CDC® CYBER 200
FORTRAN LANGUAGE 1.5

FOR USE WITH
CDC® CYBER 200
OPERATING SYSTEM 15

REFERENCE MANUAL @ S

CONTROL

60457040

CDC® CYBER 200
FORTRAN LANGUAGE 1.5

FOR USE WITH
CDC® CYBER 200
OPERATING SYSTEM 15

REFERENCE MANUAL , GE |

CONTROL
, DA-y

60457040

REVISION RECORD

REVISION

DESCRIPTION

A

Original release.

(7-2-79)

B

This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.

(8-22-80)

C

(11-15-80)

This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.1.

Publication No.
60457040

Address comments concerning

REVISION LETTERS 1, O, Q AND X ARE NOT USED this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086 .

© COPYRIGHT CONTROL. DATA CORPORATION 1979, 1980
All Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.

indicates pagination rather than content has changed.

Page

Revision

Front Cover
Title Page

ii

iii/iv

v/vi

vii thru ix

x

xi

1-1 thru 1-3
2-1 thru 2-7
3-1 thru 3-4
4-1

4=2

5-1 thru 5-6
6-1 thru 6-7
7-1 thru 7-8
8-1 thru 8-5
9-1 thru 9-7
10-1 thru 10-3
11-1

11-2

11-3

11-4

11-5 thru 11-12
12-1

12-2

13-1 thru 13-17
14~1 thru 14-25
15-1 thru 15-12
16-1 thru 16-7
A-1

A-2

B-~1 thru B-33
C-1 thru C-3
D-1 thru D-16
E-1 thru E-3
F-1

F-2

G-1 thru G-3
Index-1 thru Index-5
Comment Sheet
Mailer

Back Cover

I OOWEEEEEFEFQOOAFOEOFFEFEOWEROWEEEN WWE IWEEEROEIOOO I |

60457040 C

A bar by the page number

iii/iv ®

PREFACE

This manual describes the CONTROL DATA® CYBER 200
FORTRAN programming language for use under control of
the CDC® CYBER 200 Operating System running on the
CDC® CYBER 200 Series computer system.

The reader of this manual should be familiar with the
FORTRAN language and the CYBER 200 Series computer
system. Familiarity with vector processing concepts is
highly desirable.

Publication

CDC CYBER 200 Assembler Version 3

Reference Manual

CDC CYBER 203 Computer Hardware

Reference Manual

CDC CYBER 205 Computer Hardware

Reference Manual

CYBER 200 FORTRAN is designed to comply with
American National Standards Institute FORTRAN
language, as deseribed in X3.9-1966. Control Data
extensions to the standard FORTRAN language are
indicated by shading. Example programs or parts of
programs are shaded if they contain lines using extensions
to the ANSI standard.

Related information of interest can be found in the listed
publications,

Publication
Number

60457050
60256010

60256000

CDC CYBER 200 Operating System Version 1

Reference Manual, Volume 1 of 2

60457000

CDC CYBER 200 Operating System Version 1

Reference Manual, Volume 2 of 2

60457010

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This produet is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or

parameters.

60457040 C

v/vi

NOTATIONS

1. INTRODUCTION

Program Form
END Lines
Comments
Statements
Statement Labels
Continuation of Statements
Ordering of Statements
Columns 73 through End of Source Line
Program Data

2. STATEMENT ELEMENTS

Character Set
Data Elements
Constants
Symbolic Constants
Variables
Arrays
Subscripts and Array Declarators
Subseript Interpretation
Data Element Forms
Integer Elements
Real Elements
Double-Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

3. SCALAR EXPRESSIONS

Arithmetic Expressions
Exponentiation
Evaluation of Arithmetic Expressions
Type of an Arithmetic Expression
Character Expressions
Relational Expressions
Logical Expressions

4. SCALAR ASSIGNMENT STATEMENTS

Arithmetic Assignment Statement ~
Character Assignment Statement
Logical Assignment Statement

5. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO
Assigned GO TO
ASSIGN Statement
Assigned GO TO Statement
Computed GO TO
IF Statement .
Arithmetic IF
Logical IF

60457040 B

CONTENTS

xi

0
-

RSN
[]
€3 0000 CO PO DD bt b

¥
N

[UL
DO DO DD b= ket b

Froa
SN UD W

NNNMNNN&&QNNNNNNNNN'

¢
N

uuwc‘:wuu
GO WO

et enen e en
[CRXICY WAL AL

Block IF

ELSE

ELSE IF

END IF

Block IF Structures

Nesting Block IF Structures
DO Statement

Defining a DO Loop

Nesting DO Loops
CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
CALL Statement

6. SPECIFICATION AND DATA
INITIALIZATION STATEMENTS

Type Statements
IMPLICIT Statement -
) Explicit Typing
DIMENSION Statement
ROWWISE Statement
COMMON Statement
EQUIV ALENCE Statement
EXTERNAL Statement
DATA Statement
Implied DO in DATA Statement
Rules for Initializing Values
PARAMETER Statement

7. DEFINING PROGRAM UNITS AND
STATEMENT FUNCTIONS

The Main Program
PROGRAM Statement
File Information Parameters
Declaration of Files for Input/Output
Statement Functions
Defining Statement Functions
Referencing Statement Functions
Subprograms
Passing Arguments Between Subprograms
Function Subprograms
Subroutine Subprograms -
Block Data Subprograms
Multiple Entry Subprograms
Function Subprogram Entry Point Names
Secondary Entry Point Argument Lists
Referencing Secondary Entry Points

8. INPUT, OUTPUT, AND MEMORY
TRANSFER STATEMENTS

Sequential Input Statements
Formatted READ Statement
Transfer on End-of-File
Data Transfer Errors
READ with Implied Device
Unformatted READ Statement
Sequential Output Statements
Formatted WRITE
PRINT

TLLLLY

111

UIU‘U!U‘GI’IU'\U\U‘

T
o

?72TT222T7LT
(<233, I3, I S JURICT Ul GO U e

3
i

L A T R At T A Tt T A UL L
NN WWN NN =

PRRPFRRAPRRRREP T

NN
N

1

wcooocooloaommoo
B2 DD 0D B BB DN

vii

PUNCH - 8-2 Initializing Descriptors and Vectors . 11-11

Unformatted WRITE 8-3 Vector Function Subprograms 11-11

Memory-to-Memory Transfer 8-3 Referencing Vector Functions 11-11
ENCODE Statement ' 8-3 Secondary Entry Points 11-11
DECODE Statement 8-3

Namelist Input and Output - 8-4
Namelist Input Data ‘ 8-4 12, SUBPROGRAM LINKAGE 12-1
Namelist Output Data 8-5 .

Unit Positioning 8-5 Prologue and Epilogue : 12-1
REWIND 8-5 Standard Calling Sequence 12-1
BACKSPACE 8-5 Fast Calls 12-2 :

ENDFILE 8-5 File Initialization 12-2

9. INPUT/OUTPUT LISTS AND DATA 13. CYBER 200 FORTRAN-SUPPLIED

FORMATTING 9-1 SUBROUTINES 13-1

Input/Output Lists v 9-1 CYBER 200 FORTRAN Special Calls 13-1
List Items 9-1 Arguments : 13-1
Implied DO in Input/Output List 9-1 Label References 13-1

FORMAT Statement 9-2 Symbolic References 13-2
Format Control 9-3 Literals 13-2
Data Conversion 9-3 Examples of Special Call Usage 13-2
Conversion Specification 9-3 Data Flag Branch Manager 13-3

I Conversion 9-4 Data Flag Branch Hardware 13-3

E and F Conversions : 9-4 Default Conditions 13-4

G Conversion 9-4 Branches 13-5

D Conversion 9-5 Data Flag Branch Software - 13-5

L Conversion 9-5 Interrupt Classes 13-5

A and R Conversions 9-5 Multiple Interrupts 13-5

Z Conversion 9-5 Default Interrupt Processing 13-6

B Conversion 9-5 Class Il Interrupts ‘ 13-6

Editing Codes 9-6 Interrupt-Handling Routines 13-7

X Specification 9-6 Q7DFSET 13-8

H and ' Specifications - 9-6 Q7DFLAGS 13-8

T Specification 9-6 Q7DFOFF 13-8

Scale Factors 9-6 Class I Interrupts ' 13-9

Printer Carriage Control 9-6 Interrupt-Handling Routines 13-9

Execution-Time Format Specification 9-7 Q7DFCL1 13-9
MDUMP 13-10
System Error Processor (SEP) 13-10
10. ARRAY ASSIGNMENT 10-1 Concurrent Input/Output Subroutines - 13-11
k Array Alignment Considerations 13-12

Subarray References 10-1 Subroutine Calls 13-12

Conformable Subarrays 10-2 Q7BUFIN 13-12

Array Expressions 10-2 Q7BUFOUT 13-13

Array Assignment Statement 10-2 . QTWAIT ' 13-13

Q7SEEK 13-13
QSWIDTH Subroutine 13-14

11. VECTOR PROGRAMMING 11-1 Q8 NORED Subroutine : 13-14
' - Supplied Subroutines 13-14

Automatic Vectorization 11-1 DATE 13-14
General Characteristics of Vectorizable RANGET ’ 13-14

DO Loops 11-1 RANSET - 13-14
Assignment Statements in Vectorizable SECOND 13-14

DO Loops 11-2 TIME 13-14
Loop-Dependent Array References in VRANF . 13-14

V ectorizable Loops 11-3 STACKLIB Routines 13-14
Automatic Recognition of

STACKLIBABLE Loops 11-4 . . :
Automatic Vectorization Messages "11-4 14. CYBER 200 FORTRAN-SUPPLIED FUNCTIONS 14-1

Exphcnt Vectorization - 11-4
Vectors 11-5 In-Line and External ‘ 14-1
Descriptors - 11-6 Scalar and Vector 14-1

Expressions 11-6 ~ Function Descriptions 14-5
Veetor Arithmetie Expressxons 11-6 ABS(a) © 14-5
Vector Relational Expressions 11-7 ~ ACOS(a) 14-6
Bit Expressions 11-8 AIMAG(a) : 14-6

- Executable Statements 11-8 AINT(a) 14-6
Deseriptor ASSIGN Statement 11-8 ALOG(a) 14-6
FREE Statement 11-9 ALOG10(a) 14-6
Vector Arithmetic Assignment Statement 11-9 AMAX0(a) ,a9,...) 14-6
Bit Assignment Statement 11-10 AMAXl1(aj ,a9,...) 14-6

Declarations 11-10) AMINO(a; ,a9,...) 14-6
DESCRIPTOR Statement | 11-10 AMIN1(a; ,a2,...) 14-6

viii 60457040 B

AMOD(a; ,a9,...)

ASIN(a) and ACOS(a)

ATAN(a)

ATAN2(a,b)
. CABS(a)

CCOS(a)

CEXP(a)

CLOG(a)

CMPLX(ay ,a9)

CONJG(a)

COS(a)

COSH(a)

COTAN(a)

CSIN(a)

CSQRT(a)

DABS(a)

DACOS(a)

DASIN(a) and DACOS(a)

DATAN(a) and DATAN2(a,b)

DATAN2(a,b)

DATE(d)

DBLE(a)

DCOS(a)

DCOSH(a)

DDIM(a; ,a9)

DEXP(a%

DFLOAT(a)

DIM(a1 ,ag)

DINT(a)

DLOG(a)

DLOG10(a)

DM AXl(a1 89 yeos)
DMIN1(ay ,a9,...)
DMOD(a; ,ag) .

DPROD(a; ,a9)
DSIGN(&]_ ,&2

DSIN(a) and DCOS(a)
DSINH(a)

DSQRT(a)

DTAN(a)

DTANH(a)

EXP(a)

FLOAT(a)

1ABS(a)

IDIM(&I 89)

IDINT(a)

IFIX(a)

INT(a)

ISIGN(ay ,a9)

MAX0(a 1 ,89 yaos)

MAX1(a 1,89 ,...)

MINO(a 1,89 ,...)

MIN1(a ,89,...)

MOD(a; ,a9)
" Q8SCNT(v)
Q8SDFB(a,b)
Q8SDOT(vy ,vy)
QB8SEQ(vy ,v2
Q8SEXTB(a,m,n)
Q8SGE(vy ,vg)
Q8SINSB(a,m,n,b)
Q8SLEN(v)
Q8SLT(vq ,vg)
QBSMAXl(v) or Q8SMAX(v,c)
Q8SMAXIK(v) or Q8SMAXKv,c)
Q8SMIN(v) or Q8SMIN(v,c)
Q8SMINI(v) or Q8SMINI(v,c)
Q8SNE(vy ,vp)
Q8SPROD(v) or Q8SPROD{v,c)
Q8SSUM(v) or Q8SSUM(v,c)
Q8 VADJIM(v;u)
QSVAVG(V 1,ve ;u)
Q8VAVGD(v1,v2o;u)
Q8VCMPRS(v,c;u
Q8VCTRL(v,c;u)

60457040 B

Q8 VDELT(v;u)
Q8VEQI(vy ,vg ;u)
Q8VGATHP(v,i,n;r)
Q8 VGATHR(v,i;u)
Q8VGEI(v1.,vg;u)
QBVINTL(a 1 ,a g ;u)
Q8VLTI(vq,v2;u)
Q8VMASK(vy ,vg ,c5u)
Q8 VMERG(vy ,vy ,c5u)
Q8V MKO(&I ,89 ;1)
Q8VMKZ(a; ,a9;u)
Q8 VNEI(vy ,vg ;u)
Q8VPOLY(vy ,vg;u)
Q8VREV(v;u
Q8VSCATP(v,i,n;r)
Q8VSCATR(v,izu)
Q8 VXPND(v,c;u)
RANF(d)

REAL(a)
SECOND(d)

SIGN(&I 89)

SIN(a) and COS(a)
SINH(a)

SNGL(a)

SQRT(a)

TAN(a)

TANH(a)

TIME(d)

V ABS(v;u)
VACOS(v;u)
VAIMAG(v;u)
VAINT(v;u)
VALOG(v;u)
VALOG10(v;u)
VAMOD(vy ,vg ju)
\Y ASIN(v;u%
VATAN(v;u)
VATAN2(vy ,vg ;u)
\' CABS(v;u§
VCCOS(v;u)
VCEXP(v;u)
VCLOG(v;u)
VCMPLX(v 1,V g;u)
VCONJG(v;u)
VCOS(v;u)
VCSIN(v;u) and VCCOS(v;u)
VCSQRT(v;u)
VDBLE(v;u)
VDIM(vy ,vg ;u)
VEXP(v;u)
VFLOAT(v;u)
VIABS(v;u)

VIDIM(v 1 ,vg ;u)

v IFIX(V;lb
VINT(v;u)
VISIGN(vy ,vg ;u)
VMOD(vy ,vg ;u)
VREAL(v;u)
VSIGN(vy ,vg ;u)
VSIN(v;us and VCOS(v;u)
VSNGL(v;u)
VSQRT(v;u)
VTAN(v;u)

15. PROGRAM COMPILATION
FORTRAN Statement

A - Assembly Listing
- Build Object File

- Instruction Scheduling
- 64-Bit Compare

tRTEm QW

- Cross-Reference Listing
- Extended Basic Block Optimization

- Source Listing Suppression

14-17
14-17
14-17
14-18
14-18
14-18
14-18
14-18
14-18
14-19
14-19
14-19
14-19
14-19
14-20
14-20
14-20
14-20
14-20
14-20
14-20
14-21
14-21
14-21
14-21
14-21
14-22
14-22
14-22
14-22
14-22
14-22
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25

15-1

15-1
15-1
15-2
15-2
15-2
15-2 |

15-2

15-2

ix

oQwW»

S
-0

A I R
~N D [S -1 OB = OO

ooq—q‘-‘a«‘lcaw
b O DN == O

NN
-

10-1
11-1
11-2
11-3

WRHNK <c®PmUOo =

- Map of Register File and Storage
Assignments

- Optimization

- Propagation

- Redundant Code Elimination

- Suppress Debug Symbol Table Creation

- Unsafe Vectorization

- Vectorization and Automatic
Recognition of STACKLIB Loops

- Syntax Check

- DO Loop Optimization

- STAR-100 Optimization

- CYBER 203 Optimization

- CYBER 205 Optimization

Character Sets

 Diagnosties

Glossary
Special Call Statements

Sample Coded FORTRAN Program
. Ordering of Statements
Conventional Ordering of Elements in a
3-Dimensional Array, A(2,3,4)
ROWWISE-Declared Array, A(2,3,4)
Integer Data Representation
Real Data Representation
Logical Data Representation
Simple Block IF Structure
Block IF Structure with ELSE Statement
Block IF Structure with ELSE IF
Statements
Nested Block IF Structure
Incorrect: Entering Range of DO Before
DO Execution
DO Control Variable Reinitialization

Example of Incorrect Sharing of Terminal

Statement
Example of RETURN Statement

COMMON and EQUIV ALENCE Statements

Subprogram Name as Actual Argument

Subprogram Reference as Actual Argument

Multiple Entry Subroutine

Multiple Entry Function

Example Using ENCODE and DECODE
Statements

Example of Inputting Formatted Data

Meaning of a Subarray

Form of Vectorizable DO Loops

Vectorizable Loop #1

Vectorizable Loop #2 (U Option)

Column Conventions

Types of Statements

FORTRAN Character Set

Array Element Succession Formulas

Subseripting Order for a Three-
Dimensional Array A(2,3,4)

Logical Operator Truth Tables

Operator Precedences

Conversion for Arithmetic Assignment

External Declaration of a Supphed
Function

Data Initialization Convers:ons

Distinguishing Funetions and Subroutines

Compiler-Generated Listings

15-2 Cross-Reference Maps
15-2 Assembly Listing
15-2 Register Map and Storage Map
15-2 Execution-Time File Reassignment
15-2 Control of Drop File Size
15-2
15-2 16. EXAMPLES
15-2
15-3 Program PASCAL
15-3 Data Initialization
15-3 Program ADD
15-3 Program CPVECT
APPENDIXES
A-1 E CYBER 200 FORTRAN-Supplied
B-1 Functions List
C-1 F CYBER 200 FORTRAN Statement
D-1 Summary
G Compatibility Features
INDEX
FIGURES
1-3 11-4 Vectorizable Loop #3
1-3 11-5 Vectorizable Loop #4
11-6 Vectorizer Output
2-4 11-7 Descriptor Representation
2-4 11-8 Example of Descriptor ASSIGN
2-4 13-1 Special CALL Statement
2-5 13-2 Q8ES Usage
2-6 13-3 Additional Q8 Usage
5-3 13-4 Generated Machine Code
5-3 13-5 Additional Generated Code
13-6 Data Flag Branch Register Format
5-3 13-7 DFB Register Dump Example
5-4 13-8 Scope of Selected Conditions
13-9 MDUMP Output
5-4 15-1 Statement Label Map Format
5-5 15-2 Compiler Output Example
15-3 Variable Map Format
5-5 15-4 Symbolic Constant Map Format
5-6 15-5 Procedure Map Format
6-4 16-1 Program PASCAL
7-4 16-2 Examples of Initializing Simple
7-4 Variables and Array Elements
7-7 16-3 Examples of Initializing Simple Arrays
7-8 16-4 Examples of Vector Initialization
16-5 Example of Descriptor Initialization
8-3 16-6 Example of Descriptor Array Element
9-1 Initialization
10-2 16-7 Example of Descriptor Array
11-1 Initialization
11-2 16-8 Program ADD
11-3 16-9 Program CPVECT
TABLES .
1-1 7-2 Correspondence of Actual to Dummy
1-2 Arguments
2-1 8-1 Legal Record Types
2-3 9-1 Input/Output Conversions
11-1 Criteria for Vectorizable Loops
2-4 11-2 Expression Types That Can Appear in an
3-3 Assignment Statement i
3-4 11-3 Conversion Rules for Vector Assignment
4-1 13-1 Data Flag Branch Conditions
13-2 Multiple Interrupt Processing
6-4 13-3 STACKLIB Calls with Forward Count
6-7 13-4 STACKIIB Calls with Backward Count
7-3 14-1 FORTRAN-Supplied Functions

15-3
15-3
15-11
15-12
15-12
15-12

E-1
F-1

7-5
8-1
9-4
11-2

11-8
11-10
13-4
13-6
13-15
13-16
14-1

60457040 C

NOTATIONS

m

Certain notations are used throughout this manual that
have consistent meanings. The notations are:

UPPERCASE

lowercase

60457040 B

Uppercase letters in language forms
indicate actual keywords.

Lowercase letters in language forms
indicate user-supplied character
strings.

Numbers preceded by the pound sign
are hexadecimal numbers.

numbers

TAY

. parts of example programs that us

All numbers in this manual are
decimal unless preceded by a pound
sign or otherwise denoted as
hexadecimal numbers.

Delta represents a blank.

- Shading indicates features that are
" Control 'Data extensions to the

standard FORTRAN language. The

language extensions are also shaded. .

Xi

INTRODUCTION | 1

The FORTRAN programming language for the cpc®
CYBER 200 computer contains both CDC and unique
CYBER 200 extensions to the standard FORTRAN (as
defined by American National Standards X3.9-1966,
FORTRAN). Throughout this manual, shading is used to
distinguish these extensions from the standard FORTRAN
language features.

Several of the CDC® CYBER 200 FORTRAN extensions to
standard FORTRAN allow the FORTRAN user to exploit
the vector processing capabilities of the CYBER 200 Series
computers. In CYBER 200 FORTRAN, vectors can be
expressed with an explicit notation, functions are provided
that return vector results, and special call statements
enable access to any machine instruction.

PROGRAM FORM

A FORTRAN program consists of one or more separately
defined program units. A program unit, which is either a
main program or a subprogram, consists of a series of
source lines that contain statements, optional comment
lines, and one END line. An executable FORTRAN
program must contain one main program; it can also
contain any number of subprograms.

If the executable program consisting of source lines
aggregated as program units is accepted by the
CYBER 200 FORTRAN compiler, the program is changed
into a form that can be loaded and executed by the
CYBER 200 operating system. The compiler executes in
response to the FORTRAN system control statement.
Once the program has been compiled, it can be loaded and
executed in response to further system control statements.

Execution of the compiled program proceeds with one
program unit having control until it relinquishes it to
another program unit or until it stops. Values can be
passed at the time that control is passed from one program
unit to another. During execution, the compiled program
can make use of execution-time routines that are part of
the system library. Files referenced in the program are
read and written by CYBER 200 System Input/Output
(SI0). Depending on the source program statements, other
system-defined or compiler-defined procedures, such as
conditional interrupt routines and error processing
routines, might also be invoked during execution.

An example of a complete CYBER 200 FORTRAN program
is provided in figure 1-1. ‘

A statement is written as one or more source lines, and a
comment, as one source line. The first line of a statement
is called an initial line and the succeeding lines are called
continuation lines. Each line is a string of any characters
in the 64-character ASCII subset listed in appendix A. The
character positions in a line are called columns and are
consecutively numbered from left to right.

A FORTRAN program can be written on a coding form
such as the one illustrated in figure 1-1. Each line on the
coding form represents a.source line that can be either
keypunched on a card or typed in at a terminal. No more

60457040 B

than one statement is permitted on a single line. The
conventional significance of each column of a source line is
shown in table 1-1.

TABLE 1-1. COLUMN CONVENTIONS

Columns Significance

1 The letter C indicates that this
is a comment line, and that the
remainder of the line is to be

ignored by the FORTRAN compiler.

1 thru 5 One to five numeric characters in
this field are interpreted as a

statement label.

6 Any ASCII character other than a
blank or zero indicates that this
is a continuation line.

7 thru 72 CYBER 200 FORTRAN statement, with
blank characters ignored except
in character and Hollerith con-
stants, can appear anywhere

within this field.

73 thru end Identification field, the

of source contents of which are always
time ignored by the FORTRAN compiler,
can contain any characters.

END LINES

An END line indicates to the FORTRAN compiler the end
of a program unit. Every program unit must have an END
line ss its last line.

Form:
END

Program units are described in section. 7.

COMMENTS

Comment lines are used for purposes of in-line
documentation. They are not statements. Except for
being printed in the output file, comment lines have no
effect. The letter C in column 1 of a line indicates that
this is a comment line; the comments themselves can be
written anywhere after column 1. If a comment requires
more than one line, each line must have a C in column 1.

-1

STATEMENTS

The statements in the CYBER 200 FORTRAN language fall
into two classes: executable and nonexecutable (see
table 1-2). In general, a FORTRAN program unit consists
of nonexecutable statements followed by executable
statements; however, there are a few significant
exceptions to this separation.

Executable statements specify actions to be taken during
program execution. Executable statements are used
typically in the course of a program to request that data be
input, that data be operated upon and stored, and
subsequently that results be output.

Nonexecutable. statements deseribe characteristics,
arrangement, and format of data, as well as entr int

PR M. s ent. nonexecutable statement
as a FORMAT or DATA statement) that appears in the
executable portion of a program is processed once by the
compiler and does not affect the flow of execution.

Statement Labels

Within a program unit, a statement label - any one- to
five-digit integer - uniquely identifies a statement so that
it can be identified by another statement. Labels on
statement continuation lines are ignored, as are blanks and
leading zeros in a label. Statements that are not referred

1-2

TABLE 1-2.- TYPES OF STATEMENTS

Executable Nonexecutable

Procedure definition
statements (sections 7
and 11)

Input statements
(section 8)

Specification state-
ments (sections 6
and 11)

Assignment statements
(sections 4, 10,
and 11)

Data initialization
statements (sections 6
and 11)

Flow control state-
ments (section 5)

Output statements

FORMAT statements (sec—
-(section 8)

tion 9)

to by other statements need not be labeled. Labels need
not occur in numerical order. A statement label can be
referred to as frequently as necessary, but it must not be
used more than once in the same program unit to label a
statement. Also, no statement can refer to the label of a
statement that is contained in another program unit.

60457040 B

Continvation of Statements

If a statement is longer than 66 columns, it can be
continued on as many as 19 continuation lines. Unless a
line is a comment line, a character other than blank or
zero in column 6 indicates a continuation line. Columns 2
through 5 can contain any characters in the FORTRAN
character set (they are ignored), and ecolumn 1 can contain
any character in the set except C. A continuation line can
follow only another continuation line or the initial line of a
statement. :

Ordering of statements

Figure 1-2 shows the general form of a FORTRAN program
unit. Statements within a group can appear in any order
(with one exception), but groups (indicated by 1, 2,..., 6)
must be ordered as shown in figure 1-2. Comment lines
can appear anywhere within the program before the END
line, except before statement continuation lines.

COLUMNS 73 THROUGH END OF SOURCE LINE

Any information can appear in any columns that follow
column 72. The characters in these columns are copied to
the output file but have no other effect. These columns
could be used, for example, to order the cards in a punched
deck.

PROGRAM DATA

No restrictions other than those implied in sections 8 and 9
are imposed on the format of data input to the program.
Input data can appear in any of the columns of an input line
and can use as many input lines as required. Except on
initiation of a read, or interpretation of a slash separator
in the FORMAT statement associated with a READ
statement, the input line boundary is not significant. Input
data is not part of the source program record.

60457040 B

'PROGRAM.
1 FUNCTION
SUBROUTINE
BLOCK DATA

2 | IMPLICIT.

NAMELIST
Type

COMMON

3 DIMENSION
ROWWISE
EQUIVALENCE
EXTERNAL

PARAMETE
StatementsTﬁ

4 Statement function definitions

5 Executable statements

FORMAT and ENTRY! statements

DATA statements

6 END line

i

TExcept within ranges of DO loops; must not appear
immediately before an END line.

TTAn INTEGER type statement that is being used to
type a variable that is an adjustable dimension or
adjustable length in the program unit must appear

Figure 1-2. Ordering of Statements

STATEMENT ELEMENTS 2

The elements of a syntactically correct CYBER 200
FORTRAN statement could include any of the following:

o Identifiers
o Keywords
e Special characters

An identifier is a name or a number. For example, a
number (the statement label) is used for identifying a
statement. Input and output units are also numbered.
Names are used to identify data elements, such as
variables and arrays, and for identifying procedures and
blocks. A symbolic name consists of alphanumeric
characters, the first of which must be alphabetie.

.CYBER 200 FORTRAN allows a symbolic name to have a

length of eight characters.

In the appropriate contexts, keywords and some of the
special characters (the plus sign, for example) mean that
specific actions are to be taken with respect to the
identified data. Other special characters (the comma, for
example) serve to punctuate statements. FORTRAN does
not contain reserved words, which means that a keyword
out of the appropriate context is interpreted to be an
identifier.

CHARACTER SET

_Except for character and Hollerith constants, and
~character and Hollerith editing specifications in FORMAT
statements, CYBER 200 FORTRAN statements are written

with the 52 characters listed in table 2-1. Character and

Hollerith constants and editing specifications can contain
any of the 64 characters in the ASCII subset that is given
in appendix A.

TABLE 2-1. FORTRAN CHARACTER SET

Character Class Characters

Alphabetic Letters A thru 2

Numeric Digits 0 thru 9

Special Blank or space

Equals sign

Plus sign

Minus sign or hyphen
Multiply sign or asterisk
Divide sign or slash
Left parenthesis

Right parenthesis

Comma

Decimal point or period
Ampersand

Apostrophe

Colon

Semicolon

Right bracket

Left bracket

AN YL+ D

@ -

Y ——e

Other than within character and Hollerith constants and in
editing specifications, the blank character is not
significant within FORTRAN statements. Consequently,
the user can insert blanks within a statement, even within
identifiers and numeric constants, to make the program
readable. The symbol is used in this manual to denote a
blank character that is not optional.

DATA ELEMENTS

Data can be represented in a CYBER 200 FORTRAN
program as constants, variables, and arrays.

CONSTANTS |
A constant is a quantity identified by its value. The value
of a constant cannot be changed at any time during
execution of a program.

A constant has one of nine data types:

e Integer

e Real

e Double-precision

e Complex

e Logical

e Hollerith

Each type of constant has its own source program form and
computer internal representation. For example, if the
constant 1061 appears in a source program, it represents
the decimal value 1061 and has the data type integer. The
fullword the number occupies in memory has the 64-bit
binary representation 0...010000100101.

60457040 B

YMBOLIC CONSTANT

2-1

VARIABLES

A variable is a quantity whose value can be changed during
program execution. A variable is identified by a symbolic
name. A variable name is generally associated by the
FORTRAN compiler with a storage location; whenever the
variable is referenced in a source program, the value
currently in that location is accessed.

A variable can be a simple (that is, scalar) variabl

Some of the ways that the value of a variable can be
changed during program execution are:

o Executing an assignment statement in which the
variable name ocecurs to the left of an equals sign

e Reading a new value into it

e Using it as an argument to a subprogram that changes
the argument value

e Changing the value of a variable to which it has been
equivalenced N

The data type of a variable name is determined implieitly
by the name's first letter (this is referred to as the
first-letter rule) unless the name is explicitly typed by an
explicit type statement. the correspondence of first
letters to types is as follows

IMPLICIT statements:
Letters Data Type
A through H, and O through Z Real
I through N Integer
ARRAYS

An array is a totally ordered set of variably valued
elements identified by a single symbolic name. A single
element of the array can be named by suffixing the array
name with a subscript that specifies the element's position
within the array Q at

An array can be a simple array leserip
array containing scalar elements is a simple array.

For each array, a DIMENSION, . ROWWI COMMON, or
type declaration statement must be used to declare the
array's-size. This declaration must be made once in each
program unit that references or defines the array; if more
than one program unit uses the array, the declaration must
be the same in all of the program units.

2-2

by,

An array declarator is used to declare the size of an array,
and has the following form:

a(d)

a The array name.

d Alist of the form:
dyyeeesdn

where n is the number of dimensions the array is
to have; and where d; is an integer constant or
simple integer variable whose magnitude indicates
the maximum value that a subscript expression
for the ith dimension may attain in any array
element name.

be a variable only when a is a

The dimension d; can
d t i by

y arguments

discussed later in sections 6 and 7.

The data type of an array is determined by the same
explicit and implicit rules that determine the data type of

.a variable name. The data type of an array element is that

of the array. It is possible (but not necessary) to declare
the size and data type for an array with the use of a single
array declarator. For example, the explicit type statement
COMPLEX A(50) declares the array A to have 50 elements
all of which are of type complex. In this example, no
additional statement is required (or allowed) for assigning a
data type to the array.

The amount of storage reserved for an array is determined
by the array's size and data type. For any array, the
number of words, bytes, or bits reserved is the number
required for a single element of the particular data type,
times the number of elements. For example, COMPLEX -
A(50) reserves 100 words of storage for A because any data
element of type complex requires 2 words for its internal
representation, and the array A consists of 50 of such
complex data elements.

one-dimensional array can be thought of as a list or series;
a two-dimensional array, as a matrix. The product of the
dimension sizes equals the number of elements in the array.

Subscripts and Array Declarators

ipt consists of a pair of parentheses enclosing one
even subsecript expressions separated by commas.
Subscripted array names must not be confused with array
declarators: an array declarator declares the dimensions
of an array, and a subscripted array name identifies a
single array element. A subscript appears in an array
element name immediately after the array name. Except
in an EQUIVALENCE statement, the number of subscript
expressions must always equal the number of dimensions
for the array.

Each dimension in an array declarator can be an integer
constant or, in a subprogram, a single integer variable. An
integer variable dimension, permitted only when the array
is a dummy argument, must either also be a dummy
argument or must be in common. A variable used in this
way as an adjustable dimension must either be implicitly
integer, or must appear in an INTEGER type statement
before it appears in any other declaration statement.

60457040 B

Each subscript expression in an array element name can be

any scalar arithmetic expression of type integer, real, or
double-precision, and must never assume a value less
than 1 or larger than the maximum length specified in the

declarator (the value is not checked at run time). When the

value of the expression is not integer, it is truncated to
integer.

Subscript Interpretation
A subscript can 1dent1fy an element in the array in either

occurred in a ROWWISE statement or occurred in a

DIMENSION, COMMON, or type declaration statement.;

The conventional succession of elements in an array is
defined by a succession of subseripts in which the value of
the leftmost subscript expression varies through its range
(from 1 to the maximum value of that dimension), then the
value of the subscript expression to its right is increased by
1 and the first goes through its range again, and so on, until
each subseript expression has gone through its entire range

at least once. The subseript signifieance is just the reverse:

for an array that has been declared in a ROWWISE -
statement: the succession of elements is defined by a
succession of subseripts in which the value of the rightmost
subseript expression varies through its range, then the
value of the subscript expression to its left increases by 1
and the last goes through its range again, and so on, until
each subscript expression has gone through its entire range .
at least once.

To find the location of an array element in the linear
sequence in which the elements are stored given its
identifying subseript, the formulas listed in table 2-2 can
be used. In the table, capital letters are dimension sizes
and lowercase letters are the subseript expression values of
a particular subseript.

A comparison is made of the ordering for conventional and
rowwise subscripts for a 3-dimensional array of 24
elements in table 2-3. Interpreted geometrically, the
conventional ordering is 2 rows, 3 columns, and 4 planes, as
shown in flgure 2-1. The rowwise ordering mterpreted ;
geometrically is 4 rows, 3 columns, and 2 planes, shown in

figure 2-2.

TABLE 2-2. ARRAY ELEMENT SUCCESSION FORMULAS

Dimensionality Declarator Dimensions

Instance of Subscript

Location of Array Element

1 (a)

(a) a

a+A*(b-1)

3 ... (B0
e e G BA)T

a+A*(b—1)

60457040 B

2-3

TABLE 2-3. SUBSCRIPTING ORDER FOR A THREE-
DIMENS IONAL ARRAY A(2,3,4)

) Conventional
Ordinality Subscript
Succession

1 A(1,1,1)
2 A(2,1,1)
3 A(1,2,1)
4 A(2,2,1)
5 A(1,3,1)
6 A(2,3,1)
7 A(1,1,2)
8 A(2,1,2)
9 A(1,2,2)
10 A(2,2,2)
11 - A(1,3,2)
12 A(2,3,2)
13 A(1,1,3)
14 A(2,1,3)
15 A(1,2,3)
16 A(2,2,3)
17 A(1,3,3)
18 A(2,3,3)
19 A(l1,1,4)
20 A(2,1,4)
21 A(1,2,4)
22 A(2,2,4)
23 A(1,3,4)
24 A(2,3,4)
19121]| 23
20 | 22 | 24

13 {15} 17

14 |16 | 18

7 9 |1
8 10 | 12
1 3 5
2 4 6

Figure 2-1. Conventional Ordering of Elements in a
* 3-Dimensional Array, A(2,3,4)

DATA ELEMENT FORMS

A data element or function name must be associated
implicitly or explicitly with a data type. The association
applies to every occurrence of the name throughout the
program unit in which the association is declared.

The data type of a variable, array, or function name is
implied by the first letter of the name or it -must be

2-4

specified explicitly (the data type of a FORTRAN-supplied
function is predefined). The data type of a constant is
implied by its form. The internal representation of a value
of a particular data type is the same whether it is the
value of a variable, of an array element, or of a constant.

INTEGER ELEMENTS

An integer constant has the following form:
d1d2 ese dm

g A decimal digit (0 through 9); m is greater
than or equal to 1 and less than or equal to 14,

It is written without a decimal point and without embedded
commas.

A signed integer constant is an integer constant prefixed
by a plus or minus sign. If an integer is positive, the plus
sign can be omitted. If an integer is negative, a minus sign
must be present. An optionally signed integer constant is
an integer constant or a signed integer constant. Integer
zero is neither positive nor negative but can be signed
(with no significance).

The value range for an integer is -247 through 247-1.

. Integers used in addition, subtraction, multiplication,

division, or exponentiation, as well as the results of such
operations, must be within this range.

' Integer data occupies one word of storage as shown in

figure 2-3.

integer in two’s complement

binary zero W
representation

Figure 2-3. Integer Data Representation

60457040 B

A variable or array can be associated with the integer data
type implicitly or explicitly, as described under Variables
in this section.
Examples of integer constants:

237 0 13593569

Examples of signed integer constants:

-237 +13593569

REAL ELEMENTS
A real constant can have one of the following forms:
n
nEx
mEx
n A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.
m An integer constant.

X An optionally signed integer constant in the range
-8617 through 8645.

The Ex in the real constant form expresses the exponent.
Interpreted arithmetically, nEx means n*10X and mEx

means m*10X, An exponent of E+0 is assumed if a real -

constant contains no exponent. A signed real constant is a
real constant prefixed by a plus sign or minus sign. The
constant must be preceded by a minus sign if the real
number represented is negative, but the plus sign is
optional if the number is positive. An optionally signed
real constant is a real constant or a signed real constant.

The absolute value range for a real number is
approximately 0 through .95370811543187E+8645. The
smallest positive real number that can be represented is
approximately .51921128456573E-8617. The precision
retained in calculations involving real numbers is
approximately 14 significant decimal digits.

Real data occupies one word of storage as shown in
figure 2-4.

0 16 63
fﬁg‘is"ﬁgf;,;.e_ mantissa, a two’s complement
ment integer integer

Figure 2-4. Real Data Representation
Examples of real constants:

2.5 .25E+1 .25E1 2500E-3 0E0

Examples of signed real constants:

+2.5 -.25E+1 +.25E1 -2500E-3 +0E0
Real data is always represented in normalized form in that
the most significant bit of the mantissa appears in bit 17,
with the value of the exponent adjusted appropriately. The
appropriate hardware reference manual contains more
detailed descriptions of the hardware representations for
numeric data.

60457040 B

A variable or array can be associated with the real data
type either implicitly or explicitly, as deseribed under
Variables in this section.

DOUBLE-PRECISION ELEMENTS

A double-precision constant has one of the following forms:

nDx
mDx

n A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m Aninteger constant.

X An optionally signed integer constant in the range
-8617 through 8645,

The Dx in the form expresses the exponent.

A double-precision constant is written and interpreted in
exactly the same way as a real constant, except that the
exponent must always be used and the letter D is used in
the exponent instead of an E.

The value range for double-precision numbers is the same
as for real numbers; however, the precision retained is
approximately 28 significant digits instead of 14. The
largest double-precision number that can be represented is
.5611945937669446199620414073D+8645. The smallest
positive double-precision number that can be represented is
approximately .5192112845657330557004135339D-86117.

Double-precision data occupies two contiguous words of
storage. The first word is in the same format as for type
real data and expresses the most significant digits. The
second word is in the same format as the first, except that
the exponent value is 47 less than the exponent of the first
and the mantissa has not been normalized. The second
word is always nonnegative (zero or positive),

A variable or array can be associated with the
double-precision data type by means of the DOUBLE
PRECISION or the IMPLICIT type declaration statement.

Examples of double-precision constants:
.25D+1 .25D1 2500D-3
3.1415926535897932384626433D+0

Examples of signed double-precision constants:

+.25D+1 -.25D1 +2500D-3

COMPLEX ELEMENTS

A complex constant must have the following form:

(PIJZ)
ry An optionally signed real constant.

A complex constant is written as an ordered pair of
optionally signed real constants separated by a comma and
enclosed in parentheses. The parentheses are part of the
constant and must always appear. The value range for
either ry or rg is the same as for type real data.

Complex data occupies two contiguous words of storage,
each of which is in the format for type real data. The first
word (r; in the form) represents the real part of the
complex number. The second word (rg in the form)
represents the imaginary part.

A variable or array can be associat d with the complex
data type only by means of the IM
type declaration statement.

Examples of complex constants:

which has the value of the complex
number 4.0 + 5.0i, where i = J-1

(4.0, 5.0),

(0.,-1.)
(+.4E1, 5.0)
(-4., -5.)

LOGICAL ELEMENTS

A logical constant has one of the following forms:
.TRUE.
FALSE.

The periods are part of the constants and must appear.

Logical data occupies one word of storage as shown in
figure 2-5.

0000 00d

where d is a 1 bit or 0 bit for .TRUE. and .FALSE.
respectively.

Figure 2-5. Logical Data Representation
A variable or a iated
by means of
declaration statement.

ith the logical data type
the LOGICAL type

HOLLERITH ELEMENTS
A Hollerith constant is a string composed of an (unsigned)
integer constant followed by the letter H or R, and a
nonempty string of any m of the 64 characters in the ASCII
subset. The blank character is an acceptable and
significant character in a Hollerith constant.
Form: .

mRs

mHs

m An (unsigned) integer constant less than or equal
to 255 and nonzero.

R Right-justified with binary zero fill.

2-6

H Left-justified with blank fill,

s A string of exactly m characters included in the
64~character ASCII subset (appendix A).

Hollerith data uses m contiguous bytes (a byte is eight bits)
to represent m characters. Eight characters fill one
machine word. The word boundary generally does not
affect how Hollerith data is stored; however, when used as
an actual argument in a subroutine call or function
reference, a constant is aligned on a fullword boundary and
extended with blanks on the right so that it occupies a
whole number of words.

R constants are limited to one word and are right-justified
with binary zero fill.

Examples of Hollerith constants:
19HRESULT NUMBER THREE 5H12345

S5HAAAAALH,
5R12345

A Ho]lernth constant can be used as an actual argument or
f ta initializati t. F

1t is not possible to declare a variable or array to be type
Hollerith.

60457040 B

Form:

X'Mihg .. hy!

hj A hexadecimal (base 16) dlg'xt- m is less than
or equal to 255.

Hexadecimal data uses as many contiguous bits of storage
as are required to represent m digits: the digits 0 through
F (interpreted as the hexadecimal equivalents of the

decimal dxglts 0 through 15) each take four bits. The

alignment is not significant for hexadecimal data.

Examples of hexadecimal constants:

X'33'" X'1A9" X'FFFFFFFFFFFFFFFF'

Hexadecimal constants are restricted to use in data

initialization and special CALL statement argument lists.

1t is not possmle to declare a varmble or array to be type

‘hexadecimal.

60457040 B

BIT ELEMENTS

A bit constant is a string composed of the letter B
followed by a nonempty strmg ‘of ‘m binary - digits (blts)*
enclosed in apostrophes.’ i

Form:

B'b1bg . . . by

b; A bit (0 or 1); m is less than or equal to 255.
Bit data uses m contiguous bits; the alignment is not

significant. The digits 0 and 1 each correspond to one bit |
in storage.

‘Examples of bit constants:

B'0' B'10101111* . B'000000000000001

Bit constants are restricted to use in subprogram:

references, bit assignment statements, and data
initialization. (

A bit variable is associated with the bit data 'type by means
of the BIT or the IMPLICIT type declaration statement. .

2-7

SCALAR EXPRESSIONS | | 3

A FORTRAN expression is a string of one or more operands
and zero or more operators that is evaluated during
program execution to yield a value. The conventional
precedences for the FORTRAN arithmetic and logical
operators are given later in this section.

An expressmn generally specifies a computation or a
comparison between operands. However, in its simplest
form, an expression consists of a single data element (a
single constant, variable, or array element) or a function
reference. This section gives the formation and evaluation
rules for the following kinds of scalar expressions:

Arithmetic Yields numeric values; appears in
arithmetic assignment statements and in
relational expressions.

‘Character

__relational expressions.

Relational Yields logical values; appears in logical

expressions.

Logical Yields logical values; appears in logical
expressions and logical assignment
statements.

Bit Yields bit values; appears -
o - assignment statements, L

‘Contains no operators; is - used in
--character. assngnment statements and{

in bit|

When an expression is evaluated during program execution,
the result is retained in a variable, is used immediately as
an operand for another operation, or is passed as an
argument to a function or subroutine. An expression whose
evauation yields a result of a certain type is called an
expression of that type; for example, an expression whose
evaluation yields an integer result is called an integer
expression.

Examples of expressions:

Expression Value
X Current value of the variable X.
3.5 Constant real number 3.5.

i

DB1/DB2#*#*2 Value of DB1 divided by the square
of the value of DB2.

A(C/B) Array element A(l), where I is the
value of the expression C/B.

SQRT (TRUNK) Funection reference.

(A+B+3%C)/2.56 The sum of the expressions A, B,

-and 3*C, divided by 2.56.

X.LT. Y-1.0 LTRUE. if the value of X is less
than the value of Y-1.0; .FALSE.

otherwise.

60457040 B

.NOT. FNLOG(B) .TRUE. if the value of the
expression FNLOG(B) is .FALSE.,
.FALSE. otherwise.

If the value of an expression can be established without
evaluating a certain part of the expression, then that part
might never be evaluated. For this reason the user cannot
rely on any side effects an expression might be able to
produce,

Example:
During evaluation of the logical expressions
Y .OR. F(X) .OR. Z
if Y has the value .TRUE., the expression has the
value .TRUE. whatever the values of F(X) and Z are.

In this situation, the execution of F might occur as a
result of the expression evaluation.

Another consideration for the user is compatibility
between operand types durmg evaluation. - The operand
;’types that can be combmed in the same amthmetxc or

ARITHMETIC EXPRESSIONS

The FORTRAN arithmetic operators are:

+ Addition; unary plus

- Subtraction; unary minus

* Multiplication
/ Division
** Exponentiation

Unary plus and minus are conceptually like dyadic addition
and subtraction using an implied zero operand of the same
type as the given unary operand.

3-1

An arithmetic expression can be a single constant, simple
variable, array element, or function reference. If X is an
arithmetic expression, then (X) is an arithmetic
expression. Each left parenthesis must have a
corresponding right parenthesis in the same expression.
Furthermore, if X. and Y are arithmetic expressions, the
following are also arithmetic expressions:

X+Y

X*y

X-Y

X/Y

Xe*y
All operations must be specified explicitly. For example,
to muitiply two variables X and Y, the expression X*Y
must be used; XY, (X)(Y), or X.Y does not result in
multiplication. Also, operators in an expression must not
be contiguous. A unary plus or unary minus can be
separated from another operator in an expression by using
parentheses around the signed element.
Examples of arithmetic expressions:

3.5

3.5+N

~(3.5+N)/2%*M

(XBAR+(B(1,J+1,K)/3.0))

~(C+DELTA*AERO) .

(-B-SQRT(B**2-(4*A*C)))/(2.0*A)

GROSS - (TAX*0.04) -

TEMP + V(M,AMAX1(A,B))*Y**C/(H-FACT(K+3))

EXPONENTIATION

The following types of bases and exponents are permitted
in exponentiation:

Type of Base Type of Exponent

Integer

Real Integer, real, double-
precision

Double-precision Integer, real, double-
precision

Complex

Also, a negative-valued base can have an exponent of type
integer only and a zero-valued base can be raised to a
positive exponent only.

An expression (or a subexpression delimited by parentheses)
that contains only operands and the exponentiation
operator is evaluated from right to left. That is, A**B**C
means. (A**(B**C)). This interpretation can be changed
- with appropriate use of parentheses, for example,
(A**B)**C.

EVALUATION OF ARITHMETIC EXPRESSIONS

The 'value of an arithmetic expression is a close
approximation to the mathematical interpretation. The
sequence in which the elements of an expression are
evaluated is governed by the following rules listed in
descending precedence:

1. Subexpressions delimited by parentheses are evaluated
beginning with the innermost subexpressions.

2. Subexpressions defined by arithmetic operators are
evaluated.

3. Subexpressions containing operators of equal
precedence are evaluated in effect from left to right,
except for exponentiation which is evaluated from
right to left (the exponent's value is calculated before
the base's value).

For example, the expression:

A/B/C-D*E**F

might be evaluated as follows:

1. Eis raised to the power of F.

2. A is divided by B.

3, Quotient in step 2 is divided by C.
4. Result of step 1 is multiplied by D.

5. Product in step 4 is subtracted from result of step 3.

If the result of an integer division is not integral, the
fractional part is discarded. The result of an integer
division is the nearest integer whose absolute value does
not exceed the absolute value of the magnitude of the
mathematical ratio. For example, 3/2*4 has the value 4,
-3/2*4 has the value -4, and 3/(-2)*4 has the value -4.

Operators that are mathematically associative or
commutative might be reordered during compilation. The
user can force a definite ordering of mathematically
associative operators of equal precedence by appropriate

“use of parentheses. Subexpressions containing integer
divisions are not reordered within the division/

multiplication precedence level, however, because the
truncation resulting from an integer division renders these
operations nonassociative.

The evaluation of an array element or function reference
in an expression requires the evaluation of the subseript or
actual arguments. The evaluation of the subseript or
actual arguments does not affect the type of the value of
the expression in which the subseript or argument list
appears; neither does the expression type affect subseript
or actual argument evaluation. -Evaluation of a funection
must not alter the value of any other element within the
statement in which the function reference appears.

No element can be evaluated whose value is not
mathematically defined. For example, division by zero or
the square root of a negative number cannot be evaluated.

60457040 B’

TYPE OF AN ARITHMETIC EXPRESSION

The arithmetic operators +, -, *, and / can be used to
combine any elements of the same numeric data type into
an expression; the resultant value has the same data type
as that of the operands. For example, when two real
numbers are added, the data type of the result is real, and
the operation is referred to as a real operation,
Furthermore, a complex, double~precision, real, or integer
element can be combined with one of these operators into
an expression with an element of any of the types complex,
double-precision, real, or integer, with the resultant value
having the type possessed by the dominant operand.

CHARACTER EXPRESSIONS

A character expression consists of exactly one data
element and no operators. This element can be any one of |

the following:

e A character constant

d A character array element
® A character variable

o A character function reference

The value of a character expression is the value of the
element. The type of a character expression is character.

RELATIONAL EXPRESSIONS
The FORTRAN relational operators are:

.LT. Less than

.LE. Less than or equal to

-EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The periods are part of the operators and must appear.

A relational expression is a relationalb operator bracketed
by two operands:

aexprj op aexpra

op A relational operator.

aexpr; An arithmetic expression.

The operands can be either two arithmetic expressions or
two character expressnons. As the forms above show, a
relational expression cannot contain two relational
operators. :

60457040 B

other character in the ASCII subset).

Examples of relational expressions:

SHASTER .LT.C

'ANEMONE' .EQ. FNCHAR |
X+Y/3.*Z .NE. X

A(D) .GE. SQRT(R)

AMRYL .LT. 1.5D4

Evaluation of a relational expression consisting of
arithmetic expressions proceeds as follows: each
arithmetic expression is evaluated; type conversion to the -
dominant type takes place if the types of the arithmetic
expressions differ; then the comparison is made. The
relational expression has the logical result .TRUE. or
.FALSE. as the relation is true or false, respectively.

Arithmetic expressions in relational expressions cannot be
of type complex; they can be integer, real, or
double-precision, however. For example, (2.0,1.0)*N is
syntactically correct, but ((2.0,1.0)*N).GE.M is not.

When a relational expression consists of character
expressions, the corresponding characters in the values of
the two expressions are compared one character at a time
from left to right. A character is considered greater than
another ~ character, - for ‘example, if = its. hexadecimal |
equivalent as shown in appendix A is greater than that of
the other. If the two character expressions have different
lengths, comparison proceeds as though the shorter had
been. padded on the right with blank characters. until the
expressions - were of . ‘equal 1ength (thes hexadecimal |
equivalent of the blank character is less th ' "

LOGICAL EXPRESSIONS

The FORTRAN logical operators are:
.AND. Logical and

OR. Logical or

.NOT. Logical negation

The periods are part of the operators and must appear.
The mathematical definitions of the logical operators are
given in table 3-1.

TABLE 3-1. LOGICAL OPERATOR TRUTH TABLES
p g p.AND.g p.OR.g .NOT.p
T |T T T F
T |F F T F
F T F T T
F | F " F F T

3-3

A logical expression can be a single relational expression,
logical constant, logical variable, logical array element,
logical function reference, or a logical expression enclosed
in parentheses. Also, if X and Y are logical expressions,
then .NOT.X, and X followed by a binary logical operator
followed by Y, are logical expressions.
Examples of logical expressions:

(X).AND..NOT.Y ;

X#*2.114 .NE.(B*22.114).AND. Z1 .AND. Z2 .AND. Z3

.NOT. (X.AND..NOT.Y) .OR. (Z.EQ.98.6)

B-C .LE. A .AND. A .LE. B+C

.NOT. can appear adjacent to itself only with intervening
parentheses as in the following types of constructs:

.NOT. (.NOT.p)

.NOT. (.NOT. (.NOT.p))
.NOT. can appear adjacent to any other logical operator
only as the operator on the right, as in the following
constructs:

p.AND..NOT.q

p.OR..NOT.q

The operators .AND., .OR., (OR. cannot appear
adjacent to each other; they always flanked by
relational expressions, logical elements, or any such logical
expressions. (This corresponds to the mathematical usage
of logical conjunction and disjunction.)

Whenever precedence is not established explicitly by
parentheses, the logical, relational, and arithmetic
operations that can appear in a logical expression are
evaluated according to the precedences shown in
table 3-2. The unparenthesized expression
X.OR.Y.AND.Z.ORMW, for example, is evaluated as if it
were written (X.OR.((Y.AND.Z).ORW)). If the user had
intended (X.OR.Y).AND.(Z.OR.W), the parentheses must be
explicit. The plus/minus category in the table applies to
both unary and dyadic additive operations. The value of a
logical expression is always of type logical.

TABLE 3-2. OPERATOR PRECEDENCES

Operator Precedence Category
e first
4 second Arithmetic
* third
.EQ.
.NE.,
«GE. . .
\LE. fourth Relational
+LT.
«GT.
.NOT. fifth
. AND. sixth Logical

seventh

60457040 B

SCALAR ASSIGNMENT STATEMENTS 4

A scalar assignment statement initiates evaluation of the Examples:
expression on the right side of the equals sign. When
evaluation is complete, the variable to the left of the

equals sign is assigned the value of the expression. Statement Meaning

This section gives the formation rules for the following A=A+1 Replace the value of A with the
types of scalar assignment statements: value of A + 1.

e Arithmetice : K(4) = K(1) + K(2) Replace the value of K(4) with

the sum of the array elements
K(1) and K(2).

1=(-2.3,1.5 Replace the value of I with the
Lo oo “truneated o real . part of thes
complex constant, -2."

The terms left side and right side of an assignment A=3 . Replace the value of A with 3.0.

statement refer, in this manual, to everything in the

statement that lies to the left of and to the right of the

equals sign, respectively. The rules for conversion during arithmetic assignment are
given in table 4-1. Terms used in the table are defined as
follows:

ARITHMETIC ASSIGNMENT STATEMENT

The earithmetic assignment statement has the following

e Contract

form: Convert double-precision to real.

var=expr e Extend

expr An arithmetic expression. Convert real to double-precision, filling the new

mantissa with zeros.
var A simple variable or array element, of type
integer, real, double-precision, or complex. e Float

If the type of the element to the left of the equals sign Convert integer to real.
differs from that of the expression on the right, type
conversion takes place during assignment. The value of the e Fix
expression, converted to the type of the variable on the
left side, replaces the value of the variable. Convert real to integer, truncating the fractional part.

TABLE 4-1. CONVERSION FOR ARITHMETIC ASSIGNMENT

Variable Type Expression Type

(Left Side)

Integer Real Double-Precision Complex

Integer No conversion Fix Contract and fix

Real Float No conversion Contract

Double-Precision | Float and extend Extend

No conversion

Complex o conversion

60457040 B : o 41

o Real part
Real part of a complex value.

o Imaginary part

Imaginary part of a complex value. LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement has the following form:
var=expr
expr A logical expression.
var A logical variable or a logical array element.
Execution of the logical assignment statement causes the
value of the logical expression to be assigned to the logical
entity specified to the left of the equals sign.
Examples:
e LOGICAL LOG2

I=1
LOG2=1.EQ.0

LOG?2 is assigned the value .FALSE. because I does not
equal 0.

e LOGICAL A,B,C,D,E,LGA,LGB,LGC
REAL F,G,H
LGB=B.AND.C.AND.D
A=F.GT.G.OR.F.GT.H
A=.NOT.(A.AND..NOT.B).AND.(C.OR.D)
LGA=.NOT.LGB _
LGC=E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B)

4-2 : ‘ 60457040 B

FLOW CONTROL STATEMENTS 5

The statements of a CYBER 200 FORTRAN program are in
effect executed consecutively except when flow is altered
by a flow control statement or by an exceptional condition
(for example, end-of-file on input, or a data flag branch
interrupt). The execution of a flow control statement
alters, interrupts, terminates, or otherwise modifies the
normal sequential flow of program execution.

Some flow control statements indicate where control is to
be transferred by referring to a statement label. The
transfer of control must not be made to a nonexecutable
statement such as a FORMAT statement. It can be made
to the dummy executable statement CONTINUE (which is
used for no other purpose than to be labeled) or to any
other labeled executable statement.

Besides the CONTINUE statement, CYBER 200 FORTRAN
contains four types of flow control statements:

e Unconditional branch (GO TO statement; assigned GO
TO statement)

e Conditional branch (ecomputed GO TO; arithmetic and
logical IF)

e Loop (DO statement)
e Program control (PAUSE; STOP; CALL; RETURN)

Only the fourth type does not involve labels.

GO TO STATEMENT

The three types of GO TO statements are unconditional,
assigned, and computed.

UNCONDITIONAL GO TO
The unconditional GO TO statement has the following form:
GO TOn
n The statement label of an executable
statement.

When the GO TO is executed, control is transferred such
that the statement labeled n is the next statement to be
executed. The statement labeled n must be in the same
program unit.

ASSIGNED GO TO

An ASSIGN statement. is used in conjunction with the
assigned GO TO statement. This ASSIGN statement is not
related to the descriptor ASSIGN statements described in
the vector programming section. -

60457040 B

ASSIGN Statement

The ASSIGN statement initializes a variable for subsequent
use in an assigned GO TO statement. It has the following
form:

ASSIGN n TO var

n The statement 1label of an executable
statement.
var A simple integer variable.

n is the label of the executable statement to which control
is transferred by an assigned GO TO statement that
contains the variable var. The statement labeled n must
be in the same program unit in which the ASSIGN
statement appears.

Use of the ASSIGN statement does not have the same
effect as use of an assignment statement; for instance, an
arithmetic assignment cannot be used interchangeably with
an ASSIGN. Once a variable var is associated with a
labeled statement by means of an ASSIGN, it must be used
exclusively in ASSIGN statements and in assigned GO TO
statements until it is defined by means of an assignment
statement. Similarly, once it has been defined by an
assignment statement, it must be used exclusively in
statements other than the assigned GO TO statement until
it is associated with a labeled statement by means of an
ASSIGN. That is, results are unpredictable in either of the
following cases:

e Use of the variable var in an assigned GO TO
statement when var's current value was defined by
other than an ASSIGN statement

e Use of the variable var in an arithmetic expression

when var is currently associated with a labeled
statement as a result of an ASSIGN

Assigned GO TO Statement
The assigned GO TO statement has the following form:

GO TO var,(ny,ng, ... ,nmy)

var A simple integer variable.
nj The statement 1label of an executable
statement.

associated with var is the next statement to be executed.
The statement labeled n; must be in the same program
unit in which the GO TO statement referencing it appears.

5-1

At the time of execution of an assigned GO TO, the
variable var must have been associated with a labeled
statement by prior execution of an ASSIGN statement. In
the first form of the statement, var must be assc

Examples:

Control transfers to statement 100 upon
execution of the GO TO statement.

