</td>
</tr>
</tbody>
</table>

1. User commands
2. System calls
3. Library routines, macros, and opdefs
4. Devices (special files)
5. Protocols
6. File formats
7. Miscellaneous topics
8. Administrator commands
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>routine()</td>
<td>Routine names followed by an empty set of parentheses designate a library or kernel routine; for example, ddcnt1(). Kernel routines do not have man pages associated with them.</td>
</tr>
<tr>
<td>variable</td>
<td>Italic typeface denotes variable entries and words or concepts being defined.</td>
</tr>
<tr>
<td>user input</td>
<td>This bold fixed-space font denotes literal items that the user enters in interactive sessions. Output is shown in nonbold, fixed-space font.</td>
</tr>
<tr>
<td>[]</td>
<td>Brackets enclose optional portions of a command line.</td>
</tr>
<tr>
<td>...</td>
<td>Ellipses indicate that a preceding command-line element can be repeated.</td>
</tr>
<tr>
<td><KEY></td>
<td>On man pages, this convention indicates a key on the keyboard.</td>
</tr>
</tbody>
</table>

The following machine naming conventions may be used throughout this manual:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cray PVP systems</td>
<td>All configurations of Cray parallel vector processing (PVP) systems, including the following:</td>
</tr>
<tr>
<td></td>
<td>CRAY C90 series (CRAY C916, CRAY C92A, CRAY C94, CRAY C94A, and CRAY C98 systems)</td>
</tr>
<tr>
<td></td>
<td>CRAY C90D series (CRAY C92AD, CRAY C94D, and CRAY C98D systems)</td>
</tr>
<tr>
<td></td>
<td>CRAY EL series (CRAY Y-MP EL, CRAY EL92, CRAY EL94, and CRAY EL98 systems)</td>
</tr>
<tr>
<td></td>
<td>CRAY J90 series (CRAY J916 system)</td>
</tr>
<tr>
<td></td>
<td>CRAY T90 series (CRAY T94, CRAY T916, and CRAY T932 systems)</td>
</tr>
<tr>
<td></td>
<td>CRAY Y-MP series (CRAY Y-MP2, CRAY Y-MP4, and CRAY Y-MP8 systems)</td>
</tr>
</tbody>
</table>
Preface

Man page sections

Term Definition
Cray MPP systems All configurations of Cray massively parallel processing (MPP) systems, including the CRAY T3D series (CRAY T3D MC, CRAY T3D MCA, and CRAY T3D SC systems)
All Cray Research systems All configurations of Cray PVP and Cray MPP systems that support this release, except Cray Research Superservers, Inc. (CRS) systems
SPARC systems, including those from CRS All SPARC platforms, including systems offered by Cray Research Superservers, Inc., that run the Solaris operating system version 2.3 or later

It is the objective of Cray Research to become compliant with IEEE Std 1003.1–1990 (POSIX.1) and IEEE Std 1003.2–1992 (POSIX.2). This manual reflects those ongoing efforts.

POSIX.2 uses utility to refer to executable programs that Cray Research documentation usually refers to as commands. Both terms appear in this document.

In this publication, Cray Research, Cray, and CRI refer to Cray Research, Inc. and/or its products.

The entries in this manual are based on a common format. The following list shows the order of sections in an entry and describes each section. Most entries contain only a subset of these sections.
<table>
<thead>
<tr>
<th>Section heading</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>Specifies the name of the entry and briefly states its function.</td>
</tr>
<tr>
<td>SYNOPSIS</td>
<td>Presents the syntax of the entry.</td>
</tr>
<tr>
<td>IMPLEMENTATION</td>
<td>Identifies the Cray Research systems to which the entry applies.</td>
</tr>
<tr>
<td>STANDARDS</td>
<td>Provides information about the portability of a utility or routine.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>Discusses the entry in detail.</td>
</tr>
<tr>
<td>NOTES</td>
<td>Presents items of particular importance.</td>
</tr>
<tr>
<td>CAUTIONS</td>
<td>Describes actions that can destroy data or produce undesired results.</td>
</tr>
<tr>
<td>WARNINGS</td>
<td>Describes actions that can harm people, equipment, or system software.</td>
</tr>
<tr>
<td>ENVIRONMENT VARIABLES</td>
<td>Describes predefined shell variables that determine some characteristics of the shell or that affect the behavior of some programs, commands, or utilities.</td>
</tr>
<tr>
<td>RETURN VALUES</td>
<td>Describes possible return values that indicate a library or system call executed successfully, or identifies the error condition under which it failed.</td>
</tr>
<tr>
<td>EXIT STATUS</td>
<td>Describes possible exit status values that indicate whether the command or utility executed successfully.</td>
</tr>
<tr>
<td>MESSAGES</td>
<td>Describes informational, diagnostic, and error messages that may appear. Self-explanatory messages are not listed.</td>
</tr>
<tr>
<td>FORTRAN EXTENSIONS</td>
<td>Describes how to call a system call from Fortran. Applies only to system calls.</td>
</tr>
<tr>
<td>BUGS</td>
<td>Indicates known bugs and deficiencies.</td>
</tr>
<tr>
<td>Section heading</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EXAMPLES</td>
<td>Shows examples of usage.</td>
</tr>
<tr>
<td>FILES</td>
<td>Lists files that are either part of the entry or are related to it.</td>
</tr>
<tr>
<td>SEE ALSO</td>
<td>Lists entries and publications that contain related information.</td>
</tr>
</tbody>
</table>

The following types of online information products are available to Cray Research customers:

- **CrayDoc online documentation reader**, which lets you see the text and graphics of a manual online. The CrayDoc reader is available on workstations. To start the CrayDoc reader at your workstation, use the cdoc(1) command.

- **Docview text-viewer system**, which lets you see the text of a manual online. The Docview system is available on the Cray Research mainframe. To start the Docview system, use the docview(1) command.

- **Man pages**, which describe a particular element of the UNICOS operating system or a compatible product. To see a detailed description of a particular command or routine, use the man(1) command.

- **UNICOS message system**, which provides explanations of error messages. To see an explanation of a message, use the explain(1) command.

- **Cray Research online glossary**, which explains the terms used in a manual. To get a definition, use the define(1) command.

- **xhelp help facility**. This online help system is available within tools such as the Program Browser (xbrowse) and the MPP Apprentice tool.

For detailed information on these topics, see the *User's Guide to Online Information*, publication SG–2143.
Reader comments

If you have comments about the technical accuracy, content, or organization of this manual, please tell us. You can contact us in any of the following ways:

• Send us electronic mail from a UNICOS or UNIX system, using the following UUCP address:

 uunet!cray!publications

• Send us electronic mail from any system connected to Internet, using the following Internet addresses:

 pubs2170@timbuk.cray.com (comments on this manual)

 publications@timbuk.cray.com (general comments)

• Contact your Cray Research representative and ask that a Software Problem Report (SPR) be filed. Use PUBLICATIONS for the group name, PUBS for the command, and NO-LICENSE for the release name.

• Call our Software Information Services department in Eagan, Minnesota, through the Technical Support Center, using either of the following numbers:

 (800) 950–2729 (toll free from the United States and Canada)

 (612) 683–5600

• Send a facsimile of your comments to the attention of “Software Information Services” in Eagan, Minnesota, at fax number (612) 683–5599.

• Use the postage-paid Reader’s Comment Form at the back of the printed manual.

We value your comments and will respond to them promptly.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>am</td>
<td>Alters memory</td>
</tr>
<tr>
<td>bbl1test</td>
<td>Executes diagnostic test for I/O buffer board</td>
</tr>
<tr>
<td>bbl2test</td>
<td>Executes a disk I/O to and from I/O buffer board test</td>
</tr>
<tr>
<td>bg</td>
<td>Puts a suspended IOS command into the background</td>
</tr>
<tr>
<td>bootstruct</td>
<td>Displays the boot environment of the IOS</td>
</tr>
<tr>
<td>cat</td>
<td>Displays file</td>
</tr>
<tr>
<td>cct1test</td>
<td>Executes diagnostic test for I/O buffer board and I/O channel control chip</td>
</tr>
<tr>
<td>cc2test</td>
<td>Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data</td>
</tr>
<tr>
<td>cd</td>
<td>Changes current directory</td>
</tr>
<tr>
<td>clearlog</td>
<td>Clears the statistical log data on an STK 4280 tape drive</td>
</tr>
<tr>
<td>cls</td>
<td>Clears the screen display</td>
</tr>
<tr>
<td>cmp</td>
<td>Performs a byte-by-byte comparison of two files</td>
</tr>
<tr>
<td>conswitch</td>
<td>Toggles console from IOS to UNICOS system console</td>
</tr>
<tr>
<td>count</td>
<td>Counts the number of passes that a loop executes</td>
</tr>
<tr>
<td>cp</td>
<td>Copies a file</td>
</tr>
<tr>
<td>crash</td>
<td>Interprets IOS system dumps</td>
</tr>
<tr>
<td>dd5itest</td>
<td>Executes a confidence test for DD-51 disk drives and controller</td>
</tr>
<tr>
<td>dd5stest</td>
<td>Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s)</td>
</tr>
<tr>
<td>debug</td>
<td>Reports and sets the debug level on the IOS</td>
</tr>
<tr>
<td>dflawr</td>
<td>Reads Disk Flaw table</td>
</tr>
<tr>
<td>dflaww</td>
<td>Reads Disk Flaw table from IOS disk and writes it to disk</td>
</tr>
<tr>
<td>dformat</td>
<td>Formats disk</td>
</tr>
<tr>
<td>dm</td>
<td>Displays central memory</td>
</tr>
<tr>
<td>ds</td>
<td>Loads and deadstarts a diagnostic test</td>
</tr>
<tr>
<td>dslip</td>
<td>Slips one sector</td>
</tr>
<tr>
<td>dstat</td>
<td>Outputs activity information about the disk subsystem</td>
</tr>
<tr>
<td>dsurf</td>
<td>Performs disk surface analysis</td>
</tr>
<tr>
<td>echo</td>
<td>Displays a message</td>
</tr>
<tr>
<td>ed</td>
<td>Edits a text file</td>
</tr>
<tr>
<td>enstat</td>
<td>Displays Ethernet controller status and statistics</td>
</tr>
<tr>
<td>errpt</td>
<td>Processes the error report generated by IOS kernel</td>
</tr>
<tr>
<td>fg</td>
<td>Brings to the foreground an IOS command that is suspended or running in the background</td>
</tr>
<tr>
<td>fm</td>
<td>Fills central memory</td>
</tr>
<tr>
<td>goto</td>
<td>Transfers control to a command file</td>
</tr>
<tr>
<td>head</td>
<td>Displays the first few lines of a specified file</td>
</tr>
<tr>
<td>help</td>
<td>Displays commands and their syntax</td>
</tr>
<tr>
<td>if</td>
<td>Allows conditional transfer of control</td>
</tr>
<tr>
<td>iosdump</td>
<td>Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system</td>
</tr>
<tr>
<td>iostart</td>
<td>Initiates communication between the IOS and UNICOS</td>
</tr>
<tr>
<td>j90install</td>
<td>Maintains and installs software on J90 console, IOS-V, and mainframe</td>
</tr>
<tr>
<td>jbs</td>
<td>Performs boundary scan interconnect test on CRAY J90 series systems</td>
</tr>
<tr>
<td>jcon</td>
<td>Performs a remote login onto a CRAY J90 series mainframe</td>
</tr>
<tr>
<td>jconfig</td>
<td>CRAY J90 series configuration file builder and editor</td>
</tr>
<tr>
<td>jobs</td>
<td>Displays user commands that are running</td>
</tr>
<tr>
<td>kill</td>
<td>Kills a user command task</td>
</tr>
<tr>
<td>ld</td>
<td>Loads a file into central memory</td>
</tr>
<tr>
<td>lm</td>
<td>Loads central memory</td>
</tr>
<tr>
<td>load</td>
<td>Loads and boots an IOS binary image into the IOP</td>
</tr>
<tr>
<td>ls</td>
<td>Lists a directory</td>
</tr>
<tr>
<td>lu</td>
<td>Loads UNICOS</td>
</tr>
<tr>
<td>mc</td>
<td>Stops all CPU activity</td>
</tr>
<tr>
<td>mfdump</td>
<td>Dumps mainframe memory</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>mkdir</td>
<td>Makes a new directory</td>
</tr>
<tr>
<td>mm! test</td>
<td>Executes a confidence test on the IOP RAM/CACHE memory</td>
</tr>
<tr>
<td>more</td>
<td>Displays a file one screen at a time</td>
</tr>
<tr>
<td>mt</td>
<td>Controls magnetic tape</td>
</tr>
<tr>
<td>mv</td>
<td>Moves (renames) a file or directory</td>
</tr>
<tr>
<td>nettest</td>
<td>Executes a network controller confidence test</td>
</tr>
<tr>
<td>od</td>
<td>Displays a file by using various formats</td>
</tr>
<tr>
<td>offline</td>
<td>Loads and configures an offline mainframe diagnostic</td>
</tr>
<tr>
<td>pwd</td>
<td>Prints current directory</td>
</tr>
<tr>
<td>readlog</td>
<td>Reads the statistical log data on an STK 4280 tape drive</td>
</tr>
<tr>
<td>reload</td>
<td>Initiates the reboot of the IOS</td>
</tr>
<tr>
<td>reset</td>
<td>Resets the IOS</td>
</tr>
<tr>
<td>rlogin</td>
<td>Invokes the remote login</td>
</tr>
<tr>
<td>rm</td>
<td>Removes files and directories</td>
</tr>
<tr>
<td>rmdir</td>
<td>Removes a directory</td>
</tr>
<tr>
<td>script</td>
<td>Executes a script of IOS commands</td>
</tr>
<tr>
<td>stat</td>
<td>Displays the CPU and program states</td>
</tr>
<tr>
<td>systat</td>
<td>Outputs various IOS system-related information</td>
</tr>
<tr>
<td>table</td>
<td>Displays current status of various IOS system tables</td>
</tr>
<tr>
<td>tar</td>
<td>Archives tape files</td>
</tr>
<tr>
<td>test</td>
<td>Returns value of program counter or status of flag</td>
</tr>
<tr>
<td>time</td>
<td>Sets and displays the real-time clock</td>
</tr>
<tr>
<td>tptest</td>
<td>Executes a confidence test on tape handlers</td>
</tr>
<tr>
<td>version, ver</td>
<td>Displays version number of the IOS software or PROM firmware</td>
</tr>
<tr>
<td>wait</td>
<td>Waits several seconds before executing next command in command buffer</td>
</tr>
<tr>
<td>what</td>
<td>Extracts SCCS version from a file</td>
</tr>
<tr>
<td>whatmic</td>
<td>Displays microcode level(s) at the IOS prompt</td>
</tr>
<tr>
<td>which</td>
<td>Searches for specified file name</td>
</tr>
</tbody>
</table>
NAME

am – Alters memory

SYNOPSIS

 am address [parcelA] [parcelB] [parcelC] [parcelD]

IMPLEMENTATION

 CRAY J90 series IOS-V

DESCRIPTION

 The am command alters the contents of a 64-bit word in central memory by using the I/O channel. It accepts the following arguments:

 address Relative memory address that will be altered.
 parcelA Value of parcel to alter memory (most significant); default is no change.
 parcelB Value of parcel to alter memory; default is no change.
 parcelC Value of parcel to alter memory; default is no change.
 parcelD Value of parcel to alter memory (least significant); default is no change.

NOTES

 This command accesses central memory through the data channels; therefore, the CPU clock must be on.

MESSAGES

 Expected central memory address
 The first argument specified is not a valid central memory address.
 Invalid parcel parcel#
 The parcel value to alter memory to is not valid.
 Open of memory failed
 The open of mainframe central memory fails.
 Unable to read memory
 The read of mainframe central memory fails.
 Write to memory failed
 Writing the parcel values to memory fails.

EXAMPLES

 The following command writes the value 1111 2222 3333 4444 to central memory word 1000 hexadecimal:

 am 1000 1111 2222 3333 4444

SEE ALSO

 dm(8) to display central memory
 fm(8) to fill memory
 lm(8) to load central memory
NAME
 bbltest – Executes diagnostic test for I/O buffer board

SYNOPSIS
 bbltest

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The bbltest command lets users run and control an offline I/O buffer board (IOBB) diagnostic.
 To test the IOBB thoroughly, you should run this test before running the bb2test command.

WARNINGS
 The bbltest command has the following limitations:
 • When the operating system is running, you cannot use bbltest because a UNICOS system panic will occur, which can corrupt data.
 • The bbltest command runs only on CRAY J90 series systems.
 • The bbltest command does not run from the background.

SEE ALSO
 bb2test(8) to execute an IOBB<-> disk test
 UNICOS Administrator Commands Reference Manual, publication SR–2022, for additional UNICOS diagnostic commands
 CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME
bb2test – Executes a disk I/O to and from I/O buffer board test

SYNOPSIS
bb2test

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The bb2test command lets users run and control an offline I/O buffer board (IOBB) test. To test the IOBB thoroughly, you should run the bb1test command.

NOTES
When running the bb2test command, observe the following limitations:
• When the operating system is active, the bb2test command does not run.
• The bb2test command does not run from the boot prompt.
• The bb2test command does not run from the background.

SEE ALSO
bb1test(8) to execute a diagnostic test for IOBB
CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME
 bg – Puts a suspended IOS command into the background

SYNOPSIS
 bg

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The bg command starts a suspended IOS command and allows the interactive shell to run parallel with it.

EXAMPLES
 If the `dformat` command was started in the foreground (for example, the `&` character was not placed at the end of the command line), and then the user entered `<CONTROL-Z>` to suspend it, the `dformat` command can resume execution in the background by entering the following command:

 bg
NAME

bootstruct – Displays the boot environment of the IOS

SYNOPSIS

bootstruct

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The bootstruct command displays the boot environment of the IOS including its network identity and that of its console server.
NAME

cat – Displays file

SYNOPSIS

cat [-n] filename

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The cat command displays the contents of a file on the system console disk, which is NFS mounted to the IOS. It accepts the following options:

- \(-\mathbf{n} \) Displays a line number with each line and first byte of that line’s byte count.

filename Specifies input file.

MESSAGES

Can’t find <filename>
The file name specified does not exist (cannot be opened).
NAME

ccltest – Executes diagnostic test for I/O buffer board and I/O channel control chip

SYNOPSIS

ccltest

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The ccltest command lets users run and control an offline I/O buffer board and I/O channel control chip (IOBB and CC chip) diagnostic.

To thoroughly test the IOBB, you should run this test after the bb1test and bb2test commands.

NOTES

The ccltest command does not run from the background.

WARNINGS

When the operating system is running, you cannot use the ccltest command because a UNICOS system panic will occur, which can corrupt data.

SEE ALSO

UNICOS Administrator Commands Reference Manual, publication SR–2022, for additional UNICOS diagnostic commands

CRA Y J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

c2test – Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data

SYNOPSIS

c2test

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The c2test command executes a data transfer test from central memory to the I/O buffer board (IOBB) and back to central memory. Test initialization includes loading and deadstarting the CPU binary file. Section initialization verifies that the I/O channels selected are connected to the IOBB being tested.

Each data pattern (85 total) is passed to the CPU program, which vector stores that pattern to central memory.

The length of the data buffer when using a 16-Mbyte IOBB is 2,096,896 D CM words. The length of the data buffer when using a 4-Mbyte IOBB is 524,032 D CM words.

The IOBB has the data pattern written to or read from location 0x200 to maximum.

After each pattern is stored to central memory, it is transferred to the IOBB by using the output command channel. After the transfer, the channel error register and IOBB status register are tested for error information.

After each pattern is transferred to the IOBB, it is transferred back to central memory by using the input command channel. After the transfer, the channel error register and IOBB status register are tested for error information.

The data in central memory is then verified by doing vector subtracts of the write buffer data from the read buffer data. A similar sequence is used to transfer address data from central memory to IOBB to central memory.

NOTES

The c2test command runs only on CRA Y J90 series systems.

When the operating system is active, the c2test command cannot run; it must be run from the IOS prompt.

SEE ALSO

CRA Y J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

\texttt{cd} – Changes current directory

SYNOPSIS

\texttt{cd \ path}

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The \texttt{cd} command changes the current directory on the system console disk, which is NFS mounted to the IOS. It accepts the following argument:

\texttt{path} Absolute or relative path name of the desired directory.

MESSAGES

\texttt{<directory name>} is not a directory

The directory being changed to is not a directory.

Error = \texttt{<errno>}

A VxWorks system call failed. The \texttt{errno} printed is an internal error number for debugging purposes.

No such directory!

The directory being changed to does not exist (cannot be opened).

EXAMPLES

Example 1: The following command changes the current directory to the root directory:

\texttt{cd /}

Example 2: The following command changes the current directory to the \texttt{boot} subdirectory:

\texttt{cd boot}

Example 3: The following command changes the current directory to the \texttt{test} directory from any other directory:

\texttt{cd /test}
NAME

clearlog – Clears the statistical log data on an STK 4280 tape drive

SYNOPSIS

clearlog rssCUL

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The clearlog command clears the statistical log data on an STK 4280 tape drive.
The clearlog command accepts the following options:
C Specifies controller number.
U Specifies the unit number.
L Specifies the logical unit (LUN).

MESSAGES

Cannot open tape <tape device>
An open of the specified tape device fails. This can happen if the tape device was not
initialized properly during the IOS load.

Invalid tape device name
The tape device specified is not of type STK 4280. Valid tape device names begin with rss.

Unable to execute log command

EXAMPLES

The following command clears the log data on drive rss010:

clearlog rss010
NAME

cIs – Clears the screen display

SYNOPSIS

cIs

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The cIs command clears the screen. It is useful in a command script for clearing data on the screen.
NAME

cmp – Performs a byte-by-byte comparison of two files

SYNOPSIS

cmp [-l] [-s] filename1 filename2 [skip1] [skip2]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The cmp command compares filename1 and filename2. If you omit options, cmp makes no comment if the files are the same; if they differ, it reports the byte and line number at which the difference occurred, or, that one file is subordinate to the other.

