
)

)

CDC® CYB ER ·200
FORTRAN LANGUAGE 1.5

FOR USE WITH
CDC® CYBER 200
OPERATING SYSTEM 1.5

REFERENCE MANUAL

60457040

@:~
CONTl\.OL

DATA

CDC® CYBER 200
FORTRAN LANGUAGE 1.5

FOR USE WITH
CDC® CYBER 200
OPERATING SYSTEM 1.5

REFERENCE MANUAL

60457040

-@::?)
CONTl_OL

I DATA

REVISION RECORD
REVISION DESCRIPTION

A Original release.

(7-2-79)

B This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.

(8-22-80)

c This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.1.

(II-15-80)

...

Publication No.
60457040

REVISION LETTERS I, 0, 0 AND X ARE NOT USED

©coPYRIGHT CONTROL DATA CORPORATION 1979, 1980

All Rights Reserved

Printed in the United States of America

ii

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

21 S MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover -
Title Page -
ii c
iii/iv c
v/vi c
vii thru ix B
x c
xi B
1-1 thru 1-3 B
2-1 thru 2-7 B
3-1 thru 3-4 B
4-1 B
4-2 B
5-1 thru 5-6 B
6-1 thru 6-7 B
7-1 thru 7-8 B
8-1 thru 8-5 B
9-1 thru 9-7 B
10-1 thru 10-3 B
11-1 c
11-2 B
11-3 B
11-4 c
11-5 thru 11-12 B
12-1 B
12-2 B
13-1 thru 13-17 c
14-1 thru 14-25 B
15-1 thru 15-12 c
16-1 thru 16-7 B
A-1 c
A-2 c
B-1 thru B-33 B
C-1 thru C-3 B
D-1 thru D-16 B
E-1 thru E-3 B
F-1 B
F-2 B
G-1 thru G-3 B
Index-1 thru Index-5 c
Comnent Sheet c
Mailer -
Back Cover -

60457040 c iii/iv •

PREFACE

This manual describes the CONTROL DATA® CYBER 200
FORTRAN programming language for use under control of
the enc@ CYBER 200 Operating System running on the
en~® CYBER 200 Series computer system.

CYBER 200 FORTRAN is designed to comply with
American National Standards Institute FORTRAN
language, as described in X3.9-1966. Control Data
extensions to the standard FORTRAN language are
indicated by shading. Example programs or parts of
programs are shaded if they contain lines using extensions
to the ANSI standard. The reader of this manual should be familiar with the

FORTRAN language and the CYBER 200 Series computer
system. Familiarity with vector processing concepts is
highly desirable.

Related information of interest can be found in the listed
publications.

60457040 c

Publication

CDC CYBER 200 Assembler Version 3
Reference Manual

CDC CYBER 203 Computer Hardware
Reference Manual

CDC CYBER 205 Computer Hardware
Reference Manual

CDC CYBER 200 Operating System Version 1
Reference Manual, Volume 1 of 2

CDC CYBER 200 Operating System Version 1
Reference Manual, Volume 2 of 2

Publication
Number

60457050

60256010

60256000

60457000

60457010

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in
this document. Control Data cannot be responsible for
the proper functioning of undescribed features or
parameters.

v/vi

CONTENTS

NOTATIONS xi Block IF 5-2
ELSE 5-2
ELSE IF 5-3

1. INTRODUCTION 1-1 END IF 5-3
Block IF Structures 5-3

Program Form 1-1 Nesting Block IF Structures 5-4
END Lines 1-1 DO Statement 5-4
Comments 1-1 Defining a DO Loop 5-4
Statements 1-2 Nesting DO Loops 5-5

Statement Labels 1-2 CONTINUE Statement 5-5
Continuation of Statements 1-3 PAUSE Statement 5-5
Ordering of Statements 1-3 STOP Statement 5-5

Columns 73 through End of Source Line 1-3 RETURN Statement 5-6
Program Data 1-3 CALL Statement 5-6

2. STATEMENT ELEMENTS 2-1 6. SPECIFICATION AND DATA
INITIALIZATION STATEMENTS 6-1

Character Set 2-1
Data Elements 2-1 Type Statements 6-1

Constants 2-1 IMPLICIT Statement · 6-1
Symbolic Constants 2-1 Explicit Typing 6-1
Variables 2-2 DIMENSION Statement 6-2
Arrays 2-2 ROWWISE Statement 6-2

Subscripts and Array Declarators 2-2 COMMON Statement 6-2
Subscript Interpretation 2-3 EQUIVALENCE Statement 6-3

Data Element Forms 2-4 EXTERNAL Statement 6-3
Integer Elements 2-4 DATA Statement 6-4
Real Elements 2-5 Implied DO in DATA Statement 6-5
Double-Precision Elements 2-5 Rules for Initializing Values 6-5
Complex Elements 2-5 PARAMETER Statement 6-6
Logical Elements 2-6
Hollerith Elements 2-6
Character Elements 2-6
Hexadecimal Elements 2-6 7. DEFINING PROGRAM UNITS AND
Bit Elements 2-7 STATEMENT FUNCTIONS 7-1

The Main Program 7-1
3. SC ALAR EXPRESSIONS 3-1 PROGRAM Statement 7-1

File Information Parameters 7-1
Arithmetic Expressions 3-1 Declaration of Files for Input/Output 7-2

Exponentiation 3-2 Statement Functions 7-2
Evaluation of Arithmetic Expressions 3-2 Defining Statement Functions 7-2
Type of an Arithmetic Expression 3-3 Referencing Statement Functions 7-3

Character Expressions 3-3 Subprograms 7-3
Relational Expressions 3-3 Passing Arguments Between Subprograms 7-4
Logical Expressions 3-3 Function Subprograms 7-5

Subroutine Subprograms 7-5
Block Data Subprograms 7-6

4. SCALAR ASSIGNMENT STATEMENTS 4-1 Multiple Entry Subprograms 7-6
Function Subprogram Entry Point Names 7-7

Arithmetic Assignment Statement · 4-1 Secondary Entry Point Argument Lists 7-7
Character Assignment Statement 4-2 Referencing Secondary Entry Points 7-7
Logical Assignment Statement 4-2

8. INPUT, OUTPUT, AND MEMORY
5. FLOW CONTROL STATEMENTS 5-1 TRANSFER STATEMENTS 8-1

GO TO Statement 5-1 Sequential Input Statements 8-1
Unconditional GO TO 5-1 Formatted READ Statement 8-1
Assigned GO TO 5-1 Transfer on End-of-File 8-2

ASSIGN Statement 5-1 Data Transfer Errors 8-2
Assigned GO TO Statement 5-1 READ with Implied Device 8-2

Computed GO TO 5-2 Unformatted READ Statement 8-2
IF Statement 5-2 Sequential Output Statements 8-2

Arithmetic IF 5-2 Formatted WRITE 8-2
Logical IF 5-2 PRINT 8-2

60457040 B vii

PUNCH 8-2 Initializing Descriptors and Vectors 11-11
Unformatted WRITE 8-3 Vector Function Subprograms 11-11

Memory-to-Memory Transfer 8-3 Referencing Vector Functions 11-11
ENCODE Statement 8-3 Secondary Entry Points 11-11
DECODE Statement 8-3

Namelist Input and Output 8-4
Namelist Input Data 8-4 12. SUBPROGRAM LINICAGE 12-1
Namelist Output Data 8-5

Unit Positioning 8-5 Prologue and Epilogue 12-1
REWIND 8-5 Standard Calling Sequence 12-1
BACKSPACE 8-5 Fast Calls 12-2
END FILE 8-5 File Initialization 12-2

9. INPUT/OUTPUT LISTS AND DATA 13. CYBER 200 FORTRAN-SUPPLIED
FORMATTING 9-1 SUBROUTINF.S 13-1

Input/Output Lists 9-1 CYBER 200 FORTRAN Special Calls 13-1
List Items 9-1 Arguments 13-1
Implied DO in Input/Output List 9-1 Label References 13-1

FORMAT Statement 9-2 Symbolic References 13-2
Format Control 9-3 Literals 13-2
Data Conversion 9-3 Examples of Special Call Usage 13-2
Conversion Specification 9-3 Data Flag Branch Manager 13-3

I Conversion 9-4 Data Flag Branch Hardware 13-3
E and F Conversions 9-4 Default Conditions 1°3-4
G Conversion 9-4 Branches 13-5
D Conversion 9-5 Data Flag Branch Software 13-5
L Conversion 9-5 Interrupt Classes 13-5
A and R Conversions 9-5 Multiple Interrupts 13-5
Z Conversion 9-5 Default Interrupt Processing 13-6
B Conversion 9-5 Class III Interrupts 13-6

Editing Codes 9-6 Interrupt-Handling Routines 13-7
X Specification 9-6 Q7DFSET 13-8
H and ' Specifications 9-6 Q7DFLAGS 13-8
T Specification 9-6 Q7DFOFF 13-8

Scale Factors 9-6 Class I Interrupts 13-9
Printer Carriage Control 9-6 Interrupt-Handling Routines 13-9

Execution-Time Format Specification 9-7 Q7DFCL1 13-9
MD UMP 13-10
System Error Processor (SEP) 13-10

10. ARRAY ASSIGNMENT 10-1 Concurrent Input/Output Subroutines 13-11
Array Alignment Considerations 13-12

Subarray References 10-1 Subroutine Calls 13-12
Conformable Subarrays 10-2 Q7BUFIN 13-12
Array Expressions 10-2 Q7BUFOUT 13-13
Array Assignment Statement 10-2 Q7WAIT 13-13

Q7SEEK 13-13
Q8WIDTH Subroutine 13-14

11. VECTOR PROGRAMMING 11-1 Q8 NORED Subroutine 13-14
Supplied Subroutines 13-14

Automatic Vectorization 11-1 DATE 13-14
General Characteristics of Vectorizable RANG ET 13-14

DO Loops 11-1 RANSET 13-14
Assignment Statements in V ectorizable SECOND 13-14

DO Loops 11-2 TIME 13-14
Loop-Dependent Array References in VRANF 13-14

V ectorizable Loops 11-3 STACKLIB Routines 13-14
Automatic Recognition of

STACKLIBABLE Loops 11-4
. Automatic Vectorization Messages · 11-4 14. CYBER 200 FORTRAN-SUPPLIED FUNCTIONS 14-1

Explicit Vectorization 11-4
Vectors 11-5 In-Line and External 14-1
Descriptors 11-6 Scalar and Vector 14-1

Expressions 11-6 Function Descriptions 14-5
Vector Arithmetic Expressions 11-6 ABS(a) 14-5
Vector Relational Expressions 11-7 ACOS(a) 14-6
Bit Expressions 11-8 AIMAG(a) 14-6

Executable Statements 11-8 AINT(a) 14-6
Descriptor ASSIGN Statement 11-8 ALOG(a) 14-6
FREE Statement 11-9 ALOGlO(a) 14-6
Vector Arithmetic Assignment Statement 11-9 AMAXO(a1 ,a2 , •••) 14-6
Bit Assignment Statement 11-10 AMAXl(a1 ,a2 , •••) 14-6

Declarations 11-10 AMINO(a1 ,a2 , •••) 14-6
DESCRIPTOR Statement 11-10 AMINl(al ,a2 , •••) 14-6

viii 60457040 B

AMOD(a1 ,a2 , •••) 14-6 Q8VDELT(v;u) 14-17
ASIN(a) and ACOS(a) 14-7 Q8VEQI(v1 ,v2 ;u) 14-17
ATAN(a) 14-7 QSVGATHP(v,i,n;r) 14-17
ATAN2(a,b) 14-7 QSVGATHR(v,i;u) 14-18

_ CABS(a) 14-7 Q8VGEI(v 1·•v2 ;u) 14-18
CCOS(a) 14-8 Q8VINTL(a l •a 2 ;u) 14-18
CEXP(a) 14-8 Q8VLTl(v l 'v 2 ;u) 14-18
CLOG(a) 14-8 Q8VMASK v1 ,v2 ,c;u) 14-18
CMPLX(a1 ,a2) 14-8 Q8VMERG(v1 ,v2 ,c;u) 14-18
CONJG(a) 14-8 Q8VMKO(a1 ,a2 ;u) 14-19
COS(u) 14-8 Q8 V MKZ(a1 ,a2 ;u) 14-19
COSH(a) 14-9 Q8VNEI(v~ ,v2 ;u) 14-19
COTAN(a) 14-9 Q8VPOLY vb,v2 ;u) 14-19
CSIN(a) 14-9 Q8VREV(v;u 14-19
CSQRT(a) 14-9 Q8VSCATP(v,i,n;r) 14-20
DABS(a) 14-10 Q8VSCATR(v,i;u) 14-20
DACOS(a) 14-10 Q8VXPND(v,c;u) 14-20
DASIN(a) and DACOS(a) 14-10 RANF(d) 14-20
DATAN(a) and DATAN2(a,b) 14-10 REAL(a) 14-20
DATAN2(a,b) 14-10 SECOND(d) 14-20
DATE(d) 14-10 SIGN(a1 ,a2) 14-20
DBLE(a) 14-11 SIN(a) and COS(a) 14-21
DCOS(a) 14-11 SINH(a) 14-21
DCOSH(a) 14-11 SNGL(a) 14-21
DDIM(al ,a2) 14-11 SQRT(a) 14-21
DEXP(a 14-11 TAN(a) 14-21
DFLOAT(a) 14-11 TANH(a) 14-22
DIM(a1 ,a2) 14-11 TIME(d) 14-22
DINT(a) 14-11 VABS(v;u) 14-22
DLOG(a) 14-11 VACOS(v;u) 14-22
DLOGlO(a) 14-12 V AIMAG(v;u) 14-22
DMAX1(a1 ,a2 , •••) 14-12 VAINT(v;u) 14-22
DMINl(a1 ,a2 , •••) 14-12 VALOG(v;u) 14-23
DMOD(a1 ,a2) _ 14-12 V ALOGlO(v;u) 14-23
DPROD(a1 ,a1) 14-12 VAMOD(vl ,v2 ;u) 14-23
DSIGN(a1 ,a2 14-12 VASIN(v;u 14-23
DSIN(a) and DCOS(a) 14-12 VATAN(v;u) 14-23
DSINH(a) 14-12 VATAN2(vl ,v2 ;u) 14-23
DSQRT(a) 14-13 VCABS(v;u 14-23
DTAN(a) 14-13 VCCOS(v;u) 14-23
DTANH(a) 14-13 VCEXP(v;u) 14-24
EXP(a) 14-13 VCLOG(v;u) 14-24
FLOAT(a) 14-13 VCMPLX(v 1•v2 ;u) 14-24
IABS(a) 14-13 VCONJG(v;u) 14-24
IDIM(a1 ,a2) 14-13 VCOS(v;u) 14-24
ID I NT(a) 14-13 VCSIN(v;u) and VCCOS(v;u) 14-24
IFIX(a) 14-14 VCSQRT(v;u) 14-24
INT(a) 14-14 VDBLE(v;u) 14-24
ISIGN(a1 ,a2) 14-14 VDIM(v1 ,v2 ;u) 14-24
MAXO(a l •a2 , •••) 14-14 VEXP(v;u) 14-24
MAXl(a 1 ,a2 , ••• } 14-14 VFLOAT(v;u) 14-24
MINO(a 1 ,a2 , •••) 14-14 VIABS(v;u) 14-24
MINl(a 1 ,a2 , •••) 14-14 VIDIM(v h'V2 ;u) 14-24
MOD(a 1 ,a2) 14-14 VIFIX(v;u 14-25
Q8SCNT(v} 14-14 VINT(v;u) 14-25
Q8SDFB(a,b} 14-14 VISIGN(v1 ,v2 ;u) 14-25
Q8SDOT(v1 ,vr) 14-14 VMOD(v1 ,v2 ;u) 14-25
Q8SEQ(v1 ,v2 14-14 VREAL(v;u) 14-25
Q8SEXTB(a,m,n) 14-15 VSIGN(v\ ,v2 ;u) 14-25
Q8SGE(vti ,v2} 14-15 VSIN(v;u and VCOS(v;u) 14-25
Q8SINSB a,m,n,b) 14-15 VSNGL(v;u) 14-25
Q8SLEN(v) 14-15 VSQRT(v;u) 14-25
Q8SLT(vl ,v2) 14-15 VTAN(v;u) 14-25
Q8SMAX v) or Q8SMAX(v,c) 14-15
Q8SMAXl(v) or Q8SMAXI(v,c) 14-15
Q8SMIN(v} or Q8SMIN(v,c) 14-15 15. PROGRAM COMPILATION 15-1
QSSMINl(v) or Q8SMINI(v,c) 14-15
Q8SNE(v1 ,v2) 14-16 FORTRAN Statement 15-1
Q8SPROD(v) or QSSPROD(v,c) 14-16 A - Assembly Listing 15-1
Q8SSUM(v) or Q8SSUM(v,c} 14-16 B - Build Object File 15-2
Q8 V ADJM(v;u) 14-16 C - Cross-Reference Listing 15-2
Q8VAVG(v l ,V 2 ;u) 14-16 E - Extended Basic Block Optimization 15-2
Q8VAVGD(v 1,v J ;u) 14-17 I - Instruction Scheduling 15-2
Q8VCMPRS(v,c;u 14-17 K - 64-Bit Compare 15-2
Q8VCTRL(v,c;u) 14-17 L - Source Listing Suppression 15-2

60457040 B ix

M - Map of Register File and Storage Compiler-Generated Listings 15-3
Assignments 15-2 Cross-Reference Maps 15-3

0 - Optimization 15-2 Assembly Listing 15-11
p - Propagation 15-2 Register Map and Storage Map 15-12
R - Redundant Code Elimination 15-2 Execution-Time File Reassignment 15-12
s - Suppress Debug Symbol Table Creation 15-2 Control of Drop File Size 15-12
u - Unsafe Vectorization 15-2
v - Vectorization and Automatic

Recognition of STACKLIB Loops 15-2 16. -EXAMPLES 16-1
y - Syntax Check 15-2
z - DO Loop Optimization 15-3 Program PASCAL 16-1
1 - STAR-100 Optimization 15-3 Data Initialization 16-2
2 - CYBER 203 Optimization 15-3 Program ADD 16-2
3 - CYBER 205 Optimization 15-3 Program CPVECT 16-6

APPENDIXES

A Character Sets A-1 E CYBER 200 FORTRAN-Supplied
B Diagnostics B-1 Functions List E-1
c Glossary C-1 F CYBER 200 FORTRAN Statement F-1
D Special Call Statements D-1 Summary

G Compatibility Features G-1

INDEX

FIGURES

1-1 Sample Coded FORTRAN Program 1-3 11-4 Vectorizable Loop #3 11-3
1-2 _ Ordering of Statements 1-3 11-5 Vectorizable Loop #4 11-3
2-1 Conventional Ordering of Elements in a 11-6 Vectorizer Output 11-5

3-Dimensional Array, A(2,3,4) 2-4 11-7 Descriptor Representation 11-6
2-2 ROWWISE-Declared Array, A(2,3,4) 2-4 11-8 Example of Descriptor ASSiqN 11-9
2-3 Integer Data Representation 2-4 13-1 Special CALL Statement 13-2
2-4 Real Data Representation 2-5 13-2 Q8ES Usage 13-2
2-5 Logical Data Representation 2-6 13-3 Additional Q8 Usage 13-2
5-1 Simple Block IF Structure 5-3 13-4 Generated Machine Code 13-2
5-2 Block IF Structure with ELSE Statement 5-3 13-5 Additional Generated Code 13-2
5-3 Block IF Structure with ELSE IF 13-6 Data Flag Branch Register Format 13·-3

Statements 5-3 13-7 DFB Register Dump Example 13-7
5-4 Nested Block IF Structure 5-4 13-8 Scope of Selected Conditions 13-7
5-5 Incorrect: Entering Range of DO Before 13-9 MDUMP Output 13-10

DO Execution 5-4 15-1 Statement Label Map Format 15-3
5-6 DO Control Variable Reinitialization 5-5 15-2 Compiler Output Example 15-4
5-7 Example of Incorrect Sharing of Terminal 15-3 Variable Map Format 15-9

Statement 5-5 15-4 Symbolic Constant Map Format 15-10
5-8 Example of RETURN Statement 5-6 15-5 Procedure Map Format 15-11
6-1 COMMON <tnd EQUIVALENCE Statements 6-4 16-1 Program PASCAL 16-1
7-1 Subprogram _Name as Actual Argument 7-4 16-2 Examples of Initializing Simple
7-2 Subprogram Reference as Actual Argument 7-4 Variables and Array Elements 16-2
7-3 Multiple Entry Subroutine 7-7 16-3 Examples of Initializing Simple Arrays 16-3
7-4 Multiple Entry Function 7-8 16-4 Examples of Vector Initialization 16-3
8-1 Example Using ENCODE and DECODE 16-5 Example of Descriptor Initialization 16-3

Statements 8-3 16-6 Example of Descriptor Array Element
9-1 Example of Inputting Formatted Data- 9-1 Initialization 16-3
10-1 Meaning of a Subarray 10-2 16-7 Example of Descriptor Array
11-1 Form of V ectorizable DO Loops 11-1 Initialization 16-4
11-2 V ectorizable Loop #1 11-2 16-8 Program ADD 16-4
11-3 V ectorizable Loop #2 (U Option) 11-3 16-9 Program CPVECT 16-7

TABLES

1-1 Column Conventions 1-1 7-2 Correspondence of Actual to Dummy
1-2 Types of Statements 1-2 Arguments 7-5
2-1 FORTRAN Character Set 2-1 8-1 Legal Record Types 8-1
2-2 Array Element Succession Formulas 2-3 9-1 Input/Output Conversions 9-4
2-3 Subscripting Order for a Three- 11-1 Criteria for Vectorizable Loops 11-2

Dimensional Array A(2,3,4) 2-4 11-2 Expression Types That Can Appear in an
3-1 Logical Operator Truth Tables 3-3 Assignment Statement 11-8
3-2 Operator Precedences 3-4 11-3 Conversion Rules for Vector Assignment 11-10
4-1 Conversion for Arithmetic Assignment 4-1 13-1 Data Flag Branch Conditions 13-4
6-1 External Declaration of a Supplied 13-2 Multiple Interrupt Processing 13-6

Function 6-4 13-3 ST ACKLIB Calls with Forward Count 13-15
6-2 Data Initialization Conversions G-7 13-4 ST ACKI.IB Calls with Backward Count 13-16
7-1 Distinguishing Functions and Subroutines 7-3 14-1 FORTRAN-Supplied Functions 14-1

x 60457040 c

NOTATIONS

Certain notations are used throughout this manual that
have consistent meanings. The notations are:

UPPERCASE

lowercase

60457040 B

Uppercase letters in language for ms
indicate actual keywords.

Lowercase letters in language forms
indicate user-supplied character
strings.

Numbers preceded by the pound sign
are hexadecimal numbers.

numbers

b.

shading

All numbers in this manual are
decimal unless preceded by a pound
sign or otherwise denoted as
hexadecimal numbers.

Delta represents a blank.

Shading indicates features that are
Control Data extensions to the
standard FORTRAN language. The
parts of example programs that use;
language extensions are also shaded. ,

xi

INTRODUCTION 1

The FORTRAN programming language for the CDC®
CYBER 200 computer contains both CDC and unique
CYBER 200 extensions to the standard FORTRAN (as
defined by American National Standards XJ.9-1966,
FORTRAN). Throughout this manual, shading is used to
distinguish these extensions from the standard FORTRAN
language features.

Several of the CDC® CYBER 200 FORTRAN extensions to
standard FORTRAN allow the FORTRAN user to exploit
the vector processing capabilities of the CYBER 200 Series
computers. In CYBER 200 FORTRAN, vectors can be
expressed with an explicit notation, functions are provided
that return vector results, and special call statements
enable access to any machine instruction.

PROGRAM FORM
A FORTRAN program consists of one or more separately
defined program units. A program unit, which is either a
main program or a subprogram, consists of a series of
source lines that contain statements, optional comment
lines, and one END line. An executable FORTRAN
program must contain one main program; it can also
contain any number of subprograms.

If the executable program consisting of source lines
aggregated as program units is accepted by the
CYBER 200 FORTRAN compiler, the program is changed
into a form that can be loaded and executed by the
CYBER 200 operating system. The compiler executes _in
response to the FORTRAN system control statement.
Once the program has been compiled, it can be loaded and
executed in response to further system control statements.

Execution of the compiled program proceeds with one
program lD1it having control until it relinquishes it to
another program unit or until it stops. Values can be
passed at the time that control is passed from one program
l.D1it to another. During execution, the compiled program
can make use of execution-time routines that are part of
the system library. Files referenced in the program are
read and written by CYBER 200 System Input/Output
(SIO). Depending on the souree program statements, other
system-defined or compiler-defined procedures, such ns
conditional interrupt routines and error processing
routines, might also be invoked during exeeution.

An example of a complete CYBER 200 FORTRAN program
is provided in figure 1-1.

A statement is written as one or more source lines, 9.nd a
comment, as one source line. The first line of a statement
is called an initial line and the succeeding lines are called
continuation lines. Each line is a string of any characters
in the 64-character ASCII subset listed in appendix A. The
character positions in a line are called columns and are
consecutively numbered from left to right.

A FORTRAN program can be written on a coding form
such as the one illustrated in figure 1-1. Each line on the
coding form represents a source line that can be either
keypunched on a card or typed in at a terminal. No more

6fJ457040 B

than one statement is permitted on a single line. The
conventional significance of each column of a source line is
shown in table 1-1.

TABLE 1-1. COLUMN CONVENTIONS

Columns Significance

1 The letter C indicates that this
is a coument line, and that the
remainder of the line is to be
ignored by the FORTRAN compiler.

1 thru 5 One to five numeric characters in
this field are interpreted as a
statement label.

6 Any ASCII character other than a
blank or zero indicates that th is
is a continuation line.

7 thru 72 CYBER 200 FORTRAN statement, with
blank characters ignored except
in character and Hollerith con-
stants, can appear anywhere
within this field.

73 thru end Identification field, the
of source contents of which are always
time ignored by the FORTRAN compiler,

can contain any characters.

END LINES

An END line indicates to the FORTRAN compiler the end
of a program unit. Every program unit must have an END
line as its last line.

Form:

END

Program units are described in section. 7.

COMMENTS

Comment lines are used for purposes of in-line
documentation. They are not statements. Except for
being printed in the output file, comment lines have no
effect. The letter C in column 1 of a line indicntcs that
this is a comment .line; the comments themselves can be
written anywhere after column 1. If a comment requires
more than one line, each line must have a C in column 1.

l-l

STATEMENTS

The statements in the CYBER 200 FORTRAN language fall
into two classes: executable and nonexecutable (see
table 1-2). In general, a FORTRAN program unit consists
of nonexecutable statements followed by executable
statements; however, there are a few significant
exceptions to _this separation.

Executable statements specify actions to be taken during
program execution. Executable statements are used
typically in the course of a program to request that data be
input, that data be operated upon and stored, and
subsequently that results be output.

Nonexecutable statements describe characteristics,
arrangement, and format of data, as ~e~l (l~ ~!!try -~~Dt
a11cl •. _-.fH~--···.feqyireQl ~mt.s <>f .t~~- Pt:<>gr<lIH: ; 'rtlEFfirst· ~t.ateo1.ent•.

fin. <a< main .. ·••· pr?°gram iS, .. gE;lnerally~ ; th~ .. n()n~l(eCUtf,!blE:l.;
·.PROGRAM statement. A nonexecutable state:nent (such
as a FORMAT or DATA statement) that appears in the
executable portion of a program is processed once by the
compiler and does not affect the flow of execution.

Statement Labels

Within a program unit, a statement label - any one- to
five-digit integer - uniquely identifies a statement so that
it can be identified by another statement. Labels on
statement continuation lines are ignored, as are blanks and
leading zeros in a label. Statements that are not referred

1-2

TABLE 1-2. · TYPES OF STATEMENTS

Executable

Input statements
(section 8)

Assignment statements
(sections 4, 10,
and 11)

Flow control state­
ments (section 5)

Output statements
·(section 8)

Nonexecutable

Procedure definition
statements (sections 7
and 11)

Specification state­
ments (sections 6
and 11)

Data initialization
statements (sections 6
and 11)

FORMAT statements (sec­
tion 9)

to by other statements need not be labeled. Labels need
not occur in numerical order. A statement label can be
referred to as frequently as necessary, but it must not be
used more than once in the same program unit to label a
statement. Also, no statement can ref er to the label of a
statement that is ~ontained in another program unit~

60457040 B

Continuation of Statements

If a statement is longer than 66 columns, it can be
continued on as many as 19 continuation lines. Unless a
line is a comment line, a character other than blank or
zero in column 6 indicates a continuation line. Columns 2
through 5 can contain any characters in the FORTRAN
character set (they are ignored), and column 1 can contain
any character in the set except C. A continuation line can
follow only another continuation line or the initial line of a
statement.

Ordering of statements

Figure 1-2 shows the general form of a FORTRAN program
lDlit. Statements within a group can appear in any order
(with one exception), but groups (indicated by 1, 2, ••• , 6)
must be ordered as shown in figure 1-2. Comment lines
can appear anywhere within the program before the END
line, except before statement continuation lines.

COLUMNS 73 THROUGH END OF SOURCE LINE

Any information can appear in any columns that follow
column 72. The characters in these columns are copied to
the output file but have no other effect. These columns
could be used, for example, to order the cards in a punched
deck.

PROGRAM DAT A

No restrictions other than those implied in sections 8 and 9
are imposed on the format of data input to the program.
Input data can appear in any of the columns of an input line
and can use as many input lines as required. Except on
initiation of a read, or interpretation of a slash separator
in the FORMAT statement associated with a READ
statement, the input line boundary is not significant. Input
data is not part of the source program record.

60457040 B

2

3

4

5

PROGRAM
FUNCTION
SUBROUTINE
BLOCK DATA

IMPLICIT

NAMf.LIST
Type t
COMMON
DIMENSION
ROWWISE
EQUIVALENCE
EXTERNAL

Statement function definitions

Executable statements

6 END line

a:+-
w+-........
w ti
:; ~
<(E
a: s
<(C'CI ti a. Qi c

Q)

E
Q) ...
C'CI,,

+->
a:

ti 2
c w
Q)

"C E c
Q) C'CI ...
C'CI ti <(

<(::2:: a:
<(0 c u.

tExcept within ranges of DO loops; must not appe_ar
immediately before an END line.

tt An INTEGER type statement that is being used to
type a variable that is an adjustable dimension or
adjustable length in the program unit must appear
before any of the other statements in group 3.

ttt Any type statement or IMPLICIT statement that
specifies the type of a symbolic constant must
appear before the PARAMETER statement that
defines the symbolic constant.

Figure 1-2. Ordering of Statements

1-3

STATEMENT ELEMENTS 2

The elements of a syntactically correct CYBER 200
FORTRAN statement could include any of the following:

• Identifiers

• Keywords

• Special characters

An identifier is a name or a number. For example, a
number (the statement label) is used for identifying a
statement. Input and output units are also numbered.
Names are used to identify data elements, such as
variables and arrays, and for identifying procedures and
blocks. A symbolic name consists of alphanumeric
characters, the first of which must be alphabetic.
CYBER 200 FORTRAN allows a symbolic name to have a
length of eight characters.

In the appropriate contexts, keywords and some of the
special characters (the plus sign, for example) mean that
specific actions are to be taken with respect to the
identified data. Other special characters (the comma, for
example) serve to punctuate statements. FORTRAN does
not contain reserved words, which means that a keyword
out of the appropriate context is interpreted to be an
identifier.

CHARACTER SET
Ex(?ept . for. character and· Hollerith constants, and
character and Hollerith editing specifications in FORMAT
statements, CYBER 200 FORTRAN statements are written
with the 5~ characters listed in table 2-1. Qharacter arid··
Hollerith constants and editing specifications can contain
any of the 64 characters in the ASCII subset that is given
in appendix A.

TABLE 2-1. FORTRAN CHARACTER SET

Character Class Characters

Alphabetic Letters A thru Z

Numeric Digits 0 thru 9

Special !::. Blank or space
= Equals sign
+ Plus sign
- Minus sign or hyphen

* Multiply sign or asterisk
I Divide sign or slash
(Left parenthesis
) Right parenthesis
, Conma

Decimal point or period
& Ampersand
I Apostrophe
: Colon
; Semicolon
] Right bracket
[Left bracket

60457040 B

Other than within character and Hollerith constants and in
editing specifications, the blank character is not
significant within FORTRAN statements. Consequently,
the user can insert blanks within a statement, even within
identifiers and numeric constants, to make the program
readable. The symbol is used in this manual to denote a
blank character that is not optional.

DAT A ELEMENTS
Data can be represented in a CYBER 200 FORTRAN
program as constants, variables, and arrays.

CONSTANTS

A constant is a quantity identified by its value. The value
of a constant cannot be changed at any time during
execution of a program.

A constant has one of nine data types:

• Integer

• Real

• Double-precision

• Complex

• Logical

• Hollerith

• Character

• Hexadecimal ·.

:• Bit

Each type of constant has its own source program form and
computer internal representation. For example, if the
constant 1061 appears in a source ·program, it represents
the decimal value 1061 and has the data type integer. The
fullword the number occupies in memory has the 64-bit
binary representation 0 ••• 010000100101.

SYMBOLIC CONST ANTS

A symbolic constant is a name. that has a constant value. :
·The value is specified in a l~AJ:tAMETER statement. The ;
i type. of.· a symbolic constant is specified·· implicitly . by the
; first letter of the name, or explicitly by a type statement:
the legal types. for symbolic .. constants are integer,<real,
double-precision, complex, logical, character, and. bit!' · .. > •.. · .· ·.· ;

A•. symbplic constant can be iuSed like any·· other . constant 1

except:

e . A symbolic cons.tant cann~tj1ppear as J?.al'f ()f ariother j
constant ••.... J.7or·.· .. ~~a.mp!~, •... if .• ·JC<is .. ·.a ..•.... r.e.al.~YIJlf)<>lie;
constant~ (O.;X)is• .. 11ota··•compl~X·•.constR11t{ ·•···•··.·> i. ./ii ;

.' .. _.(

A syrilb()UC! c()11st'11lt . c~llot appfalll' ill< ai F
: .. ·.~!~!.!'.ffi~!!.!.~. ,. ,.,.,·""'"''''''" ,,, ... ,.,, ... , ... i>•<>·•'<·>·/···' ., .•. , •.•..•..••. , ... ,,,,, ..••••

AT;

2-1

• A. syiri1'olic collStlirit canrtot appear 8$ irif:)ut data~

•· • A>SY!Dbolic corist~nt < c8Jltj()t appe8io i iri • ..• 8. .PRci~~Al\1 '
statement.

VARIABLES

A variable is a quantity whose value can be changed during
program execution. A variable is identified by a symbolic
name. A variable name is generally associated by the
FORTRAN compiler with a storage location; whenever the
variable is referenced in a source program, the value
currently in that location is accessed.

.A Ylll'is.b1f,! <?fll1 .. be.11 .. s,i!DP1~_Jt~11t i~, ~<?~lll'> ... Ylll'i':!~~f,!ror.a1

'descriptor. Descriptors are . discussed in the vector
: progra!Dmi.ng S(i!Cti()n •.

Some of the ways that the value of a variable can be
changed during program execution are:

• Executing an assignment statement in which the
variable name occurs to the left of an equals sign

• ~~cil#rig: ~ A.&ijiei~l~iatetlient ·.\

• Reading a new value into it

• Using it as an argument to a subprogram that changes
the argument value

• Changing the value of a variable to which it has been
equivalenced

The data type of a variable name is determined implicitly
by the name's first letter (this is referred to as the
first-letter rule) unless the name is explicitly typed by an
explicit type statement. the C()~~~S,P<>l19~llC?E!. ()f. !!1'8-t
lette{'s, J() ~yp~s, -~< as follows,; ~X<!ePt >as· att~r(kl. J)y
\.IM~LICiT statement$::

Letters

A through H, and 0 through Z

I through N

ARRAYS

Data Type

Real

Integer

An array is a totally ordered set of variably valued
elements identified by a single symbolic name. A single
element of the array can be named by suffixing the array
name with a subs(?ript ths.t .. specifies thf,! elf!nien!'s, pgstt~()J.l:
.\l[ithin the array~ Except in an EQUIVALENCE.statement,:
when the unsubscripted array name occurs in. a source

i program, it. refers <to the . entire array .· .. (see>Subarray
References in section 10). An unsubscripted array name in
an EQUIVALE1'TCE·statement·or .. namelist ·iriput references

; <>!llY .the first.«?~e!De11t of the array~

An array can be a simple array'.or··~.descrlpt~r ~rray} An
array containing scalar elements is a simple array.

For each array, a DIMENSION, !JiciwwtSE~ COMMON, or
type declaration statement must be used to declare the
array's size. This declaration must be made once in each
program unit that references or defines the array; if more
than one program unit uses the array, the declaration must
be the same in all of the program units.

2-2

An array declarator is used to declare the size of an array,
and has the following form:

a(d)

a The array name.

d A list of the form:

di, •• • ,dn

where n is the number of dimensions the array is
to have; and where di is an integer constant or
simple integer variable whose magnitude indicates
the maximum value that a subscript expression
for the ith dimension may attain in any array
element name.

The dimension dj can be a variablE~ <>n!Y \'l~ell 8. .~. 8.
dummy argument in ,a .~ubpz:ogrs.m~ iA1so, an'~i.igrri'ented

, t,orm ·.of Jhe. 8.l'ray declarlit()r, in. \I[hi ch 8.1.1:. f,!lem~ilt leJ1gth
specification.·of· .• the fc:>rm .. ·.•*k. appe~s betwe~n>!~e~ray
name.· •. · ... ·and ··• .. th'1·· left.•·· parenthesis, •.•. · ... C8.l'l.·· •.... ·appear< in ...• tllf!:

·, Q~Alt!\QTEJt tYP.~. st11~E?rne11t~. Type statements and
dummy arguments are discussed later in sections 6 and 7.

The data type of an array is determined by the same
explicit and implicit rules that determine the data type of

. a variable name. The data type of an array element is that
of the array. It is possible {but not necessary) to declare
the size and data type for an array with the use of a single
array declarator. For example, the explicit type statement
COMPLEX A(50) declares the array A to have 50 elements
all of which are of type complex. In this example, no
additional statement is required (or allowed) for assigning a
data type to the array.

The amount of storage reserved for an array is determined
by the array's size and data type. For any array, the
number of words, bytes, or bits reserved is the number
required for a single element of the particular data type,
times the number of elements. For example, COMPLEX
A(50) reserves 100 words of storage for A because any data
element of type complex requires 2 words for its internal
representation, and the array A consists of 50 of such
complex data elements.

':l\rra'J~ <?8.l'l ·•.·I·~V,~· ·"()rie·· ···t9 · .. s~v~1l d ..• ~iffieii~!Q~~ A
one-dimensional array can be thought of as a list or series;
a two-dimensional arr'-ly, as a matrix. The product of the
dimension sizes equals the number of elements in the array.

Subscripts and Array Declarators

A ~u~~<?ri~t consists of a pair of parentheses enclosing''one
to seven. subscript expressions separated by commas.
Subscripted array names must not be confused with array
declarators: an array declarator declares the dimensions
of an array, and a subscripted array name identifies a
single array element. A subscript appears in an array
element name immediately after the array name. Except
in an EQUIVALENCE statement, the number of subscript
expressions must always equal the number of dimensions
for the array.

Each dimension in an array declarator can be an integer
constant or, in a subprogram, a single integer variable. An
integer variable dimension, permitted only when the array
is a dummy argument, must either also be a dummy
argument or must be in common. A variable used in this
way as an adjustable dimension must either be implicitly
integer, or must appear in an INTEGER type statement
before it appears in any other declaration statement.

60457040 B

Each subscript expression in an array element name can be
any scalar arithmetic expression of type integer, real, or
double-precision, and must never assume a value less
than .1 or larger than the maximum length specified in the
declarator (the value is not checked at run time). When the
value of the expression is not integer, it is truncated to
integer.

Subscript Interpretation

A subscript can identify an element in the array in either
of two ways, depending on whether the array declarator
occurred in a ROWWISE statement or occurred in a
DIMENSION, COMMON, or type declaration statement.
The conventional succession of elements in an array is
defined by a succession of subscripts in which the value of
the leftmost subscript expression varies through its range
(from 1 to the maximum value of that dimension), then the
value of the subscript expression to its right is increased by
1 and the first goes through its range again, and so on, until
each subscript expression has gone through its entire range
at least once. The subscript significance is just the reverse

for an array that has been declared in a ROWWISE
statement: the succession of elements is defined by a
succession of subscripts in which the value of the rightmost
subscript expression varies through its range, then the
value of the subscript expression to its left increases by 1
and the last goes through its range again, and so on, until
each subscript expression has gone through its entire range
at least once.

To find the location of an array element in the linear
sequence in which the elements are stored given its
identifying subscript, the formulas listed in table 2-2 can
be used. In the table, capital letters are dimension sizes
and lowercase letters are the subscript expression values of
a particular subscript.

A comparison is made of the ordering for conventional and
row wise subscripts for a 3-dimensional array of 24
elements in table 2-3. Interpreted geometrically, the
conventional ordering is 2 rows, 3 columns, and 4 planes, as
shown in figure 2-1. The rowwise ordering interpreted
geometrically is 4 rows, 3 columns, and 2 planes, shown in
figure 2-2.

TABLE 2-2. ARRAY ELEMENT SUCCESSION FORMULAS

D imensi ona lity

1

2

3

4

5

6

60457040 B

!

Declarator Dimensions

(A)

(A,B)
(B,A)t

(A,B,C)
(C,B,A)t

(A,B,C,D)t
(D,C,B,A)

(A,B,C,D,E)

(E,D,C,B,A)t

(A,B,C,D,E,F)

(F ,E,D,C,B,A)t

Instance of Subscript

(a)

(a,b)
(b ,a.>t

(a,b,c)
(c,b,a)t

(e,d,c,b,a)t

(a,b,c,d,e,f)

Location of Array Element

a

a+A*(b-1)

a+A*(b-1)
+.A*B*(c_;i)

a+A*(b-1)
+A*B*(c-1)
+A*B*C*(d-1)
+A*B*C*D*(e-1)
+A*B*C*D*E*(f-1)

2-3

TABLE 2-3. SUBSCRIPTING ORDER FOR A THREE­
DIMENS IONAL ARRAY A(2,3,4)

.::·

RO WWI SE
Subscript
Succession ,

•••• A(!,1,1) ...
A(l,~ ;2)
A(l;l,3). <

I A(Ja,4)
. A(t,2,1)

A(l;2j2)
: A(l,2;3) !

A0,214)
A(l;3,l)
AU,3,2)
A{f~J,3)

<A(l,3,4)
A(2,lj~)
~(2,1,2)
:A(2,l,3)
A(2{l~4>
:A(2,2;1)

: A(2,2,2)
: A(2)2,3) >>i.

':'•·.,A(?~2,.4)\ .:
.· .. · .. A(2,3,l)'.

'''A,(2)3,2}.
'<)A,(2)3;3) ..
:.:~(~,3,ft.)

7

8

Ordinality

9

10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

13

14

11

12

15

16

19

20

17

18

Conventional
Subscript
Succession

A(l,1,1)
A(2,l,l)
A(l,2,1)
A(2,2,1)
A(l,3,1)
A(2,3,l)
A(l,1,2)
A(2,l,2)
A(l,2,2)
A(2,2,2)
A(l ,3 ,2)
A(2,3,2)
A(l,1,3)
A(2,l,3)
A(l,2,3)
A(2,2,3)
A(l,3,3)
A(2,3,3)
A(l,1,4)
A(2,1,4)
A(l,2,4)
A(2,2,4)
A(l,3,4)
A(2,3,4)

21 23

22 24

Figure 2-1. Conventional Ordering of Elements in a
3-Dimensional Array, A(2,3,4)

DAT A ELEMENT FORMS

specified explicitly (the data type of a FORTRAN-supplied
function is predefined). The data type of a constant is
implied by its form. The internal representation of a value
of a particular data type is the same whether it is the
value of a variable, of an array element, or of a constant.

INTEGER ELEMENTS

An integer constant has the following form:

d1d2 ••• dm

di A decimal digit (0 through 9); m is greater
than or equal to 1 and less than or equal to 14.

It is written without a decimal point and without embedded
commas.

A signed integer constant is an integer constant prefixed
by a plus or minus sign. If an integer is positive, the plus
sign can be omitted. If an integer is negative, a minus sign
must be present. An optionally signed integer constant is
an integer constant or a signed integer constant. Integer
zero is neither positive nor negative but can be signed
(with no significance).

The value range for an integer is -247 through 247-1.
Integers used in addition, subtraction, multiplication,
division, or exponentiation, as well as the results of such
operations, must be within this range.

Integer data occupies one word of storage as shown in
figure 2-3.

0 16 63
A data element or function name must be associated
implicitly or explicitly with a data type. The association
applies to every occurrence of the name throughout the binary zero integer in two's complement

representation program unit in which the association is declared.

The data type of a variable, array, or function name is
implied by the first letter of the name or it ·must be

2-4

Figure 2-3. Integer Data Representation

60457040 B

A variable or array can be associated with the integer data
type implicitly or explicitly, as described under Variables
in this section.

Examples of integer constants:

237 0 13593569

Examples of signed integer constants:

-237 +13593569

REAL ELEMENTS

A real constant can have one of the following forms:

n
nEx
mEx

n A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m An integer constant.

x An optionally signed integer constant in the range
-8617 through 8645.

The Ex in the real constant form expresses the exponent.
Interpreted arithmetically, nEx means n*lOX and mEx
means m*lOX. An exponent of E+O is assumed if a real
constant contains no exponent. A signed real constant is a
real constant prefixed by a plus sign or minus sign. The
constant must be preceded by a minus sign if the real
number represented is negative, but the plus sign is
optional if the number is positive. An optionally signed
real constant is a real constant or a signed real constant.

The absolute value range for a real number is
approximately 0 through .95370811543187E+8645. The
smallest positive real number that can be represented is
approximately .51921128456573E-8617. The precision
retained in calculations involving real numbers is
approximately 14 significant decimal digits.

Real data occupies one word of storage as shown in
figure 2-4.

0

exponent, a
two's comple­
ment integer

16

mantissa, a two's complement
integer

Figure 2-4. Real Data Representation

Examples of real constants:

2.5 .25E+l .25El 2500E-3

Examples of signed real constants:

63

OEO

+2.5 -.25E+l +.25El -2500E-3 +OEO

Real data is always represented in normalized form in that
the most significant bit of the mantissa appears in bit 17,
with the value of the exponent adjusted appropriately. The
appropriate hardware reference manual contains more
detailed descriptions of the hardware representations for
numeric data.

60457040 B

A variable or array can be associated with the real data
type either implicitly or explicitly, as described under
Variables in this section.

DOUBLE-PRECISION ELEMENTS

A double-precision constant has one of the following forms:

nDx
mDx

n A string of one or more decimal digits and one
decimal point. The decimal point can be placed
anywhere in the string, including first or last.

m An integer constant.

x An optionally signed integer constant in the range
-8617 through 8645.

The Dx in the form expresses the exponent.

A double-precision constant is written and interpreted in
exactly the same way as a real constant, except that the
exponent must always be used and the letter D is used in
the exponent instead of an E.

The value range for double-precision numbers is the same
as for real numbers; however, the precision retained is
approximately 28 significant digits instead of 14. The
largest double-precision number that can be represented is
.56119459376694461996204140730+8645. The smallest
positive double-precision number that can be represented is
approximately .51921128456573305570041353390-8617.

Double-precision data occupies two contiguous words of
storage. The first word is in the same for mat as for type
real data and expresses the most significant digits. The
second word is in the same format as the first, except that
the exponent value is 4 7 less than the exponent of the first
and the mantissa has not been normalized. The second
word is always nonnegative (zero or positive).

A variable or array can be associated with the
double-precision data type by means of the DOUBLE
PRECISION or th~JMI>LIC!T:type declaration statement.

Examples of double-precision constants:

.250+1 .2501 2500D-3

3.14159265358979323846264330+0

Examples of signed double-precision constants:

+.250+1 -.2501 +2500D-3

COMPLEX ELEMENTS

A complex constant must have the following form:

ri A~ optionally signed real constant.

A complex constant is written as an ordered pair of
optionally signed real constants separated by a comma and
enclosed in parentheses. The parentheses are part of the
constant and must always appear. The value range for
either rl or r2 is the same as for type real data.

2-5

Complex data occupies two contiguous words of storage,
each of which is in the format for type real data. The first
word (r1 in the form) represents the real part of the
complex number. The second word (r2 in the form)
represents the imaginary part.

A variable or array can b,E!. ~~~<>c~a!e<:l,,y~iJh the complex
data type only by means o(th~JM~LICIT ()J." the COMPLEX
type declaration statement.

Examples of complex constants:

(4.0, 5.0), which has the value of the complex
number 4.0 + 5.0i, where i = J"=f"

(O., -1.)

(+.4El, 5.0)

(-4., -5.)

LOGICAL ELEMENTS

A logical constant has one of the following forms:

.TRUE.

• FALSE.

The periods are part of the constants and must appear.

Logical data occupies one word of storage as shown in
figure 2-5.

0

rooo ...
where d is a 1 bit or 0 bit for .TRUE. and .FALSE.
respectively.

Figure 2-5. Logical Data Representation

63

A variable or array is,ass()~iat~d ~i!h the logical data type
by means of LJh~,JMPl.tIQIT <>1'·! the LOGICAL type
declaration statement.

HOLLERITH ELEMENTS

A Hollerith constant is a string composed of an (unsigned)
integer constant followed by the letter H or R, and a
nonempty string of any m of the 64 characters in the ASCII
subset. The blank character is· an acceptable and
significant character in a Hollerith constant.

Form:

2-6

mRs

mHs

m An (unsigned) integer constant less than or equal
to 255 and nonzero.

R Right-justified with binary zero fill.

H Left-justified with blank fill.

s A string of exactly m characters included in the
64-character ASCII subset (appendix A).

Hollerith data uses m contiguous bytes (a byte is eight bits)
to represent m characters. Eight characters fill one
machine word. The word boundary generally does not
affect how Hollerith data is stored; however, when used as
an actual argument in a subroutine call or function
reference, a constant is aligned on a fullword boundary and
extended with blanks on the right so that it occupies a
whole number of words.

R constants are limited to one word and are right-justified
with binary zero fill.

Examples of Hollerith constants:

19HRESULT NUMBER THREE 5H12345

5~1H,
5R12345

A Hollerith constant can be used .~.~.~.n, .. l1.c:tual argument or
~()r ~l1tl1. illit!~!i~ll~i()J1}11 l11?~'1'~'. ()!''type ~tf!~E!m~11t •. ~()r

F'eoml?ati~iilty ·Wi~'lfw.F()R'I'~A~'.:~EXie11de~; .• ·~ot~~r',""t1Ses":.o~l
: .. Holleritp·•· .. ·con8tants'.<are.>supported > as.···.•.·•••descr~bed •in

1

b~P~H~!:.g~ ,..... '·· ,.

It is not possible to declare a variable or array to be type
Hollerith.

t;~·•·.<? ···········.· ... i~; ·~e>nJthli! i~.··.··•• ~· 11<>ri~ilipty••·•· ~ti-iii£ 6i,~Ji~r~~t~~:,
j 7nclq..c;~. irlapostr()Pll~~~.: If ·•.ajl · apos~rophl!(').is. teq~re~i
•.,Ytithiti P"iestring··.· .. ·as>()t1~.···•.•()f •·th7 eh~ac:~~r~1.••···.it•·.·• .. ~u~~ .. ·.··.··b,E!
: prefixE!d ~ith another.• apostr()phe" •·•· Tl'lE!. ~har~~~er. blank i$ a·
·: ·•signi(tcant charactE!r in a ctiaracter:eons!ant• · ·

;:i?~l*~~·

1' ,c~ill-~cit.~r}·~~1~ctea·•.:rr~111.·•·•i~.~.•.OE;~Qi8.l-~c•~ef1
A.S(?II.sul>get; m.is less ·than .or E!QUal,J() 255• ·

: ·· Pl181°~6te~/ .. ~~t~ >·~~s·•····fric~nti~~wi t>Yi~s••••···o(····. st6~#~·••W1
;• .. ~E!P~E!~ent ..• •·rn· .. · ... (!har~cte~:.ii.eigh~·••.ctiara(?ter.~••f~.ll·one· .• !11.achi.~E!.·.
/. \Y.or~~>.Character. d~tti •··.~> ??t•.•le't""j~tif~~d<ti~~?~~.8!1~ ... ~.ill~~.r

as is Hollerith data.·• ,. >.····<<>•··········•·./ ... <> ·• ··.····••'• •·•·<· : •. ·····><•·.<····' ,.;
· ••. ·· •• · •. ·.· •. · •.. · .. · •.. · .. ·•.· ••. ·.· ..• ·.·.·.· •.. · ••.•. · .•. · ..• •.· •..•.•. ·•· ... ·•· .• · •.••. ·=,····.··· •.•. · .• ••· .•..•. · ••. ·· •.. · ••. ·· .. · .. •• •• · •. · .. ••·.· ...•..••. ·.· •. ·.· .•• ··••··••••.· •.•• ·.· .• ·· •.. ·.·.·.····••·•··•.·· ...• ·· .••• · .• · •. ·· ••. · •.. ··.·•.•.··.·.· •.. ···•·•·••·•·· .. · •...•. · •. · .. ••··•·•···• .. · •.. ·•··•·.·•·.·•·•·•••··• •. ··• ·•·•·•.·•.·•.•••·•.·•·•·•·· •. •.·•··.·• •. ·· ..• · .. · •••.. •.·· •• ·· .•. ·· .•. · .•••. · ••. · .••.. · ••.• ··.'·· ..

.Examples 'of charactet". ~o~tan~~

'REStiL't NUMBER l'HREE', '12345' ' 1'MAM' 1,'

!.•••·••~••••··.~~ri~·as,i••·•··t~ •••·ttie···ll<>#e~it6······~~~~}•·t~~,··•• ... ~h~··••c~a.r~c~.~~· ;~~~~.·i
\ •.• tyPf! c~n .. l:>e asS()<?i~.tE!~>\Y~th .. a• variable ()r arr~y,.in y,tl1i<?~j
:, : ~8.SE! Jhe Vari~ble or array JllUSt •. hllYE! :·length as. !Tell}~· ~~j
: •.•. ~PE!<?!~i~d.·.i~• •. M •• Il\1.J>LIQI'f?~(?}{J\RA<:)'f~}t ...• typE!d~(?l~a~~on
; statement.: · , ·

"HE

, ···:·:'...:<;.· :'.:: '..'' < ::> \::· :::=, :;· ":'.. · .. :. :.:::?·.:, :' <'.':<· >· ·. :: >: :("·<.:.···.·.:, .•

·~~&.~Id~~~ts ·

60457040 B

Form:

X'h1h2 ••• hm'

hi A hexadecimal (base 16) digit; m is less than
or equal to 255.

Hexadecimal data uses as many contiguous bits of storage
as are required to represent m digits: the digits 0 through
F (interpreted as the hexadecimal equivalents of the
decimal digits 0 through 15) each take four bits. The
alignment is not significant for hexadecimal data.

Examples of hexadecimal constants:

X133' X'1A9' X'FFFFFFFFFFFFFFFF'

Hexadecimal constants are restricted to use in data
initialization and special CALL statement argument lists.

It is not possible to declare a variable or array to be type
hexadecimal.

60457040 B

BIT ELEMENTS

A bit constant is a string composed of the letter B
followed by a nonempty string of m binary digits (bits)
enclosed in apostrophes.

Form:

B'b1b2 ••• bm'

bi A bit (0 or l); m is less than or equal to 255.

Bit data uses m contiguous bits; the alignment is not
significant. The digits 0 and 1 each correspond to one bit
in storage.

Examples of bit constants:

B'O' B'l0101111' B'000000000000001'

Bit constants are restricted to use in subprogram
references, bit assignment statements, and data
initialization.

A bit variable is associated with the bit data type by means
of the BIT or the IMPLICIT type declaration statemen~-·

2-7

SCALAR EXPRESSIONS 3

A FORTRAN expression is a string of one or more operands
and zero or more operators that is evaluated during
program execution to yield a value. The conventional
precedences for the FORTRAN arithmetic and logical
operators are given later in this section.

An expression generally specifies a computation or a
comparison between operands. However, in its simplest
form, an expression consists of a single data element (a
single constant, variable, or array element) or a function
reference. This section gives the formation and evaluation
rules for the following kinds of scalar expressions:

Arithmetic Yields numeric values; appears in
arithmetic assignment statements and in
relational expressions.

Character Contains no operators; is used in
character assignment statements and
relational expressions.

Relational Yields logical values; appears in logical
expressions.

Logical Yields logical values; appears in logical
expressions and logical assignment
statements.

Bit Yields bit values; appears in bit
assignment statements.

When an expression is evaluated during program execution,
the result is retained in a variable, is used immediately as
an operand for another operation, or is passed as an
argument to a function or subroutine. An expression whose
evauation yields a result of a certain type is called an
expression of that type; for example, an expression whose
evaluation yields an integer result is called an integer
expression.

Examples of expressions:

Expression

x

3.5

'.'CHA,RAGTEiiS1
.

A(C/B)

SQRT (TRUNK)

Value

Current value of the variable X.

Constant real number 3.5.