110

Results of executing the GO TO statement are
unpredictable because 110 is not one of the labels
in the list.

COMPUTED GO TO
The computed GO TO statement has the following form:

GO TO(ny,ny, ... ,npy),sel

sel A simple integer variable.
nj The statement label of an. executable
statement.

p
The statement labeled n; must be in the same prog'ram
unit. The ecomputed GO TO statement transfers control to
a statement whose label is in the parenthesized list. If the
selecting variable sel has the value 1, then the statement
labeled nj is the next statement to be executed; if sel
has the value i, the statement labeled nj is the next

statement_to be executed

' Given the statements:

GO TO (200,100,400,200),L
CAT =FUR + GRIN

the label of the next statement executed is:

200ifL=1
100if L=2
400if L=3
200if L=4

IF STATEMENT

The IF statements provide for transfer of control or for
conditional execution of one or more statements.

5-2

ARITHMETIC IF
The arithmetic IF statement has the following form:
IF (expr) ny,ng,n3

expr Any arithmetic expression of type integer,
real, or double-precision.

nj The statement label of an executable
statement.

The statement labeled n; must be in the same program
unit. On execution of the IF statement, the arithmetic
expression expr is evaluated and control transfers to one of
the statement labels nj, ng, or ng depending on
whether the value of expr is less than zero, zero, or
greater than zero, respectively.

LOGICAL IF

The logical IF statement has the following form:
IF (expr) s
expr Any logical expression.

s Any executable statement, except a

Upon execution of this statement, the logical expression
expr is evaluated. If the value of expr is false, statement s
is not executed and control passes to the next executable
statement following the logical IF statement. If the value
of expr is true, statement s is executed; then the next
executable statement following the IF statement is
executed, unless s caused a transfer of control.

The K compile option controls how .EQ. and .NE.
comparisons are performed in evaluation of the logical
expression in this statement. If the K option has not been
selected, only the bits 16-63 are compared. Selection of
the K option causes a 64-bit comparison to take place
during evaluation of the expression.

60457040 B

The ELSE statement can be used with a block IF statement
to provide an alternate path of executxon for a bloek IF

statement. An ELSE statement can have a statement

label, but the label cannot be referenced in any other
statement.

ELSE IF

The ELSE IF statement has the following form:
ELSE IF (expr) THEN
expr Any logical expressxon.

The ELSE IF statement can be used with a block IF
statement to provide an alternate path of execution for a
block IF statement or another ELSE. IF statement, and to
perform a conditional test. An ELSE IF statement can
have a statement label, but the label cannot be referenced
in any other statement. The effect of execution of an

ELSE IF statement is the same as for the block IF

statement.

END IF
The END IF statement has the following form:
END IF '

The END [IF statement termmates a block IF structure.:

Each block IF statement must. have a correspondmg END IF
‘statement. b : ,

‘BI.OCK u= smucrumss

;'Block IF structures provnde for alternate executlon of

1blocks of statements. A block TF structure begins with a
block IF statement and ends with an END IF statement; it
‘can contain an: ELSE statement or one or more ELSE IF

statements. Each IF, ELSE, or ELSE IF statement can be

followed by a block ¢
if-block.

executable statements alle

60457040 B

‘A block IF structure that contams an ELSE ‘statement . is

Statement is true, execution continues with the flrst

‘transfers to the statement followmg the END IF statement
,at'ter executxon of if—block-l. : ‘, o

shown in figure 5-2. 1If the expression in the block IF
statement is true, execution continues with the flrst
executable statement in if-block-1. If a statement in
if-block-1 does not transfer control elsewhere, control:
transfers to the statement following the END IF statement
after execution of if-block-1. -

IF (expr) THEN
if-block-1.
ELSE
if-block-2
END IF

Figure 5-2. Block IF Structure With ELSE Statement

If the expression in the block IF statement is false, control
transfers to the first statement in if-block-2. If a

statement in if-block-2 does not transfer control
elsewhere, control transfers to the statement following the
END IF statement after execution of if-block-2.

‘A block IF statement can have no more than one associated -

ELSE statement.

A bloek IF structure that contains ELSE IF statements 1sxft
shown in figure: 5-3. If the expression in -the block IF

executable statement _in 1f—block-1. If a statement in
if-block-1" does not transfer ~control elsewhere, control

IF (expr) THEN
af-block 1

SE IF (expr) THEN

DO STATEMENT

Execution of a group of statements can be repeated a
specified number of times through use of the DO
statement. The range of a DO statement is the set of
executable statements beginning with the first executable
statement following the DO and ending with the terminal
" statement associated with the DO. A DO statement along
with its range is referred to as a DO loop.

DEFINING A DO LOOP
The DO statement has the following form:

DO ni=mjy,mgm3

n The label of the terminal statement.

i The control variable, a simple integer
variable.

mj The initial value parameter of i, an integer

constant or a simple integer variable with a
value greater than zero.

5-4

mg The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

mg3 Optional. The incrementation value
parameter for i, an integer constant or a
simple integer variable with a value greater
than zero. Default value is 1.

The terminal statement of a DO loop can be any
assignment statement and almost any input or output
statement. However, any flow control statement other
than a CONTINUE is either highly restricted or must not
appear as the terminal statement of a DO. The terminal
statement must not be any of the following:

e A RETURN, STOP, or PAUSE statement

e A GO TO statement of any form

e A DO statement

® An arithmetic IF statement

e A logical IF statement containing any of these
restricted forms

The terminal statement must physically follow and be in
the same program unit as the DO statement that refers
to it.

Example:

DO 10 I=1,11,3
IF(ALIST()-ALIST(+1))15,10,10
15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST(I+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO loop is
executed with I equal to 1, 4, 7, 10. Statement 300 is
then executed.

A DO loop can be initially entered only through the DO
statement. That is, the group of statements in figure 5-5
are incorrect. The GO TO statement in figure 5-5
transfers control into the range of the DO before the DO
statement has been executed.

GO TO 100
DO 100 1=1,50
100 All)=I .

Figure 5-56. Incorrect: Entering Range
of DO Before DO Execution

Execution of a DO statement causes the following
sequence of operations:

1. i is assigned the value of mj.

2. The range of the DO statement is executed.

60457040 B

3. iisincremented by the value of mg.

4. i is compared with mg. If the value of i is less than
or equal to the wvalue of mgy, the sequence of
operations starting at step 2 is repeated. If the value
of i is greater than the value of mg the DO is said
to have been satisfied, the control variable becomes
undefined (has an unpredictable value), and control
passes to the statement following the statement

labeled n. If mj is greater than mg,. the range of -

the DO is still executed once.

A transfer out of the range of a DO loop is allowed at any
time. When such a transfer occurs, the control variable
remains defined at its most recent value in the loop. If
control eventually is returned to the same range without
entering at the DO statement, the statements executed
while control is out of the range are said to define the
extended range of the DO. The extended range of a DO
must not contain a DO that has its own extended range.

The control variable, initial parameter, terminal
parameter, and incrementation parameter of a DO must
not be redefined during the execution of the range of that
DO. However, the group of statements in figure 5-6 are
correct. If ever an element of the array RA is zero or
negative, it is set to 1 and the DO statement is reentered,
which reinitializes the control variable I.

K=0

GO TO 300
200 RA(I)=1.
300 DO 100 (=1,50

K=K+1

IF (RA(1).LE.0.) GO TO 200
100 RA(l)=K

Figure 5-6. DO Control Variable Reinitialization

NESTING DO LOOPS

When a DO loop contains another DO statement, the
grouping is called a DO nest. DO loops can be nested to
any number of levels. The range of a DO statement can
include other DO statements only if the range of each
inner DO is entirely within the range of the containing DO
statement. When DO loops are nested, each must have a
different control variable.

The terminal statement of an inner DO loop must be either
the same statement as the terminal statement of the
containing DO loop or must occur before it. If more than
one DO loop has the same terminal statement, a branch to
that statement can be made only from within the range or
extended range of the innermost DO. Figure 5-7 gives an
example of an incorrect transfer into the range of an inner
DO. Since statement 500 in figure 5-7 is the terminal
statement for more than one DO loop, if the first element
of any row in array A is less than or equal to zero, the
consequent branch to the CONTINUE statement will be an
entrance into the range of the inner DO.

If the nested loops in figure 5-7 did not share a terminal
statement or if the outer loop did not reference the
terminal statement, the loops would be correctly nested.

60457040 B

DO 500 I=1,5
IF (A(1,1).LE.0.) GO TO 500
DO 500 K=1,10
A(l,K)=SQRT(A(I,K))

500 CONTINUE

Figure 5-7. Example of Incorrect Sharing
of Terminal Statement

The range of a DO loop can contain a block IF structure, .
but the entire block IF structure must appear in the DO -
loop range. An END JIF statement cannot be the terminal .
statement of a DO loop. A DO loop can appear in an .
if-block, but the entire range of the DO loop must appear ,
in the if-block.. ! R

CONTINUE STATEMENT
The CONTINUE statement has the following form:
CONTINUE

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere in a-
program without interrupting the flow of control. The
CONTINUE statement is generally used to carry a
statement label. For example, it can provide DO loop

termination when a GO TO or IF would otherwise be the
last statement of the range of the DO.

PAUSE STATEMENT

The PAUSE statement has the following form:

PAUSE n

n Optional. A string of one to five- dj
or a'character constant.

STOP STATEMENT

The STOP statement has the following form:
STOP n

n Optional. A string of one to five d
or a character constant, |

Upon execution of the STOP statement, program execution
uncondltlonally term‘

RETURN STATEMENT

Subroutine and function subprograms contain one or more
RETURN statements that when executed cause immediate
return of control to the referencing program unit. The
RETURN statement must not appear in a main program.

Form:

In a function subprogram, execution of a RETURN causes
the function value to be returned to the referencing
program unit and to be substituted for the most recently
executed function reference in that program . unit.
Evaluation of the expression that contained the function
reference continues. The integer n must not appear after a
RETURN statement in a funetion subprogram.

In a subroutine subprogram, when n is not given, execution
of a RETURN returns control to the first executable
statement following the CALL statement last executed m
the calling program unit.. Wh K

CALL STATEMENT

The CALL statement is used to transfer control to a
subroutine subprogram, System Input/Output (SIO) module,
System Request Language (SRL) module, assembly
language subroutine, or any other external subroutine. The
execution of a CALL statement is not complete until the
subroutine designated in the statement completes
execution and returns control to the calling program unit.

Form:

CALL s (ag,a9, . . . ,8p)

s The symbolic name of a subroutine, or an

entry point name in a subroutine.

5-6

8§ Optional. An actual argument which can be
an expression,
external p

]
parentheses and commas must also be
omitted. n must equal the number of Gummy
arguments in the SUBROUTINE or ENTRY
statement for s.

Execution of the CALL statement transfers control to
entry point name s. See the heading Passing Arguments
Between Subprograms in section 7 for a further deseription
of actual arguments in CALL statements.

gL : :
g if the data is within the appropmate range, the

s " continues executing until the RETURN

statement is reached, at which time control transfers back
to the main program statement that immediately follows
the call to the subprogram.

60457040 B

SPECIFICATION AND DATA INITIALIZATION STATEMENTS 6

e]

Specification statements are nonexecutable statements
that define storage requirements of variables, arrays, and
function results. They define the type of a symbolic name,
specify the dimensions of an array, stipulate the length of
a character variable, and define how storage is to be
shared.

If specification statements are used, they must appear
before the first executable statement of the program unit
in which they occur. Any program that refers to an array
must have at least one specification statement.
Otherwise, specification statements might not be required.

The nonexecutable data initialization statement is also
described in this section.

TYPE STATEMENTS

Each variable, array, and function name that appears in a
CYBER 200 FORTRAN program must be associated with a
data type. Explicit type statements and implicit typing are
the two ways to make this association.

The appearance of a symbolic name in a type statement
informs the compiler that the name is of the specified data
type in the program unit. In the absence of a type
statement, the type of a symbolic name is implied by the

first letter of the name; unless IMPLICIT statements alter |

“of first letters to ‘data types, the
letters 1, J, K, L, M and N imply type integer and all other
letters imply type real. (This default type association is
referred to as the first-letter rule.)

The predefined FORTRAN function names possess
predetermined data types. Implicit typing of any of these
names has no effect. If the name of a FORTRAN-supplied
function is explicitly associated with a type other than its
predefined type, the name ceases to reference the

FORTRAN-supplied function.

60457040 B

“listj ' Alist of the form:
V1V s o e 5V .

where v; is a. range of first letters of-
variables to-be considered of type typ. vj
is either a single alphabetic character, or two
such characters separated by a minus sign to
denote the first and last characters of a
range. . The second character in a range
specification - must follow the first in’
alphabetic sequence.) : PR

A character must not be associated with more than one.

‘data type or byte length by IMPLICIT statements. -

‘An IMPLICIT statement in a function or subrbutine{
'subprogram- affects the data. type associated with dummy

arguments and the: funetion name, as well as. wnh other

ivarlables in the subprogram.

fExplicnt typing of a varxable, array, or functxon name in alrg
‘explicit type statement or FUNCTION statement overrides
.any implicit tYPe specifieation. . .

EXPLICIT TYPING

An explicit type statement is used to declare one or more
entities to be of the specified data type. It overrides or
confirms any implieit typmg and can supply dimension and:

‘byte length information.

Forms:

Vi A variable,
function name.

array, array declarator, or

If the array declarator for an array appears in an explicit
type statement, it cannot appear also in a ROWWISE,
DIMENSION, or COMMON statement. However, the array
name alone can appear in COMMON statements to include
the array in a common block. (An array declarator must
appear once and only once in a program unit.)

DIMENSION STATEMENT

The DIMENSION statement serves as a vehicle for one or
more array declarators. For an array declared in a
DIMENSION statement, subscripts are interp d in the
conventional manner. For a discussion of L id
conventional array element succession, see sectio

Form:
DIMENSION aj,ag, .. .,8p
8§ An array declarator.

If the array declarator for an array appears in a
DIMENSION statement, it cannot also appear in a
ROWWISE, COMMON, or explicit type statement.
However, the array name alone can appear in an explicit
type statement to type the array and in COMMON
_statements to include it in a ecommon bloek. (An array
declt;rator must appear once and only once in any program
unit

6-2

COMMON STATEMENT

The COMMON statement is a nonexecutable statement
that allows specified variables and arrays to be referenced
by more than one program unit. Elements in common
storage can be referenced and defined in any program unit
that contains a COMMON statement specifying common
blocks containing those elements. An element can be
included in only one common block.

Storage for arrays and variables listed in a COMMON
statement is reserved in a common block in the order m
which the elements appear in the statement

“doubl d - boundal h

gn storage solely by
consideration of data type and array declarations for the
variables and arrays in the COMMON statement. One or
more blocks can be specified with a single COMMON
statement; the order of appearance of blocks in the
statement is not significant.

Form:

COMMON /blky/list;/blkg/listg . . . /blkp/list

blk; A symbolic name denoting a labeled common
block. Absence of blk denotes the blank
common block; if the first block identified is
blank common, the first pair of slashes can
be omitted as well.

list; A block specification list, a list of the
elements whose storage locations are in the
common block blk;. The list has the form:

ul,uz, R ,Um

where u; is a variable name, an array
name, or an array declarator.

Only an entire array can be placed in a common block. An
array declarator, but not an array element name, can
appear in a COMMON statement. Dummy arguments
cannot appear in COMMON statements.

A block name can appear more than once in a COMMON
statement or in several COMMON statements in a program
unit; the elements are stored cumulatively in the order of
their occurrence in all COMMON statements in the
program unit. Block names can also be used elsewhere in
the program to identify other entities: a common block
name can unambiguously identify a variable, statement
function, or array in the same program. For example, a
valid COMMON statement is COMMON/ONE/ONE.

Blank common generally can be used in the same way as
labeled common, except that elements in blank common
cannot be initialized in DATA or type statements as can
elements in labeled common. Also, unlike any -labeled
common block, the blank common block need not have the
same length in every program unit in which it is declared.

For example, the declaration in one program unit could be
COMMON//A(4),B/LAB/C,D and in another could be
COMMON//A(4)/LAB/C,D.

60457040 B

The size of a common block is the sum of the storage
required for the elements introduced into that block
through COMMON and EQUIVALENCE statements. A
double-precision or complex element requlres two words; a

logical, real, or mteger element requires one word; af
character element requires one byte times the lengthj

specified for the element; a bit element requires a single

bit. Character elements must fall on byte boundaries and

integer, complex, logical, real, and double-precision

elements must fall on fullword boundaries. Character and
bit types can appear in a common block with other types,
as long as the elements having the other types are not:

forced off fullword boundaries. -

Although block names must be the same name if they are
to refer to the same common block, the names and types of
the elements in the common block can differ among
program units. If two program units define a particular
common block to have the same data type assigned to any
two elements in corresponding positions in the common
block, the two elements refer to the same value.
Otherwise, any data in the common area is treated as
having the data type of the name used to refer to it, and no
type conversion takes place.

If a program unit does not use all locations reserved in a
labeled or blank common block, unused variables can be
inserted in the COMMON declaration to force proper
correspondence of the variables or arrays in the common
areas. Alternatively, correspondence in blank common can
be ensured by placing selected variables at the end of the
block in such a way that they can be omitted in the
COMMON declarations for a program unit that does not
use them. However, a common block (other than blank
common) must have the same length in every program unit
in which it is declared.

If an array declarator for a particular array appears in a

COMMON statement, it cannot appear also in a ROWWISE,

DIMENSION, or explicit type statement. However, the
array name alone can appear in explicit type statements to
specify the array's data type. (An array declarator must
appear only once in a program unit.)

In a subprogram, the dummy arguments for the subprogram
cannot be placed in common. However, variable
dimensions for a dummy array can be placed in common, as
long as those variables are not also dummy arguments.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement is a nonexecutable
statement that permits two or more variables in the same
program unit to share storage locations. This arrangement
of data can be contrasted with that of variables and arrays
not mentioned in an EQUIVALENCE statement (which are
generally assigned unique loeations) and with that of
variables and arrays declared in COMMON statements (the
COMMON statement permits two or more variables, each
in a different program unit, to share storage locations).

Form:
EQUIVALENCE(groupy), . . . ,(groupy)

group; A list of the form:

Vl,..o,Vm

a variable, array element,
' (array decl

60457040 B

All the elements in group; begin at the same storage
location.

The naming of array elements is relatively flexible in an
EQUIVALENCE statement. ‘Unlike array names in most
CYBER 200 FORTRAN statements, an array name in an.
EQUIV ALENCE statement names only the first element of -
the array.’ Also, in an EQUIVALENCE statement any array
element can be identified by using an array element name
containing a subseript that has a single subseript
expression, where the value of the expression is the
location of the element in the array as determined by the
succession formulas given in section 2. However, if
neither of these forms is used, the subseript must conform
to the ordinary subscript form. Each subscript expression
in an EQUIVALENCE statement must be an integer
constant; the number of subscript expressions must
correspond in number to the dimensionality of the array or
must be one.

A storage location can be shared by variables having
different data types. A logical, integer, or real variable
equivalenced to a double-precision or complex variable
shares the same location with the real or most significant
half of the complex or double-precision variable. . However,
when ‘one- or two-word variables "are equivalenced - to

.character or bit variables, they must begin on fullword
.boundaries. Similarly, if a . character . variable is
- equivalenced to a bit variable, the character variable must

be allgned on a byte boundary.. Type is associated only

“with the name used to reference a location, and that name

determines how data assigned to or read from the location

-is to be interpreted; no type is remembered and no

conversion takes place. Consequently, if (for example) a
real element is equivalenced to an integer element,
defining the real element causes the integer element to
become undefined, and vice versa.

A variable can appear in both EQUIVALENCE and
COMMON statements in a program unit. However, a
variable in common can be equivalenced to another
variable only if that variable is not in any common block.
A variable or array is brought into a common block if it is
equivalenced to an element in common. It is acceptable
for an EQUIVALENCE statement to lengthen a common
block, as long as the common block is extended beyond the
last assignment for that block and does not extend the
block's origin. A dummy argument must not appear in any
EQUIVALENCE statement.

Figure 6-1 illustrates some of these concepts. In part A of
figure 6-1, array element A(2) in the labeled common
block BLK1 is equivalenced to array element B(1), which is
not in common. The EQUIVALENCE statement causes the
entire array B to be brought into common, extending the
length of common by two words and equivalencing other
pairs of data elements as shown in part B of figure 6-1. If
instead A(1) and B(2) has been equivalenced, an error would
have resulted because this would have been an attempt to
extend the common block's origin to P.

It is also incorrect to cause, directly or indirectly, a single
storage location to contain more than one element of the
same array. For example, adding a second EQUIVALENCE
statement, EQUIVALENCE (A(4), B(2)), to the statements
in figure 6-1 would constitute a request for A(4) and A(3)
to share the same storage location.

EXTERNAL STATEMENT

Before & subprogram name can be used as an argument to
another subprogram, it must be declared in an EXTERNAL
statement in the calling program unit. -

6-3

A.
CHARACTER*10 CH,DH
COMMON/BLK1/A(4),CH,DH
DIMENSION B(8)
EQUIVALENCE (A(2),B(1))
B.
~®
<« A(1): Block origin
B(1)— «A(2)
B(2)—» «A(3)
B(3) -+ A4
B(4) -» <« first 8 bytes of CH
: remaining 2 bytes of CH,
B(E) > " first 6 bytes of DH
B(6) > <« remaining 4 bytes of DH
B(7)—+
B(8)

Figure 6-1 . COMMON and EQUIVALENCE Statements

Form:
EXTERNALDy, . . . ;b
Pi - A procedure name or entry point name.

The appearance of a name in an EXTERNAL statement
declares that name to be an external procedure name
rather than a data element name.

Any name used as an actual argument in a procedure call is
assumed to name data unless it appears in an EXTERNAL
statement. For example, any predefined FORTRAN
function name must be declared in an EXTERNAL
statement if it is- to be used as an actual argument. A
function reference in an actual argument list need not be
declared in an EXTERNAL statement, however, because it
is not the function, but the result of function evaluation,
that is the argument.

The effect that placing a predefined FORTRAN function
name in an EXTERNAL statement has on the kind of code
generated is shown in table 6-1.

DATA STATEMENT

Only varlables and array elemen

program executlon begins. -The DATA statement is a
nonexecutable statement used to assign initial values to
variables and array elements (including entire arrays).

TABLE 6-1. EXTERNAL DECLARATION OF
A SUPPLIED FUNCTION

Type of Function Declaration Code
Declared External
external (user-provided)

In-Line Function

Not declared In-line
external
Declared External
external
External Function
Not declared External -
external
Declared External
Function Having external
Both an External
and In-Line Version | Not declared In-line

external

Form:
DATAvy/k1/v9/kals « « « yVp/kn/

v . A variable list of the form:

Wiseeo W

variable, array element,
i . Subscripts used to
lements must be integer
.

k; A data list of the form:

j*dg, .. %

where d; is an optionally signed constant.
The constant can be preceded by an optional
repeat specification j*, where J is an
(unsigned) integer constant. :

t a one-to-one
correspondence must exist between the items in the
variable list and the constants in the data list. In
particular:

e An array of any type - must correspond to a

P
number of items equal to the number of elements in
the array.

60457040 B

e A bit array must correspond to a list of one or moreyi

hexadecimal and bit constants whose total bit length is
the number of elements in the bit array.

e A contiguous portion (one or more elements) of a bit
array must correspond to a list of one or more
hexadecimal and bit constants whose total bit length is
the number of elements in the bit array portion. Such

a bit array portion is specified in the variable list by .

means of a single bit array element or an implied DO.

An implied DO can specify more than one contiguous

portion of a bit array. For example, in the initialization:

ROWWISE DSB(4,4)
BIT DSB
DATA ((DSB(1,d), J=1,4), I=1,4,2)/2*B'1001/

two contxguous portions disjoint from one another are

specified:
DSB(1,1), DSB(1,2), DSB(1,3), DSB(1,4)
DSB(3,1), DSB(3,2), DSB(3,3), DSB(3,4)

In such a case, the correspondence rules must be applied .
individually to each of the portions. Hence, initializing the .
eight DSB . array - elements = with . .a. single constant

:B'10011001" (or X'99') would cause a fatal error.

The data list item corresponding to the variable list item is

the variable list item's initial value. The rules of .
)fcorrespondence apply to: bit array xmtlallza.tlon in BI’I‘

‘statements as well as in DATA statements.

The form j* before a constant in the data list indicates the
number of times the constant is specified. The following
two DATA statements are identical in effect:

DATA K,L,M/0,0,0/

DATA K,L,M/3*0/

60457040 B

‘Implied-DO loops in the DATA statement can be nested up
‘to seven deep. Subscript expressions must be one of th

'statement form. Nevertheless, several di
_exist and are as follows- :

:~o In a DATA statement, a list of sxmple varlables can b

_program un
’,fstatement' furthermore, different pa

following forms:

c i~c
i k*ite
ite k*i-c

where ¢ and k are unsigned nonzero integer constants, and i

.is the implied-DO control variable of this implied-DO list

or of an implied-DO list that contains this list.

The order in which elements are specified by an implied
DO in a DATA statement is identical to that in which
elements are specified by an 1mp11ed DO in an input/output
list (see section 9). .

RULES FOR INITIALIZING VALUES

The rules for initializing values wnth the DATA statement

.also apply to data initialization with the type statements

described earlier in this section: -d; in the explicit type
statement form corresponds to the in the DATA
i‘ferences in form

- initialized by a list of constants.. In a t
only an array can be imtlahzed by

The DATA statement cannot be used to assign values to
dummy arguments in a subprogram or to elements in blank
common. Elements in a labeled common block can
initialized with a data initi in 4

can be
initialized in different program units, as well as with
different statements in the same program unit.

Hollerith constants (H type) used to initialize

variable list items are padded with blank characters on the

right or are truncated on the right to fit the variable
length, depending upon whether the number of characters
in the constant is less than or greater than the number of
characters defined by the variable list element. A warning
message is issued if truncation occurs.

If the variable is complex or double-precision, the H
constant fills only the real part or first word of the
variable. The imaginary part or second word is padded
with zeros. Therefore, only one H constant is needed to
initialize a complex or double-precision variable.

R constants used to initialize variables are padded with
zeros on the left, or truncated on the right to fit in the
variable. If the variable is complex or double-precision,
the R constant fills only the real part or first word of the
variable. The imaginary part or second word is filled with
zeros. Therefore, only one R constant is needed to
initialize a complex or double-precision variable.

6-5

6-6 '60457040.B

TABLE 6-2. DATA INITIALIZATION CONVERSIONS
Constant Type
. . Double- Character . .
Variable Type Logical Integer Real Precision Complex or Hollerith Bit Hexadecimal

Logical nocon n/a n/a n/a n/a nocon nocon nocon
Integer n/a nocon c c c nocon nocon nocon
Real n/a c nocon c ¢ nocon nocon nocon
Double- n/a c c nocon c nocon nocon nocon
Precision
Complex n/a c c ¢ nocon nocon nocon nocon
Character n/a n/a n/a n/a n/a nocon nocon nocon
Bit n/a n/a n/a n/a n/a n/a nocon nocon

The letter ¢ indicates that conversion
the type combination is not allowed.

is performed; nocon, that conversion is not performed; and n/a, that

60457040 B

6-7

DEFINING PROGRAM UNITS AND 7
FUNCTIONS STATEMENT ‘

X —

Discussed in this section are the statements used to define
and reference the following user-written procedures:

e Statement function

Not a program umt, one-statement definition; is
referenced.

e Main program

 Executable program unit; multistatement definition; is
not referenced.

o Function subprogram

Executable program unit; multistatement definition; is
referenced.

e Subroutine subprogram

Executable program unit; multistatement definition; is
referenced with a CALL statement.

e Specification subprogram

Nonexecutable program unit; multistatement

definition; is not referenced.

Not. discussed are the predefined funections supplied with
FORTRAN; these are discussed in section 14. CALL and
RETURN are discussed in section 5. Interfacing with
non-FORTRAN external procedures is discussed in
section 12.)

The category of procedure definition to be used is
determined by its particular capabilities and the needs of
the program being written. If the program requires the
evaluation of a standard mathematical function, often a
FORTRAN-supplied function can be used. If a single
computation is needed repeatedly, a user-written
statement function can be included in the program. If a
number of statements are required to obtain a single
result, a function subprogram can be written. If a number
of calculations are required to obtain several values, a
subroutine subprogram can be written.

The first statement of a program unit defines the program
unit to be a main program, subroutine subprogram, function

subprogram, or specification subprogram. A program unit
 whose first statement is not a FUNC’I‘ION, SUBROUTINE,
or BLOCK DATA statement is a main program. 'Nc
‘am . PROGRAM state

) performed with PRINT statements. A
subprogram is a program unit that begins with a
FUNCTION, SUBROUTINE, or BLOCK DATA statement.

An executable FORTRAN program must contain one main
program and can have any number of subprograms and
references to other external procedures, including the
predefined functions supplied with FORTRAN. A main
program must not be referenced by another program unit;
once defined, subprograms can be so referenced. Any
program unit must never directly or indirectly invoke itself.

60457040 B

THE MAIN PROGRAM

:The PROGRAM statement defines the name that is used as
‘the program's entry point name and as the object module
‘name for the loader, It is also used.to declare files that
‘are used in the main program and in any subprograms that
;are called. , e . ,

;Form., e

an be ‘mitted if ‘no input data is required'

vy

jPROGRAM STA‘I’EMENT

,The PROGRAM statement is the first statement in a main;
program,’ However, the statement is optional when no.
rrequest . for input is ‘made within: the program, and no
‘output - except. using PRINT ‘is-performed. Only one
;PROGRAM statement can occur m any program. Lo .

PROGRAM ® (fipj_, flpz,

Optlonal when no flp’hst is present, the nameé

; _The logical umt number nis an mteger constant in the
_range 1 to 99. The filename f, a string of one to exght‘
- letters or digits beglnnmg wnth a letter, is. the name of
‘a file requu-ed by the main program or a subprogram.;
No more: than 70 files can be declared (mcludmgf
OUTPUT, whether - ol d). The.
~spec|f|catlon mis a posntlve mteger. Whenfn fip. is
requ1red, the list. 1nclud1ng parentheses is omitted.

7-1

STATEMENT FUNCTIONS

A statement function is a procedure defined by a single
statement. A statement function must be defined in the
program unit that references it; consequently, the function
cannot be referenced by any other program unit.

DEFINING STATEMENT FUNCTIONS

The user defines a statement function with a single
statement similar in form to an assignment statement.
The statement function must precede the first executable
statement in the program unit, and must follow all
nonexecutable statements except DATA, FORMAT, or
NAMELIST statements.

60457040 B

Form:
f(aj,a9, . . . yag)=e
f The function's symb.olic name.

aj Dummy argument, a simple variable name
distinct from any of the other dummy
arguments. The list must be present, and it
must contain at least one dummy argument
(that is, n 2 1).

e Any scalar expression.

Since dummy arguments serve only to indicate type,
'length, number, and order of the actual arguments, the
names of dummy arguments can be the same as variable
names of the same type ‘and length appearing elsewhere in
the program unit. Besides the dummy arguments, the
expression e can contain constants, variables, array
elements (the array name cannot be dummy), references to
external functions (function subprograms and
FORTRAN-supplied functions, for instance), and
previously-defined statement functions.

The type of the statement funetion result is determined by
the type of the function name. Type must be assigned to
the function name in the same way that type is assigned to
a variable; that is, the function name can either appear in
an explicit type statement or be typed implicitly.
Although the funetion name can appear in a type
statement, it must not appear in an EQUIVALENCE,
COMMON, or EXTERNAL statement, and must not be
dimensioned or given an initial value. Type conversion
from the expression type to the function name type occurs
as for assignment statements (see section 4).

REFERENCING STATEMENT FUNCTIONS

A statement function is referenced when the function
name suffixed with an actual argument list appears in an
arithmetie, logical, or character: expression. The actual
arguments, each of which can be any scalar expression of
the same type as the correspondmg dummy argument, must
agree in order, number, an th with the dummy
arguments. :

funetion entr
,;gspectwely,

Evaluation of a statement function occurs during
evaluation of an expression that contains a reference to
the function. The values of the actual arguments are the
values they have at the time of each evaluation of the
function, while any name in the function expression that is
not a dummy argument retains the value it would have, had
it occurred outside the function at that time.

Examples:
Definition Reference

ADD(X,Y,C,D)=X+Y+C+D RZLT=GROSS-ADD(TAX,

FICA,INS,RES)

AVG(0,P,Q,R)=(0+P+Q+R)/4 GRADE=A VG(T1,T2,T3,T4)
- +MID

LOGICAL A,B,EQV TEST=EQV(MAX,MIN).AND.

EQV(A,B)=(A.AND.B).OR. ZED
(.NOT.A.AND..NOT.B)
COMPLEX Z " RZLT2=(Z(BETA,GAMMA

Z(X,Y)=(1.,0.)*EXP(X)*COS(Y) (I+K))**2-1.)/SQRT(TZ)
+0.,1.)*EXP(X)*SIN(Y)

SUBPROGRAMS

A subprogram is a program unit that is defined by more
than one statement but is not a main program. The
differences between function and subroutine speclflcatlon
and use are summarized in table 7-1. ‘All references in the’
table to function name and ‘subroutine name apply also to
mt name and subroutme entry pomt name,k

An external procedure is a procedure defined outside the
program units that reference it. Function and subroutine
subprograms are external procedures that are written in
FORTRAN. In-line functions and statement functions are
not external procedures. Because name definitions for

. data are local to the program unit in which the names

appear, names within an external procedure can be used in
other program units of the same executable program to
refer to unrelated entities.

TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBROUTINES

Function

Subroutine

—_—— —

How referenced
sion.

The function name appears in an expres-

The subroutine name appears in a CALL state-
ment.

Arguments
the function name.

One or more arguments must appear with

The subroutine name can appear with or without
an argument list.

Type and length The type and length of a function name -
is the type and length of the function

result.

No type or length is associated with the name.

Results A function must return a value through
the function name. It can also return
any number of values through arguments

and COMMON.

A subroutine can return any number of values
through arguments and COMMON.

60457040 B 7.3

PASSING ARGUMENTS BETWEEN SUBPROGRAMS

A transfer of control out of a program unit takes place
when a CALL statement or external function reference is
executed. Argument associations are made, and the
referenced program unit executes until a RETURN
statement relinquishes control to the referencing program
unit. Upon return, .any definitions made of arguments
persist. If a STOP statement is executed within the
referenced subprogram, program execution is terminated
without control being returned to the referencmg program
unit.

Values can be made available to an external procedure in
two ways: through use of COMMON statements and by
means of argument lists. See section 6 for a discussion of
COMMON statement usage.

Dummy and actual argument lists are the mechanism that
FORTRAN employs to pass values between subprograms.
An argument's being dummy or actual depends upon the
context in which the argument appears. An argument
appearing in a FUNCTION, SUBROUTINE,
statement is a dummy argument, while an argument
appearing -in a subprogram reference is an actual
argument. At the time a subprogram reference is
executed, each variable listed as a dummy argument is
associated with the same storage location as the actual
argument corresponding to it (call by address). Each
definition of a dummy argument can change the value in
that storage location. Thus, when control returns to the
referencing program unit, the values of the actual
arguments can be different from what they were before
the subprogram reference.

Dummy arguments are varlable names, array names
_external subprogram names
‘only ol

They are assigned data types as appropriate
and are used in the executable statements of the
subprogram. Actual arguments can be expressions,
variables (including. confstants arrays,

he dummy argum‘ent list for

a subprogram and an actual argument list for a reference
to the same subprogram must agree in argument order,

Dummy argument arrays, like all other arrays, must have
their sizes declared. The declarator dlmensmns can b
integer constants, or simple integer v
be dummy arguments as well |
A dummy argument must never appear in a
N, EQUIVALENCE, or DATA specification
statement.

If an actual argument is an external subprogram name, the
name must appear in an EXTERNAL statement in the
" referencing program unit. Furthermore, the corresponding
Gummy argument can only be used as an external
subprogram reference or as an actual argument in a
subprogram reference in the referenced subprogram. An
example of this usage is shown in figure 7-1. As a result of
the first call to S, SAM is executed on the call to SUB; on
_the second call to S, TIME is executed on the call to SUB.
"However, if the external subprogram name is suffixed with

7-4

an argument list, the name is not an argument but a
function reference; here, the function is executed and it is
the result that becomes the actual argument. A function
referenced in an argument list need not have its name
appear in an EXTERNAL statement in order to act as an
argument. An example of this usage is shown in
figure 7-2. The value of RZLT is the type real value
returned by the execution of SAM.

PROGRAM P
EXTERNAL SAM,TIME

CALL S (X,Y,ZSAM,l)

CALL S (T,U,V,TIMEW)

.
.
.

END

SUBROUTINE S (A,B,C,SUB,D)

.

CALL SUB

RETURN
END

Figure 7-1. Subprogram Name as Actual Argument

PROGRAM R

CALL S (XY, Z,SAM(X),1)

END

SUBROUTINE S (A,B,C,RZLT,D)

DIMP = RZLT**2/NIM+1.

RETURN
END

Figure 7-2. Subpro_gram Reference as Actual Argurﬁent

Kinds of actual arguments allowed to correspond with a -
particular type of dummy argument are listed in table 7-2.
When a dummy argument is associated with an actual
argument that is either a constant or an expression
contammg operators, the dummy argument must not be
defined in the subprogram.

60457040 B

TABLE. 7-2. CORRESPONDENCE OF ACTUAL TO
: DUMMY ARGUMENTS

Dummy Argument Actual Argument

Simple variable Scalar expression

Descriptor .
‘Descuptor array element
V'Vector i !

Descriptor

Simple array
Array element (simple)

Simple array

. Descnptot atray

Descriptor array
AL ; ‘ Descnptor arr:ay element,

External procedure name | External procedure name

';Statement label, pre—
f].xed by an amperaand i

’;"‘ (éétenék déﬁoé:.ng
dumy label ~ for.
subroutxnes only)

_array element

FUNCTION SUBPROGRAMS

A function subprogram is a program unit whose first line is
a FUNCTION statement. A function subprogram must be
referenced in at least one other program unit to be
executed, and must contain at least one RETURN
statement to return control to the referencmg program
unit. Statements that cannot be included in a function
subprogram are the 'PROGRAM, BLOCK DATA, and
SUBROUTINE statements, and any statement that direetly
or indirectly references the funetion being defined. The
execution of a STOP statement within the function
terminates the program.

The FUNCTION statement defines the program unit to be a
function and not a subroutine or the main program. Only
one FUNCTION statement is allowed in a subprogram.

Forms:

sap)

t FUNCTION f (aj,ay, .

t Optional. A declaration of the type of f; can
be INTEGER, REAL, l;)OUBLE PRECISION,

f The function's symbolic name.

60457040 B

-purposes of type declaratlon or in a llst of ldentlfxer nameSz
'in'a NAMELIST statement. G

aj A dummy argument that can be a variable,
array, or external procedure name. No two
dummy arguments can have the same name.
At least one argument is required.

Within the function, the name f is treated as a variable. It
must be given a value at least once during the execution of
the function subprogram. Once defined, the function name
can be referenced and redefined without an occurrence of
the name being interpreted as a funetion self-reference.
The value returned to the expression that referenced the
function f is the value that f has upon execution of a
RETURN statement within the funetion subprogram.

The type of the function name f must be the same as in any
program unit that references the function. Type
specification can be explicit - it can appear before the
word FUNCTION or it can appear in a type declaration
statement within the function (f must not be initialized) -
or it can be implicit. Implicit type specification takes
effect only when no explicit typing of the function name
was used. The function name must not appear in any
nonexecutable statements wnthm the funetion, except for

If the function name f is the same as that of a predefined
function, the predefined function is unavailable in the
user-defined function. Throughout the rest of the program,
a reference to a function named f causes execution of the
user-defined function unless the predefined function f is
in-line (see appendix E to determine whether f is in-line or
external). The presence of an external declaration for f
governs whether or not an in-line predefined function is
executed. .

A function subprogram can modify the value of one or
more of its arguments to return extra (side effect) values
to the referencing program unit, with one restriction:
because the order of evaluation of the components of an
expression or statement is not guaranteed, a function
reference must not define any other entity occurring in the
same -statement. The function's capability for modifying
its arguments also applies to individual elements of an
argument which represents an array. Other values can be
returned by altering the values of -entities in COMMON
(the same side effect restriction applies). For example,
given the statement: -

X(T) = FN(T,I+N,Y) + 3*FN(I,N,Z) -

where X is an array, FN is a function, and R is in common,
the variables T, I, N, and R must not be defined by FN.
However, Z and Y can be so defined.

A function is referenced by using its name suffixed by an
argument list, including parentheses and commas, instead
of a data element in any expression. Each dummy
argument in the FUNCTION statement must correspond to
an actual argument in the function reference argument
list. See the heading Passing Arguments Between
Subprograms in this section for a further description of
actual and dummy arguments in function references.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is a program unit whose first line
is a SUBROUTINE statement. To be executed, a
subroutine subprogram must be referenced with a CALL
statement in another program unit; a RETURN statement
returns control to the calling program unit. Statements
that cannot be included in a subroutine subprogram are the

7-5

‘PROG BLOCK DATA, and FUNCTION statements
“and any . statement that directly or indirectly references
the subroutine being defined. The execution of a STOP
statement within the subroutine causes the program to
terminate.

The SUBROUTINE statement defines the program univt.to '

be a subroutine and not a function or the main program.
Only one SUBROUTINE ' statement is . allowed in a
subprogram.

Form:
SUBROUTINE s(ay,ay, . . - ,ap)
s The subroutine's symbolic name.

g Optional. A dummy argument that can be a
variable, array, external procedure name

When the argument list is omitted, the
parentheses . and commas must also be
omitted. -

The SUBROUTINE statement contains the subprogram
name s that indicates the subprogram's main entry point
(the first executable statement in the subroutine). The
name s is not used to return results to the calling program
the way that function names do, is not associated with a
data type, and must not appear in any statement in the
subprogram except the SUBROUTINE statement. Results
are returned to the calling program unit only through
definition or redefinition of one or more of the. dummy
arguments or through common. Dummy arguments in a
SUBROUTINE statement are discussed elsewhere in this
section under Passing Arguments Between Subprograms.

BLOCK DATA SUBPROGRAMS

Besides having one or more executable program units, a
program can contain nonexecutable BLOCK DATA
subprograms. A BLOCK DATA subprogram is a
CYBER 200 FORTRAN specification subprogram that can
consist of only the following statements:

) BLOCK DATA statement

e Explicit typé statements
‘o EQUI VALENCE statements

e DIMENSION statements

e COMMON statements

e DATA statements

7-6

® END statement v
The order of the statements in a BLOCK DATA

. subprogram should be as shown in section 1.

A subprogram is a specification subprogram if the first
statement is a BLOCK DATA statement. ‘

Form:

The single function of a BLOCK DATA subprogram is to
initialize the values of elements in labeled common blocks
(but not blank common) prior to program execution. If any
element in a given common block is being given an initial
value in such a subprogram, a complete set of specification
statements for the entire common block must be present
(including any type, EQUIVALENCE, and DIMENSION
statements required to fully specify the common block's
organization), except that not all of the elements of the
block need be initialized. Initial values can be entered into
more than one block in a single subprogram. Different
variables and array elements in a common block can be
initialized in different program units, but no variable or
array element can be initialized more than once.

60457040 B

subroutine subprogram, the entry point name e is: not
associated with a data type and’ must not ‘appear in any
statement. in the = subprogram - .except the ENTRY
statement. In‘a function. subprogram, however,. the entry
point name ‘e must. be’ asocxated with a data’ type
imphc:tly or _with explicit type ‘statements. The
distinctions between entry pomts in functxons ~and
subrwtmes ar ‘shown 1n table 7- 1. i

FUNCTlON ,SUBPROGRAM ENTRY POINT NAMES

An entry point name a fun txon, ubprogmm\ ust be
‘ vassociated with a data type and can be assigned values:

durmg execution. The. entry point name must not appear in
any. nonexecutable statement in the function except_in a’
FUNCTION or ENTRY statement, explicit type statement,‘
orin the list ot' names ina NAMELIST statement. :

entry point name need not be £ the me data type as
the ‘main entry point name or any: other _secondary entry
point names in the function; however, a function reference
using that entry point name must have the same data type
as the name. Also, CYBER 200 FORTRAN permxts scalar

60457040 B

ksr-sasucmo secoqua r,emnv VPOINTS“

‘A secondary entry point to a subro tine subprogram is
referenced by a CALL . statement containing the entry
point name., An- example of ‘multiple subroutine entry
i “shown in. figure 7-3.. .In. the example, _the
3statement‘ CALL CLEAR(SETI) references the ‘primary
entry point of the subroutine. Elements of the array are
set to zero | before values are read into the array. Later in
program, the statement CALL FILL(SETI) references
the« secondary entry point. FILL. Values are -read into- the
,‘array without any mitialization ot‘ the elements to zero.

s

- PROGRAM ~~T(|NPiﬁ')
 DIMENSION SET1(25

LL CLEAR(SET1)

o

o

oo
2
o

e

.
i

i

e

.
o
o

.

—
e

s

i
.

ST
.

o
-

.

o

.

7-8

e
o

G

o

.

-

a

5

S
o

.
o

.

-

Sl

.

o

2

g

.

ED = (C+A

2
G

G
L

=

(el

SR
o

.

.

.

:

_FUNCT

ol ol

ke

£.702) G

. lam ' Z:? "W »1 f :x o :
v “’"’;“7,»4351:‘{ -

)

L

Multipi

A
Sl Bt

kil

.

R
.
S

o

] SEIEE e 5
L
pretil e
e
.

T

i 7 &
.

i

i

-
.
L

o
S

o

. -

...
ok i
o o
. .

ion

e

s

60457040 B

INPUT, OUTPUT, AND MEMORY TRANSFER STATEMENTS 8

“

The data processed by a CYBER 200 FORTRAN program
can be constants in the program, or variables and arrays
initialized with DATA statements, or can include variables
and arrays whose values are read from input units at
program execution time. When the program has produced
results, CYBER 200 FORTRAN output statements can be
used to send the results to specified output units. Input
and output can be performed as frequently as necessary
during the execution of a program.

The followmg types of input and output (I/O) statements
are available in CYBER 200 FORTRAN:

Sequential
ENCODE, and DECODE statements,
with optional data format specifi-
cations

f Buffer . BUFFER IN ‘and BUFFER .OUT

: .. statements (appendxx G) S

» Namelist
data format specxfxcatlons s

Concurrent Q7BUFIN, Q7BUFOUT subroutine

calls (section 13)

The legal record types for the types of input and output are
given in table 8-1.

TABLE 8-1. LEGAL RECORD TYPES

Input/Output Record Type
Statement c 1 Fixed R 1
Type ontro . ixe ecor
P Word Undefined Length Mark
Formatted Yes No Yes Yes
Unformatted Yes No Yes No

wrrm v | ves | e | oves

BUFFER OUT -+ Yes ; N° Yes NQ»:

Q7BUFIN/OUT | Yes' Yest YesT | Yest

fWhen using Q7BUFIN or Q7BUFOUT, any record type
can be read or written, but the file is always
treated as if the record type is undefined.

READ, WRITE, PRINT, PUNCH,

READ, WRITE PRINT ‘and PUNCH;
statements with a namelist group:
~ name that implies an 1/0 list andy

In addition to séquential,}puff er, and namelist input/output,
the unit positioning statements REWIND, BACKSPACE, and
ENDFILE and ' the ‘memory-to-memory: data’ conversion

‘statements’ ENCODE and DECODE are ‘discussed in this -

section. Data conversion on input and -output (the
FORMAT statement) and the input and output lists for
input/output statements are discussed in section 9.

60457040 B

Al files or units referred to in an input/output statement,

‘except for the standard output file OUTPUT, must be

declared in a PROGRAM statement at the beginning of the’

‘main program. | The default record length on ASCIL card

files is 80 characters. Record length on any ASCII file
should not exceed 137 user-supplied charaeters. Recora
length can be changed with the Q8WIDTH subroutine
described in section 13. The first character of a print file
record is always used as ca.rriage control and is not printed;
the second character appears in the first prmt position
(carriage control characters are listed in section 9).
Additional requirements for input files and for the form of
output files produced through FORTRAN are discussed in
section 15.

Data moved by using input/output statements is always in a
block that begins on a small page boundary and that has a
length that is a multiple of small pages.

The following parameters are specified in input/output
statement forms throughout this section to indicate the
three basic components of input/output statements:

u Logical unit number having an integer value
of from 1 to 99 and associated with a
particular file by means of the PROGRAM
statement (see section 7).

fmt Format designator; the statement label
(having a value of 1 to 9999Y) of a FORMAT
statement in the progam unit containing the
input/output statement, or the name of an
array containing the format specification.

iolist List of variables and arrays to be input from
or output to u according to fmt.

SEQUENTIAL INPUT STATEMENTS

To request that data be transferred into main memory, a
READ statement is used. The formatted READ statement
must be used for ASCII input, whereas the unformatted
READ statement can be used to read data that does not
require conversion from an external to the internal
representation. The READ statement with lmphed deviee;

iis a formatted read from the file INPUT.

FORMATTED READ STATEMENT
A formatted READ statement has the following form:

READ(u,fmt,END=m,ERR=n)iolist

Optional. End-of-file transfer parameter; m

END=m__ ‘
isa statement label in the same program umt»

Optxonal. Data. transfer error parameter, n is
tatement label in the same program unit,”

iolist Optional input list.

The END and ERR parameters can be in either order when
both are present.

Execution of the formatted READ statement ' causes
transfer of one or more records from the specified file u to
the memory locations associated with the names in iolist,
according to the format specified by fmt. The number of
records transferred depends upon fmt and iolist.

Conversion from the external to the internal form for the
data takes place in accordance with the formatting.

‘of the READ is ”ébandoned, and control transfers to the‘
;;statement label m spec‘i by the END optlon in they

‘error occurs, the var
,undefmed, ‘the rec

UNFORMATTED READ STATEMENT

An unformatted READ statement has the following form:

Optional input list.

iolist

Execution of the unformatted READ statement causes
transfer of a single record of binary data from the
specified file u to the memory locations associated with
the names in iplist. In contrast to the formatted READ, no
format designator is present in the statement and no data
conversion takes place.

The PRINT statement i

formatted WRITE statement with the file PUNCH i
the file can be punched after program termination.

. The size of the record read from the ﬁle u must match

iolist exaectly.

SEQUENTIAL OUTPUT STATEMENTS

To request that data be moved out of main memory, a
WRITE, PRINT, or. PUNCH statement is used. The
formatted WRITE statement must be used to write ASCII
output whereas the unformatted WRITE statement can be
used to write binary data without converting it to ASCIL
_formatted WRITE statement:
with the file OUTPUT 1mp11ed. The PUNCH. statement is

FORMATTED WRITE
A formatted WRITE statement has the following form:
WRITE(u,fmt)iolist

iolist Optional output list.

Execution of the formatted WRITE statement causes
transfer of one or more records from the memory locations
named in iolist to the specified file u according to the
format specified by fmt. Hollerith data in fmt is also
transmitted.

60457040 B

UNFORMATTED WRITE
An unformatted WRITE statement has the following form:
WRITE(u)iolist -
iolist Output list; required.
Execution of the unformatted WRITE statement causes
transfer of a single record, consisting of the sequence of
values specified by iolist, to the file u. No data conversion
takes place. If data is written by an unformatted WRITE

and subsequently read by an unformatted READ, exactly
what was written is read.

MEMORY-TO-MEMORY TRANSFER

The ENCODE and DECODE statements are used to
reformat data in memory by transferring the dataunder

format specification from one area of memory to another.

The ENCODE statement is similar to a formatted WRITE .

statement .and the DECODE statement is similar “to a
formatted READ statement. However, unlike a WRITE or

READ statement, the source (for decoding) or destination '

(for encoding) of the data is a variable or array rather than
an input or output file, Data is transferred internally with
an ENCODE or DECODE statement; no files are involved.

ENCODE STATEMENT ’
‘An ENCODE statement has the followmg form:
' ENCODE(cl,fmt bliolist

L'cl‘ Length in number of 8-b1t bytes of eachi

L encoded record.,

ot fmt ; Label of a FORMAT statement in the same
oo o program unit, or the name of an array

i ,contalmng' the format speclfxcatlon. ,

{n_fthe encoded records.
‘ Optlonal output list

E;Executlon of an ENCODE statement ‘causes the creatlon of

one ~or .more _records, eaeh havmg a length of el
characters., ‘When iolist is - present, the “values of the!

elements in the list.are wntten ‘into memory, starting with

b and accordmg to the format conversion specified by fmt.z

‘The ‘length of each record must be less than or. .equal. to el

.‘on the rxght to cl with blanks. o

60457040 B

oy - Simple varlable, array “element, or array
“i% name that serves as the startmg locatxon ot‘ ‘

characters; if the record produced is shorter, 1t 1s extended,

" program unit, or the name of an arrayf,
: containmg‘ the format specification. :

b Sxmple g varlable, e.rray element, or - array -
: “name that serves as the starting location of .
the area in memory from which the values:

. decoded into iolist elements are taken. '

‘iolist : ‘Optlonal lnput llst.

Executxon of a-DECODE statement causes the readxng of -
one or more records, starting at b, into the items in iolist,

according to the format conversion specified by fmt. This
action must not require more than el characters of any
record; however, if fewer than cl characters are required,
the remaining characters are ignored. The list iolist must
not include any elements of type bit and must not include
descriptor:-names.

The records scanned by the execution of the DECODE
statement partition the memory area, starting at b, into
groups of cl characters. At the inception of the decoding,
no element in the list can be assoclated with the variable

‘or array b.

An example usmg ENCODE: and DECODE is given in
figure 8-1. LOC ‘is an integer array having six elements.
The call to the concurrent input/output routine Q7BUFIN
transfers one small page of unformatted data into memory
starting at LOC(1) and proceeding through the next 511
words. - QTWAIT is called- to check the status of the
buffering ‘operation initiated by the Q7BUFIN call, and
control branches to the statement labeled 666 1f the .
operation hasnot completed normally or.if not enough data’
was read in by the operation. The DECODE statement,;
under control of FORMAT :statement 1, places the last
four bytes of LOC(6) 'left-justified (A conversion) into
TEMP, without change of form.. The ENCODE statement,
under control “of FORMAT statement 2, packs the first
four bytes of LOC(I) and the fxrst t‘our bytes of TEMP mto

‘NAME.

e k;:,.'I‘:)IME‘N‘S”ION: Loc(e)

CALL /Q7BU'F\|N;(60,IT.‘0,,C‘./1)“ 3

":CALL Q7WAIT (60 LOC STATUS 1 PCOUNT)
. |F.(RCOUNT.LT:1 .OR. STATUS NE 0)
THEN GO TO 666 g

DECODE (8,1 Locus))f TEMP
'ENCODE (8,2,NAME) LOC(1), TEMP

8-3

'NAMELIST INPUT DATA

;need not contain all of the nam
‘given in the defining’ NAMELIST statemen o
_the variables and arrays included in

60457040 B

NAMEI.IST OUTPUT DATA

The entxre sequence of records output by a namellst WRITE
. statement is in a form that is suitable to be input by a
‘namelist input statement., The names and values of all'
variables and arrays in the group are output to OUTPUT,
PUNCH, or the de31gnated flle.

Upon execution of a namellst WRITE or PRINT statement,
- a sequence of records with a character blank in the first
- character. position . of. each record is transmitted.. The
remaming character posntions are as follows. e

First record. &g o

§ where g is the namelxst group name ‘,::: i
One or. more records: i
- there vi is either a varlable or array name, and

o clj is a constant or a list of constants separated
,by commas g , , ; H

«kLast record' &END

‘When vi |s an array name, the number of constants in the
list clj is the number of elements in the array; the order
of these. constants is the order in: which the elements occur
.in memory. ,

:For character elements, output is in the form of charaeter

‘constants. ‘The form. of "all other constants is as 1f the

elements had been written with the format Ew.d (se

section 9) where w and d are sufﬁclent to. preserve
preciswn of the elements "'Fo complex elements, th
format of the constant is.as if the. rific
((",Ew.d % Ew.d,")) had been used (sectlon 9),

UNIT POSITIONING

REWIND, BACKSPACE, and ENDFILE statements can be
used to adjust the current reading or writing position of a
file . when input/output is being performed by buffer,
namelist, and sequential input/output statements. Files
contain one or more records grouped as a totally ordered
set. The initial position of a file is at the beginning of the
file's first record. The end-of-file indicator, when present,

60457040 B

vl—cll,v2=clz,...,vn—cln o o

follows the last record of information. The forms for the
unit positioning statements all refer to u, which is an
integer constant or simple integer variable specifying a
logical unit number.

REWIND

Execution of a REWIND statement causes the file specified
by u to be positioned at its initial point, the
begmmng—of—mformatlon, ‘even. when " several ENDFILE

[statements were issued since the last REWIND,

Form:

REWIND u
If u is already at the beginning-of-information, the
statement has no effect,
BACKSPACE
Execution of a BACKSPACE statement results in the
positioning of the file in such a way that what had been the
preceding record prior to the statement execution now
becomes the next record.
Form:

BACKSPACE u
If u is at its initial point, BACKSPACE has no effect.

ENDFILE

Execution of the ENDFILE statement causes an end-of-file
indicator to be written as the last record on the file.

" Form:

ENDFILE u

Note that if a file is created by a FORTRAN run-time
routine and an ENDFILE statement is executed first, the
file is considered to be an SIO record mark file. Any
attempt to perform unformatted or buffer input/output on
the file results in a fatal error.

8-5

INPUT/OUTPUT LISTS AND DATA FORMATTING 9

Input/output requests are initiated by using the statements
discussed in the previous section. This section covers the
details of specifying the format of the data being
transmitted with these input and output statements. The
interaction between the FORMAT statement and an input
or output list, data conversion specification, and
execution-time data formatting are covered here.

INPUT/OUTPUT LISTS

The list portion of an input or output statement specifies
the items that are to be read or written and indicates the
order of transmission. ‘The items in the list are read or
written sequentially. Although the list can contain any
number of items separated by commas, the number of
items should .be compatible with the FORMAT statement
specifications and (on input) with the amount of input data
available.

An output list must accompany an unformatted WRITE.
Otherwise, an input/output statement need not contain an
input/output list. When no list is present on input, a record
is skipped (unless the corresponding FORMAT statement
contains an H specification). Only Hollerith information
that appears in the format specification can be written
when no list is present on output.

When an input/output list is present, the execution of an
input or output statement continues as long as any list item
remains to be processed. If there is insufficient data on
input to give every element of the list a value, a run-time

error results; whenever there is excess data in the input
record, the excess is ignored.

LIST ITEMS

An input or output list item can be any of the following:
e Simple variable name

e Array element name

e Array name

e Implied DO list

(s] Descrlptor name prefxxed with an ampersand

'Descmptors and type blt data elements cannot be 1nput, nor.
can they be output by means of any unformatted output’

statement. They must not appear in input lists; they can
appear in output lists only of formatted output statements

All elements of an array can be specified with an
unsubscripted array name list item. An unsubscripted
array name output list item causes the elements of the
array to be output in the order in which the element values
are stored in memory, irrespective of the fact that the
array has been specified to be a conventional array or
rowwise array. Parts of arrays can be specmed by means
of an implied DO list item. Subscripts in an input/output
list can be any valid subseript described for array element
names in section 2.

60457040 B

Examples:
'READ (2,100)A,B,C,D
READ (3,200)A,B,C(1),D(3,4), E(L,d,7),H
READ (4,101)J,A(3),,B(L,9)
READ (2,202)DELTA

On input or output, the list is scanned and each .variable in
the list is paired with the field specification provided by
the FORMAT statement. After one item has been-input or
output, the next format specification is taken together
with the next element of the list, and so on until the end of
the list. The correspondence between data in an input
record and the format specification is shown in figure 9-1.

In the figure, 100 is read into the variable L under the .

specification I3; 22 is read into M wunder the
specification 12; 3456712 is read into N under the
specification I7, and 1, 10, 11, and 0 are read into the four
elements of the array K under the specification I2
(element K(1,1) =1, K(2,1) =10, K(1,2) =11, and K(2,2) =0).

‘ Array declaration:
DIMENSION K(2,2)
Input statements:
READ (5,20) L M,NK
20 FORMAT (13,12,17 412)

Input record:

(100fezsssszi2]orro]1 oo

Figure 9-1. Example of Inputting Formatted Data

‘Attempting to read more’data than is in the input stream '
produces an error, unless the :END parameter (descz'lbed mt
Lsectxon 8) is used to test for the end of the file.. e

IMPLIED DO IN INPUT/OUTPUT LIST

Input and output of array elements can be accomplished by
using an implied DO in the input/output list. A list of
variables followed by a DO loop control variapie is
enclosed in parentheses to form a single implied DO list
element.

