Customer Engineering
Instruction Manual

CONTROL DATA’
1604-A COMPUTER

PART 1,
THEORY of OPERATION

CONTROL DATA

T EIEIEXNEEREEXY XXX

Customer Engineering
Instruction Manual

CONTROL DATA
1604-A COMPUTER

PART 1,
THEORY of OPERATION

CONTROL DATA

RECORD of REVISIONS

REVISION

NOTES

A Publication Change Order 14546, no Product Designation

(8-29-66) | change.

Pages 2-3, 4-25, 6-1, 6-2, 6-4 and 6-5 revised

Pub. No. 60118700
September, 1966

© 1966, Control Data Corporation

Printed in the United States of America of this manual,

Address comments concerning this
manual to:

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue

St. Paul, Minnesota 55112

or use Comment Sheet located in back

0000 Q0O0COCGD

. ! \ .
- +3 E -

Chapter 1. Introduction

Description
Input/Output Section
Arithmetic Section
Storage Section

Control Section

Chapter 2, Control Section

Introduction

Instruction Format

Operation Code

Translation of Operation Code
Designator

Translation of the Designator

Base Execution Address

Program Control Register

The Ug Accumulator

Index Registers
Address Buffer Register

Functions of the R Register

Counting and Complementing
In R

Program Address Register

Counting in P

Parallel Transmission Inverter
Ranks

Control Sequences

Relation of Control and Storage
Sequences

Read Next Instruction Sequence

Acquisition of New
Instruction Word

CONTENTS

2-10

2-10
2-13
2-13

2-14
2-15

2-18
2-20

2-20

iii

Start and Stop
Initial Start
Step

Stop Instruction
Breakpoint Stop
Fault Stop
Start from Stop

Preliminary Steps in
Address Modification

Preliminary Control and
Arithmetic Steps

Interrupt Termination
Indirect Addressing
Normal Jump Sequence
Zero Address Sequence
Read Operand Sequence
Write Operand Sequence
Search and Transfer Sequence
Iterative Sequence
External Function Sequence
Interrupt Sequence
Interrupt
Advance Clock
Buffer Control Section
Auxiliary Sequence
High Speed Storage Sequence

Control Registers, Common
Control Register and
Comparator

Inverter Ranks I7 and 18
Auxiliary Scanner
Static Control

2-20

2-20
2-23
2-23
2-23
2-23
2-23

2-24
2-24
2-26
2-27
2-29
2-29
2-30
2-31
2-32
2-33
2-34
2-34
2-34
2-35
2-35
2-36

2-36
2-36
2-36
2-38

Breakpoint Address
Console Display

Resynchronizing
Resynchronizing Circuit
Runt Pulses

Resynchronizing Counter and

Pulses
Jump Instructions
Normal Jump
Return Jump
Program Example
Skip Instructions
Computer Operating Controls
Start-Step Switch
Clear Switch
Computer Master Clear
External Master Clear
Selective Jump Switches
Selective Stop Switches
Storage Test Switches
Master Clock

Chapter 3. Arithmetic Section

Arithmetic Registers
Accumulator
Q Register
X Register

Registers Used in Arithmetic
Operations

Basic Operations
Binary Arithmetic
Addition

Sensing for First Condition

Sensing for Second Condition

Combining Two Conditions

Borrow Pyramid

2-38
2-38
2-40
2-40
2-41

2-41
2-42
2-42
2-43
2-44
2-44
2-45
2-45
2-46
2-46
2-48
2-48
2-49
2-49
2-50

iv

Subtraction
Shifting
Shift Instructions
Shifting in Multiplication and
Division
Shifting in Floating Point
Instructions
Shifting in Scale Instructions
Iterative Sequence
Multiplication
Division
Initial Sign Correction
Division Phase
Final Sign Correction
Floating Point
Coefficient
Exponent
Floating Point Operation
Addition
Subtraction
Multiplication
Division
Logical Product
Register Sensing Circuits
Arithmetic Faults
Divide Faults
Shift Faults
Overflow Faults
Exponent Faults
Fault Control

Chapter 4. Storage Section

Introduction

Principles of Magnetic Core
Storage

Magnetic Cores

Memory Planes

3-9
3-10
3-11

3-13
3-13
3-13
3-13
3-18
3-18
3=19
3-20
3-21
3-21
3-21
3=23
3-24
3-25
3-26
3-27
3-27
3-29
3-31
3-31
3-31
3-33
3-33
3-33

Z Y . . <
£ /
{

EEEEEEEXEXEZEZE XXX

Memory Plane Assembly 4-8 High Speed Storage
Address Selection 4-10 Beguence By
S Register 4-12 %D‘Oeft‘;ﬁg{esume g 5 14
Horizontal and Vertical Drivers 4-12 Auxiliary Scanner 5-14
Horizontal and Vertical Diverters 4-16 Auxiliary Sequence 5-17
Memory Flaca Cieciiid oL Ready/Resume Logic (Input) 5-18
PR Elnern il Buffering to or From
Inhibit Circuits 4-20 00001 - 00006 5-19
Storage Sequence Control 4-21 Transfer 5-20
Initiate Storage Reference Preparation 5-21
CAreui, e Input Transfer - 62 5-21
Bequence: Contngle G Interrupt or Clock Request
Timing Pulse Generator 4-23 During 62 5-22
Drive Generators and Pulse Output Transfer - 63 5-22
Geustatore et Interrupt on Clock Request
Fault Detector 4-31 During 63 5-24
g}ggfﬁ?;m Theory of Storage 4-31 Chapter 6. Interrupt and Real Time Clock
Drive Generator (Type 51) 4-32 Interrupt 6-1
Diverter (Type 52) 4-33 Types of Interrupts 6=1
Selector (Type 53) 4-34 Internal Interrupts 6-2
Current Source (Type 54) 4-35 External Interrupts 6-3
Inhibit Generator (Type 55) 4-36 Interrupt Scanner 6-4
Sense Amplifier (Type 56) 4-37 Interrupt Sequence Entrance 6-7

Chapter 5. Input/Output Section Interrupt Entrance from Exit 6-7

Internal Interrupt During RNI 6-7

Data TEenSmSSION 9=l Interrupt During Output
Buffering 5-1 Transfer 6-7
Communication Paths 5-1 Interrupt During Input
Data and Control Information Transfer 6-7
Lines 5-2 Interrupt During Storage
Buffer Control 5-5 Bz 6
Buffer Operations 5.6 Interrupt Sequence 6-11
Store Terminal Address 5-8 et 6-12
Sensing for Channel Inactive 5-8 Reirs. vo Maih E¥onran 6-13
Real Time Clock 6-14

Selecting Equipment and Mode 5-12
Sensing Condition of Equipment 5-12 Chapter 7. Console Input/Output Equipment

Activating the Channel 5-13 Modes for Handling Data 7.1

Typewriter

Typewriter Codes
Keyboard Operation
Typewriter Output Operation

Chapter 8. Power and Cooling

Power Requirements

Main Power Distribution

Cooling System

Protective Interlock System

Appendixes
Borrow Pyramid
Glossary of Terms

List of Instructions

2-14 Indirect Addressing Part

of RNI

2-15 Normal Jump Sequence
2-16 Basic Chain of Control

Delays in Zero Address
Sequence

2-17 Basic Chain of Control

Delays in RO Sequence

2-20 TIterative Sequence

2-21 Block Diagram of EXF

Sequence

2-22 Block Diagram of Interrupt

Sequence

2-23 Block Diagram of Auxiliary

Sequence

2-24 Pictorial Representation

of Scanner

2-25 Digit Display, Lowest

Octal Digit of A

2-26 Console Display

2-27 Resynchronizing Circuit

2-28 Resynchronizing Counter

External Functions 7-2
Select Codes 7-2
Sense Codes 7-4

Input Distributor 7-5
Output Distributor 7-7
Paper Tape Reader 7-9
Manual Controls 7-9
Paper Tape 759
Reader Operation 7-10
Auto Load Control 7-13
Paper Tape Punch 7-14
Punch Controls 7-14 A
Punch Operation 7-14 B
C
FIGURES
= Typical 1604-A System 1-2
1-2 Simplified Diagram of the
Computer 1-3
1-3 Composition of 48-bit
Instruction Word 1~5
2-1 Block Diagram of Computer
Control 2-1
2-2 Structure of Operation Code
Translator 2-3
2-3 Translator, Second Level 2-4
2-4 U Register 2-7
2-5 Adding in U, Accumulator 2-8
2-6 R Register Counting Structure 2-11
2-7 Parallel Transmission Paths 2-14
2-8 Example of a Sequence 2=1.7
2-9 Over-all Sequence Control 2-18
2-10 Relation of Control and
Storage Sequences 2-19
2-11 Form of RNI for Acquiring
Instructions 2-21
2-12 RNI For Start and Stop 2-22
2-13 RNI For Interrupt Termination 2-25

vi

2-29 Connection of Start-Step

Switch to RNI

2-30 Sampling Selective Jump

Conditions

7-15
7-18
7-17
7-20

2-28
2-28

2-39
2-39
2-40
2-42

@0 000000 SOIGED OO GE O e

3-9
3-10
4-1

4-10

4-11

4-12

4-13

4-14

4-15

Master Clock Oscillator
Waveforms

Over-All Block Diagram of
Arithmetic Section

Typical State of A Register

Relation of Borrow Pyramid
to A and X Registers

Shift Control
Iterative Sequence
Multiply Step
Divide Step

Relation of Coefficients in
Addition

Register Sensing Networks
Arithmetic Faults

Logical Divisions of the
Storage Section

Magnetic Core Matrix
Memory Plane Stack
Hysteresis Diagram

Voltage on Sense Winding as
a Result of Read Drive

Memory Board

Distribution of Memory Plane
Assemblies

Intersection of H and V
Wires

Connection of Drive Lines
and Diversion Lines

Drivers and Diverters
Selected by Sl or $2
Registers

sl and s2 Registers

Typical Horizontal or Vertical
Drive Circuit

Horizontal or Vertical Diver-
sion Circuit

Path of Sense Wire Through
a Four-Core Matrix

Typical Stage of the Memory
Plane Control

3-10
3-12
3-14
3-17
3-19

3-25
3-30
3-32

4-11

4-13

4-14

4-15

4-16

4-16

4-17

4-18
4-19

4-20

4-22

4-23

4-24
4-25
4-26

4-217

4-28

5-1

Path of Inhibit Wire Through
a Four-Core Matrix

Basic Pulse Sequence for
Storage Reference

Storage Reference Circuit

Sequence of Pulses Generated
by Control Sequence

Timing Pulse Generator of
EvenStorage Sequence
Control

Drive and Pulse Generator
of Even Storage Sequence
Control

Fault Detector of Even
Storage Unit

Drive Generator (Card
Type 51)

Diverter (Card Type 52)
Selector (Card Type 53)

Current Source (Card
Type 54)

Inhibit Generator (Card
Type 55)

Sense Amplifier (Card
Type 56)

Block Diagram of Buffer
Control

Structure of Control Words

External Function Select/
Sense Code

External Function Sequence
External Function Inverters

Ready/Resume Logic -
Channel 2

Auxiliary Scanner

Ready/Resume Logic -
Channel 1

Block Diagram of Search
and Transfer Sequence

Temporary Termination of
S & T Sequence During 63

Fault FFs and Internal
Interrupt Request

4-20

4-21
4-22

4-32
4-33
4-34

5-9
5-11
5-13

5-15
5-16

5-18

5-20

5-24

6-2

Masked Interrupt Register and

Interrupt Scanner
Interrupt Sequence
Real Time Clock
Setting Advance Clock FF

External Function Translator

Sense Circuit Console
Equipment

Input Distributor, Simplified
Diagram

Character Orientation in Reg-

isters and on Paper Tape

Designation of Base Execution

Address
Control Sequences

Decimal and Binary
Equivalents

Binary Subtraction

Timing Pulse Generator of
Even Storage Sequence

Control: Complete Counter

Cycle

Timing Pulse Generator,
Source of Timing Pulses

Line Assignment of a Given
Cable Group - Data Lines

6-5
6-7
6-14
6-15
7-3

TABLES

4-26

4-29

5-3

viii

7-5

-1
7-8
7-9
7-10

T=11

Output Distributor Simpli-
fied Diagram

Seven Level Punched
Paper Tape

Reader Control Circuit
End-of-Tape Circuit
Keyboard Control Circuit

Carriage Return, Interrupt
Circuit

Typewriter Control Circuit
(Output)

Line Assignment of a Given
Cable Group - Control
Lines

Sense Codes

Interrupt Locations

Internal Fault Codes
External Interrupt Codes
Typical Interrupt Subroutine

Select Codes for Console
Equipment

Sense Codes for Console
Equipment

Reader Operation

Typewriter Codes

7-8

7-10
7-11
7-13
7-18

7-19

7-21

5-4
5-9
6= 1
6-3
6-3
6-10

7-4

-4
7-12
7-16

CHAPTER 1
INTRODUCTION
DESCRIPTION

This manual describes the operation of the central computer and console. Chapter 1
is an introduction to the computer. Chapters 2 - 5 analyze in detail the major
sections of the computer: control, arithmetic, storage, and input/output. Chapter 6
describes the interrupt and real time clock operations. Chapters 7 - 8 describe

the console-mounted external equipment and the power system.

Supplementary material:

1604-A Customer Engineering Diagrams Manual CDC 60024300
1604-A Input/Output Specifications CDC 60024400
1604-A Reference Manual CDC 60024500

1604-A Customer Engineering Instruction Manual, Part 2 Maintenance CDC
60118800

The 1604-A computer consists of the main computer cabinet and the console.

A 1604-A system (figure 1-1) may include several external equipments which are
connected to the computer by means of the adaptors. The adaptors provide

data buffers and control circuits for card reader and punch, line printer and

tape units.

The main cabinet contains the computer and the control circuits for the external
equipment at the console. The operator's panel on the console provides
indicators and operating controls. The monitor typewriter, paper tape punch

and paper tape reader are on the console.

There are four major sections in the computer (figure 1-2): (1) Input/output

provides communication between the computer and external equipments; (2) Arithmetic
performs the arithmetic and logical operations to execute instructions;

(3) Storage provides internal storage for data and instructions; and (4) Control
coordinates and sequences all the operations which carry out the execution of an

instruction.

1
o000 00ocoocoo @ ooooooocoooo0

BUFFER CHANNEL

©

TRANSFER CHANNEL

1810
CONTROL UNIT

Figure 1-1.

MAGNETIC TAPE UNITS

Typical 1604-A System

1-2

523
CARD
PUNCH
T
|
1614
405 |
CARD 1612
CARD 'READER :READER PRINTER
| con-
T lRoLLER
B85 @%9
1604-A
COMPUTER
() () °
| 606
1615 I
MAGNETIC TAPE
CONTROLLER
606
606 608 606 €08

CONTROL

|
I
|
|
1
I
|
[l
VOO

STORAGE

— e — cm— o oo e—— oy

ARITHMETIC

INPUT -
OUTPUT

FEEEEE

Figure 1-2, Simplified Diagram of the Computer

1-3

INPUT/OUTPUT SECTION

The Input/Output section of the computer provides the methods for data
exchange and for proper control of information transmission between the

computer and the various external equipments.

ARITHMETIC SECTION

The A register (Accumulator) is the principal arithmetic register. This
register provides for the parallel addition of the X register to its content;

it can be shifted either separately or in conjunction with the Q register.

The Q register is an auxiliary arithmetic register used in more complicated
arithmetic operations. In combination with the X register it forms logical

products and can be shifted either separately or in conjunction with A.

STORAGE SECTION

Each of the two magnetic core storage units contain 16, 384 locations or
addresses for 48-bit words; the total storage capacity is 32, 768 words. All
odd storage addresses reference one storage unit; all even addresses, the

other.

Words to be read out of storage are transferred via inverter rank 15 (even
storage) or 16 (odd storage) to the appropriate register. Words to be written
into a storage unit are transmitted via 15 or 16 to the Z register, which is

then sampled to determine what is to be entered into storage.

CONTROL SECTION

The control section acquires an instruction from storége, interprets it, and

sends the required commands to other sections. A 24-bit instruction is

composed of three parts or codes, designated by the letters f, b and m (figure 1-3).
A program word is a pair of 24-bit instructions, which together occupy one
storage location. The higher-order 24 bits of such a word are called the

upper instruction and the remaining 24 bits, the lower instruction.

OPERATION CODE UPPER ADDRESS
¢ BITS 1S BITS LOWER ADDRESS
r A \ A A \ l A ~\
f b m ! 1] L)
\ J "\ Vv J
DESIGNATOR LOWER INSTRUCTION

3 BITS

. sl

v
UPPER INSTRUCTION

Figure 1-3. Composition of 48-Bit Instruction Word

The six index registers (B1 through B6) provide for modification of the execution

addresses of instruction.

The P register, program address register, provides continuity by generating in
sequence the storage addresses in which the individual steps of the program are

contained.

The program control register, Ul, holds a program word while the two instructions
contained in it are executed. The 48-bit instruction word is taken from the storage
location specified by P and entered into Ul. The upper instruction is always
executed first. Execution of the lower instruction follows, except when the upper

instruction is a jump or conditional skip.

The auxiliary program control register, U2, is an accumulator used primarily

in the modification of the base execution address.

The address buffer register, R, is used in transmissions to and from the B registers

and is also used as a counter during the execution of several instructions.

The following is an example of how this typically operates:

Address 00500 contains the following pair of instructions: upper instruction 14 (Add)
and lower instruction 50 (Enter Index). The P register holds the address 00500

(even storage). The upper 14 bits of P are sent to Sl. The storage reference is
initiated and the 48-bit word (instruction pair) is read from address 00500. The word

is entered into Ul.

From this point on the operations of the computer are conditioned directly or

indirectly by the 24-bit instruction in the upper half of Ul, Add. The purpose of this

1-5

instruction is to add the quantity in the storage location specified by the execution

address to the contents of A.

The index code, b, and operation code, f, are now translated and (Bb)* is transmitted
to Rl. At the same time the 15-bit base execution address is transmitted from U1
to U2. The contents of R1 are added to U2 to yield the execution address, M, which

specifies the location of the operand.

Depending on whether the lowest bit of U2 is a "0" or a '"'1'", the remaining 14 bits

are transmitted to S1 or 82 in preparation for reading the operand to be added to A.

The storage reference is initiated, the operand is entered into X, and X is added to A.

The computer is ready to execute the next instruction contained in the lower 24 bits
of Ul. The upper half of U1 is cleared and the lower half transmitted to the upper
half, so that U1 upper holds instruction 50 (Enter Index). The purpose of this
instruction is to place the 15-bit base execution address in index register b.
Following translation of f and b, the base execution address is transmitted from

U1 to U2. Now U2 is transmitted to R, and R in turn is transmitted to the B register

specified by b and the execution of the instruction is complete.

b ; — . ' .
*#(B”) = the contents of the B register specified by the b portion of the instruction.

CHAPTER 2
CONTROL SECTION
INTRODUCTION

The control section of the computer is composed of two parts, main control and

buffer control.

Main control directs the interpretation and execution of instructions and establishes
the timing to perform the instructions in the proper sequence. When an exchange of
data with external equipment is called for, main control initiates the exchange and
then gives control of the exchange to buffer control. Main control is then free to

continue executing other instructions while data exchange is taking place.

Buffer control accepts control of data exchange operations, supervises the exchange,
and signals main control when the operation is completed. Buffer control is

described lated in this chapter and in chapter 5.

EXTERNAL EQUIPMENT

!

BUFFER CONTROLJ

STORAGE

¢

MAIN CONTROL_I

!

ARITHMETIC SECTION
AND
SPECIAL SEQUENCES

Figure 2-1. Block Diagram of Computer Control

2-1

INSTRUCTION FORMAT

The commands which execute instructions and exchange data between the computer
and external equipment are issued by a sequence. The issuing of commands is
controlled directly or indirectly by the instruction in the Program Control register

Ul. The 24-bit instruction format is shown below.

']

OPERATION CODE BASE EXECUTION ADDRESS
6 BITS 15 BITS

! |
I § J bor j I k, m or y _l
T

DESIGNATOR
3 BITS

Fach of the 62 instructions has a unique 6-bit operation code, f, which designates the
instruction. The translation of f establishes the condition required within the control

section for the execution of the instruction.

The next three bits are the designator, b or j. When the designator refers to an
Index register, B, it is denoted by b. The contents of the designated Index register,
(Bb), are usually added to the base execution address, the right 15 bits of the
instruction. The base execution address usually refers to a memory location, m.
(Bb) is added to m to give the actual address, M, of the operand. When b = 0, m is
the operand address. When b = 7, indirect addressing is used. Indirect addressing

is explained on page 2-26.

In Jump and Stop instructions the designator is called j and indicates the condition

necessary for the jump or stop.

OPERATION CODE

This 6-bit code specifies an instruction and controls the operation of the computer
during the execution of the instruction. There are 6410 Octal codes; 62 Specify

instructions, and codes 00 and 77 represent fault conditions that halt the computer.

Translation of Operation Code

Prior to the execution of the instruction designated by the value of f, the operation
code is translated by a network of single inverters which samples the upper six bits
of Ul. The results of the translation go to the various sections of the machine to

gate commands which carry out the required operations.

The translator (figure 2-2) uses several levels of logic in forming the outputs which
gate commands. Outputs from the upper six FF's of U1 are connected to single
inverter slaves. The set side of each FF has a U4-4 and U4-6 inverter slave; the
clear side of each FF has a U4-5 and a U4-7 inverter slaves.

Ir_ UNIQUE AND GROUP TRANSLATIONS USED THROUGHOUT COMPUTER o FINAL
FB%-- THRU F®-- INVERTER
Y .. __—__S______JLEVEL
A R s N T Ty L P e s |
| COMBINED TRANSLATIONS FIRST AND SECOND DIGITS IsEcono
F3-- AND F*-- INVERTERS
L - g —___,LEVEL
:;RST OCTAL DIGIT TRANSLATION : |szco~o OCTAL DIGIT Tnmsura FIRST
F'-- INVERTERS | FO-- AND F2--
l D F2--INVERTERS ILEVEL
e~ T AT A SR Tl S
U4 -4 AND U4-¢ INVERTER SLAVES FROM "|" SIDE OF FF's

U4-5 AND U4-7 INVERTER SLAVES FROM "O" SIDE OF FF'S I

R e i

3 3
o. 2

o = - - - -
~ o~ g o 3 < 2 [2 L
¢ @ e @ e @ ¢ e ¢ @
2 2 2 2 2 O 2 2 2 O
\¥ J

v

f PORTION OF u'

Figure 2-2. Structure of Operation Code Translator

The first level translation is divided into two parts; i.e., one concerned with the
second octal digit of f (U42-, U43-, U44-), and the other with the first octal digit
(U45-, U46-, U47-). All FO-- and F2-- inverters translate the second octal digit.

All F1-- inverters translate the first octal digit.

Unique (single-value) translations of the second octal digit are provided by F000
through F007. When the output of one of these inverters is ''l'"", the second octal
digit has the value given in the third superscript digit of the inverter designation;
e.g., a '"1" from F007 indicates that the second digit is 7. The F2-- inverters
provide partial, or incomplete, translations of the second octal digit. These

translations are duplicated by several slave inverters.

The F1-- inverters, which uniquely translate the first octal digit, use the last digit
of the inverter designation to indicate the value translated. Thus, F105 indicates
that the first octal digit is 5.

In the second level of the translator the outputs of first level inverters that translate
individually the first and the second octal digits are combined to specify either a
unique value of the Operation code or a group of values. The F3-- and F4-- inverters
combine the translations of the first and second digits in figure 2-3. Outputs of the
F3-- and F4-- inverters go to F5-- or F6-- which supply the translations throughout

the computer.

1220,21,47

t#20, 2l O tE47

=

fz2_ O- 2 0, I tz4._ O- t=_7

Figure 2-3. Translator, Second Level

DESIGNATOR

When the 3-bit designator in an instruction specifies the Index register, B, it is
denoted by the letter b. When b = 0, no modification of the execution address occurs;
with b = 7, indirect addressing is used. Instruction 50 with b = 0 performs no
operation but "'passes'' to the next instruction. In instructions 62-67, b = 0 specifies

that exactly one word is to be transferred or searched.

2-4

When used as a condition designator, as in instructions 22, 23, and 74-76, the 3-bit
quantity is denoted by the letter j which is interpreted as follows:

22 A Jump: = Jﬁmp if register content is zero
23 Q Jump: - Jump if register content is not zero

- Jump if register content is positive

- Jump if register content is negative
Return jump if register content is zero

- Return jump if register content is not zero

- Return jump if register content is positive

N O O b w NN = O
1

- Return jump if register content is negative
75 Selective Jump: - Jump unconditionally

- Jump if jump key one is set
- Jump if jump key two is set

- Jump if jump key three is set

0

1

2

3

4 - Return jump unconditionally

5 - Return jump if jump key one is set
6 - Return jump if jump key two is set
7

- Return jump if jump key three is set
76 Selective Stop: - Stop uncondtionally (normal jump)
- Stop if stop key one is set (normal jump)
- Stop if stop key two is set (normal jump)
- Stop if stop key three is set (normal jump)
Stop unconditionaliy (return jump)
- Stop if stop key one is set (return jump)
- Stop if stop key two is set (return jump)

N O O b o w N = O
1

- Stop if stop key three is set (return jump)

Only the stop may be conditioned; the jump occurs unconditionally when the computer
is restarted or when the stop condition is not met.

74 External 0 - Select external equipment

Function: 1 - Activate communication channel one

2 - Activate communication channel two

2-5

74 External
Function:

Activate communication channel three
- Activate communication channel four

Activate communication channel five

Activate communication channel six

N o O W
1

- Sense external condition

Translation of the Designator

Inverters F700 through F707 translate the eight possible values of the designator.

A "0" output from one of these inverters indicates the value given by the third super-
script digit in the symbol; a "'0'" output from F705 indicates that the value is 5. Since
the outputs of these inverters feed inverter slaves, the designator translation is in

normal form (''1") when it is used for gating.

BASE EXECUTION ADDRESS
The base execution address (lower 15 bits of an instruction) has three functions,

depending upon the instruction used (see table 2-1).

TABLE 2-1. DESIGNATION OF BASE EXECUTION ADDRESS

Instructions Use Denoted

19-98, Bb-47, Specifies storage m M |

52, 53, bb-73, location of

75, 76 operand

14, 10, 11, 50 As operand y Y > After modification by
51, 54, 74 addition of (BP)
01-03, 05-07, As shift count k K

34, 35 &

The base execution address is transmitted from the upper instruction in U1 to U2 in
the execution of all instructions. If it is to be modified, Bb is transmitted to R1
(the Address Buffer register) and then R1 is added to U2. When the operand is
procured from or sent to storage, U2 is transmitted to S1 or S2. When U2 is to be

used as the operand or shift count, it is transmitted to X1 or Rl.

PROGRAM CONTROL REGISTER

The Program Control register, U, holds the 48-bit instruction word during execution
of the two 24-bit instructions (figure 2-4), All operations necessary to execute an
instruction are governed by the contents of this register,

The U register consists of two ranks of FFs. Rank Ul, 48-bits in length, stores the
instruction word during execution of the two instructions., Rank Uz, 15-bits in length,
is a subtractive accumulator with a borrow pyramid. Transmission paths connect U2
with the m portion of the upper half of U1.

The instruction word is read from storage and entered into Ul. Execution of the upper
instruction occurs first; the lower instruction is then transmitted to the upper half of
U1 and executed. Thus the current instruction is always in the upper half of Ul.

UPPER IN?LTRUCTION LOWER INSTRUCTION
A

A\'4 e

Ol = [

I ¢ 24 00

l | w2

14 00

Figure 2-4., U Register

The primary function of U2 is to modify the execution address, m, of the instruction
b

in the upper half of U1 by adding the contents of B~ to it,

After transmitting m from v! to U2 and transmitting (Bb) to R, R is added to U2 and the
sum is formed in U'2 The modified execution address in U2 for most instructions
specifies the location of the operand in storage.