Character cotjSt8.l}t; 10 "Ascu:
~~~~~!~t~· ., .. ·········"·'·'"·. "'' .>.<».L .. .J 
Value of DBl divided by the square 
of the value of DB2. 

Array element A(I), where I is the 
value of the expression C/B. 

Function reference. 

(A+B+3•C)/2.56 The sum of the expressions A, B, 

X.LT. Y-1.0 

60457040 B 

. and a•c, divided by 2.56. 

• TRUE. if the value of X is less 
than the value of Y-1.0; .FALSE. 
otherwise. 

.NOT. FNLOG(B) .TRUE. if the value of the 
expression FNLOG(B) is .FALSE., 
.FALSE. otherwise. 

If the value of an expression can be established without 
evaluating a certain part of the expression, then that part 
might never be evaluated. For this reason the user cannot 
rely on any side effects an expression might be able to 
produce. 

Example: 

During evaluation of the logical expression: 

Y .OR. F(X) .OR. Z 

if Y has the value .TRUE., the expression has the 
value .TRUE. whatever the values of F(X) and Z are. 
In this situation, the execution of F might occur as a 
result of the expression evaluation. 

Another consideration for the user is compatibility 
between operand types during evaluation. The operand 
types that can be combiried in the same arithmetic or 
relational expression are the following, in order of 
decreasing dominance: 

• Complex (cannot occur in relational expressions) 

• Double-precision 

·e Real 

• Integer 

In general, when two operands that are to be operated upon 
. have.different types, the value of the dominated operand is · 
converted.· to. the· type of the d.ominant ·operand before the 
operation is performed.··· For example, if the operand types 
of an expression (consisting of two operands· and a dyadic' 
operator) were real and integer, the effect .would be. as; 
though the integer· .. had been converted. to type real·. data •. 

r before a real ()peration <an operation involving only type 
:.r.:.~. ?P:~~~·~·~· ... ·.!!.~ .... l?~~!.?.r,T:~~.: .... ·..... . ........•......•............ ,~··•····•........ ...... . . ................ '. 

ARITHMETIC EXPRESSIONS 
The FORTRAN arithmetic operators are: 

+ Addi ti on; unary plus 

Subtraction; unary minus 

• Multiplication 

I Division 

•• Exponentiation 

Unary plus and minus are conceptually like dyadic addition 
and subtraction using an implied zero operand of the same 
type as the given unary operand. 

3-1 



An arithmetic expression can be a single constant, simple 
variable, array element, or function reference. If X is an 
arithmetic expression, then (X) is an arithmetic 
expression. Each left parenthesis must have a 
corresponding right parenthesis in the same expression. 
Furthermore, if X. and Y are arithmetic expressions, the 
following are also arithmetic expressions: 

X+Y 

X*Y 

X-Y 

X/Y 

X**Y 

All operations must be specified explicitly. For example, 
to multiply two variables X and Y, the expression X*Y 
must be used; XY, (X) (Y), or X.Y does not result in 
multiplication. Also, operators in an expression must not 
be contiguous. A unary plus or unary minus can be 
separated from another operator in an expression by using 
parentheses around the signed element. 

Examples of arithmetic expressions: 

3.5 

3.5 + N 

-(3.5+N)/2**M 

(XBAR+(B(I,J+I,K)/3.0)) 

-(C+DELTA *AERO) 

(-B-SQRT(B**2-C4*A*C)))/(2.0*A) 

GROSS - (TAX*0,04) · 

TEMP+ V(M,AMAX1(A,B))*Y**C/(H-FACT(K+3)) 

EXPONENTIATION 

The following types of bases and e}tponents are permitted 
in exponentiation: 

Type of Base 

Integer 

Real 

Double-precision 

Complex 

Type of Exponent 

Integer ,rr~ar;rQ<>:tsl>lEPi 
[Ptfj¢i~~ljj· >, .. ;.,, . .;,. ._, 

Integer, real, double­
precision 

Integer, real, double­
precision 

Integer /'r~SJ.! 

Also, a negative-valued base can have an exponent of type 
integer only and a zero-valued base can be raised to a 
positive exponent only. 

An expression (or a subexpression delimited by parentheses) 
that contains only operands and the exponentiation 
operator is evaluated from right to left. That is, A**B**C 
means. (A**(B**C)). This interpretation can be changed 
with appropriate use of parentheses, for example, 
(A**B)**C. 

3-2 

EVALUATION OF ARITHMETIC EXPRESSIONS 

The · value of an arithmetic expression is a close 
approximation to the mathematical interpretation. The 
sequence in which the elements of an expression are 
evaluated is governed by the following rules listed in 
descending precedence: 

1. Subexpressions delimited by parentheses are evaluated 
beginning with the innermost subexpressions. 

2. Subexpressions defined by arithmetic operators are 
evaluated. 

3. Subexpressions containing operators of equal 
precedence are evaluated in effect from left to right, 
except for exponentiation which is evaluated from 
right to left (the exponent's value is calculated before 
the base's value). 

For example, the expression: 

A/B/C-D*E**F 

might be evaluated as follows: 

1. E is raised to the power of F. 

2. A is divided by B. 

3, Quotient in step 2 is divided by c. 

4. Result of step 1 is multiplied by D. 

5. Product in step 4 is subtracted from result of step 3. 

If the result of an integer division is not integral, the 
fractional part is discarded. The result of an integer 
division is the nearest integer whose absolute value does 
not exceed the absolute value of the magnitude of the 
mathematical ratio. For. example, 3/2*4 has the value 4, 
-3/2*4 has the value -4, and 3/(-2)*4 has the value -4. 

Operators that are mathematically associative or 
commutative might be reordered during compilation. The 
user can force a definite ordering of mathematically 
associative operators of equal precedence by appropriate 
use of parentheses. Subexpressions containing integer 
divisions are not reordered within the division/ 
·multiplication precedence level, however, because the 
truncation resulting from an integer division renders these 
operations nonassociati ve. 

The evaluation of an array element or function reference 
in an expression requires the evaluation of the subscript or 
actual arguments. The evaluation of the subscript or 
actual arguments does not affect the type of the value of 
the expression in which the subscript or argument list 
appears; neither does the expression type affect subscript 
or actual argument evaluation. Evaluation of a function 
must not alter the value of any other element _within the 
statement in which the function reference appears. 

No element can be evaluated whose value is not 
mathematically defined. For example, division by zero or 
the square root of a negative number cannot be evaluated. 

60457040 B 



TYPE OF AN ARITHMETIC EXPRESSION 

The arithmetic operators +, -, *, and I can be used to 
combine any elements of the same numeric data type into 
an expression; the resultant value has the same data type 
as that of the operands. For example, when two real 
numbers are added, the data type of the result is real, and 
the operation is referred to as a real operation. 
Furthermore, a complex, double-precision, real, or integer 
element can be combined with one of these operators into 
an expression with an element of any of the types complex, 
double-precision, real, or integer, with the resultant value 
having the type possessed by the dominant operand. 

CHARACTER EXPRESSIONS 
A character expression consists of exactly one data 
element and no operators. This element can be any one of 
the following: 

• A character constjlnt 

• A character array element 

• A character variable 

• A character function reference 

The value of a character expression is the value of the 
element. The type of a character expression is character. 

RELATIONAL EXPRESSIONS 
The FORTRAN relational operators are: 

.LT. Less than 

.LE. Less than or equal to 

.EQ. Equal to 

.NE. Not equal to 

.GT. Greater than 

.GE. Greater than or equal to 

The periods are part of the operators and must appear. 

A relational expression is a relational operator bracketed 
by two operands: 

aexpr1 op aexpr2 

l'§.~~~i'.~~~~~!2] 
op A relational operator. 

An arithmetic expression. 

The operands can be either two arithmetic expressions or 
two character expressions. As the forms above show, a 
relational expression cannot contain two relational 
operators. 

60457040 B 

Examples of relational expressions: 

5HASTER.LT.C 

'ANEMONE' .EQ. FNCHAR 

X+Y/3.*Z .NE. X 

A(I) .GE. SQRT(R) 

AMRYL .LT. 1.504 

Evaluation of a relational expression consisting of 
arithmetic expressions proceeds as follows: each 
arithmetic expression is evaluated; type conversion to the 
dominant type takes place if the types of the arithmetic 
expressions differ; then the comparison is made. The 
relational expression has the logical result .TRUE. or 
.FALSE. as the relation is true or false, respectively. 

Arithmetic expressions in relational expressions cannot be 
of type complex; they can be integer, real, or 
double-precision, however. For example, (2.0,1.0)*N is 
syntactfoally correct, but ((2.0,l.O)*N).GE.M is not. 

When a relational expression consists of character 
expressions, the corresponding characters in the values of 
the two expressions are compared one character at a time 
from left to right. A character is considered greater than 
another character, for example, if its hexadecimal 
equivalent as shown in appendix A is greater than that of 
the other. If the two character expressions have different 
lengths, comparison proceeds as though the shorter had 
been padded on the right with blank characters until the 
expressions were of equal length •(the hexadecimal 
equivalent of the blank character is less than that of any 
other character in the ASCll subset). 

LOGICAL EXPRESSIONS 
The FORTRAN logical operators are: 

.AND. Logical and 

.OR. Logical or 

~XOR. -_ ~~~"~~~~~~-y~;~¥J 
.NOT. Logical negation 

The periods are part of the operators and must appear. 
The mathematical definitions of the logical operators are 
given in table 3-1. 

TABLE 3-1. LOGICAL OPERATOR TRUTH TABLES 

p g p.AND.g p.OR.g .NOT.p 

T T T T F 

T F F T F 

F T F T T 

F F F F T 

3-3 



A logical expression can· be a single relational expression, 
logical constant, logical variable, logical array element, 
logical function reference, or a logical expression enclosed 
in parentheses. Also, if X and Y are logical expressions, 
then .NOT.X, and X followed by a binary logical operator 
followed by Y, are logical expressions. 

Examples of logical expressions: 

(X).AND •• NOT. Y 

X*2.114 .NE.(B*22.114).AND. Zl .AND. Z2 .AND. Z3 

.NOT. (X.AND •• NOT.Y) .OR. (Z.EQ.98.6) 

B-C.LE.A.AND.A.LE.B+C 

.NOT. can appear adjacent to itself only with intervening 
parentheses as in the following types of constructs: 

.NOT. (.NOT.p) 

.NOT. (.NOT. (.NOT.p)) 

.NOT. can appear adjacent to any other logical operator 
only as the operator on the right, as in the following 
constructs: 

p.AND •• NOT.q 

p.OR •• NOT.q 

t::e;~Q~~iii21lq' 

The operators .AND., .OR., !:Jmr•.:xoJt1 cannot appear 
adjacent to each other; they are always flanked by 
relational expressions, logical elements, or any such logical 
expressions. (This corresponds to the mathematical usage 
of logical conjunction and disjunction.) 

3-4 

Whenever precedence is not established explicitly by 
parentheses, the logical, relational, and arithmetic 
operations that can appear in a logical expression are 
evaluated according to the precedences shown in 
table 3-2. The unparenthesized expression 
X.OR. Y .AND.Z.OR.W, for example, is evaluated as if it 
were written (X.OR.((Y .AND.Z).OR.W)). If the user had 
intended (X.OR.Y).AND.(Z.OR.W), the parentheses must be 
explicit. The plus/minus category in the table applies to 
both unary and dyadic additive operations. The value of a 
logical expression is always of type logical. 

TABLE 3-2. OPERATOR PRECEDENCES 

Operator Precedence Category 

** first 

I second Arithmetic 
* 
~ third 

.EQ. 

.NE • 
• GE. fourth Relational .LE • 
• LT. 
.GT. 

.NOT. fifth 

.AND. sixth Logical 

.OR. seventh 
·II}ii?,·.',•~~~.f i··~ 

60457040 B 



SCALAR ASSIGNMENT STATEMENTS 4 

A scalar assignment statement initiates evaluation of the 
expression on the right side of the equals sign. When 
evaluation is complete, the variable to the left of the 
equals sign is assigned the value of the expression. 

This section gives the formation rules for the following 
types of scalar assignment statements: 

• Arithmetic 

~ Charlicter 

• Logical 

• Bit 

The terms left side and right side of an assignment 
statement refer, in this manual, to everything in the 
statement that lies to the left of and to the right of the 
equals sign, respectively. 

ARITHMETIC ASSIGNMENT STATEMENT 
The arithmetic assignment statement has the following 

Examples: 

Statement 

A=A+l 

K(4) = K(l) + K(2) 

t ·~ (-2~3, 1.5) 

A= 3 

Meaning 

Replace the value of A with the 
value of A + 1. 

Replace the value of K(4) with 
the sum of the array elements 
K(l) and K(2). 

Replace . the value of I with the' 
truncated real part of the 
~.IT,lPJeJC: ~Oll8-t8Jlt, .:2! 

Replace the value of A with 3.0. 

The rules for conversion during arithmetic assignment are 
given in table 4-1. Terms used in the table are defined as 
follows: 

• Contract 

form: Convert double-precision to real. 

var=expr • Extend 

expr An arithmetic expression. Convert real to double-precision, filling the new 
mantissa with zeros. 

var A simple variable or array element, of type 
integer, real, double-precision, or complex. • Float 

Convert integer to real. 

e Fix 

If the type of the element to the left of the equals sign 
differs from that of the expression on the right, type 
conversion takes place during. assignment. The value of the 
expression, converted to the type of the variable on the 
left side, replaces the value of the variable. Convert real to integer, truncating the fractional part. 

TABLE 4-1. CONVERSION FOR ARITHMETIC ASSIGNMENT 

Variable Type 
(Left Side) 

Integer 

Real 

Integer 

No conversion 

Float 

Double-Precision Float and extend 

Complex 

60457040 B 

Expression Type 

Real Double-Precision 

Fix Contract and fix 

No conversion Contract 

Extend No conversion 

Complex 

(i'i)t. reai·•l'itrf .a11d 
'.discard imaginary 
;part 
! 

I.us~ .#e~i 1>~rt: .. •.· ~I\~ 
:d~sc:.ard imagil\itry 
'part·· · 

'Eliic~ri~ re~i l>~r~}~~4 
'discard ~1J18ginary· · 
:part 

4-1 



• Real part 

Real part of a complex value. 

• Imaginary part 

Imaginary part of a complex value. 

:cHA.RACTER ····ASSIGNMENT STATEMENT 
_·'. .. >'.·~: ...... \;.=::- '·~--.. ~.,::=· ::.:·,: ·=.· .. ,·;·.·:.·:. ·.~ 

;Tlltl·•·character ••as$igntnent.•statemE!~t>~ .. <t~ >f onoViiflg] 
ff()rrn.: · 

~· ,'.": ·,'.:::f :;:.:.·;::";::::·· .. _:j: .. ,:·:;···.:_'. .. '. 

var::expr 

A character eX:pression~ ··.·•.······ ... ····.·· .. ····•t•··•:) •. i). .j 

. A chBrQCf~. ~iiri&l>le o1- } c~~~ter ~.~' 
elenieni~ 

expr 

var 

• •.. ·. ··•··• .. ·••·•· · .. ·• •.• ·· •.. · .. · ... ·•·.·. • •.. ·· :. ·. •• ·•·•·.•• •• · •...•• · •. • ..• ·· ••• •.·. ·.•·• ·.··. ·· •. ·• ·.•.·.··•·•· •• ·· •. •·.·. • ..•. ··. · .. •.· .•.. · ...•• • .. •.·• ·•··• · .• ·.·. ·• · .• ··. · .. ·· ••.... ·. • •. ·•• •. ·.· •. ·• •. :~. ·.•··.· .. · •. ·•.·.· ... · .. · .• • •• ·.· •..••• •. ·•·.• •. : ... • •. •· .. ·.·.:= ••.. ·=.· ·.· · .... · .... · :· ... ·. : .. · .. ·. ·.· ... · •...• · ·.···. · .... · •. ·.· : .. ·:.·· .. ·.· .. ·· ...•.. · .. · .. ·: .... ··:. • •. · •..... ·: .. · ... ·· .... ·.: :.·· .... · .... · ... ·. ·. ·. · •.. ·· ··.·· .. · ·. :: .• ·.· ... ·· ·.·. · .. ·.; ...• · ... ·. · ... ·.···.·· · .. ·· ... ·. •.· .... · ·.·.: .... ·.··. · .. · . ·. ·· .. ·.· .. ·.·. 

!.Wllen .•• ·the length of.·the.e11tity>var··.•.fl.11d.·.J~~··· •. leilgth ~f{tlle[ 
i.Chal"acter wµue .... of<t.he ~xpressioJ1<expl'·• ~f!>the same, 
'eX~C\l~ioir of the C~ll~ter assignm~nt. state men~.· Causes 
'.the·. value of .the •. character. expre~ionto .be tl58ignea·.to~~· 
. character entity to the left.ofthe eqWils sign.·· · 

':,,,.....,.. ...... ····::_·:·:·· :·.' ........ . :-.·· .. :.·::>: . ." .. ·.· ..... ;>-.: ........ · .. ·.,,·.:·: :·:.,:··=.>·>···_,:·::· .. :··. :· .. :·.·.::,·:.:._::·<· 

'The •.. elements . .var.i•··a11a· .•. •eJCpr····.ca11 .. have••· different lengths; 
When varJs longer. Uum expr, expr is extended on the right' 

. with blanks u11tn it mlltches ·•the length of val";· t~en expr is 
•.assignec:J.· .to .•.• ·.var ••. ·.· .. ·. If<yar.··.is.••sho.rteri than.· .. •expr,·····•·•.expris 
truncated on the right untµ. it.·• JX1atches the length• of V'ar; 
then exprJs assigned ·to var. · · 

i Examples: 

Giveri the declarations: 

cHXkA¢'l'~it•;1oi6•.•····:•.···•.·•·•.r····••·••····•.•············:··••.············1 •./.·•.••··.• •• ·•·•·······.··········/·:•••·•·•······.i•.•••.··•.",(.· .. 
CHARACTER*5 YOWELS,<CARRA Y (50) . . 

Statement l\tleari.irig ·•·· 
-,,,_ ... , ···.- '.. ==.:r.·. :.-:=::::. ·, =< ,·:.:. =.:=· -:.,::: <=:..'::::·,_·::·=. :;:.· .. , := ..... :.·::,::=.=.-.:·::·:== _..= ::.' 

VOWELS:= 1ABlOt1.'. }tep~ac~··.·.•~lie········"Mue···•or•.• :Y9WE~· 
•...• " •• • •:. h • with th0;,Ya1Ue <?~: !~¥JOU'~ : '" ...•. 

4-2 

.ri:··r;q··.·.~·.9~J:iiii\:x <~XT\·::.:··iieii1Jl~~I~~···vaiue:·9r ·c·\.;i~fi·tii~"i 
... •····.·· .•· ........ i·· \•.•·•·\··:··. •• ........ · ......... ·.·.•.•/•.·c .. ··•·•·••.•.·<Val\le•·.i·· o.t ··••·····.·.· CJ\.~lt.J\.~···· .. (~) .• •·. ··•·· ~~f t:i 

· ··. · J~~i~if!<l iJl C ~d P'1dc:l~c1 o~ 1he: 
............. .. ~.!~~! ~!~~ ... m:~.~!~~~ .. " . . 

LOGICAL ASSIGNMENT STATEMENT 
The logical assignment statement has the following form: 

var=expr 

expr A logical expression. 

var A logical variable or a logical array element. 

Execution of the logical assignment statement causes the 
value of the logical expression to be assigned to the logical 
entity specified to the left of the equals sign. 

Examples: 

e LOGICAL LOG2 
I=l 
LOG2 = I .EQ. 0 

LOG2 is assigned the value .FALSE. because I does not 
equal O. 

e LOGICAL A,B,C,D,E,LGA,LGB,LGC 
REAL F,G,H 
LGB=B.AND.C.AND.D 
A=F .GT .G.OR.F .GT .H 
A=.NOT.(A.AND •• NOT.B).AND.(C.OR.D) 
LGA=.NOT .LGB 
LGC=E.OR.LGC.OR.LGB.OR.LGA.OR.(A.AND.B) 

60457040 B 



FLOW CONTROL STATEMENTS 5 

The statements of a CYBER 200 FORTRAN program are in 
effect executed consecutively except when flow is altered 
by a flow control statement or by an exceptional condition 
(for example, end-of-file on input, or a data flag branch 
interrupt). The execution of a flow control. statement 
alters, interrupts, terminates, or otherwise modifies the 
normal sequential flow of program execution. 

Some flow control statements indicate where control is to 
be transferred by referring to a statement label. The 
transfer of control must not be made to a nonexecutable 
statement such as a FORMAT statement. It can be made 
to the dummy executable statement CONTINUE (which is 
used for no other purpose than to be labeled) or to any 
other labeled executable statement. 

Besides the CONTINUE statement, CYBER 200 FORTRAN 
contains four types of flow control statements: 

• Unconditional branch (GO TO statement; assigned GO 
TO statement) 

• Conditional branch (computed GO TO; arithmetic and 
logical IF) 

• Loop (DO statement) 

e Program control (PA USE; STOP; CALL; RETURN) 

Only the fourth type does not involve labels. 

GO TO STATEMENT 
The three types of GO TO statements are unconditional, 
assigned, and computed. 

UNCONDITIONAL GO TO 

The unconditional GO TO statement has the following form: 

GOTOn 

n The statement label of an executable 
statement. 

When the GO TO is executed, control is transferred such 
that the statement labeled n is the next statement to be 
executed. The statement labeled n must be in the same 
program tmit. 

ASSIGNED GO TO 

An ASSIGN statement is used in conjunction with the 
assigned GO TO statement. This ASSIGN statement is not 
related to the descriptor ASSIGN statements described in 
the vector programming section. · 

60457040 B 

ASSIGN Statement 

The ASSIGN statement initializes a variable for subsequent 
use in an assigned GO TO statement. It has the following 
form: 

ASSIGN n TO var 

n The statement label of an executable 
statement. 

var A simple integer variable. 

n is the label of the executable statement to which control 
is transferred by an assigned GO TO statement that 
contains the variable var. The statement labeled n must 
be in the same program unit in which the ASSIGN 
statement appears. 

Use of the ASSIGN statement does not have the same 
effect as use of an assignment statement; for instance, an 
arithmetic assignment cannot be used interchangeably with 
an ASSIGN. Once a variable var is associated with a 
labeled statement by means of an ASSIGN, it must be used 
exclusively in ASSIGN statements and in assigned GO TO 
statements until it is defined by means of an assignment 
statement. Similarly, once it has been defined by an 
assignment statement, it must be used exclusively in 
statements other than the assigned GO TO statement until 
it is associated with a labeled statement by means of an 
ASSIGN. That is, results are unpredictable in either of the 
following cases: 

• Use of the variable var in an assigned GO TO 
statement when var's current value was defined by 
other than an ASSIGN statement 

• Use of the variable var in an arithmetic expression 
when var is currently associated with a labeled 
statement as a result of an ASSIGN 

Assigned GO TO Statement 

The assigned GO TO statement has the f ollo/wing form: 

GO TO var,(ni,n2, ••• ,nm) 

[gf(f.Q.:y~] 

var A simple integer variable. 

ni The statement label of an executable 
statement. 

(f~~E:~film~.:~~~~!!fig 1~,.Lti:2m·,!!!~.c.t~~!.~k.~~-~P!!2~~i1 
Control is transferred so that the labeled statement 
associated with var is the next statement to be executed. 
The statement labeled ni must be in the same program 
tmit in which the GO TO statement referencing it appears. 

5-1 



At the time of execution of an assigned GO TO, the 
variable var must have been associated with a labeled 
statement by prior execution of an ASSIGN statement. In 
the first form of the statement, var must be associated 

'• ~i!ll. ,.o~e .• c:>f .t~·······~be-~········~ •. J~ ...... ~.~ntl1t?~i:z:~9 ...... ~~~; .. J.ill.·\ttif! 
t.second.•form.of the.s~ateme~~' .var must·•t>t?.··associated witlll' 
i ~.18.~lJRt~pJ:'()gJ.'iJ.f!l .\lllit.:. •... . ··"' . 

Examples: 

,.AssIGN100 .To ... ~cH .........•......... ,. ...... , 
; GO TO .1SWICH(5()(),l()(),15(),2()Q.}1 

Control transfers to statement 100 upon 
execution of the GO TO statement. 

~ASSIGN,llO ... :X:()~QH,:··•«••·······"· 1 
LGO,To,1SWIClt(5()0,100,l50,200); 

Results of executing the GO TO statement are 
llllpredictable because 110 is not one of the labels 
in the list. 

COMPUTED GO TO 

The computed.GO TO statement has the following form: 

GO TO(n1,n2, ••• ,nm),sel 

sel A simple integer variable. 

The statement label of an executable 
statement. 

· .. Ttie•····comma·.·$ei>ar~tir1i .. •.·.sei.ir~~··· .th~.i1a~1-··.•1iStls ()pt16riat~: 
The statement labeled Di must be in the same program 
llllit. The computed GO TO statement transfers control to 
a statement whose label is in the parenthesized list. If the 
selecting variable sel has the value 1, then the statement 
labeled n1 is the next statement to be executed; if sel 
has the value i, the statelllent . labelt?9 ,,Di .• , if; .. tilt?. ~t?~. 
stat~(ll~ntto be execl1ted./. If the. val_ue.of selis<~ot,i_n tht? 
i~ange J to. •.m, the fi~t ext?_cu~ble statel1lentfollowingthe 
· computed Go To i$;execut~.ne~. . ., "·· ..•... 

Example: 

Given the statements: 

GO TO (200,100,400,200),L 
CAT= FUR+ GRIN 

the label of the next statement executed is: 

200 if L = 1 

100 if L = 2 

400 if L = 3 

200 if L = 4 

If L.2! 5· brii L ~ o; ~ri~t~b1··1~· thl'ough to the" 
·state(llent Jmm~iately. ~ollo\ying .. the GO TO 
::sta.tement; in.tbi$cliSe.CAT = .1'.'.UR.±JlRJN. 

IF STATEMENT 
The IF statements provide for transfer of control or for 
conditional execution of one or more statements. 

5-2 

ARITHMETIC IF 

The arithmetic IF statement has the following form: 

IF (expr) nhn2,n3 

expr Any arithmetic expression of type integer, 
real, or double-precision. 

The statement label of an executable 
statement. 

The statement labeled Di must be in the same program 
llllit. On execution of the IF statement, the arithmetic 
expression expr is evaluated and control transfers to one of 
the statement labels nh n2, or n3 depending on 
whether the value of expr is less than zero, zero, or 
greater than zero, respectively. 

LOGICAL IF 

The logical IF statement has the following form: 

IF (expr) s 

expr Any logical expression. 

Any executable statement, exce~.t, .• l:l .,:R-Qs 
.. ~!.~.t,-~m.~~11., ... lc:>gi~fi~ .. ,°'IF ......... ,~t!!~(ll~t, .~ bl()(?~ .. ··•·····:1111 

s 

.:~t11te(lle~t,.· ;ELS,:E .. ·· stat~IJl~lltf J~~:E :tl1:.~~t~.1 
;m~t,, c.>~ :EN'J~·IF ~~l:l!e!ni~ll~~:::'. . . . . ... :: 

Upon execution of this statement, the logical expression 
expr is evaluated. If the value of expr is false, statement s 
is not executed and control passes to the next executable 
statement following the logical IF statement. If the. value 
of expr is true, statement s is executed; then the next 
executable statement following the IF statement is 
executed, unless s caused a transfer of control. 

The K · compile option controls how .EQ. and .NE. 
comparisons are performed in evaluation of the logical 
expression in this statement. If the K option has not been 
selected, only the bits 16-63 are compared. Selection of 
the K option causes a 64-bit comparison to take place 
during evaluation of the expression. 

;BLOCK IF 

i'.'+11~~1~~~;m•··.•·~~ki~-~~~i·•·Jia~.i~~16iio~i~~·1<>J¥:;>·· ···· 

, > .•..• ~:~> ::!~io~~1e~~1on,.·. . ..·.·•·.··.············.•.·················· .•.•..•..••.••.•..••.•.•... •.•· ....•. ~ ••..•••...•..••..•..• · ...•.••..•. •.·• .. •.•• .. •· .. •·····.•.·•··.•·•·•• .. ·.•.•• .. ·•·········
1 

~ .. ::·.:· ··', ·:: ... : ..... · .. :··::: .. :, .... ::.: :·. >·::···:'. ':...:'.':.··<.:· ... ,.:·· .. ·.:.:= .. :.·.:.··:::: :· .. , ... · .. <.:>.-·.·, ... ·:::·: ........ < · .. ·=·.:' 

'l1p<.>n···• e_xecutio11 ... of ....•. this ·,stateIJ1ent,. the logical,expr~ion 
elq>r is•• eyal\lated •. ·.·•If _the value .. of expr is false, co11trol 

: transfers t,o •. an·.· ELSE or .· :E~E IJ! .· .. statement;, if.• neitller ·an 
;· ELS:E nor. 8:ll ELSE f ~<statement·.· .. is pr~ent; con.trot' 
~ansfers. to an. EN'D IF statemiant. JfJhe value of expr is,• 

. true,< e~ecution <continues with _the· ·next•·· executable· 
· statement after the. block .IF statement~ 

(ELSE 

· T11e :E~t statem~I1t tiasth~ r~li<>wtng t~rm: .. 
ELSE 

60457040 B 



The ELSE statement can be used with a block rF statement 
to provide an alternate path of execution for a block IF 
statement. An ELSE statement can have a statement 
label, but the label cannot be referenced in any other 
statement. 

ELSE IF 

The ELSE IF statement has the following form: 

ELSE IF (expr) THEN 

expr Any logical expression. 

The ELSE IF statement can be used with a block IF 
statement to provide an alternate path of execution for a 
block IF statement or another ELSE IF statement, and to 
perform a conditional test. An ELSE IF statement can 
have a statement label, but the label cannot be referenced 
in any other statement. The effect of execution of an 
ELSE IF statement is the same as for the block IF 
statement. 

END IF 

The END IF statement has the following form: 

ENDIF 

The END IF statement terminates a block IF structure. 
Each block IF statement must have a corresponding END IF 
statement. 

BLOCK IF STRUCTURES 

Bloo.k IF structures provide for alternate execution of 
blocks of statements. A block IF structure begins with a 
block IF statement and ends with an END IF statement; it 
can contain an ELSE statement or one or more ELSE IF 
statements. Each IF, ELSE, or ELSE IF statement can be 
followed by a block of executable statements called an 
if-block. 

An if-block can contain any number of executable . 
statements; it can also contain no statements. Control can 
transfer out of an if-block from within the if-block; 
however, control cannot transfer into an if-block from 
outside the if-block. 

A simple block IF structure is· shown in figure 5-1. If the 
expression in the block IF statement is true, execution 
continues with the first statement in the if-block. If the; 
expression is false, control transfers to the statement'. 
following the END IF statement. 

60457040 B 

A block IF structure that contains an ELSE statement is 
shown in figure 5-2. If the expression in the block ··IF 
statement is true, execution continues with the first 
executable statement in if-block-1. If a statement in 
if-block-1 does not transfer control elsewhere, control 
transfers to the statement following the END IF statement 
after execution of if-block-1. 

IF (expr) THEN 

if-block-1 

ELSE 

if-block-2 

END IF 

Figure 5-2. Block IF Structure With ELSE Statement 

If the expression in the block IF statement is false, control 
transfers to the first statement in if-block-2. If a 
statement in if-block-2 does not transfer control 
elsewhere, control transfers to the statement following the 
END IF statement after execution of if-block-2. 

A block IF statement can have no more than one associated 
ELSE statement. 

A block IF structure that contains ELSE IF statements is 
shown in figure 5-3. If the expression in the block IF 
statement is true, execution continues with the first 
executable statement in if-block-1. If a statement in 
if-block-1 does not transfer control elsewhere, control 
transfers to the statement following the END IF statement 
after execution of if-block-1. 

IF (expr) THEN 

if-block-1 

ELSE IF (expr) THEN 

if-block-2 

ELSE IF (expr) THEN 

if-block-3 

END lF 

Figure 5-3. Block IF Structure With ELSE IF Statements 

If the expression iri the block IF statement is false, control 
transfers to the first ELSE IF statement thatis associated 
with the block IF statement •.. The . expression in this ELSE.: 
IF statement is evaluated •. If the expression .is true, 
execution continues with the first executable statement in 
if-block-2. If a statement in Jf-block-2 does not transfer : 
control elsewhere, ·control transfers to the statement 
following the END IF statement .after execution .i of: 
if-block.;.2. 

If the ~xpression in tlJ.e first ·.ELSE IF statement is false, 
control transfers to the second ELSEIF statement that is· 
associa~ed with the block IF statement. The .expressio~ in: 
'the .. ··S~(?()ll~··•·ELS~ ... ••••Il' 8:tatement· .. •is•.•eVa11Jat~dJnit~ .. ~El.rne; 
manner.fi.S··in t~E!ifirs~.~I'8~iJF.stl1tell)enh AnY.~~~ ()f; 
ELS~ IF statemen~ Cllll appeEll. ill a blpc~Jl'' ~tru(!.t~~~ , 

5-3 



An ..•.. ~I.SE .· stat~nient -~ ... ~. · ·~~~~~r··1ri .··.·this.· ... Siril~ttlre; ! 
ho'Wev~, it must follow the last ~LSE IF s~atement. The 

;if .. block associated w!ththe .ELSE.statementise!Cecuted .if' 
;an of f he logical expressions in the.·. block JF. sta tern ent ·and ·•· 
; ELSE IF statements are false. 

NESTING BLOCK IF STRUCTURES .. 

. 'A ·nested block :IF .. struettire .. •is a block IF ·structure that 
; appears in an. if-block of another block IF structure. A 
· nested block IF structure • ni ust appear entiJ:~ely withip an i 

if-block. Control can transfer from an if-block ofanested 
·block .IF structure, to .. the.·· if-block•· of·the .outer .• block.··.•IF 
' structure in which the nested block : IF structure app~ars. 
:Controlcannot transfer from an if-blockof an outer block 
l IF structure. to an if "'."block of. a nested block ~ structure, 
! however. Nested block IF structures are shown in· 
·· figure·. 5 .. 4. 

:·.• ...<•· ........ ·.· .. ·.·.··.·• .. •<i·· .. ··•·•··· ............ i/ ·r········· ····•?······>·······•······· i/. ...<·•··········.·.•··. id····.·········•·•i··· .... ......•... ·.·····••.•······.··.··· : A bl.ock IF structure Can 11ppear witNn th~ ran~e or a D() j 
loop, ••blJt• .• the e11tire •. h1ock · .. IF•·.structure.••Jllust, app~ari11 the 

!D.O ilooP. range •. ,i\n . END .. • .If·.· .• state111ent· ... ·.~DD()t··· .. 1>e Jhe .. 
· terminat.sta~e111~n~ ()fa po.loop~ A D()loop canappe&rJn 
... an if~block,.bi.tt the entire range of the D0<100p must 
ktiPI>~arJ11 .• t~~ .~.~~I>!<>~*~ . " ....... . 

DO STATEMENT 
Execution of a group of statements can be repeated a 
specified number of times through use of the DO 
statement. The range of a DO statement is the set of 
executable statements beginning with the first executable 
statement following the DO and ending with the terminal 
statement associated with the DO. A DO statement along 
with its range is referred to as a DO loop. 

DEFINING A DO LOOP 

The DO statement has the following form: 

5-4 

DO n i = mi,m2,m3 

n The label of the terminal statement. 

The control variable, a simple integer 
variable. 

The initial value parameter of i, an integer 
constant or a simple integer variable with a 
value greater than zero. 

The terminal value parameter of i, an integer 
constant or a simple integer variable with a 
value greater than zero. 

Optional. The incrementation value 
parameter for i, an integer constant or a 
simple integer variable with a value greater 
than zero. Default value is 1. 

The terminal statement of a DO loop can be any 
assignment statement and almost any input or output 
statement. However, any flow control statement other 
than a CONTINUE is either highly restricted or must not 
appear as the terminal statement of a DO. The terminal 
statement must not be any of the following: 

e A RETURN, STOP, or PAUSE statement 

• A GO TO statement of any form 

• 'A.'bfock··•IF; ELSE/ELSE>!F;· ~r.ENDIF 'sfaiemenf 
, .·· =:. ,,, .. , 

• L~:~i>~.~i'1} c~qsts.t~~~~t •. 
• A DO statement 

• ii iiEADstKt~m:erii''~onf;iriing flri E:iiR.•·<;~ EN.D b~lfu~h . 

• i··~····¢~LJ.,···~~itt.~Jll~.¥• .. !~t·· P8.~~·.•.s..·.~«~~~~~ .• ~,~~.~ 
• An arithmetic IF statement 

• A logical IF statement containing any of these 
restricted forms 

The terminal statement must physically follow and be in 
the same program unit as the DO statement that refers 
.to it. 

Example: 

DO 10 I=l,11,3 
IF(ALIST(I)-ALIST(I+l))l5,10,10 

15 ITEMP=ALIST(I) 
10 ALIST(I)=ALIST(l+l) 

300 WRITE(6,200)ALIST 

The statements following DO up to and including 
statement 10 are executed four times. The DO loop is 
executed with I equal to 1, 4, 7, 10. Statement 300 is 
then executed. 

A DO loop can be initially entered only through the DO 
statement. That is, the group of statements in figure 5-5 
are incorrect. The GO TO statement in figure 5-5 
transfers control into the range of the DO before the DO 
statement has been executed. 

GO TO 100 
DO 100 1=1,50 

100 A(l}=I 

Figure 5-5. Incorrect: Entering Range 
of DO Before DO Execution 

Execution of a DO statement causes the following 
sequence of operations: 

1. i is assigned the value of m 1 • 

2. The range of the DO statement is executed. 

60457040 B 



3. i is incremented by the value of m3. 

4. i is compared with m2· If the value of i is less than 
or equal to the value of m2, the sequence of 
operations starting at step 2 is repeated. If the value 
of i is greater than the value of m2 the DO is said 
to have been satisfied, the control variable becomes 
undefined (has an tmpredictable value), and control 
passes to the statement following the statement 
labeled n. If mi is greater than m2,· the range of 
the DO is still executed once. 

A transfer out of the range of a DO loop is allowed at any 
time. When such a transfer occurs, the control variable 
remains defined at its most recent value in the loop. If 
control eventually is returned to the same range without 
entering at the DO statement, the statements executed 
while control is out of the range are said to define the 
extended range of the DO. The extended range of a DO 
must not contain a DO that has its own extended range. 

The control variable, initial parameter, terminal 
parameter, and incrementation parameter of a DO must 
not be redefined during the execution of the range of that 
DO. However, the group of statements in figure 5-6 are 
correct. If ever an element of the array RA is zero or 
negative, it is set to 1 and the DO statement is reentered, 
which reinitializes the control variable I. 

K=O 
GO TO 300 

200 RA(l)=1. 
300 DO 100 1=1,50 

K=K+1 
IF (RA(l).LE.O.) GO TO 200 

100 RA(l)=K 

Figure 5-6. DO Control Variable Reinitialization 

NESTING DO LOOPS 

When a DO loop contains another DO statement, the 
grouping is called a DO nest. DO loops can be nested to 
any number of levels. The range of a DO statement can 
include other DO statements only if the range of each 
inner DO is entirely within the range of the containing DO 
statement. When DO loops are nested, each must have a 
different control variable. 

The terminal statement of an inner DO loop must be either 
the same statement as the terminal statement of the 
containing DO loop or must occur before it. If more than 
one DO loop has the same terminal statement, a branch to 
that statement can be made only from within the range or 
extended range of the innermost DO. Figure 5-7 gives an 
example of an incorrect transfer into the range of an inner 
DO. Since statement 500 in figure 5-7 is the terminal 
statement for more than one DO loop, if the first element 
of any row in array A is less than or equal to zero, the 
consequent branch to the CONTINUE statement will be an 
entrance into the range of the inner DO. 

If the nested loops in figure 5-7 did not share a terminal 
statement or if the outer loop did not reference the 
terminal statement, the loops would be correctly nested. 

60457040 B 

DO 500 1=1,5 
IF (A(l,1).LE.O.) GO TO 500 
DO 500 K=1,10 
A( 1,K)=SQRT(A( 1,K)) 

500 CONTINUE 

Figure 5-7. Example of Incorrect Sharing 
of Terminal Statement 

The range of a DO loop can oontain a block IF structure, 
but the entire block IF structure must appear in the DO 
loop range. An END IF statement cannot be the terminal 
statement of a DO loop. A DO loop can appear in an 
if-block, but the entire range of the DO loop must appear 
.in the if-block. 

CONTINUE STATEMENT 
The CONTINUE statement has the following form: 

CONTINUE 

The CONTINUE statement performs no operation. It is an 
executable statement that can be placed anywhere in a · 
program without interrupting the fiow of control. The 
CONTINUE statement is generally used to carry a 
statement label. For example, it can provide DO loop 
termination when a GO TO or IF would otherwise be the 
last statement of the range of the DO. 

PAUSE STATEMENT 
The PAUSE statement has the following form: 

PAUSE n 

n 9pti()na1· A s~ririg of ~ne to five "~~(?~!!)~. digits, 
or a Character eonst~t~ ; 

if a string is given~ ff iS. dlSplayed in •. the job dayf ile or at . 
the terminal. The string is also placedin the output file 
for .the .. job. Program execution. then continues . with the. 
next executable statement . following . the. PAUSE . 
statement. . If no • string ··.is given, .instead . of ·.·· n • ·.' being · 
'displayec) and outp~t, . the. string PAUSE 'is displayed.· and •· 
~~~~~.r~~~.~er~~~~ .... ~~~.~~H~ri:~r1.Hr1~~~.~ .. · 

STOP STATEMENT
The STOP statement has the following form:

STOP n

n Opti<>na1· A s~ring of one to five d~~!~a.l 'digits,
9r ~ <?hEll"~<?!~~ (?()~~tµi~~ . .

Upon execution of the STOP statement, program execution
unconditionally termi11atEls and co11tr?l is .. ret~IlEld to th.e
operating system. If a string is given, it is displayed in the,
job day~ile or at the terminal. 'l'he string is also pJ.a~ed in
the output file forthejob •. Ifno string is. given, inst~ad of
n ~ing c1isplayed .·· tµid output,. the string STOP. is displayed
~<j()l:Jtput• .

5-5

RETURN STATEMENT
Subroutine and function subprograms contain one or more
RETURN statements that when executed cause immediate
return of control to the referencing program unit. The
RETURN statement must not appear in a main program.

Form:

RETURN~n

In a function subprogram, execution of a RETURN causes
the function value to be returned to the referencing
program unit and to be substituted for the most recently
executed function reference in that program . unit.
Evaluation of· the expression that contained the function
reference continues. The integer n must not appear after a
RETURN statement in a function subprogram.

CALL STATEMENT
The CALL statement is used to transfer control to a
subroutine subprogram, System Input/Output (SIO) module,
System Request Language (SRL) module, assembly
language subroutine, or any other external subroutine. The
execution of a CALL statement is not complete until the
subroutine designated in the statement completes
execution and returns control to the calling program unit.

Form:

s

5-6

The symbolic name of a subroutine, or an
entry point name in a subroutine.

Execution of the CALL statement transfers control to
entry point names. See the heading Passing Arguments
Between Subprograms in section 7 for a flll'ther description
of actual arguments in CALL statements.

For example, the program in figure 5-8 uses both the
·RETURN n and the RETURN statement formats. If ·the

data read with· the READ statement in the. subroutine.· is
less than 1.0 or greater than 10.0, control transfers back to
the main. program ··statement .. ·. having the . label .100. .t\

· message. is printed out .. an~ the progra111 terminates •. On the
: ot11er haJ1d, if the data is within the appropriate range, the
··· subroutine · continues executing until the RETURN
statement is reached, at which time control transfers back
to the main program statement that immediately follows
the call to the subprogram.

60457040 B

SPECIFICATION AND DATA INITIALIZATION STATEMENTS 6

Specification statements are nonexecutable statements
that define storage requirements of variables, arrays, and
function results. They define the type of a symbolic name,
specify the dimensions of an array, stipulate the length of
a character variable, and define how storage is to be
shared.

If specification statements are used, they must appear
before the first executable statement of the program unit
in which they occur. Any program that refers to an array
must have at least one specification statement.
Otherwise, specification statements might not be required.

The nonexecutable data initialization statement is also
described in this section.

TYPE STATEMENTS
Each variable, array, and function name that appears in a
CYBER 200 FORTRAN program must be associated with a
data type. Explicit type statements and implicit typing are
the two ways to make this association.

The appearance of a symbolic name in a type statement
informs the compiler that the name is of the specified data
type in the program unit. In the absence of a type
statement, the type of a symbolic name is implied by the
firs~}etter ()f t~ename; ·unless IMPLICIT statenfontS· aJ.t~r
th~ ~()rresponqenc.as .. · ()f . fir~.~ .. ~~t~~~ Jo., <:I~ta types,. the ··
letters I, J, K, L, M and N imply type integer and all other
letters imply type real. (This default type association is
ref erred to as the first-letter rule.)

The predefined FORTRAN function names possess
predetermined data types. Implicit typing of any of these
names has no effect. If the name of a FORTRAN-supplied
function is explicitly associated with a type other than its
predefined type, the name ceases to reference the
FORTRAN-supplied function.

:IMPirC:it·····stATEM.ENT ··········•'.•······~····;·.··········;··········:··•.•'.'.:/·····••'.::· ,..... . .
'.The ·I~PLicfr.st~t~mE!ht ... alters·. the ... default. cor~espon ..
.. df?nces .between f~rst ·letters anq••· da.ta .· .tYP~- for symboli~ ·
na1nes •. ·.• 'J'he .. sta~em~nt. can . also< specify length for ~ype '

·_charac'ter. · · IMPLICIT . statements mµst precede.·. all other
specif~cation st~ tern en ts.

'Forro:··
, ... '

IMJ.> 1'19fl' typi(llst i), .• •~• • 'tYPm(listm)

typf

60457040 B

:·::; .. /.:_'./);.·: ;· .. ~-~--: ·.~'.:·', ·:·: ... >· i~ · ... / ·. :·· .: .. : .:_ < .. : .. '.·.·:.;::.· .·:· :: \.: · ... :·. :::. :'.>/:;·: .. :.;: ::, ... :.:.~ ,. ;'.:::: :_::<:·':. f . .-': ::: ... · :·,::·..:·:··.:=~'.'.<·:· · ... '·' ·. <·:: :-'." ···.::··, :· / .. : ·;.;:·. · .. : ·,.~. f\\
The. name .·of •a·•data type:··.··INTEGER,.REAL;·J
DO"(JBLE PRECISION, COMPLEX; LOGICAL,!
BIT; >or CHAit.ACTER •.•• · ...••.. rrhe .. ·· .character
:variable J'lam~ are assumed to . be of Jength :
one unless the wordQHAltACTE:!t·is ~()llowed
~Y.· .. *n, .· \'lhere·· n.is an inte~er copst11pt ... that·.
specifies the character variable · 1ength in ·

.~¥!~.~:: , .. ,c; "·············,

listi ' A list of the form:

where Vi is a range of first letters of
variables to be considered of type typ. vi ·
is either a single alphabetic character, or two
such characters separated by a minus sign to
denote the first and last characters of a
range. The second character in a range
specification must follow the first in
alphabetic sequence.

A character must not be associated with more than one
data type or byte length by IMPLICIT statements.

An IMPLICIT statement in a function or subroutine ·
subprogram affects the data type associated with dummy
arguments and the. function name, as well as with other
variables in the subprogram.

Explicit typing of a variable, array, or function name in an
explicit type statement or FUNCTION statement overrides
.any implicit type specification.

EXPLICIT TYPING

An explicit type statement is used to declare one or more
entities to be of the specified data type. It overrides or
Cf;)nfirrn~ anY irnpUcit typing and can supply dimension ·~fl~-~
~Yt,~ lengtJt iJ'l.f ()~IllaJi'?~·

Forms:

INTEGER v1(~]/, ••• ,vn(d~f

REAL v1(~J6 ••• ,vn(~hf:

DOUBLE PRECISION v1(~i6 • • • ,vn{~~j:

COMPLEX v1(~i6 ••• ,vn(~fJ/.

LOGICAL v1fdi6 ••• ,vnfdri(:

; .. cli'A:R.ACTER~K vl*lci/d1/1 • }.<,vri*k~/dri/

;~~.Yit~t(1. ~ ~ ·!~~l~nl

*K

A variable, array, array declarator, or
function name.

· '9I>ii9nai:··• ···• lteilreseiiis ··theiriifitif vftiue .·. for.'.
Vi•>·••.~f. omitted, Jhe·.·····•.•.·surroum:ling ·slashf?S)
musf f.llso bf! omitted.. (Rules f ()r initializing ..
'!ithin 8. type statement aregiyf?n itmd.er .. the.:
headim~·.····.· .nA..TA. <· .. s.tat~ment<.later .<in •.. ·· ... t.his (
section~)·

Oi;>ti~nal. An· .. integ~r constantspecifyirig the!
element. length in bytes .·· of .. every• v •... This •·
specification Js iOver~id~en by the individual •.
*k length specificatioru;. If *K is ()rnitted, a
lf?n~h>ot .. one byt~ .. is implied for every ... v no~·
.;8.<.?<??~R~JE?.9 .~¥.~ .. .:~~f,.:. . .. ,., ,.. ,,,., ..

6-1

Optfonai.-. 'Ari 'intf!ger'.'<i6nstant. or :slmpi~
integer·.···•·\'ariabl(!/ spE!cifying · the• ielern~n~
length·• ·in •. byte~ •.• ror •. ·vr.··.· .It vi.· .•.. is·a11 arraY'
.declarator, ··.•.•·*ki >·•m1:1St•.· appear•·.·•.betw(!en··.the
d~clarator ... name.•• 8flddirnerisions·· rr .. ki .. is··11
variable, Vj · must be a dummy .. argulllent
and. ki must eit~E!r be · a dummy argumen~.
or .in common. A var~able used in this. way as
an adjustable lengthspe~ification l11l)!;t • eith.el"
be implicitly integer; or must have.appeared
.in an INTEGER type statemen~ bef Ol"e)~
appears in a CHARACTER. (or anY ·.· <?ther
declaration): statemen~ •. It *ki is omitted,
the length. of·• Vi. is. determit1ed by • *K. <• •.·

If the array declarator for an array appears in an explicit
type statement, it cannot appear also in a ROWWISE,
DIMENSION, or COMMON statement. However, the array
name alone can appear in COMMON statements to inclu<!e
the array in a common block. {An array declarator must
appear once and only once in a program unit.)

DIMENSION STATEMENT
The DIMENSION statement serves as a vehicle for one or
more array declarators. For an array declared· in a
DIMENSION statement, subscripts are interpreted in the
conventional manner. For a discussion of ::·rowWise·"·an:d
conventional array element succession, see sec.tiOri 2~ ·· ·· · ,

Form:

DIMENSION ai,a2, ••• ,an

ai An array declarator.

If the array declarator for an array appears in a
DIMENSION statement, it cannot also appear in a
ROWWISE, COMMON, or explicit type statement.
However, the array name alone can appear in an explicit
type statement to type the array and in COMMON
statements to include it in a common block. (An array
declarator must appear once and only once in any program
unit.)

·····~QWWl·~·E·········:~t~J"~ME.N.t ... ·. ·.··< ••••··••\.··•···•\•·.·.•·.•···•···••.·.· ·.·)(:·.

'1'1le ···••.R§~s£statelllent sef\1.es·l!S · .. k y~hi~le: for.. OD(! ... or..
lll ()re. ~rray d~clarlltors •. ·· •. It ... should·.•· be . used Jn . :. Jl1 \lCh)h~

· same way •.that a DIMEN'SI()N / st~tE;!ment js used, .. the
difference .. ·.lying.inJhe. fa~tthat. fol' .ru1array ~~claredJn. a
}tOWWISE:.•·~tatement, ••·subscripts.·.·· .. · are• intE!rPrE!ted ·•· in .• •·· •. •a
rowwise > manrier. . . For .• a ·· cjiscussion >of row\Vise and

; ·Conventional array element suc·cession, see section ·.2.

Form:

ai

u·.an array declarator for.a. particular arrayappears.·•in .. a
llOWWISE statement, .·· it. cannot :appear also.· .in a
])IJVIENSIO:N'~ .. ·· CpJVIMON,or •. · .•. expli~it.·.· .• typ~ .. ·•·•· .. declaration

·s.taternent. }lolJeVer, the array name alone Can appear in
an. explicit type. statement to :tYJ.>e <the l}rray .and Jn
COMMON statements Jo include it b1a common block •. (An
fll'ray. declarator must app~ar>OJ1C(! and on!Y once Jn :a ; .p~ogrm~ lJJ1i9 . •

6-2

COMMON STATEMENT
The COMMON statement is a nonexecutable statement
that allows specified variables and arrays to be referenced
by more than one program unit. Elements in common
storage can be referenced and defined in any program unit
that contains a COMMON statement specifying common
blocks containing those elements. An element can be
included in only one common block.

Storage for arrays and variables listed in a COMMON
statement is reserved in a common block in the order in
which the ele~E!nts lippear ill the s~atel11~11t,farfd starting

; .on a d~u~l~word .•. ·.· l)Oundary~· ·.:.Th~: ·elements .. are/ strUJ)~
together in sue~ a:; \Vay thtitl for. exaJI1plet Jor a commo11

· .b.lock .. containing·. a complex. variable, .·a JO-integer: array,
. and. 64 bit variables, 13 logically consecutive words. Ell'e
' reserved: .. the first tw.o •· w9rds f<?r complex data .are
followed immediately <by 10 words for the)nteger array,
w~i~~ is, foll~\Ve~~y··.?ne·.~or;a:.~or~4 V{i~iabl~s ?~ typ~ .bi~.
The· ·ru;signment of· storage is determined · solely · oy
consideration of data type and array declarations for the
variables and arrays in the COMMON statement. One or
more blocks can be specified with a single COMMON
statement; the order of appearance of blocks in the
statement is not significant.

Form:

n

A symbolic name denoting a labeled common
block. Absence of blk denotes the blank
common block; if the first block identified is
blank common, the first pair of slashes can
be omitted as well.

A block specification list, a list of the
elements whose storage locations are in the
common block blki. The list has the form:

where ui is a variable name, an array
name, or an array declarator.

Only an entire array can be placed in a common block. An
array declarator, but not an array element name, can
appear in a ·COMMON statement. Dummy arguments
cannot appear in COMMON statements.

A block name can appear more than once in a COMMON
statement or in several COMMON statements in a program
unit; the elements are stored cumulatively in the order of
their occurrence in all COMMON statements in the
program unit. Block names can also be used elsewhere in
the program to identify other entities: a common block
name can unambiguously identify a variable, statement
function, or array in the same program. For example, a
valid COMMON statement is COMMON/ONE/ONE.

Blank common generally can be used in the same way as
labeled common, except t}lat elements in blank common
cannot be initialized in DATA or type statements as can
elements in labeled common. Also, unlike any labeled
common block, the blank common block need not have the
same length in every program unit in which it is declared.
For example, the declaration in one program unit could be
COMMON/I A{4),B/LAB/C,D and in another could be
COMMON/I A(4)/LAB/C,D.

60457040 B

The size of a common block is the sum of the storage
required for the elements introduced into that block
through COMMON and EQUIVALENCE statements. A
double-precision or complex element requires two words; a
logica},. real, or integer element requires one . word; a
character element requires one byte times the length
specified for the element; a bit element requires a single
bit. Character elements must fall on byte boundaries and.
integer, complex, logical, real, and double-precision
elements must fall on fullword boundaries. Character and
bit types can appear in a common block with other types,
as long as the elements having the other types are not
forced off fullword boundaries.

Although block names must be the same name if they are
to ref er to the same common block, the names and types of
the elements in the common block can differ among
program units. If two program units define a particular
common block to have the same data type assigned to any
two elements in corresponding positions in the common
block, the two elements ref er to the same value.
Otherwise, any data in the common area is treated as
having the data type of the name used to refer to it, and no
type conversion takes place.

If a program unit does not use all locations reserved in a
labeled or blank common block, unused variables can be
inserted in the COMMON declaration to force proper
correspondence of the variables or arrays in the common
areas. Alternatively, correspondence in blank common can
be ensured by placing selected variables at the end of the
block in such a way that they can be omitted in the
COMMON declarations for a program unit that does not
use them. However, a common block (other than blank
common) must have the same length in every program unit
in which it is declared.

If an array declarator for a particular array appears in a
COMMON statement, it cannot appear also in a ROWWISE,.
DIMENSION, or explicit type statement. However, the
array name alone can appear in explicit type statements to
specify the array's data type. (An array declarator must
appear only once in a program unit.)

In a subprogram, the dummy arguments for the subprogram
cannot be placed in common. However, variable
dimensions for a dummy array can be placed in common, as
long as those variables are not also dummy arguments.

EQUIVALENCE STATEMENT
The EQUIVALENCE statement is a nonexecutable
statement that permits two or more variables in the same
program unit to share storage locations. This arrangement
of data can be contrasted with that of variables and arrays
riot mentioned in an EQUIVALENCE statement (which are
generally assigned unique locations) and with that of
variables and arrays declared in COMMON statements (the
COMMON statement permits two or more variables, each
in a different program unit, to share storage locations).

Form:

EQUIV ALENCE(group1), ••• ,(groupn)

60457040 B

A list of the form:

-~~~~.~ ... Yi .~. E.t, variable, array element,
J>rL~ray Mm~; (array decl~rat()~···.~~·~····· ~.c>t
perrniUed), liry~ JI:l} ~ .. ~··· E~<?li :cc>mrna
\:.~~e~'!!Iri~;.l!~;:~2~R§:.!!.?~.~.\~9~.f;.< :

All the elements in groupi begin at the same storage
location.

The naming of array elements. is relatively flexible in an
EQUIVALENCE statement. Unlike array names in most
CYBER 200 FORTRAN statements, an array name in an
EQUIVALENCE statement names only the first element of
~he array. Also, in an EQUIVALENCE statement any array
element can be identified by using an array element name
containing a subscript that has a single subscript
expression, where the value of the expression is the
location of the element in the array as determined by the
succession formulas given in section 2. However, if
neither of these for ms is used, the subscript must conform
to the ordinary subscript form. Each subscript expression
in an EQUIVALENCE statement must be an integer
constant; the number of subscript expressions must
correspond in number to the dimensionality of the array or
must be one.

A storage location can be shared by variables having
different data types. A logical, integer, or real variable
equivalenced to a double-precision or complex variable
shares the same location with the real or most significant
half of the complex or double-precision variable. However,
when one- or twcrword variables are equivalenced to
character or bit variables, they must begin on fullword
boundaries. Similarly, if a . character variable is
equivalenced to a bit variable, the character variable .must
be aligned on a byte boundary. Type is associated only
with the name used· to reference a location, and that name
determines how data assigned to or read from the location
is to be interpreted; no type is remembered and no
conversion takes place. Consequently, if (for example) a
real element is equivalenced to an integer element,
defining the real element causes the integer element to
become undefined, and vice versa.

A variable can appear in both EQUIVALENCE and
COMMON statements in a program unit. However, a
variable in common can be equivalenced to another
variable only if that variable is not in any common block.
A variable or array is brought into a common block if it is
equivalenced to an element in common. It is acceptable
for an EQUIVALENCE statement to lengthen a common
block, as long as the common block is extended beyond the
last assignment for that block and does not extend the
block's origin. A dummy argument must not appear in any
EQUIVALENCE statement.

Figure 6-1 illustrates some of these concepts. In part A of
figure 6-1, array element A(2) in the labeled common
block BLKl is equivalenced to array element B(l), which is
not in common. The EQUIVALENCE statement causes the
entire array B to be brought into common, extending the
length of common by two words and equivalencing other
pairs of data elements as shown in part B of figure 6-1. If
instead A(l) and B(2) has been equivalenced, an error would
have resulted because this would have been an attempt to
extend the common block's origin to P.

It is also incorrect to cause, directly or indirectly, a single
storage location to contain more than one element of the
same array. For example, adding a second EQUIVALENCE
statement, EQUIVALENCE (A(4), B(2)), to the statements
in figure 6-1 would constitute a request for A(4) and A(3)
to share the same storage location.

EXTERNAL STATEMENT
Before a subprogram name can be used as an argument to
another subprogram, it must be declared in an EXTERNAL
statement in the calling program unit.

6-3

A.

B.

CHARACTER*10 CH,DH
COMMON/8LK1/A(4) ,CH,DH
DIMENSION 8(8)
EQUIVALENCE (A(2),8(1))

.-A(1_): Block origin

8(1).... +-A(2) ~~~~~~
8(2)... .-A(3)

8(3)... +-A(4)

8(4)... +-first 8 bytes of CH
.,__~~~~~~-t

8(5)... +-remaining 2 bytes of CH,
first 6 bytes of DH

8(6)... +- remaining 4 bytes of DH

8(7) ...

8(8) ...

Figure 6-1. COMMON and EQUIVALENCE Statements

Form:

EXTERN ALpt, ••• ,pn

Pi A procedure name or entry point name.

The appearance of a name in an EXTERNAL statement
declares that name to be an external procedure name
rather than a data element name.

Any name used as an actual argument in a procedure call is
assumed to name data unless it appears in an EXTERNAL
statement. For example, any predefined FORTRAN
function name must be declared in an EXTERNAL
statement if it is to be used as an actual argument. A
function reference in an actual argument list need not be
declared in an EXTERNAL statement, however, because it
is not the function, but the result of function evaluation,
that is the argument.

The effect that placing a predefined FORTRAN function
name in an EXTERNAL statement has on the kind of code
generated is shown in table 6-1.

DATA STATEMENT
Only variables and array elements assigned values with a
da~a iJ1~~ialization statement .•.• (jr --~n-- -an expli~if :type'
-l!jta!~m~rit are defined (possess a predictable value) when -
program execution begins. The DATA statement _is a
nonexecutable statement used to assign initial values to
variables and array elements (including entire arrays).

TABLE 6-1. EXTERNAL DECLARATION OF
A SUPPLIED FUNCTION

Type of Function Declaration Code

Declared External
external (user-provided)

In-Line Function

Not declared In-line
external

Declared External
external

External Function

Not declared External-
external

Declared External
Function Having external
Both an External
and In-Line Version Not declared In-line

Form:

Vi

external

. A variable list of the form:

where wi is a variable, array element,
1'.'.~~f1y;--.. :-~r .. 'JiiiP,~!~~T PI!g Subscripts used to
identify array elements must be integer
constants,;:~~~~p~-)v!~ljJij-,_~f(_i_ijiplJ~.~::~Q~

A data list of the form:

j*dh ••• ,j*dm

where di is an optionally signed constant.
The constant can be preceded by an optional
repeat specification j*, where_ J is an
(unsigned) integer constant.

.··rtje cdrijmi·--·~r t~r :-_~li~h :•se.~<>.~~-;5iailliS·_-6pii6ilfii~ :s~c~pi· r~r
· -certEiill Yari!:'l~l~ <· µ~~ _ .Jt~ms · of-__ -_ typ~ bit-; a one-to-one

correspondence must exist -between' the items in the
variable list and the constants in the data list. In
particular:

• An array of any type :~~~~p(hii must correspond to a
number of items equal to the number of elements in
the array.

• · xsimpie-variat>!e oftype6ttmµstcorresi>ona·toaiiW
constant. -

e Ailiffiplied Dp specifyinga number of elenien:ts of an .
array of any type> except bit must correspond to a
numb~r._-- ·_of_items<eq~a1_.-~o- __ -the __ -_number_-_ or ·.-___ array
ele1nents. > -•-_ Th_e _._- . _ elemen_ts _ -.-._ spe(?if ied-_ --.. --. I1eed _----__ -.- 11ot -• be
(?()l\ti~o~. - - -

60457040 B

• A bit array must correspond to a list of one or more
hexadecimal and bit constants whose total bit length is
the number of elements in the bit array.

• A contiguous portion (one or more elements) of a bit
array must correspond to a list of one or more
hexadecimal and bit constants whose total bit length is
the number of elements in the bit array portion. Such
a bit array portion is specified in the variable list by
means of a single bit array element or an implied DO.

An implied DO can specify more than one contiguous
portion of a bit array. For example, in the initialization:

ROWWISE DSB(4,4)
BIT DSB
DATA ((DSB(I,J), J=l,4), I=l,4,2)/2*B'1001'/.

two contiguous portions disjoint from one another are
specified:

DSB(l,l), DSB(1~2), DSB(l,3), DSB(l,4)

DSB(3,1), DSB(3,2), DSB(3,3), DSB(3,4)

In such a case, the correspondence rules must be applied
individually to each of the portions. Hence, initializing the
eight DSB array elements with a single constant
B'10011001' (or X'99') would cause a fatal error.

The data list item corresponding to the variable Ust item is
the variable list item's initial value. The rules of
correspondence apply to bit. array initialization in BIT
statements as wen as in DATA sta~ement~.~.

The form j* before a constant in the data list indicates the
number of times the constant is specified. The following
two DATA statements are identical in effect:

DATA K,L,M/O,O,O/

DATA K,L,M/3*0/

IMPLIED Do IN DATA STATEMENT

An implied DO in the variable list of a DATA statement
· can be used as a shortened notation for· specifying parts of
an array.

Form:

<p,i=mi~in2,lll3>

p A subscripted array• name, or al'l9ther implied
DO~.. · .

rn1

m2

ma

60457040 B

The implied-DO co~trol variable,· a simple
i11teger variab~e~ i cannot al;so be the
irnplied-DQ < contr()l yariable · of an ·
impli~d-:-1)0.}ist containing thislist.

..... ·· ,: .. ··· ·:.·····.·.· ·.· · ···· ... · ·:···-

..• ···The·· ..•.... iJ1itial······.··.·~a1ue••··· ... Par;m~t~r,·······~n• ... ·.••c~ignec1j.:
• int~gerrconstant,.Jess th~JJ, •. or~qul1l·torn2• ·

Th~·· ··teJO\ihar.•···Ytii~~···••iPar.~.~~t~~,iriii•·····cuZi~~c1)J
il)t~g~r <constant, .. greater " tbrur . oi: ~qua,L
tom1.

()pti~~ai~ ···••··.•••±l1e••··1J1crem~r1i~t:i~~i ~iii4~\·~~1ri#·~
~tert~.Junsi~e~) .i11te,ger, co11~!~t•<·W1e,n;;'
'()lnitte,d, .•..• tJt~:l>r~~~9~1lg ·c.()mrns. rnus~iNs<>•.•.J>~·;

'" ... <>.m~!!~~:alldi~J.11c~e,me,11t<>~·.!:J~J!~~~~~ · ... ,.,,:

Implied-DO loops in the DATA statement can be nested up
to seven deep. Subscript expressions must be one of the
following forms:

c i-c

k*i+c

i+c k*i-c

where c and k are unsigned nonzero integer constants, and i
is the implied-DO control variable of this implied-DO list
or of an implied-DO list that contains this list.

The order in which elements are specified by an implied
DO in a DATA statement is identical to that in which
elements are specified by an implied DO in an input/output
list (see section 9).

RULES FOR INITIALIZING VALUES

The rules for initializing values with the DATA statement
also apply to data initialization with the type statements
described earlier in this section: ··di in the explicit type
statement form corresponds to the di in the DATA
statement form. Nevertheless, several differences in form
exist and are as follows:

• In a DATA statement, a list of simple variables can be
initialized by a list of constants. In a typestatement,
only an array can be initialized by a list.

• · Dimension declarators can occur in type statetjlents, ;
but only·. array. elements can occur in J?i\.Ti_:.
statements. ·

. .· ~0~01
• The implied DO is allowed in DATA statements, bht.1

not in t~e stat.ements. ·

The DATA statement cannot be used to assign values to
dummy arguments in a subprogram or to elements in blank
common. Elements in a labeled common block can be
init~alize<) with a data initializa~ion st.at~111en! in ariy ·
program unit· tbat melltiOllS the. biock in. a G.QJVIMON,
s!ate,mer1t;; furthermore, different parts of a block can be
initialized in different program units, as well as with
different statements in the same program unit.

:jJtiaraQt~r,.o~IHollerith constants (H type) used to initialize
variable list items are padded with blank characters on the
right or are truncated on· the right to fit the variable
length, depending upon whether the number of characters
in the constant is less than or greater than the number of
characters defined by the variable list element. A warning
message is issued if truncation occurs.

If the variable is complex or double-precision, the H
constant fills only the real part or first word of the
variable. The imaginary part or second word is padded
with zeros. Therefore, only one H constant is needed to
initialize a complex or double-precision variable.

R constants used to initialize variables are padded with
zeros on the left, or truncated on the right to fit in the
variable. If the variable is complex or double-precision,
the R constant fills only the real part or first word of the
variable. The imaginary part or second word is filled with
zeros. Therefore, only one R constant is needed to
initialize a complex or double-precision variable.

6-5

6-6 60457040-B

TABLE 6-2. DATA INITIALIZATION CONVERSIONS

Constant Type

Variable Type Logical Integer Real Double- Complex Character Bit Hexadecimal Precision or Hollerith

Logical no con n/a n/a n/a n/a no con no con no con

Integer n/a nocon c c c nocon nocon nocon

Real n/a c nocon c c no con nocon no con

Double- n/a c c nocon c nocon nocon no con
Precision

Complex n/a c c c no con no con no con nocon

Character n/a n/a n/a n/a n/a nocon nocon nocon

Bit n/a n/a n/a n/a n/a n/a no con no con

The letter c indicates that conversion is performed; nocon, that conversion is not performed; and n/a, that
the type combination is not allowed.

60457040 B 6-7

DEFINING PROGRAM UNITS AND
FUNCTIONS STATEMENT

7

Discussed in this section are the statements used to define
and reference the following user-written procedures:

• Statement function

Not a program unit; one-statement definition; is
referenced.

• Main program

Executable program unit; multistatement definition; is
not referenced.

• Function subprogram

Executable program unit; multistatement definition; is
referenced.

• Subroutine subprogram

Executable program unit; multistatement definition; is
referenced with a CALL statement.

• Specification subprogram

Nonexecutable program unit; multistatement
definition; is not referenced.

Not discussed are the predefined functions supplied with
FORTRAN; these are discussed in section 14. CALL and
RETURN are discussed in section 5. Interfacing with
non-FORTRAN external procedures is discussed in
section 12.

The category of procedure definition to be used is
determined by its particular capabilities and the needs of
the program being written. If the program requires the
evaluation of a standard mathematical function, often a
FORTRAN-supplied function can be used. If a single
computation is needed repeatedly, a user-written
statement function can be included in the program. If a
number of statements are required to obtain a single
result, a function subprogram can be written. If a number
of calculations are required to obtain several values, a
subroutine subprogram can be written.

The first statement of a program unit defines the program
unit to be a main program, subroutine subprogram, function
subprogram, or specification subprogram. A program unit
whose first statement is not a FUNCTION, SUBROUTINE,
or BLOCK D~T~ statement isa main program. Normally,
a· main· program .. begins with . a PROGRAM statement, but
this· statement can be omitted if no input data is required
and alloutput is, performed with P!lINT statements. A
subprogram is a program unit that begins with a
FUNCTION, SUBROUTINE, or BLOCK DATA statement.

An executable FORTRAN program must contain one main
program and can have any number of subprograms and
references to other external procedures, including the
predefined functions supplied with FORTRAN. A main
program must not be referenced by another program unit;
once defined, subprograms can be so referenced. Any
program unit must never directly or indirectly invoke itself.

60457040 B

THE MAIN PROGRAM
The PROGRAM statement defines the name that is used as·
the.· program's entry point name and as the object module:
name for the loader. It is also used to declare files that
are used in the main program and in any subprograms that'

·are called.

PROGRAM STATEMENT

, The PROGRAM statement is the first statement in a main
program. However, the statement is optional when no:
request for input is made within the program, and no
output except using PRINT is performed. Only one
PROGRAM statement can occur in any program.

Form:

PROGRAM. p (fip1, fip2, • •. ,fiPn)

p Optional ·when. no fip list· is present; . the name
of the program.

Optional. A file information parameter that
can assume one· of. the following for ms:

UNITn=f
TAPEn=f
UNITn P!tP2,p3,p4 =f
TAPEn P1,P2,p3,p4 =f
INPUT
INPUT=f
OUTPUT
OUTPUT=f
PUNCH
PUNCH=f
RLP
RLP=m

The logical unit number n is an integer constant in the
range 1 to 99. The filename f, a string of one to eight
letters or digits beginning with a letter, is the name of
a file required by the main program or a subprogram.
No more than 70 files can be declared (including
OUTPUT, whether or not it is listed). The.
specification m is a positive integer. When no fip is
required, the list including parentheses is omitted.

The name p must not appear in any other statement iri the
program unit. The program name p can be omitted from
the . statement when . no· file information parameter list is
present, in which case the name M_A_I_N is supplied.

File .·Information Parameters

No file namescan appear in a program. Instead, the forms
UNITn=f and · TAPEn=f are used interchangeably to
associate the file namedfwith a logical unit number n.
Whenever the file f needs to be ref erred to in subsequent
statements, the logical unit. number must be used instead
of the name; therefore, the logical unit number must be.
associated with.only one .. file. name •. · •. Even files .. that are
mentioned only· .. in ·. a ·· subprogrf111l must appear . in the
I>J:l.99:Et~M .~.~.IJ:~.~rn~l!t, ()f~.~.~ ..•... f11~iJ! t>~<>~IJ:fl1·

7-1

· nit>uf·· oF I'.Ni>u'I';;t aect&res tile "l'ne· ree:a··t>y: · a: R.:EArr
'statement \Yithout .11 }lle .. designator •. · .. OUTPUT > or'.
OUTPUT::f declares the file written·• .. by a ... · PRINT'·
statement, and also declaresthe file to.· which diagnostics,
as well as STOP and PAUSE messages, are written. If
neither OUTPUT nor. OUTPUT=f is specified, OUTPUT is

•. declared implicitly. PUNCH or PUNQH=f declares the file
:written by a PUNCH statement.

'Note . that .· tile .. declaraU~n . (OUTPUT=DIAG,
UN}T6=0UTPUT) wou1d send diagnostics ••. and .. PRINT output'

•to the file DIAG, and would send unit 6 output to the file
. OUTPUT. The declaration (OUTPUT::;OUT1UNIT6=0UT)
would. send. diagnostics; PRINT output,. and. unit 6 output. to

•the file OUT.
" ;· '

Files are opened at run time upon processing of th.e
PROGRAM statement. The file search order used to find· a
file with a particular llame is:

" . ." .. ' ··:."' :. ,. ·.. ._·, ·:· "':.·· ·.: ... ·.'

· 1~ 'If a private file. (local ()r attached . permanent) exists,
the private file·isopened and used.

' ,.·, .· ;·:

2• If·. an. attached· pool file exists, the. pool file is opened
and used.

3. If no .file is found, a local file is REQUESTed with a
length of 128 blocks.· ·

· For . example, if the user declares . ·PUNCH in . the
PROGRAM statement, a file named PUNCH of length 128

·is·created.unless it already.exists. OUTPUT.isalso·created
with length 128 unless a file called PRFILE exists prior to
execution. If it does, PRFILE isrenamed as OUTPUT and
used (or renamed as f if OUTPUT=f was declared). This
allows the user to specify an output •me length other thari
the default value of 128. Such an. expedient is necessary,
because the file named OUTPUT - unlike other files -
cannot be precreated ina batch job.

At the end of execution, the length ofa disk outputfile
will be reduced if the last operation on the file was a write
operation or an END FILE •. · The length of the file is reduced

, fror,n . 128 blocks (or .. the user-specified length) to the
number of blocks actually written.

. Declaration· of Files for Input/Output

Files can. be specified in the: PROGRAM statement by
providing four para1neters encl<>s~d in .. brackets following
·t~e TAPE or UNIT specification. If the parameters are not
·specified, the default parameters are used.

Form:

Pl Omit this parameter for disk (p3=4). Number
of· tape tracks:

7 = 7-track tape

P2

200=

7-2

stio ····~···· ·1;.;or s~tr~ck tape~ Bi>i"<l~nsity or
800 .

9-tracktape, bpi density of 1600

7-:-track tape, BCD mode, even parity:

7~··· or .• 9~tr~ck t~pE!,.bill8ry· .. Jll<)de~ odd
parity . .

1-track· .. ··· .. tape, < CDC · ·· s4-character
ASCilsubset, odd parity

4::: Disk

For va!Ues of o and 2, conversiontakes place
from ·binary data. _into. BCD a11~ ASCII
characters respectively. ·

Buffer size specified as the number of small
pages in the buff er. The value can be. from · l
to 24. ·Default is· 3.

The·· commas must remain to illdicate ·preceding. parameters
that are unspecified. . For example, the .. statemeJ'lt

. PROGRAM P (TAPE5(,,4)=FILE1) declares the file FILE!
to be a disk file ~ith a d~fault buff er size of three small

·pages.

Parameters must be supplied at the ,first reference within
the PROGRAM statement and are. not allowed . for
subsequent references to the same fUe. If TAPE7 is .to be
a tape file associated withfile name DATAl, t11e following
statement is correct:

The following statement is not correct:

PROGRAM P(TAPE6=FIL1,TAPE7[7 ,800,i]=FILl}

The parameters given with TAPE7 are ignored and T APE7
becomes a disk file, the same as TAPE6.

The . RLJ? parameter . is u8ed to· .. · request the. mapping. of
dynamic space intolarge pages. .The number. of large pages
is specified by m. Jf m >is> omitted, one)arge i page is·
assume9 •. The RLP parameter can be used toJmprO\tE! the

·performance · .. of. programs .. ··. that··.• use.·.·· ... large .•. vector:
temporaries. . Dynamic space·. includes.··. vector temporaries·
and .• vectors assigned with the ASSIGN statement.
using DYN.

ST A TEMENT FUNCTIONS

A statement function is a procedure defined by a single
statement. A statement function must be defined in the
program unit that references it; consequently, the function
cannot be referenced by any other program unit.

DEFINING STATEMENT FUNCTIONS

The user defines a statement function with a single
statement similar in form to an assignment statement.
The statement function must precede the first executable
statement in the program unit, and must follow all
nonexecutable statements except DATA, FORMAT, or
NAMELIST statements.

60457040 B

Form:

f

e

The function's symbolic name.

Dummy argument, a simple variable name
distinct from any of the other dummy
arguments. The list must be present, and it
must contain at least one dummy argument
(that is, n ~ 1).

Any scalar expression.

Since .. dlmmy arguments serve only to indicate type,
length,: number, and order of the actual arguments, the
·name8 ·of dummy arguments can be the same as variable
names of the same type :and length, appearing elsewhere in
the program unit. Besides· the· dummy arguments, the
expression e can contain constants, variables, array
elements (the array name cannot be dummy), references to
external functions (function subprograms and
FORTRAN-supplied functions, for instance), and
previously-defined statement functions.

The type of the statement function result is determined by
the type of the function name. Type must be assigned to
the function name in the same way that type is assigned to
a variable; that is, the function name can either appear in
an explicit type statement or be typed implicitly.
Although the function name can appear in a type
statement, it must not appear in an EQUIVALENCE,
COMMON, or EXTERNAL statement, and must not be
dimensioned or given an initial value. Type conversion
from the expression type to the function name type occurs
as for assignment statements (see section 4).

REFERENCiNG STATEMENT FUNCTIONS

Evaluation of a statement function occurs during
evaluation of an expression that contains a reference to
the function. The values of the actual arguments are the
values they have at the time of each evaluatioo of the
function, while any name in the function expression that is
not a dummy argument retains the value it would have, had
it occurred outside the function at that time.

Examples:

Definition

ADD(X,Y,C,D)=X+Y+C+D

Reference

RZLT=GROSS-ADD(TAX,
FICA,INS,R~)

A VG(O,P,Q,R)=(O+P+Q+R)/4 GRADE=A VG(Tl,T2,T3,T4)
·+MID

LOGICAL A,B,EQ V TEST=EQ V (MAX,MIN).AND.

EQV(A,B)=(A.AND.B).OR. ZED
(.NOT .A.AND •• NOT .B)

COMPLEX Z RZLT2=(Z(BETA,GAMMA
Z(X, Y)=(l.,O.)*EXP(X)*COS(Y) (l+K))**2-l.)/SQRT(T2)

+(0.,1.)*EXP(X)*SIN(Y)

SUBPROGRAMS
A subprogram is a program unit that is defined by more
than one statement but is not a main program. The
differences between function and subroutine specification
and use are summarized in table 7-1. All references in the',
'table to function nallle arid 'slJ.broiitirie name apply also to'
function entry point name and subroutine entry point name, .
. resp.ectiy~~y '.'.

An external procedure is a procedure defined outside. the
program units that reference it. Function and subroutine
subprograms are external procedures that are written in
FORTRAN. In-line functions and statement functions are
not external procedures. Because name definitions for

A statement function is referenced when the function
name suffixed with an actual argument list appears in an
arithmetic, logical, or .Cbli.r~qter.: expression. The actual
arguments, each of which can be any scalar expression of
the same type as the corresponding dummy argument, must
agree in order, number, '.~~~ J~11g!Jl.1 with the dummy
arguments.

. data are local to the program unit in which the names
appear, names within an external procedure can be used in
other program units of the same executable program to
refer to unrelated entities.

TABLE 7-1. DISTINGUISHING FUNCTIONS AND SUBROUTINES

Function Subroutine

How referenced The function name appears in an expres- The subroutine name appears in a CALL state-
sion. ment.

Arguments One or more arguments must appear with The subroutine name can appear with or without
the function name. an argument list.

Type and length The type and length of a function name · No type or length is associated with the name.
is the type and length of the function
result.

Results A function must return a value through A subroutine can return any number of values
the function name. It can also return through arguments and COMMON.
any number of values through arguments
and COMMON.

60457040 B 7-3

PASSING ARGUMENTS BETWEEN SUBPROGRAMS

A transfer of control out of a program unit takes place
when a CALL statement or external function reference· is
executed. Argument associations are made, and the
referenced program unit executes until a RETURN
statement relinquishes control to the referencing program
tmit. Upon return, .any definitions made of arguments
persist. If a STOP statement is executed within the
referenced subprogram, program execution is terminated
without control being returned to the referencing program
tmit.

Values can be made· available to an external procedure in
two ways: through use of COMMON statements and by
means of argument lists. See section 6 for a discussion of
COMMON statement usage.

Dummy and actuai argument lists are the mechanism that
FORTRAN employs to pass values between subprograms.
An argument's being dummy or actual depends· upon the
context in which the argument appears. A.n ~gum(!nt
appearing in a FUNCTION, SUBROUTINE, {,g("''~~!~x·
statement is a dummy argument, while an argument
appearing in a subprogram reference is an actual
argument. At the time a subprogram reference is
executed, each variable listed as a dummy argument is
associated with the same storage location as the actual
argument corresponding to it (call by address). Each
definition of a dummy argument can change the value in
that storage location. Thus, when control returns to the
referencing program unit, the values of the actual
arguments can be different from what they were before
the subprogram reference.

Dummy arguments are va~ifible llli!llE!~, ~~f1Y name~,
~nc:tE!r!lf11.~ubprogrf11ll l1f11llE!~.' :·or .<for .• subr'oufine •.. defirii!ions·:
t~nly) •· rritilt,.iJ?1e·.... ~E!!t¢1! ~!li!E!.!llE!!l!·•· .. Jfi~l ... ··,illc1i~8:!<>~s·
i(&:~t~js~). They are assigned data· types as appropriate
'and are ' . used in the executable statements of the
subprogra!ll~.······· A~!.!18! . ~gulJlen~ ~fl!l< be expressions,
variables ;J~~lu<HI)g: ~~~~~ipt()r~)~·· v~ct~r~~L<:!()nst,~t~, Ell'.~liY~t
~ray .E!lE!!llert~' E!~~E!rl18!T pr()CE!~u.~E!s, i or .•.• (for •···.subro11tine.
i~fillS only) Jaoo}Sjri.' t.he .• ~11:~.~i(jjr()gr~m.·•· llllit, •.• (.l\~.la!>~lJs.
it>l'E!~bcE!C1 '{it)} '8:?1.arnp~~l:\Dd•)i The dummy argument list for
a subprogram and an actual argument list for a reference
to the same subpr?g~alll !11.ll~t f1~r~e il1 ~gtllJlE!l1~ ()~dE!~,
number~ ... data. ~YPE!~:llJldJength Uengt,h.'.is'applicab~~}§ type'
;q11,AR~'?T~J:l. · eleme9ts on}Y). Th~pJ1ly ex~ptiptt: is .thaf;
,f1C!ual•··•··•··.~gul'llents•··· .. •.••···lfiPif:!~ .. • >Ell'C! •...• · .•.. ~ha~f1~te~.···•·>pr ·.···• .}io~~rit,I}!
~coiJst,ants<cl:lD .B!soc()rl"~l>ond to .. ·:·.cl!JlllmY •• .. :argulllE!nts•. of· .. · a!
::J~ .. <>!.~~~ .. !~.~h~l1£t.er~ .. · • ..

Dummy argument arrays, like all other arrays, must have
their sizes declared. The declarator dimensions can be
integer constants, or simple integer v~i~~lE!~ ~N~h ~~t~~~~
~ll~t ~E! . dummy arguments as well ;9~· ;~J~~::·mu$t ·~.Jll'
f~ffi.m~t:i.~'. A dummy argument must never appear in a
COMMON, EQUIVALENCE, or DATA specification
statement.

If an actual argument is an external subprogram name, the
name must appear in an EXTERNAL statement in the
referencing program unit. Furthermore, the corresponding
dummy argument can only be used as an external
subprogram reference or as an actual argument in a
subprogram reference in the referenced subprogram. An
example of this usage is shown in figure 7-1. As a result of
the first call to S, SAM is executed on the call to SUB; on
the second call to S, TIME is executed on the call to SUB.
However~ if the external subprogram name is suffixed with

7..;.4

an argument list, the name is not an argument but ·a
function reference; here, the function is executed and it is
the result that becomes the actual argument. A' function
referenced in an argument list need not have its name
appear in an EXTERNAL statement in ·order to act as an
argument. An example of this usage is shown in
figure 7-2. The value of RZLT is the type real value
returned by the execution of SAM.

PROGRAM P
EXTERNAL SAM.TIME

CALLS (X,Y,Z,SAM,I)

CALL S (T,U,V,TIME,W)

END

SUBROUTINE S (A,B,C,SUB,D)

CALL SUB

RETURN
END

Figure 7-1. Subprogram Name as Actual Argument

PROGRAM R

CALL S (X,Y,Z,SAM(X),I)

END

SUBROUTINE S (A,B,C,RZL T,D)

DIMP = RZL T**2/NIM+1.

RETURN
END

Figure 7-2. Subprogram Reference as Actual Argument

Kinds of actual arguments allowed to correspond with a
particular type of dummy argument are listed in table 7-2.
When a dummy argument is associated with an actual
argument that is either a constant or an expression
containing operators, the dummy argument must not be
defined in the subprogram.

60457040 B

TABLE 7-2. CORRESPONDENCE OF ACTUAL TO
DUMMY ARGUMENTS

DUmlly Argument Actual Argument

Simple variable Scalar expression

Descriptor Descriptor
Descriptor array element
Vector

Simple array Simple array
Array element (simple)

Descriptor array Descriptor array
Descriptor array element

External procedure name External procedure name

* (asterisk denoting Statement label, pre-
dumny label - for fixed by an ampersand
subroutines only)

* (asterisk denoting Descriptor
vector function Descriptor array element
result) Vector

. .

FUNCTION SUBPROGRAMS

A function subprogram is a program unit whose first line is
a FUNCTION statement. A function subprogram must be
referenced in at least one other program unit to be
executed, and must contain at least one RETURN
statement to return control to the referencing program
unit. Statements that cannot be included in a function
subprogram are the '{>R()Glll\.1\1,~ BLOCK DATA, and
SUBROUTINE statements, and any statement that directly
or indirectly references the function being defined. The
execution of a STOP statement within the function
terminates the program.

The FUNCTION statement defines the program unit to be a
function and not a subroutine or .the main program. Only
one FUNCTION statement is allowed in a subprogram.

Forms:

t FUNCTION f (a1,a2, ••• ,an)

!9.~~~~·s!~,~.~.~~·s:fi~~;.~~,fu <~i~~~~I~}~ ~~ri~;
t Optional. A declaration of the type of f; can

be INTEGER, REAL, D()!JJ31,E ... P~.~9.lf3~()N,
c91'4gl..~?C, l.C>QIG~r., ';oriaa·:·inthe.·.second
.f e>r;m, GRl\.RAQ1'gR;:

f

m

60457040 B

The function's symbolic name.

·:Leilgifi.(specir~~#~foli, .. ,i.~.··;·1:>1t~~~·· <>t ·tile.
c~ara~ter.• •.•. fu11cti9n •· •.•. ~eslll~············ re~~Fne2 . #JS the
:vaiue ·off~. Wb~ ~rit Jsnot .. ·sp.~c.ifi~ i~ thei
:~~!:8~<i~9t~,, ... !.h.~ ... ~.!l!i!.~9.l~.hglJ! .. Js,·J~ •. ·<; .. , .. ,.

A dummy argument that can be a variable,
array, ·or external procedure name. No two
dummy arguments can have the same name.
At least one argument is required.

Within the function, the name f is treated as a variable. It
must be given a value at least once during the execution of
the function subprogram. Once defined, the function name
can be referenced and redefined without an occurrence of
the name being interpreted as a function self-reference.
The value returned to the expression that referenced the
function f is the value that f has upon execution of a
RETURN statement within the function subprogram.

The type of the function name f must be the same as in any
program unit that references the function. Type
specification can be explicit - it can appear before the
word FUNCTION or it can appear in a type declaration
statement within the function (f must not be initialized) -
or it can be implicit. Implicit type specification takes
effect only when no explicit typing of the function name
was used. The function . name must not appear in any
nonexecutable statements within the function, except for
PurPOSes of typedeclaration or in a list 'of identifier names
in a NAl\fELIST statement.

If the function name f is the same as that of a predefined
function, the predefined function is unavailable in the
user-defined function. Throughout the rest of the program,
a reference to a function named f causes execution of the
user-defined function unless the predefined function f is
in-line (see appendix E to determine whether f is in-line or
external). The presence of an external declaration for f
governs whether or not an in-line predefined function is
executed.

A function subprogram can modify the value of one or
more of its arguments to return extra (side effect) values
to the referencing program unit, with one restriction:
because the order of evaluation of the components of an
expression or statement is not guaranteed, a function
reference must not define any other entity occurring in the
same ·Statement. The function's capability for modifying
its arguments also applies to individual elements of an
argument which represents an array. Other values can be
returned by altering the values of entities in COMMON
(the same side effect restriction applies). For example,
given the statement:

xcr>····~···· ¥if fr,1+ if~)t). ~:~.!~~(1,if,zf .~··.jj;.:
where X is an array, FN is a function, and R is in common,
the variables T, I, N, and R must not be defined by FN.
However, z and Y can be so defined.

A function is referenced by using its name suffixed by an
argument list, including parentheses and commas, instead
of a data element in any expression. Each dummy
argument in the FUNCTION statement must correspond to
an actual argument in the function reference argument
list. See the heading Passing Arguments Between
Subprograms in this section for a further description of
actual and dummy arguments in function references.

SUBROUTINE SUBPROGRAMS

A subroutine subprogram is a program unit whose first line
is a SUBROUTINE statement. To be executed, a
subroutine subprogram must be referenced with a CALL
statement in another program unit; a RETURN statement
returns control to the calling program unit. Statements
that cannot be included in a subroutine subprogram are the

7-5

'.PROG~Af\1; BLOCK DAT A, and FUNCTION statements
and any 'statement that directly or indirectly references
the sl.broutine being defined. The execution of a STOP
statement within the sl.broutine causes the program to
terminate.

The SUBROUTINE statement defines the program unit to
be a stbroutine and not a function or the main program.
Only one SUBROUTINE statement is allowed in a
subprogram.

Form:

s The slbroutine's symbolic name.

Optional. A dummy argument that can be Cl
r~~tl:l.~1.~~ ~.~Cl~' ... ~.~.~f'~~Cl! .. P~.2.17,~~~~.~ r:!l:l.rr!f'.'.tfcj~;
an ~ d~noti~g. a fetum: pol nt .. ~P e(!i ~i ~d > ~y .• ·. Cl
)st~.~~m~rit~.a,e~' Jn;Jry~. ~~Jiitig Pro.gra,m. 1::1riJ!~ 1

When the argument list is omitted, the
parentheses and commas must also be
omitted.·

The SUBROUTINE statement contains the subprogram
name s that indicates. the subprogram's main entry point
(the first executable statement in the subroutine). The
name s is not used to return results to the calling program
the way that function names do, is not associated with a
data type, and must not appear in any statement in the
subprogram except the SUBROUTINE statement. Results
are returned to the calling program unit only through
definition or redefinition of one or more of the dummy
arguments or through common. Dummy arguments in a
SUBROUTINE statement are discussed elsewhere in this
section under Passing Arguments Between Subprograms.

