Copyright Notice©

This software package and manual are copyrighted 1983, 1984 by BORLAND INTERNATIONAL Inc. All rights reserved worldwide. No part of this publication may be reproduced, transmitted, transcribed, stored in any retrieval system, or translated into any language by any means without the express written permission of BORLAND INTERNATIONAL Inc., 4113 Scotts Valley Drive, Scotts Valley, CA 95066, USA.

Single CPU License

The price paid for one copy of TURBO Pascal licenses you to use the product on one CPU when and only when you have signed and returned the License Agreement printed in this book.

Disclaimer

Borland International makes no warranties as to the contents of this manual and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Borland International further reserves the right to make changes to the specifications of the program and contents of the manual without obligation to notify any person or organization of such changes.

Fifth edition, October 1984
Printed in the United States of America
98765
TABLE OF CONTENTS

INTRODUCTION
- The Pascal Language ... 1
- TURBO Pascal .. 1
- Structure of This Manual 2
- Typography ... 3
- Syntax Descriptions ... 4

1. USING THE TURBO SYSTEM 5
1.1 .COM and .CMD files 5
1.2 BEFORE USE ... 5
1.3 Compiler Directive Defaults 5
1.4 Files On The Distribution Disk 6
1.5 Starting TURBO Pascal 7
1.6 Installation ... 8
1.6.1 IBM PC Screen Installation 8
1.6.2 Non-IBM PC Screen Installation 9
1.6.3 Installation of Editing Commands 9
1.7 The Menu ... 13
1.7.1 Logged Drive Selection 14
1.7.2 Work File Selection 14
1.7.3 Main File Selection 15
1.7.4 Edit Command 16
1.7.5 Compile Command 16
1.7.6 Run Command 16
1.7.7 Save Command 16
1.7.8 eXecute Command 17
1.7.9 Directory Command 17
1.7.10 Quit Command 17
1.7.11 compiler Options 17
1.8 The TURBO Editor 18
1.8.1 The Status Line 18
1.8.2 Editing Commands 19
1.8.3 A Note on Control Characters 21
1.8.4 Before You Start: How To Get Out 21
1.8.5 Cursor Movement Commands 21
1.8.5.1 Basic Movement Commands 21
1.8.5.2 Extended Movement Commands 24
1.8.6 Insert and Delete Commands 26
1.8.6.1 Insert or Overwrite? 26
1.8.6.2 Simple Insert/Delete Commands 27
1.8.6.3 Extended Delete Command 27

TABLE OF CONTENTS
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8.7</td>
<td>Block Commands</td>
<td>28</td>
</tr>
<tr>
<td>1.8.8</td>
<td>Miscellaneous Editing Commands</td>
<td>30</td>
</tr>
<tr>
<td>1.9</td>
<td>The TURBO editor vs. WordStar</td>
<td>34</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Cursor Movement</td>
<td>34</td>
</tr>
<tr>
<td>1.9.2</td>
<td>Mark Single Word</td>
<td>34</td>
</tr>
<tr>
<td>1.9.3</td>
<td>End Edit</td>
<td>35</td>
</tr>
<tr>
<td>1.9.4</td>
<td>Line Restore</td>
<td>35</td>
</tr>
<tr>
<td>1.9.5</td>
<td>Tabulator</td>
<td>35</td>
</tr>
<tr>
<td>1.9.6</td>
<td>Auto Indentation</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>BASIC LANGUAGE ELEMENTS</td>
<td>37</td>
</tr>
<tr>
<td>2.1</td>
<td>Basic Symbols</td>
<td>37</td>
</tr>
<tr>
<td>2.2</td>
<td>Reserved Words</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Standard Identifiers</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Delimiters</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Program lines</td>
<td>39</td>
</tr>
<tr>
<td>3.</td>
<td>STANDARD SCALAR TYPES</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Integer</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Byte</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Real</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Boolean</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Char</td>
<td>42</td>
</tr>
<tr>
<td>4.</td>
<td>USER DEFINED LANGUAGE ELEMENTS</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Identifiers</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Numbers</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>Strings</td>
<td>44</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Control Characters</td>
<td>45</td>
</tr>
<tr>
<td>4.4</td>
<td>Comments</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Compiler Directives</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>PROGRAM HEADING AND PROGRAM BLOCK</td>
<td>47</td>
</tr>
<tr>
<td>5.1</td>
<td>Program Heading</td>
<td>47</td>
</tr>
<tr>
<td>5.2</td>
<td>Declaration Part</td>
<td>47</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Label Declaration Part</td>
<td>48</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Constant Definition Part</td>
<td>48</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Type Definition Part</td>
<td>49</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Variable Declaration Part</td>
<td>49</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Procedure and Function Declaration Part</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>Statement Part</td>
<td>50</td>
</tr>
</tbody>
</table>

II TURBO Pascal Language Manual
TABLE OF CONTENTS

14.2.9 Erase .. 96
14.2.10 Rename ... 96
14.3 File Standard Functions 97
 14.3.1 EOF .. 97
 14.3.2 FilePos 97
 14.3.3 FileSize 97
14.4 Using Files .. 97
14.5 Text Files ... 100
 14.5.1 Operations on Text Files 100
 14.5.2 Logical Devices 102
 14.5.3 Standard Files 103
14.6 Text File Input and Output 106
 14.6.1 Read Procedure 106
 14.6.2 Readln Procedure 108
 14.6.3 Write Procedure 109
 14.6.4 Writeln Procedure 111
14.7 Untyped Files .. 112
 14.7.1 BlockRead / BlockWrite 112
14.8 I/O checking .. 114

15. POINTER TYPES 115
 15.1 Defining a Pointer Variable 115
 15.2 Allocating Variables (New) 116
 15.3 Mark and Release 116
 15.4 Using Pointers 117
 15.5 Space Allocation 119

16. PROCEDURES AND FUNCTIONS 121
 16.1 Parameters ... 121
 16.1.1 Relaxations on Parameter Type Checking 123
 16.1.2 Untyped Variable Parameters 123
 16.2 Procedures .. 125
 16.2.1 Procedure Declaration 125
 16.2.2 Standard Procedures 127
 16.2.2.1 ClrEol 127
 16.2.2.2 ClrScr 127
 16.2.2.3 CrtInit 127
 16.2.2.4 CrtExit 128
 16.2.2.5Delay ... 128
 16.2.2.6 DelLine 128
 16.2.2.7 InsLine 128
 16.2.2.8 GotoXY .. 128
 16.2.2.9 LowVideo 129
 16.2.2.10 NormVideo 129

TABLE OF CONTENTS
Appendices

A. CP/M-80 .. 143
 A.1 compiler Options 143
 A.1.1 Memory / Com file / chn-file 143
 A.1.2 Start Address 144
 A.1.3 End Address 145
 A.1.4 Find Runtime Error 145
 A.2 Standard Identifiers 146
 A.3 Absolute Variables 146
 A.4 Addr Function 147
 A.5 Predefined Arrays 147
 A.5.1 Mem Array 147
 A.5.2 Port Array 148
 A.6 Array Subscript Optimization 148
 A.7 With Statements 148
 A.8 Pointer Related Items 148
 A.8.1 MemAvail 148
 A.8.2 Pointers and Integers 149
 A.9 External Subprograms 149
 A.10 Chain and Execute 149
 A.11 In-line Machine Code 152
 A.12 CP/M Function Calls 153
 A.12.1 Bdos procedure and function 153
 A.12.2 BdosHL function 153
 A.12.3 Bios procedure and function 154
 A.12.4 BiosHL function 154
 A.13 User Written I/O Drivers 155
 A.14 Interrupt Handling 156
 A.15 Internal Data Formats 157
 A.15.1 Basic Data Types 157
 A.15.1.1 Scalars 157
 A.15.1.2 Reals 157
 A.15.1.3 Strings 158
 A.15.1.4 Sets 158
 A.15.1.5 File Interface Blocks 159
 A.15.1.6 Pointers 160
 A.15.2 Data Structures 161
 A.15.2.1 Arrays 161
 A.15.2.2 Records 161
 A.15.2.3 Disk Files 162
 A.15.2.3.1 Random Access Files 162

TABLE OF CONTENTS VII
B.1.7.2.1 Assigning a Value to a Pointer 181
B.1.7.2.2 Obtaining The Value of a Pointer 181
B.1.8 External Subprograms ... 181
B.1.9 Chain and Execute ... 182
B.1.10 In-line Machine Code ... 184
B.1.11 Interrupt Handling ... 186
B.1.11.1 Intr procedure ... 186
B.1.12 Internal Data Formats .. 187
B.1.12.1 Basic Data Types ... 187
B.1.12.1.1 Scalars .. 187
B.1.12.1.2 Reals ... 188
B.1.12.1.3 Strings ... 188
B.1.12.1.4 Sets .. 189
B.1.12.1.5 Pointers ... 189
B.1.12.2 Data Structures .. 189
B.1.12.2.1 Arrays ... 190
B.1.12.2.2 Records ... 190
B.1.12.2.3 Disk Files ... 190
B.1.12.2.4 Text Files ... 191
B.1.12.3 Parameters .. 191
B.1.12.3.1 Variable Parameters 192
B.1.12.3.2 Value Parameters 192
B.1.12.3.2.1 Scalars ... 193
B.1.12.3.2.2 Reals .. 193
B.1.12.3.2.3 Strings ... 193
B.1.12.3.2.4 Sets .. 193
B.1.12.3.2.5 Pointers ... 193
B.1.12.3.2.6 Arrays and Records 193
B.1.12.4 Function Results ... 194
B.1.12.5 The Heap and The Stacks 194
B.2 The MS-DOS / PC-DOS Implementations 196
B.2.1 Standard Identifiers ... 196
B.2.2 Function Calls .. 196
B.2.3 User Written I/O Drivers 196
B.2.4 File Interface Blocks .. 198
B.2.5 Random Access Files .. 199
B.2.6 Operations on Files .. 200
B.2.6.1 Extended File Size .. 200
B.2.6.2 File of Byte ... 200
B.2.6.3 Flush Procedure .. 200
B.3	The CP/M-86 Implementation	201
B.3.1	Standard Identifiers	201
B.3.2	Function Calls	201
B.3.3	User Written I/O Drivers	201
B.3.4	File Interface Blocks	202
B.3.5	Random Access Files	204

C.	SUMMARY OF STANDARD PROCEDURES AND FUNCTIONS	205
C.1	Input/Output Procedures and Functions	205
C.2	Arithmetic Functions	206
C.3	Scalar Functions	206
C.4	Transfer Functions	206
C.5	String Procedures and Functions	207
C.6	File handling routines	207
C.7	Heap Control Procedures and Functions	208
C.8	Screen Related Procedures	208
C.9	Miscellaneous Procedures and Functions	208

| D. | SUMMARY OF OPERATORS | 211 |

E.	SUMMARY OF COMPILER DIRECTIVES	213
E.1	Common Compiler Directives	214
E.1.1	B - I/O Mode Selection	214
E.1.2	C - Control S and C	214
E.1.3	I - I/O Error Handling	214
E.1.4	I - Include Files	214
E.1.5	R - Index Range Check	215
E.1.6	V - Var-parameter Type Checking	215
E.1.7	U - User Interrupt	215
E.2	CP/M-80 Compiler Directives	216
E.2.1	A - Absolute Code	216
E.2.2	W - Nesting of With Statements	216
E.2.3	X - Array Optimization	216
E.3.1	K - Stack Checking	217