THE U? ACCUMULATOR

U2 is a 15-bit subtractive accumulator that provides for the addition of R1 to its content,

This accumulator is simular in structure to the A register (the 48-bit accumulator).

Two ranks of FFs are necessary for the addition operation. Stages U“ through U"’8
of U? (upper address) form the rank that is sampled by the pyramid (figure 2-5), The
FFs constitute the other rank, which receives the sum,

Uua
A
4 \
! 8 J
a7 38 2423 00
o <
> -
T S
= .
= 2
Uz
14 00
Uyy — U2
ADD R! TO U2
U2 BORROW R!
PYRAMID 4 00
DISABLE
BORROWS PARTIAL
ADD IN U2
KSSO
K53|

Figure 2-5, Adding in Uz Accumulator

Prior to the addition of R1 to Uz, the UIUA = U2 or U2 == UIUA command insures

that both ranks hold the same quantity. Following this, the borrow pyramid samples
1

6] UA and F(1 to determine the stages of U2 that must be toggled in order for

UIUA + R1 to be formed in U2. This occurs when the command Add R1 to U2 is given,

2-8

The U2 accumulator has provisions for disabling the borrow pyramid so that each bit
of U? is toggled if the corresponding bit of R!is "1". The pyramid is disabled when
the Partial Add in U2 FF (K530/531) is set, Thus the Add R1 to U2 command
accomplishes a selective toggling function when K530/531 is set, However, when
this FF is cleared, a full addition results from the Add R1 to U2 command, The
partial addition of Rl to U2 is often used in transmitting B to another register such
as X, B goes to R and R1 is partially added to Uz, with U2 sent to X,

In addition, if either B® or U has a "1" in the highest bit, it is treated as a negative
number expressed in one's complement form. Thus if the quantities m = 00005 and

Bb = 77776 are added, the sum is 00004, The same result is obtained when the values

of Bb and U2 are interchanged.

INDEX REGISTERS

There are six Index registers, B1 through BG. In most instructions the B registers
hold quantities to be added to the base execution address., For Search instructions
(64-67), (Bb) indicates the number of items to be searched. The B registers have no
provision for arithmetic operations, When such an operation is required on an index
quantity, (Bb) is entered in R or U2 and the operation is performed there; the result is
returned to Bb.

Transmissions into a B register come from R2 via the 14 single-inverter rank

(figure 2-7). Each B register provides outputs to either 12 or 13, which are in turn

gated to R!. For this transmission the "0" output of the register FFs is used due to
: ; : 2 3 »

the single inversion of I” or I”,

Equation symbol assignments for the B registers are different from other registers.
The first digit of the superscript identifies the register; second and third digits indicate
the stage. The ''0" side is not identified by the odd character of the third digit; instead,
the ''0" side is indicated if the second and third digits are 50 or greater. The stage
with which such a symbol is associated is found by subtracting 50 from the last two
digits., For example, B563 is the "0'" side of stage 13 of BS.

ADDRESS BUFFER REGISTER

The 15-bit Address Buffer register R provides for counting and complementing as well
as for storage. As a counter it operates subtractively.

2-9

The R register consists of two ranks of FFs, R1 and Rz. Inverter rank 12 receives
inputs from control which set it to predetermined values; I2 is then transmitted to
r! (figure 2-6).

FUNCTIONS OF THE R REGISTER

1) All transmissions to and from the B registers go through R.

2) The base execution address of the current instruction is modified by

addition of the quantity in R (obtained from Bb) to U2.

3) R acts as the shift counter in Shift instructions.

4) In the integer and fractional Multiply and Divide instructions, R records
the number of partial multiplications and divisions which remain to be

performed.

5) In floating point instructions, R performs arithmetic operations on one

of the two exponents,

COUNTING AND COMPLEMENTING IN R

The R register is a two's complement, open-ended subtractive counter with a modulus
15
of 2

. In counting, the bits of R are toggled to form the quantity (Rl) -1 in R2. The
command Reduce R! to R? subtracts "1" from the first stage, " (figure 2-6). When

ROC ig '""0", a borrow from RO is required. Similarly, a borrow is required from B2
if both ROO and R01 are '""0", Thus, in general, a borrow is required from stage n if
2

all stages lower than n are ''0''. Borrows are accomplished by toggling a stage of R

with the corresponding stage of R1 when the command occurs,

For sensing the borrows, R1 and R2 are organized as five 3-bit groups, each of which
00 . 1At S HES T

is 0", "1" is
borrowed from the second group only if the stages of the first group are each ''0". A

01
is a small counter. Just as ''l" is borrowed from R ~ only if R

borrow is made from a group only when all stages of the next lower group are 0",

In each group, H87- senses when the three stages of the group are "0'", This condition
is indicated by a ''0" output from H87-, Outputs of H87~- of lower-order groups are
used by higher-order groups to determine whether a borrow is required, A borrow

is required from the fifth group only when the outputs of H870, H872, H874, and

H876 are ''0", |

GROUP O
GROUP 4 =
[GROUP 3 GROUP 2 GROUP | N
‘ 1120/‘2' R O®%0/09¢ RO&o/06! RO!D/O)‘ NGRS ol P S S
HROUGH T
‘ e NII‘?DOIUGH THROUGH THROUGH
R o R0IO/0.| Ro’ﬂlﬂ!l ‘ I
302
' I,Qz R 1% 1300 i
I I 3% I 1200 =
| 2 3 g5 g 8 |8
x = « « @ [3
p
&— & 1 213
:-‘11. T T IR
(10} , |
: !
: |
o l : s . : 3 3 |
1 9. 8 9 i s & ol)
o | o e s |
.
, ROI0 I
= | RO REsS ik
L | I
3 T o -] |
Uq RIZ!/I?! le/m .“ZIO.‘ RD!Z/D!‘ G > ’
[THROUGH THROUGH i
THROUGH
[\ Eﬁ_ R142/143 nz/n3 s v Tl = o
3 o r‘—l R W p 0827083 q R 0327033 W l
H
Y e | T B0 S B R e T —,
O N‘YO "170 ,‘310 “|N b
Q
c
No!
E_ GROUP
R=0+1 ik
5 E —~ GROUP 3 oRoup 2 GROUP | REDUCE R' TO R®
U% X ‘lll
NéTO 870
~ Lo o N4TO 370 7
ge n MO W70 ..olv_T_]
H
(=
(¢}
-+
o)
=
(¢]
e
3 HOTS HeTe Wer2 FOD)
Rie2 Rox non o
ROS2
R132 ROI2 nox Rt o e
R 122 frgsed " :”‘:‘ 00:
R 003 L d [N80 N o%0 Hoe
W7o
Here

N 939 N 939

Within a group from which a borrow is required, the first stage is toggled by the
Reduce R' to R command, The second stage is toggled if the firat stage is 0",
The third stage is toggled only if both the first and second stages are ''0',

Complementing is performed in R by transmitting the complement of the bits in

R% to R . For many uses of R it is necessary to sense when the quantity in R is ''0";
the H87- terms sense this condition, The outputs of all five H87- terms are combined
by both 17570 and N670, When the five inputs to each are "0", all 15 stages of R contain

"0", This condition is indicated by a ''1" from N570 or N670,

There is an important difference, however, between the indications of the R = 0 condition

given by N570 and N670, To account for this difference it is necessary to consider the
interval between the time when the Reduce R1 to R2 command is given and the time when
the state of R resulting from this reduction is reflected at the output of N570., The in-
terval is two clock periods, one for toggling R2 and one for the R = 0 control delay. In
certain cases, such as Shift instructions, sensing the R .= 0 condition must not lag the
Reduce command by such an interval, Furthermore, since in these cases it is known
that R is reduced to ''0", it is possible to anticipate the time at which this occurs by
sensing when R = 1. The output of N670 is a ''1"" not only when R—= 0 but also when R = 1,

By using FFs K410/411 and K412/413, it is possible to obtain a pulse two clock times
after R is reduced to "0'" and to obtain just one such pulse despite the fact that when R
is reduced to ""0" the output of N570 may be a ''1" for some time. This is done by
setting K410/411 to '"1", which in turn sets K412/413 to "1, After R = 0 the latter FF
causes the former to be cleared. This results in K412/413 being cleared one clock
time later. In order to uniquely specify the first time the output of N570 is a "1", it is
only necessary to combine a "'1" output from K412/413 in an AND with N570,

When R is employed as an additive rather than a subtractive counter, the sequence

of commands is:

Complement R2 to R1
R1 _,R2

1 2
Reduce R to R
Complement R2 to R1
R1 _>R2

Following this sequence R2 holds the initial quantity plus one.

2-12

00000 OCOIOEGDOOCOEOONEGOEOEO®

PROGRAM ADDRESS REGISTER

The Program Address register, P register, holds the address of each instruction
word. After the upper and lower instructions of a word are executed, the quantity in
P is advanced by one to the address of the next instruction. Thus the P register is

a counter,
The initial address of a program is entered into P manually at the control console.

When the computer executes a Return Jump instruction, (P) + 1 is stored to provide
for return to the next instruction in the program. The address specified in the Jump

instruction is then entered into P from the U register.

The contents of P! are transmitted to P2 every odd clock phase so that P2 always

equals P1 ;

COUNTING IN P

The P register is a two's complement additive counter with a modulus of 215. The
bits of P are toggled to form the quantity P2 + 1 in Pl. The command to advance P
occurs each time the Read Next Instruction (RNI) sequence is entered from a full exit.
This command always adds one to the first stage, POO. If POO is a one when the
command occurs, a carry to P01 is required. Similarly, a carry to P02 is required
if both POO and P01 are one. A carry to any stage, n, is required if all stages lower
than n are "1's'". Carries are accomplished by toggling a stage of pl with the

corresponding stage of P2.

P1 and P2 are organized as five three-bit groups, each of which is a small counter.

Group 1 is increased for each Advance P command. Group 2 is increased only if all
the bits of group one are ones when the Advance P command is received. Group 3 is
increased only if both groups 1 and 2 are all ones, etc. Except for the fact that P is
an additive counter, its counting structure is similar to that of the R register

(figure 2-6).

Special gates provide for setting P to addresses 00007-00017 when an interrupt condition
occurs. Storage locations 0007-000017 are used to enter into an exit from interrupt

routines.

The P register and the setting of the Breakpoint switch are sampled and compared
during every RNI sequence. The logic for this comparison is discussed under break-

point.
2=13

PARALLEL TRANSMISSION INVERTER RANKS

Many of the parallel transmission paths between registers involve a rank of inverters.

Figure 2-7 shows the major transmission paths and the nine inverter ranks. The
purpose of inverter ranks is to increase the input or output capacity of a register.
For example, rank 14 as a slave for R increases the number of outputs from R to
the Index registers. FEach inverter of I4 requires only one output from R, and the

inverter provides six outputs to the Index registers.
In addition to increasing the number of transmission paths available, some inverter

ranks perform other operations. I2 has special logic connected to its input that is

used to set R to the proper shift count for Iterative instructions.

00— o3

COoM -
|

-6 -6
CRy EL STORAGE

10 it vy

M3

u2 s2

sl

EXF LINES 12 00 x2 04

p!

p2

Figure 2-7. Parallel Transmission Paths

2-14

CONTROL SEQUENCES

The timing of commands within the computer is done by control sequences. The main
sequences and the computer instructions which they control are listed in table 2-2.
Command timing charts, contained in Part 2 of the Customer Engineering Instruction

Manual, show the complete list of sequence commands for each instruction or operation.

TABLE 2-2. CONTROL SEQUENCES

SEQUENCE SYMBOL INSTRUCTION
Read Next Instruction RNI HO9- All instructions
Normal Jump NJ H10- (22, 23, 75, 76) (j = 0-3)
Zero Address ZA H2-- 01=11;: 34, 85, 50,.- 51, 54, 55
Read Operand RO H3-- 12-17, 36-46, 52, 53, 70-73,
Advance Clock
Write Operand WO H4-- 20, 21, 47, 56-61, (22, 23, 75,
76) (j = 4-7), Interrupt
Search and Transfer S&T H5~~ 62-67
Iterative I H6-- 24-33
External Function EXF H7-- 74
Auxiliary Aux HT71- Buffer
H76-
High Speed Storage HSS H17- 74.1-6, Buffer (addresses
00001-6)
H18-
Interrupt INTER | H78- Interrupt and Advance Clock

Instructions are executed by the Read Next Instruction (RNI) sequence and one other.
For example, instruction 14 (Add), is executed by the RNI sequence followed by the
Read Operand (RO) sequence. RNI enters the 24-bit instruction word in the upper

half of U1 and RO obtains the operand from storage and performs the addition.

Each sequence consists of a series of control delays. In the hypothetical sequence of
figure 2-8 the basic series of control delays have H3-- and V3-- symbols,

The sequence is initiated when a single pulse from RNI is gated into H301 by F530,
This pulse moves down the chain of control delays at the rate of one control delay per
clock period (0. 2 microsecond). H301 receives this pulse at time 0. The time scale

shows relative time positions for later control delays.

There are two methods for generating commands. The first is illustrated by the
command Add R1 to Uz. This means of generating commands is fully clocked. A
control delay with clocked output applies the Command signal at a definite time to the
FFs of the register in use, After the sequence is initiated, the H846-V 846 control
delay is set at time one if the condition given by F541 is met, At time two, H953-N-53
is entered by the output of V846. At time three, the command reaches the FFs of U2,
By time four, the command is complete and the quantity available at the outputs of the

U2 register FF's.

It is pertinent at this point to explain why the Add Rl to U2 command is, in this case,
generated by the use of H846-V846. The command could be generated and occur at
time three by providing an input to H953 from V302, instead of taking an output from
V301 and going through H846-V846 to d953. In fact, this is done in some of the several
instances for which the Add Rl to U2 command is generated. However, the total
number of instances in which this command is generated is greater than the maximum
number of inputs possible for H953, Additional capacity of H953 is provided by H8486,
All control delays with H8-- symbols increase the input capacity of the H3-- control
delays which bring the command to the register FFs. The H8-- control delays are

called initiates, indicating they do not actually supply the command to the register,

The second method of generating commands is illustrated by the Clear A1 command
(figure 2-8), A Clear Al FF is set; the ""1" output goes from single inverters

J81- through W81- to the "0" side of Al. When K580/581 is set to ''1"", W81~ provides
a ''1" input to the ""0" side of the Al FFs which clears Al, The Clear A® FF is set at
time one and cleared at time three, The transmissions from the output of the Clear A1
FF through J81- and W81- to the A1 FFs are not clocked, A1 is cleared between time

two (minimum) and time three (maximum),

Whether a full or half exit is taken in figure 2-8 is determined by J064 and J065, slaves

of the Exit FF, If the current instruction is a lower instruction, a full exit is taken and

2-16

- BORR
PICAL FF OF U?
aopR'Tou? u*
_H 84 HIs3 u-3
E-! vea6 N-95
? F3s BORROW
& Fs30
m '
03 V990 H3or H302 K303 H 304 5[nsos
FROM
=
w /
[\%] Y] 3 Joss
1
& 3
ol "S‘ H TO RNI
(1]
o
-
» FS33
%) ' i : Joss -
-g CLEAR A HALF EXIT
c K380 > 70 RNI
(4]
381 '
=2 K TYPICAL FF OF A o
@ A=~0
A~

TIME SCALE 0 1 2 3 Py 5

RNI reads up another instruction word from storage. In some cases the exit is taken
before the present instruction is completed. This allows RNI to prepare for the next
instruction at the same time the present instruction is being finalized. The over-all

relationship of exits, RNI, and the sequences is shown in figure 2-9.

JUMP
SATISFIED
INSTRUCT ION
SEQUENCES JUMP EXIT
SKIP
EXIT FF SATISFIED
KOBO
gas! FULL EXIT > ADVANCE P
JUMP OR SKIP
NOT SATISFIED
HALF EXIT
HALF RNI
FULL RNI

Figure 2-9. Over-all Sequence Control

RELATION OF CONTROL AND STORAGE SEQUENCES

For Control sequences which initiate a storage reference it is necessary to maintain
proper timing between the Control sequence and the Storage sequence. Successive
references to different storage units (even and odd) can overlap, but successive

references to the same unit cannot overlap.

Wait Storage FFs in the Control sequence allow for variability in the time when a
storage reference may begin and maintain synchronization with the Storage sequence
(figure 2-10). Usually this FF is set when the Initiate Storage FF is set. The
Control sequence continues with those commands that need not be timed with the
Storage sequence. The Storage Resume signal indicates the Storage sequence has
read the word from the specified address and can be sampled from I5 or 16. The

Resume signal and the set output of the Wait Storage FF are combined in an AND to
restart the Control sequence.

WAIT

STORAGE
of |
H ‘ H] H K H
v v —I_Lv_ Y v
K
vors
INITIATE STORAGE
STORAGE

A. SYNCHRONIZING CONTROL SEQUENCE WITH READ TIME OF STORAGE SEQUENCE.

WAIT
STORAGE

H H K H
\ v v

K

STORAGE

SEQUENCE H
INITIATE BERES v L
STORAGE
3] K

K

B. SYNCHRONIZING CONTROL SEQUENCE WITH BEGINNING OF STORAGE SEQUENCE.

Figure 2-10. Relation of Control and Storage Sequences

2-19

READ NEXT INSTRUCTION SEQUENCE

The Read Next Instruction (RNI) sequence performs the following functions:
1) Acquisition of a new instruction word.
2) Start and stop
3) Preliminary steps in address modification
4) Preliminary control and arithmetic steps

5) Indirect addressing

Acquisition Of New Instruction Word

Two 24-bit instruction words may be stored in a 48-bit storage location. The RNI
sequence (figure 2-11) can transfer the 48-bit quantity to the U1 register, making the

24-bit quantity in U1 upper (UlU) available as the next instruction or transfer the

24-bit quantity from U! lower (UlL) to UlU.

The sequence steps from initial start, full exit, or jump exit are:

Initiate storage (P Address)
Wait storage

Storage resume

Set Exit FF

Clear U1 upper and lower

Transmit storage to U1

The corresponding steps from half exit are:

Clear E)lcit FF
Clear U upper only

Transmit U1 lower to U:l upper.

Start And Stop
The RNI sequence, along with manual control logic, provides for initial starting, stop-

ping, starting from stop, and stepping the 1604-A. A simplified diagram of RNI for
these operations is shown in figure 2-12,

Initial Start: To start the computer initially, a Master Clear signal is required to set

the Initial Start FF (K054/055). When the Start switch is operated, K055 gates the
Start pulse into HO90 to initiate RNI.

[\V)
L}

(84

‘11-g aan3ryq

suorjona}su] Suramnboy g0 INY jo waoq

HALF EXIT

il

Vv 094

KZOI

EXIT

KOSI

K 092

KO’S

K0e0 [—OQ~> STORAGE —> u'

FULL EXIT
INITIATE K090
STORAGE
_L—V“;f'-l (P ADDRESS) 'RESUME ost ||
213 i
ADVANCE WAIT Il'l.;[l i
JUMP EXIT P STORAGE H
HO%0 K200 HO94 HO9T > 4098 1099
VoSt _'\voso K20 | VOs7 |voso o9
_r
I
START OR STEP " - 4{)
| v
\/007 U' LOWER — U' UPPER
INITIAL V158
START % STOP I STOP II
STEP
MC leO _,1 KOM VISO —..1 KOSZ K050 HOOO
K055 ‘ K05| _?_, KOSS | K05| vw_
003
[——-—— 098 T T 682
Vi MC g
START

i s S it

u! —u?

INITIATE

—> INSTRUCTION

SEQUENCES

HALF EXIT
MODE SWITCH _| ‘
DOWN & EXIT
FF=| v 038
FULL EXIT
hj MODE SWITCH INITIATE STORAGE
.- DOWN 8@ EXIT (P ADDRESS)
0 FF= 0 y 033 "
(=
5.
0] RESUME
[\ JUMP EXIT
) .
K; HO90 K200 HO®4 HO9S5 —*&0’(HO®T = HO®9 -
= v°3| VD’O K!°| v 094 vo’! vo’ vo.?‘ vO.l vol.
o T
& 4 START OR STEP Mc
i
N 53|
5 = oo BREAKPOINT
= v|55 STOP
0 : PROGRAM
g INITIAL START voeT §Tok
o+
140 | 099
s Me w'*® = 05 FAULT v
=3 EXECUTE
=3 K085 SToP I !:v°°- sTop II | START | riNsTRUCTION
) t STEP VIS0 1 os2 | K080 HO00
8 X081 v99-
START/ STEP _|

O
k08! K 083 \c
NO ﬁ—’
098 1 FAULY T
START
Mec MC FROM STOP -
|

Step Stepping is used to execute one instruction at a time and stop after each one. If
the Start/Step key is pressed to Step when the Initial Start FF is set, RNI is initiated
at HO90. However, stepping sets the Stop I FF, V155 transfers Stop I to Stop II, and
the last control delay of RNI is disabled. Stepping again (step from stop condition)
initiates RNI at HO00 and one instruction is executed. Thereafter, one instruction is
executed each time the Start/Step switch is pressed to Step. If the Start/Step switch

is pressed to Step while the computer is operating, Stop I is set; the next RNI transfers
Stop I to Stop II, and the computer stops. The computer can then be stepped or

started from the stop condition in the normal manner.

Stop Instruction When the condition specified in a Selective Stop instruction (76) is

satisfied, the Stop II FF is set. In this case Stop II is not set in time to disable H099
but it is set in time to stop the normal jump sequence which is the only sequence a
76 instruction can initiate. When the computer is restarted, f still equals 76 and the

normal jump sequence is executed.

Breakpoint Stop The breakpoint translator compares the address of each new

instruction word (content of P register) with the setting of the Breakpoint switches
(see page 2-38). When the address and the breakpoint setting become equal, Stop II is
set, and HO099 is disabled before execution of the upper instruction of the breakpoint

address.

Fault Stop The 1604-A has no function codes 00 or 77 and these two codes are
considered faults. If the f portion of the instruction read by RNI equals 00 or 77,
Stop II is set and the last control delay of RNI (H099) is disabled.

Start From Stop When the computer is restarted from stop, Stop II is cleared, RNI is

entered at HOO0O, and the computer proceeds directly to an instruction sequence except
in the case where the computer is stopped by a fault condition. Fault conditions must
be cleared (e.g., setf manually to some number other than 00 to 77) before Stop II can
be cleared and the computer started from stop. When the computer is started from a
breakpoint stop, the upper instruction at the breakpoing address is executed and the
computer stops again in RNI (because P still holds the breakpoint address). Starting a
second time causes the computer to execute the lower breakpoint instruction and then

proceed to the next instruction without stopping.

Sweep Mode

When the Mode switch on the 1604-A console is in the Down (Sweep) position, RNI does

not initiate an instruction sequence but takes a full or half exitaccording to the setting of

2-23

the Exit FF. Thus in Sweep mode, the content of all storage locations can be read

by RNI and displayed without executing any of the instructions.

Preliminary Steps in Address Modification

When the b designator is 1-6, the base execution address may be modified by the
addition of (Bb). RNI takes the following preliminary steps in address modification
(figure 2-11).

Bb to 12 or 13

12 or 13 to Rl
ot e 2

Preliminary Control and Arithmetic Steps

Clear X1
Set Partial Add in A FF
Ql to Q2
R! to R2

Interrupt Termination

An Interrupt signal causes the computer to temporarily interrupt the main program

to perform a special routine of instructions (figure 2-13).

When the interrupt routine is finished, the main program is returned to by:

1) Jump to address 00007 - 00017:
a) sets P to 00007 - 00017
b) initiates full RNI from jump exit

2) Full RNI from step 1lb:
a) reads content 00007 - 00017 into U1
b) sets Interrupt Complete FF (K072/073)

3) Execution of upper instruction at 00007 - 00017:

a) jumps to next instruction of main program

b) initiates full RNI from jump exit

> *

) i

o e Jos
INTERRUPT INTERRUPT
EXIT LOCKOUT
Joe K 088 v o2 K064
oes 0es
K“'—T—u K — K
Joes
sl P=7-17
a- HALF EXIT INTERRUPT COMPLETE
c —_— ¢ KOoT2 xosz [T
o] |
® __]Lot — K073 K 063
(&)
)
—_ N“C
w
. FULL EXUT
= 033
Z ¥ STORAGE
o . RESUME T
[V] 9 083
) & JUMP EXIT K
8 E _,Lﬂo'o (290 094 Hoos Hose
(':} vo3! F |v°’° x 2o vooe voos Voo
£ i
-+ START OR STEP MC
:_;3 —C v 097
2] voo7
8
5" vlu' yees
: . -
o) w'eo 5l osae 160 EXECUTE
2 x“’ V!€0 STEP ——————— (o032 K 0%0 H 000 —> INSTRUCTION
[4 Koe! _(r_ﬁ K033 K 93! vOo_ SEQUENCE
L— vo9e | l T

MC START ¢

4) Full RNI from step 3b:
a) clears Interrupt Lockout FF
b) clears K072/073 (Interrupt Complete FF)
c) continues from V097 to HO98 if Interrupt Exit FF is set
d) goes to HO084 from V097 if Interrupt Exit FF is "0" (half RNI)
e) after step 4d, K062/063 is cleared to enable AND from V097
to H098

Indirect Addressiﬂ

Indirect addressing is often chosen for programs involving a great deal of address
modification because it simplifies programming and reduces the running time. In
direct addressing the execution address indicates the location of the operand; in
indirect addressing the execution address indicates the location of the operand address,
An additional memory reference is required to obtain the operand.

All instructions except 22, 23, 74, 75 and 76 may be used with either direct or indirect
addressing, Indirect addressing occurs whenb =17,

Examples: Below are two examples of indirect addressing.

Address Upper Instruction Lower Instruction
f b m f b m

05012 36 3 71331 14 7 00367

00367 42 2 11135

Because b is 3 in the upper instruction, direct addressing is used. B3 is added to
71331 to produce the address of the operand. In the lower instruction, because b is 7,

indirect addressing is used; therefore m is the location of the new operand.

Now the lower 18 bits are read out of address 00367 (remaining upper bits are ignored).
These 18 bits are substituted in the Program Control register for the original 18-bit
quantity made up of b and m. As a consequence, the current instruction becomes

14 2 11135, The designator is examined again; since it is not 7, the address of the
operand is 11135 + (BZ). If the new value of b had been 7, a second indirect addressing
operation would have resulted.

2-28

‘ ¥ \
\ j {
i N

Address Upper Instruction Lower Instruction
f b m f b m
05013 01 7 04006 12 8 71331
04006 7 11466
11466 0 00012

Since b is 7 in this instruction, the lower 18 bits at address 04006 are substituted

in the Program Control register which then holds 01 7 11466, Since b is again 7, the
lower 18 bits in address 11466 are entered into the Program Control register. Because
b is zero, 00012 is used as the execution address.

Indirect addressing is accomplished by RNI (figure 2-14), By the time RNI has pro-
gressed to V099, f and b have been translated; direct or indirect addressing is selected.
Conditions for the choice are:

Indirect Addressing - f # 22, 23, 74-76 andb = 7
Direct Addressing - f = 22, 23, 74-76 or b # 7

The steps for indirect addressing are:

Initiate storage (on address m)
Clear b and m parts of UlU
Wait storage

Transmit storage to b.and m part of UlU

At the end of this sequence a new 18-bit quantity occupies the b and m portions of UlU.

A pulse from V153 (figure 2-14) then re-enters the RNI sequence at H098 and the new
instruction is executed.

NORMAL JUMP SEQUENCE

The Normal Jump (NJ) sequence is used by instructions 22, 23, 75 and 76, when
j=0-3,

When the jump condition is met, this sequence transmits U? to P1 (figure 2-15) entering
the address of the first instruction of a new program in P, The jump exit is then taken
to initiate the full RNI and read the pair of instructions at address P, If the jump

condition is not met, the full exit or half exit is taken to initiate the full or half RNI.