Whenever~ln.astel'fok occurs as a···.dummy··•argumenfini.the
·SUBROUTINE statement,.there mllst be .. the statement
.label. (preceded by. an ·.ampersand) •. ·'Of.·.a··· statement.·. in<the.
·calling routine as the< corresponding actual· argument. In
the. CALL statement~ used. . to reference subroutine
subprograms, an .. ·.•.· argument.· is ..•.. a·.· statement· . .label.· .. if.Jtjs a
string •.. ~omposed of an ampersand followed •. by the digits

;required .for the ·labeh

BLOCK DATA SUBPROGRAMS

Besides having one or more executable program units, a
program can contain nonexecutable BLOCK DATA
subprograms. A BLOCK DATA subprogram is a
CYBER 200 FORTRAN specification subprogram that can
consist of only the following statements:

• BLOCK DA TA statement

• .Itytpucn.!itatem¢nts:

• Explicit type statements

• EQUIVALENCE statements

• DIMENSION statements

•
• COMMON statements

• t:9.¢~~RI.etos.··~t§t:~r:n~n~~::

• DA TA statements

7-6

• END statement

The order of the statements in a BLOCK DAT A
. subprogram should be as shown in section 1.

A subprogram is a specification subprogram if the first
statement is a BLOCK DAT A statement.

Form:

BLOCK DATA)~J

rn······"········~·:J?e~1~ij~f;T:~xm~~m£·.11~Rr~·.Pt::~~erg~ij~~.~I1

The single function of a BLOCK DAT A subprogram is to
initialize the values of elements in labeled common blocks
(but not blank common) prior to program execution. If any
element in a given common block is being given an initial
value in such a subprogram, a complete set of specification
statements for the entire common block must be present
(including any type, EQUIVALENCE, and DIMENSION
statements required to fully specify the common block's
organization), except that not all of the elements of the
block need be initialized.· Initial values can be entered into
more than one block in a single subprogram. Different
variables and array elements in a common block can be
initialized in different program units, but no variable or
array element can be initialized more than once.

:MULTIPLE ENTRYSUBPROGR.AMS ...
· 'The···fi~t.executable statementro1foyjing a f-ul'JcTION or;
·SUBROUTINE statemer1t js · the main .. entry point·. to. that
subpr9gram •... · Other•. entry· .. ·.··· points can· .. · .. · be•···.· defined.· .. in
subroutine and function· subprograms by usil"lg the ENTR,Y
statement. The .. ENTRY· statement in a · subprogram
··specifies . that.: the. first executable · statemen~ .·.following.•·• th.e
: ENTRY statement is a secondary. entry poh1t. More . than
one secondary entry point can be declared in .a. subprogram.

'.·· . ,

Like .•.•. the FUNCTION .. · and··· SYf3ROUT~NE,/'s~aterr!ents, an.
·ENTRY .staternentis •. not ex13cutable and ha~· noeffec.t .on
,the·· .. logi~al ... ·flow·· ·of · ... s~bp'rograin<execuUon other .. thal"l•·••to
specify where .. subprograrn e)(ecution is toy begin. ~tie,n the
subprogram Js. referenced;. also,.·· like• .those stateinents,. an
ENTRY. st13tement< rpust .··not · be,.·.labe.led ••.. An ENTRY
sta.ternent ..•..• ·can······o~cur.~ny\'y'here ... ·.·.wit~ln •..•••... 13.·•·····~ljbroutine···.·.or·
.•fun9~ion <subprogram .. exce,p.t .·.\'y'itt\in.• the ... ·range.••·.·.of······a .. ·DO;
however, . 13t least · .. on13 execljtable staternen.t. rr!ust appear
·b13twe~n>an ENTR.Y< stat.einent 13nd ~h~····.E::~D lin13 .. · .ln······the
·subprograin •.•. j:\ry Ef\JTRY statement 111u~t. l"l()t. appear in a·
•main program or in a BLOCJ< .PA TA subprogram. ·

Form:

·~NJ~Y.e'Cai,azr~ <· ,an)

e

, ... ··:··.;

.~.:::'.:::~r::.:.=·,:::i::_:'.~;
--··::::.'.

~ n :~;:> '.· ,:· ; .. <; ;·.:,, ~;., ,, :.= ... ,~, .. , ..

;::·;·:;·',.::-·.··:::.._:·::.:·.::·.,::_:·.·=.=.··,

Jh~ si~l:>gm; f1~rri~ cit the ~nt:rY J>()iriiE.
Du'rn'J1y •. /aigl11J1e.nt>.Jh?f .can.••·· ·•·•·be i~i.yariable;"
. Cll'rayr e,)(.~13r~1pre>'?l3~\Jrf;l ~i:ne,,•·.··. d~scr~e.t<>r;.
()~ ... <in;a.·.·.~ .. ~·~I'?~~il"lf;J.• .. ••su~pr~~.~~p)) .a•'l.·•·••~···.d13noHl"l9
a. retum'poira~}P~ifi~ PY'Cl\StEitern~n~J~f;>el'
ir1· .••.• the.calHng ·program unit. <Argurnent U~t is
()pti()nf.:lILif C>r i>~ra} ... ~NX~'t· , .f~~~e,.m~rat•, ...•. iry/ EiJ
~~by99tine ~~~pfC?gr~.m~ <Wb~n· .~.9\Jrnent .Ii8-t is:
()f!tltted~ ·~t'}e p13r~9th.~s!!'.8 .~.~.d·.···· ~()rr!rT)£lS•·.· ~9.st:;

:.Ei!~()F.·· •. P .. ~ .. :?m!~t~~·:O: .A!.•••·· .. 1~atit Pf',~ Eirg~rri:~11~ :J~·
; r~9~ited? fc)i; • Ei!"':.:.E:~If3.'t '•statement · Jn··
f P~~.~!~ral.~H!>P~,9~~m.i.:,L·.{;,, , .. ·c.:1.Lc•L"<>.:.L:: .. 1 .,, ••..

60457040 B

:control."Plss•~·:to'····ti\e··nrsi•··executi6i~•.··staiement''ronowiiiil
:the ENTRY statement When the entry point na111e e icJ used!
:1n a >CALL· statement 0r function reference. In aj
:SLd>rOU:tine subprogram, the entry point name e is not>
;associated with a data type and must. not appear in any\
:statement in the subprogram except the ENTRY.
'statement. Jn a function subprogram, however, the entry:
point name e must be ~ociated with a data type,
implicitly .or. with· explicit type statements. The:
.distinctions · between entry· points in functions . and;
subroutines are shown in table 7-1.

FUNCTION . SUBPROGRAM .. ENTRY ·•POINT. NAMES

:An entry point name in a function subprogram· must be I
~lated with a data type and can be assigned values]
cluring exeeution. The ·entry point name must' not appear in!
any nonexecutable statement in the function except in a!
FUNCTION or ENTRY statement, explicit type statement,.:
·or in the list of names in a NAMELIST statement.

'

:An entry point name need not be of the same data type as !
the main entry point name or any other . secondary entry:,
·point names in the function; however, a function reference;
'1sing•that·entrypoint name musthave the same data type!
as the name. Also, CYBER 200 FORTRAN permits scalar!
function subprograms to have vector function entry points11
and vector functions (section 11) to have· scalar Junction!
.entry points. · · I

, :~
, l

:All entry point names in a function are fuociated so that al
~definition .. of one •. causes definition·. of an othe~ having the 'i
same ·•···type . ~d. ···•·•·length; .· . ~d ··. cau.ses. • <. un<1efinitionj
(unpredk~table vall1e~) ()f tho8e. having a different type or.
length·.·association: In .. effect,·· all••en~y .poiJlt .. names ·are·;
,equivalenced as in an E~UlVJ\LEN9~·stateme11t. ·

Jn a character function, the length ofthe entry point must;
be specified in a CHARACTER type statemE?'!t and canriotj
ibe specified in the ENTRY statement. · !
: ·,.:: . ·.: ·. _,.::· _:·::::··. ·:.>"· ... > .. : ... ·.·:.. . ·:... .<:·. · .. :....... ::.::· .:·. :"; :: ;: . ·····.·<··.' .. :.--.. j
Durillg e8:ch ex~cutit.>n of thE? subprogram, ti! least one. ofi
the e11try point names must be ~igned a value (become;
defined), •..•. and ··.·····.once . defined .. clln ... be referenced .••. and ·1

redefine<J. (A referencE! to the entry point narpe within.thei
funetion refers to this value and is not .a reference to •the\
lwiction.) An entry poirit •name·· having.the Sl:lme .type.llnd i
length as th(! > entry point •name used t? ·····enter •... the
~ubprogram, m.ust be•define.d•· at.the time of execution of.,
·any :tur.rpRN ~tate1J1ent in the subprogram;. ~he. vah1E! of•
.the.nam.e a.tt.hat t.iJ11eisJhE! function•value. returned.to .. the\
.~f er~ric~llg pr«:>gra111 UJ1it. •··· .·· •.. '

fln~~'~intto'~'~nc~~$~~an1 ~~t~~iattie&S~j
:one ·•.·•argurpent,> atld •·8I\> entrY·.•.··point >.to< 1::1stlh~()H!~nej
t;.~bprograni.·.• lleE?<f•.haye•··•·nq.· EU'~m~J1ts··•·•• A· ••.. su~r<>gr8:pi.;·~~:I
·mCX)ifythe 'll,l).ue· of.one··ormore .. ()f .. the .. lll'gum:E?n~ ipJhE?il
,EU'gulll (!t1!. i1st. 9f the .. EN'l'R ¥•~ta.ternE!1>1!. ass09i~~~ .!!i,tb ~be,;
:cul"~e11t .. • ••.• en~¥•·.tOrE!!~11···.v~uE?~•t()t~e.;~1~11g·.· .. ~r<?g~'m·;tmi~~1
See ttie headingJ?as~rig.Argument$·.·.BetwE!~t1····•.Su1>t>rogrf1msi
earli~r··· in·.··• this.··· section•···· for· sp~ificti~i()ns ··•• for> .. dt1mmy~
arguments in ENTRY statements.; , > • . ·•· .. ·.·· '···• >.

·.: .• :: .•. ·.· •. ·.•.··.• .. :.· .. ·.· •. · .. ·.·.• ... ·.;: .. · •.. :.::.·.:.•.•.::·;,..::: .. ·.· .. ··• ·.•.:·.·.·.) .. ··.· .. =:.·•.· •.. ·.·.:: .. ·.:.=: ..• · •.•. ·•·•· .•. =; . .:: .. : ••. · •..• • .•. •.·.·.·.•.··.> .. · .•...... :·:.:::::··.·.: ... > ... • ... ·.•.·.·.·.·.·.·.< ·.·.· .. · ... ·•·

. 'J:'h~·list <>fll!'guJ11E?t1.ts .. in.< at1~:NTRY•.· state~lll~.n~ f1~ea Jlo~!
·contaiJl <Jhe > ~µie · elelJlent~. < l1S .•· O!her , argilm ~nt.> .· !~s!S :. !Wi
I?U:NPT~():N, Sl)BRQP''l'INE, or.·.other····~:N'J:'ltY'~tatemE!~~·111:
!:~~.::~.~.~tJ~~~r-~m ... •.~!~· .:N~~~t.!.~~!~~~· ... !.1<>,.~.!~!~!!l;.~11!:·.!v,.~.~~ ... !

60457040 B

~UBi>ro&farii·can··t;;x;cuie'd ... th41··woUi(fe&use«.rererence··<>r~
. definition of> ail argument pot 111.· the. argument • list·. of the;
· curr~nt entry. · '1

REFERENCING SECONDARY ENTRY POINTS

!_A secondary entry point to a subroutine sub(>rogiam is'.
'referenced by a ·CALL statement · contail1ing . the entry·;
'poil1t . name.· An ·example .. of multiple subroutine entry':
'points is ·shown in figure 7-3.. In the example, the\
.statement CALL CLEAR(SETl) references the primary:
:entry point of the subroutine• Elements of the array are:
.set to zero before values ar·e read into. the array. L~ter in;
.the program,. the statement CALL FILL(SETl) references
,the secondary entry point FILL. Values are .read into the;
"array without any in~tialization. of. the elements to zero.

PROGRAM T(INPUT)
DIMENSION SET1 (25)

CALL CLEAR{SET1)

CALL FILL{SET1)

Figure7:-3.

:A .. se~ondary·•••.ent~y .. point•· to .. •a•.·····fu!l<?ti~n•·••is····.r~ferenced·.·.···in ..••. the
1

.s11me lfi&YJhat th~main entry·pointll; re~erence~~·.f>ee t~er
hf3ading! Passing .Arguments Between. Sut>pr()grams earli.er ·in.I
this secth.>n for · act.ua1 ·•·· arglllJl f3nt • list< ~pecificat!o~~ •·An.:
·e~llJAPle of · .• mu1Uplf? .. ··.flll}ctio11\ eritry.point&<u;sho~n •.•.• in;
figure.7.-~k.·····•·· ·.·m·•.·:· .. ·.the >exalJlpler the>: .•... statement!
RT!= FSHN(X, Y ,Z) r.eferences the:p~imarY .entry poi11t.•• ot;:
t~.· ~l1J1Ctio11.•···· the calculation of (•t~ F~H.N value· is ..
'perfqrm~d, •an~ <?()ll!rol re.tur~ to !fie .Jl1ain program •••. 1-'ater;
~n .• · ... ·the··· pi;ogralll, < t~e> stat~lllen~··•.·.··•· RT2,;; Fl!~D(J!,S,T)i
ref erenc7~ the.~~co11dary <m~ry (>?illt:J!RED~···•···•I>el>(-'!ndipg.ori.:
the value •. •· of the first .. argument, the.· •. return value is· either:
t~e· .. cal(!.U~f1tf3~ yalu~ pf :Fl!Ell ()~ ··. E'§llN'·.·~incemtl!tiple!
func~po11; .. e11t~Y .•. ·(>?i11t(l}ll.llles>ar(!.•·•·7ff7(!.tfv;71~:eqt.dya1~P~ed,i
either FRED or FSHN (!8n be used:to set .the return v8lue. ·

'sui:>r?utiries •· •. •.can~()~ ••·•.referen~e. ihe.il' ·•• <>wil niai'! .eritry···~ints·~
~~~~~~%~ci~~~fe~~~tged:i~l••·t:;.•i~~l;f'~~t··'W~~~!i~~· 1 . 
long as th~·lltim.~ ... is ...• n()t.follolfi~d .. •·bY.~. argulJlellt. list •.... •A.i 
fun~tion name •. ·~h8t<is.· ... not·follo.wedby ail. argument.·.list/.is.: 
.ll()t .. !'f:Juncti?n··.r~fei:e~~~· . . .......................... . .. .. 

7-7 



7-8 60457040 B 



INPUT, OUTPUT, AND MEMORY TRANSFER STATEMENTS a· 

The data proce5.5ed by a CYBER 200 FORTRAN program 
can be constants in the program, or variables and arrays 
initialized with DATA statements, or can include variables 
and arrays whose values are read from input units at 
program execution time. When the program has produced 
results, CYBER 200 FORTRAN output statements can be 
used to send the results to specified output units. Input 
and output can be performed as frequently as nece5.5ary 
during the execution of a program. 

The following types of input and output (I/O) statements 
are available in CYBER 200 FORTRAN: 

Sequential 

Buffer 

Name list 

Concurrent 

READ, WRITE, PRINT, PUNCH, 
ENCODE, and DECODE statements, 
with optional data format specifi­
cations 

BUFFER IN and BUFFER OUT 
statements (appendix G) 

READ, WRITE, PRINT, and PUNCH 
statements with a namelist group 
name that implies an 1/0 list and 
data format specifications 

Q7BUFIN, Q7BUFOUT subroutine 
calls (section 13) 

The legal record types for the types of input and output are 
given in table 8-1. 

TABLE 8-1. LEGAL RECORD TYPES 

Input/Output Record Type 
Statement 

Type Control Undefined Fixed Record 
Word Length Mark 

Formatted Yes No Yes Yes 

Unformatted Yes No Yes No 

BUFFER_ IN Yes No Yes No 

BUFFER OUT Yes No I. Yes No 

Q7BUFIN/OUT Yest Yest Yest Yest 

tWhen using Q7BUFIN or Q7BUFOUT, any record type 
can be read or written, but the file is always 
treated as if the record type is undefined. 

In addition to sequential, buffer, and 08.melistinput/output, 
the unit positioning statements REWIND, BACKSPACE, and 
END FILE and -the <memory.;.to-memory data conversion 
Stiltements ENCODE and DECODE are discu5.5ed in this · 
section. Data conversion on input and -output {the 
FORMAT statement) and the input and output lists for 
input/output statements are discu5.5ed in section 9. 

60457040 B 

All files or units ref erred to in an input/output statement, 
except for the standard output file OUTPU'l", must be 
declared in a PROGRAM statement at the beginning of the· 
main (>rogram. The· default record length on ASCII card 
files is 80 characters. Record length on any ASCII file 
should not exceed 137 user-supplied characters. Recora 
length can be changed with the Q8WIDTH subroutine 
described in section 13. The first character of a print file 
record is always used as carriage control and is not printed; 
the second character appears in the first print position 
{carriage control characters are listed in section 9). 
Additional requirements for input files and for the form of 
output files produced through FORTRAN are discu5.5ed in 
section 15. 

Data moved by using input/output statements is always in a 
block that begins on a small page boundary and that has a 
length that is a multiple of small pages. 

The following parameters are specified in input/output 
statement forms throughout this section to indicate the 
three basic components of input/output statements: 

u Logical unit number having an integer value 
of from 1 to · 99 and a5.5ociated with a 
particular file by means of the PROGRAM 
statement (see section 7). 

fmt Format designator; the statement label 
(having a value of l to 9999~) of a FORMAT 
statement in the progam unit containing the 
input/output statement, or the name of an 
array containing the format specification. 

iolist List of variables and arrays to be input from 
or output to u according to f mt. 

SEQUENTIAL INPUT ST A TEMENTS 

To request that data be transferred into main memory, a 
READ .statement is used. The formatted READ statement 
must be used for ASCII input, whereas the unformatted 
READ statement can be used to read data that does not 
require conversion from an external to the internal 
representation. The READ statement· with implied -- device 
is a form_attecl_read from the file INPUT. 

FORMATTED READ STATEMENT 

A formatted READ statement has the following form: 

READ(u,fm t,END=m~ERR=n)iolist 

END=m Optionw. End-of:-file transfer parameter; m 
is a statement label in the same program unit. 

ERR=n Optional. Data transfer error parameter; n is 
_ 8.- statement labeUn the same program unit. 

iolist Optional input list. 

The END and ERR parameters can be in either order when 
both are present. 

8-1 



Execution· of the formatted READ statement causes 
transfer of one or more records from the specified file u to 
the memory locations associated with the names in iolist, 
according to the format specified by fmt. The number of 
records transferred depends upon fmt and iolist. 
Conversion from the external to the internal form for the 
data takes place in accordance with the formatting. 

Transfer on · End-of.;.file 

If a READ statement is executing when the next sequential 
record of. input data is an end..:.of.,.file indicator, the 
variables Jn the input list become undefined, the 
end..:.of-file record becomes the preceding record, execution 
of the READ is abandoned, and control transfers to the 
statement label m specified by the END option in the 
READ statement. When· no END option has been specified 
and an end-of-file is. encountered on· input,. run-time error 
13isissue~ · · 

Data Transfer Errors 

If a READ statement is executing when a data transfer 
error occurs, the variables in the input list become 
undefined, the record in error becomes the preceding 
record, execution ()f the READ is abandoned, and control 
transfers to the statement label n specified by the ERR 
option)n the READ statement. If a data transfer error 
occurs on input when no ERR option has been· specified, an 
appropriate diagnostic is issued. 

A data· transfer error is an abnormal condition such as a. 
hardware parity error or reading of a tape record into too 
small a buff er area. 

:READ WITH IMPLIED DEVICE 

Data can be transferred into memory without explicitly 
identifying the data's so\Jrce• 

Form: 

iolist 

EJ(ecution•_of_ this. READ statement causes ... transfer .. or· one 
or. more records from the. file_ INPUT to memory locations 
named•i11_•iolist, ac_cor~ingt() the f()raja,tspecified.byfmt~ 

UNFORMATTED READ STATEMENT 

An unformatted READ statement has the following form: 

READ(u,EijD~m,$~it~~)iolist 

· m,n ··01>H<>lla1 >statement._ 1abeis,· ··same ·as t<>r 
formatted READ;-.when.either is omitted, the 
e11tire par111T1~ter lllust be ()llli tted! 

iolist Optional input list. 

Execution of the unformatted READ statement causes 
transfer of a single record of binary data from the· 
specified file u to the memory locations associated with 
the names in ~olist. In contrast to the formatted READ, no 
format designator is present in the statement and no data 
conversion takes place. 

8-2 

The size of the record read from the file u must match 
iolist exactly. 

SEQUENTIAL OUTPUT ST A TEMENTS 

To request that data be moved out of main memory, a 
WRITE, PRINT, .. or ... P'QNCH. statement is used. The 
formatted WRITE statement must be used to write ASCII 
output whereas the unformatted WRITE statement can be 
use() to. write binary data .. wi_thout converting it to ASCII. 
The PRINT statement is a formatted WRITE statement 
with the file OUTPUT implied •. The PUNCH statement is a 
formatted WRITE· statement with the file PUNCH implied; 
the file can be punched aft(?r program termination. 

FORMATTED WRITE 

A formatted WRITE statement has the following form: 

WRITE(u,fm t)iolist 

iolist Optional output list. 

Execution of the formatted WRITE statement causes 
transfer of one or more records from the memory locations 
named in iolist to the specified file u according to the 
format specified by fmt. Hollerith data in fmt is also 
transmitted. 

PRINT 

Output data can be transferred to the < file OUTPUT 
without explicitly indicating the file. This ,is done with the 
PRINT statement. · 

Form: 

PRINTfmt;iolist 

iolist 

The statement causes transfer of one or more recor~, 
including any .. Hollerith . data in. the for mat specification 
fmt, from. the memory locations associated with the names 
in iolisUo OUTPUT according to fmt~ 

PUNCH 

·.·.·. >·.• .. /_ •... <·············.······ .·····.··········· .. ········· /·._ .. ···············<·.···.·····•.····················· .. · ...................... << >. < .. If• PUNCH · ..• hill; be~n declared in .• th~· PROGRAM.· s~atement~ 
data. can be written on the file PUNCH with the PUNCH · 

. statement~ 

Form: 

PUNCH fmt,iolist• 

iolist Optional outputJist. 
~ .. ::. :' ... : .. '· .·.-: ·: ........ : .. : ..... _··:· .. :. ·::.-.:=,· .:..; '..: .. ":· ::, ::::... :.::.; .· :.,.' 

The Pl]NCH sb1te01ent 'capses tra~sfer ·. ot data fr()nt the : 
.memoryJocations·_named in. iolist,·-and.Hollerith data in th_~ 

·~~0t~~~~t ~~~tlf~~ g~}~~~n~uWc~0J!~~<lsac;~r~~lft!~ 
ito 80 characters.. After program execution is complete, 
:PUNCH J.s a file ~hat. is suitable Jor puJ'lching (P,UNCH is : 
·n()~ pu11_~hed ti\lt()lllatican}'>· · 

60457040 B 



UNFORMATTED WRITE 

An unformatted WRITE statement has the following form: 

WRITE(u)iolist 

iolist Output list; required. 

Execution of the unformatted WRITE statement causes 
transfer of a single record, consisting of the sequence of 
values specified by iolist, to the file u. No data conversion 
takes place. If data is written by an unformatted WRITE 
and subsequently read by an unformatted READ, exactly 
what was written is read. 

MEMORY-TO-MEMORY TRANSFER 
The ENCODE and DECODE statements are used to 
ref or mat data in memory by transferring the data under 
format specification from one area of memory to another. 
The ENCODE statement is similar to a formatted WRITE 
statement and the DECODE statement is similar to a 
formatted READ statement. However, unlike a WRITE or 
READ statement, the source (for decoding) or destination 
(for encoding) of the data is a variable or array rather than 
an input or output file. Data is transferred internally with 
an ENCODE or DECODE statement; no files are involved. 

ENCODE STATEMENT 

An ENCODE statement has the following form: 

ENCODE(cl,fmt,b)iolist 

cl Length in number of 8-bit bytes of each 
encoded record. 

fmt Label of a FORMAT statement in the same 
program unit, or the name of an array 
containing the format specification. 

b Simple variable, array element, or array 
name that serves as the starting location of 
the encoded records. 

iolist Optional output list. 

Execution of an ENCODE statement causes the creation of 
one or more records, each having a length of cl 
characters. When iolist is present, the values of the 
elements in the list are written into memory, starting with 
b and according to the for mat conversion specified by fmt. 
The length of each record must be less than or equal to cl 
characters; if the record produced is shorter, it is extended 

.on the right to cl with blanks. 

The records created are stored adjacently and in the order 
of their creation, the first record beginning at b. At the 
inception of the encoding, thevariable or array b must 
neither appear in. the input/output list nor be associated 
through EQUIVALENCE statements or COMMONwith any 
element of the input/output list. Furthermore, if fmt 

'iderttifiesan. array,itmust not be associa~ed.with b. 

DECODE STATEMENT 
,, .... ,;. 

ADEC~I)E'.statement··has ... the·.·folloY1ing form: 
'. ·' :. . . .,:,. . . .. : . . . : ·~ ·.. . . . ..... : . . : =::: .. : , 

:·.·· .. •: >~~ .P~QQP~fo~~f rra!~~lt2H§t ... 

60457040 B 

cl 

fmt 

b 

iolist 

Lengtf1· .. ·in'•number.'of · 8.;.bif bytes· of each ·.of· 
the records to be. decoded. 

Label ··or·. a·· FORMAT statement in the· same• 
program unit, or the name of an array 
containing the for mat specification. 

Simple variable, array element, or array 
name that serves as the starting location of 
the area in memory from which the values 
decoded irito iolist elements are taken. 

Optional input list. 

Execution of a DECODE statement causes the reading of 
one or more records, starting at b, into the items in iolist, 
according to the format conversion specified by fmt. This 
action must not require more than cl characters of any 
record; however, if fewer than cl characters are required, 
the remaining characters are ignored. The list iolist must 
not include any elements of type bit and must not include 
descriptor names. 

The records scanned by the execution of the DECODE 
statement partition the memory area, starting at b, into 
groups of cl characters. At the inception of the decoding, 
no element in the list can be associated with the variable 
or array· b. 

An example using ENCODE and DECODE is given in 
figure 8-1. LOC is an integer array having six elements. 
The call to the concurrent input/output routine Q7BUFIN 
transfers one small page of unformatted data into memory 
starting at LOC(l) and proceeding through the next 511 
words. Q7WAIT is called. to check the status of the 
buffering operation initiated by the Q7BUFIN call, and 
control branches to the statement labeled 666 if the 
operation has not completed normally or if not enough data 
was read in by the operation. The DECODE statement, 
under control of ·FORMAT statement 1, places the last 
four bytes of LOC(6) left-justified (A conversion) into 
TEMP, without change of form. The ENCODE statement, 
under control of FORMAT statement 2, packs the first 
four bytes of LOC(l) and the first four bytes of TEMP into 
NAME. 

DIMENSION LOC(6) 

CALL 07BUFIN (60,LOC,1) 

CALL 07WAIT (60, LOC, STATUS, 1, PCOUNT) 
IF (PCOUNT.LT.1 .OR. STATUS.NE.O) 

$ THEN GO TO 666 

DECODE (8,1,LOC(6)) TEMP 
ENCODE (8,2,NAME) LOC(1), TEMP . 
FORMAT (4X,A4) 
FORMAT (2A4) 
CALL. ERRMESS 

Figure 8-:1~ Exampl~ Using ENCODE arid .DECODE 
..,,... Stat~i]~,~~.s 

8-3 



Unless the conversion· specified is F, E, '()r I, the conversion 
code in the FORMAT statement (fmt) determines the 
format of the encoded record or, for decoding, of the value 
assigned to the corresponding input/output list. item. If F, 
E, or I conversion is specified, the type of the 
corresponding input/output list {iolist) item determines the 
format of the encoded record or of the value decoded into 
the iolist item. In figure 8-1; the FORMAT statements 
determine the formats of the values placed into TEMP and 
NAME, while the types of LOC and TEMP are not 

.. significant in the encoding and decoding operations. 

. . . 
· Formatted input and output of a group of variables and 
arrays . having a single identifying name can be 
accomplished without using a for mat specification and 
without using an input/output· list. Before the group is 
named in an input or output statement; a NAMELIST 
statement in the nonexecutable portion of the program. unit 
must declare the group name and the group elements~ 

The variables·. and. arrays .. Vi .and. Wii. which cannot··· be of 
type. bit, can. belong to one or more namelist groups. If the 
statement occurs in a function subprogram, the variables 

, can include the function name and any of the function 
secondary entry point names. The namelist group name 
gL identifies .· the succeeding list of variables and arrays 
up to.the next slash •. The group·name·can be declared only 
once, and it cannot be used in the program uriit for any 
purpose other than a namelist name. 

8-4 

NAMELIST INPUT DAT A 

Data read by a na·melist READ statement must contain 
only names· listed in the referenced namelist group, but 
need not contain ali'of the names nor. names in the order 
given in the defining N AMELIST statement. The values of 
the variables and arrays not.· included in .. the input data 
remain unchanged. 

Form: 

60457040 B 



. The entire sequence of records output by a namelist WRITE 
statement is in a form that is suitable to be input by a 

: namelist input statement. The names and values of all 
variables and arrays in the group are output to OUTPUT, 
PUNCH, or the designated file • 

. Upon execution of a namelist WRITE or PRINT statement, 
a sequence of records with a character blank in the first.: 
character position of each record is transmitted •. The 
remaining character positions are as follows: 

· First record: &:g 

where g is the namelist group name 

One or more records: 
v1=cli.v2=cl2,_. •• ,v0=cln . 

where vi is either a variable or. array. name, and: 
cl1 is a constant .or a· list of constants-separated. 
by commas 

Last record: &:END 

: When vi• is an array name, the number ~f. constants. in . the 
list cl1 is the number. of· elements in the array; the order 
of these constants is the order in which the elements occur 
in memory. 

For character elements, output is in the form of characteri 
constants. The form of all other constants· is·. as if the 
elements. had been. written with· the format Ew.d (see• 

[ section 9) w.here w ·and d are .. sufficient . to preserve the: 
precision of the elements •. For complex elements, the 
format of the constant is as if the format specification 

i('~',~\,!~~,',', Ew.d,')').~~~ ~e~ ~~~(~ec~~()n ~k. ....... .... < .. · .•• · ...• • 

UNIT POSITIONING 

REWIND, BACKSPACE, and ENDFILE statements can be 
used to adjust the current reading or writing position of a 
file . when input/output is being performed by buffer, 
namelist, and sequential input/output statements. Files 
contain one or more records grouped as a totally ordered 
set. The initial position of a file is at the beginning of the 
file's first record. The end-of-file indicator, when present, 

60457040 B 

follows the last record of information. The forms for the 
unit positioning statements all refer to u, which is an 
integer constant or simple integer variable specifying a 
logical unit number. 

REWIND 

Execution of a REWIND statement causes the file specified 
by u to be positioned at its initial point, the 
beginning-of-information,. : even .. when several ENDFILE 

i ~t~t~m.ents we,:oe)ssu¢d siilcethelast REW!lm~ . . .. . ..... 

Form: 

REWIND u 

If u is already at the beginning-of-information, the 
statement has no effect. 

BACKSPACE 

Execution of a BACKSPACE statement results in the 
positioning of the file in such a way that what had been the 
preceding ·record prior to the statement execution now 
becomes the next record. 

Form: 

BACKSPACE u 

If u is at its initial point, BACKSPACE has no effect. 

ENDFILE 

Execution of the ENDFILE statement causes an end-of-file 
indicator to be written as the last record on the file. 

·Form: 

ENDFILE u 

Note that if a file is created by a FORTRAN run-time 
routine and an ENDFILE statement· is executed first, the 
file is considered to be an SIO record mark file. Any 
attempt to perform unformatted or buffer input/output on 
the file results in a fatal error. 

8-5 





INPUT/OUTPUT LISTS AND DATA FORMATTING 9 

Input/output requests are initiated by using the statements 
discussed in the previous section. This section covers the 
details of specifying the format of the data being 
transmitted with these input and output statements. The 
interaction between the FORMAT statement and an input 
or output list, data conversion specification, and 
execution-time data formatting are covered here. 

INPUT/OUTPUT LISTS 
The list portion of an input or output statement specifies 
the items that are to be read or .written and indicates the 
order of transmission. The items in the list are read or 
written sequentially. Although the list can contain any 
number of· items separated by commas, the number of 
items should. be compatible with the FORMAT statement 
specifications and (on input) with the amount of input data 
available. 

An output list must accompany an unformatted WRITE. 
Otherwise, an input/output statement need not contain an 
input/output list. When no list is present on input, a record 
is skipped (unless the corresponding FORMAT statement 
contains an H specification). Only Hollerith information 
that appears in the format specification can be . written 
when no list is present on output. 

When an input/output list is present, the execution of an 
input or output statement continues as long as any list item 
remains to be processed. If there is insufficient data on 
input to give every element of the list a value, a run-time 
error results; whenever there is excess data in the input 
record, the excess is ignored. 

LIST ITEMS 

An input or output list item can be any of the following: 

• Simple variable name 

• Array element name 

• Array name 

• Implied DO list 

• Descriptor name prefixed with an ampersand 

Descriptors and type bit data elements cannot be input, nor 
can they be output by means of any unformatted output 
statement. They must not appear in input lists; they can 
appear in output lists only of formatted output statements. 

All elements of an array can be specified with an 
unsubscripted array name list item. An unsubscripted 
array name output list item causes the elements of the 
array to be output in the order in which the element values 
are stored in memory, irrespective of the fact that the 
array has been specified to be a conventional array or 
rowwise array. Parts of arrays can be specified by means 
of an implied DO list item. Subscripts in an input/output 
list can be any valid subscript described for array element 
names in section 2. 

60457040 B 

Examples: 

. READ (2,lOO)A,B,C,D 

READ (3,200)A,B,C(l),D(3,4),EU,J, 7),H 

READ (4,lOl)J,A(J),l,B(l,J) 

READ (2,202)DELTA 

On input or output, the list is scanned and each .variable in 
the list is paired with the field specification provided oy 
the FORMAT statement. After one item has been input or 
output, the next for mat specification is taken together 
with the next element of the list, and so on until the end of 
the list. The correspondence between data in an input 
i·ecord and the format specification is shown in figure 9~1. 
In the figure, 100 is read into the variable L under the . 
specification 13; 22 is read into M under the 
specification 12; 3456712 is read into N under the 
specification 17; and 1, 10, 11, and 0 are read into the four 
elements of the array K under the specification 12 
(element K(l,l) = 1, K(2,1) = 10, K(l,2) = 11, and K(2,2) = 0). 

Array declaration: 

DIMENSION K(2,2) 

Input statements: 

READ (5,20) L,M,N,K 
20 FORMAT (13,12,17 ,412) 

Input record: 

f 1ool2213456712jo1j1oj11lool 
~--.- ...__......__,..-.._,..... ......__.......~ 

Figure 9-1. Example of Inputting Formatted Data 

Attempting to read more data than is ii1 the inpuf stream 
produces an error, unless the EN.D parameter (described in 
section 8) is used to test for the end of the file. 

IMPLIED DO IN INPUT/ OUTPUT LIST 

Input and output of array elements can be accomplished oy 
using an implied DO in the input/output list. A list of 
variables followed by a DO loop control variao1e is 
enclosed in parentheses to form a single implied DO list 
element. 

For exiynple, 

REAO l5,100J(A(I),I=l,3) 

has the same effect as the statement 

READ (5,100)A(l),A(2),A(3) 

9-1 



The general form for an implied-DO item is: 

(list,i=m1,m2,m3) 

list 

m3 

An input/output list in which i and implied 
DO items can appear. Variables, array 
elements, and subscripted or unsubscripted 
array names can appear more than once in 
list. 

The control variable, a simple integer 
variable. 

The initial value parameter of i, an integer 
constant or a simple integer variable with a 
value greater than zero. 

The terminal value parameter of i, an integer 
constant or a simple integer variable with a 
value greater than zero. 

Optional. ·The incrementation value 
parameter for i, an integer constant or a 
simple integer variable with a value greater 
than zero. Def a ult value is 1. 

The variable must not be used twice as a control variable 
within the set of parentheses that defines an implied DO 
item. When processing_ begins on the implied DO 
input/output list item, the control variables are set to their 
initial values; list is transmitted; then i is incremented by . 
m3 and if the value of i does not exceed m2, list is 
again transmitted. The looping process repeats until the 
value of i exceeds m2. 

The control variable can appear in list. If it does appear in 
list (for example, in subscript expressions in the list, or as 
a list element), it assumes whatever value it has currently 
as the control variable. 

Examples: 

Implied DO 

(A,B,C,1=1,4) 

(I,R(I+ 1,1),C,I=l,3) 

((R(I,J),I=l,2),J=l,2) 

(J ,(R(I,J),I=l,2), Y(J), 
(B(K),K=l,2),J=l,3) 

Transmitted 

A,B,C,A,B,C,A,B,C,A,B,C 

1,R(2,l),C,2,R{3,1),C,3,R(4,1),C 

R(l,1),R(2,l),R(l,2),R(2,2) 

1,R(l,l),R(2 ,1), Y(l),B(l),B(2),2, 
R(l ,2),R( 2,2 }, Y(2),B(l),B(2),3, 

R(l,3),R(2,3),Y{3),B(l),B(2) 

FORMAT ST A TEMENT 

1
pata ,.. ~eing ... move<:), as a result of execution of an 
"ENCODE/DECODE: or a formatted input/output statement, 
changes in format during transferral. Data that has not 
been formatted consists of a string of the binary values 
that are in memory. Data that has been formatted consists 
of ASCII characters. 

The nonexecutable FORMAT statement or a variable 
format specification is required to specify the Jorm~tting 
of data being moved with !ENCODE/DECODE• and 
formatted input/output statements between a file and main 
memory. Unlike most other nonexecutable statements, a 
FORMAT statement can appear anywhere in the program 
unit in which it is referenced. More than one input/output 
statement can reference a single FORMAT statement. 

9-2 

Form: 

sn A statement label that must appear; the 
label ref erred to in an input/ output 
statement in the same program unit. 

Optional; one or more slashes indicating 
record boundaries. 

Optional ·scale factor for E, F, G, and D 
conversion codes. 

Optional unsigned integer constant that 
serves as . a repe_at count for _the field 
specification; when omitted, a count of 1 is 
assumed. 

A field specification indicating one of 
fourteen types of data conversion and 
editing codes; or, a list of the form: 

(q1s1r1f1x1 ••• Xn-1snrnfnq2) 

with the restriction that parentheses can 
be nested to only three levels in a 
FORMAT statement. 

A comma, · or one or more slashes 
indicating record boundaries; r··<>I>-~J()nE1:1.3 
?f ()µ()Vi,~pg an H specification, r!. specifb · 
:"c1,1,UQn1:or X specification. 

The format specification is enclosed in parentheses. No 
more than two additional levels of parentheses can be 
nested within the outermost set of parentheses. Blanks 
within the format specification are not significant except 
in Hollerith (nH) and apostrophe field specifications. 

Example: 

READ (5,100) INK, NAME, ARE 
100 FORMAT (10X,I4,I2,F7.2). 

Generally, each item in the input/output list of an 
input/output statement should correspond to a single field 
specification in the specified FORMAT statement. 
However, complex variables always correspond to two F, 
E, G, or Z field specifications. Also, arrays in an 
input/output list must correspond to as many field 
specifications as there are array elements. 

The FORMAT statement usually specifies the type of 
conversion that is performed for input data without any 
regard for the type of the variable that subsequently 
receives the value. Nevertheless, the data type of the 
variable in the input/output list should match that of the 
field specification, because no conversion takes place upon 
assignment .to Jor .... transrnittal ... from) .. an .... inputfo:u~putlist: 
element••exceptJvith.G,.f',.E,_and ••• tdata.cqnversion.<!odes •.• ,C 

60457040 B 



In the above example, B. real number is react; converted to 
integer, and assigned to the variable N. 

Repetition of individual field specifications (except for H, 
', X, and T editing specifications) or of groups of 
specifications (delimited by parentheses) is indicated 
through use of the repeat count r. If the input/output list 
warrants it, the same conversion is repeated the number of 
times specified by r. When a group is to be repeated, an 
integer constant precedes the left parenthesis to indicate 
how many times the group is to be repeated; a repeat count 
of r has an effect identical to concatenating r copies of 
the field specification string that composes the group. The 
repeat count r cannot exceed 255. 

FORMAT CONTROL 

Execution of a formatted input/output or ENCODE/ 
DECODE statement initiates format control. Format 
control depends on information provided jointly by an 
element of the input/output list and an element in the 
format specification. The format specification, like the 
input/output list, is interpreted from left to right (except 
for the effects of repeat counts). The field specifications 
in a FORMAT statement determine how many characters 
are read from input or written on output. 

When more field specifications than input/output list 
elements are given, some field specifications are not used. 
When fewer field specifications than input/output list 
elements are given, a new record starts and control moves 
to the group repeat specification of the group terminated 
by the last preceding right parenthesis. If no group exists, 
control returns to the first left parenthesis of the format 
specification. This action has no effect on the scale factor 
described later in this section. 

On initiation of a formatted read, format control is also 
initiated and one record is read. Thereafter, additional 
records are read only as the format specification demands. 
Such action must not require more characters than a 
record can contain, which is 137 characters at the 
maximum. A slash in the format specification demands 
that a new record start. Any unread characters remaining 
in the current inpu.t record when a slash is encountered in 
the format specification are ignored. 

When a formatted WRITE is executed, records are built and 
output according to the interaction of format specification 
and the output list. A slash in the format specification 
demands that building of the current record terminate, the 
record be transmitted, and a new record be started. 
Termination of format control also causes the. current 
record to be written. 

When all elements of the input/output list have been 
processed, the format control terminates. 

DAT A CONVERSION 

· Ten types of data conversion codes are available, each of 
which causes conversion of ASCII data to a particular 
internal data format or vice versa. The editing codes H, ', 
X, aJ1cl.1' are covere9 later in this section. · · 

Forms: 

Iw Decimal integer conversion. 

Ew .d Single-precision floating-point conversion, 
with exponent. 

60457040 B 

Fw.d 

Gw.d 

Dw.d 

Lw 

Aw 

Single-precision floating-point conversion, 
without exponent. 

Single-precision floating-point conversion, 
with or without exponent; character 
conversion; logical conversion; integer 
conversion. 

Double-precision floating-point conversion 
with exponent. 

Logical conversion. 

Character conversion. 

Rw Character conversion. 

Zw Hexadecimal conversion. 

Bw 

w 

Bit conversion (on output only). 

Field width in number of character positions 
in the external record, including any leading 
blanks, + or - signs, decimal point, and 
exponent; a nonzero (unsigned) integer 
constant. 

d Number of digits to the right of the decimal 
point in the field; an lunsigned) integer 
constant. 

The field width w must be specified for all conversion 
codes. For the form w.d (except for G when associated 
with integer, logical, or character type items), the d must 
always be specified, even when it is zero. Also, the field 
width w must always be greater than d. 

A type complex list item should correspond to two 
single-precision floating-point (real) field specifications: 
the first is for the real part and the second is for the 
imaginary part of the complex item. 

CONVERSION SPECIFICATION 

In numeric input conversions (F, E, D, G, and I), leading 
blanks in the input record are not significant, while other 
blanks are treated as zero characters. Plus signs can be 
omitted. With the F, E, G, and D input conversion codes, a 
decimal point in the input field overrides the decimal point 
specification supplied by the field specification. 

The output field is right-justified for all output 
conversions. If the number of characters produced by the 
conversion is smaller than the field width w, leading olanks 
are inserted Jn ~he output field. ;For I format, if the 
number of characters produced by an output conversion is 
greater than the field width, the first character in the field 
is an asterisk, and the asterisk is.followed by the rightmost 
w,_.l characters that should have been output. For D, E, 
and F formats, if the number of characters produced by an 
output conversion exceeds the fi~ld ~icltJ'l; Ut~ ·entire fielC} 
is filled with asterisks. With output conversions, the 
external representation of a negative value is signed, while 
a positive value is not signed. 

For F, E, and I conversions, the type . of list . element 
determines the . internal representation, while the 
conversion code determines the external representation. 
For example, an external field read under F conversicm into 
an. integer Ust • v.ar~able is convertec1 to integer,. ~hereas an 
integer list itelTl written out under F. conversion appears as·· 
a.real v,alue. 

9-3 



The types of input/output list items to which each of the 
conversion codes can correspond are shown in table 9-1. 
For example, the A conversion code can interpret input 
data as ASCII data which can then be assigned to a variable 
of any type except bit. 

TABLE 9-1. INPUT/OUTPUT CONVERSIONS 

Data Type 
Conver-
sion Logi- Inte- Double ch~t-Code Real Preci-cal ger sion 

F n/a 

E n/a 

D n/a 

G x x 

I n/a x 

A x x 

L x n/a n/a n/a 

z x x x 

B n/a n/a n/a n/a 

x indicates permitted conversions; n/a indicates 
type and conversion combination not allowed •. 

tcan also be used to output descriptors and double 
descriptors. 

ttAllowable conversion for output only. 

I Conversion 

The numeric field specification Iw indicates that the 
external field is to occupy w sequential character positions 
as an integer (including a possible plus or minus sign). On 
input, the . value of the input list ~tE!~ c<>r~E!S,P()!!~!n~. t())~ 
appea~ ...... ~~.t.er!18:11~ .... 8:s .......... ~!!tE!g~r,.w;r~~;,· •••.. o~·>?<>ub1~:..pr~cisiqtj"; 
data, ;~~~9@i,111fJQ.J~~(JYPE! <>(JhE!i item<ill:th~.·Jnput ••... Jis.t.!i 
As input, the integer must be in the form of an optionally 
signed constant, except that embedded and trailing blanks 
are interpreted as zeros. 

E and F Conversions 

The numeric field specification Ew.d or Fw.d indicates that 
the respective external field is to occupy w sequential 
character positions (including any decimal point, exponent, 
or sign), where the part following the decimal point 
consists of d digits. On input, the value of the input list 
i!E!~~()rrespondin~ t() e~.~.~···.· ()~ F.~ .d app~8:~S ~ntE!r!1EiJ~Y, ... 8:~ 

EiP.!E!gE!t,j real, or f.29~~1E!~i">f~cis,i~~: data, ;~~~9.J-(iinif .. to;Jh~: 

9-4 

typ~ .~f the input Ii~( it~lll~'. As input, a real number 
consists of an optional sigri, followed by a string of digits 
that can contain a decimal point. This basic form can be 
suffixed with an exponent in any of the following forms: 

• Signed integer constant 

• The letter E suffixed with an optionally signed integer 
constant 

• The letter D suffixed with an optionally signed integer 
constant 

With the E and F conversion codes, an exponent that uses D 
is interpreted identically to an exponent using E and to an 
exponent that is expressed as a signed integer constant. 

Output conversions specified by the E and F floating-point 
conversion ~odes differ. For output with F conversion, the 
real number produced consists of optional leading blanks, a 
minus sign if the internal value is negative, and a string of 
digits containing a decimal point. Together these 
represent the internal value modified by any establishea 
scale factor and rounded to d fractional digits. 

For output with E conversion, the forms (for a scale factor 
of zero) are: 

For values where the 
magnitude of the exponent 
is less than 100. 

b is a minus sign if the number is negative, and olank 
if the number is positive. 

a 1 •.• ad are the <.l most significant digits of the 
value correctly rounded. 

e is a digit of the decimal exponent. 

A scale factor of n shifts the decimal point so that the 
fractional part of the number la1 ... ad) is multipliea 
by ion and the decimal exponent is reduced by n. If n is 
less than or equal to zero, there are exactly -n leading 
zeros with d+n significant digits after the decimal point. If 
n is greater than zero, there are exactly n significant digits 
to the left of the decimal point and d-n to the right of the 
decimal point. 

G Conversion 

The field specification Gw.d is used to input and output 
real, ;:!~~~g~r~'7§~?'.r~~f~tr:@q'J§g!£~t data. on output, it 
indicates that the e~.!~r.!!8:1 H~!~ ~ tc:i c:l<?~~py ~ ~~ql:'~!!!iS;l 
c~E.1r8:~t~~. ~c:isi t.i<:ip~;·accorqi~g; t,o t~e.typ~ of, t~e ·outpl1f list 

/l¥e.rrt7~~ai'll.c~·er~· Jnteg;~r,. ···or iJogical .• ;G\\r.& (?OJ1\.'efSion. ···is 
:identical to an Aw, Iw, >Or Lw · <?()J1version .ce>.<:l~,· 
::r~~P.E!<?!iy~ly~; On input, the· vaiue ·of the inpu!.)i_8-t:H~~: 
~()~rE!sgc:i11<:I!ng. t,c:i •. ow.d appe~rs, i.P!~l'!!E.1.!!~ .. a~.J?l)ara(?t~f'.' 

~iriteger~:1ogica1,·:of': real data,,;accordingJoihe type ofJh.e 
;:~!1I>1J,t.li~t, ~~E!J!l~: .. . . . ....... d. • ..••.•.... ·.· ········•·· ••... • •.. >.•.•.•····· •. •····•··•·•··. •.>> 

60457040 B 



For output of real data with a Gw.d conversion code, the 
method of representation in the external field is a function 
of the magnitude of the real data being converted. Let m 
be the magnitude of the internal data. The following 
tabulation exhibits a correspondence between m and the 
equivalent resulting method of conversion: 

Magnitude 
of Data 

0.1$m<l 
1$m<10 

iod-2$m< 1od-1 
1od-l$m< 1od 
Otherwise 

Equivalent 
Conversion 

F(w-4).d,4X 
F(w-4).(d-1),4X 

F(w-4).1,4X 
F(w-;4).0,4X 
sEw .d, where s is a 

scale factor 

In the tabulation, the effect of any scale factor is 
suspended unless the magnitude of the dat.a is outside the 
range that permits effective use of the F conversion. 

D Conversion 

The numeric field specification Dw.d indicates that the 
external field is to occupy w sequential character 
positions, the fractional part of which consists of d digits. 
The value of the corresponding input/output list item 
appears internally as double-precision data. 

As input, a double-precision number looks like a real 
number, only more digits can be retained during conversion 
than for the E, F, or G conversions. 

For output, the representation of a double-precision 
number is the same as for E conversion, except that the 
character D, rather than E, is in the exponent. 

L Conversion 

The logical field specification Lw indicates that the 
external field occupies w positions that as a unit indicate 
truth or falsity. The value of the external field is stored 
on input as logical data. 

As input, logical data consists of leading blanks, an . 
optional deCimru pohit,j T (for true) or F (for false), and 

·--optionartrailing characters. 
For output, logical data consists of w-1 blank characters 
followed by the character T or F. 

A' ~nd'.'RI Conversions 

The character field specifications Aw{t:il\~ j:(wl indicate that 
the respective external fields occ.upy w sequential 
character positions in the external record. The value of 
the corresponding input/output list item appears internally 
as character data; the list item has already been explicitly 
or implicitly specified to have a length k. 

When k equals w, the input field characters are assigned 
directly to, or transmitted from the input/output list item. 

On input, if k is shorter than the number of characters in 
the input field (that is, w), only the rightmost k characters 
are assigned to the input list item; the leftmost w-k 
characters are ignored. If k is longer than w, w characters 

60457040 B 

are left-justified in the list· item with blank character fill 
to their right for the A conversion; and w characters are 
right-justified in the list item with binary zero fill to their 
left for R conversion. 

On output, if k is shorter than the number of characters in 
the output field (that is w), the k characters of the output 
list item are output with w-k blank characters preceding. 
If k is longer than w, the leftmost w characters in the 
output list item are output for the A conversion; and the 
rightmost w characters in the list item are output for R 
conversion. 

Z Conversion 

The hexadecimal field specification Zw indicates that the 
external field occupies w positions, where each character 
position is a hexadecimal digit. The value of a 
corresponding input list item after assignment appears 
internally as hexadecimal data. 

On input, w hexadecimal digits are transmitted to the 
associated list element, right-justified and binary 
zero-filled. Leading as well as embedded and trailing 
blanks in the input field are treated as zeros. If w is 
greater than the number of hexadecimal digits that can oe 
represented in the list element, the rightmost part of the 
field is used and the input string is truncated on the left. 

On output, the binary value of the corresponding output list 
item interpreted as hexadecimal digits is transmitted to. 
the output field, right-justified and blanK-filled. If w is; 
less than the . number of hexadecimal· digits, the rightmost· 
w digits are output. 

Descriptors can be output, but notinput, by using a PRINT/ 
formatted WRITE, or ENCODE statement. A descriptor or; 
descriptor array element name prefixed with an ampersand] 

:can appear in the output list, .and must correspond to a Z 
specific~tion·· in the appropriate ... FORMAT statement.! 
[Example: 

BITB(3000) 
DIMENSION.·xuoo) 
DESCRIPTOR D(3) 

DOlOOl= 1,3 • .. · .. •· ... ·. 
· 100.ASSIG~D(I), X(l;lOO) 

• :, .::.<·· ·) ··: ~,\',::;,'.:<: ·~ ·:: ;::·; ;· ... :>··.: ... ·.--=:>·; ··:::~·:· .. · .. :· .· '.. 

.PRINT so; (~D(l),I:;i13) 
50 · FORM~T (lX,~16). 

;An. •atte~pt ~()· output. de~c~fptors by ~ihg.••.·~y> othe;>typ~: 
.ofconversion.specification.prod\JCes·r~::time.·diagnosti(!S~ 

. .. 

B Conversion 

The bit field .. · specification Bw indicates • that the output 
·.fieldi• occupies ... ·w.·. character .~itions~including .. ·.w-1 blank. 
·characters followed by either a 0 or. a l• .·• The value of the 
corresponding output list. item, which . must nave .been· 
declared to be type bit, appears internally as a bi.t 
constant; output of bit arrays must be accomplished with a. 
repeated B specification. 

Bit data can only be printed or encoded with the B format. 
A11 othet fi~l? .. l>J?.~(!~fi~.H<:>ll~ pr()dl;1(!~ .rl:1Jl~tillle ~~~~()S~~(!s~ ..... ·.i 

9-5 



EDITING CODES 

The edit field specifications, unlike the conversion codes, 
do not correspond to input/output list items. Instead, each. 
interacts directly with the input or output record. 

X Specification 

The nX specification is used to skip characters or to 
generate blank characters. On input, n sequential 
characters of the input record are skipped. On output, n 
sequentjal ... ~18Jlk .. (!haracte~ .. are .... pla(?~d ...in .. ····.·····~ he. out pµt 
r~C?<>r.c1~.i.The .. comma ·.·following,Xin the specification JistJs_ 

:;:»pt(<>oatf 

H [tlrid · .. t.1 Specifications 

The nH (or Hollerith) specification is used to output strings 
of characters and to read a character string into an 
existing H ... f~~!~·:·.:: ~R~.C?.~fiC?.~H<>.n ......• ~itNrt. ... ·.~ .... 7 .... F'p~.~.A-1'; r~~a~e.w.ept •• , ~· ; 1)?~ ..•. · t:te~'r<>~~ ····.·•····. s~~~fiC?t:tt~.<>n• '. /~hi ·~·.:. hn',, 
i,\41here·.~i•·.i~.li ch .. IJ.raC?t~r~ c~>i?fi.~e.d .. ~ ~.lilte.rnateforrnl 
pfJ~·~ .. sP~~ifi~l\tie>P· >f()l" ~C>rnpatibili~Y..\Vi~~· F,2R~}tA,~; 
1Ex~'~c1.ef.J~ the,~ ..... ·C?llll b~;~e~ .. in.··plt;l~ ... •·.()f,·t~.··.··11p~troph~~1 
See.: appendix q;. !J:ne .c0ml!la following • lJ1~.•·•.•.H91l~ri~h •·•·.c>r.; 
i~, ~P~<?Wc~tion.Jn· .. ~be .SP®ifi<?aUcmJiSt. is.optionaJ.~·.\\'.<i·:> / .. > .'.~'. 

On output, the. •. .n, ..•. ch~1J.C?t~rs"i.mrn~9i.a~eJY,J()P,O\'{i11g.S~~·:•n;a: .• 
. ~P~.C?J!!.~11,!<>g :.(orL.<tbe >.'..cbaracter.·~~.string: between.· .... ·•··· .the• 
\1J.pQ$tJ,-ophe$),· in the format specification are placed in the 
output record. Any characters in the ASCII subset (see 
appendix A), including blanks and ,., ... ll.J?~lf.()Ph~.s,, .. <, ... ~% 
,~g~~l?lliP~~, .. ~J!.h~~t.m~ .. (!.barl1~.!~r. ~~r!~g~JJi<>!le,Yer, •.· .. !Ive,~. to¢, 
i.ll.Po8ttt;>Phe,· .• 11.~tliti()e/s·~ ... •····i}ls~~.'·fl;IlY: .. lipC>St.rop~ .. LC!.bafli.~ter, 
;\'{itliit;tx,~•·•i,~.trinp; '..lllllS.t:·b~·.Jrnrn~b~!~ly'.<Pi~.C?~dE!c1·· /\\t~.!h 
!8~91.h~r ••.. li.P~t(".<>Pllj.~:e~~r. ogji.%~.~~/~~g5:~1j~.~~r.\~~;~~·····g0. 
s.!Jl~ .. Pl1.!~! ... te,c,Qi'c:i~ ............... ;·.. ' ...........•.......... ,: ........ : ......... :; .... • ................• :· ..... : .:: .......• : > .. -. ......... · ..... ,'; 

on input, the tn'T~mar~~M~r::s,.imrn~C:li.~t.~ly:-f<>H<>~.iµg.J?.~···.·•····ll~ 
.~p~if iC?ati;o11 1 (or. " .. too ... character ..... sfring.: ...• between .... : the 
:.aPP$trophes} in the format specification are replaced with 
n sequential characters from the input record. Any 
subsequent uses of the same format specification for 
out put c,l1l1~.~ .~b~. I1. phar13Ht~rs. t.() •. be ,,pla~edJn,th~. ot1tP~l 
.r~.C?()fcl~ .<'.•J\11 :liP~troph.~.······ ~P~.~ifi catipn> !7?ipb. }~.()ntlitn5 . ~!!, .. ~ 
tc()nsecutiye.,•liP~tr()phes (!atmotbe,.·••·.llS.ec1 .<>Ii·.·•··inpl.it •.. iWnen a 
.. ;EI<>H~rttb.•·()f .ll.P~troph~ ·~p~ifi(!liti?n J~: part.pf/ a if ()~·flllit. 
;~g~gifi9liti<>n;c911y1i117e .. •illi.~····arrtiY, <~harlictersJtj·Jh~•iJiPl1t 
(~!f.~fll'. lit"~:sJ9pp7C:l1 flt\dtl<>• .. ·.cp&rig~, i~.·.in~c}e, \!<>./th.~ >~<>lJ.erith 
•:pr.ap<>$µ.-9pp¢. :SP!?Cifi(?S:t~o~.··fri· ttiearl'ti':hf ···•·· .. ·· .•.. · •...•.••... '.. :·:'.'.>.· ··ir::;; 

.......... .}'. ... ·.······i·.z•••·'"x·-' , 

~:~i!~~~~~~dt!~~,;~i,:~~f 1i''.;j~~t~i'f ~,\~~,~~~ 
(e~~~~t'.ll .. fi.~19 :~,.to tf.>¥~ill> l!f· cll.lil"tictel'•.••·•· ~i~i()n ... p.:·•111•·.··.~h~ 
;ex;t~rri~.·~E!H()~,····!lh~re .. •.·c~ar.~(!ter,.p?siti()ll<l .is ..• • •• tllEl .firsriJl. 
;th~ ... ··.•··~·~·~r9,.•\P()Siti9112,·•·••is.•.SE!£()nd:•iri .. the ... ·.l"~(!()r9;,1111d .... s() ... · •. ori~ 
.y()nve.rsi()n,.•Uild.~f.\fortritit···:(!()lltrol, >c()nt!pu~~/lit • .. chartict~r, 
'.P()Si~~on.P .. ·.·llJ1~iL. a11()t~e~ /'l'··•··.~~.(!ificfiti()ll.·•i~., E!O~()llfltered pr 
•11ntil·•processing l;)egin!)()nt}ie next external record• 

'Yh~8.ctel'•p9sition .. p ~.~ .•. ~~r ~ithE!r gr~~ter ;thElJ1·orI~ss:thlll'i 
: t~e< ~hlJ.r~(!t~r •• ~i tioJ'l / cur~ently, f>E!ing J pr()~E!SSE!d,< 1:>111)~ 
'.m.u::;~/J10tE!xgeed Jlte rElcor<:J .• •.··~erigth •• · Tile rn8.}{irn~rn········yalu~ 
,~lla.t p ca.n evE!r .(?<>rre(?tly ass1lrne ~ J~T~ . · · . 
:'$11 9~iI>~~,'. if l~~ :san1{~tik~~ter ~8stt1~1l i~ ~~tihed lll~~e 
'.~htin<.<>"C?El' .i:tct.io11 Oll/tll,e )ti~est 9eHnition c.ttike~ .eff ec~. 
.JlElClill~e,()f ••• me··.·,.· .. C~ritlge .••••... ·(?OOtrol.·· ... · £hara(!~er;.·.·,a .· (!ll~8.(!ter 
·p()siJior1 P.in . t1le.> .. ex~er11~ >record· becomes·· character 
tP<>!)! tt911··.1tJj11.JhEl P.l'illtJirtE!~ .. , 

9-6 

SCALE FACTORS 

The scale factor nP is used to change the position of a real 
number's decimal point when the number is input or 
output. Seal~···· .fll..C?!<?l"l).,, .. '?111 .. ,.J?r~.C!~p.~ .. P, ..... ·.'~'···.l"':·a11d .. 9, 
.l>R~C!WC?atio~fexc~p{w~enG:•·is:.used .. on.integer,logical, or·.·· 
;.char~<?ter type :Jtems~: The scale factor n, which is an 
optionally signed integer constant, affects conversion 
differently for each kind of conversion code. 

A scale factor of zero is established when a reference is 
made to a FORMAT statement; it holds for all F, E, G, and 
D field specifications until another scale factor is 
encountered. Once a scale factor is specified, it remains 
in me for all D, E, F, and G specifications in that 
FORMAT statement until another scale factor is 
encountered. To nullify this effect for subsequent D, E, F, 

· and G specifications in the statement, a zero scale factor 
OP must precede a specification. 

For F, E, G, and D input conversion with no exponent in the 
external field, and for F output conversions, the scale 
factor sets the externally represented numoer to the 
internal representation of the number, times 10 raised to 
the nth power. 

For F, E, G, and D input with an exponent in the external 
field, the scale factor has no effect. 

For E and D output, the basic real constant part of the 
output quantity is multiplied by ion and the exponent is 
reduced by n. 

For G output, the effect of the, scale factor is suspended 
unless the magnitude of the data is outside the range that 
permits effective use of F conversion (see G Conversion in 
this section). If E conversion is required, the scale factor 
has the same effect as with E output. 

PRINTER CARRIAGE CONTROL 

When an output record is sent to a line printer, the first 
character of the record is used for carriage control and is 
not printed. For output directed to the card punch or any 
device other than the line printer, control characters are 
not required (the first character of a record is not treated 
as a carriage control character). · 

Although other characters might be available for a 
particular installation, the following values are stanaard 
for FORTRAN carriage.control for line printers: 

Character Action Before Printing: 

t:. (blank) Single line feed 

0 (zero) Double line feed 

1 (one) Feed to first line of next page 

+ No line feed 

Failure to specify a carriage control character can cause 
unexpected results because the first character of output 
data would be used as the carriage control character. 
Carriage control characters are required at the beginning 
of every record that is to be printed, including new records 
introduced by means of a slash. Carriage control 
characters can be generated by any means, such as an X or 
H editing specification. · 

60457040 B 



EXECUTION-TIME FORMAT 
SPECIFICATION 
No format statement is necessary for an input/output 
statement if an array has been created that contains the 
appropriate format specification. This array can be 
defined in any of the following ways: 

• The format specification can be included in a DATA 
statement. 

• The format specification can be included in a 
character assignment statement. 

• The format specification can be created with the aid 
of ENCODE statements. · 

• At execution time, the format specification can be 
read in, under the A field specification, as ASCII data. 

The format specification must be enclosed in parentheses, 
but it must not be preceded by the word FORMAT and a 
statement label. Once defined, the format specification 
array can be used by READ, WRITE, g}tIN':(', PUl'H?.~'.: 

60457040 B 

EN(;()PE, . ()r .... DECOD:E ; statements. More than one 
statement can reference the array. 

The name of the array containing the specifications is used 
in place of the FORMAT statement number in the input or 
output statement. For example, assume the following · 
for mat specification: 

(E9.2,F8.2,I7 ,2E20.3,I4) 

The array IV AR could be defined as follows oy using a 
character assignment statement: 

CHARACTER*24 IV AR(l) 
IV AR(l) = '(E9.2,F8.2,I7 ,2E20.3,I4)' 

A s1.1bsequent output statement in the same program could 
then ref er to these format specifications as: 

WRITE (2,IV AR) A,B,I,C,D,E,J 

which produces exactly the same result as the statements: 

WRITE (2,10) A,B,I,C,D,E,J 
10 FORM~T .<~~.2,F8.2,_I~~~E20.3,_I~J 

9-7 





ARRAY ASSIGNMENT 10 

The array assignment statement discussed in this section is 
neither a part of the standard set of FORTRAN statements 
(as defined by American National Standard X3.9-1966, 
FORTRAN) nor directly related to the vector programming 
capabilities of CYBER 200 FORTRAN. An array 
assignment statement, which is typified by one or more 
operands written in subarray notation, is a shorthand for 
FORTRAN DO loops. If the DO loop equivalent of an array 
assignment statement satisfies the criteria listed in 
section 11 for vectorizable loops, and if the V compile 
option of the FORTRAN system c0ntrol statement is on, 
then the array assignment statement will be compiled into 
machine vector instructions. 

' The array assignment statement is not a part of the 
explicit vector programming capability of CYBER 200 
FORTRAN; it is a DO loop notation. 

SUBARRAY REFERENCES 
A subarray is a cross-section of an array; it can be one 
element, several elements, or all of the elements of the 
array. A subarray is identified by an array name, or an 
array name qualified by a subscript containing one or more 
implied DO subscript expressions plus any number of other 
subscript expression forms (section 2). Implied DO 
subscript expressions can appear only in array expressions 
which, in turn, can appear only in array assignment 
statements. 

The three implied DO subscript expression for ms are shown 
below. 

Forms: 

* 

mi:*:m3 

m 1 Initial value of subscript expression; an 
integer constant or simple integer. variable. 

m2 Terminal value. of subscript· .. expression; an 
integer constant or simple integervariable. 

m3 Optional incrementation value; an integer 
constant or simple integer variable. ·When m3 
is omitted, the colon immediately preceding 
it must also be omitted and a value of 1 is 
assumed for the incrementation value. 

* Represents a· constant· with a value·· equal to 
the declared dimension size. 

The first form indicates subscript expression values ranging 
'from mt up through m2, starting with ml and 
incremented by m3· . The second implied DO form is 
equivalent to the form l:m2:l, where m2 is equal to 
the declared size o.f the array dimension.. The third implied 
DOform indicates subscript expression values starting with 
m h up through the declared size of the array dimension 
an~ in increments of m 3. In every case, if the value · 
Cm2-m1)/m3 is not. integral, the subscript expression 

~·, y•" ·< .,, 

60457040 B 

never takes on the terminal value m 2· The initial value 
m 1 must be less than or equal to the terminal 
value m2· 

Example: 

A(S,10,2) is the array declarator. 
1

Then, 

A(*,*,1) designates one-half of the array elements, and 

A(*,*,2) designates the other half. 

A(l:2,1:2,1:2) names the following elements: 

A(l,1,1) 
A(2,l,1} 
A(l,2,1) 
A(2,2,l) 
A(l,1,2) 
A(2,l,2) 
A(l,2,2) 
A(2,2,2) 

A(l:5:2,l,1) designates the following elements: 

A(l,1,1) 
A(3,1,l) 
A(5,l,l) 

An entire array can be designated by the unsubscripted 
array name. 

Example: 

A(l0,10) is the array declarator. Then, the following 
implied DO forms are equivalent: 

A 
A(l:l0,1:10) 
A(l:lO,*) 
A(*,1:10) 
A(*,*) 

· The order in which the array elements are indiCated by a 
subarray is always ·with the leftmostsubscript expression 
varying through its range, the next subscript expression 
being incremented and the first subscript varying throµgh 
its range again, and so on until every implied DO has been 
run·. through· its. range at least once. This rule applies to all 
subarrays, regardless of whether an array .. is row wise or 
columnwise. However, whether or not an array is rowwise · 
does affect whether or not its elements are accessed 
consecutively in memory. 

The association between an instance of the subarray 
notation and the .. values ·elicited by it is displayed in 
figure 10-1. For an array declared as A(l0,3), the figure 
shows the transformation from a.· subarray A(l;*) to its 
equivalent in arrayelement references, which in turn elicit 
different sets of values according to whether A is row wise 
or coluinnwise. In contrast to the subarray A(l,*), the . 
subarray A(*,1) wouldnot identify consecutive elements in 
memory if the array declarator. occurred· in a ROWWISE 
sbitement. In general, ·only. a·. single row of elements in a ; 
rowwise array (of any size) .can be specifiedconsecutively 
in• 111e1nory at .<>netime b¥ using th~ ~ubarrli¥ ~()~liH<>n~ 

10-1 



The number of subscript expressions that are implied 
DO subscript expressions must be the same for both. 

Scanning from left to right in the subscript, the ith 
implied DO subscript expression in one must be the 
same as the ith implied DO subscript expression in 
the other. Implied . DO subscript expressions are 
considered to be the same when the expansions of the 
subscript expressions into the following form are 
identical: · · · 

initial value : terminal value : incrementation 
value 

. The subarrays need not have the same number of subscript 
expressions to be conformable, nor must the subarrays be 
:the same data type~ The number of entities specified in a 
subarray is the same as in the subarrays conformable 
with it.· 

10-2 

a A subarray 
. expr. 

If the value of expr is a scalar (one value), execution of the 
assignment statement assigns· that value to all identified 
elements of the subarray a. If the value of expr is a 
subarray (more than one value), the identified elements 
of a are replaced with the corresponding elements in the 

: array expression result • 

Data type conversion rules on assignment are identical to 
those described in · section 4 for scalar assignment 
.statements. 

60457040 B 



·whtCJ:i" in.•······turn ....... woiilcf····.·a.<fo.orrii;>lish" Hie•' toliowhig···sef ·· ot 
assignm~nts: · .. · . . 

X(l,3) = Y(2,l) 
X(2,3) = Y(2,2) 
X(3,3) = Y(2,3) 
X(4,3) = Y(2,4) 
X(5,3) i:: Y(2,5) 

Similarly, the statement pair: 

DIMENSION X(5,3), Y(l0,3,2) 
X(1:*:3,*) = Y(1:5:3,*,2) 

has the same effect as the statements: 

DIMENSION X(5,3), Y(l0,3,2) 
DO 200 12=1,3,l 
DO 100 ll=l,5,3 
X(Il,12) = Y(Il,12,2) 

100 CONTINUE 
200 CONTINUE 

60457040 8 

which wotild'accfompllsh the f~llowlrig' set o(assignfuents:······ 

X(l,1) = Y(l,1,2) 
X(4,1) = Y(4,1,2) 
X(l,2) = Y(l,2,2) 
X(4,2) = Y{4,2,2) 
X(l,3) = Y(l,3,2) 
X(4,3) = Y(4,3,2) 

If any or all of the DIMENSION statements in these 
examples ere changed to ROWWISE statements, the 
examples remain correct. Furthermore, if in the first 
example the array declarator for X appeared in the 
DIMENSION statement and the array declarator for Y 
appeared in a ROWWISE statement, the array assignment 
statement would be vectorizable because the elements of 
X and Y would be accessed consecutively in memory. 

10-3 





VECTOR PROGRAMMING 11 

- Detailed in , thiS 'sectfon are the ways that a user can 
introduce machine vector instructions into the object code . A. 
for a FORTRAN program. Any of the forms described here 
can be used in the same program with . the previously 

;described F,OR1'RAN features. 

AUTOMATIC VECTORIZATION 

·Automatic vectorization is a process by which the 
FORTRAN compiler translates an iterative, sequential 
procedure into parallel procedures. The aim of the process 
is to utilize the capabilities of the CYBER 200 hardware to 
produce optimal object code, without requiring alteration 
of FORTRAN programs that do not use the extensions of 
CYBER 200 FORTRAN, and without necessitating that a 
problem be reconceptualized in terms of parallel 
processes. Autom&tic vectorization of a FORTRAN 
program is selected by including the V compile option in 
the FORTRAN system control statement that requests 
compilation of the program. 

Under the V option, CYBER 200 vector instructions are 
generated for DO loops that have certain characteristics. 
The object code generated for a loop that is accepted by 
the vectorizer consists of vector instructions rather than 
scalar instructions. If a loop is rejected by the vectorizer, 
the compiler attempts to transform the loop into a call to 
one of the supplied ST ACK LIB routines. 

Automatic vectorization can be used with any FORTRAN 
program, including FORTRAN programs that do not use 
any of the extensions of CYBER 200 FORTRAN. However, 
because of the restrictiveness of the conditions for 
vectorization, summarized in table 11-1, it might not be 
possible for the vectorizer alone to achieve the degree of 
vectorization desired. As an alternative, the programmer 
can elect to use other methods, in conjunction with the V 
compile option or not, to specify vector operations 
explicitly. 

GENERAL CHARACTERISTICS OF 
VECTORIZABLE DO LOOPS 

·A simple vectorizable DO loop is shown at® in 
figure 11-1. The range of a vectorizable loop can contain 
assignment statements, CONTINUE statements, and DO 
statements. An input/output statement or IF statement, 
for example, is not acceptable in a loop that is to be 
vectorized. 

The initial, terminal, and incrementation parameters of the 
DO statement of a vectorizable loop must have certain 
characteristics. The incrementation parameter, if present, 
must be 1; an incrementation value of 2, for example, 
causes the loop not to be vectorized. Secondly, FORTRAN 
allows the parameters to be constants or variables; 
however, a variable initial, terminal, or incrementation 
parameter does prohibit the vectorization of any 
containing DO loop. For instance, the vectorizable loop -
defined at @ has a variable terminal parameter. Loop 
@ contains loop © and,, consequently, cannot be 
vectorized. Thirdly, the iterative count of a loop or entire 

60457040 c 

B. 

200 

100 

222 

DO 222 KEM=1,300 

DO 100 1=1,10 

DO 200 J=1,N 

A(J,l)=X(J,I) 

CONTINUE 

CONTINUE 

DO 300 MM=1,11 

DO 200 JJ=1,30 

DO 400 IN=1,200 

400 CONTINUE 
200 CONTINUE 
300 CONTINUE 

... CD 

@ 
@ 

~-® 

--® 
-·----0 

Figure 11-1. Form of Vectorizable DO Loops 

nest of loops must be less than or equal to 216-1 (that is, 
65535). By this criterion, loops G) and ® in part B of 
figure 11-1 can be vectorized, depending on the range of 
the innermost loop; but loop ® cannot be vectorized 
(because 30 * 200 * 11 = 66000). 

When the initial or terminal parameter of a loop is a 
variable, the dimensions of the loop-dependent array 
references within the loop are used to determine the 
largest possible iterative count through which the loop can 
pass, and this count is used to decide if the loop can be 
vectorized. 

The U compile option can be selected for unsafe 
vectorization. When U is selected, the compiler vectorizes 
loops that contain dummy arrays, even if the terminal 
value of the loop is variable. The optimization is 
considered unsafe because the presence of a variable 
dimension might cause the iterative loop count to exceed 
65535. 

The U compile option also enables vectorization of loops I 
that contain a.n equivalenced data element on the left side 
of an assignment statement. . 

If a loop cannot be vectorized (loop ® in figure 11-1, for 
instance), then a loop containing the nonvectorizable loop 
cannot be vectorized either. By this criterion, loop Q) is 
nonvectorizable. 

11-1 



TABLE 11-1. CRITERIA FOR VECTORIZABLE LOOPS 

Can Appear in DO Loop 

Vectorizable loops nested within the loop. 

Loop incrementation value of 1. 

Total iteration count less than 216 for a nest of 
loops. 

CONTINUE statement. 

Arithmetic operators +, ':"', *, /, and **• logical 
operators. 

Real, integer, and logical data elements. 

References or calls to the following functions and 
subroutines: ABS, ACOS, ALOG, ALOGlO, ASIN, ATAN, 
cos, EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN. 

Any scalar assignment statement whose right side 
is a real, integer, or logical expression. 

Loop-dependent subscripts having one of the forms c, 
c+n, c-n, or c*n, where c is a control variable and 
n is an integer constant. The c*n form is not valid 
on the STAR 100 or the CYBER 200 Model 203. 

References to duuuny arrays, so 
value of the loop is constant. 

Loop-independent subscripts. 

ASSIGNMENT STATEMENTS IN 
VECTORIZABLE DO LOOPS 

long as the terminal 

Operators in assignment statements in a vectorizable loop 
can be· any of the arithmetic or logical operators. The use 
of relational operations within a loop causes the loop not to 
be vectorized. 

The type of an operand occurring in . the range of a 
vectorizable loop can be integer, real, or logical. A 
vectorizable loop containing · a logical assignment 
statement is shown in figure 11-2. 

11-2 

Must Not Appear in Any Part of DO Loop 

Nonvectorizable loop nested in the loop. 

Loop incrementation value that is not 1. (this does 
not· apply to the CYBER 200 Model 205). 

Total iteration count greater than or 
. 16 

equal to 2 
for a nest of loops. 

Any.control statement besides DO and CONTINUE. 

Relational operators. 

Any data element that has a type other than real, 
integer, or logical. 

Any input, output, or memory transfer statements. 

References and calls to functions and subroutines 
other than ABS, ACOS, ALOG, ALOGlO, ASIN, ATAN, cos, 
EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN. 

Any data elements appearing on the left side of an 
assignment statement which have appeared in 
EQUIVALENCE statements. 

Vector assignment statements. 

Loop-dependent subscripts not of one of the forms c, 
.c+n, c-n, or c*n, where c is a control variable and 
n is an integer constant. The c*n form is not valid 
on the STAR 100 or the CYBER 200 Model 203. 

References to any duuuny array when the terminal . 
value of the loop is variable (can be vectorized 
the U option is selected). 

LOGICAL A, C, R 
DIMENSION A(50000), C(50000), R(49999) 
DO 999 X=2,50000 

'" 

if 

R(X-1) = (A(X-1) .AND. A(X)) .OR. (C(X-1) .AND. C(X)) 
999. CONTINUE 

Figure 11-2. Vectorizable Loop #1 

60457040 B 



References to dummy arrays cause a loop with a variable 
terminal value to be nonvectorizable, unless the U option is 
selected. A loop that is vectorizable only if the U option is 
selected is shown in figure 11-3. 

FUNCTION F(OFFS,F1,N) 
DIMENSION OFFS(N),F1(N) 
DO 3 1=1,N 

3 OFFS( l)=F1 (1)+5.0 
F=OFFS(2) . 
RETURN 
END 

Figure 11-3. Vectorizable Loop #2 (U option) 

Function and array references can appear in the range of a 
vectorizable loop. However, function references are 
restricted to references to the predefined functions ABS, 
IABS, FLOAT, IFIX, SQRT, EXP, ALOG, ALOGlO, SIN, 
COS, TAN, ACOS, ASIN, and ATAN. References in a loop 
to other predefined functions, or to any user-defined 
function, yields a nonvectorizable loop. Loop-dependent 
array references are subject to several restrictions. 
Loop-independent array references are considered to be 
scalars in the context of automatic vectorization. 

The left side of an assignment statement appearing in the 
range of a vectorizable DO loop must be a loop-dependent 
array reference or a scalar reference. A vector or 
descriptor on the left side makes the loop nonvectorizable. 
A loop-dependent array reference is an array reference 
with at least one loop-dependent subscript expression. For 
example, the left sides of the assignment statements in 
figures 11-1, 11-2, 11-3, and 11-4 are all loop-dependent 
array references. 

DIMENSION A(10,10), .8(10,10) 

DO 10 1=1,10 G) 
DO 20 J=1,10,2 ~------@ 

A(J,I) = 8(J,J) 

20 CONTINUE 

10 CONTINUE 

Figure 11-4. Vectorizable Loop #3 

A scalar reference is defined to be a simple variable or a 
loop-independent array reference. Scalars appearing on 
the left side of an assignment statement are subject to 
certain restrictions in order for the containing loop to be 
vectorized. These restrictions are as follows: 

• If a reference to the scalar appears before the first 
definition within the loop, the loop is not vectorizable. 

• If the scalar is defined within the loop and appears in 
embedded loops, the loop is not vectorizable. 

• If the scalar is an array element, every reference to 
that array in the range of the loop must have that 
same subscript. 

Figure 11-5 shows an example of both .an unvectorizable 
loop (1), and a vectorizable loop (2). 

60457040 B 

2 
1 

DIMENSION A(10,10), 8(10,10), C(10,10) 
DO 01 1=1,10 
T = A(l,1) + 8(1,1) 
C(l,1) = C(l,1)*T + A(l,1)/T 
DO 2 J=1,10 
T = A(J,I) + 8(J,I) 
C(J,I) = A(J,l)*T + 8(J,l)/T 
CONTINUE 
CONTINUE 

Figure 11-5. Vectorizable Loop #4 

LOOP-DEPENDENT ARRAY REFERENCES 
IN VECTORIZABLE LOOPS 

The form of a subscript expression in a loop-dependent 
array reference is restricted to the control variable of the 
loop or of a containing ioop, or a control variable plus or 
minus a constant: 

c 
c+n 
c-n 

c Control variable 
n Integer constant 

Figures 11-1 and 11-2 contain subscript expressions that 
properly can appear in a vectorizable loop. 

As the control variable passes through the range of values, 
the loop-dependent subscripts of array references must 
increase by a constant amount. If the array references are 
not contiguous, the loop should not contain embedded 
loops; otherwise it will not be vectorized. 

In figure 11-4, the subscripts of array A are increasing in 
increments of 2, and the subscripts of array · B are 
increasing in increments of 22. Therefore, loop 2 is 
vectorized, but loop 1 is not. 

Although loop-dependent array references to a particular 
array can appear on both sides of assignment statements in 
the range of a DO loop, in certain cases this could inhibit 
vectorization of the loop. When an array reference appear·s 
on the right side of an assignment statement, elements of 
the array are being accessed. When an array reference 
appears on the left side, elements of the array are being 
defined. For any particular array, if the array portion that 
is referenced by the assignment statements in the range of 
the loop overlaps the portion that is. defined, there is 
potentially a feedback situation which cannot be described 
in terms of vector operations. Because of the parallel 

-nature of vector operations, vectors are not suitable for 
use in describing any iterative procedure containing 
feedback. The compiler is not always able to determine 
that a feedback situation does not exist. If there is a 
possibility of feedback, the containing loop will not be 
vectorized. 

In the case where there is an overlap of referenced and 
defined array elements within the range of a loop, 
feedback occurs only if at least one of the array elements 
in the overlap is defined in an iteration of the loop and is 
then referenced during a subsequent iteration. Given the 
declaration and initialization statements: 

DIMENSION A(5} 
DATA A/1,2,3,4,5/ 

11-3 



I 

the following is an illustration of feedback. The program 
segment: 

DO 11=1,4 
A(I+l)=A(l)*2 

1 CONTINUE 

consists of a DO loop in whose range lie a CONTINUE 
terminal statement and an assignment statement 
containing two loop-dependent array references. The array 
elements referenced and defined by successive iterations 
of the loop are as follows: 

Referenced 

A(l) 
A(2) 
A(3) 
A(4) 

A(2) 
A(3) 
A(4) 
A(5) 

Elements A(2), A(3), and A(4) constitute the overlap. On 
the first iteration of the loop, A(2) is defined to be 1. On 
the second iteration, A(2) is accessed (and is used to define 
A(3)). The result of completing execution of the DO loop is 
that the five elements of A have the respective values 1, 
2, 4, 8, and 16. A vectorizer interpretation of the same 
loop would be to assign the (i-1)th element multiplied by 
2 to the ith element of A (where i ranges from 2 to 5), in 
which case the result would be the values 1, 2, 4, 6, and 8 
respectively for the five elements of A. The loop is not 
vectorizable. 

The program segment: 

DO 1 I=2,5 
A(I-l)=A(I}*2 

1 CONTINUE 

is an example of a loop in which there is overlap but no 
feedback. The array elements referenced and defined by 
successive iterations of this loop are as follows: 

Referenced 

A(2) 
A(3) 
A(4) 
A(5) 

Defined 

A(l) 
A(2) 
A(3) 
A(4) 

Again, the overlapping· elements are A(2), A(3), and A(4). 
However, no element is defined on one iteration to be 
accessed on a success_ive iteration, as happened in the 
previous example. Therefore, the results of executing this 
DO loop would be identical to that of a vectorizer 
interpretation of the loop. The loop is vectorizable. 

AUTOMATIC RECOGNITION OF 
ST ACKLIBABLE LOOPS 

When the V option is selected, the vectorizer attempts to 
vectorize all DO loops as described under vectorization. 
However, when an innermost loop is rejected by the 
vectorizer (that is, the loop cannot be vectorized), the 
rejected loop is· transformed into a call to a 
compiler-supplied STACKLIB routine or inline vector 
macro code if the loop is one of the following types: 

11-4 

DO 1 I=L,M 
1 X(I) = X(l=l) + Y(I) 

DO 2 I=L,M 
2 X(I) = Y(I) + X(l-1) 

DO 3 I=L,M 
3 S = S+X(I) 

DO 4 I= L,M 
4 S = X(I) + S 

DO 5 I= L,M 
5 S = S+ X(I}*Y(I) 

DO 6 I= L,M 
6 S = X(l)*Y(I} + S 

DO 7 I=L,M 
7 S = S+X(I}*X(I) 

DO 8 I= L,M 
8 S = X(I}*X(I) + S 

DO 9 I= L,M 
9 S = S+X(I}**2 

DO 10 I= L,M 
10 S = X(I}**2+S 

In all of the above loops, X and Y represent distinct 
I-dimensional arrays of type real which must not have 
appeared in an EQUIVALENCE statement. S represents a 
simple real variable. All of the above loops must contain 
only one assignment statement of the form described 
above. CONTINUE statements are allowed. The loop 
increment parameter can either be 1 or not explicitly 
specified in the DO statement. Variables L and M 
represent any DO loop initial and final value parameters. 
The variable I represents any DO loop control variable. 

Loops 1 and 2 are converted to calls to a STACKLIB 
routine that performs addition rec.ursively. Loops 3 and 4 
are converted to calls to a STACKLIB routine that 
performs summation. Loops 5 through 10 are converted to 
calls to a STACKLIB routine that computes a dot product. 
If the object mainframe is the CYBER 200 Model 205, I 
loops 2 through 10 are transformed into inline vector 
macro code. 

AUTOMATIC VECTORIZATION MESSAGES 

The vectorizer indicates on the source listing how many 
loops were encountered in the routine, how many loops 
were vectorized, and how many loops were transformed 
into calls to STACKLIB routines. For loops that could not 
be vectorized, a message is issued that indicates the first 
impediment to vectorization that was encountered by the 
compiler. The compiler analyzes a loop for vectorization 
from the bottom to the top; therefore, the diagnostic 
might not reflect the impediment to vectorization with the 
lowest source line number. See appendix B for a complete 
list of the vectorizer messages. 

The source listing also indicates which loops were 
transformed into calls to STACKLIB routines. An example 
of a source listing for a program compiled with the V 
option is shown in figure 11-6. 

Whether· or ·not. the · .. V. compile option·. has been selected, 
vector instructi.ons are produced in the o~ject code when 
vectors and special calls (section 13) are used.. Vectors 
di ff er from the nonvector (scalar)· elements of CYBER 200 
FORTRAN in that. many·values(rather. than a single value) 
are specified with the . intention of using those. values as a 
series of operands for a single operation,.·. such as addition 
or assignment. 

60457040 c 



00001 
00002 

- ·ootHt3-
oooo4 l 
00005 

·zyooo6 2 
00007 
00008 

PROGR"AM VECTRIZE 
DIMENSION A(l~0),8(100) 
0 0 .. -i- -·t•trtt>1>··· 
A<I> • ACI> + BCI> 
DO 2 I•2tl00 
A(l) • AH•l) + 8(1)' 
STOP 
END 

UNCOLLAPSABLE LOOPS REASON FOR NON•VECTORIZATION 

···------------~---LINE 00005 

STAC~LIBE~ LOOPS 

----------------L.JNE 00005 

NU~BER OF LOOPS IN ROUTINE 

L.INE 00006 

• oou~ 

NUMBER OF VECTORllAdLE LOOPS = 0001 

NUMBER OF STACKLIBEO LOOPS 
i"O F.QPOHS 

.:: 0001 

RHS AR~AY HAS POSSIBLY RECURSIVE PROPERTIES 

Figure 11-6. Vectorizer Output 

The data elements used in vector programming are: 

Vector An ordered set of scalar elements; 
semicolon notation can be used to 
specify it. 

Descriptor A pointer to a vector. 

Only the explicit· forms for vectors and sparse vectors are 
unlike the forms of other FORTRAN data elements. The 
elements of a vector that is part of an array can also be 
treated as scalar array elements; the way that the data is 
to be processed (that is, as a vector or as an array) is 
_getermined by the. notation. used to reference. it. 

VECTORS 

A CYBER 200 FORTRAN vector can be .. defined on .a 
previously declared scalar array, or on. the dynamic space ! 
·area and is delimited.·• by a base addres8. and. length. Ai 
vector.that)s definec!.·on an arr11y is .• ·denotedby thenamei; 
,'?f the 11~ray, the}o~ati()n .in the array of the vector's first.} 
'.element, and the number. of elements encompassed by the) 
vector•< <··.: .· ....... ·.= 

'.". '····.: .. :.:·.·=· .. , 

For:~;n) ••••••••·••• ••.•• ><'.<> .· /i•·······•i••• •. ·.·.·····• 

a T~e··· ~~ril~····· ot ~ i re~,. >integer, c()mp~~x,J 

60457040 8 

aouble-precision, orbit array. 

Thesubscript which .. ·designates .the' vector's 
~irst• element (the. bs.se address); a subs~ript' 
consisting ·Of ·from·•·one. to seven subscript 
expressions, . depending upon the number . of 
dimensions·in.the array a·. 

The length, an integer expression , 
(nonnegative) •. The length must not exceed i 
65535 elements (216-1) for integer, real, or 
bit vectors, and must not exceed 32767 
elements (215-1) for complex or double­
l?r~ci~ipn yectors. 

The elements in the array a, starting with the element a(s) · 
and continuing for n contiguous elements in memory, 
belong to the vector a(s;n). A semicolon must be used to 
separate the base address from the length. The user must 
ensure that the length of the vector is within the bounds of 
the array, as no compile-time or run-time check is made 
for this. 

Example: 

A(20) is ··the array declarator. Then the following are two 
of the p()ssible vectors wi.thin the 20 elements of A: 

: I( B(2~5)Js .·.the array declarator for a rdw~lse array, the i 
following•i,s~.possible.vec_to~ \Vithin the IO.elements of.·B: ' 

'.·.-... .. · .:.::' 

The array efoments within . the . vector~ if referenced ; 
individually,. would. be B(2,l), 8(2;2), B(2,3), B(2,4), and 
8(215). ·• If B had been. declared co~umnwise, . the vector i 
B(2,1;5) would have been the following: · 

11-5 



11-6 60457040 B 



For coriipfox vecfor arithmetic expresf;foris; the following 
restrictions apply:, 

e Operands can be integer, .. real, . or complex. 
Double-precision operands are not allowed. 

• Exponentiation is not allowed; the operators in a 
complex vector expression can be only+,-, *,and /. 

For double-precision vector arithmetic expressions, the 
following restrictions apply: 

• The expression must consist of either a 
double-precision vector or a reference to a 
FORTRAN-supplied double-precision vector function. 
No operators are allowed. 

• The expression can appear only in a vector arithmetic 
assignment statement of type double-precision. 

Given the declarations: 

DESCRIPTOR Dl, SCRP, RZLT 
DIMENSION SCRP(3,3), VR(lOO), R(lOO) 
DATA Dl/VR(l;50)/, SCRP(3,l)/VR(l;100)/ 

the following are examples of vector arithmetic 
expressions: 

e VR(l;lOO) 

Current values of the 100 consecutive elements in the 
array VR. 

e Dl 

Current values of the first 50 consecutive elements in 
the array V R. 

e Dl + N 

A vector formed by adding the value of the scalar N 
to each element. of VR(1;50). 

e ..;(Dl + N)/2.**M 

A vector for med by adding N t() D 1, negating, then l 
performing a divide by 2**M on each element of: 
VR(1;50). 

• SCRP(3,1) 

current values ()f the 100. con$ecutive elements. fu the< 
array.·vR~ 

• VEXP(R(lO; 52); RZLT) 

v eet0r function. reference. 
'.:: .... ········; 

VECTOR RELATIONAL EXPRESSIONS 
,, .. , ..... '.:.::···.=· .. :.: ':··· .. · .... ·,·· .. , .. ; 

A vec~or . relational · ·• expressfon consists of .. · EJ. relational 
operator fianked • by two expressions. The l."elational 
opera tors are; 

.EQ. 
~GE~ 
.GT. 
.LT• 
~LE. 
.NE. 

60457040 B 

Equal to 
Greater than or equal to 
Greater than 
Less than 
Less than or equal to 
Notequalto 

The perfods are part of the operators ancf must appear. 

A vector relational expression. has one of the following 
forms: 

sae op vae1 

vae1 op sae 

sae A scalar arithmetic expression of type real or 
integer, but not of type complex or 
double-precision. 

op One of the relational operators. 

A vector arithmetic expression of type real 
or integer, but not of type complex or 
double-precision. 

A vector relational expression, which always contains one 
or more vector data elements, evaluates to a bit vector of 
truth values represented by bits 0 and 1. (In contraSt, 
evaluation of a scalar relational expression results in a 
single logical value.) 

When both operands for a relational operation are vectors, 
the operation compares successive elements of one vector 
operand with corresponding elements of the other vector 
o·perand. If the specified relation holds between the pair of 
elements, the operation sets (assigns 1 to) the 
corresponding bit in the result bit vector. If the relation 
does not hold, the operation clears (assigns· 0 to) the 
corresponding bit in the result bit vector. When one 
operand is a vector and the other a scalar, the scalar is 
compared with each element of the vector during 
evaluation of the expression. 

Given the declaration: 

DESCRIPTOR Dl. 

.the following are examples of vector relational expressions: 

• 

• 

• 

X+Y/3~*Z ~LT. VR(l;lOO) 

Bit .. vector··· having a. length of'· 100 bits, where the.•. ith. J 
bit· is.· l if the •·•.•• ith .• element of·.· the ·· real. yector,: 
VR(1;100) is greater tban or E?qual to the value .of the 
scalar arithmetic expressi()n ...• • •• x+Y/3.•z;•·.·•·.·llrid .. ··. is 0; 
otherwise.· · · · 

ri ti ~NE~JJl*2 
, . . . . . . . . . ,'· ·... . . ; '. · .. · .· .· '... . . : ·.· ·.• ... ·.· · ... · .· : ... :. ·. · .. · .. ·.·. ·•. · .... •. ·. . ·. . . . .. .: . :· :. ·...• . . . ·.;. . . : .... · . , . : ·. . ·.. . . ·.· . . •· .. · .·. . . . · .... : : · ..... · .· .. · .... • .. '. '. · .• · · ... ·· . ·. ·. ··. :. : . ; . :.' · .. · .. · .. =~.·.· 

.13it vector•having•·•the length ...•• <>r.t~~··ve~tor. iMt.·])t·! 
points to, ;Where the 1thbit.•is 1.·if an element of the: 

: vector is nonzero, and is 0 otherwis~. : 
, ...... , 

VJ.l{l;89} ~EQ. VR(2;89) 

Bit·· vector ... h~vtng ~length ()f 89 bits, ~h~~~ the ith · 
bit is. L If the ith element of the real vector: 
VR(1;89) e9uals the 1th element of the real vector : 
VR(2;89),.andis0·otherwise~ 

• R.(10;20).GE• • 0.34' 

Bit v~ctor<having···alengthj>f• 2~ .·.t:)its,.· .• where··.the ... it.h1 
.bit .. i~ 1 .. if Jh~>itfi element of the r~B;l yector R(10;20); 
~.·. ~~Ei.!.~t.!~Eir1 • .. <>r. ~9.~~ J<> .... 9d ~~ .. ~m~J~ 9, <>.m:r,!fi~~~ . . ... ; 

11-7 



BIT ·EXPRESSIONS 

A bit expression can be a vector relational expression, bit 
vector, bit descriptor, bit vector function reference, bit 
descriptor array element, bit constant, bit variable, bit 
array element, or a bit expression enclosed in parentheses. 
If B and C are vector bit expressions; then B followed by a 
logical operator followed by C is also a vector bit 
expression. 

11-8 60457040 B 



A. 

B. 

DIMENSION Y{15),A{64,8) 
BIT Y,A 
DESCRIPTION Y 
DATA A/ ... 
DO 10 1=1,8 

ASSIGN Y(l),A(1,1;64) 
ASSIGN Y{16-l),Y(I) 

10 CONTINUE 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

points to A(1,1;64) 

points to A{1,2; 64) 

points to A{1,3;64) 

points to A{1,4; 64) 

points to A{1,5; 64) 

points to 'A(1,6;64) 

·points to A(1,7;64) 

points to A{1,8;64) 

points to A{1,7;64) 

points to A{1,6; 64) 

points to A(1,5; 64) 

points to A(1,4;64) 

points to A{1,3;64) 

points to A{1,2;64) 

points to A(1,1;64) 

Array Y 

Figure 11-8. Example of Descriptor ASSIGN 

Second form: 

ASSIGN p, .DYN.e 

p A descriptor, or a descriptor array element. 

e An integer scalar expression that indicates a 
quantity of dynamic space in words or bits. 

After execution of this second form of the descriptor 
.ASSIGN. statement, p · points to a vector.· consisting of. 
dynamic space having a length of e words if p is real or 
integer, e bitsif p Js bit, or 2e wo{'ds if e is complex. 
Befoi:e the value> of> the dynamic< space · pointer Js' 
: incremented, >the current· value of the dynamic: .. space 
poi11ter••·is<11ssigned .. ·. lls ... • the .base.• addre$······of··the ve~tor · 
:pointed to by p. · 
;· .... · ... : ......... ·· ......... · ............ ;·····. ··· .. ···· ... ····> .... ·' 

·.·o~~.rn1c··.·sp~c·e······~······~~n~gecl·.•.~····a··st~ck ••.•••••. Arfer.~h•··8ssign·~·~llf•! 
: to dynaJl1iC spa(?e has be.en mEl.~e with a descriptor ASSIGN , 
sta,tement, tl'le dynamic.· spacE! .·· pointe~. (the . lo.cation•·· of . the, 
:top of .th.e stack). isincrement.ed~ ···~he.next space.available· 
·is .. ··. made ·.to .· begif1 at ' tl'le. first.•.· double\Vord ,bound~Yh 
Subsequently,.•:.the. .e'fecuti~ .()f' F~EE,.staten~.ent.oi:.···a.i 
'R~'l'YRN .... ~tateme.nt·•· releru;~~/·~.>~yn~1I1ic .• ·.~pace ..•... a11ocE\tedj 
by. ~cript~~ A~IGN statf!lll~ntsinJfle program• unit~·•. 

60457040 B 

FREE ST A TEMENT 

Execution of the FREE statement (or completion of 
program unit execution) reverses the effect of a descriptor 
ASSIGN statement in which a reference .DYN. to the 
dynamic space pointer appears. The FREE statement 
resets the dynamic space pointer to the value it had before 
execution of the first descriptor ASSIGN statemenf in the 
program unit. All space assigned through the use of 
descriptor ASSIGN statements is released; if more than one 
such assignment was made, all are reversed. 

Form: 

FREE 

VECTOR ARITHMETIC 
ASSIGNMENT STATEMENT 

A vector arithmetic assignment statement has the 
following form: 

v=e 

v A vector of type integer, real, complex, or 
double-precision; or a descriptor or descriptor 
array element of type integer, real, or complex. 

e A vector arithmetic expression, or a scalar 
arithmetic expression. 

The value of e is assigned to v • When v is 
double-precision, e can only be a ·double-precision vector 
or a reference to a predefined CYBER 200 FORTRAN 
double-precision vector function (listed in appendix E). 

If e evaluates to a scalar, that scalar is stored into every 
element of v; but if e evaluates to a vector, the first 
element of e is stored into the first element of v , the 
second element of e is stored into the second element of 
v, and so on. If the type of v differs from that of . e, 
type conversion takes place, during assignment, to the type 
of v. Type conversion rules are given in table· 11-3. 

Examples, given the following declarations: 

• 

• 

DOUBLE PRE.GISION RES(30), DPN, EXN(30) 
DESCRIPTOR Dl, DEX 
DATA· DEX, Dl/RES(1;20), EXN(l;l5)/ 

RES(1;30) = DSQR'f(DPN) 

Replace the. value of the ith. element ()f RES(1;30) 
with .. the. value· returned by ·the predefined functi()n 
reference DSQR'l'(DPN) •.. The sequential equivalent· is: 

Do··3·1::1,30 
3 RES(I) = DSQRT (DPN) 

DO 31:::;1,30 
3: , RES(I) ~ EX~(I) > 

11-9 



Execution of the statement causes the complete evaluation 
of e and the storing of the result into v • If v is longer 
than the · result, . the remaining rightmost bits ·of v · are 
padded with zeros. 

11-10 60457040 B 



All variables in the DESCRIPTOR statement list are 
declared to be descriptors, and any array or array 
declarator list element specifies a descriptor array. For 
example, the statement pair: 

DESCRIPTOR A,B,C(3,4) 
REAL A,B(6,2),C 

specifies A to be a real descriptor, and B and C to be 
descriptor arrays having 12 type r.eal descriptor array 
elements each. 

The type of Vi must be established with an explicit type 
declaration statement, or by the first-letter rule. 
Although vectors can be double-precision, a descriptor 
cannot be double-precision. 

INITIALIZING DESCRIPTORS 
AND VECTORS 
The nonexecutable DATA statement, described in 
section 6, can be used to place initial values in vectors and 
descriptors before the program begins executing. 
Double-precision vectors cannot be initialized in a DATA 
statement, although the double-precision array or 
individual array elements can be so initialized. 

As described in section 6, a data initialization statement 
consists of pairs of lists; a list of variables is paired with a 
list of constants used as the initial values for the 
variables. Besides scalar list elements, the list of variables 
can include vectors, descriptors, descriptor arrays, and 
descriptor array elements. 

For vectors, a vector name in the . variable list must 
contain only integer constant subscript expressions and 
vector length specification. The number of constant list 
elements corresponding to the name must be equal to the 
length of the vector. For example, if a vector name in the 
variable· list is A(l;lO), then 10 consecutive constant list 
elements must correspond to the vector .name. (This is 
similar to the way that arrays can be initialized in a DATA 
statement.) · 

For descriptors and descriptor array elements, a descriptor 
in the variable list must correspond only to a vector, which 
must contain only integer constant subscript expressions 
and vector length specification. 

·The repeat count specification in a DATA statement 
(section 6) can be used to specify the repeated use of a: 

·vector . for initialization of more than one. descriptor or: 
descriptor array· ~lement. The data. types· of. corresponding 
. Variable list and Const.ant list items must, . • in • .. · t.he above 
; cas~, b~ the. same. . 

Examples <.of initializing . ·vector< descriptors· are given iri 1 

.section· .. ·.16~ 

i"•••· .... i .• ,f:) 
·~~~if~~~~~ION ·.· .. · .. · .. · <·•.i.··· .. · .• ii.···•······•.·.i.········•••.····•·· ... · .. ·.··.) .. ·•·············•••··· ..... • 