F.	TURBO VS. STANDARD PASCAL	219
F.1	Dynamic Variables	219
F.2	Recursion	219
F.3	Get and Put	219
F.4	Goto Statements	220
F.5	Page Procedure	220
F.6	Packed Variables	220
F.7	Procedural Parameters	220
LIST OF FIGURES

1-1 Structure of Manual ... 3
1-1 Log-on Message .. 7
1-2 Main Menu ... 7
1-3 Installation Main Menu .. 8
1-4 Main Menu ... 13
1-5 Editor Status Line ... 18

A-1 Options Menu .. 143
A-2 Start and End Addresses 144
A-3 Run-time Error Message 145
A-4 Find Run-time Error .. 146
A-5 Memory map during compilation in memory 166
A-6 Memory map during compilation to a file 167
A-7 Memory map during execution in direct mode 168
A-8 Memory map during execution of a program file 169

B-1 Options Menu .. 173
B-2 Memory Usage Menu .. 174
B-3 Run-time Error Message 176
B-4 Find Run-time Error .. 176

N-1 IBM PC Screen Installation Menu 243
N-2 Terminal Installation Menu 244

LIST OF TABLES

1-1 Editing Command Values 12
1-2 Editing Command Overview 20

14-1 Operation of EOLN and Eof 103
INTRODUCTION

This book is a reference manual for the TURBO Pascal system as implemented for the CP/M-80, CP/M-86, and MS/DOS operating systems. Although making thorough use of examples, it is not meant as a Pascal tutorial or textbook, and at least a basic knowledge of Pascal is assumed.

The Pascal Language

Pascal is a general-purpose, high level programming language originally designed by Professor Niklaus Wirth of the Technical University of Zurich, Switzerland and named in honor of Blaise Pascal, the famous French Seventeenth Century philosopher and mathematician.

Professor Wirth’s definition of the Pascal language, published in 1971, was intended to aid the teaching of a systematic approach to computer programming, specifically introducing structured programming. Pascal has since been used to program almost any task on almost any computer. Pascal is today established as one of the foremost high-level languages; whether the application is education or professional programming.

TURBO Pascal

TURBO Pascal is designed to meet the requirements of all categories of users: it offers the student a friendly interactive environment which greatly aids the learning process; and in the hands of a programmer it becomes an extremely effective development tool providing both compilation and execution times second to none.

TURBO Pascal closely follows the definition of Standard Pascal as defined by K. Jensen and N. Wirth in the Pascal User Manual and Report. The few and minor differences are described in section F. A number of extensions are provided. Among these are:

- Absolute address variables
- Bit/byte manipulation
- Direct access to CPU memory and data ports
- Dynamic strings
- Free ordering of sections within declaration part
- Full support of operating system facilities
In-line machine code generation
Include files
Logical operations on integers
Program chaining with common variables
Random access data files
Structured constants
Type conversion functions

In addition, some extra standard procedures and functions are included to further increase the versatility of TURBO Pascal.

Structure of This Manual

As this manual describes three slightly different TURBO Pascal implementations, CP/M-80, CP/M-86, and MS-DOS/PC-DOS, the reader should keep the following structure in mind:

1: Chapter 1 describes the installation and use of TURBO Pascal, the built-in editor, etc. This information applies to all three implementations.

2: The main body of the manual, chapters 2 through 17, describe the common parts of TURBO Pascal, i.e. those parts of the language which are identical in all three versions. These include Standard Pascal and many extensions. As long as you use the language as described in these chapters, your programs will be fully portable between implementations.

3: Appendices A and B describe items which have not been covered in previous chapters because they differ among implementations, e.g. special features, requirements, and limitations of each implementation. To avoid confusion, you need only read the one appendix pertaining to your implementation. These appendices mostly describe the more intricate details of programming (e.g. direct memory and port accesses, user written I/O drivers, internal data formats, etc.), and need only be read by those who wish to use TURBO Pascal to its fullest extent. Remember, however, that as these things are implementation dependent, programs using them are no longer directly portable between implementations.

4: The remaining appendices are common to all implementations and contain summaries of language elements, syntax diagrams, error messages, an alphabetical subject index, etc.

Appendix M contains some answers to the most common questions - read them if you have any problems.
The following is a graphic representation of the manual:

![Diagram](image)

Figure 1: Structure of Manual

Typography

The body of this manual is printed in normal typeface. Special characters are used for the following special purposes:

- **Typewriter**
 - Typewriter-characters are used to illustrate program examples and screen output. Screen images are furthermore shown in rectangular fields of thin lines.

- **Italics**
 - Italics are used in general to emphasize sections of the text. In particular, pre-defined standard identifiers are printed in italics, and elements in syntax descriptions (see below) are printed in italics. The meaning of the use of italics thus depends on the context.

- **Boldface**
 - Boldface is used to mark reserved words; in the text as well as in program examples.
Margins Certain sections, like this one, are printed in smaller type and with an
extra wide margin. This indicates that their contents is of a less impor-
tant nature than the surrounding text, and that they may therefore be
skipped on a first reading of this manual.

Syntax Descriptions

The entire syntax of the Pascal language expressed as *Backus-Naur Forms* is
collected in in appendix K which also describes the typography and special
symbols used in these forms.

Where appropriate syntax desctiptions are also used more specifically to
show the syntax of single language elements as in the following syntax desc­
ription of the function *Concat*:

\[
\text{Concat}(St1,St2\{,StN\})
\]

Reserved words are printed in **boldface**, standard identifiers use mixed upper
and lower case, and elements explained in the text are printed in *italics*.

The text will explain that *St1*, *St2*, and *StN* must be string expressions. The
syntax description shows that the word Concat must be followed by two or
more string expressions, separated by commas and enclosed in parentheses.
In other words, the following examples are legal (assuming that *Name* is a
string variable):

```
Concat(‘TURBO’, ‘Pascal’)  
Concat(‘TU’, ‘RBO’, ‘Pascal’)  
```
1. USING THE TURBO SYSTEM

This chapter describes the installation and use of the TURBO Pascal system, specifically the built-in editor.

1.1 .COM and .CMD files

Files with the extension .COM mark the executable program files in CP/M-80 and MS-DOS / PC-DOS. In CP/M-86 these will instead be marked .CMD. Thus, whenever .COM-files are mentioned in the following, it should be understood as .CMD if your operating system is CP/M-86.

1.2 BEFORE USE

Before using the TURBO Pascal you should, for your own protection, make a work-copy of the distribution diskette and store the original safely away. Remember that the User's License allows you to make as many copies as you need for your own personal use and for backup purposes only. Use a file-copy program to make the copy, and make sure that all files are successfully transferred.

1.3 Compiler Directive Defaults

READ THIS !!!

TURBO Pascal provides a number of compiler directives to control special runtime facilities like e.g. index checking, recursion (CP/m-80 only), etc. PLEASE NOTICE that the default settings of these directives will optimize execution speed and minimize code size. Thus, a number of runtime facilities (such as index checking and recursion) are de-selected until explicitly selected by the programmer. All compiler directives and their default values are described in appendix E.
1.4 Files On The Distribution Disk

The distribution disk contains the following files:

TURBO.COM
The TURBO Pascal program. When you enter the command `TURBO` on your terminal, this file will load, and the program will be up and running.

TURBO.OVR
Overlay file for TURBO.COM (CP/M-80 version only). Needs only be present on the run-time disk if you want to execute .COM files from TURBO.

TURBO.MSG
Text file containing error messages. Needs not be present on your run-time disk if you will accept the system without explanatory compile-time error messages. Errors will in that case just print out an error number, and the manual can be consulted to find the explanation. In any case, as the system will automatically point out the error, you may find it an advantage to use TURBO without these error messages; it not only saves space on the disk, but more importantly, it gives you approx 1.5 Kbytes extra memory for programs. This message file may be edited if you wish to translate error messages into another language - more about that in appendix J.

TLIST.COM
Source text listing program. Needs not be present on run-time disk.

TINST.COM
Installation program. Just type `TINST` at your terminal, and the program takes you through a completely menu-driven installation procedure. This and the following files need not be present on your run-time disk.

TINST.DTA
Terminal installation data (not present on IBM PC versions).

TINST.MSG
Messages for the installation program. Even this file may be translated into any language desired.

.PAS files
Sample Pascal programs.

READ.ME
If present, this file contains the latest corrections or suggestions on the use of the system.

Only **TURBO.COM** must to be on your run-time disk. A fully operative TURBO Pascal thus requires only **28 K** of disk space (33 K for 16-bit systems). **TURBO.OVR** is required only if you want to be able to execute programs from the TURBO menu. **TURBO.MSG** is needed only if you want on-line compile-time error messages. **TLIST.COM** is used only to list TURBO programs on the printer, and finally all **TINST** files are used only for the installation procedure. The example .PAS files, of course, may be included on the run-time disk if so desired, but are not necessary.
1.5 Starting TURBO Pascal

When you have a copy of the system on your work-disk, enter the command

TURBO

at your terminal. The system will log on with the following message:

```
TURBO Pascal release n.nn - [version]
Copyright (C) 1983 by BORLAND International
No terminal selected

Include error messages (Y/N)?
```

Figure 1-1: Log-on Message

In the first line, n.nn identifies your release number and [version] indicates the operating environment (operating system and CPU), e.g. CP/M-86 on IBM PC PC. The third line tells you which screen is installed. At the moment none - but more about that later.

If you enter a Y in response to the question, the error message file will be read into memory (if it is on the disk), briefly displaying the message Loading TURBO.MSG. You may instead answer N and save about 1.5 Kbytes of memory. Then the TURBO main menu will appear:

```
Logged drive: A

Work file:
Main file:

Edit   Compile   Run   Save
eexecute   Dir   Quit compiler Options

Text:  0 bytes
Free:  62903 bytes
```

Figure 1-2: Main Menu

USING THE TURBO SYSTEM
The menu shows you the commands available, each of which will be described in detail in following sections. Each command is executed by entering the associated capital letter (highlighted after terminal installation if your terminal has that feature). Don’t press <RETURN>, the command executes immediately. The values above for Logged drive and memory use are for the sake of example only; the values shown will be the actual values for your computer.

IBM PC users can use TURBO as it comes and may skip the following and go to section 1.7. If you’re an non-IBM PC user, you may use TURBO without installation if you don’t plan to use the built-in editor - but assuming that you do, type Q now to leave TURBO for a minute to perform the installation.

