
Printed in U.S.A.

Burroughs~

B 6000/B 7000
Series

SYSTEM SOFTWARE
OPERATIONAL GUIDE

VOLUME 1

Copyright © 1980 Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

June 1980 5011661

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. 0. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO - West.

PREFACE

The SYSTEM SOFTWARE OPERATIONAL GUIDE (SOG), in two volumes, provides
descriptions and operating instructions for the utilities available to users of
the BURROUGHS B 7000/B 6000 series of data processors. Additionally, chapters
documenting other pertinent features of the system are included.

Volume 1 contains information about those utilities of interest to programmers
and systems personnel.

Volume 2 contains information more often required by operations personnel.

A degree of overlap exists between the two volumes of the SOG manual, as
certain subjects are pertinent to both the operations and the technical staffs.
Each volume of the SOG contains a listing cf the infcrmaticn avai!ab!e in beth
volumes.

SOG VOLUME

CHAPTER SUBJECT

BACKUP

2 CAROLINE

3 COMPARE

4 DUMP ALL

S FILEDATA

6 INTERACTIVE XREF

7 ISAM (Index Sequential Access Methods)

8 LOADCONTROL

9 INTRINSICS

10 PATCH

11 SORT

12 GUARDFILE

13 DCSTATUS

SOG VOLUME 2

CHAPTER SUBJECT

FILECOPY

2 UTILOADER (B 6000) AND MINILOADER (B 7000)

3 HARDCOPY AND PRINTCOPY

4 IADMAPPER

S LOADER

6 LOGANALYZER

7 LOGGER

8 LTTABLEGEN

9 MAKEUSER

10 MEMORY DUMP PROCEDURE

11 MEMORY MANAGEMENT

12 RLTABLEGEN

13 SECURITY

14 SOFTWARE COMPILATION

15 SUMLOG

16 SWAPPER

17 SUPERIV

18 B 7000 MODULE SELECTION AND RECONFIGURATION

19 B 7000 SOFTWARE FEATURES

RAILROAD DIAGRAMS

Arai I road diagram is a technique used to graphically represent the syntax of
utility input statements. language verbs. and Operator Display Terminal
commands.

Traversing a railroad diagram from left to right, or in the direction of the
arrowheads, and adhering to the limits illustrated by bridges produces a
syntactically valid statement. Continuation from one line of a diagram to
another is represented by a right arrow ">" appearing at the end of the current
line and the beginning of the next line. The complete syntax diagram is
terminated by a vertical bar "I" or a diamond"<>"·

Items contained in broken brackets "<
further defined in the manual or
information.

> are syntactic variables that are
require the user to supply the requested

Uppercase items must appear literally. Minimum abbreviations are underlined.

Example

- A RAILROAD DIAGRAM CONSISTS OF---'-~- < b r i d g e s > --------.-----'------->~

L
<loops>--------l

<Optional items>]

<required items>

>--AND IS TERMINATED BY A VERTICAL BAR OR DIAMOND.~~~~~~~~~--1

The following syntactically valid statements may be constructed from the above
diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY
A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF <Optional items> AND IS
TERMINATED BY A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF <bridges>, <loops> AND IS
TERMINATED BY A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF <Optional it ems>, <f equ ired
items>, <bridges>, <loops> AND IS TERMINATED BY A VERTICAL
BAR OR DIAMOND.

RAILROAD COMPONENTS

<required items>

No alternate path through the railroad diagram exists for required items or
required punctuation.

Example

- REQUIRED ITEM- . ----------------------

<optional items>

items shown as a verticai iist indicate that the user must make a choice of the
ite~s specified. An empty path through the list allows the <Optional item> to
be absent.

Example

- REQUIRED ITEM~----------------------1 .

L <opt i ona I i t em- I> J
L <Optional item-2>_J

The following valid statements may be constructed from the above diagram:

<loops>

REQUIRED ITEM

REQUIRED ITEM <Optional item-I>

REQUIRED ITEM <Optional item-2>

A <loop> is a recurrent path through a railroad diagram and has the following
general format:

~r--(bridge) (return character)-----

------- (object of the loop}

Example

<Opt i ona 1 it em-1> J
<Optional item-2>

The following are some of the statements that can be constructed from the above
diagram:

<Optional item-1>

<Optional item-1>,<0ptional item-1>

<Optional item-2>,<0ptional item-1>

A <loop> must be traversed in the direction of the arrowheads, and the limits
specified by bridges cannot be exceeded.

<bridges>

A <bridge> illustrates the minimum or maximum number of times a path may be
traversed in a railroad diagram.

The two forms of <bridges> are as follows:

I n \ n is an integer that specifies the maximum number
of times the path may be traversed.

n is an integer that spec1t1es the minimum number
of times the path must be traversed.

Example

~
I

~ional item-I>

I* <Opt i ona I i t em-2> J
The loop may be traversed a maximum of two times; however,
<Optional item-2> must be traversed at least one time.

the path for

The following are some of the statements that can be constructed from the above
diagram:

<Optional item-1>,<0ptional item-2>

<Optional item-2>,<0ptional item-2>,<0ptional item-1>

<Optional item-2>

BACKUP

TABLE OF CONTENTS

1. RATIONALE FOR BACKUP FACILITY

2. PROGRAMMER CONSIDERATIONS

3. OPERATOR CONSIDERATIONS

SB MESSAGE.

REQUIRES RSVP MESSAGE

OU MESSAGE.

ERROR HANDLING.

4. BACKUP FILES.

NAMING CONVENTION

FILE FORMAT

Control Word

Control Record

Blocking

5 . AUTOBACKUP .

AP MESSAGE.

QUEUEING AND UNIT PREFERENCE.

BACKUPBYJOBNR SYSTEM OPTION

PRINTERLABELS OPTION.

FILE PROCESSING

PACK SPECIFICATION.

DISK AND DISKPACK SPOOLING.

FILE REPOSITIONING.

PB ODT MESSAGE.

6. RJE BACKUP.

7. SYSTEM/BACKUP STRUCTURE

8. SYSTEM/BACKUP COMPILE-TIME OPTIONS.

$100PTION

$1NFOPTION.

9. TAPE REPOSITIONING.

1-1-

1-2-

1-3-

1-3-

1-3- 3

1-3- 4

1-3- 5

1-4-

1-4-

i-4- 2

1-4- 2

1-4- 2

1-4- 5

1-5-

1-5-

1-5- 2

1-5- 2

1-5- 3

1-5- 4

1-5- 4

1-5- 5

1-5- 5

1 ·-6-

1-7-

1-8-

1-8-

1-8-

1-9-

1-1-
BACKUP

1. RATIONALE FOR BACKUP FACILITY

Slower peripheral devices, such as printers and punches, have typically been
bottlenecks on computer systems. One problem is that a printer or punch may
not be available for assignment when an executing program requires one; another
problem is that the operation of a printer or punch is relatively slow and
therefore ties up the controlling program as well as some of the other system
resources that the program is using. In still other cases, such as an exception
report file or monitoring files, the printer is typically used infrequently;
therefore, assigning the printer directly to the program would needlessly tie
the printer up and make it unavailable to other programs.

The Burroughs B 7000/B 6000 series of computer systems are dedicated to the
effective use of the overall pool of system resources in a multiprogramming
environment. To use slower peripherals more effectively, these systems provide
the capability of backup files.

When the "hackup" technique is used, a program requesting a pr;nter or punch
device is assigned a faster peripheral such as tape, disk, or pack. These
peripheral devices simulate a printer or punch; the program writes to them
logically, but the physical output operations are less frequent (because
blocking is possible) and therefore, not as time consuming.

The system can be placed in automatic backup mode by means of two system
options; LPBDONLY (for line printer files) and CPBDONLY (for card punch files).
These options may be set or reset by use of the OP+ and OP- messages. With
these options set, logical files whose KIND is set to PRINTER or PUNCH, are
changed to PRINTER BACKUP DISK or PUNCH BACKUP DISK. If a backup device other
than head-per-track disk (which is the default device for backup files) is
desired, the alternate device can be specified by use of the Operator Display
Terminal (ODT) SB message.

Statements in Work Flow Language can be used to set the KIND attribute to the
kind or kinds of backup device(s) desired for a job. Such a statement can be
overridden by the SB message.

Another method of creating backup files is by use of the OU messa&e. If a
program requires a line printer or card punch and none is available, the system
operator can specify, in an OU message, the device to be used for backup.
Consequently, a transfer later takes place from the completed backup file to
the printer or punch. This operation can be performed automatically by a
system utility program (SYSTEM/BACKUP) which makes minimum demands on system
resources yet operates the peripheral devices at efficient speeds.

1-1- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-2-
BACKUP

2. PROGRAMMER CONSIDERATIONS

A programmer
DISKPACK as
and PETAPE.
WFL usage:

is able to specify (via WFL syntax) a variety of backup media;
a backup medium is provided along with DISK, TAPE, TAPE7, TAPE9,

The following syntax diagrams illustrate both "old" WFL and "new"

OLD WFL SYNTAX

,.._ ________________ OTHERWISE---~-~~~--

~~------------------- OR----------------------.

- KI ND = _...__.....__.__, ______ __,..--.-- BACKUP--...--...--------..---""--'---'----~

t PRINTER~ PUNCH__j

L BACK UP_J t DISK

PACK

TAPE

TAPE7

TAPE9

PET APE

Semantics

Omitting PRINTER or PUNCH specifies that PRINTER is to be used.

Omitting a backup medium specifies that the MCP is first to try DISK, then is
to try TAPE.

The OR, OTHERWISE, and , allow concentration of various requests in a
specific order of preference.

NEW WFL SYNTAX

- ---------------- BACKUPKIND =

L KIND =-r- PRINTER-r- J
L PUNCH__J

PACK----1

TAPE--­

TAPE7--

TAPE9--

PET APE

DO NT CARE

1-2- 2
BACKUP

Semantics

Omitting KIND= PRINTER or KIND= PUNCH specifies that PRINTER is to be used.

Using the mnemonic DONTCARE specifies that the MCP is first to try DISK,
i s t o t r y TAPE .

If the programmer specifies the following in an "old" WFL deck:

FILE CF(KIND=PRINTER BACKUP TAPE9 OR PRINTER BACKUP TAPE7);

then

a pr i n t e r b a C'ku p f i 1 e i s opened on a n i n e- t rack NRZ tape u n i t , i f one i s
available. If no nine-track unit is available, a search for a seven-track NRZ
unit· is initiated. If neither is available, the operator receives a message
asking for a nine or seven-track tape that can be used for printer backup of
the CF file. At this point, the operator has the option of forcing the file to
a backup device.

The programmer may alternately specify:

FILE OF(KIND=PRINTER OR PRINTER BACKUP PACK OR PRINTER
BACKUP DI SK);

in which case, the preference is first for a printer, then tor pacK, otherwise
disk.

I f t he p r o g r amm e r s p e ci f i e s t h e f o 1 1 ow i n g i n a " new" WFL de c k :

FILE LP(KIND=PRINTER,BACKUPKIND=TAPE);

a printer file is opened on a tape (any tape) unit if one is available.

The programmer has the option of providing a PACKNAME with a printer file. If
a PACKNAME is specified, the MCP looks for the specified pack. If PACKNAME is
not specified, a system resource pack is selected, if available.

If a programmer specifies the PACKNAME file attribute with a PRINTER or PUNCH
file, the MCP guarantees that if the backup medium is PACK, then it is the
specified pack. The MCP does not accept an OUPKnnn to any other pack. This
restriction reflects the necessity for directing backup diskpack to a pack that
is to be removed and used on another system. Furthermore, the programmer can
prevent AUTOBACKUP from printing and removing that file destined to be
transported by using the BDNAME task attribute and the BDBASE task attribute.

If a system does not have any backup substitutions and if the programmer
specifies that a file is to be spooled on one of the following backup media
devices - DISKPACK, TAPE7, TAPE9, PETAPE and/or TAPE - the options LPBDONLY and
CPBDONLY have no effect because the LPBDONLY and CPBDONLY control only
non-direct files requesting a PUNCH or PRINTER.

If the programmer uses a direct file, the file cannot be spooled on any backup
media. If the programmer specifies a backup medium for a direct file, the task
is DSed because backup and direct files are incompatible.

NOTE

The programmer is able to specify on
which medium the backup is to be spooled.

1-3-
BACKUP

3. OPERATOR CONSIDERATIONS

If a request for a specific peripheral or backup peripherals cannot be
satisfied (because the peripheral is either not ready or under the exclusive
use of another task), the system operato,r has the choice of

I. Physically making the requested peripheral available.

2. Waiting until the other task releases the requested
peripheral.

3. Entering the SB (Substitute Backup) message to respecify
which backup media to use.

4. Entering the OU message to direct the file to an available
peripheral.

5. Entering the DS message to terminate the program.

SB MESSAGE

The operator can modify, and in some instances override, the programmer's
choice of the six previously mentioned types of backup media. This option is
invoked by use of the SB message. The following syntax illustrates the SB
message:

Syntax

~- SB--..---~

r -L....l-16

Semantics

1< -
DI SK----.------ _= ~ 6

PACK _j

TAPE

TAPE7

TAPE9_J

PETAPEJ

DI SK----.-_........__.____.

PACK

TAPE

TAPE7

TAPE9

PET APE

Diverting backup disk to backup diskpack may result in a better balance between
disk/diskpack channel utilization, in which case, SB DISK=PACK (ETX) yields
increased system throughput.

l-3- 2
BACKUP

The following examples illusl1al~ ~arious SD messages and their actions.

Example 1

SB DISK=PACK

Action: Directs all disk backup to pack (assuming pack backup is already going
to pack).

Example 2

SB DISK=PACK, TAPE=PACK, TAPE7=PACK, TAPE9=PACK, PETAPE=PACK

Action: Directs all backup to pack.

Example 3

SB PACK=DISK, TAPE=TAPE7 TAPE9,
TAPE9=TAPE7 TAPE9, PETAPE=TAPE7 TAPE9

TAPE7=TAPE7 TAPE9,

Action: Keeps backup off of PETAPE; wants backup tape files to first try seven
track, then try nine track (all disk and pack backup should be on disk).

If backup media selection is left to the discretion of a programmer or a number
of programmers, leaving the SB message set to what it is after a cold start may
be desirable. Thus, if the operator desires to return to the setting that
existed at cold start, the following SB message can be used:

SB DISK=DISK, PACK=PACK, TAPE=TAPE, TAPE7=TAPE7, TAPE9=TAPE9,
PETAPE=PETAPE

However, SB is not recursive. Thus,

SB DISK=PACK, PACK=DISK

serves to divert backup disk to backup diskpack and to divert backup diskpack
to backup disk in a simple crossover. Files declared backup disk go to
diskpack, and files declared backup diskpack, go to disk.

An error condition occurs if duplicate entries appear in the SB message. For
example,

SB DISK=PACK TAPE PACK

causes the error response REDUNDANT SUBSTITUTION.

The current setting of Substitute Backup may be interrogated by inputting

SB

which causes the status of Substitute Backup to be displayed.

The operator could have specified LPBDONLY for the system. In such a case, any
request for a printer by a non-direct file is transformed into a request for
printer backup disk. Any request for a card punch file when CPBDONLY is set,
is transformed into a request for punch backup disk. By setting appropriate
bits in the task attribute OPTION, the programmer can direct that task to
operate as if LPBDONLY and CPBDONLY are set. An MCS, such as CANOE or RJE, can

1-3- 3
BACKUP

also set these bits in the OPTION task attribute of the user tasks it
processes, thereby causing the same action.

When LPBDONLY or CPBDONLY is set and a task opens a non-direct printer or punch
file, the system selects the backup medium specified in the SB message as
opposed to DISK. For example, if LPBDONLY is set and if SB DISK=PACK has been
previously entered, any task opening a non-direct printer file results in a
printer backup pack file being opened.

REQUIRES RSVP MESSAGE

If a backup medium for a file is not available, and nothing has been
substituted by the SB message, the MCP generates an RSVP message in the form

<task no.> <filename> REQUIRES <Output medium> BACKUP
(<backup medium>)

with the <Output medium> being LP or CP_

If a PACKNAME file attribute has been specified, the message appears as:

<task no.> <filename> REQUIRES <Output medium> BACKUP
(<packname>)

If "old" WFL is used, one or more <backup medium>s may be listed by the RSVP
message, depending on the programmer's specifications, as defined under
PROGRAMMER CONSIDERATIONS. Only one <backup medium> can be listed for "new"
WFL.

The REQUIRES RSVP message allows one of the following operator responses:

1. Use OU message, which is a reply to the REQUIRES RSVP
message.

2. Make the specified peripheral type ready. The MCP notes
the status change and wakes up the program.

3. Use SB to equate a backup medium that is present and
ava1lable. Initiating an SB causes the waiting process to
search again for an available backup medium.

4. DS the program.

1-3- 4
BACKUP

OU MESSAGE

An OU is not subject to SB equating.
the site has head-per-track disk,
regardless of how SB is set.

If the operator inputs <mix no.> OUDK and
the file goes to head-per-track disk

The use of the OU message is essentially a reply to an RSVP message indicating
an output medium is required.

Example

<mix no.> OUPK

<mix no.> OUPKnnn

<mix no.> OUMT

<mix no.> OUMTnnn

<mix no.> OUDK

Places the file on the appropriate
diskpack. If the file has PACKNAME set,
the chosen diskpack is the pack with that
name. If no PACKNAME is given, the
system resource pack is used.

Places the file on the specified pack.
If no PACKNAME has been specified by the
programmer, the programmer can OUPKnnn to
any native mode write-enabled base pack.
If a PACKNAME has been specified by the
programmer, the MCP insists that if the
file goes out on diskpack, it goes to a
native mode write-enabled base pack with
the specified name; PACKNAME has no
effect with backup media types other than
pack. An OU to a different backup medium
is allowed.

Places the file on magnetic tape.

Places the file on the specified magnetic
tape unit of the number nnn.

Places the file on head-per-track disk.

Responses to inappropriate OU messages are as follows:

IS DIRECT FILE: CANNOT BACKUP

A direct file asking for a line printer or card punch cannot go to backup under
any circumstances. Direct implies that the program can look specifically at
result descriptors and set error maskout. Direct files must therefore deal with
the actual target peripheral.

THAT PK IS NOT PRESENT

An OUPK failed because the PACKNAME specified in the attribute list of the file
could not be found on the system. This message is also generated when a pack
of that name is present but is inappropriate because it is interchange,
write-locked out, or is a continuation pack.

REQUIRES PK WITH CORRECT NAME

An attempt was made to OUPKnnn for a file with the PACKNAME attribute set, and
the PKnnn did not have the correct name.

1-3- 5
BACKUP

PK PACK IS NOT PRESENT

An attempt was made to OUPK when no PACKNAME was provided by the programmer and
no designated system resource pack was present.

REQD PKUNIT NOT A MOUNTED-BP

The operator directed OUPKnnn to a pack that was not a mounted native mode base
pack. Backup to diskpack must be to a mounted, write-enabled, ready, native
mode base pack.

NEED AN OUTPUT TAPE FOR OUMT

OUMT failed because no tape was in proper state.

ERROR HANDLING

NOTE

An OU for a diskpack backup file requireg
a write-enabled native mode base pack. If
the OUed pack is interchange, not
write-enabled, or is a continuation packt
the OU is not honored.

The operator has the option of deciding whether or not to continue after an
irrecoverable parity error. On encountering such an error, an ACCEPT (AX)
message is sent to the operator giving the operator the option of continuing or
stopping. If the printout is resumed, all lines read with a parity error are
flagged on the output.

Allowable responses are DS and OK. If DS is entered, processing of the current
backup file is discontinued. If OK is entered, processing continues. If
anything else is entered, the ACCEPT message is repeated.

1-3- 6
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATl'ING PURPOSES.

1-4-
BACKUP

4. BACKUP FILES

NAMING CONVENTION

When a BACKUP DISKPACK is selected, the PACKNAME file attribute can be used to
select a particular native mode pack family. An interchange disk pack family
cannot be used.

The format of a printer backup disk file name is as follows:

BD/<job no.>/<task no.>/<modified filename>

The format of a punch backup disk file name is as follows:

BP/<job no.>/<task no.>/<modified filename>

The <modified filename> refers to three digits, 000 to 999, appended to the
front of the declared printer or punch file name to prevent duplicate file
names. This number is incremented each time a backup file is opened by the
task.

If more than one backup disk file is created by a program, the system creates a
"tree" of files in the directory in the following manner:

BD/<job index>

Specific examples are:

BD/0000365/0000366/000TASKFILE

BD/0000365/0000366/00lLINE

BD/0000365/0000366/002PRNT

A backup file on tape is labeled BACKUP/<filename>, where
name of the file as specified by the program creating it.
written as multi-reel files and as multi-file reels. The
printer and punch backup files on a backup tape.

<filename> is the
Backup tapes may be

system intermixes

1-4- 2
BACKUP

FILE FORMAT

Backup DISK, PACK, and TAPE files are variable length record, fixed-length
block files. Each block is 300 words long, with word 298 containing the number
of records in the block and word 299 containing the record number of the first
record. Within a block, each logical record is composed of one control word
followed by zero or more words of data. A terminal control word of all zeros
indicates that no more records appear in the present block.

Control Word

Each control word is divided into three specific fields. These fields are:

FIELD

[47:28]

[19:3]

[16:17]

Control Record

CONTENTS

Identical to the corresponding portion of
an 1/0 control word.

Character count residue for the data
record (if the record to be printed
consists of complete words, the value of
the field will be zero).

Word count for the following data in the
record in full words, not counting the
control word.

The first record of the file is a control record containing information that is
not printed or punched. This first record is minimally 12 words long excluding
the control word. The following information describes the words in the first
record:

WORD 0:

WORD 1:

FIELD

[47:8]

[39:8]

[31:8]

[23:8]

[3 : 1]

Is the control word.

Is the block character control word which
consists of the following:

CONTENTS

The inde~ to FORMMESSAGE.

The index to JOBNAME.

The index to CHARGECODE.

The index to USERCODE.

A 1 if the file is a backup disk file,
the label type of the file is STANDARD,
and the label entries are not present.

[2 : 1]

[i : i]

[0: 1]

WORD 2:

FIELD

[47:1]

[5:6]

WORD 3:

FIELD

[15:1)

[14:15]

WORD 4:

BACKUP

A 1 if JOBNUMBER is wanted or a 0 if
JOBNUMBER is not wanted.

A i if LSN =origin is remote or a 0 if
origin is not remote.

A 1 if control word is valid or a 0 if
control word is not valid.

Is the logical kind of control word which
consists of the following:

CONTENTS

A 1 if forms are required or a 0 if forms
are not required.

The above field contained in WORD 2 and
the dependency of the FORMMESSAGE
beginning at WORD 12 are being
eliminated. The information is contained
in WORD 1.

The unit type of the backup file. For
example, 11 (decimal) if card punch or 7
if line printer.

Is a path control word consisting of the
fo 11 owing:

CONTENTS

A 1 if the originating unit is a remote
unit or a 0 if the originating unit is
not a remote unit.

The number of the unit in the system
which introduced the file. If the origin
was remote, then the number is an LSN;
otherwise, it is the physical unit where
introduced.

TRAINID (file attribute). If non-zero,
the user-specified train-printer
character set is used for printing. If 0,
the file is generated as if for a drum
printer.

1-4- 3

1-4- 4

WORD 5:

WORD 6:

WORD 7:

WORD 8:

WORD 9:

WORDS 10 THROUGH 11

WORD 12 ~

BACKUP

EXTMODE (file attribute).

LABELTYPE (file attribute).

1/0 mask for page specifications. Refer
to the Input/Output Subsystem Reference
Manual, form number 5001779, for a
com?lete description of the PAGESIZE,
LINENUM and PAGE file attributes.

The job number of the job being printed.

Contains the level number of the backup
f i 1 e.

Not presently defined.

FORMMESSAGE (temporary). The FORMMESSAGE
begins at this point; however, this word
may change in the future. The correct
value of the FORMMESSAGE can be found in
WORD 1.

1-4- 5
BACKUP

Blocking

Records in a backup file are not split across blocks. That is, if the last
record in a given block ended in word 290 and the next record is 12 words long,
then word 291 is a control word containing all zeros. This control word
indicates the end of the present block and indicates that the next record
begins at the start of the next block. The following illustration shows a
typical block of BACKUP records contained within BACKUP files:

1
0 20 .,..__ 20 WORDS OF DAT A. ----1 0 1 7 t--17 WORDS OF DATA - 3 (i

l

CONTROL WORD

L.,_6_-_, ,_'2_w_o_R_D_s_o_F_D_A_T_A_L...---'--o___.__N___,__N_w_o_R_o_s_o_F_o_A_T_A~ B o I o I o [GN DR ED DAT A =1
CONTROL WORD

FILE LAYOUT FOR BACKUP FILES ON TAPE

END OF
BLOCK

1-4- 6
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-5-
BACKUP

5 • AUTOBACKUP

AP MESSAGE

The AP (AUTOPRINT/AUTOPUNCH) message sets the number of line printers and/or
card punches to be made available for the automatic output of backup files.
This message can also be used to select certain line printers and/or card
punches to be used as preferred AUTOBACKUP units. This number (output devices)
is set to zero at Halt/Load time if the MCP option AUTORECOVERY is reset.

AUTOBACKUP is invoked using the AP message.

Syntax

~AP--.1~~~~~~~~~~~~~--.-~~~~~~~~~~~~~~~---1~

~ <number>

Semantics

l[cP~~
LP--------1

CP--r- <number>---'

LP_J

The AP message can appear simply as AP, in which case the system responds by
displaying the current number of line printers and card punches available to
AUTOBACKUP. For example:

AP MAX=3;AP-ED LPS=2;AP-ED CPS=l

When a number immediately follows AP, that number is used as the maximum number
of printer AUTOBACKUPs that may run at any one time. Also, when a number and a
device type immediately follow AP, that number is used as the maximum count of
AUTOBACKUPs of that type that may run at one time. For example:

AP3
AP MAX=3;AP-ED LPS=2;AP-ED CPS=l

If the number following the AP is 0, no automatic printing occurs.

When a device and unit number immediately follow the AP, such as

AP LP 12

then the indicated output device
AUTOBACKUP always attempts to
unit .

is marked as a preferred AUTOBACKUP unit.
use such a unit before trying to use another

1-5- 2
BACKUP

Only if no APed units are available, is output started to a non-APed unit.
When e v e r a u n i t i l) AP e <l , t ht: ~ o u n t o f AUTOBACKUP l) a 1 1 u wt: u f u i L 11 a t u n i t t y v e i :,
automatically increased by one. The number of devices assigned, as described
above, may exceed the number of allowed AUTOBACKUPs. Thus, this sequence of AP
messages

AP 0
AP LP 11
AP LP 11
AP 1

are all equivalent.

When the device is preceded by a hyphen, as in

AP-CP 13

the indicated unit is marked as a "non-APed" or "unpreferred" unit, and the
count of allowed AUTOBACKUPs for that unit type is automatically decreased by
one (unless it is already 0). Also, when such a message references a device on
which output is currently being generated, the activity is allowed to proceed
to a normal termination before the device is disabled.

QUEUEING AND UNIT PREFERENCE

When use of AP results in all line printers being freed of the APed status and
AP is set to 0, the queue of disk/diskpack backup yet to be printed is
forgotten. This process does not affect the actual backup files, except that
they are not printed automatically by AUTOBACKUP. If subsequently, any LP is
given AP status or AP is set to a non-zero number, all disk and native mode
diskpacks are searched for backup files queued for printing. The larger the
system, the more time is consumed in the search. A similar situation is true
for card punch.

Backup files introduced by Library Maintenance (that is, COPY, COPY&COMPARE,
and ADD) from tape are picked up by this rebuilding of the queues and are
printed in turn.

The taskname that shows in the mix picture for AUTOBACKUP includes the mix
number of the job to be output, even if no output unit has yet been selected.

The number of AUTOPRINT and AUTOPUNCH tasks started (exclusive of PB requests)
is controlled by AP MAX and CP MAX, respectively, and not by the number of APed
units. APed units are treated as preferred units and do not influence the
total number of AUTOBACKUPs started.

Setting AP to 0 and then to 1 does not erroneously start outputting the print
files for active CANOE jobs.

BACKUPBYJOBNR SYSTEM OPTION

The operator has the option of deciding whether output should be
order of job number or by the old method of smallest job first.
option is invoked by the BACKUPBYJOBNR run-time option.

printed in
This system

When this option is set, jobs are printed by order of the job number. When
reset, jobs are printed in reverse order of print quantity.

1-S- 3
BACKUP

If BACKUPBYJOBNR is set and output from one card reader is directed to a single
printer (by APing only that printer or by using the PA message), the output is
approximately in the order in which the card decks were entered in the reader.
Discrepancies in this order can arise because of one of the following three
conditions:

J. AUTOBACKUP does not begin printing a job unless it has
gone to EOJ. When other jobs with a higher job number are
to be printed, AUTOBACKUP prints the higher jobs rather
than waiting for the job still in the mix.

2. When wraparound occurs (that is, the job numbers go back
to 0000 from 9999), the low job numbers are printed first.

3. Programmatic setting of various attributes select remote
printers or printers with special forms.

Efficiency considerations with BACKUPBYJOBNR come into play if the site turns
AUTOPRINT and AUTOPUNCH on and off. When the AP message is manipulated in such
a way as to reduce the AP max to 0 and the APed LPs to 0 (or the equivaieni for
AUTOPUNCH), then the appropriate AUTOBACKUP queue is deallocated. When the AP
is again enabled, the MCP must go out to the disk and diskpack subsystem to
find everything necessary to print or punch.

This rebuilding of the backup queue is much more efficient if BACKUPBYJOBNR is
set. When set, the MCP does not need to access many extra directories to
determine the size of the disk and diskpack files in the build queue routine.

Changing BACKUPBYJOBNR when AUTOBACKUP is running and print and punch backup
files are queued affects only jobs that subsequently come to EOJ since the old
queue is not destroyed. The order of output is somewhat scrambled during this
transition because part of the queue is by jobnumber and the other part is by
printer backup size. If a site cannot tolerate this interval where part of the
files are being printed via a different priority criterion, the situation can
be avoided by setting (1) AP to 0 and APed LP to O; (2) changing BACKUPBYJOBNR;
(3) restoring the AP and APed LP to the original value. This process results
in the old queue being destroyed and a new queue being built.

When BACKUPBYJOBNR is reset, and two jobs have the same amount of output, the
jobs are printed in the order they EOJed.

PRINTERLABELS OPTION

If the system option PRINTERLABELS is reset, then the USASI TAPE LABELS output
for all printer files is suppressed. Furthermore, AUTOPRINT attempts to
guarantee that every (labeled) print file is separated from the preceding file
by one, and only one, page eject. Also, within a file, multiple page ejects
are suppressed unless the I/O transfers some data.

FILE PROCESSING

AUTOPRINT attempts to group formed/nonformed files together by making several
passes over the BD directory. During each pass, AUTOPRINT outputs all files
for the job which have some particular PRINT TRAIN combination. At the start
of each pass, if the first file output is either unformed or formed and
labeled, then beginning and ending banners are output around the files in the
group.

1-5- 4
BACKUP

In certain cases (for example, not ready printers), if AUTOPRINT releases the
printer and selects another one, 1t may end up with the same printer. In these
cases, the pass described above may be broken up and a new pass started with a
different set of forms. (This does not happen if AUTOPRINT is DSed.)

The multiple passes described occur for each job and not for the entire print
queue.

Normally, a job has a joblog to be output;
unformed files.

thus the first pass prints all

A trailing banner similar to the QT banner is printed if the operator DSes
AUTOBACKUP.

AUTOBACKUP is QTed if a disk I/O error occurs.

AUTOBACKUP can be QTed while waiting for a disk or pack and while waiting for
an output unit (a line printer or card punch).

NOTE

If a backup file has been QTed, then it
has been terminated. However, the file
does remain in the directory and may be
printed later by a PB ODT message. Refer
to the Operator Display Terminal Manual,
form number 5001704, for further
information on the QT command. The PB
message is discussed later in this
manual.

PACK SPECIFICATION

The system tries to combine all output from one job unless directed to do
otherwise by use of task and file attributes (for example, BDBASE in the task
attribute OPTION or the FORMMESSAGE file attribute). The backup is printed
together provided the pack containing one of the files is not dismounted or
powered off.

For more efficiency, the use of named pack should be avoided unless sufficient
reason exists. In retrieving files to print from named packs, AUTOBACKUP
incurs extra overhead because it must examine every named pack on the system in
addition to the system resource packs.

A backup file cannot be directed to an INTERCHANGE mode pack. No
punch backup file is allowed to have file attribute INTERCHANGE set

DISK AND DISKPACK SPOOLING

printer
to true.

or

With regards to backup spooled to DISK and DISKPACK, unless the site has
AUTOBACKUP turned off or the BDNAME or DESTNAME string task attributes set,
backup spooled to DISK and DISKPACK will be automatically queued for printing
when the job has finished. After automatic printing, the file is purged.

If it is necessary to prepare a pack backup file for transport to a Burroughs
4700 series computer system, it is necessary to rewrite the backup file from
disk or a native mode pack to an interchange pack by writing a program that
reads the 300 word blocks of a backup disk/diskpack file and writes an
interchange disk file of 300 word blocks.

1-5- s
BACKUP

FILE REPOSITIONING

AUTOBACKUP can be interrupted from its normal operation to reposition the file
that is being printed or punched. This repositioning is effected by the use of
the ODT AX (accept) message. The following syntax represents the input format.

Syntax

-- <mix no.> AXT RS

FS of blocks>~

Semantics

(DO.

BS <DO. of blocks>

us~~~~~~~~~----1

L SK <no. of files> __J

RS - Restart file from the beginning

FS - Forward space n blocks from current position

BS - Back space n blocks from current position

SU - Suppress all carriage control (skips and spaces)

US - Unsuppress (turn off carriage control suppression)

SK - Skip n number of files - valid only for backup tape
files.

The number of records in a backup file block is variable because the size of
the records is variable and can range between 1 and 100. A common average is
13.

PB ODT MESSAGE

The PB message is used to print or punch backup tape or disk files. The entry
of the PB message forces at least one copy of AUTOBACKUP into the mix
regardless of the AP setting or the number of APed units. It is extremely
useful in the event AUTOBACKUP has been QTed, either by the system or by the
operator.

1-S- 6

Syniax

- PBL MT-. - <Uni I no. >T
(MIX no.)~

c~:J
Semantics

BACKUP

When a PB message is entered specifying a tape unit, that tape is rewound and
the backup files on the tape are either printed or punched depending on whether
they are printer backup or punch backup files.

When a mix number is specified, that message causes all backup disk files
generated by that job and its subtasks to be printed and/or punched. If LP is
specified in the message, only printer backup files are output. If CP is used,
only punch backup files are output. All other files are left on disk.

Example

PB 697 LP

Action: Prints all printer backup files generated by job number 697 and its
subtasks.

Example:

PB MT 17

Action: Either prints or punches all files from the tape on unit 17, depending
on whether they are printer backup or punch backup files.

1-6-
BACKUP

6. RJE BACKUP

Backup files generated by RJE initiated jobs are placed in directories separate
from those employed at the main system. Specifically, all printer and punch
backup files are placed in their respective REMLP and REMCP directories.
Furthermore, when the RJE terminal option AUTOBACKUP is set, the autobackup
routine of RJE is processed to output these particular REMLP and REMCP backup
files.

A number of similarities do exist between SYSTEM/BACKUP and RJE backup.
Consequently, in order to be aware of these similarities, as well as the
existing differences, the user should refer to the Remote Job Entry (RJE)
System Reference Manual, form number 5001548. Reference should be made
specifically to the *DS, *FM, *QT, *RO, •so, and *TO RJE input messages.

1-6- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-7-
BACKUP

7. SYSTEM/BACKUP STRUCTURE

SYSTEM/BACKUP is an output utility program used to print or punch backup tape
or disk files. SYSTEM/BACKUP is invoked by using either the RUN SYSTEM/BACKUP
statement or the PB statement of the Work Flow Language. The SYSTEM/BACKUP
syntax is given below.

WORK FLOW SYNTAX

-- RUN SYSTEM/BACKUP ("<backup statements>")-----------------..;

OR

-- PB <backup statements>----------------------------1

The two syntax diagrams shown above are equivalent; however, a question mark
must preceed the second statement when entered through the SPO_

<backup statements>

NOTE

Distinct differences between the
SYSTEM/BACKUP PB statement and the PB ODT
message exist. These differences should
be understood before either of these two
items of software are used.

10

.. T<*filename> T <Options>

LON-- <fami lyname>J

<disk file>----------i

L c_ <job no. >_J J
MT~"-- <filename>-- "T <tape file>

[__<unit no.>-------~

<disk file>

<number><printer/punch fi lename>J

1-7- 2
BACKUP

<tape file>

[L FILE <number>

REEL<number>(<output
1

parts>)_J

l

<Options>

CP -r- < u n i t no . >

LP_J

KEY-- <key pa r t > -- < range pa r t >

COP I ES -- <number> --------____,

DEBUG----------------1

ID-- < s t r in g > --------------1

ND------------------4

NOINC--------------__,
I I r- RECORD-- <number> L --1

I <String>--1

~ ::~LE-------------___,1 t LSN-- <number>-----------

1-7- 3
BACKUP

<Output parts>

~KI~= ~n1na~~---------------~

L MODE = ~ :UNCH I

<key part>

<range part>

RANGEL <number>

I
I .J F

<number>

I
<String> <String>_____) L__

LEQUALL
I__ "END"

<number>

<String>

Semantics

When PBing a printer backup tape (PBT) file,
inputs are available:

the following SYSTEM/BACKUP PB

* (special character)

FILE <number>

REEL <number>

Is used in order to print disk files for the mix
number of the SYSTEM/BACKUP and is resricted to
direct output only. This feature is useful when
including a PB card in a WFL deck because it is not
possible to know the job number ahead of time.

Is the number of PBT FILE identified previously by
the MT <unit no.> or by <filename>.

Is the number of the PBT
SYSTEM/BACKUP input.

reel serving as

1-7- 4

KIND

MODE

B5500/B5700

<filename>

ON < fami 1 yname>

BACKUP

I s t he s p e c i f i c a t i on t ha t t e I I s w he t he r t he PBT i s
a jJflHief

- ~ - ,_ , ,
ui. µuu ... u Ud'-'*'-Up.

Specifies whether the PBT is in EBCDIC or BCL mode.

Sp e c i f i e s B 5 5 0 0 o r B 5 7 0 0 , i n w h i ch c a s e , t he PBT
on the specified unit is printed. The output goes
to a normal (that is, non-direct) printer file
called BFILE. Any other options in the input
string (RANGE, LP NO., and so forth) are ignored.

Is the name of the backup file
printed or punched.

that is to be

If ON <fami lyname> is not used, SYSTEM/BACKUP
searches disk and pack for each file that is to be
printed or punched. If the requested file is
present on both peripheral families, it is be
printed twice. Also, the system family pack DISK is
searched, rather than the user's family pack. ON
<familyname> cause~ SYSTEM/BACKUP to print or punch
only the file from that <familyname>.

The following semantic discussion deals with the KEY specification and its
options.

KEY Specifies the sequence
checking range limits.

fields to be used in

<key start><key length> Are integers that specify the starting column and
number of characters in the sequence fieid to be
used in checking range limits.

ALGOL

COBOL

FORTRAN

NEWP

Is a key specifier indicating the appropriate
columns for the ALGOL, DCALGOL, DMALGOL, and ESPOL
sequence numb~rs on compilation listings generated
by these compi 1 ers.

Is a key specifier indicating the appropriate
coiumns for the COBOL sequence numbers on
compilation listings generated by this compiler.

Is a key specifier indicating the appropriate
coiumns for the FORTRAN sequence numbers on
compilation listings generated by this compiler.

Is a key specifier indicating the appropriate
columns for the NEWP sequence numbers on
compilation listings generated by this compiler.

The ALGOL, COBOL, and FORTRAN key specifiers are significant only to printer
(symbolic) files and therefore, should not be used for punch files. Key
lengths are allowed up to 120 characters. If the RANGE specifies a numeric
range (for example, RANGE 100 53800000) the numbers are limited to 12 digits
regardless of the key length.

REPORT

RANGE

Uses the columns used by outputs generated by th~
COBOL Report Writer feature.

Denotes the start and stop values
keys. For example, if a printer
contains the following records

of specified
backup file

1-7- 5
BACKUP

RECORD NO. CONTENTS

1 AAAA
2 BBBB
3 cccc
4 AAAA
5 HHHH
6 DDDD
7 zzzz
8 DDDD

and the f o 11 owing PB statement i s used to print i t

PB <filename> KEY 1 4 RANGE "AAAA" "DDDD"

SYSTEM/BACKUP prints every record from the file,
beginning with the start value through the stop
value. If, however, a key is encountered that is
greater than the stop value, that key is considered
as the stop value. In this example, SYSTEM/BACKUP
prints iines i, 2, 3, 4, and 5.

The $INCLUDE feature allows the user to specify to
SYSTEM/BACKUP that cards which have been included
in the listing by such a $INCLUDE card are not to
be considered when making the sequence range check
but are to be printed if they fall within the
desired sequence range. This feature is for use
only on listings generated by the ALGOL compiler.
It is more useful in cases where included cards
cause the symbolic to be out of sequence. This
feature is invoked by placing a colon between the
sequence range limits as shown in the following
example.

PB MT 83 KEY ALGOL RANGE 12340000 : 23450000;

If blanks are found between the numbers, processing
as

useful, consider the following listing:

%CARD 1
%CARD 2
$INCLUDE X 90000000-91000000
%INCL CARD 1
%INCL CARD 2
%INCL CARD 3
%CARD 3
%CARD 4
%CARD 5

00001000
10000000
10001000
90000000
90500000
91000000
10002000
10003000
20000000

1-7- 6

"END"

EQUAL

COPIES <numbe o

DEBUG

DOUBLE

ID "string"

ND

NO INCL

RECORD <number>

BACKUP

If it were desired to
sequence range 1000000
statement could be used:

print the cards tn the
- 1 9 9 9 9 9 9 9 , t he f o I I ow i n g

<l>PB <device specifier> KEY ALGOL RANGE 10000000
19999999;

If backup were run without using this feature, it
would stop printing as soon as it hit the card at
sequence 90000000.