2

27

INITIATE
—> STORAGE
(m address)
INDIRECT
ADDRESS
WAIT
STORAGE
{004 LY K218 W 182 __ML_‘ {
082 151 152 153
v O F v v
{
STORAGE STORAGE
RESUME TO b AND m
ofF u'
|5 CLEAR b AND m
IN U
J INITIATE
noee HO®® Hoo° —> INSTRUCTION
yoos VO9? v00- SEQUENCES
KO8 DIRECT
1298 ADDRESS
Figure 2-14, Indirect Addressing Part of RNI
—> JUMP EXIT
t#£76 or
t=22,23,7S5,76 STOP CONDITION f=76 or
b=0-3 NOT SATISFIED ¢ JUMP SATISFIED
RNI H'o! ‘ H'o2 > 1103 ' U2 TO P!
ylo! y'o2 y'o3
Jos2
HALF EXIT
| JUMP NOT
| SATISFIED
\ -——¢—> FULL EXIT
| ‘ i Joes

Figure 2-15. Normal Jump Sequence

2-28

Instruction 76, Selective Stop, provides for a jump whether or not the conditions for
stopping are met, When the stop condition is met, the AND to H102 is disabled and
operation stops. When operation is resumed by either start or step, the NJ sequence
is initiated, the AND to H102 is enabled and the jump is completed.

ZERO ADDRESS SEQUENCE
The Zero Address (ZA) sequence performs the basgic operation for instructions

01-11, 34, 35, 50, 51, 54, and 55. This sequence makes no storage reference; the
execution address is the operand for these instructions,

The chain of control delays forming the basis of the ZA sequence consists of two parts
(figure 2-16), All ZA instructions use the first part; only instructions 04, 10, 11, and
54 (with R4 0) use the last part. Most of the commands for ZA instructions are
generated from this chain of control delays, However, the commands for shifting and
reducing R in instructions 01-03, 05-07, 34, and 35 are generated independently of

the main chain by the shift control, The chain establishes the conditions which permit
these commands to occur until the terminating conditions are reached.

t=01-11,34,35,
50,51,54,55 t=04,10,11
Hzou HZOO | HZlo HZIS
RNI | TO TO —> EXITS
VZOI VZOO] Vzlo VZIS
t=54 (R#0)
t=01-03,0%-07, | SHIFT | ——
34,35 CONTROL

Figure 2-16. Basic Chain of Control Delays in Zero Address Sequence

READ OPERAND SEQUENCE
Instructions 12-17, 36-46, 52, 53, 70-73, and Advance Clock use the RO (Read Operand)
sequence (figure 2-17). These instructions all read from storage; Advance Clock

and instructions 37 and 70-73 also store an operand at the conclusion of the sequence.

2-29

f=12-17,36,38-46,52,53

EXITS

INTERRUPT SEQUENCE EXITS
DX ANCE ‘i_. 301 310 340 354

60
CLOCK H H WAIT LA WAIT H3
RNI T y 30l y310 STORAGE y 340 /354 STORAGE v 360
f=12-17,36-46,52,53,70-73 RESUME £=37,70-73 RESUME

Figure 2-17.

WRITE OPERAND SEQUENCE

ADVANCE CLOCK

Basic Chain of Control Delays in RO Sequence

Interrupt and instructions 20, 21, 47, 56-61 for all values of the designator and

Return Jump instructions (22, 23, 75 and 76 with designator values of 4-7)

use the WO (Write Operand) sequence.

It is initiated at H401 and all WO

instructions except 56 and 57 which initiate the sequence at H406 after initiating a

storage sequence.

—> INITIATE STORAGE

$:56,57 j
RNI

3
INTERRUPT SEQUENCE NO STOP
WAIT
. STORAGE
INTERRUPT
H40I H402 H406 H4I| 206 420

RNI - - x H

v 4ol y402 406 ven K 207 V420
t=20,21,47,60,61,(22+ 23+ 785—-77)(b= 4-7) RESUME

Figure 2-18.

2-30

Write Operand Sequence

r—* EXITS

SEARCH AND TRANSFER SEQUENCE

The Search and Transfer sequence (S & T) performs search instructions 64-67 and
transfer instructions 62 and 63. The search instructions inspect a specified list of
operands for one which meets the condition "'operand equal to A" or "operand greater

than A." The transfer instructions exchange a block of data with Input-Output equip-

ment.

SEARCH CONDITION MET
é FULL EXIT

SEARCH EXHAUSTED
CONDITION NOT MET

c—é)—) HALF EXIT

f=62-67 TRANSFER COMPLETE

! H 50! H 808 H52! 549 é—) FULL OR HALF EXIT
BN 52l ySe8 TERRUPT SEQ
ysol ys08 v v —<?——e> IN

INTERRUPT OR
SEARCH OR CLOCK REQUEST
TRANSFER COMPLETE

NO INTERRUPT OR CLOCK REQUEST

Figure 2-19. Basic Block Diagram of Search and Transfer

The S & T sequence (figure 2-19) consists of two main parts; preparation and loop.
Preparation sets up the addresses and other initial conditions. The loop produces a
series of search or transfer commands which is repeated for each word searched or
transferred. The number of repetitions required is indicated by the quantity in Bb
which is reduced by one during each repetition. The block of storage locations invol-
ved in Search and Transfer instructions is specified by Bb and m, the execution address.
The first word searched or transferred is at the address (Bb) + m-1. The last word is

at address m. When b = 0, only the word at address m is searched or transferred.

A Search instruction provides for a conditional skip and is used in the upper position

of a program step. Ordinarily it involves repeating the loop for each word until:

1) A word is found that meets the search condition; search terminates and a
full exit is made to the next instruction step.

2) The entire list of words has been searched without finding one that meets the
search condition, in which case a half exit is made to the lower instruction

of the current step.

A Transfer operation consists of one repetition of the loop for each word. When all
have been transferred, a full or half exit is taken depending upon whether the instruc-

tion is in the lower or upper position.

ITERATIVE SEQUENCE

The commands which execute the Multiply, Divide, and Floating- Point instructions
(24-27, 30-33) derive from the Iterative sequence (I). This sequence (figure 2-20)
executes instructions by iterative or repetitive action. For example, the repetitive

additions of the multiplicand form the product in multiplication. .

A detailed discussion of the Iterative sequence appears in chapter 3 where the complex

arithmetic operations using this sequence are described.

PREPARATION AND ACQUISITION OF OPERANDS
A

Y WAIT \
HCOI HIIQ STO“‘::GE cho HCZ!
RNI . HCOI To HGM K cho Hozx
Kzoo
24-33 RESUME

FLOATI’}I\G POINT
" PREPARATION OF SECOND OPERAND ROUND AND NORMALIZE '

H..O % H."S HD.O - HG" H.7. - H... FLOATING POINT
1 T v 680 y678 /880 V894 T vo7e v e9e EXIT
30-33 30, 3|
32
MULTIPLY STEP 32,33
) 830 HE37
TO
?_. VCSO v.37
END CORRECTION
24,26 HEs0 pese
TO FIXED POINT
ves0 e
33 T > EXIT
DIVIDE STEP
H8e0 HEeT 24-27
v.‘o TO v""
25,27

Figure 2-20. Iterative Sequence

2-32

|

EXTERNAL FUNCTION SEQUENCE

The External Function (EXF) sequence (figure 2-21) executes the 74 instruction to
select operating conditions for external and console equipment, sense the condition

of external and console equipment, sense internal faults, and activate buffer commun-
cation channels 1-6, The value of the designator, j, is used to determine which of its
duties the EXF sequence is to do. High speed storage sequence is used in conjunction
with EXF sequence to execute the Activate command (j = 1-6). A 74,0 instruction
selects the operating condition for external or console equipment, A 74,7 instruction
is used to sense equipment conditions and faults within the computer, When the 74

instruction is used with j = 1-6, a buffer channel is activated.

SEND EXF CODE
74 j=1-6

H703 H705

RNI He pros : To HT08
V70I v7oz V703 V705 V706

HIGH SPEED
STORAGE (ACTIVATE
BUFFER CHANNEL)

SEND
SELECT/SENSE
READY

EXF
COUNTER

SENSE
l RESYNC
SENSE | K'3¢ | —— EXIT

RESPONSE

KI37

Figure 2-21, Block Diagram of EXF Sequence

2-33

INTERRUPT SEQUENCE
When an interrupt or clock request occurs, the Interrupt sequence is initiated. This
sequence (figure 2-22) can be entered between any two program steps or during a

Search or Transfer instruction.

Interrupt

To process an interrupt request, the WO sequence follows the Interrupt sequence.
The content of P is stored to provide for return to the main program and a jump is
made to an interrupt subroutine. The interrupt subroutine senses and corrects the
condition causing interrupt and then returns to the main program. Interrupt is

discussed in detail in chapter 6.

Advance Clock
The Interrupt sequence is also used to advance the real time clock. In this case it is

followed by the RO sequence which adds one to the word in address 00000. When the

real time clock is selected, Interrupt sequence advances the clock every 16 2/3

milliseconds.
COMPLEMENT
EXIT FF
INTERNAL
INTERRUPT ADVANCE
cLock
H 790 H7!l
ERXN|:1[' e 10 $—> RO SEQ
vns VT’O V’IGB
INTERRUPT INTERRUPT
OR ADVANCE !
CLOCK SEQUENCE WO SEQ

INTERRUPT OR
CLOCK REQUEST

Figure 2-22. Block Diagram of Interrupt Sequence

2-34

o
®
=
€
®
®
£
€
€
®
®
®
&
®
®
&
3
&
®
®

BUFFER CONTROL SECTION

The Input/Output operations of the 1604-A are controlled by the Buffer Control section.
Buffer Control consists basically of:

Auxiliary Sequence

High Speed Storage Sequence
Control Registers 1-6
Common Control Register
Comparator

Inverter Ranks I7 and 18

Buffer Control assumes control of buffer operations initiated by the main program
and carries them to completion. When a buffer operation is completed, Buffer
Control signals Main Control by clearing the appropriate Buffer Active FF. Up to

six buffer operations may be handled concurrently by Buffer Control.

AUXILIARY SEQUENCE

The commands which control buffer operations are issued by the auxiliary sequence
of control delays H440 through H478 (figure 2-23). After an auxiliary operation is
started by the main program, auxiliary sequence operates independently in completing

the operation. The Aux Seq. is initiated by an auxiliary request signal if storage is

not busy.
00001-00006 INITIATE H.S. STORAGE
AUX. REQUEST e ‘ Hosl a7
TO0
STORAGE BUSY {>__’{:::1;;;; i g
WAIT
STORAGE
K252 | a8 HaT?
TO
K233 y4es 477
STORAGE
RESUME

Figure 2-23. Block Diagram of Auxiliary Sequence

2-35

Since buffer operations are independent of program operations, there is no exit from

auxiliary sequence.

High speed storage sequence is initiated by auxiliary sequence when data is to be
buffered to or from cells 00001-00006.

HIGH SPEED STORAGE SEQUENCE

The high speed storage sequence (HSS) is used to reference (read or write) Control
Registers 1-6. Whenever a storage reference is made to locations 00001-6, the high
speed storage sequence runs simultaneously with storage sequence control. HSS
sequence is also used when doing an EXF activate instruction and when buffering into or

out of locations 00001-6. The operation of HSS is explained in more detail in Chapter 5.

CONTROL REGISTERS, COMMON CONTROL REGISTER, AND COMPARATOR
Control Registers 1-6 are used to store the address portions of words 00001-00006
(buffer control words). These words are used to monitor buffer operation. After each
word is transferred in a buffer operation, the Common Control Register (CCR)
increases the upper address of the control word and the comparator compares it with
the lower address. When the upper and lower addresses of a control word are equal,
the buffer operation is complete and the comparator deactivates the buffer channel.
INVERTER RANKS 17 AND 18

Inverter Ranks 17 and 18 are parallel transmission paths in buffer control. 18 provides

additional outpufs from 15, 16 to CR 1-6. I7 provides inputs from CR 1-6 to the CCR.

AUXILIARY SCANNER
To ensure that one buffer channel cannot monopolize buffer control time, an auxiliary
scanner is used to initiate buffer operations. The auxiliary scanner (figure 2-24)

samples each buffer channel in the order 1-3-2-6-4-5,

When the scanner detects an auxiliary request, it stops and initiates an auxiliary

operation.

® 00000 00QOIGED ¢ OO0 060 0 0

CH. |

CH. 5 CH.3

CH. 4 CH. 2

CH. 6

Figure 2-24, Pictorial Representation of Scanner

When the scanner detects an auxiliary request, it stops and initiates an auxiliary

operation,

The scanner is released in time to scan 4 other channels before the present
auxiliary operation releases storage to program operation, This gives buffer

operations priority over program steps in initiating storage references.
The scanner can handle requests from all six buffer channels by allowing each

to take a turn at buffering a word. Thus the scanner gives each channel equal

priority in requests for storage time,

2-37

STATIC CONTROL

Static control, consisting of Breakpoint switches and the operational registers,
enables the operator select an address at which the program is to stop and to observe

the contents of the operational registers and other displays.

BREAKPOINT ADDRESS

A digit switch assembly on the console provides for setting an address at which the
program is to stop; this address is called the breakpoint. The breakpoint address
is continually compared with P, the program address; when the two quantities are
equal, the computer stops just before performing the upper instruction at the break-

point address (figure 2-12). Stopping occurs only during the full RNI.

There are five Rotary Digit switches in the switch assembly; each has eight positions
numbered 0 through 7. Thus every address is represented by some combination of
the five wheels. The breakpoint is disabled by setting it to an address not used by the
program, generally 77777,

CONSOLE DISPLAY

The contents of operational registers are displayed in octal on the console only when
the computer is stopped. The display circuits of the lowest octal digit (3 bits) of the
A register are shown in figure 2-25. The digit display gate is turned on when the

computer is stopped. Output amplifiers (L.500-1.502) sample the state of the A register.

Each L5-- energizes a relay if the associated bit is a '"'1'". Three relays are inter-
connected to form a binary to octal translation; the output of the translator illuminates
the octal digit at the associated position. By means of colored indicators (figure 2-26),
the console provides visual indication of several other conditions in the computer and
console equipment. The background indicators can be illuminated when the computer
is operating. Designation is according to the associated flip-flop. Exceptions:

Reader Ready, turned on when Reader End-of-Tape FF is cleared; Punch-Out-of- Tape,
turned on by a switch at the punch; Lower Instruction indicator, turned on when Exit

FF is cleared.

—6.3 VAC

|
-5V —O—

LIGHT NUMERAL

LOWEST OCTAL, DIGIT
POSITION OF "A”" RIGHT
CIRCUIT LIGHTS ANY
NUMERAL 0—7 AT
THIS OCTAL DISPLAY

__*_v_—/

-15v
4 4 4
LSOZ L5OI L5OO
e s L S &
o o o o (=) o
« <« <« « < «

HIGHEST BIT MIDDLE BIT LOWEST BIT

Figure 2-25,

Figure 2-26,

J374

A REGISTER RIGHT

SHe)

HIGHEST BIT ()
MIDDLE BIT (®

LOWEST BIT (O

{

MANUAL CLEAR BUTTON ()

OCTAL DIGIT

Digit Display, Lowest Octal Digit of A

Console Display

2-39

RESYNCHRONIZING

Signals from external equipment and switches which are asynchronous to the timing
of the computer must be resynchronized. This involves insuring that only one syn-
chronized pulse results from an asynchronized signal, regardless of the duration of

such a signal. Another purpose of resynchronizing is to resolve runt pulses.

RESYNCHRONIZING CIRCUIT

The first objective of resynchronizing is to convert an asynchronous signal to one
pulse which is timed by the computer. In the resynchronizing circuit even pulses
occur every 1. 6 usec; odd pulses also occur every 1, 6 usec with a lag of 0, 2 usec
between the even and odd pulse. In figure 2-27, the input to M164 is -20 volts; output
is "0". K994/995 is cleared and K996/997 is set. On the next odd sync pulse after
M164 receives a signal, K994/995 is set, During the following even sync pulse, H295
receives a pulse, The output of V295 clears K996/997 to prevent another pulse on the
second even sync pulse.

EVEN
SYNC
PULSE

ASYNC 164 880 88! YY) RESYNC
SIGNAL Wes sfyse0 Lsfy | O K i PULSE
; L O—s] k998 ,_.?_, K996]Vzou

K.."

VOII VO!O
oDD T,
SYNC
PULSE
SOYDNDC v o021 _l—l n n l—l_
PULSE |
]
STy voeo _J 1 gl M o
PULSE ' -

[
Jo— 1.4 SEC —f
I T T T T T O I I I I I

TIME INTERVALS ARE CLOCK . PHASES (0.2 MICROSECONDS)

Figure 2-27, Resynchronizing Circuit

2-40

RUNT PULSES

A runt pulse is a pulse between -20v and Ov which does not define either a ''1" or a "'0"
on a control line, A runt pulse input to M 164 (figure 2-27) results in an output
between -3, Ov and -0, 5v which does not definitely indicate either a logical "'1" or ''0".
If the output of M164 is -1, 5v, the output from J880 and J881 is also -1, 5v.

When the odd sync pulse from V021 occurs, the set and clear inputs to K994/995
receive half-size inputs which attempt to both set and clear this FF. In this circum-
stance, the FF is not fully set or cleared within 0, 2 usec, the normal switching time
of a FF, When runt pulses are applied, a longer period is required for the FF to
settle into a full "1" or "0 state, The maximum period required for such settling is
1. 4 usec, which is the interval between the odd sync pulse (when runt pulses may be
applied to K994/995) and the even sync pulse (when K994/995 is sampled at the input
to H295), Only after the runt input is resolved into a full ''1" or "0'" can H295 sample
the state of K994/995,

The sync pulses resolve runt pulses in the first FF of the resynchronizing circuit. The
odd sync pulse sets the time for sampling the asynchronous signal, and the even sync
pulse sets the time for sampling the first FF of the circuit,

RESYNCHRONIZING COUNTER AND PULSES

The sync pulses used in resynchronizing circuits throughout the computer are produced
by a two-stage counter (figure 2-28). This counter is advanced every even clock phase
(every 0. 4 usec), Each time the counter reaches three (11), H020 receives a pulse,
This pulse produces even sync pulses which are distributed throughout the computer

by V020/022/024/026, A pulse sent by V020 to HO21 causes the odd sync pulses that
are distributed by V021/023/025/027. The counter returns to zero (00) on the next
even clock phase after reaching the count of three,

2-41

N®""

N7
NQ"_‘ KIOO 3___‘ K 000 (H 020 HO2!
¢ K'o! K 00! L y020 v 02!
\ = J

1

\4
COMPUTER SYNC. PULSE

KIIO KOo'!o

Kill KOH

HE

Figure 2-28. Resynchronizing Counter
JUMP INSTRUCTIONS

The instructions for program jumps are 22, 23, 55, 75, and 76; 76 also provides for
stopping. Instructions 22, 23, 75, and 76 with j = 0-3 and instruction 55 with all
values of j cause a normal jump. Instructions 22, 23, 75, and 76 with j = 4-7 cause

a return jump.

When a normal Jump condition is satisfied, the current program is suspended and a
new sequence of instructions at the storage location specified by the Jump instruction
is executed. A Return Jump instruction prepares for return to the original instruction
sequence upon completion of the new sequence. When the Jump condition is not
satisfied, the program continues in a normal manner. A Jump instruction may appear
in either the upper or the lower position of an instruction word. If a jump is taken

from the upper instruction, the lower instruction is never executed.

NORMAL JUMP

Normal Jump instructions are executed by the Normal Jump sequence (NJ), with the
exception of instruction 55, which is executed by the Zero Address sequence. For
conditional jumps an examination is first made to determine if the condition is
satisfied. If the jump is taken, the unmodified m portion of the Jump instruction

is transmitted from U2 to Pl. The jump exit is then taken to the RNI sequence.

2-42

|

Entering RNI by the jump exit differs from entering by the full exit only in that P
is not advanced before the P1 and S1 transmission. An RNI following a jump reads

an instruction from the storage location given by m of the Jump instruction.

If the Jump condition is not met, then a half exit is taken to RNI if the jump was an

upper instruction; a full exit is taken if the jump was a lower instruction.

RETURN JUMP

A Return Jump instruction is always executed by the Write Operand (WQ) sequence.
In the program example shown here the lower instruction at relative address c has
been executed and the instruction word in ¢ + 1 has been read. The left instruction
in ¢ + 1 is a return jump to be performed if A # 0. If this condition exists, the

execution of the return jump involves four basic steps:

Step 1. Advance P toc + 2.

Step 2. Initiate at address d a storage reference which reads the contents of
d into U1 and writes the contents of P, ¢ + 2, in the m portion of the
upper instruction at d.

Step 3. Transmit d from U2 to P.

Step 4. Half exit.

The first step yields the address of the next instruction of the main program. The
instruction prepares for return to this address. Step 2 reads the pair of instructions
at address d; the lower is the first to be executed in the subroutine. Step 2 also
stores the quantity ¢ + 2 as an address in the upper instruction at location d. Step 3,
by entering the quantity d in P, prepares for sequential execution of instructions in the
subroutine. The half exit to RNI in step 4 results in the subsequent execution of the
lower instruction in address d. The upper instruction at d is executed in the actual

return to the main program after completion of the subroutine.

After step 4, the Return Jump instruction is completed and the subroutine begins

with the lower instruction at d. When the upper instruction at d + n has been executed,
the basic function of the subroutine is accomplished; the main program is re-entered
by the normal jump in the lower part of d + n. This instruction enters the quantity d

in the P register and initiates RNI through the jump exit.

Program Example

A, Main Program

Relative Address Instruction

Upper Lower
c fbm fbm
c+ 1 225d fbm
c+ 2 fbm fbm

B. Subroutine

d 5 0c+ 2 fbm
d+n fbm 75 0d

Consequently, both instructions in address d are entered in U1 and the upper one is
executed, It is this instruction which received c + 2 as its execution address, Since
this instruction is another unconditional normal jump, c + 2 is entered in P and RNI is
initiated through the jump exit, With the execution of the upper instruction in c + 2,
the main program is resumed.

SKIP INSTRUCTIONS

Instructions 36, 37, 54, 64-67, and 74.7 provide for skipping the next instruction of a
program, These instructions are limited to the upper position of an instruction word
as they provide for skipping the lower instruction by using the full exit when a certain
condition is met. If this condition is not met a half exit is used to return to RNI,

The 74,7 instruction (External Function Sense) when used as a lower instruction causes
an indefinite period of waiting., The half exit is taken and the 74, 7 is repeated until

a specified condition is met; then a full exit is taken. Further details on 74,7 are found
in chapter 5.

2-44

COMPUTER OPERATING CONTROLS

The logical networks associated with the switches on the lower panel of the console

(figure 2-26) are:

Start - Step
Clear
Selective Jump
Selective Stop
Storage Test

START-STEP SWITCH

The Start-Step switch selects the mode of computer operation. Positions are
momentary. The Start (up) position selects the high-speed mode in which a program
of instructions and auxiliary operations proceed until completed, or until program stop
occurs. The Step (down) position selects a mode in which a single instruction is
executed; operation then stops to await further manual selection. One instruction is
executed each time the switch is pressed to Step position. The Start-Step switch is

ineffective as long as any buffer channel is active.

Stepping while a buffer is active, however, sets Stop I FF and causes the computer

to stop during the first RNI after all buffers go inactive.

The Step position has priority over the Start position. If the computer is operating
at high-speed, pressing the switch to Step causes operation to stop. Start and Step
selections are felt at the RNI sequence (figure 2-29). The Start, Step, and Neutral
contacts of the switch are connected to a Resynchronizing circuit which converts to
single pulses the d-c levels produced by closing these contacts. Either a Start or a
Step pulse causes the digit display to be turned off; after 16.6 ms the pulse is applied
to RNI. This delay allows transients, which result from turning off the indicators,
to settle before computer operation begins. In analyzing the effect of a Start or Step
pulse, it is necessary to distinguish between a pulse immediately following a Master
Clear signal and one that does not follow Master Clear. A Master Clear, in addition
to clearing registers and control FFs, sets the Initial Start FF. Figure 2-29 shows

that a Start pulse following master clear,

1) Initiates a full RNI at H090
2) Clears Stop II

3) Begins execution of program at high speed

2-45

A Step pulse following a master clear,

1) Initiates a full RNI at H090

2) Sets Stop I

3) Sets Stop II from Stop I by V096
4) Halts RNI after V098

This pulse reads a pair of instructions. Another Step pulse is necessary to execute

the first instruction. A Step pulse not preceded by a master clear,

1) Sets Stop I

2) Initiates execution of instruction at HO0O

3) Sets Stop II from Stop I during following RNI
4) Halts following RNI at V098 because of Stop II

A Start pulse not preceded by a master clear,

1) Clears Stop II

2) Initiates execution of instruction at HO00

The program execution continues since Stop II is cleared and remains cleared.

CLEAR SWITCH

The Clear switch at the console provides for master clearing the computer (Down
position) and the external equipment connected to the computer (Up position). A
master clear completely erases all traces of the previous mode of operation. Either
Master Clear signal may be used at any time by the operator, regardless of the mode
of operation or whether the equipment is operating or stopped. The Master Clear

takes effect immediately.

Computer Master Clear

Clear switch Down master clears the computer by:

1) Forcing all stages of the registers to the ''0" state
except the P register which is set to 00020

2) Forcing almost all Control FFs throughout the
computer to the '"'0'" state

3) Setting the Initial Start FF K054/055 to ""1"

4) Operation stops

Ly-2¢

*‘62-2 2amIrg

MC— KO°%¢

INY 0} yo3tms dajg-3ae)S JO UOTI0aUU0D

RESUME

Hoeo

KlOO

e

START OR STEP PULSE

INITIAL
START

K099

e

START

-

— NEUTRAL

= STEP

START

STEP
RESYNC.
CIRCUIT

16.6MS
DELAY

OF

PULSE

STEP PULSE

STOP I

—a] KO%2

Kou

g

STOP IT

EXECUTE

INSTRUCTION

HOOO

KOIO

4——-——# Ko

MASTER CLEAR

vO!.

START PULSE

START OR STEP PULSE

START STEP

i

TURN OFF DIGIT DISPLAY

voo-

A computer master clear does not alter any quantity placed in core storage before the
clear. Not every FF in the computer is cleared by a Master Clear; the Secondary

registers and many Control FFs are not affected.

External Master Clear

When the Clear switch is placed in the Up position, a Master Clear signal is sent to
all equipments connected to the computer. An external Master Clear is not selective.
Within each equipment the Master Clear signal forces the critical registers and
control FFs to the '"'0'" state and all operation stops in every equipment. (Certain FFs
may be set to "1'" by Master Clear.) Following the Master Clear, each equipment is
ready for any selected mode of operation. However, an External Master Clear does
not in any way alter the information recorded on the storage medium of the external

equipment.

SELECTIVE JUMP SWITCHES
The three Selective Jump switches (figure 2-30) provide the manual conditions for

instruction 75, normal jumps with j = 1-5 and return jumps with j = 5-7. Each switch

‘'has a Resynchronizing circuit, the outputs of which are sampled at the inputs of

F910. The switches lock in Up position and are momentary in Down position.
Although either position meets the manual condition for jumping, normally only the

Up (locking) position is used.

Jj=1,8

SEL. JUMP | —3 RESYNC /u

JUMP
SEL. JUMP 2 —» RESYNC Fo10 CONDITION
' ' SATISFIED

SEL. JUMP 3 —3 RESYNC

Figure 2-30. Sampling Selective Jump Conditions

2-48

SELECTIVE STOP SWITCHES

The three Selective Stop switches function in a similar manner for instruction 76.
Stopping operation by execution of 76 with j = 1-3, 5-6, is conditioned by the switch
positions. FEach switch has a resynchronizing circuit, the outputs of which are
combined with the translations of j. The switches lock in Up position and are
mementary in Down position. Either position meets the manual condition for jumping,

but ordinarily only the Up position is used.