The skip1 and skip2 arguments are initial byte offsets into filename1 and filename2, respectively. They can be either octal or decimal; a leading 0 denotes octal.

The cmp command accepts the following option and arguments:

-1 Prints the byte number (in decimal) and the differing bytes (in octal) for all differences between the two files.

-s Silent. Prints nothing for differing files; sets only exit codes.

filename Specifies the name of the file(s) to be compared.

skip Specifies at which byte the comparison should begin.

EXIT STATUS

The exit status is 0 for identical files, 1 for different files, and 2 if an error occurred.

MESSAGES

EOF on file
The end-of-file mark is reached.

Open of file <file name> failed
One of the file names specified for comparison does not exist (cannot be opened).
NAME

conswitch – Toggles console from IOS to UNICOS system console

SYNOPSIS

conswitch

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

You can execute the conswitch command only from the IOS. It is the equivalent of pressing <CONTROL-a> to toggle the console terminal from acting as the IOS console to the UNICOS console interface. This command is used in scripts to automate the transfer of control from the IOS to UNICOS.

NOTES

This command executes only in a command script file.
NAME

count – Counts the number of passes that a loop executes

SYNOPSIS

count init
count inc
count print

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The count command enables a counter that counts the number of passes that were executed when a
loop is used.

The count command accepts the following arguments:

init Initializes the counter to 0.
inc Increments the counter by 1.
print Prints the current value of the counter.

NOTES

This command executes only in a command script file.

MESSAGES

Bad argument
The argument specified is not a valid option.

EXAMPLES

The following command line displays the count (in decimal) on the terminal screen:

count print
NAME

`cp` - Copies a file

SYNOPSIS

```
cp source destination
```

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The `cp` command copies the contents of `filespec1` into `filespec2`.

The `cp` command accepts the following arguments:

- `source` File specification of the source file.
- `destination` File specification of the destination file.

CAUTIONS

If destination files already exist, they are overwritten.

MESSAGES

- **Source file is a directory**
 - The source file specified to copy is an existing directory.
- **Unable to open destination file**
 - The destination file cannot be opened.
- **Unable to open source file**
 - The source file specified cannot be opened.
- **Unable to stat source file**
 - The source file specified does not exist.
- **Write failed on <filename> ... aborting**
 - An error occurred while writing the data from the source file to the new destination file.

EXAMPLES

Example 1: The following example copies contents of `test1` into a new file named `test2`:

```
cp test1 test2
```

Example 2: The following example copies file `file1` from directory `/tmp/type` to directory `/adm/type`:

```
cp /tmp/type/file1 /adm/type/file1
```
NAME

`crash` - Interprets IOS system dumps

SYNOPSIS

```
crash filename
```

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The `crash` command reads in the IOS image created by the `iosdump` command (`filename`) and displays system structures, raw memory, and symbolic information, prompting users for commands.

The `iosdump` command creates the dump file in a format that `crash` expects. By default, it is kept in the `/adm/dump/xdxdate` file name convention; `x` is the IOS number on which the dump originated, and `date` is the day, month, and year the dump occurred.

To exit from the `crash` utility, type `q` and press `<RETURN>`.

The `crash` command accepts the following argument:

`filename` Specifies the name of the file that contains the IOS system image.

All addresses are expected to be in hexadecimal format regardless of prefixes. `crash` automatically determines whether the address given is an I/O buffer board (IOBB) address or IOS memory address and converts the address to a file offset accordingly. `crash` also recognizes a number that is simply an offset from IOS memory position 0.

The `crash` command accepts the following subcommands:

```
dc5i [-f]
dstage
dstat
derrpt
dloadmap
```

```
help [command]
```

Displays the state of the DC5I controller (`crash` prompts you for the controller number if you do not specify it on the command line) and a history of the I/O parameter blocks that the driver has prepared for the controller in reverse chronological order.

Displays staged disk requests.

Displays the overall disk strategy numbers and the disk devices that were found on that IOS.

Displays the error report.

Outputs one help line that specifies the syntax of all available dump commands.

Displays the state of the IPI controller (`crash` prompts you for it if you did not specify it on the command line), along with any active I/O parameter blocks. By default, an 80-column display is generated. To display additional parameter block information, specify the `-f` option.

Shows the last 16 user commands run (or running at time of dump) on the IOS, along with their arguments and state.

Lists each strategy, driver, or command that has been loaded, along with its load address and size.
nm [-l] [*][symbol | address | driver | config | uconfig]
 Namelist command. If given a symbol or address, nm searches the namelist for the matching
 address and/or symbol pair and displays it. If preceded by a *, nm will output all symbols in
 the namelist that match the specified symbol pattern (for example, the nm *pkt command
 would output all symbol names that have the string pkt, such as _pkt_tbl and _getpkt).

 The words driver, config, and uconfig are keywords, and they list the drivers loaded at
 the time of the dump, the /config file contents, and the UNlCOS config file, respectively
 (if master IOS).

od [-line count] -[n | o | d] [addr]
 Lists the contents of IOS memory at the addr specified according to the base specified
 (hexadecimal by default).

packet [type] [addr]
 The type argument is a letter (A, D, M, and so on) that denotes the type of packet to be
 displayed, and addr specifies the hexadecimal address of one packet. If you specify type and
 addr together, crash tries to display the information at addr as a packet of type type if
 possible. If you specify only type, crash outputs only the packets found of that type. A
 history of the last 5120 packets are kept in the IOS; to display it, specify packet without
 arguments.

q
 Exits the crash command.

s2tape
 Outputs status information on each tape attached to the small computer system interface (SCSI)
 adapter.

sdisk
 Outputs status information on each disk attached to the SCSI adapter.

si2
 Outputs status information on the SCSI-2 adapter.

stape
 Displays the state of each SCSI tape command issued and the device to which it was issued.

status
 Outputs the release level of the IOS contained in the dump and the time the PANIC occurred if
 the dump was the result of an IOS ASSERTION PANIC.

sysbuf
 Outputs the last syslog() messages sent to the console.

systat
 Displays the state of the IOBB buffer pool and IOBB transfer queue at the time of the dump.

table [-a] [-f] {pkt | fd | buf | trace}
 Displays the packet table (pkt) contained in IOS memory (not IOBB memory), the file
 descriptor table (fd), the IOBB buffer pool table (buf) (see systat above), or the trace table
 (trace), respectively. The trace table is defined only after an IOS ASSERTION PANIC.

tcb [addr]
 The addr argument is the IOBB address to start listing I/O transfer control blocks (IOTCB).
 By default, this command starts at the beginning of the IOTCB table and outputs each control
 block. Each control block contains the information that the IOBB requires to complete one
 transfer to or from the mainframe.

tstat
 Provides a trace of tape packets from UNlCOS.

ttybuf
 Displays the tty buffer (any print statements that were queued asynchronously; that is, from an
 interrupt service routine (ISR) and had not been printed to the console yet).

ver
 Prints the IOS version of the IOS kernel contained in the dump.
EXAMPLES

The following example provides `crash` with a dump taken from IOS 0 (indicated by the directory in which it is found; `dump0` is IOS 0, `dump1` is IOS 1, and so on) from August 11, 1993 (indicated by the name: `D81193.0`):

```
crash /adm/dump0/D81193.0
```
NAME

dd5itest - Executes a confidence test for DD-5I disk drives and controller

SYNOPSIS

dd5itest

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dd5itest test initialization reserves I/O buffer board (IOBB) write and read blocks, which are released back to the system when the test is exited.

The test consists of the following:

1. Write, read, and verify 85 canned and 100 random data patterns, using 4-Kbyte blocks and test cylinder, head group 0.
2. Verify correct head group selection.
3. Write, read, and verify 85 canned and 20 random data patterns, using 4-Kbyte blocks and test cylinder, sequential heads groups.
4. Write, read, and verify 85 canned and 20 random data patterns, using 128-Kbyte blocks and test cylinder, head group 0.
5. Generate 2048 legal random disk blocks (addresses), using random data generated from a seed number. The disk blocks (addresses) can range from cylinder 0, head group 0, to the beginning of the maintenance cylinder. All reads consists of 4-Kbytes, and read data is not verified.

NOTES

When running dd5itest, observe the following limitations:

• The dd5itest command does not run from the background.
• The dd5itest command does not run from the boot prompt.

SEE ALSO

dd5iq1(8) to execute a quick-look buffered intelligent peripheral interface (IPI) drive diagnostic

CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

dd5stest – Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s)

SYNOPSIS

dd5stest

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

Test initialization of the dd5stest diagnostic includes reserving I/O buffer board (IOBB) write and read blocks, which are released back to the system when the test is exited.

The dd5stest diagnostic runs on board (4220) diagnostics. This can be done only if the controller is not operating. If the operating system is active, this test does not run. If the operating system is inactive, an ioctl call is made to the controller to run onboard diagnostics. These diagnostics are more extensive than the power-up self-test diagnostics.

During the diagnostic run time, there is no communication to the display. At the end of 20 seconds, the driver returns a run diagnostic time-out error. If a time-out error has not occurred (diagnostics are complete), a message will be displayed specifying whether all diagnostics have run with or without error.

The disk confidence portion of the test consists of the following:

1. Write, read, and verify 85 canned and 100 random data patterns, using 4-Kbyte blocks and maintenance cylinder, head 0.
2. Verify correct head selection.
3. Write, read, and verify 85 canned and 20 random data patterns, using 4-Kbyte blocks and maintenance cylinder, sequential heads.
4. Write, read, and verify 85 canned and 20 random data patterns, using 128-Kbyte blocks and maintenance cylinder, head 0
5. Generate 1024 legal random disk blocks (addresses), using random data generated from a seed number. The disk blocks (addresses) can be from cylinder 0, head 0, sector 0 to the beginning of the maintenance cylinder. All reads consist of 1 sector and read data is not verified.

NOTES

When running dd5stest, observe the following limitations.

• When the operating system is active, dd5stest runs the disk testing portion of the diagnostics. It does not run the onboard controller diagnostics.
• The dd5stest diagnostic does not run from the boot prompt.
• The dd5stest diagnostic runs only on CRAY J90 series systems.

SEE ALSO

Cray J90 Series IOS Based Tests, publication HDM-099-0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME
d debug – Reports and sets the debug level on the IOS

SYNOPSIS
d debug [value]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The debug command is useful for setting various debug bit flags for message printing. If you omit value, debug reports the current debug value.

The debug command accepts the following argument:
value Sets the debug bit flags. The following debug bit flags are defined:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1</td>
<td>UNICOS pkts</td>
</tr>
<tr>
<td>0x2</td>
<td>Console</td>
</tr>
<tr>
<td>0x4</td>
<td>HYPERchannel</td>
</tr>
<tr>
<td>0x8</td>
<td>Ethernet</td>
</tr>
<tr>
<td>0x10</td>
<td>exdf driver</td>
</tr>
<tr>
<td>0x40</td>
<td>SCSI commands</td>
</tr>
<tr>
<td>0x80</td>
<td>(reserved)</td>
</tr>
<tr>
<td>0x200</td>
<td>Disk</td>
</tr>
</tbody>
</table>

0x8000 0000 General Information

WARNINGS
If you must use this command, you should use it in single-user mode on a relatively idle system.

Setting debug bit flags while running UNICOS can cause an extremely large number of debug messages. A large volume of output causes the IOS to panic.

For more information, consult with your system support staff.
NAME

dflawr – Reads Disk Flaw table

SYNOPSIS

dflawr bcd [-l] [-f file]
dflawr icd [-lr] [-s serial number] [-f file]
dflawr scd [-l] [-f file]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dflawr command reads the Disk Flaw tables from the disk. The tables can be written to a file or displayed on the screen. The file is in the format that dflaww expects. If you omit the file name, the file is written automatically to the /flaw directory, and it is named according to the device it read and the IOS on which the device resides.

The dflawr command accepts the following options:

b Indicates a buffered intelligent peripheral interface (IPI) drive.
i Indicates an IPI drive.
s Indicates a Small Computer System Interface (SCSI) drive.
c Specifies controller number (0 to F).
d Specifies disk (0 to F).
-1 Lists the tables to only the screen.
-f file Writes the defect lists to file.
-r Reads the sector headers on the disk to obtain the Growth Error table (GET). This option is useful to validate the correctness of the stored defect lists, or used to generate a defect list in which the stored list may have been corrupted. The DD-5I and DD-5S drive types do not support this option.
-s serial number Specifies serial number of the drive.

NOTES

This command allows back-up capability of disk default information.

MESSAGES

B%d%d: bogus cylinder found on this drive (%d) - bad OEM defect list!
The cylinder read that should contain the OEM list is bad.

Cannot get memory for defect list entry
The program cannot allocate memory for the defect list.

Cannot get memory for OEM defect list
The program cannot allocate memory for the OEM defect list.

Cannot get memory for sector IDs
The program cannot allocate memory for the sector IDs.
dflawr: Cannot get configuration for drive %s
 The program cannot return configuration information.

controller/device (%s) not found
 Device does not exist in disk table kept by the driver.

GET defect list not found on disk: Read of sector IDs fails0);
 A valid GET does not exist on this drive. The program cannot read the sector IDs (for the -r option).

GET defect list not found on disk: The
 -s option is required when no GET is found
 A valid GET does not exist on this drive. The user must enter a serial number on the
 command line.

GET not supported for device type DD_U
 The GET is not a supported feature for DD_U type drives.

open on drive %s failed: %s
 Open failed for listed device.

open on drive %s failed: %s
 Attempt to reopen drive has failed.

SCSI and Buffered IPI devices do not support the '-r' option
 You cannot use the -r option with DD-5I and DD-XS type drives.

unable to log the following line: %s
 A write to the dflawr output file failed.

Unknown device '%s'
 Device name entered on command line is not a valid name.

User supplied serial number is ignored - GET is used
 Because a valid GET with a serial number already exists, the user-entered value is ignored.

WARNING - OEM defect list not found
 The program cannot read the OEM defect list.

Flaw map NOT found on cyl %d
 The flaw map cannot be read from the given cylinder.

Flaw map NOT found on last cylinder.
 The flaw map cannot be read from the flaw cylinder.

getdefect: unable to alloc space for GET; Aborting!
 The program cannot allocate memory for the GET.

get_ipidef: initialize drive to read defects failed
 An attempt to initialize the defect cylinder failed.

Growth Error Table stored on disk is invalid.
 The GET on the drive is not valid.

iget_oemdefect: unable to uc_malloc enough space for zone table
 The program cannot allocate memory for the zone table.

iget_physdefect: %c%d%d: cylinder %d has corrupt header
 The header for this cylinder is corrupt.

Invalid flaw map on cyl %d, head %d
 The flaw data for the given location is not valid.

IOCTL failed for GET_CONFIG on disk
 A call to the driver to get the configuration of the device fails.
IOCTL failed for GET_CONFIG on IPI disk
 A call to the driver to get the configuration of the device fails.

IOCTL failed for GET_ECONFIG on disk
 A call to the driver to get the configuration of the device fails.

Read of sector ID %d fails
 The program cannot read the track IDs at the given sector address.

Read of sector ID cylinder %d, track %d fails
 An attempt to read the sector ID of the given location failed.

read_get: unable to alloc space for GET
 The program cannot allocate memory for the GET.

read_get: unable to alloc space for tmp GET
 The program cannot allocate memory for a local copy of the GET.

Trying cylinder %d.
 Trying alternative location.

Unable to read GET defect list: %s
 The program cannot read the GET.

Write to %s failed: %s
 A write to the given file failed.

EXAMPLES

Example 1: The following command reads the Disk Flaw table for disk array controller 0, disk 0. The flaw table is stored in /flaw/ios.2/s00.flw, which indicates the array is on IOS2:

 dflawr s00

Example 2: The following command reads the Disk Flaw table from controller 0, disk 1, and it stores the data in /flaw/ios.0/b01.flw, indicating that the drive is on IOS0:

 dflawr b01

SEE ALSO

 dflaww(8) to read Disk Flaw table from IOS disk and write it to disk
NAME

dflaww – Reads Disk Flaw table from IOS disk and writes it to disk

SYNOPSIS

dflaww bcd [-f file]
dflaww icd [-f file]
dflaww scd [-f file]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dflaww command reads the manufacturer’s flaw table (off the IOS disk) from the specified file and
writes it onto the system disk. The file is in the format that dflaww expects and is created by the
dflawr command. Generally, these files are kept in the /flaw directory of the IOS disk and are
named according to the device they reference and the IOS on which the disk resides.

The dflaww command accepts the following options:
b Indicates a buffered intelligent peripheral interface (IPI) drive.
i Indicates the IPI drive.
s Indicates an small computer system interface (SCSI) drive.
c Specifies controller number (0 to F).
d Specifies disk or bank number (0 to F).
-f file Specifies the file that dflaww reads.

MESSAGES

dflaww: Cannot get configuration for drive %s
A call to the driver to get the configuration of the device fails.
dflaww: Cannot get memory for GET
The program cannot allocate memory for the local copy of the GET.
dflaww: Cannot get memory for GET defect list
The program cannot allocate memory for the Growth Error Table (GET) defect list.
dflaww: Cannot get memory for OEM defect list
The program cannot allocate memory for the OEM defect list.
dflaww: can’t access file %s
A call to determine whether the file can be accessed failed.
dflaww: controller/device (%s) not found
Device does not exist in disk table kept by the driver.
dflaww: Device %s does not exist
Device does not exist in disk table kept by the driver.
dflaww: Does not support device type DD_U
The dflaww command does not support drives of type DD_U.
dflaww: open on drive %s failed
The program cannot open the disk name given.
dflaww: unable to open %s
 The program cannot open the specified file.

dflaww: Unable to write GET defect list: %s
 A call to write the GET to the disk failed.

Error reading flaw map %s.
Flaws exceed maximum of %d.
 The flaw count exceeds the maximum number of flaws allowed.
0x%x flaws added to the GET. %s.
 A count of the flaws added to the GET is given.
Unable to open file '%s'
 The program cannot open the specified file.

EXAMPLES

The following command reads the flaw table for disk array controller 0 and drive 2 on IOS 0 from the
name /flaw/ios.0/my.flw:
 dflaww s02 -f /flaw/ios.0/my.flw

SEE ALSO

 dflawr(8) to read Disk Flaw table
NAME

dformat - Formats disk

SYNOPSIS

dformat bcd [-l level] [-f file]
dformat icd [-l level] [-s serial number] [-f file]
dformat scd [-l level] [-f file]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dformat command formats the specified disk(s) at the level requested.
The dformat command accepts the following options:

b Indicate a buffered intelligent peripheral interface (IPI) drive.
i Indicates an IPI drive.
s Indicates an Small Computer System Interface (SCSI) drive.
c Specifies controller number (0 to F).
d Specifies disk (0 to F).

-l level Specifies the format level used. If you specify level 1, dformat does not map or slip any
defects (dformat writes an empty Growth Error table (GET)). If you specify level 2, dformat slips or maps only the OEM defect list. If you specify level 3, dformat slips or maps all entries currently stored in the GET (this is the default).

-f file Specifies the file to be used for generating the GET. All GET entries in the file will be
slipped or mapped.

-s serial number
 Specifies the drive's serial number.

NOTES

The serial number is read automatically off both the DD-5I and DD-5S disk drives.

MESSAGES

B%d%d: bogus cylinder found on this drive (%d) - bad OEM defect list!
The cylinder read that should contain the OEM list is bad.

Cannot get memory for defect list entry
 The program cannot allocate memory for the defect list.

Cannot get memory for OEM defect list
 The program cannot allocate memory for the OEM defect list.

dformat: A serial number is required for a level-2 format
 The user must enter a serial number on the command line for a level-2 format.

dformat: Cannot get configuration for drive %s
 The program cannot get drive configuration information from the driver.
dformat: Cannot get configuration for drive %s
 Drive has been formatted, but GET has not been written.

dformat: Cannot read defect list from file %s
 The program cannot read the defect list from the given file.

dformat: Cannot read GET defect list from drive
 On a level-3 format, the GET on the drive is not valid.

dformat: Cannot read OEM defect list from drive
 The program cannot read the OEM defect list.

dformat: controller/device (%s) not found
 Device does not exist in disk table kept by the driver.

dformat: %d sector %s slipped on %s
 The program has slipped the given number of sectors.

dformat: No GET defect list on drive
 The GET on the drive is not valid.

dformat: open on drive %s failed
 A call to reopen the drive failed.

dformat: open on drive %s failed
 The program cannot open the drive specified.

dformat: slip failed for sector %d: %s
 The program cannot slip the given sector.

dformat: Slipping bad sectors on %s
 The program is slipping the flawed sectors.

dformat: The serial number stored on the disk (%s) does NOT match
 the serial number in the defect file (%s)
 Self explanatory.

dformat: unable to uc_malloc space for GET; Aborting!
 The program cannot allocate memory for the GET.

dformat: Unable to write GET defect list: %s
 A write call to write the GET failed.

Error reading flaw map %s.
Flaws exceed maximum of %d.
 The flaw count exceeds the maximum number of flaws allowed.

Flaw map NOT found on alternate cylinder
 The flaw map cannot be read from the given cylinder.

Flaw map NOT found on last cylinder.
 The flaw map cannot be read from the flaw cylinder.

gedefect: unable to alloc space for GET; Aborting!
 The program cannot allocate memory for the GET.

get_ipidef: initialize drive to read defects failed
 An attempt to initialize the defect cylinder failed.

Growth Error Table stored on disk is invalid
 The GET on the drive is not valid.

iget_oemdefect: unable to uc_malloc enough space for zone table
 The program cannot allocate memory for the zone table.
IOCTL failed for GET_CONFIG on disk
A call to the driver to get the configuration of the device failed.

IOCTL failed for GET_CONFIG on IPI disk
A call to the driver to get the configuration of the device failed.

IOCTL failed for GET_ECONFIG on disk
A call to the driver to get the configuration of the device failed.