For exgmple,
READ (5,100)(A(D,I=1,3)
has the same effect as the statement

READ (5,100)A(1),A(2),A(3)

v

The general form for an impliéd—DO item is:
(list,i=m1,m2,m3)

list An input/output list in which i and implied
DO items. can appear. -Variables, array
elements, and subseripted or unsubscripted
array names can appear more than once in

list.

i The control variable, a simple integer
variable.

my The initial value parameter of i, an integer

constant or a simple integer variable with a
value greater than zero,

mg The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

m3 Optional. "The inerementation ~ value
parameter for i, an integer constant or a
simple integer variable with a value greater
than zero. Default value is 1.

The variable must not be used twice as a control variable
within the set of parentheses that defines an implied DO
item. When . processing. begins on the .implied DO
input/output list item, the control variables are set to their

initial values; list is transmitted; then i is ineremented by

mg and if the value of i does not exceed mg, list is
" again transmitted. The looping process repeats until the
value of i exceeds mo.

The control variable can appear in list. If it does appear in
list (for example, in subseript expressions in the list, or as
a list element), it assumes whatever value it has currently
as the control variable.

Examples:

Implied DO Transmitted

(A,B,C,I=1,4) A,B,C,A,B,C,A,B,C,A,B,C

(I,R(1+1,1),C,I=1,3) 1,R(2,1),C,2,R(3,1),C,3,R(4,1),C

((R(1,3),I=1,2),J=1,2) R(1,1),R(2,1),R(1,2),R(2,2)

1,R(1,1),R(2,1),Y(1),B(1),B(2),2,

R(1,2),R(2,2),Y(2),B(1),B(2),3,
R(1,3),R(2,3),Y(3),B(1),B(2)

FORMAT STATEMENT

Data_ being _moved, as a result of execution of an
‘ENCODE/DECODE or a formatted input/output statement,
changes in format during transferral. Data that has not
been formatted consists of a string of the binary values
that are in memory. Data that has been formatted consists
of ASCII characters.

(J3,(R(1,3),I=1,2),Y(J),
(B(K),K=1,2),d=1,3)

The nonexecutable FORMAT statement or a variable
format specification is required to specify the formatting
of data being moved with .ENCODE/DECODE' and
formatted input/output statements between a file and main
memory. Unlike most other nonexecutable statements, a
FORMAT statement can appear anywhere in the program
unit in which it is referenced. More than one input/output
statement can reference a single FORMAT statement.

Form:

sn FORMAT (qy s4rqf1 X1...Xp-1 Sn'nfng2)

sn A statement label that must appear; the
label referred to in an input/output
statement in the same program unit.

Q1,92 Optional; one or more slashes indicating
record boundaries.

si Optional scale factor for E, F, G, and D
conversion codes.

ry Optional unsigned integer constant that
serves as a repeat count for the field
specification; when omitted, a count of 1 is
assumed.

f; A field -specification indicating one of
fourteen types of data conversion and
editing codes; or, a list of the form:

* (a381r1f1%1..Xn-15nrnfnq2)

with the restriction that parentheses can
be nested to only three levels in a
FORMAT statement.

Xj A comma, or one or more slashes

indicating record boundaries; onal
following an H specification, eifi=
or X specification.

The format specification is enclosed in parentheses. No
more than two additional levels of parentheses can be
nested within the outermost set of parentheses. Blanks
within the format specification are not significant except
in Hollerith (nH) and apostrophe field specifications.

Example:

READ (5,100) INK, NAME, ARE
100 FORMAT (10X,14,12,F7.2) °

Generally, each item in the input/output list of an
input/output statement should correspond to a single field
specification in the specified FORMAT statement.
However, complex variables always correspond to two F,
E, G, or Z field specifications. Also, arrays in an
input/output list must correspond to as many field
specifications as there are array elements.

The FORMAT statement usually specifies the type of
conversion that is performed for input data without any
regard for the type of the variable that subsequently
receives the value. Nevertheless, the data type of the
variable in the input/output list should match that of the
field specification, because no conversion takes place upon
assignmen i i i

60457040 B

'In"the ‘above example, a real number
(mteger, and assxgned to the varlable N .

Repetition of individual field specifications (except for H,
' X, ‘and T editing specifications) or of groups of
specifications (delimited by parentheses) is indicated
through use of the repeat count r. If the input/output list
warrants it, the same conversion is repeated the number of
times specified by r. When a group is to be repeated, an
integer constant precedes the left parenthesis to indicate
how many times the group is to be repeated; a repeat count
of r has an effect identical to concatenating r copies of
the field specification string that composes the group. The
repeat count r cannot exceed 255. .

FORMAT CONTROL

Execution of a formatted input/output‘ or ENCODE/.

DECODE statement initiates format control. Format
control depends on information provided jointly by an
element of the input/output list and an element in the
format specification. The format specification, like the
input/output list, is interpreted from left to right (except
for the effects of repeat counts). The field specifications
in a FORMAT statement determine how many characters
are read from input or written on output.

When more field specifications than input/output list
elements are given, some field specifications are not used.
When fewer field specifications than input/output list
elements are given, a new record starts and control moves
to the group repeat specification of the group terminated
by the last preceding right parenthesis. If no group exists,
control returns to the first left parenthesis of the format
specification. This action has no effect on the scale factor
described later in this section.

On initiation of a formatted read, format control is also
initiated and one record is read. Thereafter, additional
records are read only as the format specification demands.
Such action must not require more characters than a
record can contain, which is 137 characters at the
maximum. A slash in the format specification demands
that a new record start. Any unread characters remaining
in the current input record when a slash is encountered in
the format specification are ignored.

When a formatted WRITE is executed, records are built and
output acecording to the interaction of format specification
and the output list. A slash in the format specification
demands that building of the current record terminate, the
record be transmitted, and a new record be started.
Termination of format control also causes the. current
record to be written.

When all elements of the input/output list have been
processed, the format control terminates.

DATA CONVERSION

of data conversion codes are available, each of
whlch causes conversion of ASCII data to a particular
internal data format or vice versa. The editing codes H, /,
X, and T are covered later in this section.

Forms:
Iw Decimal integer conversion.

Ew.d Single-precision floating-point conversion,
with exponent.

60457040 B

‘converted to

‘external represe atlyon‘ 'of a negative value is sngned, while
a positive value is not signed.

Fw.d Single-precision floating-point conversion,
without exponent.

Gw.d Single-precision floating-point conversion,
with or without exponent; character
conversion; logical - conversion; integer
conversion.

Dw.d Double-precision floating-point conversion
with exponent.

Lw Logical conversion.

Aw Character conversion.

Rw Character conversion.

Zw Hexadecimal conversion.

Bw Bit conversion (on output only).

w Field width in number of character positions

in the external record, including any leading
blanks, + or - signs, decimal point, and
exponent; a nonzero (unsigned) integer

constant.

d Number of digits to the right of the decimal
point in the field; an (unsigned) integer
constant.

The field width w must be specified for all conversion
codes. For the form w.d (except for G when associated
with integer, logical, or character type items), the d must
always be specified, even when it is zero. Also, the field
width w must always be greater than d.

A type complex list item should correspond to two
single-precision floating-point (real) field specifications:
the first is for the real part and the second is for the
imaginary part of the complex item.

CONVERSION SPECIFICATION

In numeric input conversions (F, E, D, G, and I), leading
blanks in the input record are not significant, while other
blanks are treated as zero characters. Plus signs can be
omitted. With the F, E, G, and D input conversion codes, a
decimal point in the input field overrides the decimal point
specification supplied by the field specification.

The output field is right-justified for all output
conversions, If the number of characters produced by the
conversion is smaller than the field width w, leading Dlanks
are mserted in the output fleld For .

The types of input/output list items to which each of the
conversion codes can correspond are shown - in table 9-1.
For example, the A conversion code can interpret input
data as ASCII data which can then be assigned to a variable
of any type except bit.

TABLE 9-1. INPUT/OUTPUT CONVERSIONS
Data Type
Conver-
sion . Double
Code Logi~}Inte- Real { Preci- Com
cal |ger . plex
sion

x indicates permitted conversions; n/a indicates
type and conversion combination not allowed.

TCan also be used to output descriptors and double
descriptors.

TAllowable conversion for output only.

| Conversion

The numeric field specification Iw indicates that the
external field is to occupy w sequential character positions
as an integer (including a possible plus or minus sign). On
input, the value of the input list item corresponding to Iw .
appears internally as integer
data,
As input, the integer must be in the form of an optionally
signed constant, except that embedded and trailing blanks
are interpreted as zeros.

E and F Conversions

The numeric field specification Ew.d or Fw.d indicates that
the respective external field is to occupy w sequential
character positions (including any decimal point, exponent,
or sign), where the part following the decimal point
consists of d digits. On input, the value of the input list
item corresl.i’ondm to Ew.d or Fw.d appears internally as
real,

As input, a real number
llowed by a string of digits
that can contain a declmal point. This basie form can be
suffixed with an exponent in any of the following forms:

e Signed integer constant

@ The letter E suffixed with an optionally signed integer
constant

e The letter D suffixed with an optionally signed integer
constant

With the E and F conversion codes, an exponent that uses D
is interpreted identically to an exponent using E and to an
exponent that is expressed as a signed integer constant.

Output conversions specified by the E and F floating-point
conversion codes differ. For output with F conversion, the
real number produced consists of optional leading blanks, a

. minus sign if the internal value is negative, and a string of

digits containing a decimal point. Together these
represent the internal value modified by any establishea
scale factor and rounded to d fractional digits.

For output with E conversion, the forms (for a scale factor
of zero) are:

b.aj...aqEtee For values where the
magnitude of the exponent
is less than 100.

b is @ minus sign if the number is negative, and blank
if the number is positive.

aj...aq are the d most significant digits of the
value correctly rounded.

e is a digit of the decimal exponent.

A scale factor of n shifts the decimal point so that the
fractional part of the number (a;...ag) is multipliea
by 100 and the decimal exponent is reduced by n. If nis
less than or equal to zero, there are exactly -n leading
zeros with d+n significant digits after the decimal point. If
n is greater than zero, there are exactly n significant digits
to the left of the decimal point and d-n to the right of the
decimal point.

G Conversion

The to input and output
real, data. On output, it
indicates that the external field is to occupy w sequential
character positions;

On input, the value of the input list item

g to Gw.d appears internally as

60457040 B

For output of real data with a Gw.d conversion code, the

method of representation in the external field is a function -

of the magnitude of the real data being converted. Let m
be the magnitude of the internal data. The following
tabulation exhibits a correspondence between m and the
equivalent resulting method of conversion:

Magnitude Equivalent
of Data Conversion
0.1<m<1 F(w-4).d,4X
1<m<10

F(w-4).(d-1),4X

.10d‘2 <m<10d-1

10d-1<m<10d
Otherwise

F(w-4).1,4X

F(w-4).0,4X

sEw.d, where s is a
scale factor

In the tabulation, the effect of any scale factor is
suspended unless the magnitude of the data is outside the
range that permits effective use of the F conversion.

D Conversion

The numeric field specification Dw.d indicates that the
external field is to occupy w sequential character
positions, the fractional part of which consists of d digits.
The value of the corresponding input/output list item
appears internally as double-precision data.

As input, a double-precision number looks like a real
number, only more digits can be retained during conversion
than for the E, F, or G conversions.

For output, the representation of a double-precision
number is the same as for E conversion, except that the
character D, rather than E, is in the exponent.

L Conversion

The logical field specification Lw indicates that the
external field occupies w positions that as a unit indicate
truth or falsity. The value of the external field is stored
on input as logical data.

As mput logical data consists of leading blanks,
i . T (for true) or F (for false), an
optional trailing characters.

For output, logical data consists of w-1 blank characters
followed by the character T or F.

Conversions

The character field specifications Aw w indicate that
the respective external fields occupy w sequential
character positions in the external record. The value of
the corresponding input/output list item appears internally
as character data; the list item has already been explicitly
or implicitly specified to have a length k.

When k equals w, the input field characters are assigned
directly to, or transmitted from the input/output list item.

On input, if k is shorter than the number of characters in
the input field (that is, w), only the rightmost k characters
are assigned to the input list item; the leftmost w-k
characters are ignored. If k is longer than w, w characters

60457040 B

are left-]ustlfled in the list item with blank character fill
to their right for the A conversion; and w characters are
right-justified in the list item with blnary zero fill to their

‘left for R conversion.

On output, if k is shorter than the number of characters in
the output field (that is w), the k characters of the output
list item are output with w-k blank characters preceding.
If k is longer than w, the leftmost w characters in the
output list item are output for the A conversion; and the.
nghtmost w characters in the list item are output for R
‘eonversion, X

.Z Conversion

~The hexadecimal field specification Zw indicates that the
‘external field occupies w positions, where each character
‘position. is - a - hexadecimal _digit.. The value of a
corresponding . input list item after assignment appears
‘internally as hexadecimal data. :

On input, w hexadecimal digits are transmitted to the
_associated list element, - right-justified and binary
izero-filled. - Leading as well as embedded and trailing§
blanks in the input field are treated as zeros. 'If w is
‘greater than the number of hexadecimal digits that can be
,represented in the list element, the rightmost part of the
foeld is used and the mput string is truncated on the left. .

On output the bmary value of the correspondmg output hst
item interpreted: as hexadecimal digits is. transmitted 1o,
the output fxeld, mght-]ustnfxed and blun_K-flued. If W’lS’\,

9-5

EDITING CODES

The edit field specifications, unlike the conversion codes,
do not correspond to input/output list items. Instead, each.
interacts directly with the input or output record.

X Specification

The nX specification is used to skip characters or to
generate blank characters. On input, n sequential
characters of the input record are sklpped. On output, n

sequential bl k he. . out

Specifications

The nH (or Hollerith) speéification is used to output strings

of characters and to read a character string into an

existing H _field specification within a FORMAT
t

output record. Any characters in the ASCIH subset (see
appendix A), including blanks and
Wi

‘apostro m the format speclflcatlon are replaced with
n sequentlal characters from the input record. Any
subsequent uses of the same format spemflcatlon for
output cause the n characters to be placed in_the. output

9-6

SCALE FACTORS

The scale factor nP is used to change the position of a real
number's decimal point when the number is input or
output. Seca

it The scale factor n, which is an
ptionally signed int ger constant, affects conversion
difierently for each kind of conversion code.

A scale factor of zero is established when a reference is
made to a FORMAT statement; it holds for all F, E, G, and
D field specifications until another scale factor is
encountered. Once a scale factor is specified, it remains
in use for all D, E, F, and G specifications in that
FORMAT statement until another scale factor is
encountered. To nullify this effect for subsequent D, E, F,

" and G specifications in the statement, a zero scale factor

0P must precede a specification.

For F, E, G, and D input conversion with no exponent in the
external field, and for F output conversions, the scale
factor sets the externally represented number to the
internal representation of the number, times 10 raised to
the nth power.

For F, E, G, and D input with an exponent in the external
field, the scale factor has no effect.

For E and D output, the basic real constant part of the
output quantity is multiplied by 10 and the exponent is
reduced by n.

For G output, the effect of the. scale factor is suspended
unless the magnitude of the data is outside the range that
permits effective use of F conversion (see G Conversion in
this section). If E conversion is required, the scale factor
has the same effect as with E output.

PRINTER CARRIAGE CONTROL

When an output record is sent to a line printer, the first
character of the record is used for carriage control and is
not printed. For output directed to the card punch or any
device other than the line printer, control characters are
not requ1red (the first character of a record is not treated
as a carriage control character).

Although other characters might be available for a
particular installation, the following values are stancard
for FORTRAN carriage control for line printers:

Character Action Befére Printing

A (blank) Single line feed

0 (zero) Double line feed

1 (one) Feed to first line of next page
+ No line‘ feed

Failure to specify a carriage control character can cause
unexpected results because the first character of output
data would be used as the carriage control character.
Carriage control characters. are required at the beginning
of every record that is to be printed, including new records
introduced by means of a slash. Carriage control
characters can be generated by any means, such as an X or
H editing specification.

60457040 B

EXECUTION-TIME FORMAT
SPECIFICATION

No format statement is necessary for an input/output
statement if an array has been created that contains the
appropriate format specification. This array can be
defined in any of the following ways:

e The format specification can be included in a DATA
statement.

e The format specification can i be included in az

character assignment statement.

® The format specification can be created with the aid

--of ENCODE statements.

e At execution time, the format specification can be
read in, under the A field specification, as ASCII data.

The format specification must be enclosed in parentheses,
but it must not be preceded by the word FORMAT and a
statement label. Once defined, the format specification

array can be used by READ WRITE, PRINT, ’PUNCH,}

60457040 B

~or DECODE statements. More than one
statement ‘can reference the array.

The name of the array containing the specifications is used
in place of the FORMAT statement number in the input or
output statement. For example, assume the following |
format specification: - :

(E9.2,F8.2,17,2E20.3,14)

The . array IVAR could be defined as follows by using a .
character asslgnment statement:

CHARACTER*M IVAR(l)
IVAR(1) = (E9.2,F8.2,17,2E20.3 14)'

A subsequent output statement in the same program could ;
then refer to these format speclflcatxons as:

WRI’I‘E(ZIVAR)ABICDEJ
wh;ch, produces exactly the same resuit as.the 'statements; '

WRITE (2 10) A,B,1,C,D,E,d :
0 - FORMAT (E9.2,F8.2,17, 2E20 3,14)

ARRAY ASSIGNMENT 10

- The array aSSJgnment statement discussed in this section is
neither a part of the standard set of FORTRAN statements
(as defined by American National Standard X3.9-1966,

-FORTRAN) nor directly related to the vector programming
capabilities of CYBER 200 FORTRAN. An array

-assignment statement, which is typified by one or more
operands written in subarray notation, is a shorthand for
FORTRAN DO loops. If the DO loop equivalent of an array
~assignment statement satisfies the criteria listed in
‘section 11 for vectorizable loops, and if the V complle
option of the FORTRAN system control statement is on,
then the array assignment statement will be compiled into
machine vector instructions.

' The array assignment statement is not a part of the

explicit vector programming capability of CYBER 200

FORTRAN; it is a DO loop notation.

SUBARRAY REFERENCES

" A subarray is a'cross-section of anarray; it can be one’
~element, several elements, or all of the elements of the
‘array. A subarray is identified by an array name, or an
_array name qualified by a subscrlpt containing one:or more
‘implied DO subscrxpt expressmns plus any number of other

~Implied .- DO .-

‘subscript expressions can appear only in array expressions

_which, in: turn, can appear only m array assxgnmentig

‘subseript . expression . forms. (sectlon 2).

%statements. o

g‘jThe three 1mpl1ed DO subscmpt expressmn forms are shown

60457040 B

never takes on the terminal value mg. The initial value
my must be less than or equal to the terminal
value my. g

- Example:

A(5,10,2) is the array declarator. Then,

A(*,*,1) designates one-half of the array elements, and
A(*,*,2) designates the other half.

A(1:2,1:2,1:2) names the following elements:

A(1,1,1)
A(2,1,1)
A(1,2,1)
A(2,2,1)
A(1,1,2)
A(2,1,2)
A(1,2,2) '
CA(22,2)

: A(l 5:2,1,1) de51gnates the followmg elements:

CAQ,L1)
CAGLD
A(5 1,1)

An entn‘e array can be desxgnated by the unsubscrlpted
;arrayname.‘q - el b '

10-1

- 10-2 ' 60457040 B

:assignmehts.

xum Y&U(

- X(2,3) =Y(2,2)
X(3,3) = Y(2,3) .
X(4s3) = Y(2’4) S
~ X(5,3) = Y(2,5)

Slmilarly, the statement pair:

DIMENSION X(5 »3), (10 3,2)
‘X(1:#%:3,%) = Y(1:5: 3, *2)"

has the same effect as the statements:

DIMENSION X(5,3),Y(10,3,2)
DO 200 12=1,3,1
DO 100 11=1,5,3
X(11,12) = ¥(11,12,2)
100 CONTINUE
200 CONTINUE

60457040 B

-~ X(L1) =¥(1,1,2)
X(4)1) = Y(4,1,2)
CX(1,2) = Y(1,2,2)
X(4,2) = Y(4,2,2)
X(1,3) = ¥(1,3,2)
o X(4,3) = Y(4,3,2)

If any or all of the DIMENSION statements in these
examples are changed to ROWWISE statements, the:
examples remain correct. Furthermore, if in the first.
example the array declarator for X appeared .in the
DIMENSION statement -and the array declarator for Y.
appeared in a ROWWISE statement, the array assignment
statement would be vectorizable because the elements of
X and Y would be accessed consecutively in memory. .

10-3

VECTOR PROGRAMMING 11

—

'Detailed in this section are the ways that a user can

: introduce machine vector. instructions into the object code.

. for a FORTRAN program. Any of the forms described here.
can be used in the same program wnth the prewously
: described FORTRAN features. = ... o o

AUTOMATIC VECTORIZATION

Automatic vectorization is a process by which the
FORTRAN compiler translates an iterative, sequential
procedure into parallel procedures. The aim of the process
is to utilize the capabilities of the CYBER 200 hardware to
produce optimal object code, without requiring alteration
of FORTRAN programs that do not use the extensions of

CYBER 200 FORTRAN, and without necessitating that a

problem be reconceptualized in terms of parallel
processes. Automatic vectorization of a FORTRAN
program is selected by including the V compile option in
the FORTRAN system control statement that requests
compilation of the program.

Under the V option, CYBER 200 vector instructions are
generated for DO loops that have certain characteristics.
The object code generated for a loop that is accepted by
the vectorizer consists of vector instructions rather than
scalar instructions. If a loop is rejected by the vectorizer,
the compiler attempts to transform the loop into a call to
one of the supplied STACKLIB routines.

Automatic vectorization can be used with any FORTRAN
program, including FORTRAN programs that do not use
any of the extensions of CYBER 200 FORTRAN. However,
because of the restrictiveness of the conditions for
vectorization, summarized in table 11-1, it might not be
possible for the vectorizer alone to achieve the degree of
vectorization desired. As an alternative, the programmer
can elect to use other methods, in conjunetion with the V
compile option or not, to specify vector operations
explicitly.

GENERAL CHARACTERISTICS OF
VECTORIZABLE DO LOOPS

A simple vectorizable DO loop is shown at@ in
figure 11-1. The range of a vectorizable loop can contain
assignment statements, CONTINUE statements, and DO
statements. An input/output statement or IF statement,
for example, is not acceptable in a loop that is to be
vectorized.

The initial, terminal, and incrementation parameters of the
DO statement of a vectorizable loop must have certain
characteristics. The incrementation parameter, if present,
must be 1; an incrementation value of 2, for example,
causes the loop not to be vectorized. Secondly, FORTRAN
allows the parameters to be constants or variables;
however, a variable initial, terminal, or incrementation
parameter does prohibit the vectorization of any

containing DO loop. For instance, the vectorizable loop -

defined at (3) has a variable terminal parameter. Loop
contains loop and, consequently, cannot be
vectorized. Thirdly, the iterative count of a loop or entire

60457040 C

ek

A
DO 222 KEM=1,300 ~ ()
DO 100 1=1,10 -Q
DO 200 J=1,N -0
200 ALD=X(J,1)
100 CONTINUE
222 CONTINUE
B.
DO 300 MM=1,11 - ®
DO 200 JJ=1,30 —-®
DO 400 IN=1,200 —-=——(7)

400 CONTINUE
200 CONTINUE
300 CONTINUE

Figure 11-1. Form of Vectorizable DO Loops

nest of loops must be less than or_equal to 216-1 (that is,
65535). By this criterion, loops and in part B of
figure 11-1 can be vectorized, depending on the range of
the innermost loop; but loop cannot be vectorized
(because 30 *200 *11 =66000).

When the initial or terminal parameter of a loop is a
variable, the dimensions of the loop-dependent array
references within the loop are used to determine the
largest possible iterative count through which the loop can
pass, and this count is used to decide if the loop can be
vectorized.

The U compile option can be selected for unsafe
vectorization. When U is selected, the compiler vectorizes
loops that contain dummy arrays, even if the terminal
value of the loop is variable, The optimization is
considered unsafe because the presence of a variable
dimension might cause the iterative loop count to exceed
65535.

The U compile option also enables vectorization of loops
that contain an equivalenced data element on the left side
of an assignment statement.

If a loop cannot be vectorized (loop @ in figure 11-1, for
instance), then a loop containing the nonvectorizable loop
cannot be vectorized either. By this criterion, loop is -
nonvectorizable.

11-1

TABLE '11-1.

CRITERIA FOR VECTORIZABLE LOOPS

Can Appear in DO Loop

Must Not Appear in Any Part of DO Loop

Vectorizable loops nested within the loop.

Nonvectorizable loop nested in the loop.

Loop incrementation value of 1.

Loop incrementation value that is not 1 (this does
not” apply to the CYBER 200 Model 205).

. 6
Total iteration count less than 2 for a nest of

loops.

Total iteration count greater than or equal to 216

for a nest of loops.

CONTINUE statement.

Any.control statement besides DO and CONTINUE.

Arithmetic operators +, =, *, /, and **, logical
operators.

Relational operators.

Real, integer, and logical data elements.

Any data element that has a type other than real,
integer, or logical.

Any input, output, or memory transfer statements;

References or calls to the following functions and
subroutines: ABS, ACOS, ALOG, ALOG10, ASIN, ATAN,
C0S, EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN.

References and calls to functions and subroutines
other than ABS, ACOS, ALOG, ALOGl10, ASIN, ATAN, COS,
EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN.

Any data elements appearing on the left side of an
assignment statement which have appeared in
EQUIVALENCE statements.

Any scalar assignment statement whose right side
is a real, integer, or logical expression.

Vector assignment statements.

Loop-dependent subscripts having one of the forms c,
c+n, c-n, or c*n, where c¢ is a control variable and

n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

Loop-dependent subscripts not of one of the forms c,

.c+n, c-n, or c*n, where ¢ is a control variable and

n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

References to dummy arrays, so long as the terminal
value of the loop is constant.

References to any dummy array when the terminal .
value of the loop is variable (can be vectorized if
the U option is selected).

Loop-independent subscripts.

ASSIGNMENT STATEMENTS IN
VECTORIZABLE DO LOOPS

Operators in assignment statements in a vectorizable loop
can be any of the arithmetic or logical operators. The use
of relational operations within a loop causes the loop not to
be vectorized.

The type of an operand occurring in the range of a
vectorizable loop can be mteger, real, or logical. A
vectorizable loop containing a logical assignment
statement is shown in figure 11-2.

11-2

LOGICAL A,C,R

DIMENSION A(50000), C(50000), R(49999)

DO 999 X=2,50000

R(X-1) = (A(X-1) .AND. A(X)) .OR. (C(X-1) .AND. C(X))
999 CONTINUE

Figure 11-2. Vectorizable Loop #1

60457040 B

References to dummy arrays cause a loop with a variable
terminal value to be nonvectorizable, unless the U option is
selected. A loop that is vectorizable only if the U option is
selected is shown in figure 11-3.

FUNCTION F(OFFS,F1,N)
DIMENSION OFFS(N),F1(N)
DO 3 I1=1,N

3 OFFS()=F1(1)+5.0
F=OFFS(2)
RETURN
END

DIMENSION A(10,10), B(10,10), C(10,10)
DO 01 I=1,10

T = A(L,1) + B(l,3)

CIL1) = CL*T + A(LAYT

DO 2 J=1,10

T = A(J,1) + B{J,1)

CJ,1) = AT + BUN/T

CONTINUE

CONTINUE

- N

Figure 11-3. Vectorizable Loop #2 (U option)

Function and array references can appear in the range of a
vectorizable loop. However, function references are
restricted to references to the predefined functions ABS,
IABS, FLOAT, IFIX, SQRT, EXP, ALOG, ALOG10, SIN,
COS, TAN, ACOS, ASIN, and ATAN. References in a loop
to other predefined functions, or to any user-defined
funetion, yields a nonvectorizable loop. Loop-dependent
array references are subject to several restrictions.
Loop-independent array references are considered to be
scalars in the context of automatic vectorization.

The left side of an assignment statement appearing in the
range of a vectorizable DO loop must be a loop-dependent
array reference or a scalar reference. A vector or
descriptor on the left side makes the loop nonvectorizable.
A loop-dependent array reference is an array reference
with at least one loop-dependent subseript expression. For
example, the left sides of the assignment statements in
figures 11-1, 11-2, 11-3, and 11-4 are all loop-dependent
array references.

DIMENSION A(10,10), B(10,10)
DO 10 I=1,10 -
DO 20 J=1,10,2 =
A(J,1) = B(J,J)
20 CONTINUE
10 CONTINUE

®E

Figure 11-4. Vectorizable Loop #3

A scalar reference is defined to be a simple variable or a
loop-independent array reference. Scalars appearing on
the left side of an assignment statement are subject to
certain restrictions in order for the containing loop to be
vectorized. These restrictions are as follows:

e If a reference to the scalar appears before the first
definition within the loop, the loop is not vectorizable.

e If the scalar is defined within the loop and appears in
embedded loops, the loop is not vectorizable.

e If the scalar is an array element, every reference to
that array in the range of the loop must have that
same subseript.

Figure 11-5 shows an example of both an unvectorizable
loop (1), and a vectorizable loop (2).

60457040 B

Figure 11-5. Vectorizable Loop #4

LOOP-DEPENDENT ARRAY REFERENCES
IN VECTORIZABLE LOOPS

The form of a subsecript expression in a loop-dependent
array reference is restricted to the control variable of the
loop or of a containing loop, or a control variable plus or
minus a constant:

c
ctn
c-n

¢ Control variable
n Integer constant

Figures 11-1 and 11-2 contain subscript expressions that
properly can appear in a vectorizable loop.

As the control variable passes through the range of values,
the loop-dependent subsecripts of array references must
increase by a constant amount. If the array references are
not contiguous, the loop should not contain embedded
loops; otherwise it will not be vectorized.

In figure 11-4, the subscripts of array A are increasing in
increments of 2, and the subseripts of array B are
increasing in increments of 22. Therefore, loop 2 is
vectorized, but loop 1 is not.

Although loop-dependent array references to a particular
array can appear on both sides of assignment statements in
the range of a DO loop, in certain cases this could inhibit
vectorization of the loop. When an array reference appears
on the right side of an assignment statement, elements of
the array are being accessed. When an array reference
appears on the left side, elements of the array are being
defined.. For any particular array, if the array portion that
is referenced by the assignment statements in the range of
the loop overlaps the portion that is defined, there is
potentially a feedback situation which cannot be described
in terms of vector operations. Because of the parallel

-nature of vector operations, vectors are not suitable for

use in describing any iterative procedure containing
feedback. The compiler is not always able to determine
that a feedback situation does not exist. If there is a
possibility of feedback, the containing loop will not be
vectorized.

In the case where there is an overlap of referenced and
defined array elements within the range of a loop,
feedback occurs only if at least one of the array elements
in the overlap is defined in an iteration of the loop and is
then referenced during a subsequent iteration. Given the
declaration and initialization statements:

DIMENSION A(5)
DATA A/1,2,3,4,5/

11-3

the following is an illustration of feedback. The program
segment:

DO 11-1,4
A(I+1)=A(D*2
1 CONTINUE

consists of a DO loop in whose range lie a CONTINUE
terminal statement and an assignment statement
containing two loop-dependent array references. The array
elements referenced and defined by successive iterations
of the loop are as follows:

Referenced Defined
A1) A(2)
A(2) A(3)
A(3) A(4)
A(4) A(5)

Elements A(2), A(3), and A(4) constitute the overlap. On
the first iteration of the loop, A(2) is defined to be 1. On
the second iteration, A(2) is accessed (and is used to define
A(3)). The result of completing execution of the DO loop is
that the five elements of A have the respective values 1,
2, 4, 8, and 16. A vectorizer interpretation of the same
loop would be to assign the (i-1)th element multiplied by
2 to the ith element of A (where i ranges from 2 to 5), in
which case the result would be the values 1, 2, 4, 6, and 8
respectively for the five elements of A. The loop is not
vectorizable.

The program segment:
DO 11=2,5

A(I-1)=A(D*2
1 CONTINUE

is an example of a loop in which there is overlap but no
feedback. The array elements referenced and defined by
successive iterations of this loop are as follows:

Referenced

Defined
A(2) A1)
A(3) A(2)
A(4) . A(3)
A(5) A(4)

Again, the overlapping” elements are A(2), A(3), and A(4).
However, no element is defined on one iteration to be
accessed on a successive iteration, as happened in the
previous example. Therefore, the results of executing this
DO loop would be identical to that of a vectorizer
interpretation of the loop. The loop is vectorizable.

AUTOMATIC RECOGNITION OF
STACKLIBABLE LOOPS

When the V option is selected, the vectorizer attempts to
vectorize all DO loops as deseribed under vectorization.
However, when an innermost loop is rejected by the
vectorizer (that is, the loop cannot be vectorized), the
rejected loop is' transformed into a call to a
compiler-supplied STACKLIB routine or inline vector
maero code if the loop is one of the following types:

11-4

DO 1I=L,M i
1 X(D = X(1=1) + Y(I)
DO 2 I=L,M
X(D = Y(D + X(1-1)
DO 3 I=L,M
S =8+X(D
DO4I1=LM
S=X(D+S
DO5I=LM
5 S = S+X(D*Y(I)
DO61=1L,M
6 S=X(M*Y()+S
DO 7 I=L,M
7 S=S+X(N*X(D)
DO8I=LM
8 S=X(N*X() + 8
DO9I=L,M
9 S = S+X(1)**2
DO10I=1LM
10 S = X(D)**2+S

B W N

In all of the above loops, X and Y represent distinct
1-dimensional arrays of type real which must not have
appeared in an EQUIVALENCE statement. S represents a
simple real variable, All of the above loops must contain
only one assignment statement of the form described
above. CONTINUE statements are allowed. The loop
increment parameter can either be 1 or not explicitly
specified in the DO statement. Variables L and M
represent any DO loop initial and final value parameters.
The variable I represents any DO loop control variable.

Loops 1 and 2 are converted to calls to a STACKLIB
routine that performs addition recursively. Loops 3 and 4
are converted to calls to a STACKLIB routine that
performs summation. Loops 5 through 10 are converted to
calls to a STACKLIB routine that computes a dot product.
If the object mainframe is the CYBER 200 Model 205,
loops 2 through 10 are transformed into inline vector
macro code.

AUTOMATIC VECTORIZATION MESSAGES

The vectorizer indicates on the source listing how many
loops were encountered in the routine, how many loops
were vectorized, and how many loops were transformed
into calls to STACKLIB routines. For loops that could not
be vectorized, a message is issued that indicates the first
impediment to vectorization that was encountered by the
compiler. The compiler analyzes a loop for vectorization
from the bottom to the top; therefore, the diagnostic
might not reflect the impediment to vectorization with the
lowest source line number. See appendix B for a complete
list of the vectorizer messages.

The source listing also indicates which loops were
transformed into calls to STACKLIB routines. An example
of a source listing for a program compiled with the V
option is shown in figure 11-6.

60457040 C

00001 PROGRAM VECTRIZE

00002 DIMENSION A(100)9B(100)
T Q0003 DO I Iwlylo0—

00004 1 A(CT) = A(I) » B(D)

00005 DO 2 Is24100

00006 2 ACT) ®m A(I=1) * B(I)

00007 STOP

00008 END

UNCOLLAPSABLE LOUPS

0 5 e o D D S g S 4P T B o B U

LINE 00005 LINE 00006

STACKLIBED LOOPS
TLINE o0uos
NUMBER OF LOOFS IN ROUTINE = 00u2
NUMBER OF VECTURIZAHLE LOOPS = 000}

NUMBER OF STACKLIBED LOQOPS = 0001
W0 FRRORS

REASON FOR NON=VECTORIZATION

LI LY P P L L LY Py Y

RHS ARRAY HAS P0OSSIBLY RECURSIVE PROPERTIES

Figure 11-6. Vectorizer Output

The data elements used in vector programming are:
, An ordered set of scalar elements,
“ seml_colgn notatmn, can ~‘used " to.

Vector :

zOnly the exphcit forms for vectors and sparse vectors are
unlike the forms of other FORTRAN data elements. The
elements of a vector ‘that is part of an array can also be.

étreated as scalar array elements, the‘ y that the data. xs

60457040 B

The elementsm the warly'ay‘a, sterting anfh 'the ‘element A(s)"‘

‘and contmumg for n contlguous elements in ‘memory,
belong to the vector a(s'n). A semlcolon must be used to.
separate the base address from the length. ‘The user must
ensure that the length of the vector is within the Dbounds of
the array, as no complle-txme or run~t1me check is. made
for thls. i 3

Example° o

A(ZO) is the array declarator.‘ Then the followmg are‘twot"
of the p0551b1e vector w1th1n the 20 elements of A.

11-5

11-6 : ’ 60457040 B

‘For complex vector arithmetle e
restrxctlons apply

e Operands can be integer
Double-precision operands are

e .. Exponentiation is not allowed L
complex vector expression can be only +, -, * and /.

For double-precision vector arithmetic expressions, the
following restrictions apply:

e The expression must consist ~of either a

double-precision vector or a reference to a

FORTRAN-supplied double-precision vector function.
No operators are allowed.

e The expression can appear only in a vector arithmetie
assignment statement of type double-precision.

Given the declarations:
DESCRIPTOR D1, SCRP, RZLT
DIMENSION SCRP(3,3), VR(100), R(100)
DATA D1/VR(1;50)/, SCRP(3,1)/ VR(1;100)/

the following are examples of vector arithmetic
expressions: :

e VR(1;100)

Current values of the 100 consecutlve elements-in the:

array VR.
e DI

[Current values of the fn'st 50 consecutlve elements m
5 the array VR.

60457040 B

he operators in a’

The perlods are part of the operators and must appear‘

A vector relatnonal expression has one of the follow
forms: ,

sae op vaeqp
vae; op sae

vae; op vaey

sae - A scalar arithmetic expression of type real or
integer, but not of type complex or
double-precision. i

op One of the relational operators.

vaej A vector arithmetic expression of type real
or integer, but not of type complex or.
double-precision. :

A vector relational expression, which always contains one
or more vector data elements, evaluates to a bit vector of
truth values represented by bits 0 and 1. (In contrast,
evaluation of a scalar relational expression results in a
'single logical value.)

When both operands for a relational operation are vectors,
the operation compares successive elements of one vector
operand with corresponding elements of the other vector
operand. 'If the specified relation holds between the pair of
elements, the . operation sets (assigns 1 to) theﬁ
corresponding bit in the result bit vector. If the relation
does not hold, the operation clears (assigns 0 to) the
_correspondmg bit. in the result ‘bit vector. When one.
operand is a vector and the other a scalar, the scalar is.
compared with each element of the vector during
evaluatlon of the expressnon. e

11-7

11-8 ‘ 60457040 B

— FREE STATEMENT
Execution of the FREE statement (or completion of
DIMENSION Y(program unit execution) reverses the effect of a descriptor
BIT Y,A ASSIGN statement in which a reference .DYN. to the
DESCRIPTION dynamic space pointer appears. The FREE statement
DATA A/ . . e resets the dynamie space pointer to the value it had before
DO 10 1=1,8 execution of the first descriptor ASSIGN statement in the
ASSIGN Y(1),A(1,1;64) program unit. All space assigned through the use of
ASSIGN Y(16-1),Y{l) descriptor ASSIGN statements is released; if more than one
10 CONTINUE _ such assignment was made, all are reversed.
Form:
B. : o i - FREE
1 points to A(1,1; 64) VECTOR ARITHMETIC
‘2| points to A(1,2;64) ASSIGNMENT STATEMENT
3 points to A(1,3;64) '
B - : A vector arithmetic assignment statement -has the
4| points to A(1,4;64) e following form:
5 points to A(1,5;64) |- :
- v=e
6 points to “A(1,6; 64) - ;
7 | -points to A(1,7;64) v A vector of type integer, real, complex, or
- double-precision; or a deseriptor or deseriptor
8 | points to A(1.8;64) , : .-array element of type integer, real, or complex.
9 points to A(1,7;64) R R : o C ;
: - ‘ e = A vector arithmetic expression, or a scalar
10| points to A(1,6;64) : e karithmetie expression,
11 - points to :A(1,5; 64) ’ ' : e mEee e
12| points o AC1464) | | ‘The value of e is assngned to When Vs
13 I points to A(1,3:64 , FEe double-precision, e can only be a double—precxsxon vector
_points to AUL3BH_J. otk ey or a reference to a predefined CYBER 200 FORTRAN
14| points to A(1,2;64) B ! ;double-precxswn vector funetion (hsted in appendxx E) '
16 | points to A{1,1;64) | el : .
—) If ‘e evaluates to a scalar, that scalar is stored into every’
L ; R R ‘element of v; but if e evaluates to a vector, the first
CArray Yoo o ST R | ‘element of e is stored into the first element of v, the
. L A second element of e is stored into the second element of

: v, and so on. If the type of - v differs from that of . e,
F|gure 11-8 Example of Descnptor ASSlGN . ‘type conversion takes place, durmg a351gnment, to the type[y
: : S of v, Type converswn rules are glven 1n table 11-3.° :

Sééohd*fbrfﬁe :

i

he descnptorf
: Nonmstmg of.

60457040 B 11-9

11-10 60457040 B

ALl variables in the DESCRIPTOR statement list are
declared to 'be deseriptors, and’ any array or array
declarator list element speclfles a descriptor array. For
example, the statement pair:

DESCRIPTOR A,B,C(3,4)
REAL A,B(6,2),C

specifies A to be a real descriptor, and B and C to be
descriptor arrays having 12 type real descriptor array
elements each,

The type of v{ must be established with an explicit type:
declaration statement, or by the first-letter rule.
Although vectors can be double-precision, a desemptor,
,cannot be double-precision.

INITIALIZING DESCRIPTORS
AND VECTORS

The nonexecutable DATA statement, described in
section 6, can be used to place initial values in vectors and
descriptors = before the program begins executing.
Double-precision vectors cannot be initialized in a DATA
statement, ~ although the double-precision array = or
individual array elements can be so initialized.

‘As described in section 6, a data initialization statement
consists of pairs of lists; a list of variables is paired with a
list of constants used as the initial values for the
variables. Besides secalar list elements, the list of variables.
can - inelude - vectors, descmptors, descrlptor arrays, and§
,,descrxptor array elements. : . : oA

For vectors, a vector name in. the vanable hst mustr:
;contam ‘only integer constant subscript expressions and
vector length specification. The number of constant list'
‘elements correspondmg to the name must be. equal to the
length of the vector. For example, if a vector name in the
-variable list is A(1510), then 10 consecutive constant list
‘elements must correspond to the vector name. (This is.
-similar to the way that arrays. can be ,mntxahzed ina DATA“‘
;’statement) : ‘ -

fFor descrlptors and descnptor rray elements, a desempto
',_,m the variable list must correspondy only to a~vector,

60457040 B

,REFERENCING VECTOR FUNCTIONS

‘that_can _correspond . to a. dummy argume
'sectxon 7

of data types avallable for vector function results, and the
fact that © the function name must appear in a
DESCRIPTOR statement in the function subprogram.

Form:

t FUNCTION f(ay,a9, .. .,ap;%)

t Optional declaration of the type of f. When
present, t can be INTEGER, REAL, BIT, or
COMPLEX but cannot be DOUBLE
PRECISION. ~

f The funection's symbolic name.

aj - Dummy argument. The possible dummy :

arguments here are the same as for secalar
functions, n must be greater than or equal
to 1.

The function name f must appear in a DESCRIPTOR
statement within the function subprogram. If t is not
specified, f can appear in a type statement or be typed’
implicitly. The semicolon in the dummy argument list is_
required to separate the input list from the dummy output .
argument which 1s represented by the asterisk. i .

Refer to Function Subprograms in sectnon 7 for a more :
detailed discussion of function names and function
subprogram program units. i :

A vector function is referenced when the name of thef
funetion, followed by an actual argument list enclosed in_

parentheses, appears in-an arithmetic. _expression in an-
arithmetic assignment statement. The actual arguments
k,are shown m;

11-11

11-12 60457040 B

SUBPROGRAM LINKAGE 12

This section outlines the calling, prologue, epilogue, and
file initialization conventions observed by the CYBER 200
FORTRAN compiler, and describes in particular the
possibilities for interfacing with predefined FORTRAN
functions. Four points are elaborated upon:

o The FORTRAN compiler generate§ a standard
prologue and epilogue sequence in the object code for
subroutine and function subprograms.

o Except for some of the predefined FORTRAN
functions, the FORTRAN compiler generates a
standard calling sequence for all external procedures.

e In the appropriate environment, a fast calling
sequence is generated by the FORTRAN compiler for
calls to predefined FORTRAN functions.

o Input/output in a FORTRAN subprogram assumes that
. the files referenced by the input/output statements
have been opened in the main program.

In this section all numbers designating registers are in
hexadecimal; the # before a register number is a reminder
of this.

PROLOGUE AND EPILOGUE

The FORTRAN compiler generates a prologue and an
epilogue for subroutine calls and function references. For
a non-zero-swap routine, the prologue code performs the
following functions:

1. Saves the values in registers #1A through #1F.

2. Saves the values of the caller's registers and loads the
registers with the values of the routine's registers.

3. Restores the values in registers #1A (return address),
#1E (data base address), and #1F (DFBM table pointer).

4. Updates the values in registers #1B (dynamic stack
address), #1C (current stack pointer), and #1D
(previous stack pointer).

5. Clears the length field of register #1F for the Data
Flag Branch Manager.

For a non-zero-swap routine, the epilogue code performs
the following functions:

1. Saves the values of the routine's registers and loads
the registers with the values of the caller's registers.

2. If the length field of register #1F is nonzero, restores
the data flag branch register mask conditions of the
caller, preserving the free data flags

3. Returns control to the address specified in register
#1A.

60457040 B

A non-zero-swap routine is a routine that requires the
values currently in the registers to be saved upon entering
the routine. A zero-swap routine is a routine that does not
require the values in all registers to be saved upon entering

* the routine. The compiler generates a zero-swap routine if

all of the following conditions are met:
e Option O or Z was specified.

e There are no calls or function references (other than
to FORTRAN routines that can be generated in-line).

e There are no input/output statements.

e There are no vectors used through either explicit or
automatic vectorization.

o The generated code can be reasonably executed using
only registers #3 through #13, and possibly registers
#17, #18, and #19.

o There are no special calls.

STANDARD CALLING SEQUENCE

In general, FORTRAN observes the subroutine linkage
conventions and register conventions described in volume 2
of the CYBER 200 Operating System reference manual.
When a user-written FORTRAN procedure calls an external
procedure, such as one written in assembly language, the
standard calling sequence (in machine language) generated
during compilation for this call is essentially as follows:

#78xx001E Load register #1E with the address, xx,
of the callee data base.

#78yy0017 Load register #17 with parameter list
descriptor yy.

#361A00zz Branch to the entry point zz of the
called procedure after setting a return
location in register #1A.

In the above instructions, registers #1E, #17, and #1A are
the conventional data base register, parameter descriptor
register, and return register respectively; xx contains the
callee data base address, yy contains the descriptor of the
parameter list, and zz contains the procedure entry point
address. All of the other global and environment registers
are initialized by the operating system.

If the procedure is a function, a function result is
expected, on return, in register #18 (for a one-word result)
or in registers #18 and #19 (for a two-word result).
Specifically, logical, integer, and real funections return
their results in register #18. Complex and
double-precision functions return their results in
registers #18 and #19. Character functions return the
address of the result in register #18.- Vector functions
return results in the result vector; register #18 must have
been preset by the caller to the address where the result
vector is to be placed.

12-1

FAST CALLS

Many of the FORTRAN-supplied functions have a fast call
entry point as well as a standard call entry point. The
FORTRAN compiler generates a fast call to any of these
functions unless the function name appears in an
EXTERNAL statement in the calling program. The
standard call entry point name is the function name;
appendix E contains a list of the equivalent fast call entry
point names (not all FORTRAN-supplied functions have
fast call entry points). FORTRAN does not generate fast
calls to procedures which have user-supplied names.

The difference between standard and fast calling sequences
is the method by which parameters are passed to the called
procedure. Whereas parameters in a standard call are
passed via a parameter list in memory, fast call
parameters are passed in the lower area of the register
file. Fast call parameters are passed in temporary
" registers #3, #4, #5, and #6, as required by the number and
length of the function parameters. Results are returned as
for funetions called with the standard calling sequence.

A fast call to a scalar function with one argument could

appear as follows:

#78xx001E Load register #1E with the address of
the callee data base.

#78yy0003 Load register #3 with the function's
actual argument.

#361A00zz Branch to the fast call entry point of the
called function and set a return location
in register #1A.

In the above instructions, xx contains the callee data base
address, yy contains the function parameter, and zz
contains the procedure function entry point address.
Function parameters must be loaded in consecutive
registers, beginning with register #3 and in the order
specified in the function descriptions given in section 14.

12-2

Placing the name of a FORTRAN-supplied function name
in an EXTERNAL statement suppresses generation of fast
calling sequences for references to the function. That is, a
standard calling sequence is generated for any function
whose name appears in an EXTERNAL statement; in
particular, predefined functions which would otherwise be
referenced with a fast calling, sequence (i.e., those
functions having only an external version as listed in
appendix E) are referenced using the standard calling
sequence.

FILE INITIALIZATION

- One purpose of the PROGRAM statement is to initialize

files on which input/output is to be performed during
program execution, including the files referenced in
subprograms of the program. The PROGRAM statement
parameter list informs the FORTRAN compiler that the
files listed are to be created if they do not exist already
and are to be opened for input/output. Only output with
PRINT statements can be performed when no PROGRAM
statement is used.

When the main' program referencing a FORTRAN
subprogram that performs input/output has been written in
assembly language or implementation language (IMPL)
instead of in FORTRAN, no PROGRAM statement exists to
perform the required file initialization. In this case the
assembly language or IMPL program must initialize the

files explicitly. Initialization is performed by setting up

register #3, then referencing the entry point FT_INIT.

Only the file OUTPUT is opened if register #3 is set to all
0 bits. Register #3 can alternatively be set to a descriptor
pointing to a character string that is a PROGRAM
statement file information parameter list, not including
parentheses. The length field (bits 0 through 15) of
register #3 must be the length in characters of the
character string, and the address portion (bits 16
through 63) must be the virtual bit address of the string's
first character.

60457040 B

CYBER 200 FORTRAN-SUPPLIED SUBROUTlNES _ 13

The following types of FORTRAN-supplied subroutines can
be called from a CYBER 200 FORTRAN program:

‘@ Special calls

Used to place specific CYBER 200 machine
instructions in the object code. Although a special
call looks like a subroutine call, the special call
generates in-line code.

e Data Flag Branch Manager calls

Used to trap special conditions and to branch to an
interrupt-handling routine as a result of trapping such
a condition.

e MDUMP calls

Used to dump specified areas in virtual memory during
prograimn execution.

e System Error Processor calls

Used to alter FORTRAN's run-time error processing so
that, for example, execution halts when an error
occurs that would normally have resulted in only a
warning being issued.

e Concurrent [/O calls

Used to perform input and output of large arrays while
at the same time leaving the CPU free for
computational processing.

CYBER 200 FORTRAN
SPECIAL CALLS

CYBER 200 FORTRAN users are able to have the compiler
directly generate any instruction in the machine language
repertoire. Such requests are made in the form of CALL
statements to subroutines with special reserved names.
The argument lists in the special call statements are used
to provide label references, symbolic references, and
literals to be included with the generated instruction. The
user of special calls should be familiar with the hardware
instructions or should have access to the appropriate
hardware reference manual.

NOTE
The use of special calls is not recommended for
the average FORTRAN user. Special calls should
only be used when absolutely necessary for
specific programming tasks.
Form:

CALL m(ay, ... ,a,)

m One of the special call names beginning
with Q8.
a4 An argument corresponding to one of the

fields of the instruction format.

60457040 B

The special call formats are listed in appendix D.

ARGUMENTS

All arguments are either label references, symbolic
references, or literals.

NOTE

The arguments for the special calls correspond to
the fields of the hardware instructions.
Arguments for the CYBER 200 Assembler
instructions can appear different but are
functionally the same. For example, the register
to register hardware instruction (op code #78) is
RTOR R,T in CYBER 200 Assembler but CALL
Q8RTOR(R,,T) in the special call format. The
extra comma accounts for the missing S operand
in the instruction.

The special call arguments must rigidly follow the
instruction format because they represent the information
associated with the instruction fields. Any missing
argument must be indicated by a comima, except that
trailing missing arguments can be omitted. With some
exceptions, the arguments must appear in the order of the
definable fields in the hardware instruction. An exception
is that only one argument is allowed for an entire 8-bit
G-designator field having 1-bit subfields. Another
exception is that when indexed branch instructions (#B0
through #B5) have a zero in bit 2 of the G field, the
combined Y and B fields require only one argument; this
argument is usually a label reference. When bit 2 of the G
field contains a one, each field requires an argument and
the second field must be zero or null. For a nonrelative
branch, the Y and B fields represent two register
designators: index and base address. In this case, the user
must set the G field bit 2 to zero and use a 16-bit
hexadecimal constant for the fourth argument or operand.

When an argument is a literal, the value of the literal goes
in the instruction field. When an argument is a variable,
the register number of the variable goes in the instruction
field; the compiler generates a load before the designated
instruction and a store afterwards, if required. Only
registers #20 through #FF are used for this purpose. The
user is free to use the low-order temporary registers, but
the contents are destroyed by generated object code when
the user reverts to standard CYBER 200 FORTRAN
statements. :

Subfunction bits in the G field of formats 1, 2, and 3 are
not cross-checked with the operands to assure validity of
the instruction. Warnings are not generated if the user
codes a jump into or out of range of a DO loop.

Label References

A label reference is designated by prefixing a statement
label with the ampersand character. Label references can
appear in the following instruction formats: '

e In the combined Y and B fields of a format C
instruction

e In the 48-bit immediate (I) field of the format 5
instruction, except when only 24 bits of the field are
used by certain instructions

e In the 8-bit immediate (I) field of format 9 and
format B instructions

If the label reference occurs in the combined Y and B
fields of a format C instruction,.the label reference is
translated into a code halfword offset from the special
CALL to the statement within the program unit identified
by the label. The labeled statement can be ahead of or
behind the special CALL statement. Branch control bits 5
and 6 in the G field should be set accordingly. No checking
is done to verify that the instruction branches in the
correct direction.

If the label reference occurs in the 48-bit immediate field
of a format 5 instruction, the processor translates the
label reference into a bit address of the statement tagged
by the label. This bit address is a relative bit address with
respect to the code base of the program unit in which the
special CALL statement occurs.

If the label reference occurs in the 8-bit immediate field
of a #2F, #32, or #33 instruction, the processor translates
the label reference into a halfword offset from the special
CALL statement, to the statement tagged by the label. If
the resultant halfword offset exceeds a magnitude of 255,
a zero is used to initialize the 8-bit immediate field, and
the processor generates no warning to the user.

A label reference is the only permissible operand in the
branch field of a relative branch instruction.

Symbolic References

A symbolic reference can be a simple variable of type real,
integer, or logical; an array element of type real, integer,
or logical; a descriptor; a deseriptor array element; or a
vector. Symbolic references can occur in any 8-bit
register designator field (except in halfword registers).
Registers modified by branch instructions cannot be
referenced symbolically.

Literals

A literal can be a decimal, hexadecimal, bit, or character
constant, and can be used for any instruction field. Any
missing arguments are presumed to be zero constants.
Generally, constants are taken to be register designators,
rather than as data used by an instruction. Hollerith
constants are not permitted in special ecalls.

EXAMPLES OF SPECIAL CALL USAGE

The call to Q8BSAVE shown in figure 13-1 sets register #3
to the bit address of the next instruction, which has
statement label 10. The call of Q8EX in statement 10 sets
register #4 to the statement 10 bit offset from the code
base address. In the next statement, the call to Q8SUBX
sets integer variable CB to the code base address. The
next call to Q8EX sets variablel to contain the
statement 20 bit offset. Following that, variable L20 is
set to the actual address of statement 20. This
information is then used in the call to Q8BGE.

13-2

INTEGER CB,L20
CALL Q8BSAVE(3,,3)

10 CALL QB8EX(4,&10)
CALL Q8SUBX(3,4,CB)
CALL Q8EX(l,&20)
L20=1+CB

CALL Q8BGE(A,B,L20)

.
.
.

20

Figure 13-1. Special CALL Statement

The calls in figure 13-2 produce identical results; each call
enters the character string AB in register #41. These
examples are given to show how literals can be used as
arguments; however, it should be noted that the use of
register #41 would probably cause a program bug, because
registers #20 to #FF are assigned by the compiler.

CALL QBES(65,'AB')

CALL Q8ES(X'41',X'4142')
CALL Q8ES(B'1000001','AB')
CALL Q8SES('A','AB')

Figure 13-2. QBES Usage

The special calls in figure 13-3 generate the machine code
shown in figure 13-4 provided J has been assigned -to
register #22 by the compiler.

CALL Q8ES(3,1)
CALL QBES(4,2)
CALL QB8ADDX(3,4,J)

Figure 13-3. Additional Q8 Usage

ES R3,1
ES R4,2
ADDX R3,R4,R22

Figure 13-4. Generated Machine Code

If J has not been assigned any register by the compiler, the
code shown in figure 13-5 would be generated.

ES R3,1

ES R42

ADDX R3,R4,T1

STO (DATA BASE, RELATIVE
: LOCATION OF J},T1

Figure 13-5. Additional Generated Code

60457040 B

DATA FLAG BRANCH MANAGER

The data flag branch manager (DFBM) is a FORTRAN
run-time and CYBER 200 library routine. A data flag
branch is a hardware function of the CYBER 200
computers. DFBM is software that processes data flag
branches whenever they occur during execution of a
FORTRAN program. Use of the data flag branch feature
eliminates the time penalty that would be incurred if the
FORTRAN user were compelled to perform explicit checks
for special conditions. If the FORTRAN user takes no
specific action with respect to data flag branches and
DFBM, any of the following causes a data flag branch to
oceur:

e A square root operation.attempted with a negative
operand

e A division operation attempted with a zero divisor

e An exponent overflow in computation of a number too
large to be represented internally

o An operation attempted using an indefinite operand

e Reduction of the job interval timer to zero (cannot
occur unless the program sets the JIT explicitly or
calls the FORTRAN-supplied routine SECOND)

e Execution of a hardware breakpoint instruction under
certain usage conditions (cannot occur unless the
program uses DEBUG or a BKP instruction)

Control passes to DFBM which performs interrupt
processing for the condition. DFBM interrupts the
executing FORTRAN program, issues an error diagnostic,
dumps the contents of the data flag branch register, and
aborts the program. If the program is running as part of a
batch job, a post-mortem dump is produced. Default
interrupt processing for other conditions that the user can
specify does not cause the program to abort.

The FORTRAN user can select the special conditions which
can cause a data flag branch and DFBM interrupt to occur.
The user can also specify the processing that is to be
performed as a result of the interrupt. Interrupt conditions

and interrupt processing can be selected through calls to
the DFBM entry points Q7DFSET, Q7DFOFF, QTDFLAGS,
and Q7DFCL1.

DATA FLAG BRANCH HARDWARE

For the FORTRAN user, the most significant part of the
data flag branch hardware is the data flag branch (DFB)
register. The 64-bit DFB register, located in the
CYBER 200 central processor, is formatted as shown in
figure 13-6. Each interrupted task has a DFB register copy
in its invisible package in the minus page.

The data flags are bits 35 through 47 of the DFB register.
These bits indicate special conditions that have occurred.
For example, the CYBER 200 hardware sets bit 41 at the
end of a floating-point divide fault (instruction in which
the divisor is zero). Data flags remain set until the
FORTRAN program or DFBM clears them.

The mask bits are bits 19 through 31 of the DFB register.
They select the conditions which are to cause a data flag
branch and DFBM interrupt. For example, bit 25 enables a
data flag branch on a floating-point divide fault. Bits 19,
20, 25, 29, 30, and 31 are set during FORTRAN run-time
initialization; thereafter, the user can set and clear mask
bits by calling DFBM entry points.

The product bits are bits 3 through 15 of the DFB register.
Each is the dynamic logical product of a data flag and the
associated mask bit. For example, the product bit for
floating-point divide fault is bit 9, which is set by
CYBER 200 hardware if bits 25 and 41 are set. Bit 9 is
cleared if either bit 25 or bit 41 is cleared. The product
bits can be tested with a Q8BADF special call.

Bit 58 is the pipe 2 register instruction data flag. Setting
of this bit indicates that one of the other data flags has
been set by a pipe 2 instruction. CYBER 200 hardware
sets the bit, which remains set until the FORTRAN
program or DFBM clears it.