STORAGE TEST SWITCHES
There are two storage test switches, Mode and Margin. The switches lock in both
Up and Down positions. The switches are in the Neutral position during normal

operation.

The Mode switch in Up position provides for repeatedly reading and executing the
same pair of instructions by disabling the Advance P command normally initiated by
a full RNI. Mode switch Up does not prevent a jump instruction from doing a U2 =P
transfer. In Down position the Mode switch provides for sweeping through
(successively) all the addresses in storage. As shown in figure 2-12, during this
operation, instructions are not executed; only the RNI sequence is performed. A
full RNI, which initiates a storage reference, is performed and followed immediately

by a half RNI, which does not initiate a storage reference.

Another full RNI follows immediately. Since this next full RNI advances P, the
storage address referred to is one greater than that referred to in the preceding
full RNI.

In the Sweep mode storage references are initiated at the high speed fixed rate.
Sweeping through storage may also be accomplished by stepping so that the operator
can view the contents of each address as it is read. The upper 24 bits of a word
appear in the Program Control register at the console when the full RNI is performed;

the succeeding half RNI transfers the lower 24 bits into the Program Control register

for visual inspection.

The Margin switch varies the bias applied to storage sense amplifiers and is used

for maintenance purposes only. It should be in Neutral position at all other times.

MASTER CLOCK

The master clock operates all the time that power is applied to the computer; it
provides the timing pulses used throughout the computer. Directly or indirectly the
timing of all signals is determined by this clock. The master clock system consists
of over 100 interconnected oscillators, each contained on a type 01A card. The
system sometimes employs single inverters as slaves to provide additional outputs

from the oscillators.

Each oscillator operates at 2.5 megacycles and provides ten sine wave outputs. Five
of the outputs are 180 degrees out of phase with the remaining five. One set is
designated "even'' the other "'odd'. The circuits which receive the sine wave outputs
convert them into rectangular waves (figure 2-31). The asymmetrical form of the
rectangular wave (part B) is due to the bias used in clipping the sine wave peaks. Only
the negative, smaller, portion of the rectangular wave is effective in gating; thus the

clock pulses used in the computer are 0.2 usec in duration.

The circuits of the master clock appear in the File of Equations with the symbol C---.
Fach oscillator has two symbols with consecutive superscripts. The first has an
even digit in the third position, the second an odd digit; e.g., C222 for the even clock
pulse and C223 for the odd clock pulse.

Synchronization is achieved by connecting pin one (even clock) of each clock card on
a chassis to pin one of all other clock cards on that chassis. The same is done with
pin 7 (odd clock). Each chassis contains a 00 card through which the system of

oscillators on that chassis is connected to the other seven chassis. The 00 card can
be removed from its jack to isolate the clock system of any chassis for maintenance

purposes.
Oscillators are loaded as symmetrically as possible. In cases where a great many

outputs of one phase are required, symmetrical loading is maintained by the use of

single inverter slaves (N9--) which increase the available outputs.

2-50

7

A, Oscillator Test Point

B. Oscillator Output Pin

Figure 2-31.

Master Clock Oscillator Waveforms

N

b/

b/

C. Comparison of Phases at
the Output of Slave Inverter

Vertical: A and B, 5v/cm; C, 2v/cm
Sweep: 0.2 usec/cm

CHAPTER 3
ARITHMETIC SECTION

The arithmetic section of the 1604-A computer is composed of registers A, Q and X
(figure 3-1). Procedures followed in the arithmetic section are derived from the
fundamental logic processes, The arithmetic is one's complement binary.

ARITHMETIC REGISTERS

ACCUMULATOR
The principal Arithmetic register, A, forms the results of arithmetic operations by the
process of accumulation, Some of the more important functions of A are:

1) Arithmetic operation - A initially holds one of the operands in addition,
subtraction, multiplication and division, The result is usually held in A, \

2) Shifting - A may be shifted separately or in conjunction with Q to the right
or left, Right shifting is open-ended with the lowest bits discarded and
sign extended,

3) Control for conditional instructions - A holds the word which conditions
Jump and Search instructions,

The A register is composed of two major functional parts: (1) two ranks (A1 and AZ)

of 48 flip-flops each, which are used to hold the operand; and (2) the borrow pyramid,

a network for sensing and generating the borrows required in subtracting the complement
of X (X') from A,

Normally, rank Al follows rank A2 unconditionally (figure 3-2). The signal A1 ->A2 is

produced each even phase time as long as the separate storage facilities of A2 are not
required, For example, the commands Add X2 to A1 and Q2 -’Al act on A2 as well,
duplicating in A2 the data transferred to Al. Similarly, the command Clear A is
applied only to Al, but its effect is felt by Az. A2 receives the next higher or lower
bits in the right or left_shift operations and supplies the quantity for the transfer A ~Q.

Only the Q and X registers communicate with A (figure 3-1), The transmission from
Q to A is accomplished in the ordinary manner., Transmission of X to A1 uses the
add path; Al is first cleared, then X2 is added to AL,

= :
i “@ m_ |)
o x‘g n_r- uz
Ué z §2> 388 14 00
o© e ﬁ-' AE D
Z Rz :-«g 15 ADD R'—>U!
w 3 =
1 = F 4
= X
* Y ; UZ—>R
a7ias 32 3638 24!23 15tie 00)
\ 7 |
9 UPPER LOWER (Xlese — u2] " B
14
2 L Z ADDRESS ADDRESS D XiasU B
: a4 COMP R 15 RZ—>R! 15
- e
f_..’: = U2—>xia 2
z 15) [RI —»RZ (9 [REDUCE
o g CHANNELS
(o}) x! - ; R2
3 » - 00 15 X'a—=R L1e 00
A i
1 U >
& = : (5 [compxi=xz] [x* —»x2] @9
5 3
2]
o a. X7 4> X3 Xe—X
8 = ouUTPUT
2 Pi—»x!
S ” e @ x ®
>
"
[N
=
5
o
&
0 Al
w
®
0
5 SHIFT
(o]
=

a2

X010 | 501 5508 4022 4002 4003 4023 pSi8

G

Qo3

AQIQ

M500

Qo!2

R G

| a0!!

A 5”/—(3

e

J

QO!0 p510

ti g

A5l0 ASOI AS?S QOII

o 8 % (
AOOI AOOO
"
AOZI _T AOZO
Figure 3-2., Typical Stage of A Register

3-3

TRANSFER A2—>a'
ADD X2 >4
TRANSFER Q2—>a'
CLEAR A

SHIFT A RIGHT
SHIFT A LEFT

TRANSFER A' > A2

Q REGISTER
The auxiliary Arithmetic register, Q, is composed of 48 stages of double-rank FF
storage. The two ranks are independent. The signals causing transmission between

them are generated conditionally. The principal functions of Q are:

1) Temporary storage for contents of A

2) Double-length register, AQ or QA

3) Right or left shift, separately or in conjunction with A

4) Multiplication, division and logical product operations (masking)

Q communicates directly with the A register only. In forming logical products the

clear outputs of Q1 are transmitted to clear inputs of Xl.

X REGISTER
The communication center of the computer is the Exchange X register which is
composed of 48 stages of double-rank FF storage. Communication between the ranks

1 2 2 1

is dependent upon the Transfer X~ - X" or X© =X~ commands. The principal

operations involvihg the X register are:

1) Communication between various sections of the computer
2) Arithmetic operations
3) Complementing

4) Logical products
5) Assembly and disassembly of floating point words

REGISTERS USED IN ARITHME TIC OPERA TIONS

Certain arithmetic operations use elements of the control section to effect completion.

For Multiply, Divide and Shift instructions a control quantity is placed in R to govern

the operation; Floating-Point instructions use the U and R registers.

Multiplication and division operations proceed as repetitions of a two-part step,
adding and shifting for multiplication or subtracting and shifting for division. The R
register controls the repetitions and is preset to indicate the number required.
After each step, R is reduced by one. When R = 0, the operation concludes.

3-4

BASIC OPERATIONS

BINARY ARITHMETIC

Computers operate faster and more efficiently by using the binary number system.

Only two digits, ''0'" and ''1", are used in this system, Two voltage levels are sufficient
to encode data presented in binary form. A -3, 0v represents a logical ''1'"; a -0, 5v
represents a logical "0",

A binary number uses the digit 2 as its radix in the same manner that a decimal number
uses 10 (see table 3-1), The decimal number 653 is:

6x102+5x 10 +3x10%=600+50+3

~ The binary number 1011 represents:

3 1

1x23+0x22+1x2'+1x2%-8+0+2+1

which is equivalent to decimal 11,

TABLE 3-1. DECIMAL AND BINARY EQUIVALENTS

Decimal Binary Decimal Binary

0 00000 9 01001
1 00001 10 01010
2 00010 11 01011
3 00011 12 01100
4 00100 13 01101
5 00101 14 01110
6 00110 15 01111
7 00111 16 10000
8 01000

Binary numbers are added according to the following rules:
0+0=0
0+1=1
1+0=1

1+1=0withacarryof 1

3-8

The addition of two binary numbers proceeds as follows (the decimal equivalents

verify the result):

Augent 0111 7
Addend +0100 +4
Partial Sum 0011
Carry 1

Sum 1011 11

Subtraction may be performed as an addition. Decimal examples:

8 minuend or 8 minuend
-6 subtrahend +4 10's complement of subtrahend
2 difference 2 difference - omit carry

Subtraction performed by adding the complement:

8 -6 =
8 +(10-6)-10 =
8+4-10

Omitting the carry has the effect of reducing the result by 10.

To complement a binary number (one's complement), subtract each bit of the number

from 1.
1141,
-1001 9
0110 one's complement of 9

The one's complement of a binary number may also be formed by substituting ''1's"

for ""0's'" and "0's'" for '""1's'" in the number.

In subtracting by the complement method the computer need perforfn only one basic
arithmetic operation, addition. The Arithmetic circuits of the accumulator are
subtractive. The following equation shows that it is possible to add by a subtractive

process:

transmit the "'0'" output of X

A+X=A-(-X)

subtractive accumulator

The equation states that the quantity in X is added to the quantity in A by subtracting the
complement of X, usually written X', from A. Even though A is subtractive, the net
result in additive.

Generating borrows is fundamental in subtraction. A borrow in a subtractive
accumulator compares to a carry in an additive accumulator; a borrow backs a stage
one count, a carry advances a stage one count. It is this borrow feature which makes

A subtractive rather than additive.

ADDITION

The basic operation of addition is involved in most other operations. Both the accum-
ulator and the X register are used in addition. In adding X to A the result is governed
by two conditions: (1) what must be done to An to produce the difference without

borrows of A™ and X'n;
requires that a borrow be made from An'

and (2) whether the arithmetic difference of A _; and X' _,

Sensing For First Conditon

Whenever ''0'" is subtracted from a minuend of either '"'0" or ''l" the difference has the
same value as the minuend; conversely, whenever ''1" is subtracted from a minuend of
either "0" or '"1'" the difference is the reverse of the minuend. Where ''1" is subtracted
from "0'" a borrow from the next higher order bit is required. The following rules
(table 3-2) summarize binary subtraction: (1) whenever the subtrahend is "0", the
difference is the same as the minuend, and (2) whenever the subtrahend is '"'1", the
difference is the reverse of the minuend, with a borrow required from the next higher
order stage when the minuend is ""0". If the borrow is disregarded, the difference

column is the logical or bit-by-bit difference.

In addition of X to A, the minuend is converted into the logical difference of the .
minuend and the subtrahend by complementing the bits of the minuend for which the
corresponding bits of the subtrahend are ''1" (table 3-2). The minuend is in A and the
subtrahend is the complement of the quantity in X. The logical difference of A and X
is formed by toggling each bit of A for which the corresponding bit of X is "0".

Sensing For Second Condition

The second condition in the addition of X to A indicates what borrows must be made to

form, not merely the logical difference, but the arithmetic difference of A and X. It is

3-7

necessary to borrow from stage An when both A and Xn-l are initially ''0"; a borrow

n-1
from A means that the logical difference of A _; and X _, is "0". This follows, since
the complement of X is subtracted from A. When X _, isa "0", its complement is

"1", and it is the complement of X _; which is subtracted from A__,.

TABLE 3-2. BINARY SUBTRACTION

Minuend Subtrahend Difference
A X
1 - 0 =
- 1 =
0+ - 0 = 0
= 1 = %

*borrow required from next higher-order bit.

Combining The Two Conditions

For each stage of A the two conditions for toggling are combined to gate the command.
Add X to A. 1If this AND is satisfied for An’ the An is toggled and A holds the sum of
A and X.

Since the two conditions are independent, it is possible for both of them to be satisfied
at the same time for a given stage. If this is the case, the A should not be toggled at
all since toggling a stage twice restores it to the initial state. If neither is satisfied,
An is not to be toggled. The exclusive OR combination of the two conditions is required
for gating the Add command. Thus, A_ is to be toggled if: (1) X _is "0" and no borrow

is required from A_, (2) X is '""1"" and a borrow is required from A

If a borrow is required from A_and A_ is ""0", then a borrow is required from A

If A
n+1 n+2,
of a borrow continues until a stage is reached which is ''1". A borrow generated in

nt+1°

is a ''0'"", then a borrow is required from A and so on. The propagation

A47 is made from AOO' This is the end-around borrow which makes the accumulator

a one's complement arithmetic device. Note especially that a borrow may be required
from An which is not toggled by the Add command. This situation exists whenever

X_ s "o"
- -

Example: Augend, in A initially 0101 + 5
Addend, in X initially 0011 + 3
Logical D1fference of 1001
A and X1 C Q—I
Stages to be Toggled T T T
Sum of A and X 1000 + 8

(produced by toggling
Ai in each bit with a T)

A 4-Dbit system is used for convenience; however, the 48-bit system of the accumulator
is exactly the same. The logical difference of A initial (Ai) and Xi is formed by
complementing each bit of A; where the corresponding bit of X, is '""0"; the other bits of
the logical difference are the same as those of Ai' The determination of borrows can
be made with the aid of this logical difference. A borrow is generated in any stage

A where A and X are both "0", The borrow is represented by an arrow which points
to stage A, 1 from wh1ch the borrow is made In the case where the borrow points to

a stage of the logical difference of A and x! that is ""0'", another borrow is required.

Borrow Pyramid

The borrow pyramid senses the stages of A from which borrows are required and sends
signals to toggle the necessary stages. Borrows are sensed by inverters A"0 through
A“G. The A"'7 inver‘ter senses where A must be toggled. The borrow is sensed by
sampling A and X The result is combmed with X2 as the input to the toggle control.
The latter then determines what stages of A are to be toggled by the Add X to A

command. Appendix A contains a detailed examination of the borrow pyramid.

Figure 3-3 shows the relation of the pyramid to the A and X registers. This portion of
the accumulator determines whether the conditions exist which require An to be toggled.
These conditions are: X is "0" and no borrow is required from A ; and X_ is "1" and

a borrow is required from An.

For the full additions, the Partial Add In A FF is cleared. By setting it, the borrow
sensing is disabled. This permits the Add command to toggle X2 into Al. Since this

is an Add without carries it is called a Partial Add.

SUBTRACTION

In subtraction the minuend is located in A; the subtrahend is in X. It is necessary to

1
first complement X1 with the command Complement X1 "Xz. X 1is subtracted from A.

3-9

Al

aoD x® 1o A!

TOGGLE

L TOGGLE CONTROL J
A-- 7

-

B
[=]
x
S
PARTIAL
:oa:ow J - DISABLE ADD IN A
YRAMID - - - - — = —n BORROWS
A"‘ Kuo
a--% K321
] a--*4
BORROW SENSING A==t
A_-l
-l
AT
&
a? x?

Figure 3-3. Relation of Borrow Pyramid to A and X Registers

Since X is complemented twice during the operation, A - X' is reduced to A - X:

I transmit the "0" output of X
A-X=Az(-

2X)
| L—complement X
subtractive accumulator
Subtraction is accomplished in three steps: (1) complement X; (2) sense borrows by

means of the logical difference of A and X; and (3) form the arithmetic difference by
toggling, ‘

SHIFTING

Fundamental to the arithmetic operations are the shifting properties of A and Q. These
registers can be shifted either to the right or to the left, separately or as a combined
96-bit unit, Registers are shifted one stage at a time,

The transmission paths for shifting are always from the upper rank of the register to
the next stage in the lower rank., Direction depends upon the type of shift, right or left,

3-10

90 0000O0OCOCOGEG OOONOONOOONOONEOO

)
)
)
)
)
3

W W W W W W W W w W S

A subsequent command places the shifted word into the upper rank. When A and Q
shift as a unit, A00 is connected directly to Q47.

The right shifts are all open-ended; as a word is shifted to the right the least
significant bit is lost after each stage shift. The sign bit is maintained in the most
significant stage and is extended to the right for as many stages as the word is shifted.

All left shifts are circular. The left Shift sequence connects the highest stage directly
to the lowest stage. Thus the content of the sign bit stage appears in the least
significant bit stage after each stage shift, and all other positions move one place to
the left. The shift operation can be called for directly by instruction and occurs as a
minor sequence within the Mulitply, Divide, Floating Point and Scale instructions.

Shift Instructions

The following instructions are used in programs to specify a shift operation:

01 Shift A Right 05 Shift A Left
02 Shift Q Right 06 Shift Q Left
03 Shift AQ Right 07 Shift AQ Left

The number of places to be shifted is designated by the operand address portion of
the instruction. The shift count can have any value through 127; however, 96, the
number of stages in the double-length register AQ, should be the largest significant
count. (The lowest seven bit positions of the execution address are required to
encode 96, since the capacity of these seven bit positions is 127. Numbers in the

range 97-127 are acceptable counts.) Any ''1's' in bit positions greater than 26 cause

a fault indication which may be sensed by the External Function instruction.

The Zero Address sequence initiates shifting by setting one or more of the four FFs
(K310 - K317) in the Shift Control circuits (figure 3-4). These FFs enable the Shift
and Reduct R commands to occur every even phase. During the odd phase the R2 to
R1 and A2 to A1 or Q2 to Q1 commands occur to prepare for the next Shift and Reduce

commands.

Shift Exit FF (K320/321) is set to record that one of the Shift instructions is being
executed. When R = 1 the shift FFs (K310 - K317) are cleared on the even phase. This
terminates shifting at the correct point, since a Shift command is being executed at

the same time. The Reduce R command accompanying this last Shift command reduces
R from "1'" to ""0". This signal indicating R = 0 (even phase) allows the exit to be taken.

3-11

£:01,03

A RIGHT

N’H

ZA_é)

$:05,07

B

K:w

A LEFT

N’H

ZA_é)

202,03

K3

Ret |

KeTT?

SCALE
TERMINATION

K476

KT ¢

Q RIGHT
K3'2

N’H

N’l)

N9|3

ZA

206,07

K3l

Q LEFT

28 —-

SHIFT EXIT
FP —3 320

>—(P—N K37

K36

il

K077
SHIFT FF's K3~

R=0

FULL EXIT

ZA

K!N

£:01-03,05-07

EXIT FF=0

Figure 3-4.

3-12

NNS

RIGHT SHIFT A
H9'0

N-'O

LEFT SHIFT A

A2 1O A
HOOI

N-m

RIGHT SHIFT Q

LEFT SHIFT Q

N’ZS
K3'S
K‘7C

Shift Control

A VN F_.N VN N . 3 N

Shifting in Multiplication and Division

In multiplication, the AQ Right Shift positions the current sum of partial products in
AQ for the formation of the next partial,pt'oduct. The shift also positions the next
multiplier bit in QOO to determine the action required for generating the next partial
product. The number of shifts depends on the type of multiplication (integer,
fractional or floating-point). The control for the number of shifts is preset in R by
the instruction.

In division, left shifts position the partial dividend as a minuend for the subtraction of
the divisor to determine the individual bits of the quotient. The type of division being

performed determines the number of shifts.

Shifting in Floating Point Instructions

Floating point operations employ shifting for determining the product or quotient of
two floating point operands.

Shifting in Scale Instructions

The Scale instructions 34 and 35 are essentially Left Shift instructions. The contents
of A or AQ are shifted to the left until R = 0, as in Normal Shift instructions; or the
shift concludes when a '"'1'" appears in the stage immediately to the right of the sign
bit. The A Left FF or both the A Left and Q Left FFs are set to begin shifting.

Shifting terminates by clearing these FFs when R = 0 or when scaling is achieved.

ITERATIVE SEQUENCE

The longer arithmetic operations of multiplication and division and all floating point
operations are performed by the Iterative sequence. For any of the instruction (24-33)
using the Iterative sequence, one of the operands is initially in A as the result of a
previous instruction. The sequence begins at H601 (figure 3-5). The first part of the
chain acquires the second operand from storage. Various portions of the chain are then

used as shown in figure 3-5, depending upon the instruction.

MULTIPLICATION

The Multiplication instructions, (24) Multiply Integer, (26) Multiply Fractional and (32)
Floating Multiply, form the product of two operands. The multiplier is contained in A
and the multiplicand in the address specified by the instruction. The result of the 24
and 26 instructions is a 96-bit quantity held in QA for 24 and in AQ for 26.

3-13

PREPARATION AND ACQUISITION OF OPERANDS
A B

\
4 WAIT
e sla STORAGE 620 e23
|]
RNI Nu'n 1o ch K toe Huo il Hus
i v v (209 v v
24-33

RESUME

FLOATING POINT
A

\
IPREPARATION OF SECOND OPERAND ROUND AND NORMAL IZE

NIIO = "IYS H"O - K394 HETS e H 9 FLOATING POINT
1 T ' y980 873 5% | 894 T ; v 87e v o9 EXIT
30-33 30,31
! MULTIPLY STEP 32,33
[N 830 HE37
TO0 —
T—' v 830 v 837
24,26 END CORRECTION
H €80 HE89
veso ° ese FIXED POINT
i EXIT
33 DIVIDE STEP 24 -27
——$—! H 840 HoeT

y 840 v 847

25,27

Figure 3-5. Iterative Sequence

The computer performs multiplication by repeated additions and shifts. The multipli-
cand in storage is transferred to X and added to the partial product being developed

in AQ. The multiplier digits are transferred from A to Q and inspected, beginning
with the least significant bit. The magnitude of each multiplier bit determines whether
or not the multiplicand is to be added to the current sum of partial products during

the particular step for which it is the control.

Multiplication is always performed on a bit-by-bit basis as carries do not result
from multiplication; the product of any two bits is always a single bit. Binary

multiplication proceeds according to the following rules:

3-14

0x0
0x1

1}
o

1x0
1x1

n
o

]
= O

Example 1: An example of binary multiplication follows.

Decimal Binary
multiplicand 14 1110
multiplier 12 1100
{ 28 0000
partial products
14 shift one place left 0000 shifts to place digits
product 168 gy - 1B Prapecicolimng
1110
10101000

The computer determines the running subtotal of the partial products. Rather than
shift the partial product to the left to position it correctly, the computer right shifts the
summation of the partial products one place before the next addition is made, When the
multiplier bit is ''1", the multiplicand is added to the running total and the results are
shifted to the right one place, When the multiplier bit is a ''0"', the partial product sub-

total is shifted to the right (in effect, the quantity has been multiplied by 102).

After each multiplier bit in Q is considered, it is discarded and Q is shifted right one

place, This always positions the current multiplier bit in QOO' The upper stages of Q
become available to receive the lower order digits of the product as it develops and is

right shifted in A,

Example 2: Register contains 4 bits and sign (01110).

A R
Initial 01100 00000
Stepl 00000 01100 Interchange A and Q
Step2 00000 00110 Add QOO times X to A. Shift right one.
Step3 00000 00011 Add Qg times X to A, Shift right one.
Step4 00111 00001 Add QOO times X to A, Shift right one.

A Q
Step5 01010 10000 Add QOO times X to A. Shift right one.

Step5 10000 01010 Express lower bits of the product in A,
upper bits in Q.

Multiplication by the Iterative sequence consists of: initial sign correction, multipli-

cation phase, final sign correction.

During initial sign correction both the multiplier and multiplicand are made positive,
if they were not. If the product is to be negative, the Sign Record FF is set. If the
signs are alike the FF is cleared. Later during final sign correction, the Sign Record
FF indicates whether the product obtained from the multiplication phase must be

negative (complementing required).

Following the initial sign correction, the sequence generates a control quantity which
determines the number of steps necessary to conclude the multiplication. This
number, which varies with the type of multiplication, is set in I2 and transmitted to
R. As each step is completed R is reduced by one. When R = 0, the sequence

terminates.

The step control quantities set in 12 for the Multiplication instruction are:

48 for instruction 24, Multiply Integer
47 for instruction 26, Multiply Fractional
36 for instruction 32, Floating Multiply

The difference in the control quantities provides for the proper positioning of the
product in Q and A (A register for Floating Multiply). Integer products are positioned
with the binary point at the right side of A; the fractional products are positioned

with the binary point located immediately to the right of the sign bit, A For

47°
floating point products the point is just left of stage A

35.

Determination of a product with operands packed in floating point format proceeds

in a manner similar to that described herein. However, as floating point multiplicands
and multipliers contain only 36 bits, multiplication is accomplished in fewer steps.
The product is rounded to 36 bits.

The multiplication phase is accomplished by repeating the multiply step (figure 3-6)

the number of times specified by the control quantity. Eachrepetition forms the partial

3-16

y : :

OOOOOOOOOOOOOOOOO”OOO“O“OOOOOOOOOOOOOOOOOOO“OOOOOOOOOvOOOOOOLOOOOOOOOOOOOOOOOOOO

1 3 5 7 [} 1 13 15 A7 19 a3 P8 iR di R an ek 33 37030 4 o A5 S PALREA9. T 25T a3 57°-59° 61 (BT L T Sy A S 737078 77 9

]111]111]1111111]1]111111111111111111111111.1 RS 111111]‘1]» P AR sl

0902005003 0 I 0100500900 P09 000000 90 99005 000

)

N
S

A
»D

V290059 09579 9959

3:3:8°813:3'3.3/318:3 3 3:3:313:813 313,813 3437373 318:3:8:3 3:3°3:3

(#%)

(%]

8.3.8:3:313:.3188 343 3.8 1 3333 3833 313 3 5:818 3:318:3.3:3:5)318 3.3:.3, 348

444444444444444”44‘!‘1"444 -4444«444“4&,4&4‘4 414‘.4\441444441‘1&~4‘.4~,444444 444444444
S G O ST M B R G B D B R e R e T T =2 85 0T 6 LT A 1S TS

1 3 &3

55555 555555SSSSSSESS5555553J355555545“53<5 5q :5555555555555555 SEOEOS5E51515:59:0755545:5
6666666666666666666666666666666666666@666666666@66666666666666666666666666666666
777 77777777777777/7777777777777

8888888888888888888888888 8888888888886888 88 8§6888888888888885888888888888888

1402 4 é 8 10 12 14 16 18/ 220022 7~ 245267728 G 234 3638 4042 44

= 520054 567 58 1601 62 T6A 665 68 =05 7274 1678780

9999999999999999999999?9999°°99°999999999?9°099999990999999999999999999999999999

R R R R

(18

I./L POGUIPISY DRIBMINI

1! Y - ‘
00000000 OGEE O©O000O00 OGO OOS

product of a bit of the multiplier and the multiplicand and adds this to the running sum

of partial products,

The first multiply step shifts AQ right. This disposes of the multiplier bit in Q;
however, the effect of QOO is maintained in slaves long enough to determine the path for
the first loop. If Qy, is a "0", the short loop is selected; if Qg is a 1", the long
loop is selected. The short loop right shifts the partial product in AQ; this has the
effect of multiplication by a ''0" bit. The long loop first adds the multiplicand X to the
sum of partial products in A and then initiates a shift AQ right, multiplying one bit.

R is reduced by one at each shift, When R = 0 the product accumulation is terminated.

