
CDC® VSOS VERSION 2 .

FOR USE WITH
CYBER 200 SERIES
COMPUTER SYSTEM .

Volume 2 of 2

REFERENCE MANUAL

60459420

~~
CONT1'0L

DATA

/

CDC® VSOS VERSION 2

FOR USE WITH
CYBER 200 SERIES
COMPUTER SYSTEM

Volume 2 of 2

REFERENCE MANUAL

60459420

~:?)
CONT1'0L

DATA

REVISION

A

(04-16-82)

B
(10-15-82)

c
(07-29-83)

D
(03-30-84)

E
(10-31-85)

F
(04-18-86)

G
(12-05-86)

H
(10-23-87)

Publication No.
60459420

REVISION RECORD

DESCRIPTION

Manual released.

Manual revised to reflect VSOS 2.0 corrective code release at PSR level 575.

Manual revised to reflect VSOS 2.1 at PSR level 592. New features documented include support of
on-line magnetic tapes, IQM performance improvements, and channel utilization statistics. This
edition obsoletes all previous editions. Due to extensive reorganization, change bars and dots are
not being used at this revision and all pages reflect the current revision level.

Manual revised to reflect VSOS 2.1.5 at PSR level 607. Changes include documentation of adding the
job name to the account record and various other technical and editing changes.

Manual revised to reflect VSOS 2.2 at PSR level 644. Changes include documentation of dynamic file
allocation, project tracking, multiple batch jobs per user and various other technical and editing
changes. Due to extensive changes, change bars and dots are not used and all pages reflect the
latest revision level. This edition obsoletes all previous editions.

Manual revised to reflect VSOS 2.2.5 at PSR level 654. Changes have been made to descriptions of
I/O connectors for explicit and implicit I/O and the explicit I/O system message has been updated.
Various other technical and editing changes have also been made.

Manual revised to reflect VSOS 2.3 at PSR level 670. Various technical and editing changes have
been made.

Manual revised to reflect VSOS 2.3.5 at PSR level 690.

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

© 1982, 1983, 1984, 1985, 1986, 1987
by Control Data Corporation
All rights reserved
Printed in the United States of America

2

Address comments concerning this
manual to:

Control Data Corporation
Technology and Publications Division
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 3-4 F 5-42 E 5-101 H 5-154 H
Title Page - 3-5 F 5-43 H 5-102 H 5-155 H
2 H 4-1 E 5-44 H 5-102.1/ 5-156 H
3 H 4-2 E 5-45 H 5-102.2 H 5-157 H
4 H 4-3 E 5-46 H 5-103 H 5-158 H
5 F 4-4 E 5-47 F 5-104 H 5-159 H
6 E 4-5 E 5-48 F 5-105 H 5-160 H
7 H 4-6 E 5-49 E 5-106 H 5-160.1 H
8 H 4-7 E 5-50 F 5-107 H 5-160. 2 H
9 G 4-8 E 5-51 H 5-108 H 5-161 H
10 H 4-9 E 5-52 E 5-109 H 5-162 H
11 H 4-10 E 5-53 H 5-110 H 5-163 H
12 E 4-11 E 5-54 H 5-111 H 5-164 H
1-1 F 4-12 E 5-55 E 5-112 H 5-165 H
1-2 F 4-13 E 5-56 H 5-113 H 5-166 H
1-3 F 4-14 E 5-57 E 5-114 H 5-167 H
1-4 G 4-15 E 5-58 H 5-115 H 5-168 F
1-5 H 4-16 E 5-59 E 5-116 H 5-169 E
1-6 H 5-1 G 5-60 E 5-117 H 5-170 F
1-7 F 5-2 F 5-61 E 5-118 H 5-171 E
2-1 F 5-3 F 5-62 E 5-119 H 5-172 E
2-2 H 5-4 F 5-63 E 5-120 H 5-173 E
2-3 H 5-5 F 5-64 E 5-121 H 5-174 E
2-4 H 5-6 F 5-65 F 5-122 H 5-175 E
2-5 H 5-7 F 5-66 F 5-123 H 5-176 F
2-6 H 5-8 E 5-67 E 5-124 H 5-177 E
2-7 H 5-9 G 5-68 E 5-124.1 H 5-178 E
2-8 H 5-10 H 5-69 H 5-124.2 H 5-179 E
2-8 .1/2-8. 2 H 5-11 F 5-70 E 5-125 H 5-180 E
2-9 E 5-12 F 5-71 E 5-126 H 5-181 E
2-10 F 5-13 E 5-72 F 5-126.1/ 5-182 E
2-11 E 5-14 G 5-73 E 5-126.2 H 5-183 G
2-12 E 5-15 G 5-74 E 5-127 H 5-184 E
2-13 E 5-16 G 5-75 E 5-128 F 5-185 E
2-14 E 5-17 F 5-76 E 5-129 E 5-186 E
2-15 H 5-18 F 5-77 E 5-130 H 5-187 E
2-16 E 5-19 F 5-78 E 5-131 H 5-188 E
2-17 E 5-20 E 5-79 F 5-132 H 5-189 F
2-18 H 5-21 F 5-80 E 5-133 E 5-190 H
2-19 G 5-22 H 5-81 E 5-134 F 5-191 H
2-20 F 5-23 E 5-82 E 5-135 H 5-192 E
2-20.1/2-20.2 G 5-24 E 5-83 E 5-136 F 5-193 H
2-21 G 5-25 E 5-84 E 5-137 H 5-194 F
2-22 G 5-26 F 5-85 E 5-138 F 5-195 F
2-23 E 5-27 E 5-86 E 5-139 H 5-196 F
2-24 E 5-28 E 5-87 E 5-140 F 5-197 F
2-25 G 5-29 E 5-88 E 5-141 G 5-198 F
2-26 G 5-30 F 5-89 E 5-142 E 5-199 F
2-27 E 5-31 G 5-90 E 5-143 F 5-200 F
2-28 G 5-32 G 5-91 H 5-144 E 5-201 F
2-29 E 5-33 H 5-92 E 5-145 F 5-202 F
2-30 F 5-34 H 5-93 E 5-146 E 5-203 F
2-31 E 5-35 H 5-94 E 5-147 E 5-204 F
2-32 E 5-36 G 5-95 H 5-148 F 5-205 F

2-33 E 5-37 E 5-96 H 5-149 E 5-206 F
2-34 F 5-38 F 5-97 E 5-150 E 5-207 F
3-1 F 5-39 F 5-98 E 5-151 E 5-208 F
3-2 H 5-40 E 5-99 H 5-152 F 5-209 F

3-3 F 5-41 E 5-100 H 5-153 H 5-210 F

60459420 H 3

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

5-211 F 9-17 G Index-4 H
5-212 F 9-18 E Index-5 F
5-213 F 9-19 E Index-6 F
5-214 F 9-20 E Comment Sheet H

5-215 F 9-21 E Back Cover -
6-1 E 9-22 E
6-2 E 9-23 G
6-3 E 9-24 E
6-4 E 9-25 E
6-5 E 9-26 E
6-6 E 10-1 F
7-1 G 10-2 F
7-2 G 10-3 E
7-3 G 10-4 E
8-1 E 10-5 E
8-2 E 10-6 E
8-3 H 10-7 E
8-4 E 10-8 G

8-5 E 10-9 F
8-6 F 10-10 G
8-7 H 10-11 F
8-8 E 10-12 F
8-9 H 10-13 F
8-10 H 10-14 E
8-11 E 10-15 G
8-12 F 10-16 E
8-13 E 10-17 G
8-14 E 10-18 G
8-15 F 10-19 E
8-16 E A-1 E
8-17 E A-2 E
8-18 H A-3 E
8-19 H A-4 E
8-20 H B-1 F
8-20.1/8-20.2 F B-2 F
8-21 E B-3 F
8-22 F B-4 F
8-23 F B-5 E
8-24 E B-6 E
8-25 F C-1 F
8-26 E C-2 G
8-27 F C-3 F
8-28 F C-4 F
8-29 E C-5 F
8-30 E C-6 F
8-31 E C-7 F
8-32 E C-8 F
8-33 F D-1 E
8-34 E D-2 E
8-35 F D-3 E
8-36 E D-4 E
8-37 H D-5 G
8-38 E D-6 E
8-39 F D-7 G
9-1 H D-8 F
9-2 E D-9 F
9-3 E E-1 H

9-4 E E-2 E
9-5 H E-3 E
9-6 H E-4 E
9-6.1/9-6.2 H F-1 E
9-7 E F-2 E
9-8 E G-1 E
9-9 E G-2 E
9-10 E G-3 E
9-11 E G-4 E
9-12 E G-5 E
9-13 G G-6 E
9-14 E Index-1 F
9-15 G Index-2 H

9-16 F Index-3 H

4 60459420 H

PREFACE

This manual describes the CDC®Virtual Storage Operating System (VSOS) for the CONTROL
· DATA®CYBER 200 Series Computer System. This manual is published in two volumes:

• Volume 1 describes system utilities and system interface language (SIL)
subroutines. It also contains a general description of CYBER 200 hardware and
operating system software, file concepts, and task execution. It is written
primarily for applications programmers.

• Volume 2 describes system messages and job management tables. It also describes
system accounting file formats, common execute line routines, and loader
conventions. It is written primarily for systems programmers.

RELATED PUBLICATIONS

Related information can be found in the following publications.

Publication
Control Data Publication

CYBER 200 Maintenance Software System Reference Manual

CYBER 200 Model 205 Computer System Hardware Reference Manual

CYBER 200 Model 205 Troubleshooting Guide

RHF Usage

vsos User's Guide for Fortran 200 Programmers

vsos Site Manager's Handbook

vsos Version 2 Reference Manual, Volume 1

vsos Version 2 Operator's Guide

vsos Version 2 Installation Handbook

FORTRAN 200 Reference Manual

CYBER 200 Assembler Version 2 Reference Manual

RHF Application-to-Application Interface Specification

Control Data manuals can be ordered from:

Literature and Distribution Services
STP005
308 North Dale Street
St. Paul, Minnesota 55103

60459420 F

Number

60457200

60256020

60430060

60460620

60455390

60461490

60459410

60459430

60459440

60485000

60485010

ARH 114260

5

I

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be
responsible for the proper functioning of undescribed features or parameters.

Control Data does not support the station communication software described in this manual.
It supports only the LCN/RHF communication software.

Control Data does not support the FORTRAN 66 compiler.

6 60459420 E

1. INTRODUCTION TO VSOS

Central Operating System
Resident System
Virtual System

Queuing of Virtual System
Tasks

Scheduler Interaction with
PAGER

Privileged System Tasks
Obtaining Privileged Status
Privileged Resident System

Calls
Virtual System Calls

2. JOB MANAGEMENT TABLES

File Index Table (FILEI)
Minus Page

I/O Connectors
Map Directories
Minus Page File Maps

Bound Explicit Maps
Bound Implicit Maps

Drop File Map
Tapes Table

3. FILE CONCEPTS

File Names
File Ownership
File Access I Production Files
File Management Categories

Mass Storage Files
Scratch Files
Output Files
Drop Files
MODDROP (Write-Temporary) Files
Files Connected to a Terminal
Tape Files

File I/O
Physical Files
Virtual Files

60459420 H

CONTENTS

1-1

1-1
1-1
1-2

1-2

1-3
1-4
1-5

1-5
1-7

2-1

2-1
2-16
2-19
2-25
2-26
2-26
2-27
2-28
2-30

3-1

3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5

4. TAPE MANAGEMENT

Tape Assignment
Recovery

PRU Recovery
User Error Recovery

System Label Processing
Nonstandard Labels
ANSI Labels

Required Labels
Optional Labels

5. SYSTEM MESSAGES

System Message Execution
Alpha and Beta Word Conventions
Overview
Messages

CREATE FILE (f=#OOOl)
DESTROY FILE (f=#0002)
OPEN FILE (f=#0003)

Mass Storage Files
Magnetic Tape Files
Files Connected to a Terminal

MAP (f=l/0004)
CLOSE FILE (f=#0005)

Mass Storage Files
Magnetic Tape Files
Files Connected to a Terminal

TERMINATE (f=#0006)
LIST FILE INDEX TABLE (f=#0007)
GIVE FILE (f=#0008)
LIST SYSTEM TABLE (f=#0009)
CHANGE FILE ATTRIBUTES (f=#OOOB)
FILE DISPOSITION (f=#OOOD)
USER/ACCOUNTING COMMUNICATION

(f=lfOOOE)
ATTACH PERMANENT FILE (f=#OOlO)
GET PACK LABEL AND PFI (f=#OOll)
LIST CONTROLLEE CHAIN (f=#0013)
SEND A MESSAGE TO CONTROLLER

< f=ltoo 14)
SEND A MESSAGE TO CONTROLLEE

(f=l/0015)

4-1

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-15

5-1

5-1
5-2
5-3
5-5
5-8
5-14
5-17
5-26
5-27
5-27
5-28
5-32
5-38
5-38
5-38
5-39
5-40
5-43
5-47
5-53
5-61

5-64
5-68
5-70
5-74

5-76

5-78

7

I

GET MESSAGE FROM CONTROLLER OR
OPERATOR (f=#0016)

GET MESSAGE FROM CONTROLLEE
(f=/10017)

REMOVE CONTROLLEE FROM MAIN
MEMORY (f=/10019)

SEND A MESSAGE TO OPERATOR
(f=llOOlA)

INITIALIZE OR DISCONNECT
CONTROLLEE (f=#OOlB)

PROGRAM INTERRUPT CONTROL
(f=llOOlC)

INITIALIZE CONTROLLEE CHAIN
(f=llOOlD)

ENABLE/DISABLE ATC (f=#0020)
EXECUTE OPERATOR COMMAND

(f=/10021)
EXECUTE PROGRAM FOR USER NUMBER

(f=/10022)
UPDATE USER DIRECTORY (f=#0023)
MISCELLANEOUS (f=#0024)
RECALL (f=/10025)
POOL FILE MANAGER (f=#0026)
LINK (f=/10027)
VARIABLE RATE ACCOUNTING

(f=/10028)
SEND MESSAGE TO DAYFILE (f=#0029)
RHF CALL (f=#002A)
ACCESS CONTROL (f=#002B)
TAPE MANAGEMENT (f=#002C)
TAPE SWITCH VOLUME (f=#002D)
LABEL (f=ll002E)
USER REPRIEVE (f=#002F)
EXECUTE IQM REQUEST (f=#0030)
SEND MESSAGE TO JOB SESSION

(f=/10033)
RETURN FROM INTERRUPT (f=#0051)
SHRLIB ALTER OR RESTORE (f=#0053)
TAPE FUNCTION (f=#F406)
EXPLICIT I/O (f=#F500)
ADVISE (f=llFFOO)
PROCESS SYSTEM PARAMETER

(f=llFFOl)
GIVE UP CPU ON OUTSTANDING

RESIDENT I/O OR TIME (f=#FF02)

6. VIRTUAL SYSTEM DEBUG TOOL

Resident System
Virtual System
User and System Interfaces
Shared Table
Commands

Command Format
Debug Commands
Control Commands

Error Messages

7. ANALYZER

8

5-80

5-83

5-86

5-88

5-90

5-92

5-94
5-97

5-99

5-126.1
5-128
5-134
5-142
5-143
5-147

5-149
5-151
5-153
5-165
5-168
5-178
5-182
5-187
5-189

5-192
5-194
5-196
5-198
5-204
5-208

5-212

5-214

6-1

6-1
6-1
6-2
6-2
6-4
6-4
6-5
6-6
6-6

7-1

8. ACCOUNTING

Calculation of STUs
Statistics Accumulation

Cumulative Accounting Buffer
Accounting File

Active Accounting File Blocks
Task Records
Terminal Records
Disk File Management Records
Tape Records
System Records
Job Records
Network Usage Records
Channel Usage Statistics

Records
Periodic System Records
Periodic Job Records

Standardized Accounting Enhancements
Calculation of SBUs
Variable Rate Accounting

Variable Rate/Service Level
Tables

Variable Rate File
Virtual System Table

Definition
File Maintenance

System Dayfile
General Format of System Dayf ile

Entry
User Entries
System Entries
Label Entries
Diagnostic Entries

9. COMMON EXECUTE LINE SUPPORTING
ROUTINES

Conventions
Supporting Routines

Q7ENVIRN
Q7MODE
Q7PROMPT
Q7KEYWRD

lhs Table
rhs Table
Return Buffer
Special Characters

10. LOADER CONVENTIONS

General Table Structure
Module Tables

Module Header Table
Code Block Table
Code Relocation Table
External/Entry Table

8-1

8-1
8-1
8-2
8-3
8-5
8-8
8-15
8-16
8-17
8-18
8-18
8-20.1

8-22
8-27
8-29
8-30
8-30
8-32

8-32
8-32

8-34
8-34
8-35

8-36
8-37
8-38
8-39
8-39

9-1

9-1
9-5
9-5
9-6
9-6.1
9-7
9-11
9-14
9-19
9-26

10-1

10-2
10-3
10-3
10-4
10-5
10-6

60459420 H

I

Interpretive Data Initialization
Table 10-9

Interpretive Relocation Initialization
Table 10-15

Transfer Symbol Table 10-15

Debug Symbol Table
Symbol Definition Table
Pseudoaddress Vector Table

10-15
10-17
10-19

APPENDIXES

A. CHARACTER SET

B. DIAGNOSTICS

System Error Codes
Tape Error Codes

C. GLOSSARY

D. REGISTER FILE CONVENTIONS

Registers

2-1

2-2

2-3

2-4

2-5

Machine Registers
Temporary Registers
Global Registers
Environment Registers

File Index Table Format for
Nontape Files

File Index Table Format for
Tape Files

Format of I/O Connector for a
Mass Storage File Opened for
Explicit I/O

Format of I/O Connector for a
Mass Storage File Opened for
Implicit I/O

Format of I/O Connector for a
Tape File

2-6
2-6.1

Map Directory Format
Bound Explicit Map Entry

Format
2-7

2-8

2-9

2-10
4-1
4-2

Bound Implicit Map Entry
Format

Drop File Map Full-Word Entry
Format

Drop File Map Half-Word Entry
Format

Tapes Table Format
VOLl Format
HDRl Format

60459420 G

A-1

B-1

B-1
B-3

C-1

D-1

D-1
D-1
D-1
D-2
D-5

2-2

2-9

2-19

2-21

2-23
2-25

2-26

2-27

2-28

2-29
2-30
4-5
4-7

Register Save Area D-6
External Procedure Call Sequence D-7
Prologue Sequence D-7
Epilogue Sequence D-9

E. CYBER 205 INVISIBLE PACKAGE

F. PROGRAM STATES

G. TAPE FORMATS

I (Internal) Format
SI (System Internal) Format
LB (Large Block) Format
V and NV (Variable) Format

INDEX

FIGURES

4-3
4-4
5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-8
5-9

5-10

5-11

5-12

5-13

5-14

EOFl Format
EOVl Format
CREATE FILE Message Format
DESTROY FILE Message Format
OPEN FILE Message Format
MAP Message Format
CLOSE FILE Message Format
TERMINATE Message Format
LIST FILE INDEX TABLE Message

Format
GIVE FILE Message Format
LIST SYSTEM TABLE Message

Format
CHANGE FILE ATTRIBUTES Message

Format
FILE DISPOSITION Message

Format
USER/ACCOUNTING COMMUNICATION

Message Format
ATTACH PERMANENT FILE Message

Format
GET PACK LABEL AND PF! Message

Format

E-1

F-1

G-1

G-1
G-3
G-5
G-6

4-10
4-13
5-9
5-14
5-17
5-29
5-32
5-39

5-40
5-43

5-47

5-53

5-61

5-64

5-68

5-70

9

5-15

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-23

5-24

5-25

5-26

5-27

5-28

I
5-29

5-30

5-31

5-32
5-33
5-34

5-35
5-36
5-37

5-38

5-39

5-40
5-41
5-42
5-43

5-44
5-45
5-46

5-47

5-48

10

LIST CONTROLLEE CHAIN Message
Format 5-74

SEND A MESSAGE TO CONTROLLER
Message Format 5-76

SEND A MESSAGE TO CONTROLLEE
Message Format 5-78

GET MESSAGE FROM CONTROLLER OR
OPERATOR Message Format 5-80

GET MESSAGE FROM CONTROLLEE
Message Format 5-83

REMOVE CONTROLLEE FROM MAIN
MEMORY Message Format 5-86

SEND A MESSAGE TO OPERATOR
Message Format 5-88

INITIALIZE OR DISCONNECT
CONTROLLEE Message Format 5-90

PROGRAM INTERRUPT CONTROL
Message Format 5-92

INITIALIZE CONTROLLEE CHAIN
Message Format 5-94

ENABLE/DISABLE ATC Message
Format 5-97

EXECUTE OPERATOR COMMAND
(Alpha) Message Format 5-99

EXECUTE OPERATOR COMMAND
(Beta) Message Format 5-101

T_JCAT System Table Format 5-125
EXECUTE PROGRAM FOR USER

NUMBER Message Format 5-126.1
UPDATE USER DIRECTORY (Alpha)

Message Format
UPDATE USER DIRECTORY (Beta)

Message Format
MISCELLANEOUS Message Format
RECALL Message Format
POOL FILE MANAGER Message

Format
LINK (Alpha) Message Format
LINK (Beta) Message Format
VARIABLE RATE ACCOUNTING

Message Format
SEND MESSAGE TO DAYFILE

Message Format
RHF CALL (Alpha) Message

Format
RHF CALL (Beta) Message Format
ACCESS CONTROL Message Format
TAPE MANAGEMENT Message Format
TAPE SWITCH VOLUME Message

Format
LABEL Message Format
USER REPRIEVE Message Format
EXECUTE !QM REQUEST Message

Format
SEND MESSAGE TO JOB SESSION

Message Format
RETURN FROM INTERRUPT Message

Format

5-128

5-129
5-134
5-142

5-143
5-147
5-148

5-149

5-151

5-153
5-154
5-165
5-169

5-179
5-182
5-187

5-189

5-192

5-194

5-49

5-50
5-51

5-52

5-53
5-54

5-55

7-1
8-1
8-2
8-3

8-4
8-5
8-6
8-7

8-8

8-9

8-10

8-11

8-12
8-13
8-14
8-15
8-15.1
8-16
8-17

8-18

8-19
8-20
8-21
8-22
9-1
9-1.1
9-2
9-3
9-4
9-5

9-6
9-7
9-8

SHRLIB ALTER OR RESTORE
Message Format

TAPE FUNCTION Message Format
EXPLICIT I/O (Alpha) Message

Format
EXPLICIT I/O (Beta) Message

Format
ADVISE Message Format
PROCESS SYSTEM PARAMETER

Message Format
GIVE UP CPU ON OUTSTANDING

RESIDENT I/O OR TIME Message
Format

ANALYZER Execute Line Format
Master Clock Format
Master Clock Example
Accounting Record Format

(First Word)
Task Record Header Format
Task Record Format, Subtype 0
Task Record Format, Subtype 2
Task Record Format, Subtype 4

Interactive Job
Task Record Format, Subtype 4

Batch Job with First CHARGE
Statement

Task Record Format, Subtype 4
Batch Job with Second
through Last CHARGE
Statement

Terminal Record Format,
Subtype 0

Terminal Record Format,
Subtypes 1 and 3

Tape Record Format, Subtype 0
Tape Record Format, Subtype 1
Job Record Format, Subtype 0
Job Record Format, Subtype 1
Job Record Format, Subtype 2
Network Usage Record Format
Channel Usage Statistics

Record Format, Subtype
Channel Usage Statistics

Record Format, Subtype 2
Periodic System Record Format
Periodic Job Record Format
Algorithm for SBU Calculation
Q5VRF File Format
Key-Dependent Parameter Format
Q7ENVIRN Call Statement Format
Q7MODE Call Statement Format
Q7PROMPT Call Statement Format
Q7KEYWRD Call Statement Format
lhs Table Pointer

Configuration
lhs Table Format
lhs Table Header Format
lhs Table Entry Format

5-196
5-199

5-205

5-206
5-209

5-212

5-214
7-2
8-6
8-6

8-7
8-9
8-10
8-11

8-13

8-13

8-14

8-15

8-15
8-17
8-17
8-19
8-20
8-20
8-20.1

8-22

8-25
8-27
8-29
8-30
8-33
9-3
9-5
9-6
9-6.1
9-9

9-10
9-11
9-12
9-13

60459420 H

I

I

9-9
9-10

9-11
9-12
9-13

9-14
9-15

9-16

9-17

9-18

9-19

9-20

9-21

9-22

9-23

1-1

1-2

1-3

2-1

2-2

2-3
3-1

4-1
5-1
6-1
6-2
6-3

rhs Table Format 9-14
rhs Table Entry Format (First

Word) 9-15
rhs Table Entry Format, Type 2 9-16
rhs Table Entry Format, Type 3 9-16
rhs Table Entry Format,

Type 4/6
Return Buff er Format
Return Buffer Entry Format

(First Word)
Return Buffer Entry Format,

9-17
9-19

9-19

Types 1 and 2 9-20
Return Buffer Entry Format,

Type 3 9-20
Return Buffer Entry Format,

Type 4 9-21
Return Buffer Entry Format,

Type 5 9-22
Return Buffer Entry Format,

Type 6 9-22
Return Buffer Entry Format,

Type 7 with Zeroe.d Flags 9-23
Return Buffer Entry Format,

Type 7 with Set Flags 9-23
Return Buffer Entry Format,

Type 8 with One Set Flag 9-24

Resident System Calls for
Privileged Users 1-5

Virtual System Calls Available
to Privileged User Tasks
Only 1-7

Virtual System Calls with
Options Available to
Privileged User Tasks Only 1-7

File Disposition Specifications
in the File Index Table 2-14

File Characteristic
Specifications in the File
Index Table 2-15

Minus Page Format 2-17
File Index Table Fields that

Affect File Ownership 3-2
Tape Label Format 4-3
Message Function Codes 5-5
Structure of the T VSD Table 6-2
VSDT Command Summary 6-4
VSDT Commands for Setting and

Resetting Breakpoints 6-5

60459420 H

9-24

10-1
10-2
10-3
10-4
10-5

10-6
10-7
10-8
10-9
10-10
10-11

10-12

D-1
D-2
D-3
E-1
G-1
G-2
G-3
G-4

TABLES

6-4

6-5
8-1

8-2

8-3

8-4
9-1

10-1
A-1

A-2

A-3

B-1
B-2
F-1

Return Buffer Entry Format,
Type 8 with Two Set Flags

Loader Table Header Format
Module Header Table Format
Code Relocation Table Format
External/Entry Table Format
Descriptor Format for Externals

9-25
10-2
10-3
10-5
10-7

and Entry Points 10-8
Data Item Format 1 10-9
Data Item Format 2 10-11
Data Item Format 3 10-12
Data Item Format D 10-13
Debug Symbol Table Format 10-16
Symbol Definition Table Entry

Format
Pseudoaddress Vector Table

Entry Formats
Register File
List of Parameter Addresses
Stack Frame
Invisible Package Contents
I Tape Format
SI Tape Format
LB Tape Format
V and NV Tape Formats

VSDT Command for Accessing

10-17

10-19
D-3
D-4
D-6
E-1
G-1
G-3
G-5
G-6

Paged-Out Addresses 6-6
VSDT Error Messages 6-6
Accounting Record Type and

Subtype Codes 8-3
Active Accounting File Block

Format 8-5
Active Accounting File Format

(First Block)
System Resources
Execute Line Special

Characters
Module Header Table Types
ASCII Character Set with

Punched Card Codes and
EBCDIC Translation

Hexadecimal-to-Octal Conversion

8-7
8-31

9-26
10-4

A-2

Aids A-3
Hexadecimal-to-Decimal

Conversion Aids
System Error Codes
Tape Error Codes
Program State Codes

A-4
B-1
B-3
F-1

11 I

UPPERCASE

UNDERLINED
UPPERCASE

Lowercase

[]
Brackets

12

NOTATIONS USED IN THIS MANUAL

Words or character strings
that must be entered as
shown. They must be spelled
correctly including any = or I
shown.

Words or character strings
that can be abbreviated to the
number of underlined
characters.

Generic terms which represent
the words parameters or
character strings supplied by
the programmer. When generic
terms are repeated in a
format, a number or letter
might be appended.

Optional portion of a format.
All parameters enclosed within
the brackets can be omitted at
programmer option. The
brackets are editorial
conventions only; they are not
part of the format.

{ }
Braces

Ellipses

II

Portion of a format in which
only one of the vertically
stacked items can be used.
The braces are editorial
conventions only; they are not
part of the format.

Repetition indicator. The
portion of the format
immediately preceding can be
repeated at programmer option.

Blank indicator. In a format,
this character indicates that
a blank or space should appear.

Numbers used in this manual
are decimal unless noted as
hexadecimal. Hexadecimal
numbers are prefixed by the #
character.

Punctuation characters shown within the
formats are required unless the text
indicates another punctuation character can
be substituted.

60459420 E

INTRODUCTION TO VSOS

The Virtual Storage Operating System (VSOS) consists of a central operating system, which
runs in the central processing unit (CPU), and a peripheral operating system, which runs in
the network access devices (NADs). The operating system consists of a resident system and a
nonresident set of callable tasks.

CENTRAL OPERATING SYSTEM

The central operating system can be divided into three parts:

• The resident system runs in a hardware mode called monitor mode. It is always
resident in memory and references memory by absolute address rather than through the
virtual paging mechanisms. When the resident system is running, interrupts are
inhibited and some extra instructions are enabled.

•

•

The virtual system runs in a hardware mode called job mode. It consists of a
pageable set of subroutines that perform such functions as controlling entry of
users into the system, file management, and terminal message handling. Virtual
system tasks communicate with the resident system by using resident system calls.
The virtual system can modify system tables directly.

Privileged system tasks run in the hardware mode called job mode and perform many of
the same functions as virtual system tasks. Privileged system tasks can issue
privileged resident system calls to communicate with the resident system. However,
the only privileged system tasks that can modify system tables directly are Input
Queue Manager (IQM) and Interactive Transfer Facility Servicer (ITFS).

CYBER 200 hardware modes are described in the CYBER 200 Hardware Reference Manual.

RESIDENT SYSTEM

The resident portion of the central operating system contains:

• KERNEL, which handles time-slicing and message communication.

• PAGER, which is responsible for main memory allocation and page swapping.

All communications between the various portions of the system are by means of system
messages. These messages either pass through KERNEL, which in this case acts as a message
switcher, or are processed directly by KERNEL. User jobs, privileged tasks, and virtual
system tasks communicate messages to KERNEL through the exit force instruction (a machine
language instruction). PAGER communicates messages to KERNEL by direct subroutine calls.
The peripheral system communicates with KERNEL by setting pointers in the station queuing
structure; KERNEL communicates with the peripheral system by setting pointers and station
channel flags.

1

60459420 F 1-1

I

I

The time-slice management portion of KERNEL is controlled by a loop ovPr the altPrn~tor
table that acts as a circular table with various indicators in each table entry. These
indicators include a pointer to a minus page table entry, a descriptor block table entry,
and three sets of flag bits that define the status of each alternator entry.

A unique entry in the alternator is shared by all virtual system tasks; to prevent two
routines from modifying the same system table simultaneously, only one virtual system task
is allowed to run at a time. This system alternator slot has the highest priority; it is
always run unless blocked for 1/0 or PAGER action.

All memory access interrupts, as well as certain messages dealing with physical memory
allocation, are conveyed by KERNEL to PAGER for processing. PAGER dynamically allocates
both large and small pages, and performs all implicit I/O necessary to free m~mory pages and
obtain the pages caused by memory access interrupts.

That portion of memory that is not permanently occupied by the resident system and its
tables is available for allocation to executing system and user tasks, including the virtual
system. This allocatable memory is either allocated space (space reserved for use by a
specific task) or free space (space not allocated to any task).

VIRTUAL SYSTEM

The virtual system contains routines for system functions such as file management, explicit

I
1/0, message handling, and CPU scheduling. Only that part of the virtual system that is
needed at any one time is in physical memory. The virtual system is assigned tasks by
KERNEL and is initiated by KERNEL to do one type of task only. It must finish one task
before it begins another.

Queuing of Virtual System Tasks

For virtual system demand tasks, which are critical to the efficient working of the
operating system, queuing occurs if:

• Bits are set in one or more alternator slots to indicate that virtual system action
is required.

• PAGER requests KERNEL to queue a virtual system demand task.

For periodic virtual system tasks, which are not considered critical, queuing occurs if:

•
•

•

1-2

A communication from a peripheral processor requires activity •

A user job issues a message that requests a system service not provided by the
resident system.

An entry in the periodic table indicates it is time to run a virtual system task •

60459420 F

Scheduler Interaction with PAGER

The CPU paging processor (PAGER) interacts with the CPU scheduler and the input queue
scheduler to regulate the processing load on the CPU. The process is:

• When PAGER determines that the load on the system is excessive, it notifies the
virtual system routine LOAD to suspend certain tasks (refer to the following) and/or
disconnect tasks from the CPU scheduling queue (CPUQ) and places them into the wait
queue.

• When PAGER determines that the system is not being fully utilized, it notifies LOAD
to reconnect tasks in the wait queue to the CPUQ, resume system-suspended tasks,
and/or submit new batch jobs to the CPU scheduler.

Estimates of the memory requirements of any task in the system are based on the size of the
task's working set, which is a function of the number of blocks of memory referenced or
altered by the task in a given period of time. Before a task begins execution, it is
assigned an initial and a maximum working set. The maximum working set is determined by the
RESOURCE statement as explained in volume l of this reference manual. The CPU scheduler
sets the initial working set based on the task's drop file size. PAGER then monitors the
memory usage of the task and adjusts its working set accordingly. PAGER will not evaluate a
task's working set to be higher than the maximum working set for the task. It wil 1,
however, keep track of the frequency with which a task is attempting to exceed its maximum
working set. When the frequency becomes too high, PAGER flags the task as a candidate for
suspension. When the number of candidates for suspension exceeds an installation-defined
limit, PAGER notifies LOAD to suspend candidates for suspension in reverse priority order
until the limit is no longer exceeded. (Observe that tasks which have a maximum working set
equal to all of allocatable memory will not be considered candidates for suspension.) In
addition to monitoring each task's working set, PAGER keeps track of the sum of the working
sets of all tasks in the CPUQ and wait queue (WQ). This variable is used to calculate a
running average sum of working sets (known to the system as IQM_RWS).

!QM RWS represents the load on the system after factoring out temporary dips in memory
committed to tasks. For each job in the input queue, the input queue scheduler estimates
the maximum working set that the job will require while in execution. One of the scheduling
constraints on a job in the input queue is maximum memory overcommitment.

When a job fails this constraint, it is given a status of MXMO. IQM RWS must be less than
the lowest estimated working set among all jobs with a status of MXMO in order for any job
with that status to be submitted without overcommitting memory. When IQM RWS is evaluated
by PAGER as being below this value, PAGER notifies LOAD to cause the input queue scheduler
to reevaluate jobs in the input queue for submission. The input queue scheduler will
attempt to resume system-suspended tasks before submitting new jobs to the CPU.

When the sum of the working sets of tasks in the CPUQ is low enough, PAGER notifies LOAD to
remove tasks from the wait queue and reconnect them to the CPUQ within the limits of
committable memory. A task qualifies for reconnection when it is the highest priority task
in the wait queue whose working set plus memory for working set growth fits into uncommitted
memory. When a task is evaluated as having a working set which will no longer fit into
co~ittable memory, it is disconnected from the CPUQ and placed into the wait queue.

60459420 F 1-3

PRIVILEGED SYSTEM TASKS

Any task can be run as a privileged task if it is running under a privileged user number or
has the privilege flag set in the file index table entry of its source file. A privileged
system task is any privileged task that is part of the central operating system. A
privileged user task is any other privileged task, such as one that a system or
installation-defined utility might use.

Privileged and virtual system tasks have similar characteristics in that they run in job
mode, make resident calls, are pageable, and can access the files of other users. Unlike I the virtual system tasks, privileged tasks (with the exception of IQM and ITFS) do not have
direct access to system tables; through privileged calls to the virtual system, they are
able to obtain indirect access to the tables.

Because they can make most resident system calls, privileged system tasks are able to
perform some functions for the virtual system. This reduces virtual system overhead and
frees the virtual system to process other functions. Tasks such as handling I/O files and
operator communications are currently done by privileged system tasks.

IQM, OPERATOR, QTF, QTFS, PTFS, and ITFS are privileged system tasks that run under
privileged user numbers. The system user number (for installation management), 999998, is
also a privileged user number; EDITUD is run under this number.

System Task

IQM

OPERATOR

QTF

QTFS

PTFS

ITFS

1-4

Description

Input Queue Manager. Creates and routes error dayfiles to the user for
batch jobs which could not be submitted to the CPU scheduler (user
number 000003).

Enables the operator to communicate with the system by issuing the
EXECUTE OPERATOR COMMAND message (f=#0021), enabling the operator to
display memory and task information. The operator is able to control
the flow of jobs to be submitted to the CPU scheduler, the jobs which
are running in the system, and the access to peripheral equipment and
linked mainframes available to the system (user number 000098).

Queue File Transfer Facility. Queues input and output files from CYBER
200 to a Remote Host Facility (RHF) front end (user number 000006).

Queue File Transfer Facility Servicer. Queues job files from an RHF
front end to CYBER 200 (user number 000008).

Permanent File Transfer Facility Servicer. Services the remote host
connection for permanent file transfer (user number 000010). (Does not
imply the direction of the transfer.)

Interactive Transfer Facility Servicer. Allows interactive use of CYBER
200 (user number 000013).

60459420 G

Obtaining Privileged Status

A user is a privileged user if the privilege flag (udtrust field) in the user directory
entry is set. The flag can be set by using EDITUD.

Privileged status for a running task is indicated in the descriptor block.

An executable file can run as a privileged task under a nonprivileged user number if the
privilege flag in the source file's file index table entry is set.

If the task is not running under a privileged user number, but the privilege flag is set in
its source file, controllees or a controllee chain started by the task must also have the
privilege flag in their source files set to have privileged status.

The privilege flag in the user directory entry associated with each user is passed on to
each task that the user executes.

Privileged Resident System Calls

Privileged resident system calls made to KERNEL are processed by KERNEL or by a peripheral
device. Resident system calls available to privileged tasks are listed in table 1-1.

Before a CSOl, CS02, or C503 call on a file can be issued by a privileged task, the file
must be opened for explicit I/O, using the OPEN FILE (f=#0003) message. The file segment
table (FST) ordinal (returned in the fsto Beta word field for a CREATE or OPEN message) must
be supplied with the call; otherwise, the task aborts.

Privileged tasks can read and write segmented files with CSOO and CSOl calls, but files
cannot be extended by tasks using these calls. Extensions are permitted, however, in other
situations, such as when the privileged tasks perform implicit I/O or use the EXPLICIT I/O
(f=#FSOO) message.

Table 1-1. Resident System Calls for Privileged Users (Sheet 1 of 2)

Call Number Description

F002

F003

F004

FOOS

F007

FOOS

F009

FOOC

FOOD

60459420 H

Delete pages from the page table.

Delete a virtual range with a given key from the page table.

List a virtual range with a given key from the page table.

Delete all pages in the page table under a given key.

List the page table entry for the keyword and the virtual block
identifier.

Terminate the task.

Complete outstanding boats.

Change key.

Get an input buffer.

1-5

I

I

1-6

Table 1-1. Resident System Calls for Privileged Users (Sheet 2 of 2)

Call Number

FOOE

FOOF

FOlO

F015

F016

F017

F018

F019

C304

C305

C313

C320

csoo

C501

C502

C503

C504

C510

CSU

C512

C513

C514

C700

C701

C702

C703

C704

Description

Queue system/demand task.

Change system keys.

Unlock a virtual range with a given key.

Performance measurement call.

Process checkpoint.

Return to KERNEL from Virtual System Debug Tool (VSDT).

List page table entry for large page. Fault for large page if not in
memory.

Checkpoint preprocessing.

Teletype output message.

Teletype input message.

Full screen output message.

Reserved for installation use.

Read physical blocks.

Write physical blocks.

Read physical disk.

Write physical disk.

Write a disk pattern.

Read logical blocks.

Write logical blocks.

Read logical disk.

Write logical disk.

Write logical pattern.

Read Remote Host Facility (RHF)/loosely coupled network (LCN).

Write RHF/LCN network.

RHF NAD function.

Receive RHF remote connection.

Abort timed-out boat.

60459420 H

Virtual System Calls

Privileged tasks can make all nonprivileged calls to the virtual system. They can also make
special virtual system calls and use options of nonprivileged calls that are restricted to
privileged tasks. (All messages described in chapter 5 except EXPLICIT I/O, TAPE FUNCTION, I
ADVISE, PROCESS SYSTEM PARAMETER, and GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR TIME are
virtual system calls.)

Special virtual system calls available to privileged tasks are listed in table 1-2. The
restricted capabilities of nonprivileged calls available to privileged tasks are listed in
table 1-3.

Table 1-2$ Virtual System Calls Available to Privileged User Tasks Only

Function Code Message Function

0021 EXECUTE OPERATOR COMMAND Acts as the interface between the
privileged task OPERATOR and the virtual
system.

0022 EXECUTE PROGRAM FOR Starts the file transfer process for a user.
USER NUMBER

0023 UPDATE USER DIRECTORY Modifies the user directory of an existing
user or to create a new user.

002A RHF CALL Reserved for RHF virtual system calls.

0030 EXECUTE IQM REQUEST Deletes or inserts a job into the IQM.

Table 1-3. Virtual System Calls with Options Available to Privileged User Tasks Only

Function Code

0001

0002

0003

0005

0008

OOOB

OOOE

60459420 F

Message

CREATE

DESTROY

OPEN

CLOSE

GIVE

CHANGE FILE ATTRIBUTES

USER/ACCOUNTING
COMMUNICATION

Function

Creates a public, pool, or private file for
another user.

Destroys a public, pool, or another user's
private file.

Opens any file (private, public, or pool).

Closes any public, private, or pool file.
Destroys the file being closed.

Makes a file public; that is, gives to user
000000. Gives file to IQM (user 000003).
Gives file specified by sector address and
unit number. Gives file with trust bit set.

Changes the account number of an input file.

Makes accounting entry or dumps accounting
temporary storage to permanent storage and
terminates the accounting file.

1-7

I

JOB MANAGEMENT TABLES

Tables used by VSOS to control job processing within the system can be affected or altered
indirectly by user programs. In all cases, access to the tables must be through system
messages.

FILE INDEX TABLE (FILEI)

The file index table is a catalog of files connected to a terminal, mass storage files
(public, private, and attached pool), and tape files for all active users in the system.
The catalog entries of mass storage files for inactive users are maintained on a mass
storage unit (in the inactive file index table). When a user becomes active, the catalog
entries describing the user's mass storage files are brought into the file index table in
main memory.

Each entry in the file index table consists of at least one three-word top chapter and one
or more 14-word bottom chapters. A top chapter exists for every attachment (or privileged
open) of the file to a user. Every file has a bottom chapter containing basic file
attributes. If individual user access permissions have been specified for the file, an
additional bottom entry is present for the file access directory entries (FADE).

2

When the file index is returned, a 16-word format is returned to the caller. The third word
of the top is not returned; relevant information is placed at the bottom as previously
described. The format is shown in figure 2-1 and figure 2-2. All fields in an entry
contain binary values, unless otherwise indicated.

The fide, fiic, and fiec fields in the file index table entry contain specifications for the
file's disposition, internal characteristics, and external characteristics. The fide field
values are listed in table 2-1; the values of the fiec and fiic fields are listed in
table 2-2.

RHF file disposition is controlled by the submitting host system and/or the user via the
MFQUEUE statement. The ic field is the only field used by RHF. In the protocol exchange,
the submitting RHF host includes disposition and routing information, which is saved as the
last group of an input file. The batch processor copies the last group to a file QSJRTHRF
during job execution. If a file is MFQUEUEd during job execution, a copy of the QSJRTHRF
file is saved in a file named QSLxxxxx which is associated with the MFQUEUEd file which will
be named QSOxxxxx, where xxxxx is a unique five-character string generated by the system
microsecond clock. At the end of job execution, the QSJRTHRF file is renamed PYYxxxxx and
is given to QTF as the last member of the xxxxx family. The information in the PYYxxxxx
file and the QSLxxxxx file are used in the RHF protocol exchange returning the output
files. The front-end host examines the received protocol and disposes the file accordingly.

60459420 F 2-1

0

2

3

5

6

7

8

9

A

8

c

D

E

F

0 63

pool name
~--M--~--~-------------------~

00 8 atjdn 12 auser 44

name
64

ptrpfil ref rep t figs ostat osver
16 16 1_6 4 3 5 4

mpn reserved lodlen
24 8 32

un- a lg I f
dorg used Vtp ouser i g torg

16 42 1 1 unusec:b_ 20 1 1 18

do la ct
16 4

dolm meat
16 4

oacs gacs
8 8

fide fiic fiec ficm
8 4 4 4

fizip finac
8 8

slen tt
16 2

flen

seglen 1 16 tt2

dfso 16
seglen2 16 tt2

unused

seglen3 16 tt

seglen4 16

tPurge only (1 bit)
tt Reserved.

hbw

tt

T Xd X f
type act slev pmc . tlr p I I

4 8 _a_ 2 '11 1 1 18
tI

ckjdn att tt t r tolm
12 8 3 1 1 9 18

-C:-mact
fact dup

64

lbc hba
16 32

fio~
fit id 42

r- fistid- 12}--:~~d _]_- - - - fisid - - - -2: 2

fidi
DI Jobname in Display Code 48

I() e i 0

saddr pkno p ~ g ¥ fsto
18 8 1 1 1 11 16

unused 8 bilb4
t t

24 sfo tt
segadr 1 18 4 24

extsize 16 tt4
bt mnr

segadr2 18 4 24

24 fi_jdn 12
rt mxr

segadr3 18 4 24

36 vri rmk pc
segadr 4 18 12 8 8

Figure 2-1. File Index Table Format for Nontape Files (Sheet 1 of 8)

e 2-2 60459420 H

Word

0

2

Field

pool name

atjdn

a user

name

ptrpf il

ref

rep

f lgs

ostat

osver

Description

Pool name in ASCII, left-justified with blank fill.

Job descriptor number to which this file is attached; it is assigned
to a job for the life of the job in the system.

Owning user number in binary notation.

File name in ASCII, left-justified with blank fill. The information
in this table refers to the file of this name. File names must be in
the format described in chapter 3.

Pointer into the proper block of the permanent file index (PFI) for
this entry relative to the first block of the PFI. PFI = #FFFF for
local files.

Number of times this file has been opened.

Retention pe~iod in days.

1 (DFRSTRT)

2 (PRODTN)

3 (PURGONLY)

Drop file restartability flag. If 0, this drop file is
restartable. If 1, this drop file is not restartable
if IP DFRSTRT is 1.

Production file flag. If O, this file is not a
production file. If 1, it is a production file.

Purge-only flag. Indicates whether the file can be
used or not because of PFI or directory of file
segmentation (DFS) errors. Set by permanent file
verification at autoload time.

0 File has not been flagged as purge-only.
1 File has been flagged as purge-only.

Output file status (integer):

0 Normal status.
1 Destination LID disabled.
2 Destination not responding.
3 Destination rejecting file.
4 System interface language (SIL) error occurred during file

transfer.
5 Diverted.
6 Hardware path to the logical identifier (LID) not available.
7 System error occurred during file transfer.

8-31 Reserved by CDC.

Version number of the operating system that created the file. Binary
value defined as:

0 Release 2.0 or earlier.
1 Release 2.1, 2.1.S, or 2.1.6.
2 Release 2.2 or later.

Figure 2-1. File Index Table Format for Nontape Files (Sheet 2 of 8)

60459420 H 2-3

I

I

Word

3

4

5

Field

mpn

reserved

lodlen

dorg

apf

qf

lp

ouser

i

f g

torg

do la

ct

Description

Master project in ASCII, left-justified with blank fill.

Reserved for installation.

Drop file length, in blocks, for the execute file; only valid if the
file is a virtual code file (type = 2). For a file given to a
privileged system task, this field contains the binary user number of
the user who gave this file to the privileged system task.

Date this file was originated, in the format:

Subfield Description

yy
ddd

Last two digits of the year.
Number of days since the beginning of the year (1
through 366).

Access permission flags:

Bit 1
Bit 2

Queue flag:

1 if this entry is a file extension entry.
1 if this file has an extension entry.

0 IQM has read the file.
1 IQM has not read the file.

Local/permanent flag:

0 Permanent file.
1 Local file.

Originating user number.

Duplicate files flag:

0 No duplicate found.
1 Duplicate found at login.

File acquisition method:

0 User created this file.
1 File was given to user.

System clock time, in seconds after midnight, at which this file was
originated.

Date of last access to this file, in the same format as the dorg field.
(To access a file means to open it.)

Communication type:

0 Non-RHF file.
1 Non-RHF file.
2 RHF file.

Figure 2-1. File Index Table Format for Nontape Files (Sheet 3 of 8)

2-4 60459420 H

Word

5

6

Field Description

type File type:

0 Physical file.
1 Virtual code file.

act Number of active I/O connectors for this file.

slev Security classification level of this file (1 through 8).

xpr If set, indicates that this file is currently being accessed by a
privileged utility.

dmp Dump flag:

xcl

f i

tlr

dolm

0 The file is a candidate for dumping by a privileged utility.
1 Indicates the file has been dumped by a privileged utility

since creation or modification.

Exclusive access flag:

0 File can be shared.
1 File cannot be shared.

Task privilege designator:

0 Not a privileged task.
1 Privileged task.

System clock time, in seconds since midnight, at which the file was
last opened.

Date the file was last opened with write access, in the same format as
the dorg field.

meat Present file management category:

ckjdn

att

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file.
4 Magnetic tape file.
6 System-generated drop file.
7 Batch file.
9 Connected file.

#A Checkpointed output file.
#F Checkpointed input file.

Checkpoint job descriptor number. This field is set when the file
belongs to a checkpointed job.

Count of the attaches and privileged opens for private files; the
number of opens for public and pool files.

Figure 2-1. File Index Table Format for Nontape Files (Sheet 4 of 8)

60459420 H 2-5

I

I

Word

7

8

9

Field

inactdup

rern

tolm

fact

oacs

gacs

lbc

hba

f idc

f iic

f iec

f icm

f iot

Description

Inactive duplicate file.

Rerun indicator; valid for batch input files only (meat = 7).

Time, in seconds since midnight, when this file was last opened with
write access.

Account number of the file, in ASCII, left-justified with blank fill.

Owner's access permission for private files and pool boss' access
permission for pool files. For public files, oacs is set equal to
gacs:

Bit Access Permitted

1-3 Reserved (ignored by the system).
4 Execute.
5 Modify.
6 Append.
7 Read.
8 Write.

General access permissions. The format of this field is the same as
oacs.

Last used bit count in the last block to which something was written
in the file. Used only for files with osver less than 2.

Bit address plus 1 of the highest page accessed. Used only for files
with osver less than 2.

Numeric value indicating disposition of this file (refer to table 2-1).

Numeric value indicating the internal format characteristics of the
file (refer to table 2-2).

Numeric value indicating the external punch representation
characteristics of the file (refer to table 2-2).

Numeric value indicating the conversion mode of the file. The values
are:

0 Display code (64-character set).
1 Extended display code (128-character set).
2 Binary.

Numeric value indicating the origin type of the file. Values are:

0 Local batch.
1 Remote batch.
2 Interactive.

Figure 2-1. File Index Table Format for Nontape Files (Sheet 5 of 8)

2-6 60459420 H

Word

9

A

B

c

Field

f itid

fistid

f isid

f izip

f inac

f idi

slen

saddr

pkno

cont

ext

inc

ovf l

f sto

f len

Description

A seven-character terminal identifier stored as seven 6-bit display
code characters.

A two-character terminal identifier stored as two 6-bit display code
characters.

A three-character (ASCII) mainframe identifier indicating the source
or destination mainframe.

Numeric value indicating the destination processor zip number for this
file. The mainframe table associates this zip with a three-character
mainframe identifier.

Access station area code.

Job name (eight 6-bit display code characters).

Length of the file, in blocks. Not used for files with osver
cont = O.

2 and

Starting sector address on disk for the first segment of the file.
Not valid for files with osver = 2 and cont = 1. (For these files,
saddr is set to #3FFFF.)

Pack number of the disk device on which the first segment of the file
is allocated.

File contiguity flag:

0 Segmented file or more than #FFFF blocks.
1 Unsegmented file and less than #10000 blocks.

File extendability flag (set when file is created or opened):

0 File is extendable.
1 File is not extendable.

File completeness flag (set when file is attached and promoted to
FILE!):

0 File does not span a downed device.
1 File spans a downed device.

File overflow flag:

0 File is contained on one device.
1 File spans more than one device.

File segment table ordinal; when file is attached and promoted to
FILE!, this field contains the ordinal of the first FST entry for the
file.

For files created on VSOS 2.2 or later systems, this field contains
the total allocated space for the file in 512-word blocks.

Figure 2-1. File Index Table Format for Nontape Files (Sheet 6 of 8)

60459420 H 2-7

I

I
I

Word

c

D

E

Field

bilb

seglenl

segadrl

sf o

df so

extsize

seglen2

segadr2

bt

mnr

seglen3

segadr3

fiidn

rt

Description

Bits used in last byte:

0 All of last byte is used.
1-7 Only from 1 to 7 bits of the last byte are used. Last byte

is the NBWth byte.

For files created on a system before VSOS 2.2, this field contains the
length in blocks of the first segment.

For files created on a system before VSOS 2.2, this field contains the
starting sector disk address for the first segment.

File organization:

0 Sequential.
1 Direct.

For files created on a VSOS 2.2 or later systems, this field contains
the ordinal of the first DFS entry associated with this file.

Extension size, in 512-word blocks. This is the last extension size
used when the file was extended; or, the user-specified allocation
unit value adjusted to the next multiple of DAUs. This value is used
to compute the next extension size.

For files created on a system before VSOS 2.2, this field contains the
length, in blocks, of the second segment.

For files created on a system before VSOS 2.2, this field contains the
starting sector disk address for the second segment.

Blocking type:

0 SIL assumes the file was created before SIL was added to the
system. Therefore, it enters default values in the SIL
fields of the file index entry.

1 C-type blocking.

Minimum blocking length; 24-bit length, in number of bytes.

For files created on a system before VSOS 2.2, this field contains the
length, in blocks, of the third segment.

For files created on a system before VSOS 2.2, this field contains the
starting sector disk address for the third segment.

FILEI inn.

Record type:

0 Control word (W).
1 ANSI fixed length (F).
2 Record mark (R).
7 Undefined (U).

Figure 2-1. File Index Table Format for Nontape Files (Sheet 7 of 8)

2-8 60459420 H

Word Field

mxr

F hbw

seglen4

segadr4

vri

rmk

pc

Description

Maximum record length; 24-bit maximum length, in number of bytes.

For files created on a VSOS 2.2 or later systems, this field contains
a count of the total number of 8-bit bytes written to the file.

For files created on a system before VSOS 2.2, this field contains the
length, in blocks, of the fourth segment.

For files created on a system before VSOS 2.2, this field contains the
starting sector disk address for the fourth segment.

Variable rate index (VRI) transferred to the descriptor block to be
used for variable rate accounting (VRA). Valid for virtual code files
only.

Record mark; 8-bit ASCII character (any character is valid).

Padding character; 8-bit ASCII character (any character is valid).

Figure 2-1. File Index Table Format for Nontape Files (Sheet 8 of 8)

60459420 H 2-8.1/2-8.2 I

0 63

0 00 atjdn a user
8 12 44

name
64

2 ptrpfil ref rep unused
16 16 16 16

3 unused
64

dorg unused 1 ouser t torg
16 7 p 20 2 18

4

5 do la t type act unused tlr
16 4 4 8 14 18

6 dolm meat unused tolm
16 4 26 18

7 fact
64

8 oacs ofa reel exp opo ova
8 8 16 16 8 8

9 mfn
64

A plb vsn
16 48

B nvsn rpb tun unused pvsn
16 16 8 8 16

c mpru t sfo ctfp fsn
32 4 4 8 16

D fmtp t bt mnr
32 4 4 24

E pcvsn rpo t rt mxr
16 16 4 4 24

F unused t vri rmk pc
32 2 LL -1 12 8 8

tUnused. L.::conv
Ip roe

Figure 2-2. File Index Table Format for Tape Files (Sheet 1 of 6)

60459420 E 2-9

I

Word

0

1

2

4

5

6

Field

atjdn

a user

name

ptrpf il

ref

rep

dorg

lp

ouser

torg

do la

type

act

t-1

dolm

Description

Job descriptor number to which this file is attached, assigned to the
job for the life of the job in the system.

Owning user number, in binary notation.

File name used to assign the tapes.

Pointer into the proper block of the PFI for this entry relative to
the first block of the PFI. PFI=#FFFF for local files.

Number of times this file has been opened.

Retention period, in days.

Date this file was organized, in the format:

ddd

Subfield Description

Last two digits of the year. yy
ddd Number of days since the beginning of the year (1

through 366).

Local/permanent flag:

0 Permanent.
1 Local.

Originating user number.

System clock time, in seconds since midnight, at which this file was
originated.

Date of the last access to this file, in the same format as the dorg
field. (To access a file means to open it.)

File type:

0 Physical file.
2 Virtual code file.

Number of active I/O connectors for this file.

SJ"'::t~= ~!::;~!~
last opened.

.... .: - - .t - - - - - - ..l - - ~ - - - --- ~ -1 - _, _, •- •
....__, ..1-.L.1. O"-"--Vl.1.UO O..Ll.I.\...~ lll..LU.11..LC,lll,,..' Q\.. Wll.Lt.,;.11 l..llt:: .L.L.Lt:: wa:::;

Date the file was last opened with write access, in the same format as
the dorg field.

Figure 2-2. File Index Table Format for Tape Files (Sheet 2 of 6)

2-10 60459420 F

Word

6

7

8

Field

meat

Description

Present file management category:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file (formerly known as write-temporary file).
4 Magnetic tape file.
5 User-generated drop file.
6 System-generated drop file.
7 Batch file.
8 Link file.
9 Connected file.

#A Checkpointed output file.
#F Checkpointed input file.

tolm Time, in seconds since midnight, when this file was opened with write
access.

fact

oacs

Account number of the file in ASCII, left-justified with blank fill.

Owner's access permission for private files and pool boss' access
permission for pool files. For public files, oacs is set equal to
gacs:

B1 I B2 I B3 I B4 I B5 I Ba I B1 I BB

Bit Access Permitted

1-3 Reserved (ignored by the system).
4 Execute.
5 Modify.
6 Append.
7 Read.
8 Write.

ofa Original file accessibility character.

reel Reel number of the current volume.

exp Julian expiration date obtained from the first header (HDRl) label.

Figure 2-2. File Index Table Format for Tape Files (Sheet 3 of 6)

60459420 'E 2-11

Word

8

9

A

B

c

D

Field

opo

ova

mf n

plb

vsn

nvsn

rpb

lun

pvsn

mpru

sf o

ctf p

f sn

fmtp

Description

Open processing options:

Bit Processing Option

1 End-of-processing option. If O, the system automatically
switches volumes. If set, control is returned to the
user at end of tape.

2 Unused.
3 User error processing. If O, tape I/O errors are

returned to the operator. If set, control is returned to
the user if a tape I/O error occurs.

4-8 Unused.

Original volume accessibility character.

Multifile set name.

Index to the label buffer in a system table.

Volume serial number (VSN) for the currently assigned volume.

Number of VSNs assigned to this tape file.

Records per block.

Logical unit number; the ordinal in the tapes table, or 0 if the unit
is not assigned.

Index to the VSN list in a system table.

Maximum length of the physical record unit (PRU).

File organization:

0 Sequential.

Current file position. Refer to the tapes table.

File sequence number.

Format parameter.

:Ol.u1,;~iu~ cype:

0 SIL assumes the file was created before SIL was added to the
system; therefore, it enters default values in the SIL fields
of the file index entry.

2 Character type blocking (C). ·

Figure 2-2. File Index Table Format for Tape Files (Sheet 4 of 6)

2-12 60459420 E

Word

D

E

Field

mnr

pcvsn

rpo

rt

mxr

Description

Minimum record length; 24-bit length in number of bytes.

Index to the current place in the VSN list in MFPP.

Request processing options:

Bit Processing Option

1-10 Unused.
11 Error retry parameter. This field only applies when

reading the tape:

0 Standard error recovery processing takes place
when a hardware read/write error occurs.

1 Error inhibit; all hardware read/write errors are
ignored and processing continues.

12 Unused.
13 Read unconditional processing option:

0 The user is not allowed to read past the end of
information or the end of tape.

1 The user is allowed to read past the end of
information or the end of tape. This could cause
the tape to go off the reel.

14 Tape unload processing option (inhibit unload):

0 When the tape is released, the tape is rewound to
the load point and unloaded from the drive.

15-16

Record type:

1 When the tape is released, the tape is rewound to
the load point, but it is not unloaded from the
drive.

Unused.

0 Control word (W).
1 ANSI fixed length (F).
2 Record mark (R).
7 Undefined (U).

Maximum record length; 24-bit maximum length in number of bytes.

Figure 2-2. File Index Table Format for Tape Files (Sheet 5 of 6)

60459420 E 2-13

Word

F

Field

lproc

conv

vri

rmk

pc

Description

Label processing option:

0 Read labels.
1 Write labels.

Data conversion option:

0 There is no data conversion.
1 Convert data.

Variable rate index transferred to the descriptor block to be used for
variable rate accounting. Valid for virtual files only.

Record mark; 8-bit ASCII character (any character is valid).

Padding character; 8-bit ASCII character (any character is valid).

Figure 2-2. File Index Table Format for Tape Files (Sheet 6 of 6)

Table 2-1. File Disposition Specifications in the File Index Table

Destination Value Mnemonic Disposition

Any 0 None No disposition.

1 SC Scratch.

1!10 PU Punch.

1120 PR Any available line printer.

2-14 60459420 E

Table 2-2. File Characteristic Specifications in the File Index Table

Type Value Mnemonic Format

Internal characteristics 0 None Use internal characteristics default I (fiic field in word 9) (currently PA).

1 PA Eight-bit ASCII. If the f idc field
indicates a print file, the file has
free-form carriage control.

2 BI Binary.

3 AS Eight-bit ASCII. If the f idc field
indicates a print file, the file has
ANSI-defined carriage control.

External characteristics 0 None Default 29.
for punch files
(fiec field in word 9) 1 29 029 keypunch.

2 26 026 keypunch.

3 80 80-column binary.

60459420 H 2-15

MINUS PAGE
VSOS recognizes two types of files: virtual files, usually containing executable code, and
physical files, always containing nonexecutable data only. A virtual file is prefaced by at
least one 512-word block containing program execution and data access information to be used
by the operating system. This pref ace is known as the minus page and is created by the
operating system at load time. Physical files do not have minus pages.

The minus page of a virtual code file is created at load time to pass information such as
the entry point address, the length of the drop file, the code origin, data base locations,
and so forth. The operating system needs this information for starting program execution.
Once execution begins, the operating system uses the minus page to store the invisible
package, time-slicing data, I/O connection blocks to high-speed devices, maps of defined
virtual space, time-sharing data, and statistics relating to resource usage. If the program
execution terminates abnormally, the minus page is stored on the drop file and can be used
for debugging purposes. The original minus page remains on the virtual code file as
initialized at load time. In addition, drop files may contain a second minus page
(immediately following the first), which is a logical extension of the first minus page.

An executing controllee cannot access its minus page except via system messages. A
controllee can execute the SIL call Q5GETMPG to copy it's minus page. Otherwise, the minus
page is like any other part of a file, and can be accessed explicitly or implicitly.

The minus page has the format shown in table 2-3. Individual words are described in the
table, with the contents of the invisible package shown in appendix E.

The working set pager information buffer in the minus page is used by PAGER to store
information about a task's working set. The buffer occupies words #29 through #31.

The leftmost 16 bits of word #88 or #136 of the first minus page contains the second minus
page pointer. If this field contains a 0 or #FFFF, there is no second minus page.
Otherwise, this field contains the physical page address of the second minus page.

2-16 60459420 E

Words

Decimal

0 - 39

40

41 - 49

so - S2

S3, S4

SS, S6

S7, 58

59 (bits 0 - 15)

59 (bits 16 - 23)

59 (bits 24 - 31)

59 (bits 32 - 63)

60

61

64 - 123

124 - 127

128 - 131

132 - 135

Table 2-3. Minus Page Format (Sheet 1 of 2)

Hexadecimal t

0 - 27

28

29 - 31

32 - 34

3S, 36

37, 38

39, 3A

3B

3B

3B

3B

3C

3D

40 - 7B
(2 - D9)

7C - 7F

80 - 83

84 - 87

Contents

Executing program invisible package.

Unused.

Working set pager information buffer.

Program restart temporary buffers.

Time information required by the operating system
for alternator and message management.

Same as words #32 to #34.

Used by application accounting.

Error code saved during abnormal termination control
processing.

Device number of the device causing the fatal PAGER
I/O error.

Pack number of the device causing fatal PAGER I/O
error.

Unused.

Buffer flushing, ATC process, drop file and reload
status information.

Database address for buffer flushing.

1/0 connectors for user disk or tape files.

If controllee is dynamic, this is the 1/0 connector
for the SHRLIB (#F).

I/O connector for the source file (#10).

1/0 connector for the drop file (#11).

twords shown in parentheses are second minus page values.

604S9420 E 2-17

Table 2-3. Minus Page Format (Sheet 2 of 2)

Hexadecimalt

BB

BB

BB

BB

B9

B9

BA

BA

BA

BB

BC - 96

97 - 9B

99

9A - 9C

9D - 9F

AO - AF
(DA - lOF)

BO - FF
(110 - lFF)

100 - lFF

Contents

Second minus page pointer.

Reserved.

Unused.

Directory for bound explicit map entries.

Unused.

Directory for bound implicit map entries.

Third minus page pointer.tt

Unused.

Directory for drop file map entries.

System error code.

Time usage and accounting entries.

Q5TERM information for buffer flushing.

Drop file size.

Unused.

Reserved for installation.

Bound explicit maps (of file opened for explicit
I/O).

Bound implicit maps (of file opened for implicit
I/O).

Drop file map.

twords shown in parentheses are second minus page values.
ttThe format of the third minus page is:

2-lB

Word 0 to 340 contains drop file map full-word entries.
Word 341 to 511 contains drop file mao half-word entriP~.

60459420 H

1/0 CONNECTORS

Words #40 through #87 of the first minus page contain the first 18 I/O connectors. Words #2
through #D9 of the second minus page contain the remaining 54 I/O connectors. An I/O
connector (IOC) is a four-word block used to establish a link between the program and an I/O
device. The operating system also uses I/O connectors to keep track of the activity of a
specific file and a program's use of that file. Each time a program issues an OPEN FILE
request, an I/O connector is created and initialized by the system with information provided
in the request and in the file index table.

Each program can have up to 70 connectors for user files, numbered 0 through #F and 1tl2
through #47. The I/O connector for the program's source file is numbered #10, and the I/O
connector for the program's drop file is #11. The I/O connector for the system shared
library file, if used, is #OF. I/O connectors numbered 0 through #F and #12 through #47 can
be allocated by the user or automatically allocated by the system.

Formats of the I/O connectors are illustrated in figures 2-3, 2-4, and 2-5. The connector
for a mass storage file opened for explicit input and output is shown in figure 2-3; the
connector for a mass storage file opened for implicit input and output is shown in
figure 2-4. The connector for a tape file is shown in figure 2-5.

In figure 2-4, when the name field contains a drop file name, the fourth word of the I/O
connector serves the same purpose as the second word of a bound implicit map entry for a
source file.

0

2

3

Word

0

1

0

m 1111
c ~ t a
t 4 e 2

2
fsto

errno
8

tUnused.
A pattrn
B gap
C fault
D lgpg
E extf

Field

name

meat

63

name
64

en r 0

hpa pbc t g~ w acs I n
24 20 2t~ 5 v 2

mfs t IA!B CfD
1 1 1

Et wda

16 24 3 1 1 1 1 1 1 15

unused bl en
48 16

Description

Name of the file in ASCII. File names must be in the format described
in chapter 3, File Concepts.

File management category:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file (formerly known as write-temporary file).
4 Magnetic tape file.
5 User-generated drop file.
6 System-generated drop file.
7 Batch file.

Figure 2-3. Format of I/O Connector for a Mass Storage File
Opened for Explicit I/O (Sheet 1 of 3)

60459420 G 2-19

I

Word Field

mode

hpa

pbc

cont

no ext

acs

pr iv

own

2 fsto

mf s

pattrn

gap

fault

lg pg

2-20

Description

Mode of input/output:

0 Open for explicit I/O.
1 Open for implicit I/O.

Page address of the highest page accessed.

Page byte count; number of bytes written to user's dayfile.

Contiguous flag. Set if file is contiguous.

No extension flag. Set if file is not extendable.

File access permissions. This 5-bit field is treated as five 1-bit
fields with each bit specifying the associated permission:

Bit Hex. Value Description

x 10 Execute access permitted.
m 8 Modify access permitted.
a 4 Append access permitted.
r 2 Read access permitted.
w 1 Write access permitted.

Privileged open designator:

0 Regular open.
1 Privileg~d open.

File ownership (refer to File Concepts, chapter 3). The values are:

0 Private.
1 Public.
2 Pool.

File segment table ordinal.

Minimum file size to which this file needs to be extended. Set by
XIOCALL when the extf flag is set.

Set if need to fault in the unused portion of the I/O buffer for
patterning.

Set if GAP patterning needs to be done.

Flag bit. Set if FC=llf 500 call will be reissued after PAGER I/O is
complete.

Large page flag bit. Set only if the file is to be extended with
1 arge pages •

Figure 2-3. Format of I/O Connector for a Mass Storage File
Opened for Explicit I/O (Sheet 2 of 3)

60459420 F

Word

2

3

60459420 G

Field

extf

ptr

errno

Description

Extend flag bit. Set if the file needs to be extended.

For a privileged open file, the owner's user table (UT) entry or the
pool list table (PLIST) entry number.

Error number returned from EXTENDF call.

blen Length of I/O buffer.

Figure 2-3. Format of I/O Connector for a Mass Storage File
Opened for Explicit I/O (Sheet 3 of 3)

2-20.1/2-20.2

I

0

2

3

al

Word

0

1

0

m m
c 0
a d t
t4 e2 2

fsto

unused

tUnused.

Field

name

meat

mode

hpa

pbc

cont

no ext

acs

name

hpa pbc
24 20

1 e
mfs t gx t

16 24 6 g l 1
11

con len
13 3 24

unused vba

Description

63

64
c n p 0

t g 0 r w
e acs i n

2 t1 ~1 5v1 2

ptr
15

lfa
24

DROP
FILES

NON DROP
FILES

Name of the file, in ASCII. File names must be in the format
described in File Concepts (chapter 3).

File management category:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file (formerly known as write-temporary file).
4 Magnetic tape file.
5 User-generated drop file.
6 System-generated drop file.
7 Batch file.

Mode of input/output:

0 Open for explicit I/O.
1 Open for implicit I/O.

Page address of the highest page accessed.

Page byte count; number of bytes written to user's dayfile.

Contiguous flag. Set if file is contiguous.

No extension flag. Set if file is not extendable.

File access permissions. This 5-bit field is treated as five 1-bit
fields with each bit specifying the associated permission:

Bit

1
2
3
4
5

Hex. Value

10
8
4
2
1

Description

Execute access permitted.
Modify access permitted.
Append access permitted.
Read access permitted.
Write access permitted.

Figure 2-4. Format of I/O Connector for a Mass Storage File Opened
for Implicit I/O (Sheet 1 of 2)

60459420 G 2-21

I

I

Word Field

1 priv

own

2 f sto

mf s

lg pg

extf

ptr

3 con
(drop
files)

len

lfa

Description

Privileged open designator:

0 Regular open.
1 Privileged open.

File ownership (refer to File Concepts, chapter 3). The values are:

0 Private.
1 Public.
2 Pool.

File segment table ordinal.

Minimum file size to which this file needs to be extended. This field
is set by PAGER when the extf flag is set.

Large page flag bit; set only if the file is to be extended with large
pages.

Set to 1 by the operating system if the file needs to be extended.

For a privileged open file, the owner's user table (UT) entry or the
pool list table (PLIST) entry number.

For a drop file, a control field with the following format:

cl

Subfield

cl=l
c2=1
c3=0
c3=1

c2 c3

Description

Write access is permitted.
Read access is permitted.
File is contained on small pages.
File is contained on large pages.

Otherwise, this field is O.

For a drop file, the length of the file, in blocks. Otherwise, this
field is o.

For a drop file, the logical mass storage sector address of this
file's first page. Otherwise, this field is O.

3 vba Virtual block address of the start of the file. Zero if the file is
not mapped in from the start of the file. (non-

drop
files)

Figure 2-4. Format of I/O Connector for a Mass Storage File Opened
for Implicit 1/0 (Sheet 2 of 2)

2-22 60459420 G

Word

0

1

0

0

m
0 m

meat d t c
e

4 2 2 2

2 opo

8

3

t Unused.

Field

name

meat

mode

me

flags

flags 63

name

64

t I call lsfnc lun acs t

2 4 25 8 8 5 3

nor !call

8 48

mpru fmtp

32 32

Description

Name of the file in ASCII. File names must be in the format described
in File Concepts, Chapter 3.

File management category:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file (formerly known as write-temporary file).
4 Magnetic tape file.
5 User-generated drop file.
6 System-generated drop file.
7 Batch file.

Mode of input and output:

0 Open for explicit I/O.
1 Open for implicit I/O.

Reserved.

Status flags:

errb wvsb syop

Bit Name

wrb

Description

1
2

3
4

errb
wvsb

syop
wrb

An error was returned for at least one call.
Set by RESIDENT if all I/O has completed, but
virtual system completion routine has not run.
Set if the system is processing OPEN.
Set if a write was issued for this file.

Figure 2-5. Format of I/O Connector for a Tape File (Sheet 1 of 2)

60459420 E 2-23

Word Field Description

lcall Physical word address of the last outstanding request.

lsfnc Last subfunction issued for this tape file.

lun Logical unit number. This field contains the tapes table ordinal.

acs Access permission:

1 Write access only is permitted.
2 Read access only is permitted.
3 Read and write access are permitted.

2 opo Open processing options. Refer to the OPEN FILE system message.

nor Number of outstanding requests.

tcall Virtual bit address of the first outstanding request or top call.

3 mpru Maximum PRU size.

fmtp Format parameters as defined in the TAPE MANAGEMENT system message.

