IEEE 696 / S-100

512K SOLID STATE DISK EMULATOR
CONTENTS

How to get you M-Drive/H up and running in under 5 minutes without reading the manual 5

About M-Drive/H ... 7
Technical overview ... 7
Configuring M-Drive/H 8
Using M-Drive/H ... 9

Software ... 10
Installing M-Drive/H Drivers in other CP/M® systems 10
Sample read/write routines 11-16

Hardware .. 17
Logic diagrams ... 17-20
Parts list ... 21
Component layout .. 21

Service and limited warranty information 24
M-DRIVE/H TECHNICAL MANUAL
Copyright ©1982
CompuPro a Godbout Company
Oakland Airport, CA 94614

First Printing: December 1982
Second Printing: March 1983

Contents of this document were proofread with the aid of SpellGuard™ a product from SORCIM Inc. Santa Clara, CA.

Document #11978

DISCLAIMER - CompuPro makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, CompuPro reserves the right to revise this publication and to make any changes from time to time in the content hereof without obligation of CompuPro to notify any person of such revision or changes.

Registered trademarks: CompuPro; CompuPro a Godbout Company; CP/M; Digital Research. Trademarks: M-DRIVE/H; W.J. Godbout: CP/M 80; CP/M-86; MP/M-86 and Digital Research; Digital Research.

All rights reserved. No part of this publication may be reproduced or transmitted in any form, or by any means, without the written permission of CompuPro. Printed and assembled in the United States of America.
How to get your M-DRIVE/H up and running in 5 minutes without reading the manual

This section is for those of you that can't wait long enough to read the rest of this manual to get your M-Drive/H board(s) working. This section assumes that you have a standard CompuPro system, and that the revision levels of your various operating systems are equal to or greater than those shown below:

CP/M 80W: CP/M 2.2MDB or higher.
CP/M 86W: CP/M 86 1.1PAA or higher.
MP/M 816W: MP/M 816 2.1D or higher.

If your CompuPro operating system revision level is lower than the above, return your original master diskette to CompuPro and we will upgrade it for you. There is no charge for this service. Make sure your diskette is packaged well and return it to:

CompuPro
ATTN: M-Drive/H Upgrade
Blvd. 727 PO Box 2355
Oakland Airport, CA 94614

If your disk system was not supplied by CompuPro, but uses a standard version of CP/M 2.2, or if your have an older version of the CompuPro operating system and can't wait for the mail, set the switches as shown below and then proceed to the section of this manual entitled "Installing M-Drive Drivers for other CP/M Systems".

SWITCH SETTINGS

There is only one dip-switch on the M-Drive/H board. Positions 1-7 are used to select the two port addresses where the M-Drive/H board resides. Positions 8-10 select the cascade address for each board in the system. Up to eight M-Drive/H boards can exist at the same port addresses, only the cascade address needs to be different for each board.

The standard port addresses for the M-Drive/H board are C6 and C7 hex. To set the board for the standard port address, set positions 1-7 of dip-switch S1 as shown below:

```
on          x x x
S1*  1 2 3 4 5 6 7
off  x x          x x
```

* Markings on switch, not legend.
To set the cascade address, determine how many M-Drive/H boards there are in the system, and set each of them according to the table following:

<table>
<thead>
<tr>
<th>1st board</th>
<th>2nd board</th>
<th>3rd board</th>
<th>4th board</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5th board</th>
<th>6th board</th>
<th>7th board</th>
<th>8th board</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Markings on switch, not legend.

These are the only switch settings that are required on the M-Drive/H board.

Plug the M-Drive/H board into the system, making sure that power is off before doing so. Turn the system on and the left-hand drive light should be flashing (as it normally does). Put a system diskette in Drive A and close the door. The system should sign on.

The software should automatically format the M-Drive/H board(s) for use and print a message telling you how much M-Drive/H storage it thinks is available (in K bytes). Check this number to see if it seems correct, depending on the number of boards in the system (each M-Drive/H board contains 512K bytes of storage). If the size seems incorrect, power down the system and check your switch settings. If the size is correct, all is well.