Bit 51 is the dynamiec inclusive OR of all the product bits.
Bit 52 is the data flag branch enable bit; if bit 52 is
cleared, any further data flag branches of any kind are
disabled until bit 52 is set again. DFBM and the

59

attempts to set, clear,
or sample these bits
produces undefined
results.

o 3 16 19 32 35 48 50 53 55 63
t { product bits 1 mask bits T data flags t) t
Dynamic \/
inclusive OR of
product bits
Data
flag branch
enable bit
Free data flags
TThese are undefined bits. o ‘
Any instruction that Monitoring counter

enable flags

Pipe 2 register
instruction flag™

60457040 B

Figure 13-6. Data Flag Branch Register Format

13-3

CYBER 200 hardware clear and' set bit 52. When both
bit 51 and bit 52 are set,
initiates a data flag branch.

The condition indicated by each of the 13 data flags, along
with a designator for the condition, is shown in table 13-1.
Also given in the table are the mask and product bit
associated with each data flag and a classification of I or

11l for each condition.

the CYBER 200 hardware

o

Default Conditions

At the time a FORTRAN program starts executing, six
interrupt conditions are enabled. The conditions enabled as
a result of run-time initialization are JIT, SFT, BKP, IND,
SRT, and FDV.

The JIT, SFT, and BKP conditions do not occur unless the
program takes specific action to cause the conditions.

TABLE 13-1. DATA FLAG BRANCH CONDITIONS

Class

Designator

Condition Description

Mask Bit

Data Flag Bit

Product Bit

Product
Bit Search
Order

III

II1

III

I11

I11

III

IIX

I1I

III

SFT

JIT

SSC

DDF

TBZ

ORD

FDV

EXO

ORX

SRT

IND

BKP

(Reserved).

Job interval timer has re-
duced to zero.

Selected condition has not
been met. In search for
masked key, there was no
match; or, count of nonzero
translated bytes is greater
than 65535q.

Decimal data fault. A sign
was found in a digit posi-
tion, or vice-versa.

Truncation of leading non-
zero digits or bits, or
decimal or binary divide by
zero.

Dynamic inclusive OR of the
preceding three conditions
(ssc, DDF, and TBZ). Ena-
bling this condition per-
mits an interrupt on any of
the three conditions.

Floating-point divide fault.

Exponent overflow.
Result is machine zero.

Dynamic inclusive OR of the
preceding three conditions
(FDV, EXO, and RMZ). Ena-
bling this condition per-
mits an interrupt on any of
the three conditions.

Square root operation on
negative operand.

Indefinite result or in-
definite operand.

Breakpoint flag was set on
the breakpoint instruction
(instruction 04).

22

23

24

26
27

28

29t
3ot

31!

35

36

37

38

39

40

41
42

43

45

46

47

10
11

12

13

14

15

11

12

13

10

Tset during run-time initialization.

13-4

60457040 B

An FDV condition occurs if a floating-point division
operation is attempted with a zero divisor. A zero divisor
is either a machine zero or a floating-point number having
an all-zero coefficient. A divisor having an indefinite
value is not a zero divisor and does not cause a
floating-point divide fault. The result of a division by zero
is an indefinite value which sets the IND data flag.

An SRT condition occurs if a square root operation is
attempted with a negative operand. The square root of the
absolute value of the negative operand is taken in this
case, and the two's complement of this square root is
stored as the result. The result, although meaningful, is
not equivalent to the mathematical value of the square
root of a negative number.

An IND condition occurs if an indefinite value is computed
and stored into memory or into the register file. The
condition also occurs if either or both of the operands of
certain floating-point operations have indefinite values
(floating-point arithmetic operations and floating-point
compare operations can set the IND data flag). Since an
indefinite value results from a floating-point operation in
which either or both of the operands are indefinite values,
indefinite values are likely to propagate. An FDV or EXO
condition also sets the IND data flag.

Branches

When a data flag branch occurs, bit 52 is cleared, the
address of the instruction that would have been executed
next had the branch not occurred is stored in register #1,
and control branches to the address in register #2. The
address of a DFBM entry point is placed in register #2
during FORTRAN run-time initialization. ' Subsequent
processing is determined by the bit settings in the DFB
register and specifications made in any Q7DFSET,
Q7DFOFF, and Q7DFCL1 calls.

The address in register #1 does not necessarily point to the
instruction immediately following the instruction that
caused the data flag branch. The hardware initiates a data
flag branch only after all currently executing instructions
have completed. Because instructions might be executing
in parallel when the condition causing the data flag branch
occurs, the branch can occur up to 35 instructions after the

instruction that caused it. Also, the point at which control

branches to DFBM can vary between executions of the
same program because the load and store hardware
operations can occur at different points as a result of the
asynchronous nature of CYBER 200 input/output.

NOTE

The user can effect changes in the DFB register
that conflict with DFBM. Use of the
FORTRAN-supplied function Q8SDFB, the special
calls Q8BADF and Q8LSDFR, or the
system-provided utility DEBUG in a FORTRAN
program that uses calls to DFBM entry points all
should be done with great care.

DATA FLAG BRANCH SOFTWARE

A data flag branch, together with the subsequent
processing performed by DFBM before the FORTRAN
program resumes or aborts, is called a DFBM interrupt. A
DFBM interrupt does not return control to the operating
system. A call to the DFBM entry point Q7TDFSET can be
used to enable and disable DFBM interrupts on specified

60457040 B

conditions. Interrupt-handling routines are optional and
can be specified through calls to one of the DFBM entry
points QTDFSET and Q7DFCL1, as described later in this
section.

If the CYBER 200 hardware initiates a data flag branch
during execution of a FORTRAN program, control branches
to DFBM. DFBM checks the DFB register product bits in
the following order:

Q. JIT (bit 4)
2. SFT (bit 3)
3. BKP (bit 15)
4. ORX (bit 12)
5. ORD (bit 8)
6. SRT (bit 13)
7. IND (bit 14)
8. FDV (bit 9)
9. EXO (bit 10)
10. RMZ (bit 11)
11. SSC (bit 5)
12. DDF (bit 6)
13. TBZ (bit 7)

Depending on the bits DFBM finds set and the
interrupt-handling routines that the FORTRAN user has
specified, DFBM calls the routine FT_ERMSG or passes
control to an interrupt-handling routine established by the
programmer.

Interrupt Classes

The DFBM interrupt conditions shown in table 13-1 can be
divided into two classes, depending on whether the
FORTRAN user can disable interrupts for the condition and
how the interrupts are handled by DFBM. Interrupts on the
class I conditions are always enabled; the corresponding
mask bits are always set for the following conditions:

e JIT
e SFT
e BKP

The FORTRAN user can enable or disable interrupts for all
of the other conditions, which are class III conditions.
Enabling or disabling of class III conditions is done using
calls to one of the DFBM entry points Q7DFSET and
Q7DFOFF as described later in this section.

DFBM processes the class Il conditions as a group, as if
they were all caused by a single event. Class I conditions
are processed individually, as if they had been caused by
separate events. A DFBM interrupt that processes a
class I condition is called a class I interrupt; a DFBM
interrupt that processes class III conditions is called a
class III interrupt.

Multiple Interrupts

The execution of a single hardware instruction can in some
cases flag several class Il conditions as well as one or
more class I conditions. A number of product bits might be
on when DFBM receives control as the result of a data flag
branch. A single data flag branch could occur with enough
product bits set that it would be translated into four DFBM
interrupts, that is, three class I interrupts and one class IIl
interrupt.

13-5

If a data flag branch occurs and more than one product bit
is set, DFBM processes any class I interrupts first, one at a
time, in the order JIT, SFT, and BKP. Then, if DFBM has
been able to process the class I interrupts without aborting
the program, it will process a class III interrupt. If a
class I bit and a class III bit are set when DFBM gains
control after a data flag branch, and if the specified
interrupt-handling routines return after executing, the
interrupt processing that would be performed is shown in
table 13-2. Default processing for DFBM interrupts
consists of issuing an error message and then either
aborting or resuming the program, depending on whether
the error was nonfatal, fatal, or catastrophic.

TABLE 13-2. MULTIPLE INTERRUPT PROCESSING

Class 1 Class III

Interrupt- | Interrupt- Processing Performed

Handling Handling After Data Flag Branch
Routine Routine Manager Gains Control

Provided Provided

No No Class I error message is-—
sued, program aborted.

Yes No Class I routine executed,
class III error message
issued, program aborted
for fatal message and re-
sumed otherwise.

No Yes Class I error message is-

. sued, program aborted
(class III routine not ex-—
ecuted although class III
condition flagged).

Yes Yes Class I routine executed,
class III routine then ex-
ecuted, program resumed
(no error messages issued
by DFBM).

Default Interrupt Processing

In a typical DFBM interrupt, a class IIl interrupt can occur
with one or more class III product bits set and with default
processing being performed because no interrupt-handling
routine has been specified. If the user does not specify any
interrupt-handling routines and a data flag branch occurs,
DFBM performs default interrupt processing as follows.
Having gained control as a result of the data flag branch,
and having checked the DFB register product bits in the
order listed earlier, DFBM calls the routine FT_ERMSG to
issue an error message for the condition indicated by the
first product bit found to be on.

If the FT_ERMSG entry point SEP (System Error
Processor, described in this section) was called previously
in the FORTRAN program to specify an error exit
subroutine for the error, FT ERMSG calls the subroutine.
An errcr message is issued (if applicable) before the user
routine is called.

13-6

If the error message that FT_ERMSG issued was nonfatal,
DFBM restarts the interrupted FORTRAN program at the
address in register #1. If the error message was fatal or
catastrophic, a dump of the contents of the DFB register is
written onto the output file immediately following the
error message, and the FORTRAN program aborts without
return of control to DFBM. If the aborted program was
being run as part of a batch job, the system utility DUMP
writes a postmortem dump onto the output file. The dump
includes a full subroutine traceback in which DFBM
appears to have been called by the interrupted routine
(DFBM execution has actually been initiated by a hardware
data flag branch). The system utility DUMP is described in
the CYBER 200 Operating System reference manual. -

Each class TII condition has a separate error message, but
only one message is issued when default processing is
performed for a class IIl interrupt. The class Il message
issued is for the first class Il product bit found on. For
example, assume that the default -class Il interrupt
conditions SRT, IND, and FDV are in effect at the time
that a division operation is performed in which the divisor
is zero. Also assume that the FORTRAN program is
running in a batch job, has not disabled all data flag
branches (has not cleared DFB register bit 52), and has not
previously called SEP or Q7DFSET to specify a routine to
handle division by zero. The division operation initiates a
data flag branch. DFBM finds that bit 14 (IND product bit)
of the DFB register is on and, since no class III
interrupt-handling routine is avallable, calls FT_ERMSG.
Since the user has not specified an error exit subroutine,
FT_ERMSG issues a fatal error message for the IND
condition, causes a DFB register dump to be written to the
output file, and aborts the program. The error message
and DFB register dump are shown in figure 13-7. Finally,
since the job is a batch job, the DUMP utility produces a
post-mortem dump. Note that no error message for the
FDYV condition is produced.

As another example, assume the same situation as in the
previous example, with the exception that the FORTRAN
program has called Q7DFSET to alter the class III interrupt
conditions to ORX, SRT, and IND. The division operation
with the zero divisor initiates a data flag branch. DFBM
finds that bit 12 (ORX produet bit) is on and calls
FT_ERMSG, since no class T interrupt-handling routine is
available. FT_ERMSG issues an error message for the
ORX condition. Since the error is a warning, DFBM
restarts the interrupted program at the address in
register #1, even though a normally fatal condition (IND)
has occurred.

CLASS Il INTERRUPTS

If a class Il interrupt occurs, DFBM performs default
processing if the FORTRAN user has not provided a
class NI interrupt-handling routine through a Q7DFSET
call, If the user has specified a class III interrupt-handling
routine, DEBM takes the following actions:

1. Detects the condition by checking the DFB register
product bits.

2. Saves a copy of the entire register file of the
interrupted routine.

3. Clears the data flags (this also clears the product
bits), leaving the mask bits as they are.

4. Sets bit 52, reenabling data flag branches.

5. Calls the class III interrupt-handling routine.

60457040 B

DATA FLAG HKANCH REGISTER

PRODUCT HITS (3=15) (V] 0 v
MASK BITS (19=31)) 1 7}
DATA FLAGS (35=¢7) 0 0 0

ERROR 124 EXECUTION INTERRUPTED IN INDEF AT LINE 5
DATA FLAG HRANCH = INDEFINITE RESULT = REGISTER 1 AUDKESS 000000012260

00000000 0Y00001V 00011000 01000111 00OO00LOU 01001010 00010000 00100000

SFT JIT SSC DUF THZ OKkN FDV EX0O RM? ORA SRT IND RKP

1} 1 0 0 /] 0 1 0
0 1 0 v 0 1 1 1
7] 1 (1] 0 1 0 1 0

Figure 13-7. DFB Register Dump Example

In a class III interrupt where an interrupt-handling routine
is called, no standard error message is issued by DFBM.
DFBM manages class Il interrupts according to the
following rules:

e Any routine or subroutine of a FORTRAN program can
specify and respecify class Ill interrupt conditions and
interrupt-handling routines as frequently as desired.
Q7DFSET calls are used to make the specifications.

e When a routine calls a subroutine, the eclass Il
interrupt conditions and eclass Il interrupt-handling
routines in effect in the calling routine are put into
effect in the subroutine.

e When a routine returns to its caller, the class Il
interrupt conditions and class Il interrupt-handling
routines in effect at the time of the call are
reinstated. .

Each subroutine in a FORTRAN program can make
different specifications of how class IIl interrupts are to be
handled locally and in lower-level routines, without those
specifications affecting how class Il interrupts are handled
by higher-level routines.

The rules of scope are illustrated in figure 13-8. In the
figure, the main program begins execution with the default
conditions in effect and executes until a call to Q7TDFSET
alters the default selection. A new set of conditions is
selected by the second call to Q7DFSET and remains in
effect until subroutine K is called. Selections remain in
effect until subroutine K calls Q7DFSET. This newest set
of conditions continues in effect when subroutine D is
called and when the return to subprogram K occurs. When
K completes execution and control returns to the main
program, conditions in effect at the time subroutine K was
called are reestablished and persist through the call to
subprogram Z and the return to the main program.

Interrupt-Handling Routines

A class III interrupt-handling routine can appropriately be
written in FORTRAN. The routine must have no
arguments. Any communication with higher-level routines
must be through the use of COMMON statements.

At the time that the class Il interrupt-handling routine
gains control, all interrupts that were enabled at the time
of the data flag branch are still enabled (the mask bits
have not been altered, and bit 52 has been set). If a
class I interrupt occurs while the interrupt-handling
routine or any lower-level routine is executing, DFBM
causes a catastrophic error message to be issued and the
program to be aborted. The interrupt-handling routine can

60457040 B

MAIN

CALL Q7DFSET
CALL Q7DFSET
CALL K

CALL Q7DFSET

CALL D

RETURN RETURN

RETURN

Figure 13-8. Scope of Selected Conditions

disable class III interrupts for the period of time that it is
executing by ecalling Q7DFSET. Any class [interrupts
occurring in a class Ill interrupt-handling routine are
handled immediately.

All data flags in the DFB register have been cleared when
the class III interrupt-handling routine receives control
from DFBM. The routine can learn the status of the data
flags as they were at the time of the data flag branch, as
well as certain other information about the interrupt, by
calling QTDFLAGS.

If the eclass II interrupt-handling routine executes a
RETURN statement, DFBM restarts the interrupted
FORTRAN program or subprogram at the address in
register #1. DFBM leaves the DFB register mask bits
exactly as they were at the time of the data flag branch
unless the class IIl interrupt-handling routine has maae a
call to Q7TDFOFF. An interrupt-handling routine can call
Q7DFOFF to disable specified conditions in the interrupted
FORTRAN program at the time that the program is
restarted. A call to QTDFOFF might be advantageous 1if
the conditions causing a data flag branch would cause a
large number of other data flag branches to occur.

13-7

Q7DFSET

A call to Q7TDFSET can be used to do either or both of the
following:

e Specify the conditions on which a classIII interrupt is
to oceur (that is, alter DFB register mask bits).

e Specify the name of a user-provided interrupt-handling
routine to be called in the event of a class III interrupt.

Default class III interrupt conditions can be reestablished
by using Q7DFSET, either by specifying the SRT, IND, and
FDV conditions or by specifying 'STD' as an argument.
Default class I interrupt processing can also be
reestablished with a Q7DFSET call.

Forms:
CALL Q7DFSET (ihr)
CALL Q7DFSET (ihr, 'NUL")
CALL Q7DFSET (ibr, 'mby, ..., 'mby")

ihr Zero, or the name of a user-provided
interrupt-handling routine that is to be called
if a class III interrupt ocecurs. Zero indicates
that default processing is to be performed for
class Il interrupts (zero reestablishes the
specification in effect at the time that the
FORTRAN program began executing).

'NUL' Indicates that all class III mask bits are to be
cleared, disabling all class III interrupts.

'mby' 'STD', or one of the class I interrupt
condition designators given in table 13-1.
The designator must be enclosed in
. apostrophes. A designator from table 13-1
indicates that the corresponding mask bit is
to be set. 'STD' indicates that the default
class Il mask bits - corresponding to the
SRT, IND, and FDV conditions - are to be
set. 'STD' can be-used in combination with

other designators in the same argument list.
No mask bits are altered from their current settings when
Q7DFSET is called with only one argument, ihr. When
Q7DFSET is called with two or more arguments, any
class III mask bits not indicated by the argument list are
cleared. The user must remember to declare any
subroutine name used in a Q7DFSET call' with an

EXTERNAL statement.

For example, given the declaration EXTERNAL USRRTN,
the following are valid Q7DFSET calls:

e CALL Q7DFSET (USRRTN)

e CALL Q7DFSET (USRRTN, 'EXO0', 'IND', 'SRT', FDV")
e CALL Q7DFSET (USRRTN, 'EXO0", 'STD")

e CALL Q7DFSET (0, 'STD")

° CALL Q7DFSET (0, 'NUL")

The first call specified that USRRTN is the class IO

interrupt-handling routine. The second or third call has the
effect of specifying that USRRTN is to be the class Il

13-8

interrupt-handling routine, that mask bits 25, 26, 29, and
30 are to be set, and that mask bits 21, 22, 23, 24, 27, and
28 are to be cleared. The fourth call restores the default
set of conditions and default class Il interrupt processing.
The fifth call restores default class IIl interrupt processing
but disables all data flag branches on all class III conditions.

Q7DFLAGS

The user can obtain information about the most recent
class III interrupt by calling Q7TDFLAGS.

Form:
CALL Q7DFLAGS(pb,fb,ad,rf)

pb A type logical array, declared to be a
one-dimensional array of ten elements, in
which DFBM returns the ten class III product
bits (bits 5 through 14). Values returned are
FALSE. for bits that are cleared and .TRUE.
for bits that are set. The order of the values
in the array is the same as for the class III
conditions listed in table 13-1.

fb A type logical array, declared to be a
one-dimensional array of eleven elements, in
which DFBM returns the ten class III data
flags (bits 37 through 46), followed by the
pipe 2 register instruction data flag as the
eleventh value. Values returned are .FALSE.
for bits that are cleared and .TRUE. for bits
that are set. The order of the values in the
array is the same as for the -class IlI
conditions shown in table 13-1.

ad A variable of type integer in which DFBM
returns the address contained in register 1 at
the time of the data flag branch.

rf Optional. A type integer or real array (or a
descriptor array of type integer or real) of
size 256 in which DFBM returns the register
file contents as they were at the time of the
data flag branch.

If Q7TDFLAGS is called before any class III interrubts have
occurred, all of the data flags and product bits are shown
to be .FALSE. and all other values returned are zero.

For example, the statements:

LOGICAL P(10), DF(11)
INTEGER ADDR, REGS(256)
CALL Q7DFLAGS (P,DF,ADDR,REGS)

place the product bits in logical array P, the data flags in
logical array DF, the register #1 .address in integer
variable ADDR, and the register file in integer array REGS.

Q7DFOFF :

By calling Q7DFOFF, a class Ill interrupt-handling routine
can cause class Il interrupt conditions to be disabled at
the time that the interrupted FORTRAN program is
restarted. A Q7DFOFF call issued from a routine other
than an interrupt-handling routine or lower-level routine
has no effect.

60457040 B

Form:
CALL Q7DFOFF ('mby', ..., 'mby,")

'mbj 'ALL', 'STD', or one of the class III
interrupt condition designators given in
table 13-1. A designator from
table 13-1 indicates that the corre-
sponding mask bit is to be cleared at the
time that the interrupted routine is
restarted. 'ALL' indicates that all
class III interrupts are to be disabled.
'STD' indicates that the SRT, IND, and
FDV class Il interrupts .are to be
disabled.

Any mask bits not specified in the call are left unaffected
by the call. If a class Ill interrupt-handling routine
executes a RETURN statement after calling Q7DFOFF,
DFBM gains control and disables the specified class Il
interrupts. The interrupts remain disabled until a new call
to Q7DFSET is made. The scope of a QTDFOFF call is the
same as the scope of its associated QTDFSET call.

For example, the following are valid QTDFOFF calls:
e CALL Q7DFOFF(IND",'FDV")
e CALL Q7DFOFF('ALL)

The first call causes DFB register bits 25 and 30 to be
cleared at the time that DFBM restarts the interrupted
FORTRAN program. The second call causes all of the
class III mask bits to be cleared at that time.

CLASS | INTERRUPTS

Class I interrupts are always enabled; the class I mask bits
are always on, and the FORTRAN program cannot be used
to clear them., A FORTRAN user can specify eclass I
interrupt-handling routines. - A separate routine can be
~ specified for each of the three class I conditions.

A user-specified interrupt-handling routine for handling a
class I interrupt must be written in a lower-level language
such as an assembler language. FORTRAN is not a
suffieiently low-level language for the purpose of handling
class I interrupt conditions. Class I interrupts do not oceur
unless the user takes specific action to cause them, such as
utilizing the breakpoint feature of the DEBUG system
utility or issuing the special call Q8WJTIME to set the job
interval timer,

If a class I interrupt oceurs, DFBM performs default
processing unless the FORTRAN user has provided an
interrupt-handling routine for the eclass I condition and
made it known by means of a QTDFCL1 eall. If the user
has specified an appropriate class I interrupt-handling
routine, DFBM takes the following actions:

1. Detects the condition by checking the DFB register
product bits.)

2. Turns off the data flag associated with the interrupt
(this also clears the associated product bit).

3. Branches to the address specified in the most recently
executed Q7TDFCLL1 call for the specific condition.

Bit 52, the data flag enable bit, was cleared as part of the

data flag branch and is not set by DFBM before the branch
to the class I interrupt-handling routine oceurs.

60457040 B

DFBM manages class I interrupts according to the
following rules:

e Any routine or subroutine in a FORTRAN program can
specify and respecify an interrupt-handling routine for
a class I interrupt condition as frequently as desired.
Q7DFCL1 calls are used to make the specification.

o Subroutine levels are not considered in managing
class I interrupts in the way that they are in the
managing of class Il interrupts. The specification of
a class I interrupt-handling routine is in effect for the
duration of the program or until another Q7DFCL1
call is issued.

The initial call to the FORTRAN-supplied routine SECOND
in a FORTRAN program invokes routine Q7DFCL1 to
specify a special JIT interrupt-handling routine. If a
user-provided JIT interrupt routine is also specified in the
same program, an interrupt processing conflict occurs and
fatal run-time error 140 or 141 is issued. To force the
program to execute, the System Error Processor routine
SEP can be invoked before - the initial call to SECOND to
reset the error class to warning. When the JIT interrupt
condition occurs, DFBM branches to the most recently
specified JIT interrupt-handling routine. If the
user-provided routine is the most recently specified JIT
interrupt-handling routine, the results of SECOND are
undefined.

Interrupt-Handling Routines

A class [interrupt-handling routine is responsible for most
of the interface between itself and DFBM. Since DFBM
does not execute a standard call sequence, but instead
simply branches to an address in the interrupt-handling
routine, the address of the data base of the class 1
interrupt-handling routine is not available in register #1E.
The interrupt-handling routine is responsible for saving
registers #1 through #FF and restoring them before
branching back to DFBM. The address to which the class |
interrupt-handling routine must branch is returned in a
parameter of the Q7DFCL1 call that was most recently
issued by the FORTRAN program. At the time that
control branches to the class I interrupt-handling routine,
all interrupts have been disabled.

Q7DFCL1

A call to Q7TDFCL1 can be used to specify the name of a
user-provided eclass I interrupt-handling routine to which
DFBM must branch if the specified class I interrupt
occurs. Q7DFCL1 returns the address in DFBM to which
the interrupt-handling routine must return upon completion.

Form:
CALL Q7DFCLI1(ihr, return, 'mb")

ihr A one-word variable containing the virtual
bit address of an interrupt-handling routine
to which DFBM is to branch in the event that
the specified class I interrupt condition mb
oceurs.

return A one-word variable in which Q7DFCL1
returns the virtual bit address in DFBM to
which the interrupt-handling routine for the
condition mb must branch upon completion.

13-9

'mb' One of the eclassI interrupt condition
designators JIT, SFT, and BKP. The
designator must be enclosed in apostrophes.

At least one Q7TDFCL1 call must be made for each of the

class 1 conditions for which the user desires other than
default processing to be performed.

MDUMP

MDUMP is an object module callable by FORTRAN
programs or assembly language subroutines of a FORTRAN
program. The module can be called as often as necessary
to perform dumps of specified areas of virtual memory.
Form:

CALL MDUMP(first,len,dtype,u)

first Simple variable, array, or array element with
which the area to be dumped begins.

len Length (in words) of area to be dumped.

dtype Dump format:

A Hexadecimal dump
T - Integer dump
'Ew.d' or

Fw.d" Floating-point dump, where w is
the field width and d is the
fractional decimal digit count

If dtype has a value other than one of the
above, a hexadecimal dump is made.

u Logical unit number of file to which dump is
to be written. If u=0, the dump is written to
OUTPUT.

The dump is written to a file or files
AM: statement or”in” the” statemen
 FORTRAN program. Fo le, if a ca
ade, indicating that the dump is to be

written to logical wnit3, a file declaration
UNIT3=fi ;

MDUMP can be called from assembly language subroutines
of a FORTRAN program by using the standard calling
sequence conventions deseribed in section 12. The logical
unit referenced in the call must be defined in the same way
as for calls made to MDUMP from a FORTRAN routine.

Sample output from a. call to MDUMP is given in-
figure 13-9. An array I was declared and initialized by
using the two statements: :

DIMENSION 1{20)
DATA 1/5*7,15*12/

and then by using the statement:
CALL MDUMP(1,20,'Z',0)

a call to MDUMP was made. The output generated by this
call shows 20 words of memory, four words per line of
output. As 'Z', that is, a hexadecimal dump, was requested
in the parameter list of the call, the 15 elements with
value of 12 appear in the dump as hexadecimal C.

SYSTEM ERROR PROCESSOR (SEP)

The funection of the CYBER 200 System Error Processor
(SEP) is to enable the user to change certain run-time error
attributes. FORTRAN run-time error conditions can
belong to one of three classes: warning (W) for nonfatal
but probably undesirable conditions, fatal (F) for conditions
that cause abnormal termination of the program during
execution, and catastrophic (C) for conditions that are not
subject to user control. By using SEP, the user can set
fatal error conditions to nonfatal status, and warning
conditions can be made fatal. SEP is called as a subroutine
by an executing program.

Form:

CALL SEP(p1,p2,P3:P4:P5,P6:P7)

P1 The error number of the run-time error (see
- -appendix B). When pp is zero, all other
parameters must be zero except pg, Which

refers to the global nonfatal error count.

P2 Indicates the error class to which p; is to be A
changed. Parameter pp can be one of the
following:

'F' Sets the error class to fatal. Program
execution is terminated abnormally when
this condition oecurs.

W' Sets the error class to warning.
Execution continues when this nonfatal
condition occurs.

0 No error class change is to take place.

When a fatal error is changed to a warning
error, parameter pg should also be
specified to change the maximum error count
~-to a nonzero number.

HEX DUMP TIME 22433.02 CALL ADDRESS 0000000082C0

BIT ADDRESS

000000070180
000000070280
000000070380
000000070480
000000070580

00000000
00000000
00000000
00000000
00000000

00000007
00000007
0000000C
0000000¢
0000000¢C

00000000
00000000
00000000
00000000
00000000

Cm=0=N=TeE=N=T=§

00000007
0000000C
0000000C
0000000C
0000000C

00000000
00000000
00000000
00000000
00000000

00000007
0000000C
0000000C
0000000C
0000000C

00000000
00000000
00000000
00000000
00000000

00000007
0000000C
0000000C
0000000C
0000000C

WORD ADDRESS

00000001C06
00000001COA
00000001COE
00000001C12
00000001Cl16

ASCII

13-10

Figure 13-9. MDUMP Output

60457040 B

P3 The error exit subroutine entry point name
(which must be included in an EXTERNAL
statement in the same program unit). If the
error p; oceurs, entry point p3 is called
and execution continues from there. If p3
is zero, no error exit is implied and
processing continues if the error is nonfatal.
If p;1 is a fatal error and the subroutine
p3 executes a RETURN, the program
aborts; if p; is nonfatal and p3 executes
a RETURN, program execution continues.

Pg An integer constant indicating the maximum
error count for nonfatal errors; if the number
of nonfatal error condition occurrences
reaches p4, execution terminates. An
infinite error count is indicated by a value
of -1. If pg is zero, no change for this
parameter is indicated (pg might have been
assigned a value in a previous SEP call).

-The maximum error count for a warning error
for which SEP has not been called is 25, The
maximum error count for a fatal error for
which SEP has not been called is zero. When

" pg changes a fatal error to a warning error,
p4 should also be specified. .

Ps The error display suppression argument,
applying only to nonfatal errors. ps can
assume one of the following values:

'S' Indicates that the error message,
normally sent to the user's output file
and to the terminal, is to be suppressed.

0 No message suppression is to take place.

P6 The number of characters in pg, excluding
bracketing apostrophes. The name of the
routine or file in which the error occurred is
appended automatically to the message string

whenever applicable.
P7 A character string that replaces the standard
message associated with p;. The string
. must be enclosed by apostrophes to form a

character constant. Parameter pg must
appear when pq appears.

Parameter pj and at least one additional parameter
must be ineluded in the call. Any parameter other than
p; must be indicated as zero if that one is not to be
specified; however, trailing zero parameter list entries can
be omitted. ‘

Calls to SEP can appear as frequently as required in a
program, and the error attributes change any number of
times during program execution. The SEP routine is
especially useful during program checkout, enabling traps
to be set for error conditions that could prove difficult to
diagnose. Care should be exercised when altering fatal
errors to nonfatal status.

Examples:

o CALL SEP(26,W',SUB,5,0,38,'ATTEMPT TO
READ INTEGER UNDER D FORMATY)

Use of the above call causes the standard message for
error 26, INTEGER MODE, CONVERSION CODE D,
" to be replaced with the error message ATTEMPT TO
READ INTEGER UNDER D FORMAT, and the error
level altered from fatal to warning. If error 26 occurs

60457040 B

during program execution, the program issues the
message, then branches to a subroutine named SUB,
and processing continues from that point. When the
error condition occurs for the fifth time, program
execution is aborted.

e CALL SEP(75,'F")

This call means that if the condition associated with
error 75 occurs at any time in the program, it is
considered fatal and the program execution is aborted.

e CALL SEP(26,w,0,10)

In the above call, error condition 26 is made nonfatal.
When the error occurs for the tenth time, program
execution is aborted.

e CALL SEP(72,w,0,100,'S")

This call means that error 72 can occur up to 100
times without the error message appearing on the
user's terminal or output file.

CONCURRENT INPUT/OUTPUT
SUBROUTINES

The mass storage input/output subroutines for concurrent
input/output transmit data in an optimal manner between
main memory and files on mass storage. No buffers are
required and no structuring information is processed when
a concurrent input/output routine is used. The routines
also allow overlapping of computation with input or output
of large data arrays, thus maximizing the use of system
resources.

The four concurrent input/output routines and their
functions are:

Q7BUFIN Transfer data from mass storage to main

memory.

Q7BUFOUT Transfer data from main memory to
mass storage. -

QTWAIT Test or wait for input/output
completion; obtain error status of

operation.
QTSEEK Reset page address at which data is to
be transferred.
‘Any file referenced in a call to the concurrent input/output’

‘routines must be declared in the PROGRAM statement..

The file cannot be referenced in any of the FORTRAN
input/output or unit positioning statements. Once input or
output is performed on a file using conecurrent input/output
routines, all input and output on that file must be
performed only by means of those routines.

The user is responsible for the correspondence between the
data record size and the size of the physical bloek to or
from which the data is transferred. Any padding required
to reconcile record size with block size is also the user's
responsibility, as is the determination of any logical
end-of-file that might exist before the physical end of the
mass storage assigned to the file. (The concurrent
input/output routines recognize the physical end of a file
but no logical end-of-file.) The user is also responsible for
checking for the existence of error conditions resulting
from the transfer. The user is not notified of error
conditions, but certain conditions are flagged so that the
user can query the system about them by calling QTWAIT.

13-11

The greatest efficiency in input/output using the
concurrent input/output routines may be obtained when
overlap of input/output and computational operations is
maintained throughout execution. When computational
activity continues until completion of the previous
input/output request, maximum overlap has been achieved.

ARRAY ALIGNMENT CONSIDERATIONS.

The user must align the arrays named in the Q7BUFIN and
Q7BUFOUT calls on small page boundaries, and must
define the arrays to be multiples of small pages (padding
must be added by the user if necessary). At the time a
concurrent input/output call is executed, the program
aborts if the array has not been aligned on a page
boundary. Alignment can be accomplished by declaring the
arrays to reside in one or more labeled common bloeks,
then using the GRSP parameter of the LOAD system
control statement to load the common blocks on small page
boundaries.

If the size of an array is greater than 24 small pages (that
is, 12288 words), the array should be placed on a large page
to obtain the input/output efficiency that is derived from

using concurrent input/output. The GRLP parameter of-

the LOAD system control statement can be used to load a
labeled common block containing the large array on a large
page boundary. More than one array can be defined within
the 65536 words of a large page. If necessary, a single
array can overlap a large page boundary; however, this
results in decreased efficiency because multiple explicit
input/output requests must be issued by the system to
transfer that array. When muitiple explicit input/output
requests are issued, concurrent processing ceases after the
first of the multiple requests completes and cannot resume
during the remainder of the input/output for that call, If
the array did not overlap a large page boundary, a single
explicit input/output request would initiate transfer of the
array and control would return immediately to the program
so that computation could econtinue. -

For example, suppose that in a FORTRAN program a
20-page array BIGRAY and a 100-page array RA2 are used
in calls to the concurrent input/output routines. The
program then should also contain the statement:

COMMON/ANAME/BIGRAY(10240),RA2(51200)

which declares an array BIGRAY with 10240 words and an
array RA2 with 51200 words to reside in the labeled
common block ANAME. After the program is compiled (by
using the system control statement FORTRAN.), loading is
performed by using the system control statement:

LOAD,BINARY,CN=XECUTE,GRLP=*ANAME

which produces the executable virtual code file XECUTE

from the file BINARY, and loads the common block’

ANAME on a large page boundary.

Whether or not an array has been placed on a large page, a
call to Q7BUFIN or Q7BUFOUT transfers exactly the
number of small pages specified in the call. The user can
aid the input/output routines in deciding how an array was
mapped by specifying 'SMALL' or 'LARGE' for the map

parameter of the Q7BUFIN or Q7BUFOUT call’

(specification of the parameter does not, itself, cause the
alignment to be performed).

13-12

SUBROUTINE CALLS

Two Q7BUFIN calls, two Q7BUFOUT calls, or a Q7TBUFIN
and a Q7BUFOUT call can be active at one time for a
given file. If a third call is made for data transmission
before a QTWAIT call is issued, the program is aborted.
The programmer is responsible for assuring that the
specified portions of a file on which there are two
outstanding input/output requests do not overlap.

The file address to which data is written or from which
data is read can be specified in either of two ways. The
Q7BUFIN or Q7BUFOUT call can specify a relative page
address as a parameter. Alternatively, the Q7SEEK call
can establish a relative page address for a succeeding
Q7BUFOUT or Q7BUFIN call. In the absence of either
specification of page address, the file is scanned
sequentially, beginning at page zero of the file when it is -
first referenced by the program. Each Q7BUFIN or
Q7BUFOUT call moves the current read/write position
forward by a specified amount-(equal to the value of the
len parameter). .

Q7BUFIN

The Q7BUFIN subroutine transfers data from a mass
storage file to an array in main memory. The first time it
is called by the program, QVBUFIN defines the array
specified in the call to be the buffer for explicit
input/output and initiates data transfer from the file.
Control then returns immediately to the program unless
the user aligned the array in such a way that the system is
forced to issue multiple input/output requests. The array
must not be referenced until a call to Q7WAIT has
established that the transfer was succeéssfully completed.

Form:
CALL Q7BUFIN(u,a,len,map,faddr)
u Logical unit number of the mass storage file
from which data is to be read.. An integer

constant or integer variable having a value of
f 1 to 99, it il

a Array element or array name (an array name
indicates the first element of the array).
Data from u is stored beginning at a, which
must lie on a small page boundary.

len An integer constant or integer variable
indicating the number of small pages to be
transferred.

map Optional. The character (or Hollerith)
constant 'SMALL' (or 5HSMALL) or 'LARGE'
(or SHLARGE), indicating that the array a
was mapped onto a small page or large page,
respectively. Recommended when array a
has a length greater than 24 but was not
mapped onto a large page (map would be
'SMALL').

faddr Optional (if faddr is specified, map must also
be specified). An integer constant or integer
variable to whose value the current reaa
position on u is modified before the reaa
begins. A variable faddr is defined and
redefined only by the wuser. If faddr is
omitted, default is the current read position.

60457040 B

Depending on the value of len, a Q7BUFIN call might
transfer data into only part of the array named by a, or it
might transfer data to the words located beyond the end of
the array.

Q7BUFOUT

The Q7TBUFOUT subroutine transfers data from an array in
main memory to a mass storege file, The first time it is
called by the program, QTBUFOUT defines the array
specified in the call to be the buffer for explicit
input/output and initiates data transfer to the file.
Control then returns immediately to the program unless
the user aligned the array in such a way that the system is
forced to issue multiple input/output requests. The array
must not be referenced until a call to QTWAIT has
established that the transfer was successfully completed.

Form:

CALL Q7BUFOUT(u,a,len,map,faddr)

u Logical unit number of the mass storage file
to which data is to be written. An integer
. : ¢

a Array element or array name (an array name
indicates the first element of the array).
Data from the block starting at a, which
must lie on a small page boundary, is output

to u.

len An integer constant or integer variable
indicating the number of small pages to be
transferred.

map Optional. Same as the map parameter for
Q7BUFIN.

faddr Optional (if faddr is specified, map must also
be specified). An integer constant or integer
variable to whose value the current write
position is modified before the write begins.
A variable faddr is defined and redefined only
by the user. If faddr is omitted, default is
the current write position.

Depending on the value of len, a Q7TBUFOUT call might
transfer only part of the array named by a, or it might
transfer data located beyond the end of the array.

Q7WAIT

The QTWAIT subroutine must be called to determine
whether or not input/output operations have completed
without transmission error for a prior QT7BUFIN or
Q7BUFOUT call for the specified file. Input/output errors
are reported to the user only through the stat parameter of
this call. Each time QTWAIT executes, it returns a status
value (stat) that indicates data transmission status. While
data transmission is in progress, control either returns
immediately to the program or is relinquished by the
program until the data transfer is complete, depending on
the parameters in the call. Q7WAIT can also be used to
determine when the physical end of the mass storage
assigned to a file has been reached.

60457040 B

Form:
CALL QTWAIT(u,a,stat,ret,len)

u Logical unit number of the file associated
with the array a in a concurrent input/output
operation in progress. An integer constant or
integer variable having a value of from 1 to
99, associated With™ the nle by means of” the*?
PROGRAM statement, - L

a Array element or array name (an array name
indicates the first element of the array)
involved in a QTBUFIN or Q7BUFOUT
operation.

stat An integer variable whose value is returned
by the call to QTWAIT. The value returned
indicates the status of the input/output
operation:

0 = Normal completion
1= Physical end-of-file reached

2= Data transfer error due to hardware
failure

3 = Input/output operation not yet completed

ret Optional. Integer constant or integer
variable specifying action to be taken upon
return from QTWAIT call:

0 = If input/output is in progress at time of
call, program should wait (computation
should cease) until input/output is
completed normally or abnormally.
Default.

1= If input/output is in progress at time of
call, program should not wait but control
should be returned to it immediately.

len Optional. If len is specified, ret must also be
specified. An integer variable whose value is
returned by the call to Q7TWAIT. The value
returned is the number of pages actually
transmitted during the input/output
operation. (If the physical end of the mass
storage was reached, len might be less than
the number of small pages requested to be
transferred.)

Q7SEEK
The QTSEEK subroutine resets the page address at which
data transmission is to occur. It is an alternative to a
faddr parameter in a Q7BUFIN or Q7TBUFOUT ecall.
Form:

CALL Q7SEEK(u,faddr)

u Logical unit number of unit to be referenced

in a subsequent Q7BUFIN or Q7BUFOUT
call. An integer constant or intege!

13-13

faddr Optional. If faddr is zero or omitted, the
current read/write position of u is
repositioned at the beginning of the file (a
REWIND is executed). Otherwise, faddr has
the same effect as the faddr parameter of a
Q7BUFIN or Q7TBUFOUT ecall.

A CALL Q7SEEK(u,0) or CALL Q7SEEK(u) statement
performs a rewind on u.

Q8WIDTH SUBROUTINE

The subroutine QSWIDTH enables a program to set a fixed
record length for an ASCII output file. The default record
length for a PUNCH file is 80 characters. For all other
files, the default record length is variable, with trailing
blanks removed from the end of each line.

A call to QS8WIDTH is only valid for files with control word,
record mark, or fixed-length record types. A call to
QSWIDTH must precede any other access to the file.

Form:
CALL Q8WIDTH(u,width)
u Logical unit number of the file

width Record length for subsequent ASCII output to
- the file. The width must not exceed 137. If
width is specified as zero, trailing blanks are
removed from each line and the record length

is variable.

QS8NORED SUBROUTINE

The subroutine -Q8NORED enables a user to suppress file
size reduction. Files created by a program are initially 128
small pages long, but are reduced to minimal size upon
completion of the program. If Q8NORED is used, the file
will remain 128 small pages long.

The format of the QSNORED subroutines is:

CALL Q8NORED
CALL Q8NORED(uy, ... u,)

u;j logical unit number of a file

If no parameters are present, no files will be reduced.

SUPPLIED SUBROUTINES

A number of predefined subroutines are provided with the
CYBER 200 FORTRAN compiler. The predefined
subroutines are referenced by CALL statement. The
subroutines are listed in alphabetic order.

DATE

This subroutine generates the same result as the DATE
function. The form is:

CALL DATE(a)
The result is stored in the argument a, which can be any

8-byte variable. Within any particular routine, DATE must
be consistently called either as a function or a subroutine.

13-14

RANGET

This subroutine obtains the current value of the seed in the
random number generator. The form is:

CALL RANGET(n)

The argument n must be of type integer.

RANSET

This subroutine sets the seed in the random number
generator. The form is:

CALL RANSET(n)

The argument n must be integer. The current seed is set to
the specified value if the argument is an odd positive
integer. If the specified value is an even positive integer,
the value is increased by 1 to an odd value. If- the
specified value is zero or negative, the current seed is set
to the default value X'000054F4A3B933BD".

SECOND

This subroutine generates the same result as the SECOND
function described in section 15. The form is:

CALL SECOND(a)

The result is stored in the argument a, which can be any
real variable. Within any particular routine, SECOND must
be consistently called either as a function or a subroutine.

Because SECOND uses the job interval timer (JIT), a user
program that manipulates the job interval timer invalidates
the returned result. Furthermore, a user program that
attempts to perform JIT interrupt processing conflicts with
SECOND and causes the program to abort. See the
description of the data flag branch manager.

TIME

This subroutine generates the same result as the TIME
function described in section 14. The form is:

CALL TIME(a)

The result is stored in the argument a, which can be any
8-byte variable. Within any particular routine, TIME must
be consistently called either as a function or a subroutine.

VRANF

This subroutine generates a vector of random numbers.
The form is:

CALL VRANEF(v,n)

The argument v is a real array that is to contain the
generated vector of random numbers. The argument n is
an integer that specifies the length of argument v.

STACKLIB ROUTINES

The STACKLIB routines can be called for the purpose of
optimizing certain loop constructs that cannot be
vectorized. A loop construct that can be optimized is

60457040 B

coded as a subroutine cali. The subroutine name
establishes the type of operation, and the arguments
specify the operands to be used. In all cases, a STACKLIB
call can be considered as replacing an equivalent DO loop.

The efficiency of STACKLIB routines is gained through
maximum use of the instruction stack and through optimal
use of the register file. For example, a STACKLIB routine
can use a large part of the register file to hold elements of
a vector operand. STACKLIB routines typicaily contain
unrolled loops that produce more than one result per loop
iteration.

The STACKLIB naming conventions allow for a large
number of possible routine names. The routines currently

supported represent a selection of the most useful
STACKLIB constructs. The available STACKLIB routines
are listed in table 13-3 and table 13-4.

Dyadic form:
CALL Q8fbrm(res,v2,v1,num)

f One of the four arithmetic operations (A=add,
S=subtract, M=multiply, D=divide).

b Broadcast mask indicating whether either
operand is invariant, that is, scalar (0=both
vectors, l=operand vl scalar, 2=operand v2
scalar).

TABLE 13-3. STACKLIB CALLS WITH FORWARD COUNT

3 . Equivalent Statement Contained
Description Type STACKLIB Call With Sample Arguments in the Loop DO xxI = 2,N
Where I Ranges From 2 Through N
Add, recursive vl Dyadic CALL Q8A010(A(2),B(2),A(1),N-1) A(I)=B(I)+A(1-1)
Add, recursive v2 Dyadic CALL Q8A020(A(2),A(1),B(2),N-1) A(1)=A(I-1)+B(I)
Multiply add, Triadic CALL Q8MA020(A(2),B(1),A(1),c(2),N~1) A(1)=(B(I-1)*A(I-1))+C(I)
recursive v2
Multiply add, Triadic CALL Q8MA040(A(2),A(1),B(1),c(2),N-1) A(1)=(A(I-1)*B(I-1))+C(I)
recursive v4) .
Multiply add, Triadic CALL Q8AMO11(A(2),B(2),c(1),A(1),N-1) A(I)=(B(1)+(C(I-1)*A(I-1))
recursive vl, ‘
reverse order
Multiply add, Triadic CALL Q8AM021(A(2),B(2),A(1),c(1),N-1) A(1)=B(I)+(A(I-1)*C(I-1))
recursive v2, ’
reverse order
Subtract multiply, Triadic CALL Q8SMO011(A(2),B(2),c(2),A(1),N-1) A(I)=B(I)~(C(1)*A(I~-1))
recursive vl,
reverse order
Subtract multiply, Triadic CALL Q8SM021(A(2),B(2),A(1),c(2),N-1) A(1)=B(I)-A(I-1)*c(1))
recursive v2,
reverse order
Sum of vector Dyadic CALL Q8DA0000(S,A(2),N-1) s=S+A(I)
elements v
Dot - product of Triadic CALL Q8DC0000(S,A(2),B(2),N-1) S=S+A(I)*B(I)
2 vectors
Dot product of Triadic CALL Q8DC0010(S,A(2),N-1) S=S+A(I)*A(I)
1 vector .
Multiply, add Triadic CALL Q8AM201(A(2),B(2),c,D(2),N-1) A(I)=B(I1)+C*D(I)
Multiply, add Triadic CALL Q8AM101(A(2),B(2),p(2),C,N-1) A(I)=B(I)+D(I)*C
Multiply, add Triadic CALL Q8MA200(A(2),B(2),C,D(2),N-1) A(I)=B(I)*C+D(I)
Multiply, add Triadic CALL QBMAAOO(A(Z),c,n(zi,n(z),N-l) A(I)=C*B(1)+D(I)
Multiply, subtract Triadic CALL Q8sM201(A(2),B(2),c,D(2),N-1) A(I)=B(1)-C*D(I)
Multiply, subtract Triadic CALL Q8sM101(A(2),B(2),D(2),C,N-1) A(1)=B(I)-D(I)*C

60457040 B

13-15

TABLE 13-4.

STACKLIB CALLS WITH BACKWARD COUNT

Description

Type

STACKLIB Call With Sample Arguments

Equivalent Statement as Contained
in the Loop DO xxI = 2,N With
J = (N+1)-I Included, Where J
Ranges From N-1 Through 1

Multiply add,
recursive vl,
scalar v2

Multiply add,
recursive vl,
scalar v4

Multiply add,
recursive v&,
scalar vi,

reverse order

Multiply add,
recursive vé,
scalar v2,

reverse order

Subtract multiply,
recursive vl,
reverse order

Subtract multiply,
recursive v2,
reverse order

Divide add,
recursive v2,
scalar v4 and vl,
reverse order

Divide add,
recursive vl,
scalar v4 and v2,
reverse order

Multiply, add,
recursive vl,
reverse order

Multiply, add,
recursive v2,
reverse order

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic .

Triadic

CALL Q8MA212(A(N-1),B(N-1),S,A(N),N-1)
CALL Q8MA412(A(N-1),S,B(N-1),A(R),N-1) .

CALL Q8AM143(A(N-1),A(N),B(N-1),S,N-1)
CALL Q8AM243(A(N-1),A(N),S,B(N-1),N-1)

CALL Q85MO013(A(N-1),B(N-1),C(N-1),A(N),N~1)
CALL Q8SM023(A(N-1),B(N-1),A(N),C(N-1),N-1)

CALL Q8DA523(A(N-1),S,A,(N),T,N-1)

CALL Q8DA613(A(N-1),S,T,A(N),N-1)

CALL Q8AMO13(A(N-1),B(N-1),C(N-1),A(N),N-1)

CALL Q8AM023(A(N-1),B(N-1),A(N),C(N-1),N-1)

A(J)=(B(J)*S)+A(J+1)
A(J)=(s*B(J))+A(J+1)

A(J)=A(J+1)+(B(J)*s)
A(J)=A(J+1)+(S*B(J))

A(J)=B(J)-(C(J)*A(I+1))
A(J)=B(J)-(A(J+1)*C(J))

A(J)=S/(A(J+1)+T)

A(J)=S/(T+A(J+1))

A(J)=(B(J)*C(1))+A(I+1)

A(J)=(B(J)*A(J+1))+C(J)

r Recursion mask (0=no recursion, l=recursive

Triadic form:

v1, 2=recursive v2).
Miscellaneous designator (currently always 0).

Result operand first address. A vector must
Left operand first address. A vector must be
Right operand first address. A-vector must be

The number of results to be produced. The
value must be a positive integer.

m
res
be of type real.
v2
of type real.
vl
of type real.
num
13-16

CALL Q8fsbrm(res,v4,v2,vl,num),

One of the four arithmetic operations (A=add,
S=subtract, M=multiply, D=divide) used as the
first operator.

‘One of the four arithmetic operators used as

the second operator.

Broadecast mask indicating any invariant
operands (0=no scalar operands; 1, 3, or
S5=scalar v1; 2, 3, or 6=scalar v2; 4, 5, or
6=scalar v4).

60457040 B

v Recursion mask (0=no recursion; 1, 3, or
S5=recursive vl; 2, 3, or 6=recursive v2; 4, 5, or
6=recursive v4).

m Miscellaneous designator (0 or 1=forward
count; 2 or 3=backward count; 0 or 2=forward
order of operations; 1 or 3=reverse order of
operations).

res Result operand first address. A veector must
be of type real.
v4 Left operand first address. A vector must be
~ of type real.
v2 Middle operand first address. A vector must
be of type real.

vl Right operand first address. A vector must be
of type real.

num The number of results to be produced. The
value must be a positive integer.

The general form of a DO loop equivalent to a dyadic
STACKLIB reference is:

DO xx ind = first,last
xx res(ind) = v2(ind) () v1(ind)

60457040 B

The general form of a DO loop equivalent to a triadic
STACKLIB reference with b=0 and m=0 is:

DO xx ind = first,last
xx res(ind) = v4(ind) (D) v2(ind) (5) v1(ind)

The (f) and (§) indicate one of the functions +, -, *, or /.
In the triadic operation, the first operator is used on v4 and
v2, and the second operator is used on the result of the -
first operation and vl. The count can be backward rather
than forward, as indicated by the m part of the routine
name. If the count is backward, the general form becomes:

DO xx ind = first,last
irev = last+first-ind
xx res(irev) = v4(irey) @ v2(irev) @vl(irev)

The order of operations can be reversed, as indicated by
the m part of the routine name. In reverse order, the
second operator is used on v2 and v1, and the first operator
is used on v4 and the result of the first operation.

The operands can be scalar rather than vector, as indicated
by the b part of the routine name.

NOTE

Since STACKLIB routines are implemented for
efficiency, the validity of arguments is not
checked. If the routiné name indicates a certain
recursive operand, an offset of 1 from the result
first address is assumed, and the first address
value given in the argument list is ignored.

13-17

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS 14

A group of predefined functions is provided with the
CYBER 200 FORTRAN compiler. These functions, listed
and described in this section, perform conventional
manipulations such as changing the sign of a number, or
frequently-used mathematical computations such as
logerithms and the trigonometric functions. A reference is
made to one of these functions by using the function name,
suffixed with an appropriate list of actual arguments, as a
data element in an arithmetic or logical expression. The
actual arguments can be any expressions that agree in
type, number, and order of arguments. Upon execution of
a statement containing a reference to a predefined
function, the function is executed using the values that the
arguments have at the time of the reference; the function
result is then made available to the expression.

IN-LINE AND EXTERNAL

The functions fall into three categories - funections that
when referenced:

e Cause in-line code to be generated during compilation.

e Cause transfer of program control to an external
module during execution.

e Can generate either in-line code or a transfer to an
external module.

If the name of any function in the first category appears in
an EXTERNAL specification statement, no in-line code is
generated and the user must provide an entry point with
that name. Any function that is to appear in an actual
argument list must appear in an EXTERNAL statement in
the same program unit.

The external version of ‘a function in the third category is
used if the function name appears in an EXTERNAL
statement in the same program unit as the function
reference; otherwise, the in-line version is used. Any
function in this category performs the same operations
whether it is external or in-line.

Appendix E contains a list of the functions categorized
into the three types.

SCALAR AND VECTOR

Each function also falls into one of two categomes'_
1accordmg to the generated result:

o 'Scalar result - one set’ of computatlons that result in
....one value : ; T :

: , '. ; Vector result - one or more sets of computanons that: :

result in one or more values

'Also, CYBER 200" FORTRAN provxdes a group of
,‘Qs-preflxed functlons ~that perform : more ‘involved .
;mampulatlons w1th vectors than the V—preﬁxed functlons. o ;

f,The t‘unctlons, funcnon refere ce form, ype of ‘
-arguments and result are given in table 14-1. In’ the table,’
‘the letters'a and b are used for scalar arguments, the .
letter v.is used for. vector _arguments, the letter c is used
for. control vectors the letter l:ls,used foerndex vector y

arguments. must be \}ectors or descriptors

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS

Truncate argument -

Calculate remainder: (a;- [23/25] az)t'

60457040 B

Type of
. Function
Function Arguments
Reference (other than Result
¢ and i)
Obtain absolute value of argument ABS (a) : Real Real
IABS (a) Integer Integer

AINT (a)

14-1

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

precision)
Fix argument (convert from real to integer)ﬁ
Transfer sign from second argument to first (second

must not be zero)

Calculate positive difference between two arguments:
(aj - MIN(aj,aj))

Convert from double-precision to reall?

Obtain real part of complex argument
Obtain imaginary part of complex argument

Convert from real to double-precisiont?

Express two real arguments in complex form

Obtain conjugate of a complex argument

14-2

Float argument (convert from integer to real or double-

FLOAT (a)

IFIX (a)

SIGN (81,82)
ISIGN (ay,aj)
DSIGN (aj,ay)
VSIGN:(

DIM (81,82)
IDIM (ap,aq)
DDIM (aj,a,)

SNGL (a)

Type of
. Function
Function Arguments
Reference (other than Result
¢ and i)t
Choose the largest value from among two or more argu- AMAXO (al,az, P | Integer Real
ments AMAX1 (aj,a9, . . .) Real Real
MAXO (aj,ag, . . .) _ Integer Integer
MAX1 (a),a9, . . .) Real Integer
DMAX1 (ay,ap, . . .) Double Double
Choose the smallest value from among two or more argu- AMINO (al,az, S Integer -Real
ments AMIN] (aj,a9, . + .) Real Real
MINO (ajj,agy « « o) Integer Integer
MINl (aj,ag, . . .) Real Integer
DMINL (ay,a3, . . .) Double Double

Integer

Real
Integer
Double

Real
Integer
Double

Real
Double

Real

Real
Integer
Double

Real
Integer

Double
Double

60457040 B

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Type of

Function

Function
Reference

Arguments
(other than Result

¢ and i)

Count elements having value of 1 | sesr (v | Bit | Integer
Obtain length of vector T k i Q8SLEN (v) N Reél | Integer

X S i S e Integer | Integer
. Complex Integer

Find minimum value in vector Q8SMIN (v) or Real Real
. : . ! :) s . Q8SMIN (v,c) Integer‘ Integer

QBSMINI (v) or
Q8SMINI (v,c) . Real: Integer

Find maximum value in vector S e Q8SMAX (v) or . " Real Real
QBSMAX - (v,c) . Integer Integer

Q8SMAXT (v) or Sl ;
Q8SMAXI (v,c) | Real " . | Integer

Find.fifSt péiﬁ of'eleménté $atisfying the spécified“ , QSSEQ‘(vl;vz) T | Real ‘ iﬁtegerx L
relation i o s : e : o

Integer | Integer '

Integer

Q8SGE (vi,v9)
7 ~ | nteger

- Real "
Integgt

Q8SLT (vivp) | | Integer
SR : : | Integer:

CQBSNE (viv))

| QBVEQL (vy,vy5u)
(QBVGET (vy,vp5u)

60457040 B ' 14-3

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)
Type of
. Function
Function Arguments
Reference (other than Result
¢ and i)ttt :

Exponential: ed

Common logarithm:

Sine

Cosine

Arctangent

Arctangent of a/b

14-4

Natural logarithm: logga

logjpa

EXP(a)
DEXP(a)
CEXP(a)

ALOG(a)
DpLOG(a)
CcLOG(a)

ALOG10(a)
DLOG10(a)

SIN(a)
DSIN(a)
CSIN(a)

cos(a)
pcos(a)
(

ATAN(a)
DATAN(a)
VATAN(v;u)

ATAN2(a,b)
DATAN2(a,b)
VATAN2(v1,va3u)

Real
Double
Complex

Real
Double
Complex

Real
Double
Complex

Real
Double

Real
Double
Real

Real
Double
Real

Real
Double
Complex

Real
Double
Complex

Real

Real
Double
Complex

Real
Double
plex

Real
Double
Real

Real
Double
Real

60457040 B

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Type of
Function §:2:§:::e Arguments
(other than Result
¢ and i)ttf
‘Aregine . | aAsIN(a) | Real | Real
‘ ' - ' ' DASINCa) =~ " I pouble Double
CVASIN(v;u) ¢ 0o 0| Real - f Real'™
‘Arccosine k BRI e B L ACOS(a) : " Real | Real L
: , : : : DACOS(a) ~ 1 " Double Double
‘VACOS(v3u) REal Real
’ﬂYPerbolic sine oo y I sinH(a) & Real Dl »,Reali';y(5
; : B ’ : : : DSINH(a) e /. Double “Double = .
‘ﬁypétﬁb@ic_coéine : COSH(a) NS ,“ " ‘Real . : Real =
e . DeosH(a). .0 -] Double | Double
Hyperbolic tangent ‘) __TANH(a) __Real 1 Real =
.. DTANH(a) __Double | Double.
Square root SQRT(a) Real Real
DSQRT(a) Double Double
CSQRT(a) Complex Complex
VSQRT(v;u) ‘ Real Real
VCSQRT(v;u) Complex Complex
Modulus: (x2+y2)1/2 yhere x is the real part and y is CABS(a) Complex Real
imaginary part of the argument ’ VCABS(v;u) Complex Real
Q8SINSB(a,m,n,b
'QBSEXTB(a,m,n)

t
[x] is defined as the sign of x times the largest integer less than or equal to 1xl. The results are not
defined when the second argument is zero.

Mprovides the same effect as the implied conversion in assignment statements.

ﬁfEach control vector ¢ is type bit, and each index vector i is type integer.

FUNCTION DESCRIPTIONS

The foll;;}yin descriptions are listed in strict alphabetical

ABS(a)
g
mathematical values of some of the mathematical For a real number X, ABS(x) computes the absolute
funetions can be infinite. value IX!.