Figure 2-5. Format of I/O Connector for a Tape File (Sheet 2 of 2)

60459420 E

MAP DIRECTORIES

Words #88 through #8A of the first minus page contain map directories. Each map directory
contains information relating to the location and length of its associated file map. Each
directory occupies the second half-word of its location in the minus page. For the first
minus page, the bound explicit map directory is at word #88; the bound implicit map
directory is at word #89: and the drop file map directory is at word #8A. Each directory is
formatted as shown in figure 2-6. For the second minus page, the bound explicit map I
directory is at word O, and the bound implicit map directory is at word 1.

0 63

non map directory information count of pointer to first entry

28
entries

12
of this type of map

24

Figure 2-6. Map Directory Format

60459420 G 2-25

MINUS PAGE FILE MAPS

The file maps in the minus pages associate files with physical mass storage areas. For
files opened for implicit I/O, the maps associate physical mass storage areas with virtual
address areas. Each time a program opens a file for explicit I/O, one entry is made in a
bound explicit map. The MAP message (f=#0004) places entries in a bound implicit map.

Bound Explicit Maps

I Words #AO through #AF of the first minus page and #DA through #!OF in the second minus page
contain bound explicit maps. These maps are related to files opened for explicit I/O
(mode=O). Each file that has been opened for explicit I/O corresponds to one map entry; the
files are identified by their I/O connector numbers. The format of the bound explicit map
entry is shown in figure 2-6.1.

0

01 unused

~ Field

0 .. con

len

lfa

13hl

Flag bits, in

c1 c2

Subfield

cl=l
c2=1
c3=0
c3=1

ten

241

Description

the following format:

c3

Description

Write access is permitted.
Read access is permitted.
File consists of small blocks.
File consists of large blocks.

Otherwise, the field is O.

Length of the file, in blocks.

63

lfa

241

Logical file address of the first block of this segment of virtual
space.

Figure 2-6.1. Bound Explicit Map Entry Format

2-26 60459420 G

Bound Implicit Maps

Words #BO through #FF of the first minus page and #110 through #lFF in the second minus page
contain bound implicit maps. These maps are related to files opened for implicit I/O
(mode=l); such files can consist of discontinuous virtual address ranges. Up to 160 virtual
address space segments can be mapped simultaneously. All the segments can be associated
with one I/O connector, or each segment can be so associated. The format of a bound
implicit map entry is shown in figure 2-7.

In bound implicit map entries, all first words are in the first half of the map space, and
all second words are in the second half. Entries are sorted by ascending virtual page
address; blank entries are squeezed out. Observe that both minus pages have a first half of
the map space so that no map entry is split between the two minus pages.

0

fsto

2 unused

Word Field

f sto

ioc

vpa

2 nops

con

len

lfa

63

ioc unused vpa

16 8 7 33
n
0
p
s

con len lfa

12 1 3 24 24

Description

File segment table ordinal.

I/O connector number associated with this segment.

Virtual page address of the first block of this segment.

Flag bit indicating there is not yet physical space associated with
this map entry.

Flag bits in the following format:

c1

Subfield

Cl=l
C2=1
C3=1

c2 c3

Description

Write access permitted.
Read access permitted.
File consists of large pages.

Length of this segment in blocks.

Logical file address of the first block of this segment.

Figure 2-7. Bound Implicit Map Entry Format

60459420 E 2-27

DROP FILE MAP

I Half of the first minus page and the whole third minus page are a drop file map. In the
case of a free-space attachment to a file, the defined space is allocated a part of the drop
file on which it can reside if it becomes necessary to swap the attachment out. Free-space
attachments are cataloged in the drop file map in much the same way that other kinds of
virtual space are cataloged in the bound implicit map.

I Each drop file map entry consists of one full word and one half word. Up to 511 entries can
be made in the drop file map, and each entry can have up to 32 associated pages. This

I allows for up to 511 noncontiguous address spaces to be part of the drop file.

I The first and third minus page have 170 and 341 full word map entries respectively. The
format of these entries is shown in figure 2-8. The 170 half-word entries that follow the
full-word entries correspond as shown in figure 2-9. Each half-word entry consists of 32
bits, 1 bit per page. If the bit is O, the page is either undefined or exists in main
memory or on the paging device; if the bit is 1, the page has been written to mass storage
on the drop file. Bit 0 or 32 corresponds to page 1 of a segment; bit 31 or 63 corresponds
to page 32 of a segment.

0

I
Word Field

0 lf a

pgsz

length

vpa

lfa length I
1~

Description

63

vpa

Logical file address of the first block of this segment of virtual
space.

Size of the pages in this segment of virtual space:

0 Small pages.
1 Large pages.

Length of this segment of virtual space in blocks.

Virtual block address of the first page in this segment of virtual
space.

Figure 2-8. Drop File Map Full-Word Entry Format

2-28 60459420 G

0 32 63

1 2
32 32

3 4
32 32

5 6
32 32

4

7 '
107 108

32 32

109 10A
32 32

Figure 2-9. Drop File Map Half-Word Entry Format

60459420 E 2-29

TAPES TABLE
The tapes table holds pertinent information about the tape units and the volumes which are
in use on them. There is one entry per unit. The tapes table entry is returned to the user
in the TAPE FUNCTION system message after the completion of a request. The tapes table I entry is also returned to the user in the OPEN, CLOSE, and TAPE SWITCH VOLUME system
messages if the user supplied a buffer. Refer to chapter 4 for more detailed information on
use of this table.

The format of the tapes table is shown in figure 2-10.

0 63

I
t uato t db ioc rpo jdt lbsn

4 8 4 8 8 16 8 8

2 pzip bzip tad1 tad2 pu dev cf I gs stun
8 8 8 8 4 12 8 8

3 lfn
64

4 fsn sn f we fre pepr wcr rcr
16 16 8 8 8 4 4

5 time
64

6 reel vsn
16 48

7 bid1 bid2 bid3 bid4
16 16 16 16

8 bid5 bid6 bid7 bid8
16 16 16 16

9 bid9 bid10 bid11 bid12
16 16 16 16

A fc abc ctfp cbc
8 24 8 24

8 twre trre stce dtce
16 16 16 16

r
elflg pruct tflgs t cml den I t d y

8 24 16 4 4 4 3 b
c

tUnused.

Word Field Description

I 1 uato User activity table ordinal.

db Descriptor block number; nonzero if opened.

ioc Input/output connector.

Figure 2-10. Tapes Table Format (Sheet 1 of S)
2-30 60459420 F

Word Field

1 rpo

jdt

lbsn

2 pzip

bzip

tadl

tad2

pu

dev

Description

Request processing options:

Bit Description

32-41 Unused.

42 Error retry parameter. This field only a~plies when
reading the tape:

0 Standard error recovery processing takes place
when a hardware read/write error occurs.

1 Error inhibit; all hardware read/write errors are
ignored and processing continues.

43 Unused.

44 Read unconditional processing option:

0

1

The user is not allowed to read
information or the end of tape.
The user is allowed to read past
information or the end of tape.
the tape to go off the reel.

past the end of

the end of
This could cause

45 Tape unload processing option (inhibit unload):

46-47

0 When the tape is released, it is rewound to the
load point and unloaded from the drive.

1 When the tape is released, it is rewound to the
load point, but it is not unloaded from the drive.

Unused.

Job descriptor table ordinal.

Last boat sequence number; each boat is assigned a sequence number.
lbsn is the sequence number for the last request on this unit.

Primary zip for this unit.

Backup zip for this unit.

First tape access driver NAD number.

Second tape access driver NAD number; 0 if single access.

Physical unit (O through #F).

Device unit number (#100 through #lFF).

Figure 2-10. Tapes Table Format (Sheet 2 of 5)

60459420 E 2-31

Word

2

3

4

5

6

7, 8,
9

Field

cflgs

stun

lfn

f sn

sn

f we

f re

pepr

wcr

rcr

time

reel

vsn

bidl
through
bidl2

Central flags:

Bit

48
49-50

51
52

53-54
55
56

Name

PDWNB
BDWNB
TlDB
T2DB

SACB

Status of the unit:

Bit

56
57-59
60-62

61
62
63

Name

RERB
STRES
ASNB
ROB
OWNB
OFFB

Description

Description

Status of primary inboard NAD.
Status of backup inboard NAD.
Status of tape access NAD 1.
Status of tape access NAD 2.
Unused.
Single access bit.
Unused.

Description

Resident detected error.
Free.
Assign bit.
Read-only bit.
Down bit.
Off bit.

Logical file name; set if unit is assigned.

Current file sequence number for an ANSI labeled tape; 0 for
unlabeled/nonstandard tape.

Current file chapter number for an ANSI labeled tape; 0 for
unlabeled/nonstandard tape.

Fatal write errors.

Fatal read errors.

Positioning errors per reel.

Number of consecutive reels in which write recoverable errors exceeded
the threshold.

Number of consecutive reels in which read recoverable errors exceed
the threshold.

Length of time the unit was assigned, in microseconds.

Reel number of the current volume.

Volume serial number of the currently assigned reel.

The block identifier of the eleventh through the last good PRU on tape.

Figure 2-10. Tapes Table Format (Sheet 3 of 5)

2-32 60459420 E

Word Field

A f c

abc

ctfp

cbc

B twre

trre

stce

dtce

Description

Failure code. This field is set when a unit exceeds an error
threshold or because the unit got a nonfatal or fatal marginal drive
indicator (MDI). The system automatically degrades unit status at
unload time if fc is set. fc is cleared when the unit is brought up:

1 Nonfatal MDI (degraded to read only).
2 Erase/write errors exceeded the threshold on consecutive

reels (degraded to read only). Write threshold and
consecutive reel count are installation parameters.

3 Erase/read errors exceeded the threshold on consecutive reels
(degraded to down). Read threshold and consecutive reel
count are installation parameters.

4 Positioning errors exceed the threshold on one reel (degraded
to down). Positioning threshold is an installation parameter.

Absolute physical record unit (PRU) count including tape marks from
the beginning of the volume. abc is a count of the number of
interblock gaps encountered on the tape. If abc=O, the tape is at
load point.

Current tape file position flags. If ctfp=O, the tape is positioned
in the middle of a logical record unit (LRU). The only legitimate
combination of bits is end of group (EOG) and end of information (EOI).

Bit

Bl-B4
BS
B6
B7
BS

Tape File Position

Unused.
Beginning of information.
End of LRU.
End of group.
End of information.

Current PRU count from the beginning of information. This PRU count
does not include label PRUs if the tape is labeled.

Total accumulation of recoverable write errors in the use of this
volume. This count is put in the dayfile at unload time and cleared
at the next reel mount time.

Total accumulation of recoverable read errors in the user of this
volume. This count is put in the dayfile at unload time and cleared
at the next reel mount time.

Total accumulation of single-track, hardware-corrected errors. This
count is put in the dayfile at unload time and cleared at the next
reel mount time.

Total accumulation of double-track, hardware-corrected errors. This
count is put in the dayfile at unload time and cleared at the next
reel mount time.

Figure 2-10. Tapes Table Format (Sheet 4 of 5)

60459420 E 2-33

Word

c

Field Description

elflg Error log flags.

pruct PRU count.

tf lgs Tape flags.

cml Conversion code for the label:

0 Unknown.
1 ASCII.
2 EBCDIC.

denl Density of the label:

1 6250 bpi.
2 1600 bpi.

rdyb Ready bit. This field is set/cleared by the scan when the tape is
ready/not ready.

Figure 2-10. Tapes Table Format (Sheet 5 of S)

2-34 60459420 E

FILE CONCEPTS

The file concepts used in VSOS are described in volume 1 of this reference manual. This
chapter describes additional file specifications used in the system messages described in
chapt.er 5.

FILE NAMES

A file has only one name associated with it; it is both its permanent file name and its
logical file name. The file name can be one to eight letters and digits long, and must be
left-justified and blank-filled within the field. User-created file names cannot contain
special characters and must begin with a letter. System-created file names can contain any
character; system-created drop files must begin with one digit. The conventions used for
naming drop files are described in volume 1 of this reference manual.

FILE OWNERSHIP

Privileged users have ownership rights over all files except local files. A nonprivileged
user has ownership rights determined by the values in file index table fields as shown in
table 3-1. The file index table is described in chapter 2. The GIVE FILE system message
can change file ownership.

The file owner specifies the file attributes. To permanently change file attributes, the
appropriate fields in the·file index table must be changed (refer to the CHANGE FILE
ATTRIBUTES system message in chapter 5).

3

The three file ownership categories are private, pool, and public. Each private file
cataloged in the file index table belongs to a particular user number and account
identifier. When a private file is given by one user to another, the user number associated
with the file changes immediately. However, the account identifier does not change until
the new owner references the file• The system accounting tables indicate the total amount
of time that the original account owned the file.

Calls to the POOL FILE MANAGER system message perform the same functions as the pool file
utilities and SIL calls described in volume 1. The GIVE FILE system message can give files
to a pool; the DESTROY FILE system message can destroy pool files.

Public files are owned by user number 000000, signifying system ownership. The list of
public files is controlled by the installation administrator or by privileged tasks.

60459420 F 3-1

Table 3-1. File Index Table Fields that Affect File Ownership

File
Category

Public

Pool

Private

File Index
Table Field

buser = 0

POOLNAME = poolname

gacs = 0 and no
access directory

gacs :/: 0

Access directory exists

Nonprivileged
User

All users

Pool boss

Originating usert

All users

Privileged
User

Users according to pool access
list of user numbers

Originating usert

Originating usert All users

Originating usert Users in access directory and
originating user

toriginating user number determined by the user field of the file index table.

FILE ACCESS

File access is controlled by the file ownership category, file access permission fields, and
security level in the file index table entry. All file references require the task to be at
an equal or higher security level than the file which the user is trying to access.
Assuming this requirement is met, all users can access public files; users given access to a
pool can access files in the pool; the file owner can access private files. The file owner
can also give other users access to a private file. Privileged users can access any
permanent file on the system, regardless of the access permissions.

Read, write, append, modify, and execute access are controlled by the permission parameter,
which is set either when the file is created or by subsequent permission calls. A file with
write access can be written into by a user program or by the operating system.

An attempt to write into a read-only file produces a fatal error. The only exception is
that the OPEN FILE message (f=#0003) can be used to indicate that during subsequent
execution in the task, pages of read-only files can be mapped with MODDROP (write-temporary)
access.

When the user opens a file, he requests read, write, modify, execute, or modify access. The
system checks if the requested access is allowed for the file by checking the appropriate
access permissions. For example, if write permission has not been specified for the file,
write access cannot be granted to the file. If no access is explicitly requested, the
default access is as many permissions of read and/or execute as the user is granted.

Each private file access defaults to wait for a file, if it is already attached in such a
way that file access cannot be shared.

PRODUCTION FILES

A site may use additional security measures which include designating executable files as
production or nonproduction files and users as production or nonproduction users.
Production users can only execute production files. Refer to the Installation Handbook for
further discussion.

3-2 60459420 H

FILE MANAGEMENT CATEGORIES

The management category field in the file index is a combination of device type, disposition
information, and file origin information. This file index table entry determines the system
management of the file. The possible category designations are:

• Mass storage file

• Scratch file

• Output file

• Drop file

• MODDROP file

• File connected to a terminal

• Tape file

MASS STORAGE FILES

The originating user controls the creation and disposition of mass storage files. VSOS
protects mass storage files from access or destruction by other nonprivileged users.

SCRATCH FILES

Only a task can create scratch files. Scratch files exist during the originating task's
activity. When the task terminates normally, all scratch files are automatically
destroyed. When the operating system terminates the task and saves its drop file, scratch
files are saved. A CLOSE FILE system message specifying a scratch file destroys the file.
All scratch files have read and write access.

Scratch files are a subset of local files. Local files exist for the duration of the user
job; scratch files exist only for the duration of the task. Scratch files can be created
only on mass storage.

6045Y420 F 3-3

I

I

OUTPUT FILES

Output files contain information suitable for processing by an output device, such as a
printer, card punch, or microfilm device. Only a user task or utility can create an output
file. When one of the following occurs for batch jobs, VSOS gives all output files with
valid disposition codes to privileged system tasks for output processing.

• The task terminates normally.

• The task issues a CLOSE FILE (f=#OOOS) message.

• The task issues a TERMINATE (f=#0006) message.

After output files are processed, they are destroyed.

DROP FILES

VSOS creates a drop file for each task called into execution. If a local file already
exists which has the same name as the target file name, the system destroys the existing
local file and creates a new drop file. The executing task is called the source file. Its
drop file contains modified pages of the source file, free space, and write-temporary
files. Modified pages for other files are written directly to the re$pective file. Drop
files may exist on mass storage or tape, but must exist on mass storage when used in the
execution of a controllee. Volume 1 gives further description of drop files and their
naming conventions.

MODDROP (WRITE-TEMPORARY) FILES

A MODDROP file is a read-only file that has been modified while paged in to central memory.
The modified pages cannot be paged back to the read-only file, and so are paged to the drop
file. Subsequent references to those pages access the modified version from the drop file.
To reference the original read-only version, the modified pages must be removed from the
drop file. Only files being used implicitly can be MODDROP files. This form of access is
selected when the file is opened.

FILES CONNECTED TO A TERMINAL

Files connected to a terminal are useful for small amounts of interactively entered I/Os.
The task may create, open, and destroy such files through virtual system calls, but must
perform using SIL subroutines. These files may be used only by a level-2 or lower
controllee execution.

TAPE FILES

A tape file is a file that has been stored on tape rather than in mass storage. The system

I treats tape files as a separate file management category. (Refer to chapter 4, Tape
Management.)

3-4 60459420 F

FILE 1/0
As described in volume 1, VSOS performs two types of input/output, implicit and explicit.
The type of input/output is specified in the OPEN call. The type of I/O that may be done to
a file is dependent on the device type.

The EXPLICIT I/O (f=#FSOO) and TAPE FUNCTION (f=#F406) system messages perform explicit
I/O. With a single system request, these messages can transfer one or more blocks between
the specified buffer and a storage device. The system locks down the buffer in memory while
the peripheral request is active; it cannot be paged out while I/O is going on. More system
action is required to prepare for explicit than for implicit I/O.

The mass storage EXPLICIT I/O message (f=#F500), a single I/O request, may transfer up to 24
small or large pages.

The TAPE FUNCTION message (f=#F406) performs explicit tape I/O. The buffer cannot span more
than 48 small or large pages. Small and large pages cannot both exist in the buffer at the
same time.

Implicit I/O is performed only with mass storage files. With implicit I/O, information
transfers directly between a storage device and its current location in central memory. The
transfer occurs when the user causes an access interrupt by referencing a page of data or
code not in memory. If the virtual page has been previously associated with physical space
via the MAP function, the system transfers the data between memory and the physical device.
If a virtual-to-physical relationship has not been previously established, the system
defines the virtual page in free space so that it becomes an extension of program space.

Files connected to terminals do not use explicit or implicit I/O messages. This type of I/O
is a SIL feature. SIL translates QSGETN and Q5PUTN calls into Q5GETMCR and QSSNDMCR calls
and uses the message processing facilities in the system.

VSOS recognizes two types of file addressing, physical and virtual.

PHYSICAL FILES

A physical file is accessed by physical addresses. It is, by definition, a data file. It
cannot be executed. File I/O can be implicit or explicit. A physical file never has a
minus page.

VIRTUAL FILES

A virtual code file is a controllee file produced by the LOAD utility. Its first block is
its minus page.

60459420 F 3-5

I

I

TAPE MANAGEMENT 4

TAPE ASSIGNMENT

Whenever a tape is mounted, the system checks for labels. If the tape is labeled, the
system records the VSN from the VOLl label in the system tapes table. If a requested VSN
matches a VSN in the tapes table, the system automatically assigns the tape to the
requesting job. If there is no match, the system suspends the job until the tape with the
requested VSN is mounted. If a tape is unlabeled, the operator must type in a VSN for the
tape. If the job did not specify a VSN when it requested the tape file, the sytem requests
that the operator specify a VSN for the job. When the job and the tape unit have a matching
VSN, the tape unit is assigned to the job. Observe that assignment of a NOS tape can occur
only if the VSN is six characters long.

RECOVERY

VSOS handles tape recovery for the physical record unit (PRU) and for user errors in the
following manner.

PRU RECOVERY

The system PRU recovery of bad reads and writes of tapes is done at the driver level. The
advanced tape system (ATS) features such as controlled backspace, selectable clipping
levels, and block ID identification are employed. For group-encoded (GCR) tapes,
single-track write correction and dual-track read correction are used (single-track write
correction can be disabled by the user).

A block ID is a hardware-generated identifier for use in positive positioning of tape during
error recovery. There is 1 identifier per PRU and the last 12 identifiers are kept in the
tapes table. The absolute block count is the count of PRUs, including tape marks since load
point. The current block count is the count of PRUs since the previous label group. The
block IDs and block counts are kept current on a volume-by-volume basis and are cleared on a
rewind or unload. The block IDs are discarded one PRU at a time for a backspace.

USER ERROR RECOVERY

If the user selects user error processing (UEP) at open time, the system returns control to
the user after a tape I/O error (#100 through #lFF) or tape subsystem error (#200 through
#2FF) occurs. Observe that PRU recovery at the driver level has not been able to recover
this error. The user can choose to skip the failing data.

60459420 E 4-1

SYSTEM LABEL PROCESSING

VSOS processes both nonstandard and ANSI standard labeled tapes.

NONST_ANDARD LABELS

The system permits the user to process nonstandard labels if the installation parameter IP
TPNSL equals 1. The user must request the tape with a label type of nonstandard. Then it
is possible for the user to supply labels in the OPEN FILE system message. A nonstandard
label consists of 80-character PRUs delimited by tape marks as in ANSI standard label. The
only difference in system processing of standard/nonstandard labels is the system omits any
verification of fields for nonstandard labels. Also, the system does not position to
nonstandard labels. The system does not inhibit ANSI standard labels from being processed
as nonstandard if the installation parameter IP TPNSL equals 1.

ANSI LABELS

ANSI labels conform to the American National Standard Magnetic Tape Labels for Information
Interchange X3.27-1978.

VSOS processes labels at level 2. All labels are 80 characters long. The first three
characters of an ANSI label identify the label type. The fourth character indicates a
number within a label type. Table 4-1 shows a summary of each label type, name, function,
and whether or not it is required.

Required Labels

The VOLl, HDRl, and EOFl labels are required on all ANSI-labeled tapes. In addition, an
EOVl label is required if the physical end-of~tape reflector is encountered before an EOFl
label is written or if a multifile set is continued on another volume. In the descriptions
of the contents of these labels, n is any numeric digit and a is any letter, digit, or any
of the special characters of the center four columns of the code table in ANSI X3.4-1977
except position 5/15. Refer to appendix A for this code table.

Some fields are optional. An optional field which does not contain the designated
information must contain blanks. Fields which are not described as optional are required
and written as specified. All n-type fields are right-justified and zero-filled, and a-type
fields are left-justified and blank-filled.

For reading labels, nonzero fields in the user HDRl label buffer are compared with .the tape
HDRl label until a match occurs.

For writing labels, the fields in the user label buffer are verified for a-type or n-type as
required; however, only the file sequence number field in the label buffer is used to
position to the tape HDRl label.

4-2 60459420 E

Table 4-1. Tape Label Format

Label Required/
Identifier Number Label Group Name Label Set Name Optional

VOL 1 Beginning-of-volume Volume header Required
or beginning-of-file chapter

UVL 1-9 User volumes Optional

HDR 1 File header Required

HDR 2-9 File header Optional

UHL User header Optional

HDR 1 Beginning-of-file Beginning-of-file Required

HDR 2-9 Beginning-of-file Optional

UHL User header Optional

EOF 1 End-of-file End-of-file Required

EOF 2-9 End-of-file Optional

UTL t User trailer Optional

EOV 1 End-of-file chapter End-of-volume Required
when a
file
crosses
tape
volume

EOV 2-9 End-of-volume Optional

UTL t User trailer Optional

t An a-type character defined in the Required Labels section.

60459420 E 4-3

Volume Header Label (VOL!)

The volume header label must be the first label on a labeled tape. All reels begin with a
VOL! label. The user can use the existing VOL! label or write a new VOL! label. In either
case, the volume accessibility character in the tape VOL! label must match the original
volume accessibility (ova) in the TAPE MANAGEMENT Beta. If the user is writing a new VOL!
label, UVL labels can also be written.

The system processes the following fields in the VOL! label.

• Label identifier

• Label number

• Volume identifier

• Accessibility

• Label-standard version

The format of the volume header label is shown in figure 4-1.

4-4 60459420 E

0 63

VOL 1 vsn
24 8 32

2 vsn va reserved
16 8 40

3 reserved
64

4 reserved
64

5 reserved owner identifier
40 24

6 owner identifier
64

7 owner identifier reserved
24 40

8 reserved
64

9 reserved
64

10 reserved lsv
56 8

Word Field Description

1-2 vsn Volume serial number assigned by the owner to identify this physical
reel of tape.

2 .va Accessibility. An a-type character which indicates the restrictions,
if any, on who may have access to the information on the tape. A
blank means unlimited access.

5-7 owner Any a-type characters identifying the owner of the physical volume.
identifier

10 lsv Label-standard version:

3

blank

Labels ·and data formats on this volume conform to the
requirements of the ANSI X3.27-1978 standard.
Labels and data formats on this volume require the
agreement of the interchange parties.

Figure 4-1. VOL! Format

60459420 E 4-5

First File Header Label (HDRl)

The first file header label must appear before each file. When a file is continued on more
than one volume, the file header is repeated after the volume header label on each new
volume for that file. If two or more files are grouped in a multifile set, each HDRl label
indicates the relative position of its associated file within the multifile set.

If writing labels, the system first positions the tape using only the file sequence number.
If the file sequence number is 0, it defaults to the current tape file sequence number plus
one (next file). In order to extend a multifile set, the file sequence number must be set
to 9999. For this case, the system positions the tape after the last file in the multifile
set and sets the file sequence number to the last member sequence number plus one.

The system processes the following fields in the HDRl label.

• Label identifier

• Label number

• File identifier

• File set identifier

• File chapter number

• Expiration date

• Accessibility

The format of the first file header label is shown in figure 4-2.

4-6 60459420 E

2

3

4

5

6

7

8

9

10

Word

1-3

3-4

4

4-5

0 63

HOR 1 file identifier
24 8 32

file identifier
64

file identifier set identifier
40 24

set identifier file section number fsn

grn
8

system
code

8

Field

file
identifier

set
identifier

file
section
number

f sn

24 32 8

fsn generation number grn
24 32 8

creation date unused
48 8

expiration date fa block count
40 8 16

block count system code
32 32

system code
64

reserved
56

Description

Up to 17 a-type characters used to identify the file.

Up to six a-type characters used to identify the file set. To
conform to the ANSI tape standard, this value is the same for all
files of a multif ile set.

Four n-type characters identifying the file section number. The file
section number of the first HDRl label of a file is 0001. If the file
extends to more than one volume, this number is incremented by one for
each subsequent volume.

File sequence number. Four n-type characters to specify the position
of a file within a file set. This value is 0001 for the first file,
0002 for the second, and so on. In all the labels for a given file,
this field contains the same number.

Figure 4-2. HDRl Format (Sheet 1 of 2)

60459420 E 4-7

Word

5

5-6

6

7

7-8

8-10

Field

generation
number

grn

creation
date

expiration
date

fa

block
count

system
code

Description

Four n-type characters specifying the generation number of a file.
This value is 0001 for the first generation of a file, 0002 for the
second, and so on.

Generation version number. Two n-type characters used to distinguish
successive iterations of the same generation. The generation version
number of the first attempt to create a file is 00. This field is not
checked for privilege jobs.

Date the file was created; it is recorded as a space followed by two
n-type characters for the year followed by three n-type characters for
the day within the year.

The file is considered expired when today's date is the same as or
later than the date given in this field. When this condition is
satisfied, the remainder of the volume may be overwritten. Thus, to
be effective on multifile volumes, the expiration date of a file must
be earlier than or the same as the expiration date of all preceding
files on the volume. The expiration date is written in the same
format as the creation date.

File accessibility. An a-type character which indicates the
restriction, if any, on who may have access to the information in this
file. A blank means unlimited access. An A means the owner
identification field in the VOLl label must contain the owner's user
number. If any other character, all future accesses to the tape must
specify this character as the fa.

This field must be zero-filled.

Thirteen a-type characters identifying the operating system that
recorded this file. The tape is considered to have been written under
VSOS if the first 10 characters match the default.

Figure 4-2. HDRl Format (Sheet 2 of 2)

4-8 60459420 E

First End-of-File Label (EOFl)

The end-of-file label is the last block of every file. It is the system end of information
for the file. A single tape mark precedes EOFl. A double tape mark written after the EOFl
label marks the end of a multifile set.

When writing labels, the system uses the fields from the HDRl label to write the
corresponding fields in the EOFl label.

The system processes the following fields in the EOFl label.

• Label identifier

• Label number

•, Block count

The format for the first end-of-file label is shown in figure 4-3.

60459420 E 4-9

2

3

4

5

6

'7

8

9

10

Word

1-3

3-4

4

0 63

EOF 1 file identifier
24 8 32

file identifier
64

file identifier set identifier
40 24

set identifier file section number fsn

grn
8

system
code

8

Field

file
identifier

set
identifier

file
section
number

24 32 e
fsn generation number grn

24 32 8

creation date unused
48 8

expiration date fa block count
40 8 16

block count system code
32 32

system code
64

reserved
56

Description

Up to 17 a-type characters used to identify the file.

Up to six a-type characters used to identify the file set. To conform
to the ANSI tape standard, this value is the same for all files of a
multifile set.

Four n-type characters identifying the file section number. The file
section number of the first HDRl label of a file is 0001. If the file
extends to more than one volume, this number is incremented by one for
each subsequent volume.

Figure 4-3. EOFl Format (Sheet 1 of 2)

4-10 60459420 E

Word

4-5

5

5-6

6

7

7-8

8-10

Field

f sn

generation
number

grn

creation
date

expiration
date

fa

block
count

system
code

Description

File sequence number. Four n-type characters to specify the position
of a file within a file set. This value is 0001 for the first file,
0002 for the second, and so on. In all the labels for a given file,
this field contains the same number.

Four n-type characters specifying the generation number of a file.
This value is 0001 for the first generation of a file, 0002 for the
second, and so on.

Generation version number. Two n-type characters used to distinguish
successive iterations of the same generation. The generation version
number of the first attempt to create a file is 00. This field is not
checked for privileged jobs.

Date the file was created; it is recorded as a space followed by two
n-type characters for the year followed by three n-type characters for
the day within the year.

The file is considered expired when today's date is the same as or
later than the date given in this field. When this condition is
satisfied, the remainder of the volume may be overwritten. Thus, to
be effective on multifile volumes, the expiration date of a file must
be earlier than or the same as the expiration date of all preceding
files on the volume. The expiration date is written in the same
format as the creation date.

File accessibility. An a-type character which indicates the
restriction, if any, on who may have access to the information in this
file. A blank means unlimited access. An A means the owner
identification field in the VOLl label must contain the owner's user
number. If any other character, all future accesses to the tape must
specify this character as the fa.

Six n-type characters specifying the number of PRUs between this label
and the preceding HDR label group. This total does not include labels
or tape marks.

Thirteen a-type characters identifying the operating system that
recorded this file. The tape is considered to have been written under
VSOS if the first 10 characters match the default.

Figure 4-3. EOFl Format (Sheet 2 of 2)

60459420 E 4-11

First End-of-Volume Label (EOVl)

The end-of-volume label is required only if the physical end-of-tape reflector is
encountered before an EOFl label is written or if a multifile set is continued on another
volume. EOVl is preceded by a single tape mark and followed by a double tape mark.

When writing labels, the system uses the fields in the HDRl label to write the corresponding
fields in the EOVl label.

The system processes the following fields in the EOVl label.

• Label identifier

• Label number

• Block count

The format for the first end-of-volume label is shown in figure 4-4.

4-12 60459420 E

2

3

4

5

6

7

8

9

10

Word

1-3

3-4

4

4-5

5

0 63

EOV 1 file identifier
24 8 32

file identifier

64

file identifier set identifier
40 24

set identifier file section number fsn

grn
8

system
code

8

Field

file
identifier

set
identifer

file
section
number

f sn

generation
number

24 32 8

fsn generation number grn
24 32 8

creation date unused
48 8

expiration date fa block count
40 8 16

block count system code
32 32

system code
64

reserved
56

Description

Up to 17 a-type characters used to identify the file.

Up to six a-type characters used to identify the file set. To conform
to the ANSI tape standard, this value is the same for all files of a
multifile set.

Four n-type characters identifying the file section number. The file
section number of the first HDRl label of a file is 0001. If the file
extends to more than one volume, this number is incremented by one for
each subsequent volume.

File sequence number. Four n-type characters to specify the position
of a file within a file set. This value is 0001 for the first file,
0002 for the second, and so on. In all the labels for a given file,
this field contains the same number.

Four n-type characters specifying the generation number of a file.
This value is 0001 for the first generation of a file, 0002 for the
second, and so on.

Figure 4-4. EOVl Format (Sheet 1 of 2)

60459420 E 4-13

Word

5-6

6

7

7-8

8-10

Field

grn

creation
date

expiration
date

fa

block
count

system
code

Description

Generation version number. Two n-type characters used to distinguish
successive iterations of the same generation. The generation version
number of the first attempt to create a file is 00. This field is not
checked for privilege jobs.

Date the file was created; it is recorded as a space followed by two
n-type characters for the year followed by three n-type characters for
the day within the year.

The file is considered expired when today's date is the same as or
later than the date given in this field. When this condition is
satisfied, the remainder of the volume may be overwritten. Thus, to
be effective on multifile volumes, the expiration date of a file must
be earlier than or the same as the expiration date of all preceding
files on the volume. The expiration date is written in the same
format as the creation date.

File accessibility. An a-type character which indicates the
restriction, if any, on who may have access to the information in this
file. A blank means unlimited access. An A means the owner
identification field in the VOL! label must contain the owner's user
number. If any other character, all future accesses to the tape must
specify this character as the fa.

Six n-type characters specifying the number of PRUs between this label
and the preceding HDR label group. This total does not include labels
or tape marks.

Thirteen a-type characters identifying the operating system that
recorded this file. The tape is considered to have been written under
VSOS if the first 10 characters match the default.

Figure 4-4. EOVl Format (Sheet 2 of 2)

4-14 60459420 E

Optional Labels

Six types of optional labels are processed. They are additional file header (HDR2 through
9), end of file (EOF2 through 9), end of volume (EOV2 through EOV9), user volume (UVLa),
header (UHLa), and trailer (UTLa) labels. These labels are written to tape if supplied in a
label buffer or returned to the user if a label buffer is supplied.

Additional File Header Labels (HDR2 through HDR9)

HDR2 through HDR9 labels may immediately follow HDRl. Their format is as follows:

Character
Position

1-3

4

5-80

Field Name Contents

Label identifier HDR

Label number 2 through 9

Any a-type character

Only the label identifier and the label number are checked when writing label. The label
number must be in ascending order, beginning with 2.

Additional End-of-File Labels (EOF2 through EOF9)

EOF2 through EOF9 labels may immediately follow EOFl. Their format is as follows:

Character
Position

1-3

4

5-80

Field Name

Label identifier

Label number

Contents

EOF

2 through 9

Any a-type character

Only the label identifier and the label number are checked when writing labels. The label
number must be in ascending order, beginning with 2.

60459420 E 4-15

Additional End-of-Volume Labels (EOV2 through EOV9)

EOV2 through EOV9 labels may immediately follow EOVl. Their format is as follows:

Character
Position

1-3

4

5-80

Field Name

Label identifier

Label number

Contents

EOV

2 through 9

Any a-type character

Only the label identifier and label number are checked when writing labels. The label
number must be in ascending order, beginning with 2.

User Labels

User labels may immediately follow their associated system labels. Thus, user volume labels
(UVLa) may follow VOLl, user header labels (UHLa) may follow the last HDRn label, and user
trailer labels (UTLa) may follow the last EOVn or EOFn label. Their format is as follows:

Character
Position

1-3

4

5-80

Field Name

Label identifier

Label number

Contents

UVL, UHL, or UTL

Must be 1, 2, 3, 4, and so on, consecutively
for UVL labels. For other labels, any a-type
character

Any a-type character

Only the label identifier and the label number are checked when writing labels. The system
checks the number of user labels of a label type; a maximum of 32 is allowed.

4-16 60459420 E

SYSTEM MESSAGES 5

Programs use system messages to request VSOS processing. With five exceptions, the system
messages described in this chapter are calls to the virtual system. (The ADVISE, EXPLICIT
I/O, GIVE UP, PROCESS SYSTEM PARAMETER, and TAPE FUNCTION messages are calls to the resident
system.)

SYSTEM MESSAGE EXECUTION

A program can use either of two methods to issue a system message. It can call an SIL
subroutine which, in turn, issues a system message, or it can issue the system message
directly. SIL subroutines are described in volume 1. The SIL method is recommended because
it is recognized as the supported user interface and will remain unchanged even though the
system messages may change.

To issue a system message directly, the user presets one or two blocks of words known as the
Alpha and Beta of the message and then issues an exit force instruction. The Alpha and Beta
formats for each message are referenced in the individual message descriptions. The exit
force instruction is described in the CYBER 200 Hardware Reference Manual.

A 32-bit indirect or 64-bit direct pointer immediately follows the exit force instruction
within the instruction stream. It points to the system message Alpha. When the exit force
instruction is executed, system operation changes to monitor mode and the system message is
executed.

The hexadecimal format of an indirect message pointer is:

OOEEOOrr

rr is the number of the register containing the virtual bit address of the message. The I
hexadecimal format of a direct message pointer is:

OOFFaddress

address is the virtual bit address of the first full word of the message (12 hexadecimal I
digits).

When a message is processed without error, the operating system returns control to the half
word or full word immediately following the message pointer.

60459420 G 5-1

ALPHA AND BET A WORD CONVENTIONS

System messages have a two-part standard format. The first part, called the Alpha portion,
specifies the function to be performed, the length of the Beta portion, and where to proceed
for error processing. The Alpha portion has the same general format for all messages, and
is always either two or three words in length.

The second part, called the Beta portion, contains parameters and varies greatly in length
from one message to the next. The format of the Beta portion depends on the function, as
described later in this chapter for each function code. The user specifies in the Alpha
portion what the length of the Beta portion is and, in some cases, where it is located. The
message descriptions in this chapter specify what the minimum size of any particular Beta
must be. The user can, however, specify a larger Beta, in which case the extra space is
left unchanged.

Alpha and Beta portions must start on full-word boundaries. They must exist in virtual
space and have read/write or write-temporary access. Alpha and Beta portions must not cross
large page boundaries.

I NOTE I
Options/control field values of #EO through
#FF, response code (r field) values of #7000
through #7FFF, and error response (ss or
cerr field) values of #EO through #FF are
reserved for installation use. The
options/control field is the 8 bits to the
left of the function code field in Alpha.
The response code field is bits 0 through 15
in Alpha (1), where bits are numbered from O.

Values returned in the r, ss, serr, and cerr
fields are in hexadecimal notation.

In the figures in this chapter, some of the Alpha and Beta words are drawn with dashed
lines. These words are optional.

5-2 60459420 F

OVERVIEW
The following are the available system messages listed according to functional areas. (The
comments in parentheses are meant to clarify the purpose of the message.)

File Management

ACCESS CONTROL (f=#002B)
ATTACH FILE (£=#0010)
CHANGE FILE ATTRIBUTES (f=#OOOB)
CREATE FILE (£•#0001)
DESTROY FILE (£=#0002)
GIVE FILE (changes file ownership) (f=#0008)
POOL FILE MANAGER (£=#0026)
FILE DISPOSITION (f=#OOOD)

Tape Management

LABEL (f=ll002E)
TAPE MANAGEMENT (f=#002C)
TAPE SWITCH VOLUME (f=#002D)

Input/Output Operation

CLOSE FILE (f=#OOOS)
EXPLICIT I/O (f=#FSOO)
GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR TIME (f=#FF02)
MAP (into virtual space) (f=#0004)
OPEN FILE (f=#0003)
TAPE FUNCTION (f=#F406)

Interrupt Processing

ABNORMAL TERMINATION CONTROL (f=#0020)
PROGRAM INTERRUPT CONTROL (f=#OOlC)
RETURN FROM INTERRUPT (£=#0051)

Starting and Ending Program Execution

EXECUTE IQM REQUEST (f=l/0030)
EXECUTE PROGRAM FOR USER NUMBER (f=#0022)
RECALL (suspends program execution) (f=#0025)
TERMINATE (ends program execution) (f=#0006)
USER REPRIEVE (f=#002F)

Controllee Chain Processing

INITIALIZE CONTROLLEE CHAIN (f=#OOlD)
INITIALIZE OR DISCONNECT CONTROLLEE (f=#OOlB)
LIST CONTROLLEE CHAIN (f=#0013)
REMOVE CONTROLLEE FROM MAIN MEMORY (f=#0019)

60459420 F 5-3

I

5-4

Message Communication

GET MESSAGE FROM CONTROLLEE (£=#0017)
GET MESSAGE FROM CONTOLLER OR OPERATOR (£=#0016)
SEND MESSAGE TO CONTROLLEE (£=#0015)
SEND MESSAGE TO CONTROLLER (£=#0014)
SEND MESSAGE TO OPERATOR (f=#OOlA)
SEND MESSAGE TO DAYFILE (£=#0029)
SEND MESSAGE TO JOB SESSION (£=#0033)

File Space Allocation

ADVISE (on virtual space requirements) (f=#FFOO)
PROCESS SYSTEM PARAMETER (sets memory limits) (f=#FFOl)

Information Retrieval

GET PACK LABEL AND PFI (£=#0011)
LIST FILE INDEX TABLE (£=#0007)
LIST SYSTEM TABLE (£=#0009)
MISCELLANEOUS (£=#0024)

Accounting

UPDATE USER DIRECTORY (£=#0023)
USER/ACCOUNTING COMMUNICATION (f=#OOOE)
VARIABLE RATE ACCOUNTING (f=#0028)

Special Functions

EXECUTE OPERATOR COMMAND (for operator user number) (f=#0021)
RHF CALL (RHF functions) (f=#002A)
SHRLIB ALTER or RESTORE (f=#0053)

60459420 F

MESSAGES
The message descriptions in this chapter are in function code order. Table 5-1 lists the
messages in alphabetical order.

Table 5-1. Message Function Codes (Sheet 1 of 3)

Hexadecimalt
Message Function Code

ABNORMAL TERMINATION CONTROL 0020

ACCESS CONTROL 002B

ADVISE FFOO

ATTACH 0010

CHANGE FILE ATTRIBUTES OOOB

CLOSE FILE 0005

CREATE FILE 0001

DESTROY FILE 0002

EXECUTE IQM REQUESTtt 0030

EXECUTE OPERATOR COMMANDtt 0021

EXECUTE PROGRAM FOR USER NUMBERtt 0022

EXPLICIT I/O F500

GET MESSAGE FROM CONTROLLEE 0017

GET MESSAGE FROM CONTROLLER OR OPERATOR 0016

GET PACK LABEL AND PFI 0011

GIVE FILE 0008

GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR TIME FF02

INITIALIZE CONTROLLEE CHAIN OOlD

INITIALIZE OR DISCONNECT CONTROLLEE OOlB

I

I

t#lE, #lF, and #EO through #FF are reserved for installation use. Rightmost field in
Alpha(!). Abbreviated as f.

ttAvailable to a privileged system task. I

6045Y420 F 5-5

I
5-6

Table 5-1. Message Function Codes (Sheet 2 of 3)

Message

LABEL

LIST CONTROLLEE CHAIN

LIST FILE INDEX TABLE

LIST SYSTEM TABLE

MAP

MESSAGE CONTROL

MISCELLANEOUS

OPEN FILE

POOL FILE MANAGER

PROCESS SYSTEM PARAMETER

PROGRAM INTERRUPT CONTROL

RECALL

REMOVE CONTROLLEE FROM MAIN MEMORY

RETURN FROM INTERRUPT

RHF CALL tt

ROUTE AND FILE DISPOSITION

SEND MESSAGE TO CONTROLLEE

SEND MESSAGE TO CONTROLLER

SEND MESSAGE TO DAYFILE

SEND MESSAGE TO JOB SESSION

SEND MESSAGE TO OPERATOR

SHRLIB ALTER OR RESTORE

TAPE FUNCTION

TAPE MANAGEMENT

Hexadecimalt
Function Code

002E

0013

0007

0009

0004

0018

0024

0003

0026

FFOl

OOlC

0025

0019

0051

002A

OOOD

0015

0014

002Y

0033

OOlA

0053

F406

002C

t#lE, #lF, and #EO through #FF are reserved for installation use. Rightmost field in
Alpha(!). Abbreviated as f.

ttAvailable to a privileged system task.

60459420 F

Table 5-1. Message Function Codes (Sheet 3 of 3)

Message

TAPE SWITCH VOLUME

TERMINATE

UPDATE USER DIRECTORY

USER REPRIEVE

USER/ACCOUNTING COMMUNICATION

VARIABLE RATE ACCOUNTING

Hexadecimalt
Function Code

002D

0006

0023

002F

OOOE

0028

t#lE, #lF, and #EO through #FF are reserved for installation use. Rightmost field in
Alpha(!). Abbreviated as f.

60459420 F

I

5-7

CREATE FILE (f=#OOOl)

The CREATE FILE message defines parameters for files. Except for files connected to a
terminal, this message also assigns space, usually on a mass storage device, names it, and
gives that space to a user. The operating system makes an entry in the file index table and
PFI for this named space (file), and initializes fields in the entry using information given
in the message. The format of the CREATE FILE message is shown in figure 5-1.

A privileged user can set some of the values in the new file index table entry the operating
system creates every time a file is created. Eight Beta words are required for a privileged
create. Only one Beta is processed per Alpha issued. In Beta(4) the user can provide a
file's access directory entry.

Beta(3) contains the virtual bit address of a file index table entry copy as shown for the
file index table in chapter 2. The user sets the following fields of the copy, which the
system uses to initialize the created file's file index table entry.

For the file's access directory entry option, Beta(4) contains the virtual bit address of a
file index table extension entry. The format of this entry is as described for the Beta
portion (message option #10) of the LIST SYSTEM TABLE message. The first two words are
filled in by the system before storing to ensure that there is no mismatch between the file
being created and its associated file access directory entry. For files that do not have a
file access directory defined, Beta(4) must contain O.

The operating system sets the meat and acs fields for a privileged create (c=l); otherwise,
values of the message fields are provided by the user.

5-8 60459420 E

Alpha(1)

Alpha(2)

Alpha(3)

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

Beta (6)

Beta (7)

Beta (8)

Word

Alpha(l)

0 63

r len c 0001
16 16 16 16

n eea
16 48

I bl ba I
L ________ _.1§._ ____ ·--------·------------~

SS

unused

4

Field

r

name

64

acs length slev pk no ec ~ unused x n
8 8 24 8 8 1 1 1 5

fiord fiptr (c=1)

16 48

unused fade (c=1)

16 48

csio

64

dat meat sfo bt rt rmd pc reserved co mt ic unused

4 4 4 4 4 8 8 8 4 4 8

rlmin rim ax au

24 24 16

reserved

64

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1
2

11214

Error code was returned in an ss field of Beta(3).
User is not privileged (privileged creates only).
Beta buffer length error; the buffer length must be
greater than or equal to 8.

Figure 5-1. CREATE FILE (f=#OOOl) Message Format (Sheet 1 of 5)

60459420 G 5-9

I

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(!)

Beta(2)

Field

len

c

n

eea

bl, ba

name

SS

Description

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. All requests must provide at least four Beta
words and for privileged creates, len must be a multiple of 5.

Create mode:

0 Request a local file.
1 Define an unattached permanent file (privileged only).
2 Define a permanent file (make local file permanent or

create a permanent file).

Number of creates in this message; maximum is 16.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

File name, in ASCII~ left-justified with blank fill. File names
must be in the format described in chapter 3.

Error response field. The values are:

0 No error.
1 File already exists.
2 No available mass storage for this file.
3 Invalid meat specified.
4 Invalid C option specified.
5 The file index table, user table, or File Segment table

is full.
6
7
8

#A
#B
#c

#D
#E
#F

#10
#11
#12
#13
#14
#15
#16
#17

#18
#19

Invalid file name.
Invalid data type.
Unable to find the requested pack identifier.
If c=l or c=2, error in attempt to make file permanent.
If c=l, cannot locate user or pool.
Requested file size is greater than installation
parameter LDSK.
Number of user files exceeds installation limit.
If c=2, attempt to define a tape file.
Attempt to create a file at a higher security than
allowed.
If c=2, attempt to define a file connected to a terminal.
Illegal value in the comt (communications type) field.
Invalid access.
Illegal value in the sfo (file organization) field.
Illegal value in the bt (blocking type) field.
Illegal value in the rt (record type) field.
Invalid sfo/rt combination.
Illegal value for ostat (bits 59 through 63 of Beta(6)
must be zero).
Caller not the file owner.
Production status lost on the file. Warning only, the
file is created. Privileged create only.

Figure 5-1. CREATE FILE (f=#OOOl) Message Format (Sheet 2 of 5)

5-10 60459420 H

Word

Beta(2)

Field

acs

length

slev

pkno

ex

en

da

Description

Initial access permissions. This 8-bit field is treated as eight,
1-bit fields with each bit specifying the associated permission:

Bit

l~
4
5
6
7
8

Hexadecimal
Value

10
8
4
2

Description

Unused.
Execute access permitted.
Modify access permitted.
Append access permitted.
Read access permitted.
Write access permitted.

Length of the file to be created in 512-word blocks. The actual
file length is rounded up to a disk allocation unit boundary and
returned to the called.

Security level (1 through 8) to be given to the file if this field
is not zero and is not greater than that of the interactive job
issuing this message. If the field is zero, use the security
level belonging to the interactive job issuing this message.

Indicates pack number. If a calling parameter, this field
contains the number of the disk pack in the device set on which
the file is to be created. VSOS returns the number of the disk
pack on which the initial segment of the file was created. Valid
pack number entries are all binary numbers from #1 through #80 for
which a disk pack exists. Specifying a 0 allows the operating
system to choose the disk pack on which to allocate space.

File extensions:

0 File may be extended.
1 File may not be extended.

If en is set to 1 but ex is set to 0, a contiguous, extendable I
file is created. Therefore, a file that was contiguous when
created may become noncontiguous when later extended.

File contiguity requirements:

0 File may be created as a noncontiguous (segmented) file.
1 File must be created as a contiguous (nonsegmented) file.

If c=2, action statement returned by the system:

0 New file created.
1 Existing local file made permanent.

Figure 5-1. CREATE FILE (f=#OOOl) Message Format (Sheet 3 of 5)

60459420 F 5-11

I

I

Word

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Field

fiord

fiptr

f ~e

csio

dat

meat

sfo

bt

rt

rmd

pc

Description

File position (local file identifier); returned to the caller.

For privileged creates (c=l), this field contains the virtual bit
address (furnished by the user) of a 16-word copy of the file
index table extension entry that is used to define the
characteristics of the file being created.

For privileged creates (c=l), this field contains the virtual bit
address (furnished by the user) of a 16-word copy of the file
index table extension entry. The system uses the file access
directory portion of this entry to initialize the file's access
directory entry in the file index table. The format of the file
index table extension entry copy is the same as for the Beta
portion of the LIST SYSTEM TABLE message (f=#0009), option #10.

Field reserved for the operating system. The contents are not
defined on return to the caller.

Data type:

0 Physical data file.
1 Virtual code file.

File management category:

0
1
2
5
9

Mass storage file.
Scratch file (valid only if c=O).
Output file.
User-created drop file.
File connected to a terminal (valid only if c=O).

The operating system sets the meat field to 0 for a privileged
create. For categories 0 through 2 of this field, standard file
name conventions apply.

File organization:

0 Sequential file.
Direct file.

Blocking type field. This field is ignored by the system on
entry, and is set to 2 on return.

Record type:

0 Control word (W).
1 ANSI field length (F).
2 Record mark (R).
7 Undefined.

The record mark delimiter may be any 8-bit ASCII character.

A padding character is used only with F-type records. It may be
any 8-bit ASCII character.

Figure 5-1. CREATE FILE (f=#OOOl) Message Format (Sheet 4 of 5)

s~12 60459420 F

Word

Beta (6)

Beta(7)

Beta(8)

Field

reserved

co mt

ic

rlmin

rlmax

au

reserved

Description

Reserved for the operating system.

Communication type:

0 Non-RHF.
1 RHF.

Not used.

Contains the minimum record length in bytes.

Contains the maximum record length in bytes.

Allocation unit size is used by the operating system as a
guideline when extending a file. The value in this field is given
as the number of 512-word blocks.

Reserved for the operating system.

Figure 5-1. CREATE FILE (f=#OOOl) Message Format (Sheet 5 of 5)

60459420 E 5-13

I

DESTROY FILE (f=#0002)

The DESTROY FILE message can be issued to sever the program's connection with a file and/or
release the mass storage space. At the conclusion of DESTROY FILE message processing, any
mass storage file referenced by the message has ceased to exist, as have any modified pages
of the file. Virtual address definitions pertaining to this file are no longer defined, and
the I/O connection and map entries are erased. The format of the message is shown in figure
5-2. (Only one Beta is processed for each Alpha.)

If a mass storage file is at a sufficiently high security level, it is overwritten with a
pattern when it is destroyed. Some installations can choose to overwrite all files when
they are destroyed. A privileged destroy is not a close and destroy, as is the
nonprivileged destroy; the privileged destroy must be preceded by a privileged close.

If the name refers to a tape file, the system rewinds and unloads the current volume. If
the name is a multifile set, all logical files belonging to the multifile set are returned.

Alpha(1)

Alpha(2)

·Atpha(3)

Beta(1)

Beta(2)

Beta(3)

Word

Alpha(l) r

0 63

r len c 0002
16 16 j_6J _1fi_

n eea
16 48

I bl ba I
L _ - - - _1§. i....---- ----- ------- _4§1

name
64

ioc dev ul unused drc own SS
8 8 2 22 8 8 8

owner

L------------- -
I

_61J

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Error code was returned in an ss field of Beta(2).
2 User is not privileged (privileged destroys only).

#211 Number of destroys in this message is illegal (the n
field is 0 or greater than 16).

#214 Beta buffer length error; either the first word address
of Beta plus length is greater than the maximum user
virtual address, or the Beta buffer is too small for
the number of requests and length specified.

Figure 5-2. DESTROY FILE (£=#0002) Message Format (Sheet 1 of 3)

5-14 60459420 G

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Field

len

c

n

eea

bl, ba

name

ioc

dev

ul

drc

own

Description

If this field is #FFFF, Alpha(3) contains the length and virtual bit
address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in word of the
Beta protion. The value of len must be a multiple of 2 (for regular
destroys) or 3 (for privileged destroys).

Destroy mode:

0 Return local and attached permanent files.
1 Privileged purge of a permanent file.
2 Purge of a permanent file (makes file local if attached).
3 Purge of a pool file in pool in Beta(3).

Number of requests in this message; maximum is 16.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an error
occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

File name, in ASCII, of the file to be destroyed. File names must
be in the format described in chapter 3.

Input/output connector number. If the file is connected to a termi­
nal, this field is #FE. If a mass storage file is being destroyed,
the operating system returns, in this field, the inclusive OR of all
I/O connector numbers connected to this file.

Device type:

0 Mass storage device or magnetic tape device.
8 Reserved.

Unload Tape. This field is significant only for returning files
(c=O) and is only applicable to tape files.

0 When the tape is released, the tape is rewound to the load
point and is then unloaded in accordance with the iu option
specified in the TAPE MANAGEMENT system message (f=#002C).

1 When the tape is released, the tape is rewound to the load
point, but is not unloaded from the drive.

2 When the tape is released, the tape is rewound to the load
point and unloaded from the drive.

Decrement resource count if this field is nonzero. If drc=O, do not
decrement resource count. This field applies only to tape files.

Ownership of the file to be destroyed. This field is significant
only for nonprivileged users (c=l). The values are:

0 Private ownership.
1 Public ownership; valid only for privileged users.
2 Pool ownership; valid only for the pool boss.

Figure 5-2. DESTROY FILE (f=#0002) Message Format (Sheet 2 of 3)

60459420 G 5-15

I

Word

Beta(2)

Beta(3)

Field

SS

owner

Description

Error response field. The values are:

0 Normal completion.
1 File name does not exist.
2 File name given is in conflict with that in the I/O

connector.
3 Another active program has the file open, or the file has

been privileged opened.
4 Attempt to purge a permanent file attached to another job.
5 Nonprivileged task tried to destroy a public file.
6 User other than the pool boss tried to destroy a pool

file.
7 Illegal I/O connector number specified.
8 Drop file map is full.
9 Error trying to remove the PFI entry.

#A Disk is logically off.
#B Caller is not the file owner.
#C No room in FILEl for privileged destroy pseudologon.
#D Attempt to destroy an open tape file.
#E Illegal ul option specified.
#F Cannot destroy a public file unless privileged.

#10 Attempt to purge a tape file.
#11 Pool not attached or does not exist.

For privileged destroys, a user number or pool name to which the
file being destroyed belongs. The binary user number must be
right-justified with zero fill or, if this is the pool name, it
must be left-justified with blank fill.

Figure 5-2. DESTROY FILE (f=#0002) Message Format (Sheet 3 of 3)

5-16 60459420 G

OPEN FILE (f=#0003)

The format of the OPEN FILE message is shown in figure 5-3. (The Beta portion of the
message can actually consist of more than one of the five- or six-word sets shown in the
figure.)

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(!)

60459420 F

0

I
L -

Field

r

len

c

63

r len c 0003
16 16 16 16

n eea
16 48.

bl ba I
16 ____ _.

i...- ---------- - - - - __ 4f!j

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1
2
3

t/4
11211

tt214

Error code was returned in an ss field of Beta(3).
User is not privileged (privileged opens only).
Input/output error code was returned.
Illegal message option (c field).
Number of opens in this message is illegal (the n
field is 0 or greater than 16).
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

#216 Descriptor is out of bounds.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion.

Open mode:

0 Regular open; file must be attached.
1 Privileged open; fields dola, tlr, dolm, and tolm in

the file index table are not updated for the file
being opened.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 1 of 9)

5-17

I

I

I

I

Word Field

Alpha(!) c

Alpha(2) n

eea

Alpha(3) bl, ba

Description

This field determines the settings of several other fields in
Beta(2) of this message. When this field is O, the cl option
enables the user to modify fields in the file index table.
Permission to modify these fields is granted by the system if the
file ownership is: private; pool, and the user is the pool boss;
or public, and the user is privileged. When this field is 1, the
cl option enables the privileged user to specify who can access
the file for the duration of this open.

Number of files to be opened at this time; maximum is 16. At
times, it might be more efficient to open more than one file at a
time. When this is to be done, the Alpha portion for the OPEN
FILE message is used once, with n equaling the number of files to
be opened; this is followed by groups of Beta words, one group per
file.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full words of the Beta portion.

For nontape files:

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Word

Beta(l)

Beta(2)

0 63

name
64

e m T

ioc
x unused

c c
t ~ unused mode slev pk no t 1 a acs

8 2 6 t 3 e3 8 8 8 8 8
I o n

unused pW st c SS n
1 1 4 2 8

length nab
24 40

unused ptr (c=1)
16 48

unused fade (c=1)
16 48

tUnused.

Field

name

ioc

Description

File name, in ASCII. File names must be in the format described
in chapter 3. If the format is not proper, error response #21 is
returned in the ss field.

The file's input/output connector number (0 to #F and #12 to #47),
#FE, or #FF. #FE indicates that a file connected to a terminal is
to be opened.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 2 of 9)

5-18 60459420 F

Word

Beta(2)

Field

ioc

~t

cl

meat

type

Description

#FF causes the operating system to allocate an input/output
connector and then to return the number in this field. If no
input/output connector is available when the system attempts to
allocate one, the system returns an error code of #37 in the error
response field in this message.

File extendability; set by the user. The values are:

0 Extensions allowed if extensions were not prohibited on
creation of the file (same as ext=2).

1 No extensions allowed (same as ext=3).

Value that was set at creation time is returned by the operating
system after a successful open. This field is 0 if extensions
were allowed or 1 if not allowed. If the file was created with no
extensions allowed, it would not have been opened with extensions
allowed; however, if the file was created with extensions allowed,
it can be opened with either extensions allowed or not allowed.

Open the file as specified in the mode field. For regular opens,
the values are:

0 Do not change the file type.
1 Change the file type to the one in the type field.

For privileged opens, the values are:

0 Other privileged and nonprivileged opens are allowed, but
without write access.

1 No other opens are allowed until the privileged open is
complete; the privileged open cannot occur if any other
opens or attaches currently exist.

File management category to be associated with the file. For
privileged opens, the operating system sets this field to O. For
regular opens, this field is copied into the meat field of the I/O
connector. A file connected to a terminal is indicated by ioc=#FE
instead of in the meat field:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 MODDROP file (formerly known as a write-temporary file).
4 Tape file.

File type. If the cl option is 0, the operating system returns
the file type to this field. If the cl option is 1, the file type
is to be changed to the type specified by this field, which can be
one of the following:

0 Physical data.
1 Virtual data.
2 Virtual code.

The operating system sets this field to 0 for privileged opens.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 3 of 9)
60459420 F 5-19

I

Word

Beta(2)

Beta(3)

Field

acs

mode

slev

pkno

lp

own

st

Description

File access desired. Only the indicated access combinations are
allowed. The values are:

Hex. Value

00

01
02
03
04
06
08
QA

Description

Open file for R, W, or RW access as determined
by access permissions.
Write access requested.
Read access requested.
Read, write access requested.
Append access requested.
Read, append access requested.
Modify access requested.
Read, modify access requested.

Observe that if acs is 0, the system will attempt to open the file
for read and write access. If the caller has read, write, or read
and write permissions, the file is opened accordingly. The actual
access obtained is returned in acs. If the caller has neither
read nor write access, an access violation error is returned.

Input/output mode. This field is 0 if the file is to be opened
for explicit I/O, or set to 1 if the file is to be opened for
implicit I/O.

Security level of this file, 1 through 8; set by the operating
system.

Pack number of the disk pack on which the initial segment of the
file resides; returned by the operating system.

Field returned by the operating system. This field is 0 for a
permanent file, and 1 for a local file.

File ownership; set by the operating system. The values are:

0 Private.
1 Public.
2 Pool.

Management category of the file; set 1by the operating system. The
values are:

0 Mass storage file.
1 Scratch file.
2 Output file.
3 Write-temporary file.
4 Magnetic tape file.
5 Drop file created by the user.
6 Drop file created by the operating system.
7 Batch file.
9 File connected to a terminal.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 4 of 9)

5-20 60459420 E

Word

Beta(3)

Beta(4)

Field

nc

SS

length

nab

Description

File extendability and contiguity; returned by the operating
system if the open is successful. The values are:

0 Contiguous create was not requested but extensions
allowed.
Contiguous create was not requested and extensions
allowed.

2 Contiguous create was requested and extensions are
allowed.

3 Contiguous create was requested but extensions are
allowed.

Error response field. The values are:

0 Normal completion.

are

are

#21 Either no name was given or the file is not attached.
#22 Illegal value in the meat field.
#24 I/O connector is already in use or not #0 through #45.
#25 Illegal value in the acs or type field.
#2A File spans downed device, and open access is not read

only (privileged opens only).
#2B User directory was not found or the pool was not found

(privileged opens only).
#2C Read or write open is not allowed; the file has been

privileged opened by another user.
#2D Nonprivileged user.
#2F No more write opens permitted.
#31 No more room for the user table (privileged opens

only).
#32 Cannot open an attached file (privileged opens only).
#33 No FST space available.
#34 File access violation.
#35 Implicit mode required with write temporary.
#37 No I/O connector available.
#3A Attempt to implicitly open a file with write-only

access.
#3B Cannot privilege open tape file.
#3C Cannot locate tape volume.
#3D Cannot open tape file implicitly.
#3E File does not exist.
#3F Cannot privilege open local disk file.
#40 Calling task is not a level-2 controllee.
#41 Warning; file is open but may be only partially

available.
#SO Error in modifying the PF! entry for this file.
#61 Attempt to open a purge only file.
#62 File is currently privileged open.

The length of this file in blocks, set by the operating system.
When ss=#41, this is the number of blocks available.

Relative byte address, returned by the system, of the next byte to
be written in the file.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 5 of 9)

60459420 F 5-21

I

Word Field

Beta(5) ptr

Beta(6) fade

For tape files:

0

Beta(1)

Beta(2) ioc
8

Beta(3)

Beta(4)

Beta(5) opo
8

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Beta(10)

Description

For privileged opens (c=l), this field contains the virtual bit
address (furnished by the user) of the first word of a 16-word
area in which the operating system is to return a formatted copy
of the file index table entry for the opened file. The format of
the file index table entry copy is the same as for the Beta
portion of the LIST FILE INDEX OR SYSTEM TABLE message (f=#0009),
option 1, or unformatted as described in chapter 2, depending on
the setting of fmt. The first word of the file index table entry
copy must be pref illed by the user with the user number or the
pool name of the file to be opened; the second word contains the
file name; and the remaining words contain the file index table,
as supplied by the operating system.

For privileged opens (c=l), this field contains the virtual bit
address (furnished by the user) of the first word of the 16-word
area in which the operating system is to return a copy of the file
index table extension entry for the opened file. The entry copy
contains the file access directory for the file and is the same
format as for the Beta portion of the LIST FILE INDEX OR SYSTEM
TABLE message (f=#0009), option #10. This first two words of the
copy are set to 0 by the operating system if the file does not
have an extension entry.

63

lfn
64

m
unused c unused acs unused a

9t3 12 8 24

vsn unused SS

48 8 8

mfn
64

ado of p unused ioer
8 8 24 16

unused mpru

32 32

dtt
64

dvsn
64

dulb
64

dlb
64

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 6 of 9)

5-22 60459420 H

Word

Beta(l)

Beta(2)

Beta(3)

Field

lfn

ioc

meat

acs

vsn

SS

Description

Logical tape file name, in ASCII.

The file's input/output connector number.

Management category, returned by the system. This field is set
to 4 for a logical tape file.

Access permissions. If acs=l and unexpired HDRl label date is
found, an error is returned. It is possible for the
installation to allow the operator to override this condition
and allow writing on an unexpired tape:

0 acs is set from the file index.
1 Write-only permission only.
2 Read-only permission only.
3 Read/write permission.

Volume serial number of the currently assigned tapes. This
field is returned by the system.

Error response field:

0 Normal completion.
#21 Either no name was given or the file is not attached.
#22 Illegal value in the meat field.
#24 I/O connector is already in use or not #0 through #45.
#25 Illegal value in the acs or type field.
#2A Disk is logically off.
#2B User directory was not found or the pool was not

found (privileged opens only).
#2C Read or write open is not allowed; the file has been

privileged opened by another user.
#2D Nonprivileged user.
#2F No more write opens permitted.
#31 No more room for the user table (privileged opens

only).
#32 Cannot open an attached file (privileged opens only).
#33 No FST space available.
#34 File access violation.
#35 Implicit mode required with write temporary.
#37 No I/O connector available.
#38 Need six Beta words for option c=2.
#39 Illegal user number for option c=2.
#3A Attempt to implicitly open a file with write-only

access.
#3B Cannot privilege open tape file.
#3C Cannot locate tape volume.
#3D Cannot open tape file implicitly.
#3E File does not exist.
#3F Cannot privilege open local disk file.
#40 Calling task is not a level-2 controllee.
#41 Not all entries were returned in the tapes table

array; OPEN was completed.
#42 Not all VSNs were returned in the VSN array; OPEN was

completed.
#43 Label buffer was too short; OPEN was completed.
#44 File identifier does not match.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 7 of 9)

60459420 E 5-23

Word

Beta(3)

Beta(4)

Beta(5)

Field

SS

mf n

opo

1145
1146
1147
1148
1149
ll4A
ll4B

ll4C
ll4D
ll4E
1150
1151
1152
1153
1154
1155
1156
1158
1159

ll5B

Description

File set identifier does not match.
File chapter number does not match.
File sequence number does not match.
Generation number does not match.
Generation version number does not match.
File accessibility character does not match.
File accessibility character is A and user number does
not match.
Illegal labels.
Volume not available.
Header 1 not found.
Error in modifying the PFI entry for this file.
No unit was assigned.
Illegal assembly/disassembly.
Illegal access.
Only one tape open per Alpha allowed.
Logical tape file already opened.
Label unexpired and IP TPEXP=O.
Tape coded mode with ado=3.
Attempted to write expiration data greater than the
multif ile set expiration date.
Illegal tape position option.

Multifile set name, returned by the system for the currently
assigned tape. This field equals 0 if the logical file name does
not belong to a multifile set.

Open tape file processing options. These processing options are
in effect for as long as the tape file is opened:

Bit Name

0 ETP

1 3-7

2 UEP

3-7 Unused.

Description

End-of-tape processing option:

0 The system automatically switches
volumes.

1 Control is returned to the user at
end of tape.

Unused.

User error processing option:

0 Tape I/O errors encountered when
reading or writing a tape are
returned to the operator. The
operator makes a decision whether to
repeat or ignore the error, drop or
rerun the job, and so forth. Refer
to appendix B for more information
on tape I/O errors.

1 Control is returned to the user when
a tape I/O error occurs. Refer to
appendix B.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet 8 of 9)

5-24 60459420 E

Word

Beta(5)

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Beta(lO)

Field

ado

of p

ioer

mpru

dtt

dvsn

dulb

dlb

Description

Bit string assembly/disassembly option. This field specifies what
type of assembly or disassembly is to be done on the data:

0 No assembly/disassembly is done.
3 Bits 60 to 64; 60 bits on tape, 64 bits in memory with

the upper 4 bits equal to O. The buffer address must be
on a 64-bit word boundary for the TAPE FUNCTION call.

Open file positioning option. If ofp=O, the file positioning
selected is returned:

0 No rewind.
1 Rewind to the beginning of information of the current

file.

Error number. The r field in Alpha is set to 3 if ioer is
nonzero. Refer to appendix B for a complete description of the
ioer error numbers.

Maximum PRU size in bytes. This field is valid only for tape
formats V and NV. If mpru is 0, the mpru from the REQUEST is
used. If mpru=O and no mpru was specified at request time, the
system default is 32,768 bytes.

Tapes table descriptor. If nonzero, the system returns the tapes
table entry. For ofp=3, the user supplies the tapes table and on
completion, the updated tapes table entry is returned:

0-15 ltt

16-63 att

Descriptor for the
VSN list:

0-15 lvsn

16-63 avsn

Length of the tapes table, in words. This
field must be 12 words long.
Virtual bit address of the tapes table
buffer. The buffer must be on a word boundary.

VSN list. If nonzero, the system returns the

Length of the VSN list, in words (0 < lvsn <
256).
Virtual bit address of the VSN list. The
buffer must be on a word boundary.

Descriptor for the user header labels. If dulb is nonzero, the
user header labels are supplied by the user. This field only
applies when writing labels:

0-15 lulb

16-63 aulb

Length of the user label buffer, in words (O <
lulb < 512).
Virtual bit address of the user label buffer.
The buffer must begin on a word boundary.

Descriptor for the label buffer. If dlb is nonzero, the system
returns all labels here:

0-15 llb

16-63 alb

Length of the label buffer, in words (0 < llb
< 512).
Virtual bit address of the label buffer. The
label buffer must be on a word boundary.

Figure 5-3. OPEN FILE (f=#0003) Message Format (Sheet Y of 9)

60459420 E 5-25

I

Mass Storage Files

The OPEN FILE message connects the user's program to a preexisting file for performing input
and output on the file. In opening a file, the user can accept the parameters given to the
file when it was created; otherwise, if the file owner has given permission, the user can
alter the parameters. Both physical and virtual files can be opened for either explicit or
implicit I/O. Once opened for explicit I/O, however, a file cannot be accessed implicitly,
and vice versa. Nevertheless, a file can be opened in several I/O connectors at the same
time; some for implicit I/O, and others for explicit I/O.

When a program opens a physical file in explicit mode, the specified I/O connector in the
program's minus page is filled in as required and an entry is made in the explicit file map
area of the minus page. This allows initiation of explicit I/O. In this mode, the file is
accessed by explicit requests to transfer data into buffer areas. The EXPLICIT I/O message
(f=#FSOO), or its SIL counterpart, must be used to define the buffers and initiate data
transfers.

When a program opens a physical file in implicit mode, the specified I/O connector in the
program's minus page is completed. No entry is made in the bound explicit map. Explicit
input/output cannot be accomplished on a physical file that is opened in implicit mode.

When a program opens a virtual file in explicit mode, all input/output must be done
explicitly through the program's buffers in the same manner as for physical files opened in
explicit mode. The I/O connector number specified in the program's minus page is filled in,
and one entry is made in the explicit map. When a file is opened in explicit mode, no
implicit access is possible to any of the virtual space usually represented by the file.

When a program opens a virtual file in implicit mode, the I/O connector number in the
program's minus page is filled in.

For privileged opens to occur, the file must not be open with write access by anyone; while
the file is privileged open, all attempts to open with write access are barred. If the cl
field in Beta(2) is 1, these rules are extended to exclude an open of any sort to assure
that the privileged open is successful.

A privileged user can get a copy of the opened file's file index table entry by specifying a
virtual bit address in Beta(S). The copy is returned beginning at the specified address.
This copy is not used in the same way that the copy can be used on a privileged create;
initializing fields in the copy associated with an OPEN FILE message does not alter the
values in the file index table entry. If this is used, the fmt=l option to return the
unformatted file index should be used.

A privileged user can also get a copy of the opened file's file index table extension entry,
which contains the file access directory, by specifying a virtual bit address in Beta(6).
The copy is returned, beginning at the specified address in the same format as the Beta
portion of the LIST SYSTEM TABLE message (f=#0009), option #10. If no file index table
extension entry exists, the first two words of the area, starting at the specified address,
are set to 0 by the system.

If the file was created with no extensions allowed, it cannot be opened with extensions
allowed; however, if the file was created with extensions allowed, it can be opened with
either extensions not allowed or extensions allowed.

5-26 60459420 F

Magnetic Tape Files

The OPEN FILE message can be issued only for a logical tape file requested in the TAPE
MANAGEMENT message or for a logical tape file requested in the LABEL message. If the
logical tape file belongs to a multifile set, only one of the logical files can be opened at
one time. There can be only one tape file specified in the Beta for each OPEN FILE
message. After a successful open, the ioc is built, and the user can issue input/output and
positioning functions to the tape file.

The file position at the time of the open is determined by the ofp field. Label processing
is not required for a file that is being reopened after previous use in which label
processing was done and the tape was left positioned within this file.

Observe that only explicit I/O is allowed for tape files. Implicit use may not be specified
on the open.