The M-Drive/H appears in your system as drive M:. Once the system is booted, you may treat it just as if it were a disk drive. You can PIP files to it, log onto it, and use STAT to find out how big it is, or how much space is remaining. Remember that all data will be lost in the M-Drive/H when power goes away, so be sure to transfer important work back to permanent media before turning off power. It's a good idea to periodically perform this function anyway, to protect against a power failure.
ABOUT THE M-DRIVE/H

CompuPro, in a joint effort with G&G Engineering, pioneered the M-Drive concept for microcomputers. The M-Drive concept is to use RAM memory to emulate a disk drive. Thus, the convenience and familiarity of a disk drive was preserved, but the drive now operates at RAM speeds, which is considerably faster than a mechanical disk drive. The original M-Drive was implemented as a software product which used extended address memory beyond the first 64K under CP/M 80. The CompuPro dual processor board (CPU 8085/88) made this possible by actually using the 8088 to manage the M-Drive memory.

This system worked quite well, but had a few limitations. First of all, it was an all right technique for CP/M 80, because all that extra memory was never used. But when running CP/M 86 or MP/M 816, the operating system wants to use that memory for running programs. Secondly, although the extra memory was certainly cost-effective for some applications, it was still quite expensive to get a reasonably sized M-Drive.

Right from the start, we knew that a "hardware" M-Drive was the answer. The result is M-Drive/H (if you haven't figured it out, the /H stands for Hardware). The M-Drive/H board system comprises one to eight boards, providing between 512k bytes and 4 Megabytes of storage.

Now the M-Drive concept is extended easily to all operating systems, without taking up any precious memory space. All of CompuPro's standard operating systems, including CP/M 86 and MP/M 816, contain built in support for M-Drive/H. The 512K of M-Drive/H storage is certainly much less expensive than 512K of regular system memory, but of course the M-Drive/H RAM is dedicated to the M-Drive/H and cannot be used as system memory.

We feel that the M-Drive/H board is the best of its type for IEEE 696/S-100 systems, and we thank you for choosing it.

TECHNICAL OVERVIEW

The M-Drive/H board consists of 512k bytes of dynamic RAM, a dynamic RAM controller circuit and a method for addressing the data in the RAM array.

The M-Drive/H looks like two I/O ports to the system bus, it takes up no memory space. One I/O port is used to load a starting address into the board, and the other is used to read and write data.

The starting address is actually loaded into a series of counters on the board, and bytes are then transferred in sequence without the need to send a new address for each byte. The counters automatically increment themselves to point to the next byte. This speeds up transfers considerably.

The counter has 22 bits, 3 more than are needed for 512K bytes. These extra three bits determine which board of eight should send or receive the data. Thus, the array seems to the software like a contiguous 4 megabytes,
instead of eight separate chunks of 512k bytes each. This makes the programming task quite a bit easier, as well as using a minimum of port addresses.

The dynamic RAM controller circuit consists mainly of an Intel 8203-3 dynamic RAM controller and some external logic to permit operation with 512K of RAM. This circuit handles most of the DRAM access functions, as well as providing the necessary refresh operation and arbitration.

Since the DRAM is isolated from the IEEE 696/S-100 bus, problems normally associated with DRAM and the S-100 bus are avoided.

CONFIGURING THE M-DRIVE/H

There is only one dip-switch on the M-Drive/H board. Positions 1-7 are used to select the two port addresses where the M-Drive/H board resides. Positions 8-10 select the cascade address for each board in the system. Up to eight M-Drive/H boards can exist at the same port addresses, only the cascade address needs to be different for each board.

The standard port addresses for the M-Drive/H board are C6 and C7 hex. To set the board for the standard port address, set positions 1-7 of dip-switch S1 as shown below:

```
on x x x
S1*  1  2  3  4  5  6  7
off  x  x  x  x
```

* Markings on switch, not legend.

If you desire to use a different set of port addresses, the following table shows how positions 1-7 of S1 relate to the various address bits:

<table>
<thead>
<tr>
<th>Paddle #</th>
<th>Address Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

OFF = "1"
ON = "0"

To set the cascade address, determine how many M-Drive/H boards there are in the system, and set each of them according to the table following:

<table>
<thead>
<tr>
<th>1st board</th>
<th>2nd board</th>
<th>3rd board</th>
<th>4th board</th>
</tr>
</thead>
<tbody>
<tr>
<td>on x x x</td>
<td>on x x</td>
<td>on x x</td>
<td>on x</td>
</tr>
<tr>
<td>S1* 8 9 10</td>
<td>S1* 8 9 10</td>
<td>S1* 8 9 10</td>
<td>S1* 8 9 10</td>
</tr>
<tr>
<td>off</td>
<td>off x</td>
<td>off x</td>
<td>off x x</td>
</tr>
<tr>
<td>5th board</td>
<td>6th board</td>
<td>7th board</td>
<td>8th board</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>on</td>
<td>x</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>off</td>
<td>x</td>
<td>off x</td>
<td>off x</td>
</tr>
<tr>
<td>S1* 8</td>
<td>9</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Markings on switch, not legend.