~~~t~··rU~cU~ .u~~gr.ams•!l~;d~ri~~:~(~~~t.••·•t~l · 
· sarn.~ · • way thli,t>o~hei- fl1~c~i()~· .•. ~Ubpl'.()gra111s < li,l'.e ;~~fin~~~
;'rile differe11~lie .. irl th~· argument·•.·list form, •.. the.numberj
,,,,.:;;: :':~<.«< ::.:,. .•. :.:: :· .. ;.:;,, «·>=<~.,;;; ,~:<v: . .:.x; .. ,.;M: :-.~ -::.M · .• , ;.,.~<=::::..;: '"·,.~:,, ~.;.>~ >.:.·:«<-~< ::.~.·:<~ :;~;..::. :..:-<~.:.~:.~<.;;;:.~ .;:, . ,;.,, ;:";;,;., .. : ~·. '· '.·:<·: ::: >~~-' ;;., .:; :,.;.,,,;;:;: ,~:~·:.,"; h: ·< > :<:· ,·..;.....;:i...;.:,.;.-;;;;,)~.~.,.~·:.:,.;.:.;.. ~=;.::»»: . .:.,;:::;~;-''>.~ ;,;·,_; ;:.,::~:;::

60457040 B

of data types available for vector function results, and the
fact that the function name must appear in a
DESCRIPTOR statement in the function subprogram.

Form:

t

f

Optional declaration of the type of f. When
present, t can be INTEGER, REAL, BIT, or
COMPLEX but cannot be DOUBLE
PRECISION.

The function's symbolic name.

Dummy argument. The possible dummy
arguments here are the same as for scalar
functions, n must be greater than or equal
to 1.

The function name f must appear in a DESCRIPTOR
statement within the function subprogram. If t is not
specified, f can appear in a type statement or be typed
implicitly. The semicolon in the dummy argument list is
required to separate the input list from the dummy output
argument, which is represented by the asterisk.

Ref er to Function Subprograms in section 7 for a more
detailed discussion of function names and function
subprogram program units.

REFERENCING VECTOR FUNCTIONS

A vector function is referenced when the name of the
function, followed by an actual argument list enclosed in
parentheses, appears in an arithmetic expression in an
arithmetic assignment statement. The actual arguments
that can correspond to a dummy argument are shown in
section 7.

The actual argument list in the function reference· is
divided into two parts by a semicolon. Input arguments
precede the semicolon and are separated by commas; they
can be scalar expressions, · vectors, descriptors, or
descriptor array elements~ A single output argument. of·
the function follows the semicolon and can be a vector,
descriptor, or descriptor array element• . The output:
argument must be the same data type· as ·the function.
CYBER 200 FORTRAN permits double-precision output,
arguments to be. used in references only. to some predefined
CYB ER 200 FORTRAN vector functions (listed in:
; appendix E) •

·SECONDARY.ENTRY POINTS

: v . .,eto~ ftinctiOll ;Jbp~~gfl.fus1+Uk;.:; '~ca18r t~~tl~*i
subprograms, can ha"e .. multiple.•· entry points defirted forJ
them •. ·.·••· l'he <ENTRY: stat(!rn~nt (desc:J,"ibed Jn ... ·i;ection 1);

::;pecifies .•. ·. tpat,~~7· •.. fi~i>t~l{~(?llta.t>!7 ... st11t7nient f~llo~ing · t~7 !
·E~'l'lt\" stllt~me.~t Js ... l.l se(?()ll~'ry entr~ po~J:lt~.. ?vtpr7.:.t~~~ ·
on~ · .. ·.~ntry .•.•. poitttcafl b(! ge(?lllr~d.•.··iJ:l:IJ~U~[>r()gr,a~;.,~()1 Ill
~<?~11r .or .• • •. yecJ<>r.·.fU1tct.i9n·i;11~Pl".ogr11!11 <?~11•••• .. ~1lYt!.•.9<?~P .. s<?tµ11r.l
.~~:,~:~,~~~ .. ~e:~m~~~~ .. ~2~r!~1!.1.~,:.&:.i.<i:::.,LCL.L;c..:·:, /h.h,.::,.:.,:b;:,:.;,:;;,;,::

11-11

11-12

}LiJ:ce.;the•fun<?tion 'riame'' the/entry.·•••poiJ)t?naine -rm~~ appear•
'in.a•.·•··P~91tJ~TQR~~llternent·/Yli~hh~.•·.t1l~;scal11forvC!~t<>r
::functi()n St1bpt"()~arn .. ·< _t\gain; ~he Se!J1liC()lOf1 ·sf!parat~>the;
r~urn my ··.i~put i •• ·argurne11t· .. •• Iist .. ··•···· ~rom ·········.·••the! <d\Jrn.rnY> ..• ·()utput;
•l1fgilrn~nt•··Y1hicll i~ reprcas~il!e~. by·the. a8teri~k.;·>••·•.': i· •. >··••••· .. ••.·•·.··•·····

' '"., ... · ······ ···''

i*~~ ::~t~t~tlle~ts'~~d~/iri ~~~ii~tl:·:~r ~itll. r~sileJf fa.
;refere11cing·····s.econ~ary .. ·.·•· .. entry · .. point.>n&JJ1es.<app1Y:·.·•••··•to.·•·the,
}'ef ere11cing of:~he ·. C!ll~~Y:··• .. point ... · ... nam~i d~fin~d./Jn .a .. · v~.c~or·
· ft111C,ti()ri .8:U~Pf()gr~rn~. . .

60457040 B

SUBPROGRAM LINKAGE 12

This section outlines the cahing, prologue, epilogue, and
file initialization conventions observed by the CYBER 200
FORTRAN compiler, and describes in particular the
possibilities for interfacing with predefined FORTRAN
functions. Four points are elaborated upon:

o The FORTRAN compiler generat~ a standard
prologue and epilogue sequence in the object code for
subroutine and function subprograms.

o Except for some of the predefined FORTRAN
functions, the FORTRAN compiler generates a
standard cnlling sequence for all external procedures.

• In the appropriate environment, a fast calling
sequence is generated by the FORTRAN compiler for
calls to predefined FORTRAN functions.

o Input/output in a FORTRAN subprogram as.5umes that
. the files referenced by the input/output statements

have been opened in the main program.

In this section all numbers designating registers are in
hexadecimal; the # before a register number is a reminder
of this.

PROLOGUE AND EPILOGUE
The FORTRAN compiler generates a prologue and an
epilogue for subroutine calls and function references. For
a non-zero-swap routine, the prologue code performs the
following functions:

1. Saves the values in registers # lA through # lF.

2. Saves the values of the caller's registers and loads the
registers with the values of the routine's registers.

3. Restores the values in registers #lA (return address),
#lE (data base address), and #lF (DFBM table pointer).

4. Updates the values in registers #lB (dynamic stack
address), #lC (current stack pointer), and #10
(previous stack pointer).

5. Clears the length field of register #lF for the Data
Flag Branch Manager.

For a non-zero-swap routine, the epilogue code performs
the following functions:

1. Saves the values of the routine's registers and loads
the registers with the values of the caller's registers.

2. If the length field of register # lF is nonzero, restores
the data flag branch register mask conditions of the
caller, preserving the free data flags

3. Returns control to the address specified in register
#lA.

60457040 B

A non-zero-swap routine is a routine that requires the
values currently in the registers to be saved upon entering
the routine. A zero-swap routine is a routine that does not
require the values in all registers to be saved upon entering

· the routine. The compiler generates a zero-swap routine if
all of the following conditions are met:

• Option 0 or Z was specified.

• There are no calls or function references (other than
to FORTRAN routines that can be generated in-line).

• There are no input/output statements.

• There are no vectors used through either explicit or
automatic vectorization.

o The generated code can be reasonably executed using
only registers #3 through #13, and possibly r~gisters
#17, #18, and #19.

o There are no special calls.

ST AN DARO CALLING SEQUENCE
In general, FORTRAN observes the subroutine linkage
conventions and register conventions described. in volume 2
of the CYB ER 200 Operating System reference manual.
When a user-written FORTRAN procedure calls an external
procedure, such as one written in assembly language, the
standard calling sequence (in machine language) generated
during compilation for this call is essentially as follows:

#78xx001E Load register #lE with the address, xx,
of the callee data base.

#78yy0017 Load register #17 with parameter list
descriptor yy.

#361AOOzz Branch to the entry point zz of the
called procedure after setting a return
location in register #lA.

In the above instructions, registers # 1 E, # 17, and # lA are
the conventional data base register, parameter descriptor
register, and return register respectively; xx contains the
callee data base address, yy contains the descriptor of the
parameter list, and zz contains the procedure. entry point
address. All of the other global and environment registers
are initialized by the operating system.

If the procedure is a function, a function result is
expected, on return, in register #18 (for a one-word result)
or in registers #18 and #19 (for a two-word result).
Specifically, logical, integer, and real functions return
their results in register #18. Complex and
double-precision functions return their results in
registers #18 and #19. Character functions return the
address of the result in register # 18. Vector functions
return results in the result vector; register #18 must have
been preset by the caller to the address where the result
vector is to be placed.

12-1

FAST CALLS
Many of the FORTRAN-supplied functions have a fast call
entry point as well as a standard call entry point. The
FORTRAN compiler generates a fast call to any of these
functions unless the function name appears in an
EXTERNAL statement in the calling program. The
standard call entry point name is the function name;
appendix E contains a list of the equivalent fast call entry
point names (not all FORTRAN-supplied functions have
fast call entry points). FORTRAN does not generate fast
calls to procedures which have user-supplied names.

The difference between standard and fast calling sequences
is the method by which parameters are passed to the called
procedure. Whereas parameters in a standard call are
passed via a parameter list in memory, fast call
parameters are passed in the lower area of the register
file. Fast call parameters are passed in temporary
registers # 3, #4, #5, and #6, as required by the number and
length of the function parameters. Results are returned as
for functions called with the standard calling sequence.

A fast call to a scalar function with one argument could
appear as follows:

#78xx001E Load register #lE with the address of
the callee data base.

#78yy0003 Load register #3 with the function's
actual argument.

361A00zz Branch to the fast call entry point of the
called function and set a return location
in register #lA.

In the above instructions, xx contains the callee data base
address, yy contains the function parameter, and zz
contains the procedure function entry point address.
Function parameters must be loaded in consecutive
registers, begiMing with register # 3 and in the order
specified in the function descriptions given in section 14.

12-2

Placing the name of a FORTRAN-supplied function name
in an EXTERNAL statement suppresses generation of fast
calling sequences for references to the function. That is, a
standard calling sequence is generated . for any function
whose name appears in an EXTERNAL statement; in
particular, predefined functions which would otherwise be
referenced with a fast calling, sequence (i.e., those
functions having only an external version as listed in
appendix E) are referenced using the standard calling
sequence.

FILE INITIALIZATION

· One purpose of the PROGRAM statement is to initialize
files on which input/output is to be performed during
program execution, including the files referenced in
subprograms of the program.. The PROGRAM statement
parameter list informs the FORTRAN compiler that the
files listed are to be created if they do not exist already
and are to be opened for input/output. Only output with
PRINT statements can be performed when no PROGRAM
statement is used.

When the main program referencing a FORTRAN
subprogram that performs input/output has been written in
assembly language or implementation language (IMPL)
instead of in FORTRAN, no PROGRAM statement exists to
perform the required file initialization. In this case the
assembly language or IMPL program must initialize the
.files explicitly. Initialization is performed by setting up
register #3, then referencing the entry point FT _!NIT.

Only the file OUTPUT is opened if register #3 is set to all
0 bits. Register #3 can alternatively be set to a descriptor
pointing to a character string that is a PROGRAM
statement file information parameter list, not including
parentheses. The length field (bits 0 through 15) of
register #3 must be the length in characters of the
character string, and the address portion (bits 16
through 63) must be the virtual bit address of the string's
first character. ·

60457040 B

CYBER 200 FORTRAN-SUPPLIED SUBROUTINES 13

The following types of FORTRAN-supplied subroutines can
be called from a CYBER 200 FORTRAN program:

• Special calls

Used to place specific CYBER 200 machine
instructions in the object code. Although a special
call looks like a subroutine call, the special call
generates in-line code.

• Data Flag Branch Manager calls

Used to trap special conditions and to branch to an
interrupt-handling routine as a result of trapping such
a condition.

e MDUMP calls

Used to dump specified areas in virtual memory during
program execution.

• System Error Processor calls

Used to alter FORTRAN's run-time error processing so
that, for example, execution halts when an error
occurs that would normally have resulted in only a
warning being issued.

• Concurrent I/O calls

Used to perform input and output of large arrays while
at the same time leaving the CPU free for
computational processing.

CYBER 200 FORTRAN
SPECIAL CALLS
CYBER 200 FORTRAN users are able to have the compiler
directly generate any instruction in the machine language
repertoire. Such requests are made in the form of CALL
statement'> to subroutines with special reserved names.
The argument lists in the special call statements are used
to provide label references, symbolic references, and
literals to be included with the generated instruction. The
user of special calls should be familiar with the hardware
instructions or should have access to the appropriate
hardware reference manual.

NOTE

The use of special .calls is not recommended for
the average FORTRAN user. Special calls should
only be used when absolutely necessary for
specific programming tasks.

Form:

CALL m(ai, .•• ,an)

m

60457040 B

One of the special call names beginning
with Q8.

An argument corresponding to one of the
fields of the instruction format.

The special call formats are listed in appendix D.

ARGUMENTS

All arguments are either label references, symbolic
references, or literals.

NOTE

The arguments for the special calls correspond to
the fields of the hardware instructions.
Arguments for the CYB ER 200 Assembler
instructions can appear different but are
functionally the same. For example, the register
to register hardware instruction (op code #78) is
RTOR R T in CYBER 200 Assembler but CALL
Q8RTORCR,,T) in the special call for mat. The
extra comma accounts for the missing S operand
in the instruction.

The special call arguments must rigidly follow the
instruction format because they represent the information
associated with the instruction fields. Any missing
argument must be indicated by a comma, except that
trailing missing arguments can be omitted. With some
exceptions, the arguments must appear in the order of the
definable fields in the hardware instruction. An exception
is that only one argument is allowed for an entire 8-bit
G-designator field having 1-bit subfields. Another
exception is that when indexed branch instructions (#BO
through #B5) have a zero in bit 2 of the G field, the
combined Y and B fields require only one argument; this
argument is usually a label reference. When bit 2 of the G
field contains a one, each field requires an argument and
the second field must be zero or null. For a nonrelative
branch, the Y and B fields represent two register
designators: index and base address. In this case, the user
must set the G field bit 2 to zero and use a 16-bit
hexadecimal constant for the four th argument or operand.

When an argument is a Ii teral, the value of the Ii teral goes
in the instruction field. When an argument is a variable,
the register number of the variable goes in the instruction
field; the compiler generates a load before the designated
instruction and a store afterwards, if required. Only
registers #20 through #FF are used for this purpose. The
user is free to use the low-order temporary registers, but
the contents are destroyed by generated object code when
the user reverts to standard CYBER 200 FORTRAN
statements.

Subfunction bits in the G field of formats 1, 2, and 3 are
not cross-checked with the operands to assure validity of
the instruction. Warnings are not generated if the user
codes a jump into or out of range of a DO loop.

Label References

A label reference is designated by prefixing a statement
label with the ampersand character. Label references can
appear in the following instruction formats:

• In the combined Y and B fields of a format C
instruction

13-1

•

•

In the 48-bit immediate (I) field of the format 5
instruction, except when only 24 bits of the field are
used by certain instructions

In the 8-bit immediate (I) field of format 9 and
format B instructions

If the label reference occurs in the combined Y and B
fields of a for mat C instruction,.· the label reference is
translated into a code halfword offset from the special
CALL to the statement within the program unit identified
by the label. The labeled statement can be ahead of or
behind the special CALL statement. Branch control bits 5
and 6 in the G field should be set accordingly. No checking
is done to verify that the instruction branches in the
correct direction.

If the label reference occurs in the 48-bit immediate field
of a format 5 instruction, ·the processor translates the
label reference into a bit address of the statement tagged
by the label. This bit address is a relative bit address with
respect to the code base of the program unit in which the
special CALL statement occurs.

If the label reference occurs in the 8-bit immediate field
of a #2F, #32, or #33 instruction, the processor translates
the label reference into a halfword offset from the special
CALL statement, to the statement tagged by the label. If
the resultant halfword offset exceeds a magnitude of 255,
a zero is used to initialize the 8-bit immediate field, and
the processor generates no warning to the user.

A label reference is the only permissible operand in the
branch field of a relative branch instruction.

Symbolic References

A sy~bolic reference can be a simple variable of type real,
integer, or logical; an array element of type real, integer,
or logical; a descriptor; a descriptor array element; or a
vector. Symbolic references can occur in any 8-bit
register designator field {except in halfword registers).
Registers modified by branch instructions cannot be
referenced symbolically.

Literals

A literal can be a decimal, hexadecimal, bit, or character
constant, and can be used for any instruction field. Any
missing arguments are presumed to be zero constants.
Generally, constants are taken to be register designators,
rather than as data used by an instruction. Hollerith
constants are not permitted in special calls.

EXAMPLES Of- SPECIAL CALL USAGE

The call to Q8BSA VE shown in figure 13-1 sets register #3
to the bit address of the next instruction, which has
statement label 10. The call of Q8EX in statement 10 sets
register #4 to the statement 10 bit offset from the code
base address. In the next statement, the call to Q8SUBX
sets integer variable CB to the code base address. The
next call to Q8EX sets variable I to contain the
statement 20 bit offset. Following that, variable L20 is
set to the actual address of statement 20. This
inf ormntion is then used in the call to Q8BGE.

13-2

INTEGER CB,L20
CALL 08BSAVE(3,,3)

10 CALL 08EX(4,&10)
CALL 08SUBX(3,4,CB)
CALL 08EX(l,&20)
L20=1+CB

CALL 08BGE(A,B,L20)

20

Figure 13-1. Special CALL Statement

The calls in figure 13-2 produce identical results; each call
enters the character string AB in register #41. These
examples are given to show how literals can be used as
arguments; however, it should be noted that the use of
register #41 would probably cause a program bug, because
registers #20 to #FF are assigned by the compiler.

CALL Q8ES(65,'AB')
CALL 08ES(X'41',X'4142')
CALL 08ES(B'1000001 ','AB')
CALL 08ES(1A 1

,
1AB 1

)

Figure 13-2. 08ES Usage

The special calls in figure 13-3 generate the machine code
shown in figure 13-4 provided J has been assigned to
register #22 by the compiler.

CALL 08ES(3,1)
CALL 08ES(4,2)
CALL 08ADDX(3,4,J)

Figure 13-3. Additional 08 Usage

ES
ES
ADDX

R3,1
R4,2
R3,R4,R22

Figure 13-4. Generated Machine Code

If J has not been assigned any register by the compiler, the
code shown in figure 13-5 would be generated.

ES
ES
ADDX
STO

R3,1
R4,2.
R3,R4,T1
(DATA BASE, RELATIVE
LOCATION OF J),T1

Figure 13-5. Additional Generated Code

60457040 B

DATA FLAG BRANCH MANAGER
The data flag branch manager (DFBM) is a FORTRAN
run-time and CYBER 200 library routine. A data flag
branch is a hardware function of the CYBER 200
computers. DFBM is software that processes data flag
branches whenever they occur during execution of a
FORTRAN program. Use of the data flag branch feature
eliminates the time penalty that would be incurred if the
FORTRAN user were compelled to perform explicit checks
for special conditions. If the FORTRAN user takes no
specific action with respect to data flag branches and
DFBM, any of the following causes a data flag branch to
occur:

• A square root operation attempted with a negative
operand

• A division operation attempted with a zero divisor

• An exponent overflow in computation of a number too
large to be represented internally

• An operation attempted using an indefinite operand

• Reduction of the job interval timer to zero (cannot
occur unless the program sets the JIT explicitly or
calls the FORTRAN-supplied routine SECOND)

• Execution of a hardware breakpoint instruction under
certain usage conditions (cannot occur unless the
program uses DEBUG or a BKP instruction)

Control passes to DFBM which performs interrupt
processing for the condition. DFBM interrupts the
executing FORTRAN program, issues an error diagnostic,
dumps the contents of the data flag branch register, and
aborts the program. If the program is running as part of a
batch job, a post-mortem dump is produced. Default
interrupt processing for other conditions that the user can
specify does not cause the program to abort.

The FORTRAN user can select the special conditions which
can cause a data flag branch and DFBM interrupt to occur.
The user can also specify the processing that is to be
performed as a result of the interrupt. Interrupt conditions

and interrupt processing can be selected through calls to
the DFBM entry points Q7DFSET, Q7DFOFF, Q7DFLAGS,
and Q7DFCL1.

DAT A FLAG BRANCH HARDWARE

For the FORTRAN user, the most significant part of the
data flag branch hardware is the data flag branch (DFB)
register. The 64-bit DFB register, located in the
CYBER 200 central processor, is formatted as shown in
figure 13-6. Each interrupted task has a DFB register copy
in its invisible package in the minus page.

The data flags are bits 35 through 47 of the DFB register.
These bits indicate special conditions that have occurred.
For example, the CYBER '200 hardware sets bit 41 at the
end of a floating-point divide fault (instruction in which
the divisor is zero). Data flags remain set until the
FORTRAN program or DFBM clears them.

The mask bits are bits 19 through 31 of the DFB register.
They select the conditions which are to cause a data flag
branch and DFBM interrupt. For example, bit 25 enables a
data flag branch on a floating-point divide fault. Bits 19,
20, 25, 29, 30, and 31 are set during FORTRAN run-time
initialization; thereafter, the user can set and clear mask
bits by calling DFBM entry points.

The product bits are bits 3 through 15 of the DFB register.
Each is the dynamic logical product of a data flag and the
associated mask bit. For example, the product bit for
floating-point divide fault is bit 9, which is set by
CYBER 200 hardware if bits 25 and 41 are set. Bit 9 is
cleared if either bit 25 or bit 41 is cleared. The product
bits can be tested with a QSBADF special call.

Bit 58 is the pipe 2 register instruction data flag. Setting
of this bit indicates that one of the other data flags has
been set by a pipe 2 instruction. CYBER 200 hardware
sets the bit, which remains set until the FORTRAN
program or DFBM clears it.

Bit 51 is the dynamic inclusive OR of all the product bits.
Bit 52 is the data flag branch enable bit; if bit 52 is
cleared, any further data flag branches of any kind are
disabled until bit 52 is set again. DFBM and the

0 3 16 19 32 35 4850 5355 59 63

60457040 B

t product bits t

tThese are undefined bits.
Any instruction that
attempts to set, clear,
or sample these bits
produces undefined
results.

mask bits

Dynamic
inclusive OR of
product bits

t data flags

Data
flag branch
enable bit

Free data flags

t

Monitoring counter
enable flags

Pipe 2 register
instruction flag

Figure 13-6. Data Flag Branch Register Format

t

13-3

CYBER 200 hardware clear and set bit 52. When both
bit 51 and bit 52 are set, the CYBER 200 hardware
initiates a data flag branch.

The condition indicated by each of the 13 data flags, along
with a designator for the condition, is shown in table 13-1.
Also given in the table are the mask and product bit
associated with each data flag and a classification of I or
m for ·each condition.

Default Conditions

At the time a FORTRAN program starts executing, six
interrupt conditions are enabled. The conditions enabled as
a result of run-time initialization are JIT, SFT, BKP, IND,
SRT, and FDV.

The JIT, SFT, and BKP conditions do not occur unless the
program takes specific action to cause the conditions.

TABLE 13-1. DATA FLAG BRANCH CONDITIONS

Class Designator

I SFI'

I JIT

III SSC

III DDF

III TBZ

III ORD

III FDV

III EXO

III RMZ

III ORX

III SRT

III IND

I BKP

Condition Description

(Reserved).

Job interval timer has re­
duced to zero.

Selected condition has not
been met. In search for
masked key, there was no
match; or, count of nonzero
translated bytes is greater
than 6553510.

Decimal data fault. A sign
was found in a digit posi­
tion, or vice-versa.

Truncation of leading non­
zero digits or bits, or
decimal or binary divide by
zero.

Dynamic inclusive OR of the
preceding three conditions
(SSC, DDF, and TBZ). Ena­
bling this condition per­
mits· an interrupt on any of
the three conditions.

Floating-point divide fault.

Exponent overflow.

Result is machine zero.

Dynamic inclusive OR of the
preceding three conditions
(FDV, EXO, and RMZ). Ena­
bling this condition per­
mits an interrupt on any of
the three conditions.

Square root operation on
negative operand.

Indefinite result or in­
definite operand.

Breakpoint flag was set on
the breakpoint instruction
(instruction 04).

tset during run-time initialization.

13-4

Mask Bit Data Flag Bit

35

36

21 37

22 38

23 39

24 40

41

26 42

27 43

28 44

45

46

47

Product Bit

3

4

5

6

7

8

9

10

11

12

13

14

15

Product
Bit Search

Order

2

11

12

13

5

s·

9

10

4

6

7

3

60457040 B

An FDV condition occurs if a floating-point division
operation is attempted with a zero divisor. A zero divisor
is either a machine zero or a floating-point number having
an all-zero coefficient. A divisor having an indefinite
value is not a zero divisor and does not cause a
floating-point divide fault. The result of a division by zero
is an indcfini te value which sets the IND data flag.

An SRT condition occurs if a square root operation is
attempted with a negative operand. The square root of the
absolute value of the negative operand is taken in this
case, and the two's complement of this square root is
stored as the result. The result, although meaningful, is
not equivalent to the mathematical value of the square
root of a negative number.

An IND condition occurs if an indefinite value is computed
and stored into memory or into the register file. The
condition also occurs if either or both of the operands of
certain floating-point operations have indefinite values
(floating-point arithmetic operations and floating-point
compare operations can set the IND data flag). Since an
indefinite value results from a floating-point operation in
which either or both of the operands are indefinite values,
indefinite values are likely to propagate. An FD V or EXO
condition also sets the IND data flag.

Branches

When a data flag branch occurs, bit 52 is cleared, the
address of the instruction that would have been executed
next had the branch not occurred is stored in register # 1,
and control branches to the address in register #2. The
address of a DFBM entry point is placed in register # 2
during FORTRAN run-time initialization. · Subsequent
processing is determined by the bit settings in the DFB
register and specifications made in any Q7DFSET,
Q7DFOFF, and Q7DFCL1 calls.

The address in register # 1 does not necessarily point to the
instruction immediately following the instruction that
caused the data flag branch. The hardware initiates a data
flag branch only after all currently executing instructions
have completed. Because instructions might be executing
in parallel when the condition causing the data flag branch
occurs, the branch can occur up to 35 instructions after the
instruction that caused it. Also, the point at which control
branches to DFBM can vary between executions of the
same program because the load and store hardware
operations can occur at different points as a result of the
asynchronous nature of CYBER 200 input/output.

NOTE

The user can effect changes in the DFB register
that conflict with DFBM. Use of the
FORTRAN-supplied function QSSDFB, the special
calls QSBADF and Q8LSDFR, or .the
system-provided utility DEBUG in a FORTRAN
program that uses c~ to DFBM entry points all
should be done with great care.

DAT A FLAG BRANCH SOFTWARE

A data flag branch, together with the subsequent
processing performed by DFBM before the FORTRAN
program resumes or aborts, is called a DFBM interrupt. A
DFBM interrupt does not return control to the operating
system. A call to the DFBM entry point Q7DFSET can be
used to enable and disable DFBM interrupts on specified

60457040 B

conditions. Interrupt-handling routines are optional and
can be specified through calls to one of the DFBM entry
points Q7DFSET and Q7DFCL1, ns described later in this
section.

If the CYBER 200 hardware initiates a data flag branch
during execution of a FORTRAN program, control branches
to DFBM. DFBM ·checks the DFB register product bits in
the following order:

.1. JIT
2.SFT
3. BKP
4.0RX
5. ORD
6. SRT
7. IND
8. FDV
9. EXO

10. RMZ
11.SSC
12. DDF
13. TBZ

(bit 4)
(bit 3)
(bit 15)
(bit 12)
(bit 8)
(bit 13)
(bit 14)
(bit 9)
(bit 10)
(bit 11)
(bit 5)
(bit 6)
(bit 7)

Depending on the bits DFBM finds set and the
interrupt-handling routines that the FORTRAN user has
specified, DFBM calls the routine FT ERMSG or passes
control to an interrupt-handling routine established by the
programmer.

Interrupt Classes

The DFBM interrupt conditions shown in table 13-1 can be
divided into · two classes, depending on whether the
FORTRAN user can disable interrupts for the condition and
how the interrupts are handled by DFBM. Interrupts on the
class I conditions are always enabled; the corresponding
mask bits are always set for the following conditions:

• JIT

• SFT

• BKP

The FORTRAN user can enable or disable interrupts for all
of the other conditions, which are class Ill conditions.
Enabling or disabling of class III conditions is done using
calls to one of the DFBM entry points Q7DFSET and
Q7DFOFF as described later in this section.

DFBM processes the class Ill conditions as a group, as if
they were all caused by a single event. Class I conditions
are processed individually, as if they had been caused by
separate events. A DFBM interrupt that processes a
class I condition is called a class I interrupt; a DFBM
interrupt that processes class Ill conditions is called a
class III interrupt.

Multiple Interrupts

The execution of a single hardware instruction can in some
cases flag several class III conditions as well as one or
more class I conditions. A number of product bits might be
on when DFBM receives control as the result of a data flag
branch. A single data flag branch could occur with enough
product bits set that it would be translated into four DFBM
interrupts, that is, three class I interrupts and one class III
interrupt.

13-5

If a data flag branch occurs and more than one product bit
is set, DFBM processes any class I interrupts first, one at a
time, in the order JIT, SFT, and BKP. Then, if DFBM has
been able to process the class I interrupts without aborting
the program, it will process a class m interrupt. If a
class I bit and a class Ill bit are set whe.n DFBM gains
control after a data flag branch, and if the specified
interrupt-handling routines return after executing, the
interrupt processing that would be performed is shown in
table 13-2. Default processing for DFBM interrupts
consists of issuing an error message and then either
aborting or resuming the program, depending on whether
the error was nonfatal, fatal, or catastrophic.

TABLE 13-2. MULTIPLE INTERRUPT PROCESSING

Class I
Interrupt­
Handling
Routine
Provided

No

Yes

No

Yes

Class III
Interrupt­
Handling
Routine
Provided

No

No

Yes

Yes

Processing Performed
After Data Flag Branch
Manager Gains Control

Class I error message is­
sued, program aborted.

Class I routine executed,
class III error message
issued, program aborted
for fatal message and re­
sumed otherwise.

Class I error message is­
sued, program aborted
(class III routine not ex­
ecuted although class III
condition flagged).

Class I routine executed,
class III routine then ex­
ecuted, program resumed
(no error messages issued
by DFBM).

Default Interrupt Processing

In a typical DFBM interrupt, a class III interrupt can occur
with one or more class III product bits set and with default
processing being performed because no interrupt-handling
routine has been specified. If the user does not specify any
interrupt-handling routines and a data flag branch occurs,
DFBM performs default interrupt processing as follows.
Having gained control as a result of the data flag branch,
and having checked the DFB register product bits in the
order listed earlier, DFBM calls the routine FT ERMSG to
issue an error message for the condition indicated by the
first product bit found to be on.

If the FT ERMSG entry point SEP (System Error
Processor, described in this section) was called previously
in the FORTRAN program to specify an error exit
subroutine for the error, FT ERMSG calls the subroutine.
An errcr message is issued (if applicable) before the user
routine is called.

13-6

If the error message that FT ERMSG issued was nonfatal,
DFBM restarts the interrupted FORTRAN program at the
address in register #1. If the error message was fatal or
catastrophic, a dump of the contents of the DFB register is
written onto the output file immediately following the
error message, and the FORTRAN program aborts without
return of control to DFDM. If the aborted program was
being run as part of a batch job, the system utility DUMP
writes a postmortem dump onto the output file. The dump
includes a full subroutine traceback in which DFBM
appears to have been called by the interrupted routine
(DFBM execution has actually been initiated by a hardware
data flag branch). The system utility DUMP is described in
the CYB ER 200 Operating System reference manual.·

Each class Ill condition has a separate error message, but
only one message is issued when def a ult processing is
performed for a class III interrupt. The class III message
issued is for the first class III product bit found on. For
example, assume that the default class III interrupt
conditions SRT, IND, and FDV are in effect at the time
that a division operation is performed in which the divisor
is zero. Also assume that the FORTRAN program is
running in a batch job, has not disabled all data flag
branches (has not cleared DFB register bit 52), and has not
previously called SEP or Q7DFSET to specify a routine to
handle division by zero. The division operation initiates a
data flag branch. DFBM finds that bit 14 (IND product bit)
of the DFB register is on and, since no class III
interrupt-handling routine is available, calls FT ERMSG.
Since the user has not specified an error exit subroutine,
FT ERMSG issues a fatal error message for the IND
condition, causes a DFB register dump to be written to the
output file, and aborts the program. The error message
and DFB register dump are shown in figure 13-7. Finally,
since the job is a batch job, the DUMP utility produces a
post-mortem dump. Note that no error message for the
FD V condition is produced.

As another example, assume the same situation as in the
previous example, with the exception that the FORTRAN
program has called Q7DFSET to alter the class III interrupt
conditions to ORX, SRT, and IND. The division operation
with the zero divisor initiates a data flag branch. DFBM
finds that bit 12 (ORX product bit) is on and calls
FT ER MSG, since no class III interrupt-handling routine· is
available. FT ERMSG issues an error message for the
ORX condition. Since the error is a warning, DFBM
restarts the interrupted program at the address in
register #1, even though a normally fatal condition (IND)
has occurred.

CLASS Ill INTERRUPTS

If a class Ill interrupt occurs, DFBM performs def a ult
processing if the FORTRAN user has not provided a
class III interrupt-handling routine through a Q7DFSET
call. If the user has specified a class III interrupt-handling
routine, DFBM takes the following actions:

1. Detects the condition by checking the DFB register
product bits.

2. Saves a copy of the entire register file of the
interrupted routine.

3." Clears the data flags (this also clears the product
bits), leaving the mask bits as they are.

4. Sets bit 52, reenabling data flag branches.

5. Calls the class III interrupt-handling routine.

60457040 B

E~HO~ lC:!4 EXECUTION r rERRUPTE.O IN I"'DEF AT LINE 5
DATA FLAG HHANCrl - JNllEFINITE ~ESULT - ~EGISTE~ 1 AUOHESS 0000000122~0

OATA FLAG H J=t Al'l C 11 HE 'H STE~

00000000 OlOOllOlU 00011000 01000111 011000000 01001010 00010000 00100000

SFT JlT SSC OUF Ti-iZ 0~·1 FOIJ EJ(O HM7 OHA SRT IND RKP
PHullUCT t:ilTS (j-1 ~) u 0 u u 0 u 1 0 0 0 0 1 0
MA~K ti ITS (l'i-.Jl) l l u u 0 0 1 0 l) 0 1 1 1
DATA FLAGS (JI;;-'+,, u 0 0 0 0 II 1 0 0 1 0 1 0

Figure 13-7. DFB Register Dump Example

In a class III interrupt where an interrupt-handling routine
is called, no standard error message is issued by DFBM.
DFBM manages class Ill interr~ts acc<>l"ding to the
following rules:

• Any routine or subroutine of a FORTRAN program can
specify and respecify class Ill interrupt conditions and
interrupt-haridling routines as frequently as desired.
Q7DFSET calls are used to make the specifications.

• When a routine calls a subroutine, the class Ill
interrupt conditions and class Ill interrupt-handling
routines in effect in the calling routine are put into
effect in the subroutine.

• When a routine retums to its caller, the class Ill
interrupt conditions and class III interrupt-handling
routines in effect at the time of the call are
reinstated.

Each subroutine in a FORTRAN program can make
different specifications of how class III interrupts are to be
handled locally and in lower-level routines, without those
specifications affecting how class III interrupts are handled
by higher-level routines.

The rules of scope are illustrated in figure 13-8. In the
figure, the main program begins execution with the default
conditions in effect and executes until a call to Q7DFSET
alters the default selection. A new set of conditions is
selected by the second call to Q7DFSET and remains in
effect until subroutine K is called. Selections remain in
effect until subroutine K calls Q7DFSET. This newest set
of conditions continues in effect when subroutine D is
called and when the return to subprogram K occurs. When
K completes execution and control returns to the main
program, conditions in effect at the time subroutine K was
called are reestablished and persist through the call to
subprogram Z and the return to the main program.

Interrupt-Handling Routines

A class III interrupt-handling routine can appropriately be
written in FORTRAN: The routine must have no
arguments. Any communication with higher-level routines
must be through the use of COMMON statements.

At the time that the class III interrupt-handling routine
gains control, all interrupts that were enabled at the time
of the data flag branch are still enabled (the mask bits
have not been altered, and bit 52 has been set). If a
class III interrupt occurs while the interrupt-handling
routine or any lower-level routine is executing, DFBM
causes a catastrophic error message to be issued and the
program to be aborted. The interrupt-handling routine can

60457040 B

RETURN

MAIN

END

CALL 07DFSET

CALL 07DFSET

CALL 07DFSET

RETURN

RETURN

Figure 13-8. Scope of Selected Conditions

disable class III interrupts for the period of time that it is
executing by calling Q7DFSET. Any class I interrupts
occurring in a class III interrupt-hanaling routine are
handled immediately.

All data flags in the DFB register have been cleared when
the class lli interrupt-handling routine receives control
from DFBM. The routine can learn the status of the data
flags as they were at the time of the data flag branch, as
well as certain other information about the interrupt, by
calling Q7DFLAGS.

If the class lli interrupt-handling routine executes a
RETURN statement, DFBM restarts the interrupted
FORTRAN program or subprogram at the addres.c; in
register # 1. DFBM leaves the DFB register mask bi ts
exactly as they were at the time of the data flag branch
unless the clas.c; III interrupt-handling routine has maae a
call to Q7DFOFF. An interrupt-handling routine can call
Q7DFOFF to disable specified conditions in the interruptea
FORTRAN program at the time that the program is
restarted. A call to Q7DFOFF might be advw1tageous lf
the conditions causing a data flag branch would cause a
large number of other data flag branches to occur.

13-7

Q7DFSET

A call to Q7DFSET can be used to do either or both of the
following:

• Specify the conditions on which a class·III interrupt is
to occur (that is, alter DFB register mask bits).

• Specify the name of a user-provided interrupt-handling
routine to be called in the event of a class III interrupt.

Default class III interrupt conditions can be reestablished
by using Q7DFSET, either by specifying the SRT, IND, and
FDV conditions or by specifying 'STD' as an argument.
Default class ill interrupt processing can also be
reestablished with a Q7DFSET call.

Forms:

CALL Q7DFSET (ihr)

CALL Q7DFSET (ihr, 'NUL')

CALL Q7DFSET (ihr, 'mb1', ••• , 'mbn')

ihr Zero, or the name of a user-provided
interrupt-handling routine that is to be called
if a class III interrupt occurs. Zero indicates
that default processing is to be performed for
class m interrupts (zero reestablishes the
specification in effect at the time that the
FORTRAN program began executing).

'NUL' Indicates that all class m mask bits are to be
cleared, disabling all class III interrupts.

'mbi' 'STD', or one of the class III interrupt
condition designators given in table 13-1.
The designator must be enclosed in
apostrophes. A designator from table 13-1
indicates that the corresponding mask bit is
to be set. 'STD' indicates that the default
class m mask bits - corresponding to the
SRT, IND, and FDV conditions - are to be
set. 'STD' can be· used in combination with
other designators in the same argument list.

No mask bits are altered from their current settings when
Q7DFSET is called with only one argument, ihr. When
Q7DFSET is called with two or more arguments, any
class III mask bits not indicated by the argument list are
cleared. The user must remember to declare any
subroutine name used in a Q7DFSET call with an
EXTERNAL statement.

For example, given the declaration EXTERNAL USRRTN,
the following are valid Q7DFSET calls:

e CALL Q7DFSET (USRRTN)

e CALL Q7DFSET (U~RRTN, 'EXO', 'IND', 'SRT', 'FDV')

e CALL Q7DFSET (USRRTN, 'EXO', 'STD')

e CALL Q7DFSET (0, 'STD')

e CALL Q7DFSET (0, 'NUL')

The first call specified that USRRTN is the class Ill
interrupt-handling routine. The second or third call has the
effect of specifying that USRRTN is to be the class III

13-8

interrupt-handling routine, that mask bits 25, 26, 29, and
30 are to be set, and that mask bits 21, 22, 23, 24, 27, and
28 are to be cleared. The fourth call restores the default
set of conditions and default class III interrupt processing.
The fifth call restores default class 1II interrupt processing
but disables all data flag branches ~n all class III conditions.

Q7DFLAGS

The user can obtain information about the most recent
class III interrupt by calling Q7DFLAGS.

Form:

CALL Q7DFLAGS(pb,fb,ad,rf)

pb A type logical array, declared to be a
one~imensional array of ten elements, in
which DFBM returns the ten class Ill product
bits (bits 5 through 14). V Blues returned are
.FALSE. for bits that are cleared and .TRUE.
for bits that are set. The order of the values
in the array is the same as for the class III
conditions listed in table 13-1.

fb A type logical array, declared to be a
on~imensional array of eleven elements, in
which DFBM returns the ten class III data
flags (bits 37 through 46), followed by the
pipe 2 register instruction data flag as the
eleventh value. Values returned are .FALSE.
for bits that are cleared and .TRUE. for bits
that are set. The order of the values in the
array is the same as for the class III
conditions shown in table 13-1.

ad A variable of type integer in which DFBM
returns the address contained in register 1 at
the time of the data flag branch.

rf Optional. A type integer or real array (or a
descriptor array of type integer or real) of
size 256 in which DFBM returns the register
file contents as they were at the time of the
data flag branch.

If Q7DFLAGS is called before any class III interrupts have
occurred, all of the data flags and product bits are shown
to be .F A~E. and all other values returned are zero.

For example, the statements:

LOGICAL P(lO), DF(ll)
INTEGER ADDR, REGS(256)
CALL Q7DFLAGS (P ,DF ,ADDR,REGS)

place the product bits in logical array P, the data flags in
logical array DF, the register #1 . address in integer
variable ADDR, and the register file in integer array REGS.

Q7DFOFF

By calling Q7DFOFF, a class III interrupt-handling routine
can cause class Ill interrupt conditions to be disabled at
the time that the interrupted FORTRAN program is
restarted. A Q7DFOFF call issued from a routine other
than an interrupt-handling routine or lower-level routine
has no effect.

60457040 B

Form:

CALL Q7DFOFF ('mb1', .•• , 'mbn')

'ALL', 'STD', or one of the class III
interrupt condition designators given in
table 13-1. A designator from
table 13-1 indicates that the corre­
sponding mask bit is to be cleared at the
time that the interrupted routine is
restarted. 'ALL' indicates that all
class III interrupts are to be disabled.
'STD' indicates that the SRT, IND, and
FDV class m interrupts . are to be
disabled.

Any mask bits not specified in the call are left unaffected
by the call. If a class III interrupt-handling routine
executes a RETURN statement after calling Q7DFOFF,
DFBM gains control and disables the specified class m
interrupts. The interrupts remain disabled until a new .call
to Q7DFSET is made. The scope of a Q7DFOFF call is the
same as the scope of its associated Q7DFSET call.

For example, the following are valid Q7DFOFF calls:

• CALL Q7DFOFF('IND','FDV')

• CALL Q7DFOFF('ALL')

The first call causes DFB register bits 25 and 30 to be
cleared at the time that DFBM restarts the interrupted
FORTRAN program. The second call causes all of the
class III mask bits to be cleared at that time.

CLASS I INTERRUPTS

Class I interrupts are always enabled; the class I mask bits
are always on, and the FORTRAN program cannot be used
to clear them. A FORTRAN user can specify class I
interrupt-handling routines •. A separate routine can be
specified for each of the three class I conditions.

A user-specified interrupt-handling routine for handling a
class I interrupt must be written in a lower-level language
such as an assembler language. FORTRAN is not a
sufficiently low-level language for the purpose of handling
class I interrupt conditions. Class I interrupts do not occur
unless the user takes specific action to cause them, such as
utilizing the breakpoint feature of the DEBUG system
utility or issuing the special call QSWJTIME to set the job
interval timer.

If a class I interrupt occurs, DFBM performs default
processing unless the FORTRAN user has provided an
interrupt-handling routine for the class I condition and
made it known by means of a Q7DFCL1 call. If the user
has specified an appropriate class I interrupt-handling
routine, DFBM takes the following actions:

1. Detects the conditioo by checking the DFB register
product bits. ·

2. Turns off the data flag associated with the interrupt
(this also clears the associated product bit).

3. Branches to the address specified in the most recently
executed Q7DFCL1 call for the specific condition.

Bit 52, the data flag enable bit, was cleared as part of the
data flag branch and is not set by DFBM before the branch
to the class I interrupt-handling routine occurs.

60457040 B

DFBM manages class I interrupts according to the
following rules:

• Any routine or subroutine in a FORTRAN program can
specify and respecify an interrupt-handling routine for
a class I interrupt condition as frequently as desired.
Q7DFCL1 calls are used to make the specification.

o Subroutine levels are not considered in managing
class I interrupts in the way that they are in the
managing of class III interrupts. The specification of
a class I interrupt-handling routine is in effect for the
duration of the program or until another Q7DFCL1
call is issued.

The initial call to the FORTRAN-supplied routine SECOND
in a FORTRAN program invokes routine Q7DFCL1 to
specify a special JIT interrupt-handling routine. If a
user-provided JIT interrupt routine is also specified in the
same program, an interrupt processing conflict occurs and
fatal run-time error 140 or 141 is issued. To force the
program to execute, the System Error Processor routine
SEP can be invoked before· the initial call to SECOND to
reset the error class to warning. When the JIT interrupt
condition occurs, DFBM branches to the most recently
specified JIT interrupt-handling routine. If the
user-provided routine is the most recently specified JIT
interrupt-handling routine, the results of SECOND are
undefined.

Interrupt-Handling Routines

A class I interrupt-handling routine is responsible for most
of the interface between itself and DFBM. Since DFBM
does not execute a standard call sequence, but instead
simply branches to an address in the interrupt-handling
routine, the address of the data base of the class I
interrupt-handling routine is not available in register # lE.
The interrupt-handling routine is responsible for saving
registers #1 through #FF and restoring them before
branching back to DFBM. The address to which the class I
interrupt-handling routine must branch is returned in a
parameter of the Q7DFCL1 call that was most recently
issued by the FORTRAN program. At the time that
control branches to the class I interrupt-handling routine,
all interrupts have been disabled.

Q7DFCL1

A call to Q7DFCL1 can be used to specify the name of a
user-provided class I interrupt-handling routine to which
DFBM must branch if the specified class I interrupt
occurs. Q7DFCL1 returns the address in DFBM to which
the interrupt-handling routine must return upon completion.