Files Connected to a Terminal

The OPEN FILE message is also used to connect the user's program to a file connected to a
terminal. A connected file can be opened only if this is done by a level-2 or lower level
controllee of an interactive processor. It cannot be opened implicitly.

A connected file does not use an I/O connector.

Since a file connected to a terminal is a SIL feature, no explicit or implicit I/O is done
to this file. SIL traps all I/O requests and converts them to either GET MESSAGE FROM
CONTROLLER or SEND MESSAGE TO CONTROLLER requests. This is why a file connected to a
terminal needs no ioc. It does not use any buffers as explicit I/O does. Instead, it uses
the numbered common block 99434642.

Observe that the following Beta fields are not valid for a file connected to a terminal:
ext, nc, saddr, unit, fsto, length, mlength, and packid.

60459420 E 5-27

MAP (f=#0004)

The MAP message gives a program access to a virtual region by defining a correspondence of
virtual addresses to physical mass storage addresses. The process of defining the virtual
region associated with a file is called mapping-in the file. Once a program maps in a file,
the program can perform implicit reads and writes on the file. The message might also be
used to release (map out) a virtual region by erasing the correspondence of the virtual
addresses with mass storage. The map-out operation can also be performed by using the CLOSE
FILE message. The mass storage space that is being mapped could contain a file already
defined and opened, or it could be space that is not associated with any file (free space).

Before virtual space can be accessed implicitly, the definition of that space must be
cataloged in the implicit map area of the program's minus page. The definition can be made
using MAP with the map-in option. Up to 40 noncontiguous address regions can be cataloged.
The user associates a virtual starting address and length with the mass storage address of
an open file or free space and indicates the access rights pertaining to that virtual
region. The operating system makes the necessary entries in the bound implicit map (for an
open file) or drop file map (for free space) of the program. Overlaps of space are signaled
as an error. If all entries of a map are full, an error is signaled and no further map-in
calls are permitted until some space is released with a map-out.

The map-out option allows for release of virtual address space. Virtual address space that
has been mapped out is no longer accessible to the program, but the mass storage file itself
is not closed (the I/O connector for the file remains intact). The mass storage region can,
after the map out, be mapped in again to the same or other virtual space. Mapping out free
space causes the corresponding drop file map entries to be deleted and frees the mass
storage space for reassignment. If the mass storage file represented by a virtual region
has write access and is mapped out, all modified pages of that space are written on that
mass storage file before the map-out process is complete. If the file itself did not have
write access, all modified pages are lost through the map-out process.

The MAP call must not be used with files opened for explicit I/O. Also, source files cannot
be mapped in. The format of the message is shown in figure 5-4.

5-28 60459420 E

Alpha(1)

Alpha(2)

Alphq(3)

Beta(1)

Beta(2)

Word

Alpha(l)

Alpha(2)

Alpha(3)

0 63

r len c 0004
16 16 16 16

unused eea
16 48

I bl ba I

L - - - - _1~ - - - - - - - - - - - - - - ___ 4~

Field

r

len

c

eea

bl, ba

vpa lfa
32 32

Ce

length unused
ox

.ioc rt con SS
.. 24 14 8 8 8

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Error has been returned to the ss field of Beta(2).
#214 Beta buffer length error; either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. This must be zero when WPA is zero and IOC is
#OF to MAPIN SHRLIB. Used by debug.

Map mode:

0 Map-in the file specified in the ioc field.
Map-out the file specified in the ioc field (both the
bound implicit map and drop file map entries are
altered).

2 Map-out only this program's drop file (a c field
value of 0 must be used to map-in a drop file).

Virtual bit address at which control transfers if an error occurs
during processing of this message (rlO). If this field is 0 when
an error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

Figure 5-4. MAP (f=#0004) Message Format (Sheet 1 of 3)

60459420 E 5-29

I

I

Word Field

Beta(l) vpa

lf a

Beta(2) length

cont

ext

ioc

con

Description

Virtual page address of the first small page of the space
defined. Must be zero when len is zero and ioc is #OF to MAPIN
SHRLIB.

Logical file address associated with the virtual page address. If
this field is #FFFFFFFF, free space is appended as defined by the
virtual page address and length fields.

Length of the virtual region, in blocks. If this call is not for
free space, the space on the mass storage file must be
contiguous. When returned to the caller by the operating system,
this field is adjusted to the next page multiple.

File contiguity; set by the operating system after a successful
map-in (value is set at creation time). This field is 0 if the
file was not created contiguously (in two segments), or set to 1
if the file was created.

File extendability; set by the user. The values are:

0 Extensions allowed if extensions were not prohibited on
creation of the file (same as ext=2).
No extensions allowed (same as ext=3).

Value that was set at creation time by the operating system after
a successful map-in. This field is 0 if extensions were allowed
or set to 1 if not allowed. If the file was created with no
extensions allowed, it could not have mapped-in with extensions
allowed; however, if the file was created with extensions allowed,
it can be mapped-in with either extensions allowed or not allowed.

Input/output connector number for the mass storage file being
mapped (a source file cannot be mapped in):

#0-llE, 1112-1147
1110
fill
llOF

Mass storage file map-in or map-out.
Source file map-out.
Drop file map-in or map-out.
SHRLIB MAPIN: used by debug. VAP and LEN
must be zero.

A set of 8 bits providing control information as follows:

ac

Subfield Description

c3 Page map request.

0 Small.
Large.

Figure 5-4. MAP (f=ll0004) Message Format (Sheet 2 of 3)

5-30 60459420 F

Word

Beta(2)

Field

con

SS

Description

Subfield Description

wa Access:

0 Get access rights (determined when the
file was opened) from the I/O connector.

1 Get access rights from the ac field if
allowed by the ioc access field.

ac Access:

0 No read or write access.
1 Read access.
2 Write access.
34 Both read and write access.

Bits cl, c2, c4, and c5 are not used. The wa and ac fields are
examined by the system when mapping in files associated with I/O
connectors 0 through #E.

Error response field. The values are:

0 Normal completion.
1 Virtual address overlap of file space.
2 Cannot map-in file in virtual page O.
3 Length field in a map message is 0 or greater than the

length in the map.
4 Length in the request is not modulo page size.
5 I/O connector does not exist or the mode specified in

the I/O connector is not implicit.
6 Virtual address is the same as that of an existing

ADVISE call.
7
8

9
#A
#B
#C
#D
#E
#F

#10
#11
#12

#13

Bound implicit map was full at map-in.
Logical mass storage address plus length exceeds the
file length.
Page requested for map-out is locked in.
Space is undefined at map-out.
Map entry virtual address is not on a page boundary.
Bound implicit map is full at map-out.
I/O connector is not proper for a free space request.
Drop file map is full at map-out.
Drop file map is full at map-in.
Mass storage file index table entry cannot be found.
Virtual address overlap of free space.
For a map-in request, no read access was specified;
map-in has not been performed.
File is privileged opened by the user and cannot be
mapped.

#14 Logical file address overlap.
#15 Logical file address plus length exceeds user or pool

maximum.
#16 Error in extending file.
#17 No more disk space available when extending the file.

Figure 5-4. MAP (f=#0004) Message Format (Sheet 3 of 3)

60459420 G 5-31

I

I

CLOSE FILE (f=#OOOS)

This message terminates immediate access to the data. System operation varies slightly,
depending on the medium. Only one Beta is processed for each Alpha. The format of the
CLOSE FILE message is shown in figure 5-5.

0 63

Alpha(1} r len c 0005
16 16 16 16

Alpha(2} n eea
16 48

Alpha(3) I bl ba
16 - ----- ._ ______ -------·----- ~

Beta(1) ioc
8

Beta(2)

Word Field

Alpha(l) r

len

c

meat cf type unused: bilb flag opt SS

8 4 4 I 12 4 8 8 8

length nab
24 40

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Error code was returned in an ss field of Beta(!).
2 User is not privileged (privileged closes only).

#211 Number of files specified in this call is illegal
(then field is 0 or greater than 16).

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

#270 Beta portion is in read-only space.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. This field must be a multiple of 3 for a
regular close issued by a privileged system task (c=2); this field
must be a multiple of 2 for other regular closes (c=O). For a
privileged close (c=l), Beta must have a length of at least two
words per file closed.

Close mode:

0
1
2

Regular close.
Privileged close.
Regular close by a privileged task.

Figure 5-5. CLOSE FILE (f=#0005) Message Format (Sheet 1 of 6)
5-32 60459420 G

Word

Alpha(2)

Alpha(3)

Beta(1)

Field

n

eea

bl, ba

ioc

meat

cf

Description

Number of files closed by this message; maximum is one.

Virtual bit address to receive control if an error occurs during
processing of this message (rFO). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

Input/output connector number of the file being closed.

File management category of the file being closed; stored in the
file index table if the flag field is 2. The categories are:

0
1
2
3
5
7

Mass storage file.
Scratch file.
Output file.
MODDROP file (formerly known as write-temporary file).
User-created drop file.
Batch file.

A set of four control bits, as follows:

c1 1 I c2 1 I c3 1 I c4 1 I
Bit Description

cl File type:

0 Do not change the file type in the file index
table.

1 Change the type in the file index table to the
value given in the type field.

c2 Unused.

c3 Drop file size:

0 Do not change the drop file size.
1 Change the drop file size in the file index

table to that given in the length field.

c4 Drop file length:

0 Do not remove the drop file length from the
file index table.

1 Remove the drop file length from the file index
table.

These flags can cause changes to be made in the file index table
if the file ownership is private; pool, and the user is the pool
boss; or public, and the user is privileged. This field must be
all zeros for privileged closes (the ss field is A otherwise).

Figure 5-5. CLOSE FILE (£=#0005) Message Format (Sheet 2 of 6)

60459420 H 5-33

I

I

Word

Beta(!)

Field

type

bilb

flag

Description

File type:

0 Physical data file.
1 Virtual data file.
2 Virtual code file.

Bits used in last byte:

0 All bits in last byte are used.
1-7 From 1 to 7 bits in last byte are used.

Flag for special action, as follows:

f 1 I t2 I f3 I f4 I f5 I f6 I f7 I ta I
Bit

fl-f3

f 4

Description

Reserved.

bilb field:

0 Do not set the bilb field in the file index
table.

1 Set the bilb field in the file index table to
the value given in bilb in Beta(l).

f5 drop flag:

0 Do not change the drop bit in the file index
table.

1 Set the dmp bit in the file index table.

f6 nab fields:

0 Do not change the nab fields in the file
index table.

1 Change the nab fields in the file index table
according to the nab value supplied in
Beta(2).

f7 meat fields:

0 Do not change the meat field in the file
index table.
Change the file index table's field
management category to that given in the meat
Beta field. If meat is changed to drop file
and the caller is a production user number,
the drop file is given production status and
all write access permissions are removed from
the file.

f8 Reserved.

Figure 5-5. CLOSE FILE (f=#0005) Message Format (Sheet 3 of 6)

5-34 60459420 H

Word

Beta(l)

Beta(2)

60459420 H

Field

opt

SS

length

nab

Description

Option field; for a privileged close only. If this field is O,
the file is not to be destroyed with this call; or, if it is 1,
the file is to be destroyed with this call.

Error response code. The values are:

0 Normal completion.
1 1/0 connector was not for a mass storage file.
2 1/0 connector number was out of range.
3 Attempt to alter a public file index table entry; the

1/0 connector is cleared, but no information is altered
in the file index table (file is closed).

4 File type, access right, or lockout specified by this
request is illegal (file is closed).

5 Close was requested for a file, one of whose pages is
still locked in.

6 A scratch or output file is open to another program of
this user (file is closed to this problem program but
not destroyed or given).

7 Invalid name for a file with a management category of
output (file is closed).

8 Specified 1/0 connector was not open.
9 Drop file map is full.

#A Format error (privileged close only).
#B Nonprivileged user (privileged close only).
#c File was not found or not attached.
#E Supplied nab value is inconsistent with the

system-maintained value. (File is closed.)
#F One file close per Alpha.

#10 Not all VSNs were returned in the VSN array; CLOSE
completed.

1111 Label buffer too short; CLOSE completed.
#12 Not all entries are returned in the tapes table array;

CLOSE completed.
#13 Illegal label in the buffer label.
#14 lun field in FILEI or IOC is invalid.
#15 db in tapes table does not match db of task.

Length of the drop file in blocks; set in the file index table if
the c3 field is 1.

Relative bit address, supplied by the caller, of the next byte to
be written in the file. If the supplied value does not correspond
to that maintained by the system at the block level, this value is
ignored, the lbc/hbw field in the FILE! is set to indicate that
the last block is full, and a warning error is returned.

Figure 5-5. CLOSE FILE (f=#0005) Message Format (Sheet 4 of 6)

5-35 1

For tape files:

0

Beta(1) ioc
8

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Word Field

Beta(l) ioc

SS

Beta(2) ioer

Beta(3) dtt

Beta(4) dvsn

unused

unused
48

dtt

dvsn

dulb

dlb

Description

The files's input/output connector number.

Error response field:

0 No errors.
#F Only one file close per Alpha allowed.

63

SS
48 8

ioer
16

64

64

64

64

#10 Not all VSNs were returned in the VSN array; CLOSE
completed.

#11 Label buffer too short; CLOSE completed.
#12 Not all entries are returned in the tapes table array;

CLOSE completed.
#13 Illegal label in buffer label.

Error number. The r field in Alpha is set to 3 if ioer is nonzero.
Ref er to appendix B for a complete description of the ioer error
numbers.

Tapes table descriptor. If nonzero, the tapes table entry is
returned by the system:

Bit

0-15

16-63

Name

ltt

att

Description

Length of the tapes table buffer, in words.
The buffer must be 12 words long.
Virtual bit address of the tapes table buffer.
The buffer must be on a word boundary.

Descriptor for the VSN list. If nonzero, the VSN list is returned
by the system:

Bit Name Description

0-15 lvsn Length of the VSN list, in words (O < lvsn <
256).

16-63 avsn Virtual bit address of the VSN list. The
buffer must be on a word boundary.

Figure 5-5. CLOSE FILE (f=#0005) Message Format (Sheet 5 of 6)
5-36 60459420 G

Word

Beta(5)

Beta(6)

Field

dulb

dlb

Description

Descriptor for the user trailer label buffer. If dulb is nonzero,
the user trailer labels are supplied by the user. This field
applies only when writing labels:

Bit

0-15
16-63

Name

lulb
aulb

Description

Length of the user label buffer, in words.
Virtual bit address of the user label
buffer. The buffer must begin on a word
boundary.

Label buffer descriptor. If dlb is nonzero, the system returns
the end-of-file labels here:

.Bit

0-15
16-63

Name

llb
alb

Description

Length of the label buffer, in words.
Virtual bit address of the label buffer. The
label buffer must be on a word boundary.

Figure 5-5. CLOSE FILE (f=#0005) Message Format (Sheet 6 of 6)

6045~420 E 5-37

I

Mass Storage Files

A program can issue the CLOSE FILE message to sever its connection to a file. After the
file has been closed, the program no longer has access to the file through the severed
connection, although other unsevered I/O connections might remain. Existence of the mass
storage file is not affected by a close, but some file attributes in the file index table
entry for the file are modified, and virtual address space associated with an implicit file
is no longer defined. A file that has been privileged created or privileged opened can be
closed only with a privileged close. The user must do a privileged close before doing a
privileged destroy.

When a file is closed, the operating system gives the file to an output processor if the
activity count (the count of programs accessing the file, that is, of I/O connectors for the
file) is 0 and the management category is output. Other ways of outputting a file are to
use the FILE DISPOSITION message (f=#OOOD) or the GIVE FILE message (f=#0008).

When a file opened for implicit I/O and with write access is closed, modified pages of the
file are rewritten in mass storage before the close function has completed. If the file
does not have write access, modified pages are lost at the time the close function completes.

All outstanding input/output requests are completed before any file index table changes are
made. The file index table entry will exist in its new state only at the completion of
CLOSE FILE message processing.

Magnetic Tape Files

The CLOSE FILE message can be issued only for a logical tape file that is open. There can
be only one tape file specified in the Beta for each CLOSE message. After the successful
completion of the CLOSE, the ioc is cleared and no input/output or positioning functions can
be issued until a subsequent OPEN is issued. The CLOSE does not return the logical tape
file.

Files Connected to a Terminal

The CLOSE FILE message is used to relinquish access to a file connected to a terminal.
Existence or contents of the FILEI entry is not affected by a close.

5-38 60459420 F

TERMINATE (f=#0006)

A user program can issue a TERMINATE message to signal the operating system that it has
completed execution. All lower level controllees are also terminated. The message consists
of an Alpha portion only, as shown in figure 5-6.

0

Alpha(1)

Alpha(2)

Word

Al pha(l)

Alpha(2)

63

unused 0000 c 0006
16 16 16 16

re unused resume
8

Field

c

re

resume

8 48

Description

Indicates disposition of the drop file when the program is removed
from main memory. The values are:

0

2

Drop file, scratch files, and output-type files are
preserved (but not made permanent) so the program can be
restarted. All modified pages belonging to write access
files overwrite their current disk images and all other
modified pages are written to the drop file. The resume
address is stored in the drop file's minus page.
Drop file and scratch files are destroyed. Give
output-type files to the output processor.
Same as option 0 except the terminate state is set to
report an abort (#3D).

Return code, set by the user. The values are:

0 Successful completion.
4 Nonfatal error.
8 Fatal error.

This return code value is also referred to as the termination
value.

Virtual bit address at which the program is to be resumed when it
is restarted.

Figure 5-6. TERMINATE (f=#0006) Message Format

60459420 F 5-3q

I

LIST FILE INDEX TABLE (f=#0007)

The LIST FILE INDEX TABLE system message can retrieve copies of one or more file index table
entries. The message issuer can specify the file ownership category and file attributes of
the entries to be returned.

The file index entries are returned in the Beta portion of the message. The Beta length
must be a multiple of the file index entry length (refer to figure 2-1). Qualifiers for the
file index table search are specified only in the first entry length of the Beta.

The file index table entry format is shown in figure 2-1. The message format is shown in
figure 5-7.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(!) r

0 63

len w
16 8 16

c
8

0007
16

n
16

eea
48

I I
I bl 16 ba 481 L,._ _____ _.__ __________________ __J

Field Description

Response code returned by VSOS when message processing completes:

0 No errors.
1 No files exist which match the options and qualifiers

specified.
2 More file entries exist than can fit in the Beta

portion. At least one more file entry exists for the
owner, but the file index entry has not been checked
for matching qualifying fields.

3 Caller is not a member of a pool or the pool is not
attached.

4 Illegal message option (c field).
5 Incorrect file index entry length (w field).
6 User table is full.
7 FILEI is full.
8 Incorrect user number.
9 Invalid account number.

#214 Beta length error. Either the first word address of
Beta plus length is greater than the maximum user
virtual address, or the Beta buffer is too small for
the number of requests and length specified.

len Total Beta length. If len is #FFFF, Alpha(3) contains the length
and virtual bit address of the Beta buffer; otherwise, the Beta
buffer is assumed to begin at Alpha(3). The length must be a
multiple of the file index entry length.

Figure 5-7. LIST FILE INDEX TABLE (f=#0007) Message Format (Sheet 1 of 3)

5-40 60459420 E

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta

Field

w

c

n

eea

bl, ba

Description

Current file index entry length (refer to figure 2-1). If an
incorrect value is specified, a response code of 5 is returned and
the system returns the correct value in this field.

Message option specifying the file index information to be
returned:

0 Public file entries.
1 Pool file entries.
2 Private file entries.
3 Entries for private files attached to this job.
4 Entries found according to the file search hierarchy.

The first search is for a private file attached to this
job. If no file is found, the second search is for a
pool file. If no file is found again, the third search
is for a public file.

5 File owner's access permissions, whether the file is
attached or not.

6 This option is the same as option 4, except that an
additional word containing the third word of the file
index entry is returned for each file. The format of the
entries returned will parallel the actual format of the
FILEI with the 3 word top entry returned first, followed
by the 14 word bottom entry.

Maximum number of file index entries to return. If fewer than n
qualifying file entries are found, this field is reset to the
number of the file entries found.

Error exit address; virtual bit address to receive control if an
error occurs during message processing (r#O). If this field is 0
when an error occurs, the error ~s considered fatal.

If the len value is #FFFF indicating the Alpha and Beta portions
of the message are not contiguous, these fields give the length
and virual bit address of the first full word of the Beta portion.

The Beta format is the same as the file index table format, except that the
third word of the top is not returned (refer to figure 2-1). The Beta buffer
length must be at least the file index table entry length multiplied by the
number of entries to be returned (n).

Values specified in the first entry of the Beta buffer are used as qualifiers
in the file index table search. A pool name must be specified for option c=l;
all other qualifiers are optional.

Figure 5-7. LIST FILE INDEX TABLE (f=#0007) Message Format (Sheet 2 of 3)

60459420 E 5-41

The following qualifiers can be used with any option (c=O, 1, 2, 3, or 4).
Refer to figure 2-1 for the field format.

Qualifier

name

qf

meat

f idc

f iic

f iec

f isid

f izip

mpn

acct

Description

File name.

Queue flag, indicating whether the file has been read
by the !QM.

Management category.

Disposition code.

Internal format characteristics.

External format characteristics.

Source or destination processor mainframe identifier.

Destination processor zip number.

Master project number.

Account number.

The following qualifier can be used with options c=2 or 3.

Qualifier

user

Description

Owner's user number. When specified, the owner's
file index entries are returned for files to which
the caller has access. The oacs field in the file
index table entry is set to the largest set of access
permissions as determined from the general access
permissions and the caller's individual access
permissions.

If within the Beta portion, a field in the first file index entry length is
nonzero, the specified value is used as a qualifier. Zero cannot be used as a
qualifier. Only those file index table entries with field values matching the
specified qualifiers are returned.

Figure 5-7. LIST FILE INDEX TABLE (f=#0007) Message Format (Sheet 3 of 3)

5-42 60459420 E

GIVE FILE (f=#0008)

The GIVE FILE system message transfers file ownership. If the GIVE mode is 0 or 1, the file
must be an attached permanent file, a local file, or an attached private pool file. (Only
the pool boss can give pool file.) If the give mode is 2, the file must be a private,
unattached permanent file. (Only privileged users can use GIVE mode 2.)

A nonprivileged user can give a file to another user or to a pool. A privileged user can
also give a file to the public file list. (The file must not have the same name as an
existing public file.) The privileged system task can give a file to the IQM and the IQM
can give a file to a user.

Whenever a file is given to another user, the dmp flag in the file index table is cleared to
indicate that the attribute of the file has been changed.

The message format is shown in figure 5-8. More than one 2- to 4-word Beta portions can be
specified. Only one Beta is processed for each Alpha.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Word

Alpha(l) r

0 63

len 0008 c
16 16 16 16

n eea
16 48

1 bl b I
I 16 a 48 1 L__ ______ __.__ _______ . ____________ :J

name
64

SS acs auser
8 8 48

I pname I

t~ pubret~ ,:1 vri ~k~~Fi-~_unured-~_2J-~jdn :~
I cuser/act

64
1

L-----·------------------~

Field Description

Response code returned by VSOS when message processing is complete:

0 No errors.
1 Error code returned as ss field of Beta(2).

#211 Number of files given was 0 or greater than 16.
#214 Beta buffer length error. Either the first word

address of Beta plus its length is greater than the
maximum virtual user address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-8. GIVE FILE (f=#0008) Message Format (Sheet 1 of 4)

60459420 H 5-43

I

I

I

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Field

len

c

n

eea

bl, ba

name

SS

Description

Total Beta length. If len is #FFFF, Alpha(3) contains the length
and virtual bit address of Beta; otherwise, Beta is assumed to
begin at Alpha(3). A Beta portion must be specified for each file
to be given. The length of each portion depends on the give mode
as follows:

Give

c=O

c=l
c=2
c=3

mode:

0

1
2

3

Two words to give a file to a user; four words to
give a file to the public file list.
Four words.
Five words.
Four words.

The file is given to the private user number
specified in Beta(2) or, if the specified user number
is 0 and the issuer is privileged, the file is given
to the public file list.
The file is given to the pool specified in Beta(3).
The file whose user number is cuser is given to the
user number specified by auser. The caller must be a
privileged user to use this mode.
The local file that is the last group file of an
output file family is given to the output queue and a
JDN is associated with the last group file.

Number of files to be given; maximum is 16.

Error exit address; virtual bit address to receive control if an
error occurs during message processing (r~O). If this field is 0
when an error occurs, the task is aborted.

If the len value is #FFFF (indicating the Alpha and Beta portions
of the message are not contiguous) these fields give the length of
Beta and the virtual bit address of its first full word.

File name (eight ASCII characters, left-justified, blank-filled).

Error response code:

0 No errors; normal completion.
1 File recipient already has a permanent file with this

name.
3 The specified file is not attached.
4 The specified user number does not exist.
5 Output file is incorrectly named.
6 File to be given is still active.
7 User is not privileged.
8 Failure in modifying PFI.
9 File recipient has a security classification less than

that of the file.
#A Either the specified pool does not exist, or the giver

does not have access to the pool.
#B cuser is not a valid user number.
#C Not used.
#D Permanent file space limit exceeded for new power.

Figure 5-8. GIVE FILE (f=#0008) Message Format (Sheet 2 of 4)

5-44 60459420 H

Word

Beta(2)

Beta(3)

Beta(4)

Field

SS

acs

a user

pname

pubs et

vri

llE
llF

1110

Description

No space available in system tables FILEI or UDMINI.
Issuer specified nonzero vri field, but the site does
not use variable rate accounting.
Issuer attempted to set a variable rate index (vri
field) for a data file being given to the public file
list. Only a code file can have a variable rate index
set.

#11 Issuer attempted to give a file belonging to a pool
for which she/he is not the pool boss.

#12 File is a magnetic tape file.
#13 File recipient already has the maximum number of files

she/he can own.
#14 IQM user number specified.
#16 Unable to give ~ttached permanent file (if cuser is

used).
1117
1118
1119
fllA
fllB
111c
fllD

Cannot give connected file.
Caller is not the owner of the file.
File size exceeds limits for user.
No JDNs available to assign to file (c=3 and jdn=O).
Task is not privileged (c=3 and jdn=O).
JDN specified is not caller's (c=3 and jdn .ne. O).
Destination user number is not an output spooler (c=3).

File access permissions. This 8-bit field is treated as eight
1-bit fields, with each bit specifying the associated permission:

Bit

1-3
4
5
6
7
8

Hexadecimal
Value

10
8
4
2
1

Description

Unused.
Execute access permitted.
Modify access permitted.
Append access permitted.
Read access permitted.
Write access permitted.

User number (six ASCII characters, left-justified, blank-filled).
For c=O or 1, auser is the user number of the file recipient. If
the issuer is privileged and the auser and c fields are 0 and the
len field is 4, the file is given to the public file list. When
auser is nonzero, the len field must be 2 or 3.

Pool name (eight ASCII characters, left-justified, blank-filled).
This field specifies the pool to which the file is given when c=l.

Reserved for public file sets.

Variable rate index set in the descriptor block (refer to Variable
Rate Accounting in chapter 8). This field is only specified for
virtual code files.

Figure 5-8. GIVE FILE (f=#0008) Message Format (Sheet 3 of 4)

60459420 H 5-45

I

I

I

Word

Beta(4)

Beta(S)

Field

flag

jdn

cuser/acct

Description

Other operations to be performed when giving the file to the
public file list. This field is used only when the auser and c
fields are both 0:

1 Clear the originating user field in the file index table.
2 Clear the originating user field in the file index table.
4 The file is given to the specified pool; if c=l, this

flag also causes the file to become privileged.
5 Do both 1 and 4.
6 The file is given to the specified pool; if c=l, this

flag also causes the file to become privileged.
7 Do both 1 and 4.

Job descriptor number (binary, 1 through 2047). Used only if c=3.

The user number to which this file currently belongs. If c=2,
indicates that a file is to be given to the user number specified
by auser.

Figure 5-8. GIVE FILE (f=#0008) Message Format (Sheet 4 of 4)

The effect of the access parameter is determined by the current ownership and the resulting
ownership of the file.

If the current ownership is private and the resulting ownership is private, acs establishes
the new owner's access permissions. If acs=O, the new owner's permissions will be the same
as the previous owner had prior to the give.

If the ownership goes from private to pool, acs establishes the access permissions that all
pool members will have, including the pool boss. The default is the access permission the
owner had prior to the give.

If the ownership goes from private to public, acs establishes the access permissions all
users will have to the public file. The default is read and execute access permissions.

If the ownership goes from pool to private, acs establishes the access permissions the new
owner will have. The default is the access permissions the pool boss had prior to the give.

If the ownership goes from pool to pool, acs establishes the access permissions that all
pool members of the receiving pool will have, including its pool boss. The default is that
the new pool boss will have the access permissions the old pool boss had and the general
access permissions are retained.

If the ownership goes from pool to public, acs establishes the access permissions all users
will have to the public file. The default is read and execute access permissions.

5-46 60459420 H

LIST SYSTEM TABLE (f=#0009)

With this message, a user can retrieve a formatted copy of part or all of certain system
tables.

For option 9, two word entries (one from the top and one from the bottom) are listed
sequentially in the Beta area. The operating system moves entries from the disk status
table to the Beta area until either the table or the Beta area is exhausted. The number of
entries transferred is returned in the n field of the Alpha portion of the message.

The Beta format for option #10 of this message is also used by the privileged options of the I
CREATE FILE and OPEN FILE messages.

For c field value of #10, the number of Beta words returned for each file entry is specified
by the quantity len divided by n. For example, if 4 files (n=4) were to be listed and the
len field is 16, only the first 4 Beta words of information for each file would be
returned. To get all 16 words of information for each file would require that n=4 and the
len field be at least 64.

The format of the LIST SYSTEM TABLE message is shown in figure 5-9. (For some of the
message options, the Beta portion of the message can consist of more than one of the
multiword sets shown in the figure.)

For a c field value of #10, the user can set up more than one Beta word group, and the
operating system returns the same number of groups as the user set up. If the file was not
found, the file name field of that group is zeroed. If the file name field of the first
group is 0, the system returns all file index extension entries for those files which have
ex tensions.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r len c 0009
16 16 16 16

n eea
16 48

I bl ba I
L - -- - _1~ - - -·- -------- _____ 4~

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

l
2

11214

Illegal message option.
Nonfatal; more files exists than fit in the Beta
buffer. At least one more file exists for the owner
but this file has not been checked for valid
qualifiers (for option #10 only).
Beta buffer length error. Either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 1 of 6)

60459420 F 5-47

I

I

I

Word

Alpha(l)

Alpha(2)

Al pha(3)

Field

len

c

n

eea

bl, ha

Description

If this field is #FFFF, Alpha (3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the total length in words
of the Beta portion. For option #10, the len field should be at
least 16n. For options 2 through 5 and option 9, this. field
specifies the number of Beta words available for the requested
system table (refer to the c field).

Message option field, specifying the system table information that
the operating system is to return in the Beta portion. The values
are:

2 Timecard buffer; a Beta length of at least 512 is
required.

3 Statistics buffer; a Beta length of at least 100 is
required.

4 Bank update table; a Beta length of at least 32 is
required.

5 Miscellaneous table; a Beta length of at least 104 is
required.

9 Disk status table; a Beta length of at least 32 is
required. If more than the required number of words
are specified to the bl field, the operating system
resets the bl field to 32. (The system does not reset
the bl field of option 2, 3, 4, or 5.)

#F Job category table entries; a Beta length of 198 is
required.

#10 File index table extension entries for all private
files with extensions, or for individually specified
private files.

If the c field value is #10, n is the number of files to be
listed; the quantity len divided by n specifies the number of
words returned per file index table entry. For the other options,
n is the size of the table to be listed (in words), and the Beta
area should be at least n words long. The operating system moves
words from the table into the Beta area until either the table or
the Beta area is exhausted. The value of n must always be greater
than O.

For a c field value of #10, if the operating system finds fewer
than n files to list, it resets n to the number of files found.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first ~ull word of the Beta portion. For a c field
value of 9, the operating system sets the bl field to the length
of the table.

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 2 of 6)

5-48 60459420 F

For message options 2, 3, 4, S, and #F:

Beta(1)

Beta(2)

Beta(n

Word

Beta(l)
through
'Beta(n)

)

0

7

Field

tabwd i

63

tabwd 1

64

tabwd 2
64

tabwd n
64

Description

One word of an n-word table; returned by the operating system when
the c field is 2, 3, 4, 5, or #F.

For message option #9:

0 64

Beta(
u 0 ~ 0

1) p n o w reserved zip1 pu1 zip2 pu2 dau dvno

1 d~ 12 8 8 8 8 8 8

Beta(2) pkno dsno use errs unused dtype label

8 8 8 8 16 4 12

Beta(3) repeat of Beta (1) for drive pack 2

64

Beta(4) repeat of Beta (2) for drive pack 2

. . .
Beta(3 1) repeat of Beta (1) for drive pack 16

Beta(3 2) repeat of Beta (2) for drive pack 16

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 3 of 6)

60459420 E 5-49

I

Word

Beta(!)

Beta(2)

Field

up

on

drop

own

zipl

pul

zip2

pu2

dau

dvno

pk no

dsno

use

errs

dtype

label

Description

Status. The operating system sets this field to one of the
following values:

0 Down.
1 Up.

Usage. The operating system sets this field to one of the
following values :

0 Off.
1 On.

Drop file. The operating system sets this field to one of the
following values:

0 Drop files disallowed.
1 Drop files allowed.

Ownership. The operating system sets this field to one of the
following values:

0 System ownership.
1 Private ownership.

Primary zip.

Primary physical unit number.

Secondary zip.

Secondary physical unit number.

Disk allocation unit.

Device number associated with this disc device.

Pack number written in pack label.

Device set number of which this pack is a member.

Percent of disk space in use (0-100).

Fatal disk errors since autoload.

Device type of this pack.

Address of label of this pack.

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 4 of 6)

5-50 60459420 F

For message option #10:

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Beta(10)

Beta(16)

Word

Beta(!)

0 63

00 atjdn a user
8 12 44

name
64

ptrpfif unused
16 48

unused
64

a
unused

r2
unused

20 42

unused
64

unused
64

unused extid
32 32

un- un-
uacs(1) used user(1) uacs(2) used user(2)

8 4 20 8 4 20
un- un-

uacs(3) used user(3} uacs(4) used user(4)
8 4 20 8 4 20

un- un-
uacs(15) used user(15) uacs(16) used user(16)

8 4 20 8 4 20

Field Description

atjdn The job descriptor number (1 through 2047):

=O File is not attached.
+o File is attached; atjdn contains the job descriptor to

which the file is attached.

auser The binary user number issuing the request; returned by the
operating system.

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 5 of 6)

60459420 H 5-51

I

Word

Beta(2)

Beta(3)

Beta(5)

Beta(8)

Beta(9)
through
Beta(l6)

Field

name

ptrpf il

apf

ext id

uacs(i)

Description

The name field of each Beta entry supplied can contain the ASCII
name of a file for which information is to be returned. The
operating system places a zero here if the name given is not found
or does not have a file index extension entry.

Pointer to the proper block of the PFI for this entry, relative to
the first block of the PFI.

Access permission flags:

Bit 20=1
Bit 21=0

File index table extension.
Used in file index table entry.

Extension identifier used to match file index table entries when
duplicate files occur.

Individual user access permission for the user specified in the
user(i) field:

Bit Description

1-3 Reserved (ignored by the system).
4 Execute access permitted.
5 Modify access permitted.
6 Append access permitted.
7 Read access permitted.
8 Write access permitted.

user(l) Binary user number of a user whose access permission is defined by
uacs(i). An entry of 0 indicates the end of the list.

Figure 5-9. LIST SYSTEM TABLE (f=#0009) Message Format (Sheet 6 of 6)

5-52 60459420 E

CHANGE FILE ATTRIBUTES (f=#OOOB)

This message allows a user program to change various attributes of an existing local file,
an attached permanent file, or a tape file. Nonprivileged users may change the file name,
account, master project number, or retention period of their own files. Privileged users
may also change the account number of another user's file, and they can change ostat, the
output file status. The site security administrator user number can clear the drop file I
restart flag so that the drop file may be restarted. For tape files, only SIL file
attributes may be changed. Whenever a change in file attributes occurs, the dump flag in
the file index table is cleared to indicate the file has been modified. The format of the
message is shown in figure 5-10.

0 63

Alpha(1) r len cf c 0008

16 16 8 8 16

Alpha(2) unused eea

16 48

Alpha(3) bl ba

16 48

Beta (1) cfile

64

Beta (2) nfile

64

Beta (3) usernum

64

Beta (4) dflength mpn unused rp

24 24 6 10

Beta (5) csio

64

un-
rmd reserved ct ic un- ostat used type meat sfo bt rt pc used Beta (6)

4 4 4 4 4 4 8 8 8 4 4 3 5

Beta (7) rim in rlmax ausize

24 24 16

Beta (8) rpb unused ~I~ mpru

16 14 32

Beta (9) account

64

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 1 of 8)

60459420 H 5-53

I

Word

Alpha(l)

Field

r

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Current file name is still active.
2 Current file name does not exist or is not attached.
3 New file already exists.
4 New account number is not valid.
5 New file name is invalid.
6 User is not privileged, although the len field is 3.
7 Invalid c field value.
8 Duplicate permanent file name.
9 Not a level-1 task (a level-1 task is one with no

controller).
#A Caller is not owner of the file.
#c Illegal type code.
#D Unable to change characteristics of a connected file.
#E For virtual code file only.
#F Illegal management category.

#10 No match found in ioc for the file name given in
cf ile.

#11 Illegal class code.
#12 Illegal file organization code.
#13 Illegal blocking type code.
#14 Illegal record type code.
#15 Must have write access to cfile in order to change

#16
#17
#18
#19
#20
#21
#23
#24
#27

#28
#29
#30
#31

#214

hba.
Illegal attribute for a tape file.
Invalid ct value.
Invalid ic value.
Illegal record type change for a direct access file.
Illegal ostat field.
Unable to change ostat field in the FILEI.
Invalid account.
Illegal master project number.
Caller is not the site security administrator user
number.
File is not a drop file.
No user table entry available or the FILEI is full.
Undefined user number.
Nonprivileged caller.
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the message; otherwise, Beta is assumed to begin at
Alpha(3), and len must be 9.

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 2 of 8)

5-54 60459420 H

Word Field

Alpha(l) cf

Description

File attribute change options for mass storage files only.
Control bits are represented as follows:

cf8 cf7 un- cf5 cf4
used

1 1 1 1 1

Subfield

cf8

cf 7

cf S

cf 4

cf3

cf2

cfl

cf3 cf2 cf1

1 1 1

Description

Internal characteristics:

O Do not change internal characteristics.
1 Change internal characteristics.

Communication type:

O Do not change communication type.
Change communication type.

Byte address (hba):

0 Do not reset hba.
1 Reset hba to 1 in the file index table

and to 0 in the ioc. Source file (ioc
number 16) and drop file (ioc number 17)
cannot be changed.

Management category:

O Do not change the meat field in the file
index table.

1 Change the meat field in the file index
table to the value given in the meat
field in Beta(S).

Drop file size:

0 Do not change the drop file size.
l Change the drop file size in the file

index table to the value given in the
dflength field in Beta(4).

Retention period:

0 Do not change retention period~
1 Change the retention peroid.

File type:

0 Do not change the file type in the file
index table.

1 Change the type field in the file index
table to the value given in the type
field in Beta(S).

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 3 of 8)

60459420 E 5-55

I

I

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(!)

Beta(2)

Beta(3)

Beta(4)

Field

c

eea

bl, ba

cf ile

nf ile

usernum

df length

Description

Type of change. The values are:

0

1

2

Change mpn, account number, and/or file attributes. Only
c=O is valid for tape files.
Enable the restart of the drop file identified by cf ile
and usernum. This option is valid for the site security
administrator user number only. (No other file
attributes are changed.)
Change the account number of this executing level-1 task
(such as a batch processor); cfile is the drop file name
of the task.

Virtual bit address to receive control if an error occurs during
processing of this message (rFO). If this field is O when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion. There is only
one Beta per Alpha.

For c=O, this field must contain the current file name in ASCII,
left-justified with blank fill. If changing only the filename,
the c field must be 0 and nf ile must contain the new filename
(refer to the following description of nfile). The cf and csio
fields must also be O. To change file attributes (cf, csio)
without changing the filename, the c field and the new filename
field must both be O. The current filename (cfile) must also be
given. File names must be in the format described in File
Concepts. For c=2, this field must contain the task's drop file
name.

When the c field is 0, this field must contain the new file name
in ASCII, left-justified with blank fill. The file name cannot be
changed for tape files.

Binary user number under which the new account is valid (a
privileged user issued a call with the c field set to 0 or the
site security administrator issued the call with c set to 1).

Length of the drop file in blocks when cf3 is set to 1. (The drop
file may be no larger than #3FFFF due to drop file map
limitations.)

mpn Master project number in ASCII, left-justified with blank fill.
To change the master project number, c must be set to O. The mpn
cannot be changed for tape files.

rp Retention period in days; in binary notation when cf2 is set to 1.

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 4 of 8)

5-56 60459420 H

Word

Beta(5)

Field

csio

0
cc cc

unused
SS s s
1312 p110

3 1 1 1 1

Description

SIO file attribute change options for local, permanent, or tape.
Control bits are respresented as follows:

cc
s s
9 8
1 1

63
cc cc CCC
s s s s s s s

unused 7 6 5 4 3 2 1
1 1 1 1 1 1 1 48

Subfield Description

cs13 Output file status:

0 Do not change output file status.
1 Change the output file status to value

specified in ostat field.

cs12 Allocation unit

0 Do not change allocation unit.
1 Change allocation unit to that specified

in the ausize field.

csll Maximum PRU size:

0 Do not change the maximum PRU size.
1 Change the maximum PRU size to that

specified in the mpru field.

cslO Tape mode:

cs9

cs8

cs7

0 Do not change the tape mode.
1 Change the tape mode to that specified in

the tm field.

Label processing:

0 Do not change the label processing.
1 Change the label processing to that

specified in the lp field.

Records per block:

0 Do not change the records per block.
1 Change the records per block to that

specified in the rpb field.

Record mark:

0 Do not change the record mark.
1 Change the record mark to that specified

in the rmd field.

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 5 of 8)

60459420 E 5-57

Word Field Description

Subfield Description

Beta(S) csio cs6 Padding character:

0 Do not change the padding character.
1 Change the padding character to that

specified in the pc field.

cs5 Record type:

0 Do not change the record type.
1 Change the record type to that specified

in the rt field.

cs4 Maximum record length:

0 Do not change the maximum record length.
1 Change the maximum record length to that

specified in the rlmax field.

cs3 Minimum record length:

0 Do not change the minimum record length.
1 Change the minimum record length to that

specified in the rlmin field.

cs2 Blocking type:

0 Do not change the blocking type.
1 Change the blocking type to that

specified in the bt field.

csl File organization:

0 Do not change the file organization.
1 Change the file organization to that

specified in the sf o field.

Beta(6) type File type code when cf l is set to 1:

0 Physical data file.
2 Virtual code file.

meat File management category when cf4 is set to 1:

0 Mass storage file.
1 Scratch file.

I
2 Output file.
3 MODDROP file (formerly known as write-temporary file).
7 Batch file.

sfo File organization when csl is set to 1:

0 Sequential.
1 Direct.

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 6 of 8)

5-58 60459420 H

Word

Beta(6)

Field

bt

rt

rmd

pc

ct

ic

ostat

Description

Blocking type when cs2 is set to 1:

0 SIL assumes the file was created before SIL was added to
the system; therefore it enters default values in the SIL
fields of the file index entry.

1 Internal blocking (I).
2 Character type blocking (C).
4 Exact records blocking (K).

Record type when cs5 is set to 1:

0 Control word (W).
1 ANSI fixed length (F).
2 Record mark(R).
4 Lower CYBER controlword (L).
5 System block (B).
7 Undefined (U).

Record mark when cs7 is set to 1 (any 8-bit ASCII character).

Padding character when cs6 is set to 1 (any 8-bit ASCII character).

Communication type:

0 Reserved.
1 Access station.
2 Remote Host Facility.

Internal characteristics, indicating the format of the file:

0 Default; currently 1.
1 Eight-bit ASCII. If dc=SC (refer to figure 5-9), file

has free form carriage control.
2 Binary notation.
3 Eight-bit ASCII. If dc=SC (refer to figure 5-9), file

has ANSI carriage control.

Output file status:

0 Normal status.
1 Destination LID disabled.
2 Destination not responding.
3 Destination rejecting file.
4 SIL error occurred during file transfer.
5 DIVERTED.
6 Hardware ~ath to LID not available.
7 SYS error occured during file transfer.

8-32 Reserved by CDC.

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 7 of 8)

60459420 E 5-59

Word

Beta(7)

Beta(8)

Beta(9)

Field

rlmin

rlmax

ausize

rpb

lp

tm

mpru

account

Description

Minimum record length when cs3 is set to 1 (24-bit, user-supplied
length in number of bytes).

Maximum record length when cs4 is set to 1 (24-bit, user-supplied
length in number of bytes).

Allocation unit size in blocks when cf2 is set to 1. User
specified guideline for operating system to follow when extending
file.

Records per block (used only for bt=k) when cs8 is set to 1.

Label processing when cs9 is set to 1:

0 Read and verify the existing labels.
1 Write new labels.

Tape mode when cslO is set to 1:

0 Binary.
1 Coded.

Maximum PRU size (used only for V-format tapes) when csll is set
to 1.

Account number, in ASCII, left-justified with blank fill. This
field must be valid under the user number of the task issuing the
message, or if the user is a privileged user, this field must be a
valid account number under the user number specified in Beta(3).

Figure 5-10. CHANGE FILE ATTRIBUTES (f=#OOOB) Message Format (Sheet 8 of 8)

5-60 60459420 E

FILE DISPOSITION (f=#OOOD)

A user program can issue this message to specify the disposition of a file, freeing the user
from the burden of using naming conventions to accomplish disposition of a file. The file
must be either a local mass storage file or an attached permanent file.

The format of the FILE DISPOSITION message is shown in figure 5-11. (The Beta portion of
this message can consist of more than one of the seven-word entries shown in the figure.)

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Beta(7)

Word

Alpha(1) r

0 63

r len unused 0000
16 16 16 16

n eea
16 48

I bl ba I
L_ - - - _1~ L..- -- - - - - -- - -- - - - - ~8_J

cm

nae
8

Field

name
64

flags def el SS

40 8 8 8

unused ic de
32 16 16

st ot unused
16 24 8 16

tid
56

fid
64

unused
64

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Error code was returned in an ss field of Beta(2).
#211 Number of files routed by this message was illegal

(the n field is 0).
#214 Beta buffer length error; either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-11. FILE DISPOSITION (f=#OOOD) Message Format (Sheet 1 of 3)

60459420 E 5-61

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(!)

Beta(2)

Field

len

n

' eea

bl, ba

name

flags

def

el

SS

Description

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len in the length in words of
the Beta portion (a multiple of 7).

Number of files to be routed by this message. Maximum is #FFFF
files.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

File name, in ASCII. File names must be in the format described
in File Concepts, Chapter 3.

Flag bits. Each bit must be set to 0 if the specified parameter
is to be ignored, or set to 1 if the specified parameter is to be
processed (the value is to be placed in the appropriate file index
table entry field).

Beta(2) bits and corresponding parameters in this field, from left
to right starting from 0, are:

0
1
2

Unused
Unused
ic

3
4
5

de
cm
st

6
7
8

ot
Unused
tid

9
10
11

f id
Unused
nae

If set to 1, indicates that file disposition is to be deferred.
The operating system stores the information about the file into
the file index table but does not dispose of the file.

Beta entry length; must be at least 2 and no more than 7.

Error response field. The values are:

Immediate release (def=O) of an active file.
2 Immediate release (def=O) of a nonallocated file.
3 Beta entry length (el) error.
4 File must be attached before the route message is

executed.
5 Immediate release (def=O) with no disposition set.
6 Could not write a PFI entry.
7 Illegal disposition code.
8 Illegal site identifier, or the mainframe site

identifier is not logged in.
9 Illegal file name.

#B Attempt to route a magnetic tape file.
#c RHF files may not be routed.
#D Files connected to a terminal may not be routed.
#E Caller is not the private file owner.

Figure 5-11. FILE DISPOSITION (f=#OOOD) Message Format (Sheet 2 of 3)

5-62 60459420 E

Word

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Field

ic

de

cm

st

ot

nae

tid

fid

Description

Internal characteristic, indicating the format of the file. Refer
to figure 5-9 for the possible values in this field.

Disposition code, indicating how the file is to be disposed.
Refer to figure 5-9 for the possible values in this field.

Conversion mode, indicating the type of conversion to be performed
on the file when it reaches the access station (st=AST):

DI Display code (64-character set).
EC Extended display code (128-character set).
BI Binary.

Site identifier, identifying the processor responsible for
processing the file. If the disposition code is IN (input for
batch processing), this field identifies the processor on which
the file is to be executed. If the disposition code specifies an
output queue, this field identifies the processor on which the
file is output.

For possible values for this field, contact a site analyst.

Origin type of a file.

B Local batch.
E Remote batch.
I Interactive.

Access station area code.

Terminal identifier. The central site is indicated by tid=O.
(Not meaningful for files destined for the CYBER 205.)

The first five characters of the file name that is to designate
the file while it is in the output queue. Any combination of one
to five letters and numbers can be specified, with the first
character a letter. Two unique job sequence characters added by
the system to the job name are used as the sixth and seventh
characters of the file name. The eighth character (CYBER 200
only) is a blank.

Figure 5-11. FILE DISPOSITION (f=#OOOD) Message Format (Sheet 3 of 3)

60459420 E 5-63

USER/ ACCOUNTING COMMUNICATION (f=#OOOE)

A user program can issue the USER/ACCOUNTING COMMUNICATION message to retrieve accounting
statistics from the cumulative accounting buffer. This call is used by the batch processor
to communicate with the accounting system. Only the accounting statistics for the program
issuing the message are available to the program; the statistics are available via this
message only for the duration of the job.

The format of this message is shown in figure 5-12. The Beta portion of the message is
described under the c field definition. The value in each of the Beta words, except for the
leftmost 16 bits of Beta(l5), is a sum over all accounting periods for the job up until
issuance of the USER/ACCOUNTING COMMUNICATION message.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r len c OOOE
16 16 16 16

unused eea
16 48

I bl ba
48

1
L- - -- _1~ i..------ - ---- --- -- -.--1

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

2 Illegal message option.
3 Nonprivileged task attempted to use a privileged option;

or, option 1 or 2 was issued by a user other than a
level-1 task.

4 System time unit (STU)/system billing unit (SBU) value is
less than O.

5 Too many entries are written to the accounting file.
7 Error in call to user validation routine.
8 Account number is not valid.

#214 Beta buffer length error; either the first word address
of Beta plus length is greater than the maximum user
virtual address, or the Beta buffer is too small for the
number of requests and length specified.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. For message option 1, len must be l; for option
3, len must be 22; for option 4, len must be O; and for option 9,
len must be 5.

Figure 5-12. USER/ ACCOUNTING COMMUNICATION (f=f/OOOE) Message Format (Sheet 1 of 4)

5-64 60459420 E

Word Field

Alpha(l) c

Alpha(2) eea

Alpha(3) bl, ba

Message options:

0

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

Beta (6)

Description

Message options:

0 Reserved.
1 Start of this batch job; can be issued only from a

level-1 task.
2 End of this batch job; can be issued only from a level-1

task.
3 Retrieve accounting information for this task or for all

level controllees executed since the start of this batch
job.

4 Dump accounting temporary storage to permanent storage
and terminate the accounting file; can be issued only by
a privileged task. No Beta portion is used for this
option.

5 Close out current system dayf ile and start a new one; can
be issued only by a privileged task. No Beta is used for
this option.

6 Allows operating system file transfer utilities to make
accounting record entries. Beta(l) through Beta(6) will
contain accounting record information.

7 Adds accounting information pertinent for bill usage to
the account file.

8 Adds STUs/SBUs to user's accounting statistics.
Y Adds project accounting information to the account file.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

For option 1, the Beta portion of the message consists of one
word, a job name of up to eight ASCII characters starting with a
letter, left-justified with blank fill.

For option 2, Beta words 2 through 6 are optional; therefore, the
Alpha length must be set accordingly (len is either 1 or 6).

63

job name

64

job sbu/stu

64

project

64

project

64

project project

32 32

project sbu/stu

64

Figure 5-12. USER/ACCOUNTING COMMUNICATION (f=#OOOE) Message Format (Sheet 2 of 4)

6045Y420 F 5-65

I

I

Word

Beta(l)

Beta(2)

Beta(3)
through
Beta(5)

Beta(6)

Field Description

jobname Job name in ASCII, left-justified with blank fill.

job sbu/stu Total SBU/STU amount accumulated by the job.

project 1- to 20-character project number, in ASCII, left-justified with
blank fill.

project Total SBU/STU amount accumulated by the project number.
sbu/stu

For option 3, VSOS returns the following Beta words:

Beta(!)
Beta(2)

Beta(3)
Beta(4)

Beta(5)

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Beta(lO)

Beta(ll)
Beta(l2)
Beta(l3)

Beta(l4)

Beta(l5)

Beta(l6)
Beta(l7)
Beta(l8)
Beta(l9)
Beta(20)

Beta(21)
Beta(22)

User execution CPU time, in microseconds.
Memory usage; at the end of each accounting period, (current
working set size)*(user CPU time for current accounting period) is
computed and added to a running total kept in this field.
Number of 16-bit bytes transferred to or from tape files.
Number of tape accesses (input/output requests issued) for reads
and writes.
Number of nonread and nonwrite tape functions, such as read
hardware status.
Virtual and resident CPU time, in microseconds, for user program
execution.
Number of disk accesses (input/output requests issued) for large
page explicit reads and writes.
Number of disk accesses (output requests issued) for large page
implicit writes.
Number of disk accesses (input/output requests issued) for small
page explicit reads and writes.
Number of disk accesses (output requests issued) for small page
implicit writes.
Number of disk sectors transferred for explicit reads and writes.
Number of disk sectors transferred for implicit writes.
Number of disk accesses (input requests issued) that resulted from
large page faults (large page implicit reads).
Number of disk accesses (input requests issued) that resulted from •
small page faults (small page implicit reads).
Current working set size (leftmost 16 bits), and the number of
virtual system user calls made (rightmost 48 bits).
STUs (cumulative TCHARGE calculations, integer).
SBUs (cumulative MCHARGE calculations, real).
Number of large pages lost.
Number of small pages lost.
Cumulative amount of CPU time for which this task's working set
size limit appeared to be too small.
Account block STU value (integer).
Account block SBU value (real).

Figure 5-12. USER/ACCOUNTING COMMUNICATION (f=#OOOE) Message Format (Sheet 3 of 4)

5-66 60459420 F

Beta (1)

Beta (n)

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

Word

Beta(l)

Beta(2)
through
Beta(4)

Beta(5)

For options 4 through 6, there is no Beta portion. For option 7, the Beta
portion of the message is as follows, with up to 10 words of Beta:

0 63

string of installation-defined data

64

. . .

string of installation-defined data

64

Maximum length of 80 characters containing billing information.

For option 8, the Beta portion of the message consists of one word, a positive
floating-point STU/SBU amount.

For option 9, the account set in Beta(l) is checked for validity and the
accumulated account block SBUs or STUs are returned to the caller.

0

Field

account

project

project
sbu/stu

63

account

64

project

64

project

64

project unused

32 32

project sbu/stu

64

Description

Account number in ASCII, left-justified with blank fill.

1 to 20 character project number in ASCII, left-justified with
blank fill.

Total SBU/STU amount accumulated by the project number.

Figure 5-12. USER/ACCOUNTING COMMUNICATION (f=#OOOE) Message Format (Sheet 4 of 4)

60459420 E 5-6 7

ATTACH PERMANENT FILE (f=#0010)

A program issues this message to attach an existing permanent file. Only one Beta is
processed for each Alpha used. The format of this message is shown in figure 5-13.

0

Alpha (1) r

Alpha (2) n

Alpha (3) bl

Beta (1)

Beta (2) SS

8

Beta (3)

Word Field

Alpha(!) r

len

c

Alpha(2) n

63

Jen c 0010
16 16 16 16

eea
16 48

ba

16 48

name

64

acs flag unused
8 8 40

owner

64

Description

Response code returned by the operating system when this message
has been processed. If no error occurs, the code is O; otherwise:

1 Refer to Beta field ss for the specific error. All
Beta entries are processed.

2 More than one of the following response codes 4, 5,
and 6.

3 Illegal option. Control field contains an illegal
value (not 0 or 1).

4 Access conflict with another job of this user.
5 Filename is in use as a local file.
6 Access conflict with another user.

#211 Number of files given was 0 or greater than 16.
#214 Beta buffer length error. Either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) exists and contains the length
and virtual bit address of the Beta portion of the message;
otherwise, Beta is assumed to be located beginning at Alpha(3),
and len is the length of the Beta portion of the message.

Control field. If this field is 0, attach files given in the Beta
field. If this field is 1, attach all files (no Beta required).

Number of requests in this message (maximum is 16). Not used for
c=l.

Figure 5-13. ATTACH PERMANENT FILE (f=#OOlO) Message Format (Sheet 1 of 2)

5-68 60459420 E

Word Field

Alpha(2) eea

Alpha(3) bl, ba

Beta(l) name

Beta(2) SS

acs

flag

Beta(3) owner

Description

Virtual bit address to receive control if an error occurs while
this message is processed (r not equal to O); if eea is 0 when an
error occurs, the error is considered fatal.

If the Beta portion of the message is not contiguous to the Alpha
portion (len=#FFFF), these parameters indicate the length and
virtual bit address of the first full word of the Beta portion.

Name of the file in ASCII; file names (left-justified with blank
fill) must be in the format described in chapter 3. Drop file can
also be attached.

Error responses:

0
1
2
3
4

5
6

7
8
9

11A
1fB
lie
1/D

Normal completion.
Permanent file name not found.
File already attached to this job.
Access conflict with another of user's jobs.
File already attached as a local file or attached
permanent file.
No user table entry available.
Access violation; user does not have requested access
permissions.
Access conflict with another user.
Specified user number does not exist.
Not enough space in the FILEI system table.
File spans a downed device.
Read-only access required for partial attach.
Attempted to attach a purga-only file.
User attempted to attach a file with write, modify, or
append access when the field is privileged open.

Desired file access. This field is treated as eight 1-bit fields.
Each bit set requests the associated access. Combinations are
allowed. The values are:

Hexadecimal
Bit Value Description

1-3 Unused.
4 10 Execute access.
5 8 Modify access.
6 4 Append access.
7 2 Read access.
8 1 Write access.

If acs is binary O, the default is all access types permitted to
the caller.

A set of 8 bits (Fl through F8) indicating a special action.
Values are:

fl=O
fl=l
f1=2-8

Do not attach file spanning a downed device.
Attach file spanning a downed device.
Reserved.

ASCII user number of file owner (six ASCII characters,
right-justified, zero-filled). If this field is 0, the caller's
user number is used.

Figure 5-13. ATTACH PERMANENT FILE (f=#OOlO) Message Format (Sheet 2 of 2)

60459420 H 5-69

I

I

GET PACK LABEL AND PFI (f=#OOl 1)

A privileged user or master user issues this message to retrieve the pack label and pack
file index for a specified pack. The preferred option is to return unformatted entries
(c=l).

If the user is a privileged user, all the PFI entries are returned for the specified pack.
If the user is a master user, only those PFI entries (for which the user is a master user of
the account) are returned for the specified pack.

In the first call, the user initializes the Alpha words (n set to 0) and the packid field in
Beta(l). The length of the Beta portion must be at least 528 (one block plus 16 words for
the pack label). The pack label is returned in Beta(l) through Beta(ll) and the PFI entries
are returned starting at Beta(l7). A count is returned to the n field indicating the number
of entries plus one that have been returned in the current call (or series of calls, if more
than one call is issued). If a 1 is returned in the r field of Alpha(l), more PFI entries
exist and the call must be reissued to get the rest of the entries. In the second and any
subsequent calls, the n field must contain the count returned in the previous call. PFI
entries are then returned starting at Beta(l).

The label format, as set by the system routine NAMEPACK, is shown in figure 5-14. The
format of the entries is the same as for the LIST FILE INDEX OR SYSTEM TABLE message option
1 (shown in figure 5-9), except that the user/ref field is always ref and oacs always
contains the oacs value.

0 63

Alpha(1) r len c 0011
16 16 16 16

Alpha(2) n eea
16 48

Alpha(3) I bl ba I
L ----- _1£!. ,_ - ----- ---- ------ _4~

Figure 5-14. GET PACK LABEL AND PFI (f=/10011) Message Format (Sheet 1 of 4)

5-70 60459420 E

63

Beta (1) volume

64

Beta (2) packid series

48 16

Beta (3) label pfiloc

24 40

Beta (4) pfie pfil pkln

16 16 32

Beta (5) creation

64

Beta (6) update

64

Beta (7) expiration

64

Beta (8) dau dfsl dfsloc

16 16 32

Beta (9) dtyp dvno bsmloc

16 16 32

Beta (10) devset

64

Beta (11) type

64

Beta (12) bad spot

64

~

Beta (13) timestamp

64

Beta (14) unused

64

Beta (15) unused

64

Beta (16) unused check _byte

16 48

Figure 5-14. GET PACK LABEL AND PFI (£=#0011) Message Format (Sheet 2 of 4)

60459420 E 5-71

I

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Field

r

len

c

n

eea

bl, ha

volume

packid

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

Nonfatal error; more files exist than the Beta portion
could hold; reissue the call to get the rest.

2 User is not privileged or is not a master user.
3 Disk I/O error.
4 Pack identifier was not found.
5 Illegal option.
6 User directory not found.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the message; otherwise, Beta is assumed to begin at
Alpha(3), and len is the length in words of the Beta portion.
This field must be multiple of 16 and a minimum of 528.

Message options:

0 Return pack label (Beta is at least 16 words).
Return PFI entries (Beta is a multiple of 16, at least
512 words).

2 Return bad spot map (Beta is at least 512 words).

This field must be set to 0 by the user for the first call,
causing the pack label alone to be returned. For a reissued call,
this field must be set to the value that the operating system
returned to the user in this field for the previous call. If C=l,
n indicates the starting entry.

Virtual bit address to receive control if an error occurs during
processing of this message (r40). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word o'f the Beta portion.

When the call is issued, Beta(l) contains the pack number.
Contains the characters VOL 3 to distinguish the label from the
earlier versions that contained VOL 2.

Pack identifier of the pack sought, in ASCII, left-justified with
blank fill. For a first call (n=O), the pack identifier in
Beta(l) is overwritten with the returned label. Sixteen words of
the pack label are returned (last three words are not used); all
16 words of each used pack file index entry are returned. Pack
identifiers are obtained using option 9 of the LIST SYSTEM TABLE
(f=#0009) message.

series Value of 2031, in hexadecimal notation.

Figure 5-14. GET PACK LABEL AND PFI (f=#OOll) Message Format (Sheet 3 of 4)

5-72 60459420 F

Word Field

Beta(3) label

pf iloc

Beta(4) pf ie

pf il

pkln

Beta(5) creation

Beta(6) update

Beta(7) expiration

Beta(8) dau

df sl

df sloc

Beta(9) dtyp

dvno

bsmloc

Beta(lO) devset

Beta(ll) type

Beta(l2) bad spot

Beta(l3) time stamp

Beta(l6) check_byte

Description

Disk block address of this label.

Disk block address of the first block of the Pack File Index (PFI).

Entry number of this entry within the PFI, counting from O.

Length of the PFI in blocks.

Pack length that is the number of 512-word blocks that can be
allocated on this disk pack.

ASCII date, in the format mm.dd.yy, of the creation of this label.

ASCII date, in the format mm.dd.yy, of the last update of the disk.

ASCII date, in the format mm.dd.yy, of the expiration of the disk.

The disk allocation unit contains the binary number of 512-word
blocks in an allocation unit. It is the minimum allocation unit
for this disk pack.

Length of the directory of file segmentation (DFS).

Starting disk block address of the DFS.

Device type indicator:

1 Reserved.
2 81912 disk pack (single density, 18 sector).
3 81922 disk pack (double density, 18 sector).

Device number associated with this disk pack.

Starting disk block address of the bad spot map (BSM).

Device set name in the format DVSTxx, where xx is the device set
number. The field is left-justified and blank-filled.

Type of disk pack: 81912 or 81922 in hexadecimal notation; used
by the operating system to determine the length of the disk pack.
(Returned for release version 2.1.5 compatibility only.)

Name of pseudo file converting the bad spot map. (Retained for
release version 2.1.5 capability only.)

Time of last autoload.

Check sum of selected fields of the pack label. Words 1 through 4
and 8 through 12 are used to generate the check_byte.

Figure 5-14. GET PACK LABEL AND PFI (f=#OOll) Message Format (Sheet 4 of 4)

60459420 E 5-7 3

LIST CONTROLLEE CHAIN (f=#0013)

A user program can obtain a list of the controllee chain, including the program level and
descriptor block number, the executable source file name, drop file name, and so forth, of
each task in the chain, by using the LIST CONTROLLEE CHAIN message shown in figure 5-15.
The issuing program can determine its own position in the chain by comparing fields j and b
in Alpha(2) with fields s and t in Beta(l).

A total of nine levels is the maximum; that is, eight controllees plus the level-I batch
processor or virtual system interactive processor. The descriptor block number is unique
and is associated with the program until it terminates. Observe that level 1 will be listed
for a batch job. Level 2 will be the highest level for which information is returned if the
task is running interactively.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Word

Alpha(l) r

0 63

r len c unused 0013
16 16 8 8 16

j b eea
8 8 48

I bl ba I
L----

16 __ 4~ -- _____ -- --- -----
0

s
8

k
8

Field

63

t ctlr unused
8 8 40

ti

5~

source
64

drop
64

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, control proceeds normally
and this field contains the number of words returned in Beta;
otherwise, the response code is:

1 The length specified for Beta is O.
2 An illegal option was selected.

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-15. LIST CONTROLLEE CHAIN (f=l/0013) Message Format (Sheet 1 of 2)

5-74 60459420 E

Word Field

Alpha(l) len

c

Alpha(2) j

b

eea

Alpha(3) bl, ba

Beta(l) s

t

ctlr

Beta(2) k

tl

Beta(3) source

Beta(4) drop

Description

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. For message option 0, len must be a multiple of
4, up to a limit of 36. For message options 1, 2, and 3, len must
be 4.

Message options:

0 List all controllees in the chain; controllees are listed
in ascending order, starting with the job control
processor.

1 List only the program that issued the message.
2 List only the controller of the program that issued the

message.
3 List only the controllee of the program that issued the

message.

Level in the controllee chain of the program that issued the
message. Level numbers in this field range from 1 to 9.

Descriptor block number of the program that issued the message.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

The level in the controllee chain of the program whose name is in
Beta(3). Level numbers in this field range from 1 to 9.

Descriptor block number of the program whose name is in Beta(3).

Descriptor block number of the controller of the program whose
name is in Beta(3):

#FF Controller is interactive processor.

Descriptor block number of the controllee of the program whose
name is in Beta(3). This field can be O.

Time limit of the program whose name is in Beta(3).

Name of the executable source file, in ASCII.

Name of the drop file, in ASCII.

Figure 5-15. LIST CONTROLLEE CHAIN (f=#0013) Message Format (Sheet 2 of 2)

60459420 E 5-75

SEND A MESSAGE TO CONTROLLER (f=#0014)

This message is used by a program to send a string of binary or ASCII data to a program
controller or the job control processor (the batch processor or virtual system interactive
processor). When this message is issued, the operating system copies the data string from
the Beta portion of the message into a system buffer.

When output requests are being sent to a virtual system interactive processor (for example,
a user at a terminal) from a task (its controllee) and the wait or replace option (m=O) has
been selected, the system message buffer can hold up to 5 data strings or 4096 character
bytes, whichever limit is reached first. For a logged-out user, only one data string can be
held in the buffer. The data is grouped in blocks of 151 character bytes and sent, 1 block
at a time, from the virtual system interactive processor to the output device. If the last
block is fewer than 151 character bytes, an end-of-message character is added after the last
character byte. The issuer of the message is responsible for formatting any multiline
strings to be sent to a terminal by inserting line feed and carriage return characters at
the appropriate places in the string.

If a data string from a controller has been sent but not requested by the controllee when
the controllee issues this message, the data string from the controller to the controllee is
lost. The controllee should check, therefore, to see if any data strings are waiting to be
received before it issues this message.

If the controller is the batch processor, the message is put in the job dayfile. The format
of this message is shown in figure 5-16. The Beta portion contains the string of binary or
ASCII data sent to the program controller or job control processor. The maximum length of
the Beta portion, when present, is 4096 character bytes. When a data string is sent in this
way to the virtual system interactive processor, the processor sends it to an output device
(a terminal).

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r len c cf 0014
16 16 8 8 16

unused b eea
8 8 48

I bl ba I
L_ --- _1§. L.--------- - -

______ _38...J

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Length of Beta in character bytes is either 0 or
greater than 4096.

2 Illegal option was selected for this message.
3 No controllee matches the value of b=O, or this task

is a level-1 task; therefore, sending this particular
message was pointless.

Figure 5-16. SEND A MESSAGE TO CONTROLLER (f=#0014) Message Format (Sheet 1 of 2)

5-76 60459420 E

Word Field

Alpha(l) r

len

c

cf

Alpha(2) b

eea

Alpha(3) bl, ba

4

6

7
#214

Description

If the notify option was selected (c=l), the
controller designated was a job control processor for
a logged-out user.
If the notify option was selected, the system output
buffer is full.
Error in sending message to job dayfile.
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length in character
bytes and the virtual bit address of the Beta portion of the
message; otherwise, Beta is assumed to begin at Alpha(3), and len
is the length in character bytes of the Beta portion.

Message options:

0 If the controller to whom the data string was sent is a
logged-out user, replace any existing string waiting in
the buffer with the new string. If the job control
processor buffer is full, stop running this program until
the buffer is free.
If the data string cannot be sent to the controller,
return control to the error exit address.

2 If the data string cannot be sent to the controller, stop
running this program until the message can be sent.

Control field. The values are:

0 Send the data string to the controller. If the
controller is a virtual system interactive processor or
batch processor, continue running this controllee program
(the program issuing this message); otherwise, start
running the controller and stop running this controllee
program.

2 Send the data string to the level-1 task. Continue
running this controllee program.

Descriptor block number of the controller. If the data string is
to be sent directly to a level-1 task (c=2), or if this program's
controller is a level-1 task, this field is ignored. If this
field is 0, the data string is sent to the next higher controller.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in character
bytes and virtual bit address of the first full word of the Beta
portion.

Figure 5-16. SEND A MESSAGE TO CONTROLLER (f=#0014) Message Format (Sheet 2 of 2)

60459420 E 5-77

SEND A MESSAGE TO CONTROLLEE (f=#OOl S)

A program starts a controllee running by issuing a SEND A MESSAGE TO CONTROLLEE message.
The optional Beta portion of this message contains a string of binary or ASCII data for the
controllee to receive as soon as the controllee has been started running. If the Beta
portion is present when the operating system processes the SEND A MESSAGE TO CONTROLLEE
message, the operating system copies the data string from the Beta portion into a system
buffer before it starts the controllee. The controllee will have to issue a GET MESSAGE
FROM CONTROLLER OR OPERATOR message to retrieve the data string from the system buffer.

A special situation arises if any controllee (except for the immediate controllee of a
level-1 task) issues a GET MESSAGE FROM CONTROLLER OR OPERATOR message when no data string
is waiting in the system buffer. In this case, the controllee stops running and waits until
a message is sent to it, and the next higher controller in the controllee chain is started
running.

The format of this message is shown in figure 5-17. The maximum length of the Beta portion,
when present, is 4096 character bytes.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r

unused
8

I bl
L ___

Field

len c unused 0015
16 16 8 8 16

b eea
8 48

ba I
- _1~

~-------- --- -----18.J

Description

Response code; returned by the operating system when this message
has been processed. lf no error occurs, the response code is O;
otherwise:

1 Length of Beta in character bytes is 0 or greater
than 4096.

2 Illegal option was selected for this message.
3 No controllee matches the value of the b field (for

b=O).
4 For b=O, no controllee exists.
7 Error exit has been taken, since the controllee

already has a text string from the controller.
#214 Beta buff er length error; either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-17. SEND A MESSAGE TO CONTROLLEE (f=#0015) Message Format (Sheet 1 of 2)

5-78 60459420 E

Word Field

Al pha(l) len

c

Alpha(2) b

eea

Alpha(3) bl, ba

Description

If this field is #FFFF, Alpha(3) contains the length in character
bytes and the virtual bit address of the Beta portion of the
message; otherwise, Beta is assumed to begin at Alpha(3), and len
is the length in character bytes of the Beta portion.

Message options:

0 This message has a Beta portion containing a data string
for the controllee. If the controllee already has a data
string waiting from the controller, replace it with the
new data string.
This message has a Beta portion containing a data string
for the controllee. If the controllee already has a data
string waiting from the controller, return control to the
error exit address.

2 This message does not have a Beta portion.

Descriptor block number of the controllee; if 0, the data string
is sent to the next lower controllee in the controllee chain.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=llFFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

Figure 5-17. SEND A MESSAGE TO CONTROLLEE (f=#OOlS) Message Format (Sheet 2 of 2)

60459420 F 5-79

I

GET MESSAGE FROM CONTROLLER OR OPERATOR (f=#0016)

A string of binary or ASCII data sent by a controller program or the operator and waiting in
a system buffer can be retrieved by this controllee program using a GET MESSAGE FROM
CONTROLLER OR OPERATOR message. Depending on the message option selected, the data string
being retrieved might be copied into Beta, or it could be processed into a set of symbols
before it is stored into Beta. In any case, the data string being retrieved must not exceed
512 words (4096 character bytes).

Multiword symbols are permitted and processed without any special treatment. If the number
of symbols exceeds the number requested, only the number requested are stored in Beta. If
fewer symbols are returned than are requested, all symbols are stored in Beta. The
operating system in this case never appends an end-of-message character.

Delimiters are always returned right-justified with blank fill. Blanks are never treated as
a special case (if a space is a delimiter, all occurrences of blank result in a delimiter
being returned; if space is not a delimiter, spaces are processed the same as any other
character).

A special situation occurs if there is no data string waiting in the system buffer when a
controllee (except for the immediate controllee of a level-I task) issues this message. The
controllee will stop running and wait for a data string from its controller. The next
higher controller in the controllee chain will start running.