60457040 B , ' 14-5

AIMAG(a)

This returns the imaginary part of a complex number as a
real number; if x+y is the complex number, AIMAG
returns y.

AINT(a)
For a real number X, AINT(x) computes [x], where [A] is
the sign of A times the largest integer less than or equal

to tAl. AINT returns a real result even though its value is
always integral. :

ALOG(a)

This computes the natural logarithm of a real number
greater than zero. The result is a real number accurate to
approximately 45 bits.

For a given real number x, ALOG(x) is calculated as
follows.

For x outside the range:
((2)1/2/95x<(2)1/2)
let:
x=2N#%y
where:
1/2€w<1
and n is an integer‘ that satisfies the equation.
Also, let:
t = (w - (2)1/2/2)/(w + (2)1/2/2)
Then:
loge(x) = (n~1/2) * loge(2) + loga((1 + t)/(1 - 1))
For x in the range:
((2)1/2/2<x<(2)1/2)
let:
t=(x~-1)/(x+1)
Then: |
loge(x) = loge((1 + t) / (1 - 1))

In either case:

6
loge((1+t)/(1-t)=2t X 0 ent2n
n=i

14-6

where: _

¢ = 1.000000000000000172016224 * 100

cq = 3.333333333327618176885283 * 101

eg = 2.000000003098077890899307 * 10-1

c3 = 1.428570799460827347261398 * 10-1

¢4 =1.111171831154342806719000 * 10-1

cg = 9.060935658179353717214254 * 10-2

cg = 8.419186575863053137534817 * 10-2
If a zero or negative argument is received, a data flag
branch oceurs inside the routine.

Aloslo@)

This computes the logarithm of a real number. The result
is a real number that is accurate to approximately 45 bits.

For a given real number x greater than zero:
logy9(x) = logyg(€) * loge(x)

where the natural logarithm is computed as deseribed for
the function ALOG.

If a zero or negative argument is received, a data flag
branch oceurs inside the routine.

AMAXO(ay,az, . . .)

This searches a list of integer numbers for the list element
having the maximum value. The integer found is returned
as a real number.

AMAX1(ay,az, . . .)

This searches a list of real numbers for the list element
having the maximum value and returns that value.

AM|N°(01,02, . e)

This searches a list of integer numbers for the list element
having the minimum value. The integer found is returned
as a real number. i

AM|N'|(CI|,CIQ, e)

This searches a list of real numbers for the list element
having the minimum value and returns the number when
found. '

AMOD(Q],GQ, “ e)

This computes one real number modulo a second real
number and produces a real result. AMOD(x,y) is defined
as x-[x/y] *y, where [A] is the sign of A times the largest
integer less than or equal to 1Al

60457040 B

ASIN(a) AND ACOS(a)

These compute the arcsine and the arccosine of a real'

number having an absolute value less than or equal to 1.0.
The result is a real number expressed in radians, and is

accurate to approximately 45 bits. The range of the result
for ASIN is -pi/2 through pi/2, inclusive; and the range of

the result for ACOS is 0 through pi, inclusive.

For a given real number x:
asin(x) = asin(u) if nggljz , where u=x
“asin(x) = pi/2 - 2 * asin(u) if 1/2<x<1
where u = (1 - x/2)1/2 ;
asin(x) = -asin(-x) if -1< x<0 '

.and aSirj(u) is ealeulated from a polynomial of degree 22.‘ ;

Also

acos(x) S 91/2 asin(x)

If an argument of magmtude greater than 1 is receive
data flag branch oceurs inside the routine.

Vo

ATAN(a)
This computes the arctangent of a real number. The real
result is accurate to approximately 45 bits, and is in the
range -pi/2 through pi/2 (not inclusive).
For a given real number x:

atan(x) = sign(x) * atan(v)

where:

v =IXI

Then:

atan(v) = atan(r) + ¢
where r and ¢ are:

If 0<v<p,r=vandc=0.0

If pgv<21/2 -1, r=(v-p)1 +v*p)
and ¢ = pi/16

If 21/2 - 1cu<i, r=(v=t)/(L+v*t)
and ¢ = 3pi/16

If1cv<2l/24 1 p=(vet-1)/(v+1)
and ¢ = 5pi/16

where:

p = tan(pi/16) and t = tan(3pi/16)

Then:

atan(r)=r-r*q

60457040 B

where:
q=(Co+Cy*2 +Cq*22+,..+Cg* 28
Z =r2
Cg = 0.999999999999998
Cq = 0.333333333330652
Cq = 0.199999998910139
C3 =0.142856976561312
C4 =0.111099001318911
Cs = 0.904542314114089*10-1

Cg = 0.683464392415994*10"1

ATAN2(a,b)
This computes the arctangent of the ratio of two real
numbers. The real result, expressed in radians, is accurate
to approximately 45 bits and is in the range -pi through pi.
For given real numbers x and y, the result is in the range:
-pi to -pi/2 if x<0 , y<0
-pi/2 to 0 if x>0, y<0
0 to pi/2 if x>0 , y>0
pi/2 to pi if x<0, y>0
ATAN2(x,y) computes the arctangent as follows:
atan(x/y) = sign(x) * pi/2ify=0
atan(x/y) = sign(x) * ATAN(x/y) if y>0
atan(x/y) = pi - ATAN(x/y) if y<0 , x>0
atan(x/y) = ATAN(x/y) - pi if y<0 , x<0
The result is greater than or equal to zero for x>0, and
negative for x<0. (ATAN is the function that computes the
arctangent of a real number.)
If unacceptable arguments are received, the message:
X=Y=0.0

is issued, the result is set to indefinite, and a normal exit is
taken from ATAN2.

CABS(a)
This computes the modulus of a complex number, and
produces a real result that is greater than or equal to zero
which is accurate to approximately 45 bits.
For a given complex number:

X=u+iv
the result is:

(u2 + v2)1/2 + 0

14-7

where the square root function is evaluated by the machine
instruction SQRT.

CCOS(a) _
This computes the cosine of a complex number. The result
is a complex number whose real and imaginary parts are
each accurate to approximately 45 bits.
For a given complex number x=u+iv, CCOS(x) is
computed as follows. If Iul>.110534964875444 * 1015 or
if v>19905.80, the result is set to indefinite, an error
message is issued, and a normal exit is taken from CCOS.
Otherwise, the complex result is:

r+is
where:

r = cos(u) * (eV + e~V)/2

= - sin(u) * (eV - e™V)/2 for 1vI=0.5
5 .
s=-sinW*v* I c,vn for 1vI<0.5
n=0

where:

cg = .9999999999999999811672 * 100

¢} = .1666666666666721232395 * 100 -

¢y = .833333333307759961 * 10-2

cg = .1984127027907999 * 103

¢4 = .275569807356154 * 10-5 .

c5 = .251726188251 * 107

The real-valued sine, cosine, ahd exponehtial functions are
evaluated as described for the SIN, COS, and EXP routines.

If an unacceptable argument is received, one of the
messages:

ABS (REAL PART) TOO LARGE
IMAG. PART TOO LARGE

is issued, both real and imaginary parts of the result are
set to indefinite, and a normal exit is taken from CCOS.

CEXP(a)

This computes the exponential of a complex number. The
result is a complex number that is accurate to
approximately 45 bits. °

For a given complex number x=u+iv, the procedure for
calculating CEXP(x) is as follows.

If u>19905.80, or if 1vI>.110534964875444 * 1015, both

the real and imeginary parts of the result are set "to

indefinite, an error message is issued, and a normal exit is

taken from CEXP.
Otherwise, the complex result is:

r+is

14-8

where:

r = cos(v) * eU

s = sin(v) * eV
The real-valued sine, cosine, anid exponential functions are
;\;al)l.lated as described for the functions SIN, COS, and

If the function argument is out of range, one of the
messages:

REAL PART TOO LARGE

ABS (IMAG PART) TOO LARGE
is issued, the result is set to indefinite, and a normal exit
is taken from CEXP. :
CLOG(a)

This computes the natural logarithm of any complex
number except 0.+i0. . The result is a complex number

. that is accurate to approximately 45 bits.

For a given complex number x=u+iv, the procedure for
calculating CLOG(x) is as follows.

The complex result is:

r+is
where:

r = loge((u2 + v2)1/2)

s = arctan (v/u)
The real-valued log and arctangent functions are evaluated
as described for the functions ALOG and ATAN2. The
square root is computed by the machine instruction SQRT,
The message:

ZERO ARGUMENT

is issued if the argument is 0.+i0., the result is set to
indefinite, and a normal exit is taken from CLOG.

CMPLX(“IIGQ)

This constructs a complex number from two real numbers.
CMPLX(x,y) assigns x to the real part of the result and y to
the imaginary part of the result.

CONJG(a)

This computes the conjugate of a complex number. If the
complex number is x+iy, the conjugate is x-iy; the real
part, x, of the complex number is assigned to the real part
of the result, and the imaginary part, y, of the complex
number is negated and assigned to the imaginary part of
the result. ‘

COS(a)
See SIN for a description of the COS function.

60457040 B

This co:ﬁpiltes the hyperbolic Vcosi‘nek'ydf a real number and
_produces a real result that is greater than or equal to 1.0.
and accurate to 47 bits. For a given real x:

cosh(x) = (eX + e7¥)/2.0 .

~

If an unacceptable argument is recéived, the message:
ARGUMENT TOO LARGE ¥ '
- is issued, the result is set to indefinite, and a normal exit is’
taken from COSH. ‘
'COTAN(a)
This compﬁtes the cotangent of a real number expressed in
‘radians. The function first reduces its argument’
:modulo 2 pi. The result is a real number that is accurate
- to approximately 45 bits.
'For a given real number x, cotan(x) is calculated as follows.
Let: , |
sign = sign (x)
r=x*4/pi;
n=[r];
Zz=r-n(where z>0and<1);
S =n modulo 8 ;
k=sif 0<s<3 andk = (s - 4) if 4<s<7 ; and
ifk=1lork=3 thenz=2z-1
if k=1or k=2 then sign = -sign
zZ=sign* z

The values of cotan(x) corresponding to the values of k are:

K cotan()
0 1/tan(z)
1 tan(z)

2 1/tan(z)
3 1/tan(z)

In any case, tan(y) is approximated by:

12

tan(y)=y* T cpy?n,

n=0
where cp are constants as defined for the TAN function,
If an unacceptable argument is received, a data flag branch
OQCUI'Sa;’ e e . i E :
CSIN(a)

This computes the sine of a complex number. The result is
a complex number accurate to approximately 45 bits.

60457040 B

For a given complex-valued x=u+iv, CSIN(x) is computed
as follows. .

If abs(u)>.110534964875444 1015 or v >19905.80, the
result is set to indefinite, the appropriate error message is
issued, and a normal exit is taken from CSIN.
Otherwise, the cdmplex result is:

r+is
where:

r = sin(u) * (eV + e~V)/2

s = cos(u) * (eV - ¢~V)/2 for 1vI>0.5

5
s=cos(u) *v* Z ¢ v2n for Ivi<0.5
n=0
The values for ¢, are as given in the CCOS routine.
Real-valued sine, cosine, and exponential functions are
evaluated as deseribed for the functions SIN, COS, and
EXP respectively.

If an unacceptable argument is received, one of the
messages: ’

ABS (REAL PART) TOO LARGE
IMAG. PART TOO LARGE

is issued, both real and imaginary parts of the result are
set to indefinite, and a normal exit is taken from CSIN.

CSQRT(a)
This computes the square root of a complex number in
which the real part is greater than or equal to zero, and
returns a complex result that is accurate to approximately
45 bits. Whenever a result is returned in which the real
part is zero, the imaginary part is greater than or equal to
zero.
For a given:
X=u+iv
taking the square root of x produces the result:
r+is
where r and s have one of the following sets of values:
r=bands = ¢ * sign(v) if u>0
r=cands =b * sign(v) if u<0
r=0ands=0ifu=0andv=20
The values of b and ¢ are defined as follows:
b= ((a+ul)/2)1/2
e=1vi/(2*Db)
where:

a=(u2 +v2)1/2

14-9

The square root function is computed by means of the

machine instruction SQRT.

DABS(a)

For a double-precision number x, DABS(x) computes the
absolute value | xI.

DATAN(a) AND DATAN2(a,b)

These compute the arctangent of the ratio of two
double-precision numbers. If the denominator is 1.0, it
need not be specified (DATAN is used). The
double-precision result, expressed in radians, is accurate to
approximately 90 bits.

For two double—preclslon numbers X and y, the result is in
the range:

-pi to -pi/2 if x<0, y<0
-pi/2 to 0 if x>0, y<0
0 to pi/2 if x>0,y>0
pi/2 to pi if x<0,y>0

14-10

Valid arguments for DATAN and DATANZ lie in the inter-
val-0.47685405771593E+8645<x<+0.47685405771593E+8645
(the largest allowable argument value is half of the largest
allowable real number).
The arctan(x/y) is calculated as follows:

atan(x/y) = sign(x) * pi/2if y=0

atan(x/y) = atan(z) * sign(x) if y>0

atan(x/y) = pi - atan(z) if y<0 and x>0

atan(x/y) = atan(z) - pi if y<0 and x<0
where:

z =Ix/yl
and atan(z) is calculated as follows:

atan(z) = atan(v) if 1x1<Iy|

atan(z) = pi/2 - atan(v) if IyI<Ix]
where:

= 1t1/ 1ty

with t; and ty being the two double-precision
arguments and:

1tyi<itgl

where atan(v) is calculated as follows:
~ atan(v) = atan(r) + ¢

where atan(r) is computed from a telescoped Taylor-
Maclauren power series, and where r and ¢ are as defined
for the function ATAN.
If unacceptable arguments are received, the message:

X=Y=0.0

is issued, the result is set to indefinite, and a normal exit is
taken from DATAN or DATANZ.

DATAN2(a,b)
See DATAN for a description of the DATAN2 funection.

60457040 B-

DBLE(a)

This converts a real number to double-preecision. The value
of DBLE(x) is the same as the value of x. No error
messages are issued by DBLE.

DCOS(a)

See DSIN for a description of the DCOS routine.

DCOSH(a) -

This computes the hyperbolic cosine of a double~prec1sxon‘
‘number and produces a double-precision result that is.

‘accurate to 94 bits.

‘For a given double-precision x:

j cosh(x) = (eX - ¢7X)/2.0 ‘ e

If an unaccéptable argument is réceivéd, theme{ssz’i‘ge:

~~ ARGUMENT TOO LARGE

?‘15 issued, the result is set to mdeflmte, and a normal exit is.

“taken from DCOSH.

DDIM(G1 ,dg)

This computes the positive excess of one double-precision
number over another double-precision number. DDIM(x,y)
returns the value x-y if x is greater than or equal to y, and

returns a double-precision value of 0.0 otherwise. The
function value is accurate to 94 bits.

DEXP(a)
This computes the exponential of a double-precision
number. The result is double-precision and is accurate to
approximately 90 bits,
For a given x:

eX = 2N # orl # or2
where:

n = [x/logg (2) + .5]

r=rl+r2=x-n*loges(2)

rl-is the most significant part of r and r2 is the least
significant part of r; and the

1rigloge(2)
The factor el is evaluated from a polynomial of
degree 17. The polynomial was telescoped from a
truncated Taylor-Maclauren power series.
The factor er2=1 +r2,

If the function argument is out of range, the message:

ARGUMENT TOO LARGE, FLOATING POINT
OVERFLOW

is issued, the resulf is set to indefinite, and a normal exit is
taken from DEXP. r

60457040 B

DFI.OAT(u)

\This converts. an mteger number - to a double-precxston“ﬂ

number. The normalized integer number is’ the first word
of the double-precision result, and the second word is set
to real zero. The result is accurate to 94 bits, . :

DlM(O],OQ)

This computes the positive excess of one real number over
another real number. DIM(x,y) returns the value x-y if X is
greater than or equal to y, and returns a value of 0.0
otherwise.

DINT(a)

‘For ' a double-precision number. x, DINT(x) computes X ,.
-where A is the sign-of A times the largest integer less
‘than or equal:-to A,
-result even though its value is always integral.

DINT returns a double—preclslon,

DLOG(a)
This computes the natural logarithm of a double-precision
number. The result is a double-precision number that is
accurate to approximately 90 bits.
For a given double-precision number:
X=2P*w
where:
(1/2)1/2< w< 21/2
and p is an integer:
loge(x) = p * loge(2) + logg(w)
The term:
10ge(w)
is initially approximated by:
ag=cy*v+eg*vi+eg*vi+ep*vi
where:
v=(w-1)(w+1)
and ¢, are as for the function ALOG.

An iteration must be performed to obtain accuracy. The
iteration formula for:

fa)=ed -x=0

n+1 =ap -t
where:
r=x*edn
t=1-r
The final result with desired accuracy is:

ag =ap-tl-t2-t12 * (1/2 + (t1) / 2)

14-11

where t1 and rl denote the most significant parts of t and
r, while t2 and r2 denote the least significant parts of t
and r.

If a zero or negative argument is received, one of the
messages:

ZERO ARGUMENT
NEGATIVE ARGUMENT
is issued, the result is set to indefinite, and a normal exit is
taken from DLOG.
DLOG10(a)
This ecomputes the logarithm of a double-precision number.
The result is a double-precision number that is accurate to
approximately 90 bits,
For a given double-precision number x greater than zero:
logo(x) = logjg(e) * loge(x)

where the natural logarithm is computed as deseribed for
the function DLOG.

If a zero or negative argument is received, one of the
messages:

ZERO ARGUMENT

NEGATIVE ARGUMENT"
is issued, the result is set to indefinite, and a normal exit is
taken from DLOG10.
DMAX] (01,01, “ ..)

This searches a list of double-precision numbers for the list
element having the maximum value and returns that value.

DMINT(ay,aq, . . .)

This searches a list of double-precision numbers for the list
element having the minimum value and returns the number
when found.

14-12

DSIGN(a;,az,)

This combines the absolute value of one double-precision
number with the sign of another double-precision number;
DSIGN(x,y) returns one of the values -ix|, 0, or x|
according as y is negative, zero, or positive, respectively.

DSIN(a) AND DCOS(a)

These compute the sine and cosine of a double-precision
number expressed in radians. The double-precision number
modulo 2 pi is used by the functions. The results are
double-precision numbers in the range -1 to 1, inclusive,
and are accurate to approximately 90 bits.

For a given double-preecision x, the sine and cosine of x are
computed as follows:

cos(x) = cos(r) * cos(k * pi/2) + sin(r) * sin(k * pi/2)

sin(x) = cos(x - pi/2)
where:

n=[1x1*2/pi+.5]

r=10x1-n*pi/2)I , r<pi/4

k =n modulo 4, 0<k<3
Depending on k and on the sign of {xI|-n*pi/2, cos(x) is
equal to plus or minus the sin(r) or cosir). Accordingly,
sin(r) or cos(r) is evaluated and negated if necessary. The
sin(r) and cos(r) are evaluated by polynomials of degree 21
and 20, respectively. These polynomials were telescoped

from truncated Taylor-Maclauren power series of degree
25 and 24.

If an unacceptable argument is received, the message:

ARGUMENT TOO LARGE

is issued, the result is set to indefinite, and a normal exit is
taken from DSIN or DCOS.

60457040 B

DSQRT(a)

This computes the square root of a double-precision
number greater than or equal to zero and returns a
double-precision result that is accurate to approximately
90 bits, An approximation to the square root is obtained
by using the SQRT machine instruction; this number is
accurate to 14 decimal places. One Newton approximation
is done to double the accuracy of the number; the form is:

a2 =1/2 * (al + x/al)

DTAN(a) -

'Thxs computes the tangent of a double-precxslon numbers
expressed in radians.’ The double-precxslon number: modulo:
2 pi is used by DTAN. The result is a double-preeision:
number that is accurate to approximately 90 bits. Valid
arguments for the DTAN function are in the interval

: .110534964875444D+15<x< 110534964875444D+15.

For a glven double—preclswn x, ta.n(x)
‘where.‘! ;

sm(x) =+ sm(r) * cos(k"‘Pl/Z) + COS(P) . Sm(k"Pl/ 2)

os(k*[n/Z) + sm(r) . sm(k*pl/Z)

EXP(a)

This computes the exponential of a real number. The
result, accurate to approximately 45 bits, is a real number
greater than or equal to zero.

For a given x, the mathematical method used for
caleulating EXP(x) is as follows. If x<-19842.031, the
result is zero. If x >19905.7999999999, a data flag branch
oceurs inside the routine.

For all other values of x:

eX = 9k * om/16 * of /16

60457040 B

sm(x)/ cos(x),’

where:
n= [16 * (x/loge (2))]
k = [n/16] if x>0
k = [n/16] -1 if x<0
m = n modulo 16 if x>0
m = 16 - (n modulo 16) if x<0
t = (16 * (x/loge(2)) - n

The absolute value of f is >0 and<1.
The factor:
2m/16
is obtained from a table.
The product:
9K * om/16
is obtained by adding the exponents.
The factor:
2f/16 = (@ +f*p)/(q-f*p)
where:
q=q01 * £2 + q00
p = pO1 * £2 + p0o
q00 =.532832542630989 * 104
qoL =.1* 101
p00 = .115416054573517 * 103
pO1 = .361007098948762 * 10-2

FLOAT(q)

This converts an integer number to a real number by
normalizing the integer number.

1ABS(a)

For an integer number x, IABS(x) computes the absolute
value IX 1.

|D|M(Cl|,ﬂz)

This computes the positive excess of one integer number
over another integer number. IDIM(x,y) returns the value
x-y if x is greater than or equal to y, and returns a value of
0 otherwise.

" IDINT(a)

For a double-precision -number x, IDINT(x) computes[x],
where [A] is the sign of A times the largest integer less
than or equal to 1Al

14-13

IFIX(a)

This converts a real number to an integer number. IFIX,
which is an alternative name for INT, computes the largest
integer less than or equal to its real argument, retaining
the sign of the argument.

INT(a)

For a real number X, INT(x) computes[x], where [A] is the
sign of A times the largest integer less than or equal tolAl.

|S|GN(Q],GQ)

This combines the absolute value of one integer number
with the sign of another integer number; ISIGN(x,y) returns
one of the values -ix|, 0, or | x| according as y is negative,
zero, or positive, respectively.

MAXO(ay,az, . . .)

This searches a list of integer numbers for the list element
having the maximum value and returns that value.

MAX1 (G],Og, o« o .)

This searches a list of real numbers for the list element
having the maximum value. The selected real number is
converted with IFIX before being returned.

MINO(ay,02, . . .)
This searches a list of integer numbers for the list element

having the minimum value and returns the integer when
found. ‘

MIN1 (01,02, « 40)
This searches a list of real numbers for the list element

having the minimum value. The selected real number is
converted with IFIX before being returned.

MOD(a,a)

This computes one integer number modulo a second integer
number and produces an integer result. MOD(x,y) is
defined as x-[x/y] *y, where [Ai] is the sign of A times the
largest integer less than or equa

tolAl.

14-14

60457040 B

gossexm(a mn)

This extraets m bits, begmnmg w1th bit n of a. The result 1'

-is right-justified in a 64-bit word with zero fill. The m and
n values are integer. Bits in the word are numbered from
left to right, beginning with zero.

Q8SGE(v1,v,)
‘This is identical to stEQ, except that Q8SGE searches for

an element in x that is greater than or equal to the
corresponding element in y.

Q8SINSB(a,m,n,b)

“This produces a word into which bits have been inserted.’

The result is equal to b, except that m bits, beginning with
bit n, are replaced by the m rightmost bits of a. The
argument b is not altered. The m and n values are

integer. Bits in the word are numbered from left to right,

beginning with zero.

Q8SLEN(v)

‘This counts the number of elements in a real, integer, or

complex vector. The result returned is an integer. For a
‘complex vector, the number of elements is half the number

of words.

;QBSLT(V.,VQ)

%ThlS is' 1dent1ca1 to QBSEQ, except that QBSLT searches for]
fj'an element in x that is less than the correspondmg element;

60457040 B

;Qasmxuv)

Like QSSMAX this finds the maximum from among “th
elements in a real vector or:only those elements selected
by an .optional bit control vector. - However Q8SMAXI

‘returns not the value itself but, instead, a count of the
number of elements preceding, but not mcludmg, the

element having the maximum value,

The procedure for selecting the element having the
maximum value is the same for Q8SMAXI as for Q8SMAX.

The control vector bits that are set to zero (when the

control vector is present) have no effects on. the count.
returned by Q8SMAXI.. The action of the control vector is .
the same for both funetions in all other respects. }

Example:

The example given for Q8SMAX is an example for
Q8SMAXI as well, except that where Q8SMAX equals
19 or 6, depending on the presence of the bit control
vector argument, Q8SMAXI would return 2 and 3
respectively.

Q8SMIN(v) OR Q8SMIN(v,c)

"I“,his selects the minimum from among the elements in a
‘real or integer vector, or from among only those elements

selected by an optional bit:-control vector. The result is a

: scalar that has the same data type as the vector.

‘For a given vector x and a bit control vector ¢, the
‘\procedure for selecting the element: having the mmlmumj
‘value is as follows. When ¢ is not present,’ the minimum
_value in x is selected. If c is present it acts as a bmary

mask; each element in ¢ that is set to 1 permits the

icorrespondmg ‘element in’ X to be mcluded in the functlon'-
evaluatlon, ‘whereas. each. element in e that is set to 0
_causes the correspondmg element in X to be excluded from

14-15

14-16 Co . 60457040 B

£ ‘Q8VAV G(x,y,r) is the vector
51557954955055

; 08VAVGD(V|,V2,U)

This ‘computes the average differences of correspondmg
_elements of the two input vectors. A vector and a scalar 1s
. the alternative to the two input vectors.

For given real vectors X and y, Q@8VAVGD(x,y;r) forms the ;
nth ‘element of the result vector r by subtracting the

n element of y from the nth' element of X, then

dividing - the
‘rp=(X,~yp)/2). The vectors X, y, and r all have the
same Peng?h A scalar x or y is considered to be a vector
“of the appropriate length with every element being the
- scalar value.
Example:

Given:

x = 100. 100. 100. 100. 100.
'y e991&m.

the value of Q8 VAV GD(x,y,r) is the vector

r—48 45545542543

Thxs deletes selected elements«z from :
‘vector under control of a bit control. veetor. For & given'
‘real vector X and ‘control veector ¢, the deletion: procedure
_is as follows: every value'in the vector X whose position:
_corresponds to that of a 0 in the bit vector c is deleted,

leaving. for the ‘result' vector only those values 1n‘the

60457040 B

difference by 2 (that is,:

Sl the result vector T for Q8VDELT(x,r) is:

;',The effect of a call to QBVEQI is 1dentlcal to that of{
lssumg ‘a senes of QBSEQ?' calls in: whlch one of ;thez

Xx=55519940

e=00010
y=999109

the value of QBVCTRL(x,c;y) is the veetor:
y=99999 :

'Q8VDELT(v;u)

-This . computes the differences between the adjacent:

elements of the input vector. For a given real vector x,
Q8VDELT(x;r) computes the nth element of the result
vector r by subtracting the nth element of x .from the
(m+1)th element of x. That is, rp=(xp+1-Xp),

~where the result vector r lS one element shorter than the’
-input vector x. :

, Example.

leen

x 5.3.5.3 5.4 5.3,

‘-2.2.-2.2.e1.1.

14-17

14-18 - ' 60457040 B

The length of c governs the operatxon, the lengths of X and

'y are ignored and the length of r 1s set to that of c.
Example:
. Given:
x=101112 14 13
y=54321
¢=11001
" the value of QBVMERG(x,y,c;r) is the vector:
r=10115412

Q8VMKO(ay,a;u)

This forms a bit vector whose elements are either all zeros
or else a repeated pattern of ones and zeros, beginning

“with a one. For given integer constantsx andy,
- Q8VMKO(x,y;r) creates the elements of the vector r as

“follows. The pattern, which consists of a string of x ones

followed by a string of y-x zeros, is repeated until the'
- result vector r has been fllled. The length of r need not be.

d1v1sxble by y

"Example

ctor whose elements ar)enther all

60457040 B

{*QaVNEu(v.,v,,u)

This is ldentxcal to QSVEQI except that QBV NEI searches
~for an element in y that is not equal to the element in x

which is of econcern for the current iteration.

/ QBVPO'.Y(V],VQ;U)

'This computes a polynomial at several values. For given%

real . vectors X and y, Q8VPOLY(x,y;r) is evaluated as.

- follows (x can also be a scalar). The input veetor y

contains the coefficients of the polynomial: “the first
element of the vector y contains the coefficient of the
highest order term of the polynomial ana the last element :

. of the vector y contains the lowest order term of the
. polynomial (the constant). The length of the vector y
- determines the order of the polynomial: if n is the length

of y, the order of the polynomial is n-1. The polynomial is
evaluated for each element of x and the result is placed in
the corresponding element in the result vector r. If y is a
sealar rather than a vector, the result r must be referenced

. as a vector with length equal to 1, not as a scalar.

’ Example:

Given:

x=-2-1123

14-19

REAL(a)

This returns the real part of a complex number as a real
number; if x+iy is the complex number, REAL returns x.

SIGN(a1,a2)

This combines the absolute value of one real number with
the sign of another real number; SIGN(x,y) returns one of

the values -1x), 0 or Ix| according as y is negative, zero, or
positive, respectively.

14-20

60457040 B

SIN(a) AND COS(a)

These compute the sine and cosine of a real number
expressed in radians. The real number modulo 2 pi is used
by the functions. The results are real numbers in the
range -1 to 1, inclusive, and are accurate to approximately
45 bits.

For a given x, sin(x) and cos(x) are calculated as follows.

If 1x1>110534964875444 * 1015, o data flag branch
abort occurs in SIN or COS. Otherwise, the sine and cosine
of x are calculated identically, differing only in the
formula with which the value of Kk is selected:

k =r9 modulo 4 for the sine or cosine of x

where:
ry =IX1* 4/pi
rg=[r1]
The values of f(x) corresponding to the values of k are:
0 sin(z) sin(1-z)
1 sin(1-z) -sin(z)
2 -sin(z) -sin(1-z)
3 -sin(1-z) sin(z)

where z =rj -9, and 0<z<1.
The sin(z) is approximated by the formula:
8
sin(z)=z I spzn
n=0
where s, has the following values:
sg = .157079632679491 * 101
$) = - .645964097506246 * 100
$9 = .796926262461656 * 101
$3 = - .468175413530426 * 10-2
S4 = .160441184713148 * 10-3
s5 = - .35988432058822 * 10-5
sg = .569213644231555 * 10-7
s7 = .668441770083272 * 10~

sg = .587299730858022 * 10-11

60457040 B

jTAN(n) =

This computes the tangent of. a real number expresﬁed in
radians. = The functio f

‘modulo 2 piv The result
‘to_approximately 45 bits.
in the interval

- ARGUMENT T0O ;LARGE .

is 1ssued the result is set to 1ndefm1te and a normal ex1t 1s .

taken from SINH."

SNGL(a)

This converts a double-precision number to a real number
by retaining only the most significant part (the first word)
of the double-precision number,

SQRT(a)

This computes the square root of a real number and returns
a real result that is accurate to approximately 45 bits.
The square root function is computed by means of the
machine instruction SQRT.

reduces 1ts argument)

14-21

TANH(a)

This computes the hyperbolic tangent of a real number
expressed in radians. It produces a result that is in the
range -1 through 1, inclusive, and which is accurate to
approximately 45 bits,

For a given real number x:

5
tanh(x) =x* T ¢;x2N for 0<ix1<0.12

=0
where:
cp=1
e =-1/3
cg = 2/15
e3 =-17/315
c4= 62/2835

e5 = -1382/155925
The hyperbolic tangent is:

tanh(x) = (eX - e=X)/(eX + e~X) = 1 - (2/(e2X + 1))
.- for 0.12<1x1<18.0

14-22

where the exponential function is computed
for the EXP function.

The hyperbolic tangent is:

tanh(x) = sign(x) * 1.0 for 1x1>18.0

as described

60457040 B

his computes the natural logarithm'of each element ina
real veector.. VALOG returns a result: vector of real

numbers that are each accurate to appro:umately 45 bits. B

For a gwen real number x. .,VALOG(x) |s computed as
descrlbed for the function ALOG. e

VAI.OG'IO(v,u)

This computes the logarithm of ‘each element in a real
wvector, retuming a result vector of real numbers accurate
to appmxunately 45 bits. Sl . L

Mor a real element x e

1°E1o(x) = losm(e) . loge(x) ;

'where the logarithm of x is computed S descrnbed t‘or the
function ALOG. el e Ce

VAMOD(V| ,v;,u)
For ‘each pair 0

real result vector. For each pair of elements (x,y),

vector. 'The magnxtude of the -error. that is mtroduced into '

;;the results because a_ table; lookup - techmque is used for
tati tely 2745,

60457040 B

orresponding elements in two real |
vectors, this computes one real number modulo the. second '
real number to produce a real result that is' assngned to the

-[XIy]‘y is computed where [A] is the sign ol’ A times.

i
H
i
4

-arctangent _of the second term is computed by -a

;VA'I'ANZ (v| ,Vz,u)

K atan(z) atan(zl) + atan(zZ/(l + 212 v z1 - z2)) .

where :

z-xifx<1 :
2= 1/xifx>1 L e
The atan(zl) is obtamed from a table lookup.,and the

‘polynomial, ‘The values z1 and z2 are the most sngnihcant
and the least mgniflcant parts of z. respectively. sE T

ThlS computes the arctangent of the ratxo ot two reall
elements in. correspondmg positions in -two real veetors.” :
The result is a real vector having elements that are<
accurate to approximately 45 bits. SR 3 ,

,For a gwen palr of elements (x,y), thc arctangent of X
'calculated as follows' . e A ;

-vector, and places
t curate

14-23

14-24 : 60457040 B

?Thls constructs an' integer vector from 'a’ real vector.
VIFIX, which is 'an alternative name for VINT,'
~computes [x] for each element x in a real vector. [A] is.
the sign of A tnmes the largest mteger less than or equal
‘to 1AL , o

_?qur(v,u)

For each element X in a real vector, VINT computes [x]
‘and assngns the resulting value to an integer vector. [A)is
the sign of A times the largest integer less than or equal
~to 1AL . :

VISIGN(v,,vz,u)

For each pair (x,y) of corresponding elements in two
‘integer vectors, this combines the sign of y with -the
“absolute value of x; the effect of VISIGN on each p&ll‘ (x,y)
s that of the expression lSIGN(x,y)

, VMOD(v‘,vz,u)

For each paxr of correspondmo‘ elements in two real
‘vectors, this computes’one integer number modulo’ the
.second integer number to produce an 1nteger result that is
‘assigned to the integer result vector. For each pau- of :
‘elements (x,y), x-[x/y]*y is computed, where [A] is the

ign of A times the largest integer less than or equal to'|A |

‘the real parts of a
§complex vector.« For each element of -the complex'vector,
if xtiy is the complex element; x is assigned tot ‘result
ector. Accuracy of the result is 47 blts , =

_For each pair (x,y) of corresponding elements in two real .
“vectors, this combines the sign of y with the absolute value -
“of x; the -effect of VSIGN on each pair (x,y) is that of the
jexpressxon SIGN(x,y) Accuracy of each result is 47 blts. s

i’VSIN(v,u) AND VCOS(v,u)

These’ ‘compute the sme and: cosme of each element m a
;real vector as descrnbed for the functlon SIN. ‘

S

'VSNGL(v;u) iy ,
‘This converts a double-preeision’ vector to a real vector.

‘The most - significant part (the - first' ‘word) of each
double-precision element is assigned to the result’ vector.'

Accuracy of each result is 47 bltS.

VSQRT(v,u)

EThls computes the" square ‘root’ of each element in a real
‘vector.. The real result vector contains elements that are‘i
"accurate to approxxmately 47 tnts. L et

‘This computes the ;tangent of
vector. ‘See "TAN ' discussion

tangent funetion.. -

60457040 B

14-25

For a gwen real element X of the vector argument, the’;
_appropriate ' element of the result vector is- indefinite if .
x<0,. 0. For each x>00 a result is computed with the

PROGRAM COMPILATION ' 15

The system control statements accompanying a
CYBER 200 FORTRAN program must include a call to the
FORTRAN compiler. The parameters for this call
optionally declare files for input and output, and optionally
include instructions to the compiler to (for example) output
storage maps. Additional control statements are required
to load and to execute the compiled program, and can be
used to change at run time the file declarations made in a
PROGRAM statement.

FORTRAN STATEMENT

The FORTRAN system control statement is used to
execute the CYBER 200 FORTRAN compiler. In the
statement parameter descriptions that follow, underlining
indicates the minimum number of characters that can be
used in specifying the parameter.

Forms:
FORTRAN.

FORTRAN(INPUT=f;,BINARY=f9/ls,
LIST=f3/13/d3,OPTIONS=olist)

INPUT=f; Optional; f; is the name of
the file =~ containing the
FORTRAN source program to
be compiled. When the param-
eter is omitted, the default
file name INPUT is used.
BINARY=f9/ly Optional; fo is the name of
the file that is to receive the
compiler-generated object
modules. 1y is a specifi-
cation of the length of fy,
and can be either an integer
constant or a hexadecimal
number prefixed with a #.
19 can be omitted along with
the slash. When the entire
parameter is omitted, the
default file name BINARY is
used. When 1lp or the entire
parameter is omitted, the
default file length of 16 small
pages is used.

LIST=f3/13/dg Optional; f3 is the name of
the file that is to receive the
compiler-generated listings
and program output. 13 is a
specification of the length of
f3. Like 19, 13 can be
either an integer constant or a
hexadecimal number prefixed
with a #. d3 is the routing
disposition of f3 and must
be PR (the line printer) or can
be omitted (in which case no

60457040 C

can occur in either
order. When 13 is omitted,
the default file size of 336
small pages is used. When the
entire parameter is omitted,
the default is OUTPUT.

routing is rformed). 1
routing pe 3

OPTIONS=olist Optional; olist is some logical
combination of the compile
option letters ABCEIKLMOR
SUVYZ12, with the restriction
that Y must not occur with
any other option except L.
Default olist is B.

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis, and a period
instead of the right parenthesis. When communicating
interactively with the system, the user can replace a
period with a carriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default values used for the omitted
parameters. The first form of the FORTRAN statement
selects all defaults for the parameters. The I=, B=, and L=
parameters can be interchanged without consequence; the
O= parameter must ocecur last.

The objeet and output files (specified by the B= and L=
parameters of the FORTRAN system control statement) do
not have to exist when the control statement is executed.
If the file does not exist, it is automatically created on a
unit assigned by the operating system and with the length
specified in the control statement. If the file does exist
and has write access, it is automatically destroyed and
recreated on the same unit with the length specified in the
control statement. If the file does exist but does not have
write acecess, a request is made to interactive users for
permission to destroy the file. If permission is granted,.the
procedure followed is the same as for files that exist with
write access. If permission is not granted, or if the user is
in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, certain actions are performed during
compilation that would not be performed otherwise. The L
option is an exception in that the listing of the source
program is inhibited rather than initiated by its appearance
in olist.

When O=olist is omitted, or when B is included in olist, the
object file for the program is built. The object file is not
built when the O=olist parameter without the B option
appears in the parameter list for the FORTRAN system
control statement.

A - ASSEMBLY LISTING

An assembly listing of the object code can be placed in the
output file by selecting the A option.

15-1

B - BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be built is
made by selecting the B option.

C - CROSS-REFERENCE LISTING

All mentions in the source program to labels and symbolic
names are listed in tabular form in the output file by
selecting the C option.

E - EXTENDED BASIC BLOCK
OPTIMIZATION

The E option selects optimization of extended basic
blocks. This optimization involves compile-time
computable result propagation, redundant code elimination,
and instruction scheduling. The E option is included in the
O option. The E option effectively selects options P, R,
and I.

| - INSTRUCTION SCHEDULING

The 1 option selects optimization of objeet instructions
according to the results of a critical path analysis. The
I option is included in the O and E options.

K - 64-BIT COMPARE

This option enables fullword (64-bit) integer compares for
.EQ. and .NE. operators in logical IF statements.
Otherwise, 48-bit compares are performed for the .EQ. and
.NE. operations (integers are 48 bits).

L - SOURCE LISTING SUPPRESSION

The first part of the output file for a CYBER 200
FORTRAN program is normally the source program
listing. This can be omitted from the flle by selecting the
L option.

M - MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and descriptors, along with a map of the
contents of the register file, is produced when the
M option is selected.

O - OPTIMIZATION

The O option selects all available optimization of scalar
object code. More efficient object code is produced at the
expense of increased compilation time. The O option
effectively selects options Z, E, R, I, and P.

15-2

P - PROPAGATION

The P option selects compile-time-computable result
propagation.

R - REDUNDANT CODE ELIMINATION

The R option selects elimination of redundant code. The
R option is included in the O and E options.

S - SUPPRESS DEBUG SYMBOL TABLE
CREATION

The effect of this option is to suppress generation in the
binary output of a debug symbol table for each program
unit. The symbol table makes it possible for the
system- prov:ded debugging utility DERUG to recognize
names in the FORTRAN program and for a FORTRAN
run-fime routine to identify the source line in a user
routine at which a run-time error occurred. The user must
not select this option if DEBUG is going to have to
interpret variables, names, and symbolic addresses; if only
absolute addresses will be used in commands to DEBUG,
the S option can be selected.

U - UNSAFE VECTORIZATION

The U option enables unsafe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and
the loop contains any references to dummy arrays, the
compiler cannot determine the number of iterations of the
loop. Vectorization of such loops is considered unsafe
because the loop count might exceed 65535, which is the
maximum length of a vector. If a DO loop contains an
assignment statement that has an equivalenced data
element on the left side, the loop can be vectorized only if
the U compile option is selected.

V - VECTORIZATION AND AUTOMATIC
RECOGNITION OF STACKLIB LOOPS

Vectorization of certain CYBER 200 FORTRAN language
constructs and automatic recognition and conversion of
certain DO loops into calls to a stacklib routine are
requested with the V compile option. The language
constructs that fall under these categories are described in
section 11.

Y - SYNTAX CHECK

A partial compilation can be performed to check the
syntax of a FORTRAN program and any resulting
diagnostics can be produced by selecting the Y compile
option. The Y option can appear alone or with the L or
S options (such as LY or SY); all other option combinations
using Y are invalid compile option lists and produce an
error accompanied by a dayfile message.

60457040 C

Z - DO LOOP OPTIMIZATION

The Z option selects optimizations of DO loops and loop
nests. Optimization involves invariant code removal and
strength reduction of subscript calculations. The Z option
is included in the O option.

1 - STAR-100 OPTIMIZATION

The 1 option selects optimization for the STAR-100. The
1 option conflicts with the 2 and 3 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

2 - CYBER 203 OPTIMIZATION

The 2 option selects optimization for the CYBER 203. The
2 option conflicts with the 1 and 3 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

3 - CYBER 205 OPTIMIZATION

The 3 option selects optimization for the CYBER 205. The
3 option conflicts with the 1 and 2 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

COMPILER-GENERATED LISTINGS

As a result of requesting compilation of a FORTRAN
program with a FORTRAN system control statement, a
variety of information is placed in the output file., The
compile options A, C, and M directly request such
information.

A header line at the top of each page of printed compiler
output contains the compiler version, the compile options
selected, the type of listing, and the time, date, and page
number.

Unless the L compile option has been selected, the source
program (including comments) is the first item to be placed
on the file. The source program is listed 58 lines per
printed page (excluding headers); the output lines are
numbered on the right and the source lines are numbered
on the left. The source line numbers are used in the
cross-reference maps.

Diagnosties are collected and listed at the end of each
program unit. When no compile options have been selected,
any error diagnostics immediately follow the source listing;
or, if the syntax of the program is acceptable to the
compiler, the message NO ERRORS appears instead.
Listed with each diagnostic is the line number of the
source line during the processing of which the error was
detected, as well as the error number (see appendix B) and
the severity level of the error.

60457040 C

The order in which the assembly listing, cross-reference
maps, storage map, and register map appear on the output
file following the source listing is:

® Cross-reference map
® Assembly listing
® Storage map and register map

Any diagnostics follow the storage and register maps.

CROSS-REFERENCE MAPS

When the C compile option is selected, from one to four
cross-reference maps appear in the output for the program
compilation. These maps appear immediately following the
source program listing, or, when the L compile option is
also selected, as the first listings in the output. The four
cross-reference maps are:

® Statement label map

® Variable map

® Symbolic constant map

® Procedure map

The statement label map provides information about each
statement label used in the program. See figure 15-1 for
the format of the statement label map. If no statement
labels are used in the program, the statement label map is
not printed. Some uses of the statement label map include:

o Identifying unreferenced FORMAT statements and
other unreferenced labeled statements

® Verifying that proper statement labels are specified in
flow control statements

® Locating labeled statements in the program, and
locating all references to a statement label

See figure 15-2 for an example of a statement label map.

STATEMENT LABEL MAP
. ——LABEL———DEFINED———-REFERENCES

Ibl def refs

Ibl A statement label that appears in the
label field of a FORTRAN statement.

def The source line number of the
statement in which Ibl appears in the
label field.

refs The source line numbers of all source
lines that contain references to Ibl.

Figure 15-1. Statement Label Map Format

15-3

p-st

O 0v0LS¥09

FORTRAN Kle9 CYCLE FLL BUILT C6/19/80 Llz4ad . SQURCE LISTING COMP ILED 09/09/80 11256 G=CAM

oQovul PROGRAM PASCALIOUTPUT) -

¢0002 INTEGEK L{11)s0ONEgAsd

00CG3 PARAMETER (ONE=1)

00C04 TADD(AsB) = A + &

00005 DATA L(11) /ONE/
C

00C¢V6 PRINT 4y (IsI=1,11)

G0907 4 FORMAT(*LCOMBINATIONS UF M THINGS TAKEN N AT %,
' % 4 TIMEL® //20X4°~N=" /1L115)

0cui8 3G 200 I=1,10

0u009 K =11 -1

00010 Lik) = 1

00011l 00 190 J=K,410

00C12 100
00G13 250

LGS = TADDILUIDsL(J+1))
PRINT 39 (LUJ)sdaK,y1ll)

00014 3 FORMAT(LL1S)
C

£0015 ST0P

60016 END

FORTRAN R1l.5 CYCLE FL1 BUILT 06/19/80 11344 CkOSS REF LISTING PASCAL COMPILED 03/09/80 11356 0=CAM

STATEMENT LABEL MAP
=L ABEL-=~DEF INED~——-REFERENCES

100 - 12 14
200 13 8
3 14 13
4 7. [

VARTABLE MAP

PAGE
0001/000C!L
0001/G00GC2
0001700003
0001/00004
0001/00605
0001/000C6
0001700007
0001700008
06001/00C09
0001700010
0001703011
* 0001/00012
0001700013

0001700014
0001/00015
0001706016
0001700017
G001/G0016
0001/00C19

PAGE

~=NAME BLOCK TYPE—=——===CLAS5=~==~==REFERENCES A=ARGLISTy C=CTRL OF DOy 1=0DATA INIT, R=READy S=STORE, WeWRITE
A “INTEGER UNKNOwN 2 4 4
8 INTEGER UNKNOwWN : 2 4 4
I INTEGER SIMPLE 6/n 6/C 8/¢C 9
J o INTEGER SIMPLE 11/C 12 12 12 12 12 13 13/C
K INTEGER SIMPLE 9/ 10 11 13
L INTEGER ARRAY : 2 571 10/5 1273 12 12 12 12 1375k
PASCAL PROGRAM 1 .

" SYMROLIC CONSTANT MAP .

—=NAaMg TYPE VALUE ===~ -— REFEKENCES S=DEFINITION LINE
ONE INTEGER 1 ' 2 3/5

PROCEGURE MAP

~=NAME TYPE CLASS REFERENCES D=STMT FN DEF, A=ARGLIST
1ADD INTEGER STAT FUNC 4/D 12

i

Z

Figure 15-2. Compiler Output Example (Sheet 1 of 5)

O 0v0L5%09

G-S1

FORTRAN R1.5 CYCLE FLL

LCCATION
COUNTER

0003000
00092020

0000040
0C00060

0000080
C0G00AO
¢0000Co
C0000E0
0000100
000012¢C
€Cc0C140
0000160
0000180

0000N1AC
00031C0

CO001EQ
0009200

00C022¢
0000240
0000260
0060280

0co02C0
00002€0

0C0013G0

0CV0320
0000340
0000360
®

[]

[

0000540
0000560
0000580
0009540

000905C0

0002600
0000620
0C0d640

BUILT 06/19/60 11364 ASSEMBLY LISTING PASCAL COMPILED 09/09/80 L1356 OsCAN
MACHINE LINE $SOUKCE ASSEMBLY REPRESENTATION
INSTRUCT IOMN NUMBER LABEL
PASCAL IDENT
ENTRY PASCAL
00601 400006
7000151¢C PASCAL SHAP sC_81A,CUR_STACK
781C0010 RTOR CUR_STACK,PREV_STACK
7818001C RTOR DYN_SPACEsCUR_STACK
IF 181400 Is DYNZSPACE,5120
2A1€0050 ELEN CUR_STACK 80
3230700 €S ST_23,1792
631E£232¢ ADOX CALLEDATAsST_23+ST_24
24240044 ELEN ST_24476
7024140y SWAP ST_24+C_n20
78660003 RTOK L_C00001_DESCRPR_3
7861001t RTOR . FT_INIT_DB,CALLEDATA
36140060 BSAVE RETURNsFT_INIT_ADR
78180044 RTOR DYN_SPACESP I_DYNSP
00026 400007 .
78670004 KTUOR L_F4 _DESCKyPR_4
785B001E RTOR FT_wTIPk_DB+CALLEDATA
36146054 BSAVE RETURNy FT_WTIPR_ADR
73520057 & TCK C_rlyl
400008 .
78570003 000002 RTO& 1,PR_3
7850001t RTOK FT_WTIE_DByCALLEDATA
361A005C BSAVE RETURNSFT_nTIE_ADR
B406575200035357 IBXLE 4BRE 1+C_%#1,0G0002+C_#8+¢1
400009
7859001t ‘RTUR FT_WTTPR_DByCALLEDATA
36140058 BSAVE RETURNy FT_WTTPR_ADK
00608 400010
78520057 RTOR C_slyI
400011
67535755 ©0009 000003 suBx C_#ByIsx
76655552 00010 STO (L_18_DESCR¢K])+C_#1
78550056 ouull RTOK Ked L
[J [] [
° ® '
[] [[]
785FCULE KTOR FT_WTIEA_DB+CALLEDATA
361A005€ BSAVE RETUKNSFT_wTIEA_ADR
7859001¢ RTOR FT_WTTPR_CBsCALLEDATA
36140058 SSAVE RETURNyFT_aTTPR_ADR
A00C15 v
3406575200155457 IBXLE +8RB 1+C_#14D000034C_nsA41
00019 400016 \
3£030000 €S PR_330
7863001€ RTOK . FT_STOP_0BsCALLEDATA
36140062 BSAVE RETURN,FT_STOP_ADR
END

P AGE

Figure 15-2. Compiler Output Example {Sheet 2 of 5)

9-G1

FORTRAN kle5 CYCLE FL1

REG.

ND

00
o1
02
63
04
05
06
07
08
09
oA
03
6C
oD
ot
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
10
1€
1F
20
21
22
23
24
25

26 7

27
28
29
24
‘28
2C
2n
2E
2F
30
31
32

NAME

[(MACHINE ZERO)
GATA_FLAG_RETURN
THM_INTERUPT_ENTRY
PR_3

PR_4

PR_S

PR_6

PR_7

PR_&

PR_Y

PR_A

PR_B

PR_C

PR_D

" PR_E

PR_F
PR_LC
PR_11
PR_12
PR_13
c_%20
C_K1A
c_1

C_PARM_DE SCR
F_RETL
FoRET2
RETURN
DYN_SPACE
CUR_STACK
PREV_STACK
CALLEDATA

ON_UNIT
DATABASE

PARM_DESCR
ST_22

ST_23
ST_24
ST_25
ST_26
ST_27
ST_28
ST_29
ST_2A
ST_28
st_ac

BUILT 06719730 11:44

-REG.
NO

33
34
35
36
37
38
39
34
38
3C
30
3E
3F
«0
4l

42
43
44
45
46
47
48
49
4A
4g’
«C
4D
4E
4F
50
51

52 .

53
54
55
56
57
58
59
5A
58
5C
S0

St
SF

60
61
62

63
64

&5

NAME

P_DYNBAS
LZTARVEC

LEN_TARG
v_TENPL
V_TEMP2
V_TEmP3
V_TEMP4
[%
C_»8
C_uA

K .

J

1
FT_aTTPR_ADK
FT_WTTPR_DB
FT_wTIPK_ADR
ET_wTIPR_DB
FT_WTIE_AUK
FT_WTIE_DB
FY_WTIEA_ADR
FT_WTIEA_DB
FY_INIT_ADR
FT_INIT_D8
FT_STOP_ADR
FY_STOP_0B
L_20_DESCR
L_18_DESCR

REGISTEK MAP

REGe
NO

66
67
68
69
6A
68
6C
60
ok
oF
70
71
72
73
74
75
76
77
78
79
7A
78
7C
70
7€
7F
80
81
82
83
84

85
86

87
L1
89
8A
88
8C
80
8E
8F
-90
91
92
93
94
95
96
97
94

NA ME

L_C00001_DESCR
L_F4_DESCR
L_F3_DESCR
FR_69
FR_6A
FR_68
FK_6C
FR_6D
FR_6E
FR_6F
FRZ70
FR_71
FR_72
FRZ73
FR_74
FR_T5
FR_76
FR_77
FR_78
FK_79
FR_7A
FR_78B
FR_7C
FR_70
FR_TE
FRZ7F
FR_80
Fk_81
FR_82
FR_b3
FK_B84

FR_85
T

PASCAL

COMPILZU 09/09/80 L1356 O=CaAM

REG.
NO

99
94A
98
9C
90
9E
9F
AOQ
Al
A2
A3
A4
AS
A6
A7
A8
A9
AA
A8
AC
AD
AE
AF
80
8l
82
83
B4
B85
86
87
-]
B9
BA
b8
8cC
80
BE
8F
co
Ccl
c2
c3
Ca
(4]
ce
c?
cs
co
CA
ce

NAME

REG.
NG

cC
¢o
CE
CF
Do
a1
02
03
04
05
D6
07
08
09
DA
D8
oC
0D
DE
DF
EO
El
E2
E3
E4
ES
E6
E7
E8
E9
EA
€8
£C
€D
EE
EF
FO
Fl
F2
F3
Fé
F5
Fo
F7
F8
F9
FA
F8
FC
FO
FE
FF

NAME

PAGE

5

O 0¥0LSY09

Figure 15-2. Compiler Output Example (Sheet 3 of 5)

O 0¥0LSY09

-1

FORTRAN R1.5 CYCLE FL1

BUILT 06/19/80 llzta4

PROGRAM NaME 1S PASCAL

STORAGE MAP

PASCAL COMPILED 09/09/80 L1356 O=CaAnm PAGE

TOTAL LENGTH IS 33 HEX HALF wURDS

DATA AREA COPY OF ALL REGISTERS USED 8Y THIS FORTKAN PROGKAM

WFT_nTTPR_DB
oFT_ATIPK_DB
oFT_aTIE_DE
oFT_aTlcA_08
oFT_INIT_DB
W FT_STOP_DB

START ADDRESS = 700
SCALARSsCONSTANTS ANU EXTERNALS ASSIGNEU TO REGISTERS
LOCATION REG.NO NAME
1180 4A P1_DYNSP
‘11€0 < P_DYNBAS
1200 4C L_TARVEC
1240 40 LEN_TARG
1280 4E V_TENPL
12€0 4f V_TEMP2
1360 50 VoTEMP3
1340 51 V_TEMP4
1380 52 sl
13¢0 53 C_ub
1406 54 C_sA
1440 55 K
148C s6 J
14C0 57 1
1500 58,59 FT_ATTPR_ADR
1550 58,58 FT_WTIPR_ADR
1600 5Cy50 FT_wTIE_ADR
1680 SESF FT_WFIEA_ADR
1760 60s61 - FT_INIT_ROR
1780 62463 FT_STUP_ADR
CESCRIPTORS ASSIGNED TO REGISTERS
LOCATION = REG.NO NAME
1300 64 L_20_DE SCR
1840 65 L_18_0ESCk
1886 66 L_C00001_DESCR
13C0 67 L_F4_DESCR
1900 68 L_F3_DESCR

{STAKT ADDKESS IS RELATIVE TO DATA AREA BASE ADDRESS)
(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADODRESS)

CLASS TYPE :
SIMPLE VARIABLE INTGR
SIMPLE VAKIABLE INTGR
SIMPLE VARIABLE INTGR
SIMPLE VARIABLE INTGR
SIMPLE VARIABLE " INTGR
SIMPLE VARIASLE INTGR
SIMPLE VARIABLE INTGR
SIMPLE VARIABLE INTGK
CONSTANT INTGR
CONSTANT INTGR
CONSTANT INTGR
SIMPLE VARIABLE INTGR
SIMPLL VARIABLE INTGR
SIMPLE VARIABLE INTGR
REFe EXTERNAL SUBPR UNKN#W
REF.EATERNAL SUBPR INTGR
REFLEXTERNAL SUBPK UNKNw
REFLEXTERNAL SUBPR UNKNuW
REF.EXTERNAL SUBPR UNKNw
REFLEXTERNAL SUBPR INTGR

(LOCATIONS ARE RELATIVE TO DATA AREA BASE ADDRESS)
CLASS -
ARRAY NAME
ARRAY NAME
CHAR/BIT/FORMAT
CHAR/BIT/FOKMAT
CHAR/BIT/FORMAT

NOTE: TOTAL NUMBEKR -OF REGISTERS TU BE FETCHED INTO REG.FILE STARTING wITH kEGe20 HEX IS 49 HEX

.

GENERATED GBJECT CODE
START ADORESS =

START ADDRESS =

ARGUMENT VECTORS
START ADDRESS =

0

0

280

LENGTH =

LENGTH =

CHARACTER CONSTANTS,LITERALS AND FORMAT SEGMENTS
LENGTH =

33 HEX HALF ®ORDS

14 HEX HALF ®GROS

0 HEX HALF wORDS

(START ADDRESS 1S RELATIVE TO CODE AREA BASE ADDRESS)
(START ADDRESS IS RELATIVE TO DATA AREA BASE ADORESSO-

(START ADDRESS 1S RELATIVE TO DATA AREA BASE ADDRESS)

[}

Figure 15-2. Compiler Output Example (Sheet 4 of 5)

8-S1

J 0% 0LSY09

FORTRAN R1.5 CYCLE FLI1 BUILY 06/719/80 11344 STORAGE MAP P‘SCAL COMPILED 09709780 11356 O=CAM PAGE

CONSTANTS yEXTERNALSsDESCRIPTORS AND NON=COMMON VARIABLES NOT ASSIGNED TU REGISTEXSe NARELISTS oCHARACTER SCALARS

START ADDRESS = 280 LENGTH = 16 HEX HALF WORDS (START ADORESS IS RELATIVE TO DATA AREA BASE ADDRESS)
LOCATION SYHBOL}C NAME OR HEX VALUE L CLASS TYPE (LOCATIONS ARE RELATIVE TO DATA AREA BASE ADURESS).
280L ' ARRAY VARIABLE INTCR

TEMPCRARY STORAGE

LENGTH 0 HEX HALF WOKDS (STOGRAGE IS SCATTERED THROUGHOUT DATA AREA}
COMMON BLOCKS
NO COMMON B8LOCK IS SPECIFLED
LléT OF ALL ENTRY POINTS
LOCATION _SYHBOLiC NAME | (LOCATVIONS ARE RELATIVE TO CODE AREA BASE AODRESS)

0 PASCAL

LIST OF ALL EXTERNALS

SYMBOLIC NAME

FT_WITPR ; .
FT_wTIPR . : o

FT_WTIE

FT_WTIEA

FT_INIT

FT_STOP
NO ERRORS

Figure 15-2, Compiler Output Example (Sheet & of 5)

The variable map provides information about each symbolic @ Identifying functions that should be arrays
name used in a program except procedure names and

symbolic constant names. See figure 15-3 for the format ® Locating misspelled symbolic names

of the variable map., The variable map is always printed

when the C compile option is selected. Some uses of the e Verifying that symbolic names are in the proper
variable map include: common blocks
® Locating all statements in a program in which a
® Identifying symbolic names that are not associated symbolic name is referenced, and identifying and
with the proper data type locating symbolic names that are defined but never
used.,

® Locating the place in the program where a value is
assigned to a symbolic name See figure 15-2 for an example of a variable map.