These are the only switch settings that are required on the M-Drive/H board.

USING M-DRIVE/H

After making sure that power to the system is OFF, plug the M-Drive/H board(s) into the system, of course making sure that their switches are set accordingly. Boot the system in the normal manner. The system should recognize the presence of the M-Drive/H and display an appropriate sign-on message. It should display the size of the M-Drive/H in K bytes (each M-Drive/H board contains 512K bytes). If the size seems incorrect, power down the system and check your switch settings.

At power-up, the system will automatically format the M-Drive/H for use. You may "force" a re-format of the M-Drive by invoking the MFORM command. Type: **MFORM M** followed by a carriage return. The program will ask you if you indeed wish to re-format your M-Drive/H. If you do, it will re-format the M-Drive/H, but it will also wipe out all your files, so be careful.

Once the M-Drive/H is formatted (either automatically or "by hand") it is ready for use. Simply treat it as you would any other disk drive in your system. The M-Drive/H becomes drive M:, and you may PIP files to it, run programs from it, log onto it, in short anything you can do with a normal disk drive. However, operation will be much faster.

Remember that the data you store in the M-Drive/H will be lost when you turn off the power to your computer, so be sure and save any files you have worked on back to permanent storage media, such as a hard or floppy disk. It's a good idea to perform this "back-up" procedure often (even when you're not done for the day) to guard against an accidental power failure.
SOFTWARE

INSTALLING M-DRIVE/H DRIVERS IN OTHER CP/M SYSTEMS

To install the M-DRIVE/H drivers in other CP/M systems, copy the files "MDRIVE.COM" and "MFORM.COM" onto your system disk. You must now make some room for the new drivers above your current CP/M. Currently, the M-DRIVE/H drivers and buffers take about 1K (1024) bytes. This means that your must make a CP/M 1K less than the amount of memory available in your system. If you do not know how to move your CP/M down, see your system manual. The required program is usually called "MOVCMP".

Once you have 1K of room at the top of memory, each time you boot your system, you must call the MDRIVE program. The format of the MDRIVE command is as follows:

MDRIVE -DRIVE DESIGNATOR ADDRESS

Where DRIVE DESIGNATOR is the letter of the logical drive you want the memory drive to respond to (A-P), and ADDRESS is the address in hex of the end of your CP/M, or the TOP of your memory minus 1K. See table 1 to determine what hex address you should use for different memory sizes.

TABLE 1

<table>
<thead>
<tr>
<th>Amount of memory</th>
<th>Size CP/M to make</th>
<th>Hex address to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>64K</td>
<td>63K</td>
<td>FC00</td>
</tr>
<tr>
<td>60K</td>
<td>59K</td>
<td>EC00</td>
</tr>
<tr>
<td>56K</td>
<td>55K</td>
<td>DC00</td>
</tr>
<tr>
<td>52K</td>
<td>51K</td>
<td>CC00</td>
</tr>
<tr>
<td>48K</td>
<td>47K</td>
<td>BC00</td>
</tr>
<tr>
<td>44K</td>
<td>43K</td>
<td>AC00</td>
</tr>
<tr>
<td>40K</td>
<td>39K</td>
<td>9C00</td>
</tr>
<tr>
<td>36K</td>
<td>35K</td>
<td>8C00</td>
</tr>
<tr>
<td>32K</td>
<td>31K</td>
<td>7C00</td>
</tr>
<tr>
<td>28K</td>
<td>27K</td>
<td>6C00</td>
</tr>
<tr>
<td>24K</td>
<td>23K</td>
<td>5C00</td>
</tr>
</tbody>
</table>

The following example will put the M-DRIVE/H drivers at the top of a 63K system with 64k of memory and put the memory drive as drive "M":

A>MDRIVE -M FC00

The MDRIVE program will first size the memory drive and report the amount of memory drive it found. It will then patch your BIOS, and install the new drivers at the given address. The memory drive is then automatically formatted. You can now use the memory drive like any other drive in the system, including reformatting it.