Invalid Flaw map on cyl %d, head %d
The flaw data for the given location is not valid.

read_get: unable to alloc space for GET
The program cannot allocate memory for the GET.

read_get: unable to alloc space for tmp GET
The program cannot allocate memory for a local copy of the GET.

slip failed: %s
The program cannot slip a sector for the specified reason.

slip: unable to malloc() space for GET; Aborting!
The program cannot allocate memory for the GET.

slip: unable to write the Growth Error Table
The program cannot write the GET.

Trying cylinder %d.
Trying alternate location.
An alternate flaw cylinder is tried.

Unable to %s the Growth Error Table
The program cannot access the GET.

Unable to add slipped sector to the Growth Error Table
Number of defects exceeds maximum of %d
Self explanatory.

Unable to open file '%s'
The program cannot open the specified file.

Unable to read GET defect list: %s
The program cannot read the GET.

EXAMPLES

Example 1: The following command formats drive 1 on controller 0, then maps only the OEM defect list:

dformat s0l -l 2

Example 2: The following command formats drive 1 on controller 1, then does not map:

dformat b11 -l 1

Example 3: The following command formats drive 0 on controller 0, then maps all defects in the GET:

dformat b00

SEE ALSO
dstat(8) to output activity information about the disk subsystem
dsurf(8) to verify disk media
NAME

dm — Displays central memory

SYNOPSIS

dm

dm -[l | r] -[h | o] [q] address

dm -[l | r] [q] x address

dm -[l | r] -[h | o] [q] [upper_parcel] [lower_parcel]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dm command reads central memory into the IOS and displays it on the IOS console by using the I/O channel. You can format display into a hexadecimal or octal representation of memory, or an exchange package format of central memory. The display of central memory is done continuously (refresh) until a dm command without options is executed, at which time the display is stopped.

To display multiple screens of different regions of central memory simultaneously, the screen is divided into two halves, each with a different central memory address (and a different display format if desired).

The display exchange package format is done on a half-screen basis, but it can be displayed on one half of the screen and allow a central memory format to be displayed on the other half.

The dm command accepts the following options:

- l Displays on left half of the screen (default).
- r Displays on right half of the screen.
- h Specifies hexadecimal format.
- o Specifies octal format (default).
- q Quits the dm session.
- x Displays the memory in exchange package format.

address Specifies starting address of central memory to display, or an 8-bit address when the parcel parameter is specified.

upper_parcel Specifies upper 16 bits of an address.

lower_parcel Specifies lower 16 bits of an address.

To display more than one area of central memory, first enter the dm command to display region A. To add region B, enter a second dm command. You can enter additional dm commands at any time.

NOTES

Because the display is refreshed at a rapid rate, the screen cursor is not always resting at the expected position on the command line. If you enter a command line, however, it will display properly.

Entering any IOS command that causes additional screen output when displaying central memory (other than a return prompt) potentially produces an unusable display. Stop the dm command first, and then restart it after entering IOS commands that generate screen output.
The default address mode is octal.
When viewing central memory on an exchange package, use the ↑ and ↓ arrow keys to scroll the display forward or backward, respectively.
Because of the way console input/output is controlled, <CONTROL-c> functionality is disabled. If you press the q key or specify dm without options, your dm session will quit.

MESSAGES

Open failed for <memory device>
 Opening central memory failed.

SEE ALSO

fm(8) to fill memory
lm(8) to load central memory
NAME
ds – Loads and deadstarts a diagnostic test

SYNOPSIS
ds [filename[,ext]] [cpu]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The ds command loads into mainframe memory a diagnostic test that has a .bin or .xxx file extension and deadstarts it. If you do not specify an extension, this command, by default, searches the current directory for the file name that has a .bin extension. If the .bin extension is unsuccessful, the file name that has an .xxx extension is searched for next. If the file is not found, an error message is displayed.

The ds command accepts the following options:
filename Specifies diagnostic test file.
.ext Specifies file extension.
cpu Specifies CPU number (0 through 15). If you do not specify a CPU number, the default is 0, which deadstarts only CPU 0.

MESSAGES
Clock must be ON
Self explanatory.

CPU number must be between 0 and <Max CPUs>
The CPU number specified on the command line is either less than 0 or greater than the maximum number of CPUs supported.

Scan function to read status failed
Self explanatory.

Unable to load file <filename> ... aborting
The file name specified could not be loaded into central memory.
NAME
dslip - Slips one sector

SYNOPSIS
dslip bcd sector
dslip icd sector
dslip scd sector

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The dslip command provides a subset of the functionality that the dsurf(8) command offers. Based on the sector number specified, dslip either slips or maps the sector or track.

First, dslip tries to slip the sector. If no more sectors are available on the track or a media error exists in the sector header itself, dslip maps the entire track to a valid one. The controller tries to salvage the data.

The dslip command also updates the Growth Error table (GET).

This command accepts the following options:
b Indicates a buffered intelligent peripheral interface (IPI) drive.
i Indicates an IPI drive.
s Indicates an Small Computer System Interface (SCSI) drive.
c Specifies a controller number (0 to F).
d Specifies a disk (0 to F).
sector Specifies a sector number from beginning of device.

MESSAGES
dslip: block %d reported error on pass %d
An error was detected while reading the specified sector.

dslip: cannot get memory for flaw table
The program cannot allocate memory for the flaw table.

dslip: device %s does not exist
Device does not exist in the disk table kept by the driver.

dslip: failed: %s
The call to slip the sector failed.

dslip: get configuration fails for device %s
A call to the driver to get the configuration of the device fails.

dslip: unable to open disk %s; aborting.
The program cannot open the disk device.

dslip: verified data %d times; still slip? (y/n):
The sector was read successfully.

read_get: unable to alloc space for GET
The program cannot allocate memory for the GET.
read_get: unable to alloc space for tmp GET
 The program cannot allocate memory for a local copy of the GET.

slip failed: %s
 The program cannot slip a sector for the specified reason.

slip: unable to malloc() space for GET; Aborting!
 The program cannot allocate memory for the GET.

slip: Unable to write the Growth Error Table
 The program cannot write the GET.

Unable to %s the Growth Error Table
 The program cannot access the GET.

Unable to add slipped sector to the Growth Error Table.
Number of defects exceeds maximum of %d
 Self explanatory.

SEE ALSO
 dsurf(8) to verify disk media
NAME
dstat – Outputs activity information about the disk subsystem

SYNOPSIS

dstat bcd
dstat icd
dstat scd

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The dstat command briefly summarizes disk activity since the IOS was booted. Optionally, the driver of a specific disk type may request more disk-specific information.

The dstat command accepts the following options:

b Indicates a buffered intelligent peripheral interface (IPI) disk drive.
i Indicates an IPI disk drive.
s Indicates a Small Computer System Interface (SCSI) disk drive.
c Specifies controller number (0 to F).
d Specifies disk (0 to F).

SEE ALSO

crash(8) to analyze IOS internal information
systat(8) to display general IOS internal status
NAME
dsrf – Performs disk surface analysis

SYNOPSIS

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The dsurf command performs surface analysis on a disk, and it provides a means to pattern test a
drive and a means for flawing a drive.

The dsurf command accepts the following options:
b Indicates a buffered intelligent peripheral interface (IPI) drive.
i Indicates an IPI drive.
s Indicates an small computer system interface (SCSI) drive.
c Specifies controller number (0 to F).
d Specifies disk (0 to F).
-a Asks before flawing (default is to flaw silently).
-d Specifies debug mode. Errors are not flawed.
-f Runs test until one pass completes without an error.
-i Inhibits recheck on flawed errors (default is to recheck the space after flawing).
-r Does not flaw errors (default is to flaw).
-w Allows writing without prompting (default is to prompt the user for a response if the
disk will be written on). This option is used for background usage.
-v Specifies verbose mode. Its use is recommended.
-l level Specifies test level. A level of 0 is a read-only test (the default). A level of 1 is an
eight-pattern write and read (the patterns are 0x00, 0xFF, 0xF0, 0x0F, 0xCC, 0x33,
0xAA, and 0x55). A level of 2 is a four random-pattern write and read.
-n blocks Specifies number of blocks to test (default is the entire drive).
-s start Starts block address (default is 0).
-p passes Specifies number of passes to run (default is 1).
-t count Reads or writes I/O size in sectors (default is one track).

MESSAGES
dsurf: Cannot get configuration information on disk
A call to the driver to get the configuration of the device fails.
dsurf: Cannot get memory for flaw table
The program cannot allocate memory for the flaw table.
dsurf: controller/device (%s) not found
Device does not exist in disk table kept by the driver.

dsurf: error %sing track %ld - checking for the bad sector
An error was found during the I/O operation. The program then determines which sector within
the range of sectors accessed is bad.

dsurf: Invalid level %d
The level specified on the command line is not valid.

dsurf: Invalid number of blocks %d
The number of blocks specified is not valid.

dsurf: Invalid number of passes %d
The number of passes specified is not valid.

dsurf: I/O size of %d is invalid
The request size specified is not valid.

dsurf: Number of blocks entered %d is greater than %d - set to %d
The number of blocks specifies is more than the disk capacity.

dsurf: Open on drive %s failed: %s
The call to open failed.

dsurf: Slip/map could not complete for block %ld
The call to slip the sector fails.

dsurf: Track %ld will be slipped
The track specified is slipped.

dsurf: Starting block of %d is invalid
The start block specified is not valid.

dsurf: Unknown device '%s'
The specified device name is not valid.

dsurf: Verify of IPI track headers fails for %s
The program cannot verify the track headers.

Error [%s] found at sector %ld
An error was encountered at the specified sector.

read_get: unable to alloc space for GET
The program cannot allocate memory for the Growth Error table (GET).

read_get: unable to alloc space for tmp GET
The program cannot allocate memory for a local copy of the GET.

slip failed: %s
The program cannot slip a sector for the specified reason.

slip: unable to malloc() space for GET; Aborting!
The program cannot allocate memory for the GET.

slip: Unable to write the Growth Error Table
The program was unable to write the GET.

Unable to %s the Growth Error Table
The program cannot access the GET.

Unable to add slipped sector to the Growth Error Table.
Number of defects exceeds maximum of %d
 Self explanatory.
EXAMPLES

Example 1: The following command reads the entire disk and prompts the user before flawing:
 dsurf b00 -va

Example 2: The following command writes four random patterns on the entire drive, then reads the drive. It does 10 passes:
 dsurf s01 -vp 10 -l 2

Example 3: The following command writes eight patterns on the entire drive, then reads the drive. It runs until no errors are found on a single pass:
 dsurf b11 -fvl 1

SEE ALSO

dformat(8) to format a disk
dslip(8) to slip sectors
NAME

 echo – Displays a message

SYNOPSIS

 echo [string]

IMPLEMENTATION

 CRAY J90 series IOS-V

DESCRIPTION

 The echo command displays a specified message. It accepts the following argument:

 string Character string, which is displayed on the screen when the command executes.

NOTES

 The echo command is used only in a command script.

EXAMPLES

 The following line prints the Debug Test Message message when the command file executes:

 echo Debug Test Message
NAME

ed – Edits a text file

SYNOPSIS

ed [file]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The ed editor is the standard text editor. If you specify the file argument, ed simulates an e subcommand (see the following text) on the specified file; that is, the file is read into the ed buffer so that you can edit it. The ed editor operates on a copy of the file it is editing; changes made to the copy do not affect the file until you specify a w (write) command. The copy of the text being edited resides in a temporary file called the buffer. Only one buffer exists.

Commands to ed have a simple and regular structure: zero, one, or two addresses, followed by a single-character command, possibly followed by parameters to that command. These addresses specify one or more lines in the buffer. Because every command that requires addresses has default addresses, you usually can omit the addresses.

Generally, only one command may appear on a line. Certain commands allow the input of text, which is placed in the appropriate place in the buffer. While ed is accepting text, it is in input mode. In this mode, no commands are recognized; all input is merely collected. To exit input mode, type a period (.) by itself at the beginning of a line, followed immediately by pressing a <RETURN>.

The ed editor supports a limited form of regular expression notation; regular expressions are used in addresses to specify lines and in some commands (for example, s) to specify parts of a line that will be substituted. A regular expression (RE) specifies a set of character strings. A member of this set of strings is said to be matched by the RE. The REs that ed allows are constructed as follows (the following one-character REs match one character):

1.1 An ordinary character (not one of those discussed in 1.2) is a one-character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that matches the special character itself. The special characters are as follows:
 a. ., *, [, and \ (period, asterisk, left bracket, and backslash, respectively), which are always special, except when they appear within brackets ([]) (see 1.4).
 b. ^ (caret or circumflex), which is special at the beginning of an entire RE (see 3.1), or when it immediately follows the left pair of brackets ([]) (see 1.4).
 c. $ (dollar sign), which is special at the end of an entire RE (see 3.2).
 d. The character used to bound (such as, delimit) an entire RE, which is special for that RE (for example, see how slash (/) is used in the g command).

1.3 A period (.) is a one-character RE that matches any character except a newline character.
1.4 A nonempty string of characters enclosed in brackets ([]) is a one-character RE that matches any one character in that string. If, however, the first character of the string is a circumflex (^), the one-character RE matches any character except newline and the remaining characters in the string. The ^ has this special meaning only when it occurs first in the string. Use the minus (-) character to indicate a range of consecutive ASCII characters (for example, [0-9] is equivalent to [0123456789]). If it occurs first (after an initial ^, if any) or last in the string, the - loses this special meaning. The right bracket (]) does not terminate such a string when it is the first character within it (after an initial ^, if any); for example, []a–f] matches either a bracket (]) or one of the letters a through f, inclusive. The four characters listed in 1.2.a stand for themselves within such a string of characters.

To construct REs from one-character REs, use the following rules:

2.1 A one-character RE is a RE that matches whatever the one-character RE matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero or more occurrences of the one-character RE. If there is any choice, the longest leftmost string that permits a match is selected.

2.3 A one-character RE followed by \(\{m\} \), \(\{m,\} \), or \(\{m,n\} \) is a RE that matches a range of occurrences of the one-character RE. The values of \(m \) and \(n \) must be nonnegative integers less than 256; \(\{m\} \) matches exactly \(m \) occurrences; \(\{m,\} \) matches at least \(m \) occurrences; \(\{m,n\} \) matches any number of occurrences between \(m \) and \(n \), inclusive. Whenever a choice exists, the RE matches as many occurrences as possible.

2.4 The concatenation of REs is a RE that matches the concatenation of the strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(\{ \) and \(\} \) is a RE that matches whatever the unadorned RE matches.

2.6 The expression \(\{n\} \), matches the same string of characters as was matched by an expression enclosed between \(\{ \) and \(\} \) earlier in the same RE; \(n \) is a digit. The subexpression specified is the one that begins with the \(n \)th occurrence of \(\{ \) counting from the left (for example, the expression \(^{\{.\}^{1}}\) matches a line that consists of two repeated appearances of the same string).

Finally, an entire RE may be constrained to match only an initial segment or final segment of a line (or both).

3.1 A circumflex (^) at the beginning of an entire RE constrains that RE to match an initial segment of a line.

3.2 A dollar sign ($) at the end of an entire RE constrains that RE to match a final segment of a line. The string \(^{\text{entire RE}}\$ \) constrains the entire RE to match the entire line.

The null RE (such as, //) is equivalent to the last RE encountered. See also the last paragraph before the FILES section.

To understand addressing in ed, you must know that at any time the current line is the last line affected by a command; the exact effect on the current line is discussed under the description of each command. Addresses are constructed as follows:

1. The . character addresses the current line.
2. The $ character addresses the last line of the buffer.
3. A decimal number \(n \) addresses the \(n \)th line of the buffer.
4. ‘x addresses the line marked with the mark name character \(x \), which must be a lowercase letter. To mark lines, use the k command.
5. A RE enclosed by slashes (/) addresses the first line found by searching forward from the line following the current line toward the end of the buffer and stopping at the first line that contains a string that matches the RE. If necessary, the search wraps around to the beginning of the buffer and continues up to and including the current line so that the entire buffer is searched. See also the last paragraph before the FILES section.

6. A RE enclosed in question marks (?) addresses the first line found by searching backward from the line preceding the current line toward the beginning of the buffer and stopping at the first line that contains a string matching the RE. If necessary, the search wraps around to the end of the buffer and continues up to and including the current line. See also the last paragraph before the FILES section.

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number specifies that address plus (respectively minus) the indicated number of lines. You can omit the plus sign.

8. If an address begins with + or -, the addition or subtraction is taken with respect to the current line (for example, -5 is understood to mean 0 - 5).

9. If an address ends with + or -, 1 is added to or subtracted from the address, respectively. As a consequence of this rule and of rule 8, the - address refers to the line preceding the current line. (To maintain compatibility with earlier versions of the editor, the ^ character in addresses is entirely equivalent to -.) Moreover, trailing + and - characters have a cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1, $; a semicolon (;) stands for the pair . $.

Commands may require zero, one, or two addresses. Commands that do not require addresses regard the presence of an address as an error. Commands that accept one or two addresses assume default addresses when an insufficient number of addresses is specified; if more addresses are specified than such a command requires, the last one(s) is used.

Typically, addresses are separated from each other by a comma (,). They also may be separated by a semicolon (;). In the latter case, the current line (.) is set to the first address, and only then is the second address calculated. You can use this feature to determine the starting line for forward and backward searches (see rules 5 and 6). The second address of any two-address sequence must correspond to a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are in parentheses. The parentheses are not part of the address; they show that the given addresses are the default. Generally, it is illegal for more than one command to appear on a line. However, any command (except e, f, x, or w) may be suffixed by 1, n, or p; in which case, the current line is either listed, numbered, or printed, respectively, as discussed under the 1, n, and p commands.

\textbf{(.)a}
\textit{<text>}

\textbf{(.)c}
\textbf{The append command reads the given text and appends it after the addressed line; . is left at the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this command: it causes the appended text to be placed at the beginning of the buffer. You can enter a maximum number of 256 characters (including the newline character). The change command deletes the addressed lines, then accepts input}
\textit{<text>}

\textbf{(.)d}
\textbf{Text that replaces these lines; . is left at the last line input, or, if there were none, at the first line that was not deleted.}

\textbf{(. .)d}
\textbf{The delete command deletes the addressed lines from the buffer. The line after the last line deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the new last line becomes the current line.}
The edit command deletes the entire contents of the buffer, and then it reads in the specified file; . is set to the last line of the buffer. If you do not specify a file name, the currently remembered file name, if any, is used (see the f command). The number of characters read is typed; file is remembered for possible use as a default file name in subsequent e, r, and w commands. If file is replaced by !, the rest of the line is considered to be a shell (sh(1)) command whose output will be read. Such a shell command is not remembered as the current file name. See the MESSAGES section.

The E command is like the e command, except that the editor does not check to see whether any changes were made in the buffer since the last w command.

If you specify file, the file name command changes the currently remembered file name to file; otherwise, it prints the currently remembered file name.

The insert command inserts the given text before the addressed line; . is left at the last inserted line, or, if there were none, at the addressed line. This command differs from the a command only in the placement of the input text. Address 0 is not legal for this command. You can enter a maximum number of 256 characters per line (including the newline character).

The join command joins contiguous lines by removing the appropriate newline characters. If you specify one address, this command does nothing.

The mark command marks the addressed line with name x, which must be a lowercase letter. The address x then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few nonprinting characters (for example, tab and backspace) are represented by visually mnemonic overstrikes. All other nonprinting characters are printed in octal, and long lines are folded. You may append an ! command to any command other than e, f, r, or w.

The move command repositions the addressed line(s) after the line addressed by a. Address 0 is legal for a and moves the addressed line(s) to the beginning of the file. If address a falls within the range of moved lines, it is an error; . is left at the last line moved.

The print command prints the addressed lines; . remains at the last line printed. You may append the p command to any other command other than e, f, r, or w (for example, dp deletes the current line and prints the new current line).

The quit command causes ed to exit. An automatic write of a file is not done (see the MESSAGES section).
Q This command causes the editor to exit without checking whether any changes were made in the buffer since the last w command.

$(r \text{ file})$ The read command reads in the specified file after the addressed line. If no file name is specified, the currently remembered file name, if any, is used (see e and f commands). The currently remembered file name is not changed unless file is the very first file name mentioned since ed was invoked. Address 0 is legal for r and reads the file at the beginning of the buffer. If the read is successful, the number of characters read is typed; . is set to the last line read in. If file is replaced by !, the rest of the line is considered to be a shell (sh(1)) command whose output will be read (for example, "$r !ls" appends current directory to the end of the file being edited). Such a shell command is not remembered as the current file name.

$ (. , .) s/R E / r e p l a c e m e n t / \text{ or} \\
(. , .) s/R E / r e p l a c e m e n t / g \text{ or} \\
(. , .) s/R E / r e p l a c e m e n t / n \quad n = 1-512$

The substitute command searches each addressed line for an occurrence of the specified RE. In each line in which a match is found, all (nonoverlapped) matched strings are replaced by the replacement if the global replacement indicator g appears after the command. If the global indicator does not appear, only the first occurrence of the matched string is replaced. If a number n appears after the command, only the nth occurrence of the matched string on each addressed line is replaced. It is an error for the substitution to fail on all addressed lines. Any character other than space or new line may be used instead of / to delimit the RE and the replacement; . is left at the last line on which a substitution occurred. See also the last paragraph before the FILES section.

An ampersand (&) that appears in the replacement is replaced by the string that matches the RE on the current line. To suppress the special meaning of & in this context, precede it by \. As a more general feature, the characters \n (n is a digit) are replaced by the text matched by the nth regular subexpression of the specified RE enclosed between \(and \). When nested parenthesized subexpressions are present, n is determined by counting occurrences of \(starting from the left. When the character % is the only character in the replacement, the replacement used in the most recent substitute command is used as the replacement in the current substitute command. The % loses its special meaning when it is in a replacement string of more than one character or is preceded by a \.

To split a line, substitute a newline character into it. You must escape the newline character in the replacement by preceding it with a \. You cannot do such substitution as part of a g or v command list.