The product as assembled is a positive number, the sign is ''0", and its bits are not
complemented. If the product is to be expressed as a negative number; that is, if the
operands were init'ially of opposite signs, AQ is complemented. In the case of 24,
Integer Multiply, A and Q are interchanged to place the least significant part of the
product in A,

INITIATE MULTIPLY STEP
(AFTER SIGN CORRECTION)T

LONG LOOP

SHORT LOOP

a¥o : 5565 >ADD X270 A'
INITIATE
H 830 H o3 He32 He33 FINAL SIGN
V3! v 632 V833 V838 s

Qoo RaQ

o L _-IH—“_
ee_
Q000 ¥

RIGHT SHIFT AQ A2 TO A!
REDUCE R'+ R? Q270 Q'
R2 10 R'

Figure 3-6. Multiply Step

3-1%

DIVISION

For the Divide instructions, (25) Divide Integer, (27) Divide Fractional, and (33)
Floating Divide, the dividend is in the A and Q registers; the divisor is in storage at
an address specified by the instruction. Division is executed in three phases: initial

sign correction, division phase, and final sign correction. An example is illustrated

below:
Decimal Binary
14 Quotient 1110
Divisor 13 /185 Dividend Divisor 1101 /10111001
13 ‘ 1101
55 Partial Dividend 10100
52 1101
3 Remainder 1110
1101
1.1

Instead of shifting the divisor right to position it for subtraction from the partial
dividend, the computer shifts the partial dividend left, accomplishing the same purpose
and permitting the arithmetic to be performed in the A register. The computer counts
the number of shifts (number of quotient digits). After the correct number of counts
the routine is terminated.

In programming a division the relationship of the size of the dividend and the divisor
must be considered in order to express the quotient within the capacity of the quotient

register.

Initial Sign Correction

Since division requires a positive divisor and dividend, initial sign correction com-
plements either or both of these operands if they are negative. The quotient is positive
if the signs of the operand are alike, negative if the signs are unlike. An indication of
the sign of the quotient is stored in the Sign Record FF. During the final sign
correction, this FF directs whether to complement the positive quotient that always
results from the division phase. The sign of the dividend is recorded so that the

remainder may be given the same sign.
For the division phase the dividend must be positioned in AQ (higher-order bits in A).

During initial sign correction for 25, Divide Integer, A and Q are interchanged

because the dividend is initially in QA for this instruction.

3-18

S O 0000000 OED OO0 00 OO 00 O

Division Phase

The divide step (figure 3-7) involves:

1) left shifting AQ one place

2) subtracting X (divisor) from A (partial dividend) if A 2 X

3) setting Qy, to '""1" if subtraction was made; otherwise entering ''0'" in Qpo-

Two different control quantities govern the number of repetitions of the divide step,
which performs each partial division and generates the individual quotient bits, The
quantity is 48 for both Integer and Fractional Divide instructions (25 and 27); for the
Floating Point Divide (33) it is 36. The control quantity is set in 12 and then transmitted

to the R register, Each repetition of the divide step reduces R by ''1" until R = 0, the

full quotient is transmitted to Q and the remainder is in A,

A2 TO A!
LEFT SHIFT AQ R2 TO R'
REDUCE R' TO R? Q2 10 Q'
INITIATE STEP ne e HEeT Hee-
VG“ v.._
R#0
INITIATE
HG‘O Hl‘l HC‘I H.‘l H.“ HI‘S FINAL SIGN
. CORRECTION
vee v84e2 V643 veses V84S
R=0

ADD X2 TO A‘(———T
A >X

SET Qoo TO I‘———j——‘

, A >X '

Figure 3-7, Divide Step

3-19

Subsequent commands position the quotient in A and the remainder in Q. An example

follows,

Divisor

Dividend AQ

Remainder Quotient

Final Si@ Correction

X 01101
R=5

0010111001

0101110010
R=4

1011100100
R=3

0101000101

1010001010
R=2

0011101011

0111010110
R=1

0000110111

0001101110
R=0

The final sign correction phase:

1) Senses for a divide fault,
2) Complements Q (the quotient) if the Sign Record FF is set (dividend and
divisor initially have unlike signs).

A

v

Shift AQ left
Shift AQ left

Subtrsct X from A
Set Q00 to 1, Shift AQ
left

Subtract X from A
Set Q00 to 1, Shift AQ
left

Subtr8.8t X from A
Set QYY to 1, Shift AQ
left

Initiate Final Sign
Correction

3) Complements A (the remainder) if Dividend Sign FF is set (dividend initially

negative),

4) Places quotient in A and remainder in Q.

3-20

4 ¢

o0 00000000 @EG oo O0O00O0OO0

A divide fault (Quotient register overflow) results when the quotient requires more than
47 bits. If a division involves a fault, after the first shift of the division phase, A is
greater than X and a "'1"" is entered in Qgo: But if a divide fault is not involved, after
the first shift A is less than X and a ''0" is entered in QOO' In either case, this bit
appears in Q47 after the 47 remaining shifts of the division phase, At this point if Q is
negative there is a fault; if Q is positive there is not a fault. Sensing a divide fault is
sensing the sign of Q; the Divide Fault FF is set when Q is negative. The fault condition
can be sensed later by the 74 External Function instruction.

After completing the final sign correction phase, instructions 25 and 27 exit., Instruc-
tion 33, Floating Divide, initiates the round and normalize part of the Iterative sequence,

FLOATING POINT

Any number can be described by the general expression an, where k i8 a coefficient,

B a base number, and the exponent n the power to which the base number is raised. The
Floating Point mode of operation uses this means of expression by including in its
operand format the coefficient, the sign of the number, and the exponent. The make-up
of a floating point word is shown below:

a7 46 36 38 : 0
AN J\ /
Vv VA
/ -8IT 36-8IT COEFFICIENT
SIGN
Coefficient

The coefficient is made up of a 36-bit fraction located in the lower order positions of
the floating point word and a single bit located in the conventional highest order bit
position. The fraction has a value ranging from one-half to one (not including one),
Negative number notation is one's complement,

Exponent

The exponent is an 11-bit number with a value from 0 to 211 -1 (2047 in decimal, 3777

in octal). A bias of 210 (1024 in decimal, 2000 in octal) is added to the true exponent
when the floating point number is formed. A number with true exponent equal to zero
appears as 2000 (octal), A number with exponent equal to 264 appears as 2264; a number

3-21

with exponent equal to minus 137 appears as 1641. As in algebra, positive exponents
are used for integral numbers and negative for fractional numbers. When a number is
negative, the exponent is included in the one's complement representation. Thus if
the above examples of exponents were for negative numbers, they would appear in the
floating point word as the bit-by-bit complement.

The bias used with the exponent makes floating point operation more versatile since
floating point operands can be compared with one another in the normal Fixed Point
mode., The transition from fixed point to floating point format is given below to illustrate
the encoding of numbers by fixed point methods and the way this format lends itself to
comparisons. For simplicity the fraction is limited to three bits and the exponent to
four bits including sign. The exponent is in parentheses.

Fixed Point Floatin&Point
+4,0 = 0100 x 2° = 0.100x2° = 0(1011) . 100
+0.04 = 0.000100 x 2° = 0.100x2°3 = 0(0100) . 100
-4.0 = 1011x2° = 1.011x23 = 1(0100) . 011
-0.04 = 1.111011x 2° = 1.011x2 % - 0(1000) . 100
+0.4 = 0.100 x2° = 0.100x2° - 0(1000) . 100

or 0(0111) . 100

In a bit-by-bit comparison of two numbers the larger or more positive has a ''1" in the
first higher position for which the bits of the two numbers are unlike. The signs (first
bit) are compared independently; a positive ''0" quantity is always indicated as larger
than a negative '""1" quantity. Since 4.0 is greater than 0. 04, the floating point form of
4.0 has a ""1" in a more significant position than does 0. 04, Thus fixed point comparison
of the two floating point numbers yields the desired result. Similarly, -0, 04 is greater
than -4. 0, since the first is less negative. Thus the floating point form of -0. 04 contains
a '"1" in a higher position than the highest ''1" of -4. 0.

The two forms possible for +0. 4 present a special case. The first is considered stand-
ard; that is, if all floating point operands that fall in the range of magnitude zero
exponents are encoded in the positive form, then results of floating point operations
which fall in this range are also represented by exponents of positive form. Unless

the original operands have the negative representation of an exponent of magnitude zero,
this form of exponent is not generated by the computer. These comments apply to the
state of the 11-bit exponent before any complementing is performed if the entire number

is negative.

3-22

o9 0oo00ocoOoCcOo@EGeOOOOOOCOOO®

Floating Point Operation

Any of the four Floating Point instructions is performed by the following steps. All
operands should first be in floating point format.

1) Unpack

2) Execute coefficient and exponent arithmetic
3) Round

4) Normalize

5) Pack

The unpack (1) step involves one operand in the accumulator and one from storage.
Each operand is separated into its exponent and coefficient. The coefficients are
sent to the Arithmetic registers and the exponents to the Address Modification
registers, U2 and R. In unpacking, if the sign of the number is negative both the

exponent and coefficient are complemented.

To illustrate actual floating point format several sample quantities encoded in binary

are shown below.

Decimal Exponent Coefficient
Sign
+1604.0 \ 010 000 001 O11 110 010 001 000 000 000 000 000 000 000 000 000
(octal 3104)
-1604.0 101 111 110 100 001 101 110111111111 111 111 111 111 111 111

(The negative character is indicated by ''l"" in the sign position of the fraction. The

fraction is expressed in one's complement form.)
-.1604 110 000 000 010 010110111 100 000 000 011 010 000 000 111 010

In the arithmetic (2) step the exponent operations are handled in the U2 and R registers.
Coefficient arithmetic is performed as a fractional fixed point operation. In addition

and subtraction the coefficients are aligned by shifting to make the ‘exponents alike.

The round (3) step modifies the coefficient answer by adding '"1" to A for positive
answers or by subtracting 1" for negative answers. Rounding is necessary since the
coefficient answer may contain more than 36 bits. The condition for rounding is
inequality of the sign bits of A and Q. This means that the next lower significant bit to

the right of the number in A is equal to or greater than one-half.

3-23

Coefficient arithmetic may yield rounded answers from zero to 237. The normalize

(4) step brings this answer back to a fraction from one-half to one with the binary point
to the left of the 36th bit. The final normalized number in A ranges from 236 to 23’7 =,
Normalizing is performed by either a right shift or the required number of left shifts.

The exponent is corrected for every shift. The residue in @ is not shifted.

The pack (5) step positions the final exponent and coefficient in A, If the sign of the
answer is negative, both the coefficient and exponent are complemented. The exponent

range is tested to determine overflow of the exponent and to set the Fault indicator.

Addition

The Floating Add instruction, 30, produces the sum of the floating point operands in A
(augend) and address M (addend). In accordance with the floating point format, the
coefficients and exponents of the operands are separated. Coefficient operations are
performed in the A and X registers; the exponent operations are performed in the R
and U2 registers.. The resultant exponent and coefficient are assembled into proper

format in A. Basic steps in Floating Add are:

1) Enter augend in A by previous instruction; complement if negative.

2) Aéquire addend from address M and place in X; complement if negative.
3) Compare exponents; save larger in U2; difference in R,

4) Position coefficients so that one with smaller exponent is in A.

5) Shift AQ right by number of places indicated by content of R.

6) Add coefficients (add X to A).

7) Round off portion of coefficient in Q, if A47 # Qy7-

8) Normalize A so that A, # A3 . If normalizing requires left shifting reduce R
by one for each shift. B Agg A37 right shift one place and increase R by one.
9) Test for exponent fault (exponent greater than g0 _ 1; set FF in this case).

10) Assemble floating point sum inX: exponent comes from U2 and coefficient
from A.

11) Transmit X to A.

Steps 3, 4 and 5 make the two exponents equal by right shifting the coefficient with the
smaller exponent. Step 5 shifts both A and Q to the right in aligning the exponents. Bits
of the augend coefficient are moved into Q. As shown in figure 3-8a, the addition of X
to A in step 7 may produce a sum of more than 36 bits. Step 8, therefore, rounds off
the excess portion in Q by adding 1 to A if Q47 = 1,

3-24

\
® 9 00000 0 O@ED O OO OO 00 0 0 O

OO0 0000000 EEDOOO0O0O0O0OOOOO

|

Normalizing (step 8) provides for expressing the sum in proper floating point format,
If the sum of the coefficients has more than 36 bits, it must be shifted right and the
exponent increased. (At most the sum in A can have 37 bits, and thus only one right
shift is ever required,) If the sum in A has less than 36 bits (its most significant

bit is not in A35) it must be shifted left and the exponent increased by one for each

place shifted.

X REGISTER
=
ADDEND
COEFF | CIENT
a7 35 «—> 00|
A. BEFORE
EXPONENT
ALIGNMENT A REGISTER Q REGISTER
AUGEND
COEFFICIENT
Lle7 35 «——> 00 47 00j
=
ADDEND
COEFF | CIENT
47 35 «—» 00
B. AFTER
EXPONENT
ALIGNMENT
1 o
AUGEND
COEFF | CIENT
47 35 < - - <> 00
Figure 3-8, Relation of Coefficients in Addition
Subtraction

The Floating Subtract instruction, 31, produces the difference of two floating point
operands in A (minuend) and address M (subtrahend), As in addition, the exponents and
coefficients are separated and the operations performed separately., Basic steps in
Floating Subtract are:

1) Enter minuend in A by previous instruction; complement if negative,

2) Acquire subtrahend from address M and place in X; complement if negative.
3) Separate and compare exponents; save larger in U2; difference in R,

4) Position coefficients so that one with smaller exponent is in A,

3-25

5) Shift AQ right by number of places indicated by content of R.

6) Subtract coefficients (subtract X from A).

7) Round off portion of coefficient in Q, if A47 # Q47.

8) Normalize A so that A
by one for each shift, If A37 # A36 right shift one place and increase by one.

9) Test for exponent fault (exponent greater than 210 -1; set FF in this case).

35 ~ A36' If normalizing requires left shifting reduce R

10) Assemble floating point difference in X; exponent from U2 and coefficient from A.
11) Transmit X to A.

Multiplication
The Floating Multiply instruction, 32, forms the floating point product of two operands

in A (multiplier) and address M (multiplicand). Exponents and coefficients are separated
and operations performed separately. Multiplication of two coefficients is identical to
that for fixed point. However, the multiply step is repeated 36 times instead of 48, The
location of the double length product in AQ is bits 11-47 in Q, bits 00-35 in A,

MOST-SIGNIFICANT
PART

a [47 35 ooJ Q [47 " oo]
«— PRODUCT AFTER MULTIPLY STEP —»

To express the product in floating point format the least-significant 36 bits of the pro-
duct (located in Q) are rounded off by adding one to A if Q47 # A47. Basic steps are:

1) Enter multiplier in A by previous instruction; complement if negative,
2) Acquire multiplicand from M and enter in X; complement if negative,
3) Set Sign Record FF if product is to be negative.

4) Extract exponents from A and X; send to U2 and R,

5) AddR to Uz; leave sum in U2.

6) Initiate multiply step to form product of coefficients; repeat step 36 times;
final product in AQ.

7) Complement if Sign Record = 1,
8) Round product to 36 bits by adding ''1" to A if Q47 A
9) Transmit sum of exponents from 02 to R.
10) Normalize product so that Asg # A4 shift AQ left and increase R by "1" per
shift, or right shift AQ once and reduce R by ''1",
11) Test for exponent fault (exponent greater than 210 -1) and set Exponent Fault FF,

47°

3-26

12) Assemble floating point product in X: exponent from R and coefficient from A,
13) Transmit X to A.

Division

The Floating Divide instruction, 33, produces the quotient of the two operands in A
(dividend) and address M (divisor). If the dividend is ''0'", the instruction terminates
(with a dividend equal to "'0" the quotient would be "0"").

The quotient of the two coefficients is formed in a manner identical to that used for
fixed point division. However, the divide step for partial division is repeated only 36
times. Basic steps in Floating Divide are:
1) Enter dividend in A by previous instruction; complement if negative.
2) Acquire divisor from storage address M and enter in X; complement if negative.
3) Set Sign Record FF if quotient is to be negative.
4) Extract exponents from A and X and sent to U2 and R,
5) Subtract R from Uz; leave difference in U2.

6) Initiate divide step to form quotient of coefficients (repeat step 36 times);
quotient in Q at conclusion.

7) Complement if Sign Record FF = 1,
8) Transmit quotient from Q to A.
9) Transmit exponent from U2 to R.

10) Normalize quotient if A 5 = A 6 (shift A left and reduce R by one per shift
until Agg 7 Agg Or shift right one place and increase R).

11) Test for exponent fault (exponent greater than 210 -1; set FF in this case).
12) Assemble floating point quotient in X: exponent from R and coefficient from A.
13) Transmit X to A.

LOGICAL PRODUCT
A logical product is the result of the bit-by-bit multiplication of two numbers. A bit in

the logical product is ''1" only when both bits are ''1"; if either or both bits are '"'0'" the
bit of the logical product is ''0".

1 0 1 1 multiplicand
1 1 0o O multiplier
1 0 0 0 logical product

3-27

The logical product of two quantities is formed by the computer in X as the result of

interaction between X and Q as shown below for one stage of Q and X,

Qooz xom
xOOI

Lox
INITIATE ——>] (540 |

KMI

Setting the LQX FF clears every stage of X for which the associated stage of Q holds
""0", But for stages of Q holding a ''1", the associated stages of X remain undisturbed,
Thus the interaction between Q and X as governed by K540/541 obeys the laws of binary

multiplication:

- = O o ®
= O = O M
oo
- O O o &

MooM XM M

Forming the logical product of Q and X is a discrete logical function of the arithmetic
section of the computer, However, this function is used to accomplish more complex
operations such as selecting specific portions of an operand for entry into another oper-
ation, As it passes through X the operand is subjected to a mask which has been loaded
in Q. The mask, a pattern of ''0's" and "1's", causes X to retain its original content
only in those stages which have corresponding ''1's" in Q. When the selected bits are
all that remain in X, the instruction concludes. In some instances, the mask is in
storage and the operand to be masked in Q. The result is the same and in either case
appears in X, The computer instructions involving a logical product are: (43) Selective
Substitute, (44) Load Logical, (45) Add Logical, (46) Subtract Logical, (47) Store Logical,
(66) Masked Equality and (67) Masked Threshold.

3-28

REGISTER SENSING CIRCUITS

The performance of several computer operations or commands is conditioned by the

state of Arithmetic registers.

1) In the divide step, A 2 X conditions the subtraction of X from A and the |

entering of a ''l" as a partial quotient digit.

2) Equality Search instruction (64) searches a list of operands for one equal
to A; exit from the search is conditioned by X = A.

3) In the A Jump instruction with j = 0, the choice of jumping is conditioned
by A = 0. '

Figure 3-9 shows the pyramids which indicate Register condition. The upper pyramid
tests for equality between A and X. The first level inverters of the accumulator
borrow pyramid determine this condition. Since the inputs of this level require
similarity between A and X to produce a ''1'" output from A994, ''1" outputs indicate

dissimilarity and produce a ''0'"' output from A994.

The middle pyramid illustrates the test for A = 0. The "0" sides of the A register
FFs are brought together in whiffletree fashion. Any 'l's'" suppress the A = 0 signal.
The test for A = 0 is complicated when A = -0 (all ones). A similar whiffletree
samples the ''l'" side of each stage in A, A986 receives OR inputs from A = +0 and

A =-0.

A similar pyramid tests for Q = 0. The A = 0 and Q = 0 signals combine to form an

AND input to J126 which indicates that the double length register AQ = 0.

Slave inverters connected to the outputs of the sign bit stage of the A, Q and X

registers indicate the sign of the content of these registers.

In some operations (test for divide fault, scale, and floating point) the results of the
comparison of two bits determines the course of action the computer is to take.

(1) A "0" output from J110 indicates inequality between A, and Q,, causing overflow
during the formation of the quotient. (2) In the Scale instruction J124 indicates whether
scaling has been achieved (''1" has been shifted into A46). (3) J131 and J123 position
the co-efficient during the normalizing process of the Floating Point instruction. The

logic of these comparisons is shown by the inverters in the bottom row in figure 3-9.

3-29

A=X

e IO

[A"’° AT40] [Ano A500 I

= K A
A X A X A X A X

(SET SIDES) (CLEAR SIDES) (SBET SIDES) (CLEAR SIDES)

THE Q=0 PYRAMID
IS SIMILAR TO THE
A=0 PYRAMID.

[Aoso ATS8] [Aoos A58] fAsza A7‘°J |A°°° Asoa]
Aypper "0'S" ALower "0's" Aypper "1'S" AL owen “I's*
ARQ
SIGNS UNLIKE Agq7=A46 A3g sA37 Azs=A3g
ANeeQ Q-Qpos Aq770-0 O-A47:) 755
Anee Apos Agg®! Agg70
O- Azgz0 Azgsl| A3g=0

Azg®! A3e*0

Figure 3-9. Register Sensing Networks

3-30

ARITHMETIC FAULTS

The registers used in the arithmetic processes are monitored for Fault conditions

by four FFs, Divide, Shift, Overflow, and Exponent Faults., The error-checking
circuits are shown in figure 3-10. The FF recognizes the Error condition immediately
and lights an indicator on the console. If the program has selected Interrupt On
Arithmetic Fault by means of the 74. 0 instruction, an interrupt is produced by the

fault and the Interrupt sequence is initiated.

Faults may also be detected by following an instruction which might produce one, such
as a divide, with a 74.7 instruction having the code for sensing the Divide Fault FF.

DIVIDE FAULTS
The divide fault occurs in the Fixed Point Divide instructions (25 and 27) if the
quotient exceeds the capacity of the Quotient register.

In division the opérands are first set as positive quantities. (The sign of the quotient
is established by the initial sign condition of the operands and stored by the Sign
Record FF). Thus the quotient is initially positive and is corrected later if it is to

be expressed negatively. In testing for a divide fault the sign of the quotient is
inspected before the final correction. At this time the sign bit is '"1" only if overflow
has occurred. Overflow occurs if the divisor is ''0", or if a significant bit falls in the
sign bit position,

The Divide Fault FF K232/233 is set by the combination of the following signals: W773
which indicates that Q is negative; F325 which indicates that a 25 or 27 instruction is
being executed; and V650 which indicates the quotient has been determined and the

sign corrections have not been made.

SHIFT FAULTS

The shift instructions 01, 02, 03, 05, 06 and 07, provide for shifting the contents of
the A, Q, or AQ registers to the right or left up to 127 (decimal) places. Any
attempt to shift a register more than 127 places results in a shift fault.

The shift count is specified by the modified base execution address. Since 127 is the

greatest number that can be coded in the last 7 binary positions, ''1's" in positions

greater than the 26 position in the modified base execution address indicate a fault.

3-31

INDICATOR INTERRUPT SENSE INDICATOR INTERRUPT SENSE
74 7 OXIIX 74 7 OXI2X
28 I
X w MC ¥ x [€&— MC
74 O OXXTX INITIATE SHIFT-O 74 0 oxXX7X
28, 27 Q NEG
ol-07 04
INITIATE
SIGN CORRECTION —l
"I's" IN UOT-y'4
DIVIDE FAULT | SHIFT FAULT
OVERFLOW FAULT | EXPONENT FAULT
INTERRUPT SENSE SENSE INTERRUPT
SENSE SENSE
74 7 oosocﬁ %—74 7 00130 747 0015X
74 7 0014X
INTERRUPT —? {
INDICATOR <—{ %98
INDICATOR <L 694 OTR PEXPONENT | EXPONENT
8{;22_ OVERFLOW | UNDERFLOW
{ FLOW OVERFLOW
FAULT | FAULT s 2 ® &
o~ N ~ ~
® o o N X X MC |x x €& MC
25 lemc % % lewne CLEAR T
X _x ol ARITHMETIC
CLEAR T FAULTS y'32
ARITHMETIC (6 897
FAULTS o K238
ADVANCE CLOCK A®7T —(- ADVANCE voee
CLOCK yros uror
FULL ADD
IN A
yros ®
A®TO u'i2 U706
AST# X 47 -
UI22

Figure 3-10,

Arithmetic Faults

3-32

OVERFLOW FAULTS

Overflow faults occur when the sum or difference of two quantities exceeds the
capacity of the A register. The possibility of overflow exists only after the addition or
subtraction of two quantities of like sign. Since the sum or difference of two like-
signed quantities retains the sign of its operands, overflow is indicated by a change in
the sign of A1 (the sum or difference is formed in Al).

In figure 3-10, A977 indicates the sign of A1 is changing and V051 issues a pulse one
2 1

phase time after the command Add X - A™ only if A2 and X2 have like signs.
EXPONENT FAULTS

An exponent fault occurs during Floating Point instructions when the exponent of the
result, after rounding and normalizing, is 2+10 (exponent overflow) or 2_10 (exponent

underflow).

FAULT CONTROL

The Arithmetic Fault FFs are cleared by a Master Clear signal from the console or
by the Clear Arithmetic Faults instruction 74 0 00070. The cleared state represents
the "no fault'" condition. The presence of a Fault condition can be sensed by the
program, using the 74,7 instruction with the codes indicated in figure 3-10.
Furthermore, the program can select to be notified by an interrupt each time a fault
occurs. A 74.0 instruction with the code 00100 produces an interrupt when any of

the four faults occur.

In general, an internal interrupt as a result of an arithmetic fault is followed by an
interrupt subroutine which checks for all possible interrupt conditions by means of
Sense instructions. After determining which selected condition causes the interrupt,
a jump is made to that portion of the routine which processes the interrupt. After
being interrupted, the computer cannot again be interrupted without returning to the
interrupted program (see Interrupts in chapter 6 of this manual). The last instruction
is an interrupt subroutine is usually 74 0 00070 (Clear Arithmetic Fault). This
instruction should be preceded, however, by a 74 7 00131 (Sense For Overflow Fault)
since it is possible that there could be a clock overflow while the interrupt subroutine
was being executed, If this Sense instruction is not included as a part of the subroutine
and the Clear Arithmetic Faults instruction is given, the Clock Overflow FF is

cleared and the programmer has no indication that a clock overflow occurred.

CHAPTER 4
STORAGE SECTION

INTRODUCTION

The storage section of the 1604-A computer provides high-speed, non-volatile, random -
access storage for 32, 768 48-bit words; it has two independent magnetic core storage
units, each with a capacity of 16, 384 48-bit words. These units operate together during
the execution of a stored program. All odd storage addresses refer to one storage

unit; all even addresses, the other.

A word is transferred to or from a storage location by a single instruction. The opera-
tion code of the instruction specifies the type of reference (read or write) and the regis-
ter which serves as the source of destination. The execution address of the instruction
identifies the storage location. A read reference is performed by transferring the word
at a selected storage address to a specified destination via the X register, and restoring
the word at the address. A write reference is performed by clearing the selected
storage address, then transferring the word at a specified source to the address via the

X register.

The cycle time, or time for a complete storage reference, is 6.4 microseconds. The
access time, or time from request to delivery of data from storage, is 2. 2 micro-
seconds. The storage cycles of the two sections overlap resulting in an effective cycle

time of less than 6.4 microseconds.

The basic logical divisions of the storage section are shown in figure 4-1. The odd and

even storage units which are identical, consist of four principal parts:

1) Memory plane assembly contains the magnetic core storage elements of the
system.

2) Address selection interprets the address from the control section and selects
the specified storage location.

3) Bit plane circuits handle the transfer of information between the memory plane
assembly and the X register.

4) Storage sequence control generates the signals that control the storage

references.