Is a range stop indicator for an EBCDIC string
(besides either <number> or <String>) which is
equivalent to setting the stop integer to 99999999.

Is used to determine if the <number> or <String>
options correspond with the character string length
or the sequence numbers specified in <key start>
and <key length>.

Denotes the number of printer backup copies to be
printed from a directory.

Is a developmental (subject to change at any time)
diagnostic aid intended for debugging purposes.

Specifies the double-spacing of printer backup
files.

Generates the printing of user specified block
character headings. This option is valid only when
$IDOPTION is set.

Specifies that backup is to use a non-direct file
for output. ThiJ usage is accomplished by
including the parameter ND in the input string.
The file used is called BFILE and may be label
equated to any allowable medium, such as DISK, PBT,
PRINTER, PUNCH, and so forth. If it is equated to
a disk file, the file is locked when backup is
done. THE • option cannot be used with the ND
option.

Specifies that any cards included in a program by
an $INCLUDE card are not to be printed. This
option is useful only when printing program
listings. A KEY must be specified when using this
option since backup looks for a dig i t two
characters in front of the sequence numbers.

Specifies that the record count will include the
three header records plus the one blank record of
the file label, if it exists. Thus, printing
record 15 of a labeled file that has gone to Backup
actually prints record 11 of the file. For
example, to obtain the first 20 records after the
header and file label records, the bias of four is
used (record 5 24).

1-7- 7
BACKUP

SAVE Prevents the purging of all backup files.

SINGLE Specifies the single-spacing of printer backup
files.

LSN <number> Enables Backup to allow printing RJE
selectively by destination LSN.

Examples of various PB statements are given below.

Example 1

PB MT 81 B5500

Action: Specifies the printing of B 5500 backup tapes from a specified
unit onto a normal output (that is, non-direct) printer file called BFILE.
other options in the input string are ignored.

Example 2

PB D 0385 000385/000387/000LINE

f i I es

tape
Any

Action: Specifies that LINE is the title of the printer or punch output file
from disk. A prefix of BD or BP is assumed; consequently, SYSTEM/BACKUP
constructs the file name by putting BD/ or BP/ first followed by the }ob number
followed by /<file name> exactly as specified.

Example 3

PB "TARGET"

Action: Specifies that TARGET is the title of a file from disk. The entire file
title, including the backup prefix (BD, BP, or whatever was in the BDNAME
statement used when creating the file) is enclosed in quotation characters. If
this file is a directory, then everything under it is printed.

Example 4

PB MT "TEST"

Action: Specifies that a tape file called TEST is the input to printer or punch
backup. The title of a tape file is simply the name of the printer or punch
file used to write it. Therefore, when a PB message is entered which specifies
a magnetic tape unit, that particular tape is rewound and the backup files on
the tape are printed or punched depending on whether they are printer backup or
punch backup files.

l-7- 8
BACKUP

Example 5

PB D •

Action: Prints disk files using the job number under which BACKUP is running.

Example 6

PB MT 83 KEY ALGOL RANGE 12340000 : 23450000

Action: Indicates that cards included in the printout by a $INCLUDE card are
not to be considered when making the sequence range check.

1-7- 9
BACKUP

Example 7

PB MT "REAL" CP

Action: Specifies that a tape file called REAL is to be output to punch backup.
When LP is specified in the PB message, only printer backup files are output.
In contrast to PBing by unit number, SYSTEM/BACKUP prints only the requested
file from the tape and does not print the other files on the tape.

SYSTEM/BACKUP allows for the printing or punching of second and subsequent
backup reels without having to read through the first reel.

When tape backup is required, the MCP looks for an available backup tape. If
one is available, the file is written on that tape. If an uptape backup tape is
required and is not available, the MCP looks for a scratch tape. If a scratch
tape is available, the system designates it as a backup tape and writes the
printer or punch file on it.

Example 8

PB MT83 FILE 2

Action: Causes SYSTEM/BACKUP to begin printing at the second file on the tape
on unit 83. Uptape files on multi-f'le reels can be printed without having to
print all of the preceding files. The number of the first file to print is
specified to SYSTEM/BACKUP by including FILE <number> in the input string.

1-7- 10
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMA1TNG
PURl>OSES.

1-8-
BACKUP

8. SYSTEM/BACKUP COMPILE-TIME OPTIONS

$IDOPTION

The $IDOPTION is a compile time option used to determine whether block
character headings are printed on SYSTEM/BACKUP printer output. When $1DOPTION
is set and the backup files to be printed are located on DISK and PACK, the
titles of the backup files contained on these media are printed in block
characters. Also, when $IDOPTION is set and the backup files to be printed are
located on TAPE, the following message is printed on the listing:

"BACKUP TAPE - UNIT 011"

The number of the tape unit containing that particular backup file is 011.

When the $1DOPTION is set and the
SYSTEM/BACKUP, the user-provided ID
length of 60 characters) is printed in

ID "string" option is specified in
"string" of characters (with a maximum

block characters.

The ID "string" option does not work with the ND option. For example,

PB "B" ND ID "BBB"

generates a syntax error and, as
implementation was not designed
character headings.

sue~, is invalid in SYSTEM/BACKUP. The
to allow non-direct (ND) 1/0 with the block

When the $IDOPTION is reset, block characters are not printed.
must be set if any block character headings are to be printed.

The $ IDOPTION

$INFOPTION

$1NFOPTION is a compile time option that allows the user to obtain information
(for example, the version number and the file printed) displayed onto the
console; subsequently~ that same information is printed on the WFL output when
set at compile time. This option prevents SYSTEM/BACKUP from requiring two
printers, except if DEBUG is set or an error condition occurs. The default
does not have $INFOPTION set; therefore, it still uses two printers.

1-8- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-9-
BACKUP

9. TAPE REPOSITIONING

Tape Repositioning is a feature used to handle cases of printer jams or
failures during long printer runs, in which several lines or pages of output
from a Printer Backup tape have been lost. The operator may inform
SYSTEM/BACKUP to reposition the tape by entering:

<mix no.> HI

at the console. Backup responds

ACCEPT: ENTER SKIP OR UNIT NO.

The syntax for the reply is given below.

Syntax

<mix no.> AX-~,--L-P--,

[CPJ

<unit no.>L < + skip count> I
< - skip count>__J

NOTE

Tape repositioning cannot be used with
non-direct(ND) files.

Semantics

If the LP or CP followed by a unit number is present, b~ckup begins using this
unit instead of the one it was previously using.

The first number specified is a skip count. The number may be either positive
or negative, indicating skipping forward or backward, respectively. If a
negative skip count is entered, the tape is positioned past BOT; SYSTEM/BACKUP
starts printing from the beginning of the tape.

If nothing follows the skip count, then the count is assumed to refer to a
number of lines.

Example

<mix no.> AX -3

Action: Back up three lines and resume printing.

If the skip count is followed by a number between and 11, the number is
interpreted as a channel number, and the skip count refers to skips to tbat
particular channel.

1-9- 2

Example

<mix

Action: Back

<mix

Action: Move

BACKUP

no.> AX -4 3

up four skips to channel three.

DO.) AX 1 1

forward to the next

A skip count
however, if
specified, the
required.

skip to top of page (CHANNEL

NOTE

must always be present;
another unit number is

skip count is not

1) .

I. INTRODUCTION.

l.. PRINTING.

3. PUNCHING.

CARDLINE

TABLE OF CONTENTS

2-1-

2-2-

2-3-

2-1-
CARDLINE

1. INTRODUCTION

The SYSTEM/CAROLINE utility is used to printout or punch a BCL, EBCDIC, or
BINARY data deck. In addition to a printout of the card images, a card count
and sequence check are included. Columns 73-80 are checked for sequence
errors.

In addition to the card-to-print function, other utility functions can be
accomplished by label equating the input and/or output files of the program.
The input file is named CARD, and the output file is named LINE.

2-1- 2
CAROLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

2-2-
CARDLINE

2. PRINTING

Examples

1. To list a card deck with EBCDIC data, use the following:

<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CAROLINE; VALUE (integer>;

EBCDIC

<data deck>

d> END JOB

2. To list a card deck with BINARY data, use the following:

<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE; VALUE (integer>;

BINARY

<binary data>

BEND card

d> END JOB

Pragmatics

The VALUE= <integer> clause appearing in the examples above is used to specify
spacing between output lines.

In example 1, <integer> must be a numeric value of 0 through 9, inclusive. This
range of values is used with EBCDIC files and serves to specify the spacing
between output lines. The values 0 and 1 cause single spacing. An <integer>
greater than 1 and less than 10 causes the specified <integer> number of lines
to be spaced.

In example 2, <integer> must be a numeric value of 10 to 19, inclusive. This
range of values is used with binary files and serves to specify the spacing
between output lines. The values 10 and 11 cause single spacing. An <integer>
greater than 11 and less than 20 causes the specified <integer> number of lines
(MOD 10) to be spaced.

2-2- 2
CARDLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

CAROLINE

3. PUNCHING

Examples

I. To punch a BCL, EBCDIC, or BINARY card deck, the LINE file
is equated to a card punch as follows:

<I> BEGIN JOB CAROLINE;
RUN SYSTEM/CAROLINE;
FILE LINE (KIND=PUNCH);
BCL

<data deck>

d> END JOB

2. To list a card deck with binary data, use the following:

<I> BEGIN JOB CAROLINE;
RUN SYSTEM/CAROLINE;
FILE LINE (KIND= PRINTER);
BINARY CARD

<data deck>

BEND card

d> END JOB

2-3-

2--3~ 2
CAROLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1. INTRODUCTION

2. OUTPUT FROM COMPARE

COMPARE

TABLE OF CONTENTS

3-1-

3-2-

3-1-
COMPARE

1. INTRODUCTION

SYSTEM/COMPARE compares one or more pairs of files. The utiJity performs a
bit-by-bit comparison on each record or sequence number and record of each pair
of files. If the sequence numbers and/or records are not identical or if one
of the specified files is not present, an appropriate error message is printed.
The comparison of a pair of files is terminated after a specified number of
unsuccessful comparisons have been made, and the utility proceeds to the next
pair of files.

Syntax

<filename}).-- <filename 2>.----------------------

Semantics

<maximum errors>

<Sequence number column> <hyphen> <field length>_J

EBCDIC, BCL, ASCII, and HEX disk files can be compared. Input specifications
are in free-field format. The <filename> must be followed by a period. The
<maximum errors> default is five. The <Sequence number column> is the column
in which the sequence numbers of the files begin. The <Sequence number column>
is followed by a hyphen (-), which is followed by the field length of the
sequence numbers.

If no sequence information is specified, the files are compared record by
record; a new record is read from each file for each comparison. In sequenced
files, if a difference occurs, both records are printed. If the files are
sequenced, and the sequence numbers agree, but the records do not, the contents
of both records are printed. If the record sequence number of the first file
is greater than the record number of the second file, the record from the
second file is printed, and the next record from the second file is compared
against the first, and vice versa. If a difference occurs when comparing
unsequenced files, the record number at which the difference occurred is
printed.

3-1- 2

Example

<I> BEGIN JOB COMPARE;
RUN SYSTEM COMPARE;
DATA

COMPARE

PROGRAM/ONE. PROGRAM TWO.
PROGRAM/THREE. PROGRAM/FOUR. 73-8
PROGRAM/FIVE. PROGRAM/SIX. 2S

<I> END JOB

COMPARE

2. OUTPUT FROM COMPARE

The output listing contains the following information:

1. A description of the two files being compared, which
includes the MAXRECORDSIZE, BLOCKSIZE, UNITS, INTMODE,
and CREATIONDATE. If the file is not in the directory,
an error message is printed.

2. If the files differ in blocking spec1f1cations (UNITS,
BLOCKSIZE, MAXRECORDSIZE), a message is printed, and no
comparison is made.

3. The maximum error default is listed.

4. If sequence information
otherwise, a message '~
files are assumed.

is specified,
printed stating

it is printed;
that unsequenced

5. If any differences occur, a list of the differences is
printed.

6. If the comparison of the files is terminated because the
maximum error default has been reached, a message is
printed along with the current record number of each file
being compared.

7. If an end-of-file condition occurs in one file before the
other, a message is printed. The message also indicates
in which file the end-of-file condition occurred.

8. The number of differences is listed.

9. The number of records in each file is given.

10. A "total page"
described above,

is printed providing the information
except the list of differences.

3-2-

3-2- 2
COMPARE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1. INTRODUCTION.

dist verb>

<Copy verb>

<dmpmt verb>.

<hexdsk verb>

<libmt verb>.

<device-to-device verb>

<file verb> .

<teach verb>.

DUMP ALL

TABLE OF CONTENTS

4-1-

4-1- 2

4-1- 4

4-1- 5

4-1- 6

4-1- 6

4-1- 7

4-1- 8

4-1- 9

4-1-
DUMP ALL

1. INTRODUCTION

SYSTEM/DUMPALL is a utility program that generates printouts of files, controls
the dumping of tapes, and provides for the copying of files from one media to
another.

Syntax

DUMP ALL

-----~-RUN SYSTEM/DUMPALL ("<COD t ro 1 option>") -~L----J~-------l

L ?J ? END

<Control option>

-~-<list verb>--------.....-----------------------1i

<copy verb>--------~

<dmpmt verb>---------i

<hexdsk verb>--------4

< 1 ibmt verb> --------1

<device-to-device verb>---'

<file verb>--------~

L <teach verb>--------'

4-1- 2

>

/

DUMP ALL

<list verb>

Syntax

LIST <filename> I

part>]

>
I L

l~~ LUL
<manual input

<manual input part>

LAN

[PACK

>

name> J L START- number> J
[=]

<pack <record

J
I

L_

f SKIP (integer> 1
L <integer 1 >--I

~ SKIPTM <integer>

L DBL

Semantics for LIST or L

The LIST option provides a graphic printout of the contents of a labeled or
unlabeled file. If the file is titled, the required file parameters may be
spec i f i e d ; o the r w i s e , the t i t I e d f i I e ob t a i n s i t s par am e t er s fr om the f i l e
itself. If the file is unlabeled (UL). the record/character mode (S, N, E, B),
the <maxrecsize>, and the <blocksize> attributes are required. Record/character
mode S (STANDARD) refers to XALGOL, BCL, variable-length records (FILETYPE=5);
N (NONSTANDARD) refers to alpha or even-parity seven-track (PARITY=l) or paper
tape records; E refers to EBCDIC and B to BCL fixed-length records. CHAR
defines <maxrecsize> and <blocksize> to be a specified number of characters.
The default is words. SKIP <integer> specifies the ,record number tl at which
printing begins, and <integer 1> specifies the number of records to print.
Only the last SKIP specification is used. SKIPTM <integer> specifies the
number of tapemarks to be skipped.

Examples

("LI ST IN/FILE")
("L IN/FILE SKIP 306")
("L IN/FILE SKIP 190 25")

DUMP ALL

("L IN/FILE PACK= INPACKNAME")
("L IN/FILE DBL")
("LIST UL E 80 80 CHAR SKIPTM 6")
("L UL S 10 56")
("L UL B 80 2400 CHAR")
("L UL N 80 2400 CHAR")
("LULE 14 420 SKIP 185 25")

4-1- 3

In the last example above, the file to be listed is unlabeled, EBCDIC, 14 words
per record, 420 words per block, printout starts at the 186th record, and 25
records are to be printed.

Semantics for LISTAN or LAN

The LISTAN option provides a graphic printout of an unlabeled or labeled file
in EBCDIC or hexadecimal characters. LISTAN has the same attributes as the
LIST option.

Examples

("LI STAN IN/FILE")
("LAN IN/FILE")
("LAN UL E 80 80 CHAR SKIPTM 3 DBL")

4-1- 4

(copy verb>

Syntax

-- COPY~ di lename>

LuL------'

Semantics

r-- INTERCHANGE~

1-- I C-------1

I SINGLEPACKI

t CYLINDERMODE-1

CYL--------'-

DUMP ALL

)

The COPY option allows files to be copied to a specified <device>. For an
unlabeled file, the attribute requirements are identical to the LIST option.
When using DISKPACK, native mode is assumed CYLINDERMODE, SINGLEPACK, and
INTERCHANGE default to false.

Examples

("COPY IN/FILE TO DISK")
("COPY IN/FILE TO DISKPACK")
("COPY IN/FILE TO DISKPACK SINGLEPACK CYLINDERMODE")
("COPY UL E 14 70 TO PETAPE")
("COPY UL E 84 5880 CHAR TO PETAPE")

<dmpmt verb>

Syntax

-- DMPMT-r < f i I ename>

LuL

Semantics

I I
I

4-1- s
DUMP ALL

NUL

i<
I BCL

EBC

HEX

-OCT-

The DMPMT option causes a tape dump in EBCDIC, BCL, HEX, and/or OCTal. The NUL
attribute returns only the tapemarks, record size in words and characters, and
resulting descriptors.

Examples

("DMPMT UL")
. ("DMPMT INFILE")

("DMPMT UL HEX")
("DMPMT UL EBC HEX BCL OCT")

4-1- 6
DUMP ALL

<hexdsk verb>

Syntax

I -- HEXDSK--r < f i I ename>

L UL------J <pack name> _J

Semantics

The HEXDSK option lists a file in hexadecimal and EBCDIC.
with a <maxrecsize> and <blocksize> of 30 words.

Example

. ("HEXDSK INFILE")

<libmt verb>

Syntax

The file is read

-- LIBMT-----------------------------------1

Semantics

The LIBMT option lists a library tape in hexadecimal. The tape must be ULed in
(the UL message).

Example

. ("LIBMT")

<device-to-device verb>

Syntax

1 ::~rr :n ~~ npu t

MT9~ ~ MT9~
I MTP I I MTP I

PTP PTP

DSK DSK

DPK
I DPKJ
IDPS

LDPM

DUMP ALL

LU<Loutput file title>T[J
<manual input part>

>

:>>----.-[___ P_A_C_K_:_ -_-_-_ ---::_ -_-___ <_p_a_c_k_n_a_m_e _>_J~-L--s-K_I_P_T_M ___ -----<-i _n_t_e_g_e_r_> _ _J~I ----------1

L=J
CRD
MT7
MT9
MTP
PTP

card reader/punch
7-track magnetic tape
9-track magnetic tape
PE magnetic tape
paper tape punch

<manual input part>

OSK
DPK
DPS
DPM

disk
disk pack
disk pack single pack
disk pack multipack

:~ <maxrecsize>-- <blocksize>-~L--C-H_A_R_J_..--------------;

:j

4-1- 7

4-1- 8
DUMP ALL

Semantics

The <device-to-device> option allows the movement of files from hardware device
to hardware device. The input and/or output file can be labeled or unlabeled.
If an input tape is unlabeled, the SKIPTM attribute can be used prior to the
move. Input and output file parameters are used if supplied; otherwise, input
file parameter values are obtained via file attributes, and output file
parameters are those used for the input file. If the input file is empty, the
output file is not created.

Examples

("DSKDSK IN/FILE OUT/FILE")
("MT9MT9 IN/FILE E 14 420 OUT/FILE")
("CRDDSK IN/FILE OUT/FILE E 14 420")
("DSKDPK IN/FILE OUT/FILE PACK = OUTPACKNAME")
("CRDDPS IN/FILE OUT/FILE")

In the example above, if pack is an IC pack(interchange), the "OUT" of OUT/FILE
corresponds to the diskpack name.

("DSKDSK IN/FILE OUT/FILE B 10 150")
("MT9DSK IN/FILE E 80 1200 CHAR OUT/FILE E 14 420")
("MTPDSK UL E 14 420 OUT/FILE B 80 2400 CHAR")
("DPKDSK IN/FILE PACK = INPACKNAME OUT/FILE")
("MTPDPM UL E 80 80 CHAR PACKNAME/FILE E 80 1200 CHAR
CYL SKIPTM l")
("MT7MT9 UL B 10 150 NEW/TITLE E 14 420 SKIPTM 1")

In the last example, the file is to be copied from seven-track tape to
nine-track tape, the input file is defined as unlabeled, the data written in
BCL, <max res i z e > i s 10 words , and < b Io ck s i z e > i s 1 5 0 words . The output f i I e ,
NEW/TITLE, is to be written in EBCDIC with a <maxrecsize> of 14 words and a
<blocksize> of 420 words. Before copying of the file begins, one input
tapemark is to be skipped.

<file verb>

Syntax

-- FILEL < f i I ename>

UL-----_,

Semantics

L PACK-~[--=-]~- <pack name>J

Th e FI LE op t i on I i s t s t he v a I u e s o f t he i n i t i a I f i I e a t t r i bu t e s , t h e f i I e
attributes after a RESIDENT test, and the file attributes after a PRESENT test.
The at t r i but es I i s t e d are as f o I I ow s :

KIND, EXTMODE, INTMODE, MAXRECSIZE, MINRECSIZE, BLOCKSIZE,
UNITS, PARITY, FILETYPE, AREAS,
AREASIZE, ROWSINUSE, LASTRECORD, FILEKIND, and CREATIONDATE.

4-1- 9
DUMP ALL

Example

. ("FILE IN/FILE")

<teach verb>

Syntax

Semantics

The TEACH nn ti nn
~ y • • ~ •• a printout causes of the inform~tion presented above.

Example

. ("TEACH")

4-1- 10
DUMP ALL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA

TABLE OF CONTENTS

1. INTRODUCTION. 5-1-

2. FILEDATA EXECUTION METHODS. 5-2-

3. TASK REQUESTS 5-3-

ATTRIBUTES. 5-3- 2

CATALOG INFO 5-3- 4

CHECKERBOARD. 5-3- 5

COPYDECK. 5-3- 6

DEFINEOUTPUT. 5-3- 7

FILENAMES 5-3- 8

HEADERCONTENTS. 5-3- 9

HPTRESOURCES. 5-3- 10

NOREPORTS 5-3- 1 1

STRUCTUREMAP. 5-3- 12

TAPED IR 5-3- 1 3

4. MODIFIERS 5-4-

5. NUMERIC REPORT REQUESTS 5-5-

S-1-
FILEDATA

1. INTRODUCTION

SYSTEM/FILEDATA, a parameter-driven utility program, produces selected reports
regarding files. The reports provide:

1. A hierarchical list of files.

2. A map of files showing their storage layout.

3. A disk checkerboard displaying permanent files and the
space around them.

4. The status of all head-per-track (HPT) disk.

S. Specified attributes of a file or a group of files.

6. A list of file names contained in a tape directory.

7. A file suitable for use in a library maintenance copy
deck.

8. A raw (HEX) dump of disk file headers.

9. A list of the catalogue info!mation about a file.

5-1- 2
FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

5-2-
FILEDATA

2. FILEDATA EXECUTION METHODS

The FILEDATA utility program may be executed in three ways: (1) by ODT
commands, (2) by a WFL card deck, or (3) through a CANOE terminal by the use of
WFL commands or the CANOE LFILES command. (Refer to the B 7000/B 6000 Series
CANOE Reference Manual, form 5010259, for a description of the LFILES command.)

The following syntax diagrams illustrate how SYSTEM/FILEDATA is executed using
WFL statements and ODT commands. Additional syntax diagrams describing
frequently used syntactic elements follow the WFL and ODT diagrams.

5-2- 2
FILEDATA

WFL Syntax

1
("
(It

(

") VALUE = <Dume r i c report request> -------j---1
RAW--------~--~-----,-- ")

ODT Syntax

DIR

DISK~~~~~~~~~~~~~~

[NAME = <directory name>-

NAME= <directory name>~------

<packname>

- DIR~~-------------.------i

!CL PK-- <Unit number>

NAME=-- <pack name>------------~

-1 ~r~,~ft\-RAW-------------,.-JL-f
t'----r MAP

l__NOMAP~---------------~
DISK-~-------------------1

L NAME--=-- <di rectory name>-

NAME--=-- <directory name>---------1

<pack name>~------------------'

<parameter list>~--------------------i

<numeric report request>~--------------~

S-2- 3
FILEDATA

TD

r
-- TD-L.--_P_UN_C_H_J_1.--~L.-- : :: : : ::~:)-_j--r-' --'-------------------!

L SPO

(UDit DO.)

(task request>

CATALOG INFO--

CHECKERBOARD

COPYDECK------1

DEFINEOUTPUT

FILENAMES--~

HEADERCONTENTS

HPTRESOURCES

NOREPORTS --~

t STRUCTUREMAP~ TAPEDIR-

<tape name>

<
-~'.__.'i"7L--- any alphanumeric character-,__ _______________ __

5-2- 4
FILEDATA

<parameter list>

I r.t=.-----~ 1 I l_ <numeric report request,-----~-'---'

<task request>-...----------~

L : <modi f i er s > _J

<numeric report request>

<identifier>

r
~any alphanumeric character-...__--------------------1

<file title>

~-<filename>-~------------.---------------------~

LON <family name>J

<file name>

~/
< f i l e id en t i f i er> _...__ ____ -r----------------~

•

~/~
(<usercode>) <file identifier>

<file no.>

~- /FILE<3 digit integer>--------------------------__j

FILEDATA

<file identifier>

'< --~17'-- <any alphanumeric character>

L "~<any EBCDIC character except quote>_L .. _J

<family name>

1
<identifier>

DI SK------i

PACK------'

<directory name>

S-2- S

i ~l I ------""T'"----r------------.-----1

I
LON <family name>J

I

•

L idl/=j
<file id> is a <file identifieo.

<directory name> is a subset of a <filename>.
<filename> A/B/C/D:

A/=, A/B/=, A/B/C/=

are the only valid <directory name)s.

For example, given the

S-2- 6
FILEDATA

Examples:

<I>RUN SYSTEM/FILEDATA ("FILENAMES:LEVEL=2 TITLE =SYMBOL")
<l>END

< l>RUN SYSTEM/FILEDATA (" 1; ATTRIBUTES: DIR=MYSELF ALL; 0")
<l>END

<l>RUN SYSTEM/FILEDATA(" ");VALUE=l
<l>END

DIR 1
DIR COPYDECK: CATALOGUE; CHECKERBOARD; 0
DIR-

TD 115
TD SPO TIO
TD PUNCH TIO/FILEOOl

Semantics

DIR and TD are ODT commands that run SYSTEM/FILEDATA.

DIR is used to obtain disk directory information and TD is used for library
tape directory information.

The default destination of a FILEDATA generated report is the line printer.
The default destination may be overridden by including the key word SPO or
PUNCH. SPO causes the output to be directed to the requesting terminal; PUNCH
causes the punching of a COPY&COMPARE card deck (with no FROM or TO part) which
can subsequently be used by library maintenance.

FILEDATA can report on the status of a tape using the TD ODT command or the
TPDIR <task request>. The desired tape may be specified by tape name or by
drive number. The latter method must be used if the nth reel of a multireel
library dump is required.

Using the SPO option, each tape is reported, in turn, in the order the requests
we r e en t e r e d . En t e r i n g "6 QUIT" i n p 1 a c e o f "6 NEX1'" (e a ch o c c u r s a t t h e pa u s e
for a new page) causes the program to be terminated, possibly with some still
unreported tapes.

If the head of the input string is not a number or a <task request>, the input
is processed as PACKDIR. PACKDIR accepts only those keywords shown below.
Anything else is treated as a pack name. The reports include the FILENAMES and
STRUCTUREMAP reports and, optionally, the CHECKERBOARD and HEADERCONTENTS
reports.

DISK:

MAP:

NOMAP:

Specifies that the directory to be listed resides on HPT disk.
Default is native mode disk packs.

Specifies that the report is to include a sorted listing of
allocated disk segments (CHECKERBOARD). The default is NOMAP.

Suppresses listing of allocated disk segments (default value).

S-2- 7
FILEDATA

RAW: Specifies that each header is to be printed in HEX.

NAME: Specifies the (qualified) name of the directory to be listed.
For disk packs, the first level of the name must be the pack
name. No blanks, quotes, or parens may occur anywhere in the
name.

Examples:

RUN SYSTEM/FILEDATA("DISK MAP RAW")

is equivalent to

RUN SYSTEM/FILEDATA("FILENAMES;STRUCTUREMAP;CHECKERBOARD;
HEADERCONTENTS")

RUN SYSTEM/FILEDATA("PACKl MAP")

is equivalent to

RUN SYSTEM/FILEDATA("FILENAMES:PACKNAME=PACKl;STRUCTUREMAP;
CHECKERBOARD")

5-2- 8
FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMAlTING PURPOSES.

5-3-
FILEDATA

3. TASK REQUESTS

In the following discussions of <task request>s, certain key words are listed.
A minimum ~bbreviation exists for each key word. Beyond the minimum, additional
letters may be used up to and including the entire word. If additional letters
are used their spelling must be correct. The minimum keyword abbreviation is
indicated in the syntax diagram by the appearance of underscores.

5-3- 2

ATTRIBUTES

Syntax

FILEDATA

LASTACCESSDATE---------t

LEVEL--= <integer>-------4

NAMESONLY------------1

NEWDATABASE-- = di 1etit1 e>

'----~- PRINTER---------~

PUNCH-----------1

h- L_ SCREEN ~
DATABASE I =<file title>---1

L__ DIRECTORY_J I

PACKNAME-- = d dent if i e T> -----4

<file attribute>

AREASIZE----~

BLOCKS I ZE---------1

CREAT I ONDATE----1

I CRUNCHED

CYCLE-----~

FILEKIND----~

FILEORGANIZATION

t FILETYPE

INTMODE--------l

LASTRECORD------1

MAXRECS I ZE-----1

SAVEFACTOR---~

1
SECURITY

~UNITS
LvERSION------'

5-3- 3
FILEDATA

<file attribute> may be any one of the above valid file attribute names. A
complete description of all file attributes may be found in the B 7000/B 6000
Series I/O Subsystem Reference Manual, form 5.001779.

Semantics

ATTRIBUTES produces a report showing various requested attributes of a file or
group of files.

5-3- 4
FILEDATA

CATALOG INFO

Syntax

Semantics

CATALOGINFO lists the catalogue information about a
output is the creation date, last access date,
controlled segments, and hierachical names.

file. Included in the
file kind, status, class,

5-3- s
FILEDATA

CHECKERBOARD

Syntax

L
NEWDATABASE=<filetitle> DATABASE=<filetitle>

PACKNAME=<identifier>

Semantics

CHECKERBOARD produces a disk checkerboard displaying permanent files and the
space around them. It includes family index, base address, end addess, length,
area, file name, and space between rows.

S-3- 6

COPYDECK

Syntax

Semantics

FILEDATA

LEVEL--=-- dntegeo----1

NAMESONLY------------1

NEWDATABASE=<filetitle>----1

~...-- PRINTER--------

PUNCH~------------1

DATAB::rAE =di 1etit1 e>

DIRECTORY

TITLE

PACKNAME=<identifier>
1

LT~PE=L <ta~e name===J

<Unit no.>

COPYDECK produces a file suitable for use in a library maintenance copy deck.
The file is sent to the card punch by default.

DEFINEOUTPUT

Syntax

L

MV1776

Semantics

FILEDATA

PAGESIZE~=--(integer)

LINEWIDTH _J

~E:f-IXT = --$(hexstring>$1

SUFFIX__J

--MEDIATYPE- = PRINTER

PUNCH--_,

SCREEN

-SPO---.....i
TTY ___ _

S-3- 7

DEFINEOUTPUT is used to reformat a report's output. This <task reguest> allows
the programmer to explicitly control line width, page size, and output media.
Aclclitinna11v_ A nrPftY anti/nr cnf'f'iT rnau h,. c"'"'rif'i,.,f f'nl" .. arh nnt"'nt lin,.
- - - - - - - - -- - - - ~ 7 - r - - - - ... - -- - , - • ... - • • • •• ·- - J """' ... w y _. ... • • • _.. • " • •• "' y ... • • • •• ... •

/

5-3- 8
FILEDATA

FILENAMES

Syntax

J

[l

:

L_

f CATALOGUE l
--

1-- LEVEL-- = -- d n t ege r >
--

r- NAMESONLY

~TABASE=<filetitle>
PRINTER

r PUNCH

t SCREEN

SPQ~~~~~~~~~~

TTY---------------1

Semantics

FILENAMES produces a hierarchical list of files, including access and creation
dates, size in segments, security class, status, and file kind.

FILEDATA

HEADERCONTENTS

Syntax

~CATALOGUE

Semantics

~LEVEL--=-- dnteger>------1

NEWDATABASE=<filetitle>------1

PUNCH----------1

I
SCREEN------------1

~SPO
L__TTY------------1

~--DATABASE-~,-=< f i I et it I e> --

t DIRECTORYj

TITLE

PACKNAME=<identifier>----~

5-3- 9

HEADERCONTENTS produces a HEX dump of file headers, row address words, and
CLASSB security information.

S-3~ 10
FILEDATA

HPTRESOURCES

Syntax

Semantics

HPTRESOURCES produces a report on the status of all HPT disk attached to the
system.

5-3- 11
FILEDATA

NO REPORTS

Syntax

- NOREPORTS: NEWDATABASE = (filetitle)---r-----------------r---t

~:TE:~~:Ey 3 ~ (I iletitle)

TITLE

PACKNAME = (identifier)-----

MV1777

L-TAPE =--r (tape name)

L (unit no.)------

Semantics

NOREPORTS generates a NEWDATABASE without generating any reports.
NEWDATARASE can then be used in future runs of FILEDATA.

This

5-3- 12
FILEDATA

STRUCTUREMAP

Syntax

Semantics

LEVEL--=-- d n t ege r > --------<

NAMESONLY~--------~

I NEWDATABASE=<filetitle>

PRINTER~~~~--------i

PUNCH------------<

I l_~,....Dt:'l:'lt.T I

t :L-L!-"I -------ti
k- DATABASE-~- =< f i I et it I e> JI
11 - I

1 1 ~DIRECTORY]
LTITLE c PACKNAME=<identifier>-----------1

TAPE=-i-- <tape name>~
I J

L <Unit no.>-----~

STRUCTUREMAP produces a map showing file storage layout by family index and
address. The report contains the filename, areas, area class, family index,
segment address, size in segments, and number of segments on the family.

TAPED IR

Syntax

--r- ~APEDIR-r : -r

LTPDIR__J L

Semantics

5-3- 13
FILEDATA

<tape name>

<Unit no.>

TAPEDIR reads library maintenance tape directories and prints the tape name,
unit number, serial number, creation date, tape type, and a list of files.
TAPEDIR may only be requested by a priviieged user as security usercode
information is accessible.

S-3- 14
FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA

4. MODIFIERS

<modifier>s specify options for task requests.
different set of <modifiers>. <modifieos
overridden by another <modifier>.

The <modifier>S are:

ABBREVIATED

Each task
apply to

5-4-

request permits a
all reports until

ABBREVIATED causes the titles of the requested attributes to be abbreviated
on the output listing. For example, AREASIZE is output as ASIZE.

ALL

ALL specifies that all of the attributes of the specified files are to be
listed.

AREAS

AREAS is the number of words in the file header allocated for row addresses.

AREASIZE

AREASIZE is the number of logical records in an area of a disk file. The
most current file is the one with the highest CYCLE and the highest VERSION
o f t ha t CYCLE .

CATALOGUE

Reports the existence of non-resident cataiogued fiies as weii as (defauit)
resident files.

CREATIONDATE

CREATIONDATE indicates the date the file was created. The date is given in
the form mm/dd/yy.

CRUNCHED

CRUNCHED is listed as an attribute
returned the unused portion of its

of a permanent disk file which
last area of the file to the system.

has

5-4- 2
FILEDATA

CYCLE

CYCLE and VERSION are used to identify generations of a permanent file. The
most current file is indicated by the highest CYCLE and the highest VERSION
of that CYCLE.

DATABASE

This requests information for the <task> to come from an existing file of
raw information which NEWDATABASE created at some time in the past.

DOUBLE

DOUBLE causes the output generated by FILEDATA to be double-spaced.

FILEKIND

FILEKIND describes the internal structure and/or purpose of a record of a
disk file or the kind of label on a tape. (Refer to the B 7000/B 6000
Series I/0 Subsystem Reference Manual, form 5001779, for a listing of the
various FILEKINDS.)

FILEORGANIZATION

FILEORGANIZATION is the organization under which the file was opened.

FILEORGANIZATION is shown only if FILEKIND >OR= VALUE(DATA).

FILETYPE

FILETYPE specifies the format of the records and the structure of the file.
(Refer to the B 7000/B 6000 Series 1/0 Subsystem Reference Manual, form
500iii9, for a description of the various FILETYPEs.)

INTMODE

INTMODE lists the internal character size of the file. (For a description
of the values and mnemonics, refer to the B 7000/B 6000 Series 1/0 Subsystem
Reference Manual, form 5001779.)

LASTACCESSDATE

LASTACCESSDATE is the date the file was last accessed. The date is printed
in the form mm/dd/yy.

5-4- 3
FILEDATA

LEVEL

LEVEL specifies the number of leading file names to be printed. For
example, LEVEL=2 reports on A/B but only shows that the directory X/Y exists
although the file X/Y/Z is present.

LINEWIDTH

LINEWIDTH defines the length of an output line.

MAXRECSIZE

MAXRECSIZE is the maximum size of records in the logical file.

MEDIATYPE

MEDIATYPE specifies the output device.

MINRECSIZE

MINRECSIZE 1s the minimum size of records in the logical file.

NAMESONLY

NAMESONLY indicates that header information is to be neither extracted nor
processed in any report.

NEWDATABASE

NEWDATABASE saves the current DATABASE under a specified <filename>.

PACKNAME

PACKNAME changes the source of information from the HPT disk system to the
named disk pack. The entire pack is used in the report. This <modifier>
overrides DATABASE, DIRECTORY, and TAPE.

PAGESIZE

PAGESIZE specifies the number of output lines per page.

PREFIX

PREFIX allows the user to specify a hexadecimal string that subsequently
precedes each line of output.

5-4- 4
FILEDATA

PRI~TER

Output is to go to the line printer, single-spaced, 58 lines per page (six
lines per inch), 132 characters per line.

PUNCH

Output is to go to a standard 80-column card punch.

SAVEFACfOR

SAVEFACTOR indicates the expiration date of a file in terms of the number of
days past the creation date.

SCREEN

Output is sent to a remote terminal assumed to be a CRT screen device with
24 lines per page and 80 characters per line. A read occurs at the end of
each page to allow user ~action.

SECURITY

SECURITY lists the security type of a file. (Refer to the B 7000/B 6000
Series I/O Subsystem Reference Manual, form 5001779, for a discussion of
security.)

SPO

Output goes to the system console, a~sumed to be 80 columns by 24 lines per
page.

SUFFIX

SUFFIX allows the user to specify a hexadecimal string that subsequently is
appended to each line of output.

TAPE

TAPE allows information to be extracted from library maintenance tapes. It
also assumes the <modifier> NAMESONLY and overrides DATABASE, DIRECTORY, and
PACKNAME. Multiple reel tapes function best when the unit number is
specified.

5-4- 5
FILEDATA

TIMESTAMP

The date and time the last alteration was made to the file.

TITLE or DIRECI'ORY

These <modifier>S allow the user to report on less than the full disk
system.

TTY

Output is sent to a remote terminal assumed to be a hard copy device with 80
characters per line.

UNITS

UNITS indicates the UNITS attribute of the file. (Refer to the B 7000/B
6000 Series 1/0 Subsystem Reference Manual, form 5001779, for a discussion
of the UNITS attribute.)

VERSION

VERSION and CYCLE are used to identify generations of a permanent file. The
most current file is indicated by the highest CYCLE and the highest VERSION
of that CYCLE.

5-4- 6
FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

5-5-
FILEDATA

S. NUMERIC REPORT REQUESTS

In order to cut down the amount of input which must be supplied, especially for
standard functions such as LISTDIRECTORY, a <numeric report request> has been
included. <numeric report request>S allow reports to be requested by number.
Such a number may be entered via a VALUE=<numeric report request> or in the
regular <parameter list>. A <task> requested via a VALUE=<numeric report
request> is performed before the <parameter list>, if any, is processed.
Numeric requests in the <parameter list> are treated like any other <task>
request.

Example

RUN SYSTEM/FILEDATA ("O;ATTRIBUTES:DIR=MYSELF ALL; 1 ")

Semicolons are used to separate <numeric report request>S and <task request>S.
<numeric report request>S may not contain <modifier>s. <numeric report
request>s are implemented as executable statements within SYMBOL/FILEDATA. New
reports are defined by modifying SYMBOL/FILEDATA and recompiling a new
SYSTEM/FILEDATA. Reports for 0 and 1 are presently defined (1 is equivalent to
the FILENAMES <task> and 0 includes the <task>s FILENAMES, STRUCTUREMAP, and
CHECKERBOARD) .

Future systems releases utilize odd numbers for reports.
be chosen for installation defined reports.

Even numbers should

Each request, numeric or standard, goes through an input scanner and the
results are reported prior to any line printer listings. These results include
the assumed <task> identifier, a listing of input for each <task>, and any
error messages. If any errors do occur, this <task> and any subsequent <task>s
are checked for input syntax only; no reporting is done.

5-5- 2
FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1. GENERAL INFORMATION

INTRODUCTION.

FILES . .

OPERATION

INTERACTIVE XREF

TABLE OF CONTENTS

IDENTIFIER SPECIFICATION.

RANGES ..

2 . COMMANDS .

LOAD. .

SYMBOL.

LOCATE.

REFERENCES.

EXPAND.

SUMMARY

MERGE and COINCIDENCE

MERGE. . . .

COINCIDENCE.

DECLARATIONS.

LIST.

DA tJr..'C
.&'-'"'!,UL-'

QUALIFY

WHAT ..

WHATFILES

HELP ...

TERMINAL.

SET and RESET

STOP.