The format of this message is shown in figure 5-18. The Beta portion is discussed under the
c field description.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r

j
8

I bl
L-- -

Field

len fj c cf 0016
16 16 5 3 8 16

b eea
8 48

ba I
- _1~ L..----·-- --·- --- - - - - _4fl.J

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, control proceeds normally
and this field contains the number of words (if an unprocessed
<lat~ string was obtained) or character bytes (if a data string
processed into symbols was obtained) returned in Beta. If control
returns to the error exit address, nothing was returned in Beta
and the values are:

1 Count of bytes returned was either 0 or greater than
4096.

2 Illegal option was specified for this message.
3 No controller or operator message existed.
5 $EOF received for file connected to a terminal.

Figure 5-18. GET MESSAGE FROM CONTROLLER OR OPERATOR (f=#0016)
Message Format (Sheet 1 of 3)

5-80 60459420 E

Word

Alpha(!)

60459420 E

Field

r

len

fj

c

7
8
7
y

11214

Description

$EOG received for file connected to a terminal.
$EOR received for file connected to a terminal.
More than 200 delimiters are defined by this program.
This message was issued from a level-I task.
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length in words (if
the data string is to be translated into symbols) or character
bytes (if an untranslated data string is to be obtained) and the
virtual bit address of the Beta portion of the message; otherwise,
Beta is assumed to begin at Alpha(3), and len is the length of the
Beta portion in words or character bytes. Maximum is 512 words
(4096 bytes).

Fill and justification for the message. For all options except
c=O, the values are:

0 Left-justification, blank fill to the right.
1 Left-justification, zero fill to the right.
4 Right-justification, blank fill to the left.
5 Right-justification, zero fill to the left.

Message options:

0 The data string is to be copied from the system buffer to
Beta, beginning at Beta(!). If the number of words in
the data string exceeds the number specified by the len
field, only the first len words are copied to Beta. If
there are fewer than the number requested, the last word
of the data string is left-justified with binary zero
fill.
The data string is to be translated into symbols.
Delimiters must be defined by the program issuing this
message, and their number must not exceed 200. Symbols
are stored in Beta, one symbol per word, starting with
Beta(2). Beta(!) contains the number of delimiters
(leftmost 16 bits), and the virtual bit address of the
delimiter buffer (rightmost 48 bits). Delimiters are
stored left to right, character byte by character byte,
in the buffer.

2 The data string is to be translated into symbols.
Delimiters are blank, period, comma, slash, equals, plus,
minus, and left and right parentheses. Symbols are
stored in Beta starting with Beta(!).

3 The data string is to be translat.ed into symbols.
Delimiters are defined as installation parameter
options. Symbols are stored in Beta starting with
Beta(!).

Figure 5-18. GET MESSAGE FROM CONTROLLER OR OPERATOR (f=#0016)
Message Format (Sheet 2 of 3)

5-81

Word

Alpha(!)

Alpha(2)

Alpha(3)

5-82

Field

cf

j

b

eea

bl, ba

Description

Control field:

O If no data string from this program's controller is
waiting in the system buffer, stop running this program
until a data string arrives. Process and return the data
string to Beta, and release the system buffer space
occupied by the data string.

1 If no data string from this program's controller is
waiting 1n the system buffer, return control to the error
exit address. If there is a data string waiting, process
and return it to Beta, and release the system buffer
space occupied by the data string.

2 If no data string from this program's controller is
waiting in the system buffer, stop running this program
until a data string arrives. Process and return the data
string to Beta, but do not release the system buffer
space occupied by the data string.

3 If no data string from this program's controller is
waiting in the system buffer, return control to the error
exit address. Process and return the data string to
Beta, but do not release the system buffer space occupied
by the data string.

4 If no data string from the operator is waiting in the
system buffer, stop running the program until a data
string arrives. Process and return the data string to
Beta, and release the system buffer space occupied by the
data string.

5 If no data string from the operator is waiting in the
system buffer, return control to the error exit address.
Process and return the data string to Beta, and release
the system buffer space occupied by the data string.

Level of the controller that sent the data string being retrieved;
· supplied by the operating system. If the data string came from
the operator, this field is O. If no data string was found in the
system buffer, the operating system returns in j the level of the
task that issued this message.

Descriptor block number of the controller that sent the data
string being retrieved; supplied by the operating system. (If the
interactive processor was the conroller, b is FF.) If the control
field is 4 or 5, this field is the descriptor block number of the
operator. If no data string was found in the system buffer, the
operating system returns in b the descriptor block number of the
task that issued this message.

Virtual bit address to receive control if an error occurs during
processing of this message. If this field is 0 when an error
occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), this parameter indicates the length in words (if an
untranslated data string is to be obtained) or character bytes (if
the data string is to be translated into symbols) and virtual bit
address of the first full word of the Beta portion.

Figure 5-18. GET MESSAGE FROM CONTROLLER OR OPERATOR (£=#0016)
Message Format (Sheet 3 of 3)

60459420 E

GET MESSAGE FROM CONTROLLEE (f=#OOl 7)

A string of binary or ASCII data sent by a controllee program and waiting in a system buffer
can be retrieved by this controller program using a GET MESSAGE FROM CONTROLLEE message.
Depending on the message option selected, the data string being retrieved might be simply
copied into Beta, or it could be processed into a set of symbols before it is stored in
Beta. In any case, the data string being retrieved must not exceed 512 words (4096
character bytes).

Multiword symbols are permitted and processed without any special treatment.
of symbols exceeds the number requested, only the number requested are stored
fewer symbols are returned than are requested, all symbols are stored in Beta.
operating system in this case never appends an end-of-message character.

If the number
in Beta. If

The

Delimiters are always returned right-justified with null fill. Blanks are never treated as
a special case (if a space is a delimiter, all occurrences of blank result in a delimiter
being returned; if space is not a delimiter, spaces are processed the same as any other
character).

The format of this message is shown in figure 5-19. The Beta portion is discussed under the
c field description.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r len fj c cf 0017
16 16 5 3 8 16

j b eea
8 8 48

I bl ba I
16 L ---- L- ---...J -- ----- ------- .3~

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, control proceeds normally
and this field contains the number of character bytes (if a
message was obtained) or words (if symbols were obtained) returned
in Beta. If control returns to the error exit address, nothing is
returned in Beta and the values are:

1
2
3
4

6

7
11214

Count of bytes returned was 0 or greater than 4096.
Illegal option was specified for this message.
No controllee message existed.
Message from the controller (not the controllee) was
waiting.
This program started because the controllee, whose
level and descriptor number are stored in fields j
and b, is waiting for a message from the controller.
More than 200 delimiters are defined by this program.
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

Figure 5-19. GET MESSAGE FROM CONTROLLEE (f=/10017) Message Format (Sheet 1 of 3)

60459420 E 5-83

Word Field

Alpha(!) len

f j

c

cf

Description

If this field is #FFFF, Alpha(3) contains the length in character
bytes (if an untranslated data string is to be obtained) or words
(if the data string is to be translated into symbols) and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and !en is the length of the Beta
portion in words or character bytes. Maximum is 512 words (4096
bytes).

Fill and justification for the message. For all options except
c=O, the values are:

0 Left-justification, blank fill to the right.
l Left-justification, zero fill to the right.
4 Right-justification, blank fill to the left.
5 Right-justification, zero fill to the left.

Message format options:

O The data string is to be copied from the system buffer to
Beta, beginning at Beta(l). If the number of words in
the data string exceeds the number specified by the len
field, only the first len words are copied to Beta. If
there are fewer than the number requested, the last word
of the data string is left-justified with binary zero
fill.

l The data string is to be translated into symbols.
Delimiters must be defined by the program issuing this
message, and their number must not exceed 200. Symbols
are stored in Beta, one symbol per word, starting with
Beta(2). Beta(l) contains the number of delimiters
(leftmost 16 bits), and the virtual bit address of the
delimiter buffer (rightmost 48 bits). Delimiters are
stored left to right, character byte by character byte,
in the buffer.

2 The data string is to be translated into symbols.
Delimiters are blank, period, comma, slash, equals, plus,
minus, and left and right parentheses. Symbols are
stored in Beta starting with Beta(l).

3 The data string is to be translated into symbols.
Delimiters are defined as installation parameter
options. Symbols are stored in Beta starting with
Beta(l).

Control field:

0 After data string has been retrieved, release system
buffer space occupied by string.

2 After data string has been retrieved, do not release
system buffer space occupied by string.

Figure 5-19. GET MESSAGE FROM CONTROLLEE (f=#0017) Message Format (Sheet 2 of 3)

5-84 60459420 E

Word Field

Alpha(2) j

b

eea

Alpha(3) bl, ba

Description

Level of the controllee that sent the data string; supplied by the
operating system. The value in this field has no meaning if the
controllee that sent the data string being retrieved has been
disconnected.

Descriptor block number of the controller that sent the data
string; supplied by the operating system. The value in this field
has no meaning if the controllee that sent the data string being
retrieved has been disconnected.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in words (if an
untranslated data string is to be obtained) or character bytes (if
the data string is to be translated into symbols) and virtual bit
address of the first full word of the Beta portion.

Figure 5-19. GET MESSAGE FROM CONTROLLEE (f=#0017) Message Format (Sheet 3 of 3)

60459420 E 5-85

REMOVE CONTROLLEE FROM MAIN MEMORY (f=#OOl 9)

A controller (the user program) can swap a controllee program or itself from main memory to
mass storage. The controller program stops running until all controllee pages are written
to mass storage. The format of this message is shown in figure 5-20. For option O, the
program issuing this message must have only one controllee.

0

Alpha(1)

Alpha(2)

Alpha(3) I
L -

Beta(1)

Word Field

Alpha(l) r

len

Alpha(2) n

63

r len unused 0019
16 16 16 16

n eea
16 48

bl ba I
16 --- _;;.J._ ______ ---- --- ---~8_.

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 No controllee exists with this descriptor block
number.

3 More than one controllee for an n field value of O.
#214 Beta buffer length error; either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the len field is 0
(n=l only).

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. This field is 0 or 1.

Specifies the controllee to be removed. The values are:

0 Remove the controllee program to mass storage; no Beta
portion is required for this option.
Remove the controllee specified in Beta(l) to mass
storage.

2 Remove this program to mass storage; no Beta portion is
required for this option.

Figure 5-20. REMOVE CONTROLLEE FROM MAIN MEMORY (f=#0019) Message Format (Sheet 1 of 2)

5-86 60459420 E

Word Field

Alpha(2) eea

Alpha(3) bl, ba

Beta(!) b

Description

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

Descriptor block number of the controllee to be removed to mass
storage.

Figure 5-20. REMOVE CONTROLLEE FROM MAIN MEMORY (f=#0019) Message Format (Sheet 2 of 2)

60459420 E 5-87

SEND A MESSAGE TO OPERATOR (f=#OOlA)

A program uses this message to send a string of binary or ASCII data to the operator. The
system copies the data string from the Beta portion of the system message to a system buffer.

If the system buffer is full, the string cannot be sent. If the buffer is full, the system
continues task execution at the error exit address.

Because the operator of· a busy system could miss a string sent to him, the system provides a
string save table. If the operator is logged in and n=2 or 3, the string is kept in the
string save table.

Only one string per task is kept. If the task sends another string, only the most recent
string requiring a response is kept.

The operator can access the string save table to see the most recent strings sent by
executing tasks. The operator clears a string from the save table with the command CFO.
(Strings are kept by descriptor block number.)

The format of this message is shown in figure 5-21. The Beta portion contains the string
being sent; maximum length of the string is 80 character bytes (10 words).

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l) r

0 63

r len unused 001A
16 16 16 16

n eea
16 48

I bl ba I
16 L ------L- - - - ----- -- --- - - - _4~

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Specified length of the Beta portion in character
bytes was out of range (either 0 or greater than 80).

2 String in Beta could not be sent to the operator
because no system buffer was available; error
processing is indicated by the value of the n field.

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the len field is O.

Figure 5-21. SEND A MESSAGE TO OPERATOR (f=#OOlA) Message Format (Sheet 1 of 2)

5-88 60459420 E

Word Field

Alpha(l) len

Alpha(2) n

eea

Alpha(3) bl, ba

Description

If this field is llFFFF, Alpha(3) contains the length in character
bytes and the virtual bit address of the Beta portion of the
message; otherwise, Beta is assumed to begin at Alpha(3), and len
is the length in character bytes of the Beta portioR. The len
field should be greater than 0 and less than or equal to 80.

Indicates action to be taken if the string cannot be sent; also
indicates whether the string should be kept in the save table:

0,1 If the system buffer is full, continue execution at
the error exit address. Do not enter the string in
the save table.

2,3 If the operator is not logged in or the system buffer
is full, continue execution at the error exit
address. Enter the string in the save table.

4 Send the message to the remote operator. Return r=2
if the remote operator is not logged in.

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=llFFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

Figure 5-21. SEND A MESSAGE TO OPERATOR (f=llOOlA) Message Format (Sheet 2 of 2)

60459420 E 5-89

INITIALIZE OR DISCONNECT CONTROLLEE (f=#OOl B)

A user program can make another program a controllee, and optionally start the controllee
running, by using the INITIALIZE OR DISCONNECT CONTROLLEE message.

It can also be used to disconnect a previously connected controllee. Up to eight levels of
program controllees are permitted in a controllee chain, making a possible total of up to
nine levels. The format of this message is shown in figure 5-22.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Word

Alpha(!) r

0 63

r len unused 0018
16 16 16 16

m eea
16 48

I bl ba I
L---- _1fi i...-------- -- -·----- _4§.J

r---------- - - .,
I filename I

_6ij

t =b J unused J = =- = = = = = ti I
_4§J

Field Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Controllee program is already present.
2 Illegal message option.
3 Controllee program file was not found or not attached.
4 Insufficient time to run the controllee program.
5 Illegal priority.
6 Error in creating the drop file.
7 Controllee program file is not executable.
8 Mass storage device error.
9 Full system tables inhibit initialization of the

controllee program at this time.
#A Abnormality in the controllee program file or drop

file I/O connector entry.
#B Nine task levels are present already.
#c No controllee is present (for disconnect only); if a

controllee program is being disconnected, this
response code indicates no controllee program is
present.

#D Controllee program drop file is too small.
#E Unable to destroy the existing drop file.
#F Unable to restart the controllee because the

interrupt register table is full.

Figure 5-22. INITIALIZE OR DISCONNECT CONTROLLEE (f=#OOlB) Message Format (Sheet 1 of 2)

5-90 60459420 E

Word Field

Alpha(l) r

len

Alpha(2) m

eea

Alpha(3) bl, ba

Beta(l) filename

Beta(2) b

t1

lflO

1111
tf 12
tf13
tf 14
1115
tf 17
lflB
If 19
lflA
lflB
lflc
If lD
tf 1 E
If lF
If 21
1122

lf214

Description

Drop file cannot be verified.
C500 request error.
Bad minus page in the controllee file.
Undefined error in the drop file verification.
Controllee program file is privileged open.
No FST space.
roe for file not found.
User does not have execute access.
Execute file has wrong small page size.
Drop file has wrong small page size.
File is incomplete.
Charge statement must be supplied.
SHRLIB is not active.
Controllee must be reloaded.
Controllee using wrong libraries.
Controllee is purge-only.
Nonproduction program not permitted (production users
only).
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is ifFFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion. The length of the Beta portion is at least 2.

Message options:

0 Initialize the controllee program and restart this
program.

1 Initialize the controllee program and immediately begin
running it; stop running this program.

10 Disconnect the controllee program (the Beta portion of
the message is required for this option, but is not used).

Virtual bit address to receive control if an error occurs during
processing of this message (r+O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=tfFFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

Name of the controllee program (must be a virtual code file),
left-justified with blank fill.

Controllee program's descriptor block number; returned by the
operating system when the message is issued. If the controllee
program is disconnected and reconnected, this number could change.

Time limit for the controllee program, in microseconds. When this
field is O, the controller's time limit is used.

Figure 5-22. INITIALIZE OR DISCONNECT CONTROLLEE (f=tfOOlB) Message Format (Sheet 2 of 2)

60459420 H 5-91

I

PROGRAM INTERRUPT CONTROL (f=#OOlC)

The operating system supports one level of software interrupt for any task. With the
PROGRAM INTERRUPT CONTROL message, a user program can tell the operating system whether or
not the task can be interrupted. If interrupts are enabled, an ASCII character string must
be waiting at the interrupt address specified in Beta(!) of the PROGRAM INTERRUPT CONTROL
message at the time control passes to the interrupt address. For control to return to the
calling routine, the interrupt routine must issue a RETURN FROM INTERRUPT CONTROL message
when it has finished performing its tasks.

When a program is interrupted, the program's minus page is altered before control is passed
to the virtual address specified by the user in a PROGRAM INTERRUPT CONTROL message. The
minus page has space for the current invisible package (level 0). The interrupt register
table has space for the interrupted routine invisible package (level 1). (These level
designations are not to be confused with the level of a task in the controllee chain, nor
with the security level of a task.) At the time of an interrupt, the level-! invisible
package becomes the current execution invisible package (level 0), and the level-0 invisible
package is saved in the interrupt register table. The operating system saves the register
file image for the old level 0, and places in register 3 a pointer to the Alpha portion of,
and an index to the Beta portion of, the message that caused the interrupt. The operating
system also puts into register lE the length and address of the data base to be used by the
interrupt routine. Initializing the rest of the register file is the responsibility of the
interrupt routine.

When message option 1 is specified, any ASCII character string preceded by (sc)I that is
received from a terminal interrupts the user program (the currently executing program). The
symbol (sc) is a special character defined by the installation (refer to volume 1). When
the string has been received, the (sc)I preceding the string is stripped and the string is
realigned at the beginning of the word. An (sc)I interrupt causes any outstanding output
message to be released to the output device. When (sc)I precedes a string, the message
interrupts the highest level controller that issued a PROGRAM INTERRUPT CONTROL message with
message option 1 (highest level refers to level in the controllee chain).

The format of the PROGRAM INTERRUPT CONTROL message is shown in figure 5-23.

0 63

Alpha(1) r len unused 001C
16 16 16 16

Alpha(2) unused b eea
8 8 48

Alpha(3) I bl ba I
L_ 16 _4~ - - ---I- - - ---- ---- ------

Beta(1) unused ia
16 48

Beta(2) dbl dba
16 48

Figure 5-23. PROGRAM INTERRUPT CONTROL (f=#OOlC) Message Format (Sheet 1 of 2)

5-92 60459420 E

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Field

r

len

b

eea

bl, ba

ia

dbl

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O,
otherwise:

1

2
#214

Value of the interrupt address is greater than the
upper limit of the virtual bit address range.
Program selected an illegal interrupt option.
Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion.

Interrupt options:

0 This program can be interrupted by any program.
1 This program can be interrupted by a terminal if the data

at the interrupt address begins with the two characters
(sc)I.

2 This program must not be interrupted.

When this message is issued for options 0 or 1, the program
issuing this message can be interrupted by all subsequent messages
and interrupts coming from a terminal until this program either
issues this message with option 2 or terminates.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual bit
address of the first full word of the Beta portion.

Interrupt address, the virtual bit address of the word to which
control transfers upon occurrence of an interrupt.

Length of the data base to be established if an interrupt occurs.

dba Address of the data base to be established if an interrupt
occurs. If this field is O, the data base of the interrupted
program (the program issuing this message) is used.

Figure 5-23. PROGRAM INTERRUPT CONTROL (f=#OOlC) Message Format (Sheet 2 of 2)

60459420 E 5-93

INITIALIZE CONTROLLEE CHAIN (f=#OOl D)

A user program can issue this message to make itself the controller of a chain of
controllees. Up to nine levels of controllee programs are permitted in any controllee chain
(for example, if the program issuing this message is the controllee of a level-1 task, a
maximum of seven controllees can be specified in this message). Control is always returned
to the user program after the call has been processed; unlike the INITIALIZE OR DISCONNECT
CONTROLLEE message (f=#OOlB), this message cannot be used to start a controllee running.

Any error in the request causes the entire chain to be ignored, and none of the controllees
are initialized. The format of this message is shown in figure 5-24.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Word

Alpha(l) r

0 63

r len unused 0010
16 16 16 16

n eea
16 48

I

I bl ba I
L---- 16 - _4f!J -.:...JL-. ____ ---- -- -----

s
8

k
8

Field

t db unused SS unused
8 8 16 8 16

unused ti
8 48

source
64

drop
64

Description

Response code; returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

1 Controllee program is already present.
2 Full system tables inhibit initialization of the

controllee program at this time.
3 Controllee chain levels exceed nine.
4 Error in an attempt to initialize the controllee;

ref er to an ss field in Beta.
5 Controllee file is privileged open.

#214 Beta buffer length error. Either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and lengths
specified.

Figure 5-24. INITIALIZE CONTROLLEE CHAIN (f=#OOlD) Message Format (Sheet 1 of 3)

5-94 60459420 E

Word Field

Alpha(!) len

Alpha(2) n

eea

Alpha(3) bl, ba

Beta(l) s

t

db

SS

Description

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta is
assumed to begin at Alpha(3), and len is the length in words of
the Beta portion (a multiple of 4, and always less than or equal
to 14).

Number of tasks to be initialized in the chain; n is always less
than or equal to 9.

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

Controllee chain level (2 through 9) of the program named in
Beta(3); returned by the operating system. Beta words appear in
the order in which the controllees are to be initialized, highest
to lowest in the chain.

Descriptor block number of the program named in Beta(3); returned
by the operating system.

Descriptor block number of the controller of the program named in
Beta(3); returned by the operating system.

File initialization error. The values are:

2 Full system tables inhibit initialization of the
controllee program.

3 Controllee program file was not found or was not
attached.

4 Insufficient time to run the controllee program.
6 Error in creating the drop file.
7 Controllee program file is not executable.
8 Mass storage error.
9 Abnormality in the controllee program file or drop

file I/O connector entry.
#A Controllee program file is privileged open.
#B No FST space.
#D IOC for file not found.
#E Bad minus page.
#F User does not have execute access for controllee

program file.
#10 Drop file is too small.
#11 Unable to destroy existing drop file.
#13 Shared library needed.
#14 Controllee must be reloaded for new bound implicit map

(BIM).
#15 Source file bad small page size.
#16 Drop file bad small page size.
#17 Drop file is too long.
#18 File is incomplete.
#19 File has purge-only status.

Figure 5-24. INITIALIZE CONTROLLEE CHAIN (f=#OOlD) Message Format (Sheet 2 of 3)

60459420 H 5-95 I

I
Word Field

Beta(I) SS

Beta(2) k

tl

Beta(3) source

Beta(4) drop

Description

#IA Controllee using wrong libraries.
#IC Charge statement must be supplied.
#30 Operating system version mismatch.
#3I Nonproduction program not permitted (production users

only).
#32 Drop file cannot be restarted (see site security

administrator).

Descriptor block number of the controllee (in this chain) of the
program named in Beta(3). This field is 0 if there is no
controllee.

Amount that remains, in microseconds, of the time allowed for
running the controllee program. When the controllee has exhausted
the time, this field is O.

ASCII name of the executable source file to be initialized if the
drop field is O. The name is left-justified with blank fill.
Returned by the operating system if the drop field is not O.

ASCII name of the drop file, left-justified with blank fill. If
the user provides a nonzero value in this field, the program is
started from this dtop file (the drop file contains the I/O
connector containing the source file name associated with the drop
file).

Figure 5-24. INITIALIZE CONTROLLEE CHAIN (f=#OOID) Message Format (Sheet 3 of 3)

5-96 60459420 H

ENABLE/DISABLE ATC (f=#0020)

The ENABLE/DISABLE ATC message allows the user to process what is normally a fatal error.
The user does this by setting/zeroing the interrupt subroutine address and data base
descriptor in the minus page. If abnormal termination control (ATC) is ready, the user may
reissue this message to change the interrupt routine information. However, all of the
fields must be supplied as if this message had not previously been issued. The format of
the message is shown in figure 5-25.

0 63

Alpha (1) r len unused 0020
16 16 16 16

Alpha (2) unused eea

16 48

Alpha (3) I bl I ba I
L-----~------------------~

Beta (1) ito

Beta (2) dbl

Word Field

Alpha(l) r

len

Alpha(2) eea

ira

16 48J

dba

16 48

Description

Response code returned by the operating system when this message
has been processed. If no error occurs, the response code is O;
otherwise:

#61 Entry point or data base address out of virtual
address range for user program or hexadecimal bit
address less than 8000.

#62 Interrupt type option is illegal.
#63 Data base length out of range.

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If len=ffFFFF, Alpha(3) contains the length(bl) and virtual bit
address(ba) of the Beta portion. Otherwise, Beta is assumed to
begin at Alpha(3) and len is the length of the Beta portion (two
words).

Virtual bit error exit address to receive control if an error
occurs during message processing (r~O). If eea=O, the error is
fatal.

Figure 5-25. ENABLE/DISABLE ATC (f=#0020) Message Format (Sheet 1 of 2)

60459420 E 5-97

Word

Alpha(3)

Beta(l)

Beta(2)

Field

bl

ba

ito

ira

dbl

Description

Beta length, if len=#FFFF.

Virtual bit address of the Beta portion's first full word, if
len=llFFFF.

Interrupt type option:

0 Enable ATC.
1 Disable ATC.

User interrupt subroutine address (virtual bit address) to be
entered if predefined system errors occur.

Data base length (in words) of user's interrupt subroutine.

dba Data base bit address of user's interrupt subroutine.

Figure 5-25. ENABLE/DISABLE ATC (f=#0020) Message Format (Sheet 2 of 2)

5-98 60459420 E

EXECUTE OPERATOR COMMAND (f=#0021)

This message can be issued only by a privileged user and executes exactly one of the
operator commands that are listed as possible values for the c field in Alpha(l). The user
number of the issuer must be the primary, the remote operator, or the site security
administrator user number. User numbers running the Q utility are allowed to use options
1110, ll2c, and 1142 only. A nonprivileged user may execute option ll2F only for the user
number executing the system message.

The format of the Alpha portion of this message is shown in figure 5-26. The Beta word
formats depend on the message option (c field) in Alpha(l), and are shown in figure 5-27.
Each option is a correspondence between the Beta format and the operator command. (Refer to
the VSOS 2 Operator's Guide.)

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

0 63

r len * unused c 0021
16 16 7 8 16

n eea
16 48

I bl ba I
L - - - - _1~ - - - -------- ---- _4~

Field

r

len

* f _sor

Description

Response code; returned by the operating system when this message
has been processed:

0 No errors.
1 Illegal option (c field value is out of bounds, or there

is a bad parameter).
2 User is not privileged and is not running under the

operator's user number.
3 Error in a resident system call issued by the virtual

system routine OPCOM.
4 Error in a resident system call issued by the virtual

system routine OPCOM.
5 A user directory editor is already active. Retry later.
llF4 Beta overflow in message option ilF.

This field must always be llFFFF, indicating that Alpha(3) contains
the length and virtual bit address of the Beta portion of the
message.

Outstanding messages:

1 There are outstanding messages awaiting operator
response.

0 There are no outstanding messages.

Figure 5-26. EXECUTE OPERATOR COMMAND (f=ll0021) (Alpha) Message Format (Sheet 1 of 2)

60459420 H 5-99

I

I

I

I

Word Field

Alpha(l) c

Alpha(2) n

eea

Alpha(3) bl, ba

Description

Message options; each of the options has a different Beta format.
The Beta formats are described following the Alpha field
definitions:

I
5
7

#A

#B

#D
#E
#F

#IO
#II
#I2
#I3
#I6
#I7
#I8
#I9
#IC
#ID
#lE
#IF
#2I
#22
#24
#25
#26
#27
#28
#29
#2A
#2C
#2D
#2F
#3I
#32
#38
~2

Display user.
Send a message to the users.
Drop (terminate the task and log out the user).
This is used only by system checkpoint.
Return data from virtual system in Beta area for
specified virtual address.
Modify virtual system address with data specified in
Beta parameters.
Date.
Time.
Return copy of system configuration table.
Return B or Q(E) display information.
Display all tasks.
Return information for S display.
Return information for J display.
Suspend or resume the task.
List the account.
Return the default project number.
Turn output processing on or off.
Checkpoint jdn.
Turn on or off the no login flag.
Turn off F RESTART bit in MISCTAB.
Set job category priority.
Test and set user directory editor serialization flag.
Clear user directory editor serialization flag.
Turn on or off job submission to the CPU scheduler.
Set maximum large page limit for job category.
Set maximum memory overcommitment percentage.
Set maximum combined time limit for all executing jobs.
Set maximum job time limit for job category.
Set maximum working set size limit for job category.
Set maximum executing jobs for job category.
Retrieve H and Q(I) display information.
Retrieve V display information.
Retrieve validated job categories for user number.
Adjust SHRLIB working set.
User drop support functions.
Checkpoint functions.
Return a set of file index entries for H and Q(O)
displays.

The number of words returned in the Beta portion of the message,
the value of which depends on the message option (c field).
(Refer to the specific c option description.)

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta portion.

Figure 5-26. EXECUTE OPERATOR COMMAND (f=#002I) (Alpha) Message Format (Sheet 2 of 2)

5-IOO 60459420 H

Message option:

c=l

Beta(1)

Beta(2)

Beta(n)

Word

Beta(l)

Beta(2)
through
Beta(n)

0

7

Return the 16-word UAT entry for one user or the binary user number of
all users who are currently on the system. The value of the n field in
Alpha(2) is returned by the operating system. The value of n is #FFFF
if mis 5, 18 if mis 16, and m otherwise.

63

uatx usrno
16 48

tab1
64

7

tabm
64

Field Description

uatx

usrno

Type of information in the tab field; returned by the operating
system. If this field is O, the information is from the user
directory. If this field is nonzero, it is from the user
activity table; the uatx field contains the user activity table
index of the table entry.

Binary user number of the user table or user directory entry in
the tab fields; or, the character string ALL, left-justified
with blank fill, indicating that user numbers and teletypewriter
(TTY) numbers of all logged-in users are to be placed in the tab
field. Supplied by the user.

The tab1 field contains binary zeros if no user identified by
the usrno field was found. Otherwise tab1 contains the first
word of a 16-word copy of the user activity table entry (uatx=O)
for an active user; a 5-word copy of the first part of the user
directory entry (uatx=O) for an inactive user; or m words, one
for each currently logged-on (active) user, each of which
contains the binary user number in the rightmost 48 bits and a
TTY number in the leftmost 16 bits. For an active user, the
user activity table is followed by a list of all active
accounts, with one account per word.

Figure 5-27. EXECUTE OPERATOR COMMAND (f-#0021) (Beta) Message Format (Sheet 1 of 27) I

60459420 H 5-101

Message option:

c=5

Beta(1)

Beta(2)

Beta(3)

Beta(n)

Word

Beta(!)

Beta(2)

Beta(3)
through
Beta(n)

Q_

'7_

Transmit a specified character string to the output buffer or all
interactive users (WARN command):

63

cnt unused
16 48

unused SS
60 4

message1 o4
'7

messagem 64

Field Description

cnt Number of characters in the message.

SS Error response field:

0 No error.
1 No users are logged on the system.

message A word of a message in ASCII.

I Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 2 of 27)

5-102 60459420 H

Message option:

c=l

Beta(1)

Terminate all tasks and log off the user(s) [interactive] or terminate
the job(s) [batch]:

0

sf

Field

dbn

sf

SS

usrno

63

SS usrno

Description

DB number of task to terminate.

Subfunction, set by the user to one of the following
values:

0 Drop job, but allow BATCHPRO to clean up.
1 Rerun job.
2 Drop job and do not allow BATCHPRO to clean up.

Error response field. The operating system sets this
field to one of the following values:

0 No error.
1 No user table entry.
2 Attempted to drop operator.
3 Attempted to drop system user.

Binary user number for the task to be terminated.

If Beta(l) is #FFFFFFFFFFFF, terminate all interactive tasks and log off
the interactive users.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 3 of 27) I

60459420 H 5-102.1/5-102.2

Message option:

c=llA

Beta (1)

Beta (2)

Beta (n)

Word

Beta(l)

Beta(2)
through
Beta(n)

0

Return data from virtual system in Beta(2) through Beta(n) for the
specified virtual address in Beta(l) word.

SS

Field

SS

ms tart

63

mstart
16 48

data word 1

64

. . .
data word n-1

64

Description

Error response field. The operating system sets this field to
one of the following values:

0 No error.
1 Beta length error from Alpha parameter n (n#2).
2 Address specified is not in the virtual system.
3 Address specified is not on a word boundary.

User-specified virtual system memory starting address on a word
boundary.

data word Word of data returned from the virtual system.
1 through
data word
n-1

Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 4 of 27) I

60459420 H 5-103

Message option:

c=llB Modify specified virtual system address with data from BETA parameter.

0

Beta(l) SS

Beta(2)

Word Field

Beta(!) SS

ms tart

Beta(2) data

Message option:

63

mstart
16 48

data
64

Description

Error response field. The operating system sets this field to
one of the following values.

0 No error.
1 Beta length error from Alpha parameter n (n#2).
2 Address specified is not in the virtual system.
3 Address specified is not on a word boundary.

User specified virtual memory starting address on a word
boundary.

Hexadecimal data to be entered at virtual bit address specified
by mstart.

c=llD Set or request the date (DATE command):

0

Beta(l)

Beta(2) flag

Word Field

Beta(1) date

Beta(2) flag

63

date
64

unused
16 48

Description

ASCII date, in the format: mm/dd/yy (month/day/year); set by
the user if the flag field is 1, or set by the operating system
if the flag field is O.

This field must be 0 for the data to be returned, or 1 to set
the data.

I Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 5 of 27)

5-104 60459420 H

Message option:

c=11E Set or request the time (TIME command):

0

Beta(1)

Beta(2)

Word Field

Beta(1) time

Beta(2) flag

Message option:

flag

63

time
64

unused
16 48

Description

ASCII clock time, in the format hh.mm.ss (hour.minutes.seconds);
set by the user if the flag field is 1, or set by the operating
system if the flag field is O.

This field must be 0 for the time to be returned, or 1 for the
time to be set.

c=#F Return a copy of the system configuration table (T SC). The length of
the Beta area must be supplied by the caller in the Alpha field n. If
the supplied length is less than the actual table length, the Beta is
filled with as much data as will fit, and an error code of #F4 is
returned in the Alpha field r. If the supplied length is greater than
or equal to the actual table length, the Alpha field n is set to the
table length by the system.

Beta(1)­

Beta(n)

Word

Beta (1)
through
Beta(n)

0

t_sc

Field Description

t SC The system configuration table (SCT).

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 6 of 27) I

60459420 H 5-105

I

Message option:

c=1110

0

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Word

Beta(!)

Beta(2)

Return job and task information for remote operator for the B display
and user Q(E) display. A return Beta entry consists of six words
each. The number of entries returned is indicated by n in Alpha(2):

63

unused status pmt pr susflg ti
8 8 8 8 8 24

jdn .wset cbc Ip nt
12 16 16 12 8

userno
64

job name
64

task name
64

jce db pr iv . unused lid
8 8 4 20 24

Field Description

status Program state number.

pmt Priority map table index (0 through 15).

pr Subpriority (1 through 255).

susflg If the task is in a suspended state, the operating system sets
this field to one of the following values:

0 Task was suspended by the operator.
1 Task was suspended by the operating system.

tl Time left for this task, in seconds.

jdn Job descriptor for this job or session (1 through 2047).

wset Number of 512-word blocks in the task's working set.

cbc Number of 512-word blocks currently assigned to the job.

lp Number of large pages of memory assigned.

nt Number of tape drives reserved for this job or session.

I Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 7 of 27)

5-106 60459420 H

Word

Beta(3)

Beta(4)

Beta(S)

Beta(6)

Field

userno

job
name

task
name

jce

Description

ASCII user number; six characters, left-justified, blank-filled.

Name of the batch job file, interactive session name, or
SYSTEM.

Name of the file currently executing.

System job category table index.

db Top DE index (BATCHPRO).

priv Privileged flag.

lid Logical identifier of the front-end system from which the job
originated.

If the user is not privileged, this option will return only Beta
entries that have a userno equal to the user.

Message option:

c=ifl 1

0

Beta(1)

Beta(2)

Beta(3)

Word

Beta(l)

Beta(2)

Beta(3)

Return information about.all active tasks in the system. Three Beta
words are returned for each task; the operating system sets the n field
in Alpha(2) to the number of tasks in the system. Used during SYSTEM
checkpoint/restart only.

63

unused lev state db jdn unused
8 8 8 8 12 20

fname
64

userno
64

Field Description

lev Level of the task in the controllee chain.

state Program state of the task (refer to appendix F).

db Descriptor block number for the task.

jdn Job descriptor number for the task (1 through 2047).

f name Source file name of the task, in ASCII.

userno Binary user number under which the task is running.

I

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 8 of 27) I
60459420 H 5-107

Message option:

c=/112

)

Beta (1)

Beta (2)

Beta (3)

Beta (4

Beta (5)

Beta (6)

Beta (7)

Beta (8)

Beta (9)

Beta (10)

Beta (11)

Beta (12)

Beta (13)

Beta (14)

Beta (15

Beta (16

Beta (17)

Beta (18)

Beta (19

Beta (20

Beta (21

Beta (22

)

)

)

)

)

)

0

Return information for the S display.

number of active users

number of active tasks

total system up time (seconds)

total loads

total cpu time (seconds)

user page faults

system page faults

page faults per cpu second

total kernel time (seconds)

total pager time (seconds)

total virtual time (seconds)

total user time (seconds)

total wait time (seconds)

total idle time (seconds)

percent kernel time

percent pager time

percent virtual time

percent user time

percent wait time

percent idle time

SHRUB working set

SH R LIB unused pages

63

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

64

I Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 9 of 27)

5-108 60459420 H

Message option:

c=ltl3

0

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Word

Beta(l)

Beta(2)

unused

Return task EXECUTE OPERATOR COMMAND (f=#0021) information for J
display. A six-word entry is returned for each descriptor block in
every active task chain for the user. The first 6-word entry is
empty. The first word of the Beta field contains the user for whom
information is returned.

63

status pmt pr susflg ti
8 8 8 8 8 24

jdn .wset cbc Ip nt

pplvl
8

Field

status

pmt

pr

susf lg

tl

jdn

12 16 16 12 8

userno
64

job name
64

task name
64

cdb unused lid
8 24 24

Description

Program state number.

Priority map table index (0 through 15).

Subpriority (1 through 255).

If the task is in a suspend state, the operating system sets
this field to one of the following values:

0 Task was suspended by the operator.
1 Task was suspended by the operating system.

Time left for this task, in seconds.

Job descriptor for this job or session (1 through 2047).

wset Number of 512-word blocks in the task's working set.

cbc Number of 512-word blocks currently assigned to the job.

I

I

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 10 of 27) I

60459420 H 5-109

I

Word

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Field

lp

nt

userno

job
name

task
name

pplvl

cdb

lid

Description

Number of large pages of memory assigned.

Number of tape drives reserved for this job or session.

ASCII user number, six characters, left-justified, blank-filled.

Name of the batch job file, interactive session name, or
SYSTEM.

Name of the file currently executing.

Level of DB in chain.

Ordinal of current DB.

If the user is not privileged, this option will return only Beta
entries that have a userno equal to the user.

Logical identifier of the front-end mainframe from which the job
originated.

Message option:

c=/116

0

Beta(1) I
Word

Beta(l)

SS

Suspend or resume execution of the task specified. Used during SYSTEM
checkpoint/restart only.

63

al db

al sf al unused
401

Field Description

SS

db

sf

Error response field. The values are:

0 No error.
1 Descriptor block is not assigned.
2 Invalid descriptor block number.
3 Descriptor block is not in a suspended state.
4 Descriptor block is already suspended.
5 Cannot suspend the operator task or system user.
6 Descriptor block is in a terminate or initiating state.
7 Not enough central memory (CM) space to resume task

execution.

Descriptor block number of the task to be resumed or suspended.

Subfunction. This field must be set to 0 to suspend execution,
or 1 to resume execution.

I Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 11 of 27)

5-110 60459420 H

Message option:

c=i/17

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(n)

Word

Beta(3)

Beta(4)
through
Beta(n)

i.

0

List all accounts for a user. The operating system returns the length
of the Beta portion in then field of Alpha(2):

63

unused
64

unused
' 64

nacnts SS unused usrno
8 8 16 32

acct1
64

~ - -- - - - - -- - - - - - - - - - - -- - - -
i.

- - - - - - - - - - - -- - - - - - - - ---

L---------
I

__ __§~

Field

nacnts

SS

usrno

Description

This field is set to the number of accounts listed.

Error response field. This field is set to 0 for a successfully
completed function.

User number for which the account is to be modified.

Account number of an account in the system; eight
ASCII characters, left-justified with blank fill.
Returned by the operating system.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 12 of 27) I

60459420 H 5-111

Message option:

c=/118

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Word

Beta(l)

Beta(2)
through
Beta(4)

0

Return the default project number for a user.

SS

8

Field

SS

user
number

project
number

63

unused user number

24 32

project number
64

project number

64

project number unused

32 32

Description

Error response field:

0 No error.
1 Default project number does not exist.

Binary user number for which the default project number is to
to be returned.

1- to 20-character default project number, in ASCII,
left-justified with blank fill.

Message option:

c=lll9 Turn output file processing on or off for all users (OUTP command). If
output is turned off, no output files are transferred until output is
turned on. The Beta portion consists of one word in which bits 1
through 56 are unused and bits 57 through 64 are the a field:

a=O Turn output on.
a=l Turn output off.
a=2 Turn output off, save current state.
a=3 Restore output to former state.

Options 2 and 3 are used during checkpoint/restart only.

I Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 13 of 27)

5-112 60459420 H

Message option:

c=fl 1 C

c=fl lD

0

Message option:

c=fllE

Checkpoint option. Set the checkpointed jdn for all the files
belonging to the batch job in the file index. Write file index entries
for all local files belonging to user jobs. Switch batch input files
to checkpointed input files. Switch output files to checkpointed
output files and give back to originating user. Save pool names.

Turn terminal login processing on or off for all users except the
operator (LOGO command). If terminal login processing is turned off,
no login lines are accepted until terminal login processing is turned
on:

63

flag I
64

Login Terminal
Field Processing Flag Description

flag 0 Turn on.
1 Turn off.

Restart option. Turns off F RESTART flag and MIS CKPT in MISCTAB to
indicate that system restart-is complete. No Beta is required. Used
during system checkpoint/restart only.

0 63

Word Field Description

Beta(l) ckptf n System checkpoint file.

Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 14 of 27) I

60459420 H 5-113

Message option:

c=lll F

Beta(1)

Beta(2)

Word

Beta(l)

Beta(2)

0

Set a new maximum or default priority for the specified job category
(CHPR operator command):

SS al

Field

SS

sf

prior

jcat

sf a I unused prior

jcat

Description

Error response code:

0 No error.
1 Job category not found in system table.
2 Invalid parameter value.

Subfunction code indicating the priority type to be set:

0 Maximum priority.
1 Default priority.

Priority: 1 (lowest) through 15 (highest).

Job category (eight ASCII characters, left-justified,
blank-filled).

63

:I

Message option:

c=/121

c=l/22

Test and set the user directory editor serialization flag. If not
already set, return r=O. If already set, return r=5. No Beta is
required.

Clear the user directory editor serialization flag. No Beta is
required.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=l/0021) (Beta) Message Format (Sheet 15 of 27)

5-114 60459420 H

Message option:

c=1f24

0
Beta(1)

I Beta(2)

Word

Beta(l)

Beta(2)

Turn on or off the submission of jobs for the specified job category
(INPT operator command):

SS al

Field

SS

sf

jcat

63
unused 4a I

jcat

Description

Error response code:

0 No error.
1 Job category does not exist.
2 Invalid subfunction (sf field value).

Subfunction code:

O Turn input on for the specified job category.
1 Turn input off for the specified job category.

Job category (eight ASCII characters, left-justified,
blank-filled). If jcat is all blanks, the command applies to
all job categories.

Message option:

c=1f25

0
Beta(1)

I Beta(2)

Word

Beta(l)

Beta(2)

SS

Set the maximum large page limit for any job within the specified job
category (MXLP operator command):

63

al unused 241 n :I jcat

Field Description

SS

n

jcat

Error response code:

0 No error.
1 Job category does not exist.
2 Invalid parameter value.

Maximum number of large pages allowed (O through maximum large
pages in machine, MAXWS/128).

Job category (eight ASCII characters, left-justified,
blank-£ illed) •

Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 16 of 27) I

60459420 H 5-115

Message option:

c=lt26

Beta(1)

Word

Beta(1)

0

I SS

Set the percentage of memory overcommitment allowed (MXMO operator
command):

63

al unused n

Field Description

SS

n

Error response code:

0 No error.
1 Invalid parameter value.

Integer (0 through 10000) indicating allowed memory
overcommitment. The integer is the percentage value.

Message option:

c=lt27

0

Beta(1)

Word

Beta(!)

Set the maximum combined time limit for all jobs currently executing in
the system (MXRR operator command):

63

SS al unused n

Field Description

SS Error response code:

0 No error.
1 Invalid parameter value.

n Number of system minutes (1 through 9999).

I Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 17 of 27)

5-116 60459420 H

Message option:

c=1128

0
Beta(1)

I Beta(2)

SS

Set the maximum time limit for any job within the specified job
category (MKTL operator command):

al unused n

jcat

63

Word Field Description

Beta(l) SS

n

Beta(2) jcat

Message option:

c=1129

0
Beta(1)

I
SS

Beta(2)

Error response code:

0 No error.
1 Job category does not exist.
2 Invalid parameter value.

Time limit in system seconds (1 through 599,940).

Job category (eight ASCII characters, left-justified,
blank-filled).

Set the maximum working set size for any job within the specified job
category (MXWS operator command):

63

al unused :I n

jcat

Word Field Description

Beta(l) SS

n

Beta(2) jcat

Error response code:

0 No error.
1 Job category does not exist.
2 Invalid parameter value.

Working set size limit in 512-word blocks (0 through the maximum
blocks in machine MAXWS).

Job category (eight ASCII characters, left-justified,
blank-filled).

Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 18 of 27) I

60459420 H 5-117

Message option:

c=ll2A

0

Beta(1) I SS

Beta(2)

Set the maximum number of executing jobs for the specified job category
(SJCT operator command):

63

al unused 241 n :~I jcat

Word Field Description

Beta(l) SS

n

Beta(2) jcat

Error response code:

0 No error.
l Job category does not exist.
2 Invalid parameter value.

Maximum number of jobs that can concurrently execute (1 to 50).

Job category (eight ASCII characters, left-justified,
blank-filled).

I Figure 5-27, EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 19 of 27)

5-118 60459420 H

Message option:

c=tl2C

0

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Word

Beta(l)

SS

ctnt

Retrieve H,I or Q,I display information for all input queue entries
(refer to the VSOS 2 Operator's Guide for a description of the H
display). The message returns values in all Beta fields.

For this option, the user must set the value of the bl field in
Alpha(3). If the caller is not privileged, any entries belonging to
the caller will be returned:

63

ctmc ctrr fnum
8 16 24 16

mxmo mxrr maxws
16 24 24

mxtp tphflg unused
8 8 8 40

job name
64

userno
64

wslim ti
16 48

Ip pr spr nt status
12

jdn

Field

SS

4 8 8 32

jcat
c uprodn 64
I

unused lid
16 1 23 24

Description

Error response code:

0 No error.
1 More input queue entries exist than can fit in the

reserved Beta area.

ctmc Current percentage of memory overcommitted.

ctrr Current number of system minutes required to rerun all executing
jobs.

fnum Number of input queue entries returned.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 20 of 27) I
60459420 H 5-119

I

Word

Beta(2)

Beta(3)

Beta(4)

Beta(S)

Beta(6)

Beta(7)

Beta(8)

Beta(9)

Field

mxmo

mxrr

maxws

ctnt

mxtp

tphflg

Description

Maximum percentage of memory overcommitment allowed.

Maximum rerun time (in system minutes) allowed for all executing
jobs.

Maximum working set size.

Number of tape drives not in use.

Maximum number of tape units available.

Tape holding flag. The operating system sets this field to one
of the following values:

0 Jobs requiring tape units are not held in the input
queue.

1 Jobs requiring tape units are held in the input queue.

job name Name of the batch job file.

userno User number; six ASCII characters, left-justified, blank-filled.

wslim Working set limit~ in blocks.

tl

lp

pr

spr

nt

status

jcat

jdn

uprodn

Time limit, in system seconds.

Large pages required.

Priority (1 through 15).

Subpriority (0 through 255).

Number of tape drives required by the job.

Input queue status (four ASCII characters, left-justified,
blank-filled).

Job category (eight ASCII characters, left-justified,
blank-filled).

Job descriptor number (1 through 2047).

1 is returned if user is a production user. 0 is returned if
user is not a production user.

lid Logical identifier of the front-end mainframe from which the job
originated.

The words Beta(4) through Beta(9) are repeated for every input queue entry returned.

I Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 21 of 27)

5-120 60459420 H

Message option:

c=1f2D

Beta(1)·

Beta(2)

Beta(n)

Word

Beta(l)

Beta(2)
through
Beta(n)

0

Retrieve V display information for all job categories (refer to the
VSOS 2 Operator's Guide for a description of the V display). The
message returns values in all Beta fields.

For this option, the user sets the value of the bl field in Alpha(3).
The system returns the information in the Beta:

63

SS al unused jnum 16

jinfoi

Field Description

SS Error response code:

0 No error.
1 More entries exist than can fit in the Beta.

jnum Length of job category table returned in Beta. (The entire
table is returned.)

j infoi Copy of the T JCAT system table (four words per job category).
The format of-the T JCAT table is shown in figure 5-28.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 22 of 27)

60459420 H 5-121

Message option:

c=ll2F

Beta(1)

Beta(2)

Beta(jnum+1)

Word

Beta(l)

Beta(2)
through
Beta(n)

0

SS

Retrieves job categories for which the specified user number is
validated.

For this option, the user must set the bl field of the Alpha to the
Beta length. The length must not be less than the number of valid job
categories plus 1:

63

sl jnum al unused 161 userno 32
jcat1 64

jca"S_num 64

Field Description

SS

jnum

userno

jcati

Error response code:

0 No errors.
1 Beta length specified in the bl field of the Alpha

portion is insufficient for return of all valid job
categories.

2 User number not found.

In this field, the system returns the number of job categories
it returned.

Binary user number whose valid job categories are returned.
For a nonprivileged user executing this option, the userno must
be the executing user number.

Job category mnemonic (one to eight ASCII characters,
left-justified, blank-filled).

I Figure 5-27. EXECUTE OPERATOR COMMAND (f=H0021) (Beta) Message Format (Sheet 23 of 27)

5-122 60459420 H

Message option:

c=tl31 Alters the working set for the system shared library. Virtual system
routine OPCOM uses mis slmax to mis slmin for a legal range when
adjusting the SHRLIB working set.

0 63

Beta(1) l~~~~~~-u_n_u_s_e_d~~~~~~~~-1~~~-m-i_n_w_s~~~~l~~~m~ax_w~s~~~~I - 32 16 16

Word Field Description

Beta(!) minws Minimum working set size for SHRLIB to be placed in mis slmin.

maxws Maximum working set size for SHRLIB to be placed in mis slmax.

Message option:

c=tf 32

0

Beta(1)

Beta(2)

Word

Beta(!)

Drops jobs for a user.
specified in the Beta.

SS sf
16

Only one of the jdn or userno fields must be
The format of the Beta is as follows:

63

jdn userno
16 12 20

jobname
64

Field Description

SS

sf

Error response field. Set by the operating system to one of the
following values:

0 No error.
1 Nonprivileged user cannot specify alternate user.
2 No jobs found for specified user number.
3 Cannot drop interactive task.
4 Cannot drop task issuing request.
5 Both jdn and jobname specified.
6 Beta is not large enough.
7 Beta length greater than 512 words.

Subfunction (set by the user). If set, bits 0 through 15 (left
to right) have the following meaning:

0 Kill the job.
1-12 Not used.
13 Search the input queue.
14 Search the execute queue.
15 Search the output queue.

Figure 5-27. EXECUTE OPERATOR COMMAND (f=tl0021) (Beta) Message Format (Sheet 24 of 27)

60459420 H 5-123 •

Word Field

jdn

userno

Beta(2) jobname

Description

Job descriptor number (binary) of the job to drop (set by the
user). If O, then jdn is not used as a qualifier to search for
jobs and jobname must be specified.

User number (binary) of the job(s) that are to be dropped (set
by the user). If userno is set to O, then the user number of
the task that issued the request is used. If the user is not
privileged, then userno must be set to 0 or set to the user
number of the task that issued the request.

Job name (ASCII, left-justified, blank-filled) of the job(s) to
be dropped (set by the user). If O, then jobname is not used as
a qualifier to search for jobs and jdn must be specified. If
jobname is* (left-justified, blank-filled), all jobs belonging
to userno are dropped.

For each job that is dropped, a 2-word entry is returned in the Beta. The returned
entries begin at word 3 of the Beta. The format of each entry is as follows:

0

Beta(3)

I
Beta(4)

Word

Beta(3)

Beta(4)

Field

q

63

unused jdn

jobname

Description

Queue flags. When set, bits 0 through 3 (left to right)
indicate in which queue the specified job was found:

0 Not used.
1 Input queue.
2 Execute queue.
3 Output queue.

jdn Job descriptor number (binary) of the job that was dropped.

jobname Job name (ASCII, left-justified, blank-filled) of the job that
was dropped.

Message option:

c=1138 Perform support functions for system checkpoint processing.

0 63

Beta(1)1 ___ s_s ___ , 6__.l..__ ___ sf ___ 1_6 .L..l ______ u_n_us_e_d ______ 3-'2 1

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 25 of 27)

• 5-124 60459420 H

Word Field Description

Beta(l) SS

sf

Message option:

c=l/42

0

Beta(1) SS

Beta(2)

Beta(n)

Returned error:

1 Called when checkpoint not in progress.
2 Caller is not operator.
3 Invalid subf unction.

#10 I/O will not complete interactive task during
subfunction #10 processing.

#20 Not all batch jobs were suspended during subfunction
1120 processing.

Subfunction code indicating the type of support processing:

#10 Remove interactive users from the system.
#20 Suspend all batch jobs that are in a running state.
#30 Drop !TFS if running.

Return a set of file index entries for a specified group of files. The
value of the n field in Alpha(2) is set by the user. This option is
used for the H, H(O), and H(P) displays. For the Q(O) display where
sf2=1, only files created by a caller that is not privileged will be
returned:

63
un-

used sf fnum usrno
8 4 4 16 32

finfo 1
64

64

finfo m
64

Figure 5-27. EXECUTE OPERATOR COMMAND (f=#0021) (Beta) Message Format (Sheet 26 of 27)

60459420 H 5-124.1 e

Word

Beta(l)

Beta(2)
through
Beta(n)

Field

SS

sf

Description

Returned error:

0 No error.
1 User is inactive.
2 Invalid subfunction.

Set of flags for the file set desired. Only one flag must be
set:

sf1

Flag

sf 1=1
sf2=1
sf3=1
sf4=1

sf2 sf3

Public files.
Print files.
Punch files.

sf4

Description

Private files for the user specified in the usrno
field.

fnum Number of files in this file set. This number is returned by
the operating system.

usrno

f info i

Binary user number if sf4=1.

A 16-word copy of the file index table entry for each file in
the set specified is returned:

Public files Return the files for user O.
Print files Search system processor table (SPT) for zip

codes with disposition code=#20 (print).
Return all mcat=output files for the
associated user number. Files with names
PYYxxxxx and QSLxxxxx are assumed to have a
disposition code of #20.

Punch files Search SPT for zip codes with disposition
code=#lO (punch). Return all mcat=output
files stored under the associated user
numbers.

Private files Search FILE! for all files under the
specified user number.

I Figure 5-27. EXECUTE OPERATOR COMMAND (£=#0021) (Beta) Message Format (Sheet 27 of 27)

5-124.2 60459420 H

0 63

0 jcat1
64

jcat66
64

65

66 mxws reserved mxtl
16 16 32

131 mxws reserved mxtl
16 16 32

132 mxlp mp dp ioo mjc cjc unused
16 8 8 8 8 8 8

197 mxlp mp dp ioo mjc cjc unused
16 8 8 8 8 8 8

198 class df+1

263 class df+1

Figure 5-28. T JCAT System Table Format (Sheet 1 of 2)

60459420 H 5-125

Word

0 - 65

66 - 131

132 - 197

198 - 263

Field

jcat

mxws

mxtl

mxlp

mp

dp

ioo

mjc

cjc

class

Description

Job category mnemonic (ASCII left-justified, blank-filled).

Maximum working set size limit, in blocks.

Maximum time limit, in system seconds.

Maximum large page limit.

Maximum priority.

Default priority.

Input on or off status:

0 Input on.
1 Input off.

Maximum job count; the maximum number of jobs from this category
that can execute concurrently.

Current job count.

Job category class mnemonic (four ASCII characters, left­
justified, blank-filled).

df+l Default category time limit.

Figure 5-28. T JCAT System Table Format (Sheet 2 of 2)

5-126 60459420 H

EXECUTE PROGRAM FOR USER NUMBER (f=#0022)

The EXECUTE PROGRAM FOR USER NUMBER system message initiates execution of a file for a
specified user number. Only a privileged user can issue this message. The initiated file
can be local, attached permanent, attached pool, or public.

The message format is shown in figure 5-29.

0 63

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Word

Alpha(l)

Figure 5-29~

60459420 H

r

n

bl

SS sT

unused

jce al

Field

r

16
len

16
c

16
0022

16

16
eea

48

16
ba

48

usrno 56

fname 64

.sub-

16 priority 8 priority 8 mxws 16 mxlp 16

sl 8 ti 48

account 64

Description

Response code returned by VSOS when message processing is
complete:

0 No errors.
1 User is not privileged.
2 File request error [refer to the ss field in

Beta(l)].
3 No table space available.
4 Invalid message option (c field).

#214 Beta buffer length error. Either the first word
address of Beta plus its length is greater than the
maximum virtual user address, or the Beta buffer is
too small for the number of requests and length
specified.

len Beta location. If this field is #FFFF, Alpha(3) contains the
length and virtual address of Beta. If this field is not #FFFF,
the Beta buffer immediately follows word Alpha (2) and contains
one word.

c Message option:

2 Switch task to user number. (This is the only
option.)

EXECUTE PROGRAM FOR USER NUMBER (f=#0022) Message Format (Sheet 1 of 2) I
5-126.1/5-126.2

Word Field

Alpha(2) n

eea

Alpha(3) bl, ha

Beta(!) SS

usrno

Beta(2) fname

Beta(3) priority

subpriority

mxws

mxlp

Beta(4) jce

sl

tl

Beta(5) account

Description

Number of files put into execution with this message.

Error exit address; virtual bit address to receive control
if an error occurs during message processing (r~O). If this
field is 0 when an error occurs, the task is aborted.

If len=#FFFF, these fields contain the length in words and
the virtual bit address of the first full word of the Beta
portion.

Error response code:

0
2
3
4
5
6
7
8
9

llA
llB

lie
/ID

flE

No errors.
User directory is not on the disk.
File was not found or not attached.
Nonexecutable file.
Invalid priority value.
Invalid user number.
Not authorized to run at priority level.
Invalid security level specified.
File access conflict with another user.
FILE! (file index table) is full.
Requested time limit exceeds time available to
the user.
User does not have execute access for the file.
Nonproduction program not permitted (production
users only).
No JDNs available to assign to user program.

User number (six ASCII characters, left-justified,
blank-£ illed).

File name (eight ASCII characters, left-justified,
blank-filled).

Job priority 1 (lowest) through 15 (highest).

Subpriority of the job (1 through 255).

Maximum working set limit in blocks (0 through the maximum
blocks in machine, MAXWS in MISCTAB).

Maximum large page limit (0 through the maximum large pages
in machine, MAXWS/128).

Job category entry number (0 through 65).

Security level (1 through 8) to be given to the task.
Default is an installation-defined parameter.

Time limit in system seconds (O through 599,940). The
default (+l=O) is the maximum amount of time allocated for a
user number.

Account number (eight ASCII characters, left-justified,
blank-filled).

Figure 5-29. EXECUTE PROGRAM FOR USER NUMBER (f=#0022) Message Format (Sheet 2 of 2)

60459420 H 5-127

I

UPDATE USER DIRECTORY (f=#0023)

This message can be issued only by a privileged user and allows the user to create, delete,
or modify a user directory. One purpose for which an installation can use this message is
to create a utility for managing batch job accounting (refer to Accounting, chapter 8). A
nonprivileged user may execute option #4 only for the user number executing the call.

The format of the Alpha portion of this message is shown in figure 5-30. The Beta word
formats depend on the message option (c field) in Alpha(l), and are shown in figure 5-31.
Only one Beta will be processed per Alpha.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

0 63

c 0023
16 16 16

unused eea
16 48

I I
I bl ba I L _________ w ________________________________ 3ru

Field

r

l

c

Description

Response code returned by VSOS when message processing is
complete:

0 No errors.
#214 Beta buffer length error. Either the first word

address of Beta plus its length is greater than the
maximum virtual user address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, bl in Alpha(3) contains the length of
the remote Beta buffer. ba contains the location of the remote
Beta buffer. If this field is not #FFFF, the Beta buffer
immediately follows word Alpha(2) and contains one word.

Message options, each of which has a different Beta format:

1 Delete user from user directory.
2 Replace password for user.
3 Write (modify/create) user directory entry and

encode password.
4 Read user directory entry.
5 Write (modify/create) user directory entry, do not

encode password.
6 Verify user directory permissions.
7 Read user accounts.
8 Initialize user directory (delete all but special

users).
9 Read user directory file into caller's buffer.

#A Return default project number for a user.
#B Return first eight words for user activity table

entry.

Figure 5-30. UPDATE USER DIRECTORY (f=#0023) (Alpha) Message Format (Sheet 1 of 2)

5-128 60459420 F

Word

Alpha(2)

Alpha(3)

Field

eea

bl, ba

Description

Virtual bit address to receive control if an error occurs during
processing of this message. If this field is 0 when an error
occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(l=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta
portion.

Figure 5-30. UPDATE USER DIRECTORY (f=#0023) (Alpha) Message Format (Sheet 2 of 2)

For message option 1:

0 63

Beta(1) user
64j

Beta(2) SS unused
8 56

Word Field Description

Beta(l) user Binary user number.

Beta(2) SS Error response code:

0 No error.
1 User is not privileged.
2 Illegal c option.
3 User is active (c=l, 3, 5).
4 User directory is full (c=3, 5, crflg~O).

Figure 5-31. UPDATE USER DIRECTORY (f=#0023) (Beta) Message Format (Sheet 1 of 5)

60459420 E 5-129

For message option 2:

0

Beta(1)

Beta(2) SS

8

Beta(3)

Beta(4)

Word Field

Beta(l) user

Beta(2) SS

Beta(3) oldpword

Beta(4) newpword

63

user
64

unused
56

oldpword
64

newpword
64

Description

Binary user number.

Error response code:

0 No error.
1 User issuing the call is not privileged.
2 Illegal c option.
5 User does not exist.
6 Invalid password.
7 Passwords do not match.

User's password in ASCII before the issuance of this call.

User's new password in ASCII after the successful completion of
this call. This field is set to 0 on return.

For message options 3, 4, 5, 9, and #B:

Beta(1) I Beta(2)

Beta(3)

Word

Beta(l)

0

SS

8

bu fl en

Field

user

63

user
64

p
crflg f unused

8 ~1 48

bufaddr
16 48

Description

Binary user number.

Figure 5-31. UPDATE USER DIRECTORY (f=#0023) (Beta) Message Format (Sheet 2 of 5)

5-130 60459420 H

Word Field

Beta(2) SS

crflg

pflg

Beta(3) bu fl en

buf addr

For message option 6:

0

Beta(1)

Beta(2) SS

8

Beta(3)

Beta(4)

Beta(5)

Description

Error response code:

0
1
2
3
4
5
6
8
9

#B

ffE

No error.
User issuing the call is not privileged.
Illegal c option.
User is active (c=3, 5).
User directory is full (c=3, 5, and crflgfO).
User does not exist (c=4, #B; c=3, 5 and crflg=O).
Invalid password (c=2).
User already exists (c=3, 5, and crflgfO).
User in Beta does not match the user in the buff er
(c=3, 5).
Buffer is not long e?ough to contain user directory
(c=9).
Caller is not site security administrator (only if
production status is selected for the specified user).

If O, this request is to modify an existing user's user
directory entry. If set to #7F, this request is to create a new
user directory entry.

If pflg=l, the production user flag is set in the user directory
entry (c=3 or 5). ·

Length of the buffer specified at bufaddr. For c=3, 4, 5, and
7, buflen is in words. For c=#B, buflen should be set to 8.
For c=7, buflen is returned to the caller and is the number of
accounts read. For c=9, buflen is in blocks.

Virtual bit address of the buffer to or from which data is moved.

63

user
r:: prodtn 64

l
seclev fl unused

8 6 ·1 43

account
64

password
64

jcat
64

Figure 5-31. UPDATE USER DIRECTORY (£=#0023) (Beta) Message Format (Sheet 3 of 5)

60459420 H 5-131

I

I

I

I

Word Field

Beta(!) user

Beta(2) SS

seclev

fl

prodtn

Beta(3) account

Beta(4) password

Beta(5) jcat

Description

Binary user number.

Error response code:

0 No error.
1 User issuing the call is not privileged.
2 Illegal c option.
5 User does not exist.

#A Parameter in Beta does not match parameter in user
directory.

#C Specified job category does not exist.

Security level to be verified.

This field is comprised of six subfields:

Bit Subfield Description

0 acflg If set, verify account identifier.
1 pwflg If set, verify password.
2 slflg If set, verify security level.
3 jcflg If set, verify job category (jcat).
4 daflg If set, return default account.
5 tpflg If set, verify tape access.

Account verification, if requested, occurs first. Password
verification, if requested, precedes security level
verification, which precedes job category verification, which
precedes tape access verification. As a parameter is
successfully verified, the associated flag in fl is cleared to
O. On detection of an unsuccessful verification, all
verification processing stops. The system returns an ss code of
#A, and the flag (and all following flags) associated with the
unsuccessful verification in fl is still set.

If both actflg and daflg are set, the account in Beta(3) will be
verified. If the account doesn't verify, then the default
account will be returned in Beta(3).

Returned value = 1 if a production user. Returned value
not a production user.

Account identifier to be verified, in ASCII.

0 if

Password to be verified, in ASCII. This field is set to 0 on
return.

Job category to be verified, in ASCII.

Figure 5-31. UPDATE USER DIRECTORY (f=#0023) (Beta) Message Format (Sheet 4 of 5)

5-132 60459420 H

For message option 8:

0

Beta(1) unused

Beta(2) SS unused
8

Word Field Description

Beta(2) SS Error response code:

0 No error.
l User issuing the call is not privileged.
2 Illegal c option.

For message option #A:

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Word

Beta(l)

Beta(2)

Beta(3),
(4), (5)

0

SS

8

Field

user

SS

project
number

user

unused

project number

project number

project number unused
32

Description

Binary user number.

Error response code:

0 No error.
1 User issuing the call is not privileged.
2 Illegal c option.
5 User does not exist.

#D Default project number does not exist.

A 1- to 20-character default project number in ASCII,
left-justified with blan~ fill.

63

64

56

63

64

56

64

64

32

Figure 5-31. UPDATE USER DIRECTORY (f=/10023) (Be ta) Message Format (Sheet 5 of 5)

60459420 E 5-133

I

MISCELLANEOUS (f=#0024)

With this message, a user program can determine a variety of information concerning itself,
its controller, and its control lees. Also, raw accounting statistics can be retrieved with
option 9 (c field). The format of this message is shown in figure 5-32. The Beta portion
of the format is discussed under the c field description.

Alpha{1)

Alpha{2)

Alpha(3)

Word

Alpha(l)

0 63

r len c 0024
16 16 16 16

unused eea
16 48

I bl ba I
L - - - - __.:!~ - - - - - - - - - - - - -· - - - ~~

Field

r

len

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs the response
code is O; otherwise:

No controllee, illegal information option, or the
error response field for Beta(l) of option value C,
12, or 13 is set.

2 Program not currently running in interrupt program
state (c=#F or #11 only).

3 Error in system call to read the user's account
numbers.

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion. For option 8, if this field is
3, Beta(4) and Beta(5) are not present. For option 1, if this
field is 3, Beta(4) through Beta(9) are not present.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 1 of 8)

5-134 60459420 F

Word

Alpha(l)

Alpha(2)

Alpha(3)

Field

c

eea

bl, ba

Description

Message options (c=4, c=#B, and c=#l4 are reserved). All
information is returned by the operating system unless otherwise
specified. The values are:

1

2
3
4
5
6
7
8
9

Get the user number, bank account, and maximum file
length.
Verify logged-in workstation user.
Get the time limit.
Reserved.
Get the controllee's termination state.
Get the controllee's name and place.
Get the controller's name and place.
Get this program's name and place.
Get the raw page fault counts, CPU times, and memory
usage. If the batch processor issues this option,
the statistics returned include the cumulative
statistics for the batch processor and all its
controllees. The Beta portion of the format is as
follows:

Beta(l)

Beta(2)
Beta(3)
Beta(4)

Small page fault count.
Large page fault count.
CPU time (microseconds).
Memory usage.
System CPU time.

#A Get clock times as of message issuance.
#B Reserved.
#D Get the contents of minus pages.
#E Get the version identifiers.
#F Get the interrupt invisible package.

#10 Get the task CPU time.
#11 Get the interrupted register file.
#12 Destroy batch job's input file if system fails.
#13 Rerun batch jobs input file if system fails.
#14 Reserved for DEBUG.

Virtual bit address to receive control if an error occurs during
processing of this message (r+O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta
portion.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 2 of 8)

60459420 H 5-135

I

I

Message option:

c=l

0

Beta (1)

Beta (2)

Beta (3)

Beta (4)

Beta (5)

Beta (6)

Beta (7)

Beta (8)

Beta (9)

Word

Beta(l)

Beta(2)

Beta(3)

Beta(4)

5-136

Get the user number, bank account, and maximum file length. If Beta(4)
is set to an account number, validate the account and return additional
parameters in Beta(5) through Beta(9). (The len field must be set to
either 3 or 9.)

63

unused user

16 48

unused bank

24 40

unused mfl

32 32

acct no

64

privflag acctflag muflag unused

8 8 81 40

cacct

64

projno

64

projno

64

projno unused

32 32

Field Description

user User number in ASCII, right-justified with blank fill.

bank Quantity of STU units in the user's bank account.

mfl Maximum file length.

acctno Eight character account number to be verified.

Figure 5-32. MISCELLANEOUS (f=/10024) Message Format (Sheet 3 of 8)

60459420 F

Word

Beta(S)

Beta(6)

Beta(7)
through
Beta(9)

Field

privf lag

acctf lag

muf lag

cacct

projno

User privileged flag:

0 Nonprivileged.
1 Privileged.

Account number valid flag:

0 Invalid account.
1 Valid account.

Master user flag:

Description

0 User is not the master user of the account.
User is the master user of the account.

Current account number in execution (in ASCII, left-justified
with blank fill).

1- to 20-character project number in execution (in ASCII, left­
justified with blank fill).

Message option:

c=2 Verify that a user program executing a workstation utility is permitted
to communicate with the correct workstation zip code. If the user is
making the call from a workstation, the zip and ttyno are returned in
Beta(!).

0 63

Beta(1) _I __________ u_n_u_se_d __________ 4a_l.___z_iP __ s l _u_v_no~8 '
Word Field Description

Beta(!) zip Zip code of workstation.

ttyno Terminal number of logged-on user.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 4 of 8)

60459420 H 5-137 •

Message option:

c=3

c=5

0

Get the time limit. Beta(l) contains the existing time limit, i_n
microseconds, in the rightmost 48 bits; the leftmost 16 bits are unused.

Get the controllee's termination state. Beta(l) contains the following:

63

cts I
8

unused re

Field Description

re

cts

Controllee's return code. rc=O means successful completion;
other values are:

4 Nonfatal error.
8 Fatal error.

Controllee's termination state. The values are:

0 Still active.
1 User terminal break to the EXIT control statement.
2 Operator break to the EXIT control statement.
3 Operator break to the end-of-job (6/7/9) card.
4 Operator drop of the entire batch deck.

#39 Normal termination.
ll3D Abort.
#3E Normal termination.

The drop, scratch, and output files are saved for #3D and #3E.
For #39, the drop and scratch files are destroyed, while the
output file is given to an output processor according to the
disposition code for the file.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 5 of 8)

5-138 60459420 F

Message option:

c=6

c=7

c=8

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Word

Beta(!)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

0

pr iv

Get the controllee's name and place. Beta(!) contains the source file
name for the controllee, and Beta(2) contains the drop file name for
the controllee (see the following Beta format).

Get the controller's name and place. Beta(!) contains the source file
name for the controller, and Beta(2) contains the drop file name for
the controller (see the following Beta format).

Get this program's name and place. The Beta portion of the format is:

63

sfile
64

dfile
64

lev un- jdn site unused used
8 8 4 12 24 8

user
64

job name
64

Field Description

sfile

dfile

pr iv

Source file name for this program.

Drop file name for this program.

Identifies the privileged task. This field must be set to 0 for
a nonprivileged task, or nonzero for a privileged task.

lev Level in the controllee chain; 1 _$. lev _$. 9.

jdn

site

user

jobname

Job descriptor number (integer; 1 through 2047) of the calling
job.

Origination site ID (ASCII).

User number in ASCII, right-justified with blank fill.

Job name of the calling task in ASCII, left-justified with blank
fill.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 6 of 8)

60459420 H 5-139

I

I

Message option:

c=9

0

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Word

Beta(!)

Beta(2)

Beta(3)

Beta(4)

Get the raw page fault counts, CPU times, and memory usage. If the
batch processor issues this option, the statistics returned include the
cumulative statistics for the batch processor and all its controllees.
The Beta portion of the format is:

unused

unused

unused

Field

spflt

lpflt

ucpu

me mu

syscpu

63

spflt lpflt
32 32

ucpu
16 48

me mu
16 48

16
syscpu

48

Description

Number of disk accesses (input requests issued) that resulted
from small page faults (small page implicit reads) up until the
issuance of the MISCELLANEOUS message.

Number of disk accesses (input requests issued) that resulted
from large page faults (large page implicit reads) up until the
issuance of the MISCELLANEOUS message.

User execution CPU time, in microseconds, up until the issuance
of the MISCELLANEOUS message.

Memory usage; the values (current working set size)*(user CPU
time for the current accounting period) summed over all
accounting periods for the task up until the issuance of the
MISCELLANEOUS message.

Virtual and resident system CPU time, in microseconds, for user
execution up until the issuance of the MISCELLANEOUS message.

Message option:

c=llA Get clock times as of message issuance. The Beta portion of the format
is as follows:

Beta(!)