Form:

CALL Q7DFCLl(ihr, return, 'mb')

ihr A one-word variable containing the virtual
bit address of an interrupt-handling routine
to which DFBM is to branch in the event that
the specified class I interrupt condition mb
occurs.

return A one-word variable in which Q7DFCL1
returns the virtual bit address in DFBM to
which the interrupt-handling routine for the
condition mb must branch upon completion.

13-9

'mb' One of the class I interrupt condition
designators JIT, SFT, and BKP. The
designator must be enclosed in apostrophes.

At least one Q7DFCLt call must be made for each of the
class I conditions for which the user desires other than
default processing to be performed.

MDU MP
MDUMP is an object module callable by FORTRAN
programs or assembly language subroutines of a FORTRAN
program. The module can be called as often as necessary
to perform dumps of specified areas of virtual memory.

Form:

CALL MDUMP(first,len,dtype,u)

first

len

dtype

u

Simple variable, array, or array element with
which the area to be dumped begins.

Length (in words) of area to be dumped.

Dump format:

'Z' Hexadecimal dump

'I' Integer dump

'Ew.d' or

Fw.d' Floating-point dump, where w is
the field width and d is the
fractional decimal digit count

If dtype has a value other than one of the
above, a hexadecimal dump is made.

Logical unit number of file to which dump is
to be written. If u=O, the dump is written to
OUTPUT.

The dump is written to a filew or files i~~-finedi;l~':'lne·
·.PR()CJR.AM. :Statement·.or;}J1/the rst~ te~~J\t ~~a~·\re9u~~ts

! ex~cution o~ alORT}tA~ ·. p~ogra~. For example; if. a. call
· to MDUMP is made, indicating that the dump is to be

written to logical unit 3, a file declaration
UNIT3=filename must also be made. :See section 7 for:

!JJNITn'=fpararrieters]n ttieJ>J10G1lAM statement~ · · ·· · ·.·.· ·
;, ·; ·' .. · ... ··· ... ·· ·" .. : < '. , ... :. : .. ·. · · : .. : : · .. ;· . · · .: ~ ... ::, ; .: .. ;:

MDUMP can be called from assembly language subroutines
of a FORTRAN program by using the standard calling
sequence conventions described in section 12. The logical
·unit referenced in the call must be defined in the same way
as for calls made to MDUMP from a FORTRAN routine.

Sample output from a call to MDUMP is given in·
figure t3-9. An array I was declared and initialized by
using the two statements:

DIMENSIOt~ 1(20)
DATA 1/5*7 ,15*t2/

and then by using the statement:

CALL MDUMP(l,20,'Z',0)

a call to MDUMP was made. The output generated by this
call shows 20 words of memory, four words per line of
output. As 'Z', that is, a hexadecimal dump, was requested
in the parameter list of the call, the 15 elements with
value of 12 appear in the dump as hexadecimal C.

SYSTEM ERROR PROCESSOR (SEP)
The function of the CYBER 200 System Error Processor
(SEP) is to enable the user to change certain run-time error
attributes. FORTRAN run-time error conditions can
belong to one of three classes: warning (W) for nonfatal
but probably undesirable conditions, fatal (F) for conditions
that cause abnormal termination of the program during
execution, and catastrophic (C) for conditions that are not
subject to user control. By using SEP, the user can set
fatal error conditions to nonfatal status, and warning
conditions can be made fatal. SEP is called as a subroutine
by an executing program.

Form:

Pl

P2

The error number of the run-time error (see
appendix B). When Pt is zero, all other
parameters must be zero except p4 , which
refers to the global nonfatal error count.

Indicates the error class to which Pt is to be
changed. Parameter P2 can be one of the
following:

'F' Sets the error clas.s to fatal. Program
execution is terminated abnormally when
this condition occurs.

'W' Sets the error class to warning.
Execution continues when this nonfatal
condition occurs.

0 No error class change is to take place.

When a fatal error is changed to a warning
error, parameter p4 should also be
specified to change the maximum error count
to a nonzero number.

HEX DUMP

HIT ADDRESS

TIME 22133.02 CAL~ ADDRESS 0000000082CO

WORD ADDRESS

0000000101eo 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000001 00000001co6
000000010280 00000000 00000001 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc 00000001coA
000000010310 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc 00000001coE
000000010•80 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc 00000001e12
000000070580 00000000 oo~o~ooc 00000000 oooooooc 00000000 oooooooc 00000000 oooooooc OOOOOOOlCl6

Figure 13-9. MDUMP Output

t3-10

ASCII

60457040 B

P3

P5

P6

P7

The error exit subroutine· entry point name
(which must be included in an EXTERNAL
statement in the same program wtit). If the
error Pl occurs, entry point p3 is called
and execution continues from there. If p3
is zero, no error exit is implied and
processing continues if the error is nonfatal.
If Pl is a fatal error and the subroutine
p3 executes a RETURN, the program
aborts; if Pl is nonfatal and p3 executes
a RETURN, program· execution continues.

An integer constant indicating the maximum
error count for nonfatal errors; if the number
of nonfatal error condition occurrences
reaches p4, execution terminates. An
infinite error count is indicated by a value
of -1. If p4 is zero, no change for this
parameter is indicated (p4 might have been
assigned a value in a previous SEP call).

·The maximum error count for a warning error
for which SEP has not been called is 25. The
maximum error count for a fatal error for
which SEP has not been called is zero. When
P2 changes a fatal error to a warning error;
P4 should also be specified.

The error display suppression· argument,
applying only to nonfatal errors. p5 can
assume one of the following values:

'S' Indicates that the error message,
normally sent to the user's output file
and to the terminal, is to be suppressed.

0 No message suppression is to take place.

The number of characters in p7, excluding
bracketing apostrophes. The name of the
routine or file in which the error occurred is
appended automatically to the message string
whenever applicable.

A character string that replaces the standard
message associated with Pl. The string
must be enclosed by apostrophes to form a
character constant. Parameter P6 must
appear when p7 appears.

Parameter Pl and at least one additional parameter
must be included in the call. Any parameter other than
Pl must be indicated as zero if that one is not to be
specified; however, trailing zero parameter list entries can
be omitted.

Calls to SEP can appear as frequently as required in a
program, and the error attributes change any number of
times during program execution. The SEP routine is
especially useful during program checkout, enabling traps
to be set for error conditions that could prove difficult to
diagnose. Care should be exercised when altering fatal
errors to nonfatal status.

Examples:

o CALL SEP(26,'W',SUB,5,0,38,'ATTEMPT TO
READ INTEGER UNDER D FORMAT')

Use of the above call causes the standard message for
error 26, INTEGER MODE, CONVERSION CODE D,
to be replaced with the error message ATTEMPT TO
READ INTEGER UNDER D FORMAT, and the error
level altered from fatal to warning. If error 26 occurs

60457040 B

during program execution, the program issues the
message, then branches to a subroutine named SUB,
and processing continues from that point. When the
error condition occurs for the fifth time, program
execution is aborted.

e CALL SEP(75,'F')

This call means that if the condition associated with
error 75 occurs at any time in the program, it is
considered fatal and the program execution is aborted.

e CALL SEP(26,'W',0,10)

In the above call, error condition 26 is made nonfatal.
When the error occurs for the tenth time, program
execution is aborted.

e CALL SEP(72,'W',0,100,'S')

This call means that error 72 can occur up to 100
times without the error message appearing on the
user's terminal or output file.

CONCURRENT INPUT I OUTPUT
SUBROUTINES
The mass storage input/output subroutines for concurrent
input/output transmit data in an optimal manner between
main memory and files on mass storage. No buffers are
required and no structuring information is processed when
a concurrent input/output routine is used. The routines
also allow overlapping of computation with input or output
of large data arrays, thus maximizing the use of system
resources.

The four concurrent input/output routines and their
functions are:

Q7BUFIN Transfer data from mass storage to main
memory.

Q7BUFOUT Transfer data from main memory to
mass storage.

Q7WAI'r

Q7SEEK

Test or
completion;
operation.

wait
obtain

for input/output
error status of

Reset page address at which data is to
be transferred.

Any file referenced .i.Jl a call fo the collcurrentfrtput/output
routines must be declared in ·the PROGRAM statement.
The file cannot be referenced in ariy of the FORTRAN
input/output or unit positioning statements. Once input or
output is performed on a file using concurrent input/output
routines, all input and output on that file must be
performed only by means of those routines.

The user is responsible for the correspondence between the
data record size and the size of the physical block to or
from which the data is transferred. Any padding required
to reconcile record size with block size is also the user's
responsibility, as is the determination of any logical
end-of-file that might exist before the physical end of the
mass storage assigned to the file. (The concurrent
input/output routines recognize the physical end of a file
but no logical end-of-file.) The user is also responsible for
checking for the existence of error conditions resulting
from the transfer. The user is not notified of error
conditions, but certain conditions are flagged so that the
user can query the system about them by calling Q7WAIT.

13-11

The greatest efficiency in input/output using the
concurrent input/output routines may be obtained when
overlap of input/output and computational operations is
maintained throughout execution. When computational
activity continues until completion of the previous
input/output request, maximum overlap has been achieved.

ARRAY ALIGNMENT CONSIDERATIONS

The user must align the arrays named in the Q7BUFIN and
Q7BUFOUT calls on small page boundaries, and must
define the arrays to be multiples of small pages (padding
must be added by the user if necessary). At the time a
concurrent input/output call is executed, the program
aborts if the array has not been aligned on a page
boundary. Alignment can be accomplished by declaring the
arrays to reside in one or more labeled common blocks,
then using the GRSP parameter of the LOAD system
control statement to load the common blocks on small page
boundaries.

If the size of an array is greater than 24 small pages (that
is, 12288 words), the array should be placed on a large page
to obtain the input/output efficiency that is derived from
using concurrent input/output. The GRLP parameter of·.
the LOAD system control statement can be used to load a
labeled common block containing the large array on a large
page boundary. More than one array can be defined within
the 65536 words of a large page. If necessary, a single
array can overlap a large page boundary; however, this
results in decreased efficiency because multiple explicit
input/output requests must be issued by the system to
transfer that array. When multiple explicit input/output
requests are issued, concurrent processing ceases after the
first of the multiple requests completes and cannot resume
during the remainder of the input/output for that call. If
the array did not overlap a large page boundary, a single
explicit input/output request would initiate transfer of the
array and control would return immediately to the program
so that computation could continue.

For example, suppose that in a FORTRAN program a
20-page array BIG RAY and a 100-page array RA 2 are used
in calls to the concurrent input/output routines. The
program then should also contain the statement:

COMMON/ ANAME/BIGRAY(l0240),RA2(51200)

which declares an array BIGRAY with 10240 words and an
array RA2 with 51200 words to reside in the labeled
common block ANAME. After the program is compiled (by
using the system control statement FORTRAN.), loading is
performed by using the system control statement:

LOAD,BINARY,CN=XECUTE,GRLP=*ANAME

which produces the executable virtual code file XECUTE
from the file BINARY, and loads the common block
ANAME on a large page boundary.

Whether or not an array has been placed on a large page, a
call to Q7BUFIN or Q7BUFOUT transfers exactly the
number of small pages specified in the call. The user can
aid the input/output routines in deciding how an array was
mapped by specifying 'SMALL' or 'LARGE' for the map
parameter of the Q7BUFIN or Q7BUFOUT call
(specification of the parameter does not, itself, cause the
alignment to be performed).

13-12

SUBROUTINE CALLS

Two Q7BUFIN calls, two Q7BUFOUT calls, or a Q7BUFIN
and a Q7BUFOUT call can be active at one time for a
given file. If a third call is made for data transmission
before a Q7WAIT call is issued, the program is aborted.
The programmer is responsible for assuring that the
specified portions of a file on which there are two
outstanding input/output requests do not overlap.

The file address to which data is written or from which
data is read can be specified in either of two ways. The
Q7BUFIN or Q7BUFOUT call can specify a relative page
address as a parameter. Alternatively, the Q7SEEK call
can establish a relative page address for a succeeding
Q7BUFOUT or Q7BUFIN call. In the absence of either
specification of page address, the file is scanned
sequentially, beginning at page zero of the file when it is ·
first referenced by the program. Each ~7BUFIN or
Q7BUFOUT call moves the current read/write position
forward by a specified amount (equal to the value of the
len parameter). ·

Q7BUFIN

The Q7BUFIN subroutine transfers data from a mass
storage file to an array in main memory. The first time it
is called by the program, Q7BUFIN defines the array
specified in the call to be the buffer for explicit
input/output and initiates data transfer from the file.
Control then returns immediately to the program unless
the user aligned the array in such a way that the system is
forced to issue multiple input/output requests. The array
must not be referenced until a call to Q7WAIT has
established that the transfer was successfully completed.

Form:

CALL Q7BUFIN(u,a,len,map,fad.dr)

u Logical unit number of the mass storage file
from which data is to be read.. An integer
constant or integer variable having a value of
!r?1!1 1 .. to .. ~9, ::)i$ociat~·~ ·~~th''the···n1~·l?y:·;
1rri~aris ~f th~ :~R<:)Q~4l'vl ~tlit~.i!l~~t. · · ·

a Array element or array name \an array name
indicates the first element of the array).
Data from u is stored beginning at a, which
must lie on a small page boundary.

len

map

faddr

An integer constant or integer variable
indicating the number of small pages to be
transferred.

Optional. The character (or Hollerith)
constant 'SMALL' (or 5HSMALL) or 'LARGE'
(or 5HLARGE), indicating that the array a
was mapped onto a small page or large page,
i'espectively. Recommended when array a
nas a length greater than 24 but was not
mapped onto a large page (map would be
'SMALL').

Optional (if f addr is specified, map must also
be specified). An integer constant or integer
variable to whose value the current reaa
position on u is modified before the reaa
begins. A variable f addr is defined and
redefined only by the user. If faddr is
omitted, default is the current read position.

60457040 B

Depending on the value of len, a Q7BUFIN call might
transfer data into only part of the array named by a, or it
might transfer data to the words located beyond the end of
the array.

Q7BUFOUT

The Q7BUFOUT subroutine transfers data from an array in
main memory to a mass storage file. The first time it is
called by the program, Q7BUFOUT defines the array
specified in the call to be the buff er for explicit
input/output and initiates data transfer to the file.
Control then returns immediately to the program unless
the user aligned the array in such a way that the system is
forced to issue multiple input/output requests. The array
must not be referenced until a call to Q7WAIT has
established that the transfer was successfully completed.

Form:

CALL Q7BUFOUT(u,a,len,map,f addr)

u

a

len

Logical unit number of the mass storage file
to which data is to be written. An integer
constant or integer variable having a value of
from 1 to 99, fassooiated"'WittF'"thtF'file'']f','
.m·ewufof:tfie:PROGRAM statement;· : ..•. · .. ··•·· ·.· ·:,·Yi ·-"-'"'·•<M~"~·-·-'«·-'•-<,,·_.,. _ _,,_,_,_,_,, ____ ,_<<•-»-•-•·•··<••-*'·~"='~';(CJ

Array element or array name (an array name
indicates the first element of the array).
Data from the block starting at a, which
must lie on a small page boundary, is output
to u.

An integer constant or integer variable
indicating the number of small pages to be
transferred.

map Optional. Same as the map parameter for
Q7BUFIN.

f addr Optional (if f addr is specified, map must also
be specified). An integer constant or integer
variable to whose value the current write
position is modified before the write begins.
A variable f addr is defined and redefined only
by the user. If faddr is omitted, default is
the current write position.

Depending on the value of len, a Q7BUFOUT call might
transfer only part of the array named by a, or it might
transfer data located beyond the end of the array.

Q7WAIT

The Q7WAIT subroutine must be called to determine
whether or not input/output operations have completed
without transmission error for a prior Q7BUFIN or
Q7BUFOUT call for the specified file. Input/output errors
are reported to the user only through the stat parameter of
this call. Each time Q7WAIT executes, it returns a status
value (stat) that indicates data transmission status. While
data transmission is in progress, control either returns
immediately to the program or is relinquished by the
program until the data transfer is complete, depending on
the parameters in the call. Q7WAIT can also be used to
determine when the physical end of the mass storage
assigned to a file has been reached.

60457040 B

Form:

CALL Q7WAIT(u,a,stat,ret,len)

u Logical unit number of the file associated
with the array a in a concurrent input/output
operation in progress. An integer constant or
integer variable having a value of from 1 to
99, 'ass<foia1ed ·vmff"'l:hEf~fileoy-meruHF<Wtne1
r.~-9.Qit~~t~!~.t~m~1~M .. :~ .. -,.<"•~~-OO,.>.;,: .. ~~~,.,,'"'"~"'J

a Array element or array name (an array name
indicates the first element of the array)
involved in a Q7BUFIN or Q7BUFOUT
operation.

stat An integer variable whose value is returned
by the call to Q7WAIT. The value returned
indicates the status of the input/output
operation:

ret

len

Q7SEEK

0 = Normal completion

1 = Physical end-of-file reached

2 = Data transfer error due to hardware
failure

3 = Input/output operation not yet completed

Optional. Integer constant or integer
variable specifying action to be taken upon
return from Q7WAIT call:

0 = If input/output is in progress at time of
call, program should wait (computation
should cease) until input/output is
completed normally or abnormally.
Default.

1 = If input/output is in progress at time of
call, program should not wait but control
should be returned to it immediately.

Optional. If len is specified, ret must also be
specified. An integer variable whose value is
returned by the call to Q7WAIT. The value
returned is the number of pages actually
transmitted during the input/output
operation. (If the physical end of the mass
storage was reached, len might be less than
the number of small pages requested to be
transferred.)

The Q7SEEK subroutine resets the page address at which
data transmission is to occur. It is an alternative to a
faddr parameter in a Q7BUFIN or Q7BUFOUT call.

Form:

CALL Q7SEEK(u,faddr)

u Logical unit number of unit to be referenced
in a subsequent Q7BUFIN or Q7BUFOUT
call. An integer constant or integE7r y~ri~~le
having a value of from 1 to 99, ra:~ciate'd'\
}¥~~~···J~~\~e~·/~~·<'~;~~~·:";?tTi:~· . ROG
~l~te..m.e,n t,~'·"~L.;._.;~:;~:·;«M*<>~~~~L~~,:~~:;;:X~><~-~,~~>:<:., ;~<~lx>

13-13

faddr Optional. If faddr is zero or omitted, the
current read/write position of u is
repositioned at the beginning of the file (a
REWIND is executed). Otherwise, f addr has
the same effect as the faddr. parameter of a
Q7BUFIN or Q7BUFOUT call.

A CALL Q7SEEK(u,O) or CALL Q7SEEK(u) statement
performs a rewind on u.

QSWIDTH SUBROUTINE
The subroutine QSWIDTH enables a program to set a fixed
record length for an ASCII output file. The default record
length for a PUNCH file is 80 characters. For all other
files, the default record length is variable, with trailing
blanks removed from the end of each line.

A call to QSWIDTH is only valid for files with control word,
record mark, or fixed-length record types. A call to
Q8WIDTH must precede any other access to the file.

Form:

CALL QSWIDTH(u, width)

u Logical unit number of the file

width Record length for subsequent ASCII output to
· the file. The width must not exceed 137. If
width is specified as zero, trailing blanks are
removed from each line and the record length
is variable.

QSNORED SUBROUTINE
The subroutine ·Q8NORED enables a user to suppress file
size reduction. Files created by a program are initially 128
small pages long,. but are reduced to minimal size upon
completion of the program. If Q8NORED is used, the file
will remain 128 small pages long.

The for mat of the QSNORED subroutines is:

CALL Q8NORED
CALL Q8NORED(u1, ••• ,Un)

logical unit number of a file

If no parame_ters are present, no files will be reduced.

SUPPLIED SUBROUTINES
A number of predefined subroutines are provided with the
CYBER 200 FORTRAN compiler. The predefined
subroutines are referenced by CALL statement. The
subroutines are listed in alphabetic order.

DATE

This subroutine generates the same result as the DATE
function. The form is:

CALL DATE(a)

The result is stored in the argument a, which can be any
8-byte variable. Within any particular routine, DATE must
be consistently called either as a function or a subroutine.

13-14

RANGET

This subroutine obtains the current value of the seed in the
random number generator. The form is:

CALL RANGET(n)

The argument n must be of type integer.

RANS ET

This subroutine sets the seed in the random number
generator. The form is:

CALL RANSET(n)

The argument n must be integer. The current seed is set to
the specified value if the argument is an odd positive
integer. If the specified value is an even positive integer,
the value is increased by 1 to an odd value. If · the
specified value is zero or negative, the current seed is set
to the default value X'000054F4A3B933BD'.

SECOND

This subroutine generates the same result as the SECOND
function described in section 15. The form is:

CALL SECOND(a)

The result is stored in the argument a, which can be any
real variable. Within any particular routine, SECOND must
be consistently called either as a function or a subroutine.

Because SECOND uses the job interval timer (JIT), a user
program that manipulates the job interval timer invalidates
the returned result. Furthermore, a user program that
attempts to perform JIT interrupt processing conflicts with
SECOND and causes the program to abort. See the
description of the data flag branch manager.

TIME

This subroutine generates the same result as the TIME
function described in section 14. The form is:

CALL TIME(a)

The result is stored in the argument a, which can be any
S~byte variable. Within any particular routine, TIME must
be consistently called either as a function or a subroutine.

VRANF

This subroutine generates a vector of random numbers.
The form is:

CALL VRANF(v,n)

The argument v is a real array that is to contain the
generated vector of random numbers. The argument n is
an integer that specifies the length of argument v.

ST ACKLIB ROUTINES
The STACKLIB routines can be called for the purpose of
optimizing certain loop constructs that cannot be
vectorized. A loop construct that can be optimized is

60457040 B

coded as a subroutine call. The subroutine name
establishes the type of operation, and the arguments
specify the operands to be used. In all cases, a STACKLIB
call can be considered as replacing an equivalent DO loop.

supported represent a selection of the most useful
STACKLIB constructs. The available STACKLIB routines
are listed in table 13-3 and table 13-4.

Dyadic form:
The efficiency of STACKLIB routines is gained through
maximum use of the instruction stack and through optimal
use of the register file. For example, a STACKLIB routine
can use a large part of the register file to hold elements of
a vector operand. STACKLIB routines typically contain
unrolled loops that produce more thwi one result per loop
iteration.

CALL Q8fbrm(res, v2, vl,num)

One of the four arithmetic operations (A=add,
S=subtract, M=mul tiply, D=divide).

The STACKLIB naming conventions allow for a large
number of possible routine names. The routines currently

b Broadcast mask indicating whether either
operand is invariant, that is, scalar (O=both
vectors, !=operand vl scalar, 2=operand v2
scalar).

Description

Add, recursive vl

Add, recursive v2

Multiply add,
recursive v2

Multiply add,
recursive v4

Multiply add,
recursive vl,
reverse order

Multiply add,
recursive v2,
reverse order

Subtract multiply,
recursive v 1,
reverse order

Subtract multiply,
recursive v2,
reverse order

Sum of vector
elements

Dot product of
2 vectors

Dot product of
l vector

Multiply, add

Multiply, add

Multiply, add

Multiply, add

Multiply, subtract

Multiply, subtract

60457040 B

Type

Dyadic

Dyadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Dyadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

Triadic

TABLE 13-3. STACKLIB CALLS WITH FORWARD COUNT

STACKLIB Call With Sample Arguments

CALL Q8A010(A(2),8(2),A(l),N-l)

CALL Q8A020(A(2),A(l),B(2),N-l)

CALL Q8MA020(A(2),B(l),A(l),C(2),N-l)

CALL Q8MA040(A(2),A(l),B(l),C(2),N-l)

CALL Q8AM0ll(A(2),B(2),C(l),A(l),N-l)

CALL Q8AM02l(A(2),B(2),A(l),C(l),N-l)

CALL Q8SM0ll(A(2),B(2),C(2),A(l),N-l)

CALL Q8SM02l(A(2),B(2),A(l),C(2),N-l)

CALL Q8DAOOOO(S,A(2),N-l)

CALL Q8DCOOOO(S,A(2),B(2),N-l)

CALL Q8DC0010(S,A(2),N-l)

CALL Q8AM20l(A(2),B(2),C,D(2),N-l)

CALL Q8AM10l(A(2),B(2),D(2),C,N-l)

CALL Q8MA200(A(2),B(2),C,D(2),N-l)

CALL Q8MA400(A(2),C,B(2),D(2),N-l)

CALL Q8SM20l(A(2),B(2),C,D(2),N-l)

CALL Q8SM10l(A(2),B(2),D(2),C,N-l)

Equivalent Statement Contained
in the Loop DO xx! = 2,N

Where I Ranges From 2 Through N

A(I)=B(I)+A(I-1)

A(I)=A(I-l)+B(I)

A(I)=(B(I-l)*A(I-l))+C(I)

A(I)=(A(I-l)*B(I-l))+C(I)

A(I)=(B(I)+(C(I-l)*A(I-1))

A(I)=B(I)+(A(I-l)*C(I-1))

A(I)=B(I)-(C(I)*A(I-1))

A(I)=B(I)-A(I-l)*C(I))

S=S+A(I)

S=S+A(I)*B(I)

S=S+A(I)*A(I)

A(I)=B(I)+C*D(I)

A(I)=B(I}+D(I)*C

A(I)=B(I)*C+D(I)

A(I)=C*B(I)+D(I)

A(I)=B(I)-C*D(I)

A(I)=B(I}-D(I)*C

13-15

TABLE 13-4. STACKLIB CALLS WITH BACKWARD COUNT

Equivalent Statement as Contained

Description Type STACKLIB Call With Sample ArgtDDents in the Loop DO xxI = 2,N With
J = (N+l)-I Included, Where J

Ranges From N-1 Through 1

Multiply add, Triadic CALL Q8MA212(A(N-l) ,B(N-1) ,S ,A(N) ,N-1) A(J)=(B(J)*S)+A(J+l)
recursive vl,
scalar v2

Multiply add, Triadic CALL Q8MA412(A(N-l),S,B(N-l),A(N),N-l) A(J)=(S*B(J))+A(J+l)
recursive vl,
scalar v4

Multiply add, Triadic CALL Q8AM143(A(N-l),A(N),B(N-l),S,N-l) A(J)=A(J+l)+(B(J)*S)
recursive v4,
scalar vl,
reverse order

Multiply add, Triadic CALL Q8AM243(A(N-l),A(N),S,B(N-l),N-l) A(J)=A(J+l)+(S*B(J))
recursive v4,
scalar v2,
reverse order

Subtract multiply, Triadic CALL Q8SM013(A(N-l),B(N-l),C(N-l),A(N),N-l) A(J)=B(J)-(C(J)*A(J+l))
recursive vl,
reverse order

Subtract multiply, Triadic CALL Q8SM023(A(N-l),B(N-l),A(N),C(N-l),N-l) A(J)=B(J)-(A(J+l)*C(J))
recursive v2,
reverse order

Divide add, Triadic CALL Q8DA523(A(N-l),S,A,(N);T,N-l) A(J)=S/(A(J+l)+T)
recursive v2,
scalar v4 and vl,
reverse order

Divide add, Triadic ~L Q8DA613(A(N-l),S,T,A(N),N-1) A(J)=S/(T+A(J+l))
recursive vl,
scalar v4 and v2,
reverse order

Multiply, add, Triadic. CALL Q8AM013(A(N-l),B(N-1),C(N-l),A(N),N-l) A(J)=(B(J)*C(J))+A(J+l)
recursive vl,
reverse order

Multiply, add, Triadic CALL Q8AM023(A(N-l),B(N-l),A(N),C(N-l),N-l) A(J)=(B(J)*A(J+l))+C(J)
recursive v2,
reverse order

r Recursion mask (O=no recursion, l=recursive
vl, 2=recursive v2).

m Miscellane<?US designator (currently always 0).

res

v2

vl

num

13-16

Result operand first address. A vector must
be of type real.

Left operand first address. A vector must be
of type real.

Right operand first address. A· vector must be
of type real.

The number of results to be produced. The
value must be a positive integer.

Triadic form:

CALL Q8fsbrm(res, v4, v2, vl,num).

f

s

b

One of the four arithmetic operations (A=add,
S=subtract, M=multiply, D=divide) used as the
first operator.

One of the four arithmetic operators used as
the second operator.

Broadcast mask indicating any invariant
operands (O=no scalar operands; 1, 3, or
5=scalar vl; 2, 3, or 6=scalar v2; 4, 5, or
6=scalar v4).

60457040 B

m

res

v4

v2

vl

num

Recursion mask (O=no recursion; 1, 3, or
S=recursive vl; 2, 3, or 6=recursive v2; 4, 5, or
6=recursive v4).

Miscellaneous designator (0 .or l=forward
count; 2 or 3=backward count; 0 or 2=forward
order of operations; 1 or 3=reverse order of
operations).

Result operand first address. A vector must
be of type real.

Left operand first address. A vector must be
of type real.

Middle operand first address. A vector must
be of type real.

Right operand first address. A vector must be
of type real.

The number of results to be produced. The
value must be a positive integer.

The general form of a DO loop equivalent to a dyadic
STACKLIB reference is:

DO xx ind = first,last
xx res(ind) = v2(ind) © vl(ind)

60457040 B

The general form of a DO loop equivalent to a triadic
STACKLIB reference with b=O and m=O is:

DO xx ind = first,last
xx res(ind) = v4(ind) © v2(ind) ® vl (ind)

The © and ® indicate one of the functions +, -, *,or /.
In the triadic operation, the first operator is uc;ed on v4 and
v2, and the second operator is used on the result of the
first operation and vl. The count can be backward rather
than forward, as indicated by the m part o(the routine
name. If the count is backward, the general form becomes:

DO xx ind= first.last
irev = last+first-ind

xx res(irev) = v4(ire~) © v2(irev) © vl(irev)

The order of operations can be reversed, as indicated by
the m part of the routine name. In reverse order, the
second operator is used on v2 and vl, and the first operator
is used on v4 and the result of the first operation.

The operands can be scalar rather than vector, as indicated
by the b part of the routine name.

NOTE

Since STACK.f...IB routines are implemented for
efficiency, the validity of arguments is not
checked. If the routine name indicates a certain
recursive operand, an off set of l from the result
first address is assumed, and the first adctress
value given in the argument list is ignored.

13-17

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS 14

A group of predefined functions is provided with the
CYBER 200 FORTRAN compiler. These functions, listed
and described in this section, perform conventional
manipulations such as changing the sign of a number, or
frequently-used mathematical computations such as
logarithms and the trigonometric functions. A reference is
made to one of these functions by using the function name,
suffixed with an appropriate list of actual arguments, as a
data element in an arithmetic or logical expression. The
actual arguments can be any expressions that agree in
type, number, and order of arguments. Upon execution of
a statement containing a reference to a predefined
function, the function is executed using the values that the
arguments have at the time of the reference; the function
result is then made available to the expression.

IN-LINE AND EXTERNAL
The functions fall into three categories - functions that
when referenced:

• Cause in-line code to be generated during compilation.

• Cause transfer of program control to an external
module during execution.

• Can generate either in-line code or a transfer to an
external module.

If the name of any function in the first category appears in
an EXTERNAL specification statement, no in-line code is
generated and the user must provide an entry point with
that name. Any function that is to appear in an actual
argument list must appear in an EXTERNAL statement in
the same program unit.

The external version of· a function in the third category is
used if the function name appears in an EXTERNAL
statement in the same program unit as the function
reference; otherwise, the in-line version is used. Any
function in this category performs the same operations
whether it is external or in-line.

Appendix E contains a list of the functions categorized
into the three types.

SCALAR AND VECTOR
Each function also falls into one of two categories
according to the generated result:

• Scalar result - one set of computations that result in
one value

• Vector result - one or more sets of computations that
result in one or more values

Also, CYBER 200 FORTRAN provides a group of
QB-prefixed functions that perform . more. involved
manipulations with vectors than the V-prefixed functions.

The functions, function reference form, and type of
arguments and result are given in table 14-1. In the table,
the letters a and b are used for scalar. arguments, the
letter v is used for vector arguments, the letter c is used
for control. vectors, the letter i is used. for index vectors,
and the letter u is used for vector results. Scalar
arguments can be general scalar expressions. Vector

. ~gurn~n~~ rn~.~ ~~ v~<!~<>F~. <>F,<:J~~':'.rii;>~<>rs~
TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS

Function

Obtain absolute value of argument

Truncate argument

60451040 B

Function
Reference

ABS (a)
IABS (a)
DABS (s)

: ·v~s :.(v;u.~
L:•.:YlA•.~;:;(Y;.~:) ;, ''·'."'''·•

AINT (a)
Itf'r(a)

·.·:~i.Diat:.JalD.:.i: .· ... ·., :.: .. .
IDIHT (a)
,,Ail'l'X~!iu>.:
VJ.,,;: (~:I~)

AMOD (a1,aJ)
·,~()1) Ja1,,~2., ··::·'.:;'··
.Dtf()D<~.•1~~2~;:: ·-, .:

•·•·,;~.VAlfO.~,··.··.~~l!!°~Jµ_).
.. :.':l:!!2!.!,:.~!t:J,;!2.!,~t .

Type of

Arguments
(other than
c and ottt

Result

Real Real
Integer Integer
Double Double ··: 1te•i ae&i

.<L:··~.: .. .:i"l~~~&-~"'·'is" Lt.A~~&!.~:.:. ''"''·
Real aeal
Ilea l . ~~.~~I~.~.

~·.:;,::·.:;jJiooUiJie?L :.Doubt•.:·»·

·.·~iit~er
l<L .. L.>: ···"~~.!kL.::,:: ... J.: LL; I :.:J.~.~~-·!•:.:r·.•.<./·.,·.< ··•···:·.: .. ··•

14-1

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Function

Choose the largest value from among two or more argu­
ments

Choose the smallest value from among two or more argu­
ments

Float arglJ!l!ent (convert from integer to real or double­
precision)tt

Fix argument (convert from real to integer)tt

Transfer sign from second argument to first (second
must not be zero)

Calculate positive difference between two arguments:
(a1 - MIN(a1,a2))

Convert from double-precision to rea1tt

Obtain real part of complex argument

Obtain -_imaginary part of complex argument

Convert from real to double-precisiontt

Express two real arguments in complex form

Obtain conjugate of a complex argument

14-2

Function
Reference

AMAXO Ca1,a2, •••)
AMAX! Ca1,a2, •••)
MAXO (a1,a2, •••)
MAX! (a1,a2, •••)
DMAXl Ca1,a2, •••)

AMINO (a1,a2, •••)
AMIN! Ca1,a2, •••)
MINO (a1,a2, •••)
MIN! (a1,a2, •••)
DMINl (a1,a2, •••)

Type of

Arguments
(other than
c and ottt

Result

Integer Real
Real Real
Integer Integer
Real Integer
Double Double

Integer .Real
Real Real
Integer Integer
Real Integer
Double Double

60457040 B

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Function

Count elements having value of 1

Obtain length of vector

Find minimum value in vector

Find maximum value in vector

Find first pair of elements satisfying the specified
relation

Test data flag branch register

Mask values in two vectors into result vector

60457040 B

Function
Reference

QSSCNT (v)

QSSLEN (v)

QSSMIN (v) or
QSSMIN (v,c)

QSSMINI (v) or
QSSMINI (v,c)

QSSMAX (v) or
Q8SMAX (v,c)

Q8SMAXI (v) or
Q8SMAXI (v,c)

Q8SEQ (v1,v2)

QSVEQI (v1,v2;u)
QSVGEI (v1,v2;u)
Q8VLTI (v1,v2;u)
Q8VNEI (v1,v2;u)

QSSDFB (a,b)

Type of

Arguments
(other than
c and i)ttt

Result

Bit Integer

Real Integer
Integer Integer
Complex Integer

Real Real
Integer Integer

Real· Integer

Real Real
Integer Integer

Real Integer

Real Integer
Integer Integer

Real Integer
Integer Integer

Real Integer
Integer Integer

Real Integer
,I,nteger Integer

Real Integer
Real Integer
Real Integer
Real Integer

Integer Logical

Real Real

14-3

Exponential: ea

Natural logarithm: logea

Common logarithm: log1oa

Sine

Cosine

Arctangent

Arctangent of a/b

14-4

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Function
Function
Reference

ATAN(a)
DATAN(a)
VATAN(v;u)

ATAN2(a,b)
DATAN2(a,b)
VATAN2(vi,v2;u)

Type of

Arguments
(other than
c and i)ttt

Real
Double
Real

Real
Double
Real

Result

Real
Double
Real

Real
Double
Real

60457040 B

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Function

Arcsine

Arccosine

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Square root

Modulus: (x2+y2)1/2 where x is the real part and y is
imaginary part of the argument

Insert or extract bits

Random number

Time of day

Date

CPU·time in seconds since JC:??. start

Function
Reference

AS IN(a)
DASIN(a)
VASIN(v;u)

ACOS(a)
DACOS(a)
VACOS(v;u)

SINH(a)
DSINH(a)

COSH(a)
,DCOSH(a)

TANH(a)
DTANli(a) .•

SQRT(a)
DSQRT(a)
CSQRT(a)
VSQRT(v;u)
VCSQRT(v;u)

CABS(a)
VCABS(v;u)

QSSINSB(a,m,n,b)

QSSEXTB(a,m,n)

RANF(d)

TIME(d)

DATE(d)

•. gc;Q~(~t.

Type of

Arguments
(other than
c and ottt

Real
Double
Real

Real
Double
REal

Real
Double

Real
Double.,

Real
J)oui>ie

Real
Double
Complex
Real
Complex

Complex
Complex

Real
Integer

(dummy)

(dummy)

(dummy)

..J.~.tl:~Y t>~ ·.

Result

Real
Double
Real

Real
Double
Real

Real
Double

Real
Dou}> le

Real
Double.

Real
Double
Complex
Real
Complex

Real
Real

Typeless
Typeless

Typeless
Typeless

Real

Character*S

Character*8

R,~.aJ.

t[x] is defined as the sign of x times the largest integer less than or equal to lxl. The results are not
defined when the second argument is zero.

ttProvides the same effect as the implied conversion in assignment statements.

tttEach control vector c is type bit, and each index vector i is type integer •

FUNCTION DESCRIPTIONS

The follov,ririg qe,~~ripti()~ ~re, l~ste~j~f} s.~i~t ~!R~abe,~ica}
<?F<Je,r.···:· ;:Ho~eyer; ... · .. ·si~ce. >·~:·:l)ain1ng ..• ·<c()l)Ventf'op>.:.·· use~> the·j

··1etter Y ~s a·· prefi}{ to s~afar,fun~tionnames to prodtic~:
the corresponding vector. function names, all JunctioT1s. v,rit~
vector results can be found· unqer •: Yand· QSV •.• •: .. Ifa vector :.
functior:iJnput·argument can be tr.yector1. if.is implied that ·
it: .•.. can.>also .• be a·:<Jescriptori or.·•:·.des~rip~or ... ·arr~y ~lgm~nl~i
Also1.·except forsome.of the·vector functions,.:•none of the

'funcHorut·aifers·· tfie'···vaiues ... of . iiS'"·'arguments. The
mathematical values of some of the mathematical
functions can be infinite.

60457040 B

. A, 'generic :•.·.·runctiolli generat~s/K······re.at./or /integer , r~u1 t/\
dependingpn the· J1l~de of .• ·the,••argument,:. Forinstan,ce,· th~j
[Q8SSUM:functionis a ge11eric.functiq11.

·x typel~ss functiori ien ef~i~~: a: ~~s~iiii~~t is; hot ·~~ll4rt~dl
:ror use as an argum~nt or for ~ssign01~nt. For instance, i
~.9~ .9~§!~~~J~nqt.ioJ1J~ ~ Jype,!~~~Jµ~gti211~. · ,"

ABS(a)

For a real number x, ABS(x) computes the absolute
value 1x1.

14-5

:Ac()S(a)
,. ;·····,.,

AIMAG(a)

This returns the imaginary part of a complex number as a
real number; if x+iy is the complex number, AIMAG
returns y.

AINT(a)

For a real num.ber x, AINT(x) computes [x], where [A J is
the sign of A times the largest integer less than or equal
to 1A1. AINT returns a real result even though its value is
always integral.

ALOG(a)

This computes the natural logarithm of a real number
greater than zero. The result is a real number accurate to
approximately 45 bits.

For a given real number x, ALOG(x) is calculated as
follows.

For x outside the range:

((2)1/212:5x<(2)1/2)

let:

where:

l/2:5w<l

and n is an integer that satisfies the equation.

Also, let:

t = (w - (2)1/2/2)/(w + (2)1/2/2)

Then:

loge(x) = (n -1/2) * loge(2) + loge((l + t)/(l - t))

For x in the range:

((2)1/2 /2$x<(2)1/2)

let:

t = (x - 1) I (x + 1)

Then:

loge(x) = logeCCl + t) I (1 - t))

In either case:

14-6

6
logeCCl + t) I (1- t)) = 2t L cnt2n

n=O

where:

co = 1.000000000000000172016224 * 100

c1 = 3.333333333327618176885283 * 10-l

c2 = 2.000000003098077890899307 * 10-l

c3 = 1.428570799460827347261398 * 10-l

c4 = 1.111171831154342806719000 * 10-l

c5 = 9.060935658179353717214254 * 10-2

cs= 8.419186575863053137534817 * 10-2

If a zero or negative argument is received, a data flag
branch occurs inside the routine.

ALOGlO(a)

This computes the logarithm of a real number. The result
is a real number that is accurate to approximately 45 bits.

For a given real number x greater than zero:

where the natural logarithm is computed as described for
the function ALOG.

If a zero or negative argument is received, a data flag
branch occurs inside the routine.

AMAXO(a1,a2, ...)

This searches a list of integer numbers for the list element
having the maximum value. The integer found is returned
as a real number.

This searches a list of real numbers for the list element
having the maximum value and returns that value.

This searches a list of integer numbers for the list element
having the minimum value. The integer found is returned
as a real number.

This searches a list of real numbers for the list element
having the minimum value and returns the number when
found.

This computes one real number modulo a second real
number and produces a real result. AMOD(x,y) is defined
as x-[x/y] * y, where [A] is the sign of· A times the largest
integer less than or equal to I Al.

60457040 B

ASIN(a) AND ACOS(a)

These compute the arcsine and the arccosine of a real
number having an absolute value less than or equal to 1.0.
The result is a real number expressed in radians, and is
accurate to approximately 45 bits. The range of the result
for ASIN is -pi/2 through pi/2, inclusive; and the range of
the result for ACOS is 0 through pi, inclusive.

For a given real number x:

asin(x) = asin(u) if 0X1/2 , where u = x

asin(x) = pi/2 - 2 * asin(u) if 1/2<X$1

where u = (1 - x/2)1/2

asin(x) = -asin(-x) if -l::;x<O

and asin(u) is calculated from a polynomial of degree 22.

Also:

acos(x) = pi/2 - asin(x).

If an argument of magnitude greater than 1
: ~~.~~··· ~~g ~~anc.~ O~C,l1~~. i~~~~~. ~~e,"r~l1~.if!~·w .

ATAN(a)

This computes the arctangent of a real number. The real
result is accurate to approximately 45 bits, and is in the
range -pi/2 through pi/2 (not inclusive).

For a given real number x:

atan(x) = sign(x) * atan(v)

where:

V =IXI

Then:

atan(v) = atan(r) + c

where rand care:

If o::;v<p, r = v and c = o.o

If P$V<21/2 - 1, r = (v - p)(l + v * p)
and c = pi/16

If 21/2 - l::;v<l, r = (v - t)/(l + v * t)
and c = 3pi/16

If l$v<21/2 + 1, r = (v * t - l)/(v + t)
and c = 5pi/16

where:

p = tan(pi/16) and t = tan(3pi/16)

Then:

atan(r) = r - r * q

60457040 B

where:

q = CCo +Ct * zl + c2 * z2 + ••• +cs * zS

Z = r2

Co = 0.999999999999998

Cl = 0.333333333330S52

C2 = 0.199999998910139

C3 = 0.14285S97S5S1312

C4 = 0.111099001318911

C5 = 0.904542314114089*10-1

Cs = O.S834S4392415994*10-1

ATAN2(a,b)

This computes the arctangent of the ratio of two real
numbers. The real result, expressed in radians, is accurate
to approximately 45 bits and is in the range -pi through pi.

For given real numbers x and y, the result is in the range:

-pi to -pi/2 if x<O , y::;o

-pi/2 to 0 if x~O , y<O

0 to pi/2 if x~O , y?:O

pi/2 to pi if x<O , y>O

ATAN2(x,y) computes the arctangent as follows:

atan(x/y) = sign(x) * pi/2 if y = 0

atan(x/y) = sign(x) * A TAN(x/y) if y>O

atan(x/y) =pi - ATAN(x/y) if y<O , x~O

atan(x/y) = ATAN(x/y) - pi if y<O , x<O

The result is greater than or equal to zero for x>O, and
negative for x<O. (ATAN is the function that computes the
arctangent of a real number.)

If unacceptable arguments are received, the message:

X=Y=O.O

is issued, the result is set to indefinite, and a normal exit is
taken from ATAN2.

CABS(a)

This computes the modulus of a complex number, and
produces a real result that is greater than or equal to zero
which is accurate to approximately 45 bits.

For a given complex number:

x = u +iv

the result is:

(u2 + v2)1/2 + Oi

14-7

where the square root function is evaluated by the machine
instruction SQRT.

CCOS(a)

This computes the cosine of a complex number. The result
is a complex number whose real and imaginary parts are
each accurate to approximately 45 bits.

For a given complex number x = u +iv, CCOS(x) is
computed as follows. If rur >.110534964875444 * 1015 or
if v >19905.80, the result is set to indefinite, an error
message is issued, and a normal exit is taken from CCOS.

Otherwise, the complex result is:

r +is

where:

r = cos(u) * (ev + e-V)/2

s = - sin(u) * (eV - e-Y)/2 for IVl~0.5

5
S = - sin(u) * V * l:; Cnv2n for IVl<0.5

n=O

where:

co = .9999999999999999811672 * ioO

c1 = .1666666666666721232395 * 100 ·

c2 = .833333333307759961 * 10-2

c3 = .1984127027907999 • 10-3

c4 = .275569807356154 * 10-S

c5 = .251726188251 • 10-7

The real-valued sine, cosine, and exponential functions are
evaluated as described for the SIN, COS, and EXP routines.

If an unacceptable argument is received, one of the
messages:

~BS (REAL PART) TOO LARGE

IMAG. PART TOO LARGE

is issued, both real and imaginary parts of the result are
set to indefinite, and a normal exit is taken from cco~.

CEXP(a)

This computes the exponential of a complex number. The
result is a . complex number that is accurate to
approximately 45 bits. ·

For a given complex number x=u+iv, the procedure for
calculating CEXP(x) is as follows.

If u > 19905.80, or if I VI >.110534964875444 * 1015' both
the real and imaginary parts of the result are set 'to
indefinite, an error message is issued, and a normal exit is
taken from CEXP. ·

Otherwise, the complex result is:

r +is

14-8

where:

r = cos(v) • eu

s = sin(v) * eu

The real-valued sine, cosine, arid exponential functions are
evaluated as described for the functions SIN, COS, and
EXP.

If the function argument is out of range, one of the
messages:

REAL PART 1'00 LARGE

ABS (IMAG PART) TOO LARGE

is issued, the result is set to indefinite, and a normal exit
is taken from CBXP.

CLOG(a)

This computes the natural logarithm of any complex
number except O. + iO. • The result is a complex number
that is accurate to approximately 45 bits.

For a given complex number x = u +iv, the procedure for
calculating CLOG(x) is as follows.

The complex result is:

r +is

where:

r = loge((u2 + v2)1/2)

s = arctan (v/u)

The real-valued log and arctangent functions are evaluated
as described for the functions ALOG and ATAN2. The
square root is computed by the machine instruction SQRT.

The message:

ZERO ARGUMENT

is issued if the argument is O. + iO., the result is set to
indefinite, and a normal exit is taken from CLOG.

CMPLX(a11a2)

This constructs a complex number from two real numbers.
CMPLX(x,y) assigns x to the real part of the result and y to
the imaginary part of the result.

CONJG(a)

This computes the conjugate of a complex number. If the
complex number is x+iy, the conjugate is x-iy; the real
part, x, of the complex number is assigned to the real part
of the result, and the imaginary part, y, of the complex
number is negated and assigned to the imaginary part of
the result.

COS(a)

See SIN for a description of the COS function.

60457040 B

This computes the hyperbolic cosine of a real number and
produces a real result that is greater than or equal to 1.0
and accurate to 47 bits. For a given real x:

cosh{x) = {eX + e-X)/2.0 •

If an unacceptable argument is received, the message:

ARGUMENT TOO LARGE

is issued, the result is set to indefinite, and a normal exit is
taken from COSH. ·

COTAN(a)

This computes the cotangent of a real number expressed in
radians. The function first reduces its argument
modulo 2 pi. The result is a real number that is accurate
to approximately 45 bits.

For a given real number x, cotan(x) is calculated as follows.

Let:

sign = sign {x)

r = x * 4 /pi;

n=[r];

z = r - n (where z ~ 0 and< 1) ;

s = n modulo 8 ;

k = s if 0 ::;s $ 3 and k = (s - 4) if 4 $ s ~ 7 ; and

if k = 1 or k = 3 then z = z - 1

if k = 1 or k = 2 then sign = - sign

z =sign* z

The values of cotan(x) corresponding to the values of k are:

k cotan(x)

0 1/tan(z)

1 tan(z)

2 l/tan(z)

3 1/tan(z)

In any case, tan(y) is approximated by:

12
tan(y) = y * L cny2n,

n=O

where cn are constants as defined for the TAN function.

If an unacceptable argument is received, a data flag branch
occurs.

CSIN(a)

This computes the sine of a complex number. The result is
a complex number accurate to approximately 45 bits.

60457040 B

For a given complex-valued x = u +iv, CSIN(x) is computed
as follows.

If abs(u)>.110534964875444 * 1015 or v >19905.80, the
result is set to indefinite, the appropriate error message is
issued, and a normal exit is taken from CSIN.

Otherwise, the complex result is:

r +is

where:

r = sin(u) * (eV + e-V)/2

s = cos(u) * (ev - e-V)/2 for 1 v1~0.5

5
s = cos(u) * v * L cnv2n for lvl<0.5

n=O

The values for Cn are as given in the CCOS routine.

Real-valued sine, cosine, and exponential functions are
evaluated as described for the functions SIN, COS, and
EXP respectively.

If an unacceptable argument is received, one of the
messages:

ABS (REAL PART) TOO LARGE

IMAG. PART TOO LARGE

is issued, both real and imaginary parts of the result are
set to indefinite, and a normal exit is taken from CSIN.

CSQRT(a)

This computes the square root of a complex number in
which the real part is greater than or equal to zero, and
returns a complex result that is accurate to approximately
45 bits. Whenever a result is returned in which the real
part is zero, the imaginary part is greater than or equal to
zero.

For a given:

x = u +iv

taking the square root of x produces the result:

r +is

where r and s have one of the following sets of values:

r = b and s = c * sign(v) if u ~ O

r = c and s = b * sign(v) if u < 0

r = O and s = 0 if u = O and v = 0

The values of b and c are defined as follows:

b = ((a+ I UI)/2)1/2

C = IVl/(2 * b)

where:

a = (u2 + v2)1/2

14-9

The square root function is computed by means of the
machine instruction SQRT.

DABS(a)

For a double-precision number x, DABS(x) computes the
absolute value 1 xi.

DATAN(a) AND DATAN2(a,b)

These compute the arctangent of the ratio of two
double-precision numbers. If the denominator is 1.0, it
need not be specified (DATAN is used). The
double-precision result, expressed in radians, is accurate to
approximately 90 bits.

For two double-precision numbers x and y, the result is in
the range:

-pi to -pi/2 if x<O, yso

-pi/2 to 0 if x~O * y<O

0 to pi/2 if x~O , y~O

pi/2 to pi if x<O, y>O

14-10

Valid arguments for DATAN and DATAN2 lie in the inter­
val-0.47685405771593E+8645<x<+0.47685405771593E+8645
(the largest allowable argument-value is half of the largest
allowable real number).

The arctan(x/y) is calculated as follows:

atan(x/y) = sign(x) * pi/2 if y = 0

atan(x/y) = atan(z) * sign(x) if y >0

atan(x/y) =pi - atan(z) if y<O and x~O

atan(x/y) = atan(z) - pi if y< 0 and x< O

where:

z =lx/yl

and atan(z) is calculated as follows:

atanlz) = atan(v) if 1x1~1y1

atan(z) = pi/2 - atan(v) if 1 YI< IX I

where:

v = 1t11/ lt2I

with t1 and t2 being the two double-precision
arguments and:

I ti IS 1~21

where atan(v) is calculated as follows:

atan(v) = atan(r) + c

where atan(r) is computed from a telescoped Taylor­
Maclauren power series, and where r and c are as defined
for the function AT AN.

If unacceptable arguments are received, the message:

X=Y=O.O

is issued, the result is set to indefinite, and a normal exit is
taken from DATAN or DATAN2.

DATAN2(a,b)

See DATAN for a description of the UATAN2 function.

60457040 J:l

DBLE(a)

This converts a real number to double-precision. The value
of DBLE(x) is the same as the value of x. No error
messages are issued by DBLE.

DCOS(a)

See DSIN for a description of the DCOS routine.

DCOSH(a)

This computes the hyperbolic cosine of a double-precision
number and produces a double-precision result that is
accurate to 94 bits.

For a given double-precision x:

cosh(x) = (eX - e-X)/2.0

If an unacceptable argument is received, the message:

ARGUMENT '1'00 LARGE

is issued, the result is set to indefinite, and a normal exit is
taken from DCOSH.

DDIM(a1,a2)

This computes the positive excess of one double-precision
number over another double-precision number. DDIM(x,y)
returns the value x-y if x is greater than or equal to y, and
returns a double-precision value of 0.0 otherwise. The
function value is accurate to 94 bits.

DEXP(a)

This computes the exponential of a double-precision
number. The result is double-precision and is accurate to
approximately 90 bits.

For a given x:

eX = 2n • erl • er2

where:

n = [x/loge (2) + .5]

r = rl + r2 = x - n * loge(2)

rl · is the most significant part of r and r2 is the least
significant part of ri and the

The factor erl is evaluated from a polynomial of
degree 17. The polynomial was telescoped from a
truncated Taylor-Maclauren power series.

The factor er2 = 1 + r2 •

If the function argument is out of range, the message:

ARGUMENT TOO LARGE, FLOATING POINT
OVERFLOW

is issued, the result is set to indefinite, and a normal exit is
taken from DEXP.

60457040 B

, DFLOAT(a)

This converts an integer number to a double-precision
number. The normalized integer number is the first word
of the double-precision result, and the second word is set
to real zero. The result is accurate to 94 bits.

This computes the positive excess of one real number over
another real number. DIM(x,y) returns the value x-y if x is
greater than or equal to y, and returns a value of o.o
otherwise.

DINT{a)

For a double-precision number x, DINT(x) computes x ,
where A is the sign of A times the largest integer less
than or equal to A • DINT returns a double-precision
result even though its value is always integral.

DLOG(a)

This computes the natural logarithm of a double-precision
number. The result is a double-precision number that is
accurate to approximately 90 bits.

For a given double-precision number:

x = 2P * w

where:

(1/2)1/2 $ w < 21/2

and p is an integer:

loge(x) = p * logel2) + loge(w)

The term:

loge(w)

is initially approximated by:

ao = c1 * v + c3 * v3 + c5 * v5 + c7 • v7

where:

v = (w - 1) (w + 1)

and Cn are as for the function ALOG.

An iteration must be performed to obtain accuracy. The
iteration formula for:

f(a) = ea - x = 0

is:

&n+1 =an - t

where:

t=l-r

The final result with desired accuracy is:

a2 = ao - t1 - t2 - t12 * U/2 + ltl) I 2)

14-11

where t1 and rl denote the most significant parts of t 8J!d
r, while t2 and r2 denote the least significant parts of t
and r.

If a zero or negative argument is received, one of the
messages:

ZERO ARGUMENT

NEGATIVE ARGUMENT

is issued, the result is set to indefinite, and a normal exit is
taken from DLOG. ·

DLOGlO(a)

This computes the logarithm of a double-precision number.
The result is a double-precision number that is accurate to
approximately 90 bits.

For a given double-precision number x greater than zero:

where the natural logarithm is computed as described for
the function DLOG.

If a zero or negative argument is received, one of the
messages:

ZERO ARGUMENT

NEGATIVE ARGUMENT·

is issued, the result is set to indefinite, and a normal exit is
taken from DLOG 10.

DMAXl (a1,a2, ...

This searches a list of double-precision numbers for the list
element having the maximum value and returns that value.

This searches a list of double-precision numbers for the list
element having the minimum value and returns the number
when found.

DMOD(a1,a2,)

This . computes one dC>ul:>le-precision number modulo a
second double-precision number. 'fhe result isdouble­
precision. Valid arguments for DMOD lie in the interval
"."0.47685405771593E+8645<x<+0.47685405771593E+8645
(the largest allowable argilment value fa half ()f ·the largest
allowable real number).

For given double-precision numbers x and y:

DPROD(a1,a2,)

This computes the double-precisfon produ~t of. two .. · real
numbers •. -.• Valid arguments for DPROD. lie in the ·interval
•.-::.0,~.~~?854057?1~93E+8645::;xs+0~47685405771593E+S645.

14-12

(thei&Jg;51·.·····;no~abi~:••&J~tti~rir·_~itl~~ is half or:the•·wges~··:
allowable . real·· number) ••. _ ... The· double-precision equiyalents
of th~ .. reEl.l· numbers. are •. lllultiplied and a double.;.precision

.··result obtainedt_hat is accurate._•to 94bits.

DSIGN (a 1,a2,)

This combines the absolute value of one double-precision
number with the sign of another double-precision number;
DSIGN(x,y) returns one of the values -1x1, 0, or 1 x I
according as y is negative, zero, or positive, respectively.

DSIN(a) AND DCOS(a)

These compute the sine and cosine of a oouble-precision
number expressed in radians. The double-precision number
modulo 2 pi is used by the functions. The results are
double-precision numbers in the range -1 to 1, inclusive,
and are accurate to approximately 90 bits.

For a given double-precision x, the sine and cosine of x are
computed as follows:

cos(x) = cos(r) * cos(k * pi/2): sin(r) * sin(k * pi/2)

sin(x) = cos(x - pi/2)

where:

n = [I x I * 2/pi + .5]

r = l(lx 1-n * pi/2) 1 ·, r::;pi/4

k = n modulo 4, Osk::; 3

Depending on k and on the sign of I x 1-n*pi/2, cos(x) is
equal to plus or minus the sin(r) or coslr). Accordingly,
sin(r) or cos(r) is evaluated and negated if necessary. The
sin(r) and cos(r) are evaluated by polynomials of degree 21
and 20, respectively. These polynomials were telescoped
from truncated Taylor-Maclauren power series of degree
25 and 24.

If an unacceptable argument is received, the message:

ARGUMENT TOO LARGE

is issued, the result is set to indefinite, and a normal exit is
taken from DSIN or DCOS.

DSINH(a)

This computes the hyperbolic sine of a. double-precision
number and produces a double::-precision result that is
accurate to approximately 90 bits.

60457040 B

DSQRT(a)

This computes the square root of a double-precision
number greater than or equal to zero and returns a
double-precision result that is accurate to approximately
90 bits. An approximation to the square root is obtained
by using the SQRT machine instruction; this number is
accurate to 14 decimal places. One Newton appro,2'imation
is done to double the accuracy of the number; the form is:

a2 = 1/2 * (al + x/al)

i>TAN(a).
This computes the tangent of a double-precision number··
expressed in radians. The double-precision number modulo
2 pi is used by DTAN. 'l'he result is a double-precision
number that is accurate to approximately 90 bits. Valid
arguments for the DTAN function are in the interval
-.1105349648754440+15< x< .1105349648754440+15.

For a given double-precision x, tan{x) = sin(x)/cos{x), ·
where:

sin(x) = ! sin(r) * cos(k*pi/2) + cos(r) * sin(k*pi/2)

cos(x) = cos(r) · * cos(k*pi/2) ! sin(r) * sin(k*pi/2)

r = I x-n*pi/21

n = floor(x*2/pi+.5)

. k = n mocJu1o 4, osn $3

Depending on k and on the sign of (x-n*pi/2). tan(x) is equal'
.. to plus or minus sin(r)/cos(r) or cos(r)/sin(r).

if an unacceptable argument is received, the messaie:

ARGUMENT TOO LAROE
~, ... ·.· .. · ... :.' .' :.: : ·. '.· : ... ~ . i .·:.:: :.. : : .. : . _:·. : · ·. . .. · ... > .:, ·. ·,::;
isi~ued, the result, is set to indefinite,an.d finormal exit is'.
:taken from DTAN. · · ·
t 'J

PTANH(a)

;~lib,··· ··~oritputes••···t~e··.•• hypertloll~ ···•t&lgen.t.:. of .. a •. ciouble-p~cisioo l
number . and .. returns a dotJble-pr~ision result. •·that is··
'accurate to 90 bits~ · ·

1F.o~ a give# doubl~r~~on~: :
:ta11f1c~ .::.••ceX~ e-X)/CeX• .. t·e-X)·•·(br••···~··~·1·<1~.o
.tanhc~~i.~t<>r~#1~.o. · · · ·

'··· · .. ·.·.· ... ·.t···.···~··.···············.······.<X!.·.·· ... = ... ·.·····.•.•··'-.· 1 · ...•. • o.·.·• .. • .. ·.·.•·.·.·.·.r , .. or ...•...... • ... x.· ... , •. · .. · ... = · ... ·•.... -......... · .. ·.~·~·······.o · · ·.··.·.·.··•·.· ... ··.·.·.· ······.·· .. · ... · · .. · .. · ... · .. ·.· · , .· :. ·· · ·.:· .. · ·. ·
1

Y •' • •••• ••, • • Y- ·~'-••• • • "-Y 0 ••• • •" • • • • • • v'°" Y '"" • <", •"•••.O' • • ,, Y•• 0 ~ • ,• ''" < ' ' ,, , •> • •" ~ <';~~:,.: .. ~.:,.~L::~.~~:·~:,L;~~·,;~·:~.;;:,,,·:;;;~.~~

EXP(a)

This computes the exponential of a real number. The
result~ accurate to approximately 45 bits, is a real number
greater than or equal to zero.

For a given x, the mathematicru method used for
calculating EXP(x) is as follows. If x<-19842.031, the
result is zero. If x >19905.7999999999, a data flag branch
occurs inside the routine.

For all other values of x:

eX = 2k * 2m/l6 * 2f /l6

60457040 B

where:

n = (16 * (x/loge (2))]

k = [n/16] if x~O

k = [n/16] -1 if x< O

m = n modulo 16 if x~O

m = 16 - (n modulo 16) if x< 0

f = (16 * (x/loge(2))) - n

The absolute value off is~ O and <1.

The factor:

2rn/l6

is obtained from a table.

The product:

2k * 2m/l6

is obtained by adding the exponents.

The factor:

2f/l6 = (q + f * p)/(q - f * p)

where:

q = qOl * f2 + qOO

p = pOl * f2 + pOO

qOO = .532832542630989 * 104

qOl = .1*101

pOO = .115416054573517 * 103

pOl = .361007098948762 * io-2

ROAT(a)

This converts an integer number to a real number by
normalizing the integer number.

IABS(a)

For an integer number x, IABS(x) computes the absolute
value Ix t.

This computes the positive excess of one integer number
over another integer number. IDIM(x,y) returns the value
x-y if x is greater than or equal to y, and returns a value of
0 otherwise.

IDINT(a)

For a double-precision number x, IDINTlx) computes [x],
where [A] is the sign of A times the largest integer less
than or equal to I A I.

14-13

IFIX(a)

This converts a real number to an integer number. IFIX,
which is an alternative name for INT, computes the largest
integer less than or equal to its real argument, retaining
the sign of the argument.

INT(a)

For a real number x, INT(x) computes[x], where (A] is the
sign of A times the largest integer less than or equal to I A I.

This combines the absolute value of one integer number
with the sign of another integer number; ISIGN(x,y) returns
one of the values -1x1, 0, or 1 x 1 according as y is negative,
zero, or positive, respectively.

MAXO.(a1,a2, . . .)

This searches a list of integer numbers for the list element
having the maximum value and returns that value.

MAXl (a1,a2, ...)

This searches a list of real numbers for the list element
having the maximum ·value. The selected real number is
converted with IFIX before being returned.

MINO(a11a2, ...)

This searches a list of integer numbers for the list element
having the minimum value and returns the integer when
found.

MINl (a11a2, ...)

This searches a list of real numbers for the list element
having the minimum value. The selected real number is
converted with IFIX before being returned.

This computes one integer number modulo a second integer
number and produces an integer result. MOD(x,y) is
defined as x-[x/y] * y, where [A] is the sign of A times the
largest integer less than or equal to 1 A 1.

14-14 60457040 B

QSSEXTB(a,m,n)

This extracts m bits, beginning with bit n of a. The result
is right-justified in a 64-bit word with zero fill. The m and
n values are integer. Bits in the word are numbered from
left to right, beginning with zero.

QSSGE(v 1t V2)

This is identical to QSSEQ, except that QSSGE searches for
rut element in x that is greater thrut or equal to the
corresponding element in y.

QSSINSB(a,m,n,b)

This produces a word into which bits have been inserted.
The result is equal to b, except that m bits, beginning with
bit n, are replaced by the m rightmost bits of a. The
argument b is not altered. The m and n values are
integer. Bits in the word are numbered from left to right,
beginning with zero.

QSSLEN(v)

This counts the number of elements in a real, integer, or
complex vector. The result returned is rut integer. For a
complex vector, the number of elements is half the number
of words.

Q8SLT(v1,v2)

This is identical to QSSEQ, except that Q8SLT searches for
an element in x that is less than the corresponding element
in y.

QSSMAX(v) OR QSSMAX(v,c)

This selects the maximum from among the elements .. in ·a
real or integer vector, or only those elements selected by
an optional bit c.ontrol vector. The result is a scalar that.
has the same data type as the function argument~

For a given vector x anda bit control vector c, the
procedure . for >seleating ·.the·. element. having the. maximum
value.is the same.as for Q8SMIN,.except that the· maximum.
rather than the minimum is selected.

; Example:

The elemen~s in x, as presented to QSSMAX, could .. be:

x= 2 319 6 ~1

When only x is presented. to QSSMA.)C for evalt1ation,.
the f unaticm selea.ts the ·element from . among an· of the
elements of x:

QSSMAX= 19

A bitrnaskpreseritedas argumentc could appear as:

c=OlOll

When a bit in c is zero, it inhibits the inclusion of the
corresponding element ·of x in the . evaluation of the
function. Therefore, if the argument list for QSSMAX
includes c, the function result would be: ·

60457040 B

'. •y ~ </

QSSMAXl(v) OR QBSMAXl(v,c)

Like QSSMAX, this finds the maximum from among the
elements in a real vector or only those elements selected
by rut . optional bit control vector. However QSSMAXI
returns not tfie value itself but, instead, a count of the
number of elements preceding, but not including, the
element having the maximum value.

The procedure for selecting the element having the
maximum value is the same for QSSMAXI as for QSSMAX.
The control vector bits that are set to zero (when the
control vector is present) have no effects on the count
returned by QSSMAXI. The action of the control vector is
the same for both functions in all other respects.

Example:

The example given for QSSMAX is an example for
QBSMAXI as well, except that where QBSMAX equals
19 or 6, depending on the presence of the bit control
vector argument, QBSMAXI would return 2 and 3
respectively.

QSSMIN(v) OR QSSMIN(v,c)

This selects the minimum from among the elements in a
real or integer vector, or from among only those elements
selected by an optional bit control vector. The result is a
scalar that has the same data type as the vector.

For a. given vector x and a bit control vector c, the
procedure for selecting the element having the minimum
value is as follows. When c is not present, the minimum·
value in x is selected. If c is present, it acts as a binary
mask; each element in c that is set to 1 permits the
corresponding element in x to· be included in the function
evaluation, whereas each element in c that is set to 0
causes the corresponding. element in x ·to be excluded from
the evaluation.

Example:

The elements in x, as presented to QSSMIN 1 could be:

x = 2 3 19 6-1

When only xis preseI1ted to QSSMIN for evaluation, the
function seleats the element from among all of the
elements of x:

QSSMIN

A bit mask presented as argument c could appear as:

c=l0110
' ···... .·.. . .' :

· WhEm a bit inc .is zero~ ft inhibits the inclusion of the:
corresponding element of x in the evaluation of the'
function.· .. Therefore, if.· the ·argument. list . for QBSlVllN
includes c, the fun~tion result would be:

QSSMINl(v) OR· QSSMINl(v,c)

Like QSSMIN, this finds the minimum from arnong the
elements in a real vector or only those elements selected
by an. optional bit control vector. However, QSSMINI
returns not the value itself but, instead, a count of the}
number of elements preceding, but not including, the
~l~rnen t h~y_~ng Jh~ 111intinurn y~ll1e.~

14-15

This calculates the product of the elements in a real or·
, integer . vector, or only those elements· selected by an
'optional bit control vector., A scalar result is produced
: that has the same data type as the vector~

14-16 60457040 B

'tlle'vaiueofQsVAVG(x,y;r)i~-th~ vector:

r = 5.15 5.7 9.5 4.955 0.55

Q8VAVGD(vhv2;u)

This computes the average differences of corresponding
elements of the two input vectors. A vector and a scalar is
the alternative to the two input vectors.

For given real vectors x and y, QSVA VGD(x,y;r) forms the
nth element of the result vector r by subtracting the
nth element of y from the nth element of x, then
dividing the difference by 2 (that is,
rn = Cxn -y)/2). The vectors x, y, and r all have the
same leng¥h. A scalar x or y is considered to be a vector
of the appropriate length with every element being the
scalar value.

Example:

Given:

x = 100. 100. 100. 100. 100.

y = 4. 9. 9. 15. 14.

the value of QS VA V GD(x,y;r) is the vector:

r = 48. 45.5 45.5 42.5 43.

QSVCMPRS(v,c;u)

This deletes selected elements from a real or integer
vector under control of a bit control vector. For a given
real vector x and control vector c, the deletion procedure
is as follows: every value in the vector x whose position
corresponds to that of a 0 in the bit vector c is deleted,
leaving. for the result vector .. only those values in the·
vector x whose . positions correspond to those of ls in· the
bit vector c. The length of the result vector will be the
number of ls in c. ·

QSVCTRL(v,c;u)

This changes the values of only selected elements in 8. real,
or integerresult vector, by using the elements in another·
vector of the same data type to pr()vide the new values.
Selection of values is performed. with a bit control vector.

For a given real or integer vect()rY ·(the result vector}, a·
vector x of the same data·. type as y, . and a control
vector c, the procedure for modifying y is as follows. Any
element in the vector x that corresponds to a 1 in the
control vector c is directly assigned to the corresponding
element in the result vector y. All other elements in y
(the elements that correspond to Os in c) retain whatever
v.a).ues they·.had before.

60457040 B

Example:

x = 5 55 19 9 40

c=OOOlO

y = 9 9 9 !0 9

the value of QSVCTRL(x,c;y) is the vector:

y=99999

QSVDELT(v;u)

This computes the differences between the adjacent
elements of the input vector. For a given real vector x,
QSVDELT(x;r) computes the nth element of the result
vector r by subtracting the nth element of x .from the
(n+1)th element of x. That is, rn = {xn+l - Xn),
where the result vector r is one element shorter than the
input vector x.

Example:

Given:

x = 5. 3. 5. 3. 5. 4. 5. 3.

the result vector r for QSV DELT(x;r) is:

r = -2. 2. -2• 2. -1. 1. -2~

Q8VEQl(v1,v2;u)

The effect of a call to QSVEQI is identical to that of
issuing a series of QSSEQ calls in which one of the
arguments for QSSEQ ·is a real scalar. For given real
vectors x and y, QSVEQI(x,y;r) performs a search iteration
for each element of x, begirming with the first element!
of x. A search iteration consists of. comparisons of the·
element of x with successive elementsof y, beginning with:
thefirstelementof y, until an element of y is found which
is equal to.· the. element of x ·or· until the element of x has:

·been compared with every element .of Y·. The result of the:
nth . iteration,.·· .. · .. which. is·. performed using .. ··.·the nth
element of x and which is a count of the number of
unsuccessful compares that were made on this iteration, is
placed in the nth element of r.

,·Example:

y = ~i. o. 3. 5. 4.

the value of QSVEQl(x,y;r)is the vector:

r =15.43 4

QSVGATHP(v,i,n;r)

This creates a real or integer vector, by using the elements
in another vector of the same data type to provide the
values. Selection of values is controlled by the second
parameter, i~ an integerscalar con~tfl!l~.st~ide.

14-17

This creates a real or integer vector, by using the elements·
iin another vector of the same data type to provide the.
values. Selection of values is performed with an integer
·index vector.

: For a given real or integer vector x and an index vector i,
the procedure for constructing the result vector is . as
follows. A 1 in i _indicates that the corresponding element
in the result vector is to b~ assigned the value of the first
element in x, a 2 in i indicates that the corresponding

: element in the result vector is to be assigned the value of ·
the second element in x, and so on •. The value of any one ·

.. element in x can be assigned to more than one element in .
the result vector, and not every element in x need be used.
The index vector and the result vector must be the same

;length.

14-18

Q8 V MASK(x,y ,c;r) creates a result· vector. each· element of ·
which is the corresponding element of one of the vectors x
and y (one or both ofx and y can alternatively be scalar) •
. The arguments (x and y only) and the result vector must all
have the same data type •.

60457040 B

The length of c governs. the opera ti on; the ·lengths of x and •
y are ignored and the length of r is set to that of c.

Example:

Given:

x = 10 11 12 14 13

y=54321

c=llOOl

the value of QSVMERG(x,y,c;r) is the vector:

r = 10 115412

This for ms a bit vector whose elements are either all zeros
or else a repeated pattern of ones· and zeros, begirming
with a one. For given integer constants x and y,
Q8 V MKO(x,y;r) creates the elements of the vector r as
follows. The pattern, which consists of a string of x ones
followed by a string of y-x zeros, is repeated until the
result vector r has been filled. The length of r need not be
divisible by y.

Example:

Given:

x=3

y=6

length of r = 10

the value of QSVMKO(x,y;r) is the bit vector:

r = 1110001110

This forms a bit vector whose elements are either au pnes:
or else a rep(!ated. pattern of ones and zeros, beginning
with a zero~ For given integer constants x and y,'.
QSVMKZ(x,y;r) creates the elements of the vectorr as

; ·follows. The pattern, Which consists of. a string· of x. zerosi
followed by a string of y-x ones, is repeated until the
resu1t yector r · .. has been· filled. The .lEmgth of .. the result

] Ve<?tor r nee<lnot bedivisible by y.

1 ~xample:

Given:
x~·1.

Y•=L2&

te~th<>r (:::.10

the vJlu~ ~r Qsy MKz<x,y;r) J$ ih~ .·t>u ··vector:

60457040 B

· Q8VNEl(vltv2;u)

This is identical to QSVEQI, except that QSVNEI searches
for an element in y that is not equal to the element in x
which is of concern for the current iteration.

Q8VPOLY(v1,v2;u)

This computes a polynomial at several values. For given
real vectors x and y, QSVPOLY(x,y;r) is evaluated as·
follows (x can also be a scalar). The input vector y
contains the coefficients of the polynomial: the first
element of the vector y contains the coefficient of the
highest order term of the polynomial ana the last element
of the vector y contains the lowest order term of the
polynomial (the constant). The length of the vector y
determines the order of the polynomial: if n is the length
of y, the order of the polynomial is n-1. The polynomial is
evaluated for each element of x and the result is placed in
the corresponding element in the result vector r. If y is a
scalar rather than a vector, the result r must be referenced
as a vector with length equal to 1, not as a scalar.