APPENDIX 6A.

APPENDIX 6B.

APPENDIX 6C.

. . 6-1-

6-1-

6-1-

6-1- 2

6-1- 3

6-1- 6

6-2-

6-2- 2

6-2- 3

6-2- 4

6-2- s

. 6-2- 8

6-2- 11

6-2- 12

6-2- 12

6-2- 14

6-2- 15

6-2- 21

6-2- 22

6-2- 23

6-2- 24

6-2- 25

6-2- 26

6-2- 27

6-2- 29

6-2- 30

. 6-A-

6-B-

6-C-

6-1-
INTERACTIVE XREF

1. GENERAL INFORMATION

INTRODUCTION

A cross reference of a program contains an entry for each identifier declared
in the program. This entry is referred to as the header line information.
Each entry consists of the following:

1. The alphabetic name.

2. The declared type of the identifier_

3. The environment.

4. The stack location.

5. The sequence number of the declaration.

INTERACTIVEXREF allows interactive access to this information and to detailed
information about the identifiers.

FILES

INTERACTIVEXREF obtains information from files generated by
SYSTEM/XREFANALYZER. The INTERACTIVEXREF information files are given the
titles XREFFILES/<code file name>/DECS and XREFFILES/<code file name>/REFS.
<code file name> is the name of the code file that was being generated by the
compiler when the INTERACTIVEXREF information files were created. The <Code
file name> is normally prefixed by OBJECT/ if compiled through CANOE.

The compiler dollar option called XREFFILES causes INTERACTIVEXREF information
to be produced. This option exists in the ALGOL, NEWP, ESPOL, and FORTRAN
compilers. When XREFFILES is set, and XREF is not set, the XREFANALYZER is run
by the compiler to produce INTERACTIVEXREF information files. When both
XREFFILES and XREF are set, the XREFANALYZER is run to produce both the
information files and a printed output. When XREF only is set, the XREFANALYZER
is run to produce printed output. In no case is the normal XREFANALYZER run if
any syntax errors are encountered by the compiler.

The XREFFILES may also be produced by running XREFANALYZER with a negative task
value. The XREFANALYZER input file (TITLE=XREF/<code file name>) must be
specified when initiating XREFANALYZER.

Information from the original symbol file used in the compile is needed by
several commands.

NOTE

Because the wrong symbol file can be
loaded (see SYMBOL command), caution
should be exercised.

VERSION information is included in the XREFFILES. INTERACTIVEXREF checks the
VERSION compatibility of the XREFFILES and displays an appropriate error
message if the XREFFILES were created with an incompatibile XREFANALYZER.

6-1- 2
INTERACTIVE XREF

OPERATION

The INTERACTIVEXREF must be run from a terminal. Commands may be entered one
at a time, or multiple commands may be placed on the same line, separated by
semicolons. A command line may be continued by terminating it with a percent
sign (%) and continuing on the next line.

When a command is printing information on the terminal, it may be discontinued
by hitting BREAK. When the command is not printing, it may be discontinued by
entering the CANOE command ?HI. In either case, the remaining commands on the
current input line (if any) are ignored.

6-1- 3
INTERACTIVE XREF

IDENTIFIER SPECIFICATION

Syntax

<identifier spec>

-- <identifier>-~------------------""T----------------1

L ddent i fier qua Ii ficat ion>J

<identifier qualification>

TAT FIRST

[AT-- <seq no> ------------------1

r- IN-- <procedure spec>

~OF-- <procedure spec>-------------1

L AT-- <Seq no>-- IN-- <procedure spec>_J

<procedure spec>

Semantics

In many commands, the program must be told exactly which identifier the user
has in mind. This declaration, however, becomes complicated because the same
identifier may be re-declared in many different procedures or blocks.

<identifier> may be an alphanumeric identifier, which starts with a letter and
is composed entirely of letters and digits. In an ALGOL program, an identifier
of the form B.0002 is acceptable.

<identifier qualification> is useful when the same identifier is re-declared in
many different procedures or blocks. It allows the user to specify which
occurrence of the identifier is intended. The possible identifier
qualifications are:

AT FIRST
Selects the first occurrence of the identifier
which was encountered by the compiler.

AT <Seq no>

Selects the occurence of the identifier which is
declared or used closest to the specified sequence
number and which was not declared beyond the
specified sequence number. If all occurrences of
the identifier were declared beyond the specified
sequence number, the closest occurrence is chosen.
If an exact match is not found, a warning will be
printed. This identifier qualification gives

6-1- 4
INTERACTIVE XREF

undefined results if the
compiler has not been
Appendix 6B).

IN <procedure spec>

source file
sequenced

seen by
proper Iv

the
(see

Finds a use of the <identifier> in the specified
procedure. It looks first for an <identifier>
declared by the specified procedure. Failing this,
a global identifier referenced by the procedure is
sought. Failing this, an <identifier> declared in
a procedure nested within the specified procedure
is sought. If these searches fail, an error
occurs.

OF <procedure spec>

Looks for an occurrence of the identifier which is
declared by the specified procedure. Note that an
occurrence of the identifier declared by a
procedure contained within the specified procedure
is not acceptable.

AT <Seq no> IN <procedure spec>

From those occurrences of the identifier which are
declared or used with~n the specified procedure,
the one which is declared or used closest to the
specified sequence number is selected. This option
is useful as an alternative to AT <Seq no> when the
specified procedure, but not the entire source, is
properly sequenced (see Appendix 6B).

The <procedure spec> need only be long enough so that its outermost environment
is the "best candidate" of the possible environments specified by that
identifier. The best candidate is defined as follows:

I . If only one environment exists (for example,
procedure) with this name, use it.

module or

2. If more than one environment exist with this name, limit
the possible candidates to the most global.

3. If equally global environments exist for this name,
the first.

use

If more than one environment exists for a specified name, a warning of possible
ambiguity and the chosen environment are output.

Example

JOE
HARRY

HARRY
FRANK

TOM

BOB
STEVE

STEVE
HARRY

The environments are the following:

JOE
HARRY OF JOE
HARRY
FRANK
TOM OF FRANK
STEVE OF TOM OF FRANK
BOB OF FRANK
STEVE OF BOB OF FRANK

INTERACTIVE XREF

HARRY OF STEVE OF BOB OF FRANK

"TOM" locates "TOM OF FRANK." TOM is a unique environment.

6-1- s

"STEVE" locates "STEVE OF TOM OF FRANK." Since both STEVES are at the same
level, the first is used and a warning is emitted.

"STEVE OF BOB" locates "STEVE OF BOB OF FRANK." BOB is a unique environment.

"HARRY" locates "HARRY", because it is the most global, and outputs a warning.

"HARRY OF STEVE" is an error_ The environment used for STEVE is "STEVE OF TOM
OF FRANK" (the first of the STEVES on the same level) and no HARRY exists in
that environment.

"HARRY OF STEVE OF BOB" locates "HARRY OF STEVE OF BOB OF FRANK." BOB is a
unique environment.

"HARRY OF JOE" locates "HARRY OF JOE." JOE is unique.

6-1- 6

RANGES

Syntax

<range spec>

<Subrange spec>

I L_

•

INTERACTIVE XREF

<Subrange

<pro c e du r e spec > -~---------------..---....1...---.-------4

[__THRU <procedure spec>

Lt <Sequence no>

- <Sequence no>

Semantics

Sometimes restricting a request to a certain subset of the source file is
useful. Ranges have been implemented for this purpose. Ranges may be specified
in terms of either sequence numbers or environments (procedure names).
Sequence numbers and environments may not be intermixed in the same range
specification.

A sequence number range consists of any number of sequence numbers and/or
sequence number pairs. This type of range gives undefined results if the
source file seen by the compiler has not been sequenced properly (see Appendix
68).

6-1- 7
INTERACTIVE XREF

An environment range consists of a list of procedure specifications
variations of procedure specifications. The variations are as follows:

<procedure spec> Include the specified procedure
and all procedures nested
within it.

<procedure spec> THRU <procedure spec>

(<procedure spec>)

Include all procedures (in
order of declaration) from the
first specified procedure
through the second.

Include only the specified
procedure; not the procedures
nested within it.

and

If a minus sign precedes any of the above, it means those procedures should not
be included. If the first item of the range begins with a minus sign, the
range starts out including all procedures, rather than not including any.

If a range begins with an asterisk (*), it has the effect
current default reference range at the start of the range.
description.)

of inserting the
(See RANGE command

If a range begins with a minus asterisk (-*), it has the effect of inserting
the complement of the current default reference range at the start of the
range.

Examples

500-900, 2300-END

Include all sequence numbers from 500 through 900 and
2300 through 99999999.

JOE, (SAM), B.0004 OF TOM

-JOE

Include global procedure JOE and all procedures declared
within it, global procedure SAM but not the procedures
declared within it, and the block within global
procedure TOM named B.0004 by the compiler.

Include everything but global procedure JOE and all
procedures declared within it.

6-1- 8

•

1NTERACTIVE XREF

Specifies the complement of
reference range.

the current default

* JOE

Specifies the current default reference range as well as
global procedure JOE and all procedures declared within
i t .

6-2-
INTERACTIVE XREF

2. COMMANDS

Syntax

LOAD~------,----------------~-----------~ -r SYMBOL

~ LOCATE-----1

I REFERENCES

EXPAND-----1

SUMMARY-----<

MFRGF-------

~ ~~~~~!DENCE~
DECLARATIONS

LI ST------<

RANGE----

QUALIFY---

::::=J
HELP~
TERMINAL~

~ :::ET------l t STOP------'

Semantics

The command descriptions appear in an order appropriate for the first time
reader. An attempt has been made to write each command description in a way
that does not depend on the other descriptions. The order of appearance does
not necessarily reflect the usefulness of a particular command (that is, the
DECLARATION command will probably be used more than the LOCATE command).

6-2- 2
INTERACTIVE XREF

LOAD

Syntax

-- LOAD-- < f i I e name:> ___________________________ ___,

Semantics

This command loads the INTERACTIVEXREF in format ion files. The file name
specified is that of the object file being generated by the compiler when the
XREF information files were generated. The titles of the XREF information files
are constructed from this file name and are loaded. To prevent confusion, this
command nullifies any previous SYMBOL command.

NOTE

When compiling a CANOE
<filename> is of
"CANDE/CODE"<number>.

work file,
the

the
type

6-2- 3
INTERACTIVE XREF

SYMBOL

Syntax

Semantics

This command loads the symbol file from which text for define expansion, text
corresponding to a given reference, and text for the LIST command is taken. If
none of these items is desired, a symbol file need not be loaded.

The symbol file loaded should be the source that was being compiled when the
INTERACTIVEXREF information files were generated. It is desirable, but not
necessary, that the symbol file and the XREF information files correspond
exactly. If discrepancies are found when processing a command that requires
information from both sources, a warning or error is issued.

6-2- 4
INTERACTIVE XREF

LOCATE

Syntax

Semantics

The specified identifier is found and described in terms of environment (where
declared), compiler class (REAL, INTEGER, and so forth), sequence number (where
declared), aliases, and so on. Other commands such as REFERENCES also print
out this header line information when a specified identifier is found.

Examples

1. LOCATE I AT 47362000

Locates the I declared or used closest
number 47362000.

2. LOCATE J IN SAM

to sequence

Looks for an identifier J declared by global procedure
SAM. Failing this, looks for a global identifier J
referenced by SAM, and failing this, looks for an
identifier j declared by a procedure nested within SAM.

3. LOCATE K OF JOE OF HARRY

If an identifier K deciartd by procedure JOE of global
procedure HARRY is not found, an error results.

6-2- 5
INTERACTIVE XREF

REFERENCES

Syntax

--~~~~~--~~~~~~~~1J
~~...,........~fl\-- d dent i f i er spec> --------------------,r--~

: -- RANGE-- <range spec>---------------i

: -- CHANGED-----------------1

1 : -- ALIASES------------------i

~
I

: -- TEXT-.-!_-_ --<-i _n_t _e_g_e_r_>~~~---_-_-_-_-_-_-_-_-_----------__ -__ -___ --tj

: -- ENVIRONMENTS----.--------.~---------!

ONLY

: -- GLOBALENV I RONMENTS ---.----------1

L-- ONLY----~

: -- PRINTER------------------i

: - REMOTE-----------------__,

: -- FI LE-- < f i 1 e name> ___________ ____.

Semantics

References to the specified identifier are listed. If no identifier is
specified, and the previous command was LOCATE, REFERENCES, EXPAND, or SUMMARY,
then the identifier specified in that command is used. This identifier, which
is remembered from command to command, is known as the "work identifier".

Unless modified by some of the options described below, the references are
printed in the form familiar from printed XREFs. The 8-digit sequence number of
each line where the identifier is referenced is printed. It is preceded by an
asterisk (*) if the value might be changed by the statement and followed by a
pound sign (#) if the reference occurred as part of an expanded define. The
available options are as follows:

RANGE Allows the user to restrict the range
over which references are to be printed.
If this option is not specified, then the
default reference range, as specified by
the RANGE command, is used. The default
value of the default reference range is
the entire program.

6-2- 6

Examples

CHANGED

INTERACTIVE XREF

Only those references where the value of
the identifier might be changed by the
statement is listed.

ALIASES Causes a merged list of references to the
identifier and all of its aliases (if
any) to be listed. Those sequence
numbers where an aiias is referenced are
marked with a plus sign. Currently, only
ESPOL keeps track of aliases.

TEXT Ca u s e s t h e t e x t f r om t h e s y m b o 1 f i 1 e t o
be printed with each reference. If an
integer is specified with this option, a
sample of that many lines of text,
centered at the line containing the
reference, is printed with each
reference. Note that the symbol file must
be loaded to use this option.

ENVIRONMENTS Causes the names of the environments
(procedures and blocks) where the
references occur to be printed,
appropriately interleaved with the
references. If modified by NUMBER, then
only that many levels of environments are
I i s t e d . I f mod i f i e d by ONLY, then on I y
the environments, and not the references,
are printed. Note that ENVIRONMENTS ONLY
and TEXT are mutually exclusive.

GLOBALENVIRONMENTS Similar iu ENVIRONMENTS, except that

PRINTER

REMOTE

FILE

REFERENCES ABO

references are broken down only by global
environment (global procedure). Note that
GLOBALENVIRONMENTS ONLY and TEXT are
mutually exclusive.

Causes output to go to the line printer,
by way of a file internally named LINE.

For use when the output is to go to both
the line printer and the terminal.

Causes all referenced text lines from the
symbol file to be output to the user
specified disk file; this file cannot
alreadv exist. It is made with the same
filetype as the file loaded by the symbol
command. If no symbol file is loaded, an
error message is output to the terminal.

A list of references to ABO is printed.

INTERACTIVE XREF

REF Kl IN JOE :CHANGED :TEXT

Locates the identifier Kl used in procedure JOE, prints
a list of those references where the value of Ki might
be changed and the line of text corresponding to each
reference.

REF :TEXT 3 :ENVIRONMENTS :PRINTER

Prints a list of references to the work identifier.
Three lines of text are printed with each reference. The
references are grouped by the procedures within which
they occur, and preceding each group is the name of the
procedure. References that occur in the main program
appear at the start of the list. The output goes to the
line printer.

6-2- 7

6-2- 8

EXPAND

Syntax

Semantics

The text of
identifier
associated
preceding

INTERACTIVE XREF

: -- FULL-----~~

: -- PARAMETERS--...

: -- BLOCKED-----l

: -- PRINTER-----l1

: - REMOTE------l.

spec>~ <identifier

AT <Seq no> ____ __,

the specified declaration i s written
i s an it em such as a define, array,

with i t s declaration. I f no identifier
command was LOCATE, REFERENCES, EXPAND,

out (expanded) i f
or f i le, which has

i s specified, and
or SUMMARY, then

identifier specified in that command is used. Tl. ; .,. ; ~ .. n f- ; f ; .. .-
.&. ... • '3 I. u """ .l.l " • .I .I """ • ' remembered

the
text

the
the

from
command to command, is known as the work identifier. If no identifier is
specified and the work identifier is empty, an error occurs.

Unless the command is modified by certain options described below, the action
taken is as follows. The first time an identifier that is or has just been
specified is expanded, the text of the declaration is given. Subsequent
requests to expand the work identifier cause this text to be scanned for
occurrences of other defines. If such nested defines are friund, they are
replaced by their text. This process may be repeated, one step at a time, until
the text is completely expanded (no more nested defines are found), a new work
identifier is specified, or the work identifier is nullified. Once the
expansion is compiete, a message to that effect is printed. Subsequent
requests to expand the work identifier cause the final version to be printed.

The expansion of defines is context sensitive. When a define is used within a
procedure or block more local than that in which it was declared, this inner
procedure or block may have re-declared some of the identifiers used in the
text of the define. Unless the identifier was specified using a qualification
such as AT<seq no>, which gives some indication as to what context should be
used, a context must be chosen. If the define is referenced, the context of the
first reference is used. If the define is never referenced, it is expanded in
the context of its declaration. In either case, a warning message is printed.

INTERACTIVE XREF

The following options are available:

Examples

AT<seq no>

FULL

PARAMETERS

BLOCKED

PRINTER

REMOTE

EXPAND UNLOCK

Restarts the expansion of the work identifier in
the context of the reference nearest <Seq no>.

Causes the text to be completely expanded before
it is printed.

If the identifier being expanded is a
parameterized define, and if it is being
expanded in the context of a reference, then
actual parameters are extracted from the text of
that reference and substituted for the formal
parameters in the expansion. Even if the
expansion was complete before the actual
parameters were inserted, it reverts back to the
incomplete state because the actual parameters
may contain identifiers that are defines.

NOTE

If both FULL and PARAMETERS are specified, the
actual parameters are inserted before the full
expansion is done.

PARAMETERS works only if the define was
referenced directly and not by another define.

Normally, the first expansion is printed out
exactly as it appears in the symbol file
(including comments). Subsequent levels of
expansion are biocked according to a simple
scheme that indents at BEGINs and puts
statements on separate lines. This option
requests that the first expansion aiso be
blocked.

Causes output to go to the line printer by way
of a file internally named LINE.

Causes output to come to the terminal, even if
it is also going to the line printer.

The text of the identifier UNLOCK is printed.

EXPAND :FULL :PRINTER

The text of the current work identifier is completely
expanded and written to the line printer.

6-2- 9

6-2- 10
INTERACTIVE XREF

Limitations

1. The symbol file is needed for this command.

2. The room available for storing expansion text is limited.
The first level of expansion is always completely printed
out. Higher levels may be truncated if internal storage is
insufficient.

3. For any given expansion, expansion of nested defines is
carried out in one and only one context. Also, text is
not syntaxed completely, and declarations cannot be
distinguished from other statements. Thus, higher levels
of expansion of defines that contain declarations may be
incorrect.

6-2- 11
INTERACTIVE XREF

SUMMARY

Syntax

-- SUMMARY-- d dent i f i er spec> ------------------------1

Semantics

A summary of the number and kinds of references to a given identifier is
printed. If no identifier is specified and the preceding command was LOCATE,
REFERENCE, EXPAND, or SUMMARY, then the identifier specified in that command is
used. This identifier, remembered from command to command, is known as the work
identifier. If no identifier is specified and the work identifier is empty, an
error occurs.

6-2- 1 2
INTERACTIVE XREF

MERGE and COINCIDENCE

Syntax

-~-MERGE------.-------------------------------

L__ COINCIDENCEJ

: -- RANGE-- <range spec>---------~

:--CHANGED------------------1

:--ALIASES------------------1

: -- TEXT ____,,--------------------1

L (i n t e g er> ------------1 II : - ENVIRONMENTS L <number>] L ONLY~
I L : -- GLOBALENVIRONMENTS -----.-------~

L ONLY------t

: -- PRINTER-----

1 : - REMOTE--------------------l

Lrp_: -- FILE-- <file name> __________ ___;

MERGE

Semantics

A merged list of the references to the specified identifiers is produced. To
avoid confusion, the work identifier is nullified. All options described under
the command REFERENCES apply.

Examples

INTERACTIVE XREF

MERGE I, Jl, ABC OF SAM :ENVIRONMENTS

Prints a merged list of references to the identifiers I,
Jl, and ABC OF SAM. The references are grouped by the
procedures within which they occur, and the name of the
procedure precedes each group.

MERGE A, G :ALIASES

Prints a merged list of references to the identifiers A
and G, any aliases of A, and any aliases of G.

6-2- 13

6-2- 14
INTERACTIVE XREF

COINCIDENCE

Semantics

A list is produced of those places where all specified identifiers appear on
the same line. To avoid confusion, the work identifier is nullified. All
options described under the command REFERENCES apply, but some may be ambiguous
and therefore require further explanation.

CHANGED

ALIASES

ENVIRONMENTS ONLY
GLOBALENVIRONMENTS ONLY

Produces a list of those lines where
all the specified identifiers
appear, and where one or more might
be changed by the statement within
which it appears.

Produces a list of those lines where
all specified identifiers and all of
their aliases appear.

Only environments in which all
specified identifiers appear on the
same line is printed.

Caution must be used when employing the COINCIDENCE command; although the
identifiers may be used in the same statement or expression, the statement or
expression may be split across a line boundary.

Examples

COINCIDENCE K, DI

A list of those lines where both K and Dl appear is
printed.

COINCIDENCE STACK, TASK :CHANGED

In this example, STACK is an array and TASK is defined
to be STACK[l3]. The above command produces a list of
those places where the value of TASK might be changed.
Note that the command REF TASK :CH produces null output,
as defines are never marked as stored-into.

6-2- 15
INTERACTIVE XREF

DECLARATIONS

Syntax

- DECLARATIONS >
L (identifier) ---.L..-------------1

I (identifier)

L__ : --LITERAL----

~LAni::u -- '1Cl(1ge :;pee / -- =

- USED J
-UNUSED_..... L (range spec)

ONL YUSED -- (range spec)

.L..

--CLASS f (alpha identifier) l
--KEYWO RD - (alpha identifier)

1 ___. LEVE_b.S -- (hex int)

L (hex int)

DISPLACEMENTS --(hex int)

c(hex int)
/":""\

I \...---: iDSONLY

~·(integer)
(references)

(expand)

f1_: SUMMARY

SHORT

(sort)

f.RINTER

REMOTE

: --EILE -- file name)

MV1454

6-2- 16
INTERACTIVE XREF

<references>

. -- CHANGED----------------?J

. -- ALIASES------------------;

. -- TEXT-------------------1

. -- ENVIRONMENTS ------.---------,-----.------;

I

L -<number>___J

. -- GLOBALENVI RONMENTS --------------

L_ ONLY

~ ONLY--------1

1 . -- RANGE-- <range spec>----------~

<expand>

--EXPAND-----.--------------~----------------1

(Sort>

-SORT~~~

Semantics

. -~ ~ULL I

. -- BLOCKED~
- I

dnteger>_J

SEQNUMBER--~--'-------------------1

ADDRESSCOUPLE

ALPHABETICAL

A specified set of declarations is isolated and listed along with optional
information. The options available fall into three categories: (1) those which
select the set of declarations; (2) those which specify the output to be
produced for each selected declaration; and (3) those which specify the order
and destination of the output. To avoid confusion, the work identifier is

INTERACTIVE XREF

nullified.

The defaults, if no options are specified, are as follows:

1. All declarations are included.

2. The header line (name, environment where declared,
compiler class, sequence number where declared, aliases,
and so forth) is printed for each declaration.

3. The output is ordered alphabetically by identifier name
and comes to the terminal.

Options that control the selection of the set of declarations are:

<identifier> Restricts the set
given identifer.

to the occurrences of a

<identifier>-<identifier>

Restricts the set to a given alphabetic range.
The identifier pair must be ordered
alphabetically.

<identifier> :LITERAL

DECLARED

USED

UNUSED

ONLYUSED

CLASS

CLASS -

Restricts the set to those identifiers that
identifier as a contain this specified

substring.

Restricts the set to those identifiers
declared within the specified range.

If no range specification is included,
restricts the set to those identifiers
referenced somewhere 1n the program. If a
range is specified, restricts the set to those
referenced within the range.

If no range specification is included,
restricts the set to those identifiers
declared but never referenced; otherwise,
restricts the set to those not referenced
within the specified range.

Restricts the set to those identifiers only
used within the specific range and not
referenced elsewhere.

Restricts the set to a particular compiler
class or group of compiler classes. The
compiler class must appear exactly as it does
in a header line, for example, BOOLEAN ARRAY,
INTEGER, FORMAL NAME REAL, and so forth. Only
one compiler class may be specified for each
CLASS option; however, the compiler class may
contain more than one <alpha identifier> (for
example, REAL PROCEDURE). CLASS may be
specified as often as desired, thus specifying
a group of classes.

Restricts the set to
except those specified

all compiler classes
in the alpha identifier

6-2- 17

6-2- 18

KEYWORD

KEYWORD -

LEVELS

INTERACTIVE XREF

l i s t .

Restricts the set to a group of compiler
classes which contain the specified alpha
identifier. For example, KEY BOOLEAN causes
BOOLEAN, BOOLEAN ARRAY, BOOLEAN PROCEDURE, and
so on, to be included. KEYWORD and CLASS may
be specified as often as desired to generate
the desired group of classes.

Selects a group of compiler classes which do
not contain the specified alpha identifier.
For example, KEY- BOOLEAN includes exactly the
complement of the classes included by KEY
BOOLEAN.

Restricts the set to those identifiers that
have stack cells with lexicographical levels
as specified.

DISPLACEMENTS Restricts the set to those
with

identifiers that
displacements as have stack cells

specified.

Options that specify the output to be produced for each selected declaration
are:

IDSONLY

REFERENCES

EXPAND

SUMMARY

SHORT

Displays only identifier names and not any of
the other header information. The output is
displayed in ascending alphanumeric order,
with a default field width of 20. The field
width may be altered by ·specifying an optional
field width.

References to the selected declaration are
listed. This 0ption may itself be modified by
any of the options listed under the REFERENCE
command, except PRINTER or REMOTE, with the
same effects.

The text of the selected declaration is
written out (expanded) if the identifier is an
item such as a define, array, or file, which
has text associated with its declaration. This
option may itself be modified by the options
FULL and BLOCKED, as described under the
command EXPAND. Note that only the first or
the final expansion may be obtained. (If a
full expansion of a define is requested, it is
done in the context of its first use.) EXPAND
may be modified by an integer, which allows
specification of an approximate limit on lines
of text printed for each declaration. The
default is ten.

A summary
references
printed.

of
to

the
the

number
selected

and kinds
declaration

of
i s

The aliases of the selected declaration are
not printed. Currently, only ESPOL keeps track
of aliases; for other languages, SHORT has no
effect.

INTERACTIVE XREF

Options that specify the order and destination of output are:

Examples

SORT Controis the order in which the seiected
declarations are printed. When SORT is
followed by SEQNUMBER, the output shows the
declarations sorted on sequence number where
declared. When SORT is followed by
ADDRESSCOUPLE, the output shows the
declarations sorted first on address couple
(lex level and displacement of stack cell),
then on sequence number where declared. When
SORT is followed by ALPHABETICAL, the output
shows the declarations sorted first
alphabetically, then in order of occurrence.
(This is the same output that would be
produced if SORT were not specified.) When
SORT is followed by more than one item,
multiple sets of output are produced.

PRINTER Causes output to go to the line printer by way
of a file internally named LINE.

REMOTE Causes output to come to the terminal, even if
it is also going to the line printer.

FILE The FILE option is only valid when used with
the REFERENCE option. Its semantics are
explained with the REFERENCE command.

DECLARATIONS :DECLARED JOE

Lists all identifiers declared within procedure JOE.

DEC :DECLARED -JOE :USED JOE :KEYWORD ARRAY

Lists all arrays global to procedure JOE and used within
JOE.

DEC :DECLARED -JOE :USED JOE :KEYWORD PROCEDURE %
:REFERENCES. TEXT. RANGE JOE

DEC J

Lists all procedures global to procedure JOE which are
called by JOE, along with the sequence numbers and text
where they are called within JOE.

Lists all declarations of the identifier J.

DEC STBR:LIT

Lists all declarations containing substring STBR.

6-2- 19

6-2- 20
INTERACTIVE XREF

DEC :DECLARED (B.0000) :CLASS DEFINE

Lists all global defines. The example assumes that the
main program is a block; if it is a procedure, the
procedure name should appear in the parentheses.

DEC :LEVEL 2 :DISPLACEMENTS :SORT ADDRESSCOUPLE

Lists all lex level 2 identifiers with displacements
between 12 and IA, sorted by address couple.

DEC :DECLARED 201000-203000 :EXPAND :PRINTER

Lists all declarations declared between 201000 and
203000. The text of each declaration that can be
expanded is printed below it, and output goes to the
line printer.

DEC FAULT - FAULT999

Lists all declarations beginning with FAULT but not
greater than FAULT999.

DEC :KEY PROCEDURE :DECLARED (B.0000)
:REF. GLOBALENVIRONMENTS ONLY

Lists all global procedures, each accompanied by a list
of global procedures from which it is called.

DEC :UNUSED

Lists all identifiers that are declared but not used.

6-2- 21
INTERACTIVE XREF

LIST

Syntax

(Seq no)

<integer> --- (Seq no)

t._ - -- END---~ r- <proce~ure id>

.__ < 1 n t er tac e id> _________________ __.

: -- PRINTER--------------------1

: - REMOTE--------------------4

: -- FI LE-- < f i 1 en ame > ________________ __,

Semantics

Text is listed from the symbol file. If no sequence numbers are specified, the
entire file is listed. If sequence number(s) and/or sequence number pair(s)
are specified, only those lines are listed. When the sequence number, or first
sequence number of a pair, is foiiowed by a ieft broken bracket (<) and an
integer, the command backs up that many records before beginning to list. Entire
procedures and interfaces may be listed by using the procedure or interface
identifiers in place of the sequence range.

The available options are:

PRINTER Causes output to go to the line printer by way of a
file internally named LINE.

REMOTE Causes output to come to the terminal even if it is
also going to the line printer.

FILE Causes all lines in the sequence range or all
of the requested procedures or interfaces
written to the user-requested disk file; this
cannot already exist. It is made with the same
type as the file loaded by the symbol command.

1 i ne s
to be

f i 1 e
f i 1 e

6-2~ 22
INTERACTIVE XREF

RANGE

Syntax

Semantics

Range is used to restrict the range over which references are listed. The
default reference range is used when processing a REFERENCE command or a MERGE,
COINCIDENCE, or DECLARATIONS command with no specified range.

The RANGE command establishes a new default reference range; the default value
of which is the en.tire program. A RANGE command not containing a range
specification only prints the current default reference range.

6-2- 23
INTERACTIVE XREF

QUALIFY

Syntax

~-QUALIFY---.L~~~~~~~~~~~~~~-J--.--~~~~~~~~~~~~~

<identifier qualification>

Semantics

This command establishes a new default identifier qualification (the default
value is AT FIRST). When an identifier specification is encountered that does
not have an explicit identifier qualification, the default identifier
qualification is used to locate the identifier. A QUALIFY command not
containing an identifier qualification only prints the current default
identifier qualification.

Note that when
qualification,
supplemented.

an
the

identifier
default

specification
qualification

has
i s

an explicit
overridden,

identifier
rather than

6-2- 24
INTERACTIVE XREF

WHAT

Syntax

Semantics

This command describes the current work identifier to be used in subsequent
REFERENCES, EXPAND, or SUMMARY commands when no identifier is specified.

6-2- 25
INTERACTIVE XREF

WHATFILES

Syntax

Semantics

Tells which INTERACTIVEXREF information files are loaded as well as which
symbol file is loaded.

6-2- 26
INTERACTIVE XREF

HELP

Syntax

Semantics

A list of all commands, each with a short description, is displayed at the
terminal. The listing goes to the printer when the PRINTER option is used.

6-2- 27
INTERACTIVE XREF

TERMINAL

Syntax

~IB~I~~lr~~~,1~

:INE c:J <integer,

Semantics

<integer>

~~AIT----------~
L__ CONTINUOUS--------

Attributes that control the format of output coming to the terminal may be
specified. If no attributes are specified, the current terminal specifications
are displayed. The initial values of PAGE and LINE are taken from the file
attributes of the remote file when it is opened.

Attributes that may be specified are:

LINE

PAGE

WAIT

Th e max i mum w i d t h o f an o u t p u t 1 i n e , e x p r e s s e d i n
characters; value must be between 72 and 132.

On screen terminals, having output grouped into
pages of a given number of lines and having the
program wait for some response after each page is
a convenient way to look at the output. PAGE is
the number of lines on each page and is relevant
only if WAIT has been specified.

The out put i s grouped i. n to page s as des c r i bed
above. After each page, except the last page, the
program stops and waits for input from the
terminal. If the input is blank, the next page is
printed; otherwise, the command is aborted, as if
a break on output had occurred.

CONTINUOUS Turns WAIT off.

6-2~ 28

Examples

INTERACTIVE XREF

TERM LINE 80

Sets the maximum width oi an output line to the terminal
to 80 characters.

TERM PAGE 23 WAIT

Causes the program to wait after each output page of 23
lines is printed. Note that the count starts at the
beginning of each command.

INTERACTIVE XREF

SET and RESET

Syntax

I SET I
L RESET_J

[,-(-
I CONTEXTWARNING I
l__ ENVIRONMENTS__J

Semantics

The user may set or reset the following run-time options:

CONTEXTWARNING When the EXPAND command is forced to expand a
define in the context of 1ts first use, a
warning is printed. If the option is reset,
the warning is suppressed. The default is
SET.

ENVIRONMENTS When the description (or header line) of a
non-global identifier is printed, a
description of the environment, or
procedure(s) within which it is declared is
included. If the option is reset, environment
information is not included. Default is SET.

6-2- 29

6-2- 30
INTERACTIVE XREF

s·roP

Syntax

--- STOP--~

Semanticr

Use o·r the STOP command terminates the program.

6-A-
INTERACTIVE XREF

APPENDIX 6A

LOAD DURING INITIALIZATION

If, when the INTERACTIVEXREF program is initialized, it finds that the title of
file LOAD has been label equated, it attempts to load XREF information files
corresponding to the code file with that title. If, in addition, the title of
file SYMBOL has been label equated, the program attempts to load a symbol file
using that title.

Example

RUN $SYSTEM/INTERACTIVEXREF; FILE LOAD=OBJECT/IBFRITZ; %
FILE SYMBOL=IBFRITZ

This CANDE command initiates the lNTERACTIVEXREF. The XREF
information files for OBJECT/IBFRITZ are loaded, and
IBFRlTZ is loaded as ·the symbol file.

This feature may be used in conjunction with the CANOE DO command to save
typing when the same XREF information files are used often.

6-A- 2
INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

6-B-
INTERACTIVE XREF

APPENDIX 6B

USE WITH IMPROPERLY SEQUENCED SOURCE

Care has been taken to maintain the environment information such that it is
valid even if the source seen by the compiler was improperly sequenced or had
no sequence numbers. The source might be improperly sequenced if, for example,
it came from several different files by means of a $INCLUDE, and each file had
its own sequencing scheme.

The environment information in each header line clearly i1entifies an
identifier even if the sequence number is meaningless. The ENVIRONMENTS ONLY
and GLOBALENVIRONMENTS ONLY reference options clearly list those procedures
within which an identifier is used. If individual procedures are properly
sequenced, then the ENVIRONMENTS and GLOBALENVIRONMENTS reference options give
the procedure names and sequence numbers where the references are located. A~
references are sorted first by procedure, then by sequence number, all
references within a given procedure are grouped together.

All forms of identifier qualification work except AT<seq no>. The form AT<seq
no> IN <procedure spec> has been provided especially for cases where the
specified procedure is sequenced properly and contains nested blocks and/or
procedures that redeclare some of its ident;fiers.

Environment ranges work regardless of the sequencing of the source. Sequence
number ranges produce undefined results if the source was improperly sequenced.

The EXPAND and LIST commands, the TEXT reference option, and the EXPAND
declaration option do binary searches on the SYMBOL file to obtain needed text;
therefore they work only if the needed text is from the currently loaded SYMBOL
file and if that file is properly sequenced.

6-B- 2
INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

INTERACTIVE XREF

APPENDIX 6C

USE WITH FORTRAN

6-C-

FORTRAN does not keep track of environments for XREF; therefore, no environment
information is included in the header line. The ENVIRONMENTS and
GLOBALENVIRONMENTS reference options are not available nor are environment
ranges or identifier qualifications with the exception of AT FIRST and AT<seq
00).

The EXPAND command is not available for FORTRAN XREFs.

A number (FORTRAN label) or an identifier containing dollar signs ($) is
accepted as a valid identifier when FORTRAN XREF files are loaded.

6-C- 2
INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATflNG PURPOSES.

INDEX SEQUENTIAL ACCESS METHOD

TABLE OF CONTENTS

1 . INTRODUCTION . . .

.,
4. STRUCTURE OF ISAM FILES

PRIME DATA AREA .

DATA OVERFLOW AREA.

TABLES FOR LOCATING DATA.

DATA RECORD LINKS .

MANAGEMENT OF OVERFLOW AREAS.

3. GENERAL IMPLEMENTATION INFORMATION.

PROGRAM INTERFACE

Primitive ISAM Procedure

Standard ISAM Procedure.

PRACTICAL CONSIDERATION

ISAM PROCEDURES.

ISOPEN .

ISCLOSE.

ISREAD .

ISWRITE.

ISREADNEXT

ISREWRITE.

ISKEYWRITE

ISDELETE .

4. ISAM 1/0 RESULT INFORMATION.

PRIMITIVE METHOD ..

CONDITION CODES FOR PL/I KEYED 1/0.

FILE STATUS IN COBOL ...

5. PLANNING FOR ISAM FILES.

MAXIMUM NUMBER OF RECORDS

COARSE TABLE SIZE

FINE TABLE SIZE .

INFO RECORD SIZE.

7-1-

7-2-

7-2-

7-2-

7-2-

7-2-

7-2-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-3-

7-4-

7-4-

7-4-

7-4-

7-5-

7-5-

7-5-

7-5-

7-5-

2

2

.,
4

2

3

3

6

7

8

9

10

1 1

12

4

6

2

2

AREAS AND AREASIZE. 7-5- 2

MINIMUM RECORD SIZE 7-5- 3

MAXIMUM RECORD SIZE 7 -- 5 'l
.J

BLOCKSIZE 1-S- 3

EXCLUSIVE USE 1-S- 3

FINE TABLE RATIO. 7-5- 3

KEY LENGTH. 1-S- 4

KEY OFFSET. 1-S- 4

7-1-
INDEX SEQUENTIAL ACCESS METHOD

1. INTRODUCTION

The material contained in this chapter documents a set of software routines
that implement indexed sequential access methods of storage and retrieval of
data records. Indexed sequential, hereinafter referred to as ISAM, provides
the ability to process a file sequenced by a key in both random and serial
fashion. This material is intended for use as a reference document for
experienced programmers; it is not intended for use as a primer.

The ISAM facility is only used by the
option), PL/I, and ALGOL compilers;
facility.

COBOL (with or without the $ANSI74
the COBOL74 compiler does not use this

7-1- 2
INDEX SEQUENTIAL ACCESS METHOD

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATfING PURPOSES.

7-2-
INDEX SEQUENTIAL ACCESS METHOD

2. STRUCTURE OF ISAM FILES

ISAM files are bound by normal file convention and must utilize features
available to all files. Burroughs Data Management Software (DMSll) provides
additional capabilities beyond the scope of ISAM. For ISAM, the file is
considered to consist of three logical sections, which are defined in the
following subsections.

PRIME DATA AREA

A prime data area is the occupied portion of the file, immediately after
creation of the file. The maximum size of this area (in records) can be
determined by multiplying two file attributes: AREAS and AREASIZE. AREAS and
AREASIZE must be specified when creating (opening output) an ISAM file and do
not need to be specified at any other time. The amount of file space reserved
for nondata purposes (coarse and fine tables) is determined by the attributes
AREAS and AREASIZE. The number of prime data area rows is specified by the
AREAS attribute. The number of records in each prime data area row is
specified by the AREASIZE attribute. ISAM fiies do not assume the default
values of a normal file for AREAS and AREASIZE because these should be
carefully chosen for optimum performance. At file creation time, all unused
space contained in the final row of the prime data area is incorporated into
overflow space for the final row, and totally unused prime data area rows are
incorporated into the file overflow area.

DATA OVERFLOW AREA

This portion of the file is the unoccupied data area. Records added after file
creation are always placed in an overflow area. Two types of physical overflow
areas are provided. Area overflow space may be provided in each row containing
prime data and is specified when the file is created (opened output). When
records are deleted, the occupied space can be returned to the overflow pool
where the record resides. The deleted record option is set at file open when
the file is created and specifies the disposition of the space occupied by the
deleted record. A file overflow area may also be specified at file open when
the file is created. Records are placed in the file overflow area only after
all available overflow space in the specific row where the record would
normally reside has been filled.

7-2- 2
INDEX SEQUENTIAL ACCESS METHOD

TABLES FOR LOCATING DATA

Two levels of tables are used by the ISAM procedures: fine tables and coarse
tables. Each prime data area row of the file contains a fine table. The fine
table is a list of keys and file addresses with one-to-one correspondence. One
key (and address) is placed in the table for each N records, where N is a
program selected value at file creation time. The fine table is stored at the
physical end of its corresponding file area.

The entire file has one coarse table that contains pairs of keys and addresses.
Each key entry is identical to the first key entry of the corresponding fine
table and the address entry is the address of the fine table rather than the
address of a data record. The coarse table is stored at the physical beginning
of the file overflow area. Therefore, an ISAM file must have at least one
physical row of file overflow space.

DATA RECORD LINKS

ISAM data records are linked together in a logical sequence. Each record
contains both forward and backward links to its logical successor and
predecessor. A link is an address of a data record. The first data record
contains a backward link that is zero, and the last data record contains a
forward link that is zero. Locating data records makes use of forward links.
Inserting and deleting data records makes use of both links. Data record links
are the innermost level of file structure in an ISAM file.