$(. , .) t a$

This command acts just like the m command, except that a copy of the addressed lines is placed after address a (which may be 0); . is left at the last line of the copy.

u The undo command nullifies the effect of the most recent command that modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

$(1, $) v / R E / c o m m a n d \text{ list}$

This command is the same as the global g command, except that the command list is executed with . initially set to every line that does not match the RE.

$(1, $) v / R E /$

This command is the same as the interactive global G command, except that the lines that are marked during the first step are those that do not match the RE.
The `write` command writes the addressed lines into the specified file. If the file does not exist, it is created with mode 666 (readable and writable by everyone), unless your `umask` setting (see `umask(1)`) dictates otherwise. The currently remembered file name is not changed unless `file` is the very first file name mentioned since `ed` was invoked. If you do not specify file name, the currently remembered file name, if any, is used (see `e` and `f` commands); . is unchanged. If the command is successful, the number of characters written is typed. If `file` is replaced by !, the rest of the line is considered to be a shell (`sh(1)`) command whose standard input is the addressed lines. Such a shell command is not remembered as the current file name.

The line number of the addressed line is typed; . is unchanged by this command.

When an address is on a line by itself, the addressed line will be printed. A newline by itself is equivalent to .+1p; it is useful for stepping forward through the buffer.

A command line can consist of 512 characters per line, 256 characters per global command list, and 64 characters per file name. The limit on the number of lines depends on the amount of user memory: each line takes 1 word.

When reading a file, `ed` discards ASCII null characters. `ed` cannot edit files (for example, a.out) that contain characters not in the ASCII set (bit 8 on).

If a newline character does not terminate a file, `ed` adds a newline character and outputs a message that explains what it did.

If the closing delimiter of a RE or of a replacement string (such as, /) would be the last character before a new line, you may omit that delimiter, in which case, the addressed line is printed. The following pairs of commands are equivalent:

```
s/s1/s2
s/s1/s2/p

g/s1

g/s1/p

?s1
?
s1?
```

CAUTIONS

You should keep reasonable editing sessions under 10 Kbytes. Lines are limited to 4096 characters.

When reading a file, `ed` discards ASCII null characters and all characters after the last new line. `ed` cannot edit files (for example, a.out) that contain characters that are not in the ASCII set (bit 8 on).

Large files generate larger editor temporary files and cost many processor cycles on entry to `ed`.
MESSAGES

The following are diagnostic messages:

? For command errors or if a backspace is input (in which case, you remain in command mode).

? file For an inaccessible file. (For detailed explanations, use the help and Help commands.)

If changes were made in the buffer since the last w command that wrote the entire buffer and the user
uses the e or q command, ed warns the user that the ed buffer may be destroyed. It prints ? and
allows the user to continue editing. At this point, a second e or q takes effect.

FILES

/tmp Default directory for temporary work file
NAME

enstat – Displays Ethernet controller status and statistics

SYNOPSIS

enstat [-e xxx]
enstat [-m c lvl]
enstat [-r c]
enstat [-s c]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The enstat command displays Ethernet status, statistics, and error codes. If you omit arguments, enstat displays the status of all Ethernet controllers attached to the IOS.

The enstat command accepts the following options and arguments:

- e Displays the meaning of Ethernet packet error status bits.
- m Changes the automatic error logging level for a controller. Error reporting is on by default.
- r Resets controller statistics counters.
- s Displays controller statistics.
- c Specifies controller number (0 to 3).
- lvl Specifies the message reporting level. Valid values are on, off, or perf. Default is on.
- xxx Specifies packet status bits (hexadecimal value).

The enstat command displays the following status information:

Controller X at address 0xYYYYYYYY [controller not initialized]
Ethernet address=0xZZZZZZZZZZZZ

The -s option displays the following statistics (in the order listed):

Successful transmissions:xx
 Number of packets transmitted successfully.
Successful receives:xx
 Number of packets received successfully.
Multiple retries on xmit:xx
 Number of multiple retries on transmissions.
Single retries:xx
 Number of successful transmissions after one retry.
Too many retries:xx
 Number of unsuccessful retries.
Xmit delayed due to active medium:xx
 Number of transmissions delayed due to active medium.
Xmit chaining failed:xx
 Number of failures due to internal chaining faults.
Transmit data fetch failed:xx
 Number of failures due to internal data fetch underruns.

Collision after xmit:xx
 Number of transmission collisions.

Lost carrier:xx
 Number of times the carrier signal was lost.

Xmit length > 1518:xx
 Number of attempts to transmit packets that are too large (babble).

Transceiver mismatch:xx
 Number of times a signal from an Ethernet type 2 transceiver was not detected (not an error).

Xmit memory errors:xx
 Number of internal memory errors detected.

No receive buff available:xx
 Number of packets missed due to no available buffers.

Checksum failed:xx
 Number of packets received with Ethernet checksums that were not valid.

Framing error:xx
 Number of packets received with framing errors.

Receive chaining failed:xx
 Number of failures due to internal chaining failure.

Receive data store failed:xx
 Number of failures due to a buffer overrun.

Receive memory error:xx
 Number of failures due to memory parity errors.

The Ethernet automatic error logging facility examines the controller's statistics every 30 seconds for any abnormalities. The controller's statistics are examined for the following conditions:

* Transmit chaining failures
* Transmit data fetch failures
* Lost carrier
* Transmitter babble
* Transmit memory errors
* Receive chaining failures
* Receive data store failures
* Receive memory errors
* Receive cyclic redundancy check (CRC) error rate greater than 5% of received packets
* Receive framing error rate greater than 5% of received packets

If any of these conditions occur during the time period, a message is displayed on the console and logged in the /adm/syslog file on the IOS.

In addition to reporting the above abnormalities, the perf message reporting level examines the Ethernet statistics for potential performance problems. The following additional conditions are reported:

* Failed packet transmit rate greater than 5% of transmitted packets
* Multiple retry rate greater than 10% of transmitted packets
• Single retry rate greater than 30% of transmitted packets
• Transmit delay rate due to active medium greater than 10% of transmitted packets
• Collision after transmit rate greater than 10% of transmitted packets
• Backlog of output packets to IOS due to Ethernet controller delays
• Large backlog of I0BB channel requests

By default, automatic error reporting is turned on. If the messages become too numerous, the -m option lets you disable the generation of messages.

NOTES

The –e option displays the status of packets received in error. The Ethernet driver displays the status (hexadecimal value) of abnormal packets it receives. The –e option lets users interpret the meaning of this status.

EXAMPLES

Example 1: The following command displays the statistics for controller 0:

 enstat -s 0

Example 2: The following command turns off automatic error logging on Ethernet controller 0:

 enstat -m 0 off
NAME

errpt – Processes the error report generated by IOS kernel

SYNOPSIS

errpt [filename[.ext]]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The errpt command processes data collected by the IOS error-logging mechanism and generates a report of that data in the specified file. If you do not specify a file, errpt displays the output on the IOS console, one error at a time. To advance to the next error, press any keyboard key. The error display stops when all errors are displayed (maximum of 64) or after you press the <q> (quit) key.

The errpt command accepts the following arguments:

filename Specifies IOS file name.
.ext Specifies file name extension.

This command assists in diagnosing problems that prevent the regular error logging mechanism of UNICOS to operate or to be viewed.

NOTES

Any IOS reset clears all previous error data collected.

This command displays only the last 64 error log entries.

SEE ALSO

dstat(8) to display disk status information
NAME

\texttt{fg} – Brings to the foreground an IOS command that is suspended or running in the background

SYNOPSIS

\texttt{fg [command id]}

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The \texttt{fg} command starts a suspended command and suspends the interactive shell until that command completes.

If a command is running in the background, that command is placed in the foreground and the interactive shell is suspended until that command completes.

The \texttt{fg} command accepts the following argument:

\texttt{command id}

Specifies command or job identification number between 1 and 16 specified in the job output.

EXAMPLES

If the \texttt{df_format} command was started in the foreground (for example, the \& character was not placed at the end of the command line), and then the user entered <CONTROL-Z> to suspend it, the \texttt{df_format} command can resume execution by doing the following:

\texttt{fg}
NAME
fm – Fills central memory

SYNOPSIS
fm start count [parcelA] [parcelB] [parcelC] [parcelD]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The fm command fills mainframe central memory with the specified values by using the I/O channel. The fm command accepts the following arguments:
- start Relative address of memory to start filling.
- count Number of words (in decimal) to fill.
- parcelA Value to fill parcel A (most significant); default is 0.
- parcelB Value to fill parcel B; default is 0.
- parcelC Value to fill parcel C; default is 0.
- parcelD Value to fill parcel D (least significant); default is 0.

NOTES
You must specify at least 1 parcel.
Because this command accesses central memory through the data channels, the CPU clock must be on.

MESSAGES
Mem open failed
 Opening of mainframe central memory failed.
Write mem failed
 Writing to mainframe central memory failed.

EXAMPLES
The following command line writes the value 123 5678 9ABC DEF0 to central memory word 100 hexadecimal through word 102 hexadecimal:

f m 100 3 123 5678 9ABC DEF0

SEE ALSO
am(8) to alter memory
dm(8) to display central memory
lm(8) to load central memory
NAME

goto – Transfers control to a command file

SYNOPSIS

goto :label

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The goto command transfers control to a command file.
The goto command accepts the following argument:
label A string preceded by a colon (:). The first 8 characters are significant.

NOTES

This command executes only in a command script.

EXAMPLES

A command file that contains the following three lines of code prints Thanks a million until interrupted by pressing <CONTROL-c>, which kills any IOS command.

:AgainSam

echo Thanks a million

goto :AgainSam
NAME
 head – Displays the first few lines of a specified file

SYNOPSIS
 head [-n] filename

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The head command outputs the given number of lines (default 10) of the specified file.
 The head command accepts the following arguments:
 -n Specifies a line count.
 filename Specifies input file.

EXAMPLES
 The following example displays the first 20 lines of the aaa file:
 head -20 aaa
NAME

help – Displays commands and their syntax

SYNOPSIS

help [cmd]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

If cmd is a command name, help displays the command and its syntax. If cmd is a letter, help displays all commands that start with that letter and the syntax of those commands. If you do not specify an argument, help displays all commands and their syntax.

The help command accepts the following argument:

cmd Specifies command to be displayed or first letter of commands to be displayed.

EXAMPLES

The following example displays all commands that start with the letter d and the syntax of those commands:

$ help d

decode debug [value]
dflawr <e|i>cd [-lr] [-s serial#] [-f filename]
dflawr scd [-l] [-f filename]
dflawr bcd [-l] [-f filename]
dflawr dcd drive [-l] [-f filename]
dflaw w <e|i>b>cd [-f filename]
dflaw w dcd drive [-f filename]
dformat <e|i>cd [-l level] [-s serial] [-f file]
dformat dcd $xxxx [level]
dformat <s>b>cd [-l level] [-f file]
dm -[l|r] -[h|o] [q] address
dm -[l|r] x address
dm -[l|r] -[h|o] [q] [upper parcel] [lower parcel]
dm

ds [filename[.ext]] cpu
dslip <s|e|i>b>cd sector\r\ndslip C: sector
dstat <s|e|d|i>b>cd
dump [-v] <s|e|d|i>b>cd sa [word_count]
NAME

if – Allows conditional transfer of control

SYNOPSIS

if n goto :label

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The if command compares n with the return code from the previous command. If a match exists, control is transferred to the line that immediately follows the label.

The if command accepts the following arguments:

n Value to compare with the return code from the previous command.

label String preceded by a colon (:); the first 8 characters are significant.

NOTES

This command executes only in a shell script.

EXAMPLES

A command file that contains the following code repeatedly reads the value of the program counter and prints it until it is equal to 1234. When the program counter equals 1234, the Done !!! message is printed.

:KeepGoing

dr P

if 1234 goto :Done

goto :KeepGoing

:Done

echo Done !!!
NAME

iosdump – Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system

SYNOPSIS

iosdump [-n filename] [-s iobbsize]

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The iosdump command saves I/O processor (IOP) and I/O buffer board (IOBB) memories to the specified file. If an IOS panic occurs, you must perform this task.

The default area dumped during an IOS dump is not a complete dump of IOS and IOBB memory. Key areas are dumped that usually are sufficient for a dump analysis. Circumstances may exist in which this may not be sufficient for a full analysis. To obtain a full dump for a particular problem, use the -s option and enter the memory size of the IOBB. For example, for an I/O subsystem configured with an IOBB15, you would enter -s 4096 (4096 being the size of IOBB memory in Kbytes), and for an IOBB25, you would enter -s 16384. Dumps that the IOS automatically initiates will be of the default size, and you cannot control this. However, if an auto dump is taken and the IOS stops at the boot prompt, you can initiate another valid dump if you must capture the full IOBB contents. If the IOS kernel has reloaded, the IOBB contents will have been overwritten.

The iosdump command accepts the following options:

- n filename Specifies input file.
- s iobbsize Saves memory in Kbytes.

SEE ALSO

crash(8) to analyze memory information
mfdump(8) to dump mainframe memory and registers
NAME

iostart - Initiates communication between the IOS and UNICOS

SYNOPSIS

iostart

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The iostart command creates the task that initiates packet communications with UNICOS, and it usually is run from the /bin/boot script.

MESSAGES

IOS n iij-task: open at memory failed
This message occurs when the iostart command tries an open() call on the I/O buffer board (IOBB) driver and fails. The open fails when either the IOBB driver is not initialized or it encounters a catastrophe error from a previous operation and shuts itself down. To restart the IOBB driver, use the mc or sc command, or reboot the IOS.

IOS n iostart: ij-state=x, can't execute iostart command
This message occurs when the iostart command is invoked without previously entering an mc(8) or sc(8) command to reinitialize the IOS to CPU communication. It also can indicate that the mc or sc command did not initialize the system. Check that all IOSs are running properly and have established communication with the master IOS.

SEE ALSO

lu(8) to load UNICOS
mc(8) to reinitialize the CPUs and central memory
sc(8) to reinitialize the CPUs
NAME

j90install - Maintains and installs software on J90 console, IOS-V, and mainframe

SYNOPSIS

j90install

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The j90install command is run on the CRAY J90 series console (Sparc Station 5). It maintains files on the Sun which enable each IOS to boot from the Sun disk. It also installs the software on both the IOS-V and CRAY J90 mainframe.

During the IOS-V install process, j90install calls the following commands:

/install/waitios
 Ensures that each IOS is loaded before continuing.

/install/drivers
 Configures /config with all strategies and drivers. It also creates /install/net.tbl, which is a table of all network interfaces it finds on each IOS.

/install/iprobe
 Creates /install/disks.tbl, which is a table of all disks it finds on each IOS.

/install/autogen
 Creates /sys/param from gathering information from /install/disks.tbl and /install/net.tbl.

During the UNICOS install process, j90install creates and calls the /install/iboot script. This script then calls the following:

/install/ibootcfg
 Creates /install/param.ram from /sys/param. This new file has a central memory file system declared and sets rootdev to this new central memory file system.

/bin/lu
 Loads the generic install kernel (/install/unicos.yp) and central memory parameter file (/install/param.ram). It then loads the central memory file system from tape into memory and boots the kernel.

SEE ALSO

UNICOS Installation Guide for the CRAY J90 Series, publication SG-5271
NAME

jbs - Performs boundary scan interconnect test on CRAY J90 series systems

SYNOPSIS

jbs [-h] [-t test] [maxpass #] [-e info] [-maxerr #] [-menu]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The J90 Boundary Scan (jbs) application performs boundary scan interconnect tests on CRAY J90 series systems. The jbs application checks module interconnects for continuity; on-module interconnects and backplane interconnects are tested for every board in the system.

The jbs application accepts the following options:

-h Generates an online help display containing a synopsis and a brief description of the command options and arguments. This program exits immediately after displaying help information.

-t test Specifies tests to be performed. The default test level is all. The test argument can be one of the following:

int Performs scan chain integrity test to verify that the scan chain is continuous.

brd Performs scan chain integrity test and board level boundary scan tests.

bp Performs scan chain integrity test and backplane level boundary scan tests.

all Performs scan chain integrity test, board level boundary scan tests, and backplane level boundary scan tests.

-maxpass # Specifies the number of passes to perform. This value must be greater than 0, and must be less than or equal to 100. The default number of passes is 1.

-e info Specifies the type of error information displayed to the user. The default is stan. The info argument can be one of the following:

pass Pass/fail information only is displayed.

stan Standard error information is displayed.

ext An extended error information file is created.

-maxerr # Specifies the number of boundary scan errors to display. To stop after the first error, specify -maxerr 1. The number of errors you specify must be greater than 0, and must be less than or equal to 10000. The default number of errors is 10000.

-menu Invokes the menu system. This option cannot be used with any other command line argument. Only pass and fail information is displayed.

When the jbs application is invoked, it performs a scan chain integrity test on every board in the system. The scan chain integrity test verifies that the boundary scan chain is intact and functional. Execution stops if an error is encountered during the integrity test. After the scan chain integrity test, jbs performs a board level boundary scan test on each board in the system. The board level boundary scan test checks on-module interconnects. The last test jbs performs is a backplane level boundary scan test. The backplane level boundary scan test checks all interconnects that pass through the backplane.
NOTES

Options are necessary only when an override of the default arguments is desired.

When running the jbs application, observe the following limitations:

• The jbs application does not run when the operating system is active.

• The jbs application runs only on CRAY J90 series systems.

Results of the boundary scan tests are displayed on the screen and stored in the /adm/jbs.log file.

SEE ALSO

CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME
 jcon - Performs a remote login onto a CRAY J90 series mainframe

SYNOPSIS
 jcon

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The jcon command is a script you can run on the J90 series console (Sparc Station 5).
 It performs an infinite loop to a remote login session. This allows for immediate reconnection to the
 IOS during a load or reload process.
 To disconnect from the remote login, press the ~ character following immediately by <CONTROL-c>.
NAME
jconfig – CRAY J90 series configuration file builder and editor

SYNOPSIS

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The jconfig utility is used to build and edit CRAY J90 series system hardware configuration files. Configuration files are built, one for each processor module and one for each memory module in the system. These files are named pm[0-7].cfg for processor modules and mem[0-7].cfg for memory modules. These files are then used during master clear and deadstart sequences (see the mc(8) and ds(8) man pages).

The jconfig utility accepts the following options:
- io bb devname
 Specify when testing, or when running jconfig in a STCO test vehicle environment.
 devname is an IOBB device. The default device is /dev/io bb.
- edit jconfig runs without doing a hardware read/check. This option is useful for quick editing of .cfg file data or if the hardware is broken.
- dump Specified in conjunction with inline options (-ecc, -cache, -mm, -degrade), this option forces jconfig to dump ASCII versions of .cfg files in addition to the binary .cfg files.
 The ASCII versions have the names pm[0-7].cfg.txt and mem[0-7].cfg.txt.
- nocr This option can be specified only with -bpmt or -hwconfig. It allows jconfig to be fully run from the command line with no user interaction. Usually, jconfig enters a menu interface, and there are times when jconfig requests that the user press <RETURN> for confirmation. -nocr bypasses the menus and does not wait for the user to press <RETURN>. This option is useful for running jconfig from command scripts. See the -bpmt and -hwconfig option descriptions.
- help Prints all command line options.

If you specify the following inline options, jconfig runs without hardware check or editing capabilities. jconfig reads all .cfg files, alters the desired parameter system-wide, and updates the .cfg files.
- ecc [on | off]
 Sets SECDED error correction mode on or off, system-wide.
- cache [on | off]
 Enables or disables scalar cache, system-wide.
- mm [on | off]
 Enables or disables maintenance mode instructions, system-wide.
- degrade [even | odd | none]
 Degrades system memory so that only even sections will be accessed (even), only odd sections will be accessed (odd), or all sections will be accessed (none).
The following options allow jconfig to be run with less user interaction.

-`bpmt [backplane memory_type_codes]`
 Specifies the backplane type and memory module type codes. This option is usually specified when running from a script. Backplane types are 1x1, 2x2, 4x4, and 8x8. Memory module type codes are single-digit hexadecimal codes that are read from a sticker on each memory module's face plate. Valid codes are 0, 1, 2, 3, 4, 5, 8, 9, a, b, c, and d. The codes entered are in order starting from memory module 0. (See Example 1 in the EXAMPLES section.)

-`hwconfig [cpu_bitmap memory_bitmap backplane memory_type_codes]`
 This option lets you enter all hardware parameters on the command line. jconfig does not perform a hardware check. When `-nocr` is specified, `jconfig` runs without user interaction. The following hardware parameters can be specified with `-hwconfig`:

 cpu_bitmap
 Specifies a hexadecimal bit map of all CPUs in the system. Each processor module has up to 4 CPU's on it. Bit 2^0 corresponds to CPU 0, bit 2^1 to CPU 1, and 2^31 corresponds to CPU 31. For example, for a 4x4 system with all CPU's installed, the CPU bitmap would be `ffff`.

 memory_bitmap
 Specifies a hexadecimal bit map of all memory modules in the system. Bit 2^0 corresponds to memory module 0, 2^1 corresponds to memory module 1, and so on. For a 4x4 system with all memory modules installed, the memory bitmap would be `f`.

 backplane
 Specifies the backplane type. Valid backplane types are 1x1, 2x2, 4x4, and 8x8.

 memory_type_codes
 Specifies single digit hexadecimal codes, which are read from a sticker on the face plate of each memory module. Valid codes are 0, 1, 2, 3, 4, 5, 8, 9, a, b, c, and d. The codes entered are ordered starting from memory module 0. (See Example 2 in the EXAMPLES section.)

The .cfg files contain all configuration data needed by CRAY J90 system configuration registers, which are contained in all CRAY J90 system ASICS' TAP controllers. The `mc` and `ds` commands read the .cfg files and shift the configuration data into the system's TAP controllers.