Beta(2)

Master clock value, expressed as yymmddhhmmsspppp. pppp
is fraction of a second.
ASCII clock _value, expressed as hh. mm. ss
(hour.minutes.seconds).

Figure 5-32. MISCELLANEOUS (f=l/0024) Message Format (Sheet 7 of 8)

5-140 60459420 F

Message options:

c=#B

c=#D

c=#E

c=#F

c=#lO

c=#ll

c=#l2

c=#l3

c=#l4

Beta(3)
Beta(4)
Beta(5)

Beta(6)

Reserved.

Calendar value, expressed as mm/dd/yy (month/day/year).
Value of the millisecond clock (Oat midnight).
Value of the microsecond central processor clock (O at
power on).
Current date, in the rightmost 16 bits. The leftmost 7
bits of the 16 bits contain the last 2 digits of the
year, in binary; the remaining 9 bits contain the number
of days since the beginning of the year (1 to 366), in
binary. The leftmost 48 bits of Beta(6) are unused.

Get the contents of the minus pages and return them in Beta(l) through
Beta(l536). (The format of the minus pages is described in chapter
2.) If there is no second. minus page, Beta(513) is #FFFF. If there is
no third minus page, BETA(l025) is #FFFF. If Beta length is 512, only
the first minus page is returned. If Beta length is 1024, only the
first and second minus pages are returned.

Get the version identifiers. Beta(l) contains the resident system
version identifier, and Beta(2) contains the virtual system version
identifier.

Get the interrupt invisible package. If the program is running in
interrupt state, Beta(l) through Beta(40) contain the contents of the
invisible package saved when a program interrupt occurred. (Refer to
appendix E, which describes the invisible package.) If the program is
not currently running in interrupt state, a response of 2 is returned.

Get the task CPU time. Beta(l) contains the task CPU time, in
microseconds.

Get the interrupted register file. Beta(l) through Beta(256) contain
the contents of registers 0 through 255, when a program interrupt
occurred. If the program is not currently running in the interrupt
program state, a response code of 2 is returned.

If the batch input file whose name is supplied by the user in Beta(l)
fails to complete due to a system failure, destroy the batch job's
input file. The name of the batch input file must be left-justified
with blank fill. Beta(2) contains the return code; the value is 0 if
the batch job's input file is successfully destroyed, or 1 if the batch
file names does not exist.

If the batch input file whose name is supplied by the user in Beta(l)
fails to complete due to a system failure, rerun the batch input file.
The name of the batch input file must be left-justified with blank
fill. Beta(2) contains the return code; the value is 0 if the batch
input file is successfully rerun, or 1 if the batch file name does not
exist.

Reserved for DEBUG.

Figure 5-32. MISCELLANEOUS (f=#0024) Message Format (Sheet 8 of 8)

60459420 G 5-141

I

RECALL (f=#0025)

The RECALL message allows a program to suspend its own execution for not fewer than 30
seconds nor more than 30 minutes. At the end of suspension, the program is recalled to an
active status. The format of this message is shown in figure 5-33.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

0 63

r len unused 0025
16 16 16 16

unused eea
16 48

I bl ba I
L--- __ 1~

i.... - - - -· __...; - - - - - -· - - - - - ~~

Field

r

len

eea

bl, ba

time

unused time

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs, the response
code is O; otherwise:

1 This message is not allowed for this program.
#214 Beta buffer length error; either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the number of requests and length
specified.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3), and len is the length in words
of the Beta portion, that is, 1.

Virtual bit address to receive control if an error occurs during
processing of this message (r+O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta
portion.

Period of suspension; specified as a hexadecimal integer number
of microseconds. No fewer than 30 seconds and no more than 30
minutes must be specified by this field. Values outside this
range are set to the nearest interval limit.

Figure 5-33. RECALL (f=#0025) Message Format

5-142 60459420 E

POOL FILE MANAGER (f=#0026)

This message offers a variety of options relating to pool file management, including
attaching the user to a specified pool (thus giving the user access to the files in the
pool) and detaching a pool (after which the files in the pool are no longer accessible to
that user). A user who issues option 1 of this message to create a pool becomes that pool's
pool boss. Only the pool boss can issue options 2, 3, 6, and 7. Only the pool boss or a
user authorized by the pool boss can issue options 4 and 5. Any user can issue option 8.

At the end of each batch job, when the batch processor issues the USER/ACCOUNTING
COMMUNICATION message option 2 (end of job), any pools that were first attached by the job
are detached.

Pools that have been attached interactively remain attached until the user detaches them or I
until that JDN is no longer active [that is, has done a (sc)BYE].

The format of the POOL FILE MANAGER message is shown in figure 5-34. The Beta formats are
described under the c field definition.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

0 ~

r len c 0026
16 16 16 16

unused eea
16 48

1 b1 I ba I

L _____ 1~-----------------~

Field

r

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs, the response
code is O. A nonzero response code does not necessarily mean an
error has occurred (refer to message options 7 and 8). Other
values are:

fill Pool name was already attached by this job.
1112 Pool name is undefined.
1113 Four pools already attached.
1114 Pool is not attached.
1115 Cannot attach to the pool; user has no access to

the pool.
1116 Undefined user number.
1117 Duplicate pool name.
1118 Unable to destroy the pool.
1119 Pool access directory (PAD) is full.
1120 One or more pool files span a downed device.

Figure 5-34. POOL FILE MANAGER (f=#0026) Message Format (Sheet 1 of 4)

60459420 F 5-143

Word Field

Alpha(!) r

len

c

Alpha(2) eea

Alpha(3) bl, ba

#lA
#lB
#lC
#lD
#lE

#lF
#214

Description

Pool list (PLIST) table is full.
Invalid pool.
Invalid pool name.
Not a pool boss.
PAD or PLIST file was not found (refer to the
VSOS 2 Installation Handbook).
File index table is full.
Beta buffer or user list buffer length error;
either the first word address of Beta plus length
is greater than the maximum user virtual address,
or the Beta buffer or user list buffer is too
small for the number of results and length
specified.

If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3), and len is the length in words
of the Beta portion. If this field is 1 under message option 3,
all users can access the pool.

Message options. The pool name field in Beta(l) contains up to
eight letters and numbers and must start with a letter; it is
left-justified with blank fill. Binary user numbers can range
from 1 to 999999; they are right-justified with zero fill. The
options are:

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta
portion. Under option 3, all users can access the pool if the
bl field is 1.

Create a pool. Adds the pool name to the pool list
and clears (zeros) the pool access directory (invalid
when universal access is set) for that pool. The
creator is the pool boss. Beta(l) contains the pool
name.

2 Destroy the pool. If no users are attached and no
files are in the pool, the pool name is deleted from
the pool list. Beta(!) contains the pool name.

3 Grant access to the pool. Places the specified user
numbers into the pool access directory. If either the
len field or bl field is 1, all users can access the
pool. Beta(l) contains the pool name. Beta(2)
contains the length and address of the user number
list buffer:

Figure 5-34. POOL FILE MANAGER (f=#0026) Message Format (Sheet 2 of 4)

5-144 60459420 E

0

Beta (1)

Beta (2) . length

Word Field

Beta(!) pool nm

Beta(2) length

address

63

poolnm

address

16 48

Description

Name of this pool, in ASCII.

Length of user number list buffer, in words.

Bit address of user number list buffer.

4

5

6

7

8

Attach to the pool. Attaches the requesting job to
the named file pool. Beta(l) contains the pool name.
Detach the requestor from the pool. Beta(!) contains
the pool name.
Remove the access privilege. Specified user numbers
are removed from the pool access directory. Beta(!)
contains the pool name. Beta(2) contains the length
and address of the user number list buffer.
List the users having access to the pool. Beta(!)
contains the pool name. Beta(2) contains the length
and address of the user number list buffer.
List the pools and the pool boss. All nonzero entries
in the pool list file are copied into a variable
number of Beta words; the number of words copied is
returned in the response code field. Each pool list
entry returned by the operating system has the format
shown next.

Figure 5-34. POOL FILE MANAGER (f=#0026) Message Format (Sheet 3 of 4)

60459420 F 5-145

I

Beta(1)

Beta(2)

Word

Beta(l)

Beta(2)

0

pcount

Field

pcount

pp tr

pf ree

pboss

pool nm

63

pp tr pfree pboss
16 16 12 20

pool nm
64

Description

Count of users attached to this pool.

Pointer into the pool access directory that contains a list of
user numbers which can attach to this pool (the value is used by
the operating system only).

Currently unused.

User number of the boss of this pool.

Name of this pool, in ASCII.

Figure 5-34. POOL FILE MANAGER (f=#0026) Message Format (Sheet 4 of 4)

5-146 60459420 E

LINK (f=#0027)

With this message, a privileged user can process a CYBER interactive output message.

The Alpha portion of the LINK message is shown in figure 5-35. The Beta word formats depend
on the message option (c field) in Alpha(l) and are shown in figure 5-36.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Al pha(l)

Alpha(2)

Alpha(3)

0

r

n

bl

Field

r

63

len c 0027
16 16 16 16

eea
16 48

ba
16 48

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs, the response
code is O; otherwise:

1 Illegal option.
2 The message is for privileged use only.

#214 Beta buffer length error; either the first word
address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer
is too small for the number of requests and length
specified.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3), and len is the length of the
Beta portion.

c Message option:

1116 The sys tern returns the ident.if iers of terminals
that have outstanding output along with the output
messages.

n This field is the size of the Beta portion of the message, and
the Beta area should be at least n words long. When the message
has been processed, n is set equal to the word length of the
information returned in the area ·pointed to by bva.

eea Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

bl, ba If the Beta and Alpha portions of the message are not contiguous
(len=llFFFF), these parameters indicate the length in full words
and virtual bit address of the first full word of the Beta
portion.

Figure 5-35. LINK (f=ll0027) (Alpha) Message Format

60459420 E 5-147

I

I

Message option:

c=/116

0

Beta(1)

Beta(2)

Word

Beta(!)

Beta(2)

Poll. The caller puts the terminal number of all terminals logged into
VSOS beginning in Beta(2). The number of terminals is put in the n
field of Alpha(2) by the caller. The length of the output in words is
returned in the n field of Alpha(2) by the operating system:

unused

tty no

Field

bva

ttyno

logout

hold

63

bva
16 48

unused -I hold
16 11

logout

Description

The system returns terminal output messages at this bit address.

Terminal number.

Set by VSOS if user is to be logged out.

Set if caller cannot accept any output for this terminal at this
time. The system does not return output (if any) for this
terminal.

Format for output messages:

0 63

Header tty no unused words bytes
.16 16 16 16

message1
64

• • •

messagem
64

Word Field Description

Header ttyno Terminal number.

words Number of words, including header.

bytes Number of bytes in the message.

(1)-(m) message Message text.

Figure 5-36. LINK (f=#0027) (Beta) Message Format

5-148 60459420 F

VARIABLE RATE ACCOUNTING (f=#0028)

This message dynamically changes the variable rate during execution of a task. This call
can be made only by a public controllee, a controllee which has the variable rate permit
flag set in the user directory, or a nonpublic controllee with the proper password. Dynamic
calls to change variable rates are made by applications programs rather than utilities. The
rates to be indexed are in the QSVRF file.

If IP F VR is O, the call is illegal (r=2).

The change to the variable rate index is made in the descriptor block entry. At the time
the change is made, BANKAC is called to compute the accumulated SBUs to be charged at the
old rate and to decrement the available time remaining to complete the task.

Figure 5-37 shows the format of the Alpha portion of the VARIABLE RATE ACCOUNTING message.

0

Alpha(1) r

Alpha(2) vri
a
a

12 f

Alpha(3) bl

Beta(1)

t Unused.

Word Field

Alpha(l) r

len

Alpha(2) vri

63

len unused 0028
16 16 16 16

t eea
3 48

ba
16 48

password

Description

Response code returned by the operating system when this message
has been processed:

0 Normal.
1 File is not public or privileged.
2 Call is not valid at this installation.
3 Accounting access denied. This could be caused by

three events: the call has not been verified as
being issued by a legitimate task, the password
does not match the password in the variable rate
table, or the variable rate table contains a
password to that variable rate index.

#214 Beta buffer length error.

Length of the Beta; if len=#FFFF, then Alpha(3) contains the
starting address and length of the Beta.

Index into variable rate table (set by user).

Figure 5-37. VARIABLE RATE ACCOUNTING (£=#0028) Message Format (Sheet 1 of 2)

60459420 E 5-149

Word

Alpha(2)

Alpha(3)

Beta(1)

Field

aaf

Description

Accounting flag. If set, accounting statistics will not be
accumulated to the minus page or to BACCTG:

=O Not accounting (default).
#0 Accounting.

eea Virtual bit address to receive control if an error occurs during
message processing (if r is different from O). If eea=O, the
error is considered fatal.

bl Beta length.

ba Beta address.

password Password (64-bit) to the variable rate table.

Figure 5-37. VARIABLE RATE ACCOUNTING (£=#0028) Message Format (Sheet 2 of 2)

5-150 60459420 E

SEND MESSAGE TO DAYFILE (f=#0029)

This message allows the user to send a string of ASCII data to the program dayfile.

The format of the message is shown in figure 5-38.

0

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(n)

Word

Alpha(l)

r

unused

bl

Field

r

63

len cf c 0029

16 16 8 8 16

eea

16 48

ba

16 48.

string of ASCII data

Description

Response code; returned by the operating system when the message
has been processed. If no error occurs the error code is O;
otherwise:

1 Length of Beta in character bytes is greater than
40%.

2 Illegal c field selected for this message.
3 Dayf ile is full. The message in dayf ile will be

DAYFILE FULL.
4 Dayfile is not opened for implicit I/O.
5 Invalid base virtual bit address for QSDAYFILE.
6 Unable to find QSDAYFILE.
7 The call is currently blocked waiting for access to

dayf ile (caller will not see a response code 7 when
control is returned).

8 User not authorized to make the call.
#214 Beta buffer length error. Either the first word

address of Beta plus length is greater than the
maximum user virtual address, or the Beta buffer is
too small for the message; length is O.

len If len=#FFFF, Alpha(3) contains the length in character bytes
and the virtual bit address of the Beta portion of the message.
Otherwise, Beta is assumed to begin at Alpha(3), and len is the
length in character bytes of the Beta portion.

Figure 5-38. SEND MESSAGE TO DAYFILE (£=#0029) Message Format (Sheet 1 of 2)

60459420 E 5-151

I

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(l)
through
(n)

Field

cf

c

eea

bl, ba

Description

Type of entry (used only when c=2):

I USER; job dayfile and terminal entries.
2 SYST; messages to and from the operator.
3 LABL; new system dayfile started.
4 DIAG; customer engineering diagnostics.

Control field:

I
2

3

Send message to the system and job dayfile.
Send message to the system dayfile, for
privileged/authorized users only (such as operator and
privileged system tasks).
Send message to the job dayfile. The message does not
go into the system dayfile.

Virtual bit address to receive control if an error occurs during
message processing (r,O). If eea is 0, the error is considered
fatal.

If the Beta portion of the message is not contiguous to the
Alpha portion (len=#FFFF), these parameters indicate the length
in character bytes and virtual bit address of the first full
word of the Beta portion.

string of Maximum length of 4096 characters. If there is no flIF at the
ASCII data end.of the line, one will be added. Illegal characters #00

through #IE and #7F through #FF will be changed to blanks. The
combination #ODOA will be changed to #201F.

Figure 5-38. SEND MESSAGE TO DAYFILE (f=#0029) Message Format (Sheet 2 of 2)

5-152 60459420 F

RHF_CALL (f=#002A)

This message controls the RHF-related tables. The RHF applications issue this message.

The Alpha format of the RHF_CALL system message is shown in figure 5-39.

The Beta format is shown in figure 5-40.

0

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

r

unused

bl

Field

r

63

len c 002A
16 16 16 16

eea
16 48

ba
16 48

Description

Response code; returned by the operating system when this
message has been processed.

0 No errors.
1 Error code was returned in Beta(n).

#214 Beta buffer length error.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3) and len is the length of the
Beta portion. All requests must provide at least 15 Beta words.

c Function code:

1
2

3
4

5
6

7

8
9

llA
llB
lie
#D
#E

Return Remote Host Facility table (T RHFT) entry.
Create new currently active table (T=CAT) entry for
servicer RHF application.
Set NETON flag in T CAT for servicer application.
Status currently running table (T_CRT) for
application name.
NETOFF and clear T CAT entry.
Create new entry in T_CAT for requested initiator
application.
Change maximum number of copies of an RHF
application.
Change default output LID.
Save information about an error condition.
Return currently active table (T CAT).
Return RHF mainframe table (T RHMFT).
Return application table (T_APPT).
Return T CRT table.
Enable/disable physical identifier/logical
identifier (PID/LID).

Figure 5-39. RHF CALL (f=#002A) (Alpha) Message Format (Sheet 1 of 2)

60459420 H 5-153

I

Word

Alpha(2)

Alpha(3)

Field

eea

bl, ba

Description

Virtual bit address to receive control if an error occurs during
processing of this message (r~O). If this field is 0 when an
error occurs, the error is considered fatal.

If the Alpha and Beta portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in words of
Beta and the virtual bit address of its first full word.

Figure 5-39. RHF CALL (f=#002A) (Alpha) Message Format (Sheet 2 of 2)

Function code:

c=l Return T RHFT entry:

0 63

Beta(1) aname unused
56 8

Beta(2) user unused
24 40

Beta(3) status unused
16 48

Beta(4) level 5 parameters
64

Beta(5)

level 6 connect
message

parameters

Beta(8)

Word Field Description

Beta(!) aname Application name; used to search T RHFT.

Beta(2) user User number of the application that issues the call.

I Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 1 of 13)

5-154 60459420 H

Word

Beta(3)

Beta(4)

Beta(5)
through
Beta(8)

Field

status

level 5

level 6

Function code:

Description

Error message returned:

#11 No matching application connect waiting.
#12 Invalid user for this application.
#13 No entry in T_CRT for this application.

Level 5 connection parameters as received from the LCN
parameters (returned by system).

Incoming application connection request as received from the LCN
parameters (returned by system).

c=2 Create new T CAT entry for requested servicer RHF application:

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

• • •

Beta(B)

Beta(9)

Beta(10)

0

user
24

status
16

unused n minacn
8 8

63

a name subopt
56 8

unused
40

unused
48

level 5 parameters
64

level 6 connect
message

parameters

maxacn unused 24 12 12

unused ordinal
56 8

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 2 of 13)

60459420 H 5-155

I

Word

Beta(!)

Beta(2)

Beta(3)

Beta(4)

Beta(5)
through
Beta(8)

Beta(9)

Field

aname

subopt

user

status

level 5
parameters

Description

Application name.

Determines if LIDs should be validated for multiple file
transfers on a single operation.

0 Do not validate the LID.
1 Validate the LID.

User number of the application that issues the call.

Error message returned:

#21 Local LID specified by level 6 parameters not found.
1122 Local LID specified by level 6 parameters disabled.
#23 Currently running limit exceeded for this

application.
#24 Undefined RHF application name.
#25 Invalid user number specified for this application.
#26 Application not in currently running table (T CRT).
#27 No empty entries in connected application table

(T_CAT).
#28 No empty slot in connected application table (T_CAT).

Level 5 connection parameters as received from the LCN.

level 6 Incoming application connection request as received from the LCN
parameters (provided by caller).

n Number of outstanding connections for this application.

minacn Minimum application connection number.

maxacn Maximum application connection number.

Beta(lO) ordinal Index to entry in T CAT.

I Figure 5-40. RHF CALL (£=#002A) (Beta) Message Format (Sheet 3 of 13)

5-156 60459420 H

Function

c=3

Beta(1)

Word

Beta(l)

c=4

Beta(1)

Beta(2)

Beta(3)

Word

Beta(l)

Beta(3)

code:

0

I

0

Set NETON flag in T_CAT for servicer application:

status

Field

status

ordinal

63

unused
40
I ordinal sl

Description

Error message returned:

#31 Invalid T CAT ordinal.
#32 No entry for this ordinal.

Index to entry in T CAT. Valid range of the ordinal is 3 to the
length of T_CAT.

Status CRT for application name:

status

Field

aname

status

maxall

cur

63

a name unused
56 8

unused
64

maxall cur unused
16 8 8 32

Description

Application name.

Error message returned:

0 Currently running limit not exceeded.
1 Currently running limit equals the maximum allowed.
2 Currently running limit exceeds the maximum (occurs if

operator reduces maximum to a number lower than what
is currently running).

#41 Application name not found.

Maximum number of currently running applications allowed
(returned by system).

Number of applications currently running (returned by system).

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 4 of 13)

60459420 H 5-157

I

Function code:

c=5 NETOFF and clear T CAT entry:

0 ~

Beta(1) l ______ s_ta_t_u_s ______ l ______________ u_n_u_se_d ________________ __,J...._ ___ o_r_d_in_a_1 __ __.I . 16 40 8

Word Field Description

Beta(l) status Error message returned:

#51 Invalid T CAT ordinal.
#52 No entry for this ordinal.

ordinal Index to entry in T CAT.

I Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 5 of 13)

5-158 60459420 H

Function code:

c=6

Beta(1)

Beta(2) .

Beta(3)

Beta(4)

Beta(5)

• • •
Beta(B)

Beta(9)

Beta(1 O)

Word

Beta(l)

Beta(2)

Beta(3)

0

Create new entry in T CAT for requested initiator application and
return initial connection request packet.

status

zip
8

Field

aname

subopt

user

status

63

aname subopt
56 8

user unused
24 40

remote lid remote pid
16 24 24

level 5 parameters
64

level 6 connect
message

parameters

n minacn maxacn unused
8 12 12 24

unused ordinal
56 8

Description

Application name.

Determines if LIDs should be validated for multiple file
transfers on a single connection.

0 Do not validate the LID.
1 Validate the LID.

User number of the application that issues the call.

Error message returned:

#61 LID not found.
#62 LID disabled.
#63 Currently running limit exceeded.
#64 Undefined RHF application name.
#65 Invalid user number.
#66 No CRT entry for this application.
#67 PID not found in Remote Host Facility mainframe table

(T RHFMT).
#68 PID disabled.
#69 No empty slot for T_CAT ordinal in the application

entry in T CRT.
#6A No empty entry in connected application table (T_CAT).
#6B RCD NAD is disabled.
#6C SHD NAD is disabled.

Figure 5-40. RHF CALL (f =ll002A) (Beta) Message Format (Sheet 6 of 13)
60459420 H 5-159

I

I

Word

Beta(3)

Beta(4)

Beta(5)
through
Beta(8)

Beta(9)

Beta(10)

Field

remote
lid

remote
pid

level 5
parameters

Description

Remote logical identifier.

Remote physical identifier (returned by system).

Level 5 connection to be sent to the LCN (returned by system).

level 6 Data from the NAD on the host incoming application request
parameters (returned by system).

zip

n

minacn

maxacn

ordinal

Zip code of the NAD that received this connection (returned by
system).

Number of outstanding connections for this connection
application to be sent to the remote host (returned by system).

Minimum application connection number (returned by system).

Maximum application connection number (returned by system).

Index to entry in T CAT (returned by system).

Function code:

c=7

Beta{1)

Beta{2)

Word

Beta(1)

Beta(2)

5-160

0

Change maximum number of copies of an RHF application:

status

Field

a name

status

maxall

63

a name unused
56 8

maxall unused
16 8 40

Description

Application name or ALL.

The option ALL is used to set all the application limits to the
same value on one command.

Error returned:

#71 Application is not found.
#72 Maximum specified is too large.

Maximum number of currently running applications allowed (0 to
8).

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 7 of 13)

60459420 H

Function code:

c=B Change the default output LID:

0

Beta(1)

I
status

Word Field

Beta(l) status

lid

Function code:

161
unused

241

Description

Error code returned:

0 Successful completion, no error.
#81 The specified LID is not defined.

lid

#82 The default output LID is already sent to the
specified value.

63

241

Logical identifier of a remote host (three ASCII alphanumeric
characters).

c=#A Return T CAT table:

0

Beta(1)

Beta(2)

Beta(3)

Beta (count +2)

Word Field

Beta(l) aname

Beta(2) status

63

aname unused
56 8

status count pid unused
16 16 24 8

Description

Application name. If aname is zero, then the entire connected
Application Table is returned. Otherwi.se, the application name
and pid are used as qualifiers for the entries returned.

Error message returned:

#Al Named application not found.
#A2 Beta length is too small for qualified T CAT entries.

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 8 of 13)

60459420 H 5-160.1 e

Word Field

Beta(2) count

pid

Function code:

Description

Number of words returned [excluding Beta(l) and Beta(2)].

Remote pid. If pid is zero, then aname is the only qualifier
for returned entries. Otherwise, the corrected remote pid and
application name are used as qualifiers for the entries returned.

c=ll9 Save information about an error condition:

0

Beta(1) status

Beta(2)

Word Field

Beta(l) status

interval

ec

msgno

Beta(2) time

63

interval ec msgno
16 16 16 16

time
(yymmddhhmnsspppp) 64

Description

Error information returned:

0 No errors. The information from the Beta has been
saved by the virtual system.

1191 The time interval since the last occurrence of the
ec/msgno error condition has not elapsed. The
information from the Beta was not saved.

Time interval in minutes (binary). The time is compared with
the last occurrence of ec/msgno and if the difference is greater
than interval, the information in the Beta is saved.

Error condition category:

1 RHF application internal error.
2 RHF application SIL error.

Error message number associated with the error condition.

Time stamp of the occurrence of the error condition. The format
used for the time stamp is the master clock time (refer to the
'MASTER=' parameter of Q5TIME).

Figure 5-40. RHF CALL (f=ll002A) (Beta) Message Format (Sheet 9 of 13)

e 5-160.2 60459420 H

Function code:

c=#B Return T RHMFT table:

0 ~

Beta(1) lid pid nad unused
24 24 8 8

Beta(2) status count unused
16 16 32

Beta(3)

returned entries

Beta(cou nt+2)

If Beta(!) is O, the entire RHF mainframe table is returned. Otherwise, the nonzero
field in Beta(!) is used to qualify the set of RHF mainframe table entries returned:

Word

Beta(!)

Beta(2)

60459420 H

Field Description

lid Logical identifier.

pid Physical identifier.

nad Network access device number.

status Error message returned:

#Bl No matching LID found.
#B2 No matching NAD found.
#B3 No matching PID found.
#B4 Beta length too short for qualified T_RHMFT entries.

count Number of words returned [excluding Beta(!) and Beta(2)].

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 10 of 13)

5-161

I

I

Function code:

c=#C Return T APPT table:

Beta(1)

Beta(2)

Beta(3)

• • •
Betafoount+2)

Word

Beta(l)

Beta(2)

0 ~

7

Field

a name

status

count

pid

a name
56

unused
8

status count pid unused
16 16 24 8

returned entries

Description

Application name. If aname is O, the entire application table
is returned. Otherwise, the application and pid are used as
qualifiers for the entry returned.

Error message returned:

#Cl Named application not found.
#C2 Beta length too short for full application table.

Number of words returned [excluding Beta(l) and Beta(2)].

If pid is 0, then pid is not used as a qualifier for returned
entries; otherwise, the 3-character pid names and application
names are used as qualifiers for the entry returned.

Figure 5-40. RHF CALL (f=#002A) (Beta) Message Format (Sheet 11 of 13)

5-162 60459420 H

Function code:

c=llD Return T CRT table:

Beta(1)

Beta(2)

Beta(3)

• • •
Beta(count+2)

Word

Beta(!)

Beta(2)

0

7

Field

a name

status

count

63

a name unused
56 8

status count unused
16 16 32

returned entries

Description

Application name. If aname is O, the entire T CRT table is
returned. Otherwise, the application is used as a qualifier for
the entry returned.

Error message returned:

#Dl Named application not found.
llD2 Beta length too short for qualified T CRT entries.

Number of words returned [excluding Beta(!) and Beta(2)].

Figure 5-40. RHF CALL (f=fl002A) (Beta) Message Format (Sheet 12 of 13)

60459420 H 5-163

I

I

Function code:

c=llE

0

Beta(1)

Beta(2)

Word

Beta(l)

Beta(2)

Enable/disable PID/LID:

63
e

lid pid nad unused71~ 24 24 8

status unused
16 48

Field Description

lid Logical identifier.

pid Physical identifier.

nad Network access device.

e/d Enable/disable entry:

status

0 Disable entry.
1 Enable entry.

Error message returned:

llEl LID not found.
llE2 PID not found.
llE3 LID specified is for a PID that is currently disabled.
llE4 No LIDs for the specified PID.
llE5 LID, PID, or NAD already in requested state.
llE6 NAD was not found, or none of lid, pid, or nad were

specified.

Figure 5-40. RHF CALL (f=ll002A) (Beta) Message Format (Sheet 13 of 13)

5-164 60459420 H

ACCESS CONTROL (f=#002B)

This message provides program level control of access permissions for private, public, and
pool files. The format of this message is shown in figure 5-41.

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Beta(2)

Beta(3)

Word

Alpha(l)

0

r

n

bl

SS

8

0

Field

r

63

len cf c 0028
16 16 8 8 16

eea
16 48

ba
16 48

name
64

acs a user
8 48

pool name 64

16 ouser 48

Description

Response code. If no error occurs, the response code is O;
otherwise:

1
2
3
4

11211

11214

Error code is returned in the ss field of Beta.
Illegal c or cf option.
Caller not privileged.
Caller is not site security administrator.
Number of requests is illegal (the n field is 0 or
greater than 16).
Beta buffer length error. Either the first word is
greater than the maximum user virtual address, or
the Beta buffer is too small for the number of
requests and length specified.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message. Otherwise, Beta
is assumed to begin at Alpha(3), and len is the length in words
of the Beta portion. The value of len must be a multiple of 3.

Figure 5-41. ACCESS CONTROL (f=#002B) Message Format (Sheet 1 of 3)

60459420 H 5-165

I

I

Word

Beta(2)

Alpha(2)

Alpha(3)

Beta(!)

Beta(2)

Field

cf

c

n

eea

bl, ba

name

SS

acs

Description

Ownership option:

0 Private file.
1 File resides in pool specified by poolname (caller

must be the pool boss).
2 Public file (caller must be privileged).

Control field:

0 Grant access to user.
1 Grant production status to the file and remove all

write permissions.
2 Remove production status from the file. Caller must

be the site security administrator user number.

Number of requests in this message; maximum is 16.

Virtual bit address to receive control if an error occurs during
the processing of this message (r#O).

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual
bit address of the first word of the Beta portion.

File name, in ASCII, of the file whose access permission is to
be changed.

Error response field. The values are:

0 Normal completion.
1 File not found.
2 Pool not found.
3 Illegal access permission.
4 FILEI is full, no entry made.
5 Access control list is full, no entry made.
6 User not pool boss.
7 MODPFI error.
8 User number is invalid for specified file.
9 Caller is not the file owner.

#A User number is not defined.
#B Illegal access for tape.
#c Write access and there is no write ring.
#D Write permissions are not valid for a production file.
#E No user table entry is available (c=l or 2).
#F Write permissions are not valid for a drop file.

File access permissions. This 8-bit field specifies the access
permissions to be granted. Five bits are currently defined:

Bit

1-3
4
5

Hex. Value

10
8

Description

Unused.
Give execute access.
Give modify access.

Figure 5-41. ACCESS CONTROL (f=#002B) Message Format (Sheet 2 of 3)

• 5-166 60459420 H

Word

Beta(2)

Beta(3)

Field

acs

a user

pool name

ouser

Description

Bit Hex. Value Description

6
7
8

4
2
1

Give append access.
Give read access.
Give write access.

Users affected will have only those access permissions specified
by these bits (a replacement operation).

This parameter identifies whose access permission is to be
modified. Its definition is dependent on the cf (ownership)
option:

File

Private local

Private
permanent

Public

Pool

Description

auser must be binary O. Only the owner's
access permissions can be changed.

auser can have one of the following values:

• The ASCII user number of the user
whose access permissions are to be
modified.

• "GENRAL", which indicates that all
access permissions are to be modified.

• "* 11
, left-justified, blank-filled,

which indicates all access permissions
are to be modified.

• Binary 0, which indicates that the
caller's (file owner's) access
permission is to be changed.

auser is ignored. The general access
permissions are to be changed.

auser can have one of the following values:

• "GENRAL", which indicates that all
pool members' access permissions are
to be modified.

• "*", equivalent to "GENRAL".

• Binary O, which indicates that the
caller's (pool boss') access
permissions are to be changed.

Name of pool in which poolfile resides.

File owner's ASCII user number (c=l or 2).

Figure 5-41. ACCESS CONTROL (f=#002B) Message Format (Sheet 3 of 3)

60459420 H 5-167

I

TAPE MANAGEMENT (f=#002C)

This message associates a logical file name with a magnetic tape unit. The logical file is
a local file.

Message option 1 allows the user to specify a list of VSNs to be associated with this local
tape file. The VSN list is maintained by the system until the tape file is returned. If a
user attempts to assign VSNs to an existing file, an error is returned but the file is not
returned.

Message option #2 checks user validations for interactive or batch tape access. If the user
is not allowed tape access, an error will be returned. Message option 2 allows the user to
specify density, conversion mode, tape format, noise size, and label type of the tape file.
The user can also specify request processing options. Message option 2 causes the system to
compare the VSN supplied by option l with the VSNs read from mounted tapes. If a match is
found, the system automatically assigns the tape unit to the job. If the tape is not
mounted, a request for assignment is displayed at the operator console and the job is
suspended until the requested VSN is mounted. If the tape is unlabeled, the operator enters
the VSN command that associates a VSN with a tape unit. The system can then assign the
tape. Refer to the VSOS 2 Operator's Guide for more information.

Message option 3 is a combination of the first two options. An error is returned if a local
file (tape or disk) with the same file name already exists.

Message option 4 is like option 3, but it also blank labels a new tape. The label buffer
descriptor is used only for this option. Either the caller must be privileged or the
installation option IP TPVOL must be set to 1.

If the tape file is an ANSI standard labeled tape, the multifile set name is the same as the
logical file name. This logical file is given an HDRl label with a file sequence number
equal to 1. That means that, by default, it is the first file on the tape unless this HDRl
label is replaced by a subsequent LABEL call. The file attributes in Beta(8) through
Beta(A) are assigned to the logical file and the multifile set.

The format of the TAPE MANAGEMENT message is shown in figure 5-42.

5-168 6045~420 F

0 63

Alpha(1) r len c 002C
16 16 16 16

Alpha(2) unused eea
16 48

Alpha(3) bl ba
16 48

Beta(1) lfn
64

Beta(2) dvsn
64

Beta(3) rpo acs ova fmtp
16 8 8 32

Beta(4) reel vsn

16 48

Beta{5) dom
64

Beta(6) dlb
64

Beta(7) ccb
64

Beta(8) unused sfo bt rt rmd pc unused
12 4 4 4 8 8 24

Beta(9) rim in rim ax unused
24 24 16

c
Beta(A) rpb unused 0 mpru n

16 14 lt v 32
I

Ip roe

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 1 of 9)

60459420 E 5-169

I

Word

Alpha(l)

Field

r

Description

Response code returned by VSOS when message processing is
complete:

0 No errors.
1 File already exists.
2 Cannot blank label a tape.
3 Illegal c option field.
4 Interactive tape access requested when the

installation parameter allowing interactive access
is not appropriately set.

5 Nonstandard labeling is not allowed.
6 Illegal original volume accessibility.
7 No room in the file index.
8 Standby job cannot issue the call.
9 Invalid logical file name.

tlA Requested read unconditional flag and the
installation parameter allowing this option is not

/IB
tic
tlD
/IE
/IF

1110
ti 11
/112
/113
ii 14
1115
/116
ii 17

1118
ii l 9

ill A
tllB
Ille
illD
1125
1126
1127

set.
Conversion mode does not match the label.
Mismatch of density.
No VSN list (c=l, 3).
More than 255 VSNs (c=l, 3).
Illegal conversion mode.
Illegal label type.
Illegal error correction mode.
Illegal tape format.
Illegal density.
Illegal access permission.
Mismatch of ova.
Illegal VSN (c=l, 3).
Illegal equal number in the virtual bit address of
VSN list (c=l, 3).
Illegal label.
Number of tapes exceeds the number requested on the
resource card.
Volume is not available.
ioc is not available.
Read-only access (c=4).
User not allowed tape access.
Illegal file organization.
Illegal block type.
Illegal record type.

len If this field is tlFFFF, bl in Alpha(3) contains the length of
the remote Beta buffer. ba contains the location of the remote
Beta buffer. If this field is not tlFFFF, Beta is assumed to
begin at Alpha(3), and len is the length, in words, of the Beta
portion.

c Message options:

1 Assign v·sNs.
2 Request a tape file.
3 Assign VSNs and request a tape file.
4 Write VOL! labels. Request a tape as in option 3.

Beginning-of-volume labels (VOL!) in the label
buffer are verified and written.

Figure 5-42. TAPE MANAGEMENT (f=tl002C) Message Format (Sheet 2 of 9)

5-170 60459420 F

Word

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

0

I

Beta(3)

Field

eea

bl, ba

lfn

dvsn

u 41 equal

rpo

Description

Error exit address.

If the Beta and Alpha portion are not contiguous (len=#FFFF),
these parameters indicate the length in full words and virtual
bit address of the first full word of the Beta portion.

Logical file name. If the tape file is an ANSI standard labeled
tape, lfn is also the multifile set name.

Descriptor for the volume serial number list. The volume serial
number is left-justified, with blank fill. This list contains
the VSNs that are to be assigned to the file. This field is
ignored for option 2:

0-15 lvsn

16-63 avsn

121

Request processing

Bit Name

0-9

10 try

Length of the VSN list in 64-bit words (0 <
lvsn < 256).
Virtual bit address of the VSN list. The
list must begin on a word boundary:

63

vsn
321

u Unused.

equal If 0, this VSN is to be
processed in sequential order.
If 1, the next n VSNs are
scanned and the first available
VSN is assigned. All equal
entries should have equal=n set.

vsn Volume serial number. The VSN
is a left-adjusted alphanumeric
name, one to six letters or
digits in length. If VSN is
fewer than six characters, this
field must be blank-filled.

options. This field is ignored for option

Description

Unused.

Error retry parameter. This field applies
only when reading the tape:

0 Standard error recovery processing
takes place when a hardware read
error occurs.

1 Error inhibit; all hardware read
errors are ignored and processing
continues.

1:

Figure 5-42. TAPE MANAGEMENT (f=fl002C) Message Format (Sheet 3 of 9)

60459420 E 5-171

Word

Beta(3)

Field

rpo

acs

Bit Name

11

12 ru

13 iu

14

15 ring

Description

Description

Unused.

Read unconditional processing option:

0 The user is not allowed to read past
the end of information or the end of
tape.

1 The user is allowed to read past the
end of information or the end of tape.
This could cause the tape to go off the
reel.

Tape unload processing option (inhibit unload):

0 When the tape is released (refer to the
DESTROY FILE system message, option 0),
the tape is rewound to the load point
and unloaded from the drive.

1 When the tape is released (refer to the
DESTROY FILE message), the tape is
rewound to the load point, but it is
not unloaded from the drive.

Unused.

0
1

Ring is not needed. (Read permission only.)
Ring is needed. (Write or read/write
permission.)

Access permission for the logical tape file or multifile set. A
ring must be in the tape for acs=2 or 3. The tape must not have
a ring for acs=l. If the write enable status of the tape being
assigned does not correspond with what was requested by this
option, the job is suspended and the operator is sent a message
requesting the tape be mounted correctly:

1 Write permission only.
2 Read permission only.
3 Read/write permission.

ova Original volume accessibility character. This field must match
the volume accessibility character in the tape VOLl label if
nonblank. This field applies for message options c=2, 3, and
4. Default is the installation parameter IP TPVA.

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 4 of 9)

5-172 60459420 E

Word

Beta(3)

Field

fmtp

Description

Format parameters. This field is ignored when c=l:

Bit Name

32-63 NS

37 ECB

38-44

45-47 DENS

48-49 EC

50-51

Description

Noise size in frames. This option applies
only for V- or NV-formatted tape files when
the tape is being read. Any PRU containing
fewer than the specified number of frames
is considered noise and is discarded by the
system. A noise size of 0 causes the
default noise size to be used. The default
size is O. The maximum NS is 31 decimal
frames. NS is ignored for I, SI, and LB
tape formats.

Hardware error correction mode for tapes
being written in GCR mode. This field is
set by the system from the EC field:

0 Enabled; the system allows more
single-track errors to be written
than can be corrected when the tape
is read.

1 Disabled; a single-track error
while writing a 6250-cpi tape
results in standard error recovery
processing.

Reserved.

Tape recording density. This parameter
applies only to writing data on an
unlabeled tape positioned at load point.
Data is written on a labeled tape at the
same density in which labels are written.
Data is read from a tape at the same
density at which it was written. The
default density is an installation-defined
option. The default for the released
system is 6250 cpi. The density selected
is returned in DENS by the system:

0 Default.
1 6250 cpi (GE).
2 1600 cpi (PE).

Hardware error correction mode for GCR
tapes. The mode selected is returned in
ECB:

0 Installation default (IP_TPEC).
1 Enabled.
2 Disabled.

Unused.

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 5 of 9)
60459420 E 5-173

Word

Beta(3)

Field

Bit Name

fmtp 52-55 CM

56-59 LT

60-63 TF

Description

Description

Conversion mode character set for the file
data. Specifies the character set that
data is converted from when it is read from
the tape. The default character set for a
labeled tape is the character set in which
the labels are written. For an unlabeled
tape, the default is an installation-defined
option. The default for the released
system is ASCII:

0 Default.
1 ASCII.
2 EBCDIC.

Observe that the tape file must be
requested in coded mode for the conversion
to take place. Refer to the conv field in
the CHANGE system message.

Label tape. Specifies the type of labels,
if any, that are on the tape. The default
label type is the type of labels on the
tape being assigned. If LT=O, the label
type selected is returned:

0 Default.
1 ANSI standard label.
2 Unlabeled.
3 Nonstandard; valid only if

privileged caller or installation
option IP_TPNSL=l.

Tape format. (Refer to appendix G for more
detailed information.) The format of the
data on the tape. The default is an
installation-defined option. The TF
selected will be returned if TF=O:

0 Default.
1 Large block format (LB).
2 SCOPE internal (SI).
3 NOS internal (I).
4 Variable length block (V).
C Variable length block with embedded

tape marks (NV).

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 6 of 9)

5-174 60459420 E

Word Field

Beta(4) reel

vsn

Beta(5) dom

Beta(6) dlb

Beta(7) ccb

0
cc IC1C cc

Description

The position in the VSN list of the tape to be assigned. If
reel=O, it defaults to 1 or the first VSN. This field applies
only when c=2 or 3.

Volume serial number. The system returns the VSN of the volume
assigned in option c=2 and 3.

Descriptor for operator message. If nonzero, this descriptor
points to a message which is flashed on the 0 display after the
MOUNT message. This field applies only for options c=2 and 3:

0-15 lorn Length of operator message text, in bytes (1
< lom < 64).

16-63 aom Virtual bit address of the operator
message. This address must begin on a byte
boundary.

Descriptor for the label buffer. This field is used for option
c=4 only. The label buffer must contain a VOLl and a HDRl label.

Change control bits:

63
IC1C c ~1~

unused
SS SS SS SSS

unused 111~ 98 76 54 3 2 1

5 1 11 11 1 1 1 1 11

Bit

csll

48

Description

Maximum PRU size:

0 Do not change the maximum PRU size.
1 Change the maximum PRU size to that

specified in the mpru field.

cslO Tape mode:

0 Do not change the tape mode.
1 Change the tape mode to that specified in

the tm field.

cs9 Label processing:

0 Do not change the label processing.
1 Change the label processing to that

specified in the lp field.

cs8 Records per block:

0 Do not change the records per block.
1 Change the records per block to that

specified in the rpb field.

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 7 of 9)

60459420 E 5-175

I
Word

Beta(7)

Beta(8)

Field

ccb

sfo

Description

Bit Description

cs7 Record mark:

0 Do not change the record mark.
1 Change the record mark to that specified in

the rmd field.

cs6 Padding character:

0 Do not change the padding character.
Change the padding character to that
specified in the pc field.

csS Record type:

0 Do not change the record type.
Change the record type to that specified in
the rt field.

cs4 Maximum record length:

0 Do not change the maximum record length.
1 Change the maximum record length to that

specified in the rlmax field.

cs3 Minimum record length:

0 Do not change the minimum record length.
Change the minimum record length to that
specified in the rlmin field.

cs2 Blocking type:

0 Do not change the blocking type.
1 Change the blocking type to that specified

in the bt field.

csl File organization:

0 Do not change the file organization.

File organization:

Change the file organization to that
specified in the sfo field.

0 Sequential.

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 8 of 9)

5-176 60459420 F

Word

Beta(8)

Beta(9)

Beta(A)

Field

bt

rt

rmd

pc

rlmin

rlmax

rpb

lproc

conv

Description

Blocking type:

0 SIL assumes the file was created before SIL was added
to the system; therefore, it enters default values in
the SIL fields of the file index entry.

1 Internal blocking (I).
2 C-type blocking.
4 Exact record count blocking (K).

Record type:

0 Control word (W).
1 ANSI fixed length (F).
2 Record mark (R).
4 Lower CYBER control word (L).
5 System block (B).
7 Undefined (U).

Record mark; 8-bit ASCII character (any character is valid).

Padding character; 8-bit ASCII character (any character is
valid).

Minimum record length; 24-bit length in number of bytes.

Maximum record length; 24-bit maximum length in number of bytes.

Records per block.

Label processing options.

Data conversion option:

0 There is no data conversion.
1 Convert data.

mpru Maximum length of the PRU.

Figure 5-42. TAPE MANAGEMENT (f=#002C) Message Format (Sheet 9 of 9)

60459420 E 5-177

TAPE SWITCH VOLUME (f=#002D)

This virtual system message causes the system to perform end-of-tape processing on the
current volume and position to the beginning of volume on the next reel. The user is
blocked until completion of the call. The logical tape file must be opened. This call will
not position past a beginning-of-file or end-of-file label group.

The TAPE SWITCH VOLUME message enables the user to perform his own end-of-tape processing.
When an I/O operation encounters end-of-tape, control is returned to the user if the user
selected the end-of-tape processing option on the OPEN FILE message. An ioer=40 is returned
in the TAPE FUNCTION message that encountered end of tape. An ioer=31 is returned in any
other TAPE FUNCTION message outstanding at the time end of tape was encountered. The TAPE
SWITCH VOLUME message automatically clears any existing ioer condition. If the user wishes
to perform any tape function call before the TAPE SWITCH VOLUME system message, the user
must issue the TAPE FUNCTION message, system function #30, to clear the ioer.

At the time the TAPE SWITCH VOLUME option is issued, the system performs end-of-tape
processing on the current volume. If the last operation was a write, the system performs
the following:

Tape Format

v

I,SI,LB

Unlabeled

Writes two tape marks

Writes a tape mark, an
EOVl label, and two
tape marks

Labeled

Writes a tape mark, an EOVl, and two tape marks.
If the user end-of-volume label buffer was
supplied, the system may also write EOV2 through
EOV9 and UTL labels.

Same as for labeled V tapes.

If the last operation was a read, the tape is labeled, a tape mark immediately follows, the
user is supplied an end-of-volume label buffer, and all labels from this tape mark
(beginning with EOVl) through the next tape mark are returned (as space permits).

The current tape is unloaded and the system requests the operator to mount the next VSN.
After the tape has been assigned and if it is labeled, the system reads or.writes
beginning-of-volume labels, depending on whether the last operation was a read or write,
respectively. The user may supply a beginning-of-volume label buffer. If the label is
being read, any nonzero fields in the user HDRl label supplied at LABEL time are compared
with the HDRl field on the tape. An error is returned if any nonzero field does not match.
Then all labels from VOL! through the first tape mark are returned to the user label buffer,
as space permits. Verification of additional labels is the user's responsibility. If the
label is being written, the system uses the previous VOL! and HDRl labels. The current VSN
is placed in VOL! and the chapter number is incremented by one in HDRl. UVL, HDR2 through
HDR9, and UHL labels are written if present in the user buffer.

The format of the TAPE SWITCH VOLUME message is shown in figure 5-43.

5-178 60459420 E

0

Alpha(1) r

Alpha(2) unused

Alpha(3) bl

Beta(1) ioc
8

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Beta(7)

Word Field

Alpha(l) r

63

len c 0020
16 16 16 16

eea
16 48

ba
16 48

unused ioer
40 16

dtt
64

dvsn
64

duelb
64

delb
64

du bib
64

dblb
64

Description

Response code returned by VSOS when message processing is
complete:

0 No errors.
1 Illegal I/O connector.
2 Tapes table descriptor is too short.
3 Tape input/output error is returned.
4 Label buffers are too short.
5 Illegal labels.
6 Not at end-of-volume.
7 Volume not available.
8 Label is unexpired and IP TPEXP=O.

Figure 5-43. TAPE SWITCH VOLUME (f=#002D) Message Format (Sheet 1 of 3)

60459420 E 5-179

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Beta(3)

Beta(4)

Field

len

c

eea

bl,ba

ioc

Description

If this field is #FFFF, bl in Alpha(3) contains the length of
the remote Beta buffer. ba contains the location of the remote
Beta buffer. If this field is not #FFFF, Beta is assumed to
begin at Alpha(3), and len is the length, in words, of the Beta
portion.

Message options:

0 If the last function was a write, switch the volume.
If the last function was not a write, switch the
volume if the tape is positioned at the trailer labels.

1 If at least one write operation was issued for this
file, write trailer labels at the current tape
position and switch the volume. Be aware that data
may be lost. If there was no write operation for this
file, switch the volume if the tape is positioned at
the trailer labels.

Error exit address.

If the Beta and Alpha portion are not contiguous (len=#FFFF),
these parameters indicate the length in full words and virtual
bit address of the first full word of the Beta portion.

Input/output connector for this tape file.

ioer Input/output error number. Refer to appendix B for more a
detailed description of the ioer codes.

dtt

dvsn

duelb

Tapes table descriptor. If nonzero, the tapes table is not
returned:

0-15 ltt

16-63 att

Word length of the tapes table buffer.
This buffer must be 12 words long.
Bit address of the tapes table buffer.
The buffer must begin on a word boundary.

Descriptor for the VSN list. If nonzero, the VSN list is
returned by the system:

0-15 lvsn

16-63 avsn

Length of the VSN list, in words (0 <
lvsn < 256).
Virtual bit address of the VSN list.
This field must be on a word boundary.

Descriptor for user end-of-volume labels. If duelb is nonzero,
then user end-of-volume labels are supplied by the user. This
applies only when writing labels.

Figure 5-43. TAPE SWITCH VOLUME (f=#002D) Message Format (Sheet 2 of 3)

5-180 60459420 E

I
. I

Word

Beta(5)

Beta(6)

Beta(7)

Field

delb

dublb

dblb

Description

End-of-volume label buffer descriptor. If delb is nonzero, the
system returns all the end-of-volume labels here:

0-15 lelb

16-63 aelb

Length of end-of-volume label buffer, in
words.
Bit address of the end-of-volume label
buffer. The buffer must begin on a word
boundary.

Descriptor for user beginning-of-volume labels. If dublb is
nonzero, the user beginning-of-volume labels are supplied by the
user. This field applies only when writing labels:

0-15 lublb

16-63 aublb

Length of user beginning-of-volume label
buffer, in words.
Virtual bit address of user
beginning-of-volume label buffer. The
buffer must begin on a word boundary.

Beginning-of-volume label buffer descriptor. If dblb is
nonzero, the system returns all of the beginning-of-volume
labels here:

0-15 lublb

16-63 aublb

Length of beginning-of-volume label
buffer, in words.
Bit address of beginning-of-volume label
buffer. The buffer must begin on a word
boundary.

Figure 5-43. TAPE SWITCH VOLUME (f=#002D) Message Format (Sheet 3 of 3)

60459420 E 5-181

LABEL (f=#002E)

This message is issued to request a logical file which belongs to an existing multifile
set. The logical file is a local file. One or more LABEL calls can be issued for the same
multifile set. One or more LABEL calls can be issued for the same logical file within the
multifile set as long as the logical file is closed: that is, the LABEL message cannot be
issued for an open file. Label processing is performed at OPEN time.

The file attributes of the multifile set are assigned to the logical file. The change
control bits define which attributes are superceded by the LABEL message.

The format of the LABEL message is shown in figure 5-44.

0 63

Alpha(1) r len unused 002E
16 16 16 16

Alpha(2) unused eea
16 48

Alpha(3) bl ba
16 48

Beta(1) lfn
64

Beta(2) mfn
64

Beta(3) ofa acs unused
8 8 48

Beta(4) llb alb
16 48

Beta(5) ccb
64

Beta(6) unused sfo bt rt rmd pc unused
12 4 4 4 8 8 24

Beta(7) rim in rim ax unused
24 24 16

Beta(8) rpb unused mpru
16 14 l 32

Lconv --- Ip roe

Figure 5-44. LABEL (f=#002E) Message Format (Sheet 1 of 5)

5-182 60459420 E

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Beta(3)

Beta(4)

Field

r

Description

Response code returned by VSOS when message processing is
complete:

0
1
2

4
5
6
7
8
9

#B
#c
#D
#E

No errors.
Multifile set does not exist.
Logical file already exists and it does not belong to
this multifile set.
Label buffer out of bounds.
lfn is open; ioc exists.
Illegal labels.
Illegal access.
Illegal original file accessibility character.
Duplicate FSN specified.
Tape requested is unlabeled or nonstandard.
No unit assigned.
No room in FILE! for entry.
Illegal logical file name.

len If this field is #FFFF, bl in Alpha(3) contains the length of
the remote Beta buffer. ba contains the location of the remote
Beta buffer. If this field is not #FFFF, Beta is assumed to
begin at Alpha(3), and len is the length, in words, of the Beta
portion.

eea

bl, ba

lfn

mf n

of a

Error exit address.

If the Beta and Alpha portion are not contiguous (len=#FFFF),
these parameters indicate the length in full words and virtual
bit address of the first full word of the Beta portion.

Logical file name. If the tape file is an ANSI standard labeled
tape, lfn is also the multifile set name.

Multifile set name. If this field is O, mfn is the same as the
logical file name.

Original file accessibility character. This field must match
the file accessibility character in the tape HDRl label. This
applies only when labels are being written. The default is the
installation parameter IP_TPFA.

acs Access permissions for the logical file. acs must be a subset
of the access permissions supplied at the time of the request:

1 Write permission only.
2 Read permission only.
3 Read/write permission.

llb Length of the label buffer, in words.

alb Virtual bit address of the label buffer. The buffer must begin
on a word boundary.

Figure 5-44. LABEL (f=#002E) Message Format (Sheet 2 of 5)

60459420 G 5-183

I

Word Field

Beta{5) ccb

0
un- f 1~ '~~ ,~=i SS s~~

used ~11-.j Isa 154 312; 1
5 1 11 11 111 11 11

Description

Change control bits:

Bit

csll

63

unused
48

Description

Maximum PRU size:

0 Do not change the maximum PRU size.
1 Change the maximum PRU size to that

specified in the mpru field.

cslO Tape mode:

0 Do not change the tape mode.
1 Change the tape mode to that specified in

the tm field.

cs9 Label processing:

0 Do not change the label processing.
1 Change the label processing to that

specified in the lp field.

cs8 Records per block:

0 Do not change the records per block.
1 Change the records per block to that

specified in the rpb field.

cs7 Record mark:

0 Do not change the record mark.
1 Change the record mark to that specified in

the rmd field.

cs6 Padding character:

0 Do not change the padding character.
1 Change the padding character to that

specified in the pc field.

cs5 Record type:

0 Do not change the record type.
1 Change the record type to that specified in

the rt field.

Figure 5-44. LABEL (f=#002E) Message Format (Sheet 3 of 5)

5-184 60459420 E

Word

Beta(5)

Beta(6)

Field

ccb

sf o

bt

rt

Description

Bit Description

cs4 Maximum record length:

0 Do not change the maximum record length.
1 Change the maximum record length to that

specified in the rlmax field.

cs3 Minimum record length:

0 Do not change the minimum record length.
1 Change the minimum record length to that

specified in the rlmin field.

cs2 Blocking type:

0 Do not change the blocking type.
1 Change the blocking type to that specified

in the bt field.

csl File organization:

0 Do not change the file organization.
1 Change the file organization to that

specified in the sfo field.

File organization:

0 Sequential.

Blocking type:

0

1
2
4

Record type:

0
l
2
4
5
7

SIL assumes the file was created before SIL was
added to the system; therefore, it enters default
values in the SIL fields of the file index entry.
Internal blocking (I).
C type blocking.
Exact record count blocking (K).

Control word (W).
ANSI fixed length (F).
Record mark (R).
Lower CYBER control word (L).
System block (B).
Undefined (U).

rmd Record mark; 8-bit ASCII character (any character is valid).

pc Padding character; 8-bit ASCII character (any character is
valid).

Figure 5-44. LABEL (f=#002E) Message Format (Sheet 4 of 5)

60459420 E 5-185

Word Field Description

Beta(7) rlmin Minimum record length; 24-bit length in number of bytes.

rlmax Maximum record length; 24-bit maximum length in number of bytes.

Beta(8) rpb Records per block.

lproc Label processing options:

0 Read and verify the existing labels.
1 Write new labels.

conv Data conversion option:

0 There is no data conversion.
1 Convert data.

mpru Maximum length of the PRU.

Figure 5-44. LABEL (f=#002E) Message Format (Sheet 5 of 5)

5-186 60459420 E

USER REPRIEVE (f=#002F)

The USER REPRIEVE system message allows the user to have control returned to a specified
address for processing during termination processing.

The aaf field is set when an application accounting routine makes this system message call.
After the aaf flag is set, enable or disable of user reprieve is not allowed until an
accounting routine with the ap.propriate password disables user reprieve.

The format of the USER REPRIEVE system message is shown in figure 5-45.

0 63

Alpha(1) r len opt 002F
16 16 16 16

Alpha(2) aaf unused eea
8 8 48

Alpha(3) bl ba
16 48

Beta(1) aapw rpa
16 48

Beta(2) dbl dba
16 48

Figure 5-45. USER REPRIEVE (f=#002F) Message Format (Sheet 1 of 2)

60459420 E 5-187

Word

Alpha(l)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Field Description

r Response code:

0 No error.
1 Routine or data base address error.
2 Routine data base len~th error.
4 Reprieve enable or disable not allowed.

#214 Beta buffer length error.

len Length of the Beta. If len=#FFFF, then Alpha(3) contains the
length and starting address of the Beta; otherwise, Beta(l) is
assumed to start in Alpha(3).

opt Option code:

0 Enable user reprieve.
1 Disable user reprieve.

aaf Application accounting flag:

0 Off.
1 On.

eea Error exit address.

bl Beta length.

ba Beta address.

aapw Accounting password.

rpa Reprieve address.

dbl Data base length.

dba Reprieve data base address.

Figure 5-45. USER REPRIEVE (f=#002F) Message Format (Sheet 2 of 2)

5-188 60459420 E

EXECUTE IQM REQUEST (f=#0030)

The EXECUTE IQM REQUEST system message processes IQM requests. Only privileged system tasks
can issue this message. Only the IQM utility can issue c option 1.

The format of the EXECUTE IQM REQUEST system message is shown in figure 5-46.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(1)

0

r

n

bl

Field

r

63

16 len 161 c 161 0030 16

16 eea 48

16 ba 48

Description

Response code returned by VSOS when message processing is
complete:

0
1
2

3

4
ft12
1113
If 14
If 15
1116
1117
1118
If 19

/fl A

lflB

Ille

#211
ff 214

No errors.
Bad parameter; ss code contains the description.
User number of message issuer is not that of the
IQM.
Job file was not added to the input queue because
the queue is full.
Invalid message option (c field value).
Bad caller.
Input queue is full; resubmit job.
Bad c option.
Batch input file is not found.
Batch input file is open.
Batch user is a privileged system task.
IQM does not exist; consult an analyst.
Error was made in giving batch input file to IQM;
consult an analyst.
Batch input file is of wrong type (tape of
connected file).
Device on which batch input file resides is
logically down.
Caller does not own batch input; cannot give it to
IQM.
Either 0 or too many Beta entries were specified.
Beta buffer length error. Either the first word
address of Beta plus its length is greater than the
maximum virtual user address, or the Beta buffer is
too small for the number of requests and length
specified.

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3) and len is the length in words
of the Beta portion.

Figure 5-46. EXECUTE IQM REQUEST (f=#0030) Message Format (Sheet 1 of 3)

60459420 F 5-189

I

I

Word

Alpha(l)

Alpha(2)

Alpha(3)

Field

c

n

Description

Message options:

1 Remove an entry from the input queue.
2 Add an entry to the 1nput queue.

Number of input queue entries to remove (also number of Beta
entries; c=l only).

eea Error exit address; virtual bit address to receive control if an
error occurs during message processing (r~O). If this field is
0 when an error occurs, the task is aborted.

bl, ba If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length in words of
Beta and the virtual bit address of its first full word.

Message option:

c=l

0

Beta(1)

Word

Beta(l)

Remove an entry from the input queue and reorder the subpriorities of
the remaining entries as needed:

63

iqent

Field Description

iqent Job descriptor number of entry to be deleted (0 through 2047).

Message option:

c=2

0

Beta(1)

Beta(2)

Beta(3)

Beta(4)

Beta(5)

Beta(6)

Add an entry to the input queue. This option changes file ownership
from the caller to IQM. After the input queue entry is made, the job
is scheduled as appropriate:

63

jn
64

jcat
64

un
uprod--===:t 64

I

SS nt pr unused jdn
8 8 8 1 23 16

wslim lplim sl ti
16 12 4 32

account
64

Figure 5-46. EXECUTE IQM REQUEST (f=#0030) Message Format (Sheet 2 of 3)

5-190 60459420 H

Word Field

Beta(l) jn

Beta(2) jcat

Beta(3) un

Beta(4) SS

nt

pr

uprod

jdn

Beta(5) wslim

lplim

sl

tl

Beta(6) account

Description

Batch input file name (eight ASCII characters, blank-filled).
IQM will modify jn, if necessary, to cause the batch name for
this job to be unique on the system. The modified file name is
returned in this field. If the call fails, jn is not modified.

Job category (eight ASCII characters, blank-filled or O).

Binary user number of owner of the job.

Error response code:

0
1
2
3
4
5
6
7
8
9

15

No error.
Job category does not exist.
Maximum working set limit is exceeded.
Maximum large page limit is exceeded.
Invalid time limit.
Invalid priority.
User is locked out of specified job category.
Invalid user number.
Number of jobs per user exceeded.
No JDNs available to assign to input file.
Large page limit exceeded.

Number of tape drives required by the job.

Priority (1 through 15).

0 is not a production user. 1 is a production user.

Job descriptor number assigned to the job. Values for jdn are 1
through 2047.

Working set limit. If O, the job will be assigned a working set
limit equal to the maximum for the job category.

Large page limit.

Security level (1 through 8).

Time limit in system seconds.

Account identifier under which the job will run.

Figure 5-46. EXECUTE IQM REQUEST (f=#0030) Message Format (Sheet 3 of 3)

60459420 H 5-191

I

I

SEND MESSAGE TO JOB SESSION (f=#0033)

This message allows the user to send a message to a batch job's dayfile or to an interactive
user terminal. Only privileged tasks are allowed to use this system call. VSOS uses the
job descriptor number, the user number, and the job name supplied in the Beta to locate the
proper job session. If found, the message is queued up for delivery to the job session. If
the job session is not found or other errors are encountered, an error response is returned
in the Alpha.

The format of the SEND MESSAGE TO JOB SESSION is shown in figure 5-47.

0

Alpha (1) r

Alpha (2) unused

Alpha (3) bl

Beta (1) SS

Beta (2)

Beta (3)

Beta (4)

Beta (n)

Word Field

Alpha(1) r

len unused 0033
16 16 16

eea

16 48

ba

16 48

msglen jdn

16 16 32

usernum

64

job name

64

message 1

64

message n

64

Description

Response code; returned by the operating system when the message
has been processed. If no error occurs, the error code is O;
otherwise:

1 Length of Beta in character bytes is either 0 or
greater than 4120.

2 Caller is not a privileged task.
3 Job session is not active.
4 System error (ss code in Bet~ is error code returned

by system routine TOCON).

Figure 5-47. SEND MESSAGE TO JOB SESSION (f=#0033) Message Format (Sheet 1 of 2)

5-192 60459420 E

Word

Alpha(!)

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Beta(3)

Beta(4)
through
Beta(n)

Field

len

eea

bl, ba

SS

ms glen

jdn

usernum

jobname

message

Description

If len=#FFFF, Alpha(3) contains the length and virtual bit
address of the message; otherwise, Beta is assumed to begin at
Alpha(3), and len is the length of the Beta portion.

Virtual bit address to receive control if an error occurs during
message processing (if r is different from O). If this field is
zero when the error occurs, the error is considered fatal.

If the Alpha and Beta portions are not contiguous (len=#FFFF),
these parameters indicate the length and virtual bit address of
the first full word of the Beta portion. There is only one Beta
per Alpha.

Error return code (integer) for r=4.

1 Message length is greater than 4096 characters.
2 Bad function code in Beta.
3 Dayfile is full.
4 Dayfile is not implicit.
5 Invalid base virtual address for dayfile.
6 Unable to find dayfile.
7 Problem program blocked while waiting for dayfile.

8-13 Unused.
14 No terminal ID number for interactive user.
15 Either teletype has been logged out or this message

would overflow the MFline buffer.

Message length in characters (integer)

Job descriptor number (1 through 2047).

User number, in ASCII, left-justified, blank-filled.

Job name, in ASCII, left-justified, blank-filled.

Message text, in ASCII.

Figure 5-47. SEND MESSAGE TO JOB SESSION (f=#0033) Message Format (Sheet 2 of 2)

60459420 H 5-193

I

RETURN FROM INTERRUPT (f=#OOS 1)

For control to return to the calling routine, an interrupt routine must issue this message
when it has finished performing its tasks for either an input/output or program message
interrupt. The message consists of an Alpha portion only, which is shown in figure 5-48.

Because the interrupt routine (level 1) cannot be interrupted by any other software
interrupts, it will run until it issues a RETURN FROM INTERRUPT message. The current
interrupt is then released and its invisible package is lost. The level-0 invisible package
becomes current, and its register file image is restored by the operating system. All
information from the level-1 register file is lost.

An option in this message allows level 1 to become the new level 0 after all additional
interrupts stacked for this and any other level-1 routines have been processed. In this
case, the register file image for level 0 is lost at the time level 1 becomes level O. The
new level 0 can have its own level-1 interrupt routines.

When interrupts occur and the interrupt routine is already in control, the operating system
stacks the interrupt information in the interrupt address stack in the program's minus
page. When the interrupt routine issues a RETURN FROM INTERRUPT message, level 0 is not
restarted. Instead, the next interrupt on the stack is taken. This process is repeated
until the stack is empty.

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

0 63

r len unused 0051

16 16 16 16

n eea

16 48

I bl ba I
L ____ _j~ ~----------------~

Field

r

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs, the response
code is O; otherwise:

2
ff 214

Response code was issued by routine other than
interrupt routine.
Illegal Beta address (only for n=4).
Beta buffer length error (only for n=4).

len If this field is #FFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3), and len is the length in words
of the Beta portion (two words). Used only if n=4.

Figure 5-48. RETURN FROM INTERRUPT (f=t/0051) Message Format (Sheet 1 of 2)

5-1Y4 60459420 F

Word Field

Alpha(2) n

eea

Alpha(3) bl, ba

Message option:

For n=4 only:

0

Beta.(1) unused

Beta(2) dbl

Word Field

Beta(l) vba

Beta(2) dbl

Description

Message options. Release the current interrupt and take the
next interrupt in the stack, if one exists. When all interrupts
outstanding have been processed, or if no other interrupts
existed, do one of the following:

O Return control to the interrupted program at the point
of interruption.

1 Return control to the point following this particular
RETURN FROM INTERRUPT message; that is, make the
interrupt routine that issued this message the new
level-0 routine.

2 Return control to the interrupted program at the
address in register 4.

3 Abnormal termination control interrupt only. Abort at
the point of original interrupt. Normal user dumps
and trace-back information are produced for the
original fatal error.

4 Return control to the interrupted program at the
address in Beta(l) using data base information in
Beta(2).

Virtual bit address to receive control if an error occurs during
processing of this message (r#O). If this field is 0 when an
error occurs, the error is considered fatal.

If Beta and Alpha portions of the message are not contiguous
(len=#FFFF), these parameters indicate the length and virtual
bit address of the first full word of the Beta portion.

63

vba

16 48

dba

16 48

Description

Virtual bit address in the interrupted program to which control
is returned.

Length of data base to be reloaded.

dba Address of data base to be reloaded for return to interrupted
program.

Figure 5-48. RETURN FROM INTERRUPT (f=#UU51) Message Format (Sheet 2 of 2)

60459420 F 5-195

I

I

SHRUB ALTER OR RESTORE (f=#0053)

A user program can issue this message for altering or restoring the contents of the system
shared library file. The operating system keeps a record of alterations for each user
program. Alteration for shared library in one user program does not affect the other user
program. If a user program does not restore the shared library before it terminates, the
operating system automatically restores the shared library file when this user program
terminates.

The format of this message is shown in figure 5-49.

0

Alpha (1) r

Alpha (2) unused

Alpha (3) bl

0

Beta (1) SS

8

Beta (2)

Word Field

Alpha(!) r

len

c

63

Jen c 0053
16 16 16 16

eea

16 48

ba

16 48

63

unused vadd

8 48

value

64

Description

Response code; returned by the operating system when this
message has been processed. If no error occurs, the response is
O; otherwise:

1
11214

ss contains error code.
Beta buffer error; either the first word address of
Beta plus length is greater than the maximum user
virtual address or the length of the Beta buff er is
greater than 2.

If this field is llFFFF, Alpha(3) contains the length and virtual
bit address of the Beta portion of the message; otherwise, Beta
is assumed to begin at Alpha(3) and len is the length in words
of the Beta portion; len must be at least one word long.

Message option:

Place v~lue at vadd; if location is currently
altered, it will be altered again.

2 Restore original value at vadd.

Figure 5-49. SHRLIB ALTER OR RESTORE (f=ll0053) Message Format (Sheet 1 of 2)

5-196 60459420 F

Word

Alpha(2)

Alpha(3)

Beta(!)

Beta(2)

Field

eea

bl, ba

SS

Description

Virtual bit address to receive control if an error occurs during
processing of this message (r not equal to O). If this field is
0 when an error occurs, the error is considered fatal.

If the Beta and Alpha portions of the message are not contiguous
(len=#FFFF), the parameter indicates the length and virtual bit
address of the first full word of the Beta portion.

Return error code:

0 No error.
1 vadd is not in SHRLIB range.
2 There is no room in the SHRALT tabie for another

change to SHRLIB; C must equal 1. Each DB is allowed
a maximum of 20 changes with a total of 127 for all
DBs.

3 The page containing vadd is not in memory; the shared
library working set needs to be increased.

4 vadd is not on a word boundary.
5 Location being restored was never changed; C must

equal 2.
6 No value specified, len was 1; C must equal 1.
7 Illegal option; C must equal 1 or 2.

vadd Bit address on a word boundary of the location that is to be
altered/restored.

value For C=l, this is the 64-bit value to be placed at vadd.
For C=2, this is not used.

Figure 5-49. SHRLIB ALTER OR RESTORE (f=#OOS3) Message Format (Sheet 2 of 2)

60459420 F 5-197 •

TAPE FUNCTION (f=#F406)

The TAPE FUNCTION message is processed by the resident system. It is issued by user mode
programs to initiate tape I/O and positioning function. The tape file must be open. This
message does not read or position past a beginning-of-file or end-of-file label group. If a
positioning function causes the tape to be positioned backwards and the last operation was a
write, the system performs end-of-file processing. For V unlabeled tapes, it writes two
tape marks. For I, SI, LB labeled or unlabeled tapes and V labeled tapes, it writes one
tape mark and an EOFl label followed by two tape marks.

This message allows the user to continue processing or give up the CPU until I/O
completion. The resident give-up call (f=#FF02) is issued to check for I/O completion.

The maximum number of TAPE FUNCTION messages outstanding at any one time for a tape file is
defined by the installation parameter IP TPNOR. If a program issues one more TAPE FUNCTION
message for a tape file than IP_TPNOR, the caller is blocked until one of the caller's
previous TAPE FUNCTION messages completes.

The TAPE FUNCTION system message can be broken down into four different chapters. The first
chapter consists of user-supplied information: I/O connector number and function code. For
I/O function (sfnc < #10), the user must set the buffer address, buffer length, and the
length of the logical record unit array. The buffer cannot span more than 48 small or large
pages. Depending on the word offset (wo=O/l), the buffer address begins on any
half /full-word boundary. Each logical record uni~ begins on the next 32/64-bit boundary in
case the preceding LRU is not a multiple of 32/64 bits. For some of the positioning
functions, a skip count must be supplied.

For the read function, the buffer length must be at least large enough to hold the maximum
PRU size supplied at open time. The system will not start tape motion to read the next PRU
unless there is at least room in the buffer to hold mpru. Therefore, it is recommended that
the user add mpru to the read buffer length. For the read skip function, mpru is ignored;
however, the user can specify a maximum LRU that is to be returned. The buffer does not
have to be as long as mlru. If the system has returned at least one LRU to the buffer, the
system will not start tape motion to read the next LRU unless there is at least room in the
buffer to hold mlru. If mlru=O, it is considered infinite and mlru=O results in single LRUs.

The second chapter is filled in from system tables by the system. It consists of
information supplied by the user at request, label, or open time: maximum PRU size and
format parameters. It also contains the caller user number and job name.

The third chapter consists of information returned by the system at the competion of the
call or a tape I/O error. For I/O functions, the number of processed LRUs is returned.
some of the positioning functions, a skip count is returned. The updated tapes table,

I
including block IDs and PRU counts, is also returned at the completion of the request.
information can be saved.

For

This

The last chapter holds the LRU array. It is only used for I/O functions (sfnc < 1110). Each
entry holds the logical record size, tape, and record mark information. It is set by the
caller for a write and returned by the system for a read.

I The format of the TAPE FUNCTION message is shown in figure 5-50.