1.6 Installation

Type TINST to start the installation program. All TINST files and the TURBO.COM file must be on the logged drive. This menu will appear:

```
TURBO Pascal installation menu.
Choose installation item from the following:
[S]creen installation  |  [C]ommand installation  |  [Q]uit

Enter S, C, or Q:
```

Figure 1-3: Installation Main Menu

1.6.1 IBM PC Screen Installation

When you hit S to perform Screen installation, a menu will appear which lets you select the screen mode you want to use while running TURBO (see appendix N for details). When you have made your choice, the main menu reappears, and you may now continue with the Command installation described in section 1.6.3 or you may terminate the installation at this point by entering Q for Quit.
1.6.2 Non-IBM PC Screen Installation

Now hit S to select Screen installation. A menu containing the names of the mostly used terminals will appear, and you may choose the one that suits you by entering the appropriate number. If your terminal is not on the menu, nor compatible with any of these (note that a lot of terminals are compatible with e.g. ADM-3A), then you must perform the installation yourself. This is quite straightforward, but you will need to consult the manual that came with your terminal to answer the questions asked by the installation menu. See appendix N for details.

When you have chosen a terminal, you are asked if you want to modify the installation before installation. This can be used if you have e.g. an ADM-3A compatible terminal with some additional features. Choose the ADM-3A and add the required commands to activate the special features. If you answer Yes, you will be taken through a series of questions as described in appendix N.

Normally, you will answer No to this question, which means that you are satisfied with the pre-defined terminal installation. Now you will be asked the operating frequency of your microprocessor. Enter the appropriate value (2, 4, 6 or 8, most probably 4).

After that, the main menu re-appears, and you may now continue with the Command installation described in the next section or you may terminate the installation at this point by entering Q for Quit.

1.6.3 Installation of Editing Commands

The built-in editor responds to a number of commands which are used to move the cursor around on the screen, delete and insert text, move text etc. These commands have default values which comply with the 'standard' set by WordStar, but they may easily be tailored to fit your taste or your keyboard. When you hit C for Command installation, the first command appears:

```
CURSOR MOVEMENTS:

1: Character left  Ctrl-S -> ▼
```
This tells you that the command to move the cursor one character to the left is currently a Ctrl-S (Control-S, i.e. hold down the key marked CONTROL or CTRL and press S), as in WordStar. If you want to use another command, you may enter it following the - > in either of two ways:

1) Simply press the key you want to use. It could be a function key (e.g. a left-arrow-key, if you have it) or any other key or sequence of keys that you choose (max. 4). The installation program responds with a mnemonic of each character it receives. If you have a left-arrow-key that transmits an <ESCAPE> character followed by a lower case a, and you press this key in the situation above, your screen will look like this:

<table>
<thead>
<tr>
<th>CURSOR MOVEMENTS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Character left Ctrl-S - > <ESC> a □</td>
</tr>
</tbody>
</table>

2) Instead of pressing the actual key you want to use, you may enter the ASCII value(s) of the character(s) in the command. The values of multiple characters are entered separated by spaces. Decimal values are just entered: 27; hexadecimal values are prefixed by a dollar-sign:$1B. This may be useful to install commands which are not presently available on your keyboard, e.g. if you want to install the values of a new terminal while still using the old one. This facility has just been provided for very few and rare instances, because there is really no idea in defining a command that cannot be generated by pressing a key. But it's there for those who wish to use it.

In both cases, terminate your input by pressing <RETURN>. Notice that the two methods cannot be mixed within one command, i.e. if you have started defining a command sequence by pressing keys, you must define all characters in that command by pressing keys and vise versa.

You may enter a - (minus) to remove a command from the list, and a B backs through the list one item at a time.
The editor accepts a total of 45 commands, and they may all be changed to your specification. If you make an error in the installation, e.g. define the same command for two different purposes, an self-explanatory error message is issued, and you must correct the error before terminating the installation. The following table lists the default value and the use of each command, and space is allowed for you to mark your changes, if any.

CURSOR MOVEMENTS:

1: Character left
 Ctrl-S -> ________

2: Alternative
 Ctrl-H -> ________

3: Character right
 Ctrl-D -> ________

4: Word left
 Ctrl-A -> ________

5: Word right
 Ctrl-F -> ________

6: Line up
 Ctrl-E -> ________

7: Line down
 Ctrl-X -> ________

8: Scroll up
 Ctrl-W -> ________

9: Scroll down
 Ctrl-Z -> ________

10: Page up
 Ctrl-R -> ________

11: Page down
 Ctrl-C -> ________

12: To left on line
 Ctrl-Q Ctrl-S -> ________

13: To right on line
 Ctrl-Q Ctrl-D -> ________

14: To top of page
 Ctrl-Q Ctrl-E -> ________

15: To bottom of page
 Ctrl-Q Ctrl-X -> ________

16: To top of file
 Ctrl-Q Ctrl-R -> ________

17: To end of file
 Ctrl-Q Ctrl-C -> ________

18: To beginning of block
 Ctrl-Q Ctrl-B -> ________

19: To end of block
 Ctrl-Q Ctrl-B -> ________

20: To last cursor position
 Ctrl-Q Ctrl-P -> ________

INSERT & DELETE:

21: Insert mode on/off
 Ctrl-V -> ________

22: Insert line
 Ctrl-N -> ________

23: Delete line
 Ctrl-Y -> ________

24: Delete to end of line
 Ctrl-Q Ctrl-Y -> ________

25: Delete right word
 Ctrl-T -> ________

26: Delete character under cursor
 Ctrl-G -> ________

27: Delete left character
 -> ________

28: Alternative:
 Nothing -> ________

USING THE TURBO SYSTEM
1.6.3

Installation of Editing Commands

BLOCK COMMANDS:

29: Mark block begin
\(\text{Ctrl-} \text{K Ctrl-B} \rightarrow \)

30: Mark block end
\(\text{Ctrl-} \text{K Ctrl-K} \rightarrow \)

31: Mark single word
\(\text{Ctrl-} \text{K Ctrl-T} \rightarrow \)

32: Hide/display block
\(\text{Ctrl-} \text{K Ctrl-W} \rightarrow \)

33: Copy block
\(\text{Ctrl-} \text{K Ctrl-C} \rightarrow \)

34: Move block
\(\text{Ctrl-} \text{K Ctrl-V} \rightarrow \)

35: Delete block
\(\text{Ctrl-} \text{K Ctrl-Y} \rightarrow \)

36: Read block from disk
\(\text{Ctrl-} \text{K Ctrl-R} \rightarrow \)

37: Write block to disk
\(\text{Ctrl-} \text{K Ctrl-W} \rightarrow \)

MISC. EDITING COMMANDS:

38: End edit
\(\text{Ctrl-} \text{K Ctrl-D} \rightarrow \)

39: Tab
\(\text{Ctrl-} \text{I} \rightarrow \)

40: Auto tab on/off
\(\text{Ctrl-} \text{Q Ctrl-I} \rightarrow \)

41: Restore line
\(\text{Ctrl-} \text{Q Ctrl-L} \rightarrow \)

42: Find
\(\text{Ctrl-} \text{Q Ctrl-F} \rightarrow \)

43: Find & replace
\(\text{Ctrl-} \text{Q Ctrl-A} \rightarrow \)

44: Repeat last find
\(\text{Ctrl-L} \rightarrow \)

45: Control character prefix
\(\text{Ctrl-P} \rightarrow \)

Table 1-1: Editing Command Values

Items 2 and 28 let you define alternative commands to *Character Left* and *Delete left Character* commands. Normally <BS> is the alternative to Ctrl-S, and there is no defined alternative to . You may redefine these to suit your keyboard, e.g. to use the <BS> as an alternative to if the <BS> key is more conveniently located. Of course, the two alternative commands must be unambiguous like all other commands.
1.7 The Menu

After installation, you once again activate TURBO Pascal by typing the command TURBO. Your screen should now clear and display the menu, this time with the command letters highlighted. If not, check your installation data.

![Logged drive: A

Work file:

Main file:

Edit Compile Run Save
execute Dir Quit compiler Options

Text: 0 bytes
Free: 62903 bytes

>□

Figure 1-4: Main Menu

By the way, whenever highlighting is mentioned here, it is naturally assumed that your screen has different video attributes to show text e.g. in different intensities, inverse, underline or some other way. If not, just disregard any mention of highlighting.

This menu shows you the commands available to you while working with TURBO Pascal. A command is activated by pressing the associated upper case (highlighted) letter. Don’t press <RETURN>, the command is executed immediately. The menu may very well disappear from the screen when working with the system; it is easily restored by entering an ‘illegal command’, i.e. any key that does not activate a command. <RETURN> or <SPACE> will do perfectly.

The following sections describe each command in detail.
1.7.1 **Logged Drive Selection**

The `L` command is used to change the currently logged drive. When entering an `L`, the following prompt is issued:

```
New drive:  ■
```

inviting you to enter a drive name, i.e. a letter from A through P, optionally followed by a colon and terminated with <RETURN>. If you don't want to change the current value, just hit <RETURN>. The `L` command performs a disk-reset, even when you don't change the drive, and should therefore be used whenever you change disks to avoid a fatal disk write error (CP/M only!).

The new drive is not immediately shown on the menu, as it is not automatically updated. Hit e.g. <SPACE> to display a fresh menu which will show the new logged drive.

1.7.2 **Work File Selection**

The `W` command is used to select a work file, i.e. the file to be used to Edit, Compile, Run, eXecute, and Save. The `W` command will issue this command:

```
Work file name:  ■
```

and you may respond with any legal file name, i.e. a name of one through eight characters, an optional period, and an optional file type of no more than three characters:

```
FILENAME.TYP
```

If you enter a file name without period and file type, the file type `PAS` is automatically assumed and appended to the name. You may explicitly specify a file name with no file type by entering a period after the name, but omitting the type.

Examples:

```
PROGRAM becomes PROGRAM. PAS
PROGRAM. is not changed
PROGRAM. FIL is not changed
```

File types `.BAK`, `.CHN`, and `.COM/.CMD should be avoided, as TURBO uses these names for special purposes.
When the Work file has been specified, the file is read from disk, if present. If the file does not already exist, the message New File is issued. If you have edited another file which you have not saved, the message:

```
Workfile X:FILENAME.TYP not saved. Save (Y/N)?
```

warns you that you are about to load a new file into memory and overwrite the one you have just worked on. Answer Y to save or N to skip.

The new work file name will show on the menu the next time it is updated, e.g. when you hit <SPACE>.

1.7.3 Main File Selection

The **M** command may be used to define a main file when working with programs which use the compiler directive $@ to include a file. The Main file should be the file which must start the compilation, i.e. the file which contains the include directives. You can then define the Work file to be different from the Main file, and thus edit different include files while leaving the name of the Main file unchanged.

When a compilation is started, and the Work file is different from the Main file, the current Work file is automatically saved, and the Main file is loaded into memory. If an error is found during compilation, the file containing the error (whether it is the Main file or an include file) automatically becomes the Work file which may then be edited. When the error has been corrected and compilation is started again, the corrected Work file is automatically saved, and the Main file is re-loaded.

The Main file name is specified as described for the Work file name in the previous section.
1.7.4 Edit Command

The E command is used to invoke the built-in editor and edit the file defined as the Work file. If no Work file is specified, you are first asked to specify one. The menu disappears, and the editor is activated. More about the use of the editor in section 1.8.

While you may use the TURBO system to compile and run programs without installing a terminal, the use of the editor requires that your terminal be installed. See section 1.6.