We have also included sample M-DRIVE/H drivers that can be assembled into an existing bios. This code was taken out of the standard CompuPro CPM 2.2
BIOS, so some modification and optimization may need to be done for individual CP/M implementations. The disk parameter blocks (DPB) will also need to be set for the number of M-DRIVE/H boards in your system.

SAMPLE READ/WRITE ROUTINES

; M - D R I V E / H
;
; This is a sample, skeletal bios that will drive the CompuPro M-DRIVE/H memory disk.
; To quickly add this to your existing bios, just replace the "JMP NOTHING"s at the end of each routine with a jump to your BIOS, and assemble it all together. The DPB is set for one M-DRIVE/H board, if you have more boards you will have to adjust it accordingly.
; Information such as sector, track, and DMA address are saved even if they are not intended for the memory drive. This is intended as an example and as a way for someone to use the M-DRIVE/H board with a minimum amount of trouble and work. The performance of any CP/M BIOS can be greatly enhanced by integrating this code directly into an existing BIOS, as well as save some memory space.
;
; This code expects the M-DRIVE/H board to be addressed at the following I/O ports:
;
; 0C6H - Data
; 0C7H - Address
;
; Written L. Ott 12/17/82
; ©1982 by CompuPro div. Godbout Electronics
;
HBASE: EQU 0C6H
HDATA: EQU HBASE
HADDR: EQU HBASE+1

MEMDRV: EQU 'M' ;SET AS DRIVE "M"
F$RDAT: EQU 6 ;READ DATA
F$WRT: EQU 5 ;WRITE DATA

MRTRY: EQU 10 ;MAX RETRY COUNT

MDRIVE: JMP NOTHING ;COLD START
JMP NOTHING ;WARM START
JMP NOTHING ;CONSTAT
JMP NOTHING ;CONIN
JMP NOTHING ;CONOUT
JMP NOTHING ;LIST
JMP NOTHING ;PUNCH
JMP NOTHING ;READER
JMP HOME ;HOME
JMP SELDSK ;SELECT DISK
JMP SE1TRK ;SET TRACK
JMP SETSEC ;SET SECTOR
JMP SETDMA ;SET DMA
JMP READ ;READ
JMP WRITE ;WRITE
JMP NOTHING ;LIST STATUS
JMP SECTRNR ;SECTOR TRANSLATE

;DUMMY ROUTINE FOR NON IMPLEMENTED ROUTINES

NOTHING:

RET

HMDSIB: EQU 2048/128 ;SECTORS IN MEMORY DRIVE DATA BLOCK
HMDDSM: EQU ((512-4)*8)/HMDSIB

;DPBHMD:

DB 128 ;MDRIVE TYPE FOR MFORM, DO NOT CHANGE
DW 8 ;SECTORS PER TRACK, THIS AND DSM ...
;... MUST BE INCREASED FOR MORE BOARDS
DB 4,15,1 ;BSH, BLM, EXM
DW HMDDSM-1,128-1 ;DSM , NUMBER OF DIRECTORY ENTRIES
DB 11000000B,0000000B ;RESERVED DIR BLOCKS, MUST MATCH ...
;... NUMBER OF DIRECTORY ENTRIES
DW 0 ;CHECK SUM
DW 4 ;NUMBER OF RESERVED TRACKS FOR PARITY CHECK
; THIS IS ALWAYS 4

;HMDDPH:

DW 0 ;SECTOR TRANSLATE TABLE
DW 0,0,0 ;SCRATCH
DW BUFDIR ;DIRECTORY BUFFER
DW DPBHMD+1 ;DPB BLOCK
DW 0 ;CHECKSUM VECTOR
DW ALV ;ALLOCATION VECTOR

; ; SELECT DISK DRIVE ;
; Select the disk drive for subsequent disk transfers and return ; the address of the DPH for the memory drive.
;
ENTRY -- C = disk selection value
DE and 1 = 0 must determine disk type
= 1 type already determined (only needed for floppies)
;
EXIT -- HL = DPH address of the memory drive.
; IF memory drive not selected, control is passed to BIOS
;
SELDSK: XRA A ;CLEAR A
STA SELFLG ;CLEAR MEMORY DRIVE FLAG
MOV A,C ;
CPI MEMDRV-'A' ;IS MEMORY DRIVE SELECTED
BIOSSEL:JNZ NOTHING ;F NOT GO BACK TO BIOS
MVI A,OFFH
STA SELFLG ;SET MEMORY DRIVE AS SELECTED
LXI H,HMDDPH ;GET DPH ADDRESS
RET ;AND DONE

; H O M E
; Set current track to 0

HOME: XRA A
STA CIOPB+2 ;SET TRACK AS 0
STA CIOPB+3
BIOSHOM: JMP NOTHING ;ON TO BIOS

; S E T T R A C K
;
Set track number. The track number is save for later use during
a disk transfer. The track is save whether or not the memory disk
is currently selected.
;
ENTRY -- BC = Track number.