5-1Y8 60459420 F

0 63

Alpha(1) ctrl al reserved F406
16

Alpha(2) reserved
64

Alpha(3) len reserved
48

Beta(1) reserved al a~ - -
vhwa 43100 5

ioc - ------------- -
vfwa -~ 00;

Beta(2) bfln sfnc al raseNed al skc
32 16

Beta(3) mlru reserved
32 32

Beta(4) unuse~m levno al reserved
48

Beta(5) reserved
64

Beta(6) ioer 16I~I unused
231

rlru al rskc
16

Beta(7) tt1
64

Beta(18) tt12
64

Beta(19) reserved
64

Beta(20) reserved
64

Beta(21) reserved
64

Beta(22) lru(1)
64

7

Beta(n+22) lru(n)

64

Figure 5-50. TAPE FUNCTION (f=#F406) Message Format (Sheet 1 of 5) I
60459420 F 5-199

Word

Alpha(l)

Alpha(3)

Beta(l)

Field

ctrl

r

len

ioc

Control bits:

0 7

111 l 5

I IL reserved
L_rsm
---reserved

-----fre

Bit

Description

Description

fre Cleared when the call is complete. The caller must
set the fre bit.

rsm Set to 1 if the caller wants to be resumed
immediately. rsm=O if the caller wants to give up
until the I/O completes. For backward positioning
functions (#10 ~ sfnc ~ #lF), the system sets rsm=O.

Response code returned by VSOS when message processing is
complete:

0 No error.
1 Error occurred before the request was issued to the

tape subsystem.
2 Error occurred and request was issued to the tape

subsystem. The error number is returned in ioer.

Length of Beta, in words. For positioning functions (sfnc >
#10), the user should set len=21. For I/O functions (sfnc <
#10), the user should set len=21 plus the number of words in the
LRU array.

Input/output connector number of the tape, set by the caller.

vhwa Virtual half-word address of the buffer, set by the caller.
vhwa is used if wo=O.

vfwa Virtual full-word address of the buffer, set by the caller.
vfwa is used if wo=l.

Beta(2) bfln Overall buffer length in 8-bit bytes, set by the caller. bfln
must be a multiple of 4/8 bytes based on the word offset (wo=O
or wo=l). On completion, bfln is set to the number of bytes
left in the buffer.

I Figure 5-50. TAPE FUNCTION (f=#F406) Message Format (Sheet 2 of 5)

5-200 60459420 F

Word

Beta(2)

6045Y420 F

Field

sfnc

Description

System function, set by the caller:

1 Read data. The read data reads data from the tape
and places it into the user's buffer until the
requested amount of data has been read. The read is
stopped if the LRU array is full, the buffer does
not contain sufficient space to hold mpru, a fatal
error is encountered, or an end of group is
encountered. If a PRU exceeds mpru, a DEVICE
CAPACITY EXCEEDED I/O error is returned and the tape
is positioned after the PRU. The EOR flag is only
set in the last LRU entry if the read was stopped at
the end of an LRU.

2 Read skip. The read skip reads data from the tape
and places it into the user's buffer until the
requested amount of data has been read. If a PRU
exceeds mlru, only mlru bytes of data are returned
to the buffer, the excess data flag is set, and the
tape is positioned at the end of the LRU. The read
skip is stopped if the LRU array is full, a fatal
error is encountered, or an end of group is
encountered. The EOR flag is always set in each LRU
entry.

8 Write data. The write data writes data on tape from
the user's buffer until the request has been
completed. The write data is stopped if a fatal
error is encountered. If the LRU size is not a
multiple of the PKU size, an end of LRU is always
written at the end of the LRU. If the LRU size is a
multiple of the PRU size, an end of LRU is written
if the EOR flag is set in the LRU array.

#lU Skip backward PRUs. The skip backward PRUs
backspaces physical records until the count in SC is
completed or until end of LRU, end of group, or
beginning of information is encountered.

#11 Skip backward LRUs. The skip backward LRUs
backspaces LRUs until the count in SC is completed
or until an end of LRU with higher level, end of
group, or beginning of information is encountered.

#12 Skip backward groups. The skip backward groups
backspaces groups until the count of SC is completed
or until a beginning of information is encountered.

#13 Rewind to beginning of information. The rewind to
beginning of information rewinds the tape to the
beginning of information.

#14 Rewind volume. Rewinds the tape to the beginning of
volume. The operation is stopped if a beginning of
information is encountered on the current volume.

Figure 5-50. TAPE FUNCTION (f=#F406) Message Format (Sheet 3 of 5)

5-201
I

Word

Beta(2)

Beta(3)

Beta(4)

I
5-202

Field

sfnc

skc

mlru

gr pf

WO

levno

1120

Description

Skip forward PRUs. The skip forward PRUs forward
spaces physical records until the count in SC is
completed or until an end of LRU, end of group, or
end of information is encountered.

#21 Skip forward LRUs. The skip forward LRUs forward
spaces LRUs until the count in SC is completed or
until an end of LRU with a higher level, an end of
group, an end of file, or end of information is
encountered.

#22 Skip forward groups. The skip forward groups
forward spaces groups until the count in SC is
completed or until an end of information is
encountered •

#23 Skip forward to end of information. The skip
forward to end of information forward spaces the
tape to the end of information.

#30 Reset fatal error or group mark condition. After an
ioer is returned or the group mark flag is set in
the LRU array with grpf set in the call, the tape
subsystem will signal an error to all subsequent
calls for that unit with an ioer=31 until this
system function is issued. A subsequent close of
any backward positioning function also clears this
error.

Skip count. The number of PRUs, LRUs, or logical files for
sfnc. This field is ignored for all other options of sfnc.

Maximum LRU size, in 8-bit bytes. For read skip only, if an LRU
exceeds mlru, only mlru bytes of data are returned, the excess
flag is set, and the tape is positioned at the end of the LRU.

· If mlru=O, mlru is considered infinite. This field is set by
the system to mpru for all data functions except read skip.

Group mark flag. If grpf=O, the tape subsystem will stop
reading and terminate the message if a group mark is
encountered. All subsequent calls for that unit will be
returned with an ioer=#31. The user must issue sfnc=#30 to
reset this condition. A subsequent CLOSE or backward
positioning function on this unit will also clear this
condition. If grpf=l, the tape subsystem will stop reading and
terminate the call if a group mark is encountered. However, any
subsequent calls for that unit will be issued.

Word offset. If wo=O, the next LRU begins on a 32-bit boundary,
if the last did not end on one. If wo=l, the next LRU begins on
a 64-bit boundary, if the last did not end on one.

Level number for the skip backward/forward LRU functions. This
field applies only for I, SI, and LB tape formats (0 ~ levno ~
llE).

Figure 5-50. TAPE FUNCTION (f=#F406) Message Format (Sheet 4 of 5)

60459420 F

Word

Beta(6)

Beta(7)
through
Beta(18)

Beta 22
through
Beta(n+22)

Field

ioer

rs

Description

Error number returned by the system. For request type errors 1
through 100, control is returned to the caller. For tape I/O
errors 101 through 200, control is returned to the caller only
if user error processing was selected in the OPEN FILE message.
Refer to appendix B for a complete description of these errors.

Reel swap, returned by the system:

0 No reel swap.
1 Reel swap occurred.

rlru Number of words in the LRU array completed. This field is
returned by the system for I/O functions.

rskc Returned skip count. The number of PRUs, LRUs, or groups
skipped.

tt

lru

Tapes table entry, returned by the system. Refer to tapes table
in job management tables for a complete description.

Logical record unit array entry, set by the caller for a WRITE
function and returned by the system for a READ or READSKIP
function:

Bit

00-03
04-07

08-10
11

12

13

14

15

16-31
32-63

Description

Unused.
Level number. This field applies only for I, SI,
and LB tape formats (0 ~ lev ~ #E).
Reserved.
Excess data flag. This can occur only on a read
skip. It indicates that data was skipped.
Parity flag; set to 1 by the system when this LRU
has an error. This applies only for read
operations when no retry has been selected. The
data is returned.
End-of-LRU flag; set to 1 by the caller to write
an end of LRU. Returned by the system when an end
of LRU was detected for a read.
End-of-group flag; set to 1 by the caller to write
an end of group after this LRU. This is returned
by the system when an end of group was detected
for a read. This flag is set also if an end of
information is encountered without encountering an
end of group.
End-of-information flag; returned by the system
when an end of information was detected for a
read. This flag is ignored for a write.
Reserved.
LRU size, in 8-bit bytes. This field is set on a
write and returned on a read.

Figure 5-50. TAPE FUNCTION (f=#F406) Message Format (Sheet 5 of 5)

60459420 F 5-203

I

EXPLICIT f/O (f=#FSOO)

The EXPLICIT I/O message is processed by the resident system. It is issued by user mode
programs to initiate transfer of data to and from mass storage files to and from buffers
defined by the message.

This message allows the user to continue processing and give up the CPU until I/O
completion. The resident give-up call (f=#FF02) is issued to check for I/O completion.

The program's minus page contains an I/O connector for each file the user program has
opened; a file's I/O connector number is issued to designate the file on which input/output
is being performed. To perform explicit I/O on a file, the program must first open the file.

The Beta portion of the message contains the buffer definition. The user must set the
buffer address and the buff er length. The buffer cannot scan more than 24 small or large
pages. Therefore, to use the maximum buffer size, the buffer should be on a page boundary.

The Alpha and Beta words must be contiguous and not cross a page boundary. They should not
be modified until all input and output described by the call is completed. The free bit in
Alpha(!) has been defined to help the user determine when input/output is done; the user
sets the bit before the message is issued, and the operating system clears the bit when the
Alpha and Beta words are no longer in use. The resident give-up message (f=#FF02) can also
be used to check for I/O completion.

When the central operating system detects an error before a request is sent to the
peripheral operating system, the cerr field of the EXPLICIT I/O message is filled
appropriately, control passes to the error exit address, and message processing terminates.
A data transfer error detected by the peripheral operating system does not cause control to
pass to the error exit address; however, the serr field of the EXPLICIT I/O message is
filled appropriately.

The format of the Alpha portion of the EXPLICIT I/O message is shown in figure 5-51. The
formats of the Beta portion are shown in figure 5-52.

• 5-204 60459420 F

Alpha(1)

Alpha(2)

Alpha(3)

Word

Alpha(l)

Alpha(2)

Alpha(3)

60459420 F

ctr I r
8 8

01 00
8 8

#0015
16

Field

ctrl

r

ca

eea

reserved #F500
32 16

ca
48

eea
48

Description

Control bits:

Bit Name Description

0 free Cleared when the call is completed. The
caller must set the free bit.

2 rsm Set to 1 if the caller wants to be resumed
immediately. rsm=O if the caller wants to
give up until the I/O completes.

Response code returned by VSOS when the message is complete:

0 No error.
1 Error occurred before the request was issued to the

I/O device. The error number is returned in CERR.
2 Request was issued to the I/O device and an error

occurred. The error number is returned in SERR.

Address at which execution continues following successful
completion of the call. If O, execution continues at the
address following the call.

Error exit address: virtual bit address to receive control if
an error occurs during message processing (r#O). If this field
is 0 when an error occurs, the task is aborted.

Figure 5-51. EXPLICIT I/O (f=#F500) (Alpha) Message Format

5-205 •

Beta(1)
through
Beta (13)

Beta(14)

Beta(15)

Beta(16)

Beta(17)

Beta(18)

Beta(19)

Beta(20)

Beta(21)

Word

Beta(l)
through
Beta(l3)

Beta(l4)

Beta(l5)

Beta(l6)

Beta(l 7)

Beta(l8)

Field

f c

ioc

fadd

bl en

badd

• • •
fc

ioc

fadd

blen

badd

cerr

serr

pk no

Description

Used by the resident system to issue a C5lx call.

Function code:

1 Read data from a disk file to a buff er.
2 Write data from a buffer to a disk file.

Input/output connector number for the file on which input and
output are being performed.

Logical block address of the file where data transmission is to
begin.

Length of the virtual range, in blocks, to be associated with
this buffer. The maximum size is 24*n; n is the number of
blocks in a page, large or small. If the maximum length is
used, the buffer mus_t be on a page boundary.

Starting virtual block address of the buff er where data transfer
requests will deposit or obtain information.

Figure 5-52. EXPLICIT I/O (f=#F500) (Beta) Message Format (Sheet 1 of 2)

• 5-206 60459420 F

Word Field

Beta(19) cerr

Beta(20) serr

Beta(21) pk no

Description

Errors detected by the central operating system before the
request is sent to the I/O device. The values are:

1 Nonexistent I/O connector.
2 Buffer size is greater than 24 small pages, is O, or

is 24 pages and not on a page boundary.
3 This file is not open for explicit I/O.
4 Alpha/Beta crosses page boundary or is not

contiguous.
5 Illegal function code.
7 No buffer address was given.
8 File address is out of bounds.
9 Illegal attempt to access a file.

#B Buffer size is greater than 24 large pages, is O, or
is 24 pages and not on a page boundary for a large
page buffer.

#c Buff er lies on each large and small page.
#F Buffer is already in use; previous I/O, which uses

the same buffer, is not complete.
#10 Attempt to reuse Alpha before the previous call,

which uses the same Alpha address, is complete.
#12 Attempt to read or write in an unassigned virtual

space (buffer error).
#14 File is not at end of information in append mode.

Errors detected by the I/O device. Bits are numbered from left
to right, 0 to 23. They are:

0-17 No meaning.
18 No more disk space is available when extending the

file.
19 Reached end of file. Indicates that the buffer

extends past the end of the file.
20 Error encountered when extending the file.
21 Attempted to extend file beyond user's or pool's

file limit.
22 Fatal device error detected by I/O device.
23 Illegal message detected by I/O device.

Returned by operating system. Pack number of disk pack on which
fatal device error was detected (SERR bit 22 set).

Figure 5-52. EXPLICIT I/O (f=llF500) (Beta) Message Format (Sheet 2 of 2)

60459420 F 5-207 •

ADVISE (f=#FFOO)

The ADVISE message is used by a program to inform the operating system of an anticipated
change in the need for virtual space. The ADVISE message has two purposes:
either to provide execution and input/output overlap to reduce the number of page faults for
a job, or to release pages of memory no longer required by that job. The ADVISE message is
intended for use in improving job execution speed.

The ADVISE message indicates a virtual range (a range of virtual addresses). The ADVISE
message can be used in one of these ways:

• To page in a virtual range.

• To page out a virtual range.

• To replace one virtual range with another.

The ADVISE in function is initiated without blocking the job from execution. Pages required
to accommodate the ADVISE in request are obtained from the following categories in the
specified order:

• Pages freed as the result of an accompanying ADVISE out function.

• Unallocated pages.

• Unmodified pages outside the working sets of connected tasks.

• Unmodified pages belonging to disconnected tasks.

• Modified pages belonging to the requester but outside the requester's working set.

If insufficient memory is available to accommodate the ADVISE in function, as many pages as
possible are ADVISEd in and the user is informed that only a partial £unction was
performed. The maximum number of pages that are read into memory by PAGER for any single
ADVISE in function is 16 small pages or 1 large page. If the requestor exceeds the limit,
the maximum number of pages ADVISEd in will be the limit. The user is returned the highest

I virtual small page address plus one in the specified virtual range that is in memory after
the ADVISE in function is complete.

I

I

The user should be aware of the following points:

• Only a single Beta is allowed for an ADVISE in function in an ADVISE message.

•

•

If a requested page is already in memory, that page is ignored and the remaining
pages are ADVISEd in.

If a page fault occurs for an ADVISE in page prior to its arrival in memory, the
system blocks the job from further execution until the page fault is satisfied.

• If a job has a machine-size working set, an ADVISE in function is accomplished by
selecting the least recently used pages from within the job's working set as
replacement pages.

•

5-208

A virtual bit address that is not defined in any virtual map is considered to be a
definition of new free space. An appropriate entry is made in the drop file map,
and memory space is allocated.

6045Y420 F

The ADVISE out function is used to remove a virtual range from memory and is initiated
without the job being blocked from execution. All unlocked modified pages within the
specified virtual range are written to mass storage. The pages are then deleted from the
page table. The user should be aware of the following restrictions:

• Only a single Beta is allowed for an ADVISE out function in an ADVISE message.

• If a page within the specified virtual range is locked or not in memory, that page
is ignored and the remainder of the request is processed. If a locked page is
detected, the user is informed.

• If a write access occurs for a page being written to disk as the result of an ADVISE
out, the job is page blocked until the input/output is complete.

An ADVISE replace function is the combination of an ADVISE in function and an ADVISE out
function in a single ADVISE message. The function can replace in full, or in part, one
virtual range with another. The system first performs the ADVISE out function and then
initiates the ADVISE in function. At a minimum, the number of pages freed by the ADVISE out
function are then available for the ADVISE in function. If fewer pages are specified in the
ADVISE out function than in the ADVISE in function, additional pages are selected by the
system and paged out to provide sufficient pages to satisfy the ADVISE in function. The
additional pages can be obtained from the following categories in the specified order:

• Unallocated pages.

• Unmodified pages belonging to connected tasks but outside their working sets.

• Unmodified pages belonging to disconnected tasks.

• Modified pages .outside the requestor' s working set.

It should be observed that two Betas are specified for the ADVISE replace function: one for
the ADVISE out specification, and one for the ADVISE in specification, in any order.

The ADVISE message format shown in figure 5-53 is used when an ADVISE is issued directly to I
the system.

0 63

Alpha(1) ctr I
8

r
8

to
16

from
16

FFOO
16

Alpha(2) num
8

00 ca
48 8

len eea
16 48

Alpha(3)

11 I Beta(1) vba

Figure 5-53. ADVISE (f=#FFOO) Message Format (Sheet 1 of 3) I
60459420 F 5-209

Word

Alpha(l)

Alpha(2)

Alpha(3)

I

5-210

Field

ctrl

r

to

Description

Should be set to O. KERNEL will set this field to 0 on return
to the caller.

Response code returned by the operating system after the
specified ADVISE function has been processed. If no error is
detected and the full request is processed, r is set to O;
otherwise:

The sts field in the parameter set provides further
status.

2 Illegal option specified for this message. Multiple
ADVISE in or ADVISE out functions specified in a
single message.

3 Address vba is out of the virtual address range for a
user program.

4 Beta length error. Either the first word address of
Beta plus length is out of the virtual address range
for a user program or more than two parameter sets are
specified.

Should be set to O. KERNEL will set this field to 0 on return
to the caller.

from Should be set to O. KERNEL will set this field to 0 on return
to the caller.

num

ca

len

eea

Number of Betas for this call:

A single ADVISE in or a single ADVISE out message.
2 ADVISE replace message (that is, an ADVISE in message

and an ADVISE out message with the order being
immaterial).

Completion address for this call.

Number of full words for each parameter set. Should be set to 1.

Virtual bit address to receive control if an error is detected
during message processing (r~O).

Figure 5-53. ADVISE (f=#FFOO) Message Format (Sheet 2 of 3)

60459420 F

Word

Beta(l)

60459420 F

Field

sts

p~

pct

vba

Description

Status field, which is set to 0 unless r is set to 1. In this
case, the ADVISE function was incomplete and the code in this
field indicates the cause:

ADVISE function is not complete due to more pages
specified than a single ADVISE function can
accommodate. The system ADVISEd 16 small pages or a
single large page but did not satisfy the total
request. ADVISE in Beta returned to the requestor
contains the first small page address in the specified
virtual range not processed. ADVISE out virtual range
specification is unaltered. The status code 1 can be
combined with any other status. For example, a status
of 3 would indicate that more than 16 small pages or a
single large page was specified in addition to a
locked page within the specified virtual range being
encountered while doing an ADVISE out function.

2 Partial ADVISE out function performed due to pages
within the specified virtual range being locked.

4 Partial ADVISE in function performed due to
insufficient memory resources to accommodate the
request.

8 Page within specified ADVISE in range was found to be
already in core.

Function requested:

0 ADVISE in function requested.
1 ADVISE out function requested.

Page count, in blocks. PAGER determines what size page the
requested virtual range is mapped into. If the request is for
pages mapped into a large page, the entire large page is
ADVISEd. If the request is for more than 16 small pages, PAGER
will only ADVISE 16 pages and informs the requester of this fact.

Virtual bit address of the start of the virtual range specified
in the ADVISE function. vba is updated to the last page address
plus one processed by an ADVISE in function (unaltered by an
ADVISE out function).

Figure 5-53. ADVISE (f=#FFOO) Message Format (Sheet 3 of 3)

5-211

I

PROCESS SYSTEM PARAMETER (f=#FFOl)

The PROCESS SYSTEM PARAMETER system message can change or retrieve the value of one or more
of the following system parameters in the file descriptor block.

Parameter Description

C RFL Current working set size limit.

C MLP Maximum large page limit.

C RLP Current large page limit.

If the current large page limit is set less than the number of large pages currently
assigned to the task, large pages are purged until the limit is reached.

I The message format is shown in figure 5-54. The Alpha and Beta portions must be
contiguous. Multiple Betas can be specified.

I

Alpha(1)

Alpha(2)

Alpha(3)

Beta(1)

Word

Alpha(!)

Alpha(2)

0 ~

ctr I 8
num 8

0001

f c

Field

ctrl

r

r 8 to 161 from 161 FF01 16

00 8 ca 48

16 eea 48

16 opt al sts al val 32

Description

A value specified in this field is not used. KERNEL sets this
field to 0 on return to the caller.

Response code returned by VSOS when message processing is
complete:

0 No errors.
1 An error occurred (refer to the sts field in the

Beta(!)].
2 Illegal function code or option specified in Beta(!).
4 Beta buffer length error. Either the first word

address of Beta plus its length is greater than the
maximum virtual user address, or the Beta buffer is
too small for the number of requests and length
specified.

to A value specified in this field is not used. KERNEL sets this
field to 0 on return to the caller.

from A value specified in this field is not used. KERNEL sets this
field to 0 on return to the caller.

num Number of parameter sets (Beta portions) for this call.

Figure 5-54. PROCESS SYSTEM PARAMETER (f=#FFOl) Message Format (Sheet 1 of 2)

5-212 6045Y420 F

Word Field

Alpha(2) ca

Alpha(3) eea

Beta(l) f c

o~

sts

Description

Address at which execution continues following successful
completion of the call. If 0, execution continues at the
address following the call. If nonzero, execution continues at
the specified address.

Error exit address; virtual bit address to receive control if an
error occurs during message processing (r#O). If this field is
0 when an error occurs, the task is aborted.

Function code indicating the DB field value to be set or
returned:

1 Maximum large page limit.
2 Current large page limit.
3 Current working set size limit.

Message option:

0 Change the DB field value specified by fc to the value
in the val field.
Return the DB value specified by fc in the val field.

Beta status code:

0 No errors.
1 Requested current large page limit greater than

maximum large page limit.
2 Requested current working set limit greater than

maximum working set size limit.
3 Requested current working set limit too small to

accommodate job's current large page limit.
4 Illegal operation requested.

New system parameter value if opt=O; field in which value is
returned if opt=l.

Figure 5-54. PROCESS SYSTEM PARAMETER (f=#FFOl) Message Format (Sheet 2 of 2)

60459420 F 5-213

I

I

GIVE UP CPU ON OUTSTANDING RESIDENT 1/0 OR TIME (f=#FF02)

The GIVE UP call is issued by a user or th~ virtual system when the caller wants to suspend
execution waiting on completion of a resident I/O call. Control is not transferred to the
ca or eea of the I/O call. On completion of the I/O, control is returned to the ca address
of the GIVE UP call or to the next location after the GIVE UP exchange if ca is O. If a
time interval is specified and the call times out before I/O has completed, control is
returned to the eea in the GIVE UP call and the r field is set to 1. The GIVE UP call may
also be used when the caller wants to GIVE UP the CPU waiting on an elapsed time. At the
end of a GIVE UP, control will be returned to the ca address or the address following the
call.

The message (Alpha/Beta) must not cross a page boundary. The system returns an error if
this occurs.

' The message format is shown in figure 5-55.

0 63

I

Alpha{1) cntrl
8

Alpha{2) num
8

Alpha{3) len

Beta(1)

Beta{2)

Beta{3) 00

Word Field

Alpha(l) cntrl

r

to

from

r to from FF02
8 16 16 16

00 ca
8 48

eea
16 48

tc
64

dt
64

le
16 48

Description

Set to 0 or #80. KERNEL sets this field to 0 on return to the
caller.

Response code returned by VSOS when message processing is
complete:

0
1
2

Set to

Set to

o.

o.

No errors.
Call has timed out.
Parameter call error or message crossed a page
boundary.

Figure 5-55. GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR TIME (f=#FF02)
Message Format (Sheet 1 of 2)

5-214 6045Y420 F

Word

Alpha(2)

Alpha(3)

Beta(l)

Beta(2)

Beta(3)

Field

num

ca

!en

eea

tc

dt

le

Description

Number of parameter sets for this call is 1.

Completion address for this call. This will normally be O.

Number of words in Beta. This should be set to 3.

Virtual bit address to receive control if time out is detected
during message processing. If the address of the outstanding
resident call is not located, it is assumed to have completed
properly.

Time GIVE UP was issued, returned by the system.

Delay time in microseconds.
microseconds (0.1 second).
microseconds (1 minute).

Minimum value is 100,000
Maximum value is 59,999,999

For GIVE UP on I/O with dt=O, the caller is blocked until the
I/O call completes. When dt#O and the I/O call does not
complete in dt microseconds, control is returned to the eea with
r=l.

For GIVE UP on time with dt=O, control is immediately returned
with no error.

Virtual bit address of the resident I/O call if GIVE UP is for
I/O. If lc=O, then GIVE UP CPU for dt microseconds.

For a GIVE UP on time, the user may be disconnected from the
alternator. If both dt and le are 0, the call is ignored
without warning.

Figure 5-55. GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR TIME (f=#FF02)
Message Format (Sheet 2 of 2)

60459420 F 5-215

I

VIRTUAL SYSTEM DEBUG TOOL 6

The virtual system debug tool provides a breakpoint capability to track the execution of the
virtual portion of VSOS. This facility is designed as a tool for the systems programmer who
wishes to stop execution of the operating system at desired virtual system locations. This
debugging aid provides the systems programmer with the capability to temporarily stop
execution of the virtual system by setting execute breakpoints, and then to reset those
breakpoints and continue execution.

VSDT is built as part of the virtual system of VSOS. While the operating system is running,
a debug command can be entered into a reserved shared table (T VSD) by using the maintenance
control unit (MCU) write command. This table is periodically checked by the resident
portion of the operating system for commands. When a command is entered, control is passed
to VSDT for handling. If an attempt is made to set a breakpoint at a paged-out address,
that page will be paged-in by VSDT. All current breakpoint addresses can be found in the
T VSD table.

RESIDENT SYSTEM

The resident system periodically checks the contents of the VSDT input buffer word of the
T VSD table for a nonzero value. Upon detection of a nonzero value, control is passed to
VSDT which examines the input buffer word. If it contains COMMAND, the debug command buffer
is checked for a debug command. Any existing debug command--y;-then processed by VSDT.

If the input buffer word contains CONTINUE (normally entered after a breakpoint has been hit
and appropriate chapters of memory have been displayed), VSDT resumes execution of the
virtual system. The status word of the T VSD table (containing STOP) will be cleared. If
CONTINUE is entered without a breakpoint having been hit, the error message word in the
T VSD table will contain the message ILL COMM (illegal command) and control will return to
the resident system.

VIRTUAL SYSTEM

VSDT handles the setting and resetting of breakpoints, as well as the resumption of virtual
system execution. When control is passed from the resident system to VSDT, VSDT checks the
input buffer word in the T VSD table for either COMMAND, in which case it will process debug
commands, or, CONTINUE, for resumption of virtual system execution after a breakpoint has
been hit. ~~

If a breakpoint command has been entered, VSDT will put the breakpoint address into the
T VSD table; save the instruction at the breakpoint address; set up the breakpoint jump
instruction; and clear the word COMMAND from the input buffer word. If a command to reset
the breakpoint has been entered, VSDT will restore the original instruction at the
breakpoint address, as well as clear the breakpoint address in the T VSD table.

60459420 E 6-1

USER AND SYSTEM. INTERFACES
The MCU is used as the input device for the VSDT. Debug commands are entered in ASCII
format into the T VSD table by the MCU AS command. To stop the operating system after
system autoload, the user can enter a breakpoint command into the T VSD debug command
buffer. When the execution of the virtual-system is stopped, MCU memory commands are used
for system examination.

This discussion assumes that the user is familiar with the MCU and its commands. Refer to
the VSOS 2 Operator's Guide.

SHARED TABLE

An additional table (T VSD) appears in the shared table list. The main function of this
table is communication-between the user and the resident system. The structure of the T VSD
table is given in table 6-1.

Name

W VSDNAME

W VSDINPUT

W VSDBSTAT

W VSDBADD t

Table 6-1. Structure of the T VSD Table (Sheet 1 of 2)

Word

0

2

3

Description

Contains the name T VSD (left-justified with blank fill) identifying
the table.

System command input buffer. Cleared to zeros after command is
processed.

COMMAND. Process VSDT debug command which has been entered in the
T VSD debug command input buffer. The word COMMAND is left-justified
with blank fill.

CONTINUE. Continue execution of the virtual system after a
breakpoint has been hit. The word CONTINUE is left-justified with
blank fill.

Virtual system status word. Contains the word STOP*A or STOP*X
(left-justified with blank fill) when breakpoint is hit. STOP*A
indicates that an access breakpoint had occurred and STOP*X indicates
that an execute breakpoint had occurred. The status word is cleared
to zeros upon continuation of virtual system execution.

Contains the last breakpoint address (right-justified with zero fill)
hit by virtual system. For an execute breakpoint, it will be the
address of the instruction causing the breakpoint. For an access
breakpoint, it will be the address of the last executed instruction
which can be up to 35 instructions past the instruction causing the
breakpoint.

trhe upper 16 bits of W VSDBADD contain a value equal to the number of times the
breakpoint has been hit. When the value reaches the count specified by the n option, the
system will halt and the appropriate message will be placed in W_VSDBSTAT.

6-2 60459420 E

Name

W VSDERRMES

W VSDCl

W VSDC2

W VSDC3

W VSDC4

W VSDCS

W VSDC6

W VSDC7

W VSDABl t

W VSDAB2

W VSDAB3

W VSDAB4

W VSDABS

W VSDAB6

W VSDABA

W VSDREG

Table 6-1. Structure of the T VSD Table (Sheet 2 of 2)

Word Description

4

5

6

7

8

9

A

B

c

D

E

F

10

11

12

13

Error messages returned by VSDT, left-justified with blank fill.
Cleared to zeros when next command is entered.

Start of debug command buffer. Commands are entered in ASCII mode
(left-justified with blank fill). Cleared to zeros after a command
is processed. If an error has occurred, the buffer is not cleared to
zeros. The command can then be reentered in its entirety, or edited
in place. In either event, if any extraneous characters remain after
the corrected command has been placed in the command buffer, they
must be blanked out by use of the MCU AS command.

Continuation of debug command buffer.

Continuation of debug command buffer.

Continuation of debug command buffer.

Continuation of debug command buffer.

Continuation of debug command buffer.

End of debug command buffer.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of breakpoint which has been set in
the virtual system.

Bits 16-63 contain the address of the read/write access breakpoint.

Bits 16-63 contain the address of the virtual system register file.

tThe upper 16 bits of W VSDABl through W VSDAB6 and W VSDABA contain the value specified
by the n option, which-is the number of-times a breakpoint is to be executed before the
system is stopped.

60459420 E 6-3

COMMANDS
Since all debug breakpoint commands are entered by MCU memory alteration commands, systems
programmers are responsible for entering debug commands into the appropriate locations in
the T VSD table.

The commands supported by VSDT are shown in table 6-2.

Table 6-2. VSDT Command Summary

Command Description

BKPT t Set execute breakpoint. -
COMMAND Process virtual system debug commands. --
CONTINUE Continue execution from last user breakpoint. --
RBKP Remove all or selected breakpoints. --
PAGE IN - Bring page containing given virtual address into memory.

t Underscored letters indicate the short form of the command.

COMMAND FORMAT

The following conventions must be observed when entering the breakpoint commands:

• A blank must be used to separate the command and its first parameter.

• Brackets are used to indicate an optional parameter. Defaults are assumed for
omitted parameters and are defined in the command descriptions. Either no
parameters or any single parameter can be selected.

• Underscored letters of each command or keyword parameter indicate the minimum
character string used to specify the command or parameter. Any number of
characters, from the minimum string to the entire word, can be used. For example,
BK, BKP, and BKPT will all result in execution of the BKPT command.

• All address, count, and number parameters are specified in hexadecimal notation.

• Commands are entered into T VSD starting with the leftmost byte in the command
buffer.

• Blanks are not used between subsequent parameters (with the exception of the blank
used to separate the command and its first parameter). Commas are used to separate
all subsequent parameters.

The virtual address parameter for debug commands is assumed to have an off set bit address
COOOOOOOOOOO in hexadecimal notation; that is, COOOOOOOOOOO will be added to the value
entered by the systems programmer to derive the virtual system address.

6-4 60459420 E

DEBUG COMMANDS

Debug commands are entered into W_VSDCl through W_VSDC7.

Up to six execute breakpoints are allowed in the virtual system at any time. These are
software breakpoints and cause the virtual system to stop execution prior to executing the
instruction at the specified virtual address.

The user can specify the number of times a breakpoint is reached before execution of the
virtual system is stopped.

The format of the command to be entered at the MCU is:

AS,(address of T VSD + S),"command (excluding COMM/CONT) parameters"

AS , (address of T VSD + 1) , "command (COMM/ CONT)"

The command buffer and input word are cleared upon acceptance of the command.

VSDT commands for setting and resetting breakpoints are shown in table 6-3. The breakpoints
can be removed individually or all together.

Table 6-3. VSDT Commands for Setting and Resetting Breakpoints

Command Parameters Description

BKPT virtual address ('n) BKPT sets an execute breakpoint which causes the \ ;i
~

system to stop execution at the specified address. l; .0

six breakpoints can be set at one time. Deinult is n=l.

RBKP ALL RBKP allows the user to remove all breakpoints that have -- been virtual address set (ALL) or to remove a single
breakpoint set by virtual address. Default is ALL.

60459420 E 6-5

CONTROL COMMANDS

Control commands are entered into W VSDINPUT which allow the user to input debug commands
into VSDT, and continue execution after a breakpoint has been reached.

Table 6-4 shows the command for accessing paged-out addresses.

Debug commands are processed by VSDT by using the MCU command AS to write the word COMMAND
into W VSDINPUT following entry of the debug command into the command buffer. The debug
commands are entered initially into the T_VSD table or after a breakpoint has been hit.

The CONTINUE command allows execution to continue after a breakpoint has been reached.
Execution can be continued by using the MCU A command to write the word CONTINUE into
W VSDINPUT in the T VSD table. ----

The user can also obtain breakpoint status information. No specific command is needed.
Since breakpoint addresses are stored in the T VSD table, the MCU D addr command can be used
to check for breakpoints set.

Table 6-4. VSDT Command for Accessing Paged-Out Addresses

-~··.

Command Parameter Description

PAGE IN virtual address PAGEIN causes the virtual system to access the specified
virtual address causing, in some cases, a page fault.
This command is used to bring a page containing the
specified virtual address into memory.

ERROR MESSAGES

Error messages which are placed in W VSDERRMES of the T VSD table are shown in table 6-5.
The user can input the proper command in its entirety after diagnosing the error message or
edit it in place. W_VSDERRMES is cleared after the acceptance of subsequent commands.

Table 6-5. VSDT Error Messages

Error Message Description

ILL COMM Illegal command.

ILL PARM Illegal parameter.

ILL NUM Illegal number.

TAB FULL Breakpoint table is full.

ILL ADDR Illegal address specified in RBKP command.

NO ADDR No address has been specified in a breakpoint instruction.

6-6 60459420 E

ANALYZER 7

ANALYZER is a tool for extracting information from a system dump. It generates an output
file containing the following information, in the order listed:

• Time, date, version information, and system options.

• A listing of TABST, VTABST, the system tables map, and the system dayfile buffer.

• A hexadecimal dump with ASCII interpretation of resident tables and boat area.

• Hexadecimal dumps with ASCII interpretation of performance data area, test mode
buffers, and SPY buffers, if defined, and the last location of the resident
operating system.

• A hexadecimal dump with ASCII interpretation of shared tables.

• A listing of PAGER internal information, page table dumps, and the lock table. Four
listings of the page table are provided, sorted by:

Page table bit address
Physical page number
Virtual address and key
Key and virtual address

• A dump of the history table with entries listed in chronological order. Time is
reported as an installation option.

• A dump of the resident operating system dynamic stack.

• A dump of the virtual operating system minus page, register file, and dynamic stack.

• A dump of the user's minus page, second minus page, third minus page, and dynamic
stack, for any active user.

• A hexadecimal dump of any core areas specified with the CORE parameter.

• A hexadecimal dump with ASCII interpretation of virtual space for a given user as
specified via the VRANGE parameter.

• A hexadecimal dump with ASCII interpretation of the FILEI.

• A hexadecimal dump with ASCII interpretation of selected virtual tables as specified
via the VTABLE parameter.

Input for the ANALYZER is constructed by the following steps:

1. A dump file the size of memory is created.

2. With the system stopped and the resident operating registers saved, the WCMF MCU
command is used to dump memory to the existing file.

60459420 G 7-1 •

ANALYZER can be used to examine the file after the system has been recovered or autoloaded.

The format of the ANALYZER execute line is shown in figure 7-1. All parameters are optional
and order independent.