1.7.5 Compile Command

The C command is used to activate the compiler. If no Main file is specified, the Work file will be compiled, otherwise the Main file will be compiled. In the latter case, if the Work file has been edited, you will be asked whether or not to save it before the Main file is loaded and compiled. The compilation may be interrupted at any moment by pressing a key.

The compilation may result either in a program residing in memory, in a .COM file, or in a .CHN file. The choice is made on the compiler Options menu described in sections A.1 (8 bit systems) and B.1.1 (16 bit systems). The default is to have the program residing in memory.

1.7.6 Run Command

The R command is used to activate a program residing in memory or, if the C-switch on the compiler Options menu is active, a TURBO object code file (.COM or .CMD file). If a compiled program is already in memory, it will be activated. If not, a compilation will automatically take place following the rules above.

1.7.7 Save Command

The S command is used to save the current Work file on disk. The old version of this file, if any, will be renamed to .BAK, and the new version will be saved.
1.7.8 *eXecute Command*

The *X* command lets you run other programs from within TURBO Pascal, e.g. copying programs, word processors - in fact anything that you can run from your operating system. When entering *X*, you are prompted:

Command: *

You may now enter the name of any program which will then load and run normally. Upon exit from the program, control is re-transferred to TURBO Pascal, and you return to the TURBO prompt > .

1.7.9 *Directory Command*

The *D* command gives you a directory listing and information about remaining space on the logged drive. When hitting *D*, you are prompted thus:

Dir mask: *

You may enter a drive designator or a drive designator followed by a file name or a mask containing the usual wildcards * and ?. Or you may just hit <RETURN> to get a full directory listing.

1.7.10 *Quit Command*

The *Quit* command is used to leave the TURBO system. If the Work file has been edited since it was loaded, you are asked whether you want to save it before quitting.

1.7.11 *compiler Options*

The *O* command selects a menu on which you may view and change some default values of the compiler. It also provides a helpful function to find run-time errors in programs compiled into object code files.

As these options vary between implementations, further discussion is deferred to appendices A and B.
1.8 The TURBO Editor

The built-in editor is a screen-editor specifically designed for the creation of program text. If you are familiar with MicroPro's WordStar, you will need no further instruction in the use of the TURBO editor, as the standard definition of all commands are exactly like the ones you know from WordStar. There are a few minor differences, and the TURBO editor has a few extensions; these are discussed in section 1.9.

Using the TURBO editor is simple as can be: when you have defined a Work file and hit E, the menu disappears, and the editor is activated. If the Work file exists on the drive, it is loaded and the first page of text is displayed. If it is a new file, the screen is blank apart from the status line at the top.

Text is entered on the keyboard just as if you were using a typewriter. To terminate a line, press the <RETURN> key (or CR or ENTER or whatever it is called on your keyboard). When you have entered enough lines to fill the screen, the top line will scroll off the screen, but don't worry, it is not lost, and you may page back and forth in your text with the editing commands described later.

Let us first take a look at the meaning of the status line at the top of the screen.

1.8.1 The Status Line

The top line on the screen is the status line containing the following information:

<table>
<thead>
<tr>
<th>Line n</th>
<th>Col n</th>
<th>Insert</th>
<th>Indent</th>
<th>X:FILENAME.TYP</th>
</tr>
</thead>
</table>

Figure 1-5: Editor Status Line

Line n Shows the number of the line containing the cursor counted from the start of the file.

Col n Shows the number of the column containing the cursor counted from the left side of the screen.
The Status Line

1.8.1

Insert
Indicates that characters entered on the keyboard will be inserted at the cursor position, i.e. that existing text to the right of the cursor will move to the right as you write new text. Using the *insert mode on/off* command (Ctrl-V by default) will instead display the text *Overwrite*. Text entered on the keyboard will then overwrite characters under the cursor instead of inserting them.

Indent
Indicates that auto-indentation is in effect. It may be switched off by the *auto-indent on/off* command (Ctrl-Q Ctrl-I by default).

X:FILENAME.TVP
The drive, name, and type of the file being edited.

1.8.2 Editing Commands

As mentioned before, text is written as if you were using a typewriter, but as this is a computerized text editor, it offers you a number of editing facilities which make text manipulation, and in this case specifically program writing, much easier than on paper.

The TURBO editor accepts a total of 45 editing commands to move the cursor around, page through the text, find and replace text strings, etc, etc. These commands can be logically grouped into the following four categories:

- **Cursor movement commands**,
- **Insert and delete commands**,
- **Block commands**, and
- **Miscellaneous commands**

Each of these groups contain logically related commands which will be described separately in following sections. The following table provides an overview of the commands available:
CURSOR MOVEMENT COMMANDS:
- Character left: To top of screen
- Character right: To top of file
- Word left: To top of file
- Word right: To end of file
- Line up: To left on line
- Line down: To right on line
- Scroll up: To beginning of block
- Scroll down: To end of block
- Page up: To last cursor position
- Page down

INSERT & DELETE COMMANDS:
- Insert mode on/off: Delete right word
- Insert line: Delete character under cursor
- Delete line: Delete left character
- Delete to end of line

BLOCK COMMANDS:
- Mark block begin
- Mark block end
- Mark single word
- Copy block
- Move block
- Delete block
- Read block from disk
- Write block to disk
- Hide/display block

MISC. EDITING COMMANDS:
- End edit
- Tab
- Auto tab on/off
- Restore line
- Find
- Find & replace
- Repeat last find
- Control character prefix

Table 1-2: Editing Command Overview

In a case like this, the best way of learning is by doing; so start TURBO, specify one of the demo Pascal programs as Work file, and enter E to Edit. Then try the commands as you read on.

Hang on, even if you find it a bit hard in the beginning. It is not just by chance we have chosen to make the TURBO editor WordStar compatible - the logic of these commands, once learned, quickly become so much a part of you that the editor virtually turns into an extension of your mind. Take it from one who has written megabytes worth of text with that editor. Deep in the night this man/machine synthesis reaches frightening proportions.
Each of the following descriptions consists of a heading defining the command, followed by the default keystrokes used to activate the command, with room in between to note which keys to use on your terminal, if you use other keys. If you have arrow keys and dedicated word processing keys (insert, delete, etc.), it might be convenient to use these. Please refer to section 1.6.3 for installation details.

The following descriptions of the commands assume the use of the default Word-Star compatible keystrokes.

1.8.3 A Note on Control Characters

All commands are issued using control characters. A control character is a special character generated by your keyboard when you hold down the <CONTROL> (or <CTRL>) key on your keyboard and press any key from A through Z (well, even [, \,], ^, and __ may generate control characters for that matter).

The <CONTROL> key works like the <SHIFT> key: if you hold down the <SHIFT> key and press A, you will get a capital A; if you hold down the <CONTROL> key and press A, you will get a Control-A (Ctrl-A for short).

1.8.4 Before You Start: How To Get Out

The command which takes you out of the editor is described in section 1.8.8, but you may find it useful to know already now that the Ctrl-K Ctrl-D command exits the editor and returns you to the menu environment. This command does not automatically save the file; that must be done with the Save command from the menu.

1.8.5 Cursor Movement Commands

1.8.5.1 Basic Movement Commands

The most basic thing to learn about an editor is how to move the cursor around on the screen, The TURBO editor uses a special group of control characters to do that, namely the control characters A, S, D, F, E, R, X, and C.
Why these? Because they are conveniently located close to the control-key, so that your left little finger can rest on that while you use the middle and index fingers to activate the commands. Furthermore, the characters are arranged in such a way on the keyboard as to logically indicate their use. Let’s examine the basic movements: cursor up, down, left, and right:

```
E
S
D
X
```

These four characters are placed so that it is logical to assume that Ctrl-E moves the cursor up, Ctrl-X down, Ctrl-S to the left, and Ctrl-D to the right. And that is exactly what they do. Try to move the cursor around on the screen with these four commands. If your keyboard has repeating keys, you may just hold down the control key and one of these four keys, and the cursor will move rapidly across the screen.

Now let us look at some extensions of those movements:

```
E   R
A   S   D   F
X   C
```

The location of the Ctrl-R next to the Ctrl-E implies that Ctrl-R moves the cursor up, and so it does, only not one line at the time but a whole page. Similarly, Ctrl-C moves the cursor down one page at a time.

Likewise with Ctrl-A and Ctrl-F: Ctrl-A moves to the left like Ctrl-S, but a whole word at a time, and Ctrl-F moves one word to the right.

The two last basic movement commands do not move the cursor but scrolls the entire screen upwards or downwards in the file:

```
W   E   R
A   S   D   F
Z   X   C
```

Ctrl-W scrolls up in the file (the lines on the screen move down), and Ctrl-Z scrolls down in the file (the lines on the screen move up).
Basic Movement Commands

Character left

Moves the cursor one character to the left non-destructively, i.e. without affecting the character there. `<BACKSPACE>` may be installed to have the same effect. This command does not work across line breaks, i.e. when the cursor reaches the left edge of the screen, it stops.

Character right

Moves the cursor one character to the right non-destructively, i.e. without affecting the character there. This command does not work across line breaks, i.e. when the cursor reaches the right end of the screen, the text starts scrolling horizontally until the cursor reaches the extreme right of the line, in column 128, where it stops.

Word left

Moves the cursor to the beginning of the word to the left. A word is defined as a sequence of characters delimited by one of the following characters: `space, < > , ; . () []` " * + - /$. This command works across line breaks.

Word right

Moves the cursor to the beginning of the word to the right. See the definition of a word above. This command works across line breaks.

Line up

Moves the cursor to the line above. If the cursor is on the top line, the screen scrolls down one line.

Line down

Moves the cursor to the line below. If the cursor is on the second-last line, the screen scrolls up one line.

Scroll up

Scrolls 'up' towards the beginning of the file, one line at a time (i.e. the entire screen scrolls down). The cursor remains on its line until it reaches the bottom of the screen.
Basic Movement Commands

Scroll down

<table>
<thead>
<tr>
<th>Ctrl-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrolls 'down' towards the end of the file, one line at a time (i.e. the entire screen scrolls up). The cursor remains on its line until it reaches the top of the screen.</td>
</tr>
</tbody>
</table>

Page up

<table>
<thead>
<tr>
<th>Ctrl-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moves the cursor one page up with an overlap of one line, i.e. the cursor moves one screenful less one line backwards in the text.</td>
</tr>
</tbody>
</table>

Page down

<table>
<thead>
<tr>
<th>Ctrl-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moves the cursor one page down with an overlap of one line, i.e. the cursor moves one screenful less one line forwards in the text.</td>
</tr>
</tbody>
</table>

Extended Movement Commands

The commands discussed above will let you move freely around in your program text, and they are easy to learn and understand. Try to use them all for a while and see how natural they feel.

Once you master them, you will probably sometimes want to move more rapidly. The TURBO editor provides five commands to move rapidly to the extreme ends of lines, to the beginning and end of the text, and to the last cursor position.