The magnetic core assemblies occupying approximately one-half of each chassis are
evenly distributed among the eight chassis of the computer cabinet. Data transmissions
4-1

X REGISTER

BIT PLANE
CIRCUITS
(z' REG)

X REGISTER

3

BIT PLANE
CIRCUITS
(Z% REG)

Figure 4-1,

MEMORY
PLANE
ASSEMBLY

(EVEN)

16,384 WORDS

CONTROL SIGNALS

1

EVEN STORAGE
SEQUENCE
CONTROL

MEMORY
PLANE
ASSEMBLY

(0DD)

16,384 WORDS

CONTROL SIGNALS

(S

ODD STORAGE

SEQUENCE
CONTROL

Logical Divisions

4-2

ADDRESS
SELECTION
(S' REG)

P
INITIATE MEMORY REFERENCE
EVEN STORAGE ENABLE
EVEN STORAGE BUSY
EVEN STORAGE UNIT
ODD STORAGE UNIT
(u2)

ADDRESS
SELECTION
(S2 REG)

NITIATE MEMORY REFERENCE
ODD STORAGE ENABLE
ODD STORAGE BUSY

of the Storage Section

into storage are channeled through Z1 and Zz, the Storage Restoration registers. The
Storage Address registers, 81 and Sz, hold the address of the storage location
involved in a given cycle of operation. The Input/Output, arithmetic and control
sections of the computer have independent access to the Storage registers through the

Z and S registers.
PRINCIPLES OF MAGNETIC CORE STORAGE

The storage section uses the permanent magnetic properties of ferrite cores to store
the bits of computer words. A magnetic core is a bistable device capable of storing a

"1" or a "0", depending upon its state of remanent magnetization.

These cores are magnetized in one direction or the other by current-carrying wires
which pass through them. The direction of magnetication is determined by the direction
of the current flow. The characteristics of the cores are such that approximately 800

ma of current in one turn for a period of one microsecond is required to switch them.

The cores are assembled in square matrices (figure 4-2). Five wires pass through
each core: a horizontal H wire, a vertical V wire, a horizontal I wire, a vertical I
wire and a diagonal S wire. The coincident-current switching technique is employed.
A core is addressed by simultaneously passing half-amplitude current pulses through

a selected V wire and a selected H wire.

Only the core at the intersection of the selected H and V wires will be subjected to a
magnetizing force sufficiently large to switch its magnetic state. All other cores in
the same row or column as the selected core receive half-amplitude current pulses
and are said to be half-selected. In figure 4-2, where the left-most V wire and the
upper H wire carry current pulses, core A is selected, cores B and C are half-

selected, and core D is unselected.

Binary information stored in a core is determined by the polarity of its residual
magnetization. A "'0'" is stored by the magnetizing force of read current pulses on the
selected H and V wires and remains stored when current in the I wires inhibits (cancels)
the effect of write current pulses in the H and V wires. The absence of current in the

I wires permits a ''1" to be stored by the write pulse.

V WIRE

UL

Figure 4-2. Magnetic Core Matrix

The information is extracted (read) from the core by applying read current pulses to the
selected H and V wires. If the core stored a '"'l", the pulses drive it to ''0" and a pulse

is induced in the S wire This voltage is interpreted as a ''1l" bit from the core. If the

core stored a ''0", it :s unaffected by the pulses and no pulse is induced in the S wire.

The absence of a voltage is interpreted as a ''0" bit from the core.

The matrix arrangement of the magnetic core storage system is called a memory plane.
This consists of 16, 384 cores in a 128 x 128 array. In order that the coincident-current
storage technique may be employed, each bit of a word must be stored on a separate
memory plane. Thus, the 48-bit words used in the computer are stored by 48 memory

planes. This array is called a memory plane assembly.

There are two memory plane assemblies in the storage section, one associated with the
odd storage unit and the other with the even storage unit. Both assemblies are evenly
divided among the chassis of the computer. A stack of six "'even' and six "odd" memory

planes is mounted on each chassis (figure 4-3).

4-4

Figure 4-3. Memory Plane Stack

MAGNETIC CORES

The magnetic properties of a core are represented by its hysteresis diagram, which
plots magnetic flux density (B) as a function of the field intensity (H) (figure 4-4). If
current flow sufficient to cause a field intensity of +Hrn is applied to the drive lines, the
flux density increases to saturation (+Bs). When the current is removed, the flux
density drops to the residual positive value (+Br), which has been designated the ''0"
state, and remains there. Another pulse of +Hm would merely shift the core to +Bs
again and after the pulse is removed, it would drop back to +Br. Application of current
flow sufficient to cause a field intensity of -Hm reverses the flux density to --Bs and,
when the current is removed, the flux density drops to the residual negative value (-Br),

the '"'1'" state.

The basic memory cycle is composed of half-amplitude pulses, each capable of pro-
ducing a field intensity of Hm/2. A half-amplitude pulse is insufficient to switch the
core; instead the flux density returns to the residual value, or a slightly lower value,
after the pulse is removed. The coincidence of two half-amplitude pulses, one on the H

4-5

Figure 4-4. Hysteresis Diagram

drive line and the other on the V drive line of a core, produces a net field of Hm which
is sufficient to switch the core. When a half-amplitude pulse drives the flux density to-
ward the knee of the hysteresis loop, the flux travels up (or down) the knee somewhat
and then returns to a slightly lower residual value, such as B. Since the core is now
operating on a smaller loop, further half-pulses reduce this remanent flux again, but

this effect soon reaches a limit, as at point D.

Any change in the magnetic state of a core causes a change in the total flux linking the
core and any winding passing through it. Such a change produces a voltage output on the
sense winding (figure 4-5). During the period that H is applied, the voltage is sampled
to see if the core switches. If a large voltage is sensed, the core was in the ''1" state
and has switched. If only a small voltage is sensed, the core was in the 0" state and

has merely shifted from +Br to +BS and back again.

4-6

(READ DRIVE)

Voltage on Sense Winding as a Result of Read Drive

Figure 4-5.

MEMORY PLANES

Each

2 and 3.

1:

iring on both sides.

numbered O,

A memory plane consists of four quadrants or boards,

The board

tw
holds 4096 cores, held in a 64 x 64 array by 64 horizontal H wires and 64 vertical V

ircui

inted c

frame with pr

board consists of a phenolic

izontally and vertically and one S wire

One I wire threads all the cores both hor

wires.

The H and V wires thread across the board vertically

threads all the cores diagonally.

and horizontally and terminate at tabs on either side of the edge of the board figure 4-6).

Buens

b
T
o83
433

L
R
S
N 4
o
b

NYE
R

»
3

@4

m:uﬂeu&u«ooawu:. Bt

SAPTIABISISOIIEISIBA LABALISAS.

37 & @ 04
l»l%ﬂ&&‘&03&3‘#011&05030%‘54&6@6“ Li@‘ﬁ&ﬁiﬂiﬁ.ﬂfﬁ‘
e R I A R e St b A e e
72 K546 4 4645;woa¢m§ﬂbc+aiﬂoa¢ﬂ~u+n¢nqa+noﬁ;ﬁ&ﬁ.ﬂvﬁ#b&ﬂ’ncicdl
SN »Qaénoaoe+n¢m¢otw#utn#«b&ﬁn#u#u#-#oi§+L0a
Q.e¢a4a~§taoa~mqa*aiaoa§1 ﬂtﬂ@ﬂ&ﬂ@ﬂ&ﬁ@ﬁ%ﬂfﬂycnw
SEagiaisesasnasaisieitinitis
) TP I $ 034 71 5% 0y 4 G5
RS AR TSR PGNP E LTS OS LU LELS ST
BN EOIRICEE TGS 0TI 004V T4+ TS £ TR 975
IS EALENERELS LA LSBT RT AL GRLRGE S EDED S,
KA L L L LA A kb o

ﬁ& 31.!,'

SROBASI TSNS T40 S W

tﬂ’é*%&@*ﬂ%ﬂ#ﬁ'ﬂ#ﬂ~a0B*%ba#ﬂéﬂ+m‘ﬁoa&ﬂ6uwmbaduq&

9&i*B0&“;‘«&0»‘,«3‘&&0‘9*&0&1&{!«)»‘H-‘M

S PR
D R

&

%
24
&3
»
&3 h.?..fu s
n

B
AR SN

ABUARENIND

3
4
&4

'
ot
RALeTEr ST AT LT ST ED
TN 4TS AT S B ST G 5 0 1 S R S BT
AEERNELPEILENEININACINRGIES OB BC AR S U
GACIE N SEAT SR LTS5 4 DA e T THS T
B HE SR BACE IR TR E D0 6 Gbre D EHE e
DI04 D0 UETLTIVIST VIS5 TSI b XS T
4nsa¢a9305%6&@’@#%¢a&n¢\0a¢;030;&:Qz+u#;
DRGNS DIBENILEN »-u.va134506"@&&1&0@0@9204!
L»«&aﬁwoﬂaadftat\wa&a0v0t¢§0a¢;Qz#zéwoa%
EEATTE AR ST ROV VISV ST Vi 4 TIATISA GeBenssaens
IS ek e ek ek en
L5 4 h) *a&a+a&W%§;mQQ«i$aa:;ﬁ&&gxwét
GALANED L REEDRREDEDE DL LI NEDE DS D ¢
BRI R DIV TISLIN IS TS Q&Y &0&0&1{0&}2*
CENINENEOIRIRBCID WD
AV SS ISV T PIIS IS DTS S0 A% T

a
¥
4
83
i
2
%

DA
\:@k‘*&‘#

Cod

3 @0&“&‘#;‘*!.

I
$ud
A

wmwomwum

o
3
&

5

i3 963 B3 & o u.«u.xu.

f»u
2

*

0
85
U3
¥
U3
|
A
L3

AL bl

o

3

De T W
Setet s ena e
P21

ST A ST ok
¢s+a&3¢atﬂ¢,~a§ﬁ$:+:Q§§;+z*.0§§;¢:¢,¢u41034‘éria
T30 50 L SIS B b E1 U SO TR TR 46 50 T e 4 i o A S
o4m+ﬁvatx#:#:é:ﬂ:tztata#nozﬁ%z§&§a;&3«&
u
+

o
%

L2

£

+

3 L
a2 +
¥
e
3

I e+aeﬂ*ﬁ¢§om+ﬂ+%qaoﬁo.o:;:o&.&»&*&auc:&;»tosl
$§0a+\#:6w¢atu0109#40,Q,Q:b.é;&.¢x¢4§»¢:4:ﬁ@
LT UL 1] @$?0£%ﬂ*ﬁ+5§ﬁ+lﬁ8%uoé 898 A 3 0 38 A A T T SR T DT
SRS TG ST RS 18 D i LSS S SIS U St
n¢a¢m+ﬁ+m§€§§4at§+§+:~J+t»:41t‘aﬁiw«k R e |
RS S AR LSRR PRIUS DL UEAEDEVR DSV 42410

158 PO T T b Vo R T

0§+n+l+§¢c&z#SQ:9:Qfr1020:0:01610:0102424:0§ ao,o-i
G AR S S0 S Ba G T R DR T 2 T ST T A S L
..Zrn.3..0{0@¢@«!3.v§4t?3.‘.1:..?131;3..4:0;0:?4.0 S 2
GHTEDPLADGDAUS DDV DI DG TD LS US L D 4 5

5 L*:+Z¢2¢:b.¢Ib:&:424z&:e:v&¢ﬁ%:>3l
.nimtufﬁtt:o‘ :t.o:..?.?:'

¥
e
)
S
ST
W 55475
& V5 T
A
& oS
afabm

On‘hnﬂ:vahﬁo-}Qvn

£

SNIDBIABTLDEASNED N SABALALT S
BENST LNV T4 JLTSDED4[44D

PR b b

£

&
%
5
G
3
%
3

L
et
3
5
e

£
%
03
&
*
o
3
5
&
5
4
3
Ze
6
#
7
»
K
0
hdss
%
r

554

«l&O\\&R‘&@#\‘ﬂi&%ﬂ*d*‘i‘ﬂ{m

S B

b

RRER IS
i

54
i
5
]
b
%
&
01
.
52
b3
B
%
&
¥
a4
:

Pttt

ey el
vu&.u‘vﬁ.&::é‘:!.0201020.»3-:?.0:0.31?..!. T A 8 G o T

oa+m+mo:¢rQné:t:#;#:+:¢t+:«ﬁ&ué:ézozﬁnfquége;9:»;&!
SPLAIIS PSS AS IR ST SN R RSS2 D 5 Zoh 1 6T P 5
:0:#w§3030:#:¢.%:‘I+:4n+:¢ ENSCAEBUFDENE NG DD BT

SRR I A% DEae

0@’&‘&*@ NS
03

L

4
12
e
£
P

s
BUATES D
I

&

8 3
L

§94Ng L

"'{&L‘Q@fh*&"’ﬁ#ﬂ%ﬁ?

B
N D
Bxane

T

L3
pe

M

4N ERANET ¥a!

»3:?2 v

Memory Board

Figure 4-6.

A wire connected to a front tab on one edge of the board terminates on a rear tab on the
opposite edge. Each I wire terminates at two tabs in a corner of the board, from which

connections are made to the inhibit drivers.

Each S wire terminates at a pair of tabs in a second corner of the board, from which
connections are made to the sense amplifiers. The four boards of a memory plane are
so oriented that the sense wire tabs are at the corners of the memory plane. Corre-
sponding H wires and corresponding V wires of adjoining boards are connected together

by short lengths of wire.

MEMORY PLANE ASSEMBLY
Twelve memory planes, stacked one behind another, make up a stack (figure 4-3). The
memory planes are bolted together through the four corners of each and are separated

by aluminum spacers. An aluminum plate at the back and a plexiglass plate at the

front shield the stack. A memory plane assembly is made up of six memory planes from

each of eight such stacks, or a total of 48 planes. Since each plane stores one bit of a
word, and there are 16, 384 cores on a plane, the memory plane assembly provides

storage for 16, 384 48-bit words.

o crk / 000

S
<
be EVEN i EVEN
PR | |
6\9/ EVEN EVEN
G
& 0oDD 00D
t« [v
o/ 900 opD >
% EVEN o
& EVEN <
l -—-J ¢
°
A8 / EVEN EVEN 5/4,
5% ooo 0DD o>
< *v
S
2

L M%"?@
7 - s

o
>
o

FRONT OF CABINET

Figure 4-7. Distribution of Memory Plane Assemblies

4-8

\

The memory plane assemblies for odd and even storage are evenly distributed among
the eight computer chassis (figure 4-7). The stack of chassis 1 stores bits 0 through 5
of all the words; the stack of chassis 2 stores bits 6 through 11, etc. The even memory
planes are on the card side of the chassis; odd memory planes are on the wiring side.

Corresponding H wires and corresponding V wires of each group of six memory planes
of a stack are connected in series by short lengths of wires soldered to the tabs at the
edges of the boards. The H and V wires of each group of memory planes are connected
to separate driver and diversion circuits. The corresponding drivers and diverters of
the even memory are connected in parallel to the S1 register, located on chassis 3;
those of the odd memory unit are connected in parallel to the 82 register, located on
chassis 4. Thus, a complete memory plane assembly is the logical equivalent of 48
memory planes, stacked one behind another.

The cores in each horizontal plane are connected in series by an H wire (figure 4-8).
Similarly, the cores in each vertical plane are connected in series by a V wire.
Coincident currents on a selected pair of H and V wires affect only those cores at the
intersection of the horizontal and vertical planes formed by those wires.

Separate connections are made to the sense and inhibit lines of each quadrant of a
memory plane. Each sense line is brought to a pair of tabs at a corner of the memory

Figure 4-8. Intersection of H and V Wires

4-9

board. These tabs are connected to the sense amplifier circuits by twisted pairs.
Each inhibit line is brought to a pair of tabs half way between two of the corners of
the memory board. The tabs are connected to the inhibit circuits by twisted pairs.

ADDRESS SELECTION

A storage location is the row of cores at the intersection of a selected pair of H and V
wires of a memory plane assembly. Each memory plane assembly has 16, 384 storage
locations. The Address Selection circuit selects a discrete storage location for each
different address in S1 or Sz.

Exactly 15 bits are required to separately identify each of the 32, 768 storage locations.
The identifications, called addresses, range from 00000 to 77777 inclusive. The
lowest-order bit of the 15-bit address selects either the odd or even address selection
system. The remaining 14 bits are placed in the S register of the selected system

and translated to select a single H wire and a single V wire of each matrix plane of the

memory plane assembly.

The Address Selection circuits for the odd and even storage units are identical. Each

is composed of four logical systems:

1) The vertical drive system, consisting of a translator and eight drivers for
each of the storage units on a chassis, selects a group of 16 V wires, among
which is the desired V wire, and supplies the necessary drive current for
this wire.

2) The horizontal drive system, consisting of a translator and eight drivers for
each of the storage units on a chassis, selects a group of 16 H wires, among
which is the desired H wire, and supplies the necessary drive current for
this wire.

3) The vertical diversion system, consisting of a translator and 16 diverters
for each of the storage units on a chassis, selects the desired V wire from
the group of V wires selected by the vertical drive system.

4) The horizontal diversion system, consisting of a translator and 16 diverters
for each of the storage units on a chassis, selects the desired H wire from
the group of H wires selected by the horizontal drive system.

The address selection system logically divides each stack into eight vertical and eight
horizontal sections (figure 4-9). Each horizontal section consists of 16 H wires; each

vertical section consists of 16 V wires.

4-10

(1 DIVERTERS)
3 VERTICAL
}—[;‘VFRY?‘H
SELECTION
HORIZON TAL
DRIVER <
SELECTION
B =
Nlme—=——
=t
anli . L3 sttt sl i HORIZONTAL
L o + \1*1\———————_.-_, UIVERTER
—q 1\1* Kr— T T SELECTION
el
(__—bT \}\,\y_____—_—_____
_______ 5 | L ST SO R DR
H lV‘ LW

VERTICAL 4 =
DRIVER
SELECTION

L

READ DRIVE WRITE DRIVE

Figure 4-9. Connection of Drive Lines and Diversion Lines

The region generated by the intersection of an H section and a V section and common to
both is called a quarter section. One end of each of the wires in a horizontal section is
connected to a common horizontal driver; similarly, one end of each of the wires in a
vertical section is connected to a common vertical driver. Thus, the selection of a
horizontal and vertical driver by the respective translators selects a region of 256
storage locations, one of which is the desired one. The other end of the H wires is
connected to the diverters; corresponding H wires of each horizontal section are con-
nected to a single diverter. The selection of a horizontal and vertical diverter com-
pletes the electrical circuits to the selected horizontal and vertical drivers, allowing
current to flow from the drivers through the respective H and V wires, through the

diverters, and back to the current source.

>
]

11

The selectién of drivers and diverters by consecutive storage addresses follows an
orderly pattern. The bits of a storage address are combined, for selection purposes,
in the pattern shown at the top of figure 4-10. The lowest order bit specifies the odd or
even memory unit; the next two higher order bits specify the quadrant within that unit.
Thus, the three lowest order bits divide each stack into eight portions, and are termed
the "octant selection bits''. The next six higher order bits of the address select the
vertical drivers and diverters in the octant while the six highest order bits select the

horizontal drivers and diverters in the octant.

The selection of a vertical driver is given by bits 1, 8, 7 where bit 1 is treated as the
highest order one. Similarly the selection of a horizontal driver is given by bits 2,

14, 13 where bit 2 is treated as the highest order one.

The ordered selection of drivers and diverters within an octant is shown in the lower
part of figure 4-10, The selection of vertical diverters proceeds from left to right, in
repetitive cycles, at 1/8 the frequency of address change. The selection of vertical
drivers proceeds from left to right, in repetitive cycles, at 1/128 frequency of address
change. Horizontal diverters and drivers are selected in the same manner but at 1/64

the rate of the vertical.

S REGISTER

The S1 and 82 registers (figure 4-11) hold the storage address during a storage reference.
Each register consists of 14 single-rank FF stages. An address is entered into one of
the registers by one of three commands. The command U2 —>Sl (or Sz) enters the
quantity stored in U2 into S; the command P1 —>Sl (or S2) enters the quantity in P1 into

S. The command CCRU —>Sl (or Sz) enters the quantity in CCRU (the address to or

from which a word is being buffered) into S. The U2 —>S and P1 =S transfers are forced
transmissions; they transfer both outputs of a stage of U2 or P1 to the corresponding

stages of S.

HORIZONTAL AND VERTICAL DRIVERS

There are eight vertical and eight horizontal driver circuits for the odd memory plane
assembly and the same number for the even on each chassis (figure 4-12). The vertical
driver circuits are connected in parallel stages 01, 07 and 08 of the S register; the

horizontal driver circuits are connected in parallel stages 02, 13 and 14.

4-12

HORIZONTAL DRIVE

HORIZONTAL DRIVE

VERTICAL DRIVE \

/
T BT [/rLﬁ / / MLL\\
SToRace Avoress L ['3 I'Z [" ['0] 9 [8 J ” 1 z l : I" I ;41 2 I | I : J

N)6 'Y J_
HORIZONTAL SELECTION VERTICAL SELECTION OCTANT SELECTION
VERTICAL DIVERSION
- g S
S 990 9000
852 -20=0°2
8855 22:=:
slzlai=|o|=|3]=
HEHEEEE ==
'Q
R
ﬁ%ﬁﬁ m“’ m" m%’ iﬁ%ﬁ Fmﬁ" M“’

o |)
=l e
VBT s 4 0011
Vi o100

0101
{ coo o At
| oor ' 29°
1010

| 1011

! oo

b 1101

o
e

a0l ——{ {1544 g
‘ 11
I
Tl
' l !
[

010

i

{a

|

i (

i

i r

|
Q1

‘ Q

|

|

|

‘ i

| %J

L m ——ﬁ

T/__.)T_/T_J_‘._J_.__Jk__J J
000 00! oo ol 100 101 1o 1"

%nw 7
-~ eT e
VERTICAL DRIVE BIT |

Figure 4-10. Drivers and Diverters Selected by S1 or S2 Registers

4-13

+ HORIZONTAL DIVERSION

TO TRANSLATORS
N

(=] o - o - o - [=} - o -
y = 2 e o o o o o o 5 3
CCR| C CCR CCR CCR CCR] CCR
P! P! P! (Pl P P! p! Pl P Pl P p!
U2 U3 | |] | \ \ .uz_ . | | v | p! — s!
\\ uz—s'
\‘ CCRy—> S'
%\\ SET s! TO ALL "I's"
1 ;
S” Register (Even Memory)
TO TRANSLATORS
N
[T T T T T T \
T2 5 on 8 8 3 B y 2 B o
>0 0 rm%“ 7) S O » _>?n?n<2'_>?n ?n((.')_l
pl Pl pl pl pl Pl pl pl pl pl Pl pl
i 2 : Uz S 5 U A \\) . U U p! _.52
\\ U2 —g?
\Y CCRu—» S2
\\\ SET S2 TO ALL "I's"

s? Register (0dd Memory)

Figure 4-11. S® and 8% Registers

4-14

The translator associated with each driver circuit selects one of the eight drivers
(G in figure 4-12) on the basis of the contents of the three stages of S. The trans-
lation is performed by single-inverter cards (E~) and selector cards (T~). The
E™ "~ cards provide positive ''1" and "0'" outputs on the basis of the information stored
in the FFs. The outputs of the E™ "~ cards, along with the signals Read Drive and
Write Drive from the storage sequence control, are applied to the T cards to pro-
duce the following output signals: Read XX0, Write XX0, Read XX1, Write XX1, 00X,
01X, 10X and 11X. In each case, X represents a bit of S which does not affect the

output of the T cards.

The outputs of the T cards are combined at AND inputs to the G~ cards in such a
manner that a read output is applied to one AND of each card and a write output to the
other, and each is ANDed with one of the other four outputs. Thus, for any combination
of bits in the three stages of S, one G " card is selected which provides both read and

write currents to the memory plane stack.
CURRENT SOURCE

) (i READ/WRITE DRIVE LINES
.

i 1o 101 100 oll olo 00| 000

SRRy

OX X
av3y

X00
1 XX
3118m
I XX
av3y
OX X

WRITE DRIVE

READ DRIVE

—— THERE ARE TWO HORIZONTAL
E l E l |E“' l AND TWO VERTICAL DRIVE

CIRCUITS ON EACH CHASSIS

— fe— c— — — — e — — — — — — o — — — o—
s' s! s! S! REGISTER IS ON CHASSIS 3
or or or S? REGISTER IS ON CHASSIS 4
s? st st

Figure 4-12. Typical Horizontal or Vertical Drive Circuit

4-15

The current source card (Y) provides d-c read-write current to the selected driver
card. To maintain a constant load on the power supply, a G card is connected as a
dummy load to the current source card. During periods of no storage references, the
dummy load is continuously selected; during a storage reference the dummy load is
disabled for a period of 6.2 microseconds by the Dummy Drive signal. (A-C fluctuations
in the load do not adversely affect the power supply.) The Dummy Drive signal
originates at the storage sequence control.

HORIZONTAL AND VERTICAL DIVERTERS

Each stack of odd and even memory units has 16 horizontal and 16 vertical diverter
circuits (figure 4-13). Vertical diverter circuits are connected in parallel to stages 03,
04, 05 and 06 of the S regi'ster; horizontal diverter circuits to stages 09, 10, 11 and 12.

The translator selects one diverter card (D~) on the basis of the contents of the four
stages of S. The E* cards provide positive ''1'" and ''0'' outputs depending on the
information in the FFs. The outputs from E are applied to T "~ (selectors) to pro-
duce negative output signals: XX00, XX01, XX1 0, XX11, 00XX, 01XX, 10XX and 11XX.
The outputs of T are combined at the inputs of D " so that only one diverter card is
selected for any combination of bits in S. The card completes the current path for a

single H or V wire within the group of 16 wires fed by the selected driver.

DIVERSION LINES
A

et ince 1011 1o1c 1000 ol olo o101 ol00 001! ooic 000! 000C

Sl RRELEhEiTEd

36 i |
]

XX
XX01
XX10
XX 00
1IXX
01XX
10X X

00X X

i e = Y = Rt e s i e

HORIZONTAL AND
TWO VERTICAL
CIVERSION CIRCUITS

ON EACH CHASSIS

DIVERTER
DRIVE

s! s' s' s! S' RESISTER IS ON CHASSIS 3
S? REGISTER IS ON CHASSIS 4

Figure 4-13. Horizontal or Vertical Diversion Circuit

4-16

ETEEXEEEEEXE XXX XX EXEXXXXxx

MEMORY PLANE CIRCUITS

The memory plane circuits transfer data between storage and the rest of the computer.
Data flows out of storage during the first half of the storage cycle. The selected cores
are sampled by detecting the voltage induced in the sense windings when the read drive
pulse clears the cores to the ''0" state. Those cores which stored ''1" bits produce
pulses on the amplified sense windings. During read operations, the Read signal and
the quadrant selection signal gate the pulses from the sense amplifiers to t.ha,l;)a {even
storage unit) or 16 (odd storage unit) rank of inverters. (During write aperations, the
Write signal gates the word in X1 into I5 or 16). The Set Z pulse gates the pulses from
I5 or I6 to the Z register during a critical portion of the read drive pulse. During read
operations, pulse 1516-* X or 1516-’ U gates the pulses from 15 or I6 to the X or U regis-

ters.

Data flows into storage during the second half of the storage cycle. The quantity to be
stored is transferred from X to Z via 15 or 16 or from the sense windings to Z via 15 or
16. The inhibit current generators prevent the write drive pulse from setting the cores

to "1" by producing an inhibit pulse corresponding with each "0'" bit in Z.

SENSING CIRCUIT

For the duration of the read drive pulse, all 48 cores of the selected word receive full-
amplitude pulses to switch their flux states to "'0'. A voltage is induced in the sense
line of each core (figure 4-5). Voltages may be of either polarity because of the manner

in which the sense line is strung through the cores.

Since the ''1'" output is the desired signal, the output from '0" is regarded as noise.
This signal arises from the shape of the hysteresis loop but is also dependent on the
number of half-write pulses the core has received.

The flux density of half-selected cores in the "1" condition is reduced slightly, while
that of cores in the "'0" condition is increased slightly, by the read drive pulse. In both
cases, noise voltages of 1 to 2 millivolts are produced on the sense winding. The noise
voltages are reduced: (1) by threading the sense line through the cores of a quadrant so
that the noise signals from half-selected cores cancel each other, and (2) by sampling
the scnse amplifiers at a time when the ''1" output voltages are near peak and the noise
voltages have decayed.