SETTRK: MOV L,C
MOV H,B
SHLD CIOPB+2
BIOSTRK: JMP NOTHING

; S E T S E C T O R
;
Set sector number. The sector number is save for later use during
a disk transfer. The sector is saved whether or not the memory
disk is currently selected.
;
ENTRY -- BC = Sector number.

SETSEC: MOV L,C
MOV H,B
INX H ;+1 TO MAKE LIKE FLOPPIES (1-26)
SHLD CIOPB+4
BIOSSEC: JMP NOTHING

; S E T D M A A D D R E S S
;
Set the address for the next DMA transfer.
The DMA address is saved for later use during a disk transfer.
The address is saved whether or not the memory disk is
currently selected.
;
ENTRY -- BC = Disk memory address.

SETDMA: MOV L,C
MOV H,B
SHLD DMAADR
BIOSDMA: JMP NOTHING

; S E C T O R T R A N S L A T E
;
Translate the sector number from logical to physical.
ENTRY DE = 0, no translation required.
DE = Translation table address.
BC = Number to translate.

SECTRN:
MOV A,D
ORA E
RZ ; No translation needed.
JMP NOTHING ; Let BIOS translate.

READ:
LDA SELFLG
ORA A
BIOSRED:JZ NOTHING
MVI A,$RDAT ; MUST WANT THE MEMORY DRIVE
STA CIOPB ; TO COMMAND BUFFER
JMP HMDFNL

WRITE:
LDA SELFLG
ORA A
; IS MEMORY DRIVE SELECTED
BIOSWRT:JZ NOTHING
MVI A,$WRT ; SET COMMAND AS WRITE
STA CIOPB
JMP HMDFNL ; AND GO PROCESS

HMDFNL -- Hard memory disk final command processing
ENTRY -- CIOPB +0 = COMMAND
 CIOPB +2 = TRACK
 CIOPB +4 = SECTOR

HMDFNL:
MVI A,MTRY ; Set retry count
STA RTRY

HMFN1: LHL CIOPB+2 ; GET TRACK
DAD H ;*2
DAD H ;*4
DAD H ;*8
DAD H ;*16
DAD H ;*32
DAD H ;*64
DAD H ;*128
LDA CIOPB+4 ; GET SECTOR
DCR A ; STARTS AT 0
CALL SETMDRV ; SET H DRIVE BOARD AHL
MVI C,128 ; 128 BYTE SECTORS
MOV B,C ; also into B for parity check
LHL DMAADR ; DIRECTLY TO CPM BUFFER
LDA CIOPB ;GET COMMAND
CPI FSRDAT ;
JNZ HDINTO ;IF WRITE COMMAND JUMP
;
JMP HDOTOF
;
GET A 128 BYTE BLOCK FROM HDRIVE BOARD ADDRESS IS ALREADY SELECTED
C IS NUMBER OF BYTES TO MOVE
HL IS DMA BUFFER TO PUT DATA

HDOTOF: IN HDATA ;GET DATA BYTE
MOV M,A ;PUT TO DMA BLOCK
ADD B ;ADD UP PARITY BYTE
MOV B,A ;AND SAVE
INX H ;UP POINTER
DCR C ;COUNT THIS MOVE
JNZ HDOTOF ;AND DO AGAIN
CALL PARITY ;DO PARITY CHECK
IN HDATA ;GET PARITY BYTE
SUB B ;0 IF NO ERROR
RZ ;THEN RETURN
LDA RTRY ;GET RETRY COUNT
DCR A ;
STA RTRY ;REPLACE WITH NEW COUNT
JNZ HMFPNL1
ORI 1
RET ;RETURN WHEN DONE
;
PUT A BLOCK OF DATA INTO HDRIVE BOARD ADDRESS IS ALREADY SELECTED
C IS NUMBER OF BYTES TO MOVE
HL IS DMA BUFFER TO GET DATA FROM