ANALYZER

INPUT=ifn

LIST=ofn

(INPUT=ifn,LIST=ofn,
CORE=ll,hl, ••• ,14,h4,
VRANGE=db,vbitaddl,nl, ••• ,vbitadd32,n32,
~~~{Li)v~ablel, ... ,vtable32, 

if n is the name of the input file containing a dump of 
memory. 

The default is INPUT=DUMPFILE. 

ofn is the name of the file to contain ANALYZER output. 

The default is LIST=OUTPUT. 

Any existing file with the same name as the output file is 
destroyed, and a new file with that name is created. 

~=ll,hl, ••• ,14,h4 Additional areas of memory can be dumped. As many as four 
li,hi pairs can be specified. Words li through hi are 
dumped as follows: 

VRANGE=db,vbitaddl,nl, . . . ' 
vbitadd32,n32 

li Low hexadecimal bit address of physical memory 
to be dumped. 

hi High hexadecimal bit address of physical memory 
to be dumped. 

Additional areas of virtual space to be dumped. As many as 
32 ranges of virtual space may be specified • 

db Specifies the DB number associated with the 
virtual space to be dumped. 

vbitaddl Specifies the virtual bit address of the first 
word of a range to be dumped. 

nl Specifies the number of words to be dumped. 

Figure 7-1. ANALYZER Execute Line Format (Sheet 1 of 2) 

• 7-2 60459420 G 



~LE=vtablel, ••• , 
vtable32 

Areas of the virtual operating system to be dumped. As many 
as 32 table names may be specified. 

vtablei Specifies the virtual system table by name 
to be dumped. 

It may be desirable to suppress certain portions of ANALYZER 
output. 

The default is LO=*· This condition generates all of the 
standard output. 

Specifying LO=S will suppress dumping of the user's registers 
and dynamic stack information. 

Specifying LO=V will cause only the information requested by 
the VRANGE and/or the VTABLE parameters to be dumped. The 
options *, S, and V are mutually exclusive. 

Figure 7-1. ANALYZER Execute Line Format (Sheet 2 of 2) 

60459420 G 7-3 • 





ACCOUNTING 8 

The accounting system is that part of the virtual system that gathers system resource usage 
statistics and records them at two locations: in a cumulative accounting buffer and in an 
active accounting file. The statistics recorded in the cumulative accounting buffer are a 
subset of those recorded in the active accounting file. Statistics recorded in the 
cumulative accounting buffer can be retrieved by a user or utility program only when the job 
for which the statistics are being gathered is running; statistics recorded in the active 
accounting file can be retrieved by an installation-defined user at any time after the file 
is no longer active. 

VSOS provides two units with which to measure resource usage, system time units and system 
billing units. As described later in this chapter, the system billing units (SBU) 
calculation uses a variable rate accounting factor and a service level index while the 
system time units (STU) calculation does not. 

The information recorded in the accounting file is designed to be accessed by an 
installation-defined accounting program. No VSOS utilities currently exist to use these 
statistics. 

CALCULATION OF STUs 

A system routine called TCHARGE calculates the number of STUs consumed by a task. To 
calculate the STUs consumed, it first multiplies each system resource usage quantity by the 
weighting factor for that resource and then adds the products. 

The system resources and their units of measure are list.ed in table 8-4. The weighting 
factors are specified by installation parameters. A weighting factor of 0 eliminates the 
corresponding system resource from the STU calculation. 

A system second is 1 million STUs. 

ST A TISTICS ACCUMULATION 
Having gained access to the operating system, a user can then execute tasks and jobs. 
Statistics are gathered on an event basis and are accumulated over each task or batch job in 
both the cumulative accounting buffer and the active accounting file. The buffer statistics 
are also provided as information to the user via the USER/ACCOUNTING COMMUNICATION (f=#OOOE) 
and MISCELLANEOUS (f=#0024) messages. 

60459420 E 8-1 



CUMULATIVE ACCOUNTING BUFFER 

The cumulative accounting buffer is provided so that resource usage statistics for a task or 
job are available during the time that the task or job is actually running. The buffer 
contains one 16-word entry for each active task (each descriptor block). The fields in each 
entry are updated as the tasks use up vari,ous system resources. When a job has finished, 
the entries for that job no longer exist in the cumulative accounting buffer; the entries 
exist only for the duration of the job. 

A user is given access to the statistics in the cumulative accounting buffer for his or her 
running tasks alone via the USER/ACCOUNTING COMMUNICATION message. The virtual system 
returns the current accumulation of all statistics in the buffer to a user that issues this 
message with the c field set to 3. Based on these statistics, it might be possible to 
modify user programs to reduce system resource usage and perhaps reduce charges. This 
reduction would be dependent on the installation-defined charge algorithm. 

In addition to individual task statistics, total job statistics for all controllee tasks of 
a batch job are available from the cumulative accounting buffer. These cumulative job 
totals are stored in the batch processor's entry in the buffer. By issuing the 
USER/ACCOUNTING COMMUNICATION message with c=3, the batch processor can access the total raw 
statistics for the duration of a batch job. These unfactored values can be used as input to 
an installation-provided routine that computes the charges for the job. Any of these 
charges, raw statistics, or factored charges might then be printed on the job's dayfile. 

8-2 60459420 E 



ACCOUNTING FILE 

The accounting file is a history file of the operating system resource usage, including tape 
and disk file usage, task and job execution times, terminal usage, and autoload and recovery 
events. Records are written into the file as resources are used. Accounting record types 
are listed in table 8-1. 

Table 8-1. Accounting Record Type and Subtype Codes 

Record Type Code 

Channel 
Subtype Disk Magnetic Network Usage Periodic Periodic 

Task Terminal File Tape System Job Usage Statistics System Job 
1 2 3 4 5 6 7 9 A B 

0 Begin Login Open Assignment Auto load Job start Input - Periodic Periodic 
task queue system job 

file 

1 End Logout Close Release Recovery Job end Output Configu- Periodic -
task queue ration system 

file 

2 Field - Create - New date Job Output Global - -
overflow entered change data channel 

file usage 
data 

3 Task notmsg/ Destroy - New time - Input - - -
inform- notwds entered data 
at ion field file 

overflow I 
4 Project - Extend - - - Teletype I - - -

inform- entry 
at ion 

5 - - Reduce - - - Purge - - -
file 

6 - - Change - - - Interac- - - -
user tive 
number session 

7 - - Change - - - - - - -
file 
name 

8 - - Change - - - - - - -
account 
number 

More than one accounting file can exist; all such files are unattached permanent files 
belonging to the system user number; however, only one file, named QSAF, can be active at 
any one time. If during system initialization no active accounting file QSAF exists, one is 
created at that time. A second file, QSAF2, is also created. When the current active 
accounting file becomes full, it is renamed, file QSAF2 becomes the active accounting file 
QSAF, and a new Q5AF2 is created. 

The naming convention used when renaming the *AF file is: Ayydddnn (yyddd is the Julian 
date and nn is a number ranging from 00 to 99). File names will be used in sequence if they 
do not already exist. The next file name in sequence after Ayyddd99 is AyydddOO. 

60459420 H 8-3 

I 



The processing sequence of accounting files is determined by information recorded in the 
accounting file headers. AyydddOO is normally the start of the sequence for a day and 
should be verified by checking that the accounting file header information for the previous 
file's name indicates the previous day's date. 

After 90 files are recorded for a given day, the system sends the operator a warning message 
indicating the accounting system is nearing the maximum number of accounting files. When 
100 files exist for a given day, the system sends another warning message to the operator, 
indicating that no new accounting files will be written. Recording of accounting 
information then stops. The warning message that the information is being lost continues to 
be issued periodically. 

The size of all accounting files is determined by the system parameter AFSIZE. 

The accounting file can be used as follows: 

8-4 

• For each task, the accounting system writes a begin task accounting record to the 
accounting file. A unique task number is assigned to each task and is placed in all 
accounting records associated with the task. Each accounting period, the system 
writes a new task field overflow record for the task or updates an existing one. 
When the task completes, the system writes an end task accounting record. 

• To accumulate raw statistics for the duration of a task, the installation's program 
must locate on the accounting file all task field overflow records for a unique task 
number or job name, extract the desired statistics, and sum them for each overflow 
record for the task. · 

• At the start of each batch job, the batch processor issues an option of the 
USER/ACCOUNTING COMMUNICATION message (f=#OOOE), and a job start accounting record 
is written to the accounting file. The header of this record contains the user 
number and job descriptor number (JDN) under which the batch processor is running. 
Any controllee of this batch processor runs under this user number and JDN. The 
task record headers for these controllee tasks contain these identifiers also. At 
the end of a batch job, the batch processor issues another option of the 
USER/ACCOUNTING COMMUNICATION message, and a job end accounting record is written to 
the accounting file. 

• 

• 

To accumulate raw statistics for the duration of a batch job, the installation's 
accounting program must locate the job start and job end records on the accounting 
file, and record the user number and JDN. A search can also be done using the job/ 
session name. Any task overflow records (between the job start and job end records) 
containing this user number and jdn are for tasks of this batch job. An additional 
task overflow record is generated for the batch processor clean-up (for example, 
close dayfile, change file ownership). This record may not be charged to the user 
job depending on the site's accounting program. Statistics can be extracted from 
each of these overflow records and summed to get the cumulative batch job 
statistics. These totals are equivalent to those extracted from the batch 
processor's entry in the cumulative accounting buffer. 

At the option of the user site, the task information record allows information to be 
entered into the accounting file (such as billing type, or queueing time). This 
information is entered via message 7 for USER/ACCOUNTING COMMUNICATION (f=#OOOE). 

60459420 E 



Active Accounting File Blocks 

Accounting records are accumulated in a 512-word memory buffer (this buffer is not the 
cumulative accounting buffer). The buffer is written to the accounting file when the buffer 
is full, or when an entry is made in the buffer after more than 5 minutes have elapsed since 
the previous buffer was written to the accounting file. The format of the buffer and, 
therefore, of the accounting file record blocks, is shown in table 8-2. 

Word 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9-lllFE 

Ill FF 

60459420 E 

Table 8-2. Active Accounting File Block Format 

Contents 

Master clock time and date information at the time that the first entry is 
written to the buffer. 

Microsecond central processor clock reading at the time that the first entry is 
written to the buffer. 

Reserved for system use. 

Master clock time and date information at the time that the last entry is 
written to the buffer. 

Microsecond central processor clock reading at the time that the last entry is 
written to the buffer. 

Cumulative system CPU overhead in microseconds. The sum of KERNEL, PAGER, and 
virtual system CPU times. 

Cumulative USER CPU time in microseconds. 

Cumulative WAIT time in microseconds. The CPU is available for user execution 
but all user tables are waiting for I/O completion. 

Cumulative IDLE time in microseconds. The CPU is available for user execution 
but no user tasks are waiting for the CPU. 

Filled sequentially with accounting records. Unused words contain binary O. 

This word is set to contain all hexadecimal 2's when the buffer is full. 

8-5 



I 

I 

The master clock entries in words 0 and 3 of an active accounting file block are eight 
decimal numbers indicating the year, month, day, hour, minute, second, millisecond, and an 
installation-defined machine designator. The entries are represented as 16 digits in 
hexadecimal form within one word, as shown in figure 8-1. For example, the date 
November 6, 1985, the time 9:10:20.623, and the machine designator 1 would appear as shown 
in figure 8-2. 

0 63 

hh I 
8 

Figure 8-1. Master Clock Format 

Figure 8-2. Master Clock Example 

Table 8-3 lists the information kept in the first block of *AF, including the name to which 
the name *AF is to be changed when the file becomes full, and the address of the block in 
which space is currently available. Accounting records are written sequentially into *AF 
beginning with the second block. The record type and length are indicated by the first word 
of each record, as shown in figure 8-3. 

8-6 60459420 F 



Table 8-3. Active Accounting File Format (First Block) 

Word Contents 

0 

2 

3 

4 

5 

6 

7 

8 

9-lFF 

0 

Ayydddnn, the name to be given to this file when it is deactivated. yyddd 
is the year and day number computed when the file is activated; nn is a 
sequence number, modulo 100. 

Name of the last accounting file, in the form Ayydddnn. At autoload, this 
field contains binary 0 if no *AF file exists at that time. 

Name of the next accounting file, Ayydddnn. 

Relative block address of the most recently created block in the file, where 
the header block is block O. 

Reserved for system use. 

Reserved for system use. 

Microsecond central processor clock value when this file is deactivated. 

ASCII date when this file is deactivated, in the form mm/dd/yy 
(month/day/year). 

ASCII time when this file is deactivated, in the form hh:mm:ss 
(hours:minutes:seconds). 

Unused. 

63 

I type al subtyp•a I l•ngth a I 
Field 

type 

subtype 

length 

Description 

Accounting record type: 

1 Task record. 
2 Terminal record. 
3 Disk file management record. 
4 Tape record. 
5 System record. 
6 Job record. 
7 Network usage record. 
9 Channel usage statistics record. 

#A Periodic system record. 
#B Periodic job record. 

Subtype code for the accounting record type indicated in the type field 
(refer to table 8-1). 

Total word length of this record. 

Figure 8-3. Accounting Record Format (First Word) 

60459420 H 8-7 

I 



Task Records 

Task accounting (type 1) records are written in the accounting file whenever a task is 
started or ended, or when task accounting information is available and no task field 
overflow record exists in the current accounting file block. A task record consists of a 
six-word header plus additional words, depending on the record subtype. The header format 
is shown in figure 8-4. 

When the subtype code is 0 (begin task), the additional record words are as shown in 
figure 8-5. When the subtype code is 1 (end task), only the record header is used. All 
task accounting information is accumulated in task field overflow records before an end task 
record is written. 

A task field overflow (subtype 2) record contains raw accounting statistics accumulated for 
the duration of a task. When the operating system calls the accounting system with task 
accounting information, the accounting system searches for a task field overflow record 
within the current 512 word buffer pertaining to th~ specified task. If such a record is 
found, its fields are updated with the new information. If no task field overflow record 
exists for the specified task, such a record is created and filled with the current 
information. The record words are shown in figure 8-6. 

Each task field overflow record field (except for the ferr and wssiz fields) is cumulative 
over the accounting periods for the task until potential overflow is detected. For 
cumulative values for an entire task, the appropriate field should be summed over all of the 
task's task field overflow records in the accounting file. The values for the ferr and 
wssiz fields for the entire task are in the last record for the task. 

8-8 60459420 E 



Word 

1 

2 

3 

2 

3 

4 

5 

6 

0 
01 8 

reserved 
8 

t Reserved. 

Field 

subtype 

length 

job lvl 

ctr le 

proj 

jdn 

jc 

charge 
number 

master 
clock 

ctr le ..::J.. ..c. proj 63 
subtype 8J length 8 

job J I i'J 
IVI 4 4 1 unused 151 jdn 12Jjc 4 

charge number 64 

master clock 64 

task number jce t os_lev unused 
16 7 8 24 

user number 
64 

job/session name 

Description 

Subtype code: 

0 Begin task. 
1 End task. 
2 Field overflow~ 
3 Task information. 
4 Project information. 

Total word length of this record. 

Job level (1 through 15). 

Controllee level (1 through 9). 

Project accounting flag. 

Job descriptor number. 

Job class: 

1 Standby. 
2 Batch. 
3 Interactive. 
4 High priority. 
5 System. 

Account identifier from login line or job statement; identifies 
account to which the task is being charged. 

Value of the master clock when this record was created. 

Figure 8-4. Task Record Header Format (Sheet 1 of 2) 

60459420 H 8-9 • 



I 

I 

Word Field 

4 task 
number 

jce 

os lev 

5 user 
number 

6 job/ 
session 
name 

0 7 8 

7 

Word Field 

6 poolname, 
ajdn 
busernum 

7 f name 

Description 

Number assigned when the begin task record is written. All subsequent 
accounting records pertaining to this task contain this number. (The 
accounting system assigns task numbers sequentially.) 

Job category entry number (0 through 65). 

Operating system version level. 

0 through 7, where 
0 2.0 or earlier. 
1 2.1, 2.1.5, or 2.1.6. 
2 2.2 or later. 
3-7 Undefined. 

Binary user number. 

Job or interactive session name associated with this task. 

Figure 8-4. Task Record 'Header Format (Sheet 2 of 2) 

19 20 63 

pool name 

busernum 
- - - - - - ...§.4~ 

44 

fname 
64 

Description 

Name of the pool in ASCII, if this file is a pool file member. 
Job description number of user which has private file attached. 
Binary user number of the task file owner, if this is a private or 
public file. 

Name of the task file in ASCII, left-justified with blank fill. 

Figure 8-5. Task Record Format, Subtype 0 

8-10 60459420 H 



0 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

19~·~ 

Word Field 

6 vs call 

ucpu 

7 f err 

ferr 

wssiz 

63 

vscall ucpu 
32 32 

syscpu 
16 48 

me mu 
16 48 

lpaccx 
32 

lpacci 
32 

spaccx spacci 
32 32 

spsecx spseci 
32 32 

lpflt spflt 
32 32 

tpwds tpacc 
32 32 

tpfn sli vri 
32 16 16 

sbu 

llpc 
64 

lspc 
64 

ws2sml ·32 unused 32 

ufsbu 
64 

chan(1) 32 chan(2) 32 

64 
chan(n-1) 32 chan(n) 32 

Description 

Number of virtual system user calls made. 

User execution CPU time, in microseconds. 

Error number of the fatal error condition, transferred from word 139 
of the user's minus page. This field is 0 if there is no error. 

Figure 8-6. Task Record Format, Subtype 2 (Sheet 1 of 2) 

60459420 E 8-11 



I 

I 

Word Field 

7 syscpu 

8 wssiz 

me mu 

9 lpaccx 

lpacci 

10 spaccx 

spacci 

11 spsecx 

spseci 

12 lpflt 

spflt 

13 tpwds 

tpacc 

14 tpfn 

sli 

vri 

15 sbu 

16 llpc 

17 ls pc 

18 ws2sml 

lY uf sbu 

20 chan(i) 

Description 

Virtual CPU time, in microseconds, for user program execution. 

Average working set size, in small pages. 

Memory usage [at the end of each accounting period, (current working 
set size)]*[user CPU time for current accounting period is computed.] 

Number of disk accesses (I/O requests issued) for large page explicit 
reads and writes. 

Number of disk accesses (output requests issued) for large page 
implicit writes. 

Number of disk accesses (I/O requests issued) for small page explicit 
reads and writes. 

Number of disk accesses (output requests issued) for small page 
implicit writes. 

Number of disk sectors transferred for explicit reads and writes. 

Number of disk sectors transferred for implicit writes. 

Number of disk accesses (input requests issued) that resulted from 
large page faults (large page implicit reads). 

Number of disk accesses (input requests issued) that resulted from 
small page faults (small page implicit reads). 

Number of 16-bit bytes transferred to or from tape files. 

Number of tape accesses (I/O requests issued) for reads and writes. 

Number of nonread and nonwrite tape functions, such as read hardware 
status. 

Service level multiplying index used for variable rate accounting. 

Variable rate index used for variable rate accounting. 

Floating point summation of task's system billing units (summation of 
MVAL's returned from MCHARGE), or floating point summation of task's 
system time units (summation of TVALs returned from TCHARGE). 

Number of large pages lost to other tasks. 

Number of small pages lost to other tasks. 

CPU time, in microseconds, that the task's working set size appeared 
to be too small. 

Number of nonfactored standard billing units or system time units. 

Task channel usage for channel i. 

Figure 8-6. Task Record Format, Subtype 2 (Sheet 2 of 2) 

8-12 60459420 F 



The number of disk sectors transferred for large page implicit reads can be readily computed 
from the value of the lpflt field. 

A task information field (subtype 3) allows a task, privileged or nonprivileged, to send 
records to the account file that contains billing information. 

A project information record (subtype 4) allows a project number to be written to the 
account file. There are three formats for the project information record. The first format 
is for an interactive job (figure 8-7). The other two formats are for batch jobs. The 
first of the two batch formats occurs when the CHARGE statement is the first CHARGE executed 
in the job stream. The SBU/STU amount accumulated since the beginning of the job is put in 
word 10. If the CHARGE statement is the first executable statement in the job stream, the 
SBU/STU amount will be zero (figure 8-8). The second of the two batch formats occur~ when 
the CHARGE statement is the second through the last CHARGE statement executed in the job 
stream (figure 8-9). 

Word 

7-9 

0 

7 

8 

9 

Field 

project 
number 

63 

project number 

64 

project number 

64 

project number unused 

32 32 

Description 

1-to 20-character project number, in ASCII, left-justified with blank 
fill. 

Figure 8-7. Task Record Format, Subtype 4 Interactive Job 

0 ~ 

Word 

7-9 

10 

7 

8 

9 

10 

11 

Field 

project 
number 

sbu/stu 

60459420 E 

project number 

64 

project number 

64 

project number unused 

32 32 

sbu/stu 
64 

old account 

64 

Description 

1-to 20-character project number, in ASCII, left-justified with blank 
fill. 

SBU/STU amount accumulated since the beginning of the job. This field 
is set to zero if the CHARGE statement is the first executable 
statement. 

Figure 8-8. Task Record Format, Subtype 4 Batch Job 
With First CHARGE Statement (Sheet 1 of 2) 

8-13 



Word ---
11 

Word 

7-9 

10 

11 

12-14 

8-14 

Field 

old 
account 

0 

7 

8 

9 

10 

11 

12 

13 

14 

Field 

new 
project 
number 

sbu/stu 

old 
account 
number 

old 
project 
number 

Description 

1-to 8-character old account identifier, left-justified with blank 
fill. 

Figure 8-8. Task Record Format, Subtype 4 Batch Job 
With First CHARGE Statement (Sheet 2 of 2) 

new project number 

new project number 

new project number unused 

32 

sbu/stu 

old account number 

old project number 

old project number 

old project number unused 

32 

Description 

63 

64 

64 

32 

64 

64 

64 

64 

32 

1-to 20-character new project number, in ASCII, left-justified with 
blank fill. 

SBU/STU amount generated by the old project number/old account 
combination (real). 

1-to 8-character old account identifier, left-justified with blank 
fill. 

1-to 20-character old project number in ASCII, left-justified with 
blank fill. 

Figure 8-9. Task Record Format, Subtype 4 Batch Job 
With Second Through Last CHARGE Statement 

60459420 E 



Terminal Records 

Terminal accounting (type 2) records are entered into the accounting file whenever a user 
logs on or off a terminal, or when the notmsg or notwds fields in the user table are about 
to overflow. A terminal record consists of a six-word header plus one additional word. The 
format of the header is the same as for the task record header, except that the type field 
is 2, the subtype field can be 0 (login), 1 (logout), or 3 (notmsg or notwds field 
overflow), and the controllee level, jdn, job category, job descriptor number, and task I 
number fields are unused. 

When the subtype code in the record header is O (login), the sixth word in the record is as 
shown in figure 8-10. 

When the subtype codes are 1 (logout) and 3 (notmsg/notwds field overflow), the sixth word 
in the record is as shown in figure 8-11. 

6 

Word 

6 

6 

Word 

6 

0 

I 
Field 

tterm 

tern um 

binary 0 tterm I 
8 

Description 

Reserved for operating system use. 

Reserved for operating system use. 

tern um 

Figure 8-10. Terminal Record Format, Subtype 0 

63 

0 63 

notmsg 

8 

Field 

notmsg 

notwds 

ttime 

tterm 

tern um 

notwds ttime tterm tern um 

12 20 8 16 

Description 

Number of messages to or from the terminal since login or since a 
previous overflow record. 

Number of words transferred to or from the terminal since login or 
since a previous overflow record. 

Time the terminal has been in use, in seconds, since login or since a 
previous overflow record. 

Reserved for operating system use. 

Reserved for operating system use. 

Figure 8-11. Terminal Record Format, Subtypes 1 and 3 

60459420 F 8-15 



Disk File Management Records 

Disk file accounting (type 3) records are issued whenever there is nondata transfer activity 
for a file. Disk file records consist of a six-word header plus additional words, depending 
on the record subtype. The format of the header is the same as for the task record header 
(figure 8-4), except that the type field is 3, and the subtype field can be 0 (open), 
1 (close), 2 (create), 3 (destroy), 4 (extend), 5 (reduce), 6 (change user number), 
7 (change file name), or 8 (change account number). 

The format of the additional words (words 6 and 7) when the subtype codes are 0 (open), 
1 (close), and 2 (create) is the same as the format of a task record of subtype 0 
(figure 8-5), except that the file named can be a data file as well as a code (executable) 
file. 

Three additional words are required (words 6, 7, and 8) when the subtype codes are 
3 (destroy), 4 (extend), and 5 (reduce). The first two words are the same as words 6 and 7 
for subtypes O, 1, and 2. The third word consists of two 32-bit fields. The leftmost field 
gives the number of 512-word blocks in the file at the time that the destroy, extend, or 
reduce record is written. The rightmost field gives the number of seconds that this file 
existed under the user number, file name, account number, and size specified. 

The format of the additional words when the subtype codes are 6 (change user number), 
7 (change file name), and 8 (change file account number), is the same as words 6, 7, and 8 
for subtypes 3, 4, and 5. Word 9 contains the new binary user number for subtype 6, the new 
file name for subtype 7, and the new account number for subtype 8. 

8-16 60459420 E 



Tape Records 

Tape accounting (type 4) records are entered into the accounting file whenever a tape is 
assigned to, or released from, a task. Tape records consist of a six-word header, plus 
additional words depending on the record subtype. The format of the header is the same as 
for the task record header (figure 8-4), except that the type field is 4, and the subtype 
field can be 0 (assignment), or 1 (release). 

When the subtype code is 0 (assignment records), the record word is shown in figure 8-12. 
When the subtype code is 1 (release records), the record words are shown in figure 8-13. 

0 63 

6 I device vsn 

Word Field Description 

6 device Device number of the tape unit. 

vsn Volume serial number. 

Figure 8-12. Tape Record Format, Subtype 0 

0 63 

device vsn 
16 48 

7 wre rre stce dtce 
16 16 16 16 

8 time 
64 

Word Field Description 

6 device Device number of the tape unit. 

vsn Volume serial number. 

7 wre Total accumulation of write recoverable errors. 

rre Total accumulation of read recoverable errors. 

stce Total accumulation of single-track, hardware-corrected errors. 

dtce Total accumulation of double-track, hardware-corrected errors. 

8 time Tape hook-up time, in seconds. 

Figure 8-13. Tape Record Format, Subtype 1 

60459420 E 8-17 



System Records 

System accounting (type 5) records are entered into the accounting file when the system is 
autoloaded or recovered, or when new date or time information is entered. A system record 
consists of a six-word header, plus additional words depending on the record 
subtype. The header consists of: 

• The first is as shown in figure 8-3, where the rightmost 40 bits are unused, and the 
subtype codes are 0 (autoload), 1 (recovery), 2 (new date entered), and 3 (new time 
entered). 

• The second word is unused. 

• The third word is the value of the master clock at the time this record was created. 

• The fourth, fifth, and sixth words are unused. 

When the subtype code is 0 (autoload records), four additional words are used: 

• The seventh word contains the current date, eight ASCII characters in the format 
mm/dd/yy, where mm, dd, and yy are decimal numbers signifying the month, day, and 
year. 

• The eighth word contains the current time, eight ASCII characters in the format 
hh:mm:ss, where hh, mm, and ss are decimal numbers signifying the hour, minute, and 
second. 

• The ninth word contains the current central processor clock time in microseconds. 

• The tenth word contains the number of small pages currently available for subtypes 
1, 2, or 3, and is unused for subtype O. 

Job Records 

Job accounting (type 6) records are entered into the accounting file for the start and end 
of jobs. Job records consist of a six-word header plus two additional words for subtype O, 
and two to six additional words for subtype 1 and 2. The format of the header is the same 
as for the task record header (figure 8-4), except that the type field is 6, and the subtype 
field can be 0 (job start), 1 (job end), or 2 (change job). 

8-18 60459420 H 



The format of the job records is shown in figures 8-14, 8-15, and 8-15.1. The last word for I 
subtype 0 (job start) will be zeroes for any jobs not generated by BATCHPRO. If there is no 
project number active for the job, the last four words of the subtype 1 (job end) record 
will not be present. 

Word 

7 

8 

0 

7 

8 do~ 

Field 

job name 

dorg 

63 

64 

16 48 

Description 

Job or interactive session name associated with this job (in ASCII, 
left-justified with blank fill). 

Date when the job entered the input queue. Format is yyddd: 

yy 
ddd 

The last two digits of the year (left 7 bits). 
The number of days since the beginning of the year (right 9 
bits). 

torg Time when the job entered the input queue. Format is an integer 
representing system clock, in seconds, since midnight. 

Figure 8-14. Job Record Format, Subtype 0 

60459420 H 8-19 

I 



Word 

7 

8 

9-11 

12 

Word 

7 

8 

0 

7 

8 

9 

10 

11 

12 

Field 

job name 

job sbu/ 
stu 

project 
number 

project 
sbu/stu 

63 

job name 

64 

job sbu/stu 

64 

project number 

64 

project number 

64 

project number unused 

32 32 

project sbu/stu 

64 

Description 

Job or interactive session name associated with this job (in ASCII, 
left-justified with blank fill). 

SBU/STU amount accumulated for the total job. 

1- to 20-character project number active for this job, left-justified 
with blank fill. These three words will not be present if a project 
number is not active for this job. 

SBU/STU amount accumulated for the listed project number. This word 
word will not be present if a project number is not active for this 
job. 

Figure 8-15. Job Record Format, Subtype 1 

0 ~ 

7 newjdn 
64 

8 jobname 
64 

Field Description 

newjdn The changed new value of jdn for the job. 

jobname Job name (ASCII, left-justified). 

Figure 8-15.1. Job Record Format, Subtype 2 

8-20 60459420 H 



Network Usage Records 

Network usage (type 7) records are recorded in the system accounting file whenever RHF 
receives or sends a file. The format is shown in figure 8-16. 

0 

0 07 

2 

3 

4 

5 

6 

7 

8 

Word Field 

0 subtype 

length 

dd 

nbs 

60459420 F 

8 
subtype length dd unused 

8 8 16 

account number 

master clock 

st nblks 
24 24 

user number 

job/session name 

nchars netblks 
36 

file name 

unused cpu 
32 

Description 

File: 

0 Input queue file. 
1 Output queue file. 
2 Output data file. 
3 Input data file. 
4 Purge file. 

Number of words in the record. 

Data declaration type: 

C6 File character set < 64. 

63 

nbs 
20 4 

64 

64 

unused 
16 

64 

64 

fiic 
24 4 

64 

32 

C8 ASCII file and ASCII separators (file character set> 64). 
US Structured binary. 
UU Unstructured binary. 

Network block size indicator: 

0 Null transfer. 
1 2880 bytes. 
2 3840 bytes. 
3 4064 bytes. 

Figure 8-16. Network Usage Record Format (Sheet 1 of 2) 

8-20.1/8-20 .2 I 





Word 

2 

3 

4 

5 

6 

7 

8 

Field 

account 
number 

master 
clock 

st 

nblks 

user 
number 

job/ 
session 
name 

nchars 

net bl ks 

fiic 

file name 

cpu 

Description 

Account to be charged. For input files, the account is from the job; 
for output files, the account from the file. 

Value of the master clock at the time the record was created. 

Logical ID which identifies the CYBER front-end. 

Number of 512-word blocks transferred to and from disk. 

Binary user number. 

Job or interactive session name associated with this task. 

Number of characters transferred on the network. 

Number of network blocks transferred (number of C700/C701/C702 
messages). 

Internal format, subtype=l: 

0 ASCII carriage control. 
1 ANSI carriage control. 

Name of file on the CYBER 200 (name of job if QTFS). 

CPU time, in microseconds. 

Figure 8-16. Network Usage Record Format (Sheet 2 of 2) 

60459420 E 8-21 



Channel Usage Statistics Records 

Configuration (type 9, subtype 1) records are written to the account file at system 
initialization time and whenever a new account file is started. The format is shown in 
figure 8-17. 

Global channel usage data (type 9, subtype 2) records are recorded at a periodic rate which 
is set at system autoload time. The format is shown in figure 8-18. 

IOLOG turns on and off the writing of these statistics to the accounting file. LOGINT sets 
the time interval of collection. Refer to the VSOS 2 Operator's Guide for more information 
about these parameters. 

0 63 

0 09 01 length reef unused nzips 
8 8 8 4 28 8 

master clock 
64 

devid pu ch an port reserved pzip szip pin ad sinad 
12 4 3 5 8 8 8 8 8 I 2 

3 

I 4 

5, 

• 
• 

I 6 

7 

Word 

0 

1 

ponad 
8 

devid 

ponad 

8 

devid 

ponad 
8 

Field 

length 

reef 

nzips 

master 
clock 

sonad status bits type unused reserved 
8 16 8 8 16 

pu ch an port reserved pzip szip pin ad sinad 
12 4 3 5 8 8 8 8 8 

son ad status bits type unused reserved 
8 16 8 8 16 

• 
• 

pu ch an port reserved pzip szip pinad sinad 
12 4 3 5 8 8 8 8 8 

son ad status bits type unused reserved 
8 16 8 8 16 

Description 

Total word length of this record. 

Multiple record flag. If this field is set to 1, a continuation 
record follows. 

Number of zip codes. 

Value of the master clock at the time the record was created. 

Figure 8-17. Channel Usage Statistics Record Format, Subtype 1 
(Sheet 1 of 3) 

8-22 60459420 F 



Word 

2, 4, 
6 

3, 5, 
7 

Field 

devid 

pu 

chan 

port 

channel 

pzip 

szip 

pinad 

sinad 

ponad 

sonad 

status 
bits 

Description 

Unique three-digit device number (hexadecimal): 

))isk. 
Tape. 
RHF. 

001-llOFF 
11100-lllFF 
ll300-ll3FF 

11500 Maintenance control unit (MCU). 

Physical unit number. This field is used for disk only. 

Channel number: 

0 If no SCEX. 
1-4 If on SCEX. 

Port number for pzip (1 to #lU). 

Channel number. 

Primary zip code for this device. 

Secondary zip code for this device. 

Primary inboard (C200) network access device (NAD) number. 

Secondary inboard (C200) NAD number. 

Primary outboard (device) NAD number. 

Secondary outboard (device) NAU number. 

Bits from SCTFILE describing the device status such as up/down or 
on/off. This field is used by disk and tape only. 

Disk status bits: 

Hit Description 

16-19 Type installed on disk drive: 

0 System pack. 
1 Private pack. 
2 System/drop pack. 
3 Private/drop pack. 

20 Indicate whether disk drive is up or down (specified by 
the operator) for use by the system: 

0 Disk drive is down. 
1 Disk drive is up. 

21 Indicates whether or not disk contains a track fault 
map: 

0 Disk does not have a track fault map. 
1 Disk has a track fault map. 

Figure 8-17. Channel Usage Statistics Record Format, Subtype 1 
(Sheet 2 of 3) 

60459420 F 8-23 

I 



Word 

3' 5' 
7 

Field 

status 
bits 

type 

Description 

Tape status bits: 

Bit Description 

16 Primary NAD down bit. 
17 Backup NAD down bit. 
18 TAD! down bit. 
19 
22 
28 
2Y 
30 
31 

TAD2 down bit. 
Single-access bit; set to 1 if TAD2 does not exist. 
Unit assigned to the user. 
Unit is read only. 
Status down bit. 
Use off bit. 

Bits 16 through lY are normally set to O, unless the respective TAD 
NAD is configured through the USE,NUM,NO command. If all TCD or TAD 
NADs are down, the unit should be down and off. 

NAD type: 

1 MCU interface NAD (MID). 
2 Disk 1/0 channel NAD (DCD). 
3 Tape 1/0 channel NAD (TCD). 
4 RHF I/O channel NAD (RCD). 
8 Disk controller NAD (DAD). 
9 Tape controller NAD (TAD). 
A RHF remote system NAD (SHD). 

H-F Reserved. 

Figure 8-17. Channel Usage Statistics Record Format, Subtype 1 
(Sheet 3 of 3) 

8-24 6045Y420 E 



0 63 

0 09 02 length reef reserved 
8 8 8 4 36 

master clock 
64 

2 number of boats 
64 

' 

• 
• 
• 

2n number of boats 
64 

un-
devid used sumio 3 

12 4 48 

4 read/write requests data units transferred 
32 32 

5 function requests data patterns 
32 32 

un-
6 devid used sumio 

12 4 48 

7 read/write requests data units transferred 
32 32 

8 function requests data patterns 
32 32 

• • • 
un-

9 devid used sumio 
12 4 48 

10 read/write requests data units transferred 
32 32 

11 function requests data patterns 
32 32 

• • • 

Figure 8-18. Channel Usage Statistics Record Format, Subtype 2 (Sheet 1 of 2) 

60459420 F 8-25 • 



Word 

0 

1 

2-2n 

3, 6, 
9 

4, 7, 
10 

5, 8, 
11 

Field 

length 

reef 

master 
clock 

number of 
boats 

devid 

Description 

Variable length is dependent on the number of devid entries containing 
data. 

Multiple record flag. If this field is set to 1, a continuation 
record follows. 

Value of the master clock at the time the record was created. 

Number of boats on the corresponding positional zip code. 

Unique three-digit device number (hexadecimal): 

11001-llOFF 
II I 00-11 I FF 
ll300-ll3FF 
11500 

Disk. 
Tape. 
RHF. 
MCU. 

sumio Summation of I/O requests to completion times, in microseconds, for 
this device. 

read/write Number of read/write requests on this device. 
requests 

data units Number of data units transferred for this device unit. 
transferred 

32 768 bits for 819 disk. 
32 bits for tape. 
32 bits for RHF. 
16 bits for MCU. 

function Number of nonread/nonwrite requests for this device. 
requests 

data Number of data pattern written (819 disk only). 
patterns 

Figure 8-18. Channel Usage Statistics Record Format, Subtype 2 (Sheet 2 of 2) 

8-26 60459420 E 



Periodic System Records 

Periodic system (type A) records are recorded at a periodic rate that is set at system 
autoload time. This is done at the same periodic rate as that of channel usage records. 

The time and counters in the periodic system record are accumulative since the last 
autoload. The format is shown in figure 8-lY. 

0 

2 

3 

4 

5 

6 

7 

8 

9 

A 

Word Field 

1 len 

2 hhmmss 

3 kernel 

4 pager 

A 
8 

63 

0 len unused 
8 8 40 

hhmmss 
64 

kernel 
64 

pager 
64 

vscpu 
64 

user 
64 

wait 
64 

idle 
64 

uspf ulpf 
32 32 

sspf slpf 
32 32 

Description 

Length of the periodic system record (which is a minimum of 10, plus 
the number of disk drives divided by two, plus the number of tapes 
that are currently configured). 

Value of the master clock at the time the record was created. 

KERNEL time, in microseconds. 

PAGER time, in microsecond.s. 

Figure 8-19. Periodic System Record Format (Sheet 1 of 2) 

6045Y420 F 8-27 



Word 

5 

6 

7 

8 

9 

A 

• 8-28 

Field 

vscpu 

user 

wait 

idle 

us pf 

ulpf 

sspf 

slpf 

Description 

Virtual system time, in microseconds. 

User time, in microseconds. 

I/O wait time, in microseconds. 

Idle time, in microseconds. 

User small page faults. 

User large page faults. 

System small page faults. 

System large page faults. 

Figure 8-19. Periodic System Record Format (Sheet 2 of 2) 

60459420 F 



Periodic Job Records 

Periodic job (type B) records are recorded at a periodic rate which is set at system 
autoload time. This is done at the same periodic rate as that of channel usage records. 
This record is not written to the accounting file if there are no jobs currently in the 
system. The format is shown in figure 8-20. 

0 

B 
8 

2 

3 

4 cbc 

5 

Word Field 

len 

no page 

maxws 

2 jobname 

3 tcpu 

mws 

mlp 

4 cbc 

cws 

clp 

task 

5 ws2sm 

level 

userno 

63 

0 len unused no page maxws 

8 8 8 16 16 

jobname 
64 

tcpu mws mlp 

32 16 16 

cws clp task 

16 16 16 16 

ws2sm level userno 

32 8 24 

Description 

Total word length of this record. This value is 1 + 4 * (number of 
jobs currently in the system). 

Count of committed memory blocks. 

Maximum allowable working set. 

Job name. 

User execution CPU time, in microseconds. 

Maximum working set. 

Maximum large page. 

Current block count. 

Current working set. 

Current large page count. 

Task number. 

CPU time the task was confined to its maximum working set limit. 

Level of task. If level=l, this task entry is the batch processor. 

User number. 

Figure 8-20. Periodic Job Record Format 

60459420 E 8-29 



STANDARDIZED ACCOUNTING ENHANCEMENTS 
This chapter describes the set of standardized accounting enhancements (SAE) for use on 
VSOS. It includes the algorithm for computing SBUs and also describes the variable rate 
accounting (VRA) feature. 

Accounting calculations are a part of the virtual system. At the end of each accounting 
period on VSOS, the SBUs used for a task are computed and entered into accounting records. 

CALCULATION OF SBUs 

The formula for calculating SBUs is based on usage, system resource variable rate factor 
(VRF), and service level factor. The algorithm used in standardized accounting enhancements 
is shown in figure 8-21. 

(W(I),I=l,19) is the set of weighting factors associated with the set of system resources 
(SR(I),I=l,19). A set of installation parameters representing these factors is maintained 
by the system. 

SBU=PF(SL)*(VRF(VRI)*W(l)*SR(l)+SUM(W(I)*SR(I), 
1=2,19)) 

PF Weighting factor for priority or 
service level. 

SL Service level index. 

VRF Variable rate factor. 

VRI Variable rate index. 

Figure 8-21. Algorithm for SBU Calculation 

System resources are described as shown in table 8-4. The value for each system resource is 
determined by the system, dependent on the user task activity in the current accounting 
period. 

8-30 60459420 E 



I SR(!) 

1 UCPU 

2 SCPU 

3 MEMU 

4 LPACCX 

5 LPACCI 

6 SPACCX 

7 SPACCI 

8 SPSECX 

9 SP SE CI 

10 LPG FLT 

11 SPGFLT 

12 TAPWDS 

13 TAPACC 

14 TAPFNT 

15 AVWSS 

16 VS CALLS 

17 LLPC 

18 LSPC 

19 WS2SML 

60459420 E 

Table 8-4. System Resources 

Description 

User CPU execution time (microseconds) used during this accounting 
period. 

System CPU time (microseconds) used during this accounting period. 

Memory usage during this accounting period: working set size * CPU 
time. 

Number of disk accesses (I/O requests issued) for large page explicit 
reads and writes during this accounting period. 

Number of disk accesses (I/O requests issued) for large page implicit 
writes during this accounting period. 

Number of disk accesses (I/O requests issued) for small page explicit 
reads and writes during this-accounting period. 

Number of disk accesses (I/O requests issued) for small page implicit 
writes during this accounting period. 

Number of disk sectors transferred for explicit reads and writes 
during this accounting period. 

Number of disk sectors transferred for implicit writes during this 
accounting period. 

Number of large page faults (accesses, I/O requests issued) for faults 
during this accounting period. 

Number of small page faults (accesses for faults) during this 
accounting period. 

Number of 16-bit bytes transferred to or from tape during this 
accounting period. 

Number of tape accesses, one for each read or write during this 
accounting period. 

Number of tape functions (other than read or write) during this 
accounting period. 

Average working set size during this accounting period. 

Number of virtual system user calls made during this accounting period. 

Number of large pages lost. 

Number of small pages lost. 

CPU time (microseconds) that task's working set size limit appeared to 
be too small. 

8-31 



VARIABLE RATE ACCOUNTING 

Private controllee files running on the system have a standard rate at which the SBUs they 
consume during execution are charged. Certain other controllees, such as public utilities 
or applications packages, can be charged at a different rate whose relation to the standard 
rate is determined by the variable rate f?ctor and service level factor. 

The set of defined VRFs is maintained in a virtual system table known as the variable rate 
table, T VRF. The set of service level factors, which control job cost dependent on job 
class (high priority, priority, interactive, batch, or standby), are located in the virtual 
system table T PF. SAE makes provisions for the maintenance and use of these two tables. 

Variable Rate/Service Level Tables 

The variable rate table (T VRF) is the image of the variable rate chapter of the QSVRF file 
as it existed at autoload time. Similarly, the service level table T PF is the image of the 
service level chapter of the QSVRF file at autoload time. 

The variable rate index assigned to an executing controllee (refer to EDITPUB and Dynamic 
Variable Rate Accounting Call in Chapter 4, Volume 1 of the VSOS Reference Manual) provides 
an offset into T VRF. The user CPU component of SBUs for this controllee is directly 
proportional to the variable rate factor pointed to by the VRI. A variable rate factor of 
1.0 represents a rate equal to the standard installation charge. It is suggested that the 
installation enter some default value (such as 1.0) in the first entry of the variable rate 
chapter of QSVRF, because all system files will be initially created with a default VRI 
setting of O. 

The service level or priority of a job provides an offset into T PF. The SBU calculation 
for this job is directly proportional to the service level factor pointed to by the SL. 

Variable Rate File 

The variable rate file is partitioned into two chapters, a set of variable rate entries and 
a set of service level entries. The format of the file is shown in figure 8-22. 

A variable rate entry consists of two fields, a variable rate factor and a password. The 
variable rate factor is one word containing a 6'4-bit, floating-point number. The password 
is one word containing eight ASCII characters, left-justified and blank-filled. If no 
password is desired for this entry, the field may be set to binary O. 

A service level entry is one word containing a service level factor. This is a 64-bit, 
floating-point number. 

8-32 60459420 E 



0 63 

0 variable rate factor (0) 
64 

1 password ( O) 
64 

2 variable rate factor ( 1 ) 
64 

3 password ( 1 ) 
64 

• • • I 
403 0 variable rate factor (2015) 

64 

403 1 password (2015) 
64 

403 2 service level factor ( 1) 
64 

I • • • 
409 5 service level factor (64) 

64 

Figure 8-22. QSVRF File Format 

60459420 F 8-33 



Virtual System Table Definition 

If an installation allows variable rate processing (determined by installation parameter IP 
F VR), the following steps are taken at autoload time. If the installation parameter IP F 
VR is set to 0, meaning that variable rates are not valid at this installation, the vari-;ble 
rate table is never allocated, and no variable rate processing is done. Also, the service 
level table is not allocated, and no service level factoring of SBUs will be done. 

AUTOCON locates the PFI entry for the mass storage file which contains the set of entries 
for the variable rate table and the service level table. 

The file name QSVRF and the system user number are used as defaults by AUTOCON. Refer to 
the configuration table display for AUTOCON in the VSOS 2 Operator's Guide for more 
information. An alternate file can be specified by entering the line: 

VR = file name, user number 

at AUTOCON execution time. If the file is not found, AUTOCON displays the message: 

VARIABLE RATE FILE NOT FOUND 

and allows the operator to either correct the file name or continue without retrying. 

File Maintenance 

QSVRF is maintained as a private file under the system user number 999998. The LOOK utility 
can modify or display the contents of QSVRF. If the file entries are changed, an autoload 
must be done to load the new values into the virtual system variable rate table. 

8-34 60459420 E 



SYSTEM DA YFILE 
The system dayfile is a record of all significant system events, including job dayfile 
entries. (A job dayfile records the processing of a single batch job.) The following 
paragraphs describe the general dayfile entry format and the specific formats of each entry 
type. 

The system dayfile is a printable file, owned by the system user number, that contains the 
following types of entries: 

• Dayf ile entries 

• System entries 

• Label entries 

• Diagnostic entries 

Dayfile entries include user dayfile entries, all interactive commands, errors from the 
batch processor, privileged system task errors, and errors from the terminal input processor. I 
System entries include all operator commands, all messages sent to the operator, and all 
illegal terminal logins. 

A label entry is written when the file is created. It includes the name of the current 
system dayfile, the name of the previous system dayfile, and the name of the next system 
dayfile. 

Diagnostic entries are written by customer engineering diagnostics. 

The current active dayfile has the name specified by installation parameter IP_SDF_¢NAME. 
The value used at system release is QSSDF. If no active dayfile exists during system 
initialization, the system creates one. The system also creates a second file named 
according to installation parameter IP_SDF2_¢NAME. The resulting release value is QSSDF. 

When the current active dayfile becomes full, the system performs the following steps. 

1. Changes the name of the current primary file to QSDdddnn, where ddd is the day 
number computed when the file was activated and nn is a sequence number, modulo 
100. The system detaches the file. 

2. Changes the name of the current secondary file to the primary file name (determined 
by installation parameter IP_SDF_¢NAME). 

3. Creates a new secondary file. (The size of this file is determined by the 
installation parameter IP_SDFSIZE.) 

All users can make system dayfile entries. Only privileged/authorized users can do so 
without also putting the message into the job dayfile. All users are able to make job 
dayf ile entries without putting the message into the system dayfile. 

60459420 F 8-35 



GENERAL FORMAT OF SYSTEM DA YFILE ENTRY 

The general format of the system dayfile entry is as follows: 

hh.mm.ss xxxx text 
or 

* 
hh.mm.ss 

xxxx 

text 

* 

text 

Master clock at the time the entry was made. This field starts in 
column 2 and is preceded by a space. 

Entry type. This field starts in column 11, is preceded by a space, and 
is four characters long. This field can have one of the following 
values: 

USER 
SYST 
LABL 
DIAG 

String of characters as defined for the entry type (refer to the entry 
type format description). This field starts in column 16, is preceded 
by a space, and is up to 2020 characters long. 

An asterisk in column 6 indicates that this line is a continuation of 
the previous line. 

The dayfile is an SIL R format file where each entry line is terminated by a #lF character 
code. The last entry line is terminated by character codes #lF and #le. All fields in the 
text are separated by one or more blanks. 

8-36 60459420 E 



USER ENTRIES 

A USER type system dayfile entry is written as a result of the following system events: 

• The system writes an entry in a job dayfile. 

• The user enters a control statement at a terminal. 

• The terminal input processor returns an error to a terminal. 

• The batch processor returns an error to a job dayfile. 

• A privileged system task returns an error to the user. 

• A task calls QSSNDMDF with either BOTH or SDFUSER specified • 

The format of the system dayfile entry resulting from a job dayfile entry is as follows: 

hh.mm.ss USER un jdn jn message 
or 

* message 

un User number for this entry (six decimal digits). 

jdn Job descriptor number of the job (four decimal digits). 

jn Batch job file name. 

message First 2000 characters of the job dayfile entry, starting in column 34. 

The format of the system dayf ile entry when the user enters a control statement from the 
terminal is as follows: 

hh.mm.ss USER un jdn message 
or 

* message 

un User number for this entry. 

jdn Job descriptor number of the job (four decimal digits). 

message First 2000 characters of control statement, starting in column 34. 

The format of the system dayfile entry for privileged system task errors, errors from the 
terminal input processor, and errors from the batch processor is as follows: 

hh.mm.ss USER un jdn message 
or 

* message 

un User number for this entry. 

jdn Job descriptor number of the job (four decimal digits). 

message First 2000 characters of error message, starting in column 34. 

60459420 H 8-37 

I 

I 

I 

I 



SYSTEM ENTRIES 

A SYST type system dayfile entry is written as a result of the follwing three events: 

• The operator enters a command. 

• The user task sends a message to the operator. 

• The user enters an illegal login. 

The format of the system dayfile entry when the operator enters a command: 

hh.mm.ss SYST message 
or 

* message 

message First 2000 characters of the operator command, starting in column 34. 

A system dayfile entry is written when a user task sends a message to the operator. It is 
not written when the message to the operator is a system error condition and the dayfile has 
been turned off (refer to the TMSF operator command description in the VSOS 2 Operator's 
Guide). The format of this type of system dayfile entry is: 

hh.mm.ss SYST un jdn tn message 
or 

* 
un 

jdn 

tn 

message 

message 

Task user number for this entry. 

Job descriptor number. 

Task name. 

First 2000 characters of the message being sent to the operator. The 
message starts in column 34. 

The. format of the system dayf ile entry when a user enters an illegal login command is as 
follows: 

8-38 

hh.mm.ss SYST message 
or 

* 
message 

message 

First 2000 characters of the illegal login command, starting in column 
34. 

6045Y420 E 



LABEL ENTRIES 

The header label is written when a new system dayfile is started. The format is: 

hh.mm.ss LABL fn lf nf dd/mm/yy rs vs sysid mid ps 

f n Name of this file will be given when it is deactivated; eight characters 
in the format Q5Ddddnn. 

lf 

nf 

dd/mm/yy 
rs 
vs 
sys id 
mid 
ps 

Name of last file; eight characters in the format Q5Ddddnn. This is 
blank if there was no previous file. 

Name of the next file to be started; eight characters in the format 
Q5Ddddnn. 

Current date. 
Resident system version; eight characters in the format RSxxxxxx. 
Virtual system version; eight characters in the format VSxxxxxx. 
System ID/pool; eight characters. 
Machine ID; one character. 
Page size; two characters. 

DIAGNOSTIC ENTRIES 

The format of diagnostic entries written by customer engineering diagnostics is: 

hh.mm.ss DIAG message 
or 

* message 

message First 2000 characters of the diagnostics message, starting in column 34. 

60459420 F 8-39 

I 





COMMON EXECUTE LINE SUPPORTING ROUTINES 

This chapter contains information for a system programmer who is interested in developing an 
application or utility. 

CONVENTIONS 

A controllee execute line is entered for processing by VSOS either as a batch processor 
control statement or as an interactive terminal type-in. An execute line can occur as one 
or more physical records representing card images or terminal lines. From the point of view 
of the common execute line supporting routines, an exact correspondence exists between batch 
commands and terminal commands, including continuation of the command text to more than one 
card or terminal line. (From the point of view of the user, however, this correspondence 
does not exist.) 

Standard processing is done on five types of linguistic expressions called tokens. The 
tokens are: 

• Alphanumeric identifiers. 

• Decimal numeric constants. 

• Hexadecimal numeric constants prefixed by the character#. 

• Character or string constants delimited by the character ". 

• The special characters, which are I II " & • ) , = and blank. 

The # character is referred to in text as a hash mark. The & character is an ampersand. 

Execute line options are defined by means of positional or keyword-identified values. 
Standard diagnostics are issued if abnormal syntax or conditions are encountered. 

A set of four system library routines are to be used to guarantee adherence to the 
conventions previously stated. The routines are: 

Routine Description 

Q7ENVIRN Determines the program environment. 

Q7KEYWRD Processes the text of an execute line. 

Q7MODE Determines if the task's controller is a terminal. 

9 

Q7PROMPT Provides interaction with the controller; collects parts from several input 
records, and builds the complete character string for processing by Q7KEYWRD. 

60459420 H 9-1 



When a controllee execute line requires more than one terminal line, an ampersand must be 
used to designate continuation to the subsequent line. Card image continuation is performed 
automatically during batch processing if a terminator character has not been encountered. 
The ampersand signals a logical end of record and can be followed by comments. The text of 
the execute line consists of two or more tokens: the first is alphanumeric and identifies 
the task name, while the last is a special character called a terminator. The terminator 
characters are a period and right parenthesis. An implicit terminator occurs at the end of 
a terminal line that does not contain an ampersand. Comments can be placed immediately 
following a terminator character or an ampersand. The following execute lines are 
equivalent: 

SAMPLE,A. optional comments 

SAMPLE&,A. optional comments 

SAMPLE A 

A parameter list can follow the task name but must precede the terminator character. 
Order-dependent parameters must be in the order specified; key-dependent parameters can 
appear in any order. Parameter formats depend on the control statement specified, but they 
always follow the same general guidelines. 

Consecutive parameter list items are separated by level-! separator characters comma and 
blank. In addition, the left parenthesis acts as a level-! separator between the task name 
and the parameter list. A parameter list item can be defined by a list of user numbers or 
file names. These values are also separated by the level-! parameter separators. A file 
name can be followed by attributes of disposition code or length, with attributes separated 
from each other by the level-2 separator character slash. 

Blank is a special character and only performs a separator function when not used with other 
separators or terminators. Any level of separator can be preceded or followed by blanks, 
which serve only to highlight the separator; in a similar fashion, the terminator characters 
can be preceded by highlighting blanks. 

System utilities or tasks provide default settings for all on/off options. In addition, the 
input, output, and binary file options have the default names INPUT, OUTPUT, and BINARY. 
Where tasks create files for the user, the task can determine the necessary file size or the 
user is allowed to submit an estimate of an adequate size. Tasks that create files also 
determine the disposition of the file upon task completion. The user has the opportunity to 
specify file disposition. 

The task name is constructed of one to eight letters and digits. Except where reference is 
made to a drop file, the first character must be a letter. The task name is bound on the 
left by the start of the command and on the right by a level-! separator or a terminator. 

9-2 60459420 E 



Order-dependent parameters are strings of nonseparator, nonterminator characters. Their 
interpretation is strictly a function of the particular product. An order-dependent 
parameter list is ended by a terminator or by the occurrence of a key-dependent parameter. 

The following are examples of execute lines using order-dependent parameter lists: 

COPY(FILEA,FILEB) 

PURGE,FILE1,FILE2,FILE3. 

A key-dependent parameter has the general structure shown in figure 9~1. The following is 
an example of an execute line using a key-dependent parameter list: 

FTN(I=COMPILE,L=OUTPUT,B=BINARY/PU/#240) 

key=def ns 

key A string of letters and numbers, 1 to 255 characters, delimited to the left 
by a level-! separator and on the right by an= character, a separator, or a 
terminator. 

def ns Strings of nonseparator, nonterminator characters whose interpretation is 
strictly a function of the particular product and the key identifier. 

Figure 9-1. Key-Dependent Parameter Format 

Examples of the use of both parameter forms are: 

WXYZ(FILE1,FILE2,0U=MAPFILE) 

To ensure that ambiguities do not arise, the programmer calling the keyword word processors 
must not allow the following: 

• A parameter resembling a file name to follow a file name list unless that parameter 
has a key. 

• A parameter resembling a user number to follow a user number list unless that 
parameter has a key. 

• A parameter resembling a text string to follow a text string unless that parameter 
has a key. 

60459420 E 9-3 



Parameter values can be strings of letters and digits, decimal digit strings, hexadecimal 
digit strings, and character strings delimited by quotation marks. In some cases, the 
alphanumeric string can occur as two decimal digits followed by one to six letters and 
numbers. This exception is provided to accommodate drop file names. Decimal digit strings 
are normally interpreted as decimal constants; a hexadecimal constant is normally preceded 
by a hash mark. Values that must be virtual bit addresses are always hexadecimal values 
even if the hash mark is not present. In some cases, such as the GROS option of the loader, 
a hash mark is required to distinguish the address from identifier data in the same list. 
Some examples are: 

WXYZ(EN="!FILE!",OU=MAP/1110) 

WXYZ(FILE,OU=MAP/16,LI=SYSLIB,MYLIB) 

PURGE,12DROP,JUNK.. 

COPY,42DROP,SAVEDROP. 

Lists of values are as order-flexible as the values permit; the user is normally given 
maximum flexibility consistent with the task requirements. The following equivalent 
parameter strings illustrate this flexibility: 

B=FILE/10/PR 

B=FILE/PR/10 

All key-dependent parameters have on and off settings where appropriate, and can be turned 
on and off. Turning on keys can be accomplished by means of a key=l parameter, or by use of 
the key name only; these keys can also be turned off by means of a key=O parameter. File 
identification keys should be turned off with key=O. Where the option is normally off, a 
parameter of the form key=filename turns the option on for a specific file, while use of .the 
key name only turns the option on for a default file. 

The following execute lines are equivalent, and illustrate the on/off ability: 

IMPL,X. 

IMPL,I,X=l. 

IMPL,X,I=INPUT,B=BINARY/#40. 

9-4 60459420 E 



SUPPORTING ROUTINES 

Common execute line standards are supported by four subroutines from the system library. 
The subroutines, which are callable from FORTRAN, META, and IMPL, are: 

Subroutine Description 

Q7ENVIRN Determines the program environment of the calling task. The task may be in 
one of three environments: batch, interactive, or no level-1 controller. 

Q7MODE Determines whether the parent controller of the calling task is a terminal 
or another task. A batch job falls into the latter category. 

Q7PROMPT Inputs parameters to be passed to Q7KEYWRD for syntax checking. It prompts 
terminal users for input if no parameters are specified in the execute 
line. It also strips the trailing period or matching outside parenthesis 
characters from the parameter text before calling Q7KEYWRD. 

Q7KEYWRD Examines a character string, checks its syntax, and converts data to 
internal format. In the case of a detected error, it prints error messages 
and requests; in interactive mode, it permits error correction by accepting 
reinput of an execute line parameter. Also, in interactive mode, Q7KEYWRD 
can be set to request and input each parametric keyword through the use of 
an appropriate prompting message. 

Assembly language routines call any of these subroutines by using the FORTRAN or IMPL type 
of calling sequence, while FORTRAN and IMPL programs access the routines using CALL 
statements. 

If the main program is coded in FORTRAN, the original execute line is processed by FORTRAN 
initialization for run-time file substitution. In interactive mode, the program may 
subsequently call Q7PROMPT or Q7KEYWRD for other lines. 

Q7ENVIRN 

The function of this subroutine is to determine a task's program environment and to return 
the information in a full word whose variable name is supplied as the only parameter to the 
Q7ENVIRN routine. A full word is defined as a 64-bit word that is aligned on a word 
boundary. The call statement format of Q7ENVIRN is shown in figure 9-1.1. 

Q7ENVIRN (environ) 

environ A full-word variable in which one of the following values is returned: 

0 The task is executing from within a batch job. 

1 The task is executing from within an interactive session. 

2 The task does not have a level-1 controller (for example, QTF, 
PTFS, or QTFS). 

Figure 9-1.1. Q7ENVIRN Call Statement Format 

60459420 H 9-5 • 



Q7MODE 

I The function of this subroutine is to determine if a task's controller is a terminal and to 
return the information in a full word whose variable name is supplied as the only parameter 
to the Q7MODE routine. A full word is defined as a 64-bit word that is aligned on a word 
boundary. The call statement format of Q7MODE is shown in figure 9-2. 

CALL Q7MODE (mode) 

mode A full-word variable in which one of the following values is returned: 

0 Controller is not a terminal. 

1 Controller is a terminal. 

Figure 9-2. Q7MODE Call Statement Format 

9-6 60459420 H 



Q7PROMPT 

This routine serves as an interface between a calling routine and the Q7KEYWRD subroutine. 
It inputs user parameters into an input buffer, then passes the text to Q7KEYWRD for syntax 
checking. If no text is specified on the execute line, Q7PROMPT can prompt the interactive 
user for parameters, using the message PLEASE SPECIFY PARAMETERS or a message provided by 
the calling routine; otherwise, if no text is specified on the execute line, it can proceed 
with a call to Q7KEYWRD, optionally setting bit 60 in the options parameter, which causes 
Q7KEYWRD to prompt for individual keywords. 

An input buffer can either be supplied by the calling routine or allocated by Q7PROMPT. 
Delineator characters, such as matching outside parentheses or a trailing period, are 
deleted from the input text prior to the call to Q7KEYWRD. 

Input text can be continued on succeeding lines in interactive mode, provided that an 
ampersand (continuation character) is appended to each line. 

The call statement format of Q7PROMPT is shown in figure 9-3. The opt, r, rbuf, rlen, and 
ti parameters are not used by Q7PROMPT, but are passed to Q7KEYWRD for use in syntax 
checking. If a text string is not specified in the controllee execute line and the 
p parameter is not negative, Q7PROMPT prompts for parameters and saves them in a buffer with 
the name specified as the buf parameter. 

CALL Q7PROMPT (txt,p,opt,r,buf,blen,rbuf,rl~n,t1, ••• ,tn)t 

txt Text string to be passed to Q7KEYWRD. The string must contain any desired 
carriage control characters. 

p 

buf 

bl en 

Indicates whether prompting is desired: 

>O Number of character bytes in txt. Use txt to prompt for parameters. 

0 Use the text string PLEASE SPECIFY PARAMETERS to prompt for 
parameters. 

-1 Do not prompt for parameters. The value of the variable blen is o. 

-2 Do not prompt for parameters. Options bit 60 should be O. 

-3 Do not prompt for parameters. Wait for message. 

Name of buffer file into which the parameters are to be read. If the blen 
field is 0, the buf field is the name given to a buffer provided by Q7PROMPT. 

Name of a full-word variable whose nonzero value indicates the number of 
character bytes in buf. If the value of blen is 0, no buffer is provided by 
the caller; in this case, Q7PROMPT allocates a 4096-character buffer named 
buf. A count of the number of characters actually read is returned by the 
system into the blen field. 

tThe opt, r, rbuf, rlen, and ti fields are described under the Q7KEYWRD call statement. 

Figure 9-3. Q7PROMPT Call Statement Format 

60459420 H 9-6. 1I9-6. 2 I 





Q7KEYWRD 

The keyword subroutine scans a line of text, checks syntax, and converts data to internal 
formats. It prints error messages and inputs replacement expressions as required. Q7KEYWRD 
processes text containing both positional and keyword type parameters. The calling routine 
provides Q7KEYWRD with syntax tables that completely describe the general format of the 
input parameters. Q7KEYWRD uses the tables to interpret the specific parameters in the 
execute line test. These input parameters, called keyword expressions, are written as 
follows: 

keyl keyz key3 • • • 

Each keyi is separated from other keyword expressions by one or more blanks or by commas, 
and has one of the following formats: 

lbs = rhs 

lhs 

rhs 

tables for each keyi keyword relate the valid left-hand sides (lbs) of the The syntax 
expression 
cases, lhs 
Each keyi, 

to valid right-hand sides (rhs). This includes specifying whether the degenerate 
and rhs, are to be treated as having no left-hand side or no right-hand side. 
then, can be any one of the following possibilities: 

lhs(l) 

lhs(l) 
lhs(2) 

rhs(l, 1) 

rhs(l, nl) 
rhs(2,l) 

lhs(m) = rhs(m,nm) 

m is the number of possible left-hand sides for the expression, left-hand side k having nk 
possible right-hand sides. 

60459420 E 9-7 



The syntax tables also specify positional relationships among the keyword expressions. A 
given expression, keyi, can be flagged as positional, meaning that it must appear after 
expressions key1, ••• , keY(i-1) but before the expressions key(i+l) ••• If an 
expression (keyi) is not flagged as positional, it can appear in any order with preceding 
or succeeding nonpositional expressions; so, if keyi, keY(i+l), and keY(i+2) are 
nonpositional, any of the following are v~lid: 

key(i), key(i+l), key(i+2) 
key(i), key(i+2), key(i+l) 
key(i+l), key(i), key(i+2) 
key(i+l), key(i+2), key(i) 
key(i+2), key(i), key(i+l) 
key(i+2), key(i+l), key(i) 

The syntax tables also indicate which keyi parameters are required in the execute line 
text. If a parameter flagged as required is not encountered in its required location, an 
error message is issued. 

Left-hand sides for an expression include: 

• None (the degenerate case, lhs). 

• A literal character string, 1 to 255 characters long. 

Right-hand sides for an expression include: 

• None (the degenerate case, rhs). 

• A literal character string, 1 to 255 characters long. 

• An arbitrary character string, 1 to 255 characters long. 

• Any remaining unscanned text, up to 255 characters maximum. 

• A number in the range 0 to 247-1 (table setting indicates whether the number can 
be decimal, hexadecimal with a leading # character, or an address in hexadecimal 
with no leading # sign required; table settings can also indicate the range of the 
number if the default range is not sufficiently restrictive). 

• A user number. 

• A file name (table settings indicate whether a drop file name can be specified and 
whether the length, print, and punch attributes can be specified). 

Lists of numbers, user numbers, and file names separated by slashes, blanks, or commas can 
be allowed as right-hand sides. A field in the syntax tables indicates that lists are to be 
allowed and specifies the maximum number of elements permissible. 

9-8 60459420 E 



The entry point Q7KEYWRD is used for both FORTRAN and IMPL calling sequences. The call 
statement format of Q7KEYWRD is shown in figure 9-4. The lhs table pointers are illustrated 
in figure 9-5. Each entry in an lhs table points to an rhs table (also full-word-aligned) 
that describes valid right-hand sides for the given left-hand side and specifies the format 
in which information is returned in the return buffer to the calling routine. 

CALL Q7KEYWRD(opt,r,buf,blen,rbuf,rlen,t1, ••• ,tn) 

opt Name of a full-word variable, the rightmost 5 bits of whose value indicate the 
following options: 

Bit Description 

59 If O, send error message to the terminal. If set to 1, return error 
message to the caller. 

60 If O, scan the input for keyword expressions. If set to 1, prompt 
for each keyword listed in the tables t1, ••• ,tn• 

61 If 0, or if user enters "cancel" in response to interactive prompt, 
abort on syntax error. If set to 1, return to caller on either 
condition. 

62 If 0, prompt for replacement on syntax error. If set to 1, do not 
prompt for replacement. 

63 If 0, send error messages to program controller for output. If set 
to 1, do not output error messages. 

r Name of full-word variable to contain return codes. Return codes are: 

0 Text scanned successfully. 
1 Internal error; or parameters processed did not match any left-hand 

side or right-hand side tables; or user entered "cancel" in response 
to interactive prompt. 

2 Return buff er too small. 
3 Incorrect number of parameters in Q7 PROMPT/Q7 KEYWORD call line. 
4 Invalid type field in lhs table entry. 
5 Invalid type field in rhs table entry. 
6 Invalid flags field in rhs table entry. 
7 Words field for return buffer entry exceeds 255. 
8 Options field bit 60 is 1, and prompt message length or address in 

lhs table header is O. 

Code 1 is returned only if bit 61 of opt field is 1. 

Figure 9-4. Q7KEYWRD Call Statement Format (Sheet 1 of 2) 

60459420 E 9-9 



buf Virtual bit address of string to be scanned for keyword expressions. This 
field is not used if prompting is requested (options bit 60 is 1). 

bl en 

rbuf 

rlen 

Name of full-word variable whose value specifies the number of characters in 
the string indicated by buf~ This field is not used if options bit 60 is 1. 

Virtual bit address of the full-word-aligned buffer (the return buffer) in 
which reformatted keyword information is to be returned. 

Name of full-word variable whose value specifies the number of characters in 
the return buffer. 

ti Virtual bit address of full-word-aligned lhs table (figure 9-5) that describes 
acceptable syntax constructs and specifies formats for the returned 
information. The number of addresses varies with the syntax of the line being 
scanned. 

Figure 9-4. Q7KEYWRD Call Statement Format (Sheet 2 of 2) 

lhs L rhs 
tablei • tablei 1 • • 1----

rhs ...... 
tablei2 

• 
• • 

rhs 
~ 

tablein 

Figure 9-5. lhs Table Pointer Configuration 

9-10 60459420 E 



lhs Table 

An lhs table consists of contiguous, variable-length, full-word-aligned entries describing 
valid keyword expressions. The entries describe the left-hand sides of expressions and, in 
turn, point to tables whose entries describe valid right-hand sides. A header relates 
positional and existence requirements of ,the keywords described by this table. 

The lhs table format is shown in figure 9-6. The table header contains two words in the 
format shown in figure 9-7. Each lhs entry has the format shown in figure 9-8. 

..., 

table header 

lhs entry 

lhs entry 

0 entry 

7 

type=O entry marking the 
end of the table 

Figure 9-6. lhs Table Format 

60459420 E 9-11 



0 

Word 

0 

0 63 

flags count table unused 
8 8 8 40 

prompt_len 
16 

prompt 
48 

Field 

flags 

count 

table 

Description 

Bits that are set to describe keywords: 

Bit Description 

6 If 0, entries describe a keyword that is not positional (that 
is, the keyword described can appear in any order with 
preceding or succeeding nonpositional keywords); if set to 1, 
entries describe a positional keyword. 

7 If 0, entries describe an optional keyword; if set to 1, 
entries describe a required keyword (if no match is found, an 
error message is issued). 

A value that specifies the maximum number of times this table can be 
used to effect a keyword match. 

A value set by the caller and returned in a return buffer entry on a 
successful lhs and rhs match. (The return buff er is described later 
in this chapter.) 

prompt_len A value that specifies the number of characters in a message whose 
address is given in the prompt field; valid only when the options bit 
60 is set to 1. 

prompt Address of the text to be output as a prompt to request keywords 
associated with this table; valid only when the options bit 60 is set 
to 1. Any ASCII carriage control characters desired must be embedded 
in the text of the prompting message. 

Figure 9-7. lhs Table Header Format 

9-12 60459420 E 



0 

0 type 
8 

min 
8 

i.1 

Word Field 

0 type 

left 

pointer 

1 min 

chars 

keyword 

left pointer 
8 

chars keyword 
8 

(Oto 7 blanks for alignment 
on word boundary) 

Description 

Entry type. The values are: 

0 
1 
2 

End of the table. 
There are no left-hand sides. 
The keyword expression contains a left-hand side. 

I NOTE I 
Where both a literal character string and an 
arbitrary character string may be used as 
parameters, the arbitrary character string 
must follow the literal character string for 
the parameters to be interpreted correctly. 

63 

AB. 

7 

A value set by the caller and returned in the return buff er entry upon 
a successful left-hand side and right-hand side match. 

Address of the table describing right-hand sides that are valid with 
this particular left-hand side. 

Minimum number of characters needed in the left-hand side before 
attempting a substring match against the keyword (type=2). 

The number of characters in the keyword if the type field is 2; must 
be 0 if the type is 1. 

Text to be used in validating the left-hand side of the expression 
(type=2). 

Figure 9-8. lhs Table Entry Format 

60459420 G 9-13 

I 



rhs Table 

The rhs table contains contiguous, variable-length, full-word-aligned entries that describe 
valid right-hand side expressions. The table format is shown in figure 9-9. The first word 
of each rhs entry has the format shown in figure 9-10. 

When the type field is O, the rhs table entry is one word having the format shown in 
figure 9-10, but with the right, flags, and count fields unused. When the type field is 1, 
the rhs table entry is one word having the format shown in figure 9-10, but with the flags 
and count fields unused. When the type field is 2, the format of the rhs table entry is as 
shown in figure 9-11. When the type field is 3, the format of the rhs table entry is as 
shown in figure 9-12. 

7 

rhs entry 

rhs entry 

0 entry 

4 

} 
Type=O entry marking 
the end of the table 

Figure 9-9. rhs Table Format 

9-14 60459420 E 



0 

I type al 
Field 

type 

right 

flags 

count 

16 23 63 

right al flags al count al unused 
321 

Description 

Entry type number. The format of each entry and the meaning of its 
flags and count fields vary according to the entry type. The types 
are: 

0 End of the table. 
1 No right-hand side in the expression. 
2 Literal; the right-hand side of the expression must match the 

initial substring of the literal. 
3 Element list. 
4 Arbitrary character string is returned in the return buffer. 
5 All remaining text (255 characters maximum) is returned in 

the return buffer. 
6 Numbers in the range of -247-1 to 247-1 are returned in 

the return buffer. 
7 File names are returned in the return buffer. 
8 User number. 
9 Ignore the keyword. 

I NOTE I 
Where both a literal character string and an 
arbitrary character string may be used as 
parameters, the arbitrary character string 
must follow the literal character string for 
the parameters to be interpreted correctly. 

A value set by the caller and returned in the return buffer entry on a 
successful left-hand side and right-hand side match. 

Flag bits, which are set to describe valid right-hand sides of 
expressions. Bit meanings depend on entry type. 

Maximum number of elements in the right-hand side for those entry 
types that allow lists. 

Figure 9-10. rhs Table Entry Format (First Word) 

60459420 G 9-15 



0 

0 2 
8 

min 
8 

"1 

Word Field 

0 right 

1 min 

chars 

literal 

0 

3 

Field 

right 

flags 

count 

63 

right unused 
8 48 

chars literal 
8 

'-, 

(Oto 7 blanks for alignment 
on word boundary) 

Description 

A value set by the caller and returned in the return buffer entry on a 
successful left-hand side and right-hand side match. 

Minimum number of characters needed in the right-hand side before 
attempting a substring match against the literal. 

Number of characters in the literal. 

Text to be used in validating the right-hand side of the expression. 

Figure 9-11. rhs Table Entry Format, Type 2 

right I 
8 

flags s I count s I unused 

Description 

63 

Value set by the caller and returned in the return buffer entry on a 
successful left- and right-hand side match. 

Maximum length of a list element. The length of the this field is in 
the range of one to eight bytes. 

Maximum number of elements in the list. 

Figure 9-12. rhs Table Entry Format, Type 3 

9-16 60459420 F 



When the type field is 4, the format of the rhs table entry is as shown in figure Y-13, 
except that the flags field is not used. The right-hand side of the expression contains 
or more literal character strings (255 characters maximum per literal string are returned in 
the return buffer). Quotes may be embedded within the literal string by using the double 
quotation mark character to indicate the presence of a quote. During processing, the string 
will be appropriately edited. Enclosing quotes are required only if special characters 
defined in table 9-1 are part of the text. 

Word 

0 

1 

2 

0 16 23 63 

0 4/6 right flags count unused 
8 8 8 8 32 

unused minimum 
16 48. 

2 unused maximum 

Field 

right 

flags 

count 

minimum 

maximum 

16 48. 

Description 

A value set by the caller and returned in the return buffer entry on a 
successful left-hand side and right-hand side match. 

Flag bits. If bit 20 is O, the second and third words are not 
present. When set to 1, bits 20 through 23 select the following 
options: 

20 Range check is desired; the number specified must be greater 
than or equal to minimum and less than or equal to maximum. 

21 Hexadecimal number valid with a leading hash mark. 
22 Address valid (hexadecimal number without a leading hash 

mark). 
23 Decimal number valid. 

Two or more of bits 21, 22, and 23 can be set at one time; however, a 
potential identification problem exists if bits 22 and 23 are both 
set: if the field contains digits U to Y only, the number is treated 
as decimal; otherwise, it is assumed to be hexadecimal. 

Maximum number of values that can appear in the right-hand side. 

Lower boundary for a valid number (integer). 

Upper boundary for a valid number (integer). 

Figure 9-13. rhs Table Entry Format, Type 4/6 

When the type field is 5, the format of the rhs table entry is as shown in figure 9-10, 
except that the flags and count fields are not used. When the type field is 6, the format 
of the rhs table entry is as shown in figure Y-13. 

60459420 G 9-17 

I 

I 



When the type field is 7, the format of the rhs table entry is as shown in figure 9-10. 
Four of the individual bits in the flags field can be set to 1, in which case they have the 
following meanings: 

Bit Description 

20 Punch attribute (PU) is valid. 

21 Print attribute (PR) is valid. 

22 Length attribute can be specified. 

23 Drop file name can be specified. 

Two or more of the bits can be set at one time. The count field contains the number of file 
names that appear in the associated return buffer entry. 

When the type field is 8, the format of the rhs table entry is as shown in figure 9-10. Two 
of the individual bits in the flags field can be set to 1, in which case they have the 
following meanings: 

Bit Description 

22 Return an ASCII value. 

23 Return a binary value. 

One or both of the bits can be set at one time. 

When the type field is 9, the format of the rhs table entry is as shown in figure 9-10, 
except that the right, flags, and count fields are not used. For this type, no entry is 
made in the return buffer and processing continues with the next keyword expression. 

9-18 60459420 E 



Return Buffer 

This buffer is used to contain reformatted keyword information that is returned. The end of 
the returned information is indicated by a fu~l-word binary O. The return buffer format is 
shown in figure 9-14. 

7 

returned entry 

returned entry 

~binary 0 

L, 

} 
Full word 0 marking, 
end of buffer 

Figure 9-14. Return Buffer Format 

The format and length of each return buffer entry depends on the type field of the right-hand 
side table entry that successfully matched the right-hand side of the keyword expression. 
Common to all entries is the first full word, whose format is shown in figure 9-15. 

0 

table 

Field 

table 

left, 
right 

words 

chars 

count 

8 

63 

left right words chars count unused 
8 8 8 8 8 16 

Description 

Value from the header of the lhs table (ti) that provided the left­
and right-hand side entries affecting the keyword match. 

Values from the left field of the particular lhs table 
entry and the right field of the rhs table entry 
affecting the left and right-hand side matches. 

Total number of words in this particular entry. 

The meaning of this field varies with the type of the right-hand 
side. It is the length of the returned information or the length of 
an element of a returned list, such as a list of file names. 

Number of returned elements if returned data consists of a list of 
items. 

Figure 9-15. Return Buffer Entry Format (First Word) 

60459420 E 9-19 



When the rhs table entry types are 1 and 2, the format of the return buffer entry is as 
shown in figure 9-16. The words field is always 1. 

Ip table I 
. 8 

left I 
8 

right I 
8 

I 1 unused 

Figure 9-16. Return Buffer Entry Format, Types 1 and 2 

When the rhs table entry type is 3, the flags field is used to specify the maximum allowable 
length of a list element. The allowable range of values is 1 through 8. The format of the 
return buffer is shown in figure 9-17. 

0 

table 

Field 

table 

left, 
right 

words 

chars 

count 

8 

text 
string i 

63' 

left right words chars count unused 
8 8 8 8 8 16 

textstring 1 
64 

textstri ng 2 
64 

64 

textstring n 
64 

Description 

Value from the header of the lhs table (ti) that provided the left­
and right-hand side entries affecting the keyword match. 

Values from the left field of the particular lhs table 
entry and the right field of the rhs table entry affecting the left 
and right-hand side matches. 

Total number of words in this particular entry. 

The meaning of this field varies with the type of the right-hand 
side. It is the length of the returned information or the length of 
an element of a returned list, such as list of file names. 

Number of elements returned. 

Returned elements, ASCII left-justified and blank-filled. 

Figure 9-17. Return Buffer Entry Format, Type 3 

9-20 60459420 E 



When the rhs table entry type is 4, the format of the return buffer entry is shown in figure 
9-18. Since the multiple literal strings will likely be variable in length, the format of 
the return buffer returned for type 4 differs from the format of all other return buffers. 
A header word will precede each literal string returned. 

0 

table 

table 

table 

Field 

char 

text 
string 

8 

8 

8 

left right words char unused 
8 8 8 8 

textstring 1 

(O to 7 blanks for alignment 
on word boundary) 

left right words char unused 
8 8 8 8 

textstring 2 

(0 to 7 blanks for alignment 
on word boundary) 

• • • 

left right words char unused 
8 8 8 8 

textstri ng n 

(O to 7 blanks for alignment 
on word boundary) 

Description 

Number of characters returned in text. 

The right-hand side of the expression. 

Figure 9-18. Return Buffer Entry Format, Type 4 

63 

24 

7 

24 

24 

24 

60459420 E 9-21 



When the rhs table entry is 5, the format of the return buffer is as shown in figure 9-19. 

0 63 

table left right words chars unused 
8 8 8 8 8 24 

"1 text J..., 

. 
(0 to 7 blanks for alignment 

on word boundary) 

Field Description 

chars Number of characters returned in text. 

text The remaining text (type=S). 

Figure 9-19. Return Buffer Entry Format, Type 5 

When the rhs table entry type is 6, the format of the return buffer entry is as shown in 
figure 9-20. The chars field is always 8. 

0 63 

table left right words 8 count unused 
8 8 8 8 8 8 16 

0 number1 
16 48 

7 1..7 

0 numbern-1 
16 48 

Field Description 

count The number of digits returned. 

numberi Binary form of the number specified. 

Figure 9-20. Return Buffer Entry Format, Type 6 

9-22 60459420 E 



When the rhs table entry type is 7 with flag bits 20, 21, and 22 all set to 0, the format of 
the return buffer entry is as shown in figure 9-21. The chars field is always 8. 

0 63 

table left right words 8 count unused 
8 8 8 8 8 8 16 

filename1 64 

7 L, 

filenamen-l 
64 

Field Description 

count Number of files listed, equal to n-1. 

f ilenamei Logical file name, in ASCII. 

Figure 9-21. Return Buffer Entry Format, Type 7 with Zeroed Flags 

When the rhs table entry type is 7 with flag bits 20, 21, or 22 set to 1, the format of the 
return buff er entry is as shown in figure 9-22. The chars field is always 16. 

0 63 

table left right words 16 count unused 
8 8 8 8 8 8 16 

filename1 64 

length1 attribute1 unused 
16 16 32 

7 4 

filenamep 
64 

lengthp attributep unused 
16 16 32 

Figure 9-22. Return Buffer Entry Format, Type 7 with Set Flags (Sheet 1 of 2) 

60459420 G 9-23 

I 



Field Description 

count Number of files listed; has the value (n-1)/2. 

f ilenamei Name of the file specified, left-justified with blank fill. 

lengthi Length of the file in small pages. If not specified, binary 0 is 
returned. 

attributei File attribute: ASCII punch (PU) or print (PR). If not 
specified, blanks are returned. 

Figure 9-22. Return Buffer Entry Format, Type 7 with Set Flags (Sheet 2 of 2) 

When the rhs table entry type is 8 with only one of flag bi~s 22 and 23 set, the format of 
the return buffer entry is as shown in figure 9-23. The chars field is always 8. 

0 63 

table left right words 8 count unused 
8 8 8 8 8 8 16 

0 user number 1 
16 48 

7 7 

0 user number n-1 
16 48 

Field Description 

count Number of user numbers listed. 

user number ASCII or binary user number, depending on the flags set. 

Figure 9-23. Return Buffer Entry Format, Type 8 with One Set Flag 

9-24 60459420 E 



When the rhs table entry type is 8 with both flag bits 22 and 23 set, the format of the 
return buffer entry is as shown in figure 9-24. The chars field is always 16. 

0 63 

table left right words 16 count unused 
8 8 8 8 8 8 16 

0 user1 
16 48 

0 usernum1 
16 48 

~ "1 

0 userp 
16 48 

0 usernump 
16 48 

Field Description 

count Number of user numbers returned, equal to (n-1)/2. 

Binary user number. 

usernumi User number of the user; interpreted as ASCII characters. 

Figure 9-24. Return Buffer Entry Format, Type 8 with Two Set Flags 

60459420 E 9-25 



Special Characters 

The Q7KEYWRD subroutine scans for special characters in the execute line text to extract 
keyword expressions. These characters and their meanings (under given conditions) are 
described in table 9-1. 

Table 9-1. Execute Line Special Characters 

Character Description 

II 

blank 

9-26 

Delimits a literal character string on the right-hand side of the 
expression. An embedded quote within a literal character string must be 
represented by the double quotation mark character; for example, "AB""C""DE" 
would be the representation of the literal string AB"C"DE. Each string of 
the right-hand side must be enclosed in quotes if it includes a special 
character of table 9-1. Q7KEYWRD will not perform concatenation of a literal 
in quotes and other character strings. 

Delimits a keyword expression unless it occurs within a literal character 
string. 

Delimits a keyword expression unless it occurs within a literal character 
string. 

Separates the left- and right-hand sides of keyword expressions unless they 
occur within a literal character string. 

60459420 E 



LOADER CONVENTIONS 

This chapter contains formats for the following loader tables: 

Module header table 
Code block table 
Code relocation table 
External/entry table 
Interpretive data initialization table 
Interpretive relocation initialization table 
Transfer symbol table 
Debug symbol table 
Symbol definition table 
Pseudoaddress vector table 

The following loader tables are used by the system during error processing: 

Module header table 
Code block table 
External/entry table 
Debug symbol table 
Symbol definition table 
Pseudoaddress vector table 

Error processing information is provided for every object module loaded to produce a 
controllee file. This includes object modules of user-specified files and required object 
modules for system library files. 

The loader initializes the following registers in the 0 (zero) page of the controllee: 

Register Description 

1105 SHRLIH version. 

1106 Entry address (origin+8000). 

1107 USERLIB owner. 

1108 Origin (for C runtime). 

llOY Length of error processing information. 

llOA Version (from VR parameter). 

llOB Date. 

floe Time. 

llOD Address of the error processing information. 

10 

llOE Contains SHRLIB if controllee requires the system shared library; otherwise, 
lfOE = O. 

llOF dorg and torg (from PFI) for SHRLIB. 

60459420 F 10-1 



I 
Register Description 

tllo 

1111 

1112 

tll 3 

1114 

1115 

1116 

lllB 

Ille 

111E 

lllF 

The rightmost 48 bits contain the bit address of the system shared library 
if the controllee requires the system shared library; otherwise, 1110 = O. 

ULIB name. 

dorg and torg for ULIB. 

Origin of ULIB. 

Constant 1120. 

Constant II IA. 

Constant 1. 

Dynamic stack address. 

Current register save area descriptor (length=6, address=dynamic stack 
address - 11180). 

Length and address of main data base. 

Entry address. 

Other registers are initialized to O, but can be initialized to other values, as necessary. 

GENERAL TABLE STRUCTURE 
The loader works with files that are composed of one or more object modules. Each object 
module consists of a number of standard tables; each table begins with a standard two-word 
header. The format of the table header is shown in figure 10-1. 

0 

0 

Word Field 

0 tabname 

1 length 

address 

tabname 

length address 
16 

Description 

Name of the table, in ASCII. The table names are: 

6MODULE6 
66CODE66 
REL 6CODE 
EXT 6ENTR 
INT6DATA 

INT 6RELO 
XFER 6SYM 
SYMB 6TAB 
SYMB 6DEF 
66PAV66 

63 

64 

48 

Length of the table, in fu'll words. For the debug symbol table, this 
field includes the length of the symbol definition table. 