The coarse table serves to locate a fine table, and the fine table locates a
data record . The data record 1 inks are u t i 1 i zed in f o 1 1 owing the t r a i l to the
desired record when necessary. Data records are not physically moved to
accommodate additions and deletions. Instead, links are modified as file
changes are handled in a logical rathtr than physical fashion. Since links are
physically contained in every data record, ISOPEN must increase the record size
to provide space for the links. Increasing record size is accomplished by
rounding the original up to the nearest full word and then adding one more word
to contain the links.

MANAGEMENT OF OVERFLOW AREAS

When the file is created, unoccupied spac~ may be reserved in each prime data
area row and at least one entire row reserved for overflow records. The fine
table that corresponds to a row also contains information that provides a link
to the next available unoccupied space. Overflow space that is reserved at
file creation is allocated in a serial fashion. If deleted record space is
made available for reuse (an option selected by the program), the deleted
record(s) are linked into the avai·lable record chain for the corresponding area
and reassigned on a last in, first out (LIFO) basis. Record space made
available for reassignment is reused prior to assignment of unused space.

The coarse table contains the link to the next available space in the file
overflow area. Space assignment in the file overflow area is the same as
overflow assignment in a prime data row. New records are not placed in the
file overflow area if they can be placed in the prime data area. A given
record is never eligible for placement in more than one prime data area row,
and the only alternative placement for it is in the file overflow area.

7-3-
INDEX SEQUENTIAL ACCESS METHOD

3. GENERAL IMPLEMENTATION INFORMATION

ISAM is implemented by a set of procedures that are bound into the intrinsic
file. Symbolics for these procedures are contained in the PLINTRINSICS symbol
file. The procedures called directly from programs are as follows:

1. ISOPEN - Open and set up file.

2. ISCLOSE - Close file.

3. ISREAD - Randomly read a record.

4. ISWRITE - Add a record to the file.

5. ISREADNEXT - Read the next sequential record.

6. ISREWRITE - Rewrite the record just read.

7. ISKEYWRITE - Randomly rewrite a record.

8. ISDELETE - Delete a record.

These procedures must be utilized to OPEN, CLOSE, create, and access ISAM
files. Files that are not indexed sequentially may not be accessed by these
procedures. Normal file (non-ISAM) OPEN, CLOSE, READ, and WRITE statements are
not disallowed; however, the use of normal 1/0 statements may be detrimental to
the integrity of the ISAM file. The ISCLOSE should be used to close the ISAM
f i 1 e .

PROGRAM INTERFACE

The following paragraphs define the two ways of invoking ISAM procedures.

Primitive ISAM Procedure

The primitive ISAM procedure is a direct call on the procedure by name, passing
the required parameters and receiving the procedure results. This method,
which provides the primitive interface, allows the highest amount of selection
and control. ALGOL must use the primitive method; COBOL may select either
primitive or standard.

Standard ISAM Procedure

The standard interface simplifies programming effort by allowing normal, higher
level language, input/output statements such as READ and WRITE. PL/I must
utilize the standard method; COBOL may select standard or primitive. Different
features are implemented specifically for PL/I and COBOL and are uniquely
available in a particular language. This implementation level is intended to
meet requirements of a language standard.

7-3- 2
INDEX SEQUENTIAL ACCESS METHOD

ISAM procedures must be utilized directly by the programmer for the primitive
method but may be utilized indirectly by the prograrru-ner using the 5tanJaru
method. Indirect means the compiler supplies the procedure call and does not
imply loss of efficiency.

Functionally, ISAM file options are similar to file attributes but exist only
for ISAM files. Unlike file attributes, ISAM file attributes may not be set or
modified by control cards or programatic file attribute statements. The
options are set at file creation when the file is opened output.

ISAM procedures return an information word to reflect the results of the ISAM
invocation. For the standard implementation, the compiler emits code for
observing the results and initiating appropriate action. The programmer must
detect the exception conditions in the primitive implementation. ISAM error
conditions do not cause program termination in the primitive method but may
cause termination in the standard method. The program normally contains
provision for processing the exceptions in both methods. The primary
difference between the methods is in the detection and analysis of the
condition.

PRACTICAL CONSIDERATION

In an unstable environment, ISAM files can become volatile (a condition where
the coarse table, fine tables, or data record links do not concur). This
situation can exist when the physical file (on disk or disk pack) has not yet
been updated to reflect the changes that have been made to buffers in memory.
If an event occurs that prevents writing the updated buffers into the physical
file, the file may suffer a loss of integrity. Use of the standard method
helps prevent this situation. In those cases where the program terminates
prematurely (invalid index, divide by zero, DSed, and others), the standard
method performs an orderly close of the ISAM file while the primitive method
may not be able to properly close the file. However, the file must be opened
INPUT-OUTPUT and writes or deletions must occur as prior conditions. File
damage is by no means a certainty, and two file options are available to
further reduce such possibility. See the WAITUPDATEIO and PHYSICALUPDATE
options of the ISOPEN discussion.

ISAM files may not be specified as input or output files to the SORT, except in
PL/I. They must be read and written by input or output procedures. Other
system software may also encounter similar situations when attempting to
process ISAM files in a direct fashion without use of the ISAM procedures.

ISAM files may be accessed simultaneously by several programs, if they all open
the file as INPUT. Only one program may access the file while it is open
OUTPUT or INPUT-OUTPUT.

D!rect I/0 is used by ISAM procedures to access the data. Therefore, the ISAM
file must be a direct file. In the primitive method, the program must declare
the file as direct. The compiler properly declares the file in the standard
method. The direct arrays used by the ISAM procedures are created by ISOPEN
and returned by ISCLOSE. The program does not need other direct arrays or
record areas (in COBOL) to access the data.

ISAM files may not be used in an IPC environment where the file is passed from
one task to another.

7-3- 3
INDEX SEQUENTIAL ACCESS METHOD

ISAM PROCEDURES

The following subsections discuss the system procedures that collectively
institute the ISAM methodology. Each procedure is defined in terms of its
function or functions within the general ISAM operating method and in terms of
the interaction, if any, with other ISAM procedures. Direct knowledge of these
procedures and their parameters is not needed for the standard program
interface.

The language reference manuals for PL/I (form 5001530) and COBOL (form 5001464)
should be consulted for the description of al! syntax and operations on ISAM
files using the standard program interface.

ISOPEN

This procedure opens an ISAM file for INPUT, OUTPUT, or INPUT-OUTPUT. ISAM
files require additional information not provided for non ISAM files. ISOPEN
utilizes and creates the additional information according to the method of file
opening. Non-ISAM files may not be opened by this procedure.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISOPEN(FILE,VALUE,STACK);

COBOL: (NON-STANDARD)

COMPUTE RS= ISOPEN (FILE, VALUE, STACK).

RS is the result word returned to the program.
ALGOL and 77 level COMP-1 in COBOL.

It is type BOOLEAN in

FILE is the ISAM file being opened.
FILE in ALGOL and COBOL.

It must be declared as a DIRECT

VALUE specifies how the file is to be opened.

open as INPUT

2 open as OUTPUT

3 open as INPUT-OUTPUT

INPUT and INPUT-OUTPUT require an existing ISAM file. OUTPUT always means
creation of a new file.

7-3- 4
INDEX SEQUENTIAL ACCESS METHOD

OUTPUT requires specification of additional file information. Hi~h order
bits in this parameter (VALUE) are utilized to convey certain information
used for file creation. Bits and fields contained in this parameter are as
follows:

4 7: 1
46: 1 s

31 : 2

Separate key (PL/I only).
0 ff set of the key , in bytes , fr om the s tar t of the
record. It is the true (zero relative) offset. A
value of zero means the start of the record.
Open action (open input or 1/0 only).

0 - Open the file.
1 - Use PRESENT attribute to open.
2 - Use AVAILABLE attribute.
3 - Not used.

29:14 Actual key length in bytes.
1S:4 Mode of key. Values are:

0 - BINARY (6-byte maximum)
1 - 8-Bit character
2 - 8-Bit unsigned numeric (max 11 bytes)
3 - 8-Bit MSD signed numeric (max 11 bytes)
4 - 8-Bit LSD signed numeric (max 11 bytes)
S - 4-Bit characters
6 - 4-Bit unsigned numeric (max S bytes)
7 4-Bit MSD signed numeric (max 6 bytes)
8 - 4-Bit LSD signed numeric (max 6 bytes)

1 1 : 1 Du p I i ca t e key opt i on . I f z e r o , records w i th
duplicate keys may not be added to the file. If one,
duplicates are chained in first in, first out (FIFO)
sequence. A duplicate key condition exists when the
keys in two records are equal.

10:1 Deleted record option. If zero, deleted records are
physically delinked and their record space becomes
available for reuse. If one, deleted records are
f 1 a g g e d b y h a v i n g 4 " FF " (a l I b i t s on) p I a c e d i n t h e
first byte of the record. Records marked as deleted
can be retrieved using READNEXT if bit 2 of this
parameter word equals 1.

9:1 Sequence option. If zero, the file is in ascending
sequence. If one, the file is in descending
sequence.

8:6 Fine table ratio. During file creation, this field
controls the number of entries made in the fine
table(s). It specifies the number of unique records
to be added to the file between fine table entries.

2:1 See deleted record option. If zero, deleted records
are not "seen" by the program. If one, deleted
records may be "seen" if the deleted record option is
set and READNEXT is used.

1:2 Open type (previously described).

0 - invalid
1 - INPUT
2 - OUTPUT
3 - INPUT-OUTPUT

7-3- 5
INDEX SEQUENTIAL ACCESS METHOD

STACK specifies the first of four tonsecutive words in the programs
stack. The location of the first word is utilized by ISOPEN to build
data descriptors in all four words. The location is retained in the FIB
for use as long as the file remains open. The program must provide the
space by declaring the four consecutive stack locations preferably with
four type REAL variables in ALGOL and four usage COMP-I in COBOL. The
four words are not usable by the program while the ISAM file is open. A
program reference to any of the four words during the time the file is
open causes immediate program termination with an invalid operator.

Additional file information is conveyed to ISOPEN by use of the first of
the four consecutive words.

47:24 Number of overflow records per prime record area row.
This field is used only when the file is opened
output. At file creation, this field is used to
increase the AREASIZE specified for the file. The
new, larger AREASIZE becomes a permanent attribute of
the file. Unnccunied soace. lar2e enou2h to contain
the number of reco~ds sp~cified by this field, is
allocated in each row of the file.

23:1 Wait update 1/0 option. If one, this option causes
ISAM procedures to wait for 1/0 completion of all
outstanding I/Os before returning to the program.
Thi s opt i on i s not av a i 1 ab 1 e i f ANS I 7 4 i s set in
COBOL.

22:1 Physical update 1/0 option. If one, this option
causes the ISAM procedures to initiate I/Os for all
buffers and tables that have been modified and need
to be rewritten. This option is not available if
ANSl74 is set in COBOL.

21:6 Unused at present but reserved for future
implementation.

15:16 Number of file overflow area rows. This field is
used only when the file is opened output. At file
creation, this field is used to increase the AREAS
attribute specified for the file. The new, larger
area becomes a permanent attribute. Any areas
represented by this field are not used to contain
prime data. Prime data area rows unused at file
creation are, however, placed in the file overflow
a r e a po o 1 . Th e r e f o r e , w h e n i n do u b t , i t i s b e t t e r t o
make the AREAS attribute larger.

7-3- 6
INDEX SEQUENTIAL ACCESS METHOD

ISCLOSE

This procedure closes an ISAM file in an orderly but necessary fashion. The
normal CLOSE statement is not sufficient to properly close an ISAM file.
Certain additional file information is saved within the file by this procedure,
and the four consecutive stack words are cleared or restored. Non-ISAM files
may not be closed by this procedure.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISCLOSE (FILE, TYPE);

COBOL: (Non-Standard)

COMPUTE RS= ISCLOSE (FILE, TYPE).

RS is the result word returned to the program.
ALGOL and 77 level COMP-I in COBOL.

It is type BOOLEAN in

FILE is the ISAM file to be closed.

TYPE is a numeric value that specifies how the file is to be closed.

0 - Close the file and release it from the program.
is a normal close. The file does not remain on
unless it has been locked previously.

This
disk

Clo&e the file with lock. The file is entered into the
directory and remains on disk. Any previous file with
a duplicate name may be removed.

2 - Close the file and purge its entry from the directory.
Any disk space occupied by the file becomes available
for reassignment by the system.

7-3- 7
INDEX SEQUENTIAL ACCESS METHOD

ISREAD

This procedure reads a record in a random fashion using the program-supplied
key. If the program-supplied key matches a record in the file, the matching
record is returned. When no matching record exists, the next logically
sequential record is returned.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREAD (FILE, KEY, AREA);

COBOL: (non-standard)

COMPUTE RS= ISREAD (FILE, KEY, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-I in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to find a record with a
matching key.

AREA is supplied by the program and provides space to contain the
record. The area must be as large or larger than the record. Before
returning to the program, the matching (or next logical) record is
placed in the program-supplied area.

The file must be opened INPUT or INPUT-OUTPUT in order to read records.
This procedure may not be used to read non-ISAM files. The ISAM file must
be opened by ISOPEN prior to use of this procedure to read records.

7-3- 8
INDEX SEQUENTIAL ACCESS METHOD

ISWRITE

This procedure writes a record, using the provided key, from the provided area.
This procedure never overwrites or rewrites previously existing records but
always adds (or attempts to add) records to the file.

When the file is opened OUTPUT, a new file is created; this procedure is used
to create coarse and fine tables in addition to placing records into the file.
Records must be presented in the sequence specified by the program during file
creation. Duplicate record acceptance depends on the setting of the duplicate
key option.

When the file is opened INPUT-OUTPUT, a previously existing file is utilized.
Records need not be presented in any special sequence. The records are written
into area overflow or file overflow space and appropriately linked into the
f i le.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISWRITE (FILE, KEY, AREA);

COBOL: (non-standard)

COMPUTE RS= ISWRITE (FILE, KEY, AREA).

RS is the result word returned to the program.
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

It is type BOOLEAN in

KEY is supplied by the program and is used to identify the record. The
key contained in the record must match the parameter.

AREA is supplied by the program and provides space to contain the
record . The are a mus t be as l a r g e or l a r g er than the record . The
record contained in this area is logically placed in the file.

The file must be opened OUTPUT or INPUT-OUTPUT. This procedure may not be
used for non-ISAM files. The file must be opened by ISOPEN prior to
execution of this procedure.

7-3- 9
INDEX SEQUENTIAL ACCESS METHOD

ISREADNEXT

This procedure reads the next logically sequential record. The record returned
to the program is the record whose key immediately follows in sequence after
the most recent record obtained by ISREAD or ISREADNEXT.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREADNEXT(FILE, AREA);

COBOL: (non-standard)

COMPUTE RS= ISREADNEXT (FILE, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-I in COBOL.

FILE is the ISAM file.

AREA is supplied by the program to provide space for the record. The
area must be as large or larger than the record. Before returning to
the program, the next logical record is placed in the area. The file
must be opened INPUT or INPUT-OUTPUT to use this procedure. Non-ISAM
files may not be accessed with this rrocedure. The file must be opened
by ISOPEN.

The purpose of this procedure is to provide a sequential processing
capability. In combination with ISREAD and ISREWRITE, records may be
sequentially processed and updated for all or part of any ISAM file.
ISREADNEXT may be used to read an entire ISAM file in a sequential manner.

7-3- 10
INDEX SEQUENTIAL ACCESS METHOD

ISREWRITE

The ISREWRITE procedure replaces the record previously read with the data
currently in the record area. The immediately preceeding file operation must
be ISREAD or ISREADNEXT. The key contained in the record to be rewritten must
match the key in the record that was read by the immediately preceeding file
operation.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREWRITE(FILE, AREA);

COBOL: (non-standard)

COMPUTE RS= ISREWRITE (FILE, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

AREA is supplied by the program to provide space for the record to be
rewritten. The area must be as large or larger than the record. Before
returning to the program, the record contained in the area replaces or
rewrites the latest record read.

The file must be opened INPUT-OUTPUT and must be an ISAM file. The purpose
and function of this procedure 1s to provide an update capability.
Additional records may not be added to the file by ISREWRITE.

7-3- 11
INDEX SEQUENTIAL ACCESS METHOD

ISKEYWRITE

The ISKEYWRITE procedure provides a random access update capability for ISAM
files. It replaces a currently existing record from the file with the record
provided by the program.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISKEYWRITE(FILE, KEY, AREA);

COBOL: (non~standard)

Compute RS= ISKEYWRITE (FILE, KEY, AREA).

RS is the result word returned to the program.
ALGOL and 77 level COMP-I in COBOL.

FILE is the ISAM file.

It is type BOOLEAN in

KEY is supplied by the program and is used to find a record with a
matching key. This key must also match the key contained in the record
area.

AREA is supplied by the program to provide space for the record to be
written. The area must be as large or larger than the record. Before
returning to the program, the record contained in the area replaces or
rewrites the record identified by the program supplied key.

The file must be opened INPUT-OUTPUT and must be an ISAM file. This
procedure provides update capability and does not add add.itional records to
the file.

7-3- 12
INDEX SEQUENTIAL ACCESS METHOD

ISDELETE

Thi s procedure ; s used to drop or de I et e records fr om the f i I e .
records are allowed, the first (oldest) record is deleted.
provides random access delete capability.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISDELETE(FILE, KEY);

COBOL : (non - s t and a r d)

COMPUTE RS= ISDELETE (FILE, KEY).

When duplicate
This procedure

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to find a record with a
matching key.

The file must be opened INPUT-OUTPUT and must be an ISAM file. This
procedure deletes the first (and olde~t) record with a matching key. The
record may be physically or logically deleted depending on the DELETED
RECORD OPTION.

7-4-
INDEX SEQUENTIAL ACCESS METHOD

4 e ISAM 1/0 RESULT INFORMATION

The ISAM procedures return result values to the calling program which indicate
success or failure of the program request. The value returned is a 48-bit
word. In the primitive method, the word is type BOOLEAN in ALGOL and COMP-I or
COMP in COBOL. In the standard method, PL/I uses CONDITION CODES and COBOL
uses FILE STATUS. The B 7000/B 6000 Series PL/I Reference Manual, form 5001530,
describes CONDITION CODES. FILE STATUS is described in the B 7000/B 6000
Series Cobol Reference Manual, form 5001464.

PRIMITIVE METHOD

The value returned for the primitive method is a 48-bit word that is non-zero
when an exception condition exists and zero when no exception condition occurs.
Specific, individual bits are utilized to indicate the exception condition. If
several different exceptions occur, the corresponding bit is turned on for each
condition and creates the possibility of reporting back several exceptions for
a single request. The rightmost and least significant bit (bit 0) is used for
a specific purpose. Bit 0 is turned on when any exception condition occurs and
turned off when no exception exists. The remaining bits convey the following
meanings:

1:1 A hardware error, a parity error for example, occurred
while processing the request. Another bit (7, 8, 9, or
ten) is set to further define the problem.

2: 1 An attempt was made to
end-of-file.

read or write beyond

3:1 No record was found in the file whose key matches the
requested key.

4:1 No space is available in the file to contain the record
just written. (Applies for adding records to the file;
does not apply to file creation.)

5:1 A request was made to add a record to the file, and the
key contained in the record matched a record that
existed in the file. Refer to bit 6.

6:1 A record was added to the file (the key of the record
matched an existing record of the file). The duplicate
key option permits or disallows this situation. When
duplicates are allowed, both bit 5 and bit 6 are on to
indicate adding a duplicate record. See also bit 5.

7: 1 A hardware error occurred in reading a data record.
Bit 1 i s also on.

8: 1 A hardware error occurred in wr i t i ng a data record.
Bit 1 i s also on.

9: 1 A hardware error occurred in reading an ISAM table.
Bit 1 is also on.

7-4- 2
INDEX SEQUENTIAL ACCESS METHOD

10:! A hardware err0r nccurred in writing ~n l~AM t~h1P

Bit 1 is also on.

11:1 This bit is not used.

12:1 An attempt was made to open the ISAM file, and the
parameters passed to ISOPEN failed to meet one or more
requirements. The "first of four stack words"
parameter must be an SIRW. The file must be declared
in a block that will be entered no sooner than the
block where the four stack words reside. The file must
not reside in a different stack from the program doing
the open. The block containing the four stack words
must also contain a file, array, or something that
causes a tag-6 word for the block. The tags of all
four stack words must be zero. The key must be defined
to be contained in the records, have a size greater
than zero, and have a valid mode.

13:1 An attempt was made to open a non-ISAM file.

14:1 The file has not been opened or the open type does not

1 5 : 1

permit the request. For example, a write on file
opened INPUT.

A rewrite was requested, and the key of
being rewritten does not match the key
record read or the previous request was not
read next.

the record
in the last
a read or

16:1 The ISAM file is being created, and the record just
written did not maintain proper file sequence. Records
must be presented in sequence during file creation. A
duplicate record also causes this bit to be set when
duplicates are not allowed.

17:1 The number of AREAS specified is not large enough to
contain the data records written in the prime data area
during file creation.

18:1 ISOPEN is requested to open an already open file.

1 0 • 1
J. J •• In an IPC environment, one program closed an !SAM file

and another attempted an 1/0 after the file was closed.

20:1 A write is requested, and the key supplied does not
match the key contained in the supplied record.

21:1 The ISAM file is not a direct file.

22:1 An attempt was made to write a record containing the
deleted record indicator (hex FF in first byte).

23:1 This bit indicates a PL/I program error condition. The
program is requesting· an 1/0 that is not allowed for
keyed files. An on condition is raised in the PL/I
program.

24:1 This bit is on if ISOPEN is requested (by way of open
action) to open the ISAM file using the PRESENT or
AVAILABLE file attributes; this bit also indicates that
the desired file could not be located. Refer to bits

INDEX SEQUENTIAL ACCESS METHOD

43:8.

43:8 This field contains the result of testing the PRESENT
or AVAILABLE file attributes in the ISOPEN procedure.
If the file could not be opened, bit 24:1 is also on.

46:1 This bit is on if the physical update 1/0 action is on,
the wait update 1/0 option is off, and an 1/0 error
occurred as the result of doing an update 1/0 in the
previous invocation of an ISAM procedure. Bit 1:1 is
on, and 8: 1 or bi t 10: 1 is on.

7-4- 3

7-4- 4
INDEX SEQUENTIAL ACCESS METHOD

CONDITION CODES FOR PL/I KEYED 1/0

CODE CONDITION

0806 End-of-file occurred.

0809 End-of-file occurred on keyed write
creation.

during f i 1 e

1303 A hardware error occurred on an 1/0 while processing a
KEYED 1/0 request.

1304 A hardware error occurred on a keyed record read.

1305 A hardware error occurred on a keyed record write.

1306 A hardware error occurred on a keyed table read.

1307 A hardware error occurred on a keyed table write.

2401 The record for the supplied key was not found.

2402 No space exists to add the record to the file.

2403 An attempt was made to add a duplicate record.

2404 A duplicate record was added to the file.

2405 Not used for keyed 1/0.

2406 An attempt was made to create a file with records not
in sequence.

2407 Not used for keyed 1/0.

2408 Read did not precede rewrite.

2409 Not used for keyed 1/0.

2410 Keyfrom does not match record key

2411 Record contains hex FF in first byte.

2412 Keyto variable is shorter than key in file.

2413 Key or keyfrom is longer than key in file.

2505 Parameter error occurred on keyed file open.

2506 An attempt was made to open an existing nonkeyed file
as a keyed file.

2507 Conflicting file usage occurred.
file opened output.)

(For example, read on

2510 Keyed 1/0 was attempted when the file was in an
improper state.

2511 The keyed file is not a direct file.

INDEX SEQUENTIAL ACCESS METHOD

2512 An illegal I/O was attempted on a keyed file.

2513 An attempt was made to open a nonpresent file.

7-4- 5

7-4- 6
INDEX SEQUENTIAL ACCESS METHOD

FILE STATUS IN COBOL

COBOL FILE STATUS is available in the standard implementation only. A COBOL
compiler control card (dollar option card) which sets the ANSl74 option enables
the use of FILE STATUS and indexed 1/0. FILE STATUS is a two character EBCDIC
item where the first character indicates the problem area, if any, and the
second character provides further definition.

CODE DEFINITION

00 Indicates no problem or exception exists.

02 A duplicate record was added to the file.

10 End-of-file occurred while processing the request.

21 An attempt was made to write a record out of sequence
during file creation.

22 An attempt was made to add a duplicate record to the
file.

23 The record required to fulfilJ the request cannot be
found. For sequential files, improper sequence of
requests can cause this exception condition.

30 A hardware error occurred while processing the request.

90 An attempt
incorrect
input).

is being made to use the file in an
manner (for example, write on a file opened

7-5-
INDEX SEQUENTIAL ACCESS METHOD

PLANNING FOR ISAM FILES

ISAM provides a specific set of capabilities that must be considered during
preparation for application programs and systems. Trade-offs can be made to
favor a particular course of action. All features of the ISAM procedures are
not available to every mode of operation and language. The following
discussion of various items is intended to provide some practical insight into
ISAM usage.

MAXIMUM NUMBER OF RECORDS

The maximum number of records that can be contained in a single ISAM file is
16,777,215. Some space is required for a coarse table, fine tables, and an
INFO record. Data records can occupy the remaining space.

COARSE TABLE SIZE

One coarse table is created for the entire file.

Coarse table size is determined by the numbPr of prime data area rows used
during file creation; however, the number of rows used cannot exceed the number
of AREAS requested because the coarse table cannot expand. Not more than 999
prime data area rows may be requested because at least one row is required for
file overflow. One entry is made in the coarse table for each prime data area
row. The table is contracted when fewer prime data area rows are used than
specified.

needed should be specified. Key For file creation, a few more areas than
length also has a direct effect on table
one.

size . The def au 1 t number of are as i s

All units are bytes (8-bit characters).

Coarse table size = (number of table entries • (key length + 3)

+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.

Record space loss to coarse table = coarse table size DIV

BLOCKSIZE • number of records per block.

7-5- 2
INDEX SEQUENTIAL ACCESS METHOD

FINE TABLE SIZE

One fine table is created for each prime data area row. A prime data area is a
row of the file that was written into while the file was being created. All
other rows of the file are allocated to file overflow and do not contain fine
tables. In a given file, all fine tables have identical size. A fine table
ratio is specified to determine the number of entries in each fine table. The
ratio may range between 1 and 63; the default value is 1. When duplicate
records are permitted, only the first record in the duplicate set is eligible
for entry 1n the fine table or is counted in meeting the fine table ratio. Key
length also directly affects fine table size.

COMPUTING FINE TABLE SIZE

All units are bytes (8-bit characters).

Fine table size = (number of table entries • (key length + 3)

+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.

Record space loss to fine table = fine table size

DIV BLOCKSIZE· • number of records per block

• number of fine tables.

INFO RECORD SIZE

The first record of each ISAM file is a special record that contains attribute
type information and is essential for proper access of the ISAM data records.
The current length of the INFO record is 7 words. One data record space is
normally required to contain the INFO record but more may be used if the data
record length is less than 7 words (42 bytes).

AREAS AND AREASIZE

The file attributes AREAS and AREASIZE are more important for ISAM files than
other normal files. Both attributes must be specified when creating a new file
and are not needed at other times. The default value is 1 for either attribute
(normal file defaults are different). AREAS indicates the number of prime data
area rows expected and cannot exceed 999. AREASIZE, as specified by the
program, gives the number of data records per area. The AREASIZE attribute is
increased to allow the fine table to be written in the same area (or row) of
the file as the data it represents. AREASIZE is also increased by the number
of overflow records per area which are specified by the program. The AREAS
attribute is increased by the number of file overflow areas specified by the
program. This increase is very similar to allowing the file to expand via the
flexible attribute and does not affect coarse table size. When the ISAM file
is closed, the AREAS and AREASIZE attributes are reset to their original
values.

7-5- 3
INDEX SEQUENTIAL ACCESS METHOD

MINIMUM RECORD SIZE

ISAM does not provide for variable length records. Therefore, the attribute
MINRECSIZE should be zero or identical to the attribute MAXRECSIZE.

MAXIMUM RECORD SIZE

The value chosen for the MAXRECSIZE attribute is entirely dependent upon the
needs of the program and the absolute limits allowed by the system. ISAM
increases the value of this attribute by at least 1 word (6 bytes) and at most
11 bytes. The program should not set this file attribute, except when creating
the file. When the ISAM file is closed, the MAXRECSIZE attribute is reset to
its original value. The maximum usable values are 65,534 words or 65,535
characters.

BLOCKSIZE

The BLOCKSIZE attribute is used in association with the MAXRECSIZE attribute to
determine the number of records per block. BLOCKSIZE is always changed by
ISAM. When the program specifies a non-zero value for BLOCKSIZE, ISAM retains
the number of records per block specified by the program. The BLOCKSIZE is
increased to accommodate larger records. When the program specifies a
BLOCKSIZE of zero, ISAM computes a value for BLOCKSIZE specifically to conserve
disk storage space. ISAM computes the smallest number of records, after
MAXRECSIZE has been increased, that exactly fits into a multiple of 30-word
disk segments. The BLOCKSIZE attribute is reset to its original value when the
file is closed.

EXCLUSIVE USE

The EXCLUSIVE attribute is set true by ISAM when the tile is opened 1/0. ISAM
files may not be shared except when all program3 open the file as input only.

FINE TABLE RATIO

The program may select any value between 1 and 63 with 1 being a table entry
for each record for the fine table ratio. The most successful choice is highly
data and program dependent. Lower ratios are favorable when the file ts
volatile, and ratios that are close to the number of records per block perform
well for files that are more constant. Programatic reorganization of the file
may be performed after a number of changes have occurred in order to improve or
restore performance.

7-5- 4
INDEX SEQUENTIAL ACCESS METHOD

KEY LENGTH

Some key types (modes) allow specific maximum key lengths of 5, 6, or 11 bytes.
Character keys of 4-bit or 8-bit characters are limited only by the 14-bit
field that contains key length. The maximum usable key lengths are (1) 8-bit
for 1020 bytes and (2) 4-bit for 508 bytes (1016 hex characters). Shorter keys
yield faster performance.

KEY OFFSET

A 15-bit field is allowed which permits an offset of 32767 for 8-bit characters
and 16382 for 4-bit characters.

I. INTRODUCfION ...

2. LD INPUT COMMAND.

TABLE OF CONTENTS

8-1-

8-2-

8-1-
LOADCONTROL

1. INTRODUCTION

LOADCONTROL is a utility procedure contained in the MCP and is initiated by the
LD Operator Display Terminal (ODT) input message.

LOADCONTROL provides two major functions. The first function copies control
cards and associated data decks, if any, to magnetic tape. The second function
causes the card images on tape to be processed by the system at a later time as
a stream of control cards and data decks.

8-1- 2
WADCONTROL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

8-2-
LOADCONTROL

2. LD INPUT COMMAND

Syntax

Semantics

All options of the LD input command require an input file titled CONTROLDECK.
The last image of the file must be ?END CONTROL.

The LD option causes the input file to be copied to the Halt/Load unit and
causes the control cards contained within the file to be processed.

The LD MT option causes the input file to be copied to an output tape titled
CONTROLDECK .. The tape contains 14-word card-image records and is identified as
a load control tape by the fact that byte 31 (USASI tape type) of the VOLi
label record is a 4. The tape may be used as input to the LD option.

8-2- 2
LOADCONTROL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1 . INTRODUCTION.

MATHEMATICAL INTRINSICS

TABLE OF CONTENTS

RELATED !NFOR.\fAT!ON MANUALS

RELATED PUBLICATIONS

CONTENTS AND ORGANIZATION OF THIS DOCUMENT.

LISTING OF CONSTANTS.

EXPONENTIATION

DISCUSSION OF INTRINSIC FUNCTIONS

GROUPING OF INTRINSIC FUNCTIONS .

2. SINGLE-PRECISION INTRINSICS

ALGAMA.

ARCOS ..

ARCTAN.

ARSIN .

ATAN2

cos .
COSH.

COTAN .

ERF .

ERFC ..

EXP .

EXPONENT.

GAMMA

LN ..

LOGlO

RANDOM.

SIN .

SINH.

SQRT.

TAN .

TANH.

9-1-

9-1-

9-1-

. 9-1-

9-1-

9-1-

9-1-

9-1-

9-2-

. . 9-2-

. . 9-2-

9-2-

. . 9-2-

. 9-2-

9-2-

. . 9-2-

. 9-2-

. 9-2-

. 9-2-

. 9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

9-2-

2

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

s

s

s

s

3. DOUBLE-PRECISION INTRINSICS 9-3-

DARCOS. 9-3-

DARSIN. 9-3-

DATAN 9-3-

DATAN2. 9-3-

DCOS. 9-3-

DCOSH 9-3-

DERF. 9-3- 2

DERFC 9-3- 2

DEXP. 9-3- 2

DGAMMA. 9-3- 2

DLGAMMA 9-3- 2

DLOG. 9-3- 2

DLOGIO. 9-3- 2

DSIN. 9-3- 3

DSINH 9-3- 3

DSQRT 9-3- 3

DTAN. 9-3- 3

DTANH 9-3- 3

EXPONENT -- DOUBLE PRECISION. 9-3- 3

4. COMPLEX INTRINSICS. 9-4-

CABS. 9-4-

ccos. 9-4-

CEXP. 9-4- 2

CLOG. 9-4- 2

CSIN. 9-4- 2

CSQRT 9-4- 3

EXPONENT--COMPLEX 9-4- 3

APPENDIX 9A 9-A-

APPENDIX 9B 9-B-

9-1-
MATHEMATICAL INTRINSICS

1. INTRODUCTION

This chapter describes the mathematical intrinsics for the B 7000/B 6000 series
of computers.

RELATED INFORMATION MANUALS

The compiler languages in which the mathematical intrinsics are used are
described in the following manuals:

B 7000/B 6000 ALGOL Reference Manual, form 5001639;
B 7000/B 6000 Series FORTRAN Reference Manual, form 5001506;
B 7000/B 6000 Series COBOL Reference Manual, form 5001464; and
B 7000/B 6000 Series BASIC Reference Manual, form 5001407.

RELATED PUBLICATIONS

The following publications provide information on mathematical intrinsics:

IBM System/360 FORTRAN IV Library Subprograms C28-6596.

Computer Approximations, John Wiley & Sons Inc., New York, 1968
(Edited by the Society of Industrial and Applied Mathematics).

The Art of Computer Programming, Knuth, Vol. 2 (Chapter 3 is
on the generation of pseudorandom numbers).

CONTENTS AND ORGANIZATION OF THIS DOCUMENT

This document describes the mathematical algorithms used in the software
system. These algorithms are part of the Master Control Program (MCP), but the
compiiers in which intrinsics are used may not refer to them by names given in
this document. For example, in FORTRAN, the function CDABS actually refers to
the intrinsic CABS described herein. For information about the use of these
intrinsics by the various compilers, refer to the respective compiler and
language documents. In general, the names given to the intrinsics in this
document are those commonly accepted for mathematical functions.

LISTING OF CONSTANTS

Certain specialized constants, such as pi and e, are used throughout the
algorithms. A list of these constants is given in Appendix 9A. These values
are stated in both single and double prec1s1on, where necessary; the
appropriate value should be chosen depending on whether the algorithm under
consideration is single or double precision.

9-1- 2
MATHEMATICAL INTRINSICS

EXPONENTIATION

Several procedures are used in exponentiation and are called implicitly by the
compilers. These procedures, because of their similarity, are listed
singularly under the heading EXPONENT in each section.

DISCUSSION OF INTRINSIC FUNCTIONS

A brief description of each intrinsic function is given. In each case, this
description is followed by the algorithm used in computing the function.
Additionally, notes are sometimes provided regarding the derivation of the
algorithm.

GROUPING OF INTRINSIC FUNCTIONS

The descriptions of the intrinsic functions are grouped into three sections, as
f 011 ows:

Section 2:
Section 3:
Section 4:

Single-Precision Intrinsics
Double-Precision Intrinsics
Complex Intrinsics

Within each section, the intrinsics are arranged in alphabetical order.

9-2-
MATHEMATICAL INTRINSICS

2. SINGLE-PRECISION INTRINSICS

ALGAMA

The ALGAMA function is the natural logarithm of the GAMMA function and is
defined for positive real numbers. The algorithm used varies depending on the
value of x.

For x < 3.28
ALGAMA(x) = LN (GAMMA(x))

For x >= 3.28, the calculation is more direct, relying on Stirling's
approximation:

GAMMA(x)=(e**(-x)*x**(x-ii2)*SQRT(2*pi))g(x)

where the function g(x) is an error polynomial.

ARCOS

ARCOS is the inverse cosine function. A number between -1 and 1 is used, and
the angle returned has that cosine in radians. The angle is chosen between 0
and +pi .

The arccosine is calculated entirely using the arcsine intrinsic and the
identities of trigonometry, as follows:

ARCOS(x)= pi/2-ARSIN(x).

The value of pi/2 is given in AppendiA 9A.

ARCTAN

ARCfAN is the arctangent function of mathematics. A number is used that
returns the angle with that tangent in radians. The angle is chosen between
-pi/2 and +pi/2. The arctangent is also called the inverse tangent.

ARSIN

ARSIN is the arcsine function of mathematics. A number between -1 and
used, and the angle returned has that sine in radians. The angle is
between -pi/2 and +pi/2. Arcsine is also called the inverse sine.

i s
chosen

The arcsine is calculated for x in the range 0 to .5 only. If x is outside
this range, x is first reduced to being in the range, as follows:

If x < 0, the relationship ARSIN(x) = -ARSIN(-x) is used.

Then, if x >·5 = SIN(30 degrees) = SIN(pi/6), x is further reduced to be in the
range by the identity

ARSIN(x)= pi/2-2(ARSIN(SQRT(l-x)/2))

The value of pi/2 is listed in Appendix 9A.

9-2- 2
MATHEMATICAL INTRINSICS

ATAN2

ATAN2 is the arctangent of the quotient of two numbers but is adapted to fall
in the range of -pi to +pi by choosing it in a quadrant determined by the signs
of X and Y, the two values it is given. In effect, this function is used in
complex arithmetic as follows: given a complex number x+iy, ATAN2 (x,y) returns
the argument of that number between -pi and pi.

ATAN2 i s defined for a 1 1 re a 1 x and y values except when x=y=O and i s
calculated from the function ARCTAN, as f 011 ows:

If y 0, then ATAN2(x,0) sign(x)*pi/2.

If y < 0, then ATAN2(x,y) ARCTAN(x/y) + sign(x)*pi.

If y > 0, then ATAN2(x,y) = ARCTAN(x/y).

In these cases, Sign(x) i s a function that has the value +1 i f x >= 0 and the
value -1 otherwise.

cos
The cosine of a real number is computed by the use of the algorithm for sine
and the identity

COS(x) = SIN(x + pi/2).

COSH

Depending on the value of the argument, the hyperbolic cosine of a real number
is computed either directly from the definition by the use of the intrinsic EXP
or by approximation.

COT AN

The trigonometric cotangent accepts a number, expressed in radians, and returns
its cotangent.

The meinod useo 1or caicuiating the cotangent is identicai w11n ine method for
calculating the tangent except that since cotangent is the reciprocal of the
tangent, the final calculation for the function is obtained by use of the
relationships in the following table:

OCTANT

0

2

3

COTAN(x)

T/R

R/T

(-R)/T

(-T)/R

9-2- 3
MATHEMATICAL INTRINSICS

ERF

The e r r o r fun c t i on (ERF) 1 s u s e d i n c a i c u i a t i n g p rob ab i i i t y . I n e fun c t i on
accepts any number and returns a value between -1 and 1. The error function is
defined as follows:

ERF(x)=2/SQRT(pi)*(INTEGRAL(e**((-t)**2)dt)from 0 to x).

This function is slightly different from the "normal" probability curve
Gauss's probability integral, which is

phi(x) = l/SQRT(2*pi)*(INTEGRAL(e**(((-t)**2)/2)dt) from 0 to x).

The relationship between them is that

ERF(x)=2*phi(SQRT(2)*x).

ERFC

ERFC is the complement of the error function.

ERFC=l-ERF

EXP

The exponential function (EXP) raises an argument x to the base of e=2.71828 ...
(see Appendix 9A). Thus, EXP(x) = e••x.

EXPONENT

Single-precision exponentiation
(real-to-real).

GAMMA

is performed by the intrinsic

The GAMMA function is defined for positive numbers by the integral

GAMMA(x)=INTEGRAL((t**(x-l)*e**(-t))dt) from 0 to infinity.

RTOR

In addition, this integral can be extended analytically onto the complex plane
and yields a function that exists at all points except the negative integers
and O; it is real for all other negative numbers. Therefore, the intrinsic
GAMMA(x) accepts any number except O or a negative integer as an argument.

LN

The LN function is the natural logarithm of a positive real argument. This
function results in a positive number if given an argument greater than one and
results in a nonpositive number otherwise.

9-2- 4
MATHEMATICAL INTRINSICS

LOGlO

The common logarithm (log to the base 10) is computed by using the intrinsic LN
(for the natural logarithm) by use of the identity

LOGlO(x)=LN(x)*LOGlO(e).

The value of the common logarithm of e is listed in Appendix 9A.

RANDOM

The intrinsic RANDOM generates a pseudorandom real number x in the range 0 <= x
< 1. The number 1s generated by the mixed congruential method, which is
designed to give a uniform distribution. RANDOM is the starting point for
procedures that generate a pseudorandom number satisfying a given distribution
function. RANDOM takes one parameter, an integer called by name, and returns a
real number between 0 and 1. RANDOM is the only intrinsic described herein
that takes a call-by-name input parameter. That is, the parameter is both used
by RANDOM and changed by it to the value that is normally to be used for input
the next time the intrinsic is called. Therefore, the parameter for RANDOM is
generally given an initial value that is thereafter changed to give succeeding
values by the procedure itself.