Example:

Given:

x = -2 -1 1 2 3

y = 10 3 2

the value of QSVPOLY(x,y;r) is the vector:

r = 36 9 15 48 101

The elements of rare computed as follows:

r(l) = 10(-22) + 3(-2) + 2 =. 36

r(2):: 10(-12) + 3(-1) + 2 = 9

r(3) = 10(12) +3(1) + 2 ::i 15

r(4) =10(22) + 2(2) + 2 = 48

r(5) = 10(32) + 3(3) + 2 = · 101

QSVPOLY is not valid on the GYBE.~ 205 •. When control
statement parameters are used to select the CY BER 205 as '
the target machine for compilation, an errorimessage is,
issued. If instruction ·scheduling· was· selected, it is
terminated.

14-19

.This changes the values of only selected elements in a real
or integer result vector, by using the elements in another
'Vector or a scalar of the same type to provide the new
values. Selection of elements to be altered in the result
vector is.controlled·.by the .. second parameter, i, an integer
scalar constant stride.

: For a real or integer vector x and a constant stride i, every
ith element, starting with the first, of the res.ult vector r
is altered. The length of r is ignored; the number of items

:scattered is controlled by the thir(I parameter, n.

14-20

This inserts additional elements having the value 0 (or 0.0)
into a real or integer vector, under control of a bit control
vector. The effect of the procedure is as. though a
QSVMERG(x,n,c;y) had been performed, where n is a

·vector of zeros, and x, c, and y are the real or integer
vector, the control vector, and the result vector
respectively.

REAL(a)

This returns the real part of a complex number as a real
number; if x+iy is the complex number, REAL returns x.

SIGN(a11a2)

This combines the absolute value of one real number with
the sign of another real number; SIGN(x,y) returns one of
the values -1x1, 0 or 1x1 according as y is negative, zero, or
positive, respectively.

60457040 B

SIN(a) AND COS(a)

These compute the sine and cosine of a real number
expressed in radians. The real number modulo 2 pi is used
by the functions. The results are real numbers in the
range -1 to 1, inclusive, and are accurate to approximately
45 bits.

!!or a given x, sin(x) and cos(x) are calculated as follows.

If Ix I >.110534964875444 * 1015, a data flag branch
abort occurs in SIN or COS. Otherwise, the sine and cosine
of x are calculated identically, differing only in the
formula with which the value of k is selected:

k = r2 modulo 4 for the sine or cosine of x

where:

rl =I x I * 4/pi

r2 = [r1]

The values of f(x) corresponding to the values of k are:

k sin(x) cos(x)

0 sin(z) sin(l-z)

1 sin(l-z) -sin(z)

2 -sin(z) -sin(l-z)

3 -sin(l-z) sin(z)

where z = rl - r2 , and O~z<l.

The sin(z) is approximated by the formula:

8
sin(z) = z ~ Snz2n

n=O

where 5rt has the following values:

so = .157079632679491 * 101

s1 = - .645964097506246 • 100

s2 = .796926262461656 • 101

s3 = - .468175413530426 • 10-2

s4 ~ .160441184713148 * 10-3

S5 = - .35988432058822 * 10-5

s6 = .569213644231555 • 10-7

S7 = .668441770083272 * 10-9

ss = .587299730858022. 10-11

60457040 B

.If an Unacceptable argu~e~t is received, ttie me~ae;e:

ARGUMENT TOO LARGE

is issued, the result is set to indefinite, and a normal exit is
taken. from SINH. · · ·

SNGL(a)

This converts a double-precision number to a real number
by retaining only the most significant part (the first word)
of the double-precision number.

SQRT(a)

This computes the square root of a real number and returns
a real result that is accurate to approximately 45 bits.
The square root function is computed by means of the
machine instruction SQRT.

TAN(a)

This computes the tangent of a real number expressed in
radians. The function first reduces its argument
modulo 2 pi. The result is a real number that is accurate
to approximately. 45 bits. The. valid arguments for TAN lie
in the interval

-0.276334121886E+14 < x < + 0.276334121886E+14

Note that:

. (246-1) * pi/8 = 0.276l34121886E-t:J.4

For a given real number x, TA,N(x) is calculated as follows.

14-21

TANH(a)

This computes the hyperbolic tangent of a real number
expressed in radians. It produces a result that is in the
range -1 through 1, inclusive, and which is accurate to
approximately 45 bits.

For a given real number x:

5
tanh(x) = X * ~ Cnx2n for 0~1 XI S0.12

n=O

where:

co= 1

c1 = -1/3

c2 = 2/15

c3 = -17/315

c4 = 62/2835.

c5 = -1382/155925

The hyperbolic tangent is:

tanh(x) = (eX - e-X)/(ex + e-X) = 1- (2/(e2x + 1))
for 0.12< IX I ~18.0

14-22

where the exponential function is computed as . described
for the EXP function.

The hyperbolic tangent is:

tanh(x) = sign(x) * 1.0 for I x I> 18.0

60457040 B

.
:This· computes the natural logarithm . of each element in a
real vector.· V ALOG returns a result vector of
;numbers that are each accurate to approximately 45 bits.

Far f1 given real number x, . VALOG(x)
;described for the function ALOG.

'

IVALOGlO(v;u)

This computes the logarithm of each elementln a real
.vector, retuming a result vector of real numbers accurate
'.to appro~imately 45 bits.

For a real element x:

log10(x) =log10{e) *ioge{x),

'where the logarithm of x is computecf as described for
,function ALOG.

°For e~ch pair of corresponding elementS in two real
vectors, this .comput~s one real.number .modulo the second
real number to produce a real result that is assigned to the
real result vector. For each pair of elements (x,y), :
:x-[x/y]*y is computed, where [A] is the sign of A times)
'.the largest integer less than or equal to I A 1. . {

,Titis computes . the arcsine of each element in a . real
vector. The magnitude of the error that is introduced into ··
the results because .a table lookup technique is used for
fast computation of V ASIN is approximately. 2-45. ·

·por a given real element x:

asin(x) = atan(x/(1 ~ x2)1/2)

'that is:

·where·:

~ -

:and V ATAN2 is the functioo that colnputesthe arctangent :
·of ratios of elements in real vectors~

\YATAN(v;u)

'This computes the arctangent of each element in a real·
vector. The magnitude of the error that is· introduced into.
thtl resuits because a table lookup technique is used for
fastcomputationotVATANis approximately 2-4.5 ••. ·. · .. ··. ·,

'.For a givenreal element x:

-ifo sx < 1. then atan(xl= atiln(z)

if x >1, then atail(x) = pi/2 - a1:an(Z)
, .. ,

~(~.5 •~<;,' ~~~[\ ,~t~(~}::w :-.~~~!:~••• .. ,

60457040 B

'Til8.lirchmiellt'6;
atan(z) = atan(zl) + atan(z2/(1 + z12 + zl • z2))

:where:

z=xifx<l

Z = l/X if x>l

[The atan(zl) is obtained from a table lookup, and the
·arctangent of the. second .. term' is c~mputed by a
:polynomial. The .values Z1 and z2 are the most significant.
:and the least significant parts of z, respectively. · . ·

;vATAN2(v1,v2;u)

This computes the arctangent of the ratio of two real
:elements in corresponding positions in two real vectors.
;The result . is a real vector · having• elements that are
'accurate to approximately 45 bits.

'.For a given pair of elements· (x,y), · the ·arctangent of x/y. is
calculated as follows:

atan(x/y) = sign(x) • atan(v) if y> O

atan (x/y) =pi - atan(v)if y<O and x>O

atan(x/y) = atan(v)- piify< O_and x<O

:where:

v=1x/yl

and atan(v)is calculated·as follows:

atan(v) = atan(lx/y1) if IXISIY I

atan(v) = pi/2 - atan(ly/xl) if lxl>lyl

atan(z) = atan(zl) + atan(z2/(1 + z12 + zl * z2))

where z=lx/yt for 1x1s1y1 and z::1y/x1for1x1>1y1; and zl 1
·and z2 ··are the most .and least significant ·parts of z,
:respectively.

.This comput~s the mOdulus of each element ina complex\
vector, and places the results in a real result vector~ Each;
result is accurate to approximately 45.bits.

·x~·U+iv

.the result is:

'.····... ..··:·<

,where. the square rootfunction is evaluated by the machine
instruction SQRT.

14-23

14-24 60457040 B

VIFIX(v;ii) .,

This constructs an' integer vector from a real vector.
VIFIX, which is an alternative name for VINT,•
computes (x] for each element x in a real vector. [A] is
the sign of A times the largest integer less than or equal.
to IAI. '

VINT{v;u)

For each .element x in a real vector, VINT computes [x]
and assigns the resulting value to an integer vector. [A] is
the sign of A times the largest integer less than or equal
to IAI.

VISIGN(v1,v2;u)

For each pair (x,y) of corresponding elements in two
integer vectors, this combines the sign of y with ·the
absolute value of x; the effect of VISIGN on each pair (x,y)
is that of the expression ISIGN(x,y).

VMOD(v1,v2;u)

For each pair of corresponding elements in two real
vectors, this computes one integer number modulo the .
second integer number to produce an integer result that is
assigned to the integer result vector. For each pair of:
elements (x,y), x-(x/y] • y is computed, where [A] is the '
sign of A times the largest integer less than or equal to IA 1.

VREAL(v;u)

This constructs a·. real vector . from . the rear parts of a
complex vector. For each element of the complex vector,
if x+iy is the complex element, x is assigned to the result
vector. Accuracy of the result is 47 bits.

60457040 B

·ys10N(v,,v~;u)

For ·each pair (x,y) of corresponding elements in two real '
vectors, this combines the sign of y with the absolute value
of x; the ·effect of VSIGN on each pair (x,y) is that of the
expression SIGN(x,y). Accuracy of each result is 47 bits.

VSIN(v;u) AND VCOS(v;u)

These compute the sine and cosine of each element in a.
real vector as described for the function SIN.

VSNGL(v;u)

This converts a double-precision vector to a real vector.
The most significant part (the first word) of each
double-precision element is assigned to the result vector.
Accuracy of each result is 47 bits.

VSQRT(v;u)

This computes the square root of each· element in a real
vector. The real result vector contains elements that are
accurate to approximately 47 bits.

For a given real element x of the vector argument, the
appropriate element of the result vector is indefinite if
x < 0.0. For each x ~ 0.0, a result is computed with the ·
machine instruction VSQRT.

VTAN(v;u)

This computes the tangent of each element in a real
vector. See TAN discussion· for a description of the ·
,t~g~~t f~~~~i~~: ..

14-25 •

I

I

I

PROGRAM COMPILATION 15

The system control statements accompanying a
CYBER 200 FORTRAN program must include a call to the
FORTRAN compiler. The parameters for this call
optionally declare files for input and output, and optionally
include instructions to the compiler to (for example) output
storage maps. Additional control statements are required
to load and to execute the compiled program, and can be
used to change at run time the file declarations made in a
PROGRAM statement.

FORTRAN STATEMENT
The FORTRAN system control statement is used to
execute the CYBER 200 FORTRAN compiler. In the
statement parameter descriptions that follow, underlining
indicates the minimum number of characters that can be
used in specifying the parameter.

Forms:

FORTRAN.

FORTRAN(INPUT=f 1,BIN ARY=f 2/12,
LIST=f 3/l3/d3, OPTIONS=olist)

!NPUT=f1

60457040 c

Optional; f 1 is the name of
the file containing the
FORTRAN source program to
be compiled. When the param­
eter is omitted, the default
file name INPUT is used.

Optional; f 2 is the name of
the file that is to receive· the
compiler-generated object
modules. 12 is a specifi­
cation of the length of f2,
and can be either an integer
constant or a hexadecimal
number prefixed with a #.
12 can be omitted along with
the slash. When the entire
parameter is omitted, the
default file name BIN ARY is
used. When 12 or the entire
parameter is omitted, the
default file length of 16 small
pages is used. ·

Optional; f3 is the name of
the file that is to receive the
compiler-generated listings
and program output. 13 is a
specification of the length of
f 3. Like 12, 13 can be
either an integer constant or a
hexadecimal number prefixed
with a #. d3 is the routing
disposition of f~ and must
be PR (the line printer) or can
be omitted (in which case no

QPTIONS=olist

routing is performed). fa
and 03 can occur in either
order. When 13 is omitted,
the def a ult file size of 336
small pages is used. When the
entire parameter is omitted,
the default is OUTPUT.

Optional; olist is some logical I
combination of the compile
option letters ABCEIKLMOR
SUV YZ12, with the restriction
that Y must not occur with
any other option except L.
Default olist is B.

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis, and a period
instead of the right parenthesis. When communicating
interactively with the system, the user can replace a
period with a carriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default values used for the omitted
parameters. The first form of the FORTRAN statement
selects all defaults for the parameters. The I=, B=, and L=
parameters can be interchanged without consequence; the
O= parameter must occur last.

The object and output files (specified by the B= and L=
parameters of the FORTRAN system control statement) do
not have to exist when the control statement is executed.
If the file does not exist, it is automatically created on a
unit assigned by the operating system and with the length
specified in the control statement. If the file does exist
and has write access, it is automatically destroyed and
recreated on the same unit with the length specified in the
control statement. If the file does exist but does not have
write access, a request is made to interactive users for
permission to destroy the file. If permission is granted,.the
procedure followed is the same as for files that exist with
write access. If permission is not granted, or if the user is
in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, certain actions are performed during
compilation that would not be performed otherwise. The L
option is an exception in that the listing of the source
program is inhibited rather than initiated by its appearance
in olist.

When O=olist is omitted, or when B is included in olist, the
object file for the program is built. The object file is not
built when the O=olist parameter without the B option
appears in the parameter list for the FORTRAN system
control statement.

A - ASSEMBLY LISTING

An assembly listing of the object code can be placed in the
output file by selecting the A option.

15-1

B - BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be built is
made by selecting the B option.

C - CROSS-REFERENCE LISTING

All mentions in the source program to labels and symbolic
names are listed in tabular form in the output file by
selecting the C option.

E - EXTENDED BASIC BLOCK
OPTIMIZATION

The E option selects optimization of extended basic
blocks. This optimization involves compile-time
computable result propagation, redundant code elimination,
and instruction scheduling. The E option is included in the
0 option. The E option effectively selects options P, R,
and I.

I - INSTRUCTION SCHEDULING

The I option selects optimization of object instructions
according to the results of a critical path analysis. The
I option is included in the 0 and E options.

K - 64-BIT COMPARE

This option enables fullword (64-bit) integer compares for
.EQ. and .NE. operators in logical IF statements.
Otherwise, 48-bit compares are performed for the .EQ. and
.NE. operations (integers are 48 bits).

L - SOURCE LISTING SUPPRESSION

The first part of the output file for a CYBER 200
FORTRAN program is normally the source program
listing. This can be omitted from the file by selecting the
L option.

M - MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and descriptors, along with a map of the
contents of the register file, is produced when the
M option is selected.

0 - OPTIMIZATION

The 0 option selects all available optimization of scalar
object code. More efficient object code is produced at the
expense of increased compilation time. The 0 option
effectively selects options Z, E, R, I, and P.

15-2

P- PROPAGATION

The P option selects compile-time-computable result
propagation.

R - REDUNDANT CODE ELIMINATION

The R option selects elimination of redundant code. The
R option is included in the 0 and E options.

S - SUPPRESS DEBUG SYMBOL TABLE
CREATION

The effect of this option is to suppress generation in the
binary output of a debug symbol table for each program
unit. The symbol table makes it possible for the
system-provided debugging utility DEBUG to recognize
names in the FORTRAN program and for a FORTRAN
run-time routine to identify the source line in a user
routine at which a run-time error occurred. The user must
not select this option if DEBUG is going to have to
interpret variables, names, and symbolic addresses; if only
absolute addresses will be used in commands to DEBUG,
the S option can be selected.

U - UNSAFE VECTORIZATION

The U option enables unsafe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and
the loop contains any references to dummy arrays, the
compiler cannot determine the number of iterations of the
loop. Vectorization of such loops is considered unsafe
because the loop count might exceed 65535, which is the
maximum length of a vector. If a DO loop contains an
assignment statement that has an equivalenced data
element on the left side, the loop can be vectorized only if
the U compile option is selected.

V - VECTORIZATION AND AUTOMATIC
RECOGNITION OF ST ACKLIB LOOPS

Vectorization of certain CY BER 200 FORTRAN language
constructs and automatic recognition and conversion of
certain DO loops into calls to a stacklib routine are
requested with the V compile option. The language
constructs that fall under these categories are described in
section 11.

Y - SYNTAX CHECK

A partial compilation can be performed to check the
syntax of a FORTRAN program and any resulting
diagnostics can be produced by selecting the Y compile
option. The Y option can appear alone or with the L or
S options (such as LY. or SY); all other option combinations
using Y are invalid compile option lists and produce an
error accompanied by a dayfile message.

60457040 c

Z - DO LOOP OPTIMIZATION

The Z option selects optimizations of DO loops and loop
nests. Optimization involves invariant code removal and
strength reduction of subscript calculations. The Z option
is included in the 0 option.

1 - ST AR-100 OPTIMIZATION

The 1 option selects optimization for the STAR-100. The
1 option conflicts with the 2 and 3 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

2 - CYBER 203 OPTIMIZATION

The 2 option selects optimization for the CYBER 203. The
2 option conflicts with the 1 and 3 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

3 - CYBER 205 OPTIMIZATION

The 3 option selects optimization for the CYBER 205. The
3 option conflicts with the 1 and 2 options. When 1, 2, or 3
is not selected, optimization is for the mainframe on which
compilation is performed.

COMPILER-GENERATED LISTINGS
As a result of requesting compilation of a FORTRAN
program with a FORTRAN system control statement, a
variety of information is placed in the output file. The
compile options A, C, and M directly request such
information.

A header line at the top of each page of printed compiler
output contains the compiler version, the compile options
selected, the type of listing, and the time, date, and page
number.

Unless the L compile option has been selected, the source
program (including comments) is the first item to be placed
on the file. The source program is listed 58 lines per
printed page (excluding headers); the output lines are
numbered on the right and the source lines are numbered
on the left. The source line numbers are used in the
cross-reference maps.

Diagnostics are collected and listed at the end of each
program unit. When no compile options have been selected,
any error diagnostics immediately follow the source listing;
or, if the syntax of the program is acceptable to the
compiler, the message NO ERRORS appears instead.
Listed with each diagnostic is the line number of the
source line during the processing of which the error was
detected, as well as the error number (see appendix B) and
the severity level of the error.

60457040 c

The order in which the assembly listing, cross-reference
maps, storage map, and register map appear on the output
file following the source listing is:

• Cross-reference map

• Assembly listing

• Storage map and register map

Any diagnostics follow the storage and register maps.

CROSS-REFERENCE MAPS

When the C compile option is selected, from one to four
cross-reference maps appear in the output for the program
compilation. These maps appear immediately following the
source program listing, or, when the L compile option is
also selected, as the first listings in the output. The four
cross-reference maps are:

• Statement label map

• Variable map

• Symbolic constant map

• Procedure map

The statement label map provides information about each
statement label used in the program. See figure 15-1 for
the format of the statement label map. If no statement
labels are used in the program, the statement label map is
not printed. Some uses of the statement label map include:

e Identifying unreferenced FORMAT statements and
other unreferenced labeled statements

e Verifying that proper statement labels are specified in
flow control statements

e Locating labeled statements in the program, and
locating all references to a statement label

See figure 15-2 for an example of a statement label map.

STATEMENT LABEL MAP
--LABEL---DEFINED---REFERENCES

lbl

lbl

def refs

A statement label that appears in the
label field of a FORTRAN statement.

def The source line number of the
statement in which lbl appears in the
label field.

refs The source line numbers of all source
lines that contain references to lbl.

Figure 15-1. Statement Label Map Format

15-3

.....
(,11
I
~ FORTRAf.t rn.~ CYCL.E Fll BUILT 06/19/"dO 11:44 'SOURCE: LISTING"

0-00Ul PRQGRA~ PASCALlOUTPUTJ
00002 INTEGEk Llll),ONE,Atd
OOG03 PA~AMETtklUNE•ll

00004 IAOO(A,&J ~A + b
00005 DATA Lllll /QN~/

c
PRINT 4, ll,I•l•llJ 00(•\)b

cooo 1 4 FO~~ATC'lCOMSINATI0~5 ~F ~ THINGS TAKEN NAT '•

('1Qtlj8
ooooq
0001~
00011
OOC12
ooc l]
OOOL4

.COOl 5
OOOlo

~ '4 TIME.' //20X,'-N-' /1115)
:JG 200 I•ltlO
K " 11 - I
L(k., • l
00 l:JO J•l<tlO

100 LCJ> • IAOOCLCJJ,LCJ+l))
2"0 Pf<INT 3, (L(J>,J•K,lU
3 FO~M4TCllI51

c
STOP
END

FOR TR A~ ll. l. 5 CY CLE FL l bUILT 06/19/dO 11:44

STATEMENT LAbEL MAP
--LABEL---OEFINEO---REFtKtNClS

100
200
3
4

12
13
14
7.

11
d

13
b

CkOSS REF LISTING

COM?l~EO 09/09/~0 11:56 O•CAP1

PASCAL

PAC:.t
0001/000C·l
0001/000().l
0001100003
0001/00004
0001/00(,05
0001/000t6
0001/00007
0001/00008
u00l/OOC09
0001/00010
0001/0:>0U
0001/00012
0001/00013
0001100014
0001/00015
0001/000lt.
00011ouo11
0001/Ci0016
0001/00019

PAGE

VARIAPLE P1AP
--~A~E-------BLOCK------TYPE------CLAS)-------REFERENCES A•ARGLISTt C•CTRL Of OOt l•OATA INITt R•RtAOt S•STORt, W•WRITE

A ·INTEGE~ UN1<.N01111N l. 4 4
B I~TE(iEI< UNKN0111~ z It 4
[It-TEGER SIMPLE 6/W b/C 8/C q
J INTEGER SI P1PU: 11/C 12 ll. lZ 12 lZ 13
K INTEC:.ER SIMPLE 9/S 10 11 13
L INTEGER URAY z 5/1 10/S ll/S ll lZ 12
PASCAL PW OGRAM l

SY~~OLIC CONSTANT P1AP
--NA~E-------TYPE-------VALUE---------------------------~----------REFE~t~ES S•DEFI~ITION ~INE

IJNE: [NTE<iER

PROCEGURE ~AP

--NA~f-------TYPE-------CLASS-------------~EFE~ENC~S

, IAOO INTEGER ST AT F !-}NC . 410

z 3/S

O•~THT FN OEFt A•ARGLIST

12

Figure 15-2. Compiler Output Example (Sheet 1 of 5)

13/C

12 13/k

O'>
Cl
~ FOR Tl</.!~ IH. 5 CYCLE FL l BUILT OfJ/ 19/60 11 :H ASSEl'HlLY LI STING PASCAL COP'IP ILED 09/09/dO 11156 O•CA" PACt J C.11
~
Cl
~
Q LCCATION MACHI NE LINE ~OUktE ASStP'18LY REPRESE:NTATION
(") cour-TtR INSTRUCTIOh hUl'\dER LABEL

PASCAL IDENT
ENTRY PASCAL

00001 AOOCJ06
000\lOOO 7000151(? ASCAL SdP t C_l lA ,CUk_S TACK
000')020 781C0010 RTOR CUR_STACK1PREV_STACK
OOOOO'tO 78 lBOOlC RTOI< OYN SPACE1CUR STACK
(.1('000b(J)f ll! 1"00 IS OYN:SPACE1H2lJ
0000080 2A lCOO!>O ELEN CUR_S TACK 1dO
COOOOAO 3E2J070o ES H _2311792
cooooco b3H23l't AOOX CALLEDATA1ST_231ST_2~

00000[0 2A2"00'tA E:Lth ST_2'tt7't
0000100 7:)2 'tl'tOll SNAP ST_2it1C_llO
0000120 78bb0003 RTOie L_COOOOl_DESCRePR_l
CCOOl'tO 78bl00ll RTOI(FT_INlr_oa,CALLEilATA
onoo lbO JblAOObO &SAVE RETURNtfT_INIT_AOR
000\llSO 78 lBOO'tA RTOR OYN_SPACEtPl_DYNSP

OOCIOb A00007
OOOQlAC 78b 7 OOO't l<TOR L f't DESCk,PR It
OOOOlCO 7d5aoo1i: RTOR Fl_•f IPk_O~tCiLLEOATA
OOOOlEO)blA0051. BSAvt RETURhtfT_WTlPR_AOR
0000200 78'>200!>7 i<TOk c_u, 1

AOOOOts
OOC0220 76'>70003 000002 iHOf!. ltPR:.3
00002't0 78500011: RT Ok fT_wTIE_OB1CALLEOATA
0000260 361AOO'>C oSAVE REJURNtfT_•TIE_AOR
OOCiOZ80 B'tOt>5752uvol5H7 l BXLE 1BR8 1,c_11,000002,c_1s,1

AOOooq
OC002CO 785900ll ·RTUR FT_~TTPR_os,CALLEDATA

OOJ02EO 361A005.d BSAH RETU~N,FT_~TTPR_ADR

00008 A00010
OG003CO 76520057 IHOR c_u, 1

A00011
0Cll0320 67535755 C0009 000003 SUBX C_•Btlti<
00003't0 7f 655552 00010 STO (L_l8_DESCReKJ,c_11
00003b0 76550056 OClvll kTOK K,J --------· • • • • • • • • • • • • 0000')'t0 765FOulE l<"TOR FT_~TIEA_081CALLEaATA
0000560 361A005E tsSAVE RETUkNtFT_NTIEA_ADR
0000580 7859001E RTOR FT_MTTPR_ce,cALLEDATA
OOOiJ5AO)blA0058 cs SAVE RETURN1FT_-TTPR_A~~

A00015
00005(1) 3't065 752001 SS't57 lBXLEttsRB 1,c_11,000001,c_1A,1

0001~ A00016
PR_}.0 000%00 3E:030000 ES

000~620 78bJ001E X.Tuk FT_STOP_OBtCALLEOATA
OCOJb'tO 3bUOC>6Z BSAVE RcTURN,fT_STOP_AD~

END

.......

"' Figure 15-2. Compiler Output Example (Sheet 2 of 5) I
CJ!

.....
(11
I

CD FORTRA.N kl.5 CYCLE FLl

!'\.EG. NAME
NU

00 0 CMAC~INE: ZEROI
01 DATA_FLAG_RETURN
02 TM_lNTE~UPT_iNTRY
(':) PR _3
04 PR_'t
o~ PR_5
(\b PR_b
07 PR_7
08 PR._8
09 P~:..9
OA PR A
OS PR_B
oc PR_C
00 PR_D
OE PR_E
OF PR_F
10 PR_lC
11 PR _11
ll PR_lZ
13 PR_ll
14 C_IZO
15 c_uA
lb C_l
17 C_PARM_DESClt
18 F_UTl
19 F _~ETZ
lA RETURN
18 OYN_SPACE
lC CUR_STACK
10 P REV_S TACK
lE CALLE.OAT A
lF ON UN IT
20 DATABASE
21 ~~~~2oesc~ zz
23 ST_Zl
24 ST _Z't
25 ST_Z5
Zb. sr_zb
27 ST_H
28 s r_zs
l9 sr_zq
ZA ST_2A
·ze sr_2e
2C sr_2c
20 ST_20
2E ST_2E
ZF ST_2F
30 ST_30
31 ST_3l
32 sr_32

BUILT Ob/l<Uao 11:H REGISTEk HAP PASCAL COHPILcD 09/09/80 u:s& O•C Al"I PAGE:)

. REG. NAHi: REG. NA'4E REG. NA,.E REG. NAME
NO NO NO NO

33 ST_JJ bb L_COOOOl~DESCR 99 fR_99 cc ~~=~g 3't ST_l't b1 L_F't_OES R 9A FR_9A CD
35 ST_35 68 L_F 3_DESCR 98 FR_98 CE f R_CE
36 ST_36 69 FR_6<1 9C FR_9C Cf f-R_CF
37 ST_l 7 6A FR_bA 90 FR_90 00 Fk_UO
38 ST_J8 68 FR_b8 9E FR_9E iH fR_Ol
39 ST_H bC Fk_oC 9F FR_9f 02 FR_02
3A ST_JA 60 Flt_bD AO FR_AO i)l FR_Ol
38 ST_JR bE Fk_bE Al FR_Al Olt fR_Olt
JC ST_lC bf FR_ bf AZ FR_Al 05 fR_05
30 ST_30 70 FR_70 Al FR_Al Ob FR_Db
3E ST_lE 71 FR_71 Alt FR_A't 07 FR_07
)f ST_JF 7l. H_1l A5 FR_A5 06 Fk_DB
'tO ST_'tO 73 FR_ 73 Ab FR_ Ab [)9 FR_09
"1 S T_'tl 7't FR_ 7't A7 FR_A7 DA fR_DA
't2 ST_'t2 75 Fit_7~ A8 FP_A8 08 FR_OB
It) ST_lt3 76 FR_7b A9 FR_A9 oc FR_oc ST_'t4 77 FR_77 AA FR_AA DO FR_oo
1t5 ST_'t5 78 F~ _78 AS H_AS DE fR_DE
't6 ST_'tb 79 fk_79 AC FR_AC OF FR_OF
't7 ST_47 7A FR_7A AO FR_AO EO FR_EO
46 ST_'t6 7B FR_/8 AE FR_AE El FR_El
49 ST_'t9 7C FR_7C AF ff<_AF EZ FR_EZ
4A PI_OYNSP 70 FR_?O 80 FR_BO El FR_El
40 P_DYNBAS 7E FR_7E Bl FR_a l E't FR_E't
1tC l_ TARVEC 7F FR_7F BZ FR_ Bl E5 FR_E5
ltD LEN_ TAR<i 80 fR_dO 83 FR_B3 Eb FR_Eb
'tE Y_TE'1Pl 61 f-k_6l Bit FR_B't E7 FR_E7
'tf v _TEf•PZ 6Z FR_82 b5 FR_85 E8 FR_E8
50 Y_ TE MP3 83 H_ts3 86 FR_S6 E9 Fll_E9
51 Y_TEP'IP't 8"\ FK_6't 87 FR_B7 EA FR_EA
~z C_#l 85 FR._ts5 86 FR 86 EB FR EB
53 C_•B 86 F1<_ts6 89 FR:89 EC FR:ec
54 c_u 87 FR_67 BA FR_BA ED FR_EO
55 I< tltS FR_btt 68 FR_aa EE FR_EE
5b J 89 FR~89 BC FR_ec Ef FR_Ef
57 I 8A FR_8A 80 Fk_ao FO fR_FO
56 FT_111 TTP!t_AOIC 88 Fk_tsl:i BE FR_ae Fl FR_fl
59 FT_iHTPR_O& ec FR_dC Bf FR_ Bf FZ FK_FZ
5A FT _iii Tl P k_AOR 8U FR_ao co FR_ co Fl f R_Fl
58 FT _11t Tl PR_08 8E FR_6E Cl FR_Cl F 't FR_F't
5C fT_hTIE_AJk 8F FR_8F CZ FR_CZ f5 FR_f5
50 FT_WTI e_os 90 fl(_90 Cl FILC3 fb fR_f 6
5E FT _1i1T IE A_AOR 91 FR_91 C't FR_Clt F7 FR_F7
5F FT_WTHA_D8 92 Fk_qz C5 FR_C5 fd FR_f8
60 FT_I NIT_AOR 93 FR_93 Cb FR_Cb F9 f-l<_F9
61 FT_INIT_D8 9'i F1<_9't C7 Fk_C 7 FA fK_fA
62 FT_STOP_ADR 95 Fk_~5 C8 FR_ Cb FB FR_FB
63 FT_STOPSDB 9b FR_9b C9 FR_C9 FC FR_FC
64t L_zo_oe CR 97 FR_<l7 CA FR_CA FD fR_f-0
65 L_l8_DESC5t 9d F~_c.,d CB H_CI! H fR_FE

ff FR_FF

Figure 15-2. Compiler Output Example (Sheet 3 of 5)

FO~T~AN kl.5 CYCLE Fll BUILT 06/l~/8~ ll:~'t PASCAL CO,.PlL:O 09/09/80 11:56 O•CA" PAGE

TOTAL LE~CTh IS 33 HEX HALF -~~OS

PATA A~EA COPY OF ALL REGISTERS USED BY THIS FORTkAN PROGkA"
START ADOR ESS • 100 CSTAKT ADOkESS IS ~ELATIVE TO DATA A~EA BASE ADORE~SJ

SCALARS,CONSTANTS ANU EXTERNALS ASSIGhEJ TO ~t:GISTEilS CLOCA TIONS ARE: RELATIVE TO OAT A AREA BASE ADDRESS I
LOCAT IO•~ REC.~O NA"'E CLASS TYPE

ll80 'tA Pl_DYNSP S IPU»Lt VARIABLE: lhTGJI.
·11co "e P_OYNBAS Slf'IPU: YAK! ABLE INTGR
1200 'tC L_TARVEC SlPIPLt VAklABLE I NTGR
llltO 'tO LE N_TARG SI "PU: VARIABLE INTGR
1280 'iE Y_TEPli'l Sl1'1PLi: VARIABLE I NTGR
lZCO ltf v_TE,.PZ S lf'IPLl VAR IASLi: I NTGR
1300 50 V _ TE:PIP 3 S 1 PIPLt: VARIABLE: INTGR
l'HO !>l v_TEl'1P't SIMPLE VARIABLE lNTGk
1380 52 c._•l CONSTANT INTCR
llCCi 53 C_•B cot-STANT INTCR
l'tOC 5't C_1A COhSTt.NT INTGR
l'tltO 55 K S Il'!PLE: VARIABLE INTGR
l1t80 ~b J Sl~t»Lt VARIABLE INTGk
lltCO '!>7 I Sl1'1PLt VARIABLE INTCR
1!)00 58,1)9 f T _iiTT? R_AOR ,FT _..T TPR_OB IH:F.EXTtRNAL SUHPi\ UNkNllll
15d0 5A,5B fT _WT 1 PR_ADR ,H_;cTIPk_OB RE:f. tA TE:RNAL SUB PR INTGR
lt>OO 5Ct50 FT_llfT lE_ADR ,FT_-cT lf_oe Rt:F.EXTH<NAL SUBPi< iJNKNa.
1680 5E,!>F FT_~TicA_AOR , FT.• Tl a:A_OB REF .E.XTE:RNAI,. SUBPR UNKN111
l7CO 60, bl FT_INIT_AO~ , FT_ It~ IT _D 8 REF.EXTERNAL SUB PR iJNKNllll
1780 bZt63 FT_STUP_ADR , FT_S TOP _OB REF.EXTERf'iAL SUSPR INTGR

CESCR IPTORS ASS I Gt.ED TO l<EGl STEl\S I LOCATIONS ARE REUTIVE TO DATA AREA BASE ADDRESSI
LOCAJ ION REG.NO ~Al'1E CLASS

ldOO bit L_zo_oE SCR ARRAY llOAl1E
l81t0 M L_l8_0t: SCf\ ARkAY NAl1E
1880 66 L_coooo1_oe sc~ CHAR/blT/FOR"AT
ldCO b1 L_flt_OESCR CHAR/8IT/FOkP1AT
1900 68 L_F l_DE SCR CHAR/tH TI FORMAT

NOTE: TOTAL NU118Ek ·OF REGISTERS TU 6E FETCHED INTO REG.flLE STA~TlhG MITH kEG.20 HEX IS ~9 HEX

GENERATED OBJECT CODE
START ADDRESS • 0 LENGTH •

CHARACTER CONSTANTStLIT~RALS ANO FOR~AT SEG,..ENTS
START ADDRESS • 0 LENGTH •

ARGUMENT VECTO!tS
START ADDRESS • l80 LENGTH •

33 HEX HALF WORDS CSTAMT ADDRESS IS ~ELATIYE TO coue AREA DASE Aooaess1

1't HU HALF NGROS CSTART ADDRESS IS RELATIVE TO DATA AREA BASE ADDRES~I

0 HEX HALF RORDS CSTA~T ADDRESS IS RELATIVE TO DATA AREA BASE ADORESSJ

Figura 15-2. Compiler Output Example (Sheet 4 of 5)

u

....
Cit
I

QO FORTRAN Rt.5 CYCLE fLl STORAGE ftAP i'ASCAL COMPILED 09/09/80 ll:Sb O•CA~ PAGE

CONSTANTS,EXTERNALStDESCRIPTORS AND NON-CO"MO~ VARIAILlS NOT ASSIGNED TO REGISTE~St NA"E~ISTS1CHARACTER SCALARS
START ADDRESS • 280 UNGTH • 1' HlX HALF .. OROS CSTART ADDRESS IS RELATIVE TO DATA UEA BASE AODllESSI

LOCATION

280L

TE "PORARY STORAGE

COMMOti BLOCl(S

LIST OF ALL EhTRY POINTS

LOCATION S Y"BOL IC NAME i

0 PASCAL

LIST OF ALL EXTERNALS

NO ERRORS

S YM BOLi C NAME

FT_WTTPR
FT_lllTIPR
FT_WTIE
FT _WTI EA
FT_INIT
FT_HOP

UhGfH •

cuss
ARRAY VAR UBLE

TYPE CLOCATIONS ARE RELATIVE TO DATA AKEA BASE ADDRESSI .

I NTGR

CSTORAGE IS SCATTERED THROUGHOUT DATA AREAi

CLOCATIONS A~E RELATIVE TD CODE AREA BASE AOOIESSI

Figure 1&-2. Compiler Output Example (Sheet 5 of 5)

1

e Identifying functions that should be arrays

• Locating misspelled symbolic names

The variable map provides information about each symbolic
name used in a program except procedure names and
symbolic constant names. See figure 15-3 for the format
of the variable map. The variable map is always printed
when the C compile option is selected. Some uses of the
variable map include:

e Verifying that symbolic names are in the proper
common blocks

e Identifying symbolic names that are not associated
with the proper data type

• Locating all statements in a program in which a
symbolic name is referenced, and identifying and
locating symbolic names that are defined but never
used.

• Locating the place in the program where a value is
assigned to a symbolic name See figure 15-2 for an example of a variable map.

VARIABLE MAP
-NAME-BLOCK-TYPE-CLASS-REFERENCES

sym blk typ els refs

sym A symbolic name that appears in the program. Symbolic names are listed . in alphabetical order.

blk The name of the common block in which sym appears. If sym appears in blank common, two consecutive slashes
are printed for blk. If sym does not appear in any common block, the blk field is left blank.

typ The data type with which sym is associated; typ can be any of the following:

INTEGER
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR*len (len is the character length)
BIT

els The class of sym; els can be any of the following:

SIMPLE
ARRAY
DESCRIPTOR
DESCRIPTOR ARRAY
UNKNOWN

refs The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
numerical order, and multiple references are listed. A source line number appearing in refs can be followed by a
suffix. A suffix describes how sym is used in the source line. The suffixes and their meanings are:

I A The symbolic name sym is an actual argument in a subroutine call or function reference.

IC The symbolic name sym is the control variable of a ~O loop.

II The symbolic name sym is initialized in a DATA statement.

IR The symbolic name sym appears in the input/output list of an input statement.

IS The symbolic name sym appears on the left side of an assignment statement.

/W The symbolic name sym appears in the input/output list of an output statement.

Figure 15-3. Variable Map Format

60457040 c 15-9

The symbolic constant map provides information about
each symbolic constant used in a program. See figure 15-4
for the format of the symbolic constant map. If no
symbolic constants are used in a program, the symbolic
constant map is not printed. Some uses of the symbolic
constant map include:

e Verifying that the symbolic constant names are
associated with the proper data type

e Identifying and locating symbolic constant names that
are defined but never used

• Locating the PARAMETER statement that defines
each symbolic constant, and locating all occurrences
of a symbolic constant in the program.

e Verifying that the proper values are assigned to
symbolic constant names See figure 15-2 for an example of a symbolic constant map.

15-10

SYMBOLIC CONSTANT MAP
-NAME--TYPE-VALUE-REFERENCES

sym typ val refs

sym The name of a symbolic constant that appears in ·the program. Symbolic constant names are listed in alphabetical
order.

typ The data type with which. sym is associated; typ can be any of the following:

INTEGER
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR*len (fen is the character length)
BIT

val The value assigned to the symbolic constant name sym. The format of var depends on the data type of sym:

Integer The integer value is printed. A negative value is preceded by a minus sign.

Real and The value is printed as a hexadecimal string constant. The format is X'nnn'.
Double-precision

Complex The complex value is printed as two hexadecimal string constants. The first constant
represents the real part, and the second constant represents the imaginary part. The
format is X'nnn',X'nnn'.

Logical The logical value is printed as the logical constant .TRUE. or .FALSE ..

Character The character value is printed as· a character string enclosed in apostrophes. If the
string is too long to fit in the columns provided, the trailing apostrophe is replaced
by an ellipsis.

Bit The bit value is printed as a bit string constant. The format is B'nnn'. If the string
· is too long to fit in the columns provided, the trailing apostrophe is replaced by an
ellipsis.

refs · The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
numerical order, and multiple references are listed. A source line number appearing in refs can be followed by
the suffix /S, which indicates that the symbolic constant is defined in that source line.

Figure 15-4. Symbolic Constant Map Format

604S'1040C

The procedure map provides information about subroutines,
functions, statement functions, and external symbolic
names used in a program. If no procedures are used in a
program, the procedure map is not printed. See
figure 15-5 for the format of the procedure map. Some of
the uses of the procedure map include:

o Locating all references to a procedure name

See figure 15-2 for an example of a procedure map.

ASSEMBLY LISTING

e Identifying statement functions that should be arrays

• Verifying that procedure names are associated with
the proper data types

• Identifying misspelled procedure names

• Locating statement function definitions

• Identifying and locating statement function names
that are defined but never used

When the A compile option is selected, a listing of the
assembly representation of the FORTRAN program appears
after any cross-reference maps. Given are the location
counter (the offset from the code area base address), the
machine instruction in hexadecimal (either halfword or
fullword instruction), the source line number of the
associated source program statement, the instruction
mnemonic, instruction qualifiers, and operands. See
figure 15-2 for an example of an assembly listing. See the
CYBER 200 Assembler reference manual for more
information about the assembly language.

PROCEDURE MAP
-NAME-TYPE-CLASS-REFERENCES

sym typ els refs

sym The symbolic name of a subroutine, function, statement function, or external symbol. Symbolic names are listed
in alphabetical order.

typ The data type of the procedure result; typ can be any of the following:

INTEGER
REAL
DOUBLE
COMPLEX
LOGICAL
CHAR*len (len is the character length)
BIT
GENERIC (for generic functions)

If the symbolic name sym is a subroutine name or an external symbol, the typ field is left blank.

els The class of sym; els can be any of the following:

SUBROUTINE
DUMMY SUBR
INTRINSIC
STAT FUNC
BASIC EXTRN
DUMMY FUNC
EXTERNAL

(Subroutine)
(Subroutine name is a dummy argument)
(Intrinsic function)
(Statement function)
(Basic external function)
(Function name is a dummy argument)
(Procedure name appears in an EXTERNAL statement and is not one of the above)

refs The source line numbers of all source lines that contain references to sym. The source line numbers are listed in
numerical order, and multiple references are listed. If sym is a statement function name, a source line number in
refs can be followed by the suffix /D, which indicates that the statement function is defined in that source line.

Figure 15-5. Procedure Map Format

60457040 c 15-11

I REGISTER MAP AND STORAGE MAP

When the M compile option is selected, a listing of the
contents of the 256-register register file is produced,
appearing after any assembly listing. The CYBER 200
FORTRAN register usage conforms to standard
CYBER 200 operating system register conventions, which
are described in volume 2 of the CYBER 200 Operating
System reference manual. Also produced under this option
is a storage map, giving the following information:

•
•
•
•
•
•

I •

•
•
•
•

Start address and size of data area copy of the
register file

Name, location, class, and data type of all scalars,
constants, and externals assigned to registers

Name, location, and class of descriptors assigned to
registers

Length and start address of the object code

Length and start address of · character constants,
literals, and format segments

Length and start address of argument vectors

Length and start address of constants, externals,
descriptors, variables (not ·in common) namelist
groups, and character scalars not assigned to registers

Quantity of temporary storage

Common blocks

Entry points

Externals

I See figure 15-2 for an example of a register map and a
storage map.

lS.12

CONTROL OF DROP FILE SIZE
If a DROP FILE OVERFLOW run-time error message is
issued, the user can increase the size of the drop file and
rerun the program. The CDP parameter of the LOAD
system control statement ·or the D parameter. of the·
SWITCH system control statement can be used to make the
drop file size larger. Increasing the size ·of the drop file
can usually solve the overflow problem, but a program
error (especially an infinite loop) might be the cause.

6045704GC

EXAMPLES 16

This section consists of examples of FORTRAN programs
illustrating some of the features of the CYBER 200
FORTRAN programming language.

PROGRAM PASCAL
Program PASCAL produces a table of binomial coefficients
(Pascal's triangle).

Features:

FORTRAN system control statement

N est~d DO .100ps

System control statements:

Fo~n1V·I •
LOAD.
GO.

Source· listing:

c

PROGPAM PASCAL (OUTPUT)
INTEGE~ L(11)
OATA L (tt) It/

P~INT 4, (I,!=1t11)

DATA statement

Implied DO loop

The source listing for the program, along with the output
generated by execution of the program, is shown in
figure 16-1. The system control statements perform the
following functions:

• FORTRAN.

This requests that the program in the file INPUT be
compiled by the FORTRAN compiler, with the object
code generated during_ compilation to be placed in the·

4 FO~MAT<44HtCOMRINATIONS OF M THINGS TAKE~ NAT A TIME.1120X,3~-~-I

60457040 B

111 TS)
oo zoo .r=t• to
K=tt-t
Lt Kl =t
00 10 O J:K '10
L (J) =L (J) +L < J+1)
PRINT 3,(L(J),J:K,tU
f='QP~AT (tt.H>

1 2
2 10, .
3 3
4 6
5 10
6 15
7 ?1.
A 2.8
9 3n

10 45
11 '?5

16-1

This requests that the loader build a controllee file GO
consisting· of the object code from the file BINARY,
and resolve. any unsatisfied external references from
the library SYSLIB~ All defaults for thestatement
have been selected,. includirig the names of the files
BINARY, SYSLIB, and GQ;

• GO.

This requests that the file GO be executed. Program
output is produced as a result of this stateme.nt.

16-2 60457040 B

Type: BIT B(20)/B 1101,2*X10 1,B11111110111 1
/

REAL A/3.0/, ...

Data:

or
BIT B(20)/X 1803F7 1

/

REAL A/3.0/, ...
or

BIT B(20)/B 110000000001111110111 1
/

REAL A/3.0/, ...

BIT B(20)
DATA A,B/3.0,B 110 1,2*X 101,3 1 1111110111 1

/

or
BIT B(20)
DATA A,B/3.0, X 1803F7 1

/

or
BIT B(20)
DATA A,B/3.0,B 110000000001111110111 1

/

Asst: BIT B(20)
A=3.0
B=B 101

B(1)=B 111

B(11:16)=B 111

B(18:20)=B 111

Type: INTEGER 1(10)/0,1,2,3,4,5,6,7,8,9/
REAL A/3.0/

Data: DIMENSION 1(10)
DATA A,l/3.0,0,1,2,3,4,5,6,7,8,9/

Asst: DIMENSION 1(10)
DO 100 N=1,10

100 l(N)=N-1
A=3.0

Type: INTEGER 1(10)/10*0/
REAL A/3.0/

Data: DIMENSION 1(10)
DATA A,1/3.0,10*0/

. Asst: DIMENSION 1(10)
l=O
A=3.0

Type: INTEGER 1(10)/1,0,2,0,3,0,4,0,5,0/
REAL A/3.0/

Data: DIMENSION 1(10)
DATA A,(l(N),N='=l,9,2);

Type:

Data:

60457040 B

$ (l(N+1) ,N=l,9,2)/3.0,1,2,3,4,5,5*0/

DIMENSION 1(10)
A=3.0
1(2:10:2)=0
1(1}=1
1(3)=2
H5)=3
1(7)=4
1(9)=5

Type: INTEGER 1(10)/0,1,2,3,4,5,6,7,8,9/
REAL A/3.0/

Data: DIMENSION 1(10)
DATA A,1(1 ;10)/3.0,0,1,2,3,4,5,6,7,8,9/

Asst: DIMENSION 1(10)
DO 600 N=1,10

600 l(N)=N-1
A=3.0

Type: INTEGER 1(10)/10*0/,12(10)/10*0/
REAL A/3.0/

Data: DIMENSION 1(10),12(10)
DATA A,1(1;10),12(1;10)/3.0,20*0/

Asst: DIMENSION 1(10),12(10)
1(1;10)=0
12(1 ;10)=0
A=3.0

Type: COMPLEX COMP(50)/50*(0.,0.)/
REAL A/3.0/

Data: COMPLEX COMP(50)

Asst:

Type:

Data:

Asst:

Asst:

DATA A,COMP/3.0,10*(0.,0.)/

COMPLEX COMP(50)
COMP (20;10)=(0.,0.)
A=3.0

Figure 16-4. Exa111pl.es of Vec~or. lni~ial.ization

(no type statement equivalent) ·

DESCRIPTOR ID
DIMENSION 1(10)
DATA A,ID/3.0,1(1 ;10)/

DESCRIPTOR ID
DIMENSION 1(10)
ASSIGN ID,1(1;10)
A=3.0

DESCRIPTOR ID(8)
DIMENSION 1(10)
DATA. A,ID(4)/3.0,1(1 ;10)/

DESCRIPTOR ID(8)
DIMENSION 1(10)
ASSIGN ID(4),1(1;10)
A=3.0 .

Ex~mple i<>f ··••Descriptor
~r,r~x .. ·.•··~'.~m~9t;.1·.~.it.ia.t.iz~ti9~ ,:, :J

16-3

The functions of some
'program ADD are:

16-4

A RE,AD statement places the image of each record
read into an input buffer. Compiler routines convert
the character string in the record into floating point,
integer or logical values, as specified by the FORMAT
statement, and store these values in the locations
associated with the variables named in the list.

DESCRIPTOR 10(8)
DIMENSION l(GO),J(20)
A=3.0
DO 100 K=1,6

100 ASSIGN ID(K},1(10*K-9;10)
ASSIGN ID(7),J(1;10)
ASSIGN ID(8),J(11 ;10)

60457040 B

•

Program input:

~6544756333214555789633320202585202028517417144466559988796541002587412358963332

00223210233256555458777563222458999630222145632508745050512406303698521475283696

0524753698885214753603690952808707410~806395283698527414445533872259906604402509

Program output:

13912 IS THE TOTAL nF T~E 26 NU~BcRS ON THE CA~D
3&54475&3332t45557eq&3332~202sas20202as114171444&f5Sqgae1a~s41002ss741~358963332
THE NUt-19ERS A~~

654 475 633 321 455 578 963 332 20 2S8 520 ?.02 851 741 714 446 555 qgg 879 &54
100 2ss 741 235 sq~ 333

32'3 IS THE T')TAL OF T.,_.E 7q NUMBERS ON THE CARO
10221210233256555458717~6~?224589~9E30?.22t456J2SJ874505051?4Q6J0369852147~?.~1rq6
THE NUMBERS ARE

0 2 2 ~ 2 1 0 2 3 .J 2 5 i; 5 5 5 4 5 8 7
7 7 5 f) 3 ?. 2 ? 4 5 8 9 g g 6 'l 0 2 2 2
1 4 5 ') 3 2 5 0 ~ 7 4 5 0 5 0 5 1 2 4 0
6 'l 0 1 6 9 8 5 2 1 4 7 5 2 8 3 6 q &

15363 IS THE TOTAL OF THE 25 NU~BERS ON TH~ CA~D
J5?.47~3&ge~as214753603~9ogs2~oa7Q74102ao61952a3G98521~1444?531s122sqqo~&o4402s~a
THE NUMBf'RS AR~

524 753 698 885 214 753 603 690 952 608 707 410 280 639 5?8 36q 652 7 41 444 553
387 ?25 990 661 440 ?58

Figure 16-8. Progra111 A,DD (Shee.t 2 of 2)

With the READ statement, when the FORMAT
specification indicates a new record is to be processed
(by a slash or the final right parenthesis of the
FORMAT statement), a new record is read into the
input buff er.

With the DECODE statement, when the FORMAT
statement indicates a new record is to be processed
{by a slash. or final right parenthesis), the next part of
the array is used as the input buffer. The record
length indicates the number of characters used for
each record.

ENCODE (WRITE)

A WRITE statement causes the output buff er to be
cleared. . Data . in the WRITE statement list is
converted into a ·character string according ··to. the i
format specified in the FORMAT statement, and
placed in the.· output buffer. When the FORMAT.
statement indicates an end of a record with either a
slash or the final right parenthesis, the character
string is passed from . the output buff er to the output
system; the output buff er area is reset, and the next
string of characters is placed in the buff er.

The . ENCODE statement is processed by compiler.
routines in the same way as the WRITE statement, but_
with the array specified within the parentheses of the_
ENCODE statement used· as the output buffer. The,
number of characters ~ per record in the array is '
determined by the record length.

In program ADD, the format of data on input is
specified in column 1. If column 1 is a one, each of
the remaining columns is a data item. If column 1 is a
two, each pair of the remaining columns is a data
item. If column 1 is a three or greater, each triplet of
the remaining columns is a data item~ Based on the
information in column 1, the correct DECODE
statement (the proper for mat and item count) is
selected. The program then totals and prints out the
items in each input record.

e INTEGER·CARD(l0),REC(79),TOTAL

•

•

CARD is dimensioned 10 to receive the 79 characters
in columns 2 through 80. REC is dimensioned 79 to.;
receive the numeric values of the input items.

600 READ(5,100,END=1000)KEY,CARD
100 FORMAT(ll,9A8,A 7)

The first column of the record is read into KEY under·
Uormat, and the . remaining 79 characters are read:
into the array CARD under A format, so they can be
converted later to I format with a DECODE
statement. .The . END parameter· •.. of the READ
statement tests. for the end of data in which case the
program simply stops because statement 1000 is a
STOP statement.

KEY=MAXO{l,MINO(KEY,3))

Guarantees that l~ KEY~ 3.
;• .. ••.M, •;. .. ~,.., ,•.• •,./"•"•Oh.:•••;,;,:."."."

60457040 B 16-5

·• ''T4o "'TOTAL;o· .
DOAl I=l,N

41 TOT AL=TOTA:L+REC(I)

Adds•up·the .. items anCI leaves the total in TOTAL.

'• wRITE(S,500)TOTAL1N ,KEY ,CARD,(REC(I),I=l,N)
500 FORMAT(/I6,20H IS THE TOTAL()F THE ,I3,20H

NUMBERS .. ON THE. CARD/12,10A8/16H THE'.
NUMBERS ARE/(2014))

Outputs the results.

• ·· GOTO 600

G.oes back fopre>cessthe next record.

:PROGRAM·.·•· .. ·CPVECT
!Program.•·. CPV ECT
·eiemerits~

!Features:··

complex vector$

(A listing of program· CPVECT.is shown:in figure16-9.

:'fl'le >rullctfons of some of the FORTRAN statements in
:program CPVECT are:

.• C()MPLEXA(20);B(20),C(20),ROOT1(20),
R()OT2(20),D(20)

.. t\l'l'ays A, B, and C .~()ntain. the co~fficie~ts . fol' 20
quadratic equations;. A(t),. B(l), and C(l) for e"ample,
contain tti.e coefficients for the first equation, 'Wh()Se

· pl,"incipa1 roe>t .will be.· .. placed .. in· .. ROOTl(l).·.·~nd .wh()se.:
other roo~ .win be p~a~f?d in)tOO'f2(1). p Js a ·'Wo~king .·.
:~':'~!Y~ . . .

16-6

•

•

•

•

coMPLEx ·.· ···· ... ··· .oA.,ha;nb,DD,riRpoT1,nRoot2
DESCRIPTOR.< DA,DB;nc,DD,DROOTl,DR()OT2
DATA DA/A(1;20)/,pB/~(1;20)/,DC/C(l;20)/,

.· DD/D/(1;20)/ > <<
DATA DR,OOTl /RO()T1(1;20)/,
DROOT2 /ROOT2(1;20}/

Descriptors ·are .. defined·. for elegance.· and conciseness
in .. >the· ... rest .• ·or •... the .. · •.. ·program.· .•.. For ... example, · ... after
descriptors have been defined, DA and A(l;20} can be
.used interchangeably in.assignment .statements.

D0 .• 1001=1120
100 A(I)=I

·~ . : : . . : . : ... ·: . . . ,

. • Ar~ay A is iniUalize.d.

DB= DA+3
DC=DA+l

These • ..•. cpmp~ex . . vector · arithJrieti.c assignment
statements initialize : arrays B< andC ••... IJ1 }he · firs.t'
sta tern ent, the• constant• 3 Is added· to each element.· of
the array<A~ The res.ult of adding 3 . to A(l), for
example, is used to define B(l). · ,

DD = VCSQRT(DD;DD)

This complex vector arithmetic assignment .·statement.
computes the square root o.f a vector> of i11termediate
values storing the result of the function back into•
array n.

;:· .. ·.·.·.:· .. '

PRINT 1,R00Tl~ROOT2 .

The. arrays .RQOTl.an~ ROOT2;<.'Whfoh.goritain the
res.ult~. ofc?mputif1g •the .·.··~oots .for ..• ·29 ,equations, ... are:
printed with this statement. ·

60457040 B

Source listing:

60457040 B

PRO(;JUM CPVECT ((')t ITPLIT)
c
C CALCULATE N PAIRS OF' ROOTc; FOR l'J QUADRATJC EQIJATIONC::
C THE I-TH ~QUATION tc; ACt>oxoo? • ~<J> 0 X + CCI) : 0
c

COMPLEX A(20) •fH20l .cc?.O) •POOTl (20) .~nnT?.C20) ,oc20)
COMPLE~ DAtOR.~c.no.0RonT1.n~ooT2
OESCRIPTOR DAtO~.nc,nn.nPonr1,nROOT2
OATA DA /A(lC20)/, DA /R(l120)), DC /Ccl•20)/t DD 1oc1i20>I
OATA DPOOTl /ROOT1(1120l/t OROOT2 /POOT~<l•20)/

c
C JNTTIALtZE ARRAYS
c

ton

c

no 100 t:1,20
A (J) = t
n~ = OA + 3
nc • DA •• 1

C CALCULATE THE OISCRTMTNANTS
c

c

OD s OR * nB-4 0 nA ~ nc
OD : VCSQRTCDDIOO>

C CALCULATE THE ROOTS
r

r.

OROOTl : C•OR•OO) I <?oOAJ
OROO.T2 =. <·DR•OO) I C?.G>DA>

C P~TNT RESULTS
c

PRINT l t R()OT l t ROOT2
F'ORMAT (lHl//lOX, •RO()Tl CONTA!NC"; THE FOLLOWtNGt t

x ~c1sx, st~<••F&.3,•••,F6~1.•>1>>
X N/lOXt •~OOT;t CONTAIN5 THE
X 4(15X, 5C'(•tF6•~••••tF6,J,t)•J))

CONTAINS THE
,0><-1.000.

• 777) t ... 114,
.142B).(•efl25t
.A43).{ •e58At

ROnT? CONT~JNS THE
(~3.414. ,0) (•l.51'10t
(-.150, -.777) c -.714t
(-.636, -.~28)t -.6?.5.
f -,c;q4, •.843)(.... c;Rg,

FOLLOWIN<i
.01 c-1.nnn.

,795)(..;,6AA,
.;832) (-.615·
,844) (-.583t

FOLLOWTNG
• n> c-1. o no

•,79S)(... ,6AA
-,832).(•.615
-.844) (-.5~3

•• i:;n><
.. ,AOR) (

-.~3F,) (
•9A4f.). t

)

16-7

CHARACTER SETS A

The CYBER 200 FORTRAN compiler recognizes 52
characters; the FORTRAN character set is a subset of the
CYBER 200 character set.

Table A-1 also shows the internal hexadecimal
representation and the Hollerith punch code for each
character. Each hexadecimal digit in the internal
hexadecimal representation . corresponds to 4 bits. The
Hollerith punch code indicates the rows that are punched in
a computer card for each character. Table A-1 shows both the FORTRAN character set and the

CYBER 200 character set. Some of the characters in the
CYBER 200 character set do not have corresponding
characters in the FORTRAN character set; therefore,
those characters cannot be used in a program unless they
appear in a comment or in a character string.

Some characters do not appear on all keypunches and
terminals. If a particular character is not represented on a
keypunch or terminal, a character that appears on the
keypunch or terminal that has the same internal
hexadecimal representation can be substituted.

TABLE A-1. CHARACTER SETS

FORTRAN Character Hex CYBER 200 Character Ho 11 erith Punch (029)

A space 20 A space no punch
21 ! exclamation point 12-8-7
22 11 quote 8-7
23 I pound sign 8-3
24 $ do 11 ar s i gn 11-8-3
25 % percent sign 0-8-4

& ampersand 26 & ampersand 12
I apostrophe . 27 ' apostrophe 8-5
(left parenthesis 28 (left parenthesis 12-8-5
) right parenthesis 29) right parenthesis 11-8-5
* asterisk 2A * asterisk 11-8-4
+ plus 28 + plus 12-8-6
, conma 2C , conma 0-8-3
- minus 20 - minus 11

period 2E . period 12-8-3
I slash 2F I slash 0-1
0 30 0 0
1 31 1 1
2 32 2 2
3 33 3 3
4 34 4 4
5 35 5 5
6 36 6 6
7 37 7 7
8 38 8 8
9 39 9 9
: colon 3A : colon ... 8-2
; semicolon 38 ; semicolon 11-8-6

3C < less than 12-8-4
= equals sign 30 = equals sign 8-6

3E > greater than 0-8-6
3F 1 question mark 0-8-7
40 @ conmercial at 8-4

A 41 A 12-1
B 42 B 12-2
c 43 c 12-3
0 44 0 12-4
E 45 E 12-5
F 46 F 12-6
G 47 G 12-7

60457040 c A-1

TABLE A-1. CHARACTER SETS (Contd)

FORTRAN Character Hex CYBER 200 Character Hollerith Punch {029)

H 48 H 12-8
I 49 I 12-9
J 4A J ·11-1
K. 48 K 11-2
L 4C L 11-3
M 40 M 11-4
N 4E N 11-5
0 4F 0 11-6
p 50 p 11-7
Q 51 Q 11-8
R 52 R 11-9
s S3 s 0-2
T 54 T 0-3
u SS u 0-4
v S6 v 0-5
w 57 w 0-6
x S8 x 0-7
y 59 y 0-8
z SA z 0-9
[left bracket 58 [left bracket 12-8-2

] right bracket
SC ' reverse slash 0-8-2
so] right bracket 11-8-2
SE A. circumflex 11-8-7
SF underscore 0-8-5
60 ~ reverse apostrophe 8-1
61 a 12-0-1
62 b 12-0-2
63 c 12-0-3
64 d 12-0-4
65 e 12-0-5
66 f 12-0-6
67 g 12-0-7
68 h 12-0-8
69 . i 12-0-9
6A j 12-11-1
68 k 12-11-2
6C 1 12-11-3
60 m 12-11-4
6E n 12-11-5
6F 0 12-11-6
70 p 12-11-7
71 q 12-11-8
72 r 12-11-9
73 s 11-0-2
74 t 11-0-3
75 u . - 11-0-4
76 v 11-0-5
77 w 11-0-6
78 x 11-0-7
79 y 11-0-8
7A z 11-0-9
78 ~ left brace 12-0
70 } right brace 11-0

A-2 60457040 c

DIAGNOSTICS B

I This appendix cor. tains descriptions of three basic groups of
diagnostics: compilation diagnostics, run-time diagnostics,
and vector messages.

COMPILER FAILURE AND
COMPILATION ERRORS
Compiler failure messages are messages generated because
of compiler f allure. Compilation errors are messages
generated because of errors in the program. The
seriousness of the error is indicated by the error type.

COMPILER FAILURE

Error messages produced when the compiler fails are listed
in table 8-1. The compiler failure error type is:

A (abort) Compilation was terminated because of
compiler f allure. The return code is 8
(RC=8)

COMPILATION ERRORS

Error messages produced when the compiler detects errors
in the source program are listed in table B-2. Compilation
error types are:

W (warning) The statement in error was compiled.
Compilation continued, but part of the
statement might not have been
processed. The return code is 4 (RC=4).

F (fatal) The statement in error was not
compiled. Object code generation is
inhibited. The return code is 8 (RC=S).

RETURN CODES

The user has control over the execution of a batch job in
that the user can determine whether to initiate error exit
processing or to allow batch job processing to continue.
The TV control statement allows a termination value to be

TABLE B-1. COMPILER FAILURE MESSAGES

Error Type Message Number Significance Action

93 A COMPILER FAILURE - REFERENCE FOR The subscript processor detected Follow site-defined
NON-DIMENSIONED ARRAY a bad symbol table entry. procedure.

94 A COMPILER FAILURE - ALL FULL REG The doubleword register assignment Follow site-defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure.

generation phase.

95 A COMP ILER FAILURE - HALF REG The fullword register assignment Follow site-defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure.

generation phase.

96 A COMPILER FAILURE - VARIABLE The storage class table became Follow site-defined
EQUIVALENCED TO COMMON BLOCK invalid during the allocation procedure.
THAT HAS NO ELEMENT phase.

97 (Currently unassigned)

98 A COMPILER FAILURE - I/0 STACK The input/output list stack that Follow site-defined
FORMED INCORRECTLY was built by the IOLIST processor procedure.

became invalid during the parse
phase.

99 A COMPILER FAILlffl,E - ILLEGAL The descriptor table became Follow site-defined
DESCRIPTOR ENCOUNTERED IN invalid. procedure.
ALLOCATION PHASE(2)

100 A COMPILER FAILURE - TABLE AREA One of the compiler table areas Follow site-defined
OVERFLOW reached its maximum size. Possi- procedure.

bly the program was too big to be
compiled.

101 A COMPILER FAILURE Compiler detected an internal Follow site-defined
inconsistency. procedure.

60457040 B B-1

Error Type Number

102 F

103 F

104 w

105 F

106 F

107 F

108 F

109 F

110 F

111 F

112 F

113 F

114 F

115 F

116 w

117 F

118 F

119 F

B-2

TABLE B-2. COMPILATION ERROR MESSAGES

Message

ILLEGAL SUBPROGRAM NAME

FUNCTION CANNOT BE CALLED AS A
SUBROUTINE

CANNOT TYPE SUBROUTINE NAME

ILLEGAL SUBROUTINE REFERENCE

MISSING OPERATOR OR DELIMITER

ILLEGAL OPERAND

ILLEGAL OR MISSING DELIMITER

ILLEGAL USE OF ARRAY NAME

MISSING LEFT PARENTHESIS

ILLEGAL USE OF HEXADECIMAL
CONSTANT

RECURSIVE SUBPROGRAM REFERENCE
IS ILLEGAL

ILLEGAL ARGUMENT DELIMITER

ILLEGAL USE OF SUBPROGRAM NAME

ILLEGAL ARGUMENT IN INTRINSIC
OR BASIC FUNCTION REFERENCE

FUNCTION NAME USED AS ARGUMENT
NOT DECLARED EXTERNAL

INTRINSIC FUNCTION CANNOT BE
ACTUAL ARGUMENT

ILLEGAL OPERATOR IN EXPRESSION

PARENTHESES DO NOT MATCH OR
ILLEGAL ASSIGNMENT STATEMENT

Significance

The subprogram is compiled
as a main program.

A function is called with a
CALL statement.

A type is specified for the
subroutine name; the type
was ignored by the compiler.

A subroutine name is used
improperly.

An operator or delimiter is
required.

An expression contains an
illegal operand.

A delimiter is required.

An array name appears with­
out a subscript.

A left parenthesis is
required.

A hexadecimal constant is
used improperly.

A subprogram calls itself.

Arguments must be delimited
by conmas.

A subroutine or function
name is used improperly.

The arguments are not what
the function requires.

The function name is not
declared in an EXTERNAL
statement.

An intrinsic function name
appears in the argument
list of a function or sub­
routine reference.

The operator cannot be used
in the expression.

A one-to-one correspondence
does not exist between left
and right parentheses.

Action

Correct error; recompile.

Replace the CALL state­
ment with a statement
that contains a function
reference; recompile.

Verify that a subroutine,
rather than a function,
was intended.

Correct error; recompile.

Supply missing operator
or delimiter; recompile.

Correct error; recompile.

Supply missing delimiter
or correct error in exist­
ing delimiter; recompile.

Supply subscript for
array reference; recompile.

Supply missing left
parenthesis; recompile.

Correct error; recompile.

Remove recursive sub­
programre f erences from
the program; recompile.

Correct error; recom­
pile.

Correct error; recompile.

Correct error; recompile.

Declare function name in
an EXTERNAL statement;
recompile.

Remove intrinsic function
name from.the argument
list; recompile.

Correct error; recompile.

Check all parentheses in
the expression. Correct
errors; recompile.

80457040 8

Error
Number

120

121

122

123

124

125

126

127

128

ll9

lJO

131

132

60457040 8

Type

F

F

F

F

F

w

w

w

w

w

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

INCORRECT NUMBER OF ARGUMENTS
FOR INTRINSIC OR BASIC
FUNCTION

INCORRECT ARGUMENT TYPE FOR
INTRINSIC OR BASIC FUNCTION

ILLEGAL TYPE MIXING IN
STATEMENT

ILLEGAL ARRAY MODE IN VECTOR
REFERENCE

ILLEGAL MODE USAGE IN
RELATIONAL OR ARITHMETIC
EXPRESSION

MORE THAN 19 CONTINUATION
LINES

THIS STATEMENT CANNOT BE
EXECUTED

INDEFINITE.RESULT, PRODUCT TOO
LARGE

DIVIDE FAULT IN CONSTANT
ARITHMETIC

EXPONENT OVERFLOW IN CONSTANT
ARITHMETIC

ILLEGAL DELIMITER IN A VECTOR
REFERENCE

SUBSCRIPT FOR NON-DIMENSIONED
ARRAY, OR STMT FUNCTION DEF
DOES NOT PRECEDE ALL
EXECUTABLE STATEMENTS

TIIIS SYMBOL MAY NOT BE DEFINED
TO BE A STATEMENT FUNCTION

Significance

The argument list for an
intrinsic function refer­
ence or a basic function
reference contains a dif­
ferent number of arguments
than the function requires.

An argument that appears
in the argument list of an
intrinsic function refer­
ence or a basic function
reference is of the wrong
type.

The data types of two
entities that appear in a
statement are incompatible.

All continuation lines
after line 19 are not
compiled.

The previous statement does
not allow execution of this
statement.

The multiplication of two
constants produces a result
that is too large.

The division of one
constant by another pro­
duces a divide fault.

Constant arithmetic
produces exponent overflow.

The array that appears on
the left side of an assign­
ment is not dimensioned, or
this is a statement func­
tion definition that does
not precede all executable
statements.

The symbol is already
defined.

Action

Check the requirements
of the intrinsic or basic
function. Add missing
arguments or delete extra
arguments from the argu­
ment list of the func­
tion reference; recompile.

Check the requirements
of the intrinsic or basic
function. Change the
type of the erroneous
argument; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Restructure the statement
so that no more than 19
continuation lines are
used; recompile.

Check for an error in
logic. Check for a
missing label on
the current statement.

Verify that an indefinite
result does not affect
the logic of the program.

Verify that the divide
fault does not affect the
logic of the program.

Verify that exponent
overflow does not affect
the logic of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

8-3

Error
Number

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

B-4

Type

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL STATEMENT FUNCTION
ARGUMENT

ILLEGAL STATEMENT FUNCTION
DEFINITION

ILLEGAL LABEL

DESCRIPTOR MODE IS NOT
INTEGER, REAL, BIT, OR COMPLEX

ILLEGAL DELIMITER FOR HEX OR
BIT CONSTANT

DOUBLY DEFINED LABEI.

(Currently unassigned)

ILLEGAL DELIMITER IN STAtEMENT
FUNCTION ARGUMENT LIST

INCORRECT NO. OF ARGUMENTS FOR
STATEMENT FUNCTION

COMPLEX MAY NOT BE USED AS
POWER

COMPLEX MAY ONLY BE RAISED TO
INTEGER OR REAL POWER

SUBSCRIPT MUST BE INTEGER
CONSTANT

SPECIFICATION STATEMENTS
MUST PRECEDE ALL EXECUTABLE
STATEMENTS

ILLEGAL VARIABLE IN DATA
STATEMENT

SYNTAX ERROR IN DATA LI ST

Significance

An illegal argument appears
in a statement function
reference.

A statement function is
defined improperly.

A label must be numeric and
between 1 and 99999.

A descriptor must be of one
of these types.

Hexadecimal and bit con­
stants must be delimited by
apostrophes.

The same label appears on
more than one statement in
a program.

Statement function argu­
ments must be delimited by
commas.

Th~ argument list for a
statement function refer­
ence contains a different
number of arguments than
the function requires.

A complex number appears as
an exponent.·

Exponentiation of a complex
number involves an exponent
that is not real or integer.

The subscript is not an
integer constant.

A specification statement
appears after an executable
statement.

A symbol that appears in a
DATA statement cannot be
initialized.

An error appears in a DATA
statement.

Action

Correct error; recompile.

Correct error; recompile.

Supply numeric label;
recompile.

Change the type of the
descriptor; recompile.

Change delimiters to
apostrophes; recompile.

Change one of the
occurrences of the label.
Also, check all refer
ences to the label that
is changed in order to
maintain correct logic;
recompile.

Correct error; recompile.

Check the statement func­
tion definition to find
out how many arguments
the function requires.
Add missing arguments or
delete extra arguments
from the argument list
of the function refer­
ence; recompile.

Change the type of the
exponent; recompile.

Change the type of the
exponent to real or
integer; recompile.

Change the subscript to
integer constant; recom­
pile.

Move all specification
statements in front of
all executable state
men ts; r_ecompi le.

Remove the symbol from the
DATA statement; recompile.

Correct error; recompile.

60457040 B

Error
Number

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

60457040 B

Type

F

F

F

F

F

F

F

w

F

F

F

F

F

w

w

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SUBSCRIPT MAY NOT BE AN
EXPRESSION

TOO MANY SUBSCRIPTS

SYNTAX ERROR IN HEXADECIMAL OR
BIT CONSTANT

ILLEGAL DATA ITEM

ILLEGAL VECTOR REFERENCE MODE
IN DATA STATEMENT

CHARACTER, HEX OR BIT CONSTANT
TOO LARGE

ILLEGAL USE OF VECTOR
REFERENCE MODE IN DATA
STATEMENT

TOO MANY DATA CONSTANTS

SYNTAX ERROR

SPECIFICATION STATEMENTS MUST
PRECEDE STATEMENT FUNCTION
DEFINITIONS

ILLEGAL ELEMENT IN
SPECIFICATION LIST

ILLEGAL OPERATOR IN
SPECIFICATION

ILLEGAL LENGTII SPECIFICATION
OF CHARACTER VARIABLE

NAMELIST NAME IN TYPE
STATEMENT

VARIABLE TYPED MORE THAN ONCE

LENGTII OF ADJUSTABLE CHARACTER
MUST BE TYPE INTEGER

ZERO LENGTII FOR CHARACTER
VARIABLE

Significance

An expression is used as a
subscript.