When run in the default mode (no command line options), `jconfig` performs the following sequence:
1. Resets the CRAY J90 series system, so that it is able to do maintenance functions.
2. Reads the CRAY J90 series system to determine which slots contain modules.
3. Attempts to read an existing .cfg file to extract nonhardware-readable information (backplane type and memory module type codes).
4. If either step 2 or step 3 fails, the user can enter slot, backplane, and memory module type codes using an information screen that can be edited by using an editor like `vi`.
5. Displays main menu.

From this point, the user can edit the configuration data, view the current hardware configuration, update the system's .cfg files, or dump the .cfg files in ASCII format.

Startup

The `jconfig` utility requires the following hardware configuration information: which CPU slots have processor modules in them, which memory slots have memory modules in them, how many CPUs per Processor module, the backplane type, and memory module type codes. The CPU/memory slot information, and CPUs per processor module are readable through the maintenance channel. The backplane type and memory module type codes are not.
When invoked without -hwconfig or -bpmt, jconfig attempts to read the slot configuration. Then a search is made for a .cfg file. If a file is found, its header is read which contains, among other things, the backplane type and memory module type codes for all memory modules.

If either of these operations fails, jconfig informs you, and displays the following information screen, which you can edit to fit the actual hardware configuration:

CP Boards/CPUs: 1 HEX Digit Per Board, 1 Bit Per CPU On That CP.

Example: 0000ffff (CP 0-3, all cpus present/CP) 00000001 (CP 0, cpu0 only present)

MEMORY Boards: 1 Digit Per Board. 1 == Mem. Board Present, 0 == Not Present

Memory Type: 1 Digit Per Memory Board. Get Type Code From Memory Board Sticker. Valid Type Codes Are 0-5 and 8-d (hexadecimal).

Backplane Type: 8==8x8, 4==4x4, 2==2x2, 1==1x1

When the information is entered, using vi-like commands (see the Editing subsection), z is entered to save the configuration. At this point, jconfig asks the user for verification of what was entered. Then the main menu is displayed.

If no errors are encountered during hardware configuration sensing, jconfig asks for verification of the hardware configuration, and then displays the main menu.

Menus

The jconfig utility, invoked without the -nocr option, determines the hardware configuration and presents a menu interface. These menus let you select the type and scope of ASIC configuration register fields, which you can edit (see the Editing subsection). The following is an example of the main menu:

<1> Edit Diagnostic Parameters
<2> Edit ALL Parameters
<3> View System Configuration
<4> Update Config File(s)
<5> Dump Configuration to ASCII File
<6> Exit

Enter # Of Choice:
Editing

The jconfig utility, invoked without the -nocr option, lets the user edit all fields of all ASIC configuration registers. These fields are grouped into two types:

- **Diagnostic** Fields that may help diagnose problems on a CRAY J90 system, or that may alter the way the CRAY J90 system runs, for example, disable SECDED.
- **All** Any and all configuration fields.

These fields also are grouped by scope:

- **System** The user can set certain fields system-wide.
- **Module** The user can set fields module-wide.
- **ASIC** The user can set fields for 1 specific ASIC, all of an ASIC type on a module, or all of an ASIC type system-wide.

Usually, the system-wide diagnostic settings are the most appropriate to use.

The edit screens display each configuration register field, an explanation of the field, and how many bits it occupies. All fields are expressed as 8-digit hexadecimal numbers. A footer at the bottom of the screen has editing instructions, the current field type and scope, and the current edit page number. The following is an example:

```
Disable Error Correction (SECDED) (l==Disable) 1 Bit: 00000000
Set Maintenance Mode System Wide (l==Set) 1 Bit: 00000000
Disable Scalar Cache System Wide (l==Disable) 1 Bit: 00000000
Memory Degraded (Odd or Even Sects Only,l==Degraded) 1 Bit: 00000000
Even Sections Only Or Odd Sections Only (l==even) 1 Bit: 00000000
Physical CPU # of Logical CPU 0 (0-1f) 5 bits: 00000000
Disable 005 During 034, System-Wide PC’s (l==disable) 1 Bit: 00000001
Disable 024 During 036, System-Wide PC’s (l==disable) 1 Bit: 00000001
Wait On Data During 073/076, System-Wide PC’s 1 Bit: 00000000
Allow 1 Instr. To VU At A Time, System-Wide PC’s 1 Bit: 00000000
Allow Only 1 Port Active At A Time, System-Wide PC’s 1 Bit: 00000000
Disable Instr. Chaining, System-Wide VU’s (l==disable) 1 Bit: 00000000
Disable Instr. Tailgating, System-Wide VU’s(l==disable) 1 Bit: 00000000
Disable 1 CP Bypass, System-Wide VU’s (l==disable) 1 Bit: 00000000
Disable 2 CP Bypass, System-Wide VU’s (l==disable) 1 Bit: 00000000
Logical CPU Board Number, Physical CPU Board 0 (0-7) 3 Bits: 00000000
Logical CPU Board Number, Physical CPU Board 1 (0-7) 3 Bits: 00000001
Logical CPU Board Number, Physical CPU Board 2 (0-7) 3 Bits: 00000002
Logical CPU Board Number, Physical CPU Board 3 (0-7) 3 Bits: 00000003
Logical CPU Board Number, Physical CPU Board 4 (0-7) 3 Bits: 00000000
```

The cursor may be moved with the same cursor keys as the vi editor. Pressing z causes the edit(s) to be saved, after which the main menu is displayed. To discard edits, hit <ESC>.

Saving and Updating .cfg Files

The jconfig utility lets the user save the current configuration into .cfg files using the "Update Config File(s)" option of the main menu.

The .cfg files are saved automatically if -nocr is specified.

ASCII versions of all .cfg files are saved if the "Dump Configuration to ASCII File" option of the main menu is used. Also, -dump can be specified if an inline parameter (-ecc, -cache, etc.) or -hwconfig or -bpmt is specified.
NOTES

The jconfig utility determines which environment is currently in place, and can be run either from the QLOAD> prompt (load -q ...) or from the IOS> prompt. It cannot be run from the BOOT> prompt.

RETURN VALUES

The jconfig utility returns 0 to the calling environment if there are no errors and nonzero if an error occurs.

MESSAGES

Error messages are generated if jconfig has trouble during the sensing of hardware configuration, or if errors are encountered during the opening, reading, or writing of files. All error messages start with jconfig:. Fatal errors result in messages starting with jconfig: Aborting.

EXAMPLES

Example 1: The following example specifies a 4x4 backplane, and type code 0 for memory module 0, 1, and 3, and a type code of 1 for memory module 2. If this option is specified with -nocr, jconfig runs without user interaction, but still performs a hardware check.

 jconfig -bpmt 4x4 0 0 1 0

Example 2: This example specifies 4 processor modules with 4 CPUs on each one, 4 memory modules, a 4x4 backplane, memory module type codes 0 for memory modules 0, 1, and 3, and memory module type code 1 for memory module 2.

 jconfig -hwconfig ffff f 4x4 0 0 1 0

FILES

/sys/pm[0-7].cfg
Module-level processor module configuration files that contain all ASIC JTAG configuration register fields for that module.

/sys/mem[0-7].cfg
Module-level memory module configuration files that contain all ASIC JTAG configuration register fields for that module.

/sys/pm[0-7].cfg.txt
ASCII version of pm[0-7].cfg.

/sys/mem[0-7].cfg.txt
ASCII version of mem[0-7].cfg.

SEE ALSO

ds(8), mc(8)
NAME
 jobs – Displays user commands that are running

SYNOPSIS
 jobs

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The jobs command displays all currently running user commands by name and task ID.
NAME

kill – Kills a user command task

SYNOPSIS

kill tid

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The kill command looks for the user command task *tid* and terminates it if it is running. To obtain the task ID *tid*, use the jobs command, which displays the currently running commands. To kill a command running in the foreground, press <CONTROL-c>.

This command accepts the following argument:

tid Task ID; integer task identifier.

SEE ALSO

jobs(8) to display currently running commands
NAME

\texttt{id} – Loads a file into central memory

SYNOPSIS

\texttt{id filename[,ext]}

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

If you do not specify an extension, the \texttt{id} command, by default, searches the current directory for the
file name that has a \texttt{.bin} extension. If the \texttt{.bin} extension search is unsuccessful, the file name that
has an \texttt{.xxx} extension is searched for next. If the file is not found, an error message is displayed.

The \texttt{id} command accepts the following options:

- \texttt{filename} Specifies the name of file that is loaded.
- \texttt{.ext} Specifies an optional file extension.

MESSAGES

Unable to load file \texttt{<filename>}

The file specified could not be loaded into central memory.
NAME

1m – Loads central memory

SYNOPSIS

1m bcd sa cma word_count
1m icd sa cma word_count
1m scd sa cma word_count

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The 1m command transfers data from the specified system disk to central memory by using the I/O channel. The data is transferred into central memory through the data channel.

The 1m command accepts the following options:

b Indicates a buffered intelligent peripheral interface (IPI) drive.
i Indicates IPI drive.
s Indicates a small computer system interface (SCSI) drive.
c Controller number (0 to F).
d Indicates disk (0 to F).
sa Starting logical sector address at which data begins on system disk.
cma Starting central memory word address at which the data will be written.
word_count Specifies the number of 64-bit words to write to central memory.

NOTES

Because this command accesses central memory through the data channels, the CPU clock must be on.

The sector address specified in these commands assumes a sector length of 4096 bytes. The system console must compute the correct physical sector address based on the disk type.

For the commands that write data to the disk, if the word_count argument is not a multiple of 512 64-bit words, the data read into the rest of the last sector will be unpredictable.

MESSAGES

1m: open failed on device <device name>
 An attempt to open the specified device failed.
1m: second parameter isn’t a sector address
 The second parameter specified on the command line is not a valid sector address.
1m: third parameter isn’t central mem addr
 The third parameter specified on the command line is not a valid central memory address.
1m: fourth parameter isn’t word count
 The fourth parameter specified on the command line is not a valid integer.
1m: read of device failed: <device name>
 The read of the specified device failed.
lm: write to memory failed
 An attempt to write the data from disk to central memory failed.

EXAMPLES
The following command transfers 1.3 million words of data from the SCSI disk on controller 2, unit 1, at the hexadecimal sector address 53BE to central memory address 100:

 lm s21 0x53BE 0x100 1300000

SEE ALSO
 cm(8) to display central memory
 sa(8) to save central memory to a binary file
NAME
load – Loads and boots an IOS binary image into the IOP

SYNOPSIS
load [-n] [-q] [filename]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The load command simply loads in an image that can be booted into the I/O processor (IOP) memory and tries to boot from it. It accepts either a file or a device name as input.

The load command accepts the following options and arguments:

- n Loads in the image, but it does not try to boot it.
- q Specifies a quick load of the IOS kernel to enable limited IOP or IOS maintenance to be performed. No drivers or strategies are loaded, and a reload is required to boot the operating system.

filename Specifies input file.

MESSAGES
load: only executable from prom!
An attempt has been made to issue the load command from anywhere besides PROM.

load: open failed on <target name>
The load of the input file specified failed.

load: read failed on <filename> (got <num bytes> bytes); aborting!
The file to load is not the correct size.

EXAMPLES
Example 1: The following example boots a back-up copy of the IOS kernel from /tmp:
load /tmp/ios.bak

Example 2: The following example boots the default IOS:
load

SEE ALSO
lu(8) to load a binary UNICOS image into central memory
reload(8) to reload an IOS from a running IOS
reset(8) to stop the IOS kernel
NAME

ls - Lists a directory

SYNOPSIS

ls [-l] [-R] [dir] [filename[.ext]]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The ls command lists either all directory entries or only those for specified files.

The ls command accepts the following options and arguments:

-1 Displays long listing, including type of file, time stamp, and number of bytes in file.
-R Recursively lists subdirectories encountered.

dir Specifies the path of the directory that will be listed. The default is the current directory.

filename Specifies file(s) that will be listed. By default, all files are listed.

.ext Specifies the file extension.

MESSAGES

ls: error getting full path name
 An attempt to obtain the full path name of the file or directory failed.

ls: %s: no such file or directory
 The file or directory to display does not exist.

ls: Bad status on <filename>
 The file specified does not exist or for some other reason statistics on the file cannot be obtained.
NAME
lu – Loads UNICOS

SYNOPSIS
lu file1 file2

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The lu command loads a UNICOS a.out file and a configuration file into central memory from the IOS file system in preparation for booting UNICOS. It is usually run from the /bin/boot script.

The lu command accepts the following arguments:

file1 Specify UNICOS file.
file2 Specify configuration file.

NOTES
In previous releases, a UNICOS kernel in a.out format was installed on a system disk that has a compatible configuration file.

MESSAGES

lu: mem open failed
An attempt to open central memory failed.

lu: open of file %s failed
An attempt to open the file to load into central memory failed.

lu: write of first file to memory failed: %s
An attempt to write the file specified into central memory failed.

lu: write of second file to mem failed: %s
An attempt to write the file specified into central memory failed.

lu: write of S4 to memory failed: %s
An attempt to set up register S4 failed.

lu: write of S7 to memory failed: %s
An attempt to set up register S7 failed.

EXAMPLES
The following command line loads the unicos and cfg files:

lu unicos cfg

The unicos file is loaded into central memory starting at address 0, with the a.out file header removed. The cfg file is loaded into central memory at the next available address following the unicos file. The first 16 addresses in central memory contain an exchange package, which is ready for execution after the unicos and cfg files are loaded.
The \texttt{lu} command modifies the S4 and S7 registers of the loaded exchange package to enumerate the last word address (LWA) of the unicos and \texttt{cfg} files in memory correctly. After executing an \texttt{lu} command with valid files successfully, you can restart the CPU by using the \texttt{ds} command.

\textbf{SEE ALSO}

\texttt{iostart(8)} to initiate communication between UNICOS and the IOS
NAME
mc – Stops all CPU activity

SYNOPSIS
mc

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The mc command performs the initialization function for the CPU and central memory.

MESSAGES
mc: CPUMC ioctl failed on IOBB
 An attempt to reset the master IOS CPU failed.
mc: ENMEM ioctl failed on IOBB
 An attempt to enable memory access to the IOBB driver failed.
mc failed, unknown arguments
 The option specified for mc is invalid. Only the diagnostics should use these options.
mc: open failed on IOBB device
 An attempt to open central memory failed.
mc: RESET ioctl failed on IOBB
 An attempt to issue the RESET ioctl call failed.
mc: ymp_mc failed
 The command issued to clear the CPU and memory boards failed.

SEE ALSO
iostart(8) to initiate packet communication to UNICOS
sc(8) to reset all CPUs
stat(8) to display CPU status
NAME

mfdump – Dumps mainframe memory

SYNOPSIS

mfdump [-c] [-f] [-q] [-r] [-v]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The mfdump command dumps mainframe memory to the dump device.

The mfdump command accepts the following options:

-
 Checks parameters. Displays dump parameters, but it does not perform the dump.
-
 Forces the dump, even if a dump already exists in the dump device.
-
 Queries operator for dump parameters (see the EXAMPLES section).
-
 Queries operator for the reason for the dump. The reason string cannot contain a semicolon.
-
 Displays verbose internal debugging information, including dump parameters.

Dump Area Format

The dump area consists of a one-sector header that describes the disk allocation, followed by the data area.

The mkdumplp(8) command initializes the header. The header contains status information and describes the disk space allocated for dump data. The format of the header is as follows:

```c
struct shead {
    word sh_idu;
    word sh_idl;
    struct spart sh_part[SH_PART];
    uint :32;
    uint :32;
    uint sh_flag :16,
        sh_cpus :16;
    uint :15,
        sh_memh :1,
        sh_num :16;
};
```

When a dump is performed, the IOS fills in the sh_flag field. The cpdmp command uses the sh_flag to determine whether a dump has been taken and processed.

-
 Dump area identifier. The valid header is *UNICOS*.
-
 Partition descriptors; 509 entries that describe the disk allocation. An entry of 0 marks the end of the list. Only the first element of sh_part is used. It contains the total length (in sectors) of the system dump.
-
 Flag that is set to the system type by the IOS when a dump is taken. The cpdmp command sets the flag to CP after it copies the dump data to a system dump file.

The other fields are not used.
Dump File Format
The cpdump command copies a system dump from the dump area to a file. To display the information in the system dump file, use the crash(8) or fdump(8) command.

Param File Format
The mf dump command assumes the existence of the /sys/mfdumpa.arg file, which contains an ASCII description of the hardware configuration and the dump partition. You can edit this file by using the ed text editor. This file is initially set up during the install process. The format of this file is as follows:

- CPUS=<number of cpus>
- MEM=<size of memory in megawords>
- range1=<value>-<value>
- range2=<value>-<value>
- range3=<value>-<value>
- range4=<value>-<value>
- regdump=yes|no
- sysreg=yes|no
- ublocks=yes|no
- IOS#=<number of the channel that has the dump partition>
- channel#=<number of the channel that has the dump partition>
- disktype=<disk type of the disk that has the dump partition>
- controller=<controller number of the device that has the dump partition>
- unit=<unit number of the device that has the dump partition>
- start=<starting block number of the dump partition>
- length=<length in blocks of the dump partition>

A line beginning with # indicates a comment. White space is allowed between tokens, for example, CPUS = 1, but not within tokens. All values are decimal. The range values specify a memory range to dump. If the end range is 0, that range is not dumped. The disk type can be an integer value or one of the following mnemonics:

- DD4
- RD1
- DDIMEM
- DD5S
- DD5I
- DD_U
- DD6S
- DD7S
- DD8S
The contents of a sample mfdumpa.arg file is as follows:

```plaintext
#comment
CPUS=4
MEM=512
range1=0-8000000
range2=0-0
range3=0-0
range4=0-0
regdump=yes
sysreg=yes
ublocks=yes
IOS#=0
channel#=16
disktype=DD5I
controller=10
unit=1
start=40000
length = 65536
```

MDW File Description

A system dump file contains the following: a header, memory descriptors, and data area.

The header format is as follows:

```c
struct fhdr1 {
    word fh_didu;
    word fh_didl;
    char fh_res[80];
    char fh_dat[8];
    char fh_tim[8];
    word fh_hrp2u;
    word fh_hrp2l;
    word pad3;
    word fh_nmdw;
    struct mdwl fh_mdw[1][NMDW0];
    word pad4;
    long fh_nxtsec;
    uint fh_fstype:32;
    uint fh_nxtfile:32;
};
```

- `fh_did[ul]` System dump file identifier (the ASCII string SYSDUMP).
- `fh_res` Reason the dump was taken; 80 ASCII characters.
- `fh_dat` Date the dump file was created (in the format `mm/dd/yy`).
- `fh_tim` Time the dump file was created (in the format `hh:mm:ss`).
- `fh_hrp[ul]` File format; the ASCII string *DUMP02*.
- `fh_nmdw` Number of memory descriptor words (MDWs). The initial 165 MDWs are allocated in the header. If additional entries are required, additional sectors are allocated; each sector has 170 MDWs and is linked to the next sector by `fh_nxtsec`.
- `fh_mdw1` Array of MDWs.
- `fh_nxtsec` Address of the sector that contain the next array of MDWs.
The other fields are not used.

The MDW describes the data that has been dumped and its location in the system dump file. The format of the MDW is as follows:

```c
struct mdw1 {
    uint md_comp :1,
    md_typ :15,
    dummy1 : 16;
    uint md_fwa :32;
    uint md_for :1,
    md_sfor :1,
    md_file :5,
    : 9,
    :16;
    uint md_lwa :32;
    uint md_sc : 32;
    uint md_sa : 32;
};
```

- **md_typ**: Type of data contained in this area; for a list of types, see the `sys/sdmp.h` file.
- **md_fwa**: Address of origin for the data described by this MDW.
- **md_lwa**: Address of origin of the last word of data.
- **md_sc**: Number of sectors of data contained in the system dump file.
- **md_sa**: Sector address of the data in the system dump file. The first two words of the sector are reserved and are not included in `md_sa`. The actual data begins after these two words.

The other fields are not used.

NOTES

The mfdump program executes in IOS 0. It checks for the existence of the dump disk device. If the dump disk device is on an IOS other than 0, that IOS is checked to make sure that it is running and communicating with the CPU.

The reason string entered with the `-r` option cannot contain a semicolon.

MESSAGES

The following is a list of error messages and their explanations (if necessary):

IOS 0 is selected but channel is not 16. Enter the IOS number (0-31):

This message is issued when the mfdump parameter file `mfdump.arg` has a value of 0 for the IOS number, and the channel number selected is not 16. The IOS number entered must correspond to the channel number.

IOS n unavailable for dump to disk. Aborting.

This message is issued when the dump disk device is on an IOS other than 0 according to the dump parameters, and the IOS is not responding to messages on the IOS network. The IOS `n` may be down, or the IOS network may be hung up. In this instance, a reboot of the IOS is needed.

Cannot open/creat /sys/mfdump.arg. Dump config file cannot be saved.

This message is issued when an open call fails. This indicates system console disk problems (for example, the disk is full, or a catastrophic problem exists in IOS 0). You should check the IOS file system on the system console disk for proper operation and available space.
Write to /sys/mfdump.arg failed. Dump config file cannot be saved.
This message is issued when a write call is made to the IOS maintenance disk. This may indicate IOS disk problems (for example, the disk is full, or a catastrophic problem exists in IOS 0). You should check the IOS file system on the disk for proper operation and available space.

This message is issued when an open call is made to the IOS maintenance disk to read the mfdump.arg file. The file may not exist; in which case, mfdump can be reexecuted in query mode to re-create the file.

This message is issued when a read call is made to the IOS maintenance disk. This may indicate IOS disk problems or a catastrophic problem in IOS 0. The /sys/mfdump.arg file may be bad on disk, or the IOS file system on the disk may be faulty. To remedy this problem, execute the mfdump command in query mode and re-create the mfdump.arg file.

Cannot open memory. Dump failed.
This message is issued when the mfdump command attempts an open call to the iobb device driver and fails. This occurs when the iobb is in an uninitialized state. The mfdump command always executes an sc command to the CPU, which also initializes the iobb device driver. Therefore, the failure of the open call implies that the sc command did not initialize the iobb device driver, or since that time a catastrophic event occurred that caused the iobb device driver to shut down.