Starting values to obtain a good sequence of pseudorandom numbers can generally
be obtained by picking odd numbers close in value to 2**19, 2••20, or 2**21.

The procedure for RANDOM generates integers in the range of 0 to 2**(39-1) and
then returns those integers divided by 2**39. Calling the value given to
RANDOM as an integer variable N, it is changed as follows:

ABS(N):=(A • ABS(N) + 116177073375) MOD (2**39),

where A is a constant dependent on th~ sign of N (which is never changed) and
the operator ".-" is the replacement operator.

The value of A is given as follows:

For nonnegative N: A=152587890725
For negative N: A=277626315293

These values allow two different pseudorandom sequences depending on whether
the starting value was positive or negative.

Then RANDOM(N) = ABS(N)/(2**39).

SIN

The trigonometric sine of an angle, expressed in radians, accepts a number and
returns a value between -1 and +l.

SIN(x) = SIN(pi-x)

MATHEMATICAL INTRINSICS

SINH

The hyperbolic sine (SINH) of a real number is computed
the definition by the use of the intrinsic EXP
depending on the value of the argument.

SQRT

9-2- s

either directly from
or by an approximation,

The square root (SQRT) of a nonnegative number results in a nonnegative number.
The algorithm for ~quare root is essentially the traditional Newton-Raphson
method; however, an initial estimate is first derived.

TAN

The trigonometric tangent (TAN) of a number, expressed in radians, returns a
positive or negative number depending on the argument. To compute the tangent
of an angle, the angle is reduced 1f 1t is outside the range 0 to pi.

TANH

The hyperbolic tangent (TANH) of a real number is computed either directly from
the definition by the use of the intrinsic EXP or by approximation, depending
on the value of the argument.

9-2- 6
MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

9-3-
MATHEMATICAL INTRINSICS

3. DOUBLE-PRECISION INTRINSICS

Many double
equivalent
intrinsics
references
operations.

precision intrinsics are calculated in the same way as the
single precision intrinsics with all references to single precision
changed to references to double precision ones or with all
to the arithmetic operations assumed to be to double precision

DAR COS

DARCOS is the inverse cosine function that accepts a double prec1s1on number
between -1 and 1 and returns the angle which has that cosine in radians. The
angle is chosen between 0 and +pi.

The double precision arccosine is caicuiaied using the ar~sinc
the identities of trigonometry as follows:

ARCOS(x) = pi/2-ARSIN(x).

The value of pi/2 is given in Appendix 9A.

DARSIN

!- .. -!--!­
llll.llll;:tl\, and

DARSIN is the double precision inverse sine intrinsic that accepts a number
between -1 and 1 and returns the angle which has that sine in radians. The
angle is chosen between -pi/2 and +pi/2.

DAT AN

The double precision arctangent takes a real number argument in radians. The
argument, x, is reduced to the range 0<X<1, where 1~tan(45 degrees)=tan(pi/4),
as in the calculation of ARCTAN.

DATAN2

DATAN2 is calculated from DATAN in the same way as ATAN2 is calculated from
ARCTAN.

DCOS

DCOS is computed from DSIN in the same way as COS is calculated from SIN:

DCOS(x) = DSIN(x + pi/2)

DCOSH

DCOSH is the double prec1s1on hyperbolic cosine of a
computed either directly from the definition by the use
or by approximation, the same as COSH.

real number and is
of the intrinsic DEXP

9-3- 2
MATHEMATICAL INTRINSICS

DERF

DERF is the double precision error function used in calculating probability.
The function accepts any number and returns a value between -1 and 1. DERF is
defined the same as ERF.

DERF(x)=2/SQRT(pi)*(INTEGRAL(e**((-t)**2)dt) from 0 to x)

DERFC

DERFC is the complement of the double precision error function.

DERFC=l-DERF

DEXP

The double precision exponential function (DEXP) is calculated similarly to the
single precision exponential function. It is converted to an exponent to the
base 2 and written as 2**I*2**F, where I is the integer portion and F the
fractional portion of the exponent.

DGAMMA

DGAMMA is the double precision equivalent of the GAMMA function previously
described as:

GAMMA(x)=!NTEGRAL((t**(x-l))(e**(-t))dt)fiom 0 to infinity.

In addition, this integral can be extended analytically onto the complex plane
and yields a function that exists at all points except the negative integers
and O; it is real for all other negative numbers. Therefore, the intrinsic
DGAMMA(x) accepts any number except O or a negative integer as an argument.

DLGAMMA

DLGAMMA returns the double precision natural log of the GAMMA function.

DLOG

The double precision natural logarithm (DLOG) is calculated in a similar way to
LN in single precision.

DLOGlO

The common logarithm is computed in double precision by the use of the same
identity as in single precision.

DLOGlO(x) = DLOG(x)*DLOGlO(e)

The value of DLOGlO(e) is given in Appendix 9A.

9-3- 3
MATHEMATICAL INTRINSICS

DSIN
The sine of a double precision argument is reduced to 0<=X<pi/2 by the method
used in calculating the single precision sine.

DSINH

DSINH is the double precision hyperbolic sine of a real number and is computed
either directly from the definition by the use or' the intrinsic DEXP or by
approximation, depending on the value of the argument (the same as SINH).

DSQRT

The square root of a double precision argument is computed in two steps: (1)
the single precision square root of the most significant half of the argument
is computed using the algorithm for finding the single precision square root;
and (2) one additional Newton-Raphson iteration, using ihe originai doubie
precision argument, double precision arithmetic, and the single precision
square root is computed. The exponent is shifted if necessary.

DTAN

DTAN is the double precision trigonometric tangent of a number, expressed in
radians. It returns a positive or negative number depending on the argument.
The calculation of the DTAN is the same as that of the TAN.

DTANH

The double precision hyperbolic tangent (DTANH) of a real number is computed
either directly from the definition by the use of the intrinsic DEXP or by
approximation, depending on the value of the argument (in the same manner as
TANH).

EXPONENT -- DOUBLE PRECISION

Double precision exponentiation is performed similarly to single precision
exponentiatfon by the use of two routines: RTOD (real-to-double) and DTOD
(double-to-double). In either case, the result is double precision.

9-3- 4
MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

9-4-
MATHEMATICAL INTRINSICS

4. COMPLEX INTRINSICS

All of the complex intrinsics are derived by the use of the real intrinsics.
In this description, several methods are used to write a complex number. When
a complex number is to be described as a simple variable, the letter z is used.
Several equivalent ways of writing z exist; for example,

z = x + iy, where x and y are real numbers and i = SQRT(-1).

z=re**(i*phi) where r and phi are the absolute value and the displacement,
respectively. They are related to x and y by the relationships

x = r COS(phi) and
y = r SIN(phi)
(also, r••2 = x••2 + y••2 and TAN(phi) = x/y).

These identities also indicate DeMoivre's formula:

e••(i*phi) = COS(phi) t iSIN(phi).

These basic relationships are used to determine most of the complex algorithms.

CABS

The absolute value of a complex number z is defined to be ABS(r) (see the
definitions at the beginning of this section).

Therefore,

CABS(x + iy) = SQRT(x••2 t y**2).

If ABS(x) >= ABS(y), the right side is evaluated as

SQRT(l t (y/x)**2)*ABS(x).

Otherwise, the right side is evaluated as

SQRT(l t (x/y)**2)*ABS(y).

ccos
The cosine of a complex number z is calculated by the use of the identity for
COS (atb) on the number x+iy. Then the identities COS(iy) = COSH(y) and
SIN(iy)=iSINH(y) are applied. These relationships are derived by the ·use of
the definitions at the beginning of this section. When the definitions of the
hyperbolic sine and cosine are substituted in the equation, the algorithm
becomes

CCOS(xtiy) = (tor-)1/2 SQRT(l-SIN**2(x)) (e••y + e••(-y)) - i/2*
SIN (x)*(e••y - e••(-y)).

The value of x is taken modulo 2pi before the sine intrinsic is called. The
negative sign is taken on the square root if the original x was in the second
or third quadrants.

9-4- 2
MATHEMATICAL INTRINSICS

CEXP

By the use of DeMoivre's relationship (see the introduction to this section)
and the basic identity that COS**2(x) 1 - SIN**2(x), the value of the
exponential can be calculated as follows:

e••(x+iy)=e••x ((+or-)SQRT(l-SIN**2(y))ti SIN(y)).

The value of y is taken modulo 2(pi) before the sine intrinsic is
negative sign on the square root is chosen if the original y is
or third quadrants.

CLOG

called. The
in the second

The complex natural logarithm (CLOG) of a number is calculated by the use of
DeMoivre's relationship and the relationships between x, y, r, and phi (see the
introduction to this section). Since the complex logarithm is not a
single-valued function, the value returned by CLOG is in the range from -pi to
tp i.

The algorithm is basically

CLOG(xtiy) = LN(r)ti*phi,

where phi is chosen to fall in the principal range noted and both rand phi are
as previously defined. The logarithm is computed as a real number. The value
of phi is computed with the real intrinsic ATAN2, which is designed for use in
this application. Then the algorithm becomes

CLOG(xtiy) = LN(SQRT(x**2ty**2))+ i ATAN2(y,x).

CSIN

The sine of a complex number z
SIN(a+b) on the complex number
SIN(iy) = SINH(y) are applied.
definitions at the beginning
hyperbolic sine and cosine are
becomes

is calculated by the use of the identity for
x+1y. Then the identities COS(iy) = COSH(y) and
These relationships are derived by use of the

of this section. When the definitions of the
substituted in the equation, the algorithm

CSIN(xtiy)=(+or-)1/2*SQRT(l-COS**2(x))*(e**yte**(-y))
+i/2 COS(x)*(e**y-e**(-y)).

The value of x is taken modulo 2pi before calling the COS intrinsic. The
negative sign is taken on the square root if the original x was in the third or
fourth quadrants.

9-4- 3
MATHEMATICAL INTRINSICS

CSQRT

The complex square root of a number is calculated first by using DeMoivre's
relationship and taking its square root.

CSQRT(z)=(r)**l/2{COS(phi/2) t i SIN{phi/2)).

Using the half-angle formulas for the cosine and sine and rearranging the above
relationship, the following is derived:

CSQRT(z)=SQRT(r(ltCOS(phi))/2)t(SQRT(r(l-COS(phi))/2)*i).

The identity x/r=COS(phi) and algebraic manipulation result in the algorithm
that is used.

F o r x > = 0 , 1 e t r = CABS (x t i y) , t h en

CSQRT(x+iy)=SQRT((rtx)/2)tiy/(2 SQRT((rtx)/2)).

If x < 0, then the trigonometric functions in the polar form are complemented
and the following algorithm results, where r =CABS (xtiy):

(SQRT(xtiy)=y/{2*SQRT((ttABS(x))/2))+ i SIGN(y)*SQRT((rtABS(x))/2).

SIGN(y) is a function that has the value tl if y is nonnegative and the value
-1 otherwise.

EXPONENT--COMPLEX

Exponentiation of a complex number is performed by two routines: CTOR, for
complex numbers to a real power, and CTOD, for complex numbers to a double
precision power. The only difference between the double precision power and
the real power is that computations are performed by the use of the double
precision intrinsics. Because the final result must be a complex number and no
double precision complex exists, exponentiation to a double precision power may
result in little increased accuracy at a high cost in time, depending on the
particular case.

9-4- 4
MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

9-A-
MATHEMATICAL INTRINSICS

APPENDIX 9A.

COMMON CONSTANTS

This appendix lists common constants used in computing the intrinsics. Real
and, where necessary, double prec1s1on values are given for each of the
constants. Since fewer double precision intrinsics than real intrinsics exist,
some of the constants are unnecessary in the double precision cases.

Constant

pi

pi/2

pi/6

SQRT(3)

LN(2)

e

LOGlO(e)

TAN(pi/24)

LN(SQRT(2pi))

LOG2(e)

pi/4

3(pi)/4

SQRT(2)/2

TAN(pi/40)

TAN(pi/20)

TAN(3pi/40)

TAN(pi/10)

Single-Precision Value Double-Precision Value

3.14159265359 3.1415926535897932384626

1.57079632697 1.5707963267948966192313

.523598775598 .52359877559829887307711

i.732050807570 i.732U5U8U75688772935275

.693147180560 .69314718055994530941723

2.71828182846 2.71S2818284590452353603

.434294481903 .43429448190325182765113

.267949192431 .267919243112270647253

.918938533205

1.4426950409

.785298163397

2.35619449019

"7n"7tn£"70tta"7
• /V/ lVU/0110 I

.0787017068246

. 158384440326

.240078759080

.324919696234

9-A- 2
MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

9-B-
MATHEMATICAL INTRINSICS

APPENDIX 9B.

STORAGE ESTIMATES AND PERMISSIBLE ARGUMENT RANGE

This appendix lists the storage estimates (in words placed in the stack) for
the code of each of the intrinsics. Although many of the descriptions of
intrinsics in this document indicate that one intrinsic may call another during
its execution, these storage estimates include all such calls. Where those
calls are not included, an asterisk(*) is placed next to the storage estimate.

In listing permissible argument ranges, several abbreviations are used. The
word "All" signifies that all single precision numbers (or double precision
numbers if the intrinsic is double precision) are permitted. "All" is otten
modified in some obvious manner. Where an intrinsic has more than one
argument, the requirements for each are listed separated by commas. The
notation (0,0) means that both the first and second arguments are zero.

Intrinsic Intrinsic Name
Pafa. No.

1 A LG AMA
2 ARCOS
3 ARCTAN
4 ARSIN
5 ATAN2
6 cos
7 COSH
8 COT AN
9 ERF
10 EXP
1 1 EXPONENT(RTOR)

12 G.A_¥.M_~

13 LN
14 LOGlO
15 RANDOM
16 SIN
17 SINH
18 SQRT
19 TAN
20 TANH
2 1 DATAN
22 DATAN2
23 DCOS
24 DEXP
25 DLOG
26 DLOGlO
27 DSIN
28 DSQRT

Storage Estimate Permissible
(In Word~) Argument Range

36*
9•
47
51*
70
39
27*
58
84
44
30*

64*

49
51
16
37
25*
3 1
58
26*
103
29•
100
103
96
100
96
43

All positive
(-1,1)
A I I
(-1,1)
Al I except (0,0)
A 11
A 11
A I I
A 11
A I I
Al 1 for exponent,
all for base except
negative numbers to
non-integral exponent

All ov~o~• no~~•;~o ~, ,e,u.a..••"'

integers and 0

All positive
All positive
ABS < 2••39
A 11
A 11
All nonnegative
A I 1
Al 1
A 1 I
Al 1 except (0,0)
Al 1
Al 1
All positive
A I I po s i t iv e
A 1 I
All nonnegative

9-B- 2
MATHEMATICAL INTRINSICS

EXPONENT
(RTOD) 30•
tDTODJ 30*

CABS 1 5.
ccos 20•
CEXP 16*
CLOG 7•
CSIN 21•
CSQRT 20•
EXPONENT
(CTOR) 55•
(CTOD) 69*

•Does not include storage space for intrinsics called by this
intrinsic, if necessary.

PATCH

TABLE OF CONTENTS

1 . INTRODUCTION. 10-1-

2. FILES USED BY SYSTEM/PATCH. 10-2-

3. DOLLAR ($) CARDS RECOGNIZED BY SYSTEM/PATCH 10-3-

$Cards. 10-3-

$& Cards. 10-3- 2

$# Cards. 10-3- 2

$: Cards. 10-3- 2

$- Cards. 10-3- 2

s• CARDS. 10-3- 3

$. Cards. i0-3- 3

$. BCL. 10-3- 3

$. BRIEF. 10-3- 3

$. COBOL. 10-3- 3

$. COMPARE. 10-3- 3

$. COMPILE. 10-3- 3

$. CONFLICT 10-3- 4

$. COUNT. 10-3- 4

$. CYCLE. 10-3- 4

$, DELETE 10~3~ 4

$. DISK 10-3- s

$. DISK $ 10-3- 6

$. DUMP 10-3- 6

$. EOF. 10-3- 6

$. ERRLIST. 10-3- 6

$. EXECUTE. 10-3- 6

$. FILEt $. DISK $ t and $. PATCHDECK. 10-3- 6

$. GUARD. 10-3- 7

$. INSERT 10-3- 7

$. LABEL. 10-3- 9

$. LIST 10-3- 9

s. LISTI. 10-3- 9

s. LISTN. 10-3- 9

$. LISTP. 10-3- 10

$. MARK 10-3- 10

$. MOVE 10-3- 10

$. NEW. 10-3- 12

$. OUT. 10-3- 12

$. PATCHDECK. 10-3- 12

$. SINGLE 10-3- 12

$. SQUASH 10-3- 12

$. TOTAL. 10-3- 12

$. VERSION and $. CYCLE 10-3- 1 3

4. EXAMPLE OF SYSTEM/PATCH INPUT 10-4-

5. DEBUG COMPILE-TIME OPTION 10-5-

$. Options Avai I able With The DEBUG Opticn. 10-5-

$. BUG. 10-5-

$. CANDE. 10-5-

$. DISCARD. 10-5- 2

$. END. 10-5- 2

$. EQUATE 10-5- 2

$. PDUMP. 10-5- ..,
~

10-1-
PATCH

1. INTRODUCTION

The patch merge program (SYSTEM/PATCH) is an ALGOL utility program used to
merge one or more patch decks into a single patch deck (on disk or pack) which
may be used as the input CARD file for an ALGOL, ESPOL, DCALGOL, COBOL, or
FORTRAN compilation.

SYSTEM/PATCH merges all input patch records by sequence number. Only numeric
or blank sequence numbers are accepted. The program allows resequencing and
patching into resequenced areas of a patch.

10-1- 2
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

PATCH

2. FILES USED BY SYSTEM/PATCH

CARD The input file containing patches to be merged
by the program.

LINE The output printer file.

NEWT APE

PATCH

PATCHES

TAPE

The output disk file created by merging the
PATCH file with the TAPE file.

The output disk file containing the merged
patches.

The output disk file containing the input
specified by the $. OUT option.

The symbolic disk file to which the patches
and $options of GO TO, SEQ, MERGE, and the $.
options of I~SERT, MOVE, COMPARE, LISTN,
CYCLE, VERSION, and NEW are applied.

10-2-

10-2- 2
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

10-3-
PATCH

3. DOLLAR ($) CARDS RECOGNIZED BY SYSTEM/PATCH

Seven categories of dollar cards are acceptable as input to SYSTEM/PATCH. These
categories are distinguished by a unique character, or blank, immediately
following the dollar sign. Each category is described as follows:

$Cards

The following c0mpiler dollar option cards are recognized by SYSTEM/PATCH:

SEQ <Sequence base> +/- <Sequence increment>
vom
VO IDT
MERGE
GO TO
BUMP TO

These option functions are performed by SYSTEM/PATCH and not by the compiler.
For this reason, they are (except for MERGE) erased from the card they are on
before that card is written to the patch file. SYSTEM/PATCH creates SET and
POP VOIDT cards as needed to simulate the functions of these options.

10-3- 2
PATCH

A l l u t h e r o µ t i o n s a r e p a s s c d t o t h c h o :> t c om p i 1 c r • • ... t h e PATCH f i 1 e , b u t
ignored by SYSTEM/PATCH. Such compiler options as AREACLASS, INSTALLATION,
LEVEL, LIMIT, VERSION, INCLUDE, MAKEHOST, and CHECKPOINT are checked for format
since their associated parameters could cause invalid actions if improperly
s p e c i f i e d . Un l i k e t h e c om p i 1 e r s , i f no op t i on a c t i on i s p r e s e n t , SET i s
assumed.

A dollar card is defined to be a card with a dollar sign in column 1 (or column
7 for COBOL). A dollar sign in any other column is not recognized. Normally,
SYSTEM/PATCH protects a dollar card from being suppressed by a card with the
same sequence number in a succeeding patch. This protection is removed for
dollar cards which have nothing on them.

$& Cards

$& cards are $ cards that the
SYSTEM/PATCH replaces the &
PATCH file.

Example

$& SET SEQ 90000 + 1000

becomes

$ SET SEQ 90000 + 1000

$# Cards

user does not want SYSTEM/PATCH to handle.
character by a blank and puts the card into the

$#cards are patch delimiter cards. Each individual patch within the input
deck must be immediately preceded by a card with a $# in columns 1 and 2
(columns 7 and 8 for COBOL; that i8, when the COBOL control option is set). The
remainder of the card may be used for comments. (See discussion of LABEL,
MARK, and COUNT control options in later paragraphs.)

$: Cards

$: cards are comment cards. They are listed if LISTP is SET and written to the
output PATCHES file if OUT is SET; otherwise, they are ignored. They can occur
anywhere in the patch input; no limit exists on the number that can occur.

$- Cards

$- cards are used to patch a patch. A$- card is treated as a regular card, in
that it must have a sequence number and may delete a card in a previous patch
at that sequence number; however, it is not included in the PATCH file. The
effect is to let the original source filter through with the original patch
number (if any) without changing an established patch or repunching the source
and losing the patch number.

10-3- 3
PATCH

$* CARDS

$* cards contain WFL commands (without comments) which SYSTEMiPATCH puts into
an array and performs an ALGOL ZIP WITH ARRAY. SYSTEM/PATCH modifies the$*
cards by putting a semicolon at the end of each statement and precedes each
statement with a question mark. By placing a hyphen in column 80 of a$* card,
the user can suppress the insertion feature described above (for that card).

$. Cards

$. cards are control cards to SYSTEM/PATCH which are similar to compiler $
cards. They are used to control SYSTEM/PATCH and are not included in the PATCH
file. Many of these options may be SET, RESET, or POPped in a manner similar to
the compiler options. If no action is specified, SET is assumed. The text
field of a $.CARD consists of columns 3 thru 80 (9 thru 80 if $.COBOL is set).
Parsing of this text field is terminated by a percent character. Unlike
compiler options, no action is taken on options not specifically mentioned.
Listed below are the $. options and a description of each.

$. BCL

When the CARD file has some input that is BCL punched, BCL should be SET before
such input and RESET afterwards. SYSTEM/PATCH does a software translation of
the specified input. This is not necessary if the intmode of the card file is
BCL. The BCL option may be SET, RESET, or POPped. The default value is RESET.

$. BRIEF

This option is used with the COMPARE option to suppress printing of more than
six consecutive voided lines. The first card voided, the last card voided, and
the number of cards voided is printed instead. BRIEF may be SET, RESET, or
POPped. The default value is RESET.

$. COBOL

This option tells SYSTEM/PATCH to expect input in COBOL format: Sequence
numbers in columns 1 through 6, dollar signs in column 7. After this option is
SET, all special $cards recognized by SYSTEM/PATCH must be in column 7, but
the card actually setting this option must have a$. starting in column 1.
This option may be SET, RESET, or POPped. The default is RESET.

$. COMPARE

This option causes SYSTEM/PATCH to compare the PATCH file with the TAPE file,
listing all patch cards and card~ affected in the TAPE file. COMPARE may be
SET, RESET, or POPped. The default value is RESET.

$. COMPILE

The COMPILE option causes SYSTEM/PATCH to ZIP the compilation of the TAPE file
with the PATCH file if no fatal errors are discovered. The CARD and TAPE files
are label equated automatically by SYSTEM/PATCH. Other information for the
compile must be passed by$* cards supplied by the user.

10-3- 4
PATCH

Example

$. SET COMPILE
$* COMPILE A/B WITH ALGOL LIBRARY
$* ALGOL FILE NEWTAPE(TITLE = S/A/B)

COMPILE may be SET, RESET, or POPped. The default value is RESET. COMPILE and
EXECUTE may not be SET at the same time.

$. CONFLICT

This option controls printing of patch conflicts (cards deleted in previous
patches by cards in later patches). When SET, these conflicts are listed in the
LISTP output section. CONFLICT may be SET, RESET, or POPped. The default value
is SET.

$. COUNT

Syntax

$. COUNT <number>

Semantics

If the action is SET or no action is specified, the COUNT option must be
followed by an unsigned integer number. If the action is RESET or POP. the
COUNT option must not be followed by this number. When SET, SYSTEM/PATCH gets
the number of cards to be found in each patch from the $# card for that patch.
It checks the number found against the number specified and issues an error if
the numbers differ. The specified card count on the $#card must begin in the
column specified by the number in the $. COUNT command. This allows
flexibility in that different areas on the$# card may be used to specify the
card count for different patches. $ cards are counted, non $ cards are counted,
and $. cards with MOVE or INSERT commands are counted.

$. CYCLE

Refer to the $. VERSiON option.

$. DELETE

Syntax

~-,.--~~~~---.~DELETE r c= <integer>~~~~~~-~J~--'-~~~~~~~~~---1
SET <integer> - <integer>

RESET

POP

10-3- s
PATCH

Semantics

When SET, SYSTEM/PATCH deletes the patches specified in the number list.
Patches already processed are not affected. Each patch may have its DELETE
option SET, RESET, or POPped as desired. A deleted patch is listed if LISTP is
SET but is otherwise ignored. DELETED patches are not included in the PATCHES
f i le.

$. DISK

Syntax

$.DISK di le title>

Semantics

This option tells SYSTEM/PATCH to get input from the file specified. Input
from this file is expected to be in the same format as all other input to
SYSTEM/PATCH with the following exceptions:

Example

1. The input from the specified file may not contain$. DISK, $. DISK
$, $. PATCHDECK , or $. FILE commands.

2. If the file specified has a maxrecsize 15 (11 if intmode is BCL),
SYSTEM/PATCH does not change the MARK numbers even if MARK is SET.
This allows MARK numbers already present to be preserved.

$. DISK X/Y/Z

Label equation is allowed for file title specification of one node for $.FILE,
$.DISK, $.PATCHDECK, and $.DISK$ commands.

Other $. commands may appear on the same $. card after $.FILE, $.DISK,
$.PATCHDECK, and $.DISK$.

Example

? BEGIN JOB PATCHER(STRING PATCHFILE);
RUN SYSTEM/PATCH;
FILE TAPE(TITLE =SYMBOL/SOURCE ON PACKOl);
FILE INPUT(TITLE = #PATCHFILE);
DATA CARD
$#PATCH SEPARATOR CARD
$ SET LIST MERGE NEW
$#PATCH SEPARATOR CARD 2
$.FILE INPUT COMPARE
? END JOB

CANOE, SPO, or WFL input would be:

START PATCH/RUN (" PATCH/SOURCE/23 ON PACK02 ")

The result of this START command is a SYSTEM/PATCH run in which the file
PATCH/SOURCE/23 ON PACK02 is used, and a compare listing is generated.

10-3- 6
PATCH

S. DISK S

Refer to the $. FILE option.

$. DUMP

I f t he f i r s t fa t a 1 e r r o r o c c u r s i n pa t c h N (N > l) and DUMP i s SET ,
SYSTEM/PATCH merges the first N-1 patches and locks them on a disk file. If
the PATCH file had the title X/Y/Z, then this file has the title DUMP/X/Y/Z.
The $. DISK option can then be used to restart the merge without rereading the
first N-1 patches. DUMP may be SET, RESET, or POPped. The default value is
RESET.

$. EOF

This option tells SYSTEM/PATCH that this is the end of all input. $. EOF may
occur in any input file. Option actions have no effect on it.

S. ERRLIST

This option is only for execution from a remote terminal. If ERRLIST is SET,
all errors and warnings are displayed at the the terminal. If ERRLIST is RESET,
this listing is suppressed. ERRLIST may be SET, RESET, or POPped. The default
value is SET. If execution is not from a remote terminal, changing the value
of ERRLIST has no effect.

$. EXECUTE

The EXECUTE option tells SYSTEM/PATCH to ZIP a specified program if no fatal
errors are discovered. This option uses the $* cards in a similar manner to the
COMPILE option, except that no label equation occurs. The terminal END JOB
control statement ts supplied by SYSTEM/PATCH. EXECUTE may be SET, RESET, or
POPped. The default value is RESET. EXECUTE, and COMPILE may not be SET at the
same time.

S. FILE, S. DISK $, and $. PATCHDECK

Syntax

$. FILE <file title>
$. DI SK $ < f i I e t i t I e >
$. PATCHDECK <file title>

Semantics

These commands are synonymous. They are extensions of the CARD file. When one
of these commands is encountered, SYSTEM/PATCH reads from the specified file
until it reaches end-of-file or until another$. FILE, DISK $, PATCHDECK, or
DISK command is encountered. The differences between these commands and the$.
DISK command is that input from these commands is marked if MARK is SET. Each
may be nested within the others up to 10 levels. Each may contain $. DISK
commands. If LISTP is SET, the file title of the disk file from which a record
is read is printed to the right of the sequence number in the printer listing.
Titles of files specified by $.DISK$, $.PATCHDECK, and $.FILE commands can be
label equated. Refer to $.DISK for this feature.

Examples

$. FILE MY/FILE ON MYPACK
$. PATCHDECK A/B

PATCH

$. DISK $ MY/OTHER/FILE ON MYPACK

$. GUARD

Syntax

$. GUARD <m> - <D> <Comment>

Semantics

10-3- 7

The GUARD option specifies that all patch cards within the specified sequence
range (<m>-<n>) are to be f1agg~d ill a ~pecial report in the printer output
with the specified <Comment>. The <Comment> may be any character string. The
GUARD option must be the last control option specified on the $. card. No more
than 100 areas may be guarded in this manner. If a fatal error occurs, no GUARD
output is generated.

$. INSERT

Syntax 1

-- $.INSERT <file id> <first> <hyphen> <last> AT <base inc>-------~

Syntax 2

-- $.INSERT <file id> <first> AT <base inc>----------------~

<patch card(s) to the inserted material>

-- $. ~ POP-r- INSERT <last>

L RESET_J

--r <base> I L J
. L NEXT___J +-- <iDC)

10-3- 8
PATCH

di le id>

NOTE

<hyphen> indicates the character

Semantics

The INSERT command serves two functions. Syntax 1 is used to insert a copy of
a portion of the virtual TAPE file (the TAPE file plus previous patches) at the
base specified and to insert a portion of an external file (indicated by
<fileid>) at the base specified. Syntax 2 allows text that is being INSERTed
to be patched.

<baseinc> must be either a number or the mnemonic NEXT. <baseinc> specifies
the starting sequence number at which the INSERTed text is to be put. If no
increment (+<inc>) is specified, then the last value of the sequence increment
is used. Since the base and increment used for the INSERT command are the same
as the base and increment used for handling the SEQ $ option and the MOVE
command, their values may be changed during the INSERT by a $ integer card or $
+integer card via syntax 2. They are not reset to their default values until
the next patch ($#card).

The NEXT version of specifying the base has two meanings. If the value of SEQ
is SET, then NEXT simply means to use the ryresent value of the sequence base.
If the value of SEQ is RESET, then NEXT means to use the sequence number of the
last card in this patch plus the value of the increment as the base.

NOTE

An INSERT may not be done while VOID is
SET, MERGE is RESET, or while doing a
MOVE. VOID may not be SET, MERGE may not
be RESET, a MOVE may not be done, a $ GO
TO may not occur, and ~~~ may not be
changed while INSERTing. $cards may not
occur in text INSERTed from an external
file. If the INSERT is from an external
file, then VOIDT may be SET when the
INSERT begins but may not be changed
during the INSERT. If the INSERT is not
fr om an extern a 1 f i 1 e , then VO IDT may not
be in a SET state at any time during the
INSERT. INSERT commands may not be
nested. The range to be INSERTed may not
overlap the destination range if the
INSERT is from the virtual TAPE file.
The destination range may not overlap
sequence numbers in the virtual TAPE
f i 1 e .

10-3- 9
PATCH

S. LABEL

Syntax

$. LABEL <number>

Semantics

If the action is SET or no action is specified, the LABEL option must be
followed by an unsigned integer number. If the action is POP or RESET; the
COUNT option must not be followed by this number. When SET, SYSTEM/PATCH gets
the label to be used for a patch from the column on the $# card for that patch
specified by the unsigned integer of the LABEL command. The label information
is terminated by the first blank character. If COBOL is SET, this label
information is right justified in column 80 for a maximum length of 8. If
COBOL is not SET, the lahel information is prefaced by a percent character and
right-justified in column 72. If a nonblank character is present in the
destination field (of the card to be labeled), the label for that card is
suppressed.

S. LIST

The LIST option tells SYSTEM/PATCH to list the created PATCH file (if no fatal
errors occured) in the LINE file. LIST may be SET, RESET, or POPped. The
default value is RESET.

S. LISTI

If LISTI is SET, SYSTEM/PATCH lists input inserted from external files, as
specified by the INSERT option, in the LISTP section of the LINE file. LISTI
may be SET, RESET, or POPped. The default value is SET.

S. LISTN

Syntax

SET

r LISTN___...____,[~ <'.ntegen J
<Integer> - <integer>

RESET

POP

10-3- 10
PATCH

Semantics

If the value of LISTN is SET, then ranges of the virtual NEWTAPE file (that is,
the NEWTAPE file SYSTEM/PATCH creates or the NEWTAPE file SYSTEM/PATCH would
create if NEW had been SET) as specified by the <number list> are listed in the
LINE file. If <number list> is <empty>, then the complete virtual NEWTAPE file
is listed.

If the value of LISTN is RESET, then ranges of the virtual NEWTAPE file as
specified by the <number list> are not listed in the LINE file. If <number
list> is <empty>, then none of the virtual NEWTAPE file is listed. This allows
the user to RESET all or parts of ranges that were previously SET.

LISTN may be SET, RESET, or POPped as desired. The default value is RESET with
an <empty> number list (no portion of the virtual NEWTAPE file is listed).

$. LISTP

If LISTP is SET, SYSTEM/PATCH lists the input to the LINE file. All $cards, $#
cards, $:cards,$& cards,$* cards,$- cards, and$. cards are listed in this
section as they are found. LISTP may be SET, RESET, or POPped. The default
value is SET.

S. MARK

The MARK option is for use with ALGOL, ESPOL, and DCALGOL symbolics. When SET,
SYSTEM/PATCH places the mark level information in columns 81 thru 90 (81 thru
88 for ESPOL symbolic files) of the merged patch. This information is taken as
the iirst item immediateiy after the first nonbiank ("noise") character string
on each $# card.

Example

$. MARK LABEL S COUNT 3
$#12XYZ 27.380.056

In this example, all cards from this patch (except cards read in from a file
specified by a$ DISK command) contain 27.380.056 in columns 81 thru 90 in the
merged patch. These cards are also labeled %XYZ in columns 69 thru 72 (see
$.LABEL). SYSTEM/PATCH also checks to see that this patch has exactly 12 cards
in it (see $.COUNT).

$. MOVE

Syntax #1

PATCH

Syntax 2

-- $. MOVE < f i rs t > TO <base inc> -----------------------~

<patch card(s) to the moved material>

$. -r- POP---i- MOVE < 1 as t >

L RESET_J

<base inc>

<base>-~-r--------r----------------------------1

L NEXT__J L + d DC) _J

NOTE

<hyphen> indicates the character

Semantics

10-3- 11

MOVE commands move portions of the virtual TAPE file (that is, the TAPE file
plus previous patches) to a range beginning at the base specified. This is
done by putting SET and POP VOIDTs around the range to be moved and creating a
copy of the moved text at the new range. Syntax 2 allows text that is being
MOVEd to be patched.

<baseinc> must be either a number or the mnemonic NEXT. <baseinc> specifies
the starting sequence number at which the MOVEd text is to be put. If no
increment is specified, then the last value of the sequence increment is used.
Since the base and increment used for the MOVE command are the same as the base
and increment used for handling the SEQ$ option and the INSERT command, their
values may be changed during the MOVE by a $ integer card or $ +integer card in
syntax 2. They are not reset to their default values until the next patch ($#
card).

The NEXT version of specifying the base has two meanings. If the value of SEQ
is SET, then NEXT simply means to use the present value of the sequence base.
If the value of SEQ is not SET, then NEXT means to use the sequence number of
the last card in this patch plus the value of the increment as the base.

NOTE

A MOVE may not be done while VOIDT or
VOID is SET, MERGE is RESET, or while
doing an INSERT; nor may SEQ be changed
or a $ GO TO occur while doing a MOVE.
MOVE commands may not be nested. The
range to be MOVEd may not overlap the

10-3- 12

$. NEW

PATCH

destination range and the destination
r~ngP m~y not overlap sequen~e numbers in
the virtual TAPE file.

If NEW is SET and SYSTEM/PATCH finds no fatal errors, the PATCH file is merged
with the TAPE file to create the NEWTAPE file. The NEWTAPE file contains no$
cards (even$ cards passed through as $&cards are not included). The blocking
factors of the NEWTAPE file are those that a compiler created NEWTAPE would
have. NEW may be SET, RESET, or POPped as desired. The default value is RESET.

$. OUT

Wh e n OUT i s SET , $ c a r d s , $ • c a rd s , $ # c a r d s , $: c a r d s , $ - c a r d s , $. c a r d s w i t h
MOVE or INSERT options, and regular patch cards are written to the output disk
f i l e PATCHES . Th i s f i l e i s l o ck e d a f t e r a l l i n p u t ha s been pro c e s s e d . OUT may
be SET, RESET, or POPped to allow the user to select only specific portions of
the input. The default value for OUT is RESET.

$. PATCHDECK

Refer to the $. FILE option.

S. SINGLE

When SET, SYSTEM/PATCH single spaces the output to LINE. When RESET this
output is double spaced. SINGLE may be SET~ RESETi or POPped. The default value
is SET unless SYSTEM/PATCH was compiled with the compiler user option DOUBLE
SET, in which case the default value is RESET.

S. SQUASH

SQUASH may be SET, RESET, or POPped. When SET, each patch in the LISTP listing
is separated by a line of equal signs. When RESET, each patch is listed
beginning on a new page. The default value for SQUASH is SET.

$. TOTAL

Syntax

$. TOTAL <number>

Semantics

If the action is SET or no action is specified, the TOTAL option must be
followed by an unsigned integer number. When all input has been processed and
the value of TOTAL is SET, SYSTEM/PATCH checks the number of patches actually
found against the number specified. If a discrepancy occurs, a fatal error is
issued and the PATCH file is not locked. TOTAL may be SET, RESET, or POPped.
The default value is RESET.

10-3- 13
PATCH

$. VERSION and $. CYCLE

Syntax

~-$.VERSION~- <Version number>~~~~~~~~~~~~~~~~~~~~~~--l

L_ <cycle number>_J

Semantics

When used, SYSTEM/PATCH concatenates the <Version number>, the <cycle number>,
and the <patch number> (from the $# card) and uses this as the mark number. If
the TAPE file is an ESPOL symbolic or has an intmode of BCL, the periods (.)
are not used as separators in this concatenation. All three numbers (<version
number> , <Cycle number> , and <patch number>) must be in the correct range.
Both a <Version number> and a <Cycle number> must be specified. Each may be
changed separately at any time. The <patch number> can only be changed at the
beginning of each patch by the $# card.

10-4-
PATCH

4. EXAMPLE OF SYSTEM/PATCH INPUT

? RUN SYSTEM/PATCH
? FILE TAPE(TITLE=SYMBOL/PATCH ON SYSPACK)
? FILE PATCH(TITLE=SYSTEM/PATCH/NEWPATCH)
? FILE PATCHES(TITLE=SYSTEM/PATCH/NEWPATCHES)
? FILE INCLl (TITLE=(USCODE) INCLUDE/FILE/I)
? FILE INCL2 (TITLE=(USCODE) INCLUDE/FILE/2)
? FILE NEWTAPE(TITLE=SYMBOL/NEW/PATCH ON SYSPACK)
? DATA
$. SET NEW COMPARE BRIEF EXECUTE LIST
$* RUN MY/PROGRAM ON MYPACK
$* FILE CARD(KIND=DISK,TITLE=KARD/FILE)
$# D 0 L L A R C A R D S
$ SET MERGE
$ SET NEW
$ SET LISTP
$ SET LINEINFO
$ SET SEQERR NEWSEQERR
$: THESE ARE SOME STANDARD $ CARDS FOR A COMPILE
$. MARK TOTAL S OUT DELETE S
$# N-0-1-S-E~W-O-R-D 27.099.001
$. PATCHDECK MY/PATCH/FILE ON MYPACK
$#GARBAGE 27.099.002

<patch cards>

$. VERSION 28.020
$# BUZZZZZ 001
$. MOVE 50000-52000 TO 600100+100
$. MOVE 800000 TO NEXT+20

<patches to the moved material>

$. POP MOVE 8001000
$. INSERT INCLl 0-500 AT 900000 + 30
$. INSERT INCL2 6000-7000 AT NEXT
$. INSERT ",MY/THIRD/INCL/FILE ON MYPACK" 61000 AT NEXT+300

<patches to the inserted material>

$. RESET INSERT 75000
$. INSERT 2100-2500 AT NEXT % THIS IS A COMMENT
$# MORE_NOISE 2
$: THIS IS A COMMENT ABOUT THIS PATCH
$. FILE A/B
$. POP MARK RESET LISTP
$. DISK $ MY/OTHER/A/BON MYPACK2
$. EOF
$: THIS CARD WILL NOT BE READ BY SYSTEM/PATCH
$: NOR THIS ONE
? END

10-4- 2
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

10-5-
PATCH

5. DEBUG COMPILE-TIME OPTION

A compile-time option DEBUG is available to facilitate the debugging and
development of SYSTEM/PATCH. When SYSTEM/PATCH is compiled with a$ SET DEBUG
card in the symbolic, the flow of control through many critical procedures and
the values of many important variables may be traced at will.

$. Options Available With The DEBUG Option

$. BUG

Syntax

SET

L RESET

LPOP

Semantics

The <number list> specifies which BUG options are to be SET, RESET or POPped.
The specific action of each BUG option is subject to change and can be found in
the BUG DIRECTORY near the beginning of the symbolic.

S. CANDE

CANDE may be SET, RESET or POPped. The default value is RESET. This option only
concerns input from a remote terminal using CANDE, and changing its value has
no effect when input is initiated from cards. When SET, the user may input
text that has sequence numbers by typing the sequencing numbers first.