VARIABLE MAP
—~NAME——-BLOCK———TYPE~—-CLASS——REFERENCES

sym blk typ cls refs

. . .

sym A symbolic name that appears in the program. Symbolic names are listed in alphabetical order.

blk The name of the common block in which sym appears. If sym appears in blank common, two consecutive slashes
are printed for blk. If sym does not appear in any common block, the blk field is left blank.

typ The data type with which sym is associated; typ can be any of the following:

INTEGER
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR*"len (len is the character length)
BIT
cls The class of sym; cls can be any of the following:
SIMPLE
ARRAY
DESCRIPTOR
DESCRIPTOR ARRAY
UNKNOWN
refs The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
numerical order, and multiple references are listed. A source line number appearing in refs can be followed by a
suffix. A suffix describes how sym is used in the source line. The suffixes and their meanings are:
/A The symbolic name sym is an actual argument in a subroutine call or function reference.
/C The symbolic name sym is the control variable of a DO loop.
N The symbolic name sym is initialized in a DATA statement.
/R The symbolic name sym appears in the input/output list of an input statement.
/S The symbolic name sym appears on the left side of an assignment statement.

W The symbolic name sym appears in the input/output list of an output statement.

Figure 15-3. Variable Map Format

60457040 C

15-9

The symbolic constant map provides information about e Verifying that the symbolic constant names are

each symbolic constant used in a program. - See figure 15-4 associated with the proper data type

for the format of the symbolic constant map. If no

symbolic constants are used in a program, the symbolic e Identifying and locating symbolic constant names that
constant map is not printed. Some uses of the symbohc are defined but never used

constant map include: :
@ Locating the PARAMETER statement that defines

each symbolic constant, and locating all occurrences
of a symbolic constant in the program.

® Verifying that the proper values are assigned to
symbolic constant names : See figure 15-2 for an example of a symbolic constant map.

SYMBOLIC CONSTANT MAP
~—NAME——TYPE——VALUE——-REFERENCES

sym typ val refs .

sym The name of a symbolic constant that appears in the program. Symbolic constant names are listed in alphabetical
order. :)

typ The data type with which sym is associated; typ can be any of the following:

INTEGER

REAL

DOUBLE

COMPLEX

LOGICAL

CHAR*len (len is the character length)
BIT

val = The value assigned to the symbolic constant name sym. The format of var depends on the data type of sym:
Integer The integer value is printed. A negative value is preceded by a minus sign.

- Real and The value is printed as a hexadecimal string constant. The format is X'nnn’.
Double-precision

Complex _ The complex value is printed as two hexadecimal string constants. The first constant
represents the real part, and the second constant represents the imaginary part. The
format is X'nnn’,X'nnn’.

Logical " The logical value is printed as the logical constant .TRUE. or .FALSE..

Character The character value is printed as a character string enclosed in apostrophes. |f the
string is too long to fit in the columns provided, the trailing apostrophe is replaced
by an ellipsis.

Bit The bit value is printed.as a bit string constant. The format is B‘'nnn’. If the string

"is too long to fit in the columns provided, the trailing apostrophe is replaced by an
ellipsis.

refs ° The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
numerical order, and multiple references are listed. A source line number appearing in refs can be followed by
the suffix /S, which indicates that the symbolic constant is defined in that source line.

Figure 15-4. Symbolic Constant Map Format

15-10 60457040 C

The procedure map provides information about subroutines,
funetions, statement functions, and external symbolic

names used in a program. If no procedures are used in a

program, the procedure map is not printed. See
figure 15-5 for the format of the procedure map. Some of
the uses of the procedure map include:

o Identifying statement functions that should be arrays

@ Verifying that procedure names are associated with
the proper data types

e Identifying misspelled procedure names
® Locating statement function definitions

® Identifying and locating statement function names
that are defined but never used

o Locating all references to a procedure name

See figure 15-2 for an example of a procedure map.

ASSEMBLY LISTING

When the A compile option is selected, a listing of the
assembly representation of the FORTRAN program appears
after any cross-reference maps. Given are the location
counter (the offset from the code area base address), the
machine instruction in hexadecimal (either halfword or
fullword instruction), the source line number of the
associated source program statement, the instruction
mnemonic, instruction qualifiers, and operands. See
figure 15-2 for an example of an assembly listing. See the
CYBER 200 Assembler reference manual for more
information about the assembly language.

PROCEDURE MAP
—NAME—-TYPE———CLASS——REFERENCES

sym typ cls refs

in alphabetical order.

INTEGER

REAL

DOUBLE

COMPLEX

LOGICAL

CHAR*len (len is the character length)
BIT

GENERIC (for generic functions)

SUBROUTINE {Subroutine)
INTRINSIC (Intrinsic function)
STAT FUNC (Statement function)
BASIC EXTRN (Basic external function)

EXTERNAL

sym The symbolic name of a subroutine, function, statement function, or external symbol. Symbolic names are listed

typ The data type of the procedure result; typ can be any of the following:

If the symbolic name sym is a subroutine name or an external symbol, the typ field is left blank.

cls The class of sym; cls can be any of the following:

DUMMY SUBR (Subroutine name is a dummy argument)

DUMMY FUNC (Function name is a dummy argument)
(Procedure name appears in an EXTERNAL statement and is not one of the above)

refs The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
If sym is a statement function name, a source line number in

numerical order, and multiple references are listed.
refs can be followed by the suffix /D, which indicates that the statement function is defined in that source line.

Figure 15-5. Procedure Map Format

60457040 C

15-11

I REGISTER MAP AND STORAGE MAP

When the M compile option is selected, a listing of the
contents of the 256-register register file is produced,
appearing after any assembly listing. The CYBER 200
FORTRAN register usage conforms to standard
CYBER 200 operating system register conventions, which
are described in volume 2 of the CYBER 200 Operating
System reference manual. Also produced under this option
is a storage map, giving the following information:

® Start address and size of data area copy of the
register file

® Name, location, class, and data type of all scalars,
constants, and externals assigned to registers

® Name, location, and class of descriptors assigned to
registers

@ Length and start address of the object code

e Length and start address of - character constants,
literals, and format segments

® Length and start address of argﬁment vectors
Length and start address of constants, externals,

' descriptors, variables (not "in common) namelist
groups, and character scalars not assigned to registers

Quantity of temporary storage
Common blocks

Entry points

See figure 15-2 for an example of a register map and a
storage map. .-

Externals

CONTROL OF DROP FILE SIZE

If a DROP FILE OVERFLOW run-time error message is
issued, the user can increase the size of the drop file and
rerun the program. The CDF parameter of the LOAD
system control statement or the D parameter. of the:
SWITCH system control statement can be used to make the
drop file size larger. Increasing the size of the drop file
. can usually solve the overflow problem, but a program
error (especially an infinite loop) might be the cause. :

15-12 : -) o ' : 60457040 C

EXAMPLES 16

This section consists of éxan’lblés’ of FORTRAN ‘p’ro’gra’ms'

illustrating some of the features of the CYBER 200
‘FORTRAN programmmg language.

PROGRAM PASCAL

Program PASCAL produces a table of binomial coefficients

?(Pascal's triangle).
'Features.
ORTRAN system control statement
_NestedDOloops .

* DATA statement
Implied DO loop

‘The source listing for' the program, along with the output’
‘generated by execution of the program, is shown in

figure 16-1. The system control statements perform -the

 following functions:

e FORTRAN.

This requests that the program .in the file INPUT be
compiled by the FORTRAN compiler, with the object
...code generated during compilation to be placed in the:

’SYstem control statements:

s cOQT"AN.

60457040 B

16-1

16-2 . 60457040 B

Asst:

6045704

Type:kf

Data:

Type:

Data:

BIT B(20)/B'10',2*X'0',B' 1111110111'/
REAL A/3.0/, .
or
BIT B(20)/X'803F7'/
REAL A/3.0/, ...

or .
BIT B(20}/B'10000000001111110111"/
REAL A/3.0/, ...

BIT B(20)

DATA A,B/3.08'10',2*X'0',3'1111110111"/
or

BIT B(20)

DATA A,B/3.0, X'803F7'/
or

BIT B(20)

DATA A,B/3.0,8'10000000001111110111"/

BIT B(20)
A=3.0
B=B'0'

~ B{1)=B'1'
B(11:16)=B'1'
B(18:20)=B'1"'

INTEGER 1(10)/0,1,2,3,4, 56,78 9/
REAL A/3.0/ :

. DIMENSION 1{10))
DATA A,1/3.0,0,1.2, 3 456,789/

DIMENSION 1(10) .
DO 100 N 1 10
100 |(N) N 1

0B

: Type:

Data:

Asst:

INTEGER 1(10)/0,1,2,3,4,5,6,7,8,9/
REAL A/3.0/

DIMENSION 1(10)
DATA A,1(1;10)/3.0,0,1,2,3,4,5,6,7,8,9/

DIMENSION 1(10)
DO 600 N=1,10

600 {(N)=N-1

Type:

Data:

Asst:

Type:
Daia:

oo Assts

A=3.0

INTEGER 1{10)/10*0/,12(10)/10*0/
REAL A/3.0/

DIMENSION 1(10),12(10)
DATA A,1(1;10),12(1;10)/3.0,20*0/

DIMENSION 1(10),12(10)
1(1;10)=0

12(1;10)=0

A=3.0

COMPLEX COMP(50)/50*(0.,0.)/
REAL A/3.0/

COMPLEX COMP(50)
DATA A,COMP/3.0,10%(0.,0.)/

COMPLEX COMP(50)
COMP (20:10)=(0.,0.
A0

£ ,‘Eig‘u;re 164, Examples of Vector Initialization

16-3

16-4 60457040 B

Pfogram inputﬁ

/a‘6-544?56333814555 £962332020258520202851741714436e5599887 36541 QURSEF 12258503308

/DUEE‘GEX 0233856555458 7 77 95322245899963502221456325 087450505124 0620363802147 52836%0

/55&‘4753698385214:5 6036309528087 0741 028 06395883698327 4145405238722 599066 044 025%"

Program output:

13912 IS THE TOTAL OF THE 26 NUMBERS ON THE CARD
365u47563332145557896323329020258520202851741714446E559988795541002587412358963332
THE NUMRERS ARSZ

654 475 633 321 455 578 963 332 20 258 520 202 851 741 714 446K 655 998 879 K54
100 258 741 235 89% 333

32% IS THE TOTAL OF THE 79 NUMBERS ON THE CARD
10223210233256555458777563222458993€302221456325) 57‘05050517"05303698521‘47‘59835‘36
THE NUMBERS ARE

0 2 3 1
4
2

NP NN
un:'\n\\
‘i\»w:w
Nmom

'S
0
1
6

LD NNt

5
3

5

3

o N a
- ~aw
:"‘ml\)‘

2
7 5 6. 3
1 5B 3
6 o3 6

en

9

"nQ\Dm
B R NRC P
Lo oy N

NMENN @

~«15363 IS THE TOTAL OF THE 26 NUMBER< N THE CARD - :
,35?47=369888521a75x60169095?608707a1025061952336985zr«1uau953zavgasqqussuuuozsaa
~.THE. NUMBFRS 'ARS : : ;
524753 698 8853 :'u. 753 603 690 e,aua[
;387 ?25 990 66') tmn ?se . o

Vu? uxn zeo 639 s;s 35"

L oboy 553

~ Figure 16-8, Program ADD (Sheet 2 of 2)

. With the READ statement, when the FORMAT ~In program ADD, the format of data on input is
e ,speclflcatlon indicates a new record is to be processedf ~ specified in column 1. If column 1 is a one, each of
- (by. a slash or . the final right" parenthesxs of the .. the remaining columns 1sadata item. If colum 'J,ls a

_.FORMAT statement), a new record 1s read mto the; © ... two, each pair of the remaining. columns is a data

,mput buffer. : j e : item. If column 1 is a three or greater, each triplet of

e ‘the remammg columns is a data 1tem., Based on the’
information. 'in column 1, rrect DECODE?
’statement (the proper format a d i ”

lstatement indicates a new record is to be processed
(by a slash. or final rlght parenthesxs), the next part
th :

60457040 B ’ 16-5

16-6 ' 60457040 B

‘Source listing:

PROGRAM CPVECT (NUTPUT)

CALCULATE N PAIRS OF ROOTS FOR N QUADRATIC EQUATIONS
THE 1-TH FQUATION IS A(I)axewud o R(I)¥X + C(I) = 0

s Xg Ne Nel

COMPLEX A(20)9B{20)+C(20)eRNOOT1(20)4RONT2(20)+D(20) -

COMPLEY DAsDB4DC«NNyDRONTI«NROOTL

NESCRIPTOR DAsNRB,NCsNDNRONTLI$NROOT2 S : o
DATA DA /A(1320) /4 DR /B(1320)/, DC /C(llaﬂ)/o DD /D(1320)7/
NATA DPOOTI /ROOTI(I‘?O)/. DROOT? /PGOT?(ltPO)/ . B S

INTTIALIZE AQRAYS

ncwh:

NJv 100 1= 1.20
S1en o CA(TY =01 §
e SODB = DA 3
.nc - DA + 1

CALCULATE THE DISCRYM[NANTG

nDia DR o n9-4 o nn " m""

60457040 B 16-7

CHARACTER SETS A

The CYBER 200 FORTRAN compiler recognizes 52
characters; the FORTRAN character set is a subset of the
CYBER 200 character set.

Table A-1 shows both the FORTRAN character set and the
CYBER 200 character set. Some of the characters in the
CYBER 200 character set do not have corresponding
characters in the FORTRAN character set; therefore,
those characters cannot be used in a program unless they
appear in a comment or in a character string.

Table A-1 also shows the internal hexadecimal
representation and the Hollerith punch code for each
character., Each hexadecimal digit in the internal
hexadecimal representation .corresponds to 4 bits. The
Hollerith punch code indicates the rows that are punched in
a computer card for each character.

Some characters do not appear on all keypunches and
terminals. If a particular character is not represented on a
keypunch or terminal, a character that appears on the
keypunch or terminal that has the same internal
hexadecimal representation can be substituted.

TABLE A-1. CHARACTER SETS

FORTRAN Character Hex CYBER 200 Character Hollerith Punch (029)

A space 20 A space no punch
21 ! exclamation point 12-8-7
22 " quote 8-7
23 # pound sign 8-3
24 $ dollar sign 11-8-3
25 % percent sign 0-8-4

& ampersand 26 & ampersand 12

' apostrophe . 27 ' apostrophe 8-5

(left parenthesis 28 (left parenthesis 12-8-5

) right parenthesis 29) right parenthesis 11-8-5

* asterisk 2A * asterisk 11-8-4

+ plus 2B + plus 12-8-6

, comma 2C » Comma 0-8-3

- minus 2D - minus 11

. period 2E . period 12-8-3

/ slash 2F / slash 0-1

0 30 0 0

1 31 1 1

2 32 2 2

3 33 3 3

4 34 4 4

5 35 5 5

6 36 6 6

7 37 7 7

8 38 8 8

9 39 9 9

: colon 3A : colon ~ 8-2

; semicolon 38 ; semicolon 11-8-6
3C < less than 12-8-4

= equals sign 3D = equals sign 8-6

- 3E > greater than 0-8-6

3F ? question mark 0-8-7
40 @ commercial at 8-4

A 41 A 12-1

B 42 B 12-2

c 43 c 12-3

D 44 D 12-4

E 45 E 12-5

F 46 F 12-6

G 47 G 12-7

60457040 C

TABLE A-1. CHARACTER SETS (Contd)

FORTRAN Character Hex CYBER 200 Character Hollerith Punch (029)
H 48 H 12-8
I 49 I 12-9
J 4A J 11-1
K 4B K 11-2
L 4c L 11-3
M 4p M 11-4
N 4E N 11-5
0 4F 0 11-6
P 50 P 11-7
Q 51 Q 11-8
R 52 R 11-9
S 53 S 0-2
T 54 T 0-3
u 55 U 0-4
v 56 v 0-5
W 57 W 0-6
X 58 X 0-7
Y 59 Y 0-8
Y4 5A z 0-9
[left bracket 58 [left bracket 12-8-2
5C Nreverse slash 0-8-2
] right bracket 5D] right bracket 11-8-2
. SE - circumflex 11-8-7
5F _ underscore 0-8-5
60 * reverse apostrophe 8-1
61 a 12-0-1
62 b 12-0-2
63 c 12-0-3
64 d 12-0-4
65 e 12-0-5
66 f 12-0-6
67 g - .12-0-7
68 h 12-0-8
69 1 12-0-9
6A J 12-11-1
6B k 12-11-2
6C 1 12-11-3
6D m 12-11-4
6E n 12-11-5
6F o 12-11-6
70 p 12-11-7
71 q 12-11-8
.72 r 12-11-9
73 s 11-0-2
74 t 11-0-3
75 u - 11-0-4
76 v 11-0-5
77 W 11-0-6
78 X 11-0-7
79 y 11-0-8
7A z 11-0-9
78 { 1eft brace 12-0
70 } right brace 11-0

A-2

60457040 C

DIAGNOSTICS B

COMPILATION ERRORS

This appendix cor.tains descriptions of three basic groups of
diagnostics: compilation diagnostics, run-time diagnosties,
and vector messages.

COMPILER FAILURE AND
COMPILATION ERRORS

Compiler failure messages are messages generated because
of compiler failure. Compilation errors are messages
generated because of errors in the program. The

Error messages produced when the compiler detects errors
in the source program are listed in table B-2. Compilation
error types are:

W {(warning) The statement in error was compiled.
Compilation continued, but part of the
statement might not have been
processed. The return code is 4 (RC=4).

seriousness of the error is indicated by the error type. F (fatal) The . statement in error was not
compiled. Object code generation is
inhibited. The return code is 8 (RC=8).
COMRPILER FAILURE v
RETURN CODES

Error messages produced when the compiler fails are listed
in table B-1. The compiler failure error type is:
The user has control over the execution of a batch job in

A (abort) Compilation was terminated because of that the user can determine whether to initiate error exit
compiler failure. The return code is 8 processing or to allow batch job processing to continue.
(RC=8) The TV control statement allows a termination value to be
TABLE B-1. COMPILER FAILURE MESSAGES
Error Type Message Signifi Acti
" Number yP 8 ignificance ction
93 A COMPILER FAILURE - REFERENCE FOR | The subscript processor detected Follow site-defined
NON-DIMENSIONED ARRAY a bad symbol table entry. procedure.
94 A COMPILER FAILURE - ALL FULL REG The doubleword register assignment | Follow site-defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure.
generation phase.
95 A COMPILER FAILURE - HALF REG The fullword register assignment Follow site-defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure. :
generation phase.
96 A COMPILER FAILURE —~ VARIABLE The storage class table became Follow site~defined
EQUIVALENCED TO COMMON BLOCK invalid during the allocation procedure.
THAT HAS NO ELEMENT phase.
97 (Currently unassigned) - -
98 . A COMPILER FAILURE - I/O STACK The input/output list stack that Follow site~defined
FORMED INCORRECTLY was built by the IOLIST processor procedure.
became invalid during the parse
phase.
99 A COMPILER FAILURE ~ ILLEGAL The descriptor table became Follow site~defined
DESCRIPTOR ENCOUNTERED IN invalid. procedure.
ALLOCATION PHASE(2)
100 A COMPILER FAILURE - TABLE AREA One of the compiler table areas Follow site-defined
OVERFLOW reached its maximum size. Possi- procedure.
bly the program was too big to be
compiled.
101 A COMPILER FAILURE Compiler detected an internal Follow site-defined
inconsistency. procedure.

60457040 B

B-1

TABLE B-2. COMPILATION ERROR MESSAGES

ﬁs;gzr ’Type Message Significance Action

102 F ILLEGAL SUBPROGRAM NAME The subprogram is compiled Correct error; recompile.
as a main program.

103 F FUNCTION CANNOT BE CALLED AS A A function is called with a Replace the CALL state-

SUBROUTINE CALL statement. ment with a statement
that contains a function
reference; recompile.

104 W CANNOT TYPE SUBROUTINE NAME A type is specified for the Verify that a subroutine,
subroutine name; the type rather than a function,
was ignored by the compiler. | was intended.

105 F ILLEGAL SUBROUTINE REFERENCE A subroutine name is used Correct error; recompile.
improperly.

106 F MISSING OPERATOR OR DELIMITER An operator or delimiter is Supply missing operator
required. : or delimiter; recompile.

107 F ILLEGAL OPERAND An expression contains an Correct error; recompile.
illegal operand.

108 F ILLEGAL OR MISSING DELIMITER A delimiter is required. Supply missing delimiter
or correct error in exist-—
ing delimiter; recompile.

109 F ILLEGAL USE OF ARRAY NAME An array name appears with- Supply subscript for
out a subscript. array reference; recompile.

110 F MISSING LEFT PARENTHESIS A left parenthesis is Supply missing left
required. parenthesis; recompile.

111 F ILLEGAL USE OF HEXADECIMAL A hexadecimal constant is Correct error; recompile.

: CONSTANT used improperly.

112 F RECURSIVE SUBPROGRAM REFERENCE A subprogram calls itself. Remove recursive sub-

IS ILLEGAL : programre ferences from
the program; recompile.

113 F ILLEGAL ARGUMENT DELIMITER Arguments must be delimited Correct error; recom—

) by commas. pile.

114 F ILLEGAL USE OF SUBPROGRAM NAME A subroutine or function Correct error; recompile.
name is used improperly.

115 F ILLEGAL ARGUMENT IN INTRINSIC The arguments are not what Correct error; recompile.

OR BASIC FUNCTION REFERENCE the function requires.
116 w FUNCTION NAME USED AS ARGUMENT The function name is not Declare function name in
NOT DECLARED EXTERNAL declared in an EXTERNAL an EXTERNAL statement;
statement. recompile.

117 F INTRINSIC FUNCTION CANNOT BE An intrinsic function name Remove intrinsic function

ACTUAL ARGUMENT appears in the argument - name from.the argument
list of a function or sub- list; recompile.
routine reference.

118 F ILLEGAL OPERATOR IN EXPRESSION | . The operator cannot be used Correct error; recompile.
in the expression. :

119 F PARENTHESES DO NOT MATCH OR A one~to-one correspondence Check all parentheses in

ILLEGAL ASSIGNMENT STATEMENT does not exist between left the expression. Correct
: and right parentheses. errors; recompile.
B-2 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error T .
N S
Numbar Type Message ignificance Action
120 F INCORRECT NUMBER OF ARGUMENTS The argument list for an Check the requirements
FOR INTRINSIC OR BASIC intrinsic function refer- of the intrinsic or basic
FUNCTION ence or a basic function function. Add missing
reference contains a dif- arguments or delete extra
ferent number of arguments arguments from the argu-
than the function requires. ment list of the func-
tion reference; recompile.
121 F INCORRECT ARGUMENT TYPE FOR An argument that appears Check the requirements
INTRINSIC OR BASIC FUNCTION in the argument list of an of the intrinsic or basic
intrinsic function refer- function. Change the
ence or a basic function type of the erroneous
reference is of the wrong argument; recompile.
type.
122 F ILLEGAL TYPE MIXING IN The data types of two Correct error; recompile.
STATEMENT entities that appear in a
statement are incompatible.
123 F ILLEGAL ARRAY MODE IN VECTOR Correct error; recompile.
REFEBENCE
124 F ILLEGAL MODE USAGE IN Correct error; recompile.
RELATIONAL OR ARITHMETIC
EXPRESS ION
125 W MORE THAN 19 CONTINUATION All continuation lines Restructure the statement
LINES after line 19 are not so that no more than 19
compiled. continuation lines are
used; recompile.
126 W THIS STATEMENT CANNOT BE The previous statement does Check for an error in
EXECUTED not allow execution of this logic. Check for a
statement. missing label on
the current statement.
127 W INDEFINITE RESULT, PRODUCT TOO The multiplication of two Verify that an indefinite
LARGE constants produces a result result does not affect
that is too large. the logic of the program.
128 W DIVIDE FAULT IN CONSTANT The division of one Verify that the divide
ARITHMETIC constant by another pro- fault does not affect the
duces a divide fault. logic of the program.
129 W EXPONENT OVERFLOW IN CONSTANT Constant arithmetic Verify that exponent
ARITHMETIC produces exponent overflow. overflow does not affect
the logic of the program.
130 F ILLEGAL DELIMITER IN A VECTOR Correct error; recompile.
REFERENCE
131 F SUBSCRIPT FOR NON-DIMENSIONED The array that appears on Correct error; recompile.
ARRAY, OR STMT FUNCTION DEF the left side of an assign-
DOES NOT PRECEDE ALL ment is not dimensioned, or
EXECUTABLE STATEMENTS this is a statement func-
tion definition that does
not precede all executable
statements.
132 F THIS SYMBOL MAY NOT BE DEFINED The symbol is already Correct error; recompile.
TO BE A STATEMENT FUNCTION defined.

60457040 B

B-3

B-4

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error P s
Significance Action
Number Type Message 1gn
133 F ILLEGAL STATEMENT FUNCTION An illegal argument appears Correct error; recompile.
ARGUMENT in a statement function
reference.
134 F ILLEGAL STATEMENT FUNCTION A statement function is Correct error; recompile.
DEFINITION defined improperly.
135 F ILLEGAL LABEL A label must be numeric and Supply numeri¢ label;
between 1 and 99999, recompile.
136 F DESCRIPTOR MODE IS NOT A descriptor must be of one Change the type of the
INTEGER, REAL, BIT, OR COMPLEX of these types. descriptor; recompile.
137 F ILLEGAL DELIMITER FOR HEX OR Hexadecimal and bit con- Change delimiters to
BIT CONSTANT stants must be delimited by apostrophes; recompile.
apostrophes.
138 F DOUBLY DEFINED LABEL The same label appears on Change one of the
: more than one statement in occurrences of the label.
a program. ’ Also, check all refer
ences to the label that
is changed in order to
maintain correct logic;
recompile.
139 F (Currently unassigned) — -
140 F ILLEGAL DELIMITER IN STATEMENT Statement function argu- Correct error; recompile.
. FUNCTION ARGUMENT LIST ments must be delimited by
commas. .
141 F INCORRECT NO. OF ARGUMENTS FOR The argument list for a Check the statement func-
STATEMENT FUNCTION statement function refer- tion definition to find
ence contains a different out how many arguments
number of arguments than the function requires.
the function requires. Add missing arguments or
, delete extra arguments
from the argument list
of the function refer-
ence; recompile.
142 F COMPLEX MAY NOT BE USED AS A complex number appears as Change the type of the
POWER an exponent. exponent; recompile.
143 F COMPLEX MAY ONLY BE RAISED TO Exponentiation of a complex Change the type of the
INTEGER OR REAL POWER number involves an exponent .exponent to real or
: that is not real or integer. integer; recompile.
144 F » SUBSCRIPT MUST BE INTEGER The subscript is not an Change the subscript to
CONSTANT integer constant. integer constant; recom-
pile.
145 F SPECIFICATION STATEMENTS A specification statément Move all specification
MUST PRECEDE ALL EXECUTABLE appears after an executable statements in front of
STATEMENTS - statement. all executable state
i ments; recompile.
146 F ILLEGAL VARIABLE IN DATA A symbol that appears in a Remove the symbol from the
STATEMENT DATA statement cannot be DATA statement; recompile.
initialized.
147 F SYNTAX ERROR IN DATA LIST An error appears in a DATA Correct error; recompile.
statement.

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error f ees .
Number Type Message Significance Action
148 F SUBSCRIPT MAY NOT BE AN An expression is used as a Correct error; recompile.
EXPRESSION subscript.
149 F TOO MANY SUBSCRIPTS The array is declared to Correct error; recompile.
have fewer dimensions than
there are subscripts.
150 F SYNTAX ERROR IN HEXADECIMAL OR An error appears in a hexa- Correct error; recompile.
BIT CONSTANT decimal or bit constant.

151 F ILLEGAL DATA ITEM Correct error; recompile.

152 F ILLEGAL VECTOR REFERENCE MODE Correct error; recompile.
IN DATA STATEMENT

153 F CHARACTER, HEX OR BIT CONSTANT Constant is too large to be Reduce size of constant;
TOO LARGE represented. recompile.

154 F ILLEGAL USE OF VECTOR Correct error; recompile.
REFERENCE MODE IN DATA
STATEMENT

155 W TOO MANY DATA CONSTANTS There are more values in a Verify that the proper
DATA statement than there number of variables and
are variables. The extra constants are specified.
values are not used.

156 F SYNTAX ERROR A language construct is Correct error; recompile.
written improperly.

157 F SPECIFICATION STATEMENTS MUST A specification statement Move all specification

PRECEDE STATEMENT FUNCTION appears after a statement statements in front of
DEFINITIONS function definition. all statement function
definitions; recompile.

158 F ILLEGAL ELEMENT IN Correct error; recompile.

SPECIFICATION LIST
159 F ILLEGAL OPERATOR IN Correct error; recompile.
SPECIFICATION
160 F ILLEGAL LENGTH SPECIFICATION The length specification Correct error; recompile.
OF CHARACTER VARIABLE that appears in a CHARACTER
statement is illegal.
161 W NAMELIST NAME IN TYPE A type is given to a Check user-defined names
STATEMENT name listname; this action to find out if a name is
is ignored by the compiler. used as both a namelist
name and a variable or
array name.

162 w VARIABLE TYPED MORE THAN ONCE The first type is used. Verify that the first
The additional type speci- type is intended. Check
fications are ignored. user—defined names to

find out if two differ-
ent variables are
intended.

163 F LENGTH OF ADJUSTABLE CHARACTER fhe length specification Correct error; recompile.

MUST BE TYPE INTEGER that appears in a CHARACTER
statement is not an integer.
164 F ZERO LENGTH FOR CHARACTER The length specification Correct error; recompile.
VARIABLE for a character variable is
zero.

60457040 B

B-5

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
S:;g:r Type Message Significance Action
165 F ERROR IN DATA LIST OF TYPE Correct error; recompile.
STATEMENT
166 F ILLEGAL STATEMENT ON LOGICAL The consequent statement Correct error; recompile.
IF on a logical IF is not
) allowed.
167 W NO LABELED COMMON IN BLOC No labeled common blocks Verify that all state
DATA SUBPROGRAM : are declared in the BLOCK ments appear in the BLOCK
DATA subprogram. DATA subprogram as
intended.
168 F ILLEGAL STATEMENT IN BLOCK This statement cannot Correct error; recompile.
DATA SUBPROGRAM appear in a BLOCK DATA sub-
program.
169 w MAIN PROGRAM HAS NO EXECUTABLE Verify that all state~
STATEMENTS ments in the main program
appear as intended.
170 (Currently unassigned) - -
171 W END NOT PRECEDED BY BRANCH A STOP statement was gen- Verify that a STOP state-—
STATEMENT erated by the compiler. ment was intended.
172 W FUNCTION NAME IS NOT DEFINED A function returns a value Check the function for a
through its name. The name missing assignment
statement.
must be assigned a value
during execution of the
function. i
173 W NO RETURN STATEMENT - A RETURN statement was Verify that a RETURN
) generated by the compiler. statement was intended.
174 F ENTRY IN RANGE OF DO OR IN An ENTRY statement appears Remove the ENTRY state-—
BLOCK IF in the range of a DO loop ment from the range of
or in a block IF. the DO loop or block IF;
recompile.
175 F NO ARGUMENTS FOR FUNCTION The subprogram is compiled Supply the argument list
as a main program. for the FUNCTION state-
ment; recompile.
176 F ILLEGAL DUMMY ARGUMENT An argument that appears in Correct error; recompile.
a FUNCTION or SUBROUTINE ’
statement is illegal.
177 F MISSING NAMELIST NAME A NAMELIST statement does Supply the namelist name
not contain a namelist name. enclosed in slashes;
recompile.
178 F ILLEGAL NAMELIST NAME A namelist name is illegal. Correct error; recompile.
179 F MISSING SLASH AFTER NAMELIST A namelist name must be Supply the missing slash
NAME enclosed in slashes. after the namelist name;
recompile.
180 F LIST ITEM MUST BE A VARIABLE Correct error; recompile.
181 F ILLEGAL OPERATOR Correct error; recompile.
182 F ILLEGAL OR MISSING VARIABLE Correct error; recompile.
B-6 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error . ecs .
Number Type Message Significance Action
183 F SYNTAX ERROR IN LABEL STRING Correct error; recompile.
184 (Currently unassigned) - -
185 F INVALID LABEL REFERENCE Correct error; recompile.
186 F MORE THAN 253 COMMON BLOCK Too many common blocks are Reduce the number of
NAMES used in the program. common blocks used; recom-
pile.
187 F ATTEMPTED TO RE-ORDER COMMON COMMON and EQUIVALENCE Correct error; recompile.
statements conflict.
188 F VARIABLE APPEARS IN COMMON The same variable appears Eliminate all but one
MORE THAN ONCE more than once in a common occurrence of the
block. variable from the COMMON
statement; recompile.
189 F ENTRY MUST BE IN A SUBROUTINE An ENTRY statement appears Remove the ENTRY state-
OR FUNCTION in a main program or a ment; recompile.
BLOCK DATA subprogram.
190 F DUPLICATION OF DUMMY ARGUMENT The same name appears more Eliminate all but ome
NAMES than once in the dummy occurrence of the dummy
argument list of a argument from the argu-
FUNCTION, SUBROUTINE, or ment list of the
ENTRY statement. statement; recompile.
191 F ILLEGAL DIMENSION Correct error; recompile.
SPECIFICATION
192 F ILLEGAL FORMATION OF I/O Correct error; recompile.
STATEMENT
193 F 1/0 UNIT MUST BE INTEGER A non-integer unit number Change the unit number to
CONSTANT OR INTEGER VARIABLE appears in an input/output an integer constant or an
statement. integer variable;
recompile.
194 W DUPLICATE OPTION IN I1/0 The first option is used. Verify that the first op-~
STATEMENT tion is intended.
195 F ILLEGAL OPTION IN I/O The option specified cannot Eliminate or change the
STATEMENT be used with the input/ option; recompile.
output statement.
196 w REFERENCED UNDEFINED FORMAT The format specified in an Check for a missing
input/output statement is FORMAT statement, or
not defined in the program. check for an error in the
format number specified
in the input/output
statement.. :
197 F RECORD LENGTH MUST BE INTEGER A non-integer record length Change the record length
CONSTANT OR INTEGER VARIABLE is specified in an input/ specification to an inte-
output statement. ger constant or an inte-~
ger variable; recompile.
198 F FORMAT REFERENCE MUST BE The format reference in an Supply a format label or
FORMAT STATEMENT NUMBER OR input/output statement is an array name to the
ARRAY NAME not the label of a FORMAT input/output statement;
statement or the name of an recompile.
array.
B-7

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error

Number Type Message Significance Action
199 F ILLEGAL ELEMENT IN I/0 LIST Correct error; recompile.
200 F ILLEGAL OR MISSING DELIMITER Elements in an input/output Place commas between
IN 1/0 LIST list must be delimited by names in the input/output
commas. list; recompile.
201 F ILLEGAL FORMATION OF REWIND, Correct error; recompile.
ENDFILE OR BACKSPACE
202 F ILLEGAL FORMATION 'OF COMMON Correct error; recompile.
STATEMENT
203 F COMMON BLOCK NAME IS. NOT An invalid symbol is Supply. a valid identifier
SYMBOLIC specified as a common block a8 the name of the common
name. block; recompile.
204 F DUPLICATE SYMBOLIC NAME IN The same symbol appears Change the symbols so
COMMON STATEMENT more than once in a COMMON that all of the symbols
statement. in the COMMON statement
are unique; recompile.
205 W DATA SHOULD NOT BE PRESET IN BLOCK DATA subprograms can Remove initialized vari-
BLANK COMMON be used to initialize data able from blank common or
in named common blocks use executable statements
only. to initialize it.
206 F DUMMY ARGUMENT CANNOT APPEAR A dummy argument appears in Change the name of the
IN COMMON a COMMON statement. dummy argument or change
the name in the COMMON
statement; recompile.
207 F ILLEGAL USE OF VARIABLE OR Correct error; recompile.
VARIABLE DIMENSIONED MORE THAN
ONCE
208 F A VARIABLE IN A DIMENSION The dimension specification Add the dimension speci-
STATEMENT MUST BE DIMENSIONED for a variable that appears fication to the variable
DIMENSION in a DIMENSION statement is name that appears in
not specified. the statement; recompile.
209 F MISSING COMMA A comma is required. Supply the comma;
recompile.
210 F DIMENSIONING FORMAT ERROR Correct error; recompile.
211 F ILLEGAL USE OF SUBSCRIPT Correct error; recompile.
212 W VARIABLE DIMENSION NEITHER A The variable used as the Place the variable used
DUMMY ARGUMENT NOR IN COMMON dimension- specification is as. the dimension specifi-
YET not in a preceding SUB- cation in the argument
ROUTINE, FUNCTION, ENTRY, list of the FUNCTION or
or COMMON statement. SUBROUTINE statement, or
in a COMMON statement
that appears before the
statement in which the
variable is used;
recompile.
213 F VARIABLE DIMENSION HAS TO BE A The dimension specification Change the dimension
SIMPLE VARIABLE in a DIMENSION statement is specification to a simple
not a simple variable. integer variable;
: recompile.
214 F VARIABLE DIMENSION CANNOT BE An attempt is made to Correct error; recompile.
DEFINED change a dimension for a '
variably dimensioned array.
B-8 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error PP .
Number Type Message Significance Action
215 F MORE THAN 7 DIMENSIONS An array can have no .more Reduce the number of di-
SPECIFIED than 7 dimensions. mensions; recompile.
216 F CONSTANT GREATER THAN 2**18 IN The constant is too large. Reduce the value of the
SPECIFICATION STATEMENT constant; recompile.
217 F ILLEGAL OR MISSING REFERENCE Correct error; recompile.
IN DO STATEMENT
218 F LABEL REFERENCE GREATER THAN A label can have no more Shorten the label to 5
99999 than 5 digits. digits. Correct all
references to the label
appropriately; recompile.
219 F ILLEGAL PARAMETER IN DO Correct error; recompile.
STATEMENT
220 F ILLEGAL OR MISSING DELIMITER A delimiter is required. Supply the delimiter;
recompile.
221 F DO LOOP NEVER TERMINATED An END statement appéars in Supply the last statement
the range of a DO loop. of the DO loop if it is
missing, or move the END
statement out of the DO
loop; recompile.
222 F A DO LOOP MAY NOT TERMINATE ON This statement cannot be Add a CONTINUE statement
. THIS STATEMENT the last statement in a DO after this statement.
loop. Movethe label of this
statement to the label
field of the CONTINUE
statement; recompile.
223 F EQUIVALENCE FORMAT ERROR The format of the Correct errorj recompile.
EQUIVALENCE statement is
incorrect.
224 F ILLEGAL COMPONENT BEING The argument of the EQUIVA- Correct error; recompile.
EQUIVALENCED LENCE statement is illegal.
225 F ILLEGAL DELIMITER SEPARATING Equivalence groups must be Add commas between
EQUIVALENCE GROUPS separated by commas. equivalence groups;
i recompile.
226 F ARRAY ELEMENT MUST HAVE AT An array name appears that Supply the subscript;
AT LEAST ONE SUBSCRIPT does not have a subscript. recompile.
227 F ONLY SYMBOLIC NAMES CAN APPEAR Something other than a sym- Correct efror; recompile.
IN EXTERNAL STATEMENTS bolic name appears in an
EXTERNAL statement.
228 F EXTERNAL STATEMENT DID NOT Correct error;j recompile.
PRECEDE REFERENCE OR VARIABLE
IS WRONG TYPE
229 F ILLEGAL USE OF NAME IN Correct error; recompile.
EXTERNAL STATEMENT .
230 F ILLEGAL EXPRESSION IN IF An arithmetic IF statement Correct error; recompile.
must have an arithmetic or
logical expression.
231 F COMMA 1S ONLY OPERATOR ALLOWED An operator other than a Change the operator to a
BETWEEN LABELS comma was found between comma; recompile.
labels.
60457040 B B-9

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error Significance Action
Number Type Message gnif:
232 F SUBSCRIPT EXPRESSION NOT A subscript expression can Change the type of ex-
INTEGER, REAL, OR DOUBLE be integer, real, or pression in the subscript
PRECISION double~precision. The to integer, real, or
result of the expression is double~precision;
truncated to an integer. recompile.
233 F I/0 SPECIAL EXIT PARAMETER Correct error; recompile.
MUST BE AN INTEGER VARIABLE
234 F ITEMS IN COMMON MUST BE ARRAYS Something other than an Remove the erroneous
OR SIMPLE VARIABLES array or simple variable element from the COMMON
appears in a common block. statement; recompile.

235 F DIRECT ACCESS I/0 NOT Direct access input/output Replace the direct access

IMPLEMENTED cannot be performed. input/output statement;
recompile.

236 w UNREFERENCED FORMAT A FORMAT statement appears Check the format refer-
in a program, but is not ences in all input/output
referenced in an input/ statements to find out if
output statement. the proper formats are

specified.

237 F NAMELIST IS USED ILLEGALLY Correct error; recompile.

238 W UNREFERENCED NAMELIST A NAMELIST statement ap- Check the namelist refer-
pears in the program, but ences in all input/output
it is not referenced in an statements to find out if
input/output statement. the proper namelists are

specified.

239 F ADJUSTABLE LENGTH IS NOT A The variable used as the Place the variable used

DUMMY ARGUMENT OR IN COMMON length of a character vari- as the length of a char-

able is not defined prior acter variable in the

to its use. argument list of the ~
FUNCTION, SUBROUTINE,
or ENTRY statement, or in
a COMMON statement that
appears before the state-
ment in which the vari-
able is used; recompile.

240 F INCORRECT DO SPECIFICATION IN The implied DO loop in an Correct error; recompile.

I/0 LIST input/output statement is
in error.
241 F BUFFER MUST BE VARIABLE OR Bad buffer specification in Correct error; recompile.
ARRAY OR SUBSCRIPTED VARIABLE buffer input/output
statement.
242 F EQUIVALENCE RELATION ERROR Equivalence declaration Correct error; recompile.
BETWEEN GROUPS conflicts with other
declarations.
243 F NON-REDEFINABLE VARIABLE IN -There is a variable in the Correct error; recbmpile.
INPUT LIST input list whose value can-
not be altered, such as a
DO loop control variable.
244 F ARRAY REFERENCED WITH WRONG The number of subscripts of Check the specification
NUMBER OF SUBSCRIPTS an array reference is not statement for the array
the same as the number of and correct the array re-
subscripts declared in the ference appropriately;
specification statement for recompile.
the array.
B-10 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error e e .
S
Number Type Message ignificance Action
245 W CONSTANTS MAY BE TOO LARGE
246 F EQUIVALENCE HAS ATTEMPTED TO The EQUIVALENCE statement Correct the EQUIVALENCE
RE-ORIGIN COMMON is incompatible with a statement so that it does
COMMON statement. A common not extend the common,
block cannot be extended at block at its beginning;
its beginning. recompile.
247 W MISSING SUBSCRIPT - A ONE IS " An array reference has Correct error; recompile.
SUBSTITUTED missing subscript expres-
sions or too few subscript
expressions.
248 F ILLEGAL COMPONENT IN I/0 Correct error; recompile.
STATEMENT
249 F ILLEGAL OR MISSING BUFFER Bad buffer specification in Correct error; recompile.
SPECIFICATION buffer input/output
statement.
250 W RETURN STATEMENT IGNORED IN A BLOCK DATA subprogram No action necessary.
BLOCK DATA SUBPROGRAM does not permit a RETURN
statement. The RETURN
statement is ignored.
251 w RETURN STATEMENT REPLACED BY A main program requires a No action necessary.
STOP STATEMENT IN MAIN PROGRAM STOP statement rather than
a RETURN statement. The
RETURN statement is assumed
to be a STOP statement.
252 W ILLEGAL PARAMETER IN RETURN The parameter in the RETURN Verify that ignoring the
STATEMENT statement is ignored. parameter does not affect
the logic of the program.
253 W MODE OF RETURN PARAMETER MUST The parameter in a RETURN Verify that ignoring the
BE INTEGER statement must be integer. parameter does not affect
R . The noninteger parameter the logic of the program.
is ignored.
254 W ILLEGAL VALUE FOR RETURN Value is greater than the Correct error; recompile.
STATEMENT number of alternate re-
turns, or is not positive.
255 F SYNTAX ERROR ON LEFT SIDE OF An illegal language con- Correct error; recompile.
ASSIGNMENT STATEMENT struct appears to the left
of the equals sign.
256 F NON-REDEFINABLE VARIABLE ON The value of the variable Correct error; recompile.
LEFT SIDE OF ASSIGNMENT that appears to the left of
STATEMENT the equals sign cannot be
changed.
257 F ILLEGAL FIELD SPECIFICATION IN Correct error; recompile.
FORMAT
258 F FORMAT STATEMENT IN BLOCK DATA A FORMAT statement cannot Remove the FORMAT state-
SUBPROGRAM appear in a BLOCK DATA ment from the BLOCK DATA
:) subprogram. subprogram; recompile.
259 F LENGTH OF HOLLERITH F1ELD OUT The maximum length of a Reduce the length of the
OF RANGE Hollerith field is 255 Hollerith field to no
characters. more than 255 characters;
recompile.

60457040 B

B-11

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
ﬁi;gzr Type Message Significance Action
260 F END OF STATEMENT IN HOLLERITH The Hollerith field extends Split the Hollerith field
FIELD beyond the end of the into two or more shorter
source statement. fields and continue the
statement on subsequent
source lines; recompile.
261 F MISSING CLOSING APOSTROPHE OR The character'string must Supply the missing apos-
ASTERISK ON CHARACTER STRING be delimited by apostrophes trophe or asterisk;
or asterisks. recompile.
262 F ASSIGN MUST BE FOLLOWED EITHER Correct error; recompile.
BY A LABEL OR A DESCRIPTOR
VARIABLE
263 F ASSIGN VARIABLE MUST BE SIMPLE Correct errorj recompile.
INTEGER VARIABLE
264 F MISSING SUBSCRIPTS An array name appears with- Supply the subscripts;
out subscripts. recompile.
1] .
265 F MISSING LABEL(S) IN GO TO - A computed GO TO statement Supply proper number of
POSSIBLE MIS-USE OF COMPUTED must specify statement statement labels;
GO TO STATEMENT IN SOURCE labels to which control can recompile.
transfer depending on the :
condition.
266 F ILLEGAL LABEL VALUE IN ASSIGN The specified label does Correct error; recompile.
STATEMENT not exist or is a FORMAT
label.
. 267 F ATTEMPT TO INITIALIZE Use character data to
CHARACTER VARIABLE WITH initialize character
NON-CHARACTER DATA variables; recompile.
268 F 'LOGICAL CONSTANT CAN NOT A logical constant can Replace the logical
INITIALIZE OTHER TYPES initialize a logical constant with a constant
variable only. of the appropriate type,
or change the type speci-
fication of the variable
being initialized to
logical; recompile.

269 F MISSING DATA The list of variables in Eliminate the excessive
the DATA statement is variables, or add more
longer than the list of constants to the DATA
constants. statement; recompile.

270 F FLOATING POINT NUMBER OUT OF A real constant is too Correct error; recompile.

ALLOWABLE RANGE small or too large to be
repregsented.
271 F MODE MUST BE INTEGER CONSTANT A noninteger number is ‘Change the number to an
OR INTEGER VARIABLE used where an integer or integer; .recompile.
an integer variable
is required.
272 (Currently unassigned) - -
273 w MISSING END STATEMENT The compiler supplied an No action necessary.
END statement.
274 F ARRAY DECLARATOR NOT A Correct error; recompile.
VARIABLE
B-12 . 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error i s .
Number Type Message Significance Action
275 F VARIABLE CANNOT BE DIMENSIONED Correct error; recompile.
276 F ATTEMPT TO RE-DIMENSION A The variable is already Eliminate one of the di-
VARIABLE dimensioned. mension specifications
or change the variable
name; recompile.
277 F PROGRAM STARTS WITH A The first statement of a Supply the source state-
CONTINUATION CARD program has a nonzero, non- ments that are missing
blank character in column 6. from the beginning of the
program; recompile.
278 F SUBSCRIPT OR DIMENSION CANNOT A zero or a negative number Replace the subscript
BE ZERO OR NEGATIVE is used as a subscript. with a positive number;
recompile.
279 F ARRAY HAS TO BE FORMAL ARGUMENT | The array name that has a Place the array name in
TO HAVE VARIABLE DIMENSION variable dimension is not the argument list of the
in the formal argument FUNCTION or SUBROUTINE
list of the FUNCTION or statement. Correct all
SUBROUTINE statement. subprogram references
appropriately; recompile.
280 F VARIABLE DIMENSION SHOULD BE The variable dimension Replace the variable di-
SIMPLE INTEGER VARIABLE specified is not a simple mension with a simple in-
integer variable. teger variable; recompile.
281 F LOGICAL VARIABLE INITIALIZED Correct error; recompile.
INCORRECTLY
282 F BOTH VARIABLE LENGTH SPECIFIER Correct error; recompile.
AND CHARACTER VARIABLE MUST BE
DUMMY ARGUMENTS
283 W EQUIVALENCE VARIABLE ATTEMPTED An EQUIVALENCE statement Correct error; recompile.
TO BE ASSIGNED TO IMPROPER attempted to assign a
BOUNDARY logical, integer, real,
double-precision, or com—
plex variable to a nonword
boundary, or a character
variable to a nonbyte
boundary. ’
284 F ILLEGAL ELEMENT IN ARGUMENT Illegal branch into DO Correct error; recompile.
VECTOR loop.
285 F DO LOOP IS BRANCHED INTO, BUT Correct error; recompile.
HAS NO EXTENDED RANGE
286 F ILLEGAL TRANSFER INTO RANGE OF A statement causes a Restructure the program
. DO LOOP transfer into a DO loop. so that control does not
transfer into the range
of a DO loop. Control
can transfer to the
DO statement; recompile.
287 F REFERENCE TO UNDEFINED LABEL A label is referenced, but Change the label reference
: it does not appear in the so that it references a
label field of any state- label that exists in the
ment in the program. program, or supply the
missing label in the pro-
gram; recompile.
288 w ILLEGAL EXPONENTIATION Illegal operands for Correct error; recompile.
exponentiation. :

60457040 B

B-13

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error PP .
Significance Action
Number Type Message &
289 F SUBROUTINE CANNOT BE CALLED AS A subroutine must be called Change the statement that
FUNCTION with the CALL statement. contains the function ref-
erence to a CALL state-
ment; recompile.
290) FORMAT NOT LABELED A FORMAT statement requires | Verify that the FORMAT
a label in the label field. statement is not refer-
The unlabeled FORMAT state- enced in the program.
ment is not used.
291 F ILLEGAL MODE FOR A LENGTH The length must be integer. Correct error; recompile.
EXPRESSION IN A VECTOR
REFERENCE
292 F VECTOR LENGTH CANNOT BE A Correct error; recompile.
NEGATIVE CONSTANT
293 F MODE ERROR IN A VECTOR ARITH- Correct error; recompile.
METIC OR BIT ASSIGNMENT
STATEMENT
294 F ILLEGAL MODE IN A VECTOR Correct error; recompile.
EXPRESSION :
295 F VECTOR EXPRESSION ASSIGNED TO A vector must be on the Replace the variable on
A NON-VECTOR VARIABLE left side of a vector the left of the vector
assignment statement. assignment statement with
a vector; recompile.
296 F SUBSCRIPT REFERENCE FOR NON- A subscfipt is specified Use a DIMENSION statement
DIMENSIONED ARRAY for a variable that is. to dimension the vari-
not dimensioned. able, or remove the sub-
script from the variable
reference; recompile.
297 F DESCRIPTOR NOT INITIALIZED BY Correct error;Arecompile.
VECTOR REFERENCE
298 W COMMON BLOCK HAS BEEN. PADDED Alignment of the common . No action necessary.
IN ORDER TO ENSURE ALIGNMENT block is performed by the
: . compiler to place a char-
acter variable on a byte
boundary or other variables
(except bit) on a word
boundary.
299 F FIRST AND LAST MUST BE Illegal specification for Correct error; recompile.
VARIABLES OR ARRAY ELEMENTS first or last location in -
' BUFFER IN or BUFFER OUT
statement.
300 W EXTRANEOUS INFORMATION AT END The compiler ignored the Verify that the compiler
OF STATEMENT extra information at the interpreted the statement
end of the statement. correctly.
301 F STATEMENT CANNOT BE IDENTIFIED Syntax error in statement. Correct error; recompile.
302 F A LABEL MUST BE AN INTEGER A label is specified that Chénge the label to
CONSTANT is something other than an an integer constant.
integer constant. Correct all references
to the label appropri-
ately; recompile.
303 F DIGIT STRING EXCEEDS MAXIMUM No more than 5 digits can. Reduce the string to 5
OF FIVE appear in the digit string. digits; recompile.
B-14

60457040 B

60457040 B

FIRST SPECIFICATION STATEMENT

before an IMPLICIT state-
ment. The IMPLICIT state-—
ment is ignored.

. TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error e e .
Number Type Message Significance Action
304 F ILLEGAL CHARACTER A character is used that Replace the character with
is not in the CYBER 200 the appropriate character
FORTRAN character set. from the CYBER 200 FORTRAN
character set; recompile.
305 W ILLEGAL CONSTANT ON A PAUSE OR The constant is ignored. Verify that the constant
STOP is not intended.
306 F ILLEGAL CONSTANT TYPE Correct error; recompile.
307 F CHARACTER STRING EXCEEDS 255 No more than 255 characters Reduce the character
can appear in a character string to no more than
string. 255 characters; recompile.
308 F HOLLERITH FIELD COUNT IS TOO Too many characters are in Reduce the Hollerith
LARGE a Hollerith field. No more field to no more than 255
than 255 characters can characters; recompile.
appear in a Hollerith field.
309 F SYMBOLIC NAME HAS MORE THAN 8 A symbolic name can consist Reduce the symbolic name
CHARACTERS of no more than 8 charac- to no more than 8 charac-
ters. ters; recompile.
310 F COMPONENT HAS MORE THAN 255 No more than 255 characters Reduce the component to
CHARACTERS are allowed. no more than 255 charac-
ters; recompile.
311 F REAL NUMBER HAS MORE THAN 255 A real number can contain Reduce the real number to
DIGITS no more than 255 digits. no more than 255 digits;
recompile.
312 F LOGICAL CONSTANT OR LOGICAL/
RELATIONAL OPERATOR IS Correct error; recompile.
INCORRECT
313 F ERROR IN HOLLERITH COUNT Correct error; recompile.
314 F REAL NUMBER CANNOT BE FOLLOWED - Correct error; recompile.
BY A LETTER
315 F COMPLEX NUMBER COMPONENTS A complex number can con- Change the double-
CANNOT BE DOUBLE PRECISION sist of real components precision components
only. of the complex number
to real; recompile.
316 F MISSING RIGHT PARENTHESIS A right parenthesis is Supply the right paren-
required. thesis; recompile.
317 F SYNTAX ERROR IN A COMPLEX Correct error; recompile.
CONSTANT
318 F ZERO LENGTH CHARACTER STRING The length of a character Change the zero to a
string is specified to be positive integer;
zZero. recompile.
319 F ILLEGAL ARGUMENT FIELD SYNTAX Correct error; recompile.
320 W IMPLICIT STATEMENT MUST BE Other statements appear Verify that ignoring the

IMPLICIT statement does
not affect the logic of
the program.

B-15

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error

Significance Action
Number Type) Message . g
321 F ILLEGAL TYPE IN IMPLICIT The valid types are INTEGER, | Correct error; recompile.
STATEMENT REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BIT, and
CHARACTER.
322 F ILLEGAL USE OF * Correct error; recompile.
323 F - IMPLICIT RANGE IS INCORRECT The characters specified in Arrange the characters in
the range of an IMPLICIT alphabetical order and
statement must be in alpha-< eliminate duplicate spec-
betical order. A character ifications for charac-
cannot be associated with ters; recompile.
more than one type.
324 F NON-FORTRAN CHARACTER FOUND AND | A character is used that is Replace the character with
IS NOT IN HOLLERITH CHARACTER not in the CYBER 200 FORTRAN | the appropriate character
STRING character set. These char- from the CYBER 200 FORTRAN
acters can be used only in character set; recompile.
Hollerith strings.
325 F SYNTAX ERROR AFTER A SYMBOLIC Correct error; recompile.
NAME
326 F ILLEGAL CHARACTER AFTER A ZERO Correct error; recompile.
327 F SYNTAX ERROR AFTER AN INTEGER Correct error; recompile.
CONSTANT
328 F SYNTAX ERROR FOLLOWING A Correct error; recompile.
PERIOD
329 F ILLEGAL CHARACTER IN A LOGICAL Correct error; recompile.
CONSTANT OR LOGICAL/RELATIONAL
OPERATOR
330 F SYNTAX ERROR AFTER A REAL Correct error; recompile.
- NUMBER
331 F ILLEGAL CHARACTER APPEARS IN Correct error; recompile.
THE NUMBER PART OF THE
EXPONENT FIELD
332 W TOO MANY DIGITS IN THE The exponent field is Verify that the truncation
EXPONENT FIELD truncated. does not affect the logic
of the program.
333 F SYNTAX ERROR FOLLOWING A Correct error; recompile.
SYMBOLIC STRING THAT WAS
FOLLOWED BY A PERIOD
334 F SYNTAX ERROR FOLLOWING A Correct error; recompile.
LOGICAL CONSTANT
335 F SYNTAX ERROR FOLLOWING A REAL Correct error; recompile.
CONSTANT
336 F SYNTAX ERROR FOLLOWING AN * Correct error; recompile.
337 F SYNTAX ERROR FOLLOWING A Correct errbr; recompile.
CHARACTER STRING
338 F SYNTAX ERROR FOLLOWING A Correct errbr; recompile.
COMPLEX CONSTANT
B-16

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error T M Significance Action
Number ype essage g i
339 F SYNTAX ERROR IN A LABEL Correct error; recompile.
REFERENCE FIELD
340 W SUBSCRIPT REFERENCE OUT OF The subscript is less than Verify that the reference
RANGE 1 or greater than the upper is intended.
bound of the array.
341 F DO LOOPS OR IF BLOCKS NESTED Nested DO loops and IF Restructure the DO loops
ILLEGALLY blocks must appear entirely and IF blocks so that
within outer DO loops the nested DO loops
and IF blocks. are entirely within the
outer DO loops and IF
blocks; recompile.
342 F INDUCTION VARIABLE USED The variable used as the Remove all statements
ILLEGALLY loop index cannot be that alter the value of
altered within the range the loop index from the
of the DO loop. DO loop; recompile.
343 F ILLEGAL DO STRUCTURE Correct error; recompile.
344 F IMPLIED DO STRUCTURES DO NOT Correct error; recompile.
MATCH
345 F ILLEGAL ARGUMENT Correct error; recompile.
346 F MISSING OUTPUT ARGUMENT IN A A vector function reference Correct error; recompile.
VECTOR FUNCTION REFERENCE must have an output argu-
' ment, which is preceded by
a semicolon.
347 F OUTPUT ARGUMENT NOT ALLOWED IN Correct error; recompile.
SCALAR FUNCTION REFERENCE
348 F FUNCTION CANNOT BE REFERENCED Correct error; recompile.
AS BOTH A SCALAR AND A VECTOR
FUNCTION
349 F MODE OF OUTPUT ARGUMENT AND Correct error; recompile.
MODE OF FUNCTION NAME DO NOT
MATCH
350 F ILLEGAL OUTPUT ARGUMENT IN A Correct error; recompile.
FUNCTION REFERENCE
351 F VECTOR EXPRESSION REQUIRES Compiler limitation Simplify statement;
MORE TEMPORARIES, CODE CANNOT exceeded. recompile.
BE GENERATED
352 F VECTOR REFERENCE DATA ITEM Correct error; recompile.
USED FOR NON-DESCRIPTOR
VARIABLE ITEM
353 F CHARACTER CONSTANT CANNOT DATA statement cannot have Correct error; recompile.
INITIALIZE A BIT VARIABLE character string as a value
for a bit variable.
354 F ILLEGAL INITIALIZATION OF A Correct error; recompile.
CHARACTER OR BIT VARIABLE
355 W CHARACTER CONSTANT TOO LONG - The character constant is Verify that the trun-
TRUNCATED ON THE RHS truncated on the right side. cation does not affect
A character constant can the logic of the program.
contain no more than 255
characters.