Tile array is declared to
have fewer dimensions than
there are subscripts.

An error appears in a hexa­
decimal or bit constant.

Constant is too large to be
represented.

Tilere are more values in a
DATA statement than there
are variables. Tile extra
values are not used.

A language construct is
written improperly.

A specification statement
appears after a statement
function definition.

Tile length specification
that appears in a CHARACTER
statement is illegal.

A type is given to a
name listname; this action
is ignored by the compiler.

The first type is used.
Tile additional type speci­
fications are ignored.

The length specification
that appears in a CHARACTER
statement is not an integer.

Tile length specification
for a character variable is
zero.

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Reduce size of constant;
recompile.

Correct error; recompile.

Verify that the proper
number of variables and
constants are specified.

Correct error; recompile.

Move all specification
statements in front of
all statement function
definitions; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Check user-defined names
to find out if a name is
used as both a namelist
name and a variable or
array name.

Verify that the first
type is intended. Check
user-defined names to
find out if two differ­
ent variables are
intended.

Correct error; recompile.

Correct error; recompile.

B-5

Error
Number

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

B-6

Type

F

F

w

F

w

w

w

w

F

F

F

F

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ERROR IN DATA LIST OF TYPE
STATEMENT

ILLEGAL STATEMENT ON LOGICAL
IF

NO LABELED COMMON IN BLOCK
DATA SUBPROGRAM

ILLEGAL STATEMENT IN BLOCK
DATA SUBPROGRAM

MAIN PROGRAM HAS NO EXECUTABLE
STATEMENTS

(Currently unassigned)

END NOT PRECEDED BY BRANCH
STATEMENT

FUNCTION NAME IS NOT DEFINED

NO RETURN STATEMENT

ENTRY IN RANGE OF DO OR IN
BLOCK IF

NO ARGUMENTS FOR FUNCTION

ILLEGAL DUMMY ARGUMENT

MISSING NAMELIST NAME

ILLEGAL NAMELIST NAME

MISSING SLASH AFTER NAMELIST
NAME

LIST ITEM MUST BE A VARIABLE

ILLEGAL OPERATOR

ILLEGAL OR MISSING VARIABLE

Significance

1be consequent statement
on a logical IF is not
allowed.

No labeled coumion blocks
are declared in the BLOCK
DATA subprogram.

111is statement cannot
appear in a BLOCK DATA sub­
program.

A STOP statement was gen­
erated by the compiler.

A function returns a value
through its name. The name

must be assigned a value
during execution of the
function. -

A RETURN statement was
generated by the compiler.

An ENTRY statement appears
in the range of a DO loop
or in a block IF.

The subprogram is compiled
as a main program.

An argument that appears in
a FUNCTION or SUBROUTINE
statement is illegal.

A NAMELIST statement does
not contain a namelist name.

A namelist name is illegal.

A namelist name must be
enclosed in slashes.

Action

Correct error; recompile.

Correct error; recompile.

Verify that all state
ments appear in the BLOCK
DATA subprogram as
intended.

Correct error; recompile.

Verify that all state­
ments in the main program
appear as intended.

Verify that a STOP state­
ment was intended.

Check the function for a
missing assignment
statement.

Verify that a RETURN
statement was intended.

Remove the ENTRY state­
ment from the range of
the DO loop or block IF;
recompile.

Supply the argument list
for the FUNCTION state­
ment; recompile.

Correct error; recompile.

Supply the namelist name
enclosed in slashes;
recompile.

Correct error; recompile.

Supply the missing slash
after the namelist name;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60457040 B

Error
Number

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

60457040 8

Type

F

F

F

F

F

F

F

F

F

F

w

F

w

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SYNTAX ERROR IN LABEL STRING

(Currently unassigned)

INVALID LABEL REFERENCE

MORE THAN 253 COMMON BLOCK
NAMES

ATTEMPTED TO RE-ORDER COMMON

VARIABLE APPEARS IN COMMON
MORE THAN ONCE

ENTRY MUST BE IN A SUBROUTINE
OR FUNCTION

DUPLICATION OF DUMMY ARGUMENT
NAMES

ILLEGAL DIMENSION
SPEC I FI CATION

ILLEGAL FORMATION OF I/O
STATEMENT

I/O UNIT MUST BE INTEGER
CONSTANT OR INTEGER VARIABLE

DUPLICATE OPTION IN I/O
STATEMENT

ILLEGAL OPTION IN I/O
STATEMENT

REFERENCED UNDEFINED FORMAT

RECORD LENGTH MU ST BE INTEGER
CONSTANT OR INTEGER VARIABLE

FORMAT REFERENCE MUST BE
FORMAT STATEMENT NUMBER OR
ARRAY NAME

Significance

Too many common blocks are
used in ·the program.

COMMON and EQUIVALENCE
statements conflict.

The same variable appears
more than once in a common
block.

An ENTRY statement appears
in a main program or a
BLOCK DATA subprogram.

The same name appears more
than once in the dummy
argument list of a
FUNCTION, SUBROUTINE, or
ENTRY statement.

A non-integer unit number
appears in an input/output
statement.

The first option is used.

The option specified cannot
be used with the input/
output statement.

The format specified in an
input/output statement is
not defined in the program.

A non-integer record length
is specified in an input/
output statement.

The format reference in an
input/output statement is
not the label of a FORMAT
statement or the name of an
array.

Action

Correct error; recompile.

Correct error; recompile.

Reduce the number of
common blocks used; recom­
pile.

Correct error; recompile.

Eliminate all but one
occurrence of the
variable from the COMMON
statement; recompile.

Remove the ENTRY state­
ment; recompile.

Eliminate all but one
occurrence of the dummy
argument from the argu­
ment list of the
statement; recompile.

Correct error; recompile.

Correct error; recompile.

Change the unit number to
an integer constant or an
integer variable;
recompile.

Verify that the first op­
tion is intended.

Eliminate or change the
option; recompile.

Check for a missing
FORMAT statement, or
check for an error in the
format number specified
in the input/output
statement •.

Change the record length
specification to an inte­
ger constant or an inte­
ger variable; recompile.

Supply a format label or
an array name to the
input/output statement;
recompile.

8-7

Error
Number

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

B-8

Type

F

F

F

F

F

F

w

F

F

F

F

F

F

w

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL ELEMENT IN I/O LIST

ILLEGAL OR MISSING DELIMITER
IN 1/0 LIST

ILLEGAL FORMATION OF REWIND,
ENDFILE OR BACKSPACE

ILLEGAL FORMATION'OF COMMON
STATF.MENT

COMMON BLOCK NAME IS. NOT
SYMBOLIC

DUPLICATE SYMBOLIC NAME IN
COMMON STATEMENT

DATA SHOULD NOT BE PRESET IN
BLANK COMMON

DUMMY ARGUMENT CANWT APPEAR
IN COMMON

ILLEGAL USE OF VARIABLE OR
VARIABLE DIMENSIONED MORE THAN
ONCE

A VARIABLE IN A DIMENSION
STATEMENT MUST BE DIMENSIONED
DIMENSION ·

MISSING COMMA

DIMENSIONING FORMAT ERROR

ILLEGAL USE OF SUBSCRIPT

VARIABLE DIMENSION NEITHER A
DUMMY ARGUMENT NOR IN COMMON
YET

VARIABLE DIMENSION HAS TO BE A
SIMPLE VARIABLE

VARIABLE DIMENSION CANNOT BE
DEFINED

Significance

Elements in an input/output
list must be delimited by
conmas.

An invalid symbol is
specified as a co111Don block
name.

The same symbol appears
more than once in a COMMON
statement.

BLOCK DATA subprograms can
be used to initialize data
in named common blocks
only.

A dunnny argument appears in
a COMMON statement.

The dimension specification
for a variable that appears
in a DIMENSION statement is
not specified.

A comma is required.

The variable used as the
dimension specification is
not in a preceding SUB­
ROUTINE, FUNCTION, ENTRY,
or COMMON statement.

The dimension specification
in a DIMENSION statement is
not a simple variable.

An attempt is made to
change a dimension for a
variably dimensioned array.

Action

Correct error; recompile.

Place conma's between
names in the input/output
list; recompile.

Correct error; recompile.

Correct error; recompile.

Supply a valid identifier
as the name of the conanon
block; recompile.

Change the symbols so
that all of the symbols
in the COMMO?t statement
are unique; recompile.

Remove initialized vari­
able from blank common or
use executable statements
to initialize it.

Change the name of the
dummy argument or change
the name in the COMMON
statement; recompile.

Correct error; recompile.

Add the dimension speci­
fication to the variable
name that appears in
the statement; recompile.

Supply the connna;
recompile.

Correct error; recompile.

Correct error; recompile.

Place the variable used
as the dimension specifi­
cation in the argument
list of the FUNCTION or
SUBROUTINE statement, or
in a COMMON statement
that appears before the
statement in which the
variable is used;
recompile.

Change the dimension
specification to a simple
integer variable;
recompile.

Correct error; recompile.

60457040 B

Error Type Number

215 F

216 F

217 F

218 F

219 F

220 F

221 F

222 F

223 F

224 F

225 F

226 F

227 F

228 F

229 F

230 F

231 F

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

MORE THAN 7 DIMENSIONS
SPECIFIED

CONSTANT GREATER THAN 2**18
SPECIFICATION STATEMENT

ILLEGAL OR MISSING REFERENCE
IN DO STATEMENT

LABEL REFERENCE GREATER THAN
99999

ILLEGAL PARAMETER IN DO
STATEMENT

ILLEGAL OR MISSING DELIMITER

IX> LOOP NEVER TERMINATED

IN

A DO LOOP MAY NOT TERMINATE ON
nus STATEMENT

EQUIVALENCE FORMAT ERROR

ILLEGAL COMPONENT BEING
EQUIVALENCED

ILLEGAL DELIMITER SEPARATING
EQUIVALENCE GROUPS

ARRAY ELEMENT MUST HAVE AT
AT LEAST ONE SUBSCRIPT

ONLY SYMBOLIC NAMES CAN APPEAR
IN EXTERNAL STATEMENTS

EXTERNAL STATEMENT DID NOT
PRECEDE REFERENCE OR VARIABLE
IS \:IRONG TYPE

ILLEGAL USE OF NAME IN
EXTERNAL STATEMENT

ILLEGAL EXPRESSION IN IF

COMMA IS ONLY OPERATOR ALLOWED
BETWEEN LABELS

Significance

An array can have no.more
than 7 dimensions.

The constant is too large.

A label can have no more
than 5 digits.

A delimiter is required.

An END statement appears in
the range of a DO loop.

This statement cannot be
the last statement in a DO
loop.

The format of the
EQUIVALENCE statement is
incorrect.

The argument of the EQUIVA­
LENCE statement is illegal.

Equivalence groups must be
separated by couunas.

An array name appears that
does not have a subscript.

Something other than a sym­
bolic name appears in an
EXTERNAL statement.

An arithmetic IF statement
must have an arithmetic or
logical expression.

An operator other than a
comma was found between
labels.

Action

Reduce the number of di­
mensions; recompile.

Reduce the value of the
constant; recompile.

Correct error; recompile.

Shorten the label to 5
digits. Correct all
references to the label
appropriately; recompile.

Correct error; recompile.

Supply the delimiter;
recompile.

Supply the last statement
of the DO loop if it is
missing, or move the END
statement out of the DO
loop; recompile.

Add a CONTINUE statement
after this statement.
Movethe label of this
statement to the label
field of the CONTINUE
statement; recompile.

Correct error; recompile.

Correct error; recompile.

Add conmas between
equivalence groups;
recompile.

Supply the subscript;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Change the operator to a
couuna; recompile.

B-9

Error
Number

232

233

234

235

236

237

238

239

240

241

242

243

244

B-10

Type

F

F

F

F

w

F

w

F

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SUBSCRIPT EXPRESSION NOT
INTEGER, REAL, OR DOUBLE
PRECISION

I/O SPECIAL EXIT PARAMETER
MUST BE AN INTEGER VARIABLE

ITEMS IN COMMON MUST BE ARRAYS
OR SIMPLE VARIABLES

DIRECT ACCESS I/O NOT
IMPLEMENTED

UNREFERENCED FORMAT

NAMELIST IS USED ILLEGALLY

UNREFERENCED NAMELIST

ADJUSTABLE LENGTH IS NOT A
DUMMY ARGUMENT OR IN COMMON

INCORRECT DO SPECIFICATION IN
I/O LIST

BUFFER MUST BE VARIABLE OR
ARRAY OR SUBSCRIPTED VARIABLE

EQUIVALENCE RELATION ERROR
BETWEEN GROUPS

NON-REDEFINABLE VARIABLE IN
INPUT LIST

ARRAY REFERENCED WITH WRONG
NUMBER OF SUBSCRIPTS

Significance

A subscript expression can
be integer, real, or
double-precision. The
result of the expression is
truncated to an integer.

Something other than an
array or simple variable
appears in a coDDDon block.

Direct access input/output
cannot be performed.

A FORMAT statement appears
in a program, but is not
referenced in an input/
output statement.

A NAMELIST statement ap­
pears in the program, but
it is not referenced in an
input/output statement.

The variable used as the
length of a character vari­
able is not defined prior
to its use.

The implied DO loop in an
input/output statement is
in error.

Bad buffer specification in
buffer input/output
statement.

Equivalence declaration
conflicts with other
declarations.

There is a variable in the
input list whose value can­
not be altered, such as a
DO loop control variable.

The number of subscripts of
an array reference is not
the same as the number.of
subscripts declared in the
specification statement for
the array.

Action

Change the type of ex­
press ion in the subscript
to integer, real, or
double-precision;
recompile.

Correct error; recompile.

Remove the erroneous
element fr6m the COMMON
statement; recompile.

Replace the direct access
input/output statement;
recompile.

Check the format refer­
ences in all input/output
statements to find out if
the proper formats are
specified.

Correct error; recompile.

Check the namelist refer­
ences in all input/output
statements to find out if
the proper namelists are
specified.

Place the variable used
as the length of a char­
acter variable in the
argument list of the
FUNCTION, SUBROUTINE,
or ENTRY statement, or in
a COMMON statement that
appears before the state­
ment in which th~ vari­
able is used; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Check the specification
statement for the array
and correct the array re­
ference appropriately;
recompile.

60457040 B

Error
Number

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

60457040 8

Type

w

F

w

F

F

w

w

w

w

w

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

CONSTANTS MAY BE TOO LARGE

EQUIVALENCE HAS ATTEMPTED TO
RE-ORIGIN COMMON

MISSING SUBSCRIPT - A ONE IS
SUBSTITUTED

ILLEGAL COMPONENT IN I/O
STATEMENT

ILLEGAL OR MISSING BUFFER
SPECIFICATION

RETURN STATEMENT IGNORED IN
BLOCK DATA SUBPROGRAM

RETURN STATEMENT REPLACED BY
STOP STATEMENT IN MAIN PROGRAM

ILLEGAL PARAMETER IN RETURN
STATEMENT

MODE OF RETURN PARAMETER MUST
BE INTEGER

ILLEGAL VALUE FOR RETURN
STATEMENT

SYNTAX ERROR ON LEFT SIDE OF
ASSIGNMENT STATEMENT

NON-REDEFINABLE VARIABLE ON
LEFT SIDE OF ASSIGNMENT
STATEMENT

ILL~GAL FIELD SPECIFICATION IN
FORMAT

FORMAT STATEMENT IN BLOCK DATA
SUBPROGRAM

LENGTH OF HOLLERITH FIELD OUT
OF RANGE

Significance

The EQUIVALENCE statement
is incompatible with a
COMMON statement. A common
block cannot be extended at
its·beginning.

An array reference has
missing subscript expres­
sions or too few subscript
expressions.

Bad buffer specification in
buffer input/output
statement.

A BLOCK DATA subprogram
does not permit a RETURN
statement. The RETURN
statement is ignored.

A main program requires a
STOP statement rather than
a RETURN statement. The
RETURN statement is assumed
to be a STOP statement.

The parameter in the RETURN
statement is ignored.

The parameter in a RETURN
statement must be integer.
The noninteger parameter
is ignored.

Value is greater than the
number of alternate re­
turns, or is not positive.

An illegal language con­
struct appears to the left
of the equals sign.

The value of the variable
that appears to the left of
the equals sign cannot be
changed.

A FORMAT statement cannot
appear in a BLOCK DATA
subprogram.

The maximum length of a
Hollerith field is 255
characters.

Action

Correct the EQUIVALENCE
statement so that it does
not extend the conman.
block at its beginning;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

No action necessary.

No action necessary.

Verify that ignoring the
parameter does not affect
the logic of the program.

Verify that ignoring the
parameter does not affect
the logic of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Remove the FORMAT state­
ment from the BLOCK DATA
subprogram; recompile.

Reduce the length of the
Hollerith field to no
more than 255 characters;
recompile.

8-11

Error
Number

260

261

262

2b3

264

265

266

267

268

269

270

271

272

273

274

B-12

Type

F

F

F

F

F

F

F

F

F

F

F

F

w

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

END OF STATEMENT IN HOLLERITH
FIELD

MISSING CLOSING APOSTROPHE OR
ASTERISK ON CHARACTER STRING

ASSIGN MUST BE FOLLOWED EITHER
BY A LABEL OR A DESCRIPTOR
VARIABLE

ASSIGN VARIABLE MUST BE SIMPLE
INTEGER VARIABLE

MISSING SUBSCRIPTS

MISSING LABEL(S) IN GO TO -
POSSIBLE MIS-USE OF COMPUTED
GO TO STATEMENT IN SOURCE

ILLEGAL LABEL VALUE IN ASSIGN
STATEMENT

ATTEMPT TO INITIALIZE
CHARACTER VARIABLE WITH
NON-CHARACTER DATA

LOGICAL CONSTANT CAN IDT
INITIALIZE OTHER TYPES

MISSING DATA

FLOATING POINT NUMBER OUT OF
ALLOWABLE RANGE

MODE MUST BE INTEGER CONSTANT
OR INTEGER VARIABLE

(Currently un~ssigned)

MISSING END STATEMENT

ARRAY DECLARATOR NOT A
VARIABLE

Significance

The Hollerith field extends
beyond the end of the
source statement.

The character string must
be delimited by apostrophes
or asterisks.

An array name appears with..:
out subscripts.

A computed GO TO statement
must specify statement
labels to which control can
transfer depending on the
condition.

The specified label does
not exist or is a FORMAT
label.

A logical constant can
initialize a logical
variable only.

The list of variables in
the DATA statement is
longer than the list of
constants.

A real constant is too
small or too large to be
represented.

A noninteger number is
used where an integer or
an integer variable
is required.

The compiler supplied an
END s ta temen t.

Action

Split the Hollerith field
into two or more shorter
fields and continue the
statement on subsequent
source lines; recompile.

Supply the missing apos­
trophe or asterisk;
recompile.

Correct error; recompile.

Correct error; recompile.

Supply the subscripts;
recompile.

Supply proper number of
statement labels;
recompile.

Correct error; recompile.

Use character data to
initialize character
variables; recompile.

Replace the logical
constant with a constant
of the appropriate type,
or change the type speci­
fication of the variable
being initialized to
logical; recompile.

Eliminate the excessive
variables, or add more
constants to the DATA
statement; recompile.

Correct error; recompile.

Change the number to an
integer; .recompile.

No action necessary.

Correct error; recompile.

60457040 B

Error
Number

275

276

277

278

279

280

281

282

283

284

285

286

287

288

60457040 B

Type

F

F

F

F

F

F

F

F

w

F

F

F

F

w

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

VARIABLE CANNOT BE DIMENSIONED

ATTEMPT TO RE-DIMENSION A
VARIABLE

PROGRAM STARTS WITH A
CONTINUATION CARD

SUBSCRIPT OR DIMENSION CANNOT
BE ZERO OR NEGATIVE

ARRAY HAS TO BE FORMAL ARGUMENT
TO HAVE VARIABLE DIMENSION

VARIABLE DIMENSION SHOULD BE
SIMPLE INTEGER VARIABLE

LOGICAL VARIABLE INITIALIZED
INCORRECTLY

BOTH VARIABLE LENGTH SPECIFIER
AND CHARACTER VARIABLE MUST BE
DUMMY ARGUMENTS

EQUIVALENCE VARIABLE ATTEMPTED
TO BE ASSIGNED TO IMPROPER
BOUNDARY

ILLEGAL ELEMENT IN ARGUMENT
VECTOR

DO LOOP IS BRANCHED INTO, BUT
HAS NO EXTENDED RANGE

ILLEGAL TRANSFER INTO RANGE OF
DO LOOP

REFERENCE TO UNDEFINED LABEL

ILLEGAL EXPONENTIATION

Significance

The variable is already
dimensioned.

The first statement of a
program has a nonzero, non­
blank character in column 6.

A zero or a negative number
is used as a subscript.

The array name that has a
variable dimension is not
in the formal argument
list of the FUNCTION or
SUBROUTINE statement.

The variable dimension
specified is not a simple
integer variable.

An EQUIVALENCE statement
attempted to assign a
logical, integer, real,
double-precision, or com­
plex variable to a nonword
boundary, or a character
variable to a nonbyte
boundary.

Illegal branch into DO
loop.

A statement causes a
transfer into a DO loop.

A label is referenced, but
it does not appear in the
label field of any state­
ment in the program.

Illegal operands for
exponentiation.

Action

Correct error; recompile.

Eliminate one of the di­
mension specifications
or change the variable
name; recompile.

Supply the source state­
ments that are missing
from the beginning of the
program; recompile.

Replace the subscript
with a positive number;
recompile.

Place the array name in
the argument list of the
FUNCTION or SUBROUTINE
statement. Correct all
subprogram references
appropriately; recompile.

Replace the variable di­
mension with a simple in­
teger variable; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Restructure the program
so that control does not
transfer into the range
of a DO lpop. Control
can transfer to the
DO statement; recompile.

Change the label reference
so that it references a
label that exists in the
program, or supply the
missing label in the pro­
gram; recompile.

Correct error; recompile.

B-13

Error
Number

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

B-14

Type

F

w

F

F

F

F

F

F

F

w

F

w

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SUBROUTINE CANNOT BE CALLED AS
FUNCTION

FORMAT NOT LABELED

ILLEGAL MODE FOR A LENGTH
EXPRESSION IN A VECTOR
REFERENCE

VECTOR LENGTH CANNOT BE A
NEGATIVE CONSTANT

MODE ERROR IN A VECTOR ARITH­
METIC OR BIT ASSIGNMENT
STATEMENT

ILLEGAL MODE IN A VECTOR
EXPRESSION

VECTOR EXPRESSION ASSIGNED TO
A NON-VECTOR VARIABLE

SUBSCRIPT REFERENCE FOR NON­
DIMENSIONED ARRAY

DESCRIPTOR NOT INITIALIZED BY
VECTOR REFERENCE

COMMON BLOCK HAS BEEN PADDED
IN ORDER TO ENSURE ALIGNMENT

FIRST AND LAST MUST BE
VARIABLES OR ARRAY ELEMENTS

EXTRANEOUS INFORMATION AT END
OF STATEMENT

STATEMENT CANNOT BE IDENTIFIED

A LABEL MUST BE AN INTEGER
CONSTANT

DIGIT STRING EXCEEDS MAXIMUM
OF FIVE

Significance

A subroutine must be called
with the CALL statement.

A FORMAT Statement requires ...
a label in the label field.
The unlabeled FORMAT state­
ment is not used.

The length must be integer.

A vector must be on the
left side of a vector
assignment statement.

A subscript is specified
for a variable that is.
not dimensioned.

Alignment of the conman .
block is performed by the
compiler to place a char­
acter variable on a byte
boundary or other variables
(except bit) on a word
boundary.

Illegal specification for
first or last location in
BUFFER IN or BUFFER OUT
statement.

The compiler ignored the
extra information at the
end of the statement.

Syntax error in statement.

A label is specified that
is something other than an
integer constant.

No more than 5 digits can
appear in the digit string.

Action

Change the statement that
contains the function ref­
erence to a CALL state­
ment; recompile.

Verify that the FORMAT
statement is not refer­
enced in the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Replace the variable on
the left of the vector
assignment statement with
a vector; recompile.

Use a DIMENSION statement
to dimension the vari­
able, or remove the sub­
script from the variable
reference; recompile.

Correct error; recompile.

No action necessary.

Correct error; recompile.

Verify that the compiler
interpr~ted the statement
correctly.

Correct error; recompile.

Change the label to
an integer constant.
Correct all references
to the label appropri­
ately; recompile.

Reduce the string to 5
digits; recompile.

60457040 B

Error
Number

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

60457040 8

Type

F

w

F

F

F

F

F

F

F

F

F

F

F

F

F

F

w

. TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL CHARACTER

ILLEGAL CONSTANT ON A PAUSE OR
STOP

ILLEGAL CONSTANT TYPE

CHARACTER STRING EXCEEDS 255

HOLLERITH FIELD COUNT IS TOO
LARGE

SYMBOLIC NAME HAS MORE THAN 8
CHARACTERS

COMPONENT HAS MORE THAN 255
CHARACTERS

REAL NUMBER HAS MORE THAN 255
DIGITS

LOGICAL CONSTANT OR LOGICAL/
RELATIONAL OPERATOR IS
INCORRECT

ERROR IN HOLLERITH COUNT

REAL NUMBER CANNOT BE FOLLOWED
BY A LETTER

COMPLEX NUMBER COMPONENTS
CANNOT BE DOUBLE PRECISION

MISSING RIGHT PARENTHESIS

SYNTAX ERROR IN A COMPLEX
CONSTANT

ZERO LENGTH CHARACTER STRING

ILLEGAL ARGUMENT FIELD SYNTAX

IMPLICIT STATEMENT MUST BE
FIRST SPECIFICATION STATEMENT

Significance

A character is used that
is not in the CYBER 200
FORTRAN character set.

The constant is ignored.

No more than 255 characters
can appear in a character
string.

Too many characters are in
a Hollerith field. No more
than 255 characters can
appear in a Hollerith field.

A symbolic name can consist
of no more than 8 charac­
ters.

No more than 255 characters
are allowed.

A real number can contain
no more than 255 digits.

A complex number can con­
sist of real component~
only.

A right parenthesis is
required.

The length of a character
string is specified to be
zero.

Other statements appear
before an IMPLICIT state­
ment. The IMPLICIT state­
ment is ignored.

Action

Replace the character with
the appropriate character
from the CYBER 200 FORTRAN
character set; recompile.

Verify that the constant
is not intended.

Correct error; recompile.

Reduce the character
string to no more than
255 characters; recompile.

Reduce the Hollerith
field to no more than 255
characters; recompile.

Reduce the symbolic name
to no more than 8 charac­
ters; recompile.

Reduce the component to
no more than 255 charac­
ters; recompile.

Reduce the real number to
no more than 255 digits;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Change the double­
precision components
of the complex number
to real; recompile.

Supply the right paren­
thesis; recompile.

Correct error; recompile.

Change the zero to a
positive integer;
recompile.

Correct error; recompile.

Verify that ignoring the
IMPLICIT statement does
not affect the logic of
the program.

8-15

Error Type Number

321 F

322 F

323 F

324 F

325 F

326 F

327 F

328 F

329 F

330 F

331 F

332 w

333 F

334 F

335 F

336 F

337 F

338 F

B-16

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL TYPE IN IMPLICIT
STATEMENT

ILLEGAL USE OF *
IMPLICIT RANGE IS INCORRECT

IDN-FORTRAN CHARACTER FOUND AND
IS NOT IN HOLLERITH CHARACTER
STRING

SYNTAX ERROR AFTER A SYMBOLIC
NAME

ILLEGAL CHARACTER AFTER A ZERO

SYNTAX ERROR AFTER AN INTEGER
CONSTANT

SYNTAX ERROR FOLLOWING A
PERIOD

ILLEGAL CHARACTER IN A LOGICAL
CONSTANT OR LOGICAL/RELATIONAL
OPERATOR

SYNTAX ERROR AFTER A REAL
·NUMBER

ILLEGAL CHARACTER APPEARS IN
THE NUMBER PART OF THE
EXPONENT FIELD

TOO MANY DIGITS IN THE
EXPONENT FIELD

I

SYNTAX ERROR FOLLOWING A
SYMBOLIC STRING THAT WAS
FOLLOWED BY A PERIOD

SYNTAX ERROR FOLLOWING A
LOGICAL CONSTANT

SYNTAX ERROR FOLLOWING A REAL
CONSTANT

SYNTAX ERROR FOLLOWING AN *

SYNTAX ERROR FOLLOWING A
CHARACTER STRING

SYNTAX ERROR FOLLOWING A
COMPLEX CONSTANT

Significance

The valid types are INTEGER,
REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BIT, and
CHARACTER.

The characters specified in
the range of an IMPLICIT
statement must be in alpha~
betical order. A character
cannot be associated with
more than one type.

A character is used that is
not in the CYBER 200 FORTRAN.
character set. These char­
acters can be used only in
Hollerith strings.

The exponent field is
truncated.

Action

Correct error; recompile.

Correct error; recompile.

Arrange the characters in
alphabetical order and
eliminate duplicate spec­
ifications for charac­
ters; recompile.

Replace the character with
the appropriate character
from the CYBER 200 FORTRAN
character set; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the truncation
does not affect the logic
of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60457040 B

Error
Type Number

339 F

340 w

341 F

342 F

343 F

344 F

345 F

346 F

347 F

348 F

349 F

350 F

351 F

352 F

353 F

354 F

35) w

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SYNTAX ERROR IN A LABEL
REFERENCE FIELD

SUBSCRIPT REFERENCE OUT OF
RANGE

00 LOOPS OR IF BLOCKS NESTED
ILLEGALLY

INDUCTION VARIABLE USED
ILLEGALLY

ILLEGAL DO STRUCTURE

IMPLIED DO STRUCTURES DO NOT
MATCH

ILLEGAL ARGUMENT

~ISSING OUTPUT ARGUMENT IN A
VECTOR FUNCTION REFERENCE

OUTPUT ARGUMENT M>T ALLOWED IN
SCALAR FUNCTION REFERENCE

FUNCTION CANNOT BE REFERENCED
AS BOTH A SCALAR AND A VECTOR
FUNCTION

MODE OF OUTPUT ARGUMENT AND
MODE OF FUNCTION NAME DO NOT
MATCH

ILLEGAL OUTPUT ARGUMENT IN A
FUNCTION REFERENCE

VECTOR EXPRESSION REQUIRES
MORE TEMPORARIES, CODE CANNOT
BE GENERATED

VECTOR REFERENCE DATA ITEM
USED FOR NON-DESCRIPTOR
VARIABLE ITEM

CffARACTER CONSTANT CANNOT
INITIALIZE A BIT VARIABLE

ILLEGAL INITIALIZATION OF A
CHARACTER OR BIT VARIABLE

CHARACTER CONSTANT TOO LONG -
TRUNCATED ON THE RHS

Significance

The subscript is less than
1 or greater than the upper
bound of the array.

Nested DO loops and IF
blocks must appear entirely
within outer DO loops
and IF blocks.

The variable used as the
loop index cannot be
altered within the range
of the DO loop.

A vector function reference
must have an output argu­
ment, which is preceded by
a semicolon.

Compiler limitation
exceeded.

DATA statement cannot have
character string as a value
for a bit variable.

The character constant is
truncated on the right side.
A character constant can
contain no more than 255
characters.

Action

Correct error; recompile.

Verify that the reference
is intended.

Restructure the DO loops
and IF blocks so that
the nested DO loops
are entirely within the
outer DO loops and IF
blocks; recompile.

Remove all statements
that alter the value of
the loop index from the
DO loop; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Simplify statement;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the trun­
cation does not affect
the logic of the program.

B-17

Error
Number

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

B...;18 ·

Type

w

F

F

w

w

F

F

F

F

F

F

F

A

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

HEX OR BIT CONSTANT TOO LONG -
TRUNCATED ON THE LHS

BIT VARIABLES ARE NOT ALLOWED
IN BUFFER IN/OUT

DESCRIPTOR INITIALIZATION
ILLEGAL

VECTOR MODE CHANGED TO BE SAME
AS DESCRIPTOR IT INITIALIZES

OPTIMIZATION TURNED OFF
BECAUSE SOURCE PROGRAM IS NOT
ADVANTAGEOUS FOR ITS
IMPLEMENTATION

(Currently unassigned)

ILLEGAL RIGHT-HAND SIDE FOR
DESCRIPTOR ASSIGN

(Currently unassigned)

+-*/ ARE THE ONLY LEGAL OPERA­
TORS FOR COMPLEX VECTORS

(Currently unassigned)

ILLEGAL SUBSCRIPT IN IMPLIED
DO

TOO MANY LEFT PARENTHESES IN
EXPRESSION

TOO MANY RIGHT PARENTHESES IN
EXPRESSION

VARIABLE APPEARS IN DESCRIPTOR
STATEMENT MORE THAN ONCE

MISSING LABEL IN ARITHMETIC IF

JAM TEMP TABLE OVERFLOW

INDEX PARAMETER FOR IMPLIED DO
SUBARRAY REFERENCE CANNOT BE
EXPRESSION

Significance

'!be hexadecimal or bit con­
stant is truncated on the
left side. A hexadecimal or
bit constant can contain no
more than 255 characters.

The compiler stopped
optimizing· the program.

'Ibere are more left paren­
theses in the expression
than there are right
parentheses.

'Ibere are more right paren­
theses in the expression
than there are left
parentheses.

An arithmetic IF must have
three labels to which con­
trol can transfer depending
on the condition. Labels
can be duplicated.

Compilation aborted.

Action

Verify that the trun­
cation does not affect
the logic of the program.

Correct error; recompile.
Equivalence the bit
variable to nonbit '
variables, and perform
the input/output on the
nonbit variables.

Correct error; recompile.

Verify that this change
does not affect the
logic of the program.

No action necessary.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Match the parentheses
properly; recompile.

Match the parentheses
properly; recompile.

Correct error; recompile.

Supply the missing label
in the arithmetic IF
statement; recompile.

Recompile without in­
struction scheduling.

Correct error; recompile.

60457040 B

Error Type Number

373 F

374 F

375 F

376 F

377 w

378 F

379 F

380 w

381 F

382 F

383 w

384 F

385 F

386 A

387 w

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL SYMBOL IN EQUIVALENCE

TOO LITTLE DATA IN HEX OR BIT
CONSTANT

TOO MUCH DATA IN HEX OR BIT
CONSTANT

EVEN/ODD REGISTER PAIR
REQUIRED FOR C AND C+l FIELDS

INSTRUCTION SCHEDULING
ABANDONED - REGISTER JAM

THE COMMON BLOCK NAME AND AN
ENTRY NAME ARE THE SAME

SCALAR ARGUMENTS NOT ALLOWED
IN Q8SDOT

RELATIVE BRANCH OUT OF RANGE

A SPECIAL CALL RELATIVE BRANCH
MAY ONLY BRANCH TO A STATEMENT
LABEL

NON-ZERO OPERAND IN SPECIAL
CALL FIELD THAT MUST BE NULL
OR ZERO

HOLLERITH CONSTANT TOO LONG -
TRUNCATED ON RHS

REPEAT COUNT CANNOT EXCEED 255

SUBROUTINE CONTAINS NON­
STANDARD RETURN BUT NO * IN
ARGUMENT LIST

COMPILER FAILURE - IRRESOL­
VABLE REGISTER JAM

R CONSTANT TOO LONG -
TRUNCATED ON RHS

Significance

The length of the bit con­
stant must equal the length
of the portion of the bit
array being initialized.

The length of the bit con­
stant must equal the length
of the portion of the bit
array being initialized.

Incorrect use of registers
in special call.

Compiler was unable to opti­
mize instruction scheduling.

The name of a common block
and the name of an entry
point are the same.

Branch too far in special
call.

Branching a constant number
of halfwords is not
permitted.

Arguments are missing or in
the wrong order.

The Hollerith constant is
truncated on the right side.
A Hollerith constant can
have no more than 255 char­
acters.

The repeat count is more
than 255.

Asterisks must appear
in the argument list of
the SUBROUTINE statement.
Each asterisk must
correspond to a statement
label that appears in the

• argument list of the sub­
routine CALL statement.

Compilation aborted.

The R constant is truncated
on the right side. An R
constant can have no more
than 255 characters.

Action

Correct error; recompile.

Increase the length of the
bit constant to the appro­
priate size; recompile.

Decrease the length of the
bit constant to the appro­
priate size; recompile.

Correct error; recompile.

No action necessary; ob­
ject code is generated.

Change one of the names;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Verify that the trunca­
tion does not affect the
logic of the program.

Reduce the repeat count
to no more than 255;
recompile.

Place asterisks in the
appropriate positions in
the argument list of the
SUBROUTINE statement.
Place statement labels in
the appropriate positions
in the CALL statements;
recompile.

Recompile without optimi­
zation.

Verify that the trunca­
tion does not affect the
logic of the program.

8-19

Error
Number

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

B-20

Type

F

w

F

F

F

F

w

F

F

F

w

w

w

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

HOLLERITH CONSTANT NOT PER­
MITTED IN SPECIAL CALL

ABOVE ERROR MAY BE IN STATE­
MENT FUNCTION DEFINITION

LIST-DIRECTED I/O NOT
IMPLEMENTED

DUMMY ARGUMENT MAY WT APPEAR
IN EQUIVALENCE

MISSING SYMBOLIC NAME

MISSING =

SYMBOLIC CONSTANT NAME
PREVIOUSLY DECLARED

SYMBOLIC CONSTANT PREVIOUSLY
USED FOR SOMETHING ELSE

VALUE MUST BE CONSTANT OR
CONSTANT EXPRESSION

INCOMPATIBLE MODES FOR
SYMBOLIC NAME AND ITS VALUE

PARAMETER STATEMENTS MUST
PRECEDE DATA STATEMENTS

PARAMETER STATEMENTS MUST
PRECEDE STATEMENT FUNCTION
DEFINITIONS

PARAMETER STATEMENTS MUST
PRECEDE EXECUTABLE STATEMENTS

MISUSE OF SYMBOLIC CONSTANT
NAME

STATEMENT NOT YET IMPLEMENTED

Significance

Error might be in statement
function definition.

List-directed input/output
statements cannot be used.

Equals sign missing from
PARAMETER statement.

A symbolic constant is
declared more than once.
The first declaration was
used.

A symbolic constant must
not be the same as another
symbol in the program.

The value specified for a
symbolic con~tant is not a
constant.

A symbolic constant can be
•used like any other con­
stant, except it cannot
appear in a complex con­
stant, in a FORMAT state­
ment, orin a PROGRAM
statement. Also, it can­
not appear as input data.

The statement cannot be
used.

Action

Remove the Hollerith
constant from the special
call; recompile.

Correct error; recompile.

Remove list-directed input/
output statements from the
program; recompile.

Correct error; recompile.

Supply the symbolic name;
recompile.

Supply the equals sign;
recompile.

Verify that the first
declaration is intended.

Change the symbolic con­
stant so that it is unique
in the program; recompile.

Change the value to a
constant or a constant
expression; recompile.

Correct error; recompile.

Move the PARAMETER
statementin front of
the DATA statement;
recompile •.

Move the PARAMET~R
statement in front of
the statement function
definitions; recompile.

Move the PARAMETER
statement in front of all
executable statements;
recompile.

Correct error; recompile.

Eliminate the statement;
recompile.

60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error
Number

403

404

405

406

407

408

409

410

411

Type

F

F

w

F

w

F

F

w

Message

A SYMBOLIC CONSTANT MAY NOT BE
TYPED AFTER ITS DECLARATION

DUPLICATE OR CONFLICTING
IMPLICIT TYPE

ILLEGAL INSTRUCTION FOR TARGET
MACHINE

ILLEGAL BLOCK IF NESTING

FUNCTION NOT AVAILABLE ON
TARGET MACHINE

BRANCH INTO BLOCK IF

MISSING ENDIF

(Currently unassigned)

MISSING THEN IN ELSE IF
STATEMENT

entered with the program to be executed. The termination
value is used to determine when error exit processing is to
occur. All return codes having a value less than or equal to
the termination value are ignored and job processing
continues. All return codes having a value greater than the
termination value cause error processing specified by the
EXIT control statement to take place.

For example, a termination value of 8 would allow all
warning and fatal errors to be ignored, and cause error exit
processing to occur for abort errors. A termination value
of O would trap all errors, including warning codes. The
termination value control statement is discussed in the
Operating System reference manual.

RUN-TIME ERRORS
Error messages listed in table B-3 are produced when error
conditions are detected during the execution of a
previously compiled program. The system error processor
{SEP) can be called upon to change the attributes of
certain run-time errors. Run-time error types are:

W (warning)

60457040 8

Nonfatal error. A warning is
issued and execution continues.
The return code is 4 (RC=4).

Significance

A type statement for a sym­
bolic constant must appear
before its declaration in
the PARAMETER statement.

A letter must not be
assigned more than one
implicit type.

The program cannot be cor­
rectly executed on the
machine for which it is
compiled.

A nested block IF must be
entirely contained in an
outer block IF.

The program cannot be cor­
rectly executed on the
machine for which it is
compiled.

Control cannot transfer
into an if-block from out­
side that if-block.

Each block IF statement
must have a corresponding
END IF statement.

The keyword THEN must
follow the keyword ELSE IF.

Action

Move the type statement
in front of the PARAMETER
statement that defines
the symbolic constant;
recompile.

Correct error; recompile.

Verify that the correct
target machine is speci­
fied in the FORTRAN
control statement.

Correct error; recompile.

Verify that the correct
target machine is speci­
fied in the FORTRAN
control statement.

Rewrite the statement so
that it does not transfer
control into an if-block;
recompile.

Supply the missing END IF
statement; recompile.

Supply the missing THEN.

F (fatal) Execution is terminated abnor­
mally when this error condition
exists. The return code is B
(RC=S).

C (catastrophic) Condition is nonalterable by SEP
and not subject to user control,
other than replacement of the
standard message. The return code
is B (RC=B).

All errors having a warning classification can be made
fatal. Those errors which are designated as fatal can be
altered to warning level. Catastrophic errors cannot be
altered to fatal or warning level; however, the standard
message can be replaced.

Error messages for mathematical routines have the
CYBER 200 FORTRAN library function name appended to
the message. In like manner, input/output error messages
have the file name appended to the message.

The form of a run-time error message is:

ERROR xxx IN subr AT LINE nn

8-21

Error
Number

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

B-22

Type

c

c

c

c

c

c

c

c

c

F

F

c

c

TABLE B-3. RUN-TIME ERRORS

Message

SYNTAX ERROR IN PROGRAM
STATEMENT FILE DECLARATION

UNIT NUMBER IS MULTIPLY DEFINED
IN PROGRAM STATEMENT

RUNTIME TABLE ERROR OVERFLOW

ERROR IN CREATE FILE

ERROR IN OPEN FILE

MAXIMUM NUMBER OF FILES (70)
EXCEEDED

SYSTEM ERROR IN CLOSE FILE

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

FILE NOT LARGE ENOUGH FOR OUTPUT

(Currently unassigned)

END OF FILt IN INPUT STREAM
-- file name

A CALL TO Q8WIDTH MUST PRECEDE
THE ACCESS TO A FILE

TRANSMISSION ERROR DURING READ

ILLEGAL I/O UNIT NUMBER

ATTEMPT TO PERFORM SEQUENTIAL
FORMATTED I/O ON A FILE OPENED
FOR ANOTHER FORM OF I/O

Significance

A compilation error exists in
the PROGRAM statement.

The same unit number is
assigned to more than one
file.

No more than 70 files can
be used in a program.

The amount of output to a
file exceeds the capacity of
the file.

An input statement attempted
to read data from the file
indicated, out that file is
positioned at the end of the
file.

Unit numbers can be integers
from 1 through 99.

Action

Correct compilation
error. Rerun.

Change the PROGRAM
statement so that
each unit number is
assigned to only one
file. Correct all
references to unit
numbers accordingly.
Rerun.

Reduce the number of
files to no more
than 70. Rerun.

Increase the size of
the file or reduce
the amount of output
to the file. Rerun.

Use a REWIND or
BACKSPACE statement
to reposition the
file before the·input
statement is execu­
ted, or supply miss­
ing data on the input
file. Rerun.

Call Q8WIDTH before
first file access.
Rerun.

Change the unit num­
ber" to an integer
from 1 through 99.
Rerun.

Use the proper type
of input/output
statements, or open
the file for sequen­
tial formatted input/
output. Rerun.

60457040 B

Error
Number

18

19

20

21

22

23

24

25

26

27

28

29

30

31

60457040 B

Type

c

c

c

c

c

F

F

F

F

F

F

F

F

F

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

ATTEMPT TO PERFORM SEQUENTIAL

BINARY I/O ON A FILE OPENED FOR
ANOTIIER FORM OF I/O

DIRECT ACCESS I/O NOT
IMPLEMENTED

END OF FILE DURING BINARY INPUT

ERROR DURING BINARY READ

FILE PREVIOUSLY USED FOR
BUFFER I/O

CHARACTER MODE, CONVERSION
CODE F

CHARACTER MODE, CONVERSION
CODE E

LOGICAL MODE, CONVERSION CODE D

INTEGER MODE, CONVERSION CODE D

REAL MODE, CONVERSION CODE D

COMPLEX MODE, CONVERSION CODE D

CHARACTER MODE, CONVERSION
CODE D

G FORMAT SHOULD NOT BE SEEN BY
LI ST HANDLER

CHARACTER MODE, CONVERSION
CODE I

Significance

Direct access input/output
cannot be used.

The end of a binary file was
encountered during execution
of an input statement.

An error occurred during exe­
cution of a binary input
statement.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat-
ible. '

Mode of variable and format
specification are incompat­
ible.

Mode of variable and format
specification are incompat­
ible.

Action

Use the proper type
of input/output
statements, or open
the file for sequen­
tial binary input/
output. Rerun.

Eliminate direct
access input/output
statements. Rerun.

Supply any data that
is missing from the
file, or use the END
option input in
the statement in
order to continue
execution after
encountering an end
of file condition.

Use the ERR option in
the input statement
in order to continue
execution after an
input/output error
occurs.

B-23

Error
Number

32

33

34

35

36

37

38

39

40

41

42

43

44

45

B-24

Type

F

c

F

F

F

F

F

F

F'

F

F

F

F

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

CHARACTER MODE, CONVERSION
CODE L

COMPILER FAILURE - ILLEGAL DATA
IH TRANSLATED FORMAT STRING

(Currently unassigned)

FORMAT ERROR

ILLEGAL SYHTAX IN VARIABLE
ARRAY FORMAT

ILLEGAL HOLLERITH FIELD LENGTH

END OF STATEMENT ENCOUNTERED IN
HOLLERITH FIELD

FIELD COUNT OUT OF RANGE

MISSING CLOSING APOSTROPHE
OR ASTERISK AT END OF LITERAL
STRING

IN F, E, D, GW.D; D IS GREATER
THAN W

UNDECLARED VARIABLE NAME
ENCOUNTERED IN NAMELIST INPUT

SUBSCRIPT ERROR IN NAMELIST
INPUT

FIRST COLUMN MUST BE BLANK FOR
NAMELIST INPUT

FORMAT ERROR IN NAMELIST INPUT
DATA

Significance

Mode of variable and format
specification are incompat­
ible.

A Hollerith field can contain
no more than 255 characters.

The length of a Hollerith
field is longer than the
source statement.

A literal string must be
delimited by apostrophes or
asterisks.

In these format specifica­
tions, the w field specifies
the total length of the
field; the d field specifies
the number of spaces to the
right of the decimal point.
The d field must be less
than the w field.

The namelist input data con­
tains a variable that is not
declared in the NAMELIST
statement of the program.
All variables that are in the
input data must be declared
in the NAMELIST statement;
all variables in the HAMELIST
statement do not have to
appear in the input data,
however.

The first column of each
record of namelist input data
must be blank.

Action

Reduce the length of
the Hollerith field
to no more than 255
characters. Rerun.

Reduce the length of
the Hollerith field
so that it is not
longer than the
length of the source
statement.

Supply missing apos­
trophe or asterisk.
Rerun.

Rewrite the format
specification so
that the d field is
less than the w
field. Rerun.

Place the variable in
the NAMELIST state­
ment or remove the
variable from the
input data. Rerun.

Add a blank to the
first column of each
record of namelist
input data. Rerun.

Correct error. Rerun.

60457040 B

Error
Number

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

60457040 B

Type

F

F

F

F

w

w

w

w

w

w

w

w

w

w

w

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

NAMELIST INPUT RECORD NOT
PROPERLY TERMINATED

NAMELIST - SCALAR VARIABLE
CANNOT HAVE SUBSCRIPTS

NUMBER OF ELEMENTS EXCEEDS
DEFINED ARRAY LENGTH IN NAMELIST

NAMELIST CHARACTER IS TOO LONG

INDEFINITE VALUE IN NAMELIST
OUTPUT

LOGICAL DATA SYNTAX ERROR

COMPUTATIONAL ERROR - LOGICAL
VALUE MUST BE EQUAL TO 0 OR 1

DATA EXCEEDS (2**47)-1

ILLEGAL DATA IN FIELD

INVALID DATA IN FIELD

DATA OVERFLOW

INDEFINITE ARGUMENT

ZERO TO THE ZERO POWER

ZERO TO TIIE NEGATIVE POWER

FLOATING POINT OVERFLOW

Significance

If a data item extends over
more than one record, then
variables, constants, array
names, constants with repeat
specifications, and the &END
cannot extend over more than
one record.

A subscript is specified for
a scalar variable in the
namelist input data.

An array in the namelist
input data contains more
elements than specified in
the program.

A variable that has an indef­
inite value is output using
a namelist output statement.

Misspelled .TRUE. or .FALSE.

A value in the input data is
too large to be represented.
The value was truncated.

The· argument has an indef­
inite value. This can cause
subsequent errors.

Zero can be raised only to a
positive power. This expres­
sion yields an indefinite
result. The-indefinite value
can cause subsequent errors.

Zero can be raised only to a
positive power. This expres­
sion yields an indefinite
result. The indefinite value
can cause subsequent errors.

A real number is too large to
be represented. The number
was truncated.

Action

Correct error. Rerun.

Remove the subscript
or dimension the
variable in the
program. Rerun.

Increase the size of
the array in the pro­
gram, or eliminate
the extra array ele­
ments in the ·namelist
input data. Rerun.

Check the program for
the source of the
indefinite value.

Verify that the
truncation does not
affect the logic of
the program.

Check program for the
source of the inde­
finite value.

Check to find out if
this indefinite value
causes subsequent
errors.

Check.to find out if
this indefinite value
causes subsequent
errors.

Verify that the
truncation does not
affect the logic of
the program.

B-25

Error
Number

61

62

63

64

65

66

67

68

69

70

71

72

73

74

• B-26

Type

w

w

w

w

w

w

w

w

w

w

w

w

w

w

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

ARGUMENT TOO LARGE - ACCURACY
LOST

INTEGER OVERFLOW

NEGATIVE TO TIIE REAL POWER

ZERO ARGUMENT

NEGATIVE ARGUMENT

x ""y - o.o

ABS (REAL PART) TOO LARGE

IMAG. PART TOO LARGE

REAL PART TOO LARGE

ABS (IMAG PART) TOO LARGE

ARGUMENT TOO LARGE, FLOATING
POINT OVERFLOW

INDEFINITE RESULT

NEGATIVE TO A POWER

ARGUMENT TOO LARGE

Significance

The value of the argument is
too large to be represented
precisely.

An integer is too large to be
represented. The value was
truncated.

A negative value can have an
integer exponent only. The
exponent was truncated to an
integer before the exponenti­
ation was performed. ,

'nle real part of a complex
number is too large or too
small to be represented. The
real part was truncated.

The imaginary part of a com­
plex number is too large to
be represented. The imagi­
nary part was truncated.

The real part of a complex
number is too large to be
represented. The real part
was truncated.

The imaginary part of a com­
plex number is too large or
too small to be represented.
The imaginary part was
truncated.

The value of the argument
is too large and caused a

floating-point overflow.
The value was truncated.

An expression resulted in an
indefinite result. The
indefinite value can cause
subsequent errors.

A negative number is raised
to an exponent. The exponent
must be an integer.

The value of an argument is
too large to be represented.
The value was truncated.

Action

Verify that the loss
of accuracy does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the pro.gram.

Verify that the
truncation does not
affect the logic of
the program.

Verify that the
truncation does not
affect the logic of
the program.

Check to find out if
the indefinite value
causes subsequent
errors.

Verify that the
exponent is an
in~eger.

Verify that the
truncation does not
affect the logic of
the program.

60457040 B

Error
Number

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

60457040 B

Type

w

w

c

c

F

F

c

c

c

c

F

c

c

c

F

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

ARGUMENT .GT. ONE

EXPONENT OF INTEGER IS NON-ZERO

ATTEMPTED READ FROM STANDARD
OUTPUT OR PUNCH

ATTEMPTED WRITE TO STANDARD
INPUT UNIT

RECORD LENGTH EXCEEDED ON
FORMATTED READ

RECORD LENGTH EXCEEDED ON
FORMATTED WRITE

NULL ELEMENTS IS NOT
IMPLEMENTED

SLASH ON INPUT IS NOT
IMPLEMENTED

ILLEGAL FILE NAME -- file name

EXPLICIT FILE PARAMETERS ILLEGAL
OR INCOMPATIBLE

(Currently unassigned)

A CALL TO QSWIDTII IS ll>T ALLOWED
FOR FILES WITH UNDEFINED RECORD
TYPES

BAD MESSAGE FOR..'IAT ON CALL TO
FORTRAN EXECUTION

ERROR IN OPEN BUFFER OR TAPE
FUNCTION CALL

ERROR IN CLOSE BUFFER

RECORD EXCEEDS RECORD LENGTH
ON FILE

Significance

Tite value of an argument is
greater than one.

Data cannot be read from an
output device.

Data cannot be written to an
input device.

A formatted READ statement
attempts to read a record
that is longer than the max­
imum record length specified
for the file from which it
is reading.

A formatted WRITE statement
attempts to write a record
that is longer than the max­
imum record length specified
for the file to which it is
writing.

This feature cannot be used.

A slash cannot be used in an
input statement to cause the
next record to be input.

An error exists in the
FORTRAN control statement.

Tite record is too long for
this file.

Action

Verify that the value
1 can be used for the
argument without
affecting the logic
of the program.

Check the input
statement for an
improper unit number
specification. Cor­
rect error. Rerun.

Check the output
statement for an
improper unit number
specification. Cor­
rect errcr. Rerun.

Shorten the record
read by the input
statement, or
increase the record
length specifica­
tion in the PROGRAM
statement. Rerun.

Shorten the record·
written by the out­
put statement, or
increase the record
length specifica­
tion in the PROGRAM
statement. Rerun.

Correct error. Rerun.

Correct error. Rerun.

Correct error. Rerun.

Correct' error. Rerun.

Correct error. Rerun.

Correct error. Rerun.

Correct error or use
a file with a longer
record length. Rerun.

B-27

Error
Number

91

92

93

94

95

96

97

98

99

100

101

102

103

104

10s-

B-28

Type

c

c

c

c

c

c

F

F

c

F

TABLE B-3. RUN-TIME ERRORS (Contd)

Message

FILE PREVIOUSLY USED FOR
NON-BUFFER 1/0

BUFFER DESIGNATION BAD -
FIRST WORD ADDRESS .GT. LAST
ADDRESS

WRITE FOLLOWED BY READ

END OF FILE ENCOUNTERED IN
BUFFER IN

FILE NOT READY

BUFFER LENGTH GREATER TilAN 24
SMALL PAGES

ILLEGAL RECORD TYPE FOR
FORMATTED I/O

ILLEGAL RECORD TYPE FOR
UNFORMATTED I/O

DIFFERENT RECORDING MODES ON
PROGRAM CARD AND BUFFER 1/0

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFSET

Significance

A file cannot be used for
buffer input/output if it is
also used for nonbuf fer
input/output.

The first word address of the
buffer is greater than the
last word address of the
buffer.

A WRITE statement that writes
data to a file is followed by
a READ statement that reads
data from the same file; no
file positioning statements
intercede.

A BUFFER IN statement
attempts to read data from
a file, but that file is
positioned at the end of
the file.

The length of the buffer is
too large.

--
--
--
--...
--

Action

Use either buffer
input/output state­
ments with the file,
or nonbuf fer input/
output statements,
but not both. Rerun.

Change the buffer de­
signation so that the
first word address
is less than last
word address. Rerun.

Place a REWIND or
BACKSPACE statement
between the WRITE and
READ statements. Check
to find out if the
proper unit numbers
are specified in the
WRITE and READ state­
ments, and to find
out if the WRITE
and READ statements
appear in the correct
place in the program.
Rerun.

Use a REWIND or
BACKSPACE statement
to reposition the
file before the
BUFFER IN statement
is executed, or sup­
ply missing data on
the input file.
Rerun.

Reduce the length of
the buffer. Rerun.

Use a file of the
correct record type.
Rerun.

Use a file of the
correct record type.
Rerun.

--
--
--
--

--

60457040 B

Error
Number

106

107

108

109

110

111

112

113

114

us

116

117

118

119

120

121

60457040.B

Type

F

F

F

F

F

F

F

c

c

c

c

c

F

F

c

w

TABLE B-3. RUN-TIME ERRORS (Contd) ·

Message

UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFCL1

END OF RECORD ENCOUNTERED
DURING BINARY INPUT

UNDOCUMENTED ERROR DURING
BINARY INPUT

BIT DATA PRINTED WITH NON B
FORMAT--file name

B FORMAT USED FOR OTHER THAN
BIT DATA--file name

DESCRIPTOR PRINTED WITH NON Z
FORMAT--file name

ILLEGAL RECORD TYPE FOR
BUFFER I/0

Q7BUFIN OR Q7BUFOUT WAS CALLED
WITH ILLEGAL PARAKETER--
fi le name

Q7SEEK WAS CALLED WITH ILLEGAL
PARAMETER--file name

ARRAY SPECIFIED AS BUFFER
IS OOT ON PAGE BOUNDARY
(Q7BUFIN/Q7BUFOUT)--file name

UNEXPECTED ERROR IN Q7BUFIN OR
Q7BUFOUT--file name

TOO MANY OUTSTANDING REQUESTS
FOR Q7BUFIN/Q7BUFOUT (MUST CALL
Q7WAIT)--file name

GARBAGE IN FILE OR FILE OOT
STRUCTURED--file name

UNRECOGNIZABLE PARAMETER
ENOOUNTERED IN Q7DFOFF

ROUTINES CALLING Q7DFSET NESTED
TOO DEEP

DATA FLAG BRANCH - ORX -
REGISTER 1 ADDRESS address

Significance

A binary input statement
attempted to read binary data
from a file, but the file is
positioned at the end of the
file.

The B format specification
must be used for bit data.

The B format specification
is used for data that is of
a type other than bit.

The Z format specification
must be used for descriptors.

Action

Use a REWIND or
BACKSPACE statement
to reposition the
file before the input
statement is executed
or supply missing
data on the input
file. Rerun.

Use the B format
specification in the
FORMAT statement.
Rerun.

Change the B format
specification to the
appropriate format
specification. Rerun.

Use the Z format
specification in the
FORMAT statement.
Rerun.

Use a file of the
correct record
type. Rerun.

Correct the content
or format of the in­
dicated file. Rerun.

B-29

TABLE B-3. RUN-TIME ERRORS (Contd)

Error Type Message Significance Action
Number

122 w DATA FLAG BRANCH - ORD -
REGISTER 1 ADDRESS address

123 F DATA FLAG BRANCH - IMAGINARY
SQUARE ROOT - REGISTER 1
ADDRESS address

124 F DATA FLAG BRANCH - INDEFINITE
RESULT - REGISTER 1 ADDRESS
address

125 F DATA FLAG BRANCH - ZERO
DIVISOR - REGISTER 1 ADDRESS
address

126 w DATA FLAG BRANCH - EXO -
REGISTER 1 ADDRESS address

127 w DATA FLAG BRANCH - RMZ -
REGISTER 1 ADDaESS address

128 w DATA FLAG BRANCH - SSC -
REGISTER 1 ADDRESS address

129 w DATA FLAG BRANCH - DDF -
REGISTER 1 ADDRESS address

130 w DATA FLAG BRANCH - TBZ -
REGISTER 1 ADDRESS address

131 c CLASS I DATA FLAG BRANCH - NO
INTERRUPT ROUTINE PROVIDED -
REGISTER 1 ADDRESS address

132 c CLASS III INTERRUPT IN CLASS
III INTERRUPT HANDLING ROUTINE
- REGISTER 1 ADDRESS address

133 (Currently unassigned) -- --
134 (Currently unassigned) --
135 c DATA FLAG BRANCH, NO PRODUCT

BITS ON - REGISTER 1 ADDRESS
xxxxxxxx

136 c RLP VALUE MISSING OR INVALID IN
PROGRAM STATEMENT

137 (Currently unassigned) -- --

138 F Q8WIDTH CALLED WITH WIDTH
NEGATIVE OR TOO LARGE

139 c SIO ERROR

This is preceded by the text
of the SIO error message.

140 F FORTRAN SECOND USE OF Q7DFCL1
CONFLICTS WITH USER

141 F USER USE OF Q7DFCL1 CONFLICTS
WITH FORTRAN SECOND

B-30 60457040 B

This indicates the location in the user program where an
error occurred. Since the error is actually detected in a
run-time routine, the statement identified should be one
that generated n call to FORTRAN run-time; that is, an
I/0 statement or a reference to a FORT.RAN supplied
function such as SIN or COS.

VECTORIZER MESSAGES
The messages listed in table 8-4 are issued by the
vectorizer phase of the compiler when the V option is
specified on the FORTRAN control statement. The
messages are informative only, and are not associated with
any return code.

For data flag branch errors, the form of the error message
is:

ERROR xxx: EXECUTION INTERRUPTED IN subr
AT LINE nn - REGISTER 1
ADDRESS yyyyyy

The message issued indicates the first impediment to
vectorization detected by the compiler. The format of a
vectorizer message is:

LINE xxxxx LINE yyyyy msg
If the register 1 address is in a user routine, the subroutine
and line number should correspond to the register 1
address. However, if the register 1 address is in a
run-time routine, the subroutine and line number will
identify the location in the user's program that generated
the call to FORTRAN run-time.

The xxxxx represents the source line number at which the
DO loop begins, and the yyyyy represents the source line
number at which the impediment was detected. The msg
represents the message.

Message

BRANCH INTO LOOP

BRANCH OUT OF LOOP

CONTROL VARIABLE APPEARS OTHER THAN AS
A SUBSCRIPT REFERENCE

ITERATION COUNT GREATER THAN 65K AT
THIS LOOP LEVEL

LHS ARRAY HAS A NON-UNIFORM INCREMENT
VALUE

LHS HAS POSSIBLY RECURSIVE PROPERTIES

LHS DUMMY ARRAY WITH VARIABLE TEST
VALUE - U OPTIMIZATION NOT SPECIFIED

LHS SUBSCRIPT CONTAINS AN
EXTERNAL REFERENCE

LHS SUBSCRIPT CONTAINS INTRINSIC
FUNCTION REFERENCE

LHS SUBSCRIPT IS DEFINED WITHIN LOOP

LHS VARIABLE APPEARS IN EQUIVALENCE
STATEMENT

LHS VARIABLE MUST BE REAL, INTEGER, OR
LOGICAL

60457040 B

TABLE B-4. VECTORIZER MESSAGES

Significance

A DO loop must be entered from the top.

A DO loop must be exited at the bottom
of the loop.

A control variable can appear within the
loop only as part of a subscript
expression.

The length of a vector cannot exceed
65535 elements.

Although the stride of the innermost
loop does not have to be 1, the sub­
script expression must reference memory
in a positive, linear order.

The compiler cannot determine that a
feedback condition does not exist.

The loop might be vectorizable if the U
compile option is specified on the
FORTRAN control statement.

A subscript expression must be one of
the following forms: c, c+n, c-n, or
c*n; where c is a control variable and
n is an integer constant.

A subscript expression must be one of
the following forms: c, c+n, c-n, or
c*n; where c is a control variable and n
is an integer constant.

A subscript expression must be one of
the following forms: c, c+n, c-n, or
c*n; where c is a control variable and n
is an integer constant.

The loop is rejected becau~e of the
possibility of feedback.

Double-precision, complex, character,
and bit data elements will not be
vectorized.

Action

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

8-31

TABLE B-4. VECTORIZER MESSAGES. (Contd)

Message

LOOP IS AN OUTER LOOP WITH A NON-UNIT
INCREMENT VALUE

LOOP IS AN OUTER LOOP WITH A VARIABLE
INCREMENT VALUE

LOOP WITH VARIABLE/TERMINAL VALUE NESTED
WITHIN LOOP

NONVECTORIZABLE LOOP NESTED WITHIN LOOP

PROPERTY OF EMBEDDED LOOP PROHIBITS
VECTORIZATION OF LOOP

RHS ARRAY HAS A R>N-UNIFORM INCREMENT
VALUE

RHS ARRAY HAS POSSIBLY RECURSIVE
PROPERTIES

RHS ARRAY MUST BE REAL, INTEGER, OR
LOGICAL

RHS DUMMY ARRAY WITH VARIABLE TEST
VALUE - U OPTIMIZATION NOT SPECIFIED

RHS SUBSCRIPT CONTAINS AN EXTERNAL
REFERENCE

RHS SUBSCRIPT CONTAINS INTRINSIC
FUNCTION REFERENCE

RHS SUBSCRIPT IS DEFINED WITHIN LOOP

SCALAR DEFINED WITHIN LOOP AND APPEARS
IN EMBEDDED LOOP

SCALAR REFERENCED BEFORE FIRST
DEFINITION WITHIN LOOP

STATEMENT CONTAINS NON-VECTORIZABLE
FUNCTION

STATEMENT CONTAINS NON-VECTORIZABLE
OPERATOR

B-32

Significance

Only innermost loops can have an
increment value other than 1.

Only innermost loops can have a variable
increment value.

Uniform memory reference could not be
guaranteed if the outer loop were
vectorized.

Any nonvectorizable inner loop prohibits
vectorization of all outer loops.

Although the stride of the innermost
loop does not have to be 1, the sub­
script expression must reference memory
in a positive, linear order.

The compiler cannot determine that a
feedback condition does not exist.

Double-precision, complex, character,
and bit data elements will not be
vectorized.

Loop might be vectorizable if the U com­
pile option is specified on the FORTRAN
control statement.

A subscript expression must be one of
the following forms: c, c+n, c-n, c*n;
where c is a control variable and n is
an integer constant.

A subscript expression must be one of
the following forms: c, c+n, c-n, or
c*n; where c is a control variable and n
is an integer constant.

A subscript expression must be one of
the following forms: c, c+n, c-n, or
c*n; where c is a control variable and n
is an integer constant.

Scalar has recursive properties, which
prohibits vectorization.

Scalar has recursive properties, which
prohibits vectorization.

The vectorizable functions are: ABS,
ACOS, ALOG, ALOGlO, ASIN, ATAN, COS,
EXP, FLOAT, IABS, IFIX, SIN, SQRT, and
TAN.

Only the arithmetic operators +, -, *,
/, and**, and the logical operators are
vectorizable.

Action

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action neces·sary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No action necessary.

No .action necessary.

No action necessary.

60457040 B

TABLE B-4. VECTORIZER MESSAGES (Contd)

Message

STATEMENT IS A VECTOR STATEMENT

STATEMENT IS NOT AH ASSIGNMENT
STATEMENT

TWO OR MORE POTENTIALLY RECURSIVE
REFERENCES TO LOOP INDEPENDENT ARRAY

60457040 B

Significance

The loop cannot contain vector or sparse
vector assignment statements

The loop can contain only scalar
assignment statements.

Because a loop-independent array
reference is considered to be a scalar
reference, every reference to that array
in the loop can have the same subscript.

Action

No action necessary.

No action necessary.

No action necessary.

~33

GLOSSARY c

Terms used in the main text of this manual are described in
this section. The definitions give the general meanings of
the terms. Precise definitions are given in the main text.
Also, most general terms regarding computers and terms
defined in the American National Standards documents
regarding the FORTRAN language have been excluded.

Array -
An ordered set of variables identified by a single
symbolic name. Referencing a single element of an
array requires the array name plus a subscript that
specifies the element's position in the array.

Array Declarator -
Specifies the dimensions of an array. It consists of an
array name followed by a parenthesized list of integer
constants or simple integer variables that specify the
largest value of each dimension.

ASCII Data -
Characters, each of which has a standard internal
representation. One byte (8 bits) is required for each
character.

ASCII File -
A type of file that can be manipulated with formatted
READ statements, for matted WRITE statements,
PRINT statements, and PUNCH statements.

Binary File -
A type of file that can be manipulated by unformatted
input/output routines.

Bit Data -
A binary value represented in a FORTRAN program as
a binary number in the format B'bb ••• b' where each b
is a 0 or a 1. Each 0 or 1 becomes a 0 bit or a 1 bit in
the internal representation for the binary value.

Buffer Input/Output -
Input and output statements that cause data to be
transferred between binary files and a buffer area in
main memory.

Character Data -
An ASCII value represented in a FORTRAN program
by a character string in the for mat 'cc ••• c' where
each c is in ASCII. Each character becomes a byte of
ASCII data in the internal representation for the ASCII
value.

Colon Notation -
The notation used to express implied DO subscript
expressions in a subarray. The colons separate the
initial, terminal, and incrementation values for the
implied DO.

Columnwise -
The ordering of the elements in an array declared in a
DIMENSION, COMMON, or explicit type statement
(the other ordering is rowwise). The succession of
subscripts corresponding to the elements of a
columnwise array is with the value of the leftmost
subscript expression varying the fastest.

60457040 B

Compile Time -
The period of time during which the FORTRAN
compiler is reading with the user's program and
producing the relocatable module for the program.
Compilation is initiated by the FORTRAN system
control statement.

Conformability -
Determines whether two subarrays can occur in the
same expression. Two subarrays are conformable if
they contain the same number of implied DO
subscripts and if corresponding implied DO subscript
expressions are identical.

Control Vector -
A bit vector that controls operations regarding an
associated vector. The control vector elements are
set to a configuration of Os and ls. The control vector
elements are set to a configuration of Os and ls. Some
of the FORTRAN-supplied functions use control
vectors. ·

Controllee File -
A file that consists of object code generated by the
loader. The loader builds a controllee file from
relocatable object code produced by a compiler, plus
relocatable object code of any externally-defined
routines.

Data Element -
A constant, variable, array, or array element.

Data Flag Branch Manager (DFBM) :-
A FORTRAN run-time and CYBER 200 library routine
that processes data flag branches when they occur in
an executing program. A data flag branch is a
hardware function of the CYBER 200 computers.

Data Flag Branch (DFB) Register -
Part of the data flag branch hardware. It is a 64-bit
register located in the CYBER 200 central processor.

Declaration -
A specification statement that declares attributes of
variables, arrays, or function names.

Defining -
Process whereby a variable or array element acquires
a predictable or meaningful value. Definition can take
place through data initialization, parameter
association, DO statement execution, input statement
execution, or assignment sta~ement execution.
Defining contrasts with naming and referencing.

Descriptor -
A pointer to a vector. In several FORTRAN forms,
the descriptor can be used instead of the vector.

Dominance -
A conventional data type hierarchy determining the
data type of the result of expression evaluation.
Dominated operands are converted during evaluation
to the dominant type. The type complex dominates all
other types, with types double-precision, real, and
integer following in order of decreasing dominance.

C-1

Drop File -
A file that is created and maintained for each
executing program. Contains any modified pages of
the program file, any free space attached, and any
read-only data space defined to have te'!'porary write
access.

Dynamic Space -
Virtual memory space available for allocation and
deallocation at execution time. In particular, space
for vectors can be assigned in the dynamic space area
by using the descriptor ASSIGN statement.

Explicit Typing -
Specification of the data type of a variable or array by
means of one of the explicit type statements (the
INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
BIT, CHARACTER, and LOGICAL statements).
Explicit typing overrides any implicit typing.

External Function -
A function that is defined outside of the program unit
that references it. A reference to an external
function generates code in the user's object program
that causes control to transfer to the external
function during program execution. External functions
contrast with in-line functions.

File -
A collection of information that can be defined by
output statements, or referenced by input statements.
Depending on the type of output used to create it, a
file can be either implicit or explicit.

First-Letter Rule -
Default type association for data names according to
the first letter of the name. Type assignment made is
type integer to any name beginning with the letter I,
J, K, L, M, or N, and type real to all others. The
IMPLICIT statement is used to alter these defaults.

Floating-Point -
Refers to the internal representation for real,
double-precision, and complex data.

Generic Function -
A function whose result mode depends on the mode of
the argument.

Hexadecimal Data -
A value represented in a FORTRAN program as a
hexadecimal number in the format X'hh ••. h' where
each h is a hexadecimal digit (one of the digits O
through 9 or one of the letters A through F). Each
digit becomes the 4-bit binary equivalent in the
internal representation for the value.

Implicit Typing -
Specification of the data type of a variable or array by
means of the first-letter rule for data names.

Index Vector -
An integer vector whose elements are indexes into
another vector. An index is an ordinal number
indicating element position in a vector. Some of the
FORTRAN-supplied functions use index vectors.

In-Line Function -

C-2

A type of predefined function. Referencing an in-line
function causes the function's object code to be
inserted directly into the relocatable object code of
the user's program during compilation. In-line
functions contrast with external functions.

Input -
The name of the file read with FORTRAN READ
statements that do not specify a unit number. To be
used, INPUT must be declared in the PROGRAM
statement or in the execution line.

Large Page -
A block of 65536 words in memory starting on a large
page boundary. A loader call parameter can be used
to tell the operating system that the specified modules
are to be placed within a large page loaded on a large
page boundary.

Loader -
A utility that links relocatable object modules,
together with modules from user libraries or the
system library as needed to satisfy external
references. It then converts external references and
relocatable addresses into the virtual address
constants. Thus, relocatable modules are transformed
into a virtual code controllee file with the (default)
name of GO.

Logical Unit Number -
Integer between 1 and 99 associated with a file by
means of the PROGRAM statement declarations or
execution line declarations, and used to refer to the
file when performing FORTRAN input/output.

Loop-Dependent -
Describes a variable whose value changes as the value
of the control variable of a DO loop passes through the
range specified in the DO statement. A
loop-dependent variable is defined within the range of
the loop, while a loop-independent variable is defined
(or could be defined with the same effect) outside the
range of the loop.

Loop-Independent -
Describes a variable whose value remains constant
within the range of a DO loop.

Naming -
Identifying data (or a procedure) without necessarily
implying that its current value is to be made available
(or, for procedures, that the procedure actions are to
be made available) during the execution of the
statement in which it is identified. Naming contrasts
with referencing and defining.

Object Module -
The relocatable representation of a program unit
created by compilation of the program unit. Consists
of object code.

Output -
The name of the file to which all run-time error
messages and records output with PRINT statements
are written. WRITE statements can also be used to
write on OUTPUT if OUTPUT is given a logical unit
number in the PROGRAM statement.

Precedence -
A conventional arithmetic, relational, and logical
operator hierarchy determining the order in which
operations are performed during expression
evaluation. Operator precedence in FORTRAN
corresponds to the mathematical notion of the
precedence of mathematical operations.

Predefined Function -
FORTRAN-supplied code that performs common
manipulations. Predefined functions can be in-line
functions, external functions, or both in-line and
external functions.