CPU dump truncated.
This message is a returned error from the CPU dump program. It means that the dump partition is full.

Invalid dump header mainframe dump failed.
The header in the dump partition was not a legitimate dump header. Either the dump header was not initialized by using the idmp command or the dump parameters are in error and are directing mfdump to the wrong disk address.

There is a system dump in the dump partition that has not been copied.
Use -F to force a dump.

Mainframe dump failed.
Self-explanatory.

IOS n is no longer responding on the IOS network.
This message occurs during the start-up sequence in a multiple-IOS configuration, and the slave IOS does not respond on the IOS network. It indicates a problem in the slave IOS or the IOS network. To continue, reboot the IOS.

Cannot determine disk config on IOS n. The IOS may be down.
This message occurs during the start-up sequence in a multiple-IOS configuration, and the slave IOS is responding on the IOS network, but the return code from the slave function call is bad. This indicates a problem in the slave IOS. Perform an iosdump(8) of the slave and master IOS and take the output to your system support for analysis.

IOS n Controller x Unit y not available.
This message occurs when the master IOS tries to probe for the existence of the dump disk device, in accordance with the mfdump.arg parameters or the query parameters. The configuration parameters may not agree with the physical layout, or the controller or disk is not available due to a fatal error condition. Recheck the configuration or test the devices that will be available to the IOS.
Y1 channel seems to be non-functional
Suggest reloading IOS and trying again.

The Y1 channel did not respond after being reset. A hardware problem may exist. Reload the
IOS and try again. If it still fails call for hardware support.

Couldn't get registers for cpu <n>
The mfdump command was unsuccessful in retrieving the B, T, and V registers for the
specified CPU. The dump will continue, but these registers will not be available in the dump.

Could not get cluster registers
The mfdump command was unsuccessful in retrieving the cluster registers. The dump will
continue, but these registers will not be available in the dump.

Cannot access CPU memory. Trying 'SC' to clear the channel.
CPU memory was inaccessible. mfdump tries a "soft clear" (issues the sc command) to clear
the channel. If that still doesn't work, the dump will abort. If it works, the dump will
continue, but the register and exchange package information in the dump may not be
meaningful.

mfdump: fwa: mdw's out of sync, \textless value\textgreater \neq \textless value\textgreater
mfdump: lwa: mdw's out of sync, \textless value\textgreater \neq \textless value\textgreater
mfdump: type: mdw's out of sync, \textless value\textgreater \neq \textless value\textgreater
mfdump: sc: mdw's out of sync, \textless value\textgreater \neq \textless value\textgreater

An internal error exists in mfdump. Call your Cray Research representative for assistance.

EXAMPLES

Example 1: The following example dumps the mainframe and puts the string System Paniced on
an ORE in user code in the "reason" field of the dump header (user input is in Courier bold):

\texttt{IOS> mfdump -q -v System Paniced on an ORE in user code}

Example 2: The following example dumps the mainframe and puts the string System Paniced on an
ORE in user code in the "reason" field of the dump header (user input is in courier bold):

\texttt{IOS> mfdump -q -v -r}
mfdump: Enter reason for dump. Terminate reason with
two new line characters.
\texttt{System paniced on an ORE in user code}

FILES

\texttt{/sys/mfdump.arg} File in which the dump parameters are stored

SEE ALSO

dstat(8) to display disk status
stat(8) to display CPU status
NAME
 mkdir - Makes a new directory

SYNOPSIS
 mkdir dirname

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The mkdir command creates a new directory on the NFS mounted file system.
 The mkdir command accepts the following argument:
 dirname Name of the new directory.

EXAMPLES
 Example 1: To create a new directory called test5 in the results subdirectory under the root directory, enter the following command line:
 mkdir results/test5

 Example 2: To change the directory to the results directory, use the cd command and enter the following command line:
 mkdir test5
NAME

mmltest - Executes a confidence test on the IOP RAM/CACHE memory

SYNOPSIS

mmltest

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The mmltest confidence test consists of the following:
1. Write, read, and verify 85 canned and 10 random data patterns, using all available RAM memory.
2. Verify partial addressing of the available RAM by writing, reading, and verifying a data pattern of address to address.
3. Repeat the preceding sequence by using the combination of RAM/CACHE.

NOTES

The mmltest command runs only on the CRAY J90 series systems.

SEE ALSO

CRAY J90 Series IOS Based Tests, publication HDM-099-0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

more – Displays a file one screen at a time

SYNOPSIS

more filename

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The more command outputs one screenful at a time of a specified file. To view the next screen, press any key on the keyboard, except the <q> key.

The more command accepts the following operand:

filename Specifies the name of the file to be viewed.

When you press the <q> key, the more command quits.

MESSAGES

more: unable to open <dir name>
An attempt to open the directory name specified failed.

EXAMPLES

The following example displays the aa file:

more aa
NAME

mt – Controls magnetic tape

SYNOPSIS

mt [-f tape_dev] command [count]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The mt command performs certain functions on specified magnetic tape devices (rpd03 by default).

The mt command accepts the following options:

- \-f tape_dev Specifies the device to be activated (for example, rpd03, hrpd03).
- command Specifies the command to execute on the tape device. Valid commands are as follows:
 - bsf [count] Skips back over count file marks; the default is 1.
 - fsf [count] Skips forward over count file marks; the default is 1.
 - reten Retensions the tape.
 - rewind Rewinds the tape.
 - status Displays drive status.
- count Specifies the number of files to skip over. This argument is valid only with the fsf argument.

RETURN VALUES

If the operation was successful, mt returns 0; otherwise, it returns –1.

MESSAGES

mt: <command> command not found
The options specified on the command line were not valid.

mt: device <tape> is not a tape device!
The tape device specified is not a valid device name.

mt: negative repeat count
A negative count for the number of file marks to forward or backward skip on tape was entered on the command line.

mt: open fails for <tape>
The tape device specified does not exist.

mt: status ioctl failed : <device name>
The issuing of an ioctl call to the specified tape device failed.

mt: Unknown drive type <drive type>
The tape device specified is not valid.
EXAMPLES

Example 1: The following two commands are identical; they rewind device rpd03:

```
mt rewind
mt -f rpd03 rewind
```

Example 2: The following commands position the tape after the first file:

```
mt -f rpd03 rewind
mt -f nrpd03 fsf 1
```
NAME
mv – Moves (renames) a file or directory

SYNOPSIS
mv files target

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
You can use the mv utility to perform any of the following actions:
• Move (rename) one file. If the name of the new file exists, it will be overwritten.
• Move one or more files from a directory to another existing directory.
• Rename a directory.
• Move a directory.

To move one or more files, specify the current file name(s) (files) and the new name for the file (target).
Do not use the same name for file and target. If target is not a directory, you can specify only one file before it; if it is a directory, you can specify more than one file.

If target does not exist, mv creates a file named target. If target exists and is not a directory, its contents are overwritten. If target exists and is a directory, files are moved to that directory.

When moving a directory, if target exists, mv will abort with the Destination name already exists message. If target does not exist, a new directory is created and all files and subdirectories in files are moved to target.

MESSAGES
mv: cannot change back to <directory name>
An attempt to change back to the parent directory failed.

mv: cannot change back to parent directory
An attempt to change back to the root directory failed.

mv: Destination name already exists
The destination file or directory name specified already exists.

mv: potential recursive copy - aborting
In moving a directory from one name to another, it was detected that the command may be in a recursive loop.

mv: Source name does not exist
The target file or directory specified to move does not exist.

EXAMPLES
The following example moves (or renames) file a to file b:

 mv a b
NAME
nettest – Executes a network controller confidence test

SYNOPSIS
nettest

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The nettest command lets users run and control an offline network controller confidence test.

WARNINGS
When the operating system is active, you cannot execute the nettest command. It must be run from the IOS prompt.

SEE ALSO
UNICOS Administrator Commands Reference Manual, publication SR–2022, for additional UNICOS diagnostic commands
CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

od - Displays a file by using various formats

SYNOPSIS

od [-d] [-n num_lines] filename [offset]
od [-h] [-n num_lines] filename [offset]
od [-o] [-n num_lines] filename [offset]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The od command displays the contents of a file. The contents are formatted according to the specified numeric base parameter (-d, -x, or -o). If you omit the first argument, -x (hexadecimal) is the default. Dumping continues until an end-of-file (EOF) is reached.

The od command accepts the following options:

-\d Interprets bytes as decimal.
-\h Interprets bytes as hexadecimal (default).
-\o Interprets bytes as octal.

-\n num_lines Specifies how many lines to output; num_lines is a numeric value.

filename Specifies the name of either a file on the IOS disk or one of the following keywords to indicate the appropriate memory:

/dev/iobb IOBB memory
/dev/iop IOP memory
/dev/mem Central memory

offset Specifies number of bytes to index into the file before outputting.

EXAMPLES

Example 1: The following example displays the contents of file some.file in hexadecimal format:

 od some.file

Example 2: The following example displays the first 10 lines of file some.file:

 od -n 10 some.file

Example 3: The following example displays 30 lines of central memory in octal format:

 od -on30 /dev/mem mem_address
Example 4: The following example displays IOBB memory:
 od /dev/iobb mem_address

Example 5: The following example displays IOP memory:
 od /dev/iop mem_address
NAME
offline - Loads and configures an offline mainframe diagnostic

SYNOPSIS
offline [-b #] [-c #] [-d] [-k monitor] [-l #] [-m #] [-n #] [-s #] filename

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The offline diagnostic loads, configures, and attaches the appropriate monitor to the offline diagnostic specified. Default configuration parameters are extracted from the IOS CONFIG file and set accordingly.

The offline diagnostic accepts the following options:
-b # Specifies banks of memory to test. You can set # to be in the range of 02000-0 octal.
-c # Specifies an octal bit mask selection of CPUs to test (CPUS). You can set # for a two-CPU system, as follows:
1 Test CPU 0 only.
2 Test CPU 1 only.
3 Test both CPU 0 and 1.
-d Disables scalar cache for all applicable diagnostics.
-k monitor Specifies the monitor type, which can be one of the following:
none
ymm
yms
ymi
ysmi
ym8
-l # Specifies an octal number of clusters to test.
-m # Specifies central memory size (in megawords). For example, # is 32 for a 32-Mword system.
-n # Specifies an octal bitmask selection of physical CPUs configured (CPUN). The population of this parameter is used to partition and allocate memory for each available CPU.
-s # Specifies an octal bit mask section of a diagnostic.
filename Specifies an offline mainframe diagnostic to load. The .bin extension is appended automatically to the file name.

NOTES
Options are necessary only when an override of the default parameters is desired.
Observe the following limitations when running the offline diagnostic:
• When the operating system is active, the offline diagnostic does not run.
• The offline diagnostic runs only on CRAY J90 series systems.
EXAMPLES

The following command loads JSR3. The offline diagnostic configures it to test CPUs 0 and 7 that have a monitor type of YM8, 512 MWDs of memory, and 11 octal clusters. It selects three sections of the test to run. Memory is divided by the population count of the \(-n \#\) value, which in this case is 2.

```
offline -c 201 -n 201 -k ym8 -m 512 -l 11 -s 7 jsr3
```
NAME
 `pwd` – Prints current directory

SYNOPSIS
 `pwd`

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The `pwd` command prints the path name of the working (current) directory.
NAME
readlog – Reads the statistical log data on an STK 4280 tape drive

SYNOPSIS
readlog rssCUL [-il] [-f file]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The readlog command reads the statistical log data on an STK 4280 tape drive. It either writes the data to a file or displays it to the screen.

The readlog command accepts the following options:
C Specifies controller number.
U Specifies the unit number.
L Specifies the logical unit (LUN).
-i Lists the improved cartridge recording capability (ICRC) format, which means that data compression and compaction are supported.
-l Lists to screen.
-f file Writes the log data to file (default is /adm/read.log).

NOTES
This command does not return correct data unless the drive is online and ready (tape loaded).

MESSAGES
readlog: Cannot open tape <device name>
An attempt to open the specified tape device failed.
readlog: Invalid tape device name
The device name specified is not valid. It must be of type STK 4280.
readlog: This device does not support the ‘-i’ format
The option -i was specified, but it is not supported for the device specified.
readlog: Unable to execute log command
Execution of the log command failed.
readlog: Unable to open output file <filename>
The creation of the log file failed.
readlog: Writing log data to <filename>
Writing to the log data file failed.

EXAMPLES
The following command reads from drive rss010 and writes to the default file:
readlog rss010
NAME

reload – Initiates the reboot of the IOS

SYNOPSIS

reload [filename]

IMPLEMENTATION

Cray J90 series IOS-V

DESCRIPTION

The reload command renames the specified file /reboot. The reload command then resets the VME, which results in a reboot of the IOS from PROM.

If you omit filename, load tries to load in the /ios/ios file.

The reload command accepts the following option:

filename Specifies the input file.

EXAMPLES

Example 1: The following command reboots a back-up copy of the IOS kernel from /tmp:

 reload /tmp/ios.bak

Example 2: The following command reboots with the default IOS:

 reload

SEE ALSO

load(8) to load and boot an IOS binary image into the IOS
lu(8) to load a UNICOS binary image into central memory
reset(8) to reset the IOS
NAME
	reset – Resets the IOS

SYNOPSIS
	reset

IMPLEMENTATION
	CRAY J90 series IOS-V

DESCRIPTION
	The reset command stops execution of the IOS by first flushing any buffers out to the IOS disk, and
then it resets the VME bus. This returns control to PROM.

UNICOS also is stopped, and the CPU halted until another IOS kernel is booted.

SEE ALSO
	load(8) to load an IOS kernel from a boot state
	lu(8) to load a UNICOS binary image into central memory
	reload(8) to initiate the reboot of the IOS from a running IOS
NAME

rlogin - Invokes the remote login

SYNOPSIS

rlogin snxxxx-IOSn

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

You can use the rlogin command to connect a system console to any IOS or from the master IOS to a slave IOS. rlogin is useful to run diagnostics on a slave IOS.

The rlogin command accepts the following option:

snxxxx-IOSn

Specifies slave IOS to which connection is being made. The IOS name consists of the following:

snxxxx Specifies the mainframe serial number.
IOSn Specifies the IOS number.

NOTES

The use of rlogin is the only way to execute interactive commands on a slave IOS.

EXAMPLES

The following example shows a connection being made to the slave IOS, IOS1, on machine serial number sn9005.

rlogin sn9005-IOS1

sn9005-ios1>
NAME

rm – Removes files and directories

SYNOPSIS

rm [-r] file1 [file2 file3 ...]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The rm command removes all files listed on the command line. Directories are removed only when you specify the -r option (to remove empty directories, see the rmdir(8) command).

The rm command accepts the following options:

- r Removes directories recursively.

file# Specifies name(s) of file(s) to be removed.

MESSAGES

rm: %s: is a directory
The file name specified to delete is a directory.

rm: %s: no such file or directory
The directory or file name specified to remove does not exist.

rm: Can’t remove ROOT directory
An attempt was made to remove the ROOT (/) directory.

rm: error getting full path name
An attempt to obtain the full path name for the file to remove failed.

rm: error reading %s
While trying to remove all files in the specified directory, an error occurred reading the file name.

rm: opendir failed on %s
An attempt to open the specified file failed.

rm: removing file %s failed
An error occurred while trying to remove the specified file.

EXAMPLES

The following command removes the aa file and the /tmp/xx directory:

rm -r aa /tmp/xx

SEE ALSO

rmdir(8) to remove an empty directory
NAME
rmdir - Removes a directory

SYNOPSIS
rmdir [path]/dirname

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The rmdir command removes a directory from the hard disk. It accepts the following arguments:
path/ Specifies the path to the new directory.
dirname Specifies the name of the new directory.

NOTES
You can remove a subdirectory only if it is empty; that is, if it contains only the special entries (.) and (..).
You can remove only one subdirectory at a time.
You cannot remove the root directory and the current directory.

MESSAGES
rmdir: cannot access <dirname>
The directory name specified does not exist or for some other reason cannot be accessed.

EXAMPLES
To remove a directory called test5 in the results subdirectory under the root directory, enter the following command:
rmdir results/test5
NAME

script – Executes a script of IOS commands

SYNOPSIS

script [-x] filename

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The script command interprets an ASCII file as IOS commands and executes each line of the specified file. If a user enters the name of an ASCII file that contains IOS commands at the IOS> prompt, the IOS invokes script automatically.

The script command accepts the following option and argument:

- `x` Debug flag; script prints each line it is about to execute.
- `filename` Specifies file on which to execute script.

NOTES

The first line of a script file must contain the `#!` characters.

MESSAGES

Error on line `<line number>`

An error occurred on the specified line number of the script file.

script: Bad magic number. Scrips must have `'#!` as first two characters.

The script does not contain the required `'#!'` as the first two characters.

script: unable to open `%s`

The opening of the specified script file failed.

script: wild cards not allows in scripts

Self explanatory.

EXAMPLES

The following command interprets the `/bin/boot` file:

```
script /bin/boot
```
NAME

stat – Displays the CPU and program states

SYNOPSIS

stat [n]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The stat command reads scan status for each CPU that is configured in at IOS boot time, and a composite display of all CPU statuses is presented.

The stat command accepts the following argument:

n Specifies the number of times the stat function is executed before returning the IOS prompt. If you omit n, stat executes repeatedly until you press <CONTROL-c>.

To declare the presence of known CPUs in the configuration file (/config), use the following keyword/value pair: NCPUS=n. You must set the NCPUS keyword to reflect the slot number where a CPU can be found. Valid entries range from NCPUS=0 for one CPU found in slot 0 to NCPUS=0123 to declare a CPU in all four possible slots.

The ARCH and NCPUS keywords are required in the /config file for the IOS stat command to work properly. For CRAY J916 systems, you must declare the ARCH keyword as ARCH=J90.

SEE ALSO

clock(8) to turn clock on or off
mc(8) to stop all CPU activity
sec(8) to reset all CPUs
NAME

systat – Outputs various IOS system-related information

SYNOPSIS

systat

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The systat command displays the current status of various parts of the IOS. The display includes I/O buffer board (IOBB) buffer pool numbers, queued IOBB packets, open file descriptors, amount of IOS memory available, slave IOS information, if applicable, and so on.

The IOS network status table portion of the systat display gives information about your master and slave IOSs if applicable.

The "state" field of this table describes the state of the appropriate IOS. The possible states and their meanings follow:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT AVAILABLE</td>
<td>The IOS has never responded.</td>
</tr>
<tr>
<td>BOOTPROM</td>
<td>The IOS is sitting at the boot prompt.</td>
</tr>
<tr>
<td>BOOTING</td>
<td>The IOS is actively booting.</td>
</tr>
<tr>
<td>LOADING</td>
<td>The IOS kernel is being loaded.</td>
</tr>
<tr>
<td>RUNNING</td>
<td>The IOS is available and running.</td>
</tr>
</tbody>
</table>

The "network status" field indicates whether the slave IOS has recently responded to the master IOS. The possible states and their meanings follow:

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>The slave IOS is currently active.</td>
</tr>
<tr>
<td>1+ min late</td>
<td>The slave IOS has not responded in at least 1 minute.</td>
</tr>
<tr>
<td>5+ min late</td>
<td>The slave IOS has not responded in at least 5 minutes.</td>
</tr>
</tbody>
</table>

The load cmd sent field indicates whether the appropriate IOS has been issued the load command.
EXAMPLES

The following example shows the output of the systat command.

IOS0> systat
Buffer Pool Status:
buf size: 128 bytes, tot: 16, free: 16, used: 0 (reserved)
buf size: 1024 bytes, tot: 1, free: 1, used: 0
buf size: 3096 bytes, tot: 2, free: 2, used: 0 (reserved)
buf size: 4096 bytes, tot: 21, free: 21, used: 0
buf size: 32768 bytes, tot: 2, free: 2, used: 0
buf size: 49408 bytes, tot: 1, free: 1, used: 0 (reserved)
buf size: 131072 bytes, tot: 123, free: 123, used: 0
buf size: 147456 bytes, tot: 2, free: 2, used: 0 (reserved)

getblks: 0 relblks: 0 waiting : 0
waited: : 0 exact fits: 0 big fits: 0

Transfers To Mainframe: 0 queued (5120 max; 0 queued IDX pkts)
Open file descriptors : 8

IOS network status:
IOS state network status load cmd sent last pkt rec'd
0 RUNNING active Yes TUE APR 26 17:32:55 1994
1 BOOTING active Yes TUE APR 26 17:32:54 1994

SEE ALSO

crash(8) to display IOS internal information
dstat(8) to display disk information
NAME
table – Displays current status of various IOS system tables

SYNOPSIS
table [-a] table_name

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The table command lets users display various system tables. The display is an approximation because
the information may have changed immediately before or during output to the screen.
If you specify table without arguments, the various tables will display.
The table command accepts the following option and argument:
-a Specifies all table entries. This option can create a lot of output because each entry in
the table is output whether it is in use. By default, only entries that are currently in use
are output (except for small tables).
table_name Specifies the name of table to be displayed (pkt, fd, or loadmap).
NAME

tar - Archives tape files

SYNOPSIS

```
tar [key] [files]
```

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The **tar** command saves and restores files on magnetic tape and disk files, and the *key* argument controls its actions.

The **tar** command accepts the following arguments:

- **key**: A string of characters that contains one function letter (c, t, or x) and possibly followed by one or more function modifiers (b, f, or v).

The *key* argument can be one of the following options:

- **c**: (Creation of a new archive) Starts writing at the beginning of the archive, rather than after the last file.
- **t**: (Table) Lists the names and other information for the specified files each time that they occur on the archive. The listing is similar to the format that the *ls -l* command produces. If you do not specify a *files* argument, all names on the archive are listed.
- **x**: (Extract) Extracts the specified *files* from the archive. If a specified file matches a directory whose contents was written onto the archive, this directory is (recursively) extracted. You must use the file or directory's relative path when appropriate; otherwise, **tar** does not find a match. The owner, modification time, and mode are restored (if possible). If you do not specify a *files* argument, the entire contents of the archive is extracted. If several files with the same name are on the archive, the last file overwrites all earlier ones.