Example

$# PATCH 005
$. SET COMPARE
500$ SET VOIDT
01000$ POP VOIDT

Is equivalent to:

$# PATCH 005
$. SET COMPARE
$ SET VOJDT
$ POP VOIDT

00000500
00001000

10-5- 2
PATCH

$. DISCARD

This command causes SYSTEM/PATCH to close the LINE printer file with purge. The
effect is to eliminate all printer output up to this point.

$. END

When SYSTEM/PATCH encounters a$. END option, it treats this as the end of all
input to be merged for this particular set of patches. If no errors occur,
SYSTEM/PATCH then creates the PATCH file and does the COMPARE and other
optional output that may have been specified. It then starts reading from the
primary input file (CARD file or remote file) and expects input for another
SYSTEM/PATCH RUN. This capability allows multiple SYSTEM/PATCH runs in one
run. Refer to $. EQUATE option.

$. EQUATE

Syntax

$. EQUATE TAPE= <file title>
$. EQUATE PATCH= <file title>
$. EQUATE PATCHES= <file title>
$. EQUATE NEWTAPE =<file title>

Semantics

The EQUATE option causes SYSTEM/PATCH to change the title of one of the four
files specified above to the title given. This option must be the last option
on the $. card. When used with the $. END option, multiple SYSTEM/PATCH runs
may be done in one run against different pieces of software with different
PATCH, PATCHES, and NEWTAPE files created. Separate printer files are created
for each run.

$. PDUMP

This option may be SET, RESET, or POPped. The default value for PDUMP is RESET.
When PDUMP is SET; SYSTEM/PATCH takes a PROGRAMDUMP on any error encountered.

1. INTRODUCTION.

OVERALL SORT DESIGN

2. DISK ONLY MODE.

DISK SORTING.

Stringing Phase

Merging Phase

3. TAPE ONLY MODE.

TAPE SORTING.

Stringing Phase

Merging Phase

SORT

TABLE OF CONTENTS

4. INTEGRATED TAPE DISK (ITD) SORTING.

5. MEMORY ONLY MODE.

MEMORY SORTING.

6. USE OF SORT IN COBOL LANGUAGE

COBOL SORTING

SORT MODE

OBJECT-COMPUTER.

SELECT

SD

SORT

SORT INPUT/OUTPUT PROCEDURE LOGIC FLOW

MERGE MODE.

COBOL SORT EXAMPLE.

7. USE OF SORT IN ALGOL LANGUAGE

ALGOL SOR TI NG

SORT STATEMENT.

Sort Parameters

<Output option>.

<input opt ion>

<number of tapes).

11-1-

11-1-

11-2-

11-2-

11-2-

11-2-

11-3-

11-3-

11-3-

11-3-

11-4-

11-5-

11-5-

11-6-

11-6-

11-6-

11-6-

11-6-

11-6-

11-6-

11-6-

11-6-

11-6-

11-7-

11-7-

11-7-

11-7-

11-7-

11-7-

11-7-

2

3

3

3

3

3

s

6

7

2

2

2

3

<Compare procedure>. 11-7- 3

<record length>. 11-7- 3

<Size specifications>. 11-7- 3

<restart specifications> 11-7- 4

Input, Output, and Compare Procedures in ALGOL Sorts. 11-7- 4

Sort Mode 11-7- 4

MERGE STATEMENT 11-7- 4

ALGOL SORT EXAMPLE. 11-7- s

8. USE OF SORT IN PL/I LANGUAGE. 11-8-

PL/I SORTING. 11-8-

SORT STATEMENT. 11-8-

Sort Parameters 11-8-

(SOrt identifier>. 11-8-

<key option> 11-8-

dnput option> 11-8- 2

<Output option>. 11-8- 2

<memory option>. 11-8- 2

PL/I SORT EXAMPLE 11-8- 3

9. EFFICIENT USE OF THE SORT 11-9-

SORT EFFICIENCY 11-9-

Core Estimate 11-9-

Number of Work Tapes. 11-9-

User Input/Output Fi le s 11-9-

Character Sets. 11-9-

Comparison Technique. 11-9-

Variable-Length Records 11-9- 2

SORT MODE 11-9- 2

KINDS OF SORTS. 11-9- 2

Record Sort 11-9- 2

Tag Sort. 11-9- 2

RECORD SORT VS TAG SORT 11-9- s

SUGGESTIONS FOR MORE EFFICIENT SORTING. 11-9- 6

10. SORT RECOVERY CONSIDERATIONS 1 1-10-

RESTART

Language Syntax Extensions.

RESTART PARAMETER VALUES.

RESTARTING DURING STRINGING PHASE

ERROR RECOVERY.

Error Recovery of Control Fi 1 e Input Errors

Error Recovery of Control Fi 1 e Output Errors.

Error Recovery of Workfile Input Errors

Error Recovery of Workfile Output Errors.

Error Recovery of User Output Fi 1 e Errors

Error Recovery of Workfile Input-Errors

11. MISCELLANEOUS INTERNAL INFORMATION

SORT DISK FILES

SORT MEMORY ALLOCATION ..

MISCELLANEOUS INFORMATION . .

APPENDIX l lA. . .

SORT ERROR MESSAGES

APPENDIX l lB. .

FILE NAMES.

SORT STATISTICAL ARRAY ..

APPENDIX 1 lC.

APPENDIX 1 lD.

COMPANALYZER.

INLINECOMP ..

STRINGING PROCEDURES ..

OPTIONS .

during User

11-10-

11-10-

11-10-

11-10-

11-10-

11-10-

11-10-

11-10-

11-10-

11-10-

Output. 11-10-

11-11-

.. 11-11-

.. 11-11-

3

4

6

7

7

7

8

8

8

8

3

.. 11-11- 4

. . . 11-A-

. . . 11-A-

11-B-

11-B-

. 11-B-

11-C-

11-D-

. 11-D-

. . 11-D-

11-D-

11-D- 2

11-1-
SORT

1* INTRODUCfION

This section describes the design and use of the MCP SORT facility, hereafter
referred to as SORT. Sections 2 through 5 give a detailed design description
of all phases of the SORT. Sections 6 through 9 provide a user's guide to
writing efficient sorts in various modes and languages. The appendices supply
reference information pertinent to sorting.

OVERALL SORT DESIGN

SORT is a procedure of the MCP. This procedure is designed to sort or merge a
number of files into a single file of ordered records.

SORT workfiles are selected by the user. Workfiles may reside on disk or tape
(er both) or in memory. the SORT procedure uses these workfiles to order
records of a single input file.

The SORT can also merge a set of presorted files into a single ordered file.

Sorting is performed in two phases:

1. The sorting or stringing phase.

2. The merging phase.

When SORT is activated, it initially determines array sizes, number of tapes,
buffer sizes, and blocking information from parameters provided by the user.
SORT begins reading records from the input file and sorts them into groups,
called "strings", on the sort workfiles.

After the last input record is read, the merging phase begins. The strings of
sorted records are merged into larger strings until the result is one string
containing the ordered input file. The ordered input file is written to the
user's output file, and the SORT terminates.

11-1- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

11-2-
SORT

2. DISK ONLY MODE

DISK SORTING

When this
The size
estimate.
and PL/I
allocates
estimate.

sorting mode is specified, all SORT workfiles are maintained on disk.
of the disk workfile may be specified by a user-supplied disk
If this estimate is no~ supplied, the default disk size for ALGOL
is 600,000 words and for COBOL, 900,000 words. Normally, SORT

~O disk areas, with varying area sizes depending on the user's disk

Disk estimates must be large enough to accommodate the user's input file. The
amount of disk required for merging depends on several factors. However, a
safe disk estimate is 1.5 to 2 times the input file size.

Stringing Phase

Strings are written serially to the SORT workfile, titled DISKF, as they are
formed during the stringing process. For each string, a disk control word is
retained for use during the merge phase. A disk file, titled DISKC, is
allotted for these control word records.

If disk space is exhausted during the stringing phase, the SORT is aborted.

Merging Phase

The disk merging phase begins after completion of the stringing phase and
merges strings into longer strings on disk. As each new merged string is
formed, a new control word is built. When the number of strings remaining to
be merged is less than or equal to the number of strings that can be merged at
one time, SORT writes the records to the user's file or output procedure.

During the merging phase, "wraparound" on the workfile is possible. Wraparound
means merged records are written at the beginning of the workfile. Wraparound
is possible because the strings occupying the space at the beginning of the the
workfile have already been handled by the merge operation. This wraparound
means that sorting can be done into the same disk file being used for input.
This action is not recommended because a Halt/Load on a program fault leaves
the disk file in an undefined state. A preferred method is to sort into a new
file of the same name that will be locked at sort completion. In all cases,
exhausting disk space (such as sorting a larger file into a crunched file)
causes an abort.

11-2- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

11-3-
SORT

3. TAPE ONLY MODE

TAPE SORTING

In a tape only sort, all SORT workfiles are maintained on magnetic tape. From 3
to 8 tapes may be used as workfiles; the user specifies the number of tapes to
be used. The sorting method used for tape sorting is the polyphase
merge/reverse technique.

Unlike a disk only sort where strings are written serially on the workfile as
they are formed, special string distributions and string sequencing techniques
are required for a tape sort. String distributions are based on a generalized
Fibonacci number series. The string sequencing (ascending or descending) is
specifically designed for reverse tape reads.

Stringing Phase

Initially, in the stringing phase, one work tape is designated as the first
merge output tape and thus is not used during the stringing process. For
example, in a three-tape sort, strings are written to only two tapes. Strings
are then dispersed to the stringing tapes in the special pattern until the
current level in the distribution is ~atisfied. The distribution is
transferred to the next level and stringing continues. When the last input
record is strung, the stringing phase is complete.

A special string sequencing pattern is required by SORT because of the reverse,
tape-read technique used in the merging phase. The pattern is as follows:

1. Strings are written to an individual tape in alternating
sequence (ascending, descending, ascending, and so on).

2. In an ascending sort, all tapes except the tape with the
odd number of strings (that is, the last tape) begins with
a descending string. The oaa tape begins wiih an
ascending string. In a descending sort, the sequence
pattern is reversed.

The following example depicts the stringing phase of a five-tape ascending
sort.

11-3- 2

Example

13 Strings
Distribution Is: 2,4,4,3

Tape
D
A

SORT

Tape 2
D
A
D
A

Tape 3
D
A
D
A

Tape 4
A
D
A

D = descending string. A = ascending string.

During the stringing phase, SORT moves cyclically on the tapes - that is, from
tape 1 to tape n looking for a tape to string. If the distribution is
satisfied on a given tape, SORT moves to the next tape. When the distribution
is satisfied on all tapes, the Fibonacci distribution is transferred to the
next level.

At the completion of the stringing phase, if the number of strings distributed
is less than the desired Fibonacci distribution level, the tapes are padded
with "dummy" strings to fill out the distribution. The dummy strings are
recorded internally but are not physically written on the tapes.

Merging Phase

The merging phase of the tape sort uses the "polyphase merge/reverse tape read"
technique. In the polyphase method, strings from working tapes are merged to a
designated output tape until one of the tapes contains no more strings. This
tape now becomes the output tape and thus, is the end of a merge pass or level.
The string totals on the remaining tapes now correspond to the next lower level
in the distribution table. The merging operation continues until one final
string can be written to the user's file.

11-4-
SORT

4. INTEGRATED TAPE DISK (ITD) SORTING

The ITO or disk/tape mode of sorting uses disk work files with tape backup. In
ITO mode, the user supplies both a disk estimate and a number of work tapes.

SORT begins stringing records on disk; however, if disk is exhausted during
stringing operations, a special merge is performed to tape, and SORT is not
aborted. This merge creates strings on tape in the normal tape distribution,
but the number of strings written on tape is less than that resulting from a
tape only sort. Stringing then resumes normally on disk until disk is
exhausted again. When the stringing phase is complete, a regular tape mer~e is
performed.

During an ITO sort, label equations are not used for the internal tape files
used during the stringing phase. If SORT requires a scratch tape, either a
scratch tape may be mounted or the sort program may be terminated.

If disk is exhausted during the merging phase of an ITD sort, the strings are
merged to tape, and the remaining merging operations are completed on tape.

Advantages of the ITO sort mode include the ability to circumvent a limited
disk resource to sort large files and a reduction in tape merge time because of
the use of disk to consolidate many short strings into a few longer strings.

11-4- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

SORT

5. MEMORY ONLY MODE

MEMORY SORTING

To initiate a memory only sort, the user does
specifically sets the disksize to zero. Failure
results in the default value for disk being utilized,
occurs.

11-5-

not specify tapes and
to set disksize to zero

and a disk only sort

SORT does not open sort files and attempts to read the user input into memory.
If sort memory is filled before the last user input record is read, the SORT
terminates with SORT ERROR 3. If the specified amount of memory can contain all
input records, it proceeds normally to produce user output.

When a memory only sort is desired, the correct specification for sort memory
size is the number of records to be sorted multipled by the size of a record
(in words). For COBOL sorts, the user determines the size from the SD
description and rounds the size up to the number of words required to contain
the record.

T~e core sort is of particular value when the number of records to be sorted is
small.

11-S- 2
SORT

THIS PAGE IS INTENTIONALLY LEFr BLANK FOR FORMATTING PURPOSES.

11-6-
SORT

6~ USE OF SORT IN COBOL LANGUAGE

COBOL SORTING

The SORT procedure is activated by executing the SORT or MERGE COBOL verbs.
This section describes the required COBOL constructs for use of these verbs.
(Refer to the B 7000/B 6000 Series COBOL Reference Manual, form 5001464, for
additional information.)

11-6- 2

MV1414

IDI \;TIFI< ATIO\; DIVISIO\;

I '\VIRO'\~f-ST DIVISIO\
CO'\FIGLRATIO'\ SH TIO'

SORT

!OROI s.,,, S~111Jcl1t Delin1t1un

OBJECT-COMPUTER
r

ohject l •>mputer t'ntry
I WORDS ll
~ MO'i5CIES (j L. MEMORY SIZE integer- I

[. ~ integer-:: J WORDS }]
)~

INPUT-OUTPUT SECTION.
FILE-CONTROL

Sf-.LECT file-name- I illlli1:::! TO [integer-3 J ~
SORT DISK
SORT DISKPACK
SORT DISKP ACKS

) SORT-T.APE
\ SORT-TAPES

MERGE

[IT;\PI I])
TAPES f

AND 111tegl'r-4 I SORT-TAPE I (
SORT-TAPES J

DATA DIVISION.
FILE SECTION
SD file-name- I

TO l · l data-name-:! l
J) integer-6 (

f
. RECORD CONTAINS [J. data-name· I}

) mtegcr-'i

: DATA {Rl~CORD IS . } ren>rd-naml'-1
RECORDS ARL

[. rl'<.:ord-name-2 J
0 I re<.:urd-name-1

PROCEDURE DIVISION.

[~~~~l] fik-namc-1

CHA RACH RS J

.. .J

ON

[- ON

J ASCENDING ~
) DESCENDING I
I ASCENDING I

·1. DISCENDING (

KEY data-name-J [. data-naml•-4 ..] .

KEY data-name-' [. data-na1m'-h J .. J ..
J USING lik-namc-2 [J TllROUGll 1.
) INPUI.t_R.QC_fDURE IS Sl'<.:tio11-11a11K·-l) THRl' I

.1 GIVING lilr-naml'-2 [' TllRQl!Cll I
I OUTPUT PROCEDURE IS scction-namc-3) TllRU j'

srct1011-nanu:- l

MEMORY s1z1· Jata-namc-7 \ [
' formula- I) J
f !!!era!-! \ -

[DISK SIZI'

r RESTART IS
L

\ formula-::)]

1 data-name-X \
! literal-2 t
' funnula-3 jl
) data-namr-9 \
f l1it'1Jl-3 j _J

RF LEASF re<.:01 d-name-1 [FROM identitler-1 J

se<.:tit111-11aml'-J

Rf-Tl 'RN file-name-I RECORD [INTO identifier-:: J
AT FND statement [ELSF statement J

!;c'.:tio!l-11a1m·-::J}

'>l'<.:tio11-11a1m·-4] ~

11-6- 3
SORT

SORT MODE

OBJECT-COMPUTER

If the MEMORY SIZE specification is omitted, SORT assumes a size of 12,000
words. If the DISK SIZE specification is omitted, SORT assumes a size of
900,000 words.

SELECT

If a file is assigned to integer-3 SORT-TAPES, then integer-3 must be between 3
and 8 inclusive. If a file is assigned to SORT DISK and integer-4 TAPE, TAPES,
SORT-TAPE, or SORT-TAPES, then integer-4 must be between 3 and 8 inclusive.
Integer-3 has no meaning when the file is assigned to MERGE or SORT DISK.

No additional SELECT statement
a sort/merge hardware device.
entries.

SD

options are permitted when a file is assigned to
File-name-1 must not be used in any other SELECT

File-name-1 must have been previously assigned to a sort/merge device in a
SELECT statement and may not be used in any other DATA DIVISION entries.

The RECORD CONTAINS clause specifies the length of the logical records to be
sorted. The data-name-1/integer-5 option is used to designate variable length
records where the actual length of each record is specified by a decimal number
contained in a four-character field at the beginning of the record.
Data-name-1/integer-5 defines the minimum record length of the file;
data-name-2/integer-6 defines the maximum length. Data-name-2/integer-6 may be
used alone to define a file of fixed-l~ngth records; however, this use is not
required, as the absence of a RECORD CONTAINS clause designates a file of
fixed-length records, The record length is then determined by the first 01
level entry. Data-name-1 and data-name-2 may be used to specify the minimum
and maximum record lengths at execution time and must contain the desired
values prior to the execution of any SORT statement for file-name-1.

The DATA RECORD clause is used for documentation purposes only.

SORT

The ON ASCENDING/DESCENDING KEY clause defines the keys to be used in the sort.
The order of precedence of the sort keys is determined by the order of
appearance within the SORT statement (data-name-3 is the major sort key, and so
forth).

Sort keys are subject to the following rules:

1. Each key must be defined within a record description of
file-name-1.

2. Sort keys may not be variable length.

11-6- 4
SORT

3. All signert. nnmPrir, i:-lf"m~ntary items are ccmpared
algebraically; all negative values are considered lower
than positive values. Anything else is compared as
alphanumeric. DISPLAY keys are compared according to the
EBCDIC collating sequence. DISPLAY-I keys are translated
to EBCDIC and compared according to the EBCDIC collating
sequence.

4. KEY items cannot contain, nor can they be subordinate to,
entries that contain the OCCURS clause.

5 . Al l records presented to SORT must have a fixed I en gt h,
and the key(s) must be in the same location within each
record. An INPUT PROCEDURE may be used to modify any
records that do not meet these standards.

6. The data names may be qualified.

The USING/INPUT PROCEDURE portion of the SORT statement specifies the input to
the SORT. If file-name-2 is used, the minimum and maximum record sizes must be
consistent with file-name-I.

The INPUT PROCEDURE defines sections of user code which are executed to select
or alter records prior to the actual sorting. The RELEASE statement passes the
current logical record to the SORT. At least one RELEASE statement is required
in the INPUT PROCEDURE.

The GIVING/OUTPUT PROCEDURE portion of the SORT statement specifies the output
from the SORT. If file-name-3 is used, a file is created containing the sorted
records. The minimum and maximum record sizes must be consistent with
f i 1 e-name-1 .

The OUTPUT PROCEDURE defines sections of user code which are entered when the
sorting process is complete. The RETURN statement causes the sequential
retrieval of one sorted record from the SORT. A~ least one RETURN statement is
required in the OUTPUT PROCEDURE.

INPUT and OUTPUT procedures are subject to the following rules:

1 . INPUT and OUTPUT PROCEDURES must not contain
statements.

SORT

2. The remainder of the PROCEDURE DIVISION must not contain
statements that cause the transfer of control to, or to
points within, the INPUT and OUTPUT PROCEDURES (for
example, GO, PERFORM, or ALTER statements).

3. The INPUT and OUTPUT PROCEDURES may transfer control to
points outside the range of the procedures; however,
control must always return to the procedures.

4. A STOP RUN statement may not be
INPUT or OUTPUT PROCEDURE.
program failure.

executed in or by an
Such execution results in

~. Any attempt to execute a RELEASE or RETURN statement when
the program is not under the control of a SORT statement
results in program failure.

The logic chart on the following page shows the interaction of the SORT
facility with a COBOL procedural sort.

SORT

SORT INPUT/OUTPUT PROCEDURE LOGIC FLOW

Sort 1. Begin SORT initialization phase.

Sort 2. Open SORT workfiles.

Sort 3. Go to beginning of the user's INPUT PROCEDURE.

IPI. Open i n put f i I e .

IP2. Read input file record (at end, go to IP6.)

IP3. If record is to be used, place in record area of
sort file; otherwise, go to IP2.

IP4. RELEASE sort file record (transfer to sort 4).

Sort 4.

Sort S.

Sort 6.

IPS.

IP6.

Sort 7.

Sort 8.

Sort 9.

Sort 10.

OPI.

Sort 1 1 .

Sort 12.

OP2.

OP3.

OP4.

Sort 13.

Sort 14.

Place the RELEASED record in sorting precess.

Execute internal sorting, creating strings on SORT
workfiles.

Return to INPUT PROCEDURE at IPS.

Execute "using" logic then go to IP2.

Execute AT END logic including close of input file
(transfer to sort 7).

Complete SORT stringing of all input records.

Begin merge phase of SORT.

Merge all strings on SORT workfiles until one
string remains.

Go to beginning of OUTPUT PROCEDURE.

Open output file (transfer to sort 11).

Execute final internal merging operation.

Pass merged record to OUTPUT PROCEDURE at OP2.

RETURN sort file record to user record area (at
end, go to OP4) .

Execute user logic (transfer to sort 11).

Execute AT END including close of output file
(transfer to sort 13).

Close all SORT workfiles.

Exit from SORT.

11-6- s

11-6- 6
SORT

MERGE MODE

The rules for using the MERGE mode are the same as those for using the SORT
mode, with the following exceptions:

1. The INPUT PROCEDURE option of the SORT statement may not
be used.

2. At least two file names must appear in the USING portion
of the SORT statement.

3. A maximum of eight files can be used as
merge.

input to the

4. All input files must be compatible with SD record
descriptions as to key locations and record lengths.

An example of a COBOL disk sort including the actual input and output files is
given on the following two pages.

COBOL SORT EXAMPLE

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. B-6700.
OBJECT-COMPUTER B-6700

DISK SIZE 20000 WORDS
MEMORY SIZE 3000 WORDS.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SORT

SELECT NEWTRANS ASSIGN TO CARD-READER.
SELECT CREDITFILE ASSIGN TO 5000 DISK.
SELECT DEBITFILE ASSIGN TO 5000 DISK.
SELECT SORTFILE ASSIGN TO SORT DISK.

DATA DIVISION.
FILE SECTION.
FD NEWTRANS VALUE OF ID "TRANSACTIONS".
01 NEWTR SZ 80.
FD CREDITFILE VALUE OF ID "NEW"/"CREDITS"

BLOCK CONTAINS 15 RECORDS.
01 CR-REC SZ 80.
FD DEBITFILE VALUE OF ID "NEW"/"DEBITS"

BLOCK CONTAINS 15 RECORDS.
01 DR-REC SZ 80.
SD SORTFILE.
01 SRT.

03 CODE-KEY PIC 99.
03 ACCOUNT-KEY PIC 9(10).
03 DATE-KEY PIC 9(6).
03 FILLER PIC X(62).

PROCEDURE DIVISION.
SORTIT SECTION.
SRTRN.

SORT SORTFILE ON DESCENDING KEY CODE-KEY
ASCENDING KEY ACCOUNT-KEY DATE-KEY
USING NEW-TRANS
OUTPUT PROCEDURE RECORDS-OUT.

ENDIT. STOP RUN.
RECORDS-OUT SECTION.
CREDITS-OUT.

OPEN OUTPUT CREDITFILE DEBITFILE.
LOOP-CR.

RETURN SORTFILE AT END GO TO XIT.
IF CODE-KEY > 49

WRITE CR-REC FROM SRT INVALID KEY GO TO IVK
ELSE GO TO LOOP-CR.

LOOP-DR.

XIT.

IVK.

WRITE DR-REC FROM SRT INVALID KEY GO TO IVK.
RETURN SORTFILE AT END GO TO XIT
ELSE GO TO LOOP-DR.

CLOSE CREDITFILE LOCK DEBITFILE LOCK.
GO TO ENDIT.

DISPLAY "xxERROR TERMINATIONxx".
DISPLAY CODE-KEY ACCOUNT-KEY.

ENDIT. EXIT.

11-6- 7

11-6- 8

Input File to be Sorted:

121000000233040770
121000000233040970
121000000233041270
031200000042041270
031200000042041370
031200000042041670
031200000042040970
551000000012050170
551000000012052370
551000000012051470
551000000012050570
471000000012050570
471000000012052270
720900000243060270
720900000243061970
720900000243062170
710900000243062170
710900000243062670
124000000035062670
900000000017070370

Sorted Output Files:

New/Credits Output File

900000000017070370
720900000243060270
720900000243061970
720900000243062170
710900000243062170
710900000243062670
551000000012050170
551000000012050570
551000000012051470
551000000012052370

New/Debits Output File

471000000012050570
471000000012052270
121000000233040770
121000000233040970
121000000233041270
124000000035062670
031200000042040970
031200000042041270
031200000042041370
031200000042041670

SORT

11-7-
SORT

7. USE OF SORT IN ALGOL LANGUAGE

ALGOL SORTING

The SORT procedure is activated by executing either the SORT or MERGE
statements. This section describes the form and use of these statements.
(Refer to the B 7000/B 6000 ALGOL Reference Manual, form 5001639, for exact
syntactic definitions.)

SORT STATEMENT

The SORT statement provides a means for data, as specified by the <input
option>, to be sorted and returned to the program, as indicated by the <Output
option>. The order in which data are returned is determined by~ the <compare
procedure>. All procedures required by the SORT are in the form of standard
procedures but have specific parameter requirements .

When the SORT statement is executed, the input and output files must be closed.

The format of the SORT statement is as follows. (The symbol" .. -
defined as".)

<sort statement>

<output option>

<output procedure>

dnput option>

<input procedure>

<number of tapes>

<compare procedure>

<record length>

SORT (<output option>,
dnput opt ion>,
<number of tapes>,
<compare procedure>,
<record length>,
<Size specifications>)
<restart specifications>

<fil~ designator>!
<Output procedure>

<procedure identifier>

<file designator> I
<input procedure>

<procedure identifier>

<arithmetic expression>

<procedure identifier>

<arithmetic expression>

denotes " i s

11-7- 2

<Size specifications>

<pack size>

<SiZe)

<restart specifications>

Sort Parameters

(output option>

SORT

<empty> I
<memory size>I
<memory size><disk size>!
<memory size><pack size>

PACK <Size>

<empty> I
<arithmetic expression>

<empty> I
[RESTART <arithmetic expression>]

If a <file designator> is specified as the <Output option>, the file is opened
and SORT writes the sorted output on this file. On completion of the SORT
statement, the file is closed.

If an <Output procedure> is specified as the <Output option>, SORT calls this
procedure once for each sorted record and once to allow end-of-output action.
This procedure must be untyped and must use two parameters. The first
parameter must be call-by-value Boolean, and the second parameter must be a
one-dimensional array with a lower bound of zero. The Boolean parameter is
FALSE as long as the second parameter contains a sorted record. When all
records have been returned, the first parameter is TRUE, and the second
parameter must not be accessed.

In addition, SORT accumulates various statistics while sorting. This array of
statistics is available in the record array parameter if the last Boolean
parameter is TRUE. This statistical information is accessible only when using
the <Output procedure> option. (Refer to Appendix B.)

(input option>

If a <file designator> is used as the <input option>, the file is opened, and
the records in that file are used as input to SORT. This file is closed after
all records in the file have been read by SORT.

If an <input procedure> is used as the <input option>, the procedure is called
to furnish input records to SORT. This <input procedure> must be a Boolean
function with a one dimensional array as its only parameter. This procedure,
on each call, either inserts the next record to be sorted into its array
parameter or returns the value TRUE, indicating the end of the input data.

When a TRUE is returned by the <input procedure> SORT does not use the contents
of the array parameter and does not call the <input procedure> again.

11-7- 3
SORT

<number of tapes>

If an integrated tape/disk sort is desired, the <number of tapes> must be
greater than zero, and this value specifies the number of tape files to be used
in the sorting process. If the value of the <arithmetic expression> is less
than three, three tapes are used. If the value of the <arithmetic expression>
is greater than eight, eight tapes are used; otherwise, the number of tapes
specified by the <arithmetic expression> is used.

<compare procedure>

The <compare procedure> is called by SORT to determine which of two
should be used next in the sorting process. This procedure must be a
function with two parameters. Both parameters must be one-dimensional
The Boolean value returned by the function should be TRUE if the array
the first parameter is to appear in the output before the array given
second parameter.

records
Boolean
arrays.

given as
as the

For the actual comparison, two strings may be compared according to the EBCDIC
collating sequence by using a string relation, or an arithmetic comparison may
be performed by using an arithmetic relation. Also, different keys or fields
in the records may be compared. The comparison technique is determined
entirely by the user in the <Compare procedure>.

<record length>

The <record length> represents the length in words of the largest item that is
presented to SORT. If the value of the <arithmetic expression> is not a
positive integer, the largest integer not greater than the absolute value of
the expression is used; that is, a <record length> of 12 would be used if an
expression had a value of -12.995. If the value of the <arithmetic expression>
is zero, the program terminates.

<size specifications>

The <Size specifications> allow the programmer to specify the amounts of memory
and disk or pack storage that may be used.

The <memory size>,
used in sorting.
words is assumed.

if present, specifies the number of words of memory to be
If <memory size> is unspecified, a default size of 12,000

The <disk size>, if present, specifies the amount of disk storage, in words, to
be used for the workfile. If <disk size> is unspecified, a default size of
600,000 words is assumed.

The <pack size>, if present, specifies the amount of storage on system resource
pack, in words, to be used for the SORT workfile. If <Size> is not specified,
a default size of 600,000 words is assumed.

11-7- 4
SORT

<restart specifications>

The <restart specifications> give SORT the ability to resume processing at the
most recent checkpoint following the discontinuance of a program. The program
must provide the logic to restore and maintain necessary information for it to
continue from the point of interruption (such as, stack variables, arrays,
files, and pointers).

The restart capability is implemented only for disk sorts.

Input, Output, and Compare Procedures in ALGOL Sorts

SORT functions by calling the input, output, or compare procedures (as
appropriate) contained in the user program. The SORT passes array descriptors
to the desired procedure of the user program. The descriptor normally points
to a record area that is a portion of an array large enough to contain many
records. If the user program is negligent in accessing the record area passed
to the program, adjacent record areas may be accessed and compared incorrectly,
or record content may be inadvertently modified. A SEGMENTED ARRAY ERROR,
INVALID INDEX, or INVALID OPERATOR are other likely consequences of such
action.

Sort Mode

The combination of <disk size> and <number of tapes> determines the sort mode
as follows:

Number of tapes

not = 0
not = 0

0
0

MERGE STATEMENT

Disk size

0
not = 0
not = 0

0

Mode

tape only
ITD
disk only
memory only

The MERGE statement causes data in all files specified by the <merge option
list> to be combined and returned. The <compare procedure> determines the
sequence in which the data are combined.

The format of the MERGE statement is as follows:

<merge statement>

<merge option list>

<merge option>

MERGE (<output option>,
<Compare procedure>,
<record length>,
<merge option list>)

<merge option> I
<merge option list>,<merge option>

<input option>

The MERGE statement merges two to eight presorted inputs into a single file.
The inputs must be sorted in the same sequence, but the files may be of
different lengths.

The <Output option>, <compare procedure>, <record length>, and <input option>
are as specified for the <Sort statement>.

11-7- s
SORT

Because no sort workfiles are created, the <Size specifications> are not
required on the merge.

An example of an ALGOL disk sort, including the actual input and output files,
appears on the fo11owing two pages.

ALGOL SORT EXAMPLE

BEGIN

COMMENT THIS IS AN EXAMPLE OF AN ASCENDING DISK SORT. THE
PROGRAM SORTS A CARD FILE WITH NAMES IN THE FIRST TWELVE
COLUMNS AND OUTPUTS THE SORTED FILE ON THE LINE PRINTER.
IF COLUMN 80 CONTAINS AN "S", THAT CARD IS THROWN AWAY
AND NOT SORTED. THE SORT USES AN INPUT PROCEDURE OPTION,
AN OUTPUT FILE OPTION, A MEMORY SIZE OF 10000 WORDS, AND A
DISK SIZE OF 100000 WORDS.

FILE CARD(BUFFERS=2,MAXRECSIZE=l4,BLOCKSIZE=l4);

FILE LINE(MYUSE=2,KIND=39,BUFFERS=2,MAXRECSIZE=20);

DEFINE SKIPCODES="S"#,SKIPFIELD=POINTER(R[l3],8)+1#;
BOOLEAN PROCEDURE INPRO(R); ARRAY R[O];

BEGIN
LABEL GETACARD,XIT,EOFL;

GETACARD: READ(CARD,14,R(*])[EOFL] ;
IF SKIPFIELD = SKIPCODE THEN GO TO GETACARD
ELSE BEGIN

REPLACE POINTER(R[l3],8)+2 BY"
% PAD BLANKS
GO TO XIT;
END;

EOFL: INPRO := TRUE;
XIT:END;

BOOLEAN PROCEDURE COMP(Rl,R2); ARRAY Rl,R2[0];
COMP := POINTER(Rl,8) LSS POINTER(R2,8) FOR 12;

SORT(LINE,INPRO,O,COMP, 14, 10000, 100000); % SORT CALL

END.

11-7- 6
SORT

INPUT FILE TO BE SORTED

GLENN CARD #0001
s CARD #0002

JACK CARD #0003
EARL CARD #0004

s CARD #0005
ROLLIE CARD #0006
STEVE CARD #0007

s CARD #0008
DAVE CARD #0009
JOEL CARD #0010
HARRY CARD #0011
SHERRY CARD #0012
RICHARD CARD #0013
DICK CARD #0014
BILL CARD #0015
DON CARD #0016
JIM CARD #0017

s CARD #0018
CAROLYN CARD #0019

s CARD #0020

SORTED OUTPUT
------ ------

BILL
CAROLYN
DAVE
DICK
DON
EARL
GLENN
HARRY
JACK
JIM
JOEL
RICHARD
ROLLIE
SHERRY
STEVE

11-8-
SORT

8. USE OF SORT IN PL/I LANGUAGE

PL/I SORTING

PL/I sorting is performed by the execution of the SORT statement. This section
describes the form and use of this statement. (Refer to the B 7000/B 6000
Series PL/I Reference Manual, form 5001530, for exact syntactic definitions.)

SORT STATEMENT

The SORT statement provides a means for data to be sorted and returned to the
program according to the specified options.

The format of the SORT statement is as follows:

Sort Parameters

<sort identifier>

<sort statement) ..

<sort option)

(key option)

~nput option)

<output option) ..

<memory option) : : =

MV177R

SORT <.sort identifier) [On) <sort option)
(key option) [(input option))

[(output option)) [(memory option))

{[Ascending/Descending J [Key I
i(identifier) ...) J ...
USING FI LE ((file expression))

INPUT ((entry constant))
GIVING FILE ((file expression))

OUTPUT ((entry constant))
ENVIRONMENT (TAPES= <.constant expression),

CORESIZE =<.constant expression),

DISKSIZE = <.constant expression))

The <sort identifier> must be an aggregate that describes the individual
records to be stored; it may not be controlled or based.

<key option>

Because the <key option> specifies the order in which records are to be sorted
and the keys to be used in the sort, the key option must always appear, in the
SORT statement. The order of precedence of the keys is determined by the order
of appearance of the key in the <key option>. Sort keys are subject to the
following rules:

1. Each key must be defined in the <Sort identifier>.

2. No variable-length keys are allowed.

3. All records must be of some fixed length, and the keys
must be in the same location in each record.

11-8- 2
SORT

<input option>

The <input option> may either be a file designation or an input procedure
designation. If the <input option> is not explicitly stated, the <input
option> USING FILE (SYSIN) is assumed. If an explicit file designation is
used, the file must be declared as an input file. The input file passed to the
SORT must be CLOSED PRIOR to the call of the SORT. If an input procedure is
used, the procedure must have SORTINPUT declared in the <Options list> of the
procedure declaration. The input procedure is subject to the following rules:

1. The input procedure must have one parameter; it must be
declared as CHAR(*).

2. The input procedure must return a bit (1) value.

3. A FALSE value ('O'B) must be returned by the input
procedure until the end of the input data is encountered;
at that time, a TRUE value ('l'B) must be returned.

4. As long as a FALSE value is being returned, the input
procedure inserts the next record to be sorted into its
parameter.

(output option>

The <Output option> may either be a file designation or an output procedure
designation. If the <Output option> is not explicitly stated, the <Output
option> GIVING FILE (SYSPRINT) is assumed. If a file designation is used, the
file should be declared as an output file. The SORT then writes the sorted
o u t p u t t o t h i s f i 1 e . As w i t h an i n p u t f i 1 e , t he o u t p u t f i 1 e mu s t be CLOS ED
PRIOR to the call of the SORT. If an output procedure is used, the procedure
must have SORTOUTPUT declared in the <Options list> of the procedure
declaration. The output procedure i~ subject to the following rules:

1. The output procedure must have two parameters. The first
parameter must be declared as BIT (1), and the second
parameter must be declared CHAR(*).

2. The first parameter contains a FALSE value ('O'B) as long
as the second parameter contains a sorted record. When
all records have been returned to the output procedure by
SORT, the first parameter contains a TRUE value ('l'B),
and the second parameter is not accessed.

(memory option>

The <memory option> specifies the number of tapes to be used by the SORT as
wel 1 as the CORESIZE and the DISKSIZE to be al located for the sort. The
options may appear in any order, and any or all of the options may be deleted.
The default values for any option not explicitly stated are as follows:

TAPES = 3
CORESIZE 12000
DISKSIZE = 600000

The number of tapes used in the sorting process must be greater than or equal
to three and less than or equal to eight.

1 t-8- 3
SORT

An example of PL/I sort, including the actual input and output files, is as
follows:

PL/I SORT EXAMPLE

SORTEXAMPLE: PROC; ;• OPTIONS (MAIN) •;

DCL AA FILE INPUT RECORD ENV (KIND='READER', MAXRECSIZE=80);

DCL BB FILE OUTPUT RECORD ENV (KIND='PRINTER',MAXRECSIZE=l32);

DCL 1 COURSES,
2 DEPT
2 COURSENAME
2 INSTRUCTOR
2 REQUIRED

CHAR (5),
CHAR (20),
CHAR (10),
CHAR (I);

SORTIN: PROC(A) RETURNS (BIT (1)) OPTIONS (SORTINPUT);
DCL A CHAR ('") ;
ON ENDFILE (AA) GO TO EOF;

LOOP: READ FILE (AA) INTO (COURSES);
IF REQUIRED= '*' THEN RETURN ('O'B);

ELSE GO TO LOOP;

EOF: RETURN ('l'B);
END SORTIN;

SORT COURSES ON
ASCENDING KEY (COURSES.DEPT, COURSES.COURSENAME,
COURSES.INSTRUCTOR)
INPUT (SORTIN)
GIVING FILE (BB);

END SORTEXAMPLE;

11-8- 4
SORT

The following•~ a li:ding of the input to the PL/I example.

MATH
HIST
MUS
ENG
MATH
ENGL
MATH
MATH
MATH
HIST
MUS
ENG
ACCT
BUS
MATH
MUS
ACCT
MATH
MATH
ACCT
ACCT
HIST

TRIGONOMETRY
AMERICAN HISTORY
MIXED CHORUS
ELECTRONICS
CALCULUS I
READING COMP
CALCULUS II
STATISTICS
MATRIX THEORY
WESTERN CIV
MUSIC APPREC
SURVEYING
ACCOUNTING I
BUSINESS LAW
ALGEBRA
INSTRUMENTAL MUSIC
ACCOUNTING II
LINEAR ALGEBRA
CALCULUS I
COST ACCOUNTING
ACCOUNTING I
AMERICAN HISTORY

LAMBERT
JERONIMO
PAINTER
SHERIDAN
GUILFORD
WOODS
GUILFORD
GALLOP
WAI HAU
GREENLEAF
PAINTER
SHERIDAN
BLOCK
BAILEY
MULBERRY
BLAIR
BLOCK
GUILFORD
AMS DALE
BLOCK
ANO LA
LIVERMORE

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

After execution of the above PL/I SORT, the output appears as follows:

ACCT
ACCT
ACCT
ACCT
BUS
ENG
ENG
ENGL
HIST
HIST
M.ATH
MATH
MATH
MATH
MATH
MATH
MUS
MUS

ACCOUNTING I
ACCOUNTING I
ACCOUNT I NG I I
COST ACCOUNTING
BUSINESS LAW
ELECTRONICS
SURVEYING
READING COMP
AMERICAN HISTORY
AMERICAN HISTORY
ALGEBRA
CALCULUS I
CALCULUS I
CALCULUS II
MATRIX THEORY
TRIGONOMETRY
INSTRUMENTAL MUSIC
MUSIC APPREC.

ANO LA
BLOCK
BLOCK
BLOCK
BAILEY
SHERIDAN
SHERIDAN
WOODS
JERONIMO
LIVERMORE
MULBERRY
AMS DALE
GUILFORD
GUILFORD
WAI HAU
LAMBERT
BLAIR
PAINTER

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

11-9-
SORT

9. EFFICIENT USE OF THE SORT

SORT EFFICIENCY

This section explains some of the factors that affect the overall efficiency of
the sorting process.

Core Estimate

In sorting, production of a small number of long strings
fewer merge passes will be required. Appendix B
user-supplied memory estimate determines stringing and
which, in turn, control string length and merging.

is desired, because
illustrates that the
merging vector sizes

Generally, a memory estimate cf 4000 er more is recommended. Memory estimates
of 20,000 or more are recommended only on large systems.