60457040 B

B-17

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

gz;g:r Type Message Significance Action
356 W HEX OR BIT CONSTANT TOO LONG - The hexadecimal or bit con- Verify that the trun-
TRUNCATED ON THE LHS stant is truncated on the cation does not affect
left side. A hexadecimal or | the logic of the program.
bit constant can contain no
more than 255 characters.
357 F BIT VARIABLES ARE NOT ALLOWED Correct error; recompile.
IN BUFFER IN/OUT Equivalence the bit
variable to nonbit ‘
variables, and perform
the input/output on the
nonbit variables.
358 F DESCRIPTOR INITIALIZATION Correct error; recompile.
ILLEGAL
359 w VECTOR MODE CHANGED TO BE SAME Verify that this change
AS DESCRIPTOR IT INITIALIZES does not affect the
logic of the program.
360 W OPTIMIZATION TURNED OFF The compiler stopped No action necessary.
BECAUSE SOURCE PROGRAM IS NOT optimizing- the program.
ADVANTAGEQUS FOR ITS
IMPLEMENTATION
361 (Currently unassigned) - -
362 F ILLEGAL RIGHT-HAND SIDE FOR Correct error; recompile.
DESCRIPTOR ASSIGN
363 (Currently unassigned) - --
364 F +-%/ ARE THE ONLY LEGAL OPERA- Correct error; recompile.
TORS FOR COMPLEX VECTORS
365 (Currently unassigned) - -
366 F ILLEGAL SUBSCRIPT IN IMPLIED Correct error; recompile.
DO
367 F TOO MANY LEFT PARENTHESES IN There are more left paren- Match the parentheses
EXPRESSION theses in the expression properly; recompile.
than there are right
parentheses.
368 F TOO MANY RIGHT PARENTHESES IN There are more right paren- Match the parentheses
EXPRESSION theses in the expression properly; recompile.
_ than there are left
parentheses.
369 F VARIABLE APPEARS IN DESCRIPTOR ‘Correct error; recompile.
STATEMENT MORE THAN ONCE
370 F MISSING LABEL IN ARITHMETIC IF An arithmetic IF must have Supply the missing label
. three labels to which con- in the arithmetic IF
trol can transfer depending statement; recompile.
on the condition. Labels
can be duplicated.
371 A JAM TEMP TABLE OVERFLOW Compilation aborted. Recompile without in-
struction scheduling.
372 F INDEX PARAMETER FOR IMPLIED DO Correct error; recompile.
' SUBARRAY REFERENCE CANNOT BE
EXPRESSION
B-18 -

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error Y -
Number Type Message Significance Action
373 F ILLEGAL SYMBOL IN EQUIVALENCE Correct error; recompile.
374 F TOO LITTLE DATA .IN HEX OR BIT The length of the bit con- Increase the length of the
CONSTANT stant must equal the length bit constant to the appro-
of the portion of the bit priate size; recompile.
array being initialized.
375 F TOO MUCH DATA IN HEX OR BIT The length of the bit con- Decrease the length of the
CONSTANT : stant must equal the length bit constant to the appro-
of the portion of the bit priate size; recompile.
array being initialized.
376 F EVEN/ODD REGISTER PAIR Incorrect use of registers Correct error; recompile.
REQUIRED FOR C AND C+l FIELDS in special call.
377 W INSTRUCTION SCHEDULING Compiler was unable to opti- | No action necessary; ob-
ABANDONED - REGISTER JAM mize instruction scheduling. ject code is generated.
378 ' F THE COMMON BLOCK NAME AND AN The name of a cémmon block Change one of the names;
ENTRY NAME ARE THE SAME and the name of an entry * recompile.
point are the same.
379 F SCALAR ARGUMENTS NOT ALLOWED Correct error; recompile.
IN Q8SDOT
380 W RELATIVE BRANCH OUT OF RANGE Branch too far in special Correct errorj; recompile.
call.
381 F A SPECIAL CALL RELATIVE BRANCH Branching a constant number Correct error; recompile.
MAY ONLY BRANCH TO A STATEMENT of halfwords is not
LABEL permitted.
382 F NON-ZERO OPERAND IN SPECIAL Arguments are missing or in Correct error; recompile.
CALL FIELD THAT MUST BE NULL the wrong order.
OR ZERO
383 W HOLLERITH CONSTANT TOO LONG - The Hollerith constant is Verify that the trunca-
TRUNCATED ON RHS truncated on the right side. tion does not affect the
) A Hollerith constant can logic of the program.
have no more than 255 char-
acters.
384 F REPEAT COUNT CANNOT EXCEED 255 The repeat count is more Reduce the repeat count
than 255. to no more than 255;
recompile.
385 F SUBROUTINE CONTAINS NON- Asterisks must appear Place asterisks in the
STANDARD RETURN BUT NO * IN in the argument list of appropriate positions in
ARGUMENT LIST the SUBROUTINE statement. the argument list of the
Each asterisk must SUBROUTINE statement.
correspond to a statement Place statement labels in
label that appears in the the appropriate positions
argument list of the sub- in the CALL statements;
routine CALL statement. recompile.
386 A COMPILER FAILURE - IRRESOL- Compilation aborted. Recompile without optimi-
VABLE REGISTER JAM zation.
387 W R CONSTANT TOO LONG ~ The R constant is truncated Verify that the trunca-
TRUNCATED ON RHS on the right side. An R tion does not affect the
constant can have no more logic of the program.
than 255 characters.
60457040 B B-19

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
gﬁ;g:r Type Message Significance Action
388 F HOLLERITH CONSTANT NOT PER~ Remove the Hollerith
MITTED IN SPECIAL CALL constant from the special
call; recompile.
389 W ABOVE ERROR MAY BE IN STATE- Error might be in statement Correct error; recompile.
MENT FUNCTION DEFINITION function definition.
390 F LIST-DIRECTED I/0 NOT List-directed input/output Remove list-directed input/
IMPLEMENTED statements cannot be used. output statements from the
program; recompile.
391 F DUMMY ARGUMENT MAY NOT APPEAR Correct error; recompile.
IN EQUIVALENCE
392 F MISSING SYMBOLIC NAME Supply the symbolic name;
recompile.
393 F MISSING = Equals sign missing from Supply the equals signj;
PARAMETER statement. recompile.
394 w SYMBOLIC CONSTANT NAME A symbolic constant is Verify that the first
PREVIOUSLY DECLARED declared more than once. declaration is intended.
The first declaration was
used.
395 F SYMBOLIC CONSTANT PREVIOUSLY A symbolic constant must Change the symbolic con-
USED FOR SOMETHING ELSE not be the same as another stant so that it is unique
symbol in the program. in the program; recompile.
396 F VALUE MUST BE CONSTANT OR The value specified for a Change the value to a
CONSTANT EXPRESSION symbolic constant is not a constant or a constant
: constant. expression; recompile.
397 F INCOMPATIBLE MODES FOR Correct error; recompile.
SYMBOLIC NAME AND ITS VALUE
398 W PARAMETER STATEMENTS MUST Move the PARAMETER
PRECEDE DATA STATEMENTS statementin front of
the DATA statement;
recompile..
399 W PARAMETER STATEMENTS MUST Move the PARAMETER
PRECEDE STATEMENT FUNCTION statement in front of
DEFINITIONS the statement function
definitions; recompile.
400 W PARAMETER STATEMENTS MUST Move the PARAMETER
PRECEDE EXECUTABLE STATEMENTS statement in front of all
executable statements;
recompile.
401 F MISUSE OF SYMBOLIC CONSTANT A symbolic constant can be Correct error; recompile.
NAME ‘used like any other con- .
stant, except it cannot
appear in a complex con-
stant, in a FORMAT state-~
ment, orin a PROGRAM
statement. Also, it can-
not appear as input data.
402 F STATEMENT NOT YET IMPLEMENTED The statement cannot be Eliminate the statement;
used. recompile.
B-20 60457040 B

COMPILATION ERROR MESSAGES (Contd)

Significance

Action

TABLE B-2.
Error Type Message
Number yP &
403 F A SYMBOLIC CONSTANT MAY NOT BE
TYPED AFTER ITS DECLARATION
404 F DUPLICATE OR CONFLICTING
IMPLICIT TYPE
405 W ILLEGAL INSTRUCTION FOR TARGET
MACHINE
406 F ILLEGAL BLOCK IF NESTING
407 W FUNCTION NOT AVAILABLE ON
TARGET MACHINE
408 F BRANCH INTO BLOCK IF
409 F MISSING ENDIF
410 . (Currently unassigned)
411 W MISSING THEN IN ELSE IF
STATEMENT

A type statement for a sym-
bolic constant must appear
before its declaration in
the PARAMETER statement.,

A letter must not be
assigned more than one
implicit type.

The program cannot be cor-
rectly executed on the
machine for which it is
compiled.

A nested block IF must be
entirely contained in an
outer block IF.

The program cannot be cor-
rectly executed on the
machine for which it is
compiled.

Control cannot transfer
into an if-block from out-
side that if-block.

Each block IF statement
must have a corresponding
END IF statement.

The keyword THEN must
follow the keyword ELSE IF.

Move the type statement
in front of the PARAMETER
statement that defines
the symbolic constant;
recompile.

Correct error; recompile.

Verify that the correct
target machine is speci-
fied in the FORTRAN
control statement.

Correct error; recompile.

Verify that the correct
target machine is speci-
fied in the FORTRAN
control statement.

Rewrite the statement so
that it does not transfer
control into an if-block;

" recompile.

Supply the missing END IF
statement; recompile.

Supply the missing THEN.

entered with the program to be executed. The termination
value is used to determine when error exit processing is to
occur. All return codes having a value less than or equal to
the termination value are ignored and job processing
continues. All return codes having a value greater than the
termination value cause error processing specified by the
EXIT control statement to take place.

For example, a termination value of 8 would allow all
warning and fatal errors to be ignored, and cause error exit
processing to occur for abort errors. A termination value
of 0 would trap all errors, including warning codes. The
termination value control statement is discussed in the
Operating System reference manual.

RUN-TIME ERRORS

Error messages listed in table B-3 are produced when error
conditions are detected during the execution of a
Freviously compiled program. The system error processor
SEP) can be called upon to change the attributes of
certain run-time errors. Run-time error types are:

Nonfatal error. A warning is
issued and execution continues.
The return code is 4 (RC=4).

W (warning)

60457040 B

F (fatal) Execution is terminated abnor-
mally when this error condition
exists. The return code is 8
(RC=8).

Condition is nonalterable by SEP
and not subject to user control,
other than replacement of the
standard message. The return code
is 8 (RC=8).

C (catastrophic) -

All errors having a warning classification can be made
fatal. Those errors which are designated as fatal can be
altered to warning level. Catastrophic errors cannot be
altered to fatal or warning level; however, the standard
message can be replaced.

Error messages for mathematical routines have the

CYBER 200 FORTRAN library function name appended to
the message. In like manner, input/output error messages
have the file name appended to the message.

The form of a run-time error message is:

ERROR xxx IN subr AT LINE nn

B-21

TABLE B-3.

RUN-TIME ERRORS

B-22

§§;§:r Type Message. Significance Action
1 [SYNTAX ERROR IN PROGRAM A compilation error exists in Correct compilation
STATEMENT FILE DECLARATION the PROGRAM statement. error. Rerun.
2 [UNIT NUMBER IS MULTIPLY DEFINED The same unit number is Change the PROGRAM
IN PROGRAM STATEMENT assigned to more than one statement so that
file. each unit number is
assigned to only one
file. Correct all
references to unit
numbers accordingly.
Rerun.
3 Cc RUNTIME TABLE ERROR OVERFLOW
4 C ERROR IN CREATE FILE
5 Cc ERROR IN OPEN FILE
6 c MAXIMUM NUMBER OF FILES (70) No more than 70 files can Reduce the number of
EXCEEDED be used in a program. files to no more
than 70. Rerun.
7 C SYSTEM ERROR IN CLOSE FILE
8 (Currently unassigned) - -—
9 (Currently unassigned) - -

10 (Currently unassigned) - -

11 C FILE NOT LARGE ENOUGH FOR OUTPUT The amount of output to a Increase the size of
file exceeds the capacity of the file or reduce
the file. the amount of output

to the file. Rerun.

12 -(Currently unassigned) - -

13 C END OF FILE IN INPUT STREAM An input statement attempted Use a REWIND or

-~ file name to read data from the file BACKSPACE statement
indicated, but that file is to reposition the
positioned at the end of the file before the input
file. statement is execu-

ted, or supply miss-
ing data on the input
file. Rerun.

14 F A CALL TO Q8WIDTH MUST PRECEDE Call Q8WIDTH before

THE ACCESS TO A FILE first file access.

Rerun.

15 F TRANSMISSION ERROR DURING READ

16 Cc ILLEGAL I/0 UNIT NUMBER Unit numbers can be integers Change the unit num-
from 1 through 99. ber to an integer

from 1 through 99,
Rerun.

17 c ATTEMPT TO PERFORM SEQUENTIAL Use the proper type

FORMATTED I/0 ON A FILE OPENED of input/output

FOR ANOTHER FORM OF I/O statements, or open

the file for sequen-
tial formatted input/
output. Rerun.

. 60457040 B

TABLE B-3. RUN-TIME ERRORS (Contd)
Error P e .
Number Type Message' Significance Action
18 (o} ATTEMPT TO PERFORM SEQUENTIAL Use the proper type
of input/output
BINARY I/0 ON A FILE OPENED FOR statements, or open
ANOTHER FORM OF I/0 the file for sequen-
tial binary input/
output. Rerun.
19 c DIRECT ACCESS I/0 NOT Direct access input/output Eliminate direct
IMPLEMENTED cannot be used. access input/output
statements. Rerun.
20 c END OF FILE DURING BINARY INPUT The end of a binary file was Supply any data that
encountered during execution is missing from the
of an input statement. file, or use the END
option input in
the statement in
order to continue
execution after
encountering an end
of file condition.
21 [ERROR DURING BINARY READ An error occurred during exe- Use the ERR option in
cution of a binary input the input statement
statement. in order to continue
execution after an
input/output error
occurs.
22 C FILE PREVIOUSLY USED FOR Mode of variable and format
BUFFER 1/0 specification are incompat-
ible.
23 F CHARACTER MODE, CONVERSION Mode of variable and format
CODE F specification are incompat-—
ible.
24 F CHARACTER MODE, CONVERSION Mode of variable and format
CODE E) specification are incompat-
ible.
25 F LOGICAL MODE, CONVERSION CODE D Mode of variable and format
specification are incompat-
ible.
26 F INTEGER MODE, CONVERSION CODE D Mode of variable and format
. specification are incompat-
ible.
27 F REAL MODE, CONVERSION CODE D Mode of variable and format
specification are incompat-
ible.
28 F COMPLEX MODE, CONVERSION CODE D Mode of variable and format
specification are incompat-
ible.
29 F CHARACTER MODE, CONVERSION Mode of variable and format
CODE D specification are incompat-
. ible. ‘
30 F G FORMAT SHOULD NOT BE SEEN BY Mode of variable and format
LIST HANDLER specification are incompat-
ible.
31 F CHARACTER MODE, CONVERSION Mode of variable and format
CODE I specification are incompat-
ible.
60457040 B B-23

TABLE B-3. RUN-TIME ERRORS (Contd)
g:;g:r Type Message' Significance Action
32 F CHARACTER MODE, CONVERSION Mode of variable and format
CODE L specification are incompat-
ible.
33 C COMPILER FAILURE - ILLEGAL DATA
IN TRANSLATED FORMAT STRING
34 (Currently unassigned) . - -
35 F FORMAT ERROR
36 F ILLEGAL SYNTAX IN VARIABLE
ARRAY FORMAT
37 F ILLEGAL HOLLERITH FIELD LENGTH A Hollerith field can contain Reduce the length of
: no more than 255 characters, the Hollerith field
to no more than 255
characters. Rerun.
38 F END OF STATEMENT ENCOUNTERED IN The length of a Hollerith Reduce the length of
HOLLERITH FIELD field is longer than the the Hollerith field
source statement. - so that it is not
longer than the
length of the source
statement,
39 F FIELD COUNT OUT OF RANGE
40 F MISSING CLOSING APOSTROPHE A literal string must be Supply missing apos-—
OR ASTERISK AT END OF LITERAL delimited by apostrophes or trophe or asterisk.
STRING asterisks, Rerun.
41 F IN F, E, D, GW.D; D IS GREATER In these format specifica- Rewrite the format
THAN W tions, the w field specifies specification so
the total length of the that the d field is
field; the d field specifies less than the w
the number of spaces to the field. Rerun.
right of the decimal point.
The d field must be less
than the w field.
42 F UNDECLARED VARIABLE NAME The namelist input data con- Place the variable in
ENCOUNTERED IN NAMELIST INPUT tains a variable that is not the NAMELIST state-
declared in the NAMELIST ment or remove the
statement of the program. variable from the
All variables that are in the input data. Rerun.
input data must be declared
in the NAMELIST statement;
all variables in the NAMELIST
statement do not have to
appear in the input data,
however.
43 F SUBSCRIPT ERROR IN NAMELIST
INPUT
44 F FIRST COLUMN MUST BE BLANK FOR The first column of each Add a blank to the
NAMELIST INPUT record of namelist input data first column of each
must be blank. record of namelist
' input data. Rerun.
45 F FORMAT ERROR IN NAMELIST INPUT Correct error. Rerun.
DATA
B-24 60457040 B

TABLE B-3. RUN-TIME ERRORS (Contd)
Error e egs .
Number Type Message Significance Action
46 F NAMELIST INPUT RECORD NOT If a data item extends over Correct error. Rerun.
PROPERLY TERMINATED more than one record, then
variables, constants, array
names, constants with repeat
specifications, and the &END
cannot extend over more than
one record. ,
47 F NAMELIST - SCALAR VARIABLE A subscript is speéified for Remove the subscript
CANNOT HAVE SUBSCRIPTS a scalar variable in the or dimension the
namelist input data. variable in the
program. Rerun.

48 F NUMBER OF ELEMENTS EXCEEDS An array in the namelist Increase the size of

DEFINED ARRAY LENGTH IN NAMELIST input data contains more the array in the pro-
elements than specified in gram, or eliminate
the program. the extra array ele-

ments in the namelist
input data. Rerun.

49 F NAMELIST CHARACTER IS TOO LONG

50. W INDEFINITE VALUE IN NAMELIST A variable that has an indef- Check the program for

OUTPUT inite value is output using the source of the
a namelist output statement. indefinite value.

51 W LOGICAL DATA SYNTAX ERROR Misspelled .TRUE. or .FALSE.

52 W COMPUTATIONAL ERROR - LOGICAL

VALUE MUST BE EQUAL TO O OR 1

53 w DATA EXCEEDS (2*%*47)-1 A value in the input data is Verify that the
too large to be represented. truncation does not
The value was truncated. affect the logic of

the program.

54 W ILLEGAL DATA IN FIELD

55 W INVALID DATA IN FIELD

56 W DATA OVERFLOW

57 W INDEFINITE ARGUMENT The argument has an indef- Check program for the
inite value. This can cause source of the inde-
subsequent errors. finite value.

58 w ZERO TO THE ZERO POWER Zero can be raised only to a Check to find out if
positive power. This expres- this indefinite value
sion yields an indefinite causes subsequent
result. The-indefinite value errors.
can cause subsequent errors.

59 W ZERO TO THE NEGATIVE POWER Zero can be raised only to a Check.to find out if
positive power. This expres- this indefinite value
sion yields an indefinite causes subsequent
result. The indefinite value errors.
can cause subsequent errors.

60 w FLOATING POINT OVERFLOW A real number is too large to Verify that the
be represented. The number truncation does not
was truncated. affect the logic of

the program.
60457040 B

B-25

TABLE B-3. RUN-TIME ERRORS (Contd)
S:;g:r Type Message , Significance Action
61 W ARGUMENT TOO LARGE - ACCURACY The value of the argument is Verify that the loss
LOST too large to be represented of accuracy does not
precisely. affect the logic of
the program.

62 W INTEGER OVERFLOW An integer is too large to be Verify that the
represented. The value was truncation does not
truncated. affect the logic of

the program.

63 w NEGATIVE TO THE REAL POWER A negative value can have an Verify that the
integer exponent only. The truncation does not
exponent was truncated to an affect the logic of
integer before the exponenti- the program.
ation was performed.

64 w ZERO ARGUMENT

65 W NEGATIVE ARGUMENT

66 W X=Y=0.0

67 W ABS (REAL PART) TOO LARGE The real part of a complex Verify that the
number is too large or too truncation does not
small to be represented. The affect the logic of
real part was truncated. the program.

68 W IMAG. PART TOO LARGE The imaginary part of a com— Verify that the
plex number is too large to truncation does not
be represented. The imagi- affect the logic of
nary part was truncated. the program.

69 w REAL PART TOO LARGE ' The real part of a complex Verify that the
number is too large to be truncation does not
represented. The real part affect the logic of
was truncated. the program.

70 w ABS (IMAG PART) TOO LARGE The imaginary part of a com- Verify that the
plex number is too large or truncation does not
too small to be represented. affect the logic of
The imaginary part was the program.
truncated.)

71 w ARGUMENT TOO LARGE, FLOATING The value of the argument Verify that the

POINT OVERFLOW is too large and caused a truncation does not
floating-point overflow. affect the logic of
The value was truncated. the program.

72 W INDEFINITE RESULT An expression resulted in an Check to find out if
indefinite result. The the indefinite value
indefinite value can cause causes subsequent
subsequent errors. €errors.

73 W NEGATIVE TO A POWER A negative number is raised Verify that the

. to an exponent. The exponent exponent is an
must be an integer. integer.

74 W ARGUMENT TOO LARGE The value of an argument is Verify that the.
too large to be represented. truncation does not
The value was truncated. affect the logic of

the program.
® B-26 60457040 B

TABLE B-3. RUN-TIME ERRORS (Contd)
Error T Message Significanc Action
Number ype ssag gnificance ctio
75 W ARGUMENT .GT. ONE The value of an argument is Verify that the value
greater than one. 1 can be used for the
argument without
affecting the logic
of the program.
76 1% EXPONENT OF INTEGER IS NON-ZERO
77 C ATTEMPTED READ FROM STANDARD Data cannot be read from an Check the input
OUTPUT OR PUNCH output device. statement for an
improper unit number
specification. Cor-
rect error. Rerun.
78 C ATTEMPTED WRITE TO STANDARD Data cannot be written to an Check the output
INPUT UNIT input device. statement for an
) improper unit number
specification. Cor-
rect errcr. Rerun.
79 F RECORD LENGTH EXCEEDED ON A formatted READ statement Shorten the record
FORMATTED READ attempts to read a record read by the input
that is longer than the max- statement, or
imum record length specified increase the record
for the file from which it length specifica-
is reading. tion in the PROGRAM
statement. Rerun.
80 F RECORD LENGTH EXCEEDED ON A formatted WRITE statement Shorten the record’
FORMATTED WRITE attempts to write a record written by the out-
that is longer than the max- put statement, or
imum record length specified increase the record
for the file to which it is length specifica-
writing. tion in the PROGRAM
statement. Rerun.
81 [NULL ELEMENTS IS NOT This feature cannot be used. Correct error. Rerun.
IMPLEMENTED :
82 C SLASH ON INPUT IS NOT A slash cannot be used in an Correct error. Rerun.
IMPLEMENTED input statement to cause the
next record to be input.
83 T C ILLEGAL FILE NAME -~ file name Correct error. Rerun.
84 Cc EXPLICIT FILE PARAMETERS ILLEGAL Correct error. Rerun.
OR INCOMPATIBLE
85 (Currently unassigned) - -
86 F A CALL TO Q8WIDTH IS NOT ALLOWED Correct error. Rerun.
FOR FILES WITH UNDEFINED RECORD ‘
TYPES
87 c BAD MESSAGE FORMAT ON CALL TO An error exists in the Correct error. Rerun.
FORTRAN EXECUTION FORTRAN control statement.
88 c ERROR IN OPEN BUFFER OR TAPE
FUNCTION CALL
89 C ERROR IN CLOSE BUFFER
90 F RECORD EXCEEDS RECORD LENGTH The record is too long for Correct error or use
ON FILE this file. a file with a longer
record length. Rerun.
60457040 B B-27

TABLE B-3. RUN-TIME ERRORS (Contd)
ﬁ:;g§r Type Message Significance Action
91 [FILE PREVIOUSLY USED FOR A file cannot be used for Use either buffer
NON-BUFFER 1/0 buffer input/output if it is input/output state-
also used for nonbuffer ments with the file,
input/output. or nonbuffer input/
output statements,
but not both. Rerun.
92 c BUFFER DESIGNATION BAD - The first word address of the Change the buffer de-
FIRST WORD ADDRESS .GT. LAST buffer is greater tham the signation so that the
ADDRESS last word address of the - first word address
buffer. is less than last
word address. Rerun.
33 c WRITE FOLLOWED BY READ A WRITE statement that writes Place a REWIND or
data to a file is followed by BACKSPACE statement
a READ statement that reads between the WRITE and
data from the same file; no READ statements. Check
file positioning statements to find out if the
intercede. proper unit numbers
are specified in the
WRITE and READ state-
ments, and to find
out if the WRITE
and READ statements
appear in the correct
place in the program.
Rerun.
94 c END OF FILE ENCOUNTERED IN A BUFFER IN statement Use a REWIND or
BUFFER IN attempts to read data from BACKSPACE statement
a file, but that file is to reposition the
positioned at the end of file before the
the file. BUFFER IN statement
is executed, or sup-
ply missing data on
the input file.
Rerun.
95 C FILE NOT READY
96 C BUFFER LENGTH GREATER THAN 24 The length of the buffer is Reduce the length of
SMALL PAGES too large. the buffer. Rerun.
97 F ILLEGAL RECORD TYPE FOR Use a file of the
FORMATTED 1/0 correct record type.
Rerun.
98 F ILLEGAL RECORD TYPE FOR Use a file of the
UNFORMATTED I/0 correct record type.
-Rerun.
99 C DIFFERENT RECORDING MODES ON
PROGRAM CARD AND BUFFER 1/0
100 (Currently unassigned) - -
101 (Currently unassigned) - -
102 (Currently unassigned) - -
103 (Currently unassigned) - -
104 (Currently unassigned) - —
105 F UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFSET
B-28

60457040 B

60457040 B

TABLE B-3. RUN-TIME ERRORS (Contd)
Error s e s .
Number Type Message Significance Action
106 F UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFCLI1
107 F END OF RECORD ENCOUNTERED A binary input statement Use a REWIND or
DURING BINARY INPUT attempted to read binary data BACKSPACE statement
from a file, but the file is to reposition the
positioned at the end of the file before the input
file. statement is executed
or supply missing
data on the input
file. Rerun.
108 F UNDOCUMENTED ERROR DURING
BINARY INPUT
109 F BIT DATA PRINTED WITH NON B The B format specification Use the B format
FORMAT--file name must be used for bit data. specification in the
FORMAT statement.
Rerun.
110 F B FORMAT USED FOR OTHER THAN The B format specification Change the B format
BIT DATA--file name is used for data that is of specification to the
a type other than bit. appropriate format
specification. Rerun.
111 F DESCRIPTOR PRINTED WITH NON Z The Z format specification Use the Z format
FORMAT--file name must be used for descriptors. specification in the
FORMAT statement.
Rerun.
112 F ILLEGAL RECORD TYPE FOR Use a file of the:
BUFFER 1/0 correct record
type. Rerun.
113 C Q7BUFIN OR Q7BUFOUT WAS CALLED
WITH ILLEGAL PARAMETER--~
file name
114 Cc Q7SEEK WAS CALLED WITH ILLEGAL
PARAMETER--file name
115 C ARRAY SPECIFIED AS BUFFER
IS NOT ON PAGE BOUNDARY
(Q7BUFIN/Q7BUFOUT)~-file name
116 C UNEXPECTED ERROR IN Q7BUFIN OR
Q7BUFOUT--file name
117 C TOO MANY OUTSTANDING REQUESTS
FOR Q7BUFIN/Q7BUFOUT (MUST CALL
Q7WAIT)--file name
118 F GARBAGE IN FILE OR FILE NOT Correct the content
STRUCTURED--file name or format of the in-
dicated file. Rerun.
119 F UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFOFF
120 Cc ROUTINES CALLING Q7DFSET NESTED
TOO DEEP
121 W DATA FLAG BRANCH - ORK -
REGISTER 1 ADDRESS address
B-29

TABLE B-3. RUN-TIME ERRORS (Contd)

g:;gzr Type Messagé Significance Action
122 W DATA FLAG BRANCH - ORD -
REGISTER 1 ADDRESS address
123 F DATA FLAG BRANCH - IMAGINARY
SQUARE ROOT - REGISTER 1
ADDRESS address
124 F DATA FLAG BRANCH - INDEFINITE
RESULT - REGISTER 1 ADDRESS
address
125 F DATA FLAG BRANCH - ZERO
DIVISOR -~ REGISTER 1 ADDRESS
address :
126 W DATA FLAG BRANCH - EXO -
REGISTER 1 ADDRESS address
127 w DATA FLAG BRANCH - RMZ -
REGISTER 1 ADDRESS address
128 W DATA FLAG BRANCH - SSC -
REGISTER 1 ADDRESS address
129 W DATA FLAG BRANCH - DDF -
REGISTER 1 ADDRESS address
130 W DATA FLAG BRANCH - TBZ -
REGISTER 1 ADDRESS address
131 C CLASS I DATA FLAG BRANCH - NO
INTERRUPT ROUTINE PROVIDED -
REGISTER 1 ADDRESS address
132 [CLASS III INTERRUPT IN CLASS
III INTERRUPT HANDLING ROUTINE
~ REGISTER 1 ADDRESS address
133 (Currently unassigned) - -
134 (Currently unassigned) - -
135 C DATA FLAG BRANCH, NO PRODUCT
BITS ON - REGISTER 1 ADDRESS
XXXXAXXX
136 C RLP VALUE MISSING OR INVALID IN
PROGRAM STATEMENT
137 ‘(Currently unassigned) - -
138 F Q8WIDTH CALLED WITH WIDTH
NEGATIVE OR TOO LARGE
139 C SIO ERROR
This is preceded by the text
of the SIO error message.
140 F FORTRAN SECOND USE OF Q7DFCL1
CONFLICTS WITH USER
141 F USER USE OF Q7DFCL1 CONFLICTS
WITH FORTRAN SECOND
B-30 60457040 B

This indicates the location in the user program where an
error occurred. Since the error is actually detected in a
run-time routine, the statement identified should be one
that generated a call to FORTRAN run-time; that is, an
I/0 statement or a reference to a FORTRAN supplied
function such as SIN or COS.

For data flag branch errors, the form of the error message
is:

ERROR xxx: EXECUTION INTERRUPTED IN subr
AT LINE nn - REGISTER 1
ADDRESS yyyyyy

If the register 1 address is in a user routine, the subroutine
and line number should correspond to the register 1
address. However, if the register 1 address is in a
run-time routine, the subroutine and line number will
identify the location in the user's program that generated
the call to FORTRAN run-time.

VECTORIZER MESSAGES

The messages listed in table B-4 are issued by the
vectorizer phase of the compiler when the V option is
specified on the FORTRAN control statement. The
messages are informative only, and are not associated with
any return code.

The message issued indicates the first impediment to
vectorization detected by the compiler. The format of a
vectorizer message is:

LINE xxxxx LINE yyyyy msg

The xxxxx represents the source line number at which the
DO loop begins, and the yyyyy represents the source line
number at which the impediment was detected. The msg
represents the message.

TABLE B-4. VECTORIZER MESSAGES
Message * Significance Action
BRANCH INTO LOOP A DO loop must be entered from the top. No action necessary.
BRANCH OUT OF LOOP A DO loop must be exited at the bottom No action necessary.
of the loop.
CONTROL VARIABLE APPEARS OTHER THAN AS A control variable can appear within the No action necessary.
A SUBSCRIPT REFERENCE loop only as part of a subscript
expression.
ITERATION COUNT GREATER THAN 65K AT The length of a vector cannot exceed No action necessary.
THIS LOOP LEVEL 65535 elements.
LHS ARRAY HAS A NON-UNIFORM INCREMENT Although the stride of the innermost No action necessary.
VALUE loop does not have to be 1, the sub-
script expression must reference memory
in a positive, linear order.
LHS HAS POSSIBLY RECURSIVE PROPERTIES The compiler cannot determine that a No action necessary.
feedback condition does not exist.
LHS DUMMY ARRAY WITH VARIABLE TEST The loop might be vectorizable if the U No action necessary.
VALUE - U OPTIMIZATION NOT SPECIFIED compile option is specified on the
FORTRAN control statement.
LHS SUBSCRIPT CONTAINS AN ‘A subscript expression must be one of No action necessary.
EXTERNAL REFERENCE the following forms: ¢, c+n, c-n, or
c*n; where ¢ is a control variable and
n is an integer constant.
LHS SUBSCRIPT CONTAINS INTRINSIC A subscript expression must be one of No action necessary.
FUNCTION REFERENCE the following forms: ¢, c+n, c-n, or
c*n; where ¢ is a control variable and n
is an integer constant.
LHS SUBSCRIPT IS DEFINED WITHIN LOOP A subscript expression must be one of No action necessary.
the following forms: ¢, c+n, c-n, or
c*n; where ¢ is a control variable and n
is an integer constant.
LHS VARIABLE APPEARS IN EQUIVALENCE The loop is rejected because of the No action necessary.
STATEMENT possibility of feedback.
LHS VARIABLE MUST BE REAL, INTEGER, OR Double~precision, complex, character, No action necessary.
LOGICAL and bit data elements will not be
vectorized.

60457040 B

B-31

TABLE B-4.

VECTORIZER MESSAGES. (Contd)

Message

Significance

Action

LOOP IS AN OUTER LOOP WITH A NON-UNIT
INCREMENT VALUE

LOOP IS AN OUTER LOOP WITH A VARIABLE
INCREMENT VALUE

WITHIN LOOP

NONVECTORIZABLE LOOP NESTED WITHIN LOOP
PROPERTY OF EMBEDDED LOOP PROHIBITS

VECTORIZATION OF LOOP

RHS ARRAY HAS A NON-UNIFORM INCREMENT
VALUE

RHS ARRAY HAS POSSIBLY RECURSIVE
PROPERTIES

RHS ARRAY MUST BE REAL, INTEGER, OR
LOGICAL

RHS DUMMY ARRAY WITH VARIABLE TEST
VALUE - U OPTIMIZATION NOT SPECIFIED

RHS SUBSCRIPT CONTAINS AN EXTERNAL
REFERENCE

RHS SUBSCRIPT CONTAINS INTRINSIC
FUNCTION REFERENCE

RHS SUBSCRIPT IS DEFINED WITHIN LOOP

SCALAR DEFINED WITHIN LOOP AND APPEARS
IN EMBEDDED LOOP

SCALAR REFERENCED BEFORE FIRST
DEFINITION WITHIN LOOP

STATEMENT CONTAINS NON-VECTORIZABLE
FUNCTION

STATEMENT CONTAINS NON-VECTORIZABLE
OPERATOR

B-32

LOOP WITH VARIABLE/TERMINAL VALUE NESTED

.The vectorizable functions are:

Only innermost loops can have an
increment value other than 1.

Only innermost loops can have a variable
increment value.

Uniform memory reference could not be
guaranteed if the outer loop were
vectorized.

Any nonvectorizable inner loop prohibits
vectorization of all outer loops.

Although the stride of the innermost
loop does not have to be 1, the sub-
script expression must reference memory
in a positive, linear order.

The compiler cannot determine that a
feedback condition does not exist.

Double~precision, complex, character,
and bit data elements will not be
vectorized.

Loop might be vectorizable if the U com-
pile option is specified on the FORTRAN
control statement.

A subscript expression must be one of
the following forms: ¢, c+n, c-n, c¥*n;
where ¢ is a control variable and n is
an integer constant.

A subscript expression must be one of
the following forms: ¢, ¢+n, c-n, or
c*n; where c¢ is a control variable and n
is an integer constant.

A subscript expression must be one of
the following forms: ¢, c+n, c-n, or
c*n; where c is a control variable and n
is an integer constant.

Scalar has recursive properties, which
prohibits vectorization.

Scalar has recursive properties, wh1ch
prohibits vectorization.

ABS,
ACOS, ALOG, ALOGIO, ASIN, ATAN, COS,
EXP, FLOAT, IABS, IFIX, SIN, SQRT, and
TAN.

Only the arithmetic operators +, -, *,
/, and **, and the logical operators are
vectorizable.

No

No

No
No

No

No

No
No

No

No

No

No
No

No

No

action necessary.
action necessary.

action necessary.

action necessary.
action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

action necessary.

.action necessary.

action necessary.

60457040 B

TABLE B-4. VECTORIZER MESSAGES (Contd)

Message

Significance

Action

STATEMENT IS A VECTOR STATEMENT
STATEMENT IS NOT AN ASSIGNMENT
STATEMENT

TWO OR MORE POTENTIALLY RECURSIVE
REFERENCES TO LOOP INDEPENDENT ARRAY

The loop cannot contain vector or sparse
vector assignment statements

The loop can contain only scalar
assignment statements.

Because a loop-independent array
reference is considered to be a scalar
reference, every reference to that array
in the loop can have the same subscript.

No action necessary.

No action necessary.

No action necessary.

60457040 B

B-33

" GLOSSARY

Terms used in the main text of this manual are described in
this section. The definitions give the general meanings of
the terms. Precise definitions are given in the main text.
Also, most general terms regarding computers and terms
defined in the American National Standards documents
regarding the FORTRAN language have been excluded.

Array -
An ordered set of variables identified by a single
symbolic name. Referencing a single element of an
array requires the array name plus a subscript that
specifies the element's position in the array.

Array Declarator -
Specifies the dimensions of an array. It consists of an
array name followed by a parenthesized list of integer
constants or simple integer variables that specify the
largest value of each dimension.

ASCH Data -
Characters, each of which has a standard internal
representation. One byte (8 bits) is required for each
character.

ASCII File -
A type of file that can be manipulated with formatted
READ statements, formatted WRITE statements,
PRINT statements, and PUNCH statements.

Binary File -
A type of file that can be manipulated by unformatted
input/output routines.

Bit Data -
A binary value represented in a FORTRAN program as
a binary number in the format B'bb...b' where each b
isa0oral. Each 0 or 1 becomes a 0 bit or a 1 bit in
the internal representation for the binary value.

Buffer Input/Output -
Input and output statements that cause data to be
transferred between binary files and a buffer area in
main memory.

Character Data -
An ASCI value represented in a FORTRAN program
by a character string in the format 'ce...c' where
each c is in ASCII. Each character becomes a byte of
ASCII data in the internal representation for the ASCII
value.

Colon Notation -
The notation used to express implied DO subseript
expressions in a subarray. The colons separate the
initial, terminal, and incrementation values for the
implied DO.

Columnwise -
The ordering of the elements in an array declared in a
DIMENSION, COMMON, or explicit type statement
(the other ordering is rowwise). The succession of
subscripts corresponding to the elements of a
columnwise array is with the value of the leftmost
subscript expression varying the fastest.

60457040 B

Compile Time -
The period of time during which the FORTRAN
compiler is reading with the user's program and
producing the relocatable module for the program.
Compilation is initiated by the FORTRAN system
control statement.

Conformability -
Determines whether two subarrays can occur in the
same expression. Two subarrays are conformable if
they contain the same number of implied DO
subscripts and if corresponding implied DO subscript
expressions are identical.

Control Vector -
A Dbit vector that controls operations regarding an
associated vector. The control vector elements are
set to a configuration of 0s and 1s. The control vector
elements are set to a configuration of 0s and 1s. Some
of the FORTRAN-supplied functions use control
vectors. '

Controllee File -
A file that consists of object code generated by the
loader. The loader builds a controllee file from
relocatable object code produced by a compiler, plus
relocatable object code of any externally-defined
routines.

Data Element -
A constant, variable, array, or array element.

Data Flag Branch Manager (DFBM) -
A FORTRAN run-time and CYBER 200 library routine
that processes data flag branches when they occur in
an executing program. A data flag branch is a
hardware function of the CYBER 200 computers.

Data Flag Branch (DFB) Register -
Part of the data flag branch hardware. It is a 64-bit
register located in the CYBER 200 central processor.

Declaration -
A specification statement that declares attributes of
variables, arrays, or function names.

Defining -
Process whereby a variable or array element acquires
a predictable or meaningful value. Definition can take
place through data initialization, parameter
association, DO statement execution, input statement
execution, or assignment statement execution.
Defining contrasts with naming and referencing.

Descriptor -
A pointer to a vector. In several FORTRAN forms,
the deseriptor can be used instead of the vector.

Dominance -
A conventional data type hierarchy determining the
data type of the result of expression evaluation.
Dominated operands are converted during evaluation
to the dominant type. The type complex dominates all
other types, with types double-precision, real, and
integer following in order of decreasing dominance.

Drop File -
A file that is created and maintained for each
executing program. Contains any modified pages of
the program file, any free space attached, and any
read-only data space defined to have temporary write
access. ‘ ’

Dynamic Space -
Virtual memory space available for allocation and
deallocation at execution time. In particular, space
for vectors can be assigned in the dynamic space area
by using the deseriptor ASSIGN statement.

Explicit Typing -
Specification of the data type of a variable or array by
means of one of the explicit type statements (the
INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
BIT, CHARACTER, and LOGICAL statements).
Explicit typing overrides any implicit typing.

External Function -
A function that is defined outside of the program unit
that references it. A reference to an external
function generates code in the user's object program
that causes control to transfer to the external
function during program execution. External functions
contrast with in-line funetions.

File -
A collection of information that can be defined by
output statements, or referenced by input statements.
Depending on the type of output used to create it, a
file can be either implicit or explicit.

First-Letter Rule -
Default type association for data names according to
the first letter of the name. Type assignment made is
type integer to any name beginning with the letter I,
J, K, L, M, or N, and type real to all others. The
IMPLICIT statement is used to alter these defaults.

Floating-Point -
Refers to the internal representation for real,
double-precision, and complex data.

Generic Function -
A function whose result mode depends on the mode of
the argument.

Hexadecimal Data -
A value represented in a FORTRAN program as a
hexadecimal number in the format X'hh...h' where
each h is a hexadecimal digit (one of the digits 0
through 9 or one of the letters A through F). Each
digit becomes the 4-bit binary equivalent in the
internal representation for the value.

Implicit Typing -
Specification of the data type of a variable or array by
means of the first-letter rule for data names.

Index Vector -
An integer vector whose elements are indexes into
another vector. An index is an ordinal number
indicating element position in a vector. Some of the
FORTRAN-supplied functions use index vectors.

In-Line Function -
A type of predefined function. Referencmg an in-line
function causes the function's object code to be
inserted directly into the relocatable object code of
the wuser's program during compilation. In-line
functions contrast with external functions.

Input -
The name of the file read with FORTRAN READ
statements that do not specify a unit number. To be
used, INPUT must be declared in the PROGRAM
statement or in the execution line.

Large Page -
A block of 65536 words in memory starting on a large
page boundary. A loader call parameter can be used
to tell the operating system that the specified modules
are to be placed within a large page loaded on a large
page boundary.

Loader -

A utility that links relocatable object modules,
together with modules from user libraries or the
system library as needed to -satisfy external
references. It then converts external references and
relocatable addresses into the virtual address
constants. Thus, relocatable modules are transformed
into a virtual code controllee file with the (default)
name of GO.

Logical Unit Number -
Integer between 1 and 99 associated with a file by
means of the PROGRAM statement declarations or
execution line declarations, and used to refer to the
file when performing FORTRAN input/output.

Loop-Dependent -

Describes a variable whose value changes as the value
of the control variable of a DO loop passes through the
range specified in the . DO statement. A
loop-dependent variable is defined within the range of
the loop, while a loop-independent variable is defined
(or could be defined with the same effect) outside the
range of the loop.

Loop-Independent -
Describes a variable whose value remains constant
within the range of a DO loop.

Naming - ’
Identifying data (or a procedure) without necessarily
implying that its current value is to be made available
(or, for procedures, that the procedure actions are to
be made available) during the execution of the
statement in which it is identified. Naming contrasts
with referencing and defining.

Object Module -
* The relocatable representation of a program unit
created by compilation of the program unit. Consists
of object code.

Output -
The name of the file to which all run-time error
messages and records output with PRINT statements
are written. WRITE statements can also be used to
write on OUTPUT if OUTPUT is given a logical unit
number in the PROGRAM statement.

Precedence - .
A conventional arithmetic, relational, and logical
operator hierarchy determining the order in which
operations are performed during expression
evaluation. Operator precedence in FORTRAN
corresponds to the mathematical notion of the
precedence of mathematical operations.

Predefined Function -
FORTRAN-supplied code that performs common
manipulations. Predefined functions can be in-line
functions, external functions, or both in-line and
external functions.

60457040 B

Program -
A procedure described in the FORTRAN programming
language, consisting of at least a main program along
with any user-written functions and subroutines that
are referenced directly or indireetly by that main
program. ’

Punch -
The name of the file to which records written by the
PUNCH statement are written.

Record -
The amount of information read or written by a single
FORTRAN READ or WRITE statement. In formatted
input/output, a new record is started each time a slash
edit descriptor or a format repetition is processed.

Referencing -
Identifying data for the purpose of making its current
value available during the execution of the statement
containing the reference. Also, identifying a
procedure for the purpose of making the actions
specified available for execution. Referencing
contrasts with naming and defining.

Rowwise -
The ordering of the elements in an array declared in a
ROWWISE statement (the other ordering is
columnwise). The succession of subscripts
corresponding to the elements of a rowwise array is
with the value of the rightmost subseript expression
varying the fastest.

Run Time -
The period of time during which the compiled program
is executing. Execution is initiated by a system
control statement.

Scalar -
A single value; contrasted to vectors, which are
typically groups of values. :

Semicolon Notation -
A notation used to express a vector. The semicolon
separates the two items specifying the vector, namely,
its first element and its length.

Side Effect -
The alteration of an argument or an element in a
common area as a result of a function reference.

Small Page -
A block of 512 words in memory starting on a small
page boundary. A small page is the smallest unit that
can be moved in or out of main memory by the
operating system.

60457040 B

Special Call -
A CYBER 200 FORTRAN language feature that can
be used to cause specific machine instructions to be
generated in the object code at compile time.

STACKLIB Routine -
A routine that optimizes certain loops that cannot be
vectorized.

Subarray -
A cross section of an array. lIdentified either by the
array name or by the array name qualified by a
subseript containing (among other kinds of subscript
expressions) one or more subscript expressions in colon
notation. -

Subscripted Array Name -~
An array name followed by a parenthesized list of
integer constants or simple integer expressions that
specify a particular element in an array. A
subscripted array name is either an array element
reference or an array element definition.

Symbolic Constant -
A name that has a constant value. The value is
specified by the PARAMETER statement.

Unit -
A disk or tape on which a file can be created and kept
by the operating system.

Vector -
A data representation that typically consists of more
than one value; contrasted to scalar data, which
represent single values. A subset of an array of scalar
elements or of the dynamic space area, delimited by a
length and a subseript which designates the position in
the array of the vector's first element.

Vectorize -
Cause machine vector instructions to be generated as
part of the object code for a CYBER 200 FORTRAN
program, either by using vector data and referencing
vector functions, or by including vectorizable DO
loops in a program compiled when the V compile
option has been selected.

Virtual Memory -
A conceptual extension of main memory achieved by a
hardware/software technique which permits memory
references beyond the physical limitation of main
memory. Virtual memory addresses are associated
with real addresses in physical memory during program
execution,

SPECIAL CALL STATEMENTS

describes the available

This appendix
statements. Each special call statement directly generates

special call

a machine instruction. Special calls are described in
general terms in section 13. Each special call name is a
mnemonic preceded by Q8. The mnemonics are identical
to the CYBER 200 Assembler mnemonics in most cases.
Certain special calls use an abbreviated mnemonic because

The first field of each machine instruction is the op
code (F), indicating which function is to be performed.
The special call name supplies the op code (F) in the
generated instruction. Other operands are specified as
arguments in the special call. The operand designators are
explained in table D-1.

the name is limited to 6 characters following the Q8.

TABLE D-1. OPERAND DESIGNATORS
Designator Format Type Definition
A 1l and 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

Cc Specifies a fullword or halfword register, the length and type of which is
determined by G field bits.

B 1 and 3 Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

2 Specifies a register that contains the base address for a source sparse vector
field.

(o} Specifies a register that contains the branch base address in the rightmost 48
bits, or must be set to zero, depending on G bit 2.

c 1, 2, and 3 Specifies a register that contains the field length and base address for stor-
ing the result vector or string field.

c Specifies a fullword or halfword register that contains the sum of (A) + (X)

. for indexed branch instructions, but must be set to zero for compare floating-
point instructions.
cC+1 1 Specifies a register containing the offset for C and Z vector fields. If
the C + 1 designator is used, the C designator must specify an even-numbered
register.
G 1, 2, 3, 9, 8-bit designator specifies certain subfunction conditions. Subfunctions in-

B and C clude length of operands (32— or 64-bit), normal or broadcast source vectors,

etc. The number of bits used in the G designator varies with instructions.
For some format 3 instructions, used as an immediate byte I8.
I 5 48-bit index used to form the branch address in a B6 branch instruction. In BE
and BF index instructions, I is a 48-bit operand. ’

6 In 3E and 3F index instructions, I is a 16-bit operand.

B In the 33 branch instruction, the 6-bit I is the number of the DFB object bits
used in the branching operation.

R 4 In the register and 3D instructions, R is the register containing an operand to
be used in an arithmetic operation.

5 and 6 In the 3E, 3F, BE, and BF index instructions, R is a destination register for
the transfer of an operand or operand sum. In the B6 branch instruction, this
register contains an item count used to form the branch address.

7, 8, and A R .specifies registers and Branching conditions given in the individual instruc-
tion descriptions.

60457040 B D-1

TABLE D-1. OPERAND DESIGNATORS (Contd)
Designator Format Type Definition
S 4 In the register and 3D imstructions, S is a register containing an operand to
be used in an arithmetic operation.
7, 8, and 9 S specifies registers and branching conditions given in the individual instruc-
tion descriptions.

T 4 T specifies a destination register for the transfer of the arithmetic results.
7, 8, 9 T specifies a register that contains the base address and, in some cases, the
and B field length of the corresponding result field or branch address.

A T specifies a register containing the old state of a register, DFB register,
etc.; in an index, branch, or inter-register transfer operation.

X 1 and 3 Specifies a register that contains the offset or index for vector or string

source field A.

2 Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

c In indexed branch or compare floating-point instructions (BO - B5), specifies
a fullword or halfword register that contains an operand, the length and type
of which is determined by G field bits.

Y 1 and 3 Specifies a register that contains the offset or index for vector or string

field B.

2 Specifies a register that contains the length and base address for the order
vector corresponding to source sparse vector field B.

c In indexed branch or compare floating-point instructions (BO - B5), Y specifies
one of the following: a register that contains an index used to form the
branch address; part of the halfword item count in a relative branch; or a
destination register for storing a one if the condition is met, and zero
otherwise.

Z 1 Z specifies a register that contains the base address for the order vector used

to control the result vector in field C.

2 Z gpecifies a register that contains the length and base address for the order
vector corresponding to result sparse vector field C.

3 Z specifies a register that contains the index for result field C.

C In indexed branch or compare floating-point instructions (B0 - B5), contains
a two's complement or unsigned integer that determines whether the condition
is met.

The special call formats are shown in table D-2.

The d Indicates a fullword register containing a

G bits that can be set either to 0 or 1 are indicated with descriptor.
the marking x. In the table, the following additional ,
notations are used: e Indicates a fullword register with an
exponent field that contains a length operand.
f Indicates a fullword register containing an
operand. eh Indicates a halfword register with an
: exponent field that contains a length operand.
h Indicates a halfword register containing an
operand. : FP Is an abbreviation for floating-point.
a Indicates a fullword register containing an RJ Is an abbreviation for right-justified.

address; length field is ignored.

Indicates a fullword register containing an

index.

SE Is an abbreviation for sign extended.

YB Indicates a combined Y and B field.

60457040 B

TABLE D-2.

SPECIAL CALL FORMATS

: Op Code Instruction .. .
Special Call (Hex) Format Description G Bits
CALL QBABS(Rg,,Tg) 79 A Absolute, fullword FP:
ABS(Rg) —e T
CALL QBABSH(Ryp,,Th) 59 A Absolute, halfword FP:
ABS(Rp)—s Ty,
CALL QBABSV(G,X,A,,,Z,C) .99 1 Absolute, vector: ABS(A)—sC XXXX 0000
CALL Q8AcPs(G,X,A,Y,B,2,C) CF 1 Ay -GE.B,—sCy,set Z,,0V X000 XXXX
length—ﬁzo_w '
CALL Q8ADDB(,X,A,Y,B,Z,C) EO 3 Add binary: A+B—eC
CALL Q8ADDD(,X,A,Y,B,Z,C) E4 3 Add decimal: A+B~—eC
CALL Q8ADDL(R¢,Sf,Tf) 61 4 Add lower, fullword FP:
((Re)+(Sg))—»T¢
CALL QBADDLEN(Rg,S¢,Te) 2B 4 Add to length, Rg-]5+548-63—
To-15:R16-63—+T16-63
CALL QBADDLH(Ry,Sh,Th) 41 4 Add lower, halfword FP:
((Rp)+(Sp)) ,—» T
CALL Q8ADDLS(G,X,A,Y,B,Z,C) Al 2 Add lower, sparse vector: XXXX XXXX
(A*B)L—’C
CALL QBADDLV(G,X,A,Y,B,2,C) 81 1 Add lower, vector: (A+B);—C XXXX XXXX
CALL Q8ADDMOD(G,X,A,Y,B,Z,C) EC 3 Add modulo bytes: (A,+Bp)
mod (18)—+Cy
CALL QBADDN(R¢,S¢,Tg) 62 4 Add normalized, fullword FP:
((Rg)+S¢) Iy—>T¢
CALL QBADDNH(Ry,,Sh,Th) 42 4 Add normalized, halfword FP:
((Ry) +(Sy)) y—>Th
CALL QBADDNS(G,X,A,Y,B,Z,C) A2 2 Add normalized, sparse vector: XXXX XXXX
(A“'B)N—’C
CALL Q8ADDNV(G,X,A,Y,B,Z,C) 82 1 Add normalized, vector: (A+B)y—=C XXKX XXXX
CALL Q8ADDU(R¢,S¢,Tg) 60 4 Add upper, fullword FP:
((Re)+(Sg))y—>T¢
CALL QBADDUH(Ry,,Sh,Th) 40 4 Add upper, halfword FP:
((Rp)+(Sp))y—>Th
CALL Q8ADDUS(G,X,A,Y,B,Z,C) AD 2 Add upper, sparse vector: XXXX XXXX
(A+B)y—sC
CALL Q8ADDUV(G,X,A,Y,B,Z,C) 80 1 Add upper, vector: (A+B)y—=C - XXX XXXX
CALL QBADDX(R¢,Sg,Tg) 63 4 Add index, fullword:
R16-63+516-63 —
T16-63:R0-15—T0-~15
CALL QBADDXV(G,X,A,Y,B,Z,C) 83 1 Add index, vector:
A16-63*B16-63—e
C16-6340-15—>Co-15 OXXX X000
CALL Q8ADJE(R¢,S¢,Tg) - 75 4 Adjust exponent, fullword FP:

60457040 B

(Rg) per S—*T¢

TABLE D-2. SPECIAL ‘CALL FORMATS (Contd)
. 0p Code Instruction .. .
Special Call (Hex) Format Description G Bits
CALL Q8ADJEH(Ry, Sy, Th) 55 4 Adjust exponent, halfword FP:
(R,) per S—Th
CALL Q8ADJEV(G,X,A,Y,B,Z,C) 95 1 Adjust exponent, vector:
A per B—+C XXXX X000
CALL Q8ADJM(G,X,A,,,Z,C) Dl 1 Adjacent mean: (Ap41+Ay)/2—Cp XXXO0 0000
CALL Q8ADJS(R¢,Sg,Tg) 74 4 Adjust significance, fullword FP:
(Rf) per S—Tg¢
CALL Q8ADJSH(Rp,Sh,Th) 54 4 Adjust significance, halfword FP:
(Ry) per S— Ty
CALL Q8ADJSV(G,X,A,Y,B,Z,C) 94 1 Adjust significance, vector: XXXX X000
A per B—+C
CALL Q8AND(,X,A,Y,B,Z,C) F1 3 Logical AND: A-B—sC
CALL QBANDN(,X,A,Y,B,Z,C) F6 3 Logical AND NOT: A-B—eC
CALL QBANDNV(G,X,A,Y,B,Z,C)! 9D 1 Logical AND NOT: xxxx xllo
A-B—+C, vector
CALL Q8ANDV(G,X,A,Y,B,Z,C)} 9D 1 Logical AND: xxxx xo00l
A-B—»C, vector
CALL Q8AVG(G,X,A,,,Z,C) DO 1 .Vector average: (Ap+Bp)/2—Cp XXXX X000
CALL Q8AVGD(G,X,A,,,Z,C) D4 1 Veétor average difference: XXXX X000
(An-Bp)/2—+Cy,
CALL Q8BAB(G,S,,T,) 32 9 Branch and alter bit: XXXX OXXO
(Sg) is bit to be altered,
(Ty) is branch address
CALL Q8BADF(G,16,T,) 33 B D.F. reg. bit branch and alter: XXXX OXXO
16 is bit altered, (T,) is branch
address
CALL Q8BARB(G,S,T) 2F 9 Branch to [S] on condition of XXXX 0000
bit 63 of register T
CALL Q8BEQ(Rg,S¢,T,) 24 8 Branch to (T,) if (Rg).EQ.(Sg),
fullword FP compare
CALL Q8BGE(Rg,S¢,T,) 26 8 Branch to (T,) .if (Rg).GE.(Sg),
fullword FP compare
CALL Q8BHEQ(Ry,,SpTg) 20 8 Branch to (T,) if (Rp).EQ.(Sy),
halfword FP compare
CALL Q8BHGE(Ry,Sp,Ta) 22 8 Branch to (Ty) if (Rp).GE.(Sp),
halfword FP compare .
CALL Q8BHLT(Rp,Sh,Ta) 23 8 Branch to (Tz) if (Rp).LT.(Sp),
halfword FP compare
CALL Q8BHNE(R},Sp,Tg) 21 8 Branch to (Ty) if (Rp).NE.(Sy),
halfword FP compare
CALL Q8BIM(Rj,I48) B6 5 Branch immediate to (Rj)+I48

D-4

'60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction I .
Special Call (Hex) Format Description G BLFS

CALL Q8BKPT(R,) 04 4 Breakpoint: Rjg_g3—»

breakpoint register
CALL Q8BLT(Rg,S¢,T,) 27 8 Branch to (T,) if (Rg).LT.(Sg),

fullword FP compare
CALL Q8BNE(Rf,Sg,T,) .25 8 Branch to (T,) if (Rg).NE.(Sg),

fullword FP compare
CALL QBBSAVE(Rg,Si,T,) 36 7 Set (Rg)-to next instruction

address, branch to [T,+5;]
CALL Q8BTOD{(R¢,,T¢) 11 A Convert binary R to packed BCD T,

fixed length
CALL QBCFPEQ(G,X,A,YB)Tt BO c Compare FP and branch if (A).OP. xlox xxxx
CALL QB8CFPGE(G,X,A,YB)!! B2 c (X) then branch to (Y) + (B) or xlox xxxx
CALL Q8CFPGT(G,X,A,YB)n B5 [o relative from current location xlox xxxx
CALL QBCFPLE(G,X,A,YB)!! B4 c xlox xxxx
CALL QBCFPLT(G,X,A,YB)!t B3 c xlox xxxx
CALL Q8CFPNE(G,X,A,YB)'! Bl c xlox xxxx
CALL QBCFPEQ(G,X,A,Y)!! BO c Compare FP and set condition if x1lx xxxx
CALL Q8CFPGE(G,X,4,Y)! B2 C (A).0P.(X) then 1 —Y else 0—Y x11x xxxx
CALL Q8CFPGT(G,X,A,Y)' B5 c x11x xxxx
CALL Q8CFPLE(G,X,A,Y)!t B4 c x11x xxxx
CALL Q8CFPLT(G,X,A,Y)t" B3 c x11x xxxx
CALL Q8CFPNE(G,X,A,Y)'! Bl c x1lx xxxx
CALL Q8CLG(R¢,,T¢) 72 A Ceiling, fullword FP:

: nearest integer .GE.(Rg) —+ Tg

CALL Q8CLGH(Ry,,T},) 52 A Ceiling, halfword FP:

nearest integer .GE.(Rp) —Tp
CALL Q8CLGV(G,X,A,,,Z,C) 92 1 Ceiling, vector: nearest integer XXXX 0000

.GE.A—+C
CALL Q8CLOCK(,,T¢) 39 A Transmit (real time clock)—

: T16-63+0 — To-15

CALL Q8CMPB(,X,A,Y,B)'!! E8 3 Compare binary, set:

DFB 53 operands equal

DFB 54 lst operand high

DFB 55 lst operand low
CALL Q8CMPD(,X,A,Y,B)! E9 3 Compare decimal, set:

. DFB 53 operands equal

DFB 54 lst operand high

DFB 55 lst operand low
CALL Q8CMPEQ(G,X,A,Y,B,Z) C4 1 Vector compare, form order vector: X00X X000
CALL Q8CMPGE(G,X,A,Y,B,2) 6 1 if (Ap).0P.(By), set bit Z, in X00X X000
CALL Q8CMPLT(G,X,A,Y,B,Z) c7 1 order vector . X00X X000
CALL Q8CMPNE(G,X,A,Y,B,2) c5 1 X00X X000
CALL Q8CNTEQ(Rg4,S;,T¢) 1E 7 Count: # of leading bits equal to

bit at [R+S] — T48-63
CALL Q8CNTO(R4,5;,T¢) IF 7 Count l's in field R: # of 1's in

field [R+s] — T48-63
CALL Q8CON(Rg,,Ty) 76 A Contract, fullword FP: Rgy —»T39

60457040 B D-5

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code

Instruction

Special Call (Hex) Format Description G Bits
CALL Q8CONV(G,X,A,,,Z,C) 96 1 Contract, vector: Ag4—+C32 OXXX 0000
CALL Q8CPSB(Rg4,S¢,Tq) 14 7 Compress bit string: every Rp sub-
string from R,+S, pattern—T
CALL Q8CPSV(G,,A,,,Z,C) BC 2 Compress vector: vector A—s sparse XX00 0000
C, controlled by OV Z
CALL Q8DBNZ(Rg,S;,Ta) 35 7 (Rg)-1—»(Rg), if (Rg) +#0 branch
to [Ta+S;]
CALL Q8DELTA(G,X,A,,,Z,C) D5 1 Vector delta: (Ap41-An)—*Cy XXX0 0000
CALL Q8DIVB(,X,A,Y,B,z,C)!! E3 3 . Divide binary: A/B—sC
CALL Q8DIVD(,X,A,Y,B,Z,c)t't E7 3 Divide decimal: A/B-—C
CALL Q8DIVS(Rg,Sg,Tg) 6F 4 Divide significant, fullword FP:
((Rg)/(Sg))g —T¢
CALL Q8DIVSH(Ry,,Sp,Th) . 4F 4 Divide significant, halfword FP:
((Ry) /(Sh))g—eTy
CALL Q8D1Vss(G,X,A,Y,B,Z,C) AF 2 Divide significant, sparse vector: XXXX XXXX
’ (A/B)g—>C
CALL Q8DIVSV(G,X,A,Y,B,Z,C) 8F 1 Divide significant, vector: XXX XXXX
(A/B)g—»C
CALL Q8DIVU(R¢,Sg,Tg) 6C 4 Divide upper, fullword FP:
((Rg)/(Sg))g—=Tg
CALL Q8DIVUH(R},,Sh,Th) 4c 4 Divide upper, halfword FP:
((Rp)/(Sp))y—=Ty
CALL Q8p1ivus(G,X,A,Y,B,Z,C) AC 2 Divide upper, sparse vector: XXXX XXXX
(A/B)y—>C
CALL Q8DIVUV(G,X,A,Y,B,Z,C) 8C 1 Divide upper, vector: (A/B)y—+C XXXX XXXX
CALL Q8DOTS(G,X,A,Y,B,,C)1n DD 2 Sparse vector dot product: ' X000 0000
A*B—>C,C+1
CALL Q8p0TV(G,X,A,Y,B,Z,C) DC 1 Dot product vector: A-B—eC,C+l XX00 0000
CALL Q8DTOB(Rg,,Tf) 10 A Convert packed BCD to binary T,
fixed length
CALL th'roz((;,x,z\,,,z,c)nT FC 3 Unpack BCD to zoned: A—+C XX00 0000
CALL QBELEN(Rg,116) 2A 6 Enter length: :
116 —*Rg-15,R16-63unchanged
CALL QS8EMARK(G,X,A,Y,B,Z,c)!! EB 3 Edit and mark: A per pattern
i . B—»C, G=lst significant result
address
CALL Q8ES(R£I16) 3E 6 Enter short, fullword:
116‘—'R16_63,RJ,SE,0'—’Ro_ls
CALL QBESH(Ry,I16) 4D 6 Enter short, halfword:

D-6

116 —’R8_3l sRJ, SE,O—’R0_7

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction .. .
Special Call (Hex) Format Description G Bits
CALL Q8EX(Rg,148) BE 5 " Enter index, fullword:
[48—*R}6-63,0—*Rp-15
CALL Q8EXH(Ry,124) cD 5 Enter index, halfword:
124—>Rg-31,0—*Ro-7
CALL Q8EXIT 09 4 Exit force, job mode to monitor
mode
CALL QB8EXP(Rg,,T¢) 7A A Exponent, fullword:
Rg-15—T16-63+SE,0 —Tp-}5
CALL Q8EXPHR.},,,Tp) 5A A Exponent, halfword:
Rg-7 —*Tg-31,SE,0—>Tg-7
CALL Q8EXPV(G,X,A,,,Z,C) 9A 1 Exponent vector: XXXX 0000
Ag-15—+C48-63+SE,0 —Cp_5
CALL Q8EXTB(R¢,Sq4,T¢) 6E 4 Extract bits from R¢ to Tg per Sy
CALL Q8EXTH(Ry,,T¢) 5C A Extend halfword FP: R3p2—+Te4
CALL Q8EXTV(G,X,A,,,Z,C) 9c ' 1 Extend vector: A32—»Ce4 0XXX 0000
CALL QBEXTXH(Rp,,Tf) 5D A Extend index, halfword FP:
Rg-31—*T16-635E,R0~7—>Tp-15,SE
CALL Q8FAULT(G) 06 7 Simulate fault 0000 XXXX
CALL Q8FILLC(I8,S;,Ty)'' 1A 7 Fill field T with byte: repeat I8
for field [T+s]
CALL Q8FILLR(Rg,Si,Tq)'M 1B 7 Fill field T with byte: repeat
(Rsg-g3) for field [T+s]
CALL Q8FLR(Rg,,Tg) 71 A Floor, fullword FP:
nearest integer .LE.(Rg)—eTg
CALL Q8FLRH(Rp,,T},) 51 A Floor, halfword FP:
nearest integer .LE.(Rp)—=T,
CALL Q8FLRV(G,X,A,,,Z,C) 91 1 Floor, vector: nearest integer XXXX 0000
.LE.A—+C
CALL Q8IBNZ(Rg,Si,T,) 31 7 (Rg)+1—+(Rg), if (Rg) # 0 branch
to [Ta,si]
CALL Q8IBXEQ(G,X,A,YB,Z,C) BO Cc Increment and branch index: X00X XXXX
CALL Q8IBXGE(G,X,A,YB,Z,C) B2 C (A)+(X)—C,Aloen—"Clen’ X00X XXXX
CALL Q8IBXGT(G,X,A,YB,Z,C) BS (o] if (A)+(X).0P.(2) then branch to X00X XXXX
CALL Q8IBXLE(G,X,A,YB,Z,C) B4 c (Y)+(B) or YB halfwords from X00X XXXX
CALL Q8IBXLT(G,X,A,YB,Z,C) B3 C current location X00X XXXX
CALL QBIBXNE(G,X,A,YB,Z,C) Bl C XOOX XXXX
CALL Q8IBXEQ(G,X,A,Y,,Z,C) BO C Increment index and set condition: xolx xxxx
CALL Q8IBXGE(G,X,A,Y,,Z,C) B2 c (A)+(X)—+C,A1 0y —*Cien’ x0lx XXxXx
CALL Q8IBXGT(G,X,A,Y,,Z,C) B5 c if (A)+(X).0P.?Z) then 1—»Y else xolx xxxx
CALL Q8IBXLE(G,X,A,Y,,Z,C) B4 c 0—sY xolx xxxx
CALL Q8IBXLT(G,X,A,Y,,Z,C) B3 c xolx xxxx
CALL Q8IBXNE(G,X,A,Y,,Z,C) Bl C xolx xxxx
CALL Q8IDLE 00 4 Idle: enable external interrupts
and idle
60457040 B D-7

CALL QSMCMPW(G,X,A”B,:C)T

incremented by number of words

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction L G Bits
Special Call (Hex) Format Description i
CALL QBINSB(Rg,Sq,T¢) 6D 4 Insert bits from Rg¢ to Tg per Sy
CALL Q8INTVAL(G,,A,,B,Z,C) DF 1 Interval vector: A+((n-2)*B)—>C XXX0 0000
CALL Q8IOR(,X,A,Y,B,Z,C) F2 3 Logical inclusive OR: A+B—»C
CALL Q81S(R¢,116) 3F 6 Increase short, fullword:
R16-63+116—R16-63,R0-15
unchanged
CALL Q8ISH(Ry,116) 4E 6 Increase short, halfword:
‘ Rg-31+116—>Rg-3]1,RQ-7 unchanged
CALL Q8IX(R¢,I48) BF L} Increase index, fullword:
I48+R—+R
CALL Q8IXH(R;,124) CE 5 Increase index, halfword:
124+R—>R
CALL QB8LINKV(G)' 56 7 Link next two vector instructions 000X X000
CALL Q8LOD(Rg4,S;,T¢) 7E 7 Load fullword:
load [Rg+S;]—e Tf
CALL Q8LODAR (V)] 4. Load associative registers: s
beginning at 400xxg—+AR
CALL Q8LODC(R,,S;,Tf) 12 7 Load byte: [Rg+5;]—
T56-63,0— To-55
- CALL Q8LODH(R4,Si,Ty) . 5E 7 Load halfword: load [Rg+S;j] — Ty
CALL Q8LODKEY(Rf,Sg,Ta) OF 4 - Load key from (Rg), translate
virtual (Sp) to absolute T,
CALL Q8LSDFR(Rf,,Tf) 3B A Load and store data flag register:
(DFR) — T¢, (Rg) —* DFR
CALL QBLTOL(Re,,Te) 38 A Transmit length Rg-}5 to length
To-15s Te-63 unchanged
CALL QBLTOR(Rg,,Tg) 7C A Length to register, fullword FP:
Ro-15—>T48-63,0—To-47
CALL Q8MASKB(Rg4,S4,Tq) 16 7 Mask bit strings: alternate (Ry)
‘ string and (Sq) string—sT string
CALL Q8MASKO(Re,Se,Tq) 1p 7 Form bit mask: repeat (R,) ones and
: (Sp)-(Ry) zeros—*T string
CALL Q8MASKV(G,,A,,B,Z,C) BB 2 If Z,=1,A,—Cy; if Z,=0, B,—*Cp; X00X X000
result length—>Cq.j5
CALL Q8MASKZ(Rg,Sq,Tg) ic 7 Form mask: repeat (R,) zeros and
(Sp)-(Rp) ones—*T string
CALL Q8MAX(G,X,A,,B,Z,C) D8 1 Vector maximum: XX00 0X00
Apax —C, item count —B
CALL Q8McMPC(G,X,A,Y,B,Z,C) FD 3 Find A =B, per mask C, A and B XX00 OXXO
index incremented by # of bytes
cc 3 Find A=B per maskword C, A index 0000 000X

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction - .
Special cCall (Hex) Format Description G Bits
CALL Q8MIN(G,X,A,,B,Z,C) D9 1 Vector minimum: XX00 0X00
: Ayin—C, item count —*B

CALL Q8MMRGC(I8,X,A,Y,B,Z,C) EA 3 Merge bits per byte mask: XXXK XXXX
A or B per 18=0 or 1—C

CALL Q8MOVL(G,X,A,,B,Z,C) F8 3 Move bytes left: A—»C (left to XXXX OXOX
right)

CALL QBMOVLC(G,X,A,,B,Z,C)”T F9 3 Move bytes left, ones complement: XXXX OXOX

‘ A—+C (left to right)
CALL QBMOVR(R;,S;,Tq)''" 18 7 Move bytes right: (Tgq)+(R;)—>
: (Tg)+(Ry)+(s;)

CALL QMOVS(,X,A,,B,Z,C)T" FA 3 Move and scale: A—+C, scale (B)
decimal places

CALL Q8MPYB(,X,A,Y,B,2,C)! E2 3 Multiply binary: A*B—eC

CALL Q8MPYD(,X,A,Y,B,z,C)!t E6 3 Multiply decimal: A*B—sC

CALL Q8MPYL(Rg,S¢,Tg) 69 4 Multiply lower, fullword FP:
((Rg)*(Sg))y,—T¢

CALL Q8MPYLH(Rp,Sh,Th) 49 4 Multiply lower, halfword FP:
((RR)*(Sp))L—*Th

CALL Q8MPYLS(G,X,A,Y,B,Z,C) A9 2 Multiply lower, sparse vector: XXXK XXXX
(A*B)L—’C

CALL Q8MPYLV(G.X.A,Y,B,Z,C) 89 1 Multiply lower, vector: (A*B);—C XXXX XXXX

CALL Q8MPYS(Rg,S¢,Tg) 6B 4 Multiply significant, fullword FP:
((Rf)*(Sf))s—’Tf

CALL Q8MPYSH(R},,Sh»Th) 4B 4 Multiply significant, halfword FP:
((Ry)*(Sp)) g — Ty

CALL Q8MPYSS(G,X,A,Y,B,2,C) AB 2 Multiply significant, sparse XXXX XAXX
vector: (A*B)g—eC

CALL Q8MPYSV(G.X,A,Y,B,Z,C) 88 1 Multiply significant, vector: XXXX XXXX
(A*B)s""c

CALL Q8MPYU(Rg,S¢,Tg) 68 4 Multiply upper, fullword FP:
((Re)*(Sg))y—>T¢

CALL Q8MPYUH(Ry,,Sp,Ty) 48 4 Multiply upper, halfword FP:
((Ry)*(S))g—> Ty,

CALL Q8MPYUS(G,X,A,Y,B,Z,C) A8 2 Multiply upper, sparse vector: XXXX XXXX
(A*B)y—»C .

CALL Q8MPYUV(G,X,A,Y,B,Z,C) 88 1 Multiply upper, vector: (A*B)y—sC XXXX XXXX

CALL QBMPYX(Rf,Sg,Tg) 3D 4 Multiply index, fullword:
R16-63*516-63—*T16-63:0—>To-15

CALL Q8MPYXH(Ry,,Sp,Th) 3c 4 Multiply index, halfword:

60457040 B

Rg-31*Sg-31 —>T8-31,0 —To-7

D-9

D-10

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction e s .
Special Call (Hex) Format Description G Bits
CALL Q8MRGB(R4,Sd4,Tq) 15 7 Merge bit strings: interleave (Rq)
string with (S4) string—e
Tq string
CALL Q8MRGC(Rg,S4,Tq) 17 7 Merge byte strings: (Rq):(Sq),
lesser —»Ty
CALL Q8MRGV(G,,A,,B,Z,C) BD 2 Merge vector: if Z =1, A,—*C,; X00X XO0O0X
if Z,=0, B,—»Cp; result
length—>Cg_j5
CALL Q8MTIME(Rg) 0A 4 Transmit (Rg)—>monitor interval
timer
CALL Q8NAND(,X,A,Y,B,Z,C) F3 3 Logical NAND: A+B —+C
CALL QBRANDV(G,X,A,Y‘,]!»,Z,(:)1 9D 1 Logical NAND: A-B —+C, vector xxxx xoll
CALL Q8NOR(,X,A,Y,B,Z,C) F4 _3 Logical NOR: A+B—+C
CALL QBNORV(G,X,A,Y,B,Z,c)T 9D 1 Logical NOR: A+B—+C, vector xxxx xloo
CALL Q8ORN(,X,4,Y,B,Z,C) F5 3 Logical OR NOT: A+B—C
CALL QBORNV(G,X,A,Y,B,Z,C)T 9D 1 Logical OR NOT: A+B—C, vector xxxx xlol
CALL Q8ORV(G,X,A,Y,B,2,C)' 9D 1 Logical inclusive OR: A+B—sC,
vector xxxx xolo
CALL QBPACK(Rg,Sg,T¢) 7B 4 Pack, fullword FP:
R4g-63 and 516-63 —>T¢
CALL Q8PACKH(Ry,,Sp,Th) 5B 4 Pack, halfword FP:
R24-.31 and Sg-3] —Ty
CALL QSPACKV(G,X,A,Y,B,Z,C) 9B 1 Pack, vector: XXXX X000
, A48-63 and Byg-g3—>C
CALL Q8POLYEV(G,X,A,Y,B,Z,C) DE 1 Polynomial evaluation: A, per XXXX 0000
B—sCy
CALL Q8PRODCT(G,X,A,,,Z,C) DB 1 Vector product: Product XX00 0000
(Ao,Al,...An)—OC
CALL Q8RAND(R¢,S¢,Tg) 2D 4 Logical AND: R,S-—eT
CALL Q8RCON(Rg,,Ty) 77 A Rounded contract, fullword FP:
Ro4—*T32
CALL Q8RCONV(G,X,A,,,Z,C) 97 1 Rounded contract, vector: 0XXX 0000
Ag4 rounded—+32
CALL QBRIOR(R¢,S¢,Tyg) 2E 4 Logical inclusive OR: R,S—sT
CALL QB8RJTIME(,,Tf) 37 A Read job interval timer to (Tg)
CALL QB8RTOR(Rf,,Tf) 78 A Register to register fullword
transmit: (Rg) —T¢
CALL Q8RTORH(Rp,,Th) 58 A Register to register halfword
transmit: (Rp) —»Th
CALL Q8RXOR(Rf,S¢,Ts) 2C 4 Logical exclusive OR: R,S—»T

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)

. Op Code Instruction P .
Special Call (Hex) Format Description G Bits
CALL Q8SCNLEQ(18,S;,Tq) 28 7 Scan left to right from [Td,si]
for byte equal to 18, index Sj
CALL QBSCNLNE(18,5;,Tq)'" 29 7 Scan left to right from grd,si]
for byte not equal to I8,
index S;
CALL Q8SCNRNE (18,8;,Ty)'" 19 7 Scan right to left from [T4,S;]
for byte not equal to I8,
decrement Sj
CALL Q8SELEQ(G,X,A,Y,B,Z,C) co 1 Vector select: if A,.OP.B., XXOX X000
CALL Q8SELGE(G,X,A,Y,B,Z,C) c2 1 then count up to the condition XXOX X000
CALL Q8SELLT(G,X,A,Y,B,Z,C) c3 1 met —>C XXOX X000
CALL Q8SELNE(G,X,A,Y,B,Z,C) cl 1 XX0X X000
CALL Q8SETCF(R¢) 08 4 Input/output: set channel (Rg)
channel flag
CALL Q8SHIFT (R¢,S¢,Tg) 34 4 Shift R¢ by (Sg)—eT
f£rofs 1 f £ f f
CALL Q8$HIFTI(R£,IB,T£) 30 7 Shift R¢ by I8—T¢
CALL QBSHIFTV(G,X,A,Y,B,Z,Cy 8A 1 Shift A by B—»C, vector XXXX XXXX
CALL Q8SKEYB(G,X,4,Y,B,Z,c)! D6 3 Search A for B per C,
Ajndex = # no match (bits)
CALL Q8SKEYC(G,X,A,Y,B,2z,c)!tT FE 3 Search A for B per C,
Ajndex = # no match (bytes)
CALL Q8SKEYW(G,X,A,Y,8,z,c)'! FF 3 Search A for B per C,
Ajndex = # no match (words)
CALL Q8SQRT(R¢,,T¢) 73 A Significant square root, fullword
FP: (SQRT(Rg))g—Tf
CALL Q8SQRTH(Ry,, ,Ty) 53 A Significant square root, halfword
FP: (SQRT(R,))g— Ty
CALL Q8SQRTV(G,X,A,,,Z,C) 93 1 Significant square root, vector: XXXX OXXO
SQRT(A)g—C
CALL Q8SRCHEQ(G,,A,,B,Z,C) c8 1 Vector search from indexed list: XXX0 0000
CALL QB8SRCHGE(G,,A,,B,Z,C) CA 1 each (A,).0P.(B,), count—>C, XXXO 0000
CALL Q8SRrcHLT(G,,A,,B,Z,C) CB 1 XXX0 0000
CALL Q8SRCHNE(G,,A,,B,Z,C) c9 1 XXXO0 0000
CALL Q8STO(R,4,5;,Tf) 7F 7 Store, fullword: store (Tg)
address [Ra+si]
CALL Q8STOAR oc 4 Store associative registers:
‘ AR—> 400xxg and higher addresses
CALL Q8STOC(R4,5;,T¢) 13 7 Store byte (character):
Ts56-63 —> address [Ra"si]
CALL Q8STOH(R,4,Si,Th) SF 7 Store, halfword: (Th)—>
address [na+si]
CALL Q8SUBB(,X,A,Y,B,2,c)!T E1 3 Subtract binary: A-B—eC
CALL Q8SUBD(,X,A,Y,B8,2,C)!! ES 3 Subtract decimal: A-B—+C

60457040 B D-11

TABLE D-2. SPECIAL CALL FORMATS (Contd)

. Op Code Instruction PR .
Special Call (Hex) Format Description G Bits
CALL Q8SUBL(Rg,Sg,Tg) 65 4 Subtract lower, fullword FP:
((Rf)-(Sf))L—’Tf
CALL Q8SUBLH(Ry,, Sy, Tp) 45 4 Subtract lower, halfword FP:
((Ry)=(Sp)) L —>T¢
CALL Q8SUBLS(G,X,A,Y,B,Z,C) AS 2 Subtract lower, sparse vector: XXXX XXXX
(A-B) —eC
CALL Q8suBLV(G,X,A,Y,B,Z,C) 85 1 Subtract lower, vector: (A-B)1,—*C XXXX XXXX
CALL Q8SUBMOD(IS8,X,A,Y,B,Z,C)! ED 3 Modulo subtract bytes:
(A;-B,)mod(18) —sC,
CALL Q8SUBN(Rg,S¢,T¢) 66 .4 Subtract normalized, fullword FP:
((Rf)-(Sf))N—OTf
CALL Q8SUBNH(Ry,,Sp,Th) 46 4 Subtract normalized, halfword FP:
((Rp)-(Sp) Ig—=T¢
CALL Q8SUBNS(G,X,A,Y,B,Z,C) A6 2 Subtract normalized, sparse XXXX XXXX
vector: (A-B)y—C ‘
CALL Q8SuBNV(G,X,A,Y,B,Z,C) 86 1 Subtract normalized, vector: XXXX XXXX
(A-B)y—=C
CALL Q8SUBU(R¢,S¢,Tg) 64 4 Subtract upper, fullword FP:
((Re)-(Sg))y—eTg
CALL Q8SUBUH(Ry,, Sy, Th) 44 .4 Subtract upper, halfword FP:
((Rh)'(Sh))U-—OTh
CALL Q8suBUS(G,X,A,Y,B,Z,C) A4 2 Subtract upper, sparse vector: XXXX XXXX
CALL QSSUBUV(G,X,A,Y,B,Z,C) 84 1 Subtract upper, vector: (A-B)y—>C XXXX XXXX
CALL Q8SUBX(Rg,S¢,Tg) ’ 67 4 Subtract index: Rj¢_63-S16-63—>
T16-63sR0-15—>T0-15
CALL Q8suBxv(G,X,A,Y,B,Z,C): 87. 1 Subtract index, vector: OXXX X000
- A16-63-B16-63 —>C16-63,A0-15—
€o-15
CALL Q8SUM(G,X,A,,,Z,C) DA 1 : Vector sum: Sum(AQ,A},...Ap)—* XX00 0000
Cc,C+l
CALL Q8SWAP(R4,Sg,Tq) 7D 7 Swap registers: start with Sg,
storing at Tgand loading from Ry
CALL QBTL(G,)(,A,Y,B,Z,C)T_ft . EE 3 Translate bytes: Bjp—»Cp XXXX OXOX
CALL Q8TLMARK(G,X,A,Y,B,z,c)'t D7 v 3 Translate and mark: A per B—» XX00 XX00
vector C
CALL Q8TLTEST(G,X,A,Y,B,Z,c)!' EF 3 Translate and test: XX00 0X00
: B,—*C,A,—*Z if B,.NE.O
CALL Q8TLXI(R,,S;,Tg) OE 4 Translate external interrupt:
(Tg)=priority, branch to R, {Si]
CALL QSTI’M()V(G,X,A,Y,B,Z,C)Irn B9 1 Transpose and move 8 by 8 matrix XOXX X000

D-12 60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)
. Op Code Instruction .. .
Special Call (Hex) Format Description G Bits

CALL Q8TRU(Rg,,T¢) 70 A Truncate, fullword FP:
nearest integer .LE.(Rg) —»Tg

CALL Q8TRUH(Ry,,,Ty,) 50 A Truncate, halfword FP:
nearest integer .LE.(Ry)—»Ty

CALL Q8TRUV(G,X,A,,,2,C) 90 1 Truncate, vector: XXXX 0000
nearest integer .LE.(A)—eC

CALL Q8VREVV(G,X,A,,,Z,C) B8 1 Transmit vector reversed to XXXO 0000
vector: Apa,—*C

CALL Q8VTOV(G,X,A,,,Z,C) 98 1 Vector to vector transmit: A—sC XXXX 0000

CALL @8vTOVX(G,,A,,B,,C) B7 1 Vector to vector indexed transmit: X000 XXXX
B—+C indexed by A

CALL Q8vXTov(G,,A,,B,,C) BA 1 Vector to vector indexed transmit: X000 OXXX
B indexed by A—C

CALL Q8WJTIME(Rg) 3A A Transmit (Rg)—s job interval timer

CALL Q8XOR(,X,A,Y,B,2,C) FO 3 Logical exclusive OR: A~-B—eC

CALL QBXORN(,X,A,Y,B,Z,C) F7 3 Logical equivalence (exclusive OR
NOT): A-B—»C

CALL Q8x0RNV(c,x,A,Y,B,z,c)t 9D 1 Logical exclusive OR NOT: xxxx x111
(equivalence) A-B—»C, vector

CALL QBXORV(G.X,A,Y,B,Z,C)T 9D 1 Logical exclusive OR: A-B—sC, XXXX X000
vector

CALL Q8VSB(,,T,) 05 4 Void instruction stack and branch
to (T,)

CALL Q8zTOD(G,X,A,,,Z,C) FB 3 Pack zoned to BCD: A—»C XX00 0000

TAvailable on the CYBER 205, but not on the STAR 100 or the CYBER 203.
tfAvailable on the CYBER 203 and CYBER 205, but not on the STAR 100.

T pvailable on the STAR 100 and CYBER 203, but not on the CYBER 205.

.OP. Indicates one of the logical operators .EQ.,

.NE., .GE. or .LT.

Indicates upper result.

Indicates normalized upper result.

U

L Indicates lower result.
N
S

Indicates significant result.

60457040 B

The instruction format is one of the twelve possible
instruction formats shown in figure D-1. Additional
information about any machine instruction, including the
G bit settings, can be found in the CYBER 200 Computer
Hardware Reference Manual.

As a convenience for the user of special calls, the special
calls are listed by op code in table D-3.

D-13

0 78 15 16 2324 3132 39 40 47 48 55 56 63
G X A v B Z C
. . (Length and (Length and (Control Vector {Length and
{Function) {Subfunction) (Oftset for A) Base Address) (Offset for B) Base Address) Base Address) Base Address)
FORMAT 1 - Used for Vector, Vector Macro, and Some Nontypical Instructions. | C+l1 |
(Offset
forC& 2)
L__ -
0 78 1516 2324 3132 3940 47 48 55 56 63
X Y r4 C
F G {Order Vector A (Order Vector B (Order Vector Result
(Function) (Subfunction) Length and (Base Address) Length and (Base Address) Length and Length and
Base Address) Base Address) Base Address) Base Address
FORMAT 2 - Used for Sparse Vector and Some Nontypical Instructions.
0 78 15 16 2324 3132 3940 47 48 55 56 63
G X (Length and M (Langth and Z (Lengeh and
(Function) (Subfunction) ({Index for A) Bmuz‘dd:en) (index for B) B”: Addr.css) (Index for C) Base Address)

FORMAT 3 - Used for Logical String and String Instructions.

0 78 15 16 2324 31

S T

F R
(Function) (Source 1) (Source 2) {Destination)

0 78 15 16

FORMAT 4 - Used for Some Register, for all Monitor instructions, and for the #3D, and #04 Nontypical Instructions. -

63

F R |
(Function) {Destination) (48 Bits)

0 78 15 16 31

R !
(Function) (Destination) {16 Bits)

0 78 15 16 2324 31

F T
{Function) (Base Address)

FORMAT 7 - Used for Some Branch and Nontypical Instructions.

FORMAT 6 - Used for the #3E, #3F, #4D, and #4E Index Instructions and the #2A Register Instruction.

FORMAT 5 - Used for the #BE, #BF, #CD, and #CE Index Instructions and for the #B6 Branch Instruction.

Figure D-1.

D-14

Instruction Formats (Sheet 1 of 2)

60457040 B

0 78 1516 2324 31
F R S T
(Function) (Register) (Register) (Base Address)
FORMAT 8 - Used for Some Branch Instructions.
0 78 1516 2324 31
S
F G " T
{Function) Designator (AB‘;;:::"
FORMAT 9 - Used for the #32 Branch Instruction
0 78 15 18 2324 31
“ "
F R /// Z 7 T
(Function) (O1d State) % (New State)
7
7

0

78

15

UNDEFINED (MUST BE 0)
FORMAT A - Used for Some Index, Branch, and Register Instructions.

161718

2324 31

(Function)

G
Designator

% |
(6 Bits}

a

T
(Base Address)

'—I—UNDEFINED (MUST BE 0}
FORMAT B - Used for the #33 Branch Instruction.

0 78 15 16 2324 3132 3940 47 48 55 56 63
F G A Y B r4 C
(Function) (Subfunction) (Register) (Register) (1ndex) (Base Address) (Register) (Register)
FORMAT C - Used for the #BO through #B5 Branch Instructions.
Figure D-1. Instruction Formats (Sheet 2 of 2)
60457040 B D-15

TABLE D-3.

SPECIAL CALLS LISTED BY OP CODE

Op code Special Op code Special Op code Special Op code Special Op code Special

(hex) call (hex) Call (hex) Call (hex) Call (hex) Call

00 Q8IDLE 37 Q8RJITIME 6E Q8EXTB Q8ANDNV CF QBACPS
04 Q8BKPT 38 Q8LTOL 6F Q8DIVS Q8XORNV DO Q8AVG

05 Q8VSB 39 Q8CLOCK 70 Q8TRU A0 Q8ADDUS D1 Q8ADJIM
06 Q8FAULT 3A Q8WITIME 71 Q8FLR Al Q8ADDLS D4 Q8AVGD
08 Q8SETCF 3B Q8LSDFR 72 Q8CLG A2 Q8ADDNS D5 Q8DELTA
09 Q8EXIT 3c Q8MPYXH 73 Q8SQRT A4 Q8SUBUS D6 Q8SKEYB
0A Q8MTIME 3D Q8MPYX 74 QBADJS A5 Q8SUBLS D7 Q8TLMARK
oc Q8STOAR 3E Q8ES 75 QBADJE A6 QBSUBNS D8 Q8MAX

0D Q8LODAR 3F Q8IS 76 Q8COR A8 Q8MPYUS D9 Q8MIN
OE Q8TLX1 40 Q8ADDUH 77 Q8RCON A9 . Q8MPYLS DA Q8SuUM

OF Q8LODKEY 41 Q8ADDLH 78 Q8RTOR AB Q8MPYSS DB Q8PRODCT
10 Q8DTOB 42 Q8ADDNH 79 Q8ABS AC Q8DIVUS DC Q8DOTV
11 Q8BTOD 44 Q8SUBUH 7A Q8EXP AF Q8DIVSS DD Q8DOTS
12 Q8LODC 45 Q8SUBLH 7B Q8PACK BO Q8IBXEQ DE Q8POLYEV
13 Q8sTOC 46 Q8SUBNH 7c Q8LTOR QB8CFPEQ DF Q8INTVAL
14 Q8CPSB 48 Q8MPYUH 7D Q8SWAP Bl Q8IBXNE EO Q8ADDB
15 Q8MRGB 49 Q8MPYLH 7E Q8LOD Q8CFPNE El Q8SUBB
16 Q8MASKB 4B Q8MPYSH 7F Q8STO B2 Q8IBXGE E2 Q8MPYB
17 Q8MRGC 4c Q8DIVUH 80 Q8ADDUV Q8CFPGE E3 Q8DIVB
18 Q8MOVR 4D Q8ESH 81 Q8ADDLV B3 Q8IBXLT E4 QBADDD
19 Q8SCNRNE 4E Q8ISH 82 QBADDNV Q8CFPLT E5 Q8SUBD
1A Q8FILLC 4F Q8DIVSH 83 QBADDXV B4 QS8IBXLE E6 Q8MPYD
1B Q8FILLR 50 Q8TRUH 84 Q8SUBUV Q8CFPLE E?7 Q8DIVD
1Cc Q8MASKZ 51 Q8FLRH 85 Q8SUBLV B5 Q81IBXGT E8 Q8CMPB
1D Q8MASKO 52 Q8CLGH 86 Q8SUBNV Q8CFPGT E9 Q8CMPD
1E Q8CNTEQ 53 Q8SQRTH 87 Q8SUBXV B6 Q8BIM EA Q8MMRGC
1F Q8CNTO 54 Q8ADJSH 88 Q8MPYUV B7 Q8VTOVX EB Q8EMARK
20 Q8BHEQ 55 Q8ADJEH 89 Q8MPYLV B8 Q8VREVV EC Q8ADDMOD
21 Q8BHNE 56 Q8LINKV 8B QBMPYSV B9 Q8TPMOV ED Q8SUBMOD
22 Q8BHGE 58 Q8RTORH 8C Q8DIVUV BA Q8VXTOV EE Q8TL

23 Q8BHLT 59 Q8ABSH 8F Q8DIVSV BB Q8MASKV EF Q8TLTEST
24 Q8BEQ 5A QB8EXPH 90 Q8TRUV BC Q8CPSV FO QB8XOR

25 Q8BNE 5B Q8PACKH 91 Q8FLRV BD Q8MRGV Fl QB8AND

26 Q8BGE 5C Q8EXTH 92 Q8CLGV BE Q8EX F2 Q8IOR

27 Q8BLT 5D Q8EXTXH 93 Q8SQRTV BF Q81X F3 QBNAND
28 Q8SCNLEQ 5E Q8LODH 94 Q8ADJSV co Q8SELEQ F4 Q8NOR

29 Q8SCNLNE 5F Q8STOoH 95 Q8ADJEV cl Q8SELNE F5 Q8ORN

2A Q8ELEN 60 Q8ADDU 96 Q8CONV c2 Q8SELGE F6 Q8ANDN
2B Q8ADDLEN 61 Q8ADDL 97 QB8RCONV c3 Q8SELLT F7 Q8XORN
2C Q8RXOR 62 Q8ADDN 98 Q8VTOV c4 Q8CMPEQ F8 Q8MOVL
2D Q8RAND 63 Q8ADDX 99 QB8ABSV cs QB8CMPNE F9 Q8MOVLC
2E Q8RIOR 64 Q8SUBU 9A QB8EXPV cé Q8CMPGE FA Q8MOVS
2F Q8BARB 65 Q8SUBL ‘9B QBPACKV c7 Q8CMPLT FB QBZTOD
30 Q8SHIFTI 66 Q8SUBN -9¢C Q8EXTV c8 Q8SRCHEQ FC Q8DTOZ
31 Q8IBNZ 67 Q8SUBX 9D QB8XORV c9 Q8SRCHNE FD Q8MCMPC
32 Q8BAB 68 Q8MPYU Q8ANDV CA Q8SRCHGE FE Q8SKEYC
33 Q8BADF 69 Q8MPYL QBORV cB Q8SRCHLT FF Q8SKEYW
34 Q8SHIFT 6B Q8MPYS Q8NANDV cc Q8MCMPW

35 Q8DBNZ 6C Q8pIVU Q8NORV CD Q8EXH

36 Q8BSAVE 6D Q8INSB I QBORRV CE Q8IXH JL

D-16

60457040 B

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS LIST E

table E-1 indicates what type of code (in-line, external, or
both) is generated during compilation as a result of
referencing the function.

This appendix contains a list of the functions that are
available for reference for any CYBER 200 FORTRAN
program, as discussed in section 14. For each function,

Cos

60457040 B

TABLE E-1. SUPPLIED FUNCTIONS

Function Category Fast Call Name Function Category Fast Call Name

ABS N - oomswo | X | FLXDASN
CAcs f x| Frxacos || DATAN X FT_XDATN

AIMAG NX - DATAN2 X FT_XDTN2

ATNT NX - o DATEC X ‘

ALOG X FT_XALOG DBLE NX -

ALOG10 X FT_XLOGT DCOS X FT_XDCOS

AMAXO NX - - FT XDCSH

AMAX1 NX -

AMINO NX - DEXP X FT_XDEXP

AMIN1 NX -

AMOD NX -

FT_XCOS

FT_SCSIN

ATAN X FT_XATAN DLOG X FT_XDLOG
ATAN2 X FT_XATN2 DLOG10 X FT_XDLGT
CABS NX FT_XCABS DMAX1 X -
ccos X FT_XCCOS DMINL X -
CEXP X FT_XCEXP

CLOG X FT_XCLOG

CMPLX NK - DSIGN NX -
CONJG NX - DSIN X FT_XDSIN

CSQRT X FT_XCSQT EXP X
DABS NX - FLOAT NX -
IABS NX -

TABLE E~1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Call Name
IDIM . NX -
IDINT NX -
TFIX NX -
INT NX -
ISIGN NX -
MAXO NX -
MAX1 NX -
MINO NX -
MIN1 NX -
NX

FT_XSQRT

FT_XTANH

o

E-2 60457040 B

SUPPLIED FUNCTIONS (Contd)

TABLE E-1.
Function Category Fast Call Name Function Category Fast Ca'l Name
VATAN X FT_XVATN VFLOAT NX FT_XVFLT
VATAN2 X FT_XVAT2 VIABS NX FT_XVIAB
VCABS X FT_XVCAB VIDIM X FT_XVDIM
veeos X FT_XVCCS VIFIX e FI_XVFIX
VCEXP X FT_XVCXP VINT NX FT_XVINT
VCLOG X FT_XVCLN VISIGN X FT_XVISN
VOMPLX X FT_XVCPX VMOD X FT_XVMOD
'VCONIG X FT_XVCJG VREAL X FT_XVREL
vcos x FT_xveos vsIeN X FT_XVSGN
vesIN X ; ~FT_XVCSN VSIN X | Fi_xvsru :
VCSQRT x FT_XVCSR VSNGL X FT XVSGL
VDBLE x PTxvoBL Cvsrr NX Frxvsqr
vbm X ‘ x : ;"ffr_x{mm,f‘ ’1 NI :vi‘A‘Ny X | ‘V'F’T_‘XVTA’NL,
N = In-Line
X = External
NX = 1In-line and external

60457040 B

CYBER 200 FORTRAN STATEMENT SUMMARY F

This appendix contains a summary of the statement forms
described in the main text. Given are the entities that
compose each statement; refer to the main text for the
detailed specifications for these entities. Abbreviations
used in this appendix are the following:

v = variable or array element

va= = variable, array element,;(t)t'”;qtft‘fgy”{

s = statement label

iv= = integer variable

n = integer constant, integer symbolic constant,
or integer variable

type = INTEGER, REAL, DOUBLE PRECISION,

. COMPLEX, LOGICAL, BIT or CHARACTER

p = variable, array, or array declarator

pf = variable, array, function name, or array
declarator

k = length of a type character pf

K = length of all type character pf in statement

a = array declarator

arg = argument (dummy or actual)

u = logical unit number
fmt = format designator
iolist = input/output list

Brackets around an item indicates that the item is optional.

ASSIGNMENT STATEMENTS

integer v = arithmetic expression
real v = arithmetic expression
complex v = arithmetic expression
double- v = arithmetic expressioﬁ
ercision

logical v = logical expression

60457040 B

{PAUSE character constant}

FLOW CONTROL STATEMENTS

GO TO s

GO TO iv[,J&[, - + « »8])
ASSIGN s TO iv

GO TO (s[, . . . ,8))[] iv
IF (arithmetic expression) s,s,s

IF (logical expression) statement ‘

'TF (logical expression) THEN = = '
ELSEIF (loglcal expressnon) THEN'
ELSE el
ENDIF. il

DO s iv = n,n[,n]
CONTINUE

PAUSE Fwe—dlglt integer constant]

STOP. [ﬁve—dlgltm eger co

ffIMPLIClTM ype (list

SPECIFICATION STATEMENTS

st of letters and | ranges of letters) |
1+ - type (list of letters and ranges of letters)]

type pf [/lmtlal value/] [, «+«,pf [/initial value/]]

DIMENSION al,...,s]

COMMON p[,...,p) R ./eommon block name/p[, . ..,p]]

COMMON /eommon block name/ ple+esp] [-./com-
mon block name/ pJ, .. . ,p]]

COMMON //p][,... ,pﬁ’ [- - /common block name/ p

[eeesp]]
EQUIV ALENCE (va,va[, ...,va]) [,...,(va,va[,...,va])]

EXTERNAL procedure name [, .« y Drocedure name]

DATA variable list/data list/ [, .oy vanable list/data llst/]
where a iable list elemen a variable, array
element,); and a data list
element peat count times a
constant -

PROCEDURE DEFINITION

statement function name (arg[, ... ,arg]) = expression

[type] FUNCTION procedure name (arg[, . . . ,arg)),
o type = CHARACTER

RETURN [n]
for subroutines
RETURN
for funetions

CALL procedure name [(arg[, ... ,arg]]

INPUT/OUTPUT STATEMENTS

WRITE (u) iolist
WRITE (u,fmt)[iolist]

F-2

REWIND u
BACKSPACE u

ENDFILE u

s FORMAT ([/. . .]field spec sep field spee sep ... [/...])
where sep is”a separator (a comma or one or more
slashes), and field spec is a field specification for data
conversion

60457040 B

COMPATIBILITY FEATURES - G

Certain features of CYBER 200 FORTRAN are provided
only for compatibility with FORTRAN Extended. The
compatibility features are described in this appendix,

NOTE
The features described in this appendix should not

be used for new programs and are intended only
for the conversion of existing programs.

HOLLERITH CONSTANT COMPATIBILITY

Hollerith elements are described in section 2', Statement

Elements.
supported in relational and arithmetic expressions.

A Hollerith constant used in an arithmetic or relational

expression is limited to 8 characters. An H constant is.

Vleft—justified with blank fill in a fullword. An H constant
that is too long is truncated on the. right side, and a
warning ~ diagnostic is issued. ~ An. R constant is
right-justified with binary zero fill in a fullword. An R
5constant that is too long is truncated on the right side and
~a warning diagnostic is issued.

The Hollerith constant is considered‘typeless.' A typeless -
constant -is not converted for ‘use as an argument or for

‘assignment. If Hollerith constants are the only operands in
.an arithmetic expression, the result is type integer.

BUFFER IN AND BUFFER OUT -
COMPATIBILTY

Input output, and memory ‘transfer statements are

‘descmbed in section 8. The BUFFER IN and BUFFER OUT
statements are provxded for compatibility with: FORTRAN':
‘The UNIT - and LENGTH functlons are also ,

Extended.
provxded for compatxbxhty

The BUFFER IN and BUFFER OUT statements are used t0';2
transmit binary data between bmary files ~and main .
memory. The length of ‘the buffer area in which the data is
contained should be an even number of bytes for tape t‘xles, .
‘or a multiple of pages for disk files. Ordering the data in -
‘this _manner provxdes for the most ~economical use of

storage

A flle referenced 1n a BUFFER statement must be declared .
.in the PROGRAM statement to be an explicit file. The file
cannot be referenced in any. other input. or output -
statement; however, it can be referenced in_the unit
 REWIND, and
‘ENDFILE. Once buffered mput/output is: estabhshed for a.
loglcal unit in a FORTRAN program, all‘ mput and‘ utputf’,

positioning statements BACKSPACE

for that unlt must be buffered

60457040 B

For compatibility, Hollerith constants are.

tAfter a BUFFER I\I or BUFFBR OUT, the error status of‘fi

BUFFER IN STATEMENT

Execution of the BUFFER IN statement causes transfer of
data from the logical unit specified, in the mode given, to
the buffer defined in this statement as storage locations
first to last. Only one record is read for each BUFFER IN

statement.
Form:
BUFFER IN(u,mode)first,last)
u The logical unit number.

mode An integer constant or simple integer
variable that specifies the recording mode of
the data -being read. The permitted values
are: i

0 = 7-track tape, BCD mode, even parity

1="T7-track or 9-track tape, binary mode,
odd parity :

2 = 7-track tape, CDC 64—character ASCII~f
subset, odd pamty o o

4 = Disk

first A variable or array element name that can be
type = character, - integer, real, = double-
precision, “complex, or Iogxcal, and which
defines the first location in the buffer into

“ which data is to be transmltted :

last A varlable or array element name that can be
. type - character," mteger, : real,,, double- -
precision, complex, or logical, and which !

" defines the location in the buffer into ‘which

“ 'the last data 1tem is to be transmltted

'The loeatlon of last cannot precede flrst m memory The
quantity (last- ﬁrst+1) must be less than or equal to 24
:small pages. s : ok S

BUFFER OUT STATEMENT

The exeeutlon of the BUFFER OUT statement transfersf
data to the 1oglcal unit spec:fxed in_the mode given, from
the buffer. defined m thls statement as storage locatlons;(

‘Form. :

: “BUFFER OUT(u,mode)(flrst last)

"The ogrcal umt number.

smple

- constant orv integer
ifi ieh:

G-1

*SPECIFICATION COMPATIBlI.ITY

;In t/oufput lists and daté forma;ttmg is deseribed
‘section 9. For compa‘nblhty ‘with FORTRAN Extended

o ' 60457040 B

/Gy s)
fthrough an.

%smn (a,n)

This produces a shift of n bit positions in a. If n is
positive, the shift is left circular. If n is negative, the
shift is right end-off with sign extension from bit zero.
The n value must be in the range -64 <n<64. The result is!

undefined if n is outside the range. The n “value is integer.

XOR (a,a,,...)

This computes the bit-by-bit exclusive OR of ajp

through ap,.

The supplled function list in appendix E mdxcates the type

of code generated by the funetion and the fast call name,ﬁ
if any. - The information about functions descmbed in thlSk

appendlx 1s shown in table G-

60457040 B

‘TABLE G-2. COMPATIBILITY FUNCTIONS LIST

computes the bit-by-bit logical OR of aj

Function Category Fast Call Name
AND N -
COMPL N -
MASK N -
OR N -
SHIFT N -
XOR N -
N = In-line
X = External
NX =

“In-line and external

INDEX

e -

A conversion, input and output 9-5
Actual arguments 7-3
Adjustable dimensions 2-2
Ampersand
Actual arguments 5-6
Namelist input/output 8-4
.AND. 3-3
Apostrophe specification 9-6
Arguments
Actual 7-3
Correspondence of 7-4
Dummy or formal 7-3
Passing of 7-4
Arithmetic
Assignment statement (array) 10-2
Assignment statement (scalar) 4-1
Assignment statement (vector) 11-9
Expressions (scalar) 3-1
Expressions (vector) 11-6
IF statement 5-2
Operators 3-1
Array
Assignment statement 10-2
Declarators 2-2
Dimensions 2-2
Element location 2-3
EQUIVALENCE 6-3
Expression 10-2
In subprogram T7-4
NAMELIST 8-4
Storage 2-2
Subscripts 2-2
Transmission 9-2
Assembly listing 15-1, 15-11
ASSIGN statement
Descriptor 11-8
GO TO 5-1
Assigned GO TO 5-1
Assignment statement, array 10-2
Assignment statement, scalar 4-1
Arithmetic 4-1
Character 4-2
Form in vectorizable loop ' 11-2
Logical 4-2
Assignment statement, vector
Arithmetic 11-9
Bit 11-10
Asterisk
Dummy label 7-4
Dummy vector function result 7-4, 11-11
Specification G-2
Automatic
STACKLIB loop recognition 11-4
Vectorization 11-1
Vectorization messages 11-4, B-31

B bit constant 2-7
B eonversion, output 9-5
BACKSPACE statement 8-5
Basic external, see FORTRAN-supplied
Bit
Array initialization 6-4
Assignment statement 11-10
Constants 2-7
Expressions 11-8
Logical operators 11-8
Statement 6-1

650457040 C

Blank common 6-2
Block
Common block 6-2
Data subprogram 7-6
IF statement 5-2
IF structures
Brackets in PROGRAM statement 7-2
Buffer
And program statement 7-2
Input/output 8-1, G-1

C comment line 1-1
CALL statement 5-6
Calling
Fast calling sequence 12-2
Standard calling sequence 12-1
Subroutine subprogram 5-6
Carriage control 9-6
Character
Assignment statement 4-2
Constants 2-6
Expressions 3-3
Set 2-1, A-1
Type statement 6-1
Coding column significance 1-1
Colon notation 10-1
Column usage 1-1
Columnwise arrays 2-2
Comment line 1-1
Common
Blocks 6-2
EQUIVALENCE 6-3
Statement 6-2
Compatibility G-1
Compilation listings 15-3
Compiler
Call 15-1
Diagnostics B-1
Options 15-1
Supplied functions 14-1
Complex
Constants 2-5
Conversion 9-2
Type statement 6-1
Variables 2-5
Computed GO TO 5-2
Concurrent I/O 13-11

Constants
Bit 2-7
Character 2-6
Complex 2-5

Double-precision 2-5

Hexadecimal 2-6

Hollerith 2-6, G-1

Integer 2-4

Logical 2-6

Real 2-5

Symbolic 2-1, 6-6
Continuation 1-3
CONTINUE statement 5-5
Control

Carriage 9-6

Column (Tn) 9-6
Control statement

Flow control 5-1

FORTRAN 15-1

System control 15-1

Index-1

Conversion
Data conversion on input/output 9-3
During assignment 4-1
During expression evaluation 3-1
Mixed mode during initialization 6-5
Specifications for input/output 9-3
Cross-reference map 15-3

D conversion, input and output 9-5
Data conversion on input/output 9-3
Data flag branch manager 13-3
DATA statement 6-4
Data type, see Type
Declarations
File declaration 7-1, 12-2, 15-12
Scalar 6-1
Veector 11-10
DECODE statement 8-3
Descriptor
Data elements 11-6
Statement 11-10
DFBM 13-3
Disgnostics
Compiler failure B-1
Program compilation B-1
Return codes B-1, B-21
Run-time B-21
Vectorizer messages 11-4, B-31
Dimension
Adjustable 2-2, 7-4
Statement 6-2
Division 3-1
DO loops 5-4
Implied in DATA statement 6-5
Implied in I/0 list 9-1
Nested 5-5
Range 5-4
DO statement 5-4
Double-precision
Constants 2-5
Conversion 9-5
Type statement 6-1
Variables 2-5
Drop file 15-12
Dummy arguments 7-3
Dynamic space 11-9

E conversion, input and output 9-4
Editing codes 9-6
ELSE IF statement 5-3
ELSE statement 5-2
ENCODE statement 8-3
END

Line 1-2

Parameter 8-1, 8-2, 8-4
END IF statement 5-3
End-of-file check 8-1
ENDFILE statement 8-5
ENTRY statement 7-6
.EQ. 3-3
EQUIVALENCE statement 6-3
ERR parameter 8-1, 8-2, 8-4
Error codes

Compilation B-1

Run-time B-21
Error processing 13-3
Evaluation of expressions 3-2
Example programs 16-1
Execution-time

Diagnostics B-21

File name handling 15-12

Format specification 9-7

Index-2

Explicit

Type statements 6-1
Vectorization 11-4

Exponentiation 3-2
Exponents 2-5
Expressions, array 10-2
Expressions, scalar

Arithmetic 3-1
Character 3-3
Logical 3-3
Relational 3-3
Subscript 2-2

Type of 3-3

Expressions, vector

Arithmetic 11-6
Bit 11-8
Relational 11-7

Extended range of DO loop 5-3
External

Effect of declaration on call 6-3, 12-2
Procedures 7-3
Statement 6-3

F conversion, input and output 9-4>
JFALSE. 2-6
Fast calls 12-2

File

Declaration 7-1, 12-2, 15-12
Name handling at execution-time 15-12
Tape T7-2

First-letter rule 2-2
Flow control statements 5-1
Format

Conversion codes 9-3

Execution-time format specification 9-7
Repeat specification 9-3

Slash 9-3

Statement 9-2

Format argument (parameter), see Dummy argument
Formatted input/output

Read 8-1
Write 8-2

FORTRAN

Compiler call 15-1
Supplied functions 14-1
System control statement 15-1

FREE statement 11-9
Function

As actual argument 7-4
FORTRAN-supplied 14-1
Function subprogram 7-5
Referencing a 7-5, 7-7
Statement function 7-2
Statement (scalar) 7-2
Statement (vector) 11-11
Vector funetion 11-11

G conversion, input and output 9-4

.GE.

3-3

GO TO statements

.GT.

Assigned GO TO 5-1

Computed GO TO 5-2

Unconditional GO TO 5-1
3-3

H specification

Format specification 9-6
Hollerith constant 2-6, G-1

Hexadecimal constants 2-6

In bit array initialization 6-4

Hierarchy in expressions 3-1, 3-4
Hollerith

Constant 2-6, G-1
Format element 9-6

60457040 C

I conversion, input and output 9-4 Name

IF statements Common block 6-2
Arithmetic 5-2 File 7-1
Block 5-2 Length 2-1
Logical 5-2 Program 7-1
Implicit statement 6-1 - : Variable 2-2
Implied DO in Namelist
DATA statement 6-5 Input data format 8-4
Input/output list 9-1 Output data format 8-5
Index for DO loop 5-4 READ 8-4
Initialization Statement 8-4
In DATA statement 6-4 WRITE 8-4
In type statement 6-1 .NE. 3-3
Input Nesting
BUFFER IN statement G-1 Block IF structures 5-4
File 7-1 DO loops 5-5
List 9-1 Parentheses 9-2
Namelist 8-4 Nonstandard RETURN 5-6
Program data 1-3 .NOT. 3-3
Input/output Numbers
Lists 9-1 Formats, see Constants
Statements 8-1 Logical unit 7-1
Integer Statement label 1-2
Constants 2-4
Conversion 9-4
Type statement 6-1 Object file 15-1
Variables 2-4 Operators
Intrinsic, see FORTRAN-supplied Arithmetic 3-1
Logical 3-3
Precedence 3-4
L conversion, input and output 9-5 Relational 3-3
Labeled common 6-2 Optimization 15-3
Use of block data subprogram to initialize 7-6 Options, FORTRAN statement . 15-1
Labels OR. 3-3
In actual argument lists 5-4 Order of statements in program unit 1-3
In flow control statements 5-1 Output
Map 15-3 BUFFER OUT statement G-1
Of statements 1-2 File 7-1
.LE. 3-3 List 9-1
Length Namelist data form 8-4
Function for buffered I/0 G-2 Of bit data 9-5
Specification for character data 2-6, 6-1, 7-4 Of descriptors 9-5
Library functions 14-1 Record length 8-1
Listings 15-3 Vectorizer 11-4, B-31
Logical .
Assignment statement 4-2
Constants 2-6 P scale factors 9-6
Expressions 3-3 Parameter, see Argument
IF statement 5-2 PARAMETER statement 6-6
Type statement 6-1 Parentheses, nesting 9-2
Unit numbers 7-1 PAUSE statement 5-5
Variables 2-6 Precedence of operators 3-4
Loops, DO 5-4 Print
Nested 5-5 Control characters 9-6
Vectorizable 11-1 Namelist 8-4
LT, 3-3 Statement 8-2

Procedure communication
Passing values T-4

Main program 7-1 Using arguments 7-4
Map, symbolic or cross-reference 15-3 Using common 6-2
MDUMP 13-10 Procedure map 15-11
Memory-to-memory data transfer 8-3 Program
DECODE 8-3 ' Assembly language main 12-2
ENCODE 8-3 : Data for 1-3
Messages IMPL main 12-2
Compiler failure B-1 Maps 15-3
Program compilation B-1 Sample 16-1
Run-time B-21 Statement 7-1
Vectorizer 11-4, B-31 : Units 1-1
Mixed mode Punch
Arithmetic conversion 3-1, 3-3 File 7-1, 8-2
In data initialization 6-5 Namelist 8-4
Multiple entry subprograms 7-6 Statement 8-2

60457040 C Index-3

Q7BUFIN 13-12 Statement

Q7BUFOUT 13-13 Continuation 1-3
Q7DFCL1 13-9 Format 1-1
QTDFLAGS 13-8 FORTRAN (see individual statement names)
Q7DFOFF 13-8 Funetions 7-2
Q7DFSET 13-8 Label map 15-3
Q7SEEK 13-13 Labels 1-2
QTWAIT 13-13 Order in program unit 1-3
QSWIDTH 13-14 Summary F-1
Q8m 13-1 STOP statement 5-5
Structure
Program 1-1
Program unit 7-1
R conversion, input and output 9-5 Subarrays 10-1
Range of DO loop 5-4 Subprograms 7-3
READ statements Block data 7-6
And PROGRAM statement 7-1 Function 7-5
Formatted 8-1 Linkage 12-1
Namelist 8-4 Miscellaneous utility 13-1
Unformatted 8-2 Multiple entry 7-6
With implied device 8-2 Subprogram communication 7-4
Real Subroutine 7-5
Constant 2-5 : Subroutine
Conversion 9-4 Meking call to 5-6
Type statement 6-1 Statement 7-6
Variable 2-5 Supplied 13-14
Reassignment of file name at execution time 15-12 Subscripts
Record Conventional succession of 2-2
Length 8-1 Rowwise succession of 2-2
Types 8-1 Subscript expressions 2-2
Reference Symbolic
Function reference 7-5 Constant 2-1, 6-6
Reference maps 15-3 : Constant map 15-10
Register file Name 2-1
Conventions, FORTRAN .12-1 Or cross-reference map 15-3
Map 15-12 Syntax F-1 '
Relational : Check 15-2
Expressions (scalar) 3-3 System error processor 13-10

Expressions (vector) 11-7
Operators 3-3

Return
Codes B-1, B-21 T specification 9-6
Statement 5-6 Tape files 7-2
REWIND statement 8-5 ' . TAPEn=f parameter 7-1
Rowwise .TRUE. 2-6
Arrays 2-2 Type dominance 3-1
Statement 6-2 Type of
Arithmetic expression 3-3
Function 7-5
Variable 2-2
Sample Type statement
Coding form 1-2 Dimension and length information in 6-1
Programs 16-1 Explicit 6-1
Scalar Implicit 6-1
Assignment statements 4-1
Declarations 6-1
Expressions 3-1 Unary operators and evaluation 3-1
Functions 7-5, 14-1 . Unconditional GO TO 5-1
Scale factors 9-6 Unformatted
Semicolon notation 11-5 . READ 8-2
SEP 13-10 WRITE 8-3
Separator : UNIT G-2
Colon 10-1 Unit numbers 7-1
Semicolon 11-5 Unit positioning
Slash 6-2, 6-4, 9-2 : BACKSPACE 8-5
Slash in FORMAT statement 9-2 ENDFILE 8-5
Source listing 15-1 REWIND 8-5
Special calls 13-1, D-1 UNITn=f parameter 7-1
Specification statements 6-1 Utility subprograms 13-1

STACKLIB 13-14
Standard, FORTRAN ANSI 1-1

Index-4 60457040 C

Variable X hexadecimal constant 2-6

Array dimensions in a subprogram 2-2 X specification 9-6
FORMAT statements 9-7 XOR. 3-3
Mep 15-9
Names and types 2-2
Variables
Bit 2-7 Z conversion, input and output 9-5
Character 2-6
Complex 2-5
Double-precision 2-5
Integer 2-4 .AND, 3-3
Logical 2-6 EQ. 3-3
Real 2-5 JFALSE. 2-6
Y ector .GE. 3-3
Declarations 11-10 .GT. 3-3
Expressions 11-6 .LE. 3-3
Semicolon notation 11-5 J.LT. 3-3
Statements 11-8 .NE. 3-3
Vectorization 11-1 NOT. 3-3
Vectorizer messages 11-4, B-31 .OR. 3-3
.TRUE. 2-6
XOR. 3-3
WRITE statement * 7-4,11-11, G-2
Formatted 8-2 / 6-2, 6-4, 9-2
Namelist 8-4 & 5-6, 8-4
Unformatted 8-3 ' specification 9-6

60457040 C ; Index-5

CUT ALONG LINE

AA3419 REV. 4,79 PRINTED IN U.S.A.

COMMENT SHEET

MANUAL TITLE: CYBER 200 FORTRAN Version 3 Reference Manual
PUBLICATION NO.: 60457040 REVISION: C

NAME:

COMPANY:

STREET ADDRESS:

CITy: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Please reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD CN DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
. : IN THE
UNITED STATES
:]
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]
|
POSTAGE WILL BE PAID BY e ——
CONTROL DATA CORPORATION R
Publications and Graphics Division
. |
215 Moffett Park Drive
Sunnyvale, California 94086 L
L]
L]
|
|
FOLD

FOLD

CUT ALONG LINE

CORPORATE HEADQUARTERS P.O. BOX0 MINNEAPOLIS, MINNESOTA 55440

Go
CONTROL
DATA