These commands require **two** characters to be entered: first a Ctrl-Q and then one of the following control characters: S, D, E, X, R, and C. They repeat the pattern from before:

```
  E  R
S  D
X  C
```

i.e. Ctrl-Q Ctrl-S moves the cursor to the extreme left of the line, and Ctrl-Q Ctrl-D moves it to the extreme right of the line. Ctrl-Q Ctrl-E moves the cursor to the top of the screen, Ctrl-Q Ctrl-X moves it to the bottom of the screen. Ctrl-Q Ctrl-R moves the cursor all the way 'up' to the start of the file, Ctrl-Q Ctrl-C moves it all the way 'down' to the end of the file.
Extended Movement Commands

1.8.5.2

To left on line
Ctrl-Q Ctrl-S

Moves the cursor all the way to the left edge of the screen, i.e. to column one.

To right on line
Ctrl-Q Ctrl-D

Moves the cursor to the end of the line, i.e. to the position following the last printable character on the line. Trailing blanks are always removed from all lines to preserve space.

To top of screen
Ctrl-Q Ctrl-E

Moves the cursor to the top of the screen.

To bottom of screen
Ctrl-Q Ctrl-X

Moves the cursor to the bottom of the screen.

To top of file
Ctrl-Q Ctrl-R

Moves to the first character of the text.

To end of file
Ctrl-Q Ctrl-C

Moves to the last character of the text.

Finally the Ctrl-Q prefix with a B, K, or P control character allows you to jump far within the file:

To beginning of block
Ctrl-Q Ctrl-B

Moves the cursor to the the position of the block begin marker set with Ctrl-K Ctrl-B (hence the B). The command works even if the block is not displayed (see hide/display block later), or the block end marker is not set.

To end of block
Ctrl-Q Ctrl-K

Moves the cursor to the position of the block end marker set with Ctrl-K Ctrl-K (hence the K). The command works even if the block is not displayed (see hide/display block later), or the block begin marker is not set.
1.8.5.2 Extended Movement Commands

To last cursor position

| Ctrl-Q Ctrl-P |

Moves to the last position of the cursor (the P being a mnemonic for Position). This command is particularly useful to move back to the last position after a Save operation or after a find or find/replace operation.

1.8.6 Insert and Delete Commands

These commands let you insert and delete characters, words, and lines. They can be divided into three groups: one command which controls the text entry mode (insert or overwrite), a number of simple commands, and one extended command.

Notice that the TURBO editor provides a 'regret' facility which lets you 'undo' changes as long as you have not left the line. This command (Ctrl-Q Ctrl-L) is described in section 1.8.8.

1.8.6.1 Insert or Overwrite?

Insert mode on/off

| Ctrl-V |

When you enter text, you may choose between two entry modes: *Insert* and *Overwrite*. Insert mode is the default value when the editor is invoked, and it lets you insert new text into an existing text. The existing text to the right of the cursor simply moves to the right while you enter the new text.

Overwrite mode may be chosen if you wish to replace old text with new text. Characters entered then replace existing characters under the cursor.

You switch between these modes with the *insert mode on/off* command Ctrl-V, and the current mode is displayed in the status line at the top of the screen.
Delete left character

<DELETE>

Moves one character to the left and deletes the character there. Any characters to the right of the cursor move one position to the left. The <BACKSPACE> key which normally backspaces non-destructively like Ctrl-S may be installed to perform this function if it is more conveniently located on your keyboard, or if your keyboard lacks a <DELETE> key (sometimes labeled , <RUBOUT>, or <RUB>). This command works across line breaks, i.e. you can use it to remove line breaks.

Delete character under cursor

Ctrl-G

Deletes the character under the cursor and moves any characters to the right of the cursor one position to the left. This command does not work across line breaks.

Delete right word

Ctrl-T

Deletes the word to the right of the cursor. A word is defined as a sequence of characters delimited by one of the following characters: !space! < > , ; () [] ^ * + - / $. This command works across line breaks, i.e. it may be used to remove line breaks.

Insert line

Ctrl-N

Inserts a line break at the cursor position. The cursor does not move.

Delete line

Ctrl-Y

Deletes the line containing the cursor and moves any lines below one line up. The cursor moves to the left edge of the screen. No provision exists to restore a deleted line, so take care!

1.8.6.3 Extended Delete Command

One extended delete command is provided: a command to quickly erase from the cursor position to the end of the line.
Delete to end of line

Delete to end of line

Delete all text from the cursor position to the end of the line.

1.8.7 Block Commands

All block commands are extended commands (i.e. two characters each in the standard command definition), and you may ignore them at first if you feel a bit dazzled at this point. Later on, when you feel the need to move, delete, or copy whole chunks of text, you should return to this section.

For the persevering, we'll go on and discuss the use of blocks.

A block of text is simply any amount of text, from a single character to several pages of text. A block is marked by placing a Begin block marker at the first character and an End block marker at the last character of the desired portion of the text. Thus marked, the block may be copied, moved, deleted, and written to a file. A command is available to read an external file into the text as a block, and a special command conveniently marks a single word as a block.

Mark block begin

Mark block begin

This command marks the beginning of a block. The marker itself is not visible on the screen, and the block only becomes visibly marked when the End block marker is set, and then only if the screen is installed to show some sort of highlighting. But even if the block is not visibly marked, it is internally marked and may be manipulated.

Mark block end

Mark block end

This command marks the end of a block. As above, the marker itself is not visible on the screen, and the block only becomes visibly marked when the Begin block marker is also set.

Mark single word

Mark single word

This command marks a single word as a block, and thus replaces the Begin block - End block sequence which is a bit clumsy when marking just one word. If the cursor is placed within a word, then this word will be marked; if not then the word to the left of the cursor will be marked. A word is defined as a sequence of characters delimited by one of the following characters: \! spacial \! $.
Block Commands

Hide/display block

| Ctrl-K Ctrl-H |

This command causes the visual marking of a block (dim text) to be alternately switched off and on. Block manipulation commands (copy, move, delete, and write to a file) work only when the block is displayed. Block related cursor movements (jump to beginning/end of block) work whether the block is hidden or displayed.

Copy block

| Ctrl-K Ctrl-C |

This command places a copy of a previously marked block starting at the cursor position. The original block is left unchanged, and the markers are placed around the new copy of the block. If no block is marked, the command performs no operation, and no error message is issued.

Move block

| Ctrl-K Ctrl-V |

This command moves a previously marked block from its original position to the cursor position. The block disappears from its original position and the markers remain around the block at its new position. If no block is marked, the command performs no operation, and no error message is issued.

Delete block

| Ctrl-K Ctrl-Y |

This command deletes the previously marked block. No provision exists to restore a deleted block, so take care!

Read block from disk

| Ctrl-K Ctrl-R |

This command is used to read a file into the current text at the cursor position, exactly as if it was a block that was moved or copied. The block read in is marked as a block. When this command is issued, you are prompted for the name of the file to read. The file specified may be any legal filename. If no file type is specified, .PAS is automatically assumed. A file without type is specified as a name followed by a period.
Write block to disk

This command is used to write a previously marked block to a file. The block is left unchanged, and the markers remain in place. When this command is issued, you are prompted for the name of the file to write to. If the file specified already exists, a warning is issued before the existing file is overwritten. If no block is marked, the command performs no operation, and no error message is issued. The file specified may be any legal filename. If no file type is specified, .PAS is automatically assumed. A file without type is specified as a name followed by a period. Avoid the use of file types .BAK, .CHN, and .COM/.CMD, as they are used for special purposes by the TURBO system.

1.8.8 Miscellaneous Editing Commands

This section collects a number of commands which do not logically fall into any of the above categories. They are nonetheless important, especially this first one:

End edit

This command ends the edit and returns to the main menu. The editing has been performed entirely in memory, and any associated disk file is not affected. Saving the edited file on disk is done explicitly with the **Save** command from the main menu or automatically in connection with a compilation or definition of a new Work file.

Tab

There are no fixed tab positions in the TURBO editor. Instead, tab positions are automatically set to the beginning of each word on the line immediately above the cursor. This provides a very convenient automatic tabbing feature especially useful in program editing where you often want to line up columns of related items, e.g. variable declarations and such. Remember that Pascal allows you to write extremely beautiful source texts -do it, not for the sake of the purists, but more importantly to keep the program easy to understand, especially when you return to make changes after some time.
Miscellaneous Editing Commands

Auto tab on/off

Ctrl-Q Ctrl-I

The auto tab feature provides automatic indentation. When active, the indentation of the current line is repeated on each following line, i.e. when you hit <RETURN>, the cursor does not return to column one but to the starting column of the line you just terminated. When you want to change the indentation, use any of the cursor right or left commands to select the new column. When auto tab is active, the message Indent is displayed in the status line, and when passive the message is removed. Auto tab is active by default.

Restore line

Ctrl-Q Ctrl-L

This command lets you regret changes made to a line as long as you have not left the line. The line is simply restored to its original contents regardless of what changes you have made. But only as long as you remain on the line; the minute you leave it, changes are there to stay. For this reason, the Delete line (Ctrl-Y) command can regrettably only be regretted, not restored. Some days you’ll find yourself continuously falling asleep on the Ctrl-Y key, with vast consequences. A good long break usually helps.

Find

Ctrl-Q Ctrl-F

The Find command lets you search for any string of up to 30 characters. When you enter this command, the status line is cleared, and you are prompted for a search string. Enter the string you are looking for and terminate with <RETURN>. The search string may contain any characters, also control characters. Control characters are entered into the search string with the Ctrl-P prefix: enter e.g. a Ctrl-A by holding down the Control key while pressing first P, then A. You may thus include a line break in a search string by specifying Ctrl-M Ctrl-J. Notice that Ctrl-A has a special meaning: it matches any character and may be used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right, Word Left, and Word Right commands. Word Right recalls the previous search string which may then be edited. The search operation may be aborted with the Abort command (Ctrl-U).

When the search string is specified, you are asked for search options. The following options are available:
1.8.8

Miscellaneous Editing Commands

B Search backwards, i.e. search from the current cursor position towards the beginning of the text.

G Global search, i.e. search the entire text, irrespective of the current cursor position.

n \(n \) = any number. Find the \(n \)'th occurrence of the search string, counted from the current cursor position.

U Ignore upper/lower case, i.e. regard upper and lower case alphabets as equal.

W Search for whole words only, i.e. skip matching patterns which are embedded in other words.

Examples:

\(W \) search for whole words only, i.e. the search string ‘term’ will only match the word ‘term’, not e.g. the word ‘terminal’.

\(BU \) search backwards and ignore upper/lower case, i.e. ‘Block’ will match both ‘blockhead’ and ‘BLOCKADE’, etc.

125 Find the 125th occurrence of the search string.

Terminate the list of options (if any) with <RETURN>, and the search starts. If the text contains a target matching the search string, the cursor is positioned at the end of the target. The search operation may be repeated by the Repeat last find command (Ctrl-L).

Find and replace

The Find and Replace command lets you search for any string of up to 30 characters and replace it with any other string of up to 30 characters. When you enter this command, the status line is cleared, and you are prompted for a search string. Enter the string you are looking for and terminate with <RETURN>. The search string may contain any characters, also control characters. Control characters are entered into the search string with the Ctrl-P prefix: enter e.g. a Ctrl-A by holding down the Control key while pressing first P, then A. You may thus include a line break in a search string by specifying Ctrl-M Ctrl-J. Notice that Ctrl-A has a special meaning: it matches any character and may be used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character Right, Word Left, and Word Right commands. Word Right recalls the previous search string which may then be edited. The search operation may be aborted with the Abort command (Ctrl-U).
When the search string is specified, you are asked to enter the string to replace the search string. Enter up to 30 characters; control character entry and editing is performed as above, but Ctrl-A has no special meaning in the replace string. If you just press <RETURN>, the target will be replaced with nothing, i.e. deleted.

Finally you are prompted for options. The search and replace options are:

- **B**: Search and replace backwards, i.e. search and replace from the current cursor position towards the beginning of the text.
- **G**: Global search and replace, i.e. search and replace in the entire text, irrespective of the current cursor position.
- **n**: \(n = \) any number. Find and replace \(n \) occurrences of the search string, counted from the current cursor position.
- **N**: Replace without asking, i.e. do not stop and ask Replace (Y/N) for each occurrence of the search string.
- **U**: Ignore upper/lower case, i.e. regard upper and lower case alphabets as equal.
- **W**: Search and replace whole words only, i.e. skip matching patterns which are embedded in other words.

Examples:

- N10: Find the next ten occurrences of the search string and replace without asking.
- GWU: Find and replace whole words in the entire text. Ignore upper/lower case.

Terminate the list of options (if any) with <RETURN>, and the search and replace starts. Depending on the options specified, the string may be found. When found (and if the N option is not specified), the cursor is positioned at the end of the target, and you are asked the question: Replace (Y/N)? on the prompt line at the top of the screen. You may abort the search and replace operation at this point with the Abort command (Ctrl-U). The search and replace operation may be repeated by the Repeat last find command (Ctrl-L).

Repeat last find

This command repeats the latest Find or Find and replace operation exactly as if all information had been re-entered.
1.8.8 Miscellaneous Editing Commands

Control character prefix

The TURBO editor allows you to enter control characters into the file by prefixing the desired control character with a Ctrl-P. If you e.g. want to enter a Ctrl-G into a text string to ring the bell, you must *first* press Ctrl-P and *then* Ctrl-G. Control characters are displayed as low-lighted (or inverse, or what have you) capital letters.

Abort operation

The Ctrl-U command lets you abort any command in process whenever it pauses for input, like when Search and Replace asks *Replace Y/N?*, or during entry of a search string or a file name (block Read and Write).

1.9 The TURBO editor vs. WordStar

Someone used to *WordStar* will notice that a few TURBO commands work slightly different, and although TURBO naturally only contains a subset of *WordStar*’s commands, it has been necessary to include some commands not found in *WordStar*. These differencies are discussed in this section.

1.9.1 Cursor Movement

The cursor movement controls Ctrl-S, D, E, and X move freely around on the screen and do not jump to column one on empty lines. This does not mean that the screen is full of blanks; on the contrary, all trailing blanks are automatically deleted. This way of moving the cursor is especially useful e.g. when matching indented *begin - end* pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one line to another you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

1.9.2 Mark Single Word

Ctrl-K Ctrl-T is used to mark a single word as a block which is more convenient than the two-step process of marking the beginning and the end of the word separately.
1.9.3 End Edit

The Ctrl-K Ctrl-D command has a different effect than in WordStar. As editing in TURBO is done entirely in memory, this command does not change the file on disk. This must be done explicitly with the Save command from the main menu or automatically in connection with a compilation or definition of a new Work file. TURBO's Ctrl-K Ctrl-D does not resemble WordStar's Ctrl-K Ctrl-Q (quit edit) command either, as the changed text is not abandoned; it is left in memory ready to be Compiled or Saved.

1.9.4 Line Restore

The Ctrl-Q Ctrl-L command restores a line to its contents before edit as long as the cursor has not left the line.

1.9.5 Tabulator

No fixed tab settings are provided. Instead, tabs are automatically set to the start of each word on the line immediately above the cursor.

1.9.6 Auto Indentation

The Ctrl-Q Ctrl-I command switches the auto indentation feature on and off.
Auto Indentation

Notes:
2. BASIC LANGUAGE ELEMENTS

2.1 Basic Symbols

The basic vocabulary of TURBO Pascal consists of basic symbols divided into letters, digits, and special symbols:

Letters: A to Z, a to z, and _ (underscore)

Digits: 0 1 2 3 4 5 6 7 8 9

Special symbols: + - * / = ^ < > () [] { } . , : ; ,

No distinction is made between upper and lower case letters. Certain operators and delimiters are formed using two special symbols:

- **Assignment operator:** :=
- **Relational operators:** < > <= >=
- **Subrange delimiter:** ..
- **Brackets:** (. and .) may be used instead of [and]
- **Comments:** (* and *) may be used instead of { and }

2.2 Reserved Words

Reserved words are integral parts of TURBO Pascal and cannot be redefined. Reserved words must thus never be used as user defined identifiers. The reserved words are:

* absolute * external * nil * shr
and file not string
array for of then
begin forward or to
case function packed type
cost goto procedure until
div if program var
do in record while
downto * inline repeat with
derse label set * xor
end mod * shl

Throughout this manual, reserved words are written in **boldface**. The asterisks indicate reserved words not defined in standard Pascal.
2.3 Standard Identifiers

TURBO Pascal defines a number standard identifiers of predefined types, constants, variables, procedures, and functions. Any of these identifiers may be redefined but it will mean the loss of the facility offered by that particular identifier and may lead to confusion. The following standard identifiers are therefore best left to their special purposes:

ArcTan Delay Ln Rename
Assign Delete Lo Reset
Aux EOF LowVideo Rewrite
AuxInPtr EDLN Lst Round
AuxOutPtr Erase LstOutPtr Seek
BlockRead Execute Mark Sin
BlockWrite Exp MaxInt SizeOf
Boolean False Mem Sqr
BufLen FilePos MemAvail Sqrt
Byte FileSize Move Str
Chain FillChar New Succ
Char Flush NormVideo Swap
Chr Frac Odd Text
Close GetMem Ord Trm
ClrBOL GotoXY Output True
ClrScr HeapPtr Pi Trunc
Con Hi Port UpCase
ConInPtr IOresult Pos Usr
ConOutPtr Input Pred UsrInPtr
Concat InsLine Ptr UsrOutPtr
ConstPtr Insert Random Val
Copy Int Randomize Write
Cos Integer Read Writeln
CrtExit Kbd ReadIn
CrtInit KeyPressed Real
DelLine Length Release

Each TURBO Pascal implementation further contains a number of dedicated standard identifiers which are listed in appendices A and B.

Throughout this manual, standard identifiers, like all other identifiers (see section 4.1), are written in a combination of upper and lower case letters. In the text (as opposed to program examples), they are furthermore printed in *italics*.

38

TURBO Pascal Language Manual
2.4 Delimiters

Language elements must be separated by at least one of the following delimiters: a blank, an end of line, or a comment.

2.5 Program lines

The maximum length of a program line is 127 characters; any character beyond the 127th is ignored by the compiler. For this reason the TURBO editor allows only 127 characters on a line, but source code prepared with other editors may use longer lines. If such a text is read into the TURBO editor, line breaks will be automatically inserted, and a warning is issued.
Notes:
STANDARD SCALAR TYPES

3. STANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every variable in a program must be associated with one and only one data type. Although data types in TURBO Pascal can be quite sophisticated, they are all built from simple (unstructured) types.

A simple type may either be defined by the programmer (it is then called a declared scalar type), or be one of the standard scalar types: integer, real, boolean, char, or byte. The following is a description of these five standard scalar types.

3.1 Integer

Integers are whole numbers; in TURBO Pascal limited to a range of -32768 through 32767. Integers occupy two bytes in memory.

Overflow of integer arithmetic operations is not detected. Notice in particular that partial results in integer expressions must be kept within the integer range. For instance, the expression 1000 * 100 / 50 will not yield 2000, as the multiplication causes an overflow.

3.2 Byte

The type Byte is a subrange of the type Integer, of the range 0..255. Bytes are therefore compatible with integers, i.e. whenever a Byte value is expected, an Integer value may be specified instead and vice versa. Furthermore, Bytes and Integers may be mixed in expressions and Byte variables may be assigned integer values. A variable of type Byte occupies one byte in memory.
3.3 Real

The range of real numbers is 1E-38 through 1E+38 with a mantissa of up to 11 significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the program to halt, displaying an execution error. An underflow will cause a result of zero.

Although the type real is included as a standard scalar type, the following differences between reals and other scalar types should be noticed:

1) The functions Pred and Succ cannot take real arguments.
2) Reals cannot be used in array indexing.
3) Reals cannot be used to define the base type of a set.
4) Reals cannot be used in controlling for and case statements.
5) Subranges of reals are not allowed.

3.4 Boolean

A boolean value can assume either of the logical truth values denoted by the standard identifiers True and False. These are defined such that False < True. A Boolean variable occupies one byte in memory.

3.5 Char

A Char value is one character in the ASCII character set. Characters are ordered according to their ASCII value, e.g. 'A' < 'B'. The ordinal (ASCII) values of characters range from 0 to 255. A Char variable occupies one byte in memory.
4. USER DEFINED LANGUAGE ELEMENTS

4.1 Identifiers

Identifiers are used to denote labels, constants, types, variables, procedures, and functions. An identifier consists of a letter or underscore followed by any combination of letters, digits, or underscores. An identifier is limited in length only by the line length of 127 characters, and all characters are significant.

Examples:

- TURBO
- square
- persons_counted
- BirthDate
- 3rdRoot
- Two Words

As TURBO Pascal does not distinguish between upper and lower case letters, the use of mixed upper and lower case as in BirthDate has no functional meaning. It is nevertheless encouraged as it leads to more legible identifiers. VeryLongIdentifier is easier to read for the human reader than VERYLONGIDENTIFIER. This mixed mode will be used for all identifiers throughout this manual.

4.2 Numbers

Numbers are constants of integer type or of real type. Integer constants are whole numbers expressed in either decimal or hexadecimal notation. Hexadecimal constants are identified by being preceeded by a dollar-sign: $ABC is a hexadecimal constant. The decimal integer range is -32768 through 32767 and the hexadecimal integer range is $0000 through $FFFF.

Examples:

- 1
- 12345
- $123
- $ABC
- $123G
- 1.2345
- illegal, G is not a legal hexadecimal digit
- illegal as an integer, contains a decimal part
The range of Real numbers is 1E-38 through 1E+38 with a mantissa of up to 11 significant digits. Exponential notation may be used, with the letter E preceding the scale factor meaning "times ten to the power of". An integer constant is allowed anywhere a real constant is allowed. Separators are not allowed within numbers.

Examples:

```
1.0
1234.5678
-0.012
1E6
2E-5
-1.2345678901E+12
1
```

does not have a decimal point, it is an integer.

4.3 Strings

A string constant is a sequence of characters enclosed in single quotes, i.e.:

```
'This is a string constant'
```

A single quote may be contained in a string by writing two successive single quotes. Strings containing only a single character are of the standard type char. A string is compatible with an array of Char of the same length. All string constants are compatible with all string types.

Examples:

```
'TURBO'
'You'll see'
';;'
''
```

As shown in example 2 and 3, a single quote within a string is written as two consecutive quotes. The four consecutive single quotes in example 3 thus constitute a string containing one quote.

The last example - the quotes enclosing no characters, denoting the empty string - is compatible only with string types.
4.3.1 Control Characters

TURBO Pascal also allows control characters to be embedded in strings. Two notations for control characters are supported: 1) The \# symbol followed by an integer constant in the range 0..255 denotes a character of the corresponding ASCII value, and 2) the ~ symbol followed by a character, denotes the corresponding control character.

Examples:
\#10 \#\$1B ~G

ASCII 10 decimal (Line Feed).
ASCII lB hex (Escape).
Control-G (Bell).

~l
Control-L (Form Feed). Notice that lower case is treated as upper case.

~[Control-[(Escape).

Sequences of control characters may be concatenated into strings by writing them without separators between the individual characters:

\#13\#10 \#27~U\#20

~G~G~G~G

The above strings contain two, three, and four characters, respectively. Control characters may also be mixed with text strings:

'Waiting for input! '~G~G' Please wake up'

~27'U '

'This is another line of text '~M~J

These three strings contain 37, 3, and 31 characters, respectively.

4.4 Comments

A comment may be inserted anywhere in the program where a delimiter is legal. It is delimited by the curly braces { and }, which may be replaced by the symbols (* and *).

Examples:
{This is a comment}
(* and so is this *)
Curly braces may not be nested within curly braces, and (* . *) may not be nested within (* . *). However, curly braces may nested within(* . *) and vise versa, thus allowing entire sections of source code to be commented away, even if they contain comments.

4.5 Compiler Directives

A number of features of the TURBO Pascal compiler are controlled through compiler directives. A compiler directive is introduced as a comment with a special syntax which means that whenever a comment is allowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately followed by a dollar-sign immediately followed by one compiler directive letter or a list of compiler directive letters separated by commas. The syntax of the directive or directive list depends upon the directive(s) selected. A full description of each of the compiler directives follow in the relevant sections; and a summary of compiler directives is located in appendix E.

Examples:

{$1 - }
{$I INCLUDE.FIL}
{$R-,B+,V- }
(*$X-*)

Notice that no spaces are allowed before or after the dollar-sign.
5. PROGRAM HEADING AND PROGRAM BLOCK

A Pascal program consists of a program heading followed by a program block. The program block is further divided into a declaration part, in which all objects local to the program are defined, and a statement part, which specifies the actions to be executed upon these objects. Each is described in detail in the following.

5.1 Program Heading

In TURBO Pascal, the program heading is purely optional and of no significance to the program. If present, it gives the program a name, and optionally lists the parameters through which the program communicates with the environment. The list consists of a sequence of identifiers enclosed in parentheses and separated by commas.

Examples:

```
program Circles;
program Accountant(Input,Output);
program Writer(Input,Printer);
```

5.2 Declaration Part

The declaration part of a block declares all identifiers to be used within the statement part of that block (and possibly other blocks within it). The declaration part is divided into five different sections:

1) Label declaration part
2) Constant definition part
3) Type definition part
4) Variable declaration part
5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur zero or one time, and only in the above order, TURBO Pascal allows each of these sections to occur any number of times in any order in the declaration part.
5.2.1 Label Declaration Part

Any statement in a program may be prefixed with a label, enabling direct branching to that statement by a goto statement. A label consists of a label name followed by a colon. Before use, the label must be declared in a label declaration part. The reserved word label heads this part, and it is followed by a list of label identifiers separated by commas and terminated by a semi-colon.

Example:

 label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4 digits, TURBO Pascal allows both numbers and identifiers to be used as labels.

5.2.2 Constant Definition Part

The constant definition part introduces identifiers as synonyms for constant values. The reserved word const heads the constant definition part, and is followed by a list of constant assignments separated by semi-colons. Each constant assignment consists of an identifier followed by an equal sign and a constant. Constants are either strings or numbers as defined in sections 4.2 and 4.3.

Example:

 const
 Limit = 255;
 Max = 1024;
 PassWord = 'SESAM';
 CursHome = 'V';

The following constants are predefined in TURBO Pascal, i.e. they may be referenced without previous definition:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type and value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pi</td>
<td>Real (3.1415926536E+00).</td>
</tr>
<tr>
<td>False</td>
<td>Boolean (the truth value false).</td>
</tr>
<tr>
<td>True</td>
<td>Boolean (the truth value true).</td>
</tr>
<tr>
<td>Maxint</td>
<td>Integer (32767).</td>
</tr>
</tbody>
</table>

As described in section 13, a constant definition part may also define typed constants.
5.2.3 Type Definition Part

A data type in Pascal may be either directly described in the variable declaration part or referenced by a type identifier. Several standard type identifiers are provided, and the programmer may create his own types through the use of the type definition. The reserved word type heads the type definition part, and it is followed by one or more type assignments separated by semicolons. Each type assignment consists of a type identifier followed by an equal sign and a type.

Example:

```pascal
type
  Number = Integer;
  Day = (mon, tues, wed, thur, fri, sat, sun);
  List = array[1..10] of Real;
```

More examples of type definitions are found in subsequent sections.

5.2.4 Variable Declaration Part

Every variable occurring in a program must be declared before use. The declaration must textually precede any use of the variable, i.e. the variable must be 'known' to the compiler before it can be used.

A variable declaration consists of the reserved word var followed by one or more identifier(s), separated by commas, each followed by a colon and a type. This creates a new variable of the specified type and associates it with the specified identifier.

The 'scope' of this identifier is the block in which it is defined, and any block within that block. Note, however, that any such block within another block may define another variable using the same identifier. This variable is said to be local to the block in which it is declared (and any blocks within that block), and the variable declared on the outer level (the global variable) becomes inaccessible.

Example:

```pascal
var
  Result, Intermediate, SubTotal: Real;
  I, J, X, Y: Integer;
  Accepted, Valid: Boolean;
  Period: Day;
  Buffer: array[0..127] of Byte;
```
5.2.5 Procedure and Function Declaration Part

A procedure declaration serves to define a procedure within the current procedure or program (see section 16.2). A procedure is activated from a procedure statement (see section 7.1.2), and upon completion, program execution continues with the statement immediately following the calling statement.

A function declaration serves to define a program part which computes and returns a value (see section 16.3). A function is activated when its designator is met as part of an expression (see section 6.2).

5.3 Statement Part

The statement part is the last part of a block. It specifies the actions to be executed by the program. The statement part takes the form of a compound statement followed by a period or a semi-colon. A compound statement consists of the reserved word begin, followed by a list of statements separated by semicolons, terminated by the reserved word end.
Expressions are algorithmic constructs specifying rules for the computation of values. They consist of operands, i.e. variables, constants, and function designators, combined by means of operators as defined in the following.

This section describes how to form expressions from the standard scalar types Integer, Real, Boolean, and Char. Expressions containing declared scalar types, String types, and Set types are described in sections 8.1, 9.2, and 12.2, respectively.

6.1 Operators

Operators fall into five categories, denoted by their order of precedence:

1) Unary minus (minus with one operand only).
2) Not operator,
3) Multiplying operators: *, /, div, mod, and, shl, and shr.
4) Adding operators: +, -, or, and xor.
5) Relational operators: =, <>, <, >, <, <=, >, =, and in.

Sequences of operators of the same precedence are evaluated from left to right. Expressions within parentheses are evaluated first and independently of preceding or succeeding operators.

If both of the operands of the multiplying and adding operators are of type Integer, then the result is of type Integer. If one (or both) of the operands is of type Real, then the result is also of type Real.

6.1.1 Unary Minus

The unary minus denotes a negation of its operand which may be of Real or Integer types.
6.1.2 Not Operator

The **not** operator negates (inverses) the logical value of its Boolean operand:

\[
\begin{align*}
\text{not True} & \quad = \text{False} \\
\text{not False} & \quad = \text{True}
\end{align*}
\]

TURBO Pascal also allows the **not** operator to be applied to an `Integer` operand, in which case bitwise negation takes place.

Examples:

\[
\begin{align*}
\text{not 0} & \quad = -1 \\
\text{not -15} & \quad = 14 \\
\text{not 2345} & \quad = $DCBA
\end{align*}
\]

6.1.3 Multiplying Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Type of operands</th>
<th>Type of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>multiplication</td>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>*</td>
<td>multiplication</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>*</td>
<td>multiplication</td>
<td>Real, Integer</td>
<td>Real</td>
</tr>
<tr>
<td>/</td>
<td>division</td>
<td>Real, Integer</td>
<td>Real</td>
</tr>
<tr>
<td>/</td>
<td>division</td>
<td>Integer</td>
<td>Real</td>
</tr>
<tr>
<td>div</td>
<td>Integer division</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>mod</td>
<td>modulus</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>and</td>
<td>arithmetic and</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>and</td>
<td>logical and</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
<tr>
<td>shl</td>
<td>shift left</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>shr</td>
<td>shift right</td>
<td>Integer</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Examples:

\[
\begin{align*}
12 \times 34 & \quad = 408 \\
123 \div 4 & \quad = 30.75 \\
123 \div 4 & \quad = 30 \\
12 \mod 5 & \quad = 2 \\
\text{True and False} & \quad = \text{False} \\
12 \text{ and } 22 & \quad = 4 \\
2 \text{ shl 7} & \quad = 256 \\
256 \text{ shr 7} & \quad = 2
\end{align*}
\]
6.1.4 Adding Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Type of operands</th>
<th>Type of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>addition</td>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>+</td>
<td>addition</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>-</td>
<td>subtraction</td>
<td>Real</td>
<td>Real</td>
</tr>
<tr>
<td>-</td>
<td>subtraction</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>or</td>
<td>arithmetic or</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>xor</td>
<td>arithmetic xor</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>or</td>
<td>logical or</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
<tr>
<td>xor</td>
<td>logical xor</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

Examples:

\[
\begin{align*}
123 + 456 & = 579 \\
456 - 123.0 & = 333.0 \\
\text{True or False} & = \text{True} \\
12 \text{ or } 22 & = 30 \\
\text{True xor False} & = \text{True} \\
12 \text{ xor } 22 & = 26
\end{align*}
\]

6.1.5 Relational Operators

The relational operators work on all standard scalar types: Real, Integer, Boolean, Char, and Byte. Operands of type Integer, Real, and Byte may be mixed. The type of the result is always Boolean, i.e. True or False.

|=|equal to
|<>|not equal to
|>|greater than
|<|less than
|>=|greater than or equal to
|<=|less than or equal to

Examples:

\[
\begin{align*}
a = b & \quad \text{true if } a \text{ is equal to } b. \\
a <> b & \quad \text{true if } a \text{ is not equal to } b. \\
a > b & \quad \text{true if } a \text{ is greater than } b. \\
a < b & \quad \text{true if } a \text{ is less than } b. \\
a >= b & \quad \text{true if } a \text{ is greater than or equal to } b. \\
a <= b & \quad \text{true if } a \text{ is less than or equal to } b.
\end{align*}
\]
6.2 Function Designators

A function designator is a function identifier optionally followed by a parameter list, which is one or more variables or expressions separated by commas and enclosed in parentheses. The occurrence of a function designator causes the function with that name to be activated. If the function is not one of the pre-defined standard functions, it must be declared before activation.