Number of Work Tapes

Above a certain number, the number of work tapes provided results in decreases
in total sorting time. However, this decrea~e in sorting time does not justify
their use. Gains made by using more than five sort tapes are marginal. The
sort tape limit is eight tapes.

User Input/Output Files

A large portion of sort time is consumed in communicating with user files. The
1/0 procedures on these files should be made as efficient as possible. The
files should be blocked in large increments (greater than SOO words).

Character Sets

Since character set "translation" is required when sorting with BCL records,
use of the EBCDIC character set is recommended whenever possible.

Comparison Technique

Tl1e comparison method is an important factor when sorting. Because the compare
procedure may be called millions of times in very large sorts, the procedure
should be made as efficient as possible.

In COBOL, the length and number of keys directly affects the amount of time
required for comparison. A large number of keys scattered in the record should
not be used because setup time increases comparison overhead. Arithmetic or
numeric comparisons are generally faster than string comparisons.

In ALGOL, the compare procedure should return TRUE when the
unequal, and the first array must precede the second array.
returned when the arrays are equal or when the second array
first array.

two arrays are
A FALSE should be

must precede the

11-9- 2
SORT

Variable-Length Records

Variable-length records should be edited into fixed-length records by an input
procedure.

SORT MODE

Table 9-1 illustrates some characteristics of various sort modes.

Table 9-1. Characteristics of Sort Modes.

Disk On I y

Disk only
is generally the
fastest mode.

Di s k i s the mos t
reliable peripheral.

Less operator
intervention is required.

Sort is limited by
disk resource.

KINDS OF SORTS

Tape Only

Input file may be
indefinite length.

A particular machine
configuration is
required.

Two kinds of sorts are record and tag.

Record Sort

ITD

Disk develops
longer strings on
tape.

Input file may be
definite length.

A record sort is the usual method of sorting. A record sort occurs unless the
user intent ion a I 1 y causes a 11 tag sort 11

• A record sort i s defined as a sort in
which records are continually handled throughout the stringing and merging
phases. In other words, the sort algorithms are only concerned with the
various keys, but the entire record (including the keys) is carried along
throughout the sorting process.

Tag Sort

A tag sort is more sophisticated than a record sort and, under certain
conditions, can be substantially faster. The basic idea of a tag sort is that
only the key(s) plus the address of each record is handled throughout the
sorting process. The data records remain in place until the final merge of the
tags begins; at that time, the addresses contained within the tags are used to
retrieve the records in the correct sequence.

11-9- 3
SORT

I n · c r e a t i n g a t a g s o r t t he u s e r i s r e q u i r e d t o p r o v i de an INPUT PROCEDURE t ha t
filters the incoming ecords, writing them to a disk file after extracting the
sort key(s) and append ng the disk address oi the iocation oi the entire
record. This tag is then submitted to the stringing phase. Figure 9-1 shows
the extraction of the key(s) from the incoming record and the building of the
tag.

INPUT RECORD

MV1415

KEY
1

KEY I
~

I L --,
i L----,
L ____________ J_l

I 1 I
t t t

I . I ~ I ., I I I I .. I ~I
DISK

ADDRESS

(TAG)

4
I

I
I

,-------.J

Figure 9-1. Creating a Tag.

The kevs are arran2ed bv the INPUT PROCEDURE in a contiauous strina. This
struct~re eliminaies ihe need to "bounce" over the record-in accumulaiing the
keys whenever a compare is required. The information actually handled by the
SORT is smaller than in a record sort (only the key[s) and disk address are
handled).

During the final merge phase, the OUTPUT PROCEDURE uses the address portion of
the tag to access the records and do whatever is required.

11-9- 4
SORT

Figure 9-2 shows a functional diagram of a tag sort that has a nandisk input
f i I e (s) . Th e i n p u t f i I e mu s t b e cop i e d i n i t s e n t i r e t y t o d i s k .

r INPUT- 1
FILES I

a:

MV1416

I
I
I
I

(RECORDS) (RECORDS)

(TAGS)

r - - J_ _J_ - --,
SORT WORK FILES I

:(\ \ \1
i \))) I
L ':__ _=1_ -- - _J

r- OUTPUT --,
I FILES :a
I
I
I

(RECORDS)' D

LS)
L ___ _

Figure 9-2. Tag Sort, Nondisk Input File.

11-9- s
SORT

Figure 9-3 shows the functional diagram of a tag sort that has a disk file as
i t s i n p u t med i um . The i n p u t f i 1 e i s r ea d t w i c e : on c e by t he· INPUT PROCEDURE (i n
a serial fashion) for the stringing phase, and once again by the OUTPUT
PROCEDURE (in a random fashion) for the final merge phase.

(RECORDS)

(TAGS)

SORT WORK Fl LES

MV1417
QD

Figure 9-3. Tag Sort, Disk Input File.

RECORD SORT VS TAG SORT

OUTPUT
FILES

_) _)

The decision to do a record or tag sort depends on many variables (such as,
site disk capacity, record size, and time allotted to write the sort). If the
sort is for "production" and is heavily used, both record and tag sorts should
be used to determine which sort produces the best results.

11-9- 6
SORT

SUGGESTIONS FOR MORE EFFICIENT SORTING

Selection of SORT parameters is not always a simple matter when the amount of
data varies widely from run to run and the user is concerned with total system
efficiency. Sorting can be a si~nificant part of the work load of a computer
installation and should be used judiciously. In many instances, the default
parameters do not provide efficient utilization of system resources. The
relative priority of the job should be a definite consideration in the
selection of SORT parameters. Memory size is ce~tainly the most volatile SORT
parameter. Because the SORT may have a 65,535-record Sort Vector and can do a
65,535-order merge with as many as 256 buffers per string, the upper limit on
the amount of memory which could be utilized is 1.099 trillion words;
therefore, something less than maximum sorts must be considered. Providing
more memory (until the sort is entirely completed in memory) should yield
faster sorts. However, some sets of data reach a point where slower sorts
occur as memory size is increased. A point of diminishing return usually occurs
before an entirely in-memory sort is reached.

Some general guidelines for disk sorting are as follows:

Fast Sorts - Memory size should provide enough space
to contain at least 2,000 records.

Reasonably Fast Sorts - Memory size should provide enough space
to contain at least 1,200 records.

Adequate Sorts - Memory size should provide enough space
for 600 records as a general rule.

To use the above guidelines, the sort record size must be converted to the
number of words required to contain a single record. For example, a
one-character record requires one word, and fifteen 6-bit characters require
two words, while fifteen 8-bit characters require three words. When record
size is converted to words, three additional words must be added to record size
(used by SORT) and then this new record size must be multiplied by the desired
number of records. After memory has been computed for the number of records
times record size, 1,500 words must be added for sort working space.

Some general guidelines for tape sorting are as follows:

Fast Sorts - Memory size should provide enough space
for 300 records per work tape,

Reasonably Fast Sorts - Memory size should provide enough space
for 200 records per work tape.

Adequate Sorts - Memory size should provide enough space
for 100 records per work tape.

Record size must be converted to words with three additional words added (as
stated above) and then multiplied by the number of tapes specified in the SORT
statement. Again, 1,500 words must be added to provide for sort working space.

11-9- 7
SORT

Tape sorts are similar to disk sorts in that providing more memory generally
yields faster sorts. However, the point of diminishing return is more data
dependent for tape sorting. Generally, using more sort work tapes rather than
providing large additional increments of memory is more efficient. Providing
more memory and more tapes is ideal when speed is the most important factor.
Tape sorts should run satisfactorily in the background while other jobs are in
the mix. Use of good tapes when doing tape sorts is highly recommended.

ITD sorts are capable of improving tape sorts by a substantial factor (50
percent or more). The reason for this degree of improvement is that fewer
strings are created on tape which causes tape merging to be completed much
sooner. The amount of improvement depends on the inherent sequence of the data
and the amount of disk provided. In most cases, 100,000 words of disk (or
less) is sufficient to obtain the increased speed from an ITD sort.

Disk sorting speeds can be affected by the amount of disk specified by the
program. This circumstance results from SORT being unable to merge as many
disk strings because insufficient disk is available to contain the output of
the merge phase. SORT~ therefore. merges fewer strings (when possible) and
attempts to reduce the risk of being terminated with a SORT ERROR 5.
Estimating a proper amount of disk is difficult because of the gaps created by
unfilled buffers at the end of strings. However, a method for estimating disk
space is suggested below:

1. Convert the record size to words as stated above (do not
add three additional words).

2. Multiply the record size (in words) by the number of
records to be sorted.

3. The number obtained by step 2 should then be multiplied
by:

a. 2.25 to obtain a safe estimate.

b. 1.5 to obtain a near minimum estimate.

c. 3.5 or more if a restartable sort is being done.

Much of the memory used by SORT is nonoverlayable or save space. For this
reason, SORT can have a definite impact on the throughput of other jobs that
are executing concurrently with the SORT. Sorting programs that contain lengthy
INPUT or OUTPUT procedures can contribute in large measure to this condition.
The use of INPUT or OUTPUT procedures should not be discontinued but should be
considered in proper perspective for the job to be accomplished. Overall
system performance can be improved, in some cases, by having the INPUT
procedure produce a file which is read by SORT and having SORT produce a file
which is processed by the OUTPUT procedures. The process of calling INPUT or
OUTPUT procedures does not present any undue burden to SORT or the system.

Blocking factors of input and output files can have a definite effect on sort
timings even if INPUT or OUTPUT procedures are used to read or write the files.
To prevent this 1/0 bound situation, the output file should contain
approximately 100 (or more) records per block; 50 (or more) records per block
is usually sufficient for the input file. Sorts have been run as much as four
times faster when input and/or output file blocking was improved. Other cases
could be stated in which both larger and smaller improvements were seen.

Historically, sorts are characterized as being processor bound during the
stringing phase and 1/0 bound during the merge phase. SORT can and does
operate in this fashion; however, it always attempts to be processor bound in
both the stringing and merge phases. Unless the memory size specified is

11-9- 8
SORT

relatively small (for the particular sort), SORT achieves the goal of being
nrocessor bound. When this condition i~ ohtajned, speed improvements can be
~ealized only by methods that reduce processor time. When INPUT or OUTPUT
procedures are used, they are candidates for this kind of improvement. The
largest potential gain lies in improvement of the COMPARE procedure. The
COMPARE procedure is called many times for each record; the INPUT or OUTPUT
procedures, however, are called only once for each record. Programs ean obtain
improvement by simplifying the individual keys and consolidating them into a
single key. In ALGOL sorts, partial word compares are normally faster than
string compares when characters within a word are tested. COBOL sorts should
use 8-bit characters for string comparison (translate them to 8-bit on input
and back to 6-bit on output) whenever possible. Decreasing the amount of
processor time helps system throughput as well as reducing sort timings. With
certain kinds of sorts characterized by small keys and large record sizes, tag
sorting may be advantageous. The total amount of disk required to complete the
job is probably smaller also, because the SORT requires less. Retrieving the
output records is likely to be the most time-consuming factor and is highly
data dependent.

Knowledge of the particular sort and experimentation can provide better
retrieval methods.

SORT

APPENDIX 11A~

SORT ERROR MESSAGES

SORT ERROR MESSAGES

All error messages are displayed on the system display in the form:

<job number> SORT ERROR #NN

Error Number

2

3

4

5

6

7

8

9

10

1 1

12

13

14

Definition

The record size specified was zero.

Count of sort input records and output records does
not agree (internal sort problem).

Insufficient memory was specified for a memory
sort. Disk size and number of tapes are both zero.

Sort disk was exhausted during the stringing phase
and no tapes were specified.

Sort disk was exhausted during the merge phase and
no tapes were specified.

Input file passed to SORT was already open (the
input file must be closed when passed to SORT).

During a tape or ITD sort the block number of the
last record read from a sort work tape did not
match the expected block number.

The output file passed to the SORT was not large
enough to contain the output, and the SORT was
unable to expand the output file. (Increase the
size of the output file or decrease the number of
records to be sorted.)

The output file passed to
(the output file must
SORT).

SORT was already open
be closed when passed to

An irrecoverable 1/0 error occurred while reading a
sort work tape or work disk file.

An irrecoverable 1/0 error occurred while writing a
sort work tape or work disk file.

An irrecoverable 1/0 error occurred while reading
or writing control records in the SORT control
f i 1 e.

An irrecoverable 1/0 error occurred while writing
the user output file.

An irrecoverable 1/0 error occurred while reading

11-A-

11-A- 2

1 5

16

17

19

84

SORT

the user input file.

A restart was attempted, but the record size (or
character size of the record) did not match the
originating sort. When a restartable sort is not
able to continue, it saves restart information so
that this error occurs on subsequent restart
attempts.

A restart was attempted, and the user input file
reached end-of-file before the restart record was
read. The user input file is shorter at restart
time than the original file.

A restart was attempted, but the SORT was unable to
obtain the necessary restart information from the
control file. (May be due to parity errors.)

The SORT is terminating because an irrecoverable
error occurred while reading the sort workfile and
some output records have already been passed to the
user OUTPUT procedure. This error termination only
occurs for restartable sorts with OUTPUT
procedures. Since the sort is restartable, a
restart should be made so that the SORT does the
neccessary recovery.

This error occurs because the control file is not
large enough to contain all control records. It is
an internal sort error and can be circumvented by
specifying more disk and/or a different memory
size.

The following errors appear on the display like any other sort
The SORT does not terminate as a result of these errors.

error message.

30

3 1

32

33

The control file is not large enough to contain two
copies of the controJ records. Two copies are
maintained for sorts with error recovery. This
error is an internal sort problem and can be
circumvented by specifying more disk and/or a
different memory size. The SORT continues when
this error occurs; however, this function of error
recovery is disabled,

An irrecoverable I/0 error occurred while writing
the control file for an error recovery sort. One
copy of the control records is discarded, and the
SORT continues using one copy of the control
records.

An irrecoverable I/0 error occurred while
the sort workfile. Error recovery
abandoned, and the SORT continues as
restartable sort.

writing
mode is

a normal

Insufficient disk space was provided for the
workfile to contain three copies of the data. This
situation only happens when error recovery mode is
requested. The SORT continues as a normal
restartable sort with error recovery reset.

11-B-
SORT

APPENDIX llB.

SORT RUN-TIME INFORMATION

FILE NAMES

The following list shows the file names associated with the sort workfiles
during execution of the sort.

Sort Disk Files= SORT/DISKC
SORT/DISKF

Sort Tape Files SORTOM<task number>
SORTlM<task number>
SORT2M<task number>
SORT3M<task number>
SORT4M<task number>
SORT5M<task number>
SORT6M<task number>
SORT7M<task number>

SORT STATISTICAL ARRAY

The sort statistical array contains data collected while the SORT was
executing. A copy of the array is written into a file titled SORT/STATISTICX
and in some cases is returned to the user program. A program SYMBOL/SORTSTAT
(source language) or SYSTEM/SORTSTAT (object code) is provided on the system
release tapes. This program reads the SORT/STATISTICX file and produces a
report from the sort statistical information. The sole purpose of this program
is to guide those users who are inter~sted in the sort statistical information.
Any other use of this program or the sort statistical information is left
entirely to the user. When the contents of the sort statistical array are
changed, those changes are reflected in the SYMBOL/SORTSTAT and SYSTEM/SORTSTAT
program. The MCP must be compiled with the$ option SORTSTAT set. This option
must be set prior to the first reference to the option.

The following describes the content of the sort statistical array.
otherwise specified, units are words.)

WORD

0

2

3

4

5

EXPLANATION OF CONTENTS

A code word containing various parameters used by
the SORT.

Sort memory size specified by user program.

Stringing matrix size determined by SORT in record
units.

Output block size of sort workfile.

Input block size of sort workfile.

Disk input. Contains six fields of eight bits.
Each field reflects the number of rows (mod 256)
for various types of disk files.

(Unless

11-B- 2

6

7

8

9

10

1 1

12

13

14

1S

16

17

18

19

20

21

22

23

24-29

SORT

Disk output. Contains six fields of eight bits.
Each field reflects the number of rows (mod 256)
for various types of disk files.

Merge matrix size determined by SORT in record
units.

Number of strings created during stringing phase.

Processor Time.
(47:24] Stringing phase (units of 2.4
microseconds).
(23:24] Beginning of sort (uni ts of 2.4
microseconds).

Time check 1. Beginning of sort (uni ts of 2.4
microseconds).

Run date. TIME (IS).

Time check 2. End of stringing phase (units of 2.4
microseconds).

Time check 3. End of merge phase (units of 2.4
microseconds).

MCP level.

Disk size specified by user program.

Number of comparisons (calls on user
procedure) during sort.

Record size specified by user program.

Number of input records.

compare

Number of work tapes specified by the program.

Work tape or merge input unit types. Contains eight
fields of six bits. Each field reflects the unit
type of the merge file or work tape.

UP.it information. Contains 10 fields of three bits
that reflect the recording density of a specific
file and two fields of six bits that reflect the
unit type of the input and output file.

Disk workfile. Contains six fields of eight bits.
Each field reflects the number of rows (mod 256)
for various types of disk files.

Not used.

Program name. Format is standard form
representation of file names.

11-B- 3
SORT

The following example illustrates the actual sort statistics for the COBOL sort
program illustrated previously.