Bit difference between the first word of the respective table and word 
1 of the module header table; that is, back pointer (bits) + address 
of the first word of the respective table (bits) = address of word 1 
of the header table (bits). 

Figure 10-1. Loader Table Header Format 

10-2 60459420 F 



MODULE TABLES 

The module tables described here are the header, code block, code relocation, and 
external/entry tables. 

MODULE HEADER TABLE 

The module header table contains general information concerning the object module and 
provides a linkage to all the other tables in the module. The format of the module header 
table is shown in figure 10-2. 

Words 7 through n of the module header each contain a table type and an address pointer to a 
table of that type. The pointer contains a bit address relative to the first word address 
of the header. By convention, the first table described is the code block table and the 
second is the external/entry table. 

Table types are listed in table 10-1. Only types 1, 2, 6, and 301 appear in the error 
processing information area of an object module. 

0 63 

0 t.MODULEt. 
64 

length 0 
16 48 

mod name 
64 

3 tdcreate 
64 

4 tlen proc 
16 48 

5 clen dbl en 
16 48 

type1 
16 

point1 48 
6 

°" 

type(n-5) 
16 

point(n-5) 
48 

n 

Figure 10-2. Module Header Table Format (Sheet 1 of 2) 

60459420 E 10-3 



6 

Word 

1 

2 

3 

4 

5 

to n 

Type t 

1 

2 

3 

5 

6 

101 

201 

301 

Field 

length 

mod name 

tdcreate 

tlen 

proc 

cl en 

dbl en 

typei 

pointi 

Description 

Length of the table, in full words. 

Name of the module, in ASCII; eight characters, left-justified with 
blank fill. 

Date and time the module was created; 15 digits (in hexadecimal form) 
and a positive sign. The format is +yymmddhhttssccc, where yy 
expresses the year, mm the month dd the day, hh the hour, tt the 
minute, ss the second, and ccc the millisecond. 

Word length of tables, excluding the code. 

ASCII name of the processor that created the module. 

Length of the code, in words. 

Length of the data base area, in bits. 

Table type (refer to table 10-1). 

Address pointer to a table of the type indicated in the type field. 
If the hexadecimal type is 4, the pointer contains the bit address of 
the next module header table. 

Figure 10-2. Module Header Table Format (Sheet 2 of 2) 

Table 10-1. Module Header Table Types 

Module Name Description 

66CODE66 Code block table. 
-

EXT 6ENTR External/entry table. 

REL 6CODE Code relocation table. 

XFERL\SYM Transfer symbol table. 

SYMB6 TAB Debug symbol table. 

INTL\DATA Interpretive data initialization table. 

INTL\RELO Interpretive relocation initialization table. 

66PAVt:..66 Pseudoaddress vector table. 

t These types appear in the error processing information area of an object module. 

CODE BLOCK TABLE 

The code block table contains the executable code. The table consists of the two-word 
loader table header (figure 10-1), followed immediately by one or more words of executable 
code. The table name is CODE. When the code block table is loaded in the controllee, the 
code block table has a pointer in the error processing information area. In this capacity, 
the table contains the program name (in ASCII) in word 1 rather than the character string 
66cooE66. 

10-4 60459420 E 

\ 



CODE RELOCATION TABLE 

This table describes relocation in the code. The format of the code relocation table is 
shown in figure 10-3. When this table is processed, the bit base address of the code is 
added to the 48-bit fields pointed to by the indexes in the bit string. If this table has a 
type of 8003; it means that SLGEN has preprocessed this table by adding the addresses at 
which this library is to be placed in the 48-bit field. 

0 

0 

length 

2 nbi 

3 

4 

t, 

n 

Word Field 

1 length 

address 

2 nbi 

ni 

3 base 

4 to n indexesi 

63 

RE~CODE 
64 

address 
16 48 

ni 
16 48 

base 
64 

indexes1 

''7 
indexes(n-4) 

Description 

Length of the table, in full words. 

Bit difference between the first word of the respective table and word 
1 of the module header table. 

Number of bits per index in the bit strings that start in word 5. 

Number of indexes in the string. 

Current bit address to which this module is relocated. 

Bit string of indexes, each nbi bits long. Each index references a 
half-word of code to be relocated relative to the base address of the 
code. 

Figure 10-3. Code Relocation Table Format 

60459420 E 10-5 



EXTERNAL/ENTRY TABLE 

The external/entry table contains definitions for all entry points, external symbols, and 
common blocks. These definitions consist of lists of entry point names, external names, 
entry point descriptors, and external descriptors. The format of the table is shown in 
figure 10-4. In words 3+n and 3+2n, the quantity n-m is the number of external names in the 
table. 

Each descriptor in the external/entry table has the form shown in figure 10-5. 

10-6 60459420 E 



3+m 

4+m 

5+m 

3+n 

4+n 

5+n 

3+m+n 

4+m+n 

5+m+n 

3+2n 

0 

2 

3 

4 

0 

·i.7 

'-7 

i.7 

7 

EXTb.ENTR 

length address 
16 

m n 
16 

entry point name1 

entry point name2 

entry point namem 

external name1 

external name2 

external name(n-m) 

entry point descriptor 1 

entry point descriptor2 

entry point descriptor m 

external descriptor1 

external descriptor2 

external descriptor(n-m) 

Figure 10-4. External/Entry Table Format (Sheet 1 of 2) 

63 

64 

48 

48 

64 

64 

'-, 

64 

64 

64 

i.,, 

6~ 

64 

64 

7 

64 

64 

64 

'-, 

64 

60459420 E 10-7 



I 

Word 

1 

2 

Field 

type 

value 

Field 

length 

address 

Description 

Length of the table, in full words. 

Bit difference between the first word of the respective table and word 
1 of the module header table. 

m Number of entry point names in the table. 

n 

0 

Total number of names in the table. 

Figure 10-4. External/Entry Table Format (Sheet 2 of 2) 

type 

Symbol type: 

1 
2 
3 

1114 
fl15 
fl16 

Entry point in code. 
Entry point in data. 
Constant entry point. 
External procedure. 
External data. 
Common block. 

value 

Description 

Depends on the type field. If type is 14 or 15, value is O; otherwise, 
if type is 1 to 2, value is the entry point's relative bit address in 
the code or data block; if type is 3, value is a 48-bit constant; and 
if type is 16, value is the bit length of the common block. 

Figure 10-5. Descriptor Format for Externals and Entry Points 

10-8 60459420 G 



The symbol types are defined as follows: 

Entry point 

A named value defined in the procedure; it is to be referenced as an external by an 
external procedure. It can be an address in the code block, an address in the data 
base, or a constant value. 

Common block 

A named alterable space referenced by one or more procedures. A common block can be 
initialized with relocatable data. A blank common is a common block with a name of 
eight blanks. 

External procedure 

An external that is referenced in a call. Having a symbol doubly defined as a 
common block and external procedure is specifically allowed. All external procedure 
names are eight characters, left-justified with blank fill. 

External data 

An external that is referenced by a method other than a procedure call. 

INTERPRETIVE DAT A INITIALIZATION TABLE 

When the loader processes information in the interpretive data initialization table, areas 
of static space are initialized. The table consists of the two-word loader table header 
(figure 10-1), followed immediately by one or more variable-length entries. The table name 
is INT A DATA. Each entry contains a one-word descriptor and a two-, three-, four-, or 
six-word data item. 

Data item and item descriptor pairs in the interpretive data initialization table are 
formatted as shown in figures 10-6 through 10-9. The first word in each figure is the data 
item descriptor. The remainder of each figure describes the data item proper, which is 
stored in the formats shown. 

0 63 

0 ord 1 ord2 ·type mode chain 
16 10 8 8 16 

length rba 
16 48 

2 value 
64 

Figure 10-6. Data Item Format 1 (Sheet 1 of 2) 

60459420 F 10-9 



I 

I 

Word 

0 

1 

2 

Field Description 

Pseudoaddress vector table ordinal of static space to be initialized. 

ord2 Pseudoaddress vector table ordinal of space relative to which 
relocation is to be performed (relocation base). 

type Type of data item that follows: 

mode 

chain 

length 

rba 

value 

1 Full-word broadcast. 
2 Half-word broadcast (not defined if the mode field is 1). 
3 Full-word vector transmit. 
4 Half-word vector transmit (not defined if the mode field is 

1). 
9 Byte string. 
A Bit string. 

Mode flag: 

0 Value to destination. 
1 Value plus relocation base to destination. 
2 Destination plus relocation base to destination. 

When the mode flag is 0, the values in the item are stored directly 
into the destination field {specified by the ord 1 field), and the 
ord2 field is ignored. When the mode flag is 1, the relocation base 
is added to the values before they are stored in the destination 
field; for this case, the result is always on a word boundary. When 
the mode flag is 2, the relocation base is added to the destination 
field; in this case, the value field is absent in the data item. 

Full-word count to the next data item descriptor in the table (same as 
a count of the number of full words in the data item). 

The length of the vector in words for data item types 1, 2, 3, and 4; 
the number of bytes of information in the value field, for data item 
type 9; and the number of bits of information in the value field, for 
data item type A. 

Relative bit address. 

A string or a vector value, depending on the data item type, as 
follows: 

• A full word to be stored in consecutive full words, starting 
at the relative bit address in the rba field (type 1). 

• A left-justified half-word to be stored in consecutive 
half-word locations, starting at the relative bit address in 
the rba field (type 2). 

• A full-word vector to be transmitted to the relative bit 
address in the rba field (type 3). 

• A half-word vector to be transmitted to the relative bit 
address in the rba field (type 4). 

• A left-justified byte string to be stored at the address in 
the rba field (type 9). 

• A left-justified bit string to be stored at the address in 
the rba field (type A). 

Figure 10-6. Data Item Format 1 (Sheet 2 of 2) 
10-10 60459420 G 



0 

2 

3 

Word 

0 

2 

3 

0 63 

ord 1 ord2 type mode chain 
16 16 8 8 16 

length1 rba 
16 48 

value 
64 

length2 string 
48 16 

Field Description 

Pseudoaddress vector table ordinal of static space to be initialized. 

ordz Pseudoaddress vector table ordinal of space relative to which 
relocation is to be performed (relocation base). 

type Type of data item that follows: 

mode 

chain 

length! 

rba 

value 

length2 

string 

5 Full-word sparse vector. 
6 Half-word sparse vector (not defined if the mode field is 1). 

Mode flag: 

0 Value to destination. 
1 Value plus relocation base to destination. 
2 Destination plus relocation base to destination. 

The meaning of this field is the same as that of the mode field in 
figure 10-6. 

Full-word count to the next data item descriptor in the table (same as 
a count of the number of full words in the data item). 

Number of 1-bits in the order vector specified in the string field. 

Relative bit address of the location to which the sparse vector is to 
be transmitted. 

Value part of the vector to be transmitted; contains a full-word of 
values (type 5), or a left-justified, half-word of values (type 6). 

Length of the control vector specified in the string field. 

A left-justified bit control vector (an order vector). 

Figure 10-7. Data Item Format 2 

60459420 F 10-11 



Word 

0 

1 

2 

3 

4 

0 63 

0 ord 1 ord2 type mode chain 
16 16 8 8 16 

length rba 
16 48' 

2 value 
64 

3 nbi ni 
16 48 

4 string 
64 

Field Description 

ordl Pseudoaddress vector table ordinal of static space to be initialized. 

ord2 Pseudoaddress vector table ordinal of space relative to which 
relocation is to be performed (relocation base). 

type Type of data item that follows: 

mode 

chain 

length 

rba 

value 

nbi 

ni 

string 

7 Full-word index list. 
8 Half-word index list (not defined if the mode field is 1). 

Mode flag: 

0 Value to destination. 
1 Value plus relocation base to destination. 
2 Destination plus relocation base to destination. 

The meaning of this field is the same as that of the mode field in 
figure 10-6. 

Full-word count to the next data item descriptor in the table. 

Number of values in the item. 

Relative bit address of the location to which the indexed elements of 
the vector are to be transmitted. 

A vector; contains a full-word of values (type 7), or a 
left-justified, half-word of values (type 8). 

Number of bits per index. 

Number of indexes. 

A bit string of ni indexes. Each index is nbi bits long and contains 
a full-word count (for type 7), or a half-word count (for type 8). 

Figure 10-8. Data Item Format 3 

10-12 60459420 F 



0 

2 

3 

4 

5 

6 

Word 

0 

1 

2 

0 63 

ord 1 ord2 type1 mode chain1 
16 16 8 8 16 

length1 rba 
16 48 

ni2 niter 
16 48 

ni 1 unused in it chain2 
16 16 8 24 

length2 unused 

ni3 

Field 

mode 

chainl 

lengthl 

rba 

niter 

16 48 

value 
64 

chain3 
16 48 

Description 

Pseudoaddress vector table ordinal relative to the data area to be 
initialized. 

Pseudoaddress vector table ordinal of space relative to which 
relocation is to be performed (relocation base). 

D (nested list). 

Mode flag: 

0 ~alue to destination. 
1 Value plus relocation base to destination. 
2 Destination plus relocation base to destination. 

The meaning of this field is the same as that of the mode field in 
figure 10-6. 

Full-word count to the next data item in the nested list. 

Number of nested item types that follow. 

Relative bit address of the vector. 

Nested iteration start item. 

Number of times the data item and items associated with this iteration 
start item are to be repeated. 

Figure 10-9. Data Item Format D (Sheet 1 of 2) 

60459420 F 10-13 



Word Field 

3 

init 

chain2 

4 length2 

5 value 

6 

chain3 

Description 

Nested data item identifier. 

Any initialization data type. If there is more than one data item in 
an iteration, types cannot be mixed. 

Length of the data item in number of words. 

Half-word vector length. 

A left-justified half-word to be stored in consecutive half-word 
locations, starting at the relative bit address in the rba field. 

Nested iteration end item. 

Nested item designator: 

0 No nested item types follow. 
1 More nested item types follow. 

Figure 10-9. Data Item Format D (Sheet 2 of 2) 

10-14 60459420 E 



INTERPRETIVE RELOCATION INITIALIZATION TABLE 
The interpretive relocation initialization table consists of the two-word loader table 
header (figure 10-1), followed immediately by one or more relocation items, one word per 
item. Item formats are similar to data initialization table formats but do not contain 
values. The name of the table is INTARELO. 

TRANSFER SYMBOL TABLE 

The transfer symbol table consists of the two-word loader table header (figure 10-1), 
followed immediately by one word containing the transfer symbol. The table name is XFER 
SYM. The transfer symbol is the symbolic name of the entry point to which control is to be 
transferred at the start of execution; the name is left-justified with blank fill. 

DEBUG SYMBOL TABLE 

The debug symbol table, which contains the ASCII representation of symbols that appear in a 
program, allows a symbol to be referenced by name rather than by address. This table 
appears in the error processing information area if the compiler or assembler used is 
capable of generating the table, and if the appropriate option.is selected and used during 
compilation or assembly. The format of the table is shown in figure 10-10. The length 
field in word 1 is the total length of the debug symbol table and the symbol definition 
table. 

60459420 G 10-15 

I 



0 

0 

2 

3 

~ 

n 

Word Field 

2 nsym 

3 

63 

SYMBb.TAB 
64 

length address 
16 48 

nsym 0 
16 48 

symbol 1 
64 

symbol2 
64 

J.7 

symboln 
64 

Description 

Number of symbols in this table. 

A symbol, which can be any of the following: 

• Variable or array name, in ASCII; must be left-justified with 
blank fill. 

• Statement line number, in ASCII; must be a hexadecimal value, 
right-justified with binary zero fill. 

• Statement label, in ASCII. Labels that are symbolic names 
are stored left-justified with blank fill; labels that are 
statement numbers are stored right-justified with ASCII zero 
fill. A statement line number of #FFFF is used to indicate 
code moved out of logical position by extended basic block 
optimization (EBBO). 

Figure 10-10. Debug Symbol Table Format 

10-16 60459420 E 



SYMBOL DEFINITION TABLE 

The symbol definition table is an extension to the debug symbol table. It provides further 
definition to the debugging symbols, including the type of symbol, address, and mode. The 
table consists of the two-word loader table header (figure 10-1), followed immediately by 
one or more two-word entries in the format shown in figure 10-11. The table name is I 
SYMB6DEF. 

Word 

0 

1 

0 

0 

Field 

type 

type 
16 

mode 
16 

Symbol type: 

type=O 
type=l 
type=2 
type=3 
type=4 
type=S 

location 

0 
32 

Description 

Unknown. 
Half-word register variable name. 
Variable or array name. 
Variable or array name. 
Line number. 
Label. 

63 

48 

ordinal 
16 

location Location field for the symbol type: 

1 Half-word address within the register file; because half-word 
values can be stored in full-word registers, the location can 
range up to hexadecimal lFF. 

2 Full-word register number. 
3 Bit address relative to the start of the data base. 
4 Bit address relative to the start of the code base. 
5 Bit address relative to the start of the code base. 

mode Symbol mode, consisting of three parts as shown below; in the case of 
a descriptor, p and dtype describe the contents of the reference 
vector: 

I pll desc 
31 

dtype 
121 

Subfield Description 

p Precision base indicator: 

0 Precision base is 32-bit or irrelevant. 
1 Precision base is 64-bit. 

Figure 10-11. Symbol Definition Table Entry Format (Sheet 1 of 2) 

60459420 G 10-17 



I 

I 

Word 

1 

Field 

mode 

ordinal 

Subfield 

desc 

dtype 

Description 

Description 

Descriptor indicator: 

0 Not a descriptor. 
1 Vector descriptor. 
2 Vector descriptor array. 
4 Sparse vector descriptor. 
5 Sparse vector descriptor array. 

Type of the referenced vector: 

0 Unknown. 
1 Logical. 
2 Integer. 
3 Real. 
4 Double precision. 
5 Complex. 
6 Character. 

10 Bit. 

Ordinal of the pseudoaddress vector table of the data base or common 
block (described under Pseudoaddress Vector Table, next). 

Figure 10-11. Symbol Definition Table Entry Format (Sheet 2 of 2) 

10-18 60459420 G 



PSEUDOADDRESS VECTOR TABLE 

The table pointed to by the ordinal in the symbol definition table is the pseudoaddress 
vector table of the data base or common block. The table consists of the two-word loader 
table header (figure 10-1), followed immediately by two words giving a code address and data 
base address, and one or more two word entries in any of the formats shown in figure 10-12. 
The table name isD.D. PAvD.!!:.D.. 

For common: 

0 63 

0 address 
16 48 

0 bit length 
16 48 

For an external symbol, referencing the entry point in code: 

0 63 

0 entry address in code 
16 48 

data base length data base 
16 48 

For an external symbol, referencing the entry point in data: 

0 63 

0 entry in data base 
16 48 

data base length data base 
16 48 

For an external symbol, referencing a constant entry point: 

0 ~ 

0 constant entry value 
16 48 

data base length data base 
16 48 

Figure 10-12. Pseudoaddress Vector Table Entry Formats 

60459420 E 10-19 





CHARACTER SET 

The ASCII character set is shown in table A-1. Aids for hexadecimal-to-octal and 
hexadecimal-to-decimal conversion are given in tables A-2 and A-3. 

60459420 E 

A 

A-1 



b4 b3 b2 b1 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

LEGEND 

Table A-1. ASCII Character Set with Punched Card Codes and EBCDIC Translation 

b9 0 0 0 0 0 0 0 0 
b7 0 0 0 0 1 1 1 1 
btj 0 0 1 1 0 0 1 1 
b5 0 1 0 1 0 1 0 1 

~ 0 1 2 3 4 5 6 7 
w 

NUL OLE SP 0 @ p p 
0 12-0-9-8-1 12-11-9-8-1 no-punch 0 8-4 11-7 8-1 12-11-7 

NUL 00 OLE 10 SP 40 0 FO @7C p 07 79 p 97 

SOH DC1 ! 1 A a a q 
1 12-9-1 11-9-1 12-8-7 1 12-1 11-8 12-0-1 12-11-8 

SOH 01 DC1 11 I 4F 1 Fl AC1 Q 08 a 81 q 98 

STX DC2 .. 
2 B R b r 

2 12-9-2 11-9-2 8-7 2 12-2 11-9 12-0-2 12-11-9 
STX 02 DC2 12 7F 2 F2 B C2 R D9 b 82 r 99 

ETX DC3 # 3 c s c s 
3 12-9-3 11-9-3 8-3 3 12-3 0-2 12-0-3 11-0-2 

ETX 03 TM 13 # 7B 3 F3 C C3 s E2 c 83 s A2 

EQT DC4 $ 4 D T d t 
4 9-7 9-8-4 11-8-3 4 12-4 0-3 12-0-4 11-0-3 

EQT 37 DC4 3C $ SB 4 F4 D C4 T E3 d 84 t A3 

ENO NAK % 5 E u e u 
5 0-9-8-5 9-8-5 0-8-4 5 12-5 0-4 12-0-5 11-0-4 

ENQ 2D NAK 3D % 6C 5 F5 E C5 u E4 e 85 u A4 

ACK SYN & 6 F v f v 
6 0-9-8-6 9-2 12 6 12-6 0-5 12-0-6 11-0-5 

ACK 2E SYN 32 & 50 6 F6 F CG v ES f 86 v A5 

BEL ETB 7 G w g w 
7 0-9-8-7 0-9-6 8-5 7 12-7 0-6 12-0-7 11-0-6 

BEL 2F ETB 26 70 7 F7 G C7 w E6 g 87 w A6 

BS CAN ( 8 H x h x 
8 11-9-6 11-9-8 12-8-5 8 12-8 0-7 12-0-8 11-0-7 

BS 16 CAN 18 ( 4D 8 F8 H ca x E7 h 88 x A7 

HT EM ) 9 I y I y 
9 12-9-5 11-9-8-1 11-8-5 9 12-9 0-8 12-0-9 11-0-8 

HT 05 EM 19 ) 50 9 F9 I C9 y E8 i 89 y A8 

10 LF SUB J z j z 
(A) 0-9-5 9-8-7 11-8-4 8-2 11-1 0-9 12-11-1 11-0-9 

LF 25 SUB 3F 5C 7A J D1 z E9 j 91 z A9 

11 VT ESC + 
l1-8-6 

K [ k I 

(B) 12-9-8-3 0-9-7 12-8-6 11-2 12-8-2 12-11-2 :12-0 
VT OB ESC 27 + 4E SE K 02 ti 4A k 92 I CO 

FF FS < L \ I I 

12 0-8-3 
I 

12-9-8-4 11-9-8-4 12-8-4 11-3 0-8-2 12-11-3 ,f_,, 
(Cl FF oc IFS 1C 6B < 4C L D3 \ EO I 93 6A 

13 CR GS - = M I m 
}11-0 12-9-8-S 11-9-8-5 11 8-6 11-4 11-8-2 12-11-4 

(0) 
CR OD IGS 1D - 60 = 7E MD4 ! SA m 94 } DO 

14 so RS > N .... n -
12-9-8-6 11-9-8-6 12-8-3 0-8-6 11-5 11-8-7 12-11-5 11-0-1 (E) so OE IRS 1E 4B > 6E N 05 ..., 5F n 9S - A1 

15 SI us I ? 0 0 DEL 
12-9-8-7 11-9-8-7 0-1 0-8-7 11-6 0-8-5 12-11-6 12-9-7 

!F) 
SI OF IUS 1 F I 61 ? 6F OD6 60 0 96 DEL 07 -

ASC 11 Character 
.______________. 

64-Character 

EBCDIC 
Character 

11-8-2 
5A 

Code 
(Hexadecimal) 

ASCII Subset 

-.... ................... ----.. ............ ~--............... ----
96 -Ch a r act er 

ASCII Subset 

1 1 1 1 1 1 
0 0 0 0 1 1 

0 0 1 1 0 0 
0 1 0 1 0 1 

8 9 
10 11 12 13 
(A) (B) (C) (0) 

11-0-9-8-1 12-11-0-9-8-1 12-0-9-1 12-11-9-8 12-11-0-9-6 12-11-8-7 
OS 20 30 41 58 76 9F 

0-9-1 9-1 12-0-9-2 11-8-1 12-11-0-9-7 11-0-8-1 
sos 21 31 42 59 77 AO 

0-9-2 11-9-8-2 12-0-9-3 11--0-9-2 12-~ 1-0-9-8 .11-0-8-2 
FS 22 cc 1A 43 62 78 AA 

0-9-3 9-3 12-0-9-4 11-0-9-3 12-0-8-1 11--0-8-3 
23 33 44 63 80 AB 

0-9-4 9-4 12-0-9-S 11-0-9-4 12-0-8-2 11--0-8-4 
BYP 24 PN 34 4S 64 8A AC 

11-9-S 9-5 12-0-9-6 11-0-9-S 12-0-8-3 11--0-8-5 
NL 15 RS 35 46 65 8B AD 

12-9-6 9-6 12-0-9-7 11-0-9-6 12-0-8-4 11-0-8-6 
LC 06 UC 36 47 66 BC AE 

11-9-7 12-9-8 12-0-9-8 11-0-9-7 12-0-8-5 11-0-8-7 
IL 17 GE 08 48 67 80 AF 

0-9-8 9-8 12-8-1 11--0-9-8 12--0-8-6 12-11--0-8-1 
28 38 49 68 8E BO 

0-9-8-1 9-8-1 12-11-9-1 0-8-1 12--0-8-7 12-11-0-1 
29 39 Sl 69 8F Bl 

0-9-8-2 9-8-2 12-11-9-2 12-11-0 12-11-8-1 12-11-0-2 
SM 2A 3A 52 70 90 B2 

0-9-8-3 9-8-3 12-11-9-3 12-11-0-9-1 12-11-8-2 12-11--0-3 
CU2 2B CU3 3B S3 71 9A B3 

0-9-8-4 "12-9-4 12-11-9-4 12-11-0-9-2 12-11-8-3 12-11-0-4 
2C PF 04 54 72 9B B4 

12-9-8-1 11-9-4 12-11-9-5 12-11-0-9-3 12-11-8-4 12-11-0-5 
RLF 09 RES 14 55 73 9C BS 

12-9-8-2 9-8-6 12-11-9-6 12-11-0-9-4 12-11-8-5 12-11-0-6 
SMM OA 3E 56 74 9D BG 

11-9-8-3 11-0-9-1 12-11-9-7 12-11-0-9-S 12-11-8-6 12-11-0-7 
CU1 1B E1 57 7S 9E 87 

1 1 
1 1 

1 1 
0 1 

14 15 
(E) (F) 

12-11-0-8 12-11-9-8-4 
B8 DC 

12-11--0-9 12-11-9-8-5 
B9 DD 

12-11--0-8-2 12-11-9-8-6 
BA DE 

12-11--0-8-3 12-11-9-8-7 
BB OF 

12-11--0-8-4 11--0-9-8-2 
BC EA 

12-11--0-8-5 11-0-9-8-3 
BO EB 

12-11-0-8-6 11-0-9-8-4 
BE rl EC 

12-11--0-8-7 11-0-9-8-5 
BF ED 

12--0-9-8-2 11--0-9-8-6 
CA EE 

12--0-9-8-3 11-0-9-8-7 
CB EF 

12-0-9-8-4 12-11-0-9-8-2 
J' cc l(LVM) FA 

12--0-9-8-5 12-11-0-9-8-3 
CD FB 

12--0-9-8-6 12-11-0-9-8-4 
y CE FC 

12--0-9-8-7 12-11-0-9-8-5 
CF FD 

12-11-9-8-2 12-11-0-9-8-6 
DA FE 

EO 
12-11-9-8-3 12-11-0-9-8-7 

DB FF 



Table A-2. Hexadecimal-to-Octal Conversion Aids 

~ 
First Hexadecimal Digit 

0 1 2 3 4 5 6 7 8 9 A B c D E F 

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360 

Hexadecimal 

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361 

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362 

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363 

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364 

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365 

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366 

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367 

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370 

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371 

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372 

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373 

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374 

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375 

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376 

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377 

Octal 000- 040- 100 - 140 - 200 - 240 - 300- 340-

037 077 137 177 237 277 337 377 

60459420 E A-3 



Table A-3. Hexadecimal-to-Decimal Conversion Aids 

Exponent for Base 16 

5 4 3 2 1 0 

Hexadecimal 0 0 0 0 0 0 0 
Number 

1 1048576 65536 4096 256 16 1 

2 2097152 131072 8192 512 32 2 

3 3145728 196608 12288 768 48 3 

4 4194304 262144 16384 1024 64 4 

5 5242880 327680 20480 1280 80 5 

6 6291456 393216 24576 1536 96 6 

7 7340032 458752 28672 1792 112 7 

8 8388608 524288 32768 2048 128 8 

9 9437184 589824 36864 2304 144 9 

A 10485760 655360 40960 2560 160 10 

B 11534336 720896 45056 2816 176 11 

c 12582912 786432 49152 3072 192 12 

D 13631488 851968 53248 3328 208 13 

E 14680064 917504 57344 3584 224 14 

F 15728640 983040 61440 3840 240 15 

f.-
j16 x 15i = m10 

To find E16 x 163 ; look at row E, column 3 and find 57344 

A-4 60459420 E 



DIAGNOSTICS 

This appendix describes the meanings of the system error codes and tape error codes. 
Privileged system task error codes are documented in the VSOS 2 Operator's Guide. System 
dead codes and NAD disaster codes are now documented in the VSOS Troubleshooting Guide. RHF 
connect reject codes are documented in the RHF Application-to-Application Interface 
Specification. 

SYSTEM ERROR CODES 

The error codes listed in table B-1 are returned in word #8B of the minus page. The errors 
signified by the codes terminate the task that generated the error. The KERNEL, RESTART, 
and RECOVERY tasks are part of the resident operating system; the AOK and SCAT tasks are 
part of the virtual system. 

Table B-1. System Error Codes (Sheet 1 of 2) 

B 

Hexadecimal 
Code Significance Issued By 

5 

6 

7 

8 

A 

B 

22 

24 

25 

26 

27 

60459420 F 

Illegal instruction; the instruction is not in the CYBER 200 
instruction set. 

The exit force instruction does not have a pointer to a 
system message to be executed. 

Illegal request. 

Parity error in data transfer between the CPU and central memory. 

A CSOx request did not contain a file segment table ordinal. 

Illegal C504 request. 

Disk I/O error occurred for read/write of a drop file. 

Large page limit exceeded. 

Page size conflict in drop file. 

Virtual address duplicate direct fault. 

Write violation in system call. 

KERNEL 

KERNEL 

KERNEL 

RESTART 

Resident 
system 

Resident 
system 

PAGER 

PAGER 

PAGER 

PAGER 

PAGER 

B-1 e 



Hexadecimal 
Code 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

40 

51 

209 

210 

212 

213 

215 

Bxx 

Cxx 

Dxx 

Exx 

e B-2 

Table B-1. System Error Codes (Sheet 2 of 2) 

Significance Issued By 

Write violation occurred while the system was swapping in a page PAGER 
referenced by the job. 

The job referenced a page within the virtual system address range. PAGER 

The drop file map is full; the job can define no more vitual PAGER 
regions. 

This job class is not allowed large pages. Virtual 

The job referenced a page in the shared library reserved area. 

Drop file space overflow; no more virtual space can be mapped into 
the drop file. 

Page was not mapped because the drop file map is full. 

Drop file overflow was caused by a call to the virtual system. 

No time available for this task. 

The paging routine received an I/O error. 

Bound implicit map anomaly. 

File segment table is full. 

No source file exists. 

No drop file exists. 

The pointer to the system.message Alpha does not exist. 

The pointer to the system message Alpha was out of bounds. 

No error exit address exists. 

File is already extended to maximum. xx is an I/O connector 
number. 

Attempted to read past the end of file on a file. 
connector number. 

xx is an I/O 

No segment space in FILEI left for extension. xx is an I/O 
connector number. 

No space left on the disk for extension. xx is an I/O connector 
number. 

system 

PAGER 

PAGER 

PAGER 

PAGER 

PAGER 

PAGER 

Virtual 
system 

GETSEG 

AOK 

AOK 

SCAT 

SCAT 

SCAT 

GETSEG 

REX TEND 

GETSEG 

GETSEG 

60459420 F 



TAPE ERROR CODES 
The system returns a tape error to the caller in the ioer field of the call. The errors 
that range from 1 to 100 return control to the caller when one of these errors is detected. 
The errors that range from 101 to 200 are tape I/O errors. These errors can be fatal or 
require operator action unless the caller selected user error processing in the OPEN system 
message. The codes listed in table B-2 are in decimal notation. 

Table B-2. Tape Error Codes (Sheet 1 of 4) 

Tape Errors 

Code Significance 

001 Call not in user range. 

002 Illegal subfunction code (sfnc). 

003 Nonexistent I/O connector (ioc). 

004 Buffer size greater than 48 pages. 

005 Tried to write zero-length logical tape record (V tape format). 

007 PRU read is longer than MPRU. Device capacity exceeded. 

008 LRU is greater than MPRU. 

009 WRITE attempted a zero-length PRU. 

010 User WRITE buffer went minus. 

011 HDRl label not in label buffer. 

012 Non-numeric file sequence number. 

013 Section 1 is not in VSN list. 

014 Cannot swap backwards, no previous VSN. 

016 File accessibility characters do not match. 

017 Position not found in multifile set. 

019 Next VSN was not given. 

020 Tape file does not have proper access. 

021 Read or skip forward after write (illogical sequence). 

030 Attempt to reuse call before previous_ call is complete. 

031 Previous call for this unit had a fatal error. 

032 Call crosses page boundary. 

033 IOC is not for a tape file. 

034 Tape not assigned to this user. 

037 For write operation, sum of LRU sizes is greater than buffer length. 

60459420 F B-3 e 



Code 

039 

040 

041 

042 

043 

044 

045 

046 

047 

048 

049 

050 

051 

052 

053 

054 

055 

Code 

101 

102 

105 

106 

107 

108 

109 

110 

111 

e B-4 

Table B-2. Tape Error Codes (Sheet 2 of 4) 

Tape Errors 

Significance 

Forward motion attempted when end of information has been detected on this file. 

End of tape encountered. (This number is returned to the user only if the user 
selected end-of-tape processing in the Q50PEN call.) 

Load point encountered on tape from backward motion. 

Tape format mismatch. 

EOI encountered while positioning to HDRl. 

Illegal user labels in label buffer. 

Small and large pages exist in the buffer. 

System tables full, try again. 

I/O request currently outstanding for this buffer. 

Length of LRU array less than or greater than 255. 

Attempted to write over unexpired label. 

Buffer size smaller than MPRU for read data function. 

Tried to write two consecutive tape marks. 

Data in LRU array after end of group. 

Buffer length is less than MPRU. 

Tape unit not assigned to any user. 

All hardware paths to tape unit are down. 

Tape I/O Errors 

Significance 

Tape that is unlabeled should be labeled. 

Tape that is labeled should be unlabeled. 

Write parity error irrecoverable. 

Unrecognizable label group. 

Header label fields do not match. 

Record fragment encountered. 

ATS software error. 

Unexpected load point detected. 

Read parity error unrecoverable. 

60459420 F 



Table B-2. Tape Error Codes (Sheet 3 of 4) 

Tape I/O Errors 

Code Significance 

112 Unrecognizable trailer label. 

113 Cannot read label group. 

115 ATS hardware error, see hardware status. 

116 Position uncertain, ready dropped. 

117 Unrecoverable erase parity error. 

118 Unrecoverable tape mark parity error. 

120 Unit reserved by other controller. 

122 Tape mark write verify failure. 

123 Blank tape encountered during read. 

125 Tape repositioning error; block ID mismatch. 

126 Tape repositioning error; invalid block ID. 

128 Channel malfunction I/O suspended by driver. 

129 Multifile position uncertain. 

131 Dev ID burst fault. Remount on any unit. 

132 Dev tape cleaner fault. Remount on any unit. 

135 Tape unit switched offline. 

136 No write enable ring in reel. 

137 Controller not capable of requested density. 

138 Unexpected error returned by ATS controller. 

139 Software interface error between NADs. 

140 TAD hardware error. 

141 Write verify error. 

142 Unit remained busy after rewind. 

143 Unit dropped ready during rewind. 

145 Illegal user level number. 

60459420 E B-5 



Table B-2. Tape Error Codes (Sheet 4 of 4) 

Tape I/O Errors 

Code Significance 

146 Label reposition error. 

147 Unit reset status active, position uncertain. 

148 Tape label not multiple of 80 characters. 

149 Unit is not ready at reserve time. 

150 No file mark after EOFl. 

151 Missed file mark. 

152 No label block after file mark. 

153 VOLl not detected after load point. 

160 Encountered two tape marks in reverse. 

170 No current block count given for fund position. 

171 No file mark or load point on latest block ID. 

172 No label found on labeled tape. 

173 Can~ot find position in find position. 

174 Tape mark encountered, position found. 

175 Compare count is over block ID count. 

B-6 60459420 E 



GLOSSARY c 

Access 

A parameter that specifies the read, 
write, append, modify, and/or execute 
access desired for a file at the time 
the file is opened or created. The 
system grants access only if the 
appropriate field of the file index 
table allows such access. 

Account Block 

The amount of system resources 
accumulated per charge number. 

Account Identifier 

ATC 

ATS 

One to eight characters indicating who 
is to be charged for system resource 
usage attributable to a user number. 

Abnormal termination control. 

Advanced tape system. 

Batch Dayf ile 

A file produced by the batch processor 
for a batch job that gives a history of 
the job. Information on the file 
includes the time various control 
statements began execution and any error 
or status information produced by system 
utilities. The dayfile is printed as 
the last part of job output. 

Batch Job 

A series of tasks that is executed as 
controllees of the batch processor. 

60459420 F 

Batch Processor 

A system utility that initiates and 
controls batch jobs. Control statements 
that are file names cause the files 
named to be executed as controllees of 
the batch processor. Other control 
statements result in actions taken by 
the batch processor alone. 

Block 

A contiguous 512-word quantity starting 
on an even 512-word boundary. The block 
is the unit used for expressing file and 
memory lengths. 

Bound Implicit Map 

Part of the minus page of an executing 
file that relates virtual addresses with 
physical mass storage addresses. 

Byte 

CAT 

A sequence of 8 bits that is a 
subdivision of a word and represents a 
single character. 

Currently active table (T CAT) used by 
RHF processing. This is a virtual 
system table. 

Central Processing Unit (CPU) 

The computational facility of VSOS. 

Charge Number 

Combination of the account identifier 
and project number that is to be charged 
for system resources. 

C-1 



Checkpoint 

A system feature that captures a task 
and any of its controllees at some point 
in execution so that the task can be 
restarted from that point. In a FORTRAN 
program, checkpoint is called by the 
file name CHKPNT. 

Controllee 

A task called into execution by a 
controller. 

Controllee Chain 

A linked series of tasks that results 
when one task brings another task into 
execution. That task can, in turn, 
initiate another task. As many as nine 
levels of tasks can be involved. The 
highest level is level 1; the lowest is 
level 9. 

The tasks in the chain are not run 
concurrently. When a controller starts 
a controllee, the controller is suspended 
until the controllee returns control to 
it. 

Controllee File 

Refer to Virtual Code File. 

Controller 

CPU 

CRT 

c-2 

A task that produces another task. 

A relative term that indicates that a 
member of a controllee chain that has a 
controllee task attached. A controller 
might be a controllee of another task. 
The batch processor is one controller 
that has no controller (that is, a 
level-1 task). 

See Central Processing Unit. 

Currently running table (T CRT) used by 
RHF processing. This is a-virtual 
system table. 

DB 

Descriptor block table. 

Data Base 

The constants and variables used by a 
routine, not including entities declared 
to be in common. 

Default Project Number 

A project number that is assigned to a 
user number as default. Whenever a user 
executes a job or interactive session, 
the system resources accumulated will be 
charged to the default project number if 
in existence, unless the user supplies a 
charge number within the job or 
interactive session. 

Descriptor Block Number 

A unique number associated with the 
program until it terminates or is 
disconnected. This number is the key 
link between the operating system and an 
executing program. 

DFBM 

Data flag branch manager. 

Drop File 

A file created by the system for 
modified pages of an executing task, 
free space, and write-temporary files. 

Drop file names are formed by the system 
shifting the controllee file name right 
one character and prefixing it with a 
digit that identifies the level (1 
through 9) in a controllee chain. 

Drop File Map 

Part of the minus page of an executing 
file that relates virtual addresses with 
physical mass storage addresses. An 
entry is made in the drop file map every 
time a free-space reference is made by 
the executing code. 

60459420 G 



Dynamic Stack 

The stack that resides in free space. 
All registers are saved on subroutine 
calls in the dynamic stack. 

EBCDIC 

EOF 

EOG 

EOI 

Extended binary coded decimal 
interchange code. 

End of file. 

End of group. 

End of information. 

I 
Epilogue 

A set of instructions executed at the 
exit of a subroutine that restores 
registers and resets conditions. 

ERS 

Efficient run size. 

Explicit Input/Output 

FADE 

File 

A means of accessing a mass storage or 
tape file in which data is buffered 
under program control. Contrast with 
Implicit Input/Output. 

File access directory entries. 

A collection of data that can be 
accessed by file name. In the absence 
of an adjective such as terminal or 
tape, all references to files in this 
manual imply mass storage files. 

File Index Table 

A system table that holds all 
information relating to active user's 
files and their characteristics. 

60459420 F 

File Type 

A category that defines file structure 
from a system standpoint. File types 
are physical, virtual data, and virtual 
code. 

Free Space 

FST 

Space in memory available for use that 
gets paged to and from the drop file. 
The range for free space is #4000 up to 
#7FFFFFFFFFFF. 

File segment table. 

Implicit Input/Output 

A means of accessing a mass storage file 
in which the system brings a page of the 
file into main memory in response to a 
reference on that page. Contrast with 
Explicit Input/Output. 

Input/Output Connector (IOC) 

An entry in a minus page that links a 
file with a task for input/output 
purposes. 

Invisible Package 

roe 

IQM 

JDN 

JDT 

Job 

A hardware feature that contains the 
current address and control information 
for a task. 

See Input/Output Connector. 

Input queue manager. 

Job descriptor number. 

Job descriptor table. 

Refer to Batch Job. 

C-3 

I 

I 



I 

Job Block 

The amount of resources accumulated for 
the duration of the job. 

Labeled Tape 

A magnetic tape with labels conforming 
to American National Standard 
X3.27-1978, Magnetic Tape Labels for 
Information Interchange. 

Large Page 

128 small pages; 65,536 contiguous words 
of 64 bits. 

Last-Group-File 

LCN 

Identifies the member of an 
output-file-family which contains 
disposition information for QTF. 

Loosely coupled network. 

Level 

Depending on context, can refer to the 
security level of a file, the level of a 
file in the controllee chain, the level 
of a routine involved in an interrrupt, 
or the level of protocal in RHF. For 
the first and second meanings, refer to 
Security Level and Controllee Chain. 

With respect to interrupt processing, 
level 0 refers to the normally executing 
routine. Level 1 refers to the 
interrupt routine when it is in 
execution. 

Library 

LID 

C-4 

A file of modules, in a format produced 
by the system utility OLE, that can be 
used to satisfy external references 
during loading. 

Logical identifier. The name specified 
by a user to designate a remote host to 
be accessed through the Remote Host 
Facility. 

Local File 

LRU 

A private file that is destroyed by the 
system after termination of the batch 
job or interactive terminal session that 
creates it. 

Logical record unit. 

Main Memory 

Map 

Memory associated with the central 
processing unit from which instructions 
can be executed. Also called MCS. 

Refer to Bound Implicit Map or Drop File 
Map in chapter 2; also MAP system 
message (chapter 5). 

Mass Storage File 

A file management category that indicates 
no special processing after task 
termination. In a general sense, mass 
storage indicates disk-resident files, 
as opposed to magnetic tape or terminal 
files. 

Master Project Number 

One to three characters (the first three 
nonspecial characters of a project 
number) to be assigned to a mass storage 
file. 

Master User 

MCS 

MCU 

MDI 

A user who has been designated to be able 
to audit any user files with a specific 
account identifier. 

See Main Memory. 

Maintenance control unit. 

Marginal drive indicator. 

60459420 F 

I 



I 

Message 

Refer to System Message. 

Minus Page 

The first page of a virtual file used by 
the system to hold items such as the 
invisible package, input/output connector 
information, and maps of defined virtual 
space. Drop files can also have a second 
minus page containing overflow input/ 
output connector and map information. 

MODDROP 

NAD 

A management category for implicitly 
opened files that indicates a file is 
read-only on mass storage. Modifications 
to the file are retained in the drop 
file (write-temporary) and do not alter 
the file image. 

Network access device. 

Nonprivileged 

User number which does not have the 
privileged attribute. Refer to 
Privilege. 

Object Code File 

OLE 

A file generated by compilation or 
assembly of a source language program 
that can be used by the loader to 
produce an executable file. Contrast 
with Virtual Code File. 

System utility that creates and modifies 
a file in library format or modmerge 
file format. 

Output File 

A file management category that 
indicates a file is destined for print 
or punch equipment. 

Also, a generic term for a file being 
written, as opposed to an input file 
being read. 

60459420 F 

Output-File-Family 

A set of files residing on User-6 that 
was generated as the output of a batch 
job or as the output of an MFQUEUE. 

Ownership 

The term for the type of permanent file 
catalog to which a file belongs. 
Ownership indicates whether a file 
belongs to a private user, a pool, or 
the system (public). 

Pack File Index (PFI) 

PAD 

A table of 16-word file index table 
entries which exists on each pack to 
control and describe the files located 
on that pack. 

Pool access directory. 

Page 

The unit by which main memory is 
managed; a block of contiguous 512 
64-bit words. Can be a large page of 
128 blocks or a small page of 1, 4, or 
16 blocks. 

Page Fault 

Reference by virtual address to a page 
not currently in main memory, causing a 
program interrupt and paging in. 

Paging In 

Operation to move a page from auxiliary 
memory to main memory. 

Paging Out 

Operation to move a page from main 
memory to auxiliary memory. 

Permanent File 

A private file that remains in the 
system after termination of the batch or 
interactive session that creates it. 

C-5 

I 



I 

Physical Data File 

A file type that indicates a file 
containing nonexecutable data only. 

Physical Memory Address 

PID 

Pool 

Address of a page in main memory. Also 
called physical address. 

Physical identifier. The unique name 
used by the Remote Host Facility to 
designate an individual host system. 

One mechanism for file sharing on VSOS. 
A pool is a file set created and 
maintained by a pool boss. More than 
one user number can access a pool as 
determined by the PACCESS request for 
the pool. 

Pool File 

pp 

An ownership category that indicates a 
file can be accessed by any privileged 
task and, after PATTACH, by any task 
running under a user number the pool 
boss authorizes by using PACCESS. 

Peripheral processor. 

Private File 

An ownership category that indicates a 
file can be accessed either by a task 
running under the user number under 
which the file is stored, by a 
privileged user, or by another user who 
has been given permission by the owner. 

Privilege (User) 

An attribute granted a user number which 
allows access to all permanent files in 
the system and to some operating system 
functions. 

Project Number 

C-6 

1 to 20 alphanumeric characters 
(including the special characters 
* and -) indicating to which project, 
within the account identifier, the 
system resources are to be charged. 

Prologue 

PRU 

A set of instructions executed at the 
entry to a subroutine that swaps 
registers and sets initial conditions. 

Physical record unit. 

Public Files 

Files considered to be system owned. 
They belong to user number 000000. 
Public files are accessible to all users. 

Register File Block 

RHF 

The second block of a virtual code file 
which contains register contents when a 
task is not executing in the CPU. 

Remote Host Facility. 

RHFMT 

Remote Host Facility mainframe table 
(T_RHFMT). 

RHFT 

Remote Host Facility table (T_RHFT). 

SAE 

Standardized accounting enhancements. 

Scratch File 

A management category that indicates a 
file is to be destroyed upon termination 
of the task that created it. 

Security Level 

Attribute of a file, task, job, or user 
number used to prevent unauthorized data 
access. The eight security levels are 
numbered 1 through 8, from least to 
greatest security. 

SHRLIB 

The area of point F virtual memory 
reserved for shared library routines 
(virtual bit address #800000000000 -
l/BFFFFFFFFFFF). 

60459420 F 

I 

I 



I 

SIT 

System intialization table. 

Small Page 

One, four, or sixteen blocks, where a 
block is 512 contiguous 64-bit words. 

Source File 

SPT 

A generic term for a file containing 
information used by a utility or other 
task whose specific meaning depends on 
the context of its use: the controllee 
file associated with a drop file, for 
instance, is termed the source file. 

In an UPDATE utility context, a file 
produced by UPDATE that would allow 
recreation of a new program library on a 
subsequent creation run. In the FORTRAN 
context, the input program text ~s 
called the source. 

System processor table. This is a 
virtual system table. 

System Billing Unit (SBU) 

An installation-defined unit used for 
charging of system resource usage. The 
unit may incorporate tape use access, 
number of tape functions, number of disk 
accesses, number of pages transferred to 
or from disk, and CPU usage in 
microseconds, depending on installation 
parameter settings. An example of SBU 
is the time in microseconds of CPU use. 
Refer to System Time Unit. 

System Dayfile 

A file of all significant events in the 
system, including user dayfile entries, 
interactive commands, batch processor 
errors, privileged system task errors, 
and login errors. 

System Interface Language (SIL) 

Set of subroutines callable by user 
programmers. Each subroutine formats 
and issues one or more system messages. 

60459420 F 

System Message 

The means by which the operating system 
and user tasks communicate with each 
other. System messages are calls to the 
virtual and resident systems. 

System Time Unit (STU) 
An installation-defined unit used for 
allocating system resources. The unit 
might incorporate tape use/access, 
number of tape functions, number of disk 
accesses, number of pages transferred to 
or from disk, and CPU usage in 
microseconds. An example of STU is time 
in microseconds of CPU use. Refer to 
System Billing Unit. 

Task 

An executable program. 

TTY 

Teletypewriter terminal unit. 

UAT 

User activity table. 

UEP 

User error processing. 

User Number 

Six digits that identify a file owner or 
user of system resources. One task can 
be in execution for a given user number 
for each suffix at one time. 

User Project Control 

A user attribute, if set for a user 
number, the charge number must be 
specified for the executing job or the 
user must have a default project number 
assigned. 

Virtual Address 

Address that refers to virtual memory 
and is translated, through the page 
table, into a physical address. 

C-7 

I 



Virtual Address Space 

The set of virtual addresses that belong 
to a specific active task. 

Virtual Code File 

A file type that indicates an executable 
file having a minus page as its first 
page and a page 0 as its second page. 
The file must be created by the loader. 
A virtual code file is also called a 
controllee file. Contrast with Object 
Code File. 

Virtual Memory 

A concept by which memory can be 
addressed as if it were as large as 
needed. The system manages 
correspondence between the user memory 
addresses and physical main memory. 

Virtual Range 

VAA 

VRF 

VRI 

C-8 

Range of virtual addresses. Sarne as 
Virtual Address Space. 

Variable rate accounting. 

Variable rate factor. 

Variable rate index. 

VSDT 

VSN 

vsos 

Word 

Virtual system debug tool. 

Volume serial number. 

Virtual Storage Operating System. 

A 64-bit division of main memory or mass 
storage. Bits are numbered 0 through 
63, from left to right (most significant I 
to least significant). 

Working Set 

Basis for managing the amount of 
physical memory available to a task. It 
is the portion of a task's virtual 
addresa space that is referenced most 
frequently during a window of the 
execution of the task. 

Working Set Size 

Number of 512-word blocks in the working 
set. 

Write-Temporary 

Refer to MODDROP. 

60459420 F 



REGISTER FILE CONVENTIONS 

The VSOS assumes some conventions regarding the handling of the register file, an area 
containing 256 registers numbered from #0 to #FF. Some of the registers are used by the 
operating system for specific purposes, and others are available solely for the purposes of 
the user. One register file area of particular importance is the register save area, which 
is saved and restored each time an external procedure call is made. 

REGISTERS 

The register file is subdivided into five major areas, as shown in figure D-1. The 
environment register area and the working register area are jointly referred to as the 
register save area, registers that are saved on calls to external procedures. 

MACHINE REGISTERS 

D 

These registers include registers #0, #1, and #2. Register #0 contains machine zero 
(machine zero is described in the CYBER 200 Computer System Hardware Reference Manual). 
Registers #1 and #2 are used by Data Flag Branch Manager. When a data flag branch occurs, 
the hardware sets register #1 to contain the address of the next instruction that would have 
executed had the data flag branch not occurred. The data flag branch causes transfer of 
control to the address contained in register #2. This address is set by the user (most 
likely, a software product such as DEBUG or FORTRAN runtime). 

TEMPORARY REGISTERS 

A user program can utilize two areas for temporary storage, addresses, or data. The two 
areas are from register #3 to #13, and from #20 to the end of the register save area. 

The lower area (#3 to #13) is large enough for execution of short subroutines that do not 
call other subroutines (such as SIN and COS) completely within the temporary space, 
eliminating the need for saving and restoring the register save area when short modules are 
needed by a program. The upper area (#20 to an upper limit specified by the caller), which 
is large enough to hold a variety of user procedures, cannot be modified by the callee. If 
the callee needs to use registers in the range of #20-#FF, it must save and restore the 
caller's copies of those registers. 

60459420 E D-1 



GLOBAL REGISTERS 

The contents of the global registers are universal to all programs including VSOS. The 
contents can be assumed by all modules. 

The global registers contents are as follows: 

Register 

1114 

1115 

1116 

1117 

1118' 1119 

Contents 

The constant #20. 

The constant #lA. 

The constant Ill. 

The parameter descriptor. The number of parameters being 
passed during a call is contained in the leftmost 16 bits; the 
virtual bit address of the parameter list is stored in the 
rightmost 48 bits. Figure D-2 illustrates how parameters are 
passed to routines. The parameters are passed by address. 

Function results obtained from a called function. For 
example, the result of a trigonometric or exponential function 
would be placed in register 1118. Register #19 could be used 
when a result has two components (for example, the imaginary 
part of a complex number whose real part is returned to 
register 1118). 

Registers #14 and #15 are used to swap the register file in/out at prologue/epilogue time. 

D-2 60459420 E 



0 

0 

2 

3 

'7 

13 

14 

15 

16 

17 number of 
parameters 16 

18 

19 

1A 

18 undefined 

16 

1C register 
count 16 

10 register 
count 16 

1E undefined 
16 

1F 

20 

'-, 

FF 

machine 0 

data flag branch exit address 

data flag branch entry address 

2015 

lA15 

1 

pointer to list of parameter addresses 
(parameter descriptor) 

function result register 1 

function result register 2 

return address 

address of top of stack 
(dynamic stack pointer) 

address of current program's register 
save area (current stack pointer) 

address of caller's register save area 
(previous stack pointer) 

address of first word of callee's data base 
(link register) 

data flag table pointer for DFBM 

Figure D-1. Register File 

63 
\ 

64 

64 

64 ' 

J.7 

: 

64 

64 

64 

48 

64 

64 

64 

4& 

_AB_ 

48 

48 

64 

7 

Machine 
Registers 

Temporary 
Registers 

Global 
Registers 

Environment 
Registers 

Working 
Registers 

60459420 E D-3 



D-4 

Register 
#17 

0 

2 

3 

7 

n 

number of pointer to list of parameter addresses 
parameters 

16 / 
(parameter descriptor) --

~ 
length 

address of parameter 1 (in words/bytes) 
16 

length address of parameter 2 
16 

length address of parameter 3 
16 

: 

length address of parameter n 
16 

Figure D-2. List of Parameter Addresses 

I NOTE I 
Only descriptors or type character parameters 
have meaningful values in the length field in 
the parameter list. 

If the parameter is an address, then this 
address is in the parameter list; for 
example, an array. 

63 

48 

~ 

48 

48 

7 

48 

60459420 E 



ENVIRONMENT REGISTERS 

The environment registers consist of the minimum set needed to support the sharing of code 
in a virtual system and the general requirements of recursive, reentrant execution. These 
registers, along with a number of working registers, are the register save area. Each time 
a caller releases control to a callee, a new environment register/working area is 
established for the callee. A stack structure is used for this. The environment registers 
include: 

Register 

11 lA 

111 B 

If lC 

If 1 D 

ff lE 

ff lF 

Description 

Return register. Contains the virtual bit address of the 
location in the caller's program to which the callee's program 
normally returns. 

Dynamic stack pointer. Contains the relative bit address of 
the next available free location in the dynamic stack. It is 
the caller's responsibility to leave the address of the 
dynamic stack pointer on a double-word boundary. The dynamic 
stack pointer is always advanced prior to storing data into 
that region or before addresses pointing to that region are 
calculated. 

Current stack pointer. Contains the length and relative bit 
base address of the region (the stack frame) in the dynamic 
stack where a caller wants its registers to be saved. The 
length of that region is the number of environment registers 
(6) plus the number of work registers (possibly none) needed 
for dynamic working storage for the program. Before making an 
external call, the caller must set the length portion of the 
current stack pointer to the number of registers to be saved 
by the callee. The current stack pointer is set by the 
caller, but it is the callee that establishes the new stack 
frame. A minimum of six registers must be saved (the number 
of environment registers). 

Previous stack pointer. Contains the number of registers and 
the relative bit base address in the register file where the 
caller's register save area has been saved. The callee's 
previous stack pointer is an exact copy of the caller's 
current stack pointer. 

Link register. At subroutine entry contains the virtual bit 
address of the data base allocated to the module by the 
loader. The caller passes to the callee the address of the 
callee's data base in the link register. 

Pointer to the data flag table for the data flag branch 
manager (DFBM), for further information refer to the FORTRAN 
reference manual. 

The environment registers are used and modified by program prologues and epilogues. An 
assembly language programmer must write an appropriate prologue/epilogue. Compilers will I 
automatically generate the necessary prologue/epilogue. Compilers will automatically 
generate the necessary prologue/epilogue to ensure that the caller's register save area is 
saved when an external routine is called. 

60459420 G D-5 



REGISTER SA VE AREA 

The register save area is only those register resident variables that are saved/restored. 
Many permanent variables/addresses are not register resident, but are memory resident. 
Nothing must be done to preserve these. When an executing program has called an external 
program, the instructions of the conventional prologue of the called program save the 
caller's register save area. (See discussion below about prologues.) The register save 
area is stored and saved as an element of a conventional chained stack in the register 
file. A stack element, called a stack frame, is diagrammed in figure D-3. 

} 
register #1 d 

- previous 
stack frame 

, environment registers 

} 
register #1 c 

working registers - current 
stack frame 

temporary/dynamic 
work space 

} 
register #1 b 

- next 
stack frame 
(available dynamic space) 

Figure D-3. Stack Frame 

The initial size of a frame, defined by the difference of the values of the current stack 
pointer (the stack frame base) and the dynamic stack pointer, does not include temporary 
work space. Any time temporary work space is needed, the program can increment the dynamic 
stack pointer and in this way obtain space. Dynamic space use increases (frames are pushed 
onto the stack) until the lowest level called program has been executed; then, as the 
returns are encountered, the space is made available again in reverse order to the calls 
(frames are popped from the stack). 

D-6 60459420 E 



EXTERNAL PROCEDURE CALL SEQUENCE 

The standard sequence of an external procedure call is one of the following: 

RTOR ZZ,lllE Load data base address. 
BSAVE lllA, YY Jump to subroutine. 

LOO [XX,JJ], yy Load subroutine address. 
IS JJ, 1 Enter length 
LOO [XX,JJ] , /llE Load database address. 
BSAVE lllA, YY Jump to subroutine. 

LOO [XX,JJ] ,lllE Load subroutine address. 
BSAVE /llA, YY Jump to subroutine. 
STO [XX,QQ], yy Store address of subroutine. 

LOO [XX,JJ] ,lllE Load database address. 
ELEN /llC,PP Enter length. 
BSAVE lllA, YY Jump to subroutine. 
STO [XX,QQ], yy Store address of subroutine. 

Where the register number for YY is one less than the register number for ZZ. YY is the 
external subroutine address register, ZZ is the external subroutine data base register, and 
XX is a register containing an address within a data base or common block. 

PROLOGUE SEQUENCE 

There are basically at least three types of prologues: 

1) The traditional prologue approaches the one shown earlier in this chapter in figure D-3 
in that it does swap out/in the register file. However, only one swap is used. 

2) A zero swap sequence (the FORTRAN compiler may generate such a prologue if optimization 
is selected) can be used if no registers in the range #lA to #FF are to be used by the 
callee. 

3) An in between sequence whereby stores are used to save a few registers and loads to 
initialize them for the callee. This is a special case of 1), but may be used for 
performance reasons instead of using the SWAP instruction. 

60459420 G 0-7 

I 



The prologue of the called procedure includes the following instructions: (type 1) 

Instruction 

2AIE00xx 

781B0010 

781F0012 

781C001 l 

7DlE151C 

3E1Bxxxx 

7811001D 

7810001C 

631B101B 

7812001F 

2AIC00xx 

Description 

Set the number of registers to be loaded in register #IE. 

Save callers dynamic stack pointer. 

Save callers data flag table pointer. 

Save callers current stack pointer. 

Swap: saving caller's registers, loading callee's registers. 

Set new dynamic space required. 

Move callers current stackpointer to callee's previous 
stackpointer. 

Move callers dynamic stackpointer to callee's current 
stackpointer. 

Update dynamic stack pointer. 

Restore contents of data flag pointer. 

Set number of registers to be saved on subroutine call. 

Another example of a prologue follows: 

Instruction 

781A0005 

781B0006 

781C0007 

781E0008 

3E09XXXX 

63091EOA 

2AOAOOYY 

781FOOOB 

7DOA151C 

7805001A 

3E0500YY 

7B05061C 

30050605 

D-8 

Description 

Save return address. 

Save dynamic stack pointer. 

Save current stack pointer. 

Save address of callee's data base. 

Number of words (xxxx) to be reserved. 

Reserved xxxx words to callee's data base. 

Set number of registers to be saved (yy). 

Save data flag table pointer. 

Swap restored yy registers from the callee's current stack 
starting with register #IA. 

Update the return address. 

Set number of registers saved (yy). 

Update current stack pointer yy in the length field dynamic 
stack; pointer's address becomes current stack pointer's 
address. 

Change words (yy) to bits. 

60459420 F 



Instruction Description 

6305061B Reserved (yy) bits to dynamic stack pointer. 

7808001E Update callee's data base. 

7807001D Put current stack pointer to previous stack pointer. 

7BOOOB1F Update data flag table pointer. 

781B0024 Save dynamic stack pointer (temporary register). 

78170021 Save parameter descriptor address. 

Some programs can perform their subroutines entirely within the temporary registers, and do 
not make external calls. Such routines need not contain a prologue and can be assembled or 
compiled to omit it. 

EPILOGUE SEQUENCE 

The epilogue of the called procedure should be as follows; however, instructions 7ElF0005 
through 3B060000 are required only when using the DFBM: 

Instruction 

7D1D1500 

7E1F0005 

BE03180100000800 

3B030004 

BE03180100000FEO 

2D030406 

2E060506 

3B060000 

3340001A 

60459420 F 

Description 

Using the length and address of the previous stack pointer, 
restore the register file from the callee's current stack, 
starting with register #lA (the environment registers). 

Load word 0 from the data flag table to which register #lF 
points (ON_UNIT). 

Enter the data flag register constant with the SFT, JIT, 
BKP, and enable bits set. 

Load and store the data flag branch register. 

Enter the data flag register constant for an AND operation, 
which ensures that previously set free and monitor flags 
remain set. 

Perform a logical conjunction (AND) of the current data 
flag register with the constant for free flags and monitor 
flags. 

Perform a logical disjunction (Inclusive OR) of the current 
data flag register plus any free or monitor flags with word 
0 from the data flag table containing the data flag 
settings for the caller. 

Load the data flag register with the setting. 

Jump to the return address specified in register #lA. 

D-9 I 





CYBER 205 INVISIBLE PACKAGE 

The invisible package is a hardware convention that contains the address and control 
information required to begin a new job or to continue a job that was interrupted during 
execution. Each job is associated with an invisible package. When the CPU switches from 
monitor mode to job mode, the invisible package for the corresponding job is automatically 
loaded from main memory, beginning at the addre$S assigned by the monitor. The invisible 
package data is loaded into the appropriate registers in the CPU. When the CPU switches 
from the job mode back to the monitor mode, as in the case of an interrupt, the contents of 
the corresponding registers are automatically stored in main memory as the invisible package 
for that job. 

E 

The contents of the invisible package are shown in figure E-1. For a description of fields I 
not described in figure E-1, refer to the CYBER 200 Model 205 Computer System Hardware 
Reference Manual. Because the fixed portion of the absolute word address is divided within 
the hexadecimal character, bits 52 through 55 are shown as their binary equivalents. 

0 63 

0 t program address t 
16 43 5 

t breakpoint IWRPI OPI 
16 43 

s~ 
SP....-j 

WIRI ~ p~ key 3 RI key 0 key 1 RI key 2 RI p 
12 12 12 12 

2 

3 VEX microcode t VFJ1 t VFJ2 
40 2 10 2 10 

4 data flag register 
64 

5 JFL 1 
64 

6 F G vector program address t 

8 8 43 5 

7 JFL2 
64 

8 job/vector instruct status job interval timer 
32 32 

9 JFL3 
64 

A current instruction 
64 

B JFL4 
64 

tUndefined (must be set to 0). 

Figur·e E-1. Invisible Package Contents (Sheet 1 of 4) 

60459420 H E-1 



0 63 

c string partial data or function codes link instruction 
32 32 

D JFL5 
64 

access interrupt access interrupt address 
cause 16 48 

E 

F JFL6 
64 

10 TFOO TF10 
16 48 

11 TF01 TF11 
16 48 

12 TF02 TF12 
16 48 

13 TF03 TF13 
16 48 

14 TF04 TF14 
16 48 

15 TF05 TF15 
16 48 

16 TF06 TF16 
16 48 

17 TF07 TF17 
16 48 

18 partial sum or ninth IC 
64 

19 partial sums 

1A pipes function control for link instruction 

18 partial sums 

7 7 

27 partial sums 

Figure E-1. Invisible Package Contents (Sheet 2 of 4) 
E-2 60459420 E 



Word 

1 

2 

3 

60459420 E 

Description 

Breakpoint usage bits: 

0 
w 
R 

Not used and must be O. 
Check for breakpoint compare on write operands. 
Check for breakpoint compare on read operands. 

Usage lockout bits for each key: 

SP Bits 0 and 16 together define a small page size for all 
small pages; bits 32 and 48 are not used and are set to 0: 

w 
R 
I 

Bit 0 Bit 16 De,scription 

0 0 All small pages are 
0 1 Undefined. 
1 0 All small pages are 
1 1 All small pages are 

Lockout CPU write operations. 
Lockout CPU read operations. 
Lockout CPU instruction references. 

512 words. 

2048 words. 
8192 words. 

Vector execution microcode conditions: 

0-31 
32 
33 
34 
35 
36 
37 
38 
39 

Figure E-1. 

Not used and must be set to O. 
Interrupt FF (signal to pipes). 
Link instruction in execution. 
Link instruction R bit 3. 
Link instruction R bit 4. 
CC instruction in execution. 
Not used and must be set to O. 
Vector block scalar use of load/store registers. 
Flag 1. 

Invisible Package Contents (Sheet 3 of 4) 

E-3 



Word 

B 

c 

E 

lB 

Description 

Job/vector instruct status bits: 

0 
1 

2-11 
12 
13 
14 
15 
16 
17 

lB-19 
20 
21 

22-25 
26 
27 
2B 
29 

30,31 

Vector restart. 
Not parallel operation. 
Undefined and must be set to O. 
Stall bit (set for no data processed). 
DB or 09 execution started. 
Undefined and must be set to O. 
EBCDIC when set, ASCII when clear. 
SCR code bit 3 (exit at vector instruction termination). 
Select force of extension field length. 
Vector instruction register file update disable bits. 
DB and D9 multiple match flag. 
String restart bit (old data flag). 
Undefined and must be set to O. 
R-record FF. 
DA-DC toggle code bit O. 
DA-DC toggle code bit 1. 
DA-DC toggle code bit 2. 
Undefined and must be set to O. 

Link instruction codes: 

0-15 
16-31 

Link (56) instruction F and R codes. 
Link Fl instruction F and G codes. 

Access interrupt cause bits: 

0-11 Not used and must be set to O. 
12 Associative work not in page table. 
13 Write operand violation attempted. 
14 Read operand violation attempted. 
15 Read instruction violation attempted. 

Partial sum or ninth IC:t 

0-63 

0-15 
16-63 

Partial sum for DX instruction or special broadcast 
quantity for link or CC instruction. 
Output item count for AX or CB to CB instruction. 
C base address for AX instructions. 

tThese bits are undefined in all other applications. 

Figure E-1. Invisible Package Contents (Sheet 4 of 4) 

E-4 60459420 E 

' 



PROGRAM ST A TES 

The current disposition of a program is indicated by a number that is carried in the 
descriptor block for the program. This code can be gained by the privileged EXECUTE 
OPERATOR COMMAND message (f=#0021). 

Codes having specific definitions are shown in table F-1. Codes not defined in the table 
have these general descriptions: 

Code 

II I 119 

llA llF 

II IO llIF 

1120 112F 

1130 - ll3F 

1140 - 114F 

#B9 - llBF 

Description 

Task is in the alternator. 

Task is not in the alternator, but is partially in memory. 

Task is not processing a message and is waiting. 

Task is processing a message and is waiting. 

System is performing functions for a program. 

Miscellaneous. 

State is indicated by subtracting #80. Tasks in a terminal or nonterminal 
dump state have #80 added to their original state when they are being dumped 
to disk; for example, #3D + #80 = #BD. 

Table F-1. Program State Codes (Sheet 1 of 2) 

Code Description 

1 Task put in an alternator slot from the descriptor block load queue. 

5 Task alternator unblocked after new slot time. 

7 Outstanding explicit I/O requests and interrupts have completed. 

11 Waiting for an alternator slot. 

13 Waiting for entry in the explicit I/O buffer. 

14 Waiting for the mainframe. 

16 Waiting for nine-track tape assignment. 

17 Waiting for system call completion. 

F 

60459420 E F-1 



F-2 

Table F-I. Program State Codes (Sheet 2 bf 2) 

Code Description 

I8 Waiting for I/O completion. 

IE Waiting for the control lee to get on disk. 

IF Waiting for the controllee to get on disk. 

20 Waiting for a message from the controller. 

2I Waiting for a message from the controllee. 

22 Reserved for installation use. 

23 

24 

26 

27 

28 

29 

2A 

30 

38 

39 

3A 

3B 

3C 

3D 

3E 

3F 

40 

4I 

Waiting for a message from the operator. 

Waiting for an operator type in. 

Waiting to send a message to the controllee. 

Waiting to send a message to the control lee. 

Reserved for installation use. 

Waiting to send a message to the operator. 

Waiting to send a message to the teletypewriter. 

Execute line in, descriptor block and keys assigned; message sent to load 
file management. 

Waiting for termination of controllees at lower chain levels. 

Terminate and kill all pages. 

Nonterminal dump. Suspend in state = #4I after completion. 

Program dump, accounting finished; cleanup done; code + 80I6 accounting 
done; dump I/O. 

Dump finished, clean up to go. 

Terminal dump error. 

Terminal dump scheduled, no error. 

Nonterminal dump scheduled. 

Suspend for a time period. 

Suspended by the operator or the system. 

60459420 E 



TAPE FORMATS G 

The online tape subsystem supports NOS and NOS/BE internal tape formats I and SI, 
respectively. It supports V, a variable PRU tape format, and NV, which is equivalent to 
lower CYBER S or L. In addition, a new tape format, large block format LB, is supported. 
For tape formats I, SI, and LB, a physical structure is superimposed over the user-declared 
SIL logical file structure (RT) by the operating system. 

When the user issues a write, the user supplies a logical record unit array. Each entry in 
the array specifies the length of the logical tape record (LRU) and whether an end of file 
should also be written. After a read operation, the system returns information to the 
logical record unit array: number of bytes read, logical tape record status, end-of-group 
status, and end-of-information status. Observe that end of LRU, end of group, and end of 
information may have different meanings, based on the different tape formats. The 
characteristics of each of the tape formats follow. 

I (INTERNAL) FORMAT 

Figure G-1 shows the characteristics of the I tape format. 

Characteristic 

Header 

PRU size 

0 

Description 

Labeled or unlabeled. 

Actual data block size that can range from 8 to 3840 bytes. All PRUs 
except those containing labels include a 48-bit PRU terminator 
formatted as follows: 

63 

I byte count 
12

1 PRU number In 

Field 

byte count 

PRU number 

ln 

Description 

Total number of bytes in the PRU, including the PRU 
terminator. 

Number of PRUs since the last HDRl label. 

Leve 1 number: 

0 End of LRU. 
F End of group. 

User-specified maximum PRU size (MPRU) has no meaning. 

Figure G-1. I Tape Format (Sheet 1 of 2) 

60459420 E G-1 



G-2 

Characteristic 

Beginning of 
Information 

End of LRU 

End of group 

End of 
information 

End of reel 

Noise 

Description 

For labeled tapes, a tape mark preceded by a beginning-of-volume or 
beginning-of-file label group is considered the beginning of 
information. For unlabeled tapes, load point is considered the 
beginning of information. 

Any PRU with fewer than 512 CYBER 170 central memory words of data is 
considered an end of LRU. During a write operation, the level number 
field of the PRU terminator contains the level number obtained from the 
logical unit array; during read operations, the system returns an 
end-of-LRU status and the contents of the PRU terminator level number 
field. If the level number is 17 (octal), the system also returns an 
end-of-file status. Some PRUs may consist only of a PRU terminator. 

Any PRU consisting of a PRU terminator only, with a level number of 17 
(octal) is considered an end of group. The system ensures that an end 
of LRU always precedes an end of group by writing, if necessary, a PRU 
terminator with a level number of 0 prior to the end of group. 

A tape mark followed by an EOFl label is considered the end of 
information. This trailer sequence is generated by the system on 
labeled and unlabeled I, SI, and LB format tapes. The system issues a 
label content error if it encounters a tape mark without a valid label 
following it. 

If, during a write operation, the system senses the end of tape, it 
writes a trailer sequence following the PRU on which the EOT was 
sensed. This trailer sequence consists of a tape mark followed by an 
EOVl label followed by three tape marks. The next PRU is written on 
the next reel. During a read operation, the EOT is observed and the 
system transfers to the user the PRU on which the EOT was sensed plus 
all following PRUs until a trailer sequence is recognized. Reading 
resumes on the next reel. 

Not applicable. 

Figure G-1. I Tape Format (Sheet 2 of 2) 

60459420 E 



SI (SYSTEM INTERNAL) FORMAT 

Figure G-2 shows the characteristics of the SI tape format. 

Characteristic 

Header 

PRU size 

Beginning of 
information 

End of LRU 

End of group 

Description 

Labeled or unlabeled. 

The PRU size can range from 8 to 3840 bytes. Any PRU smaller than the 
maximum size except those containing labels contain a 48-bit special 
terminator. This terminator has the following format: 

552335522754 (octal) 

Field Description 

ln Level number: 

0-E End of LRU. 
F End of group. 

For labeled tapes, a tape mark preceded by a beginning-of-volume or 
beginning-of-file label group is considered the beginning of 
information. For unlabeled tapes, load point is considered the 
beginning of information. 

Any PRU containing fewer than 512 CYBER 170 central memory words 
represents an end of LRU. If an LRU consists of an exact multiple of 
512 central memory words, the PRU that denotes the end of LRU consists 
solely of a special terminator. During write operations, the level 
number field of the special terminator contains the level number 
obtained from the logical record unit array; during read operations, 
the system returns an end-of-LRU status and the contents of the special 
terminator level number field. If the level number is 17 (octal), the 
system returns an end-of-file status. 

Any PRU consisting of only a PRU terminator with a level number of 17 
(octal) is considered an end of group. The system ensures that an end 
of LRU always precedes an end of group by writing, if necessary, a PRU 
terminator with a level number of 0 prior to the end of group. 

Figure G-2. SI Tape Format (Sheet 1 of 2) 

60459420 E G-3 



Characteristic 

End of 
information 

End of reel 

Noise 

Description 

A tape mark followed by an EOFl label is considered the end of 
information. This trailer sequence is generated by the system on 
labeled and unlabeled I, SI, and LB format tapes. The system issues a 
label content error if it encounters a tape mark without a valid label 
following it. 

If, during a write operation, the system senses the end of tape, the 
system writes a trailer sequence following the PRU on which the EOT was 
sensed. This trailer sequence consists of a tape mark followed by an 
EOVl label followed by three tape marks. The next PRU is written on 
the next reel. During a read operation, the EOT is observed and the 
system transfers to the user the PRU on which the EOT was sensed plus 
all following PRUs until a trailer sequence is recognized. Reading 
resumes on the next reel. 

Not applicable. 

Figure G-2. SI Tape Format (Sheet 2 of 2) 

G-4 60459420 E 



LB (LARGE BLOCK) FORMAT 
Figure G-3 shows the characteristics of the LB tape format. 

Characteristic 

Header 

PRU size 

Beginning of 
information 

End of LRU 

End of group 

End of 
information 

End of reel 

Noise 

Description 

Labeled or unlabeled. 

Actual data PRU size that can range from 0 to 32768 bytes. All PRUs 
except those containing labels include a 48-bit PRU terminator 
formatted exactly like the 1 tape format terminator. 

User-specified maximum PRU size has no meaning. 

For labeled tapes, a tape mark preceded by a beginning-of-volume or 
beginning-of-file label group is considered the beginning of 
information. For unlabeled tapes, load point is considered the 
beginning of intormation. 

Any PRU with fewer than 4096 central memory words of data is considered 
an end of LRU. During a write operation, the level number field of the 
PRU terminator contains the level number obtained from the logical 
record unit array; during read operation, the system returns end-of-LRU 
status and the contents of the PRU terminator level number field. If 
the level number is 17 (octal), the system also returns end-of-file 
status. Some PRUs may consist only of a PRU terminator. 

Any PRU consisting of only a PRU terminator with a level number of 17 
(octal) is considered an end of group. The system ensures that an end 
of LRU always precedes an end of group by writing, if necessary, a PRU 
terminator with a level number of 0 prior to the end of group. 

A tape mark followed by an EOFl label is considered the end of 
information. This trailer sequence is generated by the system on 
labeled and unlabeled I, SI, and LB format tapes. The system issues a 
label content error if it encounters a tape mark without a valid label 
following it. 

If, during a write operation, the system senses the end of tape, the 
system writes a trailer sequence following the PRU on which the EOT was 
sensed. This trailer sequence consists of a tape mark followed by an 
EOVl label followed by three tape marks. The next PRU is written on 
the next reel. During a read operation, the EOT is observed and the 
system transfers to the user the PRU on which the EOT was sensed plus 
all following PRUs until a trailer sequence is recognized. Reading 
resumes on the next reel. 

Not applicable. 

Figure G-3. LB Tape Format 

60459420 E G-5 



V AND NV (VARIABLE) FORMAT 

Figure G-4 shows the characteristics of the V and NV tape formats. 

Characteristic 

Header 

PRU size 

Beginning of 
information 

End of LRU 

End of group 

End of 
information 

End of reel 

Noise 

Description 

Labeled or unlabeled. 

No explicit multiple of frames is required. The maximum PRU size may 
be specified in the MPRU field of the CHANGE FILE system message. If 
no PRU size is specified in the MPRU f1eld, it is assumed to be 32 768 
bytes. The maximum PRU size for V format is 48 pages. 

For labeled tapes, a tape mark preceded by a beginning-of-volume or 
beginning-of-file label group is considered the beginning of 
information. For unlabeled tapes, load point is considered the 
beginning of information. 

On a READ or READSKIP request, each PRU is considered an end of LRU. 

Tape mark. Observe that this is valid only for the NV format since it 
is non-ANSI. 

If the tape is unlabeled, double tape marks located before the 
end-of-tape reflective marker denote end of information. If the tape 
is labeled, the end of information is a tape mark followed by an EOFl 
label. 

If, during a write operation, the system senses the end of tape, the 
system writes a trailer sequence following the PRU on which the EOT was 
sensed. This trailer sequence consists of a tape mark followed by an 
EOVl label for labeled tapes and tape marks for unlabeled tapes. The 
next PRU is written on the next reel. During a read operation, the EOT 
is observed and the system transfers to the user the PRU on which the 
EOT was sensed plus all following PRUs until a trailer sequence is 
recognized. Reading resumes on the next reel. 

Any PRU containing fewer than the specified number of noise size frames 
is considered noise and is therefore ignored. 

Figure G-4. V and NV Tape Formats 

G-6 60459420 E 



Abnormal termination control (ATC) 
2-17; 5-97; C-1 

Access C-1 
ACCESS CONTROL system message 5-165 
Access permissions 5-46 
Account block C-1 
Account identifier C-1 
Accounting 8-1 

File 8-3 
Record format 8-7 
Record type and subtype codes 
System messages 5-4 

Accumulating statistics 8-2 
Active accounting file 

Blocks 8-5 
Format 8-5,7 

ADVISE system message 
Alpha word conventions 
Alternator table 1-2 
ANALYZER 7-1 

Execute line format 
ANSI labels 4-2 

1-7; 5-1,208 
5-2 

7-2 

8-3 

ATC (see Abnormal termination control) 
ATTACH PERMANENT FILE system message 5-68 
*AF file 8-3 

Batch 
Dayfile C-1 
Job C-1 
Processor C-1 

Beta word conventions 5-2 
Block C-1 
Bound explicit map 

Directory 2-25 
Entry format 2-26 

Bound implicit map 
Directory 2-25 
Entry format 2-27 

Calculating 
SBUs (system billing units) 8-30 
STUs (system time units) 8-1 

Call sequence external procedure D-7 
CFO command 5-88 
CHANGE FILE ATTRIBUTES system 

message 1-7; 3-1; 5-53; G-6 

60459420 F 

INDEX 

Changing 
Accounting rate 5-149 
File characteristics 5-53; 6-6 

Channel usage statistics records 
format 8-22 

Character set A-1 
Charge number C-1 
Checkpoint C-2 
CLOSE FILE system message 

5~32,38 

1-7; 2-30; 3-3,4; 

Closing files 5-32 
Code 

Block table 10-4 
Relocation table 10-5 

Continuation lines 
Control commands 
Controllee C-2 

Chain C-2 

9-1,2 
6-6 

Processing system messages 5-3 
Execute line 9-1 
File C-3 

Controller C-2 
Conventions for applications 9-1 
Core dump 7-1 
CPUQ (CPU scheduling queue) 1-3 
CREATE FILE system message 1-5,7; 5-8 
CRT (see Currently running table) C-2 
Cumulative accounting buffer 8-2 
Currently running table (CRT) C-2 
C5xx calls 1-5 

Data flag branch manager (see DFBM) 
Data item formats 10-9,11,12,13 
Debug commands 6-5 
Debug symbol table 10-15 

Format 10-16 
Defining parameters for files 5-8 
Descriptor block 1-2 

Number C-2 
Descriptor format for externals and entry 

points 10-8 
DESTROY FILE system message 1-7; 3-1; 5-14 
DFBM (data flag branch manager) C-2; D-1,8 

Pointer D-5 
Diagnostic entries 8-39 

Diagnostics B-1 
Diagnostics entries 8-39 
Disabling ATC 5-97 

Index-1 



Disconnecting controllees 5-90 
Discontinuous virtual address ranges 2-27 
Disk file accounting records 8-16 
Drop files 3-4 

Map 2-28; C-2 
Entry formats 2-28,29 

Dump analysis 7-1 
Dynamic stack C-2 
Dynamic stack pointer D-5 

EDITUD 1-4,5 
ENABLE/DISABLE ATC system message 5-97 
End-of-file labels 4-15 
End-of-volume labels 4-16 
Environment registers D-5 
EOFl 4-9 

Format 4-10 
EOVl 4-12 

Format 4-13 
Epilogue C-3; D-9 

Sequence D-9 
Error codes B-1 
EXECUTE IQM REQUEST system message 1-7; 

5-189 
Execute line 9-2 

Special characters 9-26 
Supporting routines 9-1 

EXECUTE OPERATOR COMMAND system 
message 1-4,7; 5-99; F-1 

system I EXECUTE PROGRAM FOR USER NUMBER 
message 1-7; 5-126.1 

Exit force instruction 1-1; 5-1 
Explicit input/output 1-5; 2-18; 3-5; 

5-26,7; C-3 
EXPLICIT I/O system message 

5-1,204 
External/entry table 

Format 10-7 
10-6 

1-5,7; 3-5; 

External procedure call sequence D-7 

FADE 
File 

2-1 

Access 3-2 
Characteristics specifications 2-15 
Concepts 3-1 
Disposition specifications 2-1,14 
Extendability 1-5 
Management 

Categories 3-3 
System messages 5-3 

Map 2-25 
Names 3-2 
Ownership 3-1 
Space allocation 5-4 

Index-2 

FILE DISPOSITION system message 
File header labels 4-15 
File I/O 3-5 

5-38,61 

File index table (FILEI) 
C-3 

1-5; 2-1; 3-1,2; 

Entry 1-4 
Fields that affect file ownership 3-2 
Formats 2-2,9 

File segment table (FST) 1-5 
File type C-3 
Files connected to a terminal 3-4; 5-27,38 
First end-of-file label 4-9 
First end-of-volume label 4-12 
First file header label 4-6 
Free space 1-2; C-3 

Attachments 2-28 
FST (see File segment table) 

GCR tapes 4-1 
GET MESSAGE FROM CONTROLLEE system 

message 5-83 
GET MESSAGE FROM CONTROLLER OR OPERATOR 

system message 5-27,78,80 
GET PACK LABEL AND PFI system 

message 5-70 
GIVE FILE system message 1-7; 3-1; 5-38,43 
GIVE UP CPU ON OUTSTANDING RESIDENT I/O OR 

TIME system message 1-7; 5-1,214 
Global registers D-2 

Hardware modes 1-1 
HDRl 4-2,6; 5-168,178 

Format 4-7 
Hexadecimal conversion tables A-1 

I (internal) tape format G-1 
I/O connector (IOC) (see Input/output 

connector) 2-19; 5-27,204 
I/O operation system messages 5-3 
Implicit input/output 1-5; 3-5; 5-26; C-3 
Information retrieval system messages 5-4 
INITIALIZE CONTROLLEE CHAIN system 

message 5-94 
INITIALIZE OR DISCONNECT CONTROLLEE system 

message 5-90,94 
Input/output connector (IOC) 2-19; 

5-27,204; C-3 
Format 

For mass storage files opened 
for 2-19,21 

For tape files 2-23 
Input/output operation system messages 5-3 

60459420 H 



I 

!QM 1-1,3,4,7; 5-42; C-3 
Input Queue Manager (see !QM) 
Interpretive data initialization table 
Interpretive relocation initialization 

table 10-15 
Interrupt 

System messages 5-3 
Interrupting programs 5-92 
Invisible package 2-16; C-3 

Format E-1 
IOC (refer to Input/output connector) 

Job C-3 
Accounting records 8-18 
Block C-3 

10-9 

Descriptor number (JDN) 5-51; 8-4; C-3 
Management tables 2-1 
Mode 1-1 
Records 8-18 

Formats 8-19,20 

KERNEL 1-1,2,5; 5-214 
Key-dependent parameter format 9-3 

LABEL system message 
Labeled tape C-4 
Labels 4-2 

Optional 4-15 
Reading 4-2 
User 4-16 
Writing 4-2 

Large page 3-5; C-4 

5-182· 

LB (large block) tape format G-5 
Left-hand side table (refer to lhs table) 
Level C-4 
lhs table 9-11 

Formats 9-11,12,13 
Pointer configuration 9-10 

Library C-4 
LINK system message 5-147 
LIST CONTROLLEE CHAIN system message 5-74 
LIST SYSTEM TABLE system message 5-8,12, 

22,26,47,70,72 
LIST FILE INDEX TABLE system message 5-22, 

40,70 
Loader 

Convention 10-1 
Table header format 10-2 

Local file C-4 
LRU G-1 

60459420 H 

D-1 Machine registers 
Magnetic tape files 
Main memory C-4 
Map C-4 

(refer to Tape files) 

2-25 
2-26; 5-28 

5-28 
5-28 

Map directories 
MAP system message 
Mapping in a file 
Mapping out a file 
Mass storage files 
Master 

2-1; 3-3; 5-26,38; C-4 

Clock entries 8-6 
Project number C-4 
User C-4 

Maximum working size 
MCU 6-2 
Memory 

1-3 

Access interrupts 1-2 
Allocation 1-2 
Dump analysis 7-1 
Overcommitment 1-3 

Message 
Communication 1-1 
Communication system messages 5-4 
Function codes 5-5 

Messages 5-5; C-3 
Minus page 1-2; 2-16; C-5 

File maps 2-26,27 
Format 2-17 

MISCELLANEOUS system message 5-134; 8-1 
MODDROP C-5 

Files 3-3,4 
Modifying system table 1-2 
Module header table 

Format 10-3 
Types 10-4 

Module tables 10-3 
Monitor mode 1-1 

NAD (see Network access device) 
Network access device (NAD) 1-1 
Network usage records 8-20.1 
Nonprivileged C-5 

Users 3-1,2 
Nonstandard labels 4-2 

Object code file C-5 
Object module 10-3 
OPEN FILE system message 1-5,7; 2-30; 

3-2; 4-2; 5-17,26,27,178 
Opening files 5-17 
Operator command execution 5-99 
OPERATOR system routine 1-4 

Index-3 



Order-dependent parameter format 
Order-independent parameter format 
Output files 3-4; C-5 
Ownership C-5 

Pack file index (PFI) 2-10; C-5 
Page C-5 

Fault C-5 
1-1 Swapping 

PAGER 1-1,2,3 
Paging in C-5 

D-4 
9-3 

8-29 

Paging out C-5 
Parameter addresses 
Parameter formats 
Periodic job records 
Periodic system records 
Periodic table 1-2 

8-27 

Periodic virtual system tasks 
Peripheral operating system 
Permanent file C-5 
PF! (see Pack file index) 
Physical data file C-5 
Physical files 3-5 

1-2 
1-1 

Physical identifier (PID) C-6 
Physical memory address C-5 
PID (see Physical Identifier) 
Pool C-6 
Pool boss 3-2 
Pool file 3-1,2; C-6 
POOL FILE MANAGER system message 
Private file C-6 
Privilege flag 1-5 
Privilege (user) C-6 
Privileged 

Resident system calls 
Status 1-5 

1-1,5 

System tasks 
User numbers 
Users 3-1,2 

1-1,2,4 
1-4 

Virtual system calls 
PROCESS SYSTEM PARAMETER 

message 1-7; 5-1,212 

1-7 
system 

9-1 

I 
Processing execute line 
Production files 3-2 
Program execution system messages 
PROGRAM INTERRUPT CONTROL system 

message 5-92 
Program states F-1 
Project number C-6 
Prologue C-6; D-5 

Sequence D-7 
Pseudoaddress vector table 

Entry formats 10-19 
Public files 3-1; C-6 

Index-4 

10-19 

9-2,3 
9-4 

3-1; 5-143 

5-3 

Queuing 1-2 
Q5VRF file 8-33 
Q7ENVIRN routine 9-1,5 

Format 9-5 
Q7KEYWRD routine 9-1,5,7,26 

Format 9-9 
Q7MODE routine 9-1,5 

Format 9-6 
Q7PROMPT routine 9-1,5 

Format 9-6.1 

Read-only file access 
RECALL system message 
Recovery 4-1 

PRU 4-1 
User error 4-1 

Register file 
Conventions D-1 
Format D-3 

3-4 
5-142 

Register file block C-6 
Register save area D-6 
Remote Host Facility (RHF) 1-4,6 
REMOVE CONTROLLEE FROM MAIN MEMORY system 

message 5-86 
Required labels 4-2 
Resetting breakpoints 6-5 
Resident system 1-1 

Calls 1-5 
Resource usage statistics 
Retrieving 

8-1 

Accounting statistics 5-64,134 
File index table entry 5-40 
Formatted system table copy 
Pack label and file index 

5-47 
5-70 

Return buffer 9-19 
Formats 9-19,20,21,22,23,24,25 

RETURN FROM INTERRUPT system messge 5-92, 
153,194 

RHF (see Remote Host Facility) 
RHF CALL system message 1-7; 5-153 
RHFMT (Remote Host Faciliy mainframe 

table) 5-153 
RHFT (Remote Host Facility table) 5-153 
rhs table 9-14 

Formats 9-14,15,16,17 
Right-hand side table (refer to rhs table) 

SAE (standardized accounting enhancements) 
8-30 

Save table 5-88 
SBUs (system billing units) 8-30 
Scanning text lines 9-7 
Scheduler 1-3,4 

60459420 H 



Scratch files 3-3; C-6 
Security level C-6 
SEND A MESSAGE TO CONTROLLEE system 

message 5-78 
SEND A MESSAGE TO CONTROLLER system 

message 5-27,76 
SEND A MESSAGE TO OPERATOR system 

message 5-88 
SEND MESSAGE TO DAYFILE system 

message 5-151 
SEND MESSAGE TO JOB SESSION system 

message 5-192 
Service level factors 
Setting breakpoints 
Shared table 6-2 

8-30 
6-5 

SHRLIB ALTER OR RESTORE system message 
5-196; 6-5 

SI (system internal) tape format 
SIL (see System interface language) 

G-3 

I Small page 3-5; C-7 
Source file C-7 
Special functions system messages 
Stack frame D-6 
Standard processing 9-1 
Standardized accounting enhancements 

(refer to SAE) 

5-4 

Starting and ending program execution system 
messages 5-3 

Statistics accumulation 8-1 

I STU (system time unit) 8-1; C-7 
Swapping controllee to mass storage 5-86 
Symbol definition table 10-17 

Entry format 10-17 
System 

Accounting records 8-17 
Dayfile 8-35; C-7 
Entries 8-36 
Error codes B-1 
Library routines 9-1 
Records 8-18 
Table modification 1-1,2 

System billing units (refer to SBUs) 
Dayfile 8-35; C-7 

System interface language (SIL) 5-1; C-7 
Subroutines 5-1 

System label processing 4-2 
System messages 1-1; 5-1; C-7 

Execution 5-1 
Function codes 5-2 

System resources 8-31 
System time unit (refer to STU) 

Tape assignment 4-1 
Tape error codes B-3 
Tape files 3-4; 5-27,38 
Tape formats G-1 

60459420 F 

TAPE FUNCTION system message 
3-5; 5-1,178,198 

1-7; 2-30; 

Tape label 
Format 4-3 

Tape management 4-1 
TAPE MANAGEMENT beta 4-4 
TAPE MANAGEMENT system message 
Tape management system messages 
Tape records 8-17 

Formats 8-17 

5-168 
5-3 

TAPE SWITCH VOLUME system message 
5-178 

2-30; 

Tapes table 
Format 

Task C-7 

2-30 
2-30 

Accounting records 8-8 
Name 9-2 
Records 8-8 

Formats 
TCHARGE routine 

8-9, 10, 11, 13, 14 
8-1 

Temporary registers D-1 
Terminal accounting records 8-15 
Terminal records 8-15 

Format 8-15 
TERMINATE system message 3-3,4; 5-39 
Terminating execution 5-39 
Time-slicing 1-1,2 
T JCAT system table format 5-125 
Transfer symbol table 10-15 
Transferring file ownership 5-43 
T VRF table 8-32 
T-VSD table 6-2 

Structure 6-2 

udtrust field 1-5 
UEP (user error processing) 4-1 
UPDATE USER DIRECTORY system message 
USER/ACCOUNTING COMMUNICATION system 

message 1-7; 5-64,143; 8-1,2,4 
User and system interfaces 6-2 
User error recovery 4-1 
User number 3-1; C-5 

000000 3-1 
User project control C-7 
USER REPRIEVE system message 5-187 

V and NV (variable) tape format G-6 
Variable rate accounting (refer to VRA) 
VARIABLE RATE ACCOUNTING system message 

5-149 
Variable rate index (see VRI) 

5-128 

Variable rate factor (refer to VRF) 
Variable rate/service level tables 8-32 

Index-5 



I 
Virtual address C-7 

Space C-7 
Virtual code file C-8 
Virtual files 2-26; 3-5 
Virtual memory C-8 
Virtual paging 1-1 
Virtual range C-8 
Virtual system 1-2; 6-1 

Calls 1-7; 5-1 
Tasks 1-1,2,3,4 
Debug tool (refer to VSDT) 
Table definition 8-34 

Volume header label (VOLl) 4-4 
Format 4-5 

VOL! (see Volume header label) 

VRA (variable rate accounting) 2-8; 8-30,32 
VRF (variable rate factor) 8-30,32 
VRI (variable rate index) 2-8; 8-30 
VSDT (virtual system debug tool) 6-1 

Commands 6-4 
Error messages 6-6 

VSN (volume serial number) 

Wait queue 1-3 
Word C-8 
Working set C-8 
Working set size C-8 
Write-temporary 3-4; C-8 

2-12; 4-1; 5-168 

Index-6 60459420 F 



w 
z 
::::; I 

(!) 
z 
0 
4 
I­
::> 
u 

COMMENT SHEET 

MANUAL TITLE: CDC VSOS Version 2 Reference Manual, Volume 2 of 2 

PUBLICATION NO.: 60459420 REVISION: H 

STREET ADDRESS:-------------------------------

CITY: _______________ STATE: _______ ZIP CODE:--------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of 
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please 
include page number references). 

D ptease Reply [J No Reply Necessary 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

FOLD ON DOTTED LINES AND TAPE 



LO 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS. MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

(S 2) CONT1'0L DATA 
Technology and Publications Division 
ARH219 
4201 North Lexington Avenue 
Saint Paul, MN 55126-6198 

FOLD 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

-------------------------------------------------------------------------------------------------------------0 FOLD 

UJ 
z 
::::; 

0 z 
0 
< 

I t­
:::> 
u 





CORPORATE HEADQUARTERS P.O. BOX 0 MINNEAPOLIS. MINNESOTA 55440 

~~ 
CONT"OL 

DATA 