HDINTO:
MOV A,M ;GET BYTE FROM BUFFER
OUT HDATA ;TO MDRIVE BOARD
ADD B ;ADD UP PARITY BYTE
MOV B,A ;AND SAVE
INX H
DCR C ;COUNT THIS MOVE
JNZ HDINTO ;IF DONE WITH 128 OR C COUNT
CALL PARITY ;SELECT PARITY BYTE LOCATION
MOV A,B
OUT HDATA ;WRITE PARITY BYTE TO MEMORY DISK
XRA A ;AND SHOW NO ERROR
RET ;RETURN
;
FIND LOCATION IF PARITY BYTE FOR TRACK IN CIOPB+2
AND THE SECTOR IN CIOPB+4

PARITY: LDA CIOPB+4 ;Get sector
DCR A ;Bias
LHLD CIOPB+2 ;Get track

;Set M-DRIVE/H board to address in A,HL

SETMDRV:
OUT HADDR ;To M-DRIVE/H board
MOV A,H ;H is always 0 or 1
OUT HADDR
MOV A, L ;Upper bit of L picks track 0-3
OUT HADDR ;remainder of byte picks sector and byte

; MDRLNG: EQU $-MDRIVE ;LENGTH OF MDRIVE BIOS
SELFLG: DB 1 ;DISK SELECT FLAG
RTRY: DB 1 ;RETRY COUNTER
CIOPB: DS 8 ;COMMAND BUFFER
DMAADR: DW 1 ;ADDRESS OF DMA BUFFER
BUFDIR: DS 128 ;DIRECTORY BUFFER FOR CPM
ALV: DS (((HMDDSM*8)+7)/8)+1 ;
PARTS LIST

SEMICONDUCTORS
U1 7805
U2 7805
U3 7805
U4 74LS161/163
U5 74LS161/163
U6 197P-1
U7 74LS375
U8 74LS161/163
U9 74LS161/163
U10 197P-2

U11 8203-3
U12 74F04
U13 74LS244
U14 74LS74
U15 74LS161/163
U16 74LS161/163
U17 74LS266
U18 25LS2521
U19 74LS374
U20 74LS125
U21-84 4864 or equiv.

RESISTORS VALUE
R1 1.5K ohm
R2-9 33 ohm
R10,11 4.7K ohm
R12 1K ohm
SR1 5.1K ohm SIP

CAPACITORS VALUE
C1-6 10v or higher
C7,8 68 pF

OTHER ELECTRONIC PARTS
L1 .08uH inductor
X1 24 MHz crystal

COMPONENT LAYOUT
IF YOU NEED ASSISTANCE ALWAYS CONTACT
YOUR COMPUMPRO DEALER FIRST

CUSTOMER SERVICE INFORMATION

Our paramount concern is that you be satisfied with any CompuPro product. If this product fails to operate properly, it may be returned to us for service; see warranty information below. If you need further information feel free to write us at:

Box 2355, Oakland Airport, CA 94614

LIMITED WARRANTY INFORMATION

CompuPro division Godbout Electronics will repair or replace, at our option, any parts found to be defective in either materials or workmanship for a period of 1 year from date of invoice. Defective parts MUST be returned for replacement.

If a defective part causes a CompuPro product to operate improperly during the 1 year warranty period, we will service it free (original owner only) if delivered and shipped at owner's expense to and from our Service Center in Building 725, Oakland Airport, CA 94614. If improper operation is due to error or errors on the part of the purchaser, there may be a repair charge. Purchaser will be notified if this charge exceeds $50.00. If the warranty period has expired, service for CompuPro products is available at a rate of $50.00 per hour labor plus parts.

We are not responsible for damage caused by use of solder intended for purposes other than electronic equipment construction, failure to follow printed instructions, misuse or abuse, unauthorized modifications, use of our products in applications other than those intended by CompuPro division Godbout Electronics, theft, fire, or accidents.

Return to purchaser of a fully functioning unit meeting all advertised specifications in effect as of date of purchase is considered to be complete fulfillment of all warranty obligations assumed by CompuPro division of Godbout Electronics. This warranty covers only products marketed by CompuPro division Godbout Electronics and does not cover other equipment used in conjunction with said products. We are not responsible for incidental or consequential damages.

Prices and specifications are subject to change without notice.