**
************************ S 0 R T *******************
~~~~~~ S T A T I S T I C A L A N A L Y S I S ****** 
****************************************************** 

SORT INFO 

f~~n ! Q~: SORT MH: 8/6176 I!~;: 15:5:20.95 ~~E: MARK 2.8.0 

RECORD COUNT: 20 RECORD SIZE (CHARS): 80 SOURCE LANGUAGE: COBOL 

INPUT OPT ION: 

MEMORY SIZE: 

INPUT: 

SORT DISK: 

ALLOCATION: 

FILE OUTPUT OPTION: 

12000 DI SK SIZE (WORDS) : 20000 

CARD READER 

MODULAR DISK 

PROCEDURE 

NO. WORK TAPES: 0 

SORT DISK BLOCK SIZE(WORDS): 840 SORT TAPE BLOCK SIZE(WORDS): 0 

STRINGING VECTOR SIZE: 549 

PERFORMANCE STATISTICS: 

NO. COMPARISONS: 
COMPARISONS PER RECORD: 

NO. STRINGS CREATED: 

60 
3.00 

DISK 

MERGING VECTOR SIZE: 5 

0 

60 
3.00 

0 

0.00 

AVERAGE STRING LENGTH( RECORDS): DISK 0.00 

DISK 0.00 

TAPE 

TAPE 

0 

0.00 

0.00 NO. MERGE PASSES REQUIRED: TAPE 

TIMING ANALYSIS: ELAPSED PROCESSOR INPUT/OUTPUT ------ -------- ------- ---------
STRINGING PHASE: 0: 0:38.81 0: 0: 0. 52 0: 0: 2.02 

MERGING PHASE: 0: 0: 0.00 0: 0: 0.00 0: 0: 0.00 

TOTAL: 0: 0:38.81 0: 0: 0.52 0: 0: 2.02 

RECORDS PER MINUTE: 30.92 2305.26 593.66 

INPUT RECORD ?~g~~~~~: DISK 0.00 % ------ TAPE 0.00 % 

MV1418 



11-C-
SORT 

APPENDIX llC. 

SORT COLLATING SEQUENCE 

FRC'OIC' FRrntr HF¥ --- - - - - - ----· -· l='Rrnrr i:Rrn1r Ut::V ........ ...,, ...... __ , 
L.1£.-1'-,J...J&'- 11&......l't... 

GRAPHIC INTERNAL GRAPHIC GRAPHIC INTERNAL GRAPHIC 

BLANK 0100 0000 40 F 1100 0110 C6 
I 0100 1010 4A G 1100 0111 C7 

0100 1011 4B H 1100 1000 C8 

< 0100 1100 4C I 1100 1001 C9 
( 0100 1101 4D 
+ 0100 1110 4E (!)MZ 1101 0000 DO 
I 0100 1111 4F J 1101 0001 DI 

K 1101 0010 D2 
& 0101 0000 so L 1101 0011 D3 
I 0101 1010 5A M 1101 0100 D4 
$ 0101 1011 SB N 1101 0101 DS 

* 0101 1100 SC 0 1101 0110 D6 
) 0101 1101 SD p I IOI 0111 D7 

0101 1110 SE Q 1101 1000 D8 
0101 1111 SF R 1101 1001 D9 

- 0110 0000 60 ¢ 1110 0000 EO 
I 0110 0001 61 s 1110 0010 E2 

O! 10 1011 6B T 1110 0011 E3 
7r 0110 1100 6C u 1110 0100 E4 
- 0110 1101 6D v 1110 0101 ES 
> 0110 1110 6E w 11100110 E6 

•) 0110 1111 6F x 1110 0111 E7 
y 1110 1000 E8 

0111 1010 7A z 1110 1001 E9 
i: 0111 1011 7B 

(11 0111 1100 7C 0 1111 0000 FO 
I 0111 1101 70 l 1111 0001 Fl 
= 0111 1110 7E ..., 

1111 0010 F2 -
II 0111 1111 7F 3 1111 0011 F3 

4 1111 0100 F4 
(+)PZ 1100 0000 co s 1111 0101 FS 

A 1100 0001 Cl 6 1111 0110 F6 
B 1100 0010 C2 7 1111 0111 F7 
c 1100 0011 C3 8 1111 1000 F8 
D 1100 0100 C4 9 1111 1001 F9 
E 1100 0101 cs 

MV1413 



11-D-
~uRT 

APPENDIX 11D. 

B 7000 COMPARE ANALYSIS 

COMPANALYZER 

Enhanced SORT performance is provided through the use of the SORT compile-time 
option, COMPANALYZER. When set, COMPANALYZER causes code to be included in the 
SORT which performs analysis of the compare procedure provided by the user. 
This analysis attempts to move the compare procedure local to the environment 
of the SORT in order to reduce the overhead of compare procedure entry, which 
normally occurs via an SIRW. 

In order to successfully complete the analysis, address couples of local and 
global reference mu~t be properly mapped into a new environment so that the 
SORT may use normal IRW referencing for compare procedure entry. If the 
compare procedure cannot be moved local to the SORT, the optimization is 
terminated and the SORT continues to run in the normal manner referencing the 
user's compare procedure with an SIRW. 

INLINECOMP 

INLINER is a SORT procedure whose purpose 
procedures in ALGOL and to map them 
existing SORT program. 

i s 
into 

to recognize in-line compare 
existing structures within the 

Functionally, INLINER builds a code word in the manner of the COBOL compiler. 
This process allows the existing mechanisms (for COBOL in-line cases) to be 
utilized and prevents extensive duplication of code. 

Significant savings are achieved in single-key cases by completely eliminating 
all calls on the user's compare procedure. 

INLINER is required to build one of two types of code words depending on the 
class of the compare being performed (that is, numeric or character). The 
user's object code is examined, and a determination of the class is made. 

A copy of the compare procedure is moved local to the SORT by the COMPMOVERL 
procedure. During this process, the code string is examined and an in-line 
determination is made. 

The user is advised to run with both COMPANALYZER and 
significant savings in sort times usually result 
overhead. 

STRINGING PROCEDURES 

INLINECOMP set, since 
with relatively little 

The stringing procedures are reorganized and optimized in order to take 
advantage of B 7000 hardware features. 



11-D- 2 
SORT 

OPTIONS 

All existing B 6000 options have been retained in the B 7000 SORT. In 
addition, four options have been added: 

COMPANALYZER 
INLINECOMP 
COMPTRACE 
DEBUGDUMP 

The above option cards are embedded in the MCP symbolic and 
recompilation in order for the default value to be changed. 

COMPANALYZER (SET) 

INLINECOMP (SET) 

COMPTRACE (RESET) 

DEBUGDUMP (RESET) 

When reset, causes omission of COMPMOVEL 
and associated procedures on 
recompilation of the MCP. 

When reset, causes omission of INLINER 
and associated procedures on 
recompilation of the MCP. 

When set, produces debugging aids for 
COMPMOVERL and INLINER. 

When set, produces debugging aids for 
COMPMOVERL and INLINER. 

require 

Both COMPMOVERL and INLINER are produced by default. INLINER is dependent on 
COMPMOVERL; 1nerefore, compilation of the SORT with COMPANALYZER reset causes 
an implicit resetting of INLINECOMP. INL!NER may be explicitly omitted by 
recompiling with INLINECOMP reset. 



11-10-
SORT 

10. SORT RECOVERY CONSIDERATIONS 

this section describes use of the restart feature of SORT in detail and 
provides information about error recovery during sorting. 

RESTART 

The SORT can resume processing at the most recent checkpoint following the 
discontinuance of the program. Operation of the SORT in this mode provides the 
necessary restarting informaiion for the SORT and requires certain program 
inputs (defined in subsequent text). The program must provide logic to restore 
and maintain stack variables, arrays, files, pointers, and so forth, that are 
defined for and by the program. In other words, the program must provide the 
means to restore everything necessary for it to continue from the point of 
interruption. This capability may be simple or complex and is entirely program 
dependent. 

Restart capability is implemented for disk sort only; however, a partially 
restartable ITD sort may also be possible. When tape files are not in the tape 
phase of any ITD sort, it functions as a disk sort. After the data are written 
from disk to tape (during an ITD sort), the SORT cannot be restarted. A sort 
can be started as a disk-only restartable sort with insufficient disk provided 
to accomplish the sort. When this situation exists, the SORT terminates with 
SORT ERROR 4 or 5. After error termination, the sort is restarted as an ITD 
sort by indicating a RESTART and specifying the number of tapes desired. Any 
other kind of restart is impossible under this condition. If a restartable 
sort terminates during the first output of data from disk to tape (possibly as 
a result of an irrecoverable tape I/O error), the SORT can be restarted and the 
data written to tape as if no problem had occurred. 

When using the SORT in restartable mode, unique file titles should be given to 
the two sort disk files. This procedure is accomplished by using the title 
attribute of the files. (This procedure is described in subsequent text.) 
Conflicts may arise when two or more sorts use identical file titles for their 
sort disk files. 



11-10- 2 
SORT 

When the SORT i~ attempting to restart a previously incomplete ~orL, a minimal 
amount of information is verified to ensure that continuation is compatible 
with the previous sort. The two items verified are sort record size and 
character size of the sort record characters. For ALGOL programs, record size 
is explicitly specified by the program while character size is zero (default 
size is eight). COBOL programs use the SD to determine sort record and 
character size. When record size or character size does not match the previous 
sort, error termination occurs. Modification of other sort parameters (except 
number of tapes as previously stated) is allowed. Different values for memory 
size or disk size are ignored and the original values are used. However, both 
values must be valid non-zero values. Different procedures can be specified 
(for input, output, or comparing) if desired, and files may be interchanged 
with INPUT or OUTPUT procedures. The program requesting the restart need not 
be the originating program. Because the SORT can only attempt to meet the user 
request and cannot determine appropriateness of requests, the user must ensure 
that the desired results are obtained. 



11-10- 3 
SORT 

Language Syntax Extensions 

Implementation of restart and 1/0 error recovery requires extensions to the 
SORT statements in the COBOL and ALGOL compilers. 

The extended syntax for COBOL is as follows: 

SORT file-name-1 
ON {ASCENDING/DESCENDING} 
KEY data-name-1 [, data-name-2) ... 
i. ON {ASCENDING/DESCENDING} 
KEY data-name-3 [. data-name-4] ... I ... 
{USING file-name-2/INPUT PROCEDURE IS 

section-name-1 [ {THROUGH/THRU}section-name-2]} 
{GIVING file·name-3/0UTPUT PROCEDURE IS 
section-name-3 [{THROUGH/TH RU }section-name-4]} 
[MEMORY SIZE {formula/data-name-5/literal· 1}] 
[DISK SIZE {formula/data-name-6/literal-2}] 
[RESTART IS {formula/data-name-7 /literal-3} I 

The value of the least significant (rightmost) five bits of the formula 
DATA-NAME-7 or LITERAL-3 is passed to the SORT to indicate the desired sort 
action. Detail information concerning COBOL sort is contained in the B 7000/B 
6000 Series COBOL Reference Manual, form 5001464. 

The syntax for ALGOL is as follows: 

<Sort statement> SORT (<output option>, 
dnput option>, 
<number of tapes>, 
<Compare procedure>, 
<record length>, 
<Size specifications>) 
~reRtart Rnecifications~ ,------- -.--- - ... 

<restart specifications> : := <empty> I 
[RESTART=<arithmetic expression>] 

The value of the least significant (rightmost) five bits of the restart 
expression is passed to the SORT to indicate desired action. Refer to the B 
7000/B 6000 ALGOL Reference Manual, form 5001639, for more information 
pertaining to the SORT statement. 



11-10- 4 
SORT 

RESTART PARAMETER VALUES 

The SORT inspects various bits of the restart parameter to determine the 
requested restart action. The user must supply proper file title attributes for 
the two disk workfiles if these files were previously label equated. 
Individual bits and combinations of bits can be set by the program to control 
the SORT. The bits and their meanings are as follows: 

Bit 0: 

Bit 1 : 

Bit 2: 

Bit 3: 

On. The program is restarting a previous sort. The 
SORT tries to open its two disk files and obtain 
restart information. After successfully obtaining 
this information, the SORT continues from the last 
known restart point. 

Off. Th"e SORT is starting from the beginning. If 
the sort is a restartable sort and previous sort 
files with identical titles exist, those sort files 
are removed and replaced by new sort files. 

On. The program is requesting a restartable sort. 
The SORT saves its two internal files and can be 
restarted on program request. If bit 2 is on, bit 1 
is set by default. 

Off. A normal sort is req11ested, and no sort files 
are saved (unless bit 2 is on, which sets bit 1 by 
default). 

On. The program is requesting a restartable sort 
and desires extensive error recovery (from I/O 
errors). With this option set, if 1/0 errors occur 
while accessing either of the two sort files, the 
sort attempts to backtrack and remerge strings as 
necessary. To use this option, the program must 
provide at least three times as much disk space as 
required to contain the input data. When less 
space is provided, the SORT emits the message 
"change to restartable only mode" and continues the 
sort without further capability to backtrack. 

Off. Recovery from internal errors i s not 

This bit has meaning only if a restartable sort is 
requested. Use of this option controls the SORT 
during the stringing phase as the user input is 
being read by the SORT. Use of this bit determines 
how the SORT restarts (when a restart is requested) 
only if the restart occurs while the SORT is in the 
stringing phase. 

On. The program desires the SORT to restart at the 
beginning of the user's input. This restart is the 
equivalent of starting an entirely new sort. In 
case the restarted sort had passed from the 
stringing phase into the merge phase, it continues 
from the merge phase. This bit may be set during a 
res t a r t even i f i t was not i n i t i a l l y s e t . Once 
set, it cannot be reset by subsequent restarts. 

Off. The program desires the ability to restart at 



Bit 4: 

SORT 

the last restart point that occurred during the 
stringing phase. If the SORT is still in the 
stringing phase, it skips over the records already 
processed ano con11nues from the iast restart 
point. This process is described in more detail in 
subsequent text. If the SORT is in the merge phase, 
it continues from the last merge phase restart 
point. Use of this option (by not setting the bit) 
is normally less efficient than not using the 
option because more strings are created during the 
stringing phase. 

This bit is reserved for expansion and is not 
currently used by the SORT. 

11-10- 5 

When a program is initially starting a sort and desires restart ability the 
restart value should be: 

1. 

2. 

3. 

4. 

5. 

6. 

Decimal 2 (bit 1 on) if a restartable 
desired that is capable of restarting at 
during the stringing or merge phase. 

sort is 
any point 

Decimal 10 (bits 1 and 3 on) if a restartable sort 
is desired that can restart at any point during the 
merge phase but only at the beginning of the 
stringing phase. 

Decimal 4 or 6 (bit 2 on or bits 1 and 2 on) if a 
restartable sort is desired that can attempt 
extensive recovery from internal sort I/O errors 
and can restart at any point during the stringing 
or merge phase. 

Decimal 12 or 14 (bi ts 2 and 3 on or bi ts 1 ' 2' and 
3 on) i f a restartable sort i s desired that can 
attempt extensive recovery from internal sort I/O 
errors and can restart at any point during the 
merge phase but only at the beginning of the 
stringing phase. 

Decimal 1, 3, 5, or 7 (significant bits are bit 0 
on and bit 3 off) if a previously incomplete sort 
is desired that can be restarted. The prior 
incompleted sort must have been capable of restart, 
and the two sort disk files must be present. A 
restart is attempted using the values obtained from 
the sort files. The previous setting of bit 3 
controls the SORT if it is restarted during the 
stringing phase. The previous values of bits 1 and 
2 are used. 

Decimal 9, 11, 13, or 15 (significant bits are bits 
0 and 3 on) if a restart is desired of a previously 
incomplete sort and if a restart from the beginning 
of input is desired during the stringing phase. 
The prior incompleted sort must have been capable 
of restart, and the two sort disk files must be 
present. A restart is attempted using the values 
obtained from the sort files. Bit 3 is set and 
remains set through all su~sequent restarts. Bits 
1 and 2 take on their previous values. 



11-1 0- 6 

7. 

SORT 

Decimal 0 or 8 (r;c bits en er bit . \... ,-. 
LU...._ 

SORT to do a normal sort with no restart 
capability. 

RESTARTING DURING STRINGING PHASE 

Restarting during the stringing phase (while SORT is still reading input 
records) requires special consideration. If SORT has passed a file, a seek is 
done or r e cords a r e r ea d u n t i 1 t he de s i r e d r e s t a r t po i n t i s r each e d . An INPUT 
PROCEDURE presents a different problem, however, because the program must find 
the proper restart record. To accomplish this desired result, the SORT places 
values in the first word of the array passed to the INPUT PROCEDURE. The 
values are negative or positive integers in binary form or zero to indicate 
that nothing special is happening. A positive integer is placed in the first 
word (word 0) to tell the INPUT PROCEDURE the relative number of the next 
record desired by the SORT (if the SORT has previously processed and saved 99 
records it requests record number 100). A positive non-zero integer occurs in 
the first word only once and is then on the first call to the INPUT PROCEDURE. 
SORT places a negative non-zero integer in the first word to inform the INPUT 
PROCEDURE that SORT has just established a restart point. The number returned 
represents (in absolute value) the number of records saved (for restart 
purposes) by SORT. This information can be used by the program to establish 
its own separate restart points. 



11-10- 7 
SORT 

ERROQ RECOVERY 

SORT contains extensive internal error recovery ability for irrecoverable I/0 
errors that occur as a result of accessing a sort disk file. The sort disk 
files under discussion are the workfiles which contain the data being sorted 
and the control file which contains control information for SORT. These two 
files are referenced as the workfile and control file respectively; their 
internal names and external titles are described in subsequent text. 

I/O error recovery logically segments into several areas of interest related to 
the file in question and the kind of error encountered. The degree of recovery 
possible is always dependent on the request for error recovery by the program. 
When error recovery is requested, SORT maintains two copies of each record in 
the control file and makes a second copy of the original strings of input data 
in the workfile. With error recovery, the control file is logically segmented 
into two files with a duplicate record maintained in both halves of the file 
while the workfile is logically segmented into thirds. Dupl~cate records are 
created in the workfile during the stringing phase onlv and are used for error 
recovery when the primary copy of the original string- is unreadable. Data are 
not duplicated during the merge phase, and error recovery is accomplished by 
backtracking to remerge previously merged data. In no case, is error recovery 
attempted beyond one level of recovery. (If recovery is attempted while 
recovering from a prior error, SORT terminates.) A discussion of the primary 
areas of error recovery is presented in the following paragraphs. 

Error Recovery of Control File Input Errors 

An attempt is made to obtain the record by rereading the "error" record several 
times. If the error record is unreadable and error recovery is not requested, 
the SORT terminates. If error recovery is requested, the SORT attempts to read 
its duplicate copy of the error record. 

Error Recovery of Control File Output Errors 

An attempt is made to successfully write the error record. If writing is not 
successful after several retries and error recovery is not requested, SORT 
terminates. If error recovery is requested, SORT marks as bad disk (XD) the 
row of disk containing the error. record. SORT retains the other copy of the 
XDed row for subsequent use. If possible, SORT continues in full error 
recovery mode; otherwise, SORT displays SORT ERROR 31 and continues in error 
recovery mode for the workfile. Further error recovery for the control file is 
no longer possible. In either case, if SORT is unable to write the error 
record after the bad row has been XDed, SORT terminates. Only one disk row is 
marked as bad disk on an error so that it is not possible to get into a loop 
and XD large quantities of disk. 



11-10- 8 
SORT 

Error Recovery of Workfile Input Errors 

An attempt is made to obtain the record by rereading the error record several 
times. If the error record is unreadable and error recovery is not requested, 
SORT terminates. If error recovery is requested and the data have been 
duplicated, an attempt is made to read the duplicate copy. If the error record 
was written by the merge phase and no duplicate copy exists, SORT attempts to 
recreate the string of information containing the error record. Before 
backtracking to the previous merge, SORT writes and reads a test record in the 
error record location. If the test is unsuccessful, SORT marks as bad disk the 
row of disk containing the error record location. After testing and possible 
XDing of disk, SORT backtracks to the desired point for restarting the merge 
phase. At most, one row of disk is marked as bad disk for each occurrence of an 
input error for the workfile. 

Error Recovery of Workfile Output Errors 

An attempt is made to successfully write the error record. If writing is not 
successful after several retries and error recovery is not requested, SORT 
terminates. If error recovery is requested, SORT marks the row of disk 
containing the error record as bad disk. If possible, SORT continues in full 
error recovery mode; otherwise, SORT displays SORT ERROR 32 and continues with 
error recovery reset. If the SORT is in the stringing phase, an attempt is 
made to write the error record and if the attempt is unsuccessful, SORT 
terminates. If SORT is in the merge phase, it backtracks to the desired point 
of restarting the merge phase. At most, one row of disk is XDed for each 
occurrence of an output error for the workfile. 

Error Recovery of User Output File Errors 

When the program has given the SORT an output file (rather than an OUTPUT 
PROCEDURE), the SORT closes and purges the output file and restarts the output 
from the first output record. If the output file is a disk file and 
insufficient space was allocated to contain the data, the SORT either: (1) sets 
the FLEXIBLE attribute before restarting the output, or (2) if setting the 
FLEXIBLE attribute is not possible, terminates with SORT ERROR 8. Output error 
recovery is not dependent on program request for error recovery. 

Error Recovery of Workfile Input-Errors during User Output 

When the user's output is a file, the file is closed and purged, and SORT 
attempts to remerge the desired string. If the output is a procedure and error 
recovery is specified, SORT repositions itself to remerge the desired string 
and subsequently terminates with SORT ERROR 19. When SORT is restarted, it 
remerges the desired string and starts user output with the first output 
record. 



11-11-
SORT 

11. MISCELLANEOUS INTERNAL INFORMATION 

This section contains information about the SORT disk files and memory 
allocation as well as miscellaneous information concerning restart and error 
recovery. 

SORT DISK FILES 

SORT uses two disk files (when disk or ITD sorts are requested) for storing the 
data and control records. 

The control file 
maximum number 
executed. 

is normally a very small disk file whose size is based on the 
of strings which can be produced for the sort currently being 

Control file records are three words; blocks are 90 words. The maximum number 
of control file rows is 64, and the number of physical blocks per row is four 
(unless the amount of disk provided is extremely large). The last two rows of 
the control file contain restart information when restartable sorts are 
requested. The internal name for the control file is DISKC and the title is 
SORT/DISKC. When a restartable sort is desired, file attribute equation should 
be used to give a unique title to the control file. An example is: 

<I> FILE DISKC (TITLE=JOBNAME/SORTCONTROL) 

Other attributes that may be set by use of file attribute equation are limited 
to assignment of the control file to disk pack. Use of other attributes is not 
prohibited, but the SORT cannot function unless extreme care is exercised. A 
high probability of failure exists if attributes such as AREAS, AREASIZE, 
MAXRECSIZE, BLOCKSIZE, and so forth, are modified by file attribute equation. 

The workfile is used by SORT to cont4in the data or records being sorted. 
Workfile size is provided explicitly or implicitly by the user program. SORT 
first determines a desired blocksize and then computes the number of disk rows 
provided by the user. 1ne maximum number oi rows SORT aiiocates to the 
workfile is 183; partial rows are rounded up to a full row. Row sizes do not 
exceed 1,320 segments unless an extremely large amount of disk is provided. 
The internal name for the workfile is DISKF and the title is SORT/DISKF. When 
a restartable sort is requested, file attribute equation should be used to give 
a unique title to the workfile. An example is 

<I> FILE DISKF (TITLE=JOBNAME/SORTWORK) 

Other attributes that may be set by use of file attribute equation are limited 
to assignment of the workfile to disk pack and the ability to provide a new 
BLOCKSIZE and MAXRECSIZE. Use of other attributes is not prohibited, but the 
SORT cannot function unless extreme care is exercised. A high probability of 
failure exists when attributes such as AREAS, AREASIZE, and so forth, are 
modified by file attribute equation. 

SORT recognizes changes in BLOCKSIZE. However, BLOCKSIZE and MAXRECSIZE must 
agree in order to open the file. The ability to modify this value is provided 
as a means of overriding the normal memory allocation algorithms of SORT. 
However, care should be exercised in the use of this ability to modify the 
buffer size of the SORT. When the buffer size is increased, the number of disk 
segments per disk row is proportionately increased, and SORT proceeds using the 
larger disk rows. If the buffer size is decreased, the number of disk segments 
per disk row is proportionately decreased, which may result in a workfile not 
large enough to accomplish the sort. One method of alleviating this condition 



11-11- 2 
SORT 

is to specify a larger quantity of disk. Modification of the buffer size is 
usually less effective than providing a different memory size for use hy SORT 
However, sorts are always data dependent, and with some ordering of data, a 
better sort may possibly be obtained by judicious selection of buffer size. 



11-11- 3 
SORT 

SORT MEMORY ALLOCATION 

SORT attempts to stay within the memory estimate provided by the user even to 
the extent of sorting with only six records in memory. Memory allocation 
proceeds (in general) through the following steps: 

1. 

2. 

3. 

Memory size provided by the program is reduced by 
1,500 words. The reduced size is used for all 
subsequent calculations. The reduction is a 
generous estimate of the amount of space required 
for working storage and the space required for 
various SORT procedures. 

A buffer size is selected for the internal disk 
and/or tape files. SORT tries to select buffer 
sizes so that it does not become 1/0 bound. For 
disk sorting, SORT normally allocates two buffers 
per string. For tape sorting with N tapes, SORT 
allocates I/Nth of memory as buffers for each tape. 

During executions of the stringing phase, two 
output buffers are normally allocated; thus, the 
remainder of memory is left for the sort vector. 
During execution of the merge phase, virtually all 
available memory is used to contain buffers. 



11-11- 4 
SORT 

MISCELLANEOUS INFORMATION 

A number of conditions exist in SORT for restart and error recovery. Some of 
these conditions are documented elsewhere; however, the following text lists 
the most salient. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

The sort vector size limit is 65,535 and is not 
required to be a power of two. 

The order of merge limit is 65,535. 

Th e 1 i m i t f o r a d i s k s t r i n g · i s 5 4 9 , 7 7 5 , 8 1 3 , 8 8 7 
records, and the maximum number of blocks that can 
be contained in the sort workfile is also 
549,775,813,887. The tape limit allows an 
unlimited string length but limits the number of 
blocks that can be obtained on any single worktape 
to between 2,097,151 and 4,294,967,295 depending on 
the number of records per block. (Reel switches may 
or may not occur; however, this discussion assumes 
a 1 a r g e t ape r e e 1 . ) The u 1 t i ma t e 1 i mi t for t ape 
sorting is the stated tape limit times the number 
of sort work tapes specified. 

The file title for sort work tapes is SORTATAPEn 
(where n is a number between zero and seven). This 
feature eliminates the necessity for operator 
intervention to resolve DUP FILE messages. 

When SORT has been given some work disk to use, it 
attempts to recognize the condition where the input 
data is less than 40 percent in sequence and 
switches comparison from ascending to descending or 
vice versa. SORT remembers the change of mode and 
processes the data accordingly. The switch is done 
as often as necessary in order to produce longer 
strings. Given a set of input data in exact 
reverse sequence, SORT produces two strings (rather 
than the maximum use of strings) and completes the 
sort much faster. 

Restart capability can be excluded from SORT by 
resetting the RESTART option in the SORT portion of 
the MCP symbolic and by recompiling the MCP. 
Omitting the code associated wjth RESTART/ERROR 
recovery results in sorts that run between 2 and 15 
percent faster with an average improvement of 6 to 
10 percent. Disk and ITO sorts are the only sorts 
measurably improved by this omission. 

Disk buffer size and disk record addressing have 
been specifically chosen to reduce disk latency for 
the sort work disk. Whether the SORT is I/O bound 
or compute bound is also dependent on many other 
associated factors. 



12-7-
GUARDFILE 

7. SYSTEM/GUARDFILE INPUT EXAMPLE 

An example SYSTEM/GUARDFILE input request for a database is shown below. The 
output from the SYSTEM/GUARDFILE program, indicating the contents of the 
guardfile created by this deck, is also shown. 

% CARD DECK FOR TESTING DATA MANAGEMENT SECURITY FUNCTIONS 

DEFAULT = NO; % WE WANT THIS TO BE A PRIVATE DATABASE -
% ONLY THOSE PROGRAMS AND USERCODES ACTUALLY 
% IN THE GUARDFILE MAY ACCESS THE DATABASE 

DEFINE OK= ALL EXCEPT (CLOSELOCK); % DONT WANT TO OVER-WRITE DATABASE 

PACKNAME = DMPACK; % ONLY PROGRAMS RUNNING FROM HERE CAN ACCESS D-BASE 

USERCODE STEWART=RW,DMVERBS=OK % UNLESS USING ONE OF THE FOLLOWING PROG. 
USING PROGRAM 

1 ; 

OBJECT/FIND =RW, DMVERBS=ALL EXCEPT (FIND), 
OBJECT/LOCK =RW, DMVERBS=ALL EXCEPT (LOCK), 
OBJECT/OPENINQUIRY =RW, DMVERBS=ALL EXCEPT (OPENINQUIRY), 
OBJECT/ASSIGN =RW, DMVERBS=ALL EXCEPT (ASSIGN), 
OBJECT/CREATESTORE =RW, DMVERBS=ALL EXCEPT (CREATESTORE), 
OBJECT/DELETE =RW, DMVERBS=ALL EXCEPT (DELETE), 
OBJECT/LOCKSTORE =RW, DMVERBS=ALL EXCEPT (LOCKSTORE), 
OBJECT/REMOVE =RW, DMVERBS=ALL EXCEPT (REMOVE), 
OBJECT/OPENUPDATE =RW, DMVERBS=ALL EXCEPT (OPENUPDATE), 
OBJECT/CLOSELOCK =RW, DMVERBS=ALL EXCEPT (CLOSELOCK), 
OBJECT/OPENINITIALIZE=RW, DMVERBS=ALL EXCEPT (OPENINITIALIZE), 
OBJECT/OPENTEMPORARY =RW, DMVERBS=ALL EXCEPT (OPENTEMPORARY), 
OBJECT/GENERATE =RW, DMVERBS=ALL EXCEPT (GENERATE) 

PROGRAM TESTDEFINE ON TESTPACK = RW, DMVERBS=OK EXCEPT(GENERATE); 

PROGRAM A,B,C=RO; 

PROGRAM (USR)X/Z = NO; % DONT LET HIM IN AT ALL 

PROGRAM *A/B = RW,DMVERBS=OK EXCEPT (INSERT); 

PROGRAM "HYPHEN-ATED" = RO; 

PROGRAM "USING" = RO USING USERCODE "USING" = RW; 

PROGRAM THIS/IS/A/NAME/WHICH/IS/TOO/BIG/TO/PRINT/ 
ON/A/SINGLE/LINE= RW DMVERBS=ALL EXCEPT (OPENINITIALIZE); 



12-7- 2 
GUARDFILE 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR. FOR.MATIING PURPOSES. 



GUARDFILE 

8. SYSTEM/GUARDFILE OUTPUT EXAMPLE 

GUARDFILE VERSION 002 DEFAULT ACCESS=NO PACKNAME DMPACK 

USING USERCODE STEWART = RW 
DMVERBS: ASSIGN CREATESTORE DELETE FIND GENERATE INSERT 

LOCK LOCKSTORE OPENINITIALIZE OPENINQUIRY 
OPENTEMPORARY OPENUPDATE REMOVE 

USING PROGRAM (STEWART)OBJECT/FIND ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY 
OPENUPDATE REMOVE 

USING PROGRAM (STEWART)OBJECT/LOCK ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCKSTORE OPENINITIALIZE 
OPENINQUIRY OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/OPENINQUIRY ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/ASSION ON DMPACK = RW 
DMVERBS: CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY 
OPENUPDATE REMOVE 

USING PROGRAM (STEWART)OBJECT/CREATESTORE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK DELETE FIND GENERATE 

INSERT LOCK LOCKSTORE OPENINITIALIZE 
OPENINQUIRY OPENTEMPORARY OPEN-UPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/DELETE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY 
OPENUPDATE REMOVE 

USING PROGRAM (STEWART)OBJECT/LOCKSTORE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK OPENINITIALIZE 
OPENINQUIRY OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/REMOVE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY 
OPF.NUPDATE 

USING PROGRAM (STEWART)OBJECT/OPENUPDATE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY 
REMOVE 

12-8-



12~8- 2 
GUARDFILE 

USING PROGRAM (STEWART)OBJECT/CLOSELOCK ON DMPACK = RW 
DMVERBS: ASSIGN CREATESTORE DELETE FIND GENERATE 

INSERT LOCK LOCKSTORE OPENINITIALIZE 
OPENINQUIRY OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/OPENINITIALIZE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINQUIRY OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/OPENTEMPORARY ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

GENERATE INSERT LOCK LOCKSTORE 
OPENINITIALIZE OPENINQUIRY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)OBJECT/GENERATE ON DMPACK = RW 
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 

INSERT LOCK LOCKSTORE OPENINITIALIZE 
OPENINQUIRY OPENTEMPORARY OPENUPDATE 
REMOVE 

USING PROGRAM (STEWART)TESTDEFINE ON TESTPACK = RW 
DMVERBS: ASSIGN CREATESTORE DELETE FIND INSERT LOCK 

LOCKSTORE OPENINITIALIZE OPENINQUIRY 
OPENTEMPORARY OPENUPDATE REMOVE 

USING PROGRAM (STEWART)A ON DMPACK RO 

USING PROGRAM (STEWART)B ON DMPACK RO 

USING PROGRAM (STEWART)C ON DMPACK = RO 

USING PROGRAM (USR)X/Z ON DMPACK = NO 

USING PROGRAM •A/B ON DMPACK = RW 
DMVERBS: ASSIGN CREATESTORE DELETE FIND GENERATE LOCK 

LOCKSTORE OPENINITIALIZE OPENINQUIRY 
OPENTEMPORARY OPENUPDATE REMOVE 

USING PROGRAM (STEWART)"HYPHEN-ATED" ON DMPACK = RO 

USING PROGRAM (STEWART)USING ON DMPACK = RO 
USING USERCODE USING = RW 

USING PROGRAM (STEWART)THIS/IS/A/NAME/WHICH/ 
IS/TOO/BIG/TO/PRINT/ON/A/SINGLE/LINE ON DMPACK = RW 

DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND 
GENERATE INSERT LOCK LOCKSTORE OPENINQUIRY 
OPENTEMPORARY OPENUPDATE REMOVE 



1. INTRODUCTION ... 

GUARDFILE 

TABLE OF CONTENTS 

Guarding Programs And Data Files. 

Guarding Data Bases . 

2. SYSTEM/GUARDFILE INPUT. 

<access specification>. 

<dmverb specification>. 

Default and Define Specifications 

Using Clause ........ . 

3. MULTIPLE PROGRAM NAMES AND/OR USERCODES 

4. PACKNAMES 

5 . USERCODES 

6. RUNNING THE SYSTEM/GUARDFILE PROGRAM. 

7. SYSTEM/GUARDFILE INPUT EXAMPLE. 

8. SYSTEM/GUARDFILE OUTPUT EXAMPLE 

12-1-

12-1-

12-1-

12-2-

12-2- 3 

12-2- 5 

12-2- 7 

12-2- 8 

12-3-

12-4-

12-5-

12-6-

12-7-

12-8-



12-1-
GUARDFILE 

1. INTRODUCfION 

SYSTEM/GUARDFILE is a utility program that creates guardfiles. A guardfile 
describes the access rights of various users and programs to a program or data 
file or a database. These are collectively referred to as "structure" in this 
section. When access to a structure is controlled by a guardfile, every 
attempt to OPEN that structure causes the MCP to examine the access rules in 
the guardfile before granting or denying access to the structure. 

The SYSTEM/GUARDFILE utility creates a guardfile but does not attach it to a 
structure. To "guard" a structure, one of the following steps must be taken~ 

Guarding Programs And Data Files 

Programs and data files may specify access rights by using either file 
attributes or a WFL SECURITY statement: 

FILE X(SECURITYTYPE=GUARDED, 
SECURITYGUARD=MY/GUARD ON Y) 

FILE (SECURITYTYPE=CONTROLLED, 
SECURITYGUARD=MY/GUARD/ON Y) 

or 

SECURITY X GUARDED MY/GUARD ON Y 

SECURITY CONTROLLED MY/GUARD ON Y 

Guarding Data Bases 

To guard an entire database, make the ACCESSROUTINES PUBLIC and apply the DASDl 
GUARDFILE construct to the database name. 

For a database called MYDB: 

MYDB (GUARDFILE="MY/GUARD ON Y") 

To apply different access rights to different structures within the database, 
use the DASDL GUARDFILE construct to attach the appropriate guardfile to a 
logical database: 

LDB DATABASE( ... ) GUARDFILE="MY/GUARD ON Y" 

~. '~r to the B 7000/B 6000 Series DMSII DASDL Reference Manual, form 5001480, 
t1H a more detailed expl·anation of DASDL syntax and semantics. 

NOTES 

1. The guardfile may be created either 
before or after it is attached to a 
structure; none of the above 
techniques reads the guardfile until 
the guarded structure is opened. 



12-1- 2 
GUARDFILE 

7 Family ~ub~titution does not app!y 
to the search for the guardfile when 
a structure is opened. An ON clause 
is absolutely necessary if guardfile 
is not on DISK. 

If the guardfile is not prefixed by 
an asterisk, the usercode directory 
of the accessed structure (not the 
user accessing the structure) is 
searched; if the guardfile is not 
found there, the system directory is 
searched. 

If the guardfile specified is not 
found or the guardfile is malformed, 
the file is treated as if 
SECURITYTYPE=PRIVATE. 

3. The same guardfile may be attached 
to several files. 

4. GUARDED is a synonym for CLASSB. 

5. CONTROLLED is a synonym for CLASSC. 



GUARDFILE 

2. SYSTEM/GUARDFILE INPUT 

Syntax 

<guardfile input> 

_ __....___<default statement> ____....____...__ dnput request> 

dnput request) 

--r- PROGRAM <name Ii st> 

LusERCODEJ L [ <name list> ]J 

12-2-

>~~1-=-U-SI-NG-1~-P-R_OG_RAM~=ii=~~~<-n-am_e_l_i_st->-~~-r-l~~~~~~-i 

USERCODE <name list> ] 

ACCESSCODE 

<name I i st> 

-~r..__ <Simple name> (access specification>~~~~~~~~~~~~~~~--1 

J 
I 

...___<program name> T 

LON < fami I yname> -



12-2- 2 
GUARDFILE 

Semantics 

The input to SYSTEM/GUARDFILE consists of a series of <input request>S 
describing in detail the access rights any user or program is to have. Unless 
otherwise indicated by a <default statement>, unmentioned users and programs 
have no access to the file. 

The SYSTEM/GUARDFILE program assumes that the 80-character input record 
contains data pertinent to the usercode/program entries. 

SYSTEM/GUARDFILE does not accept sequenced input. 

A percent sign terminates scanning of an input record. When a percent sign is 
encountered by the program, all remaining information on the input record to 
the right of the percent sign is ignored by the program. 

Each <input request> describes the access rights for one or more users or one 
or more programs. If two input requests apply to an attempted access, the 
first request is used. If no default statement is used, no access is permitted 
to users and programs not listed in the guardfile. 



GUARDFILE 

(access specification> 

Syntax 

<access specification> 

L= (accessright)_J L ~ LDMVERBS 

MV1780 

<access right> 

INO 

RO 

RW 

XO 

WO 

Semantics 

12-2- 3 

(dmverb specification) -.J 

The access specification consists of two basic entities: access rights and 
dmverbs. The following describe access rights: 

<empty> 
NO 
RO 
RW 
XO 
WO 

Examples 

Assumes DEFAULT value 
No access permitted 
Read-only access permitted 
Read-write access permitted 
Execute-oniy access permitted for code 
Write-only access permitted 

.I!- ! I - -
I I 1 C: S 

USERCODE A = RO; 
USERCODE B = RW; 

User A may read but not write the 
f i I e . 

User B may read and write the file. 

Other users may not access the file. 



12-2- 4 

USERCODE A = RO; 
PROGRAM X = RW; 

USERCODE A RO; 

GUARDFILE 

All users other than A may both read 
and write the file if and only if 
they are executing program X. 

Usercode A may only read the file 
even when running X; the first card 
prevails. 

User A may only read the file. 



12-2- s 
GUARDFILE 

<dmverb specification> 

Syntax 

<dmverb specification> 

<defined identifier>---------

(_t <Verb ; ist>l )----------" 

<verb list> 

r <Verb list>~..L----------------------------~ 

Semantics 

The following apply only to DMS II DATABASEs, not to ordinary files: 

<empty> 
ALL 
ALL EXCEPT (<verb list>) 

<defined identifier> 
<verb list> 

Assumes DEFAULT values 
All verbs permitted 
All verbs permitted 
except those in 
<verb iist> 
Uses specified values 
Specified verbs allowed 
or not a 11 owed 

For a database, the data management operations to be allowed any user or 
program may be specified. Table 12-2-1 illustrates the dmverbs that may be 
specified along with certain default values associated with dmverb 
specifications and access rights. Any item in the first column of Table 12-2-1 
can be used for the <Verb> in <dmverb specification>. 

Certain combinations of access rights and dmverb specifications are not 
permitted. This limitation is because an access right of read-only implies 
that the database may be opened for inquiry only (no modification of the 
database is permitted). Thus, some verbs (such as STORE, REMOVE, and so forth) 
are not permitted. Therefore, if an access right of read-only is assigned to an 
entry and a dmverb specification that includes verbs not in the standard 
read-only verb list (see Table 12-2-1) is requested, an error is given. 

For data management usage, the access rights execute-only and write-only have 
no meaning. Access rights of execute-only and write-only are interpreted to 
mean no access. 



12-2- 6 

Dmverb 

FIND 

LOCK 

OPEN INQUIRY 

OPENUPDATE 

ASSIGN 

DELETE 

GENERATE 

INSERT 

REMOVE 

CREATES TORE 

LOCKS TORE 

OPENINITIALIZE 

GUARDFILE 

Table 12-2-1. 

Dmverbs and their Default Value Lists 

Verb List 1 

Default for 
Read-Only 

x 

x 

x 

Verb List 2 

Defaul l for 
Read-Write 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

NOTES 

Verb List 3 

List for 
ALL 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

When an access right of read-only is 
specified for an entry, the database may 
only be opened INQUIRY. 

Dmverbs not shown in this table are not 
available for security purposes. Verbs 
such as FREE, CREATE, and so forth, are 
not secured since their use does not 
alter the database. 



Examples 

USERCODE A 

USERCODE A 

USERCODE A 

USERCODE A 

GUARDFILE 

RW, DMVERBS = ALL; 

User A may use all data management 
operations. 

RO, DMVERBS = (OPENINQUIRY,FIND); 

NO, 

RO, 

User A may open the database for 
inquiry only, and after it has been 
opened, may only execute a FIND (all 
other DMVERBS are disallowed). 

DMVERBS = (FIND); 

Since the access right NO does not 
apply to data management, a syntax 
e:rror i s giv-.en. 

DMVERBS = (DELETE); 

Since the DELETE operation is not 
consistent with the access right RO, 
a syntax error is given. 

Default and Define Specifications 

Syntax 

<default statement> 

~ n1'1'4lll T = , or r • • u; oh h -----------------11 
~ ~:~:~ = ':~::~:~~::~: ~ 

DEFINE <defined identifier> = <dmverb specification> 

Semantics 

12-2- 7 

The SYSTEM/GUARDFILE program accepts default values for access rights, 
packnames, and dmverb specifications. The defaults and definitions, if 
present, must precede any program or usercode input specifications. 

The DEFAULT access right applies to any program or usercode not named in the 
guardfile as well as to individual entries for which no access specification is 
given. If the MCP examines the guardfile and does not find an entry 
corresponding to the program and/or usercode attempting to access the guarded 
file, the DEFAULT access specified is assumed. 

The PACKNAME default specifies the family name to be used for every program 
named in the input without an ON <familyname> clause. 



12-2- 8 
GUARDFILE 

The DEFINED dmverb specifications may be used in conjunction with the program 
and/or usercode enlrie~ that follow them. These are a shorthand method c 
spelling the data management verb lists. After the list is given once (in th 
DEFINE statement), the "definition" can be used to represent those verbs 
thereafter. 

If no applicable <default statement> is 
program, then the following default values 

presented to 
are assumed: 

The default access right is no access. 

the SYSTEM/GUARDFILE 

The default dmverb specification is either verb list or 
verb list 2, depending on the access right assigned to the 
entry. 

The default pack name is DISK. 

Using Clause 

Frequently, combinations of programs and usercodes must be specified when 
specifying file security. For example, certain programs may be coded such that 
one user may use them for reading a file or searching a database, while another 
user might be allowed to update the file or database with the program. Also, a 
particular usercode may be allowed access only via a particular program. The 
USING clause is used to indicate these comb~nations. 

In all cases where conflicting <input request>s are given, the first is the one 
used. 

File Examples 

USERCODE A = RO; 
USERCODE B USING PROGRAM SAFEPROGRAM = RW; 

DEFAULT XO; 

No user other than A or B may access 
the file in any way. 

User A may only read the file. 

User B may read or write the file, 
but only using SAFEPROGRAM. 

Any user may execute the program 
(this is operationally equivalent to 
having the security of the file 
PUBLIC SECURED). 

PROGRAM X = RO, USING USERCODE A = RW; 

No user may access the file except 
through program X. 

Only A may use X to both read and 
write the files; other users are 
restricted to reading. 



GUARDFILE 

DEFAULT = NO; 
USERCODE C USING ACCESSCODE D = RW; 

Database Examples 

DEFAULT = RO; 

Only users running under usercode C, 
who know the accesscode D (and 
corresponding password), have 
read/write access to the CONTROLLED 
file. All other users are denied 
access. 

DEFINE STANDARD= ALL EXCEPT (OPENINITIALIZE,GENERATE,CLOSELOCK); 
PROGRAM DB/SEARCH=RO USING USERCODE USR = RW,DMVERBS=STANDARD; 

Any user with a usercode other than 
USR (or running without a usercode) 
can oniy access the database via 
program DB/SEARCH (or any other 
program) on a read-only basis. 
Since no dmverb specification was 
associated with the program, verb 
list 1 (of Table 12-2-1) is assumed 
by default. 

Program DB/SEARCH, when executed 
under usercode USR may access the 
database on a read-write basis using 
the dmverb list specified as 
STANDARD in the SYSTEM/GUARDFILE 
default statement. 

fROGRAM DB/SEARCH=RW,DMVERBS=ALL USING USERCODE USR=RO; 

Program DB/SEARCH may access the 
database uu a read-write basis, 
using any and all dmverbs, unless 
the program is being executed by 
user USR; in that case, only read 
access is permitted. Since no dmverb 
specification appears in the 
modifier, the default read-only verb 
list is assumed for user USR. 

USERCODE USR=NO USING PROGRAM DB/SEARCH=RO; 

User USR is not permitted access to 
the database unless it is via the 
program DB/SEARCH. 

When program DB/SEARCH is executed 
by user USR, the data base may be 
accessed on a read-only basis (open 
inquiry). Use of any verbs other 
than those specified in verb list 1 
of Table 12-2-1 is not permitted. 

12-2- 9 



12-2- 10 
GUARDFILE 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATflNG PURPOSES. 



12-3-
GUARDFILE 

3. MULTIPLE PROGRAM NAMES AND/OR USERCODES 

Programs may be grouped into classes by function. For example, a group of 
programs whose sole function is to search a file or database and provide 
reports based on current information might be considered as "inquiry" programs. 
Other programs may periodically update low security items within the file or 
database, and still others may manipulate restricted information. 

The SYSTEM/GUARDFILE program permits programs and/or usercodes to be grouped 
together to provide ~ shorthand method of specifying security. 

The programs may be listed either with or without brackets. The access 
specification applies to all preceding items in the list, whether bracketed or 
not, which have no access specification of their own. The USING clause applies 
only to the immediately-preceding item or bracketed list of items. 

Each name in the list is followed by a comma. An access specification may be 
~pecified for each name in the list or may be omitted. 

If no access specification is supplied for any name in the list, 
values of access rights and dmverbs are used. 

the DEFAULT 

If access specifications are stated for some of the names in the list, then one 
of the following applies: 

Examples 

1. The access specification stated for the current name 
being processed is applied to all previous names in the 
list for which no access specification was stated. The 
list is processed backwards until a name for which an 
access specification was stated is found or until the 
beginning of the list is encountered. 

2. If any portion of the access specification is stated, 
the access specification is treated as complete for the 
purpose of insertion into previous elements of the name 
list, Therefore, if either the access right or the 
dmverb specification is stated for an item in the name 
list, subsequent access specifications are not applied 
to that item. 

USERCODE [A,B,C =XO]; 

USERCODE [A 

A,B and C all have execute-only 
access rights. 

RO, B,C = RW]; 

A has read-only rights; Band C have 
read and write access. 



12-3- 2 
GUARDFILE 

USERCODE [U,V] USING PROGRAM [X,Y =RO, Z = RW]; 

U and V have the same access rights. 
They may have read-only access via 
programs X and Y or read-write 
access via program Z. Otherwise, 
they have no access. 

PROGRAM [ A/B,A/C=RO,A/D,A/E,A/F=RW,DMVERBS=ALL ]; 

In the above example, programs A/B 
and A/C are assigned an access right 
of read-only. A/B gets a read-only 
access right because it precedes A/C 
for which an access right is 
specified, and because no access 
right is specified for A/B. Programs 
A/B and A/C have default dmverb 
specifications corresponding to verb 
list 1 of Table 12-2-1 because no 
dmverb specification is stated. 

Similarly, programs A/D, A/E, and 
A/F have read-write access rights 
and have dmverb specifications of 
ALL. 

Program A/B is not reassigned an 
access right of read-write because 
of the intervening specification for 
program A/C. 

Also, program A/C is not assigned a 
dmverb specification of ALL even 
though the dmverb option is omitted 
from the access specification of 
A/C. 

PROGRAM [A/B,A/C,A/D=RO] USING USERCODE 
[USR1,USR2=RW,DMVERBS=STANDARD]; 

This example shows a bracketed name 
list used for usercodes and program 
names. Such a list may appear- in 
either the primary entry or the 
USING clause or both. Programs A/B, 
A/C, and A/D may access the database 
on a read-only basis unless they are 
executed with users USRl or USR2, in 
which case they may access the 
database on a read-write basis. 



12-4-
GUARDFILE 

4 • PACKNAMES 

A family name may be used when specifying the names of program entries in the 
guardfile. For example: 

PROGRAM A/B ON PCK = RO; 

includes the pack name PCK as part of the program name entry. The MCP employs 
the following rules governing pack names: 

i. A family name of DISK (A/BON 
having no family name at 
interpreted as simply A/B. 

DISK) is 
a 11 . Thus 

equivalent to 
A/BON DISK is 

2. If the program entry in the guardfile has a pack name 
othe~ than DISK, then any programs that initiate the 
guardfile search must reside on the specified pack. 
Thus, if the guardfile entry specifies program A/BON 
PCK and the actual program running is A/B ON OTHERPCK, 
no access is permitted. 

3. If the program entry in the guardfile does not have a 
pack name (or the pack name is DISK), then the program 
that initiates the guardfile search may reside on any 
media. Thus, if the guardfile entry specifies program 
A/B, and the actual program running is A/BON OTHERPCK, 
the access permitted is that specified in the guardfile. 



12-4- 2 
GUARDFILE 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES. 



12-5-
GUARDFILE 

S. USERCODES 

The SYSTEM/GUARDFILE program automatically appends the usercode under which it 
is executed to any program names which are specified in the input request. The 
user may, however, specify a system file or another usercode in the input 
request when necessary. 

For example, the input requests: 

PROGRAM (USRl)A/B = RO; 
PROGRAM *A/B = RW; 

may be specified. 

At run time, the MCP compares the security information in the guardfile with 
the program name and ensures that they are the same before granting access. 
This procedure means that: 

1. A guardfile entry without a usercode, when compared with 
a program name with a usercode, results in access being 
denied. 

2. A guardfile entry with a usercode, when compared with a 
program name without a usercode, also causes access to 
be denied. 

For example: 

PROGRAM *A/B = RO; 

creates this entry in the guardfile. When program *A/B is executed with or 
without a usercode, an access right of read-only is returned. When program 
(USR)A/B is executed, no access is permitted. Running program *A/B under 
usercode USR does not change the n~me of the program (the task attribute) to 
(USR)A/B; 



12-S- 2 
GUARDFILE 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES. 



GUARDFILE 

6. RUNNING THE SYSTEM/GUARDFILE PROGRAM 

SYSTEM/GUARDFILE has three files that may be label-equated: 

Example 

CARD The input file. 

LINE The printer file. 

GUARD The output guardfile. This file should 
label-equated to have the desired title. 

?RUN SYSTEM/GUARDFILE 
?FILE GUARD (TITLE=MY/GUARD ON XX) 
?DATA CARD 
<input cards> 
?END 

LISTING AN EXISTING GUARDFILE 

12-6-

be 

The SYSTEM/GUARDFILE program may be used to list the contents of an existing 
guardfile. When the SYSTEM/GUARDFILE program is executed with a task value 
greater than 0, the LIST-ONLY option is invoked. The required guardfile should 
be label-equated to the desired file. 

Example 

?RUN SYSTEM/GUARDFILE;FILE GUARD=MYGUARDFILE ON MYPACK;VALUE=l; 



12-6- 2 
GUARDFILE 

DEBUGGING OPTIONS 

A DEBUGGING toggle may be set in the SYSTEM/GUARDFILE program by executing the 
program with a taskvalue less than zero. Under the DEBUGGING option, the line 
number (in the SYSTEM/GUARDFILE program) at which an error is detected is shown 
along with the error message. 

DEFINE IDENTIFIER 

A DEFINE identifier may be any alphanumeric character string beginning with a 
non-digit which is not a reserved word in the SYSTEM/GUARDFILE program. 

Reserved words are: 

ACCESSCODE 
ALL 
DEFAULT 
DEFINE 
DMVERBS 
EXCEPT 
ON 
NO 
PACKNAME 
PROGRAM 
RO 
RW 
USERCODE 
USING 
WO 
XO 



1. INTRODUCTION ..... 

2. GENERAL INFORMATION 

3 . EXECUTION . . . . . 

DCSTATUS 

TABLE OF CONTENTS 

13-1-

i3-2-

13-3-



13-1-
DCSTATUS 

1. INTRODUCflON 

SYSTEM/DCSTATUS is a DCALGOL program that makes use of the DCSYSTEMTABLES 
installation intrinsic to produce run-time "snapshots" of the Data Comm tables 
maintained by the MCP and the DCP. 

No attempt will be made to interpret the results generated by the DCSTATUS 
program because understanding these results requires an understanding of NDL as 
well as at least a casual understanding of the DCP. 



13-1- 2 
DCSTATUS 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING 
PURPOSES. 



13-2-
DCSTATUS 

2. GENERAL INFORMATION 

DCSTATUS must be supplied with an option list which specifies those elements of 
the datacom subsystem which are to be analyzed. The options are in the 
following hierarchy: ALL, DCP, CLUSTER, LINE, STATION. Each higher order item 
is inclusive of all lower order items. For example, if CLUSTER is specified, 
the analysis is performed on all lines and stations on that cluster. The 
options TERMINAL, TABLES, MODEM, NETWORK, GRAPH, and FILE do not fit into this 
hierarchy. 

Output from DCSTATUS is normally sent to the line printer (internal file name 
is LINE). The program will, however, detect if the file LINE has been label 
equated to KIND=REMOTE, as is the case for the DCSTATUS command in CANDE and 
the DP command in DIAGNOSTICMCS. ln this case the output format is modified to 
fit a 72-character line width. 

The DCSYSTEMTABLES intrinsic does not lock the various tables that it accesses. 
It is therefore possible that the contents of the tables may change while the 
intrinsic is accessing them. In addition, more than one call on the intrinsic 
is used to obtain the contents of all the various tables. Although infrequent, 
the influence of timing may occasionally cause the results produced by DCSTATUS 
io appear conflicting. 

By use of the FILE statement, analysis can be performed on network definition 
files other than the currently active n~twork files. Note that analysis of 
non-active network files precludes reporting information requiring active 
network files; that is, the following are the only allowable options for 
non-active network files: 

DCP <dcp number> NDL 
STATION <Station number> NDL 
TERMINAL 
MODEM 
GRAPH 
NETWORK 



13-2- 2 
DCSTATUS 

Syntax 

<dcstatus options> 

DCPL <dcp no.> 

L <dcp no.>] 

CLUSTER <dcp no.>L :T <cluster no.>~ 

MODEM-,.-------------------; 

~ 
L <modem no.> 

STATION J r-
L <I SR) L NDL----------1 

I TERMINAL---.~~~~~~~~~~~~~~---; 
L <remote type index>------

GRAPH-...-------------------1 

I L <dc file prefix> 

I NETWORK I 

L L- <de file prefix> 

FILE-~---------------------1 

L <de file prefix>----------

dine specs> 

-- LI NE-- < d c p no . > -..-c-------------J-----.-L.-- '. --r- d in e no. > --1 

L: T <cluster no.> _J 



13-2- 3 
DCSTATUS 

<dc file prefix> 

LON-- < fami 1 yname> _J 
13900 

Semantics 

Several options separated by semicolons may be specified for a single 
execution. The meaning of each option is as follows: 

TABLES 

ALL 

DCP 

CLUSTER 

LINE 

MODEM 

STATION 

TERMINAL 

Produces a raw hexadecimal dump of the DCC 
tables and the DCP line and station tables. 

analysis of the datacom 
of the line and station 
an analysis of each remote 

Produces a complete 
network. Analysis 
tables together with 
type is performed. 
subset of this option. 

All other options are a 

Produces an analysis of cluster, lines, and 
stations on all DCPs or a specific DCP. Use of 
the NDL option causes reporting to be based 
upon the information in the NIF and DCPCODE 
files instead of the ~urrent datacom tables. 

Produces an analysis of the lines and stations 
on the designated cluster. 

Produces an analysis of the designated line and 
its stations. 

Produces an anlysis of modem information fo~ a 
specific modem or for all modems defined in the 
network. 

Produces a station analysis. If no LSN is 
specified, all stations will be analyzed. The 
normal sources of information for this option 
are the datacom tables in main memory or in DCP 
local memory. If the NDL option is specified 
then the sources of information are the NIF and 
DCPCODE f i I e s . 

Produces a listing of the NDL specifications of 
the terminals. The <remote type index> is the 
index used by the MCP to index into a table 
which describes each terminal specified in the 
NDL. Terminals are numbered in the sequence in 
which they appear in the NDL terminal 
definitions. 



13-2- 4 

GRAPH 

NETWORK 

FILE 

DCSTATUS 

Produces a graph of the datacom network showing 
the relationship between the DCP'S, clusters, 
lines (names, addresses, and phone numbers for 
dial-in lines) and stations (names and LSNs). 
Since the graph information is obtained from 
the NIF and DCPCODE files, this option may be 
used whether datacom is running or not. If a 
<de file prefix> is not specified, then the one 
currently being used by the system will be 
GRAPHED. ON <familyname> may be used in the <de 
file prefix> specification. 

Produces a brief tabular network configuration 
report. Information in the report includes: 
DCP , c 1 u s t e r , 1 i n e , s t a t i on , t e rm i n a 1 , and MCS 
data. 

Can be used to direct analysis at a non-active 
NIF and DCPCODE files. Since the graph 
information is obtained from the NIF and 
DCPCODE files, this option may be used whether 
datacom is running or not. If a <de file 
prefix> is not specified then the one currently 
being used by the system will be used. ON 
<familyname> may be used in the <de file 
prefix> specification. 



13-3-
DCSTATUS 

3. EXECUTION 

A typical WFL statement for execution of DCSTATUS may look like: 

RUN SYSTEM/DCSTATUS(" <dcstatus options> "); 

DCSTATUS may be executed remotely via the CANDE DCSTATUS command and the 
DIAGNOSTICMCS DP command. Refer to the documentation on these programs for 
syntax. 



13-3- 2 
DCSTATUS 

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING 
PURPOSES 



Documentation Evaluation Form 

Title: B 7000/B 6000 Series System Software 

Operational Guide, Volume 1 
Form No: 5011661 

U- t June 1980 
ae:.~--------------------

Burroughs Corporation is interested in receiving your comments 
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual. 

Please check type of Suggestion: 

D Addition 0 Deletion D Revision D Error 

Comments: 

From: 

Name --------------------------------------------------------------
Title 

Company -----------------------------------------------------------
Address 

Phone Number --------------------------

Remove form and mail to: 

Burroughs Corpoiation 
Documentation Dept., TIO • West 

P .0. Box 4040 
El Monte, CA 91734 

Date ________________ __ 



------- 2" BINDER ___ _..., 

-: 

Printed in U.S.A. 

~ 1%''BINDER~ 
I r- 1" BINDER -I I 

~ 
~ 
rri -
s= 0. 
~o ., 0 
-::::i···c_~co 

..... <:)>..,, 

:::0 -a rrr ---~~-- -
r 
~ 0 ......_ 
~ -o c.z.>: 
~o )> __ --·_-. 
-I 0 -0"' :Z CD 
)> ... 

,- -· G:>. CD 
E----ut------0 
fT1 

5011661 

Printed in U.S.A. 

June 1980 5011661 


	001
	002
	003
	004
	005
	006
	007
	008
	01_01-00
	01_01-01
	01_01-02
	01_02-01
	01_02-02
	01_03-01
	01_03-02
	01_03-03
	01_03-04
	01_03-05
	01_03-06
	01_04-01
	01_04-02
	01_04-03
	01_04-04
	01_04-05
	01_04-06
	01_05-01
	01_05-02
	01_05-03
	01_05-04
	01_05-05
	01_05-06
	01_06-01
	01_06-02
	01_07-01
	01_07-02
	01_07-03
	01_07-04
	01_07-05
	01_07-06
	01_07-07
	01_07-08
	01_07-09
	01_07-10
	01_08-01
	01_08-02
	01_09-01
	01_09-02
	02_01-00
	02_01-01
	02_01-02
	02_02-01
	02_02-02
	02_03-01
	02_03-02
	03_01-00
	03_01-01
	03_01-02
	03_02-01
	03_02-02
	04_01-00
	04_01-01
	04_01-02
	04_01-03
	04_01-04
	04_01-05
	04_01-06
	04_01-07
	04_01-08
	04_01-09
	04_01-10
	05_01-00
	05_01-01
	05_01-02
	05_02-01
	05_02-02
	05_02-03
	05_02-04
	05_02-05
	05_02-06
	05_02-07
	05_02-08
	05_03-01
	05_03-02
	05_03-03
	05_03-04
	05_03-05
	05_03-06
	05_03-07
	05_03-08
	05_03-09
	05_03-10
	05_03-11
	05_03-12
	05_03-13
	05_03-14
	05_04-01
	05_04-02
	05_04-03
	05_04-04
	05_04-05
	05_04-06
	05_05-01
	05_05-02
	06_01-00
	06_01-01
	06_01-02
	06_01-03
	06_01-04
	06_01-05
	06_01-06
	06_01-07
	06_01-08
	06_02-01
	06_02-02
	06_02-03
	06_02-04
	06_02-05
	06_02-06
	06_02-07
	06_02-08
	06_02-09
	06_02-10
	06_02-11
	06_02-12
	06_02-13
	06_02-14
	06_02-15
	06_02-16
	06_02-17
	06_02-18
	06_02-19
	06_02-20
	06_02-21
	06_02-22
	06_02-23
	06_02-24
	06_02-25
	06_02-26
	06_02-27
	06_02-28
	06_02-29
	06_02-30
	06_0A-01
	06_0A-02
	06_0B-01
	06_0B-02
	06_0C-01
	06_0C-02
	07_01-001
	07_01-002
	07_01-01
	07_01-02
	07_02-01
	07_02-02
	07_03-01
	07_03-02
	07_03-03
	07_03-04
	07_03-05
	07_03-06
	07_03-07
	07_03-08
	07_03-09
	07_03-10
	07_03-11
	07_03-12
	07_04-01
	07_04-02
	07_04-03
	07_04-04
	07_04-05
	07_04-06
	07_05-01
	07_05-02
	07_05-03
	07_05-04
	08_01-00
	08_01-01
	08_01-02
	08_02-01
	08_02-02
	09_01-001
	09_01-002
	09_01-01
	09_01-02
	09_02-01
	09_02-02
	09_02-03
	09_02-04
	09_02-05
	09_02-06
	09_03-01
	09_03-02
	09_03-03
	09_03-04
	09_04-01
	09_04-02
	09_04-03
	09_04-04
	09_0A-01
	09_0A-02
	09_0B-01
	09_0B-02
	10_01-001
	10_01-002
	10_01-01
	10_01-02
	10_02-01
	10_02-02
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_03-07
	10_03-08
	10_03-09
	10_03-10
	10_03-11
	10_03-12
	10_03-13
	10_04-01
	10_04-02
	10_05-01
	10_05-02
	11_01-001
	11_01-002
	11_01-003
	11_01-01
	11_01-02
	11_02-01
	11_02-02
	11_03-01
	11_03-02
	11_04-01
	11_04-02
	11_05-01
	11_05-02
	11_06-01
	11_06-02
	11_06-03
	11_06-04
	11_06-05
	11_06-06
	11_06-07
	11_06-08
	11_07-01
	11_07-02
	11_07-03
	11_07-04
	11_07-05
	11_07-06
	11_08-01
	11_08-02
	11_08-03
	11_08-04
	11_09-01
	11_09-02
	11_09-03
	11_09-04
	11_09-05
	11_09-06
	11_09-07
	11_09-08
	11_0A-01
	11_0A-02
	11_0B-01
	11_0B-02
	11_0B-03
	11_0C-01
	11_0D-01
	11_0D-02
	11_10-01
	11_10-02
	11_10-03
	11_10-04
	11_10-05
	11_10-06
	11_10-07
	11_10-08
	11_11-01
	11_11-02
	11_11-03
	11_11-04
	12-07-01
	12-07-02
	12-08-01
	12-08-02
	12_01-00
	12_01-01
	12_01-02
	12_02-01
	12_02-02
	12_02-03
	12_02-04
	12_02-05
	12_02-06
	12_02-07
	12_02-08
	12_02-09
	12_02-10
	12_03-01
	12_03-02
	12_04-01
	12_04-02
	12_05-01
	12_05-02
	12_06-01
	12_06-02
	13_01-00
	13_01-01
	13_01-02
	13_02-01
	13_02-02
	13_02-03
	13_02-04
	13_03-01
	13_03-02
	replyA
	xBack