4-17

The path of the sense wire through a four core matrix is shown in figure 4-14, If
drivers 1 and 3 generate read drive current pulses, A receives a full field, B and C
half fields, and D no field. Core A, which is selected, induces the "1'" signal on the
sense line while cores B and C induce noise voltages on the sense line. Most of the
noise signals in a quadrant cancel each other if they are nearly equal.

In the sensing circuits for each memory plane, signals from the sense lines are
applied to the sense amplifiers, (in figure 4-15 Y100, Y101, Y102 or Y103) and the
output of the amplifier is gated to I5 by the Read Quadrant signal. A ''1" signal in the
sense line results in a "'0" signal from the sense amplifier and a ''1'"" signal from .

The Set Z signal from the storage sequence control gates the output of 15 (or 16) into
the Z register. The register is initially cleared by the Clear Z signal. A ''1" output
from a stage of I5 allows the Set Z signal to pass the AND and set the stage of Z to
'""1'"., In a read reference, either signal 15 16 ~XorP1°-U is also generated to set
the stages of X and U according to '"1's" in 1° or 1°. During buffer operations inputs
come from I0 to 1.5 or I6 and outputs are gated directly from Z to I1 to the O register.

The ''1" signal from the sense amplifier reaches its peak after the ''0" signal has
decayed to about 6 millivolts (figure 4-5). By generating the Set Z, I5 16 -+ X and I5
I6 - X and 15 I6 - U signals approximately 1.6 microseconds after the start of the

read drive pulse, most of the '"'0'" signal is avoided.

DRIVER | DIVERTER 2

0
DIVERTER 3

DRIVER 3

DIVERTER 4 DRIVER 4

DIVERTER | PRIVER 2

Figure 4-14. Path of Sense Wire Through a Four-Core Matrix

4-18

-
: CURRENT SOURCES:

| RIGHT HAND EQUIVALENT
|

|

L

!

»

o

<
PR S |

RESISTANCES ON ONE 54
cAng,v’G"; LEFT HAND ON

e W e e e e sl

INHIBIT LINE / »}o\:
m G

T!32 QUADRANT ©

T!33 QUADRANT |

NOTE
TWELVE SUCH CIRCUITS ARE
LOCATED ON EACH CHASSIS,
SIX ASSOCIATED WITH THE EVEN T135 QUADRANT 3
MEMORY UNIT AND SIX WITH

THE ODD MEMORY UNIT. [r1eo] [Tor0]

T134 QUADRANT 2

el

Ja4! DUMMY DRIVE

Jas3t INHIBIT DRIVE
O REGISTER
Z 002 N190 CLEAR Z
X000, yooo

é

ZOOO
Z 001

nN!9! SET 2

1 [z500[
>- lezml:-_— QUADRANT ©

Jt Wl - QUADRANT |

w67' ﬁ _@:— QUADRANT 2

m m - QUADRANT 3
[yioo] [yior] IX__I%:] READ

QUAD. O QUAD. | QUAD. 2 QuAD. 3
SENSE LINE SENSE LINE
SENSE LINE SENSE LINE wa'e W RITE

XOOI

Figure 4-15, Typical Stage of the Memory Plane Control

4-19

INHIBIT CIRCUITS _

Figure 4-16 shows the path of the inhibit wire through a four-core matrix. The inhibit
current flows in opposite directions in adjacent lines. The direction of the write drive
current reverses from line to line. For example, in figure 4-16 the write drive current
flows down from driver 1, up from driver 2, right from driver 3 and left from driver 4.
Following the path of the inhibit line through the matrix, it is apparent that the inhibit
current is at all times opposite in direction to the write drive current.

The inhibit circuit for a typreal memory plane is shown in figure 4-15. The write drive
pulse, following the read drive pulse, attempts to switch all the cores of the selected
memory location to the ''1' state. The inhibit drive pulse passes inverter T140 if the
stage of Z stores a "0" bit and probes the AND inputs to the inhibit current generators
(GIOO, GlOl, G102 and G103).

selection signal; the output of the AND enables the inhibit current generator, which draws

One of these AND inputs is enabled by the quadrant

DRIVER | OWERTER

|

DRIVER 3

)
(

DIVERTER

N

\

@
\\2)
it
2

7 /L e AL L

g — j

IYé
ZD):
.
i
Y

DIVERTER

DIVERTER DRIVER 2

INHIBIT
CURRENT
GENERATOR

15
U\

A

Figure 4-16. Path of Inhibit Wire Through a Four-Core Matrix

4-20

160 180)

and Y The inhibit
current, occurring a the time of the write current but opposite in polarity, cancels the

current through the inhibit wire from the current source (Y
effect of the write current within that quadrant and the core is not switched to ''1".

The dummy load associated with an inhibit circuit is continuously enabled during periods
of no storage references and also during those references which do not result in inhibit
current generation. For references which result in inhibit current generation, the "0"

output of Z enables the AND input of TOIO.
10

Asg a result, the Dummy-Drive signal

passes T0 and disables the dummy load for a period of 6.2 usec during the reference.

STORAGE SEQUENCE CONTROL

The storage sequence control, in response to initiating signals from the control section
of the computer, executes reading and writing operations by generating the signals which
control the address selection and bit plane circuits. The basic pulse sequence for
reading and writing is shown in figure 4-17. The read drive (first pulse) drives the
selected core to ''0". The inhibit drive (second pulse) allows a ''0" bit to be retained in
the core by inhibiting the effect of the write drive pulse. The write drive (third pulse)
drives the core to ''1" if the inhibit drive is absent.

The storage sequence control consists of the initiate storage reference circuit and

identical sequence controls for the odd and even storage units. The circuit initiates a
reference by entering the address in the S register and selecting odd or even sequence
control. The sequence control then generates a fixed sequence of control pulses which

executes the reference.
CHANGE
S

READ DRIVE INHIBIT DRIVE

/ i

WRITE DRIVE

—»04 pSpE——— 1.8 U5 ———»

—»{04 IS je——— 1.8 US ———J-F-o.s us e—— 22 s —————>

Figure 4-17. Basic Pulse Sequence for Storage Reference

4-21

EVEN
WO STORAGE
l NOT BUSY
RNI —>| KkS'° p
—> KGII |y J697
MC
EVEN
RNI STORAGE
NOT BUSY

N_OO

P'->s

INITIATE EVEN
STORAGE SEQUENCE

(INDIRECT —-»| Keo2 5—»@ O {vero}
ADDRESSING)
b>{ K603
T |N_44
mc
ué>s'
oDD
wo STORAGE AUX. REQ.
l NOT BUSY
INITIATE ODD
3> 600 942 902
RNI > K ’\])—>E STORAGE SEAQ.
L} K60|
T N-42 AUX. REQ.
MC
P! >s?
oDD
STORAGE
NOT BUSY
N-46
u2>s?
Figure 4-18. Storage Reference Circuit

4-22

INITIATE STORAGE REFERENCE CIRCUIT

A sequence chain of the control section generates the Initiate Storage Reference signal.
This signal performs two functions: (1) It controls the transmission of the storage
address to the S register; (2) It initiates the basic Storage sequence within the storage

unit.

The Initiate Storage Reference circuit is shown in figure 4-18. The address may
originate from one of three sources, depending upon the sequence which initiates the

reference.

Source of Address Sequence

Program Address Register (Pl) Read Next Instruction
Read Operand
Write Operand
Program Control Register (U2) Search and Transfer
Iterative
External Function

Buffer Control Common Control Register

SEQUENCE CONTROLS
The two identical sequence controls generate a fixed sequence of control signals in

response to the Initiate Storage Sequence signal (figure 4-19).

TIMING PULSE GENERATOR

A sequence control consists of a timing pulse generator, drive generators, pulse
generators and fault detector. A sequence of timing pulses begins during the 6, 4
microseconds immediately following the Initiate Storage Sequence signal. In figure
4-20 a loop of eight control delays (HO061 - H068) generates the basic 8-pulse cycle; the

pulses are separated by 0.2 microsecond.

A two-rank, two-stage counter is advanced by a signal from each group of control
delays. During the first half of an 8-pulse cycle, the output of V062 transfers the
count in rank I to rank II. During the second half of the cycle, the output of V066
transfers the count in rank II to rank I, advancing it by one. The counter is advanced

through its cycle of four counts by four successive 8-pulse cycles.

4-23

WITIATE STORAGE SEQUENCE

RESUME I

® ® N~ 6 & & v ™» = O

RESUME I

CLEAR 2

SET Z

Figure 4-19.

Sequence of Pulses Generated by Control Sequence

4-24

1940

Ho44

Jie7 (30) (-(f— (32) <—?—
S
e 165 (23)(—?— (24) (—?—«
L~
e an en 12) <—é>— = 13) s) <—<r—<
J J
(25) (10) <-O—
m J160 (4) <—?—< Jisi (s)<—?—< (44] <—?—< (8) <—?—<
| 17
741,»@5@4{{@1 1062 [j063 5[hosa 5| 065 /o066 o7 >/ oes L
vOsl! v 062 ’\—\ﬁ v 064 v 065 v 066 v 067 \—\Voi
i
‘ NO FAULT
&

641 00
2545

gLl
K

PC
K644

Kea7

Je4 |0

%& K644 *%—> K646 [
/T_, K645 k% S| 647

—l—» K640 —&)—> K642 | —
T S k64l o] K643

Figure 4-20.

oo =
K

K643 10

K 646

642 1"
K 167 168
o

Timing Pulse Generator of Even Storage Sequence Control

4-25

Rev. A

TABLE 4-1. TIMING PULSE GENERATOR OF EVEN STORAGE SEQUENCE
CONTROL: COMPLETE COUNTER CYCLE

Timing Source Rank I Rank II '
Pulse
0 dadd 00 11 »
1 Vool 00
2 \%4 00 ank I > Rank II
063
3 VO64 00
4 v 00
5 Vooe 00 ‘
6 A\ Rank II + 1 “Rank I 00
067
7 V068 00
8 A\ 00
9 Vgg% 01
10 \%4 01 Rank I —Rank II
063
1.1 V064 01
12 A\ 01
13 vggg 01 ‘
14 A\ Rank IT + 1 “Rank I 01
067
15 V068 01
16 \%4 01 ‘
17 Vgg; 10
18 \%4 10 Rank I ~Rank IT
063
19 V064 10 .
20 A 10
21 Vgg‘;’ 10 .
22 Vv Rank II + 1 =Rank I 10
067
23 V068 10
24 A\ 10 .
25 Vgg; 11
26 A\ 11 Rank I = Rank II
063
27 V064 11
28 \%4 11
29 Vi 11 ‘
30 A\ Rank II+ 1 -Rank 1 11
067
3l V068 11
32 A\ 4B ‘

|

s

Table 4-1 lists the 32 steps of a complete counter cycle. During the first half of each
8-pulse cycle, rank I holds the count while rank II is being changed and during the
second half of the cycle, rank II holds the count while rank I is being changed. A
distributor, combining selected outputs of the control delays with the outputs of the
counter, takes advantage of this feature. Four inverters, J160, 162, 164, 166, trans-
late the outputs of rank I to provide negative outputs for counts 00, 01, 10, and 11;
inverters J161, 163, 165, 167 provide the same translation for the outputs of rank II.
The outputs of the first group of inverters are combined with the outputs of the first
half of the timing chain; the outputs of the second group of inverters are combined with
the outputs of the second half of the timing chain (table 4-2).

DRIVE GENERATORS AND PULSE GENERATORS

Each drive generator consists of a FF and two or more inverters (figure 4-21). The
FF is set and cleared by timing pulses which coincide with the leading and trailing
edge of the Drive signal, The inverters serve as slaves providing the Multiple Output
signals required. The inverters are connected in parallel to either the ''1" or 0"
output. The pulse generators are control delays which produce Z Register commands
and the storage resumes.

The following discussions refer to both the odd and even sequence controls. The logical

designations used, however, are those of the even sequence control,

1) Diverter Drive. FF K624/625 is set by pulse 0 and cleared by pulse 24;
during this interval, inverters J030/031 provide the positive Diverter Drive
signal to the horizontal and vertical diverters of the Address Selection circuit.

2) Read Drive. FF K626/627 is set by pulse 1 and cleared by pulsevlo;
inverters J032/033 provide the negative Read Drive signal to the horizontal
and vertical drivers of the Address Selection circuit.

3) Write Drive. FF K628/629 is set by pulse 15 and cleared by pulse 24;
inverters J034/035 provide the negative Write Drive signal to the horizontal
and vertical drivers of the Address Selection circuit.

4) Inhibit Drive. FF K630/631 is set by pulse 13 and cleared by pulse 24;
inverters JU36/037 provide the Inhibit Drive signal to the Inhibit circuits.

5) Sense Drive. FF K632/633 is set by pulse 4 and cleared by pulse 12. K632
provides a positive Sense Drive signal to inverters J330/331/332 and K633
provides a negative Sense Drive signal to inverters J333/334/335.

4-27

6)

7)

8)

Inverter signals are controlled by Enable Partial Write (upper) and Enable
Partial Write (lower). Enable Partial Write (lower) enables the set input
gate of K612/613 which is set to ''1" during the read half of the Storage
sequence. Enable Partial Write (upper) enables the input gate to K614/615,
The output of K613 is applied to the OR inputs of inverters J330/331 and to
the AND inputs of inverters J333/334. The output of K615 is applied to the
OR inputs of inverters J331/332 and to the AND inputs of inverters J334/335.

The absence of all of the Partial Write Enables from control results in
negative signals from J330/331/332 during the period of the Sense Drive.
These signals, Read Lower Address, Read Non-address and Read Upper
Address, effect a read reference by transferring a complete word from the

sense lines of the selected quadrant of a memory plane to 15.

If both Partial Write signals are present, inverters J333/334/335 provide
negative output signals during the period of the Sense Drive signals. These
signals, Write Lower Address, Write Non-address and Write Upper Address,
effe5ct a write reference by transferring a complete word from the X register
to I,

Dummy Drive. FF K620/621 is set by pulse 11 cleared approximately 6.2
usec later by pulse 42. A special chain of 10 FFs K160/161 through
K178/179 delays pulse 32 for 10 periods to obtain pulse 42. Each FF provides
approximately a 0.2 usec delay; the precise delay period provided by control
delays is not necessary in this application since the timing of the Dummy

Drive signal is not critical.

During the interval the Dummy Drive FF is set, inverters J038/039 provide
negative Dummy Drive Off signals which disable the dummy loads of the
horizontal and vertical drivers and selected dummy loads of the Inhibit

circuits.

Clear Z. Control delays H990 and H992 receive timing pulses 7 and 25
providing Clear Z output pulses to the bit plane control. The output of H990
is sent to chassis 1, 2, 3 and 4; the output of H992 is sent to chassis 5, 6, 7
and 8.

Set Z. Control delays H991 and H993 receive timing pulse 8 and provide Set
Z output pulses to the bit plane control. The output of H991 is sent to chassis
1, 2, 3 and 4; the output of H993 is sent to chassis 5, 6, 7 and 8.

4-28

@
®
[
' TABLE 4-2. TIMING PULSE GENERATOR, SOURCE OF TIMING PULSES
Timing Source
‘ Pulse Inverter Control Delay
0 V900
@ 1 e i
4 J v
6 J161 066
. 7 J161 V067
8 J1 61 V068
. 5 5162 062
11 J162 V063
. 12 J162 V064
13 J1 63 V065
® p e -
2i8 J A%
94 J1 65 V068
95 J1 66 V061
l 29 J167 V065
39 J167 V068
®
®
w
®
@
®
®
‘ 4-29
®
®

0¢-v

"12-§ @2andig

10J3u0)) aouanbag a8eJ0}S USAF JO J0}BIDUSL) 9SINJ PUB SATI(

SENSE DRIVE

(4) —> (632 WRITE DRIVE
(12) —o{ K38 (18) —> ce20 V
ENABLE MC (24) —» ko2 [
PARTIAL WRITE
(UPPER)(LOWER) READ b _’{-'"' l_’
) '! 330 I—’LSVER Jo8e Mc
J
s12 e T DRIVE
K ADDRESS WRITE INHIBI Jose
PLIL] J333 LOWER (13) —> e30
ADDRESS
INIT READ T ¢ READ (24) _ﬁ K63l (—g é— FAUL
DRIVE (KS27) Me 433! NON-= | jeee S
ADDRESS e ¥ _@_'
J33e NON — L
Ksie ADDRESS
INIT INHIBIT K618 READ
DRIVE (x83!) .y__@"“”“ Jose
L] ADDRESS WRITE (8) — yoo
uc UPPER
READ DRIVE READ ORIVE Anon:(sss) RESUME
(CHASSIS 1,2,3,4) ots
(1) —=y goze vse (6) FROM 0DD E
b— FAULT (9336) STORAGE SEQ 293
(10) —»| k627 CONTROL yor] e
¥ READ DRIVE
Ne (CHASSIS 5,8,7,8)
DIVERTER DRive (K®*)FAuLy ‘
DIVERTER ORIVE (7)—{HO®O 9
10 => gete (CHASSIS 1,2,3,4)
(24) xe28 ST . RESUME
¥ DIVERTER DRIVE o — o (¥8)
ue (CHASSIS 85,6,7,8) (4)FROM ODD
STORAGE SEQ voTll(7) 092 —>
STORAGE BUSY CONTROL H
(0) —ad g 022
(25)
(30) —sf K23
:C‘ 81X STAGES DUMMY DRIVE
SIMILAR TO . Sia
kiSO lel K 820 J
(32) —>f (160 7 xiee2 Ki6e | f—" KiT® ‘-—'?—H Kot
No36e 181 183 1685 | 179 (3 1)
-T. [3 K K Ne3se J

B

WRITE DRIVE
(CHASSIS |,2,3,4)

FAULT (J336)

WRITE DRIVE
(CHASSIS 5,6,7,8)

INHIBIT DRIVE
(CHASSIS 1,2, 3, 4)

T (J338)

INHIBIT DRIVE
(CHASSIS 5,6,7,8)

SET Z

(CHASSIS 1,2,3,4)

SET 2
(CHASSIS 5,6,7,8)

CLEAR Z

(CHASSIS 1,2,3,4)

CLEAR 2
(CHASSIS 5,6,7,8)

DUMMY DRIVE OFF
(CHASSIS 1,2,3,4)

DUMMY DRIVE OFF
(CHASSIS 5,6,7,8)

|
S0 0 0000 ODOOIEDOOOEOEOSOSOSOS OO

9) Resume. Two control delays, shared by the odd and even storage sequence con-
trols, generate the Resume I and Resume II pulses. Control delay HO71 receives
timing pulse 4 from both the odd and even storage sequence controls and pro-
vides the Resume I pulse to the control section, Control delay H075 receives
timing pulse 6 from both the odd and even storage sequence controls and pro-

vides the Resume II pulse to the control section,

FAULT DETECTOR

The fault detector recognizes the presence of more than one pulse in the timing loop of
a sequence control, Such unwanted pulses cycle the drive generators on and off rapidly
and overheat the generators, Since the first control delay of both even and odd timing
loops is odd, only even-phase pulses can enter the loops. The fault detector of the
even storage unit (figure 4-22) combines the outputs of control delay V063 and V065

at the AND input to the set side of FF K634/635. If two successive even pulses enter
the loop, the FF will be set and the Storage Fault signal generated. If two pulses
separated by the six phase periods enter the loop, the FF will be set during the second
recirculation of the pulses (when they are separated by two phase periods).

When K634/635 is set, the AND input of J336 is not satisfied and generates a ''1" which
is recognized as the Storage Fault signal. This signal is applied to the slave inverters
of the drive FF's to hold off the drive generators. A master clear from the console
clears the drive FFs and K634/635. While the Clear lever switch is pressed, the

AND input of J336 is inhibited by a ""0" from J337. Thus, the drive génerators are held

off during the period of the master clear.

VO
}—u KRS
V065
K639 A STORAGE
FAULT

MC
MC J3s7

(WIQO)

Figure 4-22. Fault Detector of Even Storage Unit

ELECTRONIC THEORY OF STORAGE CIRCUITS

The storage section performs non-logical functions such as amplification, pulse gener-
ation and switching, The card types are: drive generator type 51, diverter 52,
selector 53, current source 54, inhibit generator 55, and sense amplifier 56,

4-31

DRIVE GENERATOR (Type 51)

The drive generator develops the read-write current applied to the H and V wires.
Opposite ends of the primary winding of transformer TOl are fed by two channels con-
sisting of transistor Q01, connected as an emitter-follower, and transistors Q02 and
QO03, connected in parallel as amplifiers. The input signal is an AND combination of
two selector outputs. A -1v input results in approximately Ov at the base of Q01. The
emitter of Q01 is clamped to ground by CRO03; neither Q02 nor Q03 conduct.
Consequently, no current flows in the primary TO1.

A -12v input signal causes Q01 to conduct; conduction is held below saturation by feed-
back diode CRO1. The negative voltage across R06 applied to the bases of Q02 and
QO3 causes these transistors to conduct. Current flows through the emitters of Q02
and Q03 to the collectors, through the primary of TO1, to the current sources. The
current pulse from the secondary of T01, amplified by the step-down action of TO1,

is applied to H and V wires of the memory plane assembly. It then flows through the
selected diverter card and back to the secondary of TO1l. Current flow in the primary
determines polarity of the output current from TO01l. Direction of current flow is
determined by the selected channel. A -12v input to channel A generates a read pulse;

a channel B input generates a write pulse.

coc 104
Q034

To 48
= N
to
woTE
. UNLESS OTHERWISE INDICATED
2 AL DIODES ARC TYPE TI-G
T e F MO | roLamzeo 2=

Figure 4-23. Drive Generator (Card Type 51)
4-32

|

DIVERTER (Type 52)

The diverter circuit serves as an electronic switch in series with an H or V wire of the
memory plane assembly. Transistor Q01 is connected as an emitter follower, and
transistors Q02 and Q03 as switches. A -3v input causes Q01 to conduct; the negative
signal from QO01 enables Q02 and Q03. One or the other transistor passes the current

pulse on the H or V wire to which the diverter is connected.

A positive pulse passes one of the pairs of diodes CR03/CR04, CR07/CR08, CR11/CRI12,
etc., depending upon the driver selection, and passes Q02. A negative pulse passes one
of the pairs of diodes CR01/CR02, CR05/CRO06, etc., and passes Q03. In either case,
the current pulse is returned to the R/W driver. The bleeder networks of all diverters
are connected in parallel via terminbals 11 and 12 to equalize the current flow through

the bleeders and reduce heating.

'ZDV’—‘—-——E

1

+20ve—m——

TEST POINT C
]

on

B AAEOHJ iou.a R
&

—20V

Ouw

g
+¢-
vi¥d

e
o
L
e
nd

2140
ie
16

€140

5s

C€D0C 101
Qo3

Glg:)
18-
914D
40
¢

L}
ie
14
oud

ow

coc o1 > 2 6
. A Qo2
RO3 o
1000 2] !lg b £] ALL DIODES ARE TYPE TI-G
s 2 IR TS = POLARIZED -+ =

NOTE
UNLESS OTHERWISE INDICATED

e2ud

RO4 ROS
1000 270 !t%l
o

llf-w/\/\/\w
92w
e
1@
¥
e
o
)
o

i
6280

¢
[o13°)

]
E p393 LI
|
|
|
|

g =

803} <
CARD S2

Figure 4-24. Diverter (Card Type 52)

4-33

SELECTOR (Type 53)
Each selector card consists of two identical selector circuits. A selector circuit is
similar to the standard inverter except that the resistance results in output signal

levels of -1v and -12v. Each selector circuit has two input diodes CR01/CR02 and four

output diodes CR09/CR10/CR11/CR12.

i
—20V Q‘——g
RO7A CRO9A 3
ROIA -20V e—— AN N——e—— O B—
—-20v 2200 TEST POINT A 14
6800 | o
S e
| CROIA ROBA CROBA CRIOA ‘ =
O 1¢ VAN Bt L
10000 5
RO9A
1000 +20ve————10
CROTA CRI1A 5
RO2A — Bt 0
-20v
RIOA
6800 s
2 CrRO2A | cOIA CRI2A 6
o+ (= Al o
100 SRiia
22000
coc 103
QozA
CROIC 9
=
ot
ROIC —20ve————— N O i 0
—20vV 2200 TEST POINT C
6800 NoTE
9 cRoic ROBC CROBC CRIIC 0 UNLESS OTHERWISE INDICATED
i 10,000 Bt AL DIODES ARE TYPE TI-G
RS POLARIZED
1000
CROTC CcRI2C 12
RO2C § 14 7 >t o
—20 RIOC
6800 %zzo
8 crozc| coic
o ie)k coc 102
100, “Shiic
22,000

o #E O
7O é%u% O

|~ a)— ca- -—lﬂclA}»— |

= | —{mza— 4T— —("o5a}— |
+20V = —{Ao m. s
&b 4
4 e

CARD 83

l!lllllllﬂlllr

Figure 4-25. Selector (Card Type 53)

4-34

j
000 0O0O0COOCOED OCO©O6OOGEOOSOS O

CURRENT SOURCE (Type 54)

The current source card consists of five banks of parallel resistors (four banks 150
ohms each and one bank 303 ohms). One end of each bank is connected to the -20v output
of the power supply. The 150 ohm banks supply current to the H, V and inhibit current
generators; the 303 ohm bank supplys current to the dummy loads.

13
TEST PONT A TEST POINT C =8N
| T 4
kS 1
ROI RO3 ROS RO7 RO9 RII ri3 RS =
1200< 1200< 12005 1200 12005 1200 12 1200 s
| +!ov0————1r—0
ol 4]
RO2 ROS ROE ROS RIO Ri2 L) RiG
1200 1200 1200 12005, 12005 1200 12005 1200
7
o
RI7 RI9 R2! r23 "2 R27 R29 /3
12005 1200 1200$ 12005 1200S 12005 12005 1200
L »zov#—Tg
s coe ¥
1
Ri8 =20 R22 R24 n26¢ rze R30 r32 Ho
1200 1200S 1200 12 1200 12005 1200 1200 4 &
= col
9 = =
—20v L 3 NOTE
R33 R34 R3S R36 RS? n3e R3® R&O, UNLESS OTHERWISE WODICATED
2200 2700Q 22 2700Q 22 2700 2200Q 27 xt:ontu ME TYPE TG
ARIZED =
y
-20v
<0 .0
—G— A
L b
| —{meo — —(ae
o P BT 100 s ET TN o B8
HIEH —i— (R
|| () —{(eor -
| —{ow)~ —(Cam —
T

‘ B T
D g

-

— — e =

NARARARARARENA]

Figure 4-26. Current Source (Card Type 54)

4-35

INHIBIT GENERATOR (Type 55) A
Each card has two generator circuits which are identical to the type 51 drive generator

channels except for the absence of an output transformer. The output of each channel

is independently connected to a terminal of the card.

A -12v input signal to either generator of a 55 card causes QO1 to conduct and thus
enable Q02 and Q03. Current from the external source connects to the generator via
terminal 6 or 12 and passes through Q02 and Q03 to ground.

13
—20ve————+0
CRO2A ROS5A

30IA —20v —————O 14
—20v L4 TEST POINT A 1o

3300 _[_

RO2A CROIA 6
& ; o1 . 15
o +20Ve——1 0
22

CcDC 104
Q02A

[1'; CDC 104
CRO3A QO3A
RO6A
2200 [

+20v

NOTE
UNLESS OTHERWISE INDICATED

CRO2C ROSC ALL DIODES ARE TYPE TI-G
ROIC —20Ve—H—/ NN—o————— 0O POLARIZED —t—pp—=
—20v a7 TEST POINT C

3300

RO2C CROIC
I .
14

?.‘

RO3C
120

coic
220

CDC 104
Qoic

) (E coc 104
Qoz¢
L +20V /}J |
coc 104 |
cnoscI 0 Qo3c | C w52
2200 | e g
) | 3
] . an
= +20v = & B
| T T

CARD 85

Figure 4-27. Inhibit Generator (Card Type 55)

4-36

g

0

SENSE AMPLIFIER (Type 56)

The 56 card amplifies the signals from a memory plane as the result of a read pulse.
Transistors Q01 and Q04 are connected in a differential amplifier circuit. The signals
from either end of the sense windings are applied to Q01 and Q03. The emitters are
held at the difference voltage by a difference network composed of R04 and C01; noise
voltages on the sense line are cancelled.