Examples:
Round(PlotPos)
WriteLn(Pi * (Sqr(R)))
(Max(X,Y) < 25) and (Z > Sqrt(X * Y))
Volume(Radius,Height)
7. STATEMENTS

The statement part defines the action to be carried out by the program (or subprogram) as a sequence of statements; each specifying one part of the action. In this sense Pascal is a sequential programming language: statements are executed sequentially in time; never simultaneously. The statement part is enclosed by the reserved words begin and end and within it, statements are separated by semi-colons. Statements may be either simple or structured.

7.1 Simple Statements

Simple statements are statements which contain no other statements. These are the assignment statement, procedure statement, goto statement, and empty statement.

7.1.1 Assignment Statement

The most fundamental of all statements is the assignment statement. It is used to specify that a certain value is to be assigned to a certain variable. An assignment consists of a variable identifier followed by the assignment operator := followed by an expression.

Assignment is possible to variables of any type (except files) as long as the variable (or the function) and the expression are of the same type. As an exception, if the variable is of type Real, the type of the expression may be Integer.

Examples:
Angle := Angle * Pi;
AccessOK := False;
Entry := Answer = PassWord;
SpherVol := 4 * Pi * R * R;
7.1.2 Procedure Statement

A procedure statement serves to activate a previously defined user-defined procedure or a pre-defined standard procedure. The statement consists of a procedure identifier, optionally followed by a parameter list, which is a list of variables or expressions separated by commas and enclosed in parentheses. When the procedure statement is encountered during program execution, control is transferred to the named procedure, and the value of possible parameters are transferred to the procedure. When the procedure finishes, program execution continues from the statement following the procedure statement.

Examples:

Find(Name, Address);
Sort(Address);
UpperCase(Text);
UpdateCustFile(CustRecord);

7.1.3 Goto Statement

A goto statement consists of the reserved word goto followed by a label identifier. It serves to transfer further processing to that point in the program text which is marked by the label. The following rules should be observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a label declaration in the declaration part of the block in which the label is used.
2) The scope of a label is the block in which it is declared. It is thus not possible to jump into or out of procedures and functions.

7.1.4 Empty Statement

An 'empty' statement is a statement which consists of no symbols, and which has no effect. It may occur whenever the syntax of Pascal requires a statement but no action is to take place.

Examples:

begin end.
while Answer <> '' do;
repeat until KeyPressed; {wait for any key to be hit}
7.2 Structured Statements

Structured statements are constructs composed of other statements which are to be executed in sequence (compound statements), conditionally (conditional statements), or repeatedly (repetitive statements). The discussion of the with statement is deferred to section 11.2.

7.2.1 Compound Statement

A compound statement is used if more than one statement is to be executed in a situation where the Pascal syntax allows only one statement to be specified. It consists of any number of statements separated by semi-colons and enclosed within the reserved words begin and end, and specifies that the component statements are to be executed in the sequence in which they are written.

Example:

```pascal
if Small > Big then
begin
  Tmp := Small;
  Small := Big;
  Big := Tmp;
end;
```

7.2.2 Conditional Statements

A conditional statement selects for execution a single one of its component statements.

7.2.2.1 If Statement

The if statement specifies that a statement be executed only if a certain condition (Boolean expression) is true. If it is false, then either no statement or the statement following the reserved word else is to be executed. Notice that else must not be preceded by a semi-colon.
If Statement

The syntactic ambiguity arising from the construct:

\[
\text{if expr1 then}
\text{if expr2 then}
\text{stmt1}
\text{else}
\text{stmt2}
\]

is resolved by interpreting the construct as follows:

\[
\text{if expr1 then}
\text{begin}
\text{if expr2 then}
\text{stmt1}
\text{else}
\text{stmt2}
\text{end}
\]

i.e., the else-clause part belongs generally to the last if statement which has no else part.

Examples:

\[
\text{if Interest > 25 then}
\text{Usury := True}
\text{else}
\text{TakeLoan := OK;}
\]

\[
\text{if (Entry < 0) or (Entry > 100) then}
\text{begin}
\text{Write('Range is 1 to 100, please re-enter: ');}
\text{Read(Entry);}
\text{end;}
\]

Case Statement

The case statement consists of an expression (the selector) and a list of statements, each preceded by a case label of the same type as the selector. It specifies that the one statement be executed whose case label is equal to the current value of the selector. If none of the case labels contain the value of the selector, then either no statement is executed, or, optionally, the statements following the reserved word else are executed. The else clause is an expansion of standard Pascal.
A case label consists of any number of constants or subranges separated by commas followed by a colon. A subrange is written as two constants separated by the subrange delimiter ' .. '. The type of the constants must be the same as the type of the selector. The statement following the case label is executed if the value of the selector equals one of the constants or if it lies within one of the subranges.

Valid selector types are all simple types, i.e. all scalar types except real.

Examples:
```pascal
case Operator of
  '+' : Result := Answer + Result;
  '-' : Result := Answer - Result;
  '*' : Result := Answer * Result;
  '/' : Result := Answer / Result;
end;

case Year of
  Min .. 1939: begin
    Time := PreWorldWar2;
    Writeln('The world at peace...');
  end;
  1946 .. Max: begin
    Time := PostWorldWar2
    Writeln('Building a new world.');
  end;
else
  Time := WorldWar2;
  Writeln('We are at war');
end;
```

7.2.3 Repetitive Statements

Repetitive statements specify that certain statements are to be executed repeatedly. If the number of repetitions is known beforehand, i.e. before the repetitions are started, the `for` statement is the appropriate construct to express this situation. Otherwise the `while` or the `repeat` statement should be used.
7.2.3.1 For Statement

The for statement indicates that the component statement is to be repeatedly executed while a progression of values is assigned to a variable which is called the control variable. The progression can be ascending: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of the same type. Valid types are all simple types, i.e. all scalar types except real. If the initial value is greater than the final value when using the to clause, or if the initial value is less than the final value when using the downto clause, the component statement is not executed at all.

Examples:

\[
\begin{align*}
\text{for } & I := 2 \text{ to } 100 \text{ do if } A[I] > \text{Max} \text{ then } \text{Max} := A[I]; \\
\text{for } & I := 1 \text{ to } \text{NoOfLines} \text{ do begin} \\
& \quad \text{Readln(Line)}; \\
& \quad \text{if } \text{Length(Line)} < \text{Limit} \text{ then } \text{ShortLines} := \text{ShortLines} + 1 \\
& \quad \text{else} \\
& \quad \quad \text{LongLines} := \text{LongLines} + 1 \\
& \text{end;}
\end{align*}
\]

Notice that the component statement of a for statement must not contain assignments to the control variable. If the repetition is to be terminated before the final value is reached, a goto statement must be used, although such constructs are not recommended - it is better programming practice to use a while or a repeat statement instead.

Upon completion of a for statement, the control variable equals the final value, unless the loop was not executed at all, in which case no assignment is made to the control variable.
7.2.3.2 While statement

The expression controlling the repetition must be of type Boolean. The statement is repeatedly executed as long as expression is True. If its value is false at the beginning, the statement is not executed at all.

Examples:

```plaintext
while Size > 1 do Size := Sqrt(Size);

while ThisMonth do
  begin
    ThisMonth := CurMonth = SampleMonth;
    Process;
    {process this sample by the Process procedure}
  end;
```

7.2.3.3 Repeat Statement

The expression controlling the repetition must be of type Boolean. The sequence of statements between the reserved words repeat and until is executed repeatedly until the expression becomes true. As opposed to the while statement, the repeat statement is always executed at least once, as evaluation of the condition takes place at the end of the loop.

Example:

```plaintext
repeat
  Write("M", 'Delete this item? (Y/N)');
  Read(Answer);
until UpCase(Answer) in ['Y', 'N'];
```
Repeat Statement

Notes:
8. SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types constitute a finite and linear ordered set of values. Although the standard type Real is included as a scalar type, it does not conform to this definition. Therefore, Reals may not always be used in the same context as other scalar types.

8.1 Scalar Type

Apart from the standard scalar types (Integer, Real, Boolean, Char, and Byte), Pascal supports user defined scalar types, also called declared scalar types. The definition of a scalar type specifies, in order, all of its possible values. The values of the new type will be represented by identifiers, which will be the constants of the new type.

Examples:

```pascal
type
  Operator = (Plus,Minus,Mult,Divide);
  Day     = (Mon,Tues,Wed,Thur,Fri,Sat,Sun);
  Month   = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);
  Card    = (Club,Diamond,Heart,Spade);
```

Variables of the above type Card can assume one of four values, namely Club, Diamond, Heart, or Spade. You are already acquainted with the standard scalar type Boolean which is defined as:

```pascal
type
  Boolean = (False,True);
```

The relational operators =, <>, >, <, >=, and <= can be applied to all scalar types, as long as both operands are of the same type (reals and integers may be mixed). The ordering of the scalar type is used as the basis of the comparison, i.e. the order in which the values are introduced in the type definition. For the above type card, the following is true:

```
Club < Diamond < Heart < Spade
```
8.1 Scalar Type

The following standard functions can be used with arguments of scalar type:

- **Succ(Diamond)** The successor of *Diamond* (Heart).
- **Pred(Diamond)** The predecessor of *Diamond* (Club).
- **Ord(Diamond)** The ordinal value of *Diamond* (1 [as the ordinal value of the first value of a scalar type is 0]).

The result type of *Succ* and *Pred* is the same as the argument type. The result type of *Ord* is *Integer*.

8.2 Subrange Type

A type may be defined as a subrange of another already defined scalar type. Such types are called subranges. The definition of a subrange simply specifies the least and the largest value in the subrange. The first constant specifies the lower bound and must not be greater than the second constant, the upper bound. A subrange of type *Real* is not allowed.

Examples:

```pascal
type
    HemiSphere    = (North, South, East, West);
    World         = (East, West);
    CompassRange  = 0..360;
    Upper         = 'A'..'Z';
    Lower         = 'a'..'z';
    Degree        = (Celc, Fahr, Ream, Kelv);
    Wine          = (Red, White, Rose, Sparkling);
```

The type *World* is a subrange of the scalar type *HemiSphere* (called the associated scalar type). The associated scalar type of *CompassRange* is *Integer*, and the associated scalar type of *Upper* and *Lower* is *Char*.

You already know the standard subrange type *Byte*, which is defined as:

```pascal
    type
        Byte = 0..255;
```

A subrange type retains all the properties of its associated scalar type, being restricted only in its range of values.
The use of defined scalar types and subrange types is strongly recommended as it greatly improves the readability of programs. Furthermore, run time checks are included in the program code (see section 8.4) to verify the values assigned to defined scalar variables and subrange variables. Another advantage of defined types and subrange types is that they often save memory. TURBO Pascal allocates only one byte of memory for variables of a defined scalar type or a subrange type with a total number of elements less than 256. Similarly, integer subrange variables, where lower and upper bounds are both within the range 0 through 255, occupy only one byte of memory.

8.3 Type Conversion

The `Ord` function may be used to convert scalar types into values of type integer. Standard Pascal does not provide a way to reverse this process, i.e