You can use the following options in addition to the option that selects the desired function:

- **b**: (Blocking factor) Causes **tar** to use the block argument as the blocking factor for tape records. The default and maximum value is 20. The block size is determined automatically when reading tapes created on block special devices (keyletters x and t).
- **f**: (File) Causes **tar** to use the device argument as the name of the archive.
- **v**: (Verbose) Displays the name of each file it treats, preceded by the function letter. With the -t function, -v gives more information about the tape entries than just the name. Usually, **tar** does its work silently.

files: Files or directories that will be dumped or restored. In all cases, appearance of a directory name refers to the files and (recursively) subdirectories of that directory.

BUGS

You cannot request the *n*th occurrence of a file.

The **tar** command does not copy empty directories or special files.
EXAMPLES

Example 1: To extract files from the cartridge tape, enter the following command:

```
  tar -xvf rpd03
```

Example 2: To extract only the `td.c` file from a cartridge tape, enter the following command:

```
  tar -xvf rpd03 td.c
```
NAME

test – Returns value of program counter or status of flag

SYNOPSIS

test p

test pm

IMPLEMENTATION

CRA Y J90 series IOS-V

DESCRIPTION

The test command returns the value of the CRA Y J90 system program counter or the status of the PMATCHED flag.

The test command accepts the following options:

p Specifies the program counter.

pm Specifies the PMATCHED flag.

NOTES

The test command executes only in a command file.

For the PMATCHED flag, 1 equals matched, and 0 equals no match.

EXAMPLES

Example 1: The following command line returns the value of the program counter:

test p

Example 2: The returned value from Example 1 can then be used in an if statement following the test statement in a command file, as in the following example:

test pm

if 0 goto :notmatched

echo matched

:notmatched

echo notmatched
NAME

time – Sets and displays the real-time clock

SYNOPSIS

time [mm/dd/yy hh:mm:ss]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The time command sets and displays the real-time clock in the IOS. If you omit arguments, the system date and time are returned.

The time command accepts the following arguments:

- mm/dd/yy Specifies month, day, and year.
- hh:mm:ss Specifies hours, minutes, and seconds.

NOTES

The separator is a slash for month, day, and year; a colon separates hours, minutes, and seconds. You must specify 2 digits in all fields.

When you boot the system, the IOS real-time clock is used to set UNICOS time.
NAME
tpltest – Executes a confidence test on tape handlers

SYNOPSIS
tpltest

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
The tpltest command lets users run and control an offline tape diagnostic.
The tape handler confidence test consists of the following:
1. Write, read, and verify blocks of canned data patterns (85) and 20 random patterns.
2. Verify tape mark control.
3. Write, read, and verify random data by using preselected block length and record counts.

NOTES
Test sections 1 and 2 use both I/O processor (IOP) and I/O buffer board (IOBB) for data transfers to and from tape. The remaining test sections use only IOBB.
When running tpltest, observe the following limitations:
• The tpltest command does not run from the boot prompt.
• The tpltest command runs only on CRAY J90 series systems.

SEE ALSO
UNICOS Administrator Commands Reference Manual, publication SR–2022, for additional UNICOS diagnostic commands
CRAY J90 Series IOS Based Tests, publication HDM–099–0 (This manual is Cray Research Proprietary; dissemination of this documentation to non-CRI personnel requires approval from the appropriate vice president and a nondisclosure agreement. Export of technical information in this category may require a Letter of Assurance.)
NAME

version, ver – Displays version number of the IOS software or PROM firmware

SYNOPSIS

version

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

If entered from the IOS prompt, the version command displays the version level of the IOS you are currently running, along with the date and time stamp that indicates when it was built.

If entered from the boot prompt, the version command displays the version level of the IOS PROM firmware that is currently running, along with the Cray Research part number of that PROM version.
NAME
wait – Waits several seconds before executing next command in command buffer

SYNOPSIS
wait [seconds]

IMPLEMENTATION
CRAY J90 series IOS-V

DESCRIPTION
You can use the wait command only in a command script file.
The wait command accepts the following argument:
seconds Number of seconds; default is 10.

EXAMPLES
The following command causes a 15-second wait before the next command executes in the command script file:

wait 15
NAME

what – Extracts SCCS version from a file

SYNOPSIS

what filename

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The what command searches each filename for the Source Code Control System (SCCS) version and prints it to the standard output. The @(#) pattern is assumed to be the start of the version string.

The what command accepts the following operand:

filename Specifies file to be searched.

EXAMPLES

The program.c file contains the following:

char file_version[] = "@(#)file version information";

The program.c file was compiled to yield program.o and program, with the following command:

what program.c program.o program

This command produced the following:

program.c:
 file version information

program.o:
 file version information

program:
 file version information
NAME

whatmic – Displays microcode level(s) at the IOS prompt

SYNOPSIS

whatmic [device] [-s]

IMPLEMENTATION

CRAY J90 series IOS-V

DESCRIPTION

The whatmic command displays one of the following:

• A file of all IOS controller and device microcode levels, including the IOS PROM firmware level.
• Microcode level of a specific device.

The whatmic command accepts the following options:

device Displays the microcode level of the specified device. whatmic rpd03 displays the microcode level of the DAT tape drive. whatmic i00 displays the microcode level of IPI drive 0.
-s Saves the /adm/mic_code.log microcode file that is built at IOS load time in the /adm/mic_code.sav file.

By default, the whatmic command displays the microcode file built at IOS load time. The file is located in the mic_code.log file in the /adm directory.

If you specify the device name line operand, whatmic functions the specified device for its microcode information rather than retrieving this information from the mic_code.log file. Avoid functioning a device for microcode information when that device is under the control of UNICOS.
NAME
 which – Searches for specified file name

SYNOPSIS
 which filename

IMPLEMENTATION
 CRAY J90 series IOS-V

DESCRIPTION
 The which command searches the same IOS disk directories that the IOS kernel does when it tries to locate a file name to execute. If the file is found, which prints out the full path to it.
INDEX

ACT diagnostic ... Loads and configures an offline mainframe
diagnostic ... offline(8) ... 93
Active user commands .. Displays user commands that are running jobs(8) ... 68
Activity information about disk subsystem Outputs activity information about the disk
subsystem ... dstat(8) ... 35
Allows conditional transfer of control ... Allows conditional transfer of control if(8) .. 56
Alters memory ... Alters memory am(8) 1
am(8) ... Alters memory am(8) 1
Archives tape files .. Archives tape files tar(8) 107
ARCH=YMP-EL keyword Displays the CPU and program states stat(8) 103
ASCII file interpreted as IOS commands ... Executes a script of IOS commands script(8) 102
Automatic error logging Displays Ethernet controller status and statistics enstat(8) 47
Background, IOS command Puts a suspended IOS command into the
background ... bg(8) ... 4
Backplane interconnects Performs boundary scan interconnect test on CRAY
J90 series systems jbs(8) 60
bb2test(8) ... Executes diagnostic test for I/O buffer board bb1test(8) 2
bb2test(8) ... Executes a disk I/O to and from I/O buffer board
bb1test(8) ... bb2test(8) ... 3
test ... Puts a suspended IOS command into the
background ... bg(8) ... 4
Binary image loading .. Loads and boots an IOS binary image into the IOP load(8) ... 73
Boot an IOS binary image into IOP Loads and boots an IOS binary image into the IOP load(8) ... 73
Boot environment, IOS Displays the boot environment of the IOS bootstruct(8) 5
Booting UNICOS .. Loads UNICOS lu(8) 75
bootstruct(8) .. Displays the boot environment of the IOS bootstruct(8) 5
Boundary scan interconnect test Performs boundary scan interconnect test on CRAY
J90 series systems J90 series systems jbs(8) ... 60
Brings to the foreground an IOS command that is brings to the foreground an IOS command that is
suspended or running in the background ... ffg(8) ... 51
Build configuration file CRAY J90 series configuration file builder and
editor ... jconfig(8) ... 63
Byte-by-byte file comparison Performs a byte-by-byte comparison of two files
cmp(8) ... cat(8) ... 6
cc1test(8) ... Executes diagnostic test for I/O buffer board and
I/O channel control chip......................... cc1test(8) ... 7
cc2test(8) ... Executes a data transfer test from central memory to
I/O buffer board to central memory and verifies data cc2test(8) 8
cd(8) ... Changes current directory cd(8) 9
Central memory ... Fills central memory fm(8) 52
Central memory display Displays central memory dm(8) 30
Central memory file Loads a file into central memory ld(8) 70
Central memory loading Loads central memory lm(8) 71
Central memory word change Alters memory am(8) 1
Change directory Changes current directory cd(8) 9
Change system console Toggles console from IOS to UNICOS system
console .. conswitch(8) ... 13
Changes current directory Changes current directory cd(8) 9
Changing memory Alters memory am(8) 1
Clear log ... Clears the statistical log data on an STK 4280 tape
drive .. clearlog(8) ... 10
clearlog(8) ... Clears the statistical log data on an STK 4280 tape
drive .. clearlog(8) ... 10
Cleans the screen display .. clears(8) .. 11
Cleans the statistical log data on an STK 4280 tape drive ... clearlog(8) .. 10
Clock set and display .. time(8) .. 110
clrs(8) ... clrs(8) .. 11
CM to IOBB to CM data transfer test .. cc2test(8) .. 8
cmp(8) .. cmp(8) .. 12
Command buffer execution time wait(8) .. 113
Command file .. Transfers control to a command file goto(8) .. 53
Command syntax .. Displays commands and their syntax help(8) .. 55
Confidence test .. Executes a confidence test for DD-SI disk drives dd5ittest(8) .. 19
Confidence test .. Executes a confidence test on tape handlers tptltest(8) .. 111
Configuration file builder/editor CRAY J90 series configuration file builder and editor jconfig(8) .. 63
Console switch .. Toggles console from IOS to UNICOS system console ... conswitch(8) .. 13
Console terminal change .. Toggles console from IOS to UNICOS system console ... conswitch(8) .. 13
conswitch(8) .. Toggles console from IOS to UNICOS system console ... conswitch(8) .. 13
Controller comprehensive test Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s) dd5ittest(8) .. 20
Controller information .. Displays Ethernet controller status and statistics enstat(8) .. 47
Controller microcode levels .. Displays microcode level(s) at the IOS prompt mt(8) 87
Controls magnetic tape .. Controls magnetic tape mt(8) 87
Copy file .. Copies a file .. cp(8) .. 15
copy(8) .. cp(8) .. 15
count(8) .. Count the number of passes that a loop executes count(8) .. 14
cp(8) .. cp(8) .. 15
CPU binary .. Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data ... cc2test(8) .. 8
CPU clock .. Alters memory .. am(8) .. 1
CPU state .. Displays the CPU and program states stat(8) .. 103
CRA5SCCS @(#)manxms/ios/load.85 9.4 4/30/91 10:47:08 Loads and boots an IOS binary image into the IOP ... load(8) .. 73
Create new directory .. mkdir(8) .. 84
Current directory path name pwd(8) .. 95
Data transfer .. Loads central memory ... lm(8) .. 71
Data transfer test .. cc2test(8) .. 8
Date stamp of IOS .. Displays version number of the IOS software or PROM firmware ... version(8) .. 112
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD-51 controller</td>
<td>Executes a confidence test for DD-51 disk drives and controller</td>
<td>19</td>
</tr>
<tr>
<td>DD-51 disk drive</td>
<td>Executes a confidence test for DD-51 disk drives and controller</td>
<td>19</td>
</tr>
<tr>
<td>dd5itest(8)</td>
<td>Executes a confidence test for DD-51 disk drives and controller</td>
<td>19</td>
</tr>
<tr>
<td>DD-5S confidence test</td>
<td>Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s)</td>
<td>20</td>
</tr>
<tr>
<td>dd5stest(8)</td>
<td>Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s)</td>
<td>20</td>
</tr>
<tr>
<td>Deadstart a diagnostic test</td>
<td>Loads and deadstarts a diagnostic test</td>
<td>32</td>
</tr>
<tr>
<td>Debug level on the IOS</td>
<td>Reports and sets the debug level on the IOS</td>
<td>21</td>
</tr>
<tr>
<td>debug(8)</td>
<td>Reports and sets the debug level on the IOS</td>
<td>21</td>
</tr>
<tr>
<td>Decimal dump</td>
<td>Displays a file by using various formats</td>
<td>91</td>
</tr>
<tr>
<td>Delete directory</td>
<td>Removes a directory</td>
<td>101</td>
</tr>
<tr>
<td>Delete files</td>
<td>Removes files and directories</td>
<td>100</td>
</tr>
<tr>
<td>Destroy directory</td>
<td>Removes a directory</td>
<td>101</td>
</tr>
<tr>
<td>Destroy files</td>
<td>Removes files and directories</td>
<td>100</td>
</tr>
<tr>
<td>Device microcode levels</td>
<td>Displays microcode level(s) at the IOS prompt</td>
<td>115</td>
</tr>
<tr>
<td>dflawr(8)</td>
<td>Reads Disk Flaw table</td>
<td>22</td>
</tr>
<tr>
<td>dflawww(8)</td>
<td>Reads Disk Flaw table from IOS disk and writes it</td>
<td>25</td>
</tr>
<tr>
<td>dformat(8)</td>
<td>Formats disk</td>
<td>27</td>
</tr>
<tr>
<td>Diagnostic, offline</td>
<td>Loads and configures an offline mainframe</td>
<td>93</td>
</tr>
<tr>
<td>Diagnostic test for I/O buffer board</td>
<td>Executes diagnostic test for I/O buffer board</td>
<td>2</td>
</tr>
<tr>
<td>Diagnostic test for I/O channel card</td>
<td>Executes diagnostic test for I/O channel card</td>
<td>7</td>
</tr>
<tr>
<td>Diagnostic test load and deadstart</td>
<td>Loads and deadstarts a diagnostic test</td>
<td>32</td>
</tr>
<tr>
<td>Diagnostics, remote login</td>
<td>Invokes the remote login</td>
<td>99</td>
</tr>
<tr>
<td>Directory creation</td>
<td>Makes a new directory</td>
<td>84</td>
</tr>
<tr>
<td>Directory entries</td>
<td>Lists a directory</td>
<td>74</td>
</tr>
<tr>
<td>Directory list</td>
<td>Lists a directory</td>
<td>74</td>
</tr>
<tr>
<td>Directory removal</td>
<td>Removes a directory</td>
<td>101</td>
</tr>
<tr>
<td>Disk array formatting</td>
<td>Formats disk</td>
<td>27</td>
</tr>
<tr>
<td>Disk confidence test</td>
<td>Executes a controller comprehensive test and disk confidence test on any CRAY J90 supported SCSI disk(s)</td>
<td>20</td>
</tr>
<tr>
<td>Disk Flaw Table</td>
<td>Reads Disk Flaw table</td>
<td>22</td>
</tr>
<tr>
<td>Disk Flaw Table written to disk</td>
<td>Reads Disk Flaw table from IOS disk and writes it</td>
<td>25</td>
</tr>
<tr>
<td>Disk subsystem information</td>
<td>Outputs activity information about the disk</td>
<td>35</td>
</tr>
<tr>
<td>Disk surface analysis</td>
<td>Performs disk surface analysis</td>
<td>36</td>
</tr>
<tr>
<td>Disk to central memory transfer</td>
<td>Loads central memory</td>
<td>71</td>
</tr>
<tr>
<td>Display clock</td>
<td>Sets and displays the real-time clock</td>
<td>110</td>
</tr>
<tr>
<td>Display current directory path name</td>
<td>Prints current directory</td>
<td>95</td>
</tr>
<tr>
<td>Display directory</td>
<td>Lists a directory</td>
<td>74</td>
</tr>
<tr>
<td>Display file</td>
<td>Displays the first few lines of a specified file</td>
<td>54</td>
</tr>
<tr>
<td>Display IOS boot environment</td>
<td>Displays the boot environment of the IOS</td>
<td>5</td>
</tr>
<tr>
<td>Displays a file by using various formats</td>
<td>Displays a file by using various formats</td>
<td>91</td>
</tr>
<tr>
<td>Displays a file one screen at a time</td>
<td>Displays a file one screen at a time</td>
<td>86</td>
</tr>
<tr>
<td>Displays a message</td>
<td>Displays a message</td>
<td>39</td>
</tr>
<tr>
<td>Displays central memory</td>
<td>Displays central memory</td>
<td>30</td>
</tr>
<tr>
<td>Displays commands and their syntax</td>
<td>Displays commands and their syntax</td>
<td>55</td>
</tr>
<tr>
<td>Displays current status of various IOS system tables</td>
<td>Displays current status of various IOS system tables</td>
<td>106</td>
</tr>
</tbody>
</table>
Displays Ethernet controller status and statistics .. Displays Ethernet controller status and statistics enstat(8) 47
Displays file .. Displays file cat(8) .. 6
Displays microcode level(s) at the IOS prompt ... Displays microcode level(s) at the IOS prompt whatmic(8) 115
Displays the boot environment of the IOS .. Displays the boot environment of the IOS bootstruct(8) 5
Displays the CPU and program states .. Displays the CPU and program states stat(8) 103
Displays the first few lines of a specified file .. Displays the first few lines of a specified file head(8) 54
Displays user commands that are running .. Displays user commands that are running jobs(8) 68
Displays version number of the IOS software or PROM firmware Displays version number of the IOS software or PROM firmware version(8) 112

Display central memory ... dm(8) 30
Loads and deadstarts a diagnostic test ... ds(8) 32
Slips one sector ... dslip(8) 33
Outputs activity information about the disk subsystem .. dstat(8) 35
Performs disk surface analysis ... dsurf(8) 36
Displays a file by using various formats ... od(8) .. 91
Dumps mainframe memory ... mfdump(8) 78

Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system ... Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system iosdump(8) 57
Copies a file ... cp(8) .. 15
Displays a message ... echo(8) 39
Edits a text file.. ed(8) 40
CRA Y J90 series configuration file builder and editor .. jconfig(8) 63
Edits a text file .. ed(8) 40
Edits a text file .. ed(8) 40
Kills a user command task ... kill(8) 69
Displays Ethernet controller status and statistics ... enstat(8) 47
Displays the boot environment of the IOS .. bootstruct(8) 5
Processes the error report generated by IOS kernel ... errpt(8E) 50
Processes the error report generated by IOS kernel ... errpt(8E) 50
Processes the error report generated by IOS kernel ... errpt(8E) 50
Displays Ethernet controller status and statistics ... enstat(8) 47
Executes a confidence test for DD-5I disk drives and controller ... Executes a confidence test for DD-5I disk drives and controller dd5itest(8) 19
Executes a confidence test on tape handlers ... Executes a confidence test on tape handlers tpl1test(8) 111
Executes a confidence test on the IOP RAM/CACHE memory Executes a confidence test on the IOP RAM/CACHE memory mml1test(8) 85
Executes a controller comprehensive test and disk confidence test on any CRA Y J90 supported SCSI disk(s) .. Executes a controller comprehensive test and disk confidence test on any CRA Y J90 supported SCSI disk(s) dd5stest(8) 20
Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data ... Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data cc2test(8) 8
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bb2test(8)</td>
<td>Executes a disk I/O to and from I/O buffer board test</td>
<td>3</td>
</tr>
<tr>
<td>nettest(8E)</td>
<td>Executes a network controller confidence test</td>
<td>90</td>
</tr>
<tr>
<td>script(8)</td>
<td>Executes a script of IOS commands</td>
<td>102</td>
</tr>
<tr>
<td>bbltest(8)</td>
<td>Executes diagnostic test for I/O buffer board</td>
<td>2</td>
</tr>
<tr>
<td>ccltest(8)</td>
<td>Executes diagnostic test for I/O buffer board and I/O channel control chip</td>
<td>7</td>
</tr>
<tr>
<td>wait(8)</td>
<td>Waits several seconds before executing next command in command buffer</td>
<td>113</td>
</tr>
<tr>
<td>what(8)</td>
<td>Extracts SCCS version from a file</td>
<td>114</td>
</tr>
<tr>
<td>fg(8)</td>
<td>Brings to the foreground an IOS command that is suspended or running in the background</td>
<td>51</td>
</tr>
<tr>
<td>cmp(8)</td>
<td>Performs a byte-by-byte comparison of two files</td>
<td>12</td>
</tr>
<tr>
<td>cp(8)</td>
<td>Copies a file</td>
<td>15</td>
</tr>
<tr>
<td>head(8)</td>
<td>Displays the first few lines of a specified file</td>
<td>54</td>
</tr>
<tr>
<td>cat(8)</td>
<td>Displays file</td>
<td>6</td>
</tr>
<tr>
<td>more(8)</td>
<td>Displays a file one screen at a time</td>
<td>86</td>
</tr>
<tr>
<td>ld(8)</td>
<td>Loads a file into central memory</td>
<td>70</td>
</tr>
<tr>
<td>mv(8)</td>
<td>Moves (renames) a file or directory</td>
<td>89</td>
</tr>
<tr>
<td>od(8)</td>
<td>Displays a file by using various formats</td>
<td>91</td>
</tr>
<tr>
<td>rm(8)</td>
<td>Removes files and directories</td>
<td>100</td>
</tr>
<tr>
<td>mv(8)</td>
<td>Moves (renames) a file or directory</td>
<td>89</td>
</tr>
<tr>
<td>tar(8)</td>
<td>Archives tape files</td>
<td>107</td>
</tr>
<tr>
<td>which(8)</td>
<td>Searches for specified file name</td>
<td>116</td>
</tr>
<tr>
<td>fm(8)</td>
<td>Fills central memory</td>
<td>52</td>
</tr>
<tr>
<td>test(8)</td>
<td>Returns value of program counter or status of flag</td>
<td>109</td>
</tr>
<tr>
<td>fm(8)</td>
<td>Fills central memory</td>
<td>52</td>
</tr>
<tr>
<td>fg(8)</td>
<td>Brings to the foreground an IOS command that is suspended or running in the background</td>
<td>51</td>
</tr>
<tr>
<td>dformat(8)</td>
<td>Formats disk</td>
<td>27</td>
</tr>
<tr>
<td>goto(8)</td>
<td>Transfers control to a command file</td>
<td>53</td>
</tr>
<tr>
<td>head(8)</td>
<td>Displays the first few lines of a specified file</td>
<td>54</td>
</tr>
<tr>
<td>help(8)</td>
<td>Displays commands and their syntax</td>
<td>55</td>
</tr>
<tr>
<td>od(8)</td>
<td>Displays a file by using various formats</td>
<td>91</td>
</tr>
<tr>
<td>if(8)</td>
<td>Allows conditional transfer of control</td>
<td>56</td>
</tr>
<tr>
<td>mc(8)</td>
<td>Stops all CPU activity</td>
<td>77</td>
</tr>
<tr>
<td>iostart(8)</td>
<td>Initiates communication between the IOS and UNICOS</td>
<td>58</td>
</tr>
<tr>
<td>reload(8)</td>
<td>Initiates the reboot of the IOS</td>
<td>97</td>
</tr>
<tr>
<td>j9install(8)</td>
<td>Maintains and installs software on J90 console, IOS-V, and mainframe</td>
<td>59</td>
</tr>
<tr>
<td>crash(8E)</td>
<td>Interprets IOS system dumps</td>
<td>16</td>
</tr>
<tr>
<td>rlogin(8)</td>
<td>Invokes the remote login</td>
<td>99</td>
</tr>
<tr>
<td>bbltest(8)</td>
<td>Executes diagnostic test for I/O buffer board</td>
<td>2</td>
</tr>
<tr>
<td>fm(8)</td>
<td>Fills central memory</td>
<td>52</td>
</tr>
<tr>
<td>ccltest(8)</td>
<td>Executes diagnostic test for I/O buffer board and I/O channel control chip</td>
<td>7</td>
</tr>
<tr>
<td>lmb(8)</td>
<td>Loads central memory</td>
<td>71</td>
</tr>
<tr>
<td>systat(8)</td>
<td>Outputs various IOS system-related information</td>
<td>104</td>
</tr>
<tr>
<td>bb1test(8)</td>
<td>Executes diagnostic test for I/O buffer board</td>
<td>2</td>
</tr>
<tr>
<td>systat(8)</td>
<td>Outputs various IOS system-related information</td>
<td>104</td>
</tr>
<tr>
<td>iosdump(8)</td>
<td>Outputs various IOS system-related information</td>
<td>57</td>
</tr>
</tbody>
</table>
IOFeb reset function ... Stops all CPU activity ... mc(8) ... 77
IOFeb test ... Executes a data transfer test from central memory to ...
I/O buffer board to central memory and verifies data .. cc2test(8) ... 8
IOCC diagnostic test ... Executes diagnostic test for I/O buffer board and ...
I/O channel control chip ... ccltest(8) ... 7
IOP memory ... Loads and boots an IOS binary image into the IOP load(8) ... 73
IOP memory dump ... Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system .. iosdump(8) ... 57
IOP RAM/CACHE memory ... Executes a confidence test on the IOP ...
IOS and UNICOS communication .. Initiates communication between the IOS and ...
UNICOS .. iostart(8) ... 58
IOS boot environment display ... Displays the boot environment of the IOS ...
bootstruct(8) ... 5
IOS command script ... Executes a script of IOS commands ... script(8) ... 102
IOS console ... Toggles console from IOS to UNICOS system ...
console .. conswitch(8) ... 13
IOS debug level ... Reports and sets the debug level on the IOS ...
debug(8) ... 21
IOS Disk Flaw Table ... Reads Disk Flaw table from IOS disk and writes it ...
to disk .. dflaww(8) ... 25
IOS error report ... Processes the error report generated by IOS kernel ...
eroort(8E) ... 50
IOS kernel ... Interprets IOS system dumps ... crash(8E) ... 16
IOS memory ... Outputs various IOS system-related information ...
systat(8) ... 104
IOS panic ... Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system .. iosdump(8) ... 57
IOS reset ... Resets the IOS ... reset(8) ... 98
IOS system dump ... Interprets IOS system dumps ... crash(8E) ... 16
IOS system information .. Outputs various IOS system-related information ...
systat(8) ... 104
IOS system tables status .. Displays current status of various IOS system tables .. table(8) ... 106
IOS to UNICOS system console .. Toggles console from IOS to UNICOS system ...
console .. conswitch(8) ... 13
IOS version ... Displays version number of the IOS software or ...
PROM firmware .. version(8) ... 112
iosdump(8) ... Dumps the I/O processor and I/O buffer board memories to file on the NFS mounted file system .. iosdump(8) ... 57
iostart(8) ... Initiates communication between the IOS and ...
UNICOS .. iostart(8) ... 58
IPI drive Disk Flaw Table .. Reads Disk Flaw table ... dflaww(8) ... 22
J90 mainframe remote login .. Performs a remote login onto a CRAY J90 series ...
mainframe .. jcon(8) ... 62
J90 software install .. Maintains and installs software on J90 console, ...
IOS-V, and mainframe ... j90install(8) ... 59
j90install(8) .. Maintains and installs software on J90 console, ...
IOS-V, and mainframe ... j90install(8) ... 59
jbs(8) .. Performs boundary scan interconnect test on CRAY ...
J90 series systems .. jbs(8) ... 60
jcon(8) .. Performs a remote login onto a CRAY J90 series ...
mainframe .. jcon(8) ... 62
jconfig(8) .. CRAY J90 series configuration file builder and ...
editor .. jconfig(8) ... 63
jobs(8) .. Displays user commands that are running jobs(8) ... 68
kill(8) .. Kills a user command task xkill(8) ... 69
Kills a user command task .. xkill(8) ... 69
ld(8) .. Loads a file into central memory ld(8) ... 70
Line editor .. Edits a text file ... ed(8) ... 40
List command syntax .. Displays commands and their syntax help(8) ... 55
Lists a directory .. Lists a directory ... ls(8) ... 74
1m(8) .. Loads central memory ... 1m(8) ... 71
load(8) .. Loads and boots an IOS binary image into the IOP ...
load(8) ... 73
Loads a file into central memory .. Loads a file into central memory ...
ld(8) ... 70

122 Cray Research, Inc. SR-2170 8.0.3.2
Memory display... Displays central memory dm(8)
Loads and boots an IOS binary image into the IOP ... load(8)
Loads and configures an offline mainframe diagnostic .. offline(8)
Loads and deadstarts a diagnostic test ... ds(8)
Loads central memory .. lm(8)
Loads UNICOS .. lu(8)
Locate file name .. which(8)
Log data .. clearlog(8)
Log data .. readlog(8)
Login, remote ... Performs a remote login onto a CRAY J90 series mainframe .. jcon(8)
Login, remote ... Invokes the remote login rlogin(8)
Loop passes .. count(8)
ls(8) ... ls(8)
lu(8) .. lu(8)
Magnetic tape control .. mt(8)
Magnetic tape devices .. mt(8)
Mainframe diagnostic ... offline(8)
Mainframe install .. Maintains and installs software on J90 console, IOS-V, and mainframe j90install(8)
Mainframe memory dump ... Dumps mainframe memory mfdump(8)
Mainframe remote login ... Performs a remote login onto a CRAY J90 series mainframe .. jcon(8)
Maintains and installs software on J90 console, IOS-V, and mainframe j90install(8)
Makes a new directory .. mkdir(8)
Manufacturer’s flaw table .. dflaww(8)
Master clear sequence .. mc(8)
Master IOs ... rlogin(8)
mc(8) .. mc(8)
Memory change ... am(8)
Memory display .. dm(8)
Memory dump .. mfdump(8)
Memory fill ... fm(8)
Memory information ... iosdump(8)
Memory loading .. lm(8)
Message display ... echo(8)
Mfdump(8) ... mfdump(8)
Microcode file save .. whatmic(8)
Microcode levels at IOS prompt ... whatmic(8)
mkdir(8) ... mkdir(8)
mmltest(8) ... jbs(8)
mmltest(8) ... jbs(8)
Module interconnects ... Performs boundary scan interconnect test on CRAY J90 series systems jbs(8)
more(8) ... more(8)
Moves (renames) a file or directory ... mv(8)
mt(8) .. mt(8)
mv(8) .. mv(8)
etest(8E) .. netest(8E)
netest(8E) ... netest(8E)
Network controller confidence test .. netest(8E)
Octal dump ... od(8)
Offline mainframe diagnostic..................... Loads and configures an offline mainframe diagnostic................................. offline(8).............................. 93
Off-line network controller confidence test..................... Executes a network controller confidence test............................... nettest(8E).......................... 90
On-module interconnects............................ Performs boundary scan interconnect test on CRAY J90 series systems................................. jbs(8)................................. 60
Open file descriptors.............................. Outputs various IOS system-related information.......................... systat(8)............................... 104
Operating system core image.............................. Interprets IOS system dumps... crash(8E).......................... 16
Outputs activity information about the disk subsystem..................... Outputs activity information about the disk subsystem................................. dstat(8)............................... 35
Outputs various IOS system-related information.............................. Outputs various IOS system-related information.......................... systat(8)............................... 104
Passes.. Counts the number of passes that a loop executes............................ count(8)................................. 14
Performs a byte-by-byte comparison of two files.............................. Performs a byte-by-byte comparison of two files............................... cmp(8)................................. 12
Performs a remote login onto a CRAY J90 series mainframe.............................. Performs a remote login onto a CRAY J90 series mainframe................................. jcon(8)............................... 62
Performs boundary scan interconnect test on CRAY J90 series systems.............................. Performs boundary scan interconnect test on CRAY J90 series systems................................. jbs(8)................................. 60
Performs disk surface analysis.............................. Performs disk surface analysis... dsurf(8)............................... 36
PMATCHED flag status.................................. Returns value of program counter or status of flag.............................. test(8)................................. 109
Print SCCS file... Extracts SCCS version from a file.. what(8)................................. 114
Prints current directory.............................. Prints current directory... pwc(8)................................. 95
Processes the error report generated by IOS kernel.............................. Processes the error report generated by IOS kernel.......................... errpt(8E).............................. 50
Program counter value.............................. Returns value of program counter or status of flag.............................. test(8)................................. 109
Program state.. Displays the CPU and program states.. stat(8)................................. 103
Puts a suspended IOS command into the background.............................. Puts a suspended IOS command into the background.............................. bg(8)................................. 4
Prints current directory.............................. Prints current directory... pwc(8)................................. 95
Quite CPU activity...................................... Stops all CPU activity... mc(8)................................. 77
Read Flaw Table... Reads Disk Flaw table... dflawr(8).............................. 22
Raw Flaw Table... Reads Disk Flaw table from IOS disk and writes it to disk............................... dflaww(8).............................. 25
Read log.. Reads the statistical log data on an STK 4280 tape drive...................... readlog(8).............................. 96
Read sector... Slips one sector... dslip(8)................................. 33
Reads Disk Flaw table............................... Reads the statistical log data on an STK 4280 tape drive...................... readlog(8).............................. 96
Reads Disk Flaw table................................... Reads the statistical log data on an STK 4280 tape drive...................... readlog(8).............................. 96
Reads Disk Flaw table from IOS disk and writes it to disk............................... Reads Disk Flaw table from IOS disk and writes it to disk............................... dflaww(8).............................. 25
Reads the statistical log data on an STK 4280 tape drive...................... Reads the statistical log data on an STK 4280 tape drive...................... readlog(8).............................. 96
Real-time clock....................................... Sets and displays the real-time clock... time(8)................................. 110
Reboot IOP from PROM.............................. Initiates the reboot of the IOS... reload(8).............................. 97
Reboot the IOS............................... Initiates the reboot of the IOS... reload(8).............................. 97
reload(8)... Initiates the reboot of the IOS... reload(8).............................. 97
Remote login Performs a remote login onto a CRAY J90 series mainframe jcon(8) .. 62
Remote login Invokes the remote login rlogin(8) .. 99
Removes a directory Removes a directory rm(8) 100
Removes files and directories Removes files and directories rmdir(8) mv(8) .. 89
Rename file Moves (renames) a file or directory mv(8) .. 89
Reports and sets the debug level on the IOS ... debug(8) .. 21
Reset CPU .. Stops all CPU activity mcr(8) 77
Reset the VME Initiates the reboot of the IOS reload(8) 97
Reset VME bus Resets the IOS .. reset(8) 98
reset(8) ... Resets the IOS .. reset(8) 98
Resets the IOS Resets the IOS .. reset(8) 98
Return code comparison Allows conditional transfer of control if(8) 56
Returns value of program counter or status of flag ... test(8) .. 109
t(8) ... Invokes the remote login rlogin(8) .. 99
rm(8) ... Removes files and directories rm(8) 100
rmdir(8) .. Removes a directory rmdir(8) rmdir(8) 101
Save microcode file Displays microcode level(s) at the IOS prompt whatmic(8) 115
Save/archive tape files Archives tape files tar(8) .. 107
Scan chain integrity test Performs boundary scan interconnect test on CRAY J90 series systems jbs(8) .. 60
Scan status for CPU Displays the CPU and program states stat(8) 103
SCCS files Extracts SCCS version from a file what(8) 114
Screen clear Clears the screen display cls(8) 11
Screen display Displays a file one screen at a time more(8) 86
Script .. Transfers control to a command file goto(8) 53
Script command Waits several seconds before executing next command in command buffer wait(8) 113
Script command for clearing data on screen ... cls(8) 11
Script execution of IOS commands Executes a script of IOS commands script(8) 102
script(8) Executes a script of IOS commands script(8) 102
Searches for specified file name Searches for specified file name which(8) 116
Section initialization Executes a data transfer test from central memory to I/O buffer board to central memory and verifies data .. cc2test(8) 8
Set IOS debug level Reports and sets the debug level on the IOS debug(8) 21
Sets and displays the real-time clock Sets and displays the real-time clock time(8) 110
Shell script command Allows conditional transfer of control if(8) 56
Slave IOS diagnostics Invokes the remote login rlogin(8) 99
Slips one sector Slips one sector dslip(8) 33
Software install Maintains and installs software on J90 console, j90install(8) 59
stat(8) .. Displays the CPU and program states stat(8) 103
Statistics, Ethernet controller Displays Ethernet controller status and statistics enstat(8) 47
Status, Ethernet controller Displays Ethernet controller status and statistics enstat(8) 47
Status of flag Returns value of program counter or status of flag test(8) 109
Status of IOS system tables Displays current status of various IOS system tables . table(8) 106
STK 3480 tape drive Clears the statistical log data on an STK 4280 tape drive ... clearlog(8) 10
STK 4280 tape drive Reads the statistical log data on an STK 4280 tape drive ... readlog(8) 96
Stop IOS execution Resets the IOS .. reset(8) 98
Stop user command task Kills a user command task kill(8) 69
Stops all CPU activity Stops all CPU activity mcr(8) 77
Suspened IOS command Puts a suspended IOS command into the background ... bg(8) 4
Suspened IOS command Brings to the foreground an IOS command that is suspended or running in the background fg(8) 51
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape file archiver</td>
<td>Archives tape files</td>
</tr>
<tr>
<td>Archives tape files</td>
<td>tar(8)</td>
</tr>
<tr>
<td>Transfers control to a command file</td>
<td>goto(8)</td>
</tr>
<tr>
<td>Toggles console from text editor</td>
<td>ed(8)</td>
</tr>
<tr>
<td>Edits a text file</td>
<td>ed(8)</td>
</tr>
<tr>
<td>Tape device</td>
<td>mt(8)</td>
</tr>
<tr>
<td>Controls magnetic tape</td>
<td>mt(8)</td>
</tr>
<tr>
<td>Tape diagnostic</td>
<td>tptest(8)</td>
</tr>
<tr>
<td>Executes a confidence test on tape handlers</td>
<td>tptest(8)</td>
</tr>
<tr>
<td>Tape file archiver</td>
<td>tar(8)</td>
</tr>
<tr>
<td>Archives tape files</td>
<td>tar(8)</td>
</tr>
<tr>
<td>Test initialization</td>
<td>conswitch(8)</td>
</tr>
<tr>
<td>Toggles console from IOS to UNICOS system console</td>
<td>conswitch(8)</td>
</tr>
<tr>
<td>Toggles console from IOS to UNICOS system</td>
<td>conswitch(8)</td>
</tr>
<tr>
<td>tpl test(8)</td>
<td>tptest(8)</td>
</tr>
<tr>
<td>Executes a confidence test on tape handlers</td>
<td>tptest(8)</td>
</tr>
<tr>
<td>Transfer of control</td>
<td>if(8)</td>
</tr>
<tr>
<td>Allows conditional transfer of control</td>
<td>if(8)</td>
</tr>
<tr>
<td>Transfers control to a command file</td>
<td>goto(8)</td>
</tr>
<tr>
<td>Transfers control to a command file</td>
<td>goto(8)</td>
</tr>
<tr>
<td>Try structures</td>
<td>iostart(8)</td>
</tr>
<tr>
<td>Interprets IOS system dumps</td>
<td>iostart(8)</td>
</tr>
<tr>
<td>UNICOS and IOS communication</td>
<td>iostart(8)</td>
</tr>
<tr>
<td>Initiates communication between the IOS and UNICOS</td>
<td>iostart(8)</td>
</tr>
<tr>
<td>UNICOS a.out file</td>
<td>lu(8)</td>
</tr>
<tr>
<td>Loads UNICOS</td>
<td>lu(8)</td>
</tr>
<tr>
<td>UNICOS system console</td>
<td>lu(8)</td>
</tr>
<tr>
<td>Toggles console from IOS to UNICOS system console</td>
<td>lu(8)</td>
</tr>
<tr>
<td>User commands running</td>
<td>jobs(8)</td>
</tr>
<tr>
<td>Displays user commands that are running</td>
<td>jobs(8)</td>
</tr>
<tr>
<td>Value of program counter</td>
<td>test(8)</td>
</tr>
<tr>
<td>Returns value of program counter or status of flag</td>
<td>test(8)</td>
</tr>
<tr>
<td>ver(8)</td>
<td>version(8)</td>
</tr>
<tr>
<td>Displays version number of the IOS software or PROM firmware</td>
<td>version(8)</td>
</tr>
<tr>
<td>Verify disk media</td>
<td>dslip(8)</td>
</tr>
<tr>
<td>Slips one sector</td>
<td>dslip(8)</td>
</tr>
<tr>
<td>Version of IOS</td>
<td>version(8)</td>
</tr>
<tr>
<td>Displays version number of the IOS software or PROM firmware</td>
<td>version(8)</td>
</tr>
<tr>
<td>version(8)</td>
<td>version(8)</td>
</tr>
<tr>
<td>Displays version number of the IOS software or PROM firmware</td>
<td>version(8)</td>
</tr>
<tr>
<td>wait(8)</td>
<td>wait(8)</td>
</tr>
<tr>
<td>Waits several seconds before executing command in command buffer</td>
<td>wait(8)</td>
</tr>
<tr>
<td>Waits several seconds before executing next command in command buffer</td>
<td>wait(8)</td>
</tr>
<tr>
<td>what(8)</td>
<td>whatmic(8)</td>
</tr>
<tr>
<td>Extracts SCCS version from a file</td>
<td>whatmic(8)</td>
</tr>
<tr>
<td>whatmic(8)</td>
<td>whatmic(8)</td>
</tr>
<tr>
<td>Displays microcode level(s) at the IOS prompt</td>
<td>whatmic(8)</td>
</tr>
<tr>
<td>which(8)</td>
<td>which(8)</td>
</tr>
<tr>
<td>Searches for specified file name</td>
<td>which(8)</td>
</tr>
<tr>
<td>Working directory pathname</td>
<td>pwd(8)</td>
</tr>
<tr>
<td>Prints current directory</td>
<td>pwd(8)</td>
</tr>
</tbody>
</table>
Reader's Comment Form

CRAY IOS-V Commands Reference Manual

Your reactions to this manual will help us provide you with better documentation. Please take a moment to complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience with each.

Your experience with Cray Research computer systems: 0-1 year 1-5 year 5+ years

How did you use this manual: in a class as a tutorial or introduction as a procedural guide as a reference for troubleshooting other

Please rate this manual on the following criteria:

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Appropriateness</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Accessibility</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Physical qualities</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Terminology</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Number of examples</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Quality of examples</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Index</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Please use the space below for your comments about this manual. Please include general comments about the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the number of the page on which the problem occurred.

Name ___________________________ Address ___________________________
Title ___________________________ City ___________________________
Company _________________________ State/Country __________________
Telephone _______________________ Zip code _______________________
Today's date ____________________ Electronic mail address ____________
Reader's Comment Form

CRA Y IOS-V Commands Reference Manual

Your reactions to this manual will help us provide you with better documentation. Please take a moment to complete the following items, and use the blank space for additional comments.

List the operating systems and programming languages you have used and the years of experience with each.

Your experience with Cray Research computer systems: __0-1 year ___1-5 year ___5+years

How did you use this manual: ___in a class ___as a tutorial or introduction ___as a procedural guide ___as a reference ___for troubleshooting ___other

Please rate this manual on the following criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Appropriateness (correct technical level)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Accessibility (ease of finding information)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Physical qualities (binding, printing, illustrations)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Terminology (correct, consistent, and clear)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Number of examples</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Quality of examples</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Index</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Please use the space below for your comments about this manual. Please include general comments about the usefulness of this manual. If you have discovered inaccuracies or omissions, please specify the number of the page on which the problem occurred.

Name __
Title __
Company _______________________________________
Telephone ______________________________________
Today's date ________________________________

Address _______________________________________
City __
State/Country _________________________________
Zip code _________________________________
Electronic mail address __________________________
ATTN: Software Information Services
655 LONE OAK DR BLDG F
EAGAN MN 55121-9957