Capacitors C02 and C03, in the collector circuits of Q02 and Q04, provide d-c stabili-
zation. Diodes CRO1 and CR02 pass the negative-going components of the signals from
Q02 and Q04, and serve as clippers. The bias across these diodes, and thus the
clipping level, is adjustable by the Margin switch on the operator's console. When the
switch is up, +20v is applied to the junction of R14 and R15 raising the reference volt-
age across the input diodes to the last stage. When the switch is down, -20v is applied
to R14 and R15 raising the reference voltage across the input diodes of the last stage.
The circuit is more sensitive to the signal from the sense line and spurious pulses tend
to look like "1'g'". Transistors Q05 and Q06 are connected in an amplifier-inverter
circuit. The output, a signal from CRO5 as a result of a ''1" signal from the sense

wire, is -0, 5v.

708

Qo3

Smie L noTE

9800 UMLESS OTHERWISE INDICATED
ALL DIODES 8AE TYPE TI-G
POLARIZED =

ov

Figure 4-28., Sense Amplifier (Card Type 56)
4-37

CHAPTER 5
INPUT/OUTPUT SECTION

The Input/Output (I/O) section of the 1604-A provides the means of data transmission
between the computer and the various pieces of external equipment. The 1604-A
system is capable of handling all conventional input/output equipment. Three units of
external equipment - a paper tape reader, a paper tape punch, and a modified

electric typewriter - are an integral part of the computer console. A description of
the operation of the three console I/O units is given in chapter 7 of this volume.
Separate manuals describe the operation of other external equipment such as magnetic

tape units, line printers, etc.
DATA TRANSMISSION

BUFFERING

Buffer communication is the transfer of individual words between computer storage
and external equipment. In the 1604-A, buffer operations are independent of program
operations; i.e., once a buffer is initiated by the main program, buffer operations
and program operations proceed concurrently. Buffering requires one storage
reference per word and must time-share storage with program operations. Buffering

has priority in requests for storage time.

The 1604-A can handle buffer operations at the rate of one word every 7.4 usec but
the actual speed of buffer operations is determined by the external equipment. The
maximum data rate with one channel active is 116, 000 words per second. With all six

channels active the maximum rate is 22, 500 words per second for each channel.

COMMUNICATION PATHS
External equipment communicates with the computer through four cable groups. All

information enters or leaves the computer through one of these cable groups.

Three of the cable groups contain the three buffer channel pairs (one input and one
output buffer channel in each group) and the fourth group is used for the bi-directional

transfer channel (channel 7). Channel designations within a cable group are as follows:

Cable Group Channel
Input Output
1 1 2
2 3 4
3 5 6
4 7 Transfer 7 Transfer

Each cable group is composed of a set of six cables (each cable is made up of 24
twisted-pair common ground lines). A cable group contains one input channel and one
output channel, one set of function lines and one set of control lines (see tables 5-1 and
5-2).

DATA AND CONTROL INFORMATION LINES

The Input/Output circuits are static, direct-coupled, and parallel. Data is presented
on the communication lines as one of two d-c voltage levels; the binary '""'1'' condition
is represented by -0.5 vdc, the binary ''0' condition is represented by -16 vdc. All

binary digits of a word are presented simultaneously on the wires of the cable group.

A parallel set of connectors in each external equipment enables more than one external
equipment to be connected to the computer via one cable group. Unique select codes
provided by the computer determine which equipment attached to a cable group is to

communicate with the computer.

TABLE 5-1. LINE ASSIGNMENT OF A GIVEN CABLE GROUP - DATA LINES

Input Equipment to Computer

Input data Comprise two complete cables and two lines
(48 lines) of a third cable of a buffer cable group.
Input data Function: Indicates to computer that input lines contain

ready (1 line)

Operation:

information which it may sample.

Turned off by Input Data Resume signal from
computer. (Computer Resync circuitry
orients itself about leading edge of Ready
signal; auxiliary scanner is stopped and
input word is passed to computer).

Computer to Input Equipment

Input data Function:
resume (1 line)

Operation:

Indicates to equipment that computer has
accepted input word.

Turned off by Input Data Ready signal;
turned on when computer has accepted and
stored input word.

Computer to Output Equipment

Output data
(48 lines)

Comprise two complete cables and two lines
of a third cable of a buffer cable group.

Output data Function:
ready (1 line)

Operation:

Accompanies output data from computer.

Turned on when computer has word of
information ready for equipment; off by
Resume signal from equipment.

Output Equipment to Computer

Output data Function:
resume (1 line)

Operation:

Indicates that equipment has accepted word.

Turned on when equipment has accepted word.
(Computer Resync circuitry orients itself
about the trailing edge of Resume signal;
when signal drops auxiliary scanner stops
and another word is exchanged. Computer
prepares a word for exchange while Output
Data Resume signal is up).

TABLE 5-2. LINE ASSIGNMENT OF A GIVEN CABLE GROUP - CONTROL LINES

Computer to External Equipment

External function Function:
(12 lines)

Operation:

Carries external function (EXF) codes to
select or sense a condition within the
equipment,

Lines continuously monitored by all equip-
ment. Function or Sense Ready enables
equipment on a given channel to sample
EXF code on lines.

External master Function:
clear (1 line)
Operation:

Clears all equipment on all channels.

Occurs when Clear switch at console is in
Up position.

External Equipment to Computer

A logical '"1" indicates presence of the exit
condition specified by the sense code, if
the lowest bit of the sense code is 0.

A logical "0'" indicates presence of the exit
condition if the lowest bit of the sense code
is a l.

Sense response Function:
(1 line)

Operation:
Interrupt Operation:
(2 lines)

External equipment or internal computer
control sends signal when an interrupt
condition arises that was previously
selected by a 74.0 instruction.

Computer to Input Equipment

Input function Function: Accompanies EXF Select code.
ready (1 line)

Operation: Turned on by instruction 74.0. Enables
input equipment to translate EXF code.

Input sense Function: Accompanies EXF Sense code.
ready (1 line)

Operation: Turned on by instruction 74.7. Enables
input equipment to translate EXF code and
send response back to computer.

Input buffer Function: Indicates computer is prepared to receive
active (1 line) a block of data.

Operation: Turned on when input buffer channel is

activated by instruction 74.1, 74.3 or 74.5.
Remains on until final word of block is
entered in storage and resynchronization of
the input data ready occurs.

5-4

TABLE 5-2. (CONT'D)

Computer to Output Equipment

Output function Function: Accompanies EXF Select code.
ready (1 line)
Operation: Turned on by instruction 74.0. Enables
output equipment to translate EXF code.

Output sense Function: Accompanies EXF Sense code.
ready (1 line)
Operation: Turned on by instruction 74.7. Enables
output equipment to translate EXF code
and send response back to computer.

Output buffer Function: Indicates computer is prepared to
active (1 line) transmit a block of data.
Operation: Turned on when output buffer channel is

activated by instruction 74.2, 74.4 or 74.6.
Remains on until final word of block is
transmitted to output equipment and the
output data resume signal is resynchronized
by the computer.

BUFFER CONTROL

Buffer control is a specialized control section for controlling the operations of data
transmission between computer storage and external and console equipment. The

main parts of buffer control are:

Auxiliary sequence (AUX): times and initiates the commands of
buffering.

High Speed Storage sequences (HSS): times and controls the special
operations necessary for referencing storage locations
00001-00006.

Auxiliary scanner: the scanner is used to insure that each buffer channel
has equal priority in buffering information.

Control registers (CR) 1-6: 30-bit FF registers used to store the address
portions of storage locations 00001-00006 (buffer control words).
The upper 15 bits (CR,,) hold the current address of a buffer
operation. The lower ~15 bits (CRL) hold the terminal address.

!

Common Control register (CCR): a 30-bit FF register used to "update"

the control word after each word is buffered.

Comparator: the comparator is used to compare the upper and lower
address portion of the control words to sense when the
buffer operation is complete, Input to the comparator is
from the CCR,

Inverter ranks 17 and IB: used to provide more transmission paths
in the buffer control section (figure 5-1).

s Pl, and CCR,, translators: these translators sense when a storage
refergxce is made to 00001-6, The translator outputs are
used as gating conditions.

U2

BUFFER OPERATIONS

Buffer operations of the 1604-A are initiated by the program but controlled thereafter
by the buffer control section (figure 5-1), This leaves the main control section free
to perform program operations at high speed while buffering takes place at the slower

speed of the peripheral equipment,

In a buffer operation a block of 48-bit words is transmitted into or out of storage one
word at a time, The block of words is defined by an initial address and a terminal

address, The initial address is the storage location of the first word to be transmitted,

The terminal address is one greater than address of the last word. A buffer operation

involves the following steps:

~

Store terminal address in CRL
T — Sense for Channel Inactive
Skeps J Select equipment and mode
Sense condition of equipment ,
Activate buffer channel (stores initial address in CRU)
Transmit first word to or from storage

Increase CRU (initial address) by one

Compare CRU with CRL

Continue if CRU # CRL

Carried Out
Automatically
By Buffer
Control

Transmit last word to or from storage
Increase CRU (address of last word) by one

Compare CR.. with CRL (CRU now equals CRy indicating that
the buffer is Igomplete)

Signal from comparator (CRU = CRL) deactivates buffer
channel

COMPARATOR

COMMON CONTROL

COMMON CONTROL

T

REGISTER REGISTER
—> UPPER LOWER
X' x!
;S GBI
7 7
"4 T yppPeER | I ower

CONTROL REGISTERS

CONTROL REGISTERS

T

T
B NPT S A,

NENNENNNNNN W NE NN NN NN

—> -6 =6
UPPER LOWER
8 | 8
LupPeR } Iiower

[P o, e+ T s (i B e IR T T

|
|
|
|
|
|
|
J

1% 16

CONTROL SIGNALS
FROM AUXILIARY

AND HIGH SPEED

STORAGE SEQUENCES

Figure 5-1. Block Diagram of Buffer Control

5-17

I
SRS 1Y ST

Store Terminal Address

Whenever storage locations 00001-00006 (buffer control words) are referenced (read
from or written into storage) the corresponding control register (CR) is also auto-
matically referenced. Thus the terminal address can be stored in the lower portion
of the appropriate control register by any instruction that writes in the lower address

(20, 21, 47, 57, 61). See figure 5-2.

IN CONTROL R!GNT!R-——————1

A A
'§ . \ / \

00001 -
00006

t |b UPPER ADDRESS t | b LOWER ADDRESS

N Nt
L 1IN come

STORAGE ONLY

Figure 5-2. Structure of Control Words

Sensing for Channel Inactive

An instruction which selects a particular external equipment for operation on a buffer
channel automatically de-selects all other equipments on that channel. Therefore,

in order to avoid disconnecting a device before its operation is completed, it is
necessary to sense for Channel Inactive (or Active) before executing a Select
instruction. Sensing is done by the 74. 7 instruction., Table 5-3 shows some 1604-A

Sense codes and the conditions for which they sense.

The 74.7 instruction is executed by the EXF (external function) sequence. During a
74,7 instruction, the sequence (figure 5-4) sends the code contained in the execution
address to all buffer channels and to computer control. Only the channel specified in

the code receives a Sense Ready signal and is able to translate the code.

The Sense code (figure 5-3) specifies the condition to be examined; the presence or

absence of the condition is indicated by the Sense Response signal.

5-8

® 00000 0O0OOED OO OO OO O OO

|

TABLE 5-3. SENSE CODES*
CODE DEFINITION
74 7 000CO Exit On Channel C Active
74 7 000C1 Exit On Channel C Inactive
C = buffer channel number
74 7 001AO0 Exit On Arithmetic Fault A
74 7 001A1 Exit On No Arithmetic Fault A
A =1 = Divide fault
A = 2 = Shift fault
Etec.
74 7 00300 Exit On Clock Overflow
74 7 00301 Exit On No Clock Overflow
(EXF) EXTERNAL FUNCTION CODE
.

EE= A
23|22|21 |20|19]|I18|17]|16f15]14]|13]12|11|l0o]9|8|7|6|5|4a|3|2]|1]|0|e—BIT
\ v R v S v . y I\ -V

OPERATION DESIGNATOR CHANNEL EQUIPMENT CONDITION
CODE (74) O OR 7
Figure 5-3. External Function Select/Sense Code

* A complete list of Sense codes can be found in the 1604~ A peripheral equipment codes

manual, publication number CDC 60025700,

5-9

For the 74. 7 instruction, the following commands are generated:

1) U2 ~>X1 with sign extension

2) X=Xt

The 74.7 instruction is not contained in XZL. XzL is always connected to
the external function inverters O° as shown in figure 5-5; only the absence
of a Sense/Function Ready signal prevents interpretation of the code by
external equipment. The code is available to all channels but can be
interpreted only by the channel specified by the upper three bits of the code
(figure 5-3).

3) Set Sense FF K718/719
Setting the sense FF starts the EXF counter. 1.6 microseconds later Sense
Ready (J450) becomes a ''1"., J450 combines with a translation for the
channel (page 62, Customer Engineering Diagrams) to send a Sense Ready
signal to the channel specified in the code. The Sense Ready signal is held
on the line for 12.8 usec to allow sufficient time for sampling by external
equipment. Then the count in the EXF counter restarts the EXF sequence
at H709.

4) Sense response from J914 is combined with the lowest bit of the EXF code.
5) The output of J916 is resynchronized.
6) A full or half exit is taken, depending on the sense response.
A pair of Sense codes is associated with each condition. The lowest bit of the code is
not sent out but rather is combined with the response received from J914. For

example, if the channel is active, the response received by J914 is a ''1" whether the

instruction sensed for Channel Active or Channel Inactive.

If the channel is inactive, J914 receives a ''0"'. After this response is combined with

the lowest bit, the output of J916 is a ''1" if the code is 000X0 and the channel is active,

or the code is 000X1 and the channel is inactive. The full exit is taken for these cases.

When the output of J916 is a ''0" the half exit is taken. The exit chosen indicates

whether the specified condition is present.

5-10

X' —>x2

3K32C "}XZ
UA 2 I
X2 —=>x
u u
HS]}
K12 534
£ K822 F YEL]
R CLRX'L
voos o1 [1702 “ann (703 [70s ani3 H7' (4 S. STORAGE SEQ.)
pen H 4NI0 4N ¢ H ani2 H (H
y7o! V702 V703
4011 4012A K7|z
F7\7
WRITE UPPER
FazC
263 K216
F7|7
b ps58 4315C
K 0428
e
[t} wi42 457
= J—> AUX. 720
L] REF_REG. SELECT
M52
[¢] H™0 6Nel K716
/086
c|,1 N K7I7
076 6Ma7
:# w153
KIA7 6La6
Jras F727 SENSE
M54
m K718
—+ K9 RANK I RANK IT
o) LTS wiss) 6M53
’1 UI4Z 135 e
w B B—>x! e ENABLE K!48 [l ——7)—) K!4
1 W WITH EXTENSION H SENSE_EXIT 303! 673 . 6174
— 898 941 131 037 147
: H 315 H Euz b 3
892
H % VT sl ke & 716
o 3Li6A K032 | R K!3! e i_”s
= K036 K!33
(‘3. K34 034 P
e 6M57 6M40
o K'33 K035 K135
B ¢ '35
K77 K718 030 K937
[92] K33 FUNCTION
(D KBI
o) TR K!32
S KOs
¢} K'97 K034 K!3
(=] K133
@) INTERNAL Jose —7
]
cHanneL 7 MO —
cHaNNELS 12 M!S —— FULL EXIT Lo
B39 4105
> 13
CHANNELS 34 M2Y — 5 033 ;
37 iy
| _
channeLs 5,6 M ——) LI “ aMoz
000 o027
K030 . HALF EXIT V026 K716 BL
K032 d _,{Hou P K8

V035

E_F COUNTER

When the 74. 7 instruction is used in the upper position, the full exit skips the lower
instruction and the half exit leads to the execution of the lower instruction. When the
74. 7 instruction is used in the lower position, the full exit leads to the next instruction
when the specified condition exists. When the condition does not exist, the half exit
causes the 74.7 to be repeated. Repetition of the instruction continues until the con-

dition does exist.

Selecting Equipment and Mode
Before activating the buffer channel, the desired equipment must be selected and the

desired mode of operation established. To select equipment and mode the 74.0 (Select)
instruction is executed by the EXF sequence, During a 74,0 instruction the EXF Select

code (figure 5-3) is transmitted to all channels just as the 74. 7 code.

For a 74. 0 instruction the EXF sequence performs the following operations:

1) u? -x! with sign extension

2) x!->x2

The EXF code is now on the lines (figure 5-5) and the Function
Ready signal enables its translation by the specified equipment,

3) Set Select FF (starts EXF counter)

4) Set Sense Resync FF if Exit FF = 0

5) Issue Function Ready signal

6) Wait 12, 8 usec (timed by EXF counter)

7) Full or half exit (chosen by state of Sense Resync FF).

By the time the Function Ready is dropped and the exit taken, the code has been trans-
lated and the proper equipment is selected for the desired mode of operation.

Sensing Condition of Equipment

In some cases the external equipment may not be ready for use even though the channel
is inactive; i. e., a magnetic tape unit may be rewinding, the stacker on a card reader
may be full, the typewriter may be in the wrong case, etc. EXF codes are used to
determine whether equipment is ready for use and, if desired, wait until it is ready.
The action of the EXF sequence for these codes is the same as described under sensing
for Channel Inactive,

5-12

LO--

x__z

x| oo

("] N =
] 1
]]

Figure 5-5. External Function Inverters

Activating the Channel

A 74.j instruction is executed by the EXF sequence to activate a buffer channel, The

channel to be activated is specified by j (j = 1-6). The sequence of events is:

1)
2)
3)

4)

5)
6)

j > Auxiliary Reference register (ARR)

w2 =xt

X! 8K

Set even and odd Storage Busy FF's

As shown in figure 5-4, if an auxiliary operation is in progress at this
time, a loop provides for waiting until the auxiliary operation is completed,
Set K216/217 -f = 74.1-6 FF

Initiate high speed storage sequence

High Speed Storage Sequence

The High Speed Storage sequence is used to enter the initial address (address of the

first word to be buffered) into a Control register. High Speed Storage sequence

performs the following steps:

1)
2)

3)
4)

Set Storage Enable FF

2 6
XUA I

Set Storage Busy FF's
ARR — ARD (translations from ARD select

desired control register)

5-13

5] Pl setids. jnitisl
address to

m "

B) Sset CRU 178 proper control

7) I" > CRy register

8) Clear CCR

T to compare

9) C7R I initial and
10) I = CCR terminal addresses
11) Exit

12) Set Buffer Active FF
13) Clear Storage Busy FFs

At the end of the High Speed Storage sequence, the initial address is contained in the
proper control register and the buffer channel is active. The actual buffering
information is now under the control of the buffer control section. Except for sharing

core storage, the buffer operation now proceeds independently.

Ready/Resume Logic (Output)
Once a buffer channel is activated, the computer and external equipment exchange

control signals via the Ready/Resume circuitry. The ready/resume logic for channel
2 is shown in figure 5-6. When channel 2 is inactive the output of M149 is a "0";
K724/725 and K726/727 are clear. When buffer channel 2 is activated by the 74.2
instruction, Buffer Active FF K702/703 is set. When the next odd Resync pulse,
V121, occurs, Action Request FF K786/787 is set, indicating to the auxiliary scanner

that channel 2 is ready to buffer a word.

Auxiliary Scanner

The auxiliary scanner (figure 5-7) samples the six buffer channels in search of action
requests from the buffer channels. The scanner is a specialized 3-bit, two-rank
counter in which only one FF at a time changes state. Setting of FFs in rank II is
dependent upon the Action Request FFs being clear. If an Active Request FF is set,
the scanner stops when rank I holds the number of the channel for which the Action

Request signal is present.

5-14

BUFFER
EXTERNAL e
FUNCTION K702
SEQUENCE END OF
BUFFER K703 r>_>{\ g192 l__,l L'e8]
OPERATION
CHANNEL ACTIVE
CH.2
OUTPUT ACTION
RESUME REQUEST Y
ul" | II J°74 JO75 K"Z‘ £ KT‘S
: K 728 [/ K 787 $ ADVANCE
vial SCANNER
OUTPUT END OF EACH
RESUME vizo WAIT OUTPUT WORD
RESUME OPERATION
END OF
EACH OUTPUT K726 iz _
WORD OPERATION (727 | (:U“
cH.2 T OUTPUT READY
MC

v 2!

Figure 5-6. Ready/Resume Logic - Channel 2

The Advance Scanner pulses V791 and V793 alternately set and clear K822/823 every
odd phase time while there are no action requests. The state of K822/823 is gated

to K824/825 during even phase time and from there to K826/827 the next odd phase
time, etc, K822/823 and K826/827 are in opposite states (one set and the other clear)
as long as the scanner continues to advance. When an Action Request stops the scanner,
K822/823 and K826/827 assume the same state (set or cleared) and the Auxiliary
Request FF K712/713 is set, A "1" from K713 sends the contents of rankI of the
scanner (number of channel with Action Request) to the Auxiliary Reference Designator
(ARD), a three bit register, The output of the ARD is translated by inverters

W821 - W826 and W831 - W836. The inverter outputs are used to establish gates for
the Auxiliary and High Speed Storage sequence operations,

Keo! K801
KBOz K803
Ksos 80 800 800 Ksos
801 |
K K K
K890 Kaos 802 803 K802 K 800 |
K802 K04 K eoa Keos 805 K803 ‘
K804 K K K s K 804 EVEN CLOCK |
! KBOS |
KBOS KEIQ Ka!Z Ksl‘ KBIS KBIB K::: |
K T ——
o Kk80° | ko' Ke'3 ~ K8 K87 K®'® CH. 3 REQUEST |

EVEN CLOCK

K8|3
HTSS CH. 5 REQUEST

EVEN CLOCK
8I7
H7o!

K8l
EVEN CLOCK
CH. 6 REQUEST

K804 K802 K800 IR SR
Sis CH. 2 REQUEST
KB°5V K803 K8o! :]950 EI‘IEN CLOCK
Ke'e Ke!3 K809. K8]I v797L H793 oS
! EVEN CLOCK
K809 |g8Is K87 Ke's 7e7 CH. 4 REQUEST
N962 —4 : b 980 K 809
EVEN CLOCK _
CH. | REQUEST
K84
K8'e
P
EVEN CLOCK
NELL —O peTTS
257
[—&s K
v | 82
v7ol —p) 82z _A_Q-. K824 K826 |~ K74 K712 K254
N N969 N94! NOS3

827 718 713 255
yres | K823 b K828 K | K K b" K
V456 [

w'a2 T k2s2

! K263

JSQZ

oo e

K774 KTT5 K77‘ K775
K777 K776 K777 ‘ K776
K779 K77! K779 K77!
K718 K776 K774

ARD K779 K777 K775

N9:' RANK I SCANNER ->ARD % I %, % ; $

KG 2

Kee2 i T 1 |

K713 noee K805 804 K803 K802 Keol K800

V45|

Figure 5-7. Auxiliary Scanner

5-16

>~
z

o

a

Auxiliary Sequence

The Auxiliary sequence (AUX) is initiated by an Auxiliary Request (K713). AUX then

times and issues the commands which buffer a word to or from storage.

The Auxiliary sequence issues the following commands:

1)

2)

3)

4)
5)

6)
7)

8)
9)

10)
11)

12)

13)
14)

Set Storage Busy FF's
Clear CCR

CR—+1I'

1! ~CCR

W =
1200 18
Clear O~

1 2 1" 1"
Set 8* 8% +all "i's }
CCRy S

Initiate Storage
CCR ~T"
Initiage H. S. Storage

7
Taetenl: CCRU

Set CRy~ 114"
CCR..~T°
U
8
1° > CRy

v g

CR~1'
Clear CCR
1’ ~CCR

Clear Wait FF (for input)
or set Wait FF (for output)

Clear Request FF

Sends control word to CCR

Accepts input for input buffer

Prepare output register for new word
Sends current address to S to make

storage reference

If a buffer control word is being buffered, the
address portion must come from or go to a CR

Increase current address

Send updated current address
back to CR.

Put word in output register for output buffer
Take control word to CCR for comparison of
addresses. If CCRU = CCRL, the buffer is
completed.

Clear Buffer Active FF only

if CCRU = CCRL

Release scanner

Release storage

5-17

Ready/Resume Logic (Input)

In the case of an output buffer on channel 2, when AUX sets the Wait Resume FF
K726 /727 (figure 5-6) the Output Ready signal 1.148 is sent to the external equipment
on channel 2. The Output Ready indicates to the external equipment that a data word

is on the line. The external equipment then accepts the word at its own speed.

When the external equipment has accepted the word it sends an Output Résume to the
computer. The Output Resume causes the computer to set K724/725, clear K726/727,
and drop its Output Ready signal. When the Output Ready signal is dropped the
external equipment drops its Output Resume, When the Output Resume goes down,
K724 /725 is cleared and another Action Request is enabled. Ready/Resume circuitry
for input channels (figure 5-8) differs from figure 5-6 in that the signal from external
equipment (Input Ready) must come before the Auxiliary sequence is initiated, whereas
fhe Output Resume signal from output equipment comes after the Auxiliary sequence

has put a word on the output lines.

BUFFER
EXTERNAL ACTIVE
CuATey
END OF —sf k70! 4_;{ el HL;sr]
' OEEEZ‘FI%N CHANNEL ACTIVE
CH. |
INPUT ACTION
READY REQUEST i
N
MI48 JOTZ J073 K 720 A K704
ADVANCE
721 783 |
- v'® . SCANNER
L ADY]I END OF EACH a0
REGEY e WAIT INPUT K
READY WORD OPERATION
yvial K722 © CH. |

END,NOZ$ACH K723 -

P
WORD OPERATION INPUT RESUME

CH. I

Figure 5-8. Ready Resume Logic - Channel 1

5-18

Buffering To or From 00001-00006

During buffer operations the content of Control registers is changed but the correspond-
ing locations in core storage are not changed. Therefore, when a word is to be
buffered to or from one of the buffer control words (00001-00006), the corresponding
CR must also be referenced. To do this the Auxiliary sequence initiates the High

Speed Storage sequence (HSS) when the CCR equals 00001-00006. HSS then issues the
commands necessary to read from or write into a CR. Since the control register
referenced by HSS is selected by a translation of the ARD, the address of the word
being referenced is transferred from S1 or S2 to the ART during the time that the

actual transfer of data takes place. The commands issued are:

1) Rank I Scanner - ARD Translations from ARD are used to select CR
corresponding to the channel in use.

2) Clear CCR
i

3) CR-—~1 Sets S to address of current buffer operation
17 > CCR (address to which or from which a word is
CCR — 8t or 82 being buffered.

4) CCR— I1 If address of current buffer operation is

00001-00006.

5) Initiate HSS
B - I SR
Set CRU = 1lg
I8 o CRU to CR.

7) S1 S2 - ARD S must be transferred to ARD in order to get a

translation to select the CR to which or from

Increase current buffer address and restore

which a word is to be buffered.

ATUX now does nothing while HSS buffers a word into or out of a CR.

8) Rank I Scanner - ARD AUX must now compare CRU with CRL to
determine whether the buffer is complete

(last word transferred).

il
9) CR=1 The CR corresponding to the channel being used
q71ear CCR is now in the CCR available for checking by the
I ~CCR comparator.
5-19

During an output buffer of a control word the address portions are taken from the CR
and the non-address portion from core storag<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>