60457040 B

Program -
A procedure described in the FORTRAN programming
language, consisting of at least a main program along
with any user-written functions and subroutines that
are referenced directly or indirectly by that main
program. ·

Punch -
The name of the file to which records written by the
PUNCH statement are written.

Record -
The amount of information read or written by a single
FORTRAN READ or WRITE statement. In for matted
input/output, a new record is started each time a slash
edit descriptor or a for mat repetition is processed.

Referencing -
Identifying data for the purpose of making its current
value available during the execution of the statement
containing the reference. Also, identifying a
procedure for the purpose of making the actions
specified available for execution. Referencing
contrasts with naming and defining.

Rowwise -
The ordering of the elements in an array declared in a
ROWWISE statement (the other ordering is
columnwise). The succession of subscripts
corresponding to the elements of a rowwise array is
with the value of the rightmost subscript expression
varying the fas test.

Run Time -
The period of time during which the compiled program
is executing. Execution is initiated by a system
control statement.

Scalar -
A single value; contrasted to vectors, which are
typically groups of values.

Semicolon Notation -
A notation used to express a vector. The semicolon
separates the two items specifying the vector, namely,
its first element and its length.

Side Effect -
The alteration of an argument or an element in a
common area as a result of a function reference.

Small Page -
A block of 512 words in memory starting on a small
page boundary. A small page is the smallest unit that
can be moved in or out of main memory by the
operating system.

60457040 B

Special Call -
A CYBER 200 FORTRAN language feature that can
be used to cause specific machine instructions to be
generated in the object code at compile time.

STACKLIB Routine -
A routine that optimizes certain loops that cannot be
vectorized.

Subarray -
A cross section of an array. Identified either by the
array name or by the array name qualified by a
subscript containing (among other kinds of subscript
expressions) one or more subscript expressions in colon
notation.

Subscripted Array Name -
An array name followed by a parenthesized list of
integer constants or simple integer expressions that
specify a particular element in an array. A
subscripted array name is either an array element
reference or an array element definition.

Symbolic Constant -
A name that has a constant value. The value is
specified by the PARAMETER statement.

Unit -
A disk or tape on which a file can be created and kept
by the operating system.

Vector -
A data representation that typically consists of more
than one value; contrasted to scalar data, which
represent single values. A subset of an array of scalar
elements or of the dynamic space area, delimited by a
length and a subscript which designates the position in
the array of the vector's first element.

Vectorize -
Cause machine vector instructions to be generated as
part of the object code for a CYBER 200 FORTRAN
program, either by using vector data and referencing
vector functions, or by including vectorizable DO
loops in a program compiled when the V compile
option has been selected.

Virtual Memory -
A conceptual extension of main memory achieved by a
hardware/software technique which permits memory
references beyond the physical limitation of main
memory. Virtual memory addresses are associated
with real addresses in physical memory during program
execution.

C-3

SPECIAL CALL STATEMENTS D

This appendix describes the available special call
statements. Each special call statement directly generates
a machine instruction. Special calls are described in
general terms in section 13. Each special call name is a
mnemonic preceded by Q8. The mnemonics are identical
to the CYBER 200 Assembler mnemonics in most cases.
Certain special calls use an abbreviated mnemonic because
the name is limited to 6 characters following the Q8.

The first field of each machine instruction is the op
code (F), indicating which function is to be performed.
The special call name supplies the op code (F) in the
generated instruction. Other operands are specified as
arguments in the special call. The operand designators are
explained in table D-1.

Designator

A

B

c

c + 1

G

I

R

60457040 B

Format Type

1 and 3

2

c

1 and 3

2

c

1, 2, and 3

c

1

1, 2, J, 9,
B and C

5

6

B

4

5 and 6

7, 8, and A

TABLE D-1. OPERAND DESIGNATORS

Definition

Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Specifies a register that contains the base address for a source sparse vector
field.

Specifies a fullword or halfword register, the length and type of which is
determined by G field bits.

Specifies a register that contains a field length and base address for the
corresponding source vector or string field.

Specifies a register that contains the base address for a source sparse vector
field.

Specifies a register that contains the branch base address in the rightmost 48
bits, or must be set to zero, depending on G bit 2.

Specifies a register that contains the field length and base address for stor­
ing the result vector or string field.

Specifies a fullword or halfword register that contains the sum of (A) + (X)
. for indexed branch instructions, but must be set to zero for compare floating­
point instructions.

Specifies a register containing the offset for C and Z vector fields. If
the C + 1 designator is used, the C designator must specify an even-numbered
register.

8-bit designator specifies certain subfunction conditions. Subfunctions in­
clude length of operands (32- or 64-bit), normal or broadcast source vectors,
etc. The number of bits used in the G designator varies with instructions.
For some format 3 instructions, used as an imnediate byte IB.

48-bit index used to form the branch address in a B6 branch instruction. In BE
and BF index instructions, I is a 48-bit operand.

In JE and JF index instructions, I is a 16-bit operand.

In the 33 branch instruction, the 6-bit I is the number of the DFB object bits
used in the branching operation.

In the register and JD instructions, R is the register containing an operand to
be used in an arithmetic operation.

In the 3E, JF, BE, and BF index instructions, R is a destination register for
the transfer of an operand or operand sum. In the B6 branch instruction, this
register contains an item count used to form the branch address.

R.specifies registers and branching conditions given in the individual instruc­
tion descriptions.

D-1

Designator

s·

T

x

y

z

Format Type

4

7' 8, and 9

4

7' 8, 9
and B

A

1 and 3

2

c

1 and 3

2

c

1

2

3

c

TABLE D-1. OPEKARD DESIGNATORS (Contd)

Definition

In the register and JD instructions, S is a register containing an operand to
be used in an arithmetic operation.

S specifies registers and branching conditions given in the individual instruc­
tion descriptions.

T specifies a destination register for the transfer of the arithmetic results.

T specifies a register that contains the base address and, in some cases, the
field length of the corresponding result field or branch address.

T specifies a register containing the old state of a register, DFB register,
etc.; in an index, branch, or inter-register transfer operation.

Specifies a register that contains the offset or index for vector or string
source field A.

Specifies a register that contains length and base address for order vector
corresponding to source sparse vector field A.

In indexed branch or compare floating-point instructions (BO - BS), specifies
a fullword or halfword register that contains an operand, the length and t~pe
of which is determined by G field bits.

Specifies a register that contains the offset or index for vector or string
field B.

Specifies a register that contains the length and base address for the order
vector corresponding to source sparse vector field B.

In indexed branch or compare floating-point instructions (BO - BS), Y specifies
one of the following: a register that contains an index used.to form the
branch address; part of the halfword item count in a relative branch; or a
destination register for storing a one if the condition is met, and zero
otherwise.

Z specifies a register that contains the base address for the order vector used
to control the result vector in field C.

Z specifies a register that contains the length and base address for the order
vector corresponding to result sparse vector field C.

Z specifies a register that contains the index for result field C.

In indexed branch or compare floating-point instructions (BO - BS), contains
a two's complement or unsigned integer that determines whether the condition
is met.

The special call formats are shown in table D-2. The
G bits that can be set either. to 0 or 1 are indicated with
the marking x. In the table, the following additional
notations are used:

d

e

Indicates a fullword register containing a
descriptor.

Indicates a fullword register with an
exponent field that contains a length operand.

f

h

a

D-2

Indicates a fullword register containing an
operand.

In di ca tes a half word register containing an
operand.

Indicates a fullword register containing an
address; length field is ignor~d.

Indicates a fullword register containing an
index.

eh

FP

RJ

SE

YB

Indicates a halfword register with an
exponent field that contains a length operand.

Is an abbreviation for floating-point.

Is an abbreviation for right-justified.

Is an abbreviation for sign extended.

Indicates a combined Y and B field.

60457040 B

Special Call

CALL QBABSV(G,X,A,,,z,c)

CALL Q8ACPS(G,X,A,Y,B,Z,C)

CALL Q8ADDB(,X,A,Y,B,Z,C)

CALL Q8ADDD(,X,A,Y,B,Z,C)

CALL Q8ADDLS(G,X,A,Y,B,Z,C)

CALL Q8ADDLV(G,X,A,Y,B,Z,C)

CALL Q8ADlliOD(G,X,A,Y,B 1 Z,C)

CALL Q8ADDNS(G,X,A,Y,B,Z,C)

CALL Q8ADDNV(G,X,A,Y,B,Z,C)

CALL Q8ADDUS(G,X,A,Y,B,Z,C)

CALL Q8ADDUV(G,X,A,Y,B,Z,C)

CALL Q8ADDXV(G,X,A,Y,B,Z,C)

60457040 8

TABLE D-2. SPECIAL CALL FORMATS

Op Code
CH.ex)

79

59

99

CF

EO

E4

61

28

41

Al

81

EC

62

42

A2

82

60

40

AO

80

63

83

75

Instruction
Format

A

A

3

3

4

4

4

2

1

3

4

4

2

4

4

2

4

4

Description

Absolute, fullword FP:
ABS(Rf)-Tf

Absolute, halfword FP:
ABS(Rh)-Th

Absolute, vector: ABS(A)-c

An·GE.Bn-Cn,set Zn,OV
length-z0_15 ·

Add binary: A+B--+C

Add decimal: A+B--+C

Add lower, fullword FP:
((Rf)+(Sf))L--.Tf

Add to length, Ro-15+S40-6J--+
To-15,R16-6J--+T16-6J

Add lower, halfword FP:
((Rh)+(Sh))1--+Th

Add lower, sparse vector:
(A+B)1-c

Add lower, vector: (A+B)1--+C

Add modulo bytes: (An+Bn)
mod (18)--+Cn

Add normalized, fullword FP:
((Rf)+Sf))N-Tf

Add normalized, halfword FP:
((Rh)+(Sh))N--+Th

Add normalized, sparse vector:
(A+B)N-c

Add normalized, vector: (A+B)N-c

Add upper, fullword FP:
((Rf)+(Sf))u--+Tf

Add upper, halfword FP:
((Rh)+(Sh))u--+Th

Add upper, sparse vector:
(A+B)u--+C

Add upper, vector: (A+B)u-c ·

Add index, fullword:
R16-63+S16-63 -
T16-63,RQ-15--+To-15

Add index, vector:
A16-63+B16-63--+
c16-63,Ao-1s-co-1s

Adjust exponent, fullword FP:
(Rf) per S--+Tf

G Bits

xxxx 0000

xooo xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

oxxx xooo

D-3

Special Call

CALL QSADJEV(G,X,A,Y,B,Z,C)

CALL QSADJM(G,X,A,,,z,c)

CALL QSADJSV(G,X,A,Y,B,Z,C)

CALL QSAND(,X,A,Y,B,Z,C)

CALL QSANDN(,X,A,Y,B,Z,C)

CALL QSANDNV(G,X,A,Y,B,Z,C)t

CALL Q8ANDV(G,X,A,Y,B,Z,C)t

CALL QSAVG(G,X,A,,,z,c)

CALL QSAVGD(G,X,A,,,z,c)

CALL Q8BADF(G,I6,T8)

CALL QSBARB(G,S,T)

CALL QSBIM(Ri,148)

TABLE D-2. SPECIAL·CALL FORMATS (Contd)

Op Code
(Hex)

55

95

Dl

74

54

94

Fl

F6

9D

9D

DO

D4

32

33

2F

24

26

20

22

23

21

B6

Instruction
Format

4

1

1

4

4

1

3

3

1

1

9

B

9

8

8

8

8

8

8

5

Description

Adjust exponent, halfword FP:
(Rti) per S -+Th

Adjust exponent, vector:
A per B__.C

Adjacent mean: CAn+l +An)/2-+Cn

Adjust significance, fullword FP:
(Rf) per S-+Tf

Adjust significance, halfword FP:
(Rai) per S-+'fb

Adjust significance, vector:
A per B c

Logical AND: A•B-+C

Logical AND R>T: A•B C

G Bits

xxxx xooo
xxxo 0000

xxxx xooo

Logical AND R>T: xxxx xllo
A•B C, vector

Logical AND: xxxx xool
A•B-+C, vector

. Vee tor average: (An+Bn) /2 Cn

Vector average difference:
(Ao-Bn)/2 -Cn

Branch and alter bit:
(Sa) is bit to be altered,
(Ta) is branch address

D.F. reg. bit branch and alter:
16 is bit altered, (Ta) is branch
address

Branch to [s] on condition of
bit 63 of register T

Branch to (Ta) if (Rf).EQ.(Sf),
fullword FP compare

Branch to (Ta> .if (Rf).GE.(Sf),
fullword FP compare

Branch to (Ta) if (Rh).EQ.(Sh),
halfword FP compare

Branch to (Ta) if (Rh).GE.(Sh),
halfword FP compare

Branch to (Ta) if (Rh).LT.(Sh),
halfword FP compare

Branch to (T8) if (Rh).NE.(Sh),
halfword FP compare

Branch immediate to (Ri)+I48

xxxx xooo

xxxx xooo

xxxx oxxo

xxxx oxxo

xxxx 0000

60457040 B

Special Call

CALL QSBKPT(Ra)

CALL QSBLT(Rf,sf,Ta)

CALL QSBNE(Rf,Sf,Ta)

CALL QSCFPEQ(G,X,A,YB)tt
CALL Q8CFPGE(G,X,A,YB)tt
CALL Q8CFPGT(G,X,A, YB)tt
CALL QBCFPLE(G,X,A, YB)tt
CALL QSCFPLT(G, X,A, YB)ft
CALL QBCFPNE(G,X,A,YB)tt

CALL QBCFPEQ(G,X,A,Y)tt
CALL QSCFPGE(G,X,A,Y)tt
CALL Q8CFPGT(G,X,A,Y)tt
CALL QSCFPLE(G,X,A,Y)tt
CALL Q8CFPLT(G, X, A, y)tt .
CALL QSCFPNE(G,X,A,Y)tt

CALL Q8CLG(Rf,,Tf)

CALL QSCLGV(G,X,A,,,z,c)

CALL QSCLOCK(,,Tf)

CALL Q8CMPB(,X,A,Y,B)ttt

CALL Q8CMPD(,X,A,Y,B)ttt

CALL Q8CMPEQ(G,X,A,Y,B,Z)
CALL Q8CMPGE(G,X,A,Y,B,Z)
CALL QSCMPLT(G,X,A,Y,B,Z)
CALL QSCMPNE(G,X,A,Y,B,Z)

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

04

27

25

36

11

BO
B2
B5
B4
B3
Bl

BO
B2
85
B4
B3
Bl

72

52

92

39

ES

E9

·C4
C6
C7
cs

lE

lF

76

Instruction
Format

4

8

8

7

A

c
c
c
c
c
c

c
c
c
c
c
c

A

A

A

3

3

1
1
1
1

7

7

A

Description

Breakpoint: R16-6J--+
breakpoint register

Branch to (Ta) if (Rf).LT.(Sf)•
fullword FP compare

Branch to (Ta) if (Rf).NE.(Sf),
fullword FP compare

Set (Rf) to next instruction
address, branch to [Ta+Si]

Convert binary R to packed BCD T,
fixed length

Compare FP and branch if (A).OP.
(X) then branch to (Y) + (B) or
relative from current location

Compare FP and set condition if
(A).OP.(X) then 1--+Y else 0--+Y

Ceiling, fullword FP:
nearest integer .GE. (Rf)-+ Tf

Ceiling, halfword FP:
nearest integer .GE.(~)-+ Th

Ceiling, vector: nearest integer
.GE.A-c

Transmit (real time clock)
T16-63 ,O....,. TQ-15

Compare binary, set:
DFB 53 operands equal
DFB 54 1st operand high
DFB 55 1st operand low

Compare dec.imal, set:
DFB 53 operands equal
DFB 54 1st operand high
DFB 55 1st operand low

Vector compare, form order vector:
if (An).OP.(Bn), set bit Zn in
order vector

Count: I of leading bits equal to
bit at (R+S] - T48-63

Count l's in field R: #of l's in
field [R+S] - T4a-63

Contract, fullword FP: R64 -T32

G Bits

xlox xxxx
xlox xxxx
xlox xxxx
xlox xxxx
xlox xxxx
xlox xxxx

xllx xxxx
xllx xxxx
xllx xxxx
xllx xxxx
xllx xxxx
xllx xxxx

xxxx 0000

xoox xooo
xoox xooo
XOOX XOOO

xoox xooo

0-5

Special Call

CALL Q8CONV(G,X,A,,,z,c)

CALL Q8CPSV(G,,A,,,z,c)

CALL QBDELTA(G,X,A,,,z,c)

CALL QBDIVB(,X,A,Y,B,Z,C)ttt

CALL Q8DIVD(,X,A,Y,B,Z,C)ttt

CALL QBDIVSS(G,X,A,Y,B,Z,C)

CALL QBDIVSV(G,X,A,Y,B,Z,C)

CALL Q8DlVUS(G,X,A,Y,B,Z,C)

CALL QBDlVUV(G,X,A,Y,B,Z,C)

CALL QBOOTS(G,X,A,Y ,B,,C)ttt

CALL QBOOTV(G,X,A,Y,B,Z,C)

CALL QBDTOB(Rf,,Tf)

CALL QBDTOZ(G,X,A,,,z,c)ttt

CALL QBELEN(Re,116)

CALL QBEMARK(G,X,A, Y ,B,Z,C)ttt

CALL Q8ES(Rf116)

CALL QBESH(Rh,116)

D-6

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

96

14

BC

35

D5

E3

E7

6F

4F

AF

BF

6C

4C

AC

BC

DD

DC

10

FC

2A

EB

3E

4D

Instruction
Format

7

2

7

1

3

3

4

4

2

1

4

4

2

1

2

1

A

3

6

3

6

6

Description

Contract, vector: AG4 -c32

Compress bit string: every Rn sub­
string from Rn+Sn pattern -r

Compress vector: vector A- sparse
c, controlled by OV Z

(Rf)-1-+(Rf), if _(Rf) :1-0 branch
to (Ta+Si]

Vector delta: CAn+1-A0)-+Cn

. Divide binary: A/B-c

Divide decimal: A/B-c

Divide significant, fullword FP:
CCRf)/CSf»s-Tf

Divide significant, halfword FP:
((Rb)/(Sfi))5-+Tb

Divide significant, sparse vector:
(A/B)5--+C

Divide significant, vector:
(A/B)5--.C

Divide upper, fullword FP:
((Rf)/(Sf))u-+Tf

Divide upper, halfword FP:
CCRb)/Csh»u-Th

Divide upper, sparse vector:
(A/B)u--+C

Divide upper, vector: (A/B)u -c

Sparse vector dot product:
A•B-+C,C+l

Dot product vector: A•B--+C,C+l

Convert packed BCD to binary T,
fixed length

Unpack BCD to zoned: A-c

Enter length:
Il6-Ro-15,R16-6Junchanged

Edit and mark: A per pattern
B--+C, G•lst significant result
address

Enter short, fullword:

Il6--+R16-63,RJ,SE,O-Ro-15

Enter short, halfword:

116--+RB-31,RJ,SE,O--+R()-7

G Bits

oxxx 0000

xxoo 0000

xxxo 0000

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xooo 0000

xxoo 0000

xxoo 0000

60457040 B

Special Call

CALL Q8EX(Rf,I48)

CALL QBEXIT

CALL QBEXPV(G,X,A,,,z,c)

CALL QBEXTB(Rf,sd,Tf)

CALL QBEXTH(Rh,,Tf)

CALL QBEXTV(G,X,A,,,z,c)

CALL QBFAULT(G)

CALL QBFILLC (IB, Si, Td) ttt

CALL QBFLRV(G,X,A,,,z,c)

CALL QBIBXEQ(G,X,A,YB,Z,C)
CALL QBIBXGE(G,X,A,YB,Z,C)
CALL QBIBXGT(G,X,A,YB,Z,C)
CALL QBIBXLE(G,X,A,YB,Z,C)
CALL QBIBXLT(G,X,A,YB,Z,C)
CALL QBIBXNE(G,X,A,YB,Z,C)

CALL QBIBXEQ(G,X,A,Y,,Z,C)
CALL QBIBXGE(G,X,A,Y,,Z,C)
CALL QBIBXGT(G,X,A,Y,,Z,C)
CALL QBIBXLE(G,X,A,Y,,Z,C)
CALL QSIBXLT(G,X,A,Y,,Z,C)
CALL QBIBXNE(G,X,A,Y,,Z,C)

CALL QBIDLE

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(H~x)

BE

CD

09

SA

9A

6E

Sc

9C

SD

06

lA

lB

71

Sl

91

31

BO
B2
B5
B4
B3
Bl

BO
B2
B5
B4
B3
Bl

00

Instruction
Format

5

5

4

A

A

4

A

1

A

7

7

7

A

A

1

7

c
c
c
c
c
c

c
c
c
c
c
c

4

Description

Enter index, fullword:
I48-R16-63,0-Ro-15

Enter index, halfword:
I24-Rs-31,0-RQ-7

Exit force, job mode to monitor
mode

Exponent, fullword:
Ro-1s-T16-63' SE,O -To-15

Exponent, halfword:
Ro-1-Ts-31,SE,O-To-1

Exponent vector:
Ao-1s-c48-63 'SE' o -co-15

Extract bits from Rf to Tf per Sd

Extend halfword FP: R32--+T64

Extend vector: AJ2-c64

Extend index, halfword FP:
Rs-31--+T16-6JSE,RQ-7--.To-15,SE

Simulate fault

Fill field T with byte: repeat IS
for field [T+S]

Fill field T with byte: repeat
(Rs6-63) for field [T+S]

Floor, fullword FP:
nearest integer .LE.(Rf)--.Tf

Floor, halfword FP:
nearest integer .LE.(Rtt)-Th

Floor, vector: nearest integer
.LE.A-c

(Rf)+l--+(Rf), if (Rf)* 0 branch
to [Ta,Si]

Increment and branch index:
(A)+(X)--+C,A1en-Clen;
if (A)+(X).OP.(Z) then branch to
(Y)+(B) or YB halfwords from
current location

Increment index and set condition:
(A)+(x)-c,A1e1J.-clen;
if (A)+(X).OP.~Z) then 1-Y else
o-Y

Idle: enable external interrupts
and idle

G Bits

xxxx 0000

oxxx 0000

0000 xxxx

xxxx 0000

xoox xxxx
XOOX XXXX

xoox xxxx
xoox xxxx
XOOX XXXX

xoox xxxx

xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx
xolx xxxx

D-7

Spec ia 1 Ca 11

CALL Q8INSB(Rf,Sd,Tf)

CALL Q8INTVAL(G,,A,,B,Z,C)

CALL Q8IOR(,X,A,Y,B,Z,C)

CALL Q8IS(Rf,I16)

CALL Q8LINKV(G}t

CALL Q8LODAR

. CALL Q8LODH(Ra,Si,Th}

CALL QSLODKEY(Rf,Sa,Ta}

CALL Q8LSDFR(Rf,,Tf)

CALL QSLTOL(Re,,Te)

CALL Q8MASKV(G,,A,,B,Z,C)

CALL QSMAX(G,X,A,,B,Z,C)

CALL Q8MCMPC(G,X,A,Y,B,Z,C)

CALL QSMCMPW(G,X,A,,B,,C)t

D-8

TABLE D-2. SPECIAL CALL FORMATS (Contd}

Op Code
(H~x}

6D

DF

F2

3F

4E

BF

CE

56

7E

OD

12

5E

OF

3B

38

7C

16

lD

BB

le

D8

FD

cc

Instruction
Format

4

1

3

6

6

5

5

7

7

4.

7

7

4

A

A

A

7

7

2

7

3

3

Description

Insert bits from Rf to Tf per Sd

Interval vector: A+((n-2)*B)-+C

Logical inclusive OR: A+B-+ C

Increase short, fullword:
R16-6J+Il6--+R16-63,Ro-15
unchanged

Increase short, halfword:
Rs-31+Il6--+Rs-31,Ro-7 unchanged

Increase index, fullword:
I48+R-+R

Increase index, halfword:
I24+R-+R

Link next two vector instructions

Load fullword:
load [Ra +Si)---+ T f

Load associative registers:
beginning at 400xx9_...AR

Load byte: rRa+si)­
T56-6J,O-+ to-55

Load halfword: load [Ra+Si] --+ Th

·Load key from (Rf), translate
virtual (Sa) to absolute Ta

Load and store data flag register:
(DFR} -Tf, (Rf}-+ DFR

Transmit length Ro-15 to length
To-15, T6-63 unchanged

Length to register, fullword FP:
Ro-15--+T4s-63,0-+To-47

Mask bit strings: alternate (Rd)
string and (Sd} string--+T string

Form bit mask: repeat (Rn) ones and
(Sn)-(Rn} zeros-+T string

G Bits

xxxo 0000

ooox xooo

If Zn=l,Au-Cn; if Zn=O, Bn-+Cn; xoox xooo
result length-+Co-15

Form mask: repeat (Rn) zeros and
(Sn}-(Rn} ones-T string

Vee tor maximuJll:
Amax -+C, item count -+B

Find An=Bn per mask C, A and B
index incremented by I of bytes

Find A=B per maskword C, A index
incremented by number of words

xxoo oxoo

xxoo oxxo

0000 ooox

60457040 B

Spec ia 1 Call

CALL Q8MIN(G,X,A,,B,Z,C)

CALL Q8MMRGC(IB,X,A,Y,B,Z,C)

CALL Q8MOVL(G,X,A,,B,Z,C)

CALL Q8MOVLC(G,X,A,,B,Z,C)ttt

CALL QBMOVS(,X,A, ,B,z,c)ttt

CALL Q8MPYB(,X,A,Y,B,Z,C)ttt

CALL Q8MPYDC-,X,A,Y,B,Z,C)ttt

CALL Q8MPYLS(G,X,A,Y,B,Z,C)

CALL Q8MPYLV(G.X,A,Y,B,Z,C)

CALL Q8MPYS(Rf,sf,Tf)

CALL Q8MPYSS(G,X,A,Y,B,Z,C)

CALL Q8MPYSV(G.X,A,Y,B,Z,C)

CALL Q8MPYUS(G,X,A,Y,B,Z,C)

CALL Q8MPYUV(G,X,A,Y,B,Z,C)

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

09

EA

F8

F9

18

FA

E2

E6

69

49

A9

89

6B

48

AB

BB

68

48

A8

88

JD

JC

Instruction
Format

l

3

J

3

7

3

J

3

4

4

2

4

4

2

l

4

4

2

l

4

4

Description

Vector minimum:
~in-c, item count -s

Merge bits per byte mask:
A or B per IB=O or 1-c

Move bytes left: A-c (left to
right)

Move bytes left, o.nes complement:
A-c (left to right)

Move bytes right: (Td)+(Ri)-+
(Td)+(Ri)+(Si)

Move and scale: A-c, scale (B)
decimal places

Multiply binary: A*B-C

Multiply decimal: A*B-c

Multiply lower, fullword FP:
((Rf)*(Sf))L -Tf

Multiply lower, halfword FP:
((Rh)* (Sh)) L - Th

Multiply lower, sparse vector:
(A*B)L-c

Multiply lower, vector: (A*B)L - C

Multiply significant, fullword FP:
((Rf)*(Sf)) s-Tf

Multiply significant, halfword FP:
((Rh)*(Sh))s-Th

Multiply significant, sparse
vector: (A*B>s-c

Multiply significant, vector:
(A*s> 5-c

Multiply upper, fullword FP:
((Rf)*(Sf))u--+Tf

Multiply upper, halfword FP:
<.(Rtt)*(Sh) >u-Th

Multiply upper, sparse vector:
(A*B)u-+C

Multiply upper, vector: (A*B)u-c

Multiply index, fullword:
R16-6J*S16-6J--+T16-6J•O--+To-15

Multiply index, halfword:
Rs-Jl *Ss-Jl -T8-31 •o -To-7

G Bits

xxoo oxoo

xxxx xxxx

xxxx oxox

xxxx oxox

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

D-9

Special Call

CALL Q8MRGV(G,,A,,B,Z,C)

CALL Q8MTIME(Rf)

CALL QSNAND(,X,A,Y,B,Z,C)
. . t

CALL QSNANDV(G,X,A,Y,B,Z,C)

CALL QBNOR(,X,A,Y;B,Z,C)

CALL QSNORV(G,X,A,Y,B,Z,C)t

CALL QBORN(,X,A,Y,B,Z,C)

CALL QBORNV(G,X,A,Y,B,Z,CY

CALL QBORV(G,X,A,Y,B,Z,C)t

CALL QSPACKV(G,X,A,Y,B,Z,C)

CALL Q8POLYEV(G,X,A,Y,B,Z,C)

CALL QBPRODCT(G,X,A,,,z,c)

CALL QSRAND(Rf,Sf,Tf)

CALL QSRCON(Rf,,Th)

CALL QBRCONV(G,X,A,,,z,c)

CALL QSRIOR(Rf,Sf,Tf)

CALL QSRJTIME(,,Tf)

CALL QSRTOR(Rf,,Tf)

D-10

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
{'flex)

15

17

BD

OA

F3

9D

F4

9D

F5

9D

9D

7B

5B

9B

DE

DB

2D

77

97

2E

37

78

58

2C

Instruction
Format

7

7

2

4

3

1

3

1

3

1

1

4

4

1

1

1

4

A

1

4

A

A

A

4

Description

Merge bit strings: interleave (Rd)
string with (Sd) string-
Td string

Merge byte strings: (Rd):(Sd),
lesser--+Td

Merge vector: if Zn=l, An-+Cn;
if Zn•O, Bn--+Cn; result
length--+Co-15

Transmit (Rf)-+monitor interval
timer

Logic~;t HAND: A•B -+C

Logical NAND: A•B -+c, vector

Logical NOR: A+B -+C

Logical R>R: A+B-c, vector

Logical OR R>T: A+B -c

Logical OR NOT: A+'B-c, vector

Logical inclusive OR: A+B-+C,
vector

Pack, fullword FP:
R48-63 and S16-63-+Tf

Pack, halfword FP:
R24-31 and s8-31--+Th

Pack, vector:
~8-63 and B16-63--+C

Polynomial evaluation: An per
B-+Cn

Vector product: Product
(A(),A1,•••Au)-+C

Logical AND: R,S-+T

Rounded contract, fullword FP:
R64-.T32

Rounded contract, vector:
~4 rounded-+32

Logical inclusive OR: R,S-+~

Read job interval timer to (Tf)

Register to register fullword
transmit: (Rf)-+Tf

Register to register halfword
transmit: (Rh)--+Th

Logical exclusive OR: R,S--+T

G Bits

XOOX XOOX

xxxx xoll

xxxx xloo

xxxx xlol

xxxx xolo

xxxx xooo

xxxx 0000

xxoo 0000

oxxx 0000

60457040 B

Special Call

CALL QSSELEQ(G,X,A,Y,B,Z,C)
CALL QSSELGE(G,X,A,Y,B,Z,C)
CALL QSSELLT(G,X,A,Y,B,Z,C)
CALL QSSELNE(G,X,A,Y,B,Z,C)

CALL QSSETCF(Rf)

CALL QSSHIFT (Rf,Sf,Tf)

CALL Q8SHIFTI(Rf,I8,Tf)

CALL QSSHIFTV(G,X,A,Y,B,Z,C)t

CALL QSSKEYB(G,X,A,Y,B,Z,C)ttt

CALL QSSKEYC(G,X,A,Y,B,Z,C)ttt

CALL QSSKEYW(G,X,A,Y,B,Z,C)ttt

CALL Q8SQRTV(G,X,A,,,z,c)

CALL QSSRCHEQ(G,,A,,B,Z,C)
CALL QSSRCHGE(G,,A,,B,Z,C)
CALL QSSRCHLT(G,,A,,B,Z,C)
CALL Q8SRCHNE(G,,A,,B,Z,C)

CALL QB STOAR

CALL Q8SUBB(,X,A,Y,B,Z,C)ttt

CALL QSSUBD(,X,A,Y,B,Z,C)ttt

60457040 B

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

28

29

19

co
C2
C3
Cl

08

34

30

SA

06

FE

FF

73

S3

93

cs
CA
CB
C9

7F

oc

13

SF

El

ES

Instruction
Format

7

7

7

1
1
1
l

4

4

7

l

3

3

3

A

A

l
1
1
1

7

4

7

7

3

3

Description

Scan left to right from (Td,si]
for byte equal to 18, index Si

Scan left to right from (Td,si]
for byte not equal to rs,
index Si

Scan right to left from (Td,si]
for byte not equal to IS,
dee rement Si

Vector select: if A0 .0P.B0 ,

then count up to the condition
met-c

Input/output: set channel (Rf)
channe 1 flag

Shift Rf by (Sf)-Tf

Shift Rf by 18-Tf

Shift A by B-+ c, vector

Search A for B per C,
Aindex = I no match (bits)

Search A for B per C,
Aindex = I no match (bytes)

Search A for B per C,
Aindex = I no match (words)

Significant square root, fullword
FP: (SQRT(Rf))s-Tf

Significant square root, halfword
FP: (SQRT(~))s-Th

Significant square root, vector:
SQRT(A)s-c

Vector search from indexed list:
each (Ao) .OP. (B0), count-en

Store, fullword: store (Tf)
address (R8 +Si]

Store associative registers:
AR-400xx9 and higher addresses

Store byte (character):
Ts6-63 - address (Ra +Si]

Store, halfword: (Th)-+
address (Ra+Si]

Subtract binary: A-B- C

Subtract decimal: A-B-c

G Bits

xxox xooo
xxox xooo
xxox xooo
xxox xooo

xxxx xxxx

xxxx oxxo

xxxo 0000

xxxo 0000

xxxo 0000

xxxo 0000

0-11

Special Call

CALL Q8SUBLS(G,X,A,Y,B,Z,C)

CALL Q8SUBLV(G,X,A,Y,B,Z,C)

CALL Q8SUBMOD(I8 ,X,A, Y ,B,Z, C)ttt

CALL Q8SUBNS(G,X,A,Y,B,Z,C)

CALL Q8SUBNV(G,X,A,Y,B,Z,C)

CALL Q8SUBUS(G,X,A,Y,B,z,c)

CALL Q8SUBUV(G,X,A,Y,B,Z,C)

CALL Q8SUBXV(G,X,A,Y,B,Z,C) ·

CALL Q8SUM(G,X,A,,,z,c)

CALL Q8TL(G,X,A,Y,B,Z,C)ttt

CALL Q8TLMARK(G,X,A, Y ,B,Z,C)ttt

CALL Q8TLTEST(G,X,A,Y,B,Z,C)ttt

ttt CALL Q8TPMOV(G,X,A,Y,B,Z,C)

D-12

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Op Code
(Hex)

65

45

AS

85

ED

66

46

A6

86

64

44

A4

84

67

87.

DA

7D

EE

D7

EF

OE

B9

Instruction
Format

4

4

2

1

3

4

4

2

1

4

4

2

1

4

1

7

3

3

3

4

1

Description

Subtract lower, fullword FP:
((Rf)-(Sf))1--+Tf

Subtract lower, halfword FP:
CCRJi)-(Sh))L--+Tf

Subtract lower, sparse vector:
(A-B)L--+C

Subtract lower, vector: (A-B)1--.c

Modulo subtract bytes:
(An-Bn)aod(l8)___.c.i

Subtract normalized, fullword FP:
((Rf)-(Sf))R-.Tf

Subtract normalized, halfword FP:
({Rit)-(8h))R--.Tf

Subtract normalized, sparse
vector: (A-B)5 c

Subtract normalized, vector:
(A-B)a C

Subtract upper, fullword FP:
CCRf)-(sf»u--+Tf

Subtract upper, halfword FP:
CCah>-<sh»u--+Th

Subtract upper, sparse vector:
(A-B)0 --+C

Subtract upper, vector: (A-B)u--+C

Subtract index: R16-63-Sl6-63
T16-6J•Ro-1s--+To-1s

Subtract index, vector:
A16-6J-Bl6-6J-+C16-6JtAo-15
Co-15

Vector sum: Sum(AQ,A1,•••An)
C,C+l

Swap registers: start with Sf,
storing at Tdand loading from ~

Translate bytes: Bn--+Cn

Translate and mark: A per B
vector C

Translate and test:
'Bu--+C,l\i--+Z 'if Bn·NE.O

Translate external interrupt:
(Tf)•priority, branch to Ra [si]

Transpose and move 8 by 8 matrix

G Bits

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

xxxx xxxx

oxxx xooo

xxoo 0000

XXXX OXOX

xxoo xxoo

xxoo oxoo

xoxx xooo

60457040 .a

TABLE D-2. SPECIAL CALL FORMATS (Contd)

Special Call

CALL Q8TRUV(G,X,A,,,Z,C)

CALL QSVREVV(G,X,A,,,z,c)

CALL QSVTOV(G,X,A,,,z,c)

CALL Q8VTOVX(G,,A,,B,,C)

CALL Q8VXTOV(G, ,A, ,B, ,C)

CALL Q8WJTIME(Rf)

CALL QSXOR(,X,A,Y,B,Z,C)

CALL Q8XORN(,X,A,Y,B,Z,C)

CALL Q8XORNV(G,X,A,Y,B,Z,C)t

CALL Q8XORV(G,X,A,Y,B,Z,C)t

CALL QSVSB(,, Ta)

CALL Q8ZTOD(G,X,A,,,z,c)

Op Code
(He.x)

70

50

90

BS

98

B7

BA

3A

FO

F7

90

9D

05

FB

Instruction
Format

A

A

1

1

1

A

3

3

4

3

Description

Truncate, fullword FP:
nearest integer .LE.(Rf) -Tf

Truncate, halfword FP:
nearest integer .LE.(Rh)-+Th

Truncate, vector:
nearest integer .LE.(A)--+C

Transmit vector reversed to
vector: Arev-+C

Vee tor to vector transmit: A-c

Vee tor to vector indexed fransmi t:
B-c indexed by A

Vector to vector indexed transmit:
B indexed by A-c

Transmit (Rf)--+job interval timer

Logical exclusive OR: A-B--+C

Logical equivalence (exclusive OR
OOT): A-B--+C

Logical exclusive OR OOT:
(equivalence) A-B--+C, vector

Logical exclusive OR: A-B--+C,
vector

Void instruction stack and branch
to (Ta)

Pack zoned to BCD: A--+C

G Bits

xxxx 0000

xxxo 0000

xxxx 0000

xooo xxxx

xooo oxxx

xxxx xll l

xxxx xooo

xxoo 0000

tAvailable on the CYBER 205, but not on the STAR 100 or the CYBER 203.

ttAvailable on the CYBER 203 and CYBER 205, but not on the STAR 100.

tttAvailable on the STAR 100 and CYBER 203, but not on the CYBER 205.

.OP.

u

Indicates one of the logical operators .EQ.,
.NE., .GE. or .LT.

Indicates upper result.

L Indicates lower result.

N Indicates normalized upper result.

S Indicates significant result.

The instruction format is one of the twelve possible
instruction formats shown in figure D-1. Additional
information about any machine instruction, including the
G bit settings, can be found in the CYBER 200 Computer
Hardware Reference Manual.

As a convenience for the user of special calls, the special
calls are listed by op code in table D-3.

60457040 B D-13

0 78 15 16 23 24 3132 3940 47 48 5556 63

F
A y B z c

G x (Length and (Length and (Control Vector (Length and
(Function) (Subfunction) (Offset for A) Base Address) (Offset for B) Base Address) Base Address) Base Address)

C+ I FORMAT 1 - Used for Vector, Vector Macro, and Some Nontypccal Instructions.
I (Offset I
L forC!c~ _J

0 78 1516 2324 3132 3940 4748 5656

x y z c
F G (Order Vector A (Order Vector B (Order Vector Result

(Function) (Subfunction) Length and (Base Address) Length and (Base Address) Length and Length and
Base Address) Base Address) Base Address) Base Address

FORMAT 2 - Used for Sparse Vector and Some Nontypical Instructions.

0 78 1516 2324 3132 3940 4748 5656

F G x A y B z c
(Length and (Length and

(Function) (Subfunction) (Index for A) (Length and Undex for Bl (Index for Cl Base Address) Base Address) Base Address)

FORMAT 3 - Used for Logical String and String Instructions.

0 78 1516 2324 31

F R s T
(Function) (Source 1) (Source 2) (Destination)

FORMAT 4 - Used for Some Register, for all Monitor instructions, and for the #30, and #04 Nontypical Instructions.

0

F
(Function)

7 8 1516

I
(48 Bits)

FORMAT 5 - Used for the #BE, #BF, #CD, and #CE Index Instructions and for the #B6 Branch Instruction.

0 78 1516 31

F R I
(Function) (Destination) (16 Bits)

FORMAT 6 - Used for the #3E, #3F, #40, and #4E Index Instructions and the #2A Register Instruction.

0

F
(Function)

78

R

1516 2324 31

s

FORMAT 7 - Used for Some Branch and Nontypical Instructions.

Figure D-1. Instruction Formats (Sheet 1 of 2)

63

63

63

D-14 60457040 B

0 78 15 16 2324 31

F R s T
(Function) (Register) (Register! (Base Address)

FORMAT 8 - Used for Some Branch Instructions.

0 78 1516 2324

F G s T
(Function) Designator

(Bit Test
Add ms)

FORMAT 9 - Used for the #32 Branch Instruction

0

F
(Function)

78

R
(Old State)

1516 2324

T
(New State)

31

31

FORMAT A - Used for Some Index, Branch, and Register Instructions.

0 78 15161718 23 24 31

I T F
(Function)

G
Designator (6 Bits) (Base Address)

LJ_UNDEFINED (MUST BE OI
FORMAT B - Used for the #33 Branch Instruction.

0 78 15 16 23 24

F G x A
(Function) (Subfunction) (Register) (Register)

31 32

FORMAT C - Used for the #JJO through #BS Branch Instructions.

v
(Index)

3940 47 48

B
(Base Address)

Figure 0-1. Instruction Formats (Sheet 2 of 2)

60457040 B

55 56 63

z c
(Register) (Register)

D-15

TABLE D-3. SPECIAL CALLS LISTED BY OP CODE

Op code Special Op code Special Op code Special Op code Special Op code Special
(hex) Call (hex) Call (hex) Call (hex) Call (hex) Call

00 QB IDLE 37 QBRJTIME 6E Q8EXTB QSANDNV CF QBACPS
04 QBBKPT 38 QSLTOL 6F Q8DIVS QSXORNV DO QBAVG
OS QBVSB 39 QB CLOCK 70 Q8TRU AO QSADDUS Dl Q8ADJM
06 QB FAULT 3A QSWJTIME 71 Q8FLR Al QBADDLS D4 QSAVGD
OB QBSETCF 3B QB LSD FR 72 Q8CLG A2 QBADDNS DS QB DELTA
09 QB EXIT 3C Q8MPYXH 73 QB SQRT A4 Q8SUBUS D6 Q8SKEYB
OA QBMTIME 3D QSMPYX 74 Q8ADJS A5 QB SUB LS D7 QBTLMARK
oc Q8STOAR 3E QSES 7S Q8ADJE A6 Q8SUBNS DB QSMAX
OD QBLODAR 3F QBIS 76 Q8COH AS Q8MPYUS D9 QSMIN
OE QBTLXI 40 QSADDUH 77 Q8RCON A9 .QBMPYLS DA QSSUM
OF QBLODKEY 41 QSADDLH 78 Q8RTOR AB Q8MPYSS DB QSPRODCT
10 Q8DTOB 42 Q8ADDNH 79 Q8ABS AC QBDIVUS DC QSDOTV
11 QBBTOD 44 QB SUB UH 7A Q8EXP AF QSDIVSS DD QB DOTS
12 QBLODC 4S QSSUBLH 7B Q8PACK BO QSIBXEQ DE QSPOLYEV
13 QSSTOC 46 Q8SUBNH 7C Q8LTOR QSCFPEQ DF QSINTVAL
14 QSCPSB 4B QSMPYUH 7D QB SWAP Bl QSIBXNE EO QSADDB
lS Q8MRGB 49 QSMPYLH 7E Q8LOD QSCFPNE El QSSUBB
16 QB MAS KB 4B QSMPYSH 7F QBSTO B2 QSIBXGE E2 QSMPYB
17 QBMRGC 4C Q8DIVUH BO Q8ADDUV QSCFPGE E3 QBDIVB
lB Q8MOVR 4D Q8ESH Bl Q8ADDLV B3 QBIBXLT E4 QBADDD
19 QBSCNRNE 4E QB I SH 82 Q8ADDNV Q8CFPLT ES QSSUBD
lA QBFILLC 4F QSDIVSH B3 Q8ADDXV B4 Q8IBXLE E6 QBMPYD
lB QBFILLR so Q8TRUH 84 QB SUB UV Q8CFPLE E7 QSDIVD
lC Q8MASKZ Sl Q8FLRH as Q8SUBLV BS Q8IBXGT EB Q8CMPB
lD QBMASKO S2 QSCLGH B6 Q8SUBNV Q8CFPGT E9 Q8CMPD
lE QBCNTEQ S3 Q8SQRTH 87 Q8SUBXV B6 QBBIM EA QBMMRGC
lF QBCNTO S4 Q8ADJSH BB QSKPYUV B7 Q8VTOVX EB Q8EMARK
20 QBBHEQ SS QBADJEH B9 Q8KPYLV BB QBVREVV EC Q8ADDMOD
21 QBBHNE S6 QBLINKV SB QSKPYSV B9 Q8TPMOV ED QBSUBMOD
22 QBBHGE SB Q8RTORH ac QSDIVUV BA QBVXTOV EE QBTL
23 QBBHLT S9 QSABSH BF QSDIVSV BB Q8MASKV EF QB TL TEST
24 Q8BEQ SA QB EX PH 90 Q8TRUV BC QBCPSV FO QSXOR
2S QBBNE SB Q8PACKH 91 Q8FLRV BO QBMRGV Fl QB AND
26 QBBGE SC QSEXTH 92 Q8CLGV BE QBEX F2 QSIOR
27 QSBLT SD QBEXTXH 93 Q8SQRTV BF QBIX F3 QBNAND
2B QBSCNLEQ SE Q8LODH 94 Q8ADJSV co QBSELEQ F4 QB NOR
29 QBSCNLNE SF Q8STOH 9S Q8Ai>JEV Cl QBSELNE FS QB ORN
2A Q8ELEN 60 Q8ADDU 96 QB CO NV C2 QSSELGE F6 QBANDN
2B Q8ADDLEN 61 Q8ADDL 97 Q8RCONV C3 QSSELLT F7 Q8XORN
2C Q8RXOR 62 Q8ADDN 9B QSVTOV C4 QBCMPEQ FB Q8MOVL
2D QB RAND 63 Q8ADDX 99 Q8.ABSV cs Q8CMPNE F9 QSMOVLC
2E Q8RIOR 64 Q8SUBU 9A Q8EXPV C6 Q8CMPGE FA Q8MOVS
2F Q8BARB 65 Q8SUBL 9B Q8PACKV C7 QBCMPLT FB QBZTOD
30 Q8SHIFTI 66 Q8SUBN 9C Q8EXTV cs QBSRCHEQ FC Q8DTOZ
31 Q8IBNZ 67 Q8SUBX 9D Q8XORV C9 Q8SRCHNE FD QBMCMPC
32 Q8BAB 68 QBMPYU Q8AHDV CA QBSRCHGE FE QBSKEYC
33 Q8BADF 69 QBMPYL Q80RV CB QBSRCHLT FF QBSKEYW
34 QB SHIFT 6B Q8MPYS QSHAHDV cc Q8MCMPW
35 Q8DBNZ 6C Q8DIVU Q8NORV CD QBEXH
36 Q8BSAVE 6D Q8INSB Q80RNV CE QSIXH

D-16 60457040 B

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS LIST E

This appendix contains a list of the functions that are
available for reference for any CYBER 200 FORTRAN
program, as discussed in section 14. For each function,

TABLE E-1.

Function Category Fast Call Name

ABS NX

ACOS x FT XACOS

AI MAG NX

AINT NX

ALOG x FT XALOG

ALOGlO x FT XLOGT

AMAXO NX

AMAXl NX

AMINO NX

AMINl NX

AMOD NX

table E-1 indicates what type of code (in-line, external, or
both) is generated during compilation as a result of
referencing the function.

SUPPLIED FUNCTIONS

Function

DAS IN

DATAN

DATAN2

DATE

DBLE

DCOS

DCOSH

DDIM

DEXP

Category

x

x

x

NX

x

Fast Call Name

FT XDASN

FT XDATN

FT XDTN2

FT XDCOS

FT XDCSH

.fJ:'-~.DIM

FT XDEXP

... ~~~rn ·.·····················
ATAN x FT XATAN DLOG x FT XDLOG

ATAN2 x FT XATN2 DLOGlO x FT XDLGT

CABS NX FT XCABS DMAXl x

ccos x FT XCCOS DM!Nl x

CEXP x FT XCEXP

CLOG x FT XCLOG

CMPLX NX

CONJG NX

cos x FT XCOS

EXP x

FLOAT NX

!ABS NX

60457040 B E-1

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Nanie Function Category Fast Call Name

!DIM NX

ID INT NX

IFIX NX

INT NX

ISIGN NX

MAXO NX

MAX! NX

MINO NX

MIN! NX

MOD

E-2 60457040.B

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Ca'l Name

VATAN x FT XVATN VFLOAT NX FT XVFLT

VATAN2 x FT XVAT2 VIABS NX FT XVIAB

VCABS x FT XVCAB VIDIM x FT XVDIM -
vccos x FT XVCCS VIFIX NX FT XVFIX -
VCEXP x FT XVCXP VINT NX FT XVINT

VCLOG x FT XVCLN VISIGN x FT XVISN

VCMPLX x FT XVCPX VMOD x FT XVMOD

VCONJG x FT XVCJG VREAL x FT XVREL

vcos x FT XVCOS VSIGN x FT XVSGN

VCSIN x FT XVCSN VSIN x FT XVSIN

VCSQRT x FT XVCSR VSNGL x FT XVSGL -
VDBLE x FT XVDBL VSQRT NX FT_XVSQT

VDIM x FT XVDIM VTAN x FT XVTAN

VEXP x FT XVEXP I .·

N = In-Line

x = External

NX = In-line and external

60457040 B E-3

CYBER 200 FORTRAN STATEMENT SUMMARY F

This appendix contains a summary of the statement for ms
described in the main text. Given are the entities that
compose each statement; refer to the main text for the
detailed specifications for these entities. Abbreviations
used in this appendix are the following:

v

va=

s

iv=

n

type

p

pf

k

K

a

arg

d

vr

u

fmt

iolist

= variable or array element

variable, array element, orarray

sta tern ent label

= integer variable

= integer constant, integer symbolic constant,
or integer variable

=

=

=

=

=

=

=

=

=

=

INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL, BIT,· or CHARACTElf

variable, array, or array declarator

variable, array, function name, or array
declarator

length of a type character pf

length of all type character pf in statement

array declarator

argument (dummy or actual)

.descriptor' or descriptor array el~Jllent

vector (expressed in semicolon. notation),'.
d~s,cript()r,'. ()r. ?~~cr,~~~()~>~r,~13:~ :~7.~.?l'l~
logical unit number

format designator

input/output list

Brackets around an item indicates that the item is optional.

ASSIGNMENT STATEMENTS

integer

real

complex

double­
precision

j

logical

60457040 B

v = arithmetic expression

v = arithmetic expression

v = arithmetic expression

v = arithmetic expression

v = logical expression

FLOW CONTROL STATEMENTS

GOTOs

GO TO iv[,]Cs(, ••• ,s])
ASSIGN s TO iv

GO TO (s[, ••• ,s])(,J iv

IF (arithmetic expression) s,s,s

IF (logical expression) statement

'IF (logical expression) THEN
ELSE IF (logical expression) THEN
ELSE
END IF.

DO s iv= n,n[,n]

CONTINUE

PAUSE [five-digit'.integer constant]:
PAUSE [:ha~a:~t~.r constantJ '.

STOP .. [five-digit·• integer co~ta~lj
S'f.?~ [c~arac~~r ~~n~:~~tJ. · ·· · ·

SPECIFICATION STATEMENTS

·IMPLICIT type (list:· of letters.ancl.·ranges. of fotters)
[,: • ~ , ~ype .<~is~ .()~ letters BJ_ld ranges of letter~~

type pf [/initial value/] [, ••• ,pf [/initial value/]]

: ;.~1~~~I~!~a~~~tJJr•.•••.[:~~l/i~iiiai·.·.v~.~~1J··r .. '
DIMENSION a[, ... ,a]

::~2~s,~,.~t~··~·.: .. :!~]·:
COMMON p(, ••• ,p) f ••• /common block name/p& ••• ,p])
COMMON /common block name/ p [, ••• ,p] [· .• /com­

mon block name/{.>[, ••• ,pl]
COMMON I Ip[, ... ,pj [..• /common block name/ p

& ••• ,p]]

EQUIVALENCE (va,va[, ••• ,va]) [, ••• ,(va,va[, ••• ,va] >]

EXTERNAL procedure name[, ••• , procedure name]

DATA variable list/data list/[, ••• , variable list/data list/]
where a variable list element is a variable, array
element, ;·~.f~~y"'{~~fu~;;,~t.~:@:~~!~~:.J?,ftij and a data list
element is a · constant or a repeat count times a
constant .

l~,t\.~t\.~~t¥a.(n~·~·e1.~vSJ:~~·i (~§<: ,n,fue,,t;;•\tai1.1~rJi)•.:·•.••··.x.··:·,: .•• j
; <.··~~.h.ere .. ·····nalll.ei•······•i~.··•~fi~ ... · ..)I!aro.~::; .. 9(;.~/~~tp.~l1~>c~.~~~~t~J

~~.v~µetJsa~o~tant~~pressl9ri•-> \:·.·\ •.•. ·.·i:.L< : ;
> .,, •• ,.,·, <~VO··,•;:., .. '<·. "°"' "'""' ,,; ... ~·> ~'' , • ~ ·; c; /.::·,.;...,,.; .:.:.< ~ ...:. .. :.:;; ; •. : ; > <" ·::.-;. ~; ;. : <·:·.<·.<~·.: •. ~ ... ~..iv::>:,: .. ;; .. ;~_.~:,:.:.:v,:';;.,::;:,h::•.;; .. :.:;;;(:.(... ::..:, :• .. ;·:/.:.::>~~~ :';;.:;.:;: ::;;.;,,, :·~: :,y,.j,./'.:, /,., ;]:.;:;::~::::·:,: ,.:=.=~.:~ /.;,;,.;_. ;. ~;i,;

. F-1

PROCEDURE DEFINITION

· PROGRAM [procedure name] [(fip[, ••• ,fip])]
where fip is a file information parameter

statement function name (arg[, ••• ,arg]) =expression

[type] !"l]NCTION procedure name (arg[, .•• ,arg]),
e.xcept ·~or type = CHJ\.RACTER

SUBROUTINE procedure name [(arg[, •.. ,arg])]

RETURN'.l~J;
for subroutines

RETURN
for functions

CALL procedure name [(arg[, ••• ,arg])]

F-2

REWIND u

BACKSPACE u

ENDFILE u

s FORMAT ([/ •••] field spec sep field spec sep ••• [I . ..])
where sep is a separator (a comma or one or more
slashes), and field spec is a field specification for data
conversion

60457040 B

COMPATIBILITY FEATURES. G

Certain features of CYB ER 200 FORTRAN are provided
only for compatibility with FORTRAN Extended. The
compatibility features are described in this appendix.

NOTE

The features described in this appendix should not
be used for new programs and are intended only
for the conversion of existing programs.

HOLLERITH CONSTANT COMPATIBILITY

Hollerith elements are described in section 2, Statement
Elements. For compatibility, Hollerith constants are
supported in relational and arithmetic expressions.

A Hollerith constant used in an arithmetic or relational
expression is limited to 8 characters. An H constant is
left-justified with blank fill in a fullword. An H constant
that is too long is truncated on the right side, and a
warning diagnostic is issued. An R constant is
right-justified with binary zero fill in a fullword. An R
constant that is too long is truncated on the right side and
a warning diagnostic is issued.

The Hollerith constant is considered typeless. A typeless
constant is not converted for use as an argument or for
assignment. If Hollerith constants are the only operands in
an arithmetic expression, the result is type integer.

BUFFER IN AND BUFFER OUT
COMPATIBILITY
Input, output, and memory transfer statements are
described in section 8. The BUFFER IN and BUFFER OUT
statements are provided for compatibility with FORTRAN
Extended. The UNIT and LENGTH functions are also
provided for compatibility.

The BUFFER IN and BUFFER OUT statements are used to
transmit binary data between binary files and main
memory. The length of the buffer area in which the data is
contained should be an even number of bytes for tape files,
or a multiple of pages for disk files. Ordering the data in
this manner provides for the most economical use of
storage.

A file referenced in a BUFFER statement must be declared
in the PROGRAM statement to be an explicit file. The file
cannot be referenced in any other input or output
statement; however, it can be referenced in the unit
positioning statements BACKSPACE, REWIND, and
ENDFILE. Once buffered input/output is established for a
logical unit in a FORTRAN program, all input and output
for that unit must be buffered.

After a BUFFER IN or BUFFER OUT, the error status of
the logical unit involved should be checked by using the
UNIT function before ·another operation with the unit is
initiated. The unit status should also be checked before
the buffered data is used. After the unit check, the
number . of bytes . read. by a BUFFER IN·. can be. obtained
with the LENGTH function.

60457040 B

BUFFER IN STATEMENT

Execution of the BUFFER IN statement causes transfer of
data from the logical unit specified, in the mode given, to
the buffer defined in this statement as storage locations
first to last. Only one record is read for each BUFFER IN
statement.

Form:

BUFFER IN(u,mode}(first,last)

u

mode

The logical unit number.

An integer constant or simple integer
variable that specifies .the recording mode of
the data being read. The permitted values
are:

O= 7-track tape, BCD mode, even parity

1= 7-track or 9-track tape, binary mode,
odd. parity

2= 7-track tape, CDC 64-character ASCII
subset, odd parity

4= Disk

first A variable or array element name that can be
type character, integer, real, double­
precision, complex, or logical, and which
defines the first location in the buffer into
which data is to be transmitted.

last A variable or array element name that can be
type character,· integer, real, double­
precision, complex, or logical, and which
defines the location in the buffer into which
the last data item is to be transmitted.

The location of last cannot precede first in memory. The
quantity (last-first+!) must be less than or equal to 24
small pages.

BUFFER OUT STATEMENT

The execution of the BUFFER OUT statement transfers
data to the logical unit specified in the mode given, from
the buff er defined in this statement as storage locations
first to last.

Form:

BUFFER OUT(u,mode}(first,last)

u The logical unit number.

mode An integer constant or simple integer
variable that specifies the mode in which the
data record is to be written:

G-1

first

2 = 7-track tape, CDC '64-character ASCII
subset, odd parity

4 = Disk

A variable or array element name that can be
type character, real, integer, double­
precision, complex, or logical, and which
defines the first location in the buffer from
which data is to be transmitted.

last A variable or array element name that can
be type character, real, integer, double­
precision, complex, or logical, and which
defines the location in the buffer from which
the last data item is to be transmitted.

One logical record is written for each BUFFER OUT
statement. The parameters first and last rimst refer to the
same array, and last cannot precede first in memory.

·uNIT FUNCTION

The UNIT function checks to see . whether or not data
'transmission was completed without 'error. After a
·BUFFER IN or BUFFER OUT; the UNIT should be
. referenced before any fur1her operations are performed on
'.the file.

G-2

*SPECIFICATION COMPATIBILITY
Input/output lists and data formatting is described in
section 9. For compatibility with FORTRAN Extended,
the * specification is supported; the * specification is
identical to the ' specification, except that asterisks
replace the apostrophes.

SUPPLIED FUNCTION COMPATIBILITY
Supplied functions are described in section 14.
compatibility, a number of additional functions
supplied. The functions are shown in table G-1.

TABLE G-1. FUNCTIONS SUPPLIED FOR
COMPATIBILITY

Function
Reference

Type of

For
are

60457040 B

OR (a1,a2, ...)

This computes the bit-by-bit logical OR of ai
through an.

SHIFT (a,n)

This produces a shift of n bit positions in a. If n is
positive, the shift is left circular. If n is negative, the
shift is right end-off with sign extension from bit zero.
The n value must be in the range -64 ~ n::; 64. The result is
undefined if n is outside the range. The n value is integer.

XOR (a1,a2, •••)

This computes the bit-by-bit exclusive OR of a1
through an·

The supplied function list in appendix E indicates the type
of code generated by the function and the fast call name,
if any. The information about functions described in this
appendix is shown in table G-2.

60457040 B

TABLE G-2. COMPATIBILITY FUNCTIONS LIST

Fune ti on

AND

COMPL

MASK

OR

SHIFT

XOR

N = In-line
X = External

Category

N

N

N

·N

N

N

NX = In-line and external

Fast Call Name

G-3

A conversion, input and output 9-5
Actual arguments 7-3
Adjustable dimensions 2-2
Ampersand

Actual arguments 5-6
Namelist input/output 8-4

.AND. 3-3
Apostrophe specification 9-6
Arguments

Actual 7-3
Correspondence of 7-4
Dummy or formal 7-3
Passing of 7-4

Arithmetic
Assignment statement (array) 10-2
Assignment .statement (scalar) 4-1
Assignment statement (vector) 11-9
Expressions (scalar) 3-1
Expressions (vector) 11-6
IF statement 5-2
Operators 3-1

Array
Assignment statement 10-2
Declarators 2-2
Dimensions 2-2
Element location 2-3
EQUIV ALEN CE 6-3
Expression 10-2
In subprogram 7-4
NAMEUST 8-4
Storage 2-2
Stbscripts 2-2
Transmission 9-2

I Assembly listing 15-1, 15-11
ASSIGN statement

Descriptor 11-8
GO TO 5-1

Assigned GO TO 5-1
Assignment statement, array 10-2
Assignment statement, scalar 4-1

Arithmetic 4-1
Character 4-2
Form in vectorizable loop · 11-2
Logical 4-2

Assignment statement, vector
Arithmetic 11-9
Bit 11-10

Asterisk
Dummy label 7-4
Dummy vector function result 7-4, 11-11
Specification G-2

Automatic
STACKLIB loop recognition 11-4
Vectorization 11-1
Vectorization messages 11-4, B-31

B bit constant 2-7
B conversion, output 9-5
BACKSPACE statement 8-5
Basic external, see FORTRAN-supplied
Bit

Array initialization 6-4
Assignment statement 11-10
Constants 2-7
Expressions 11-8
Logical operators 11-8
Statement 6-1

60457040C

INDEX

Blank common 6-2
Block

Common block 6-2
Data subprogram 7-6
IF statement 5-2
IF structures

Brackets in PROGRAM statement 7-2
Buffer

And program statement 7-2
Input/output 8-1, G-1

C comment line 1-1
CALL statement 5-6
Calling

Fast calling sequence 12-2
Standard calling sequence 12-1
Subroutine subprogram 5-6

Carriage control 9-6
Character

Assignment statement 4-2
Constants 2-6
Expressions 3-3
Set 2-1, A-1
Type statement 6-1

Coding column significance 1-1
Colon notation 10-1
Column usage 1-1
Columnwise arrays 2-2
Comment line 1-1
Common

Blocks 6-2
EQUIV ALEN CE 6-3
Statement 6-2

Compatibility G-1
Compilation listings 15-3
Compiler

Call 15-1
Diagnostics B-1
Options 15-1
Supplied functions 14-1

Complex
Constants 2-5
Conversion 9-2
Type statement 6-1
Variables 2-5

Computed GO TO 5-2
Concurrent 1/0 13-11
Constants

Bit 2-7
Character 2-6
Complex 2-5
Double-precision 2-5
Hexadecimal 2-6
Hollerith 2-6, G-1
Integer 2-4
Logical 2-6
Real 2-5
Symbolic 2-1, 6-6

Continuation 1-3
CONTINUE statement 5-5
Control

Carriage 9-6
Column (Tn) 9-6

Control statement
Flow control 5-1
FORTRAN 15-1
System control 15-1

lndex-1

Conversion
Data conversion on input/output 9-3
During assignment 4-1
During expression evaluation 3-1
Mixed mode during initialization 6-5
Specifications for input/output 9-3

Cross-reference map 15-3

D conversion, input and output 9-5
Data conversion on input/output 9-3
Data flag branch manager 13-3
DATA statement 6-4
Data type, see Type
Declarations

I File declaration 7-1, 12-2, 15-12
Scalar 6-1
V ector 11-10

DECODE statement 8-3
Descriptor

Data elements 11-6
Statement 11-10

DFBM 13-3
Diagnostics

Compiler failure B-1
Program compilation B-1
Return codes B-1, B-21
Run-time B-21
V ectorizer messages 11-4, B-31

Dimension
Adjustable 2-2, 7-4
Statement 6-2

Division 3-1
DO loops 5-4

Implied in DATA statement 6-5
Implied in 1/0 list 9-1
Nested 5-5
Range 5-4

DO statement 5-4
Double-precision

Constants 2-5
Conversion· 9-5
Type statement 6-1
Variables 2-5

I Drop file 15-12
Dummy arguments 7-3
Dynamic space 11-9

I

E conversion, input and output 9-4
Editing codes 9-6
ELSE IF statement 5-3
ELSE statement 5-2
ENCODE statement 8-3
END

Line 1-2
Parameter 8-1, 8-2, 8-4

END IF statement 5-3
End-of-file check 8-1
ENDFILE statement 8-5
ENTRY statement 7-6
.EQ. 3-3
EQUIVALENCE statement 6-3
ERR parameter 8-1, 8-2, 8-4
Error codes

Compilation B-1
Run-time B-21

Error processing 13-3
Evaluation of expressions 3-2
Example programs 16-1
Execution-time

Diagnostics B-21
File name handling 15-12
Format specification 9-7

Index-2

Explicit
Type statements 6-1
Vectorization 11-4

Exponentiation 3-2
Exponents 2-5
Expressions, array 10-2
Expressions, scalar

Arithmetic 3-1
Character 3-3
Logical 3-3
Relational 3-3
Subscript 2-2
Type of 3-3

Expressions, vector
Arithmetic 11-6
Bit 11-8
Relational 11-7

Extended range of DO loop 5-3
External

Effect of declaration on call 6-3, 12-2
Procedures 7-3
Statement 6-3

F conversion, input and output 9-4
.FALSE. 2-6
Fast calls 12-2
File

Declaration 7-1, 12-2, 15-12
Name handling at execution-time 15-12
Tape 7-2

First-letter rule 2-2
Flow control statements 5-1
Format

Conversion codes 9-3
Execution-time format specification 9-7
Repeat specification 9-3
Slash 9-3
Statement 9-2

Format argument (parameter), see Dummy argument
Formatted input/output

Read 8-1
Write 8-2

FORTRAN
Compiler call 15-1
Supplied functions 14-1
System control statement 15-1

FREE statement 11-9
Function

As actual argument 7-4
FORTRAN-supplied 14-1
Function subprogram 7-5
Referencing a 7-5, 7-7
Statement function 7-2
Statement (scalar) 7-2
Statement (vector) 11-11
Vector function 11-11

G conversion, input and output 9-4
.GE. 3-3
GO TO statements

Assigned GO TO 5-1
Computed GO TO 5-2
Unconditional GO TO 5-1

.GT. 3-3

H specification
Format specification 9-6
Hollerith constant 2-6, G-1

Hexadecimal constants 2-6
In bit array initialization 6-4

Hierarchy in expressions 3-1, 3-4
Hollerith

Constant 2-6, G-1
Format element 9-6

60457040 c

I

I conversion, input and output 9-4
IF statements

Arithmetic 5-2
Block 5-2
Logical 5-2

Implicit statement 6-1
Implied DO in

DATA statement 6-5
Input/output list 9-1

Index for DO loop 5-4
Initialization

In DATA statement 6-4
In type statement 6-1

Input
BUFFER IN statement G-1
File 7-1
List 9-1
Namelist 8-4
Program data 1-3

Input/output
Lists 9-1
Statements 8-1

Integer
Constants 2-4
Conversion 9-4
Type statement 6-1
Variables 2-4

Intrinsic, see FORTRAN-supplied

L conversion, input and output 9-5
Labeled common 6-2

Use of block data subprogram to initialize 7-6
Labels

In actual argument lists 5-4
In fiow control statements 5-1

I Map 15-3
Of statements 1-2

.LE. 3-3
Length

Function for buffered 1/0 G-2
Specification for character data 2-6, 6-1, 7-4

Library functions 14-1
Listings 15-3
Logical

Assignment statement 4-2
Constants 2-6
Expressions 3-3
IF statement 5-2
Type statement 6-1
Unit numbers 7-1
Variables 2-6

Loops, DO 5-4
Nested 5-5
V ectorizable 11-1

.LT. 3-3

Main program 7-1
Map, symbolic or cr~-reference 15-3
MDUMP 13-10
Memory-to-memory data transfer 8-3

DECODE 8-3
ENCODE 8-3

Messages
Compiler failure B-1
Program compilation B-1
Run-time B-21
V ectorizer 11-4, B-31

Mixed mode
Arithmetic conversion 3-1, 3-3
In data initialization 6-5

Multiple entry subprograms 7-6

60457040 c

Name
Common block 6-2
File 7-1
Length 2-1
Program 7-1
Variable 2-2

Namelist
Input data format 8-4
Output data format 8-5
READ 8-4
Statement 8-4
WRITE 8-4

.NE. 3-3
Nesting

Block IF structures 5-4
DO loops 5-5
Parentheses 9-2

Nonstandard RETURN 5-6
.NOT. 3-3
Numbers

Formats, see Constants
Logical unit 7-1
Statement label 1-2

Object file 15-1
Operators

Arithmetic 3-1
Logical 3-3
Precedence 3-4
Relational 3-3

Optimization 15-3
Options, FORTRAN statement 15-1
.OR. 3-3
Order of statements in program unit 1-3
Output

BUFFER OUT statement G-1
File 7-1
List 9-1
Namelist data form 8-4
Of bit data 9-5
Of descriptors 9-5
Record length 8-1
V ectoriz~ 11-4, B-31

P scale factors 9-6
Parameter, see Argument
PARAMETER statement 6-6
Parentheses, nesting 9-2
PAUSE statement 5-5
Precedence of operators 3-4
Print

Control characters 9-6
Namelist 8-4
Statement 8-2

Proced.tre communication
P~ing values 7-4
Using arguments 7-4
Using common 6-2

Procedure map 15-11
Program

Assembly language main 12-2
Data for 1-3
IMPL main 12-2
Maps 15-3
Sample 16-1
Statement 7-1
Units 1-1

Punch
File 7-1, 8-2
Namelist 8-4
Statement 8-2

I

I

Index-3

Q7BUFIN 13-12
Q7BUFOUT 13-13
Q7DFCL1 13-9
Q7DFLAGS 13-8
Q7DFOFF 13-8
Q7DFSET 13-8
Q7SEEK 13-13
Q7WAIT 13-13
Q8WIDTH 13-14
Q8m 13-1

R conversion, input and output 9-5
Range of DO loop 5-4
READ statements

And PROGRAM statement 7-1
Formatted 8-1
Namelist 8-4
Unf ormatted 8-2
With implied device 8-2

Real
Constant 2-5
Conversion 9-4
Type statement 6-1
V ariable 2-5

I Reassignment of file name at execution time 15-12
Record

Length 8-1
Types 8-1

Reference
Function reference 7-5
Reference maps 15-3

Register file
Conventions, FORTRAN . 12-1

I Map 15-12
Relational

Expressions (scalar) 3-3
Expressions (vector) 11-7
Operators 3-3

Retum
Codes B-1, B-21
Statement 5-6

REWIND statement 8-5
Rowwise

Arrays 2-2
Statement 6-2

Sample
Coding form 1-2
Programs 16-1

Scalar
Assignment statements 4-1
Declarations 6-1
Expressions 3-1

I Functions 7-5, 14-1
Scale factors 9-6
Semicolon notation 11-5
SEP 13-10
Separator

Colon 10-1
Semicolon 11-5
Slash 6-2, 6-4, 9-2

Slash in FORMAT statement 9-2
I Source listing 15-1

Special calls 13-1, D-1
Specification statements 6-1
STACKIJB 13-14
Standard, FORTRAN ANSI 1-1

lndex-4

Statement
Continuation 1-3
Format 1-1
FORTRAN (see individual statement names)
Functions 7-2
Label map 15-3
Labels 1-2
Order in program unit 1-3
Summary F-1

STOP statement 5-5
Structure

Program 1-1
Program unit 7-1

Subarrays 10-1
Subprograms 7-3

Block data 7-6
Function 7-5
Linkage 12-1
Miscellaneous utility 13-1
Multiple entry 7-6
Subprogram communication 7-4
Subroutine 7-5

Subroutine
Making call to 5-6
Statement 7-6
Supplied 13-14

Subscripts
Conventional succession of 2-2
Rowwise succession of 2-2
Subscript expressions 2-2

Symbolic
Constant 2-1, 6-6
Constant map 15-10
Name 2-1
Or cross-reference map 15-3

Syntax F-1
Check 15-2

System error processor 13-10

T specification 9-6
Tape files 7-2
TAPEn=f parameter 7-1
.TRUE. 2-6
Type dominance 3-1
Type of

Arithmetic expression 3-3
Function 7-5
Variable 2-2

Type statement
Dimension and length information in 6-1
Explicit 6-1
Implicit 6-1

Unary operators and evaluation 3-1
Unconditional GO TO 5-1
Unformatted

READ 8-2
WRITE 8-3

UNIT G-2
Unit numbers 7-1
Unit positioning

BACKSPACE 8-5
ENDFILE 8-5
REWIND 8-5

UNITn=f parameter 7-1
Utility subprograms 13-1

60457040 c

I

I

Variable
Array dimensions in a subprogram 2-2
FORMAT statements 9-7

I Map 15-9
Names and types 2-2

Variables
Bit 2-7
Character 2-6
Complex 2-5
Double-precision 2-5
Integer 2-4
Logical 2-6
Real 2-5

Vector
Declarations 11-10
Expressions 11-6
Semicolon notation 11-5
Statements 11-8

Vectorization 11-1
V ectorizer messages 11-4, B-31

WRITE statement
Formatted 8-2
Namelist 8-4
Unformatted 8-3

60457040 c

X hexadecimal constant 2-6
X specification 9-6
.XOR. 3-3

Z conversion, input and output 9-5

.AND. 3-3

.EQ. 3-3

.FALSE. 2-6

.GE. 3-3

.GT. 3-3

.LE. 3-3

.LT. 3-3

.NE. 3-3

.NOT. 3-3

.OR. 3-3

.TRUE. 2-6

.XOR. 3-3
* 7-4, 11-11, G-2
I 6-2, 6-4, 9-2
& 5-6, 8-4
' specification 9-6

Index-5

w z
:::i

~ z
0
<
I­
=> u

COMMENT SHEET

MANUAL TITLE: CYBER 200 FORTRAN Version 3 Reference Manual

PUBLICATION NO.: 60457040 REVISION: C

STREET ADDRESS=-------------------------------

CITY: ______________ STATE: _______ ZIP CODE: _______ _

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

0 Please reply 0 No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES ANO TAPE

TAPE TAPE

• I
I
I
I
I
I
I

' ' ' I
I

FOLD FOLD f
---~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California 94086

NO POSTAGE
NECESSARY
IF MAllED

IN THE
UNITED STATES

---, FOLD FOLD i
I

w

~
<!)
z
0
< .,_
:::> u

)

)

)

)

)

CORPORATE HEADQUARTERS P.O. BOX 0 MINNEAPOLIS, MINNESOTA 55440

~~
CONT"OL

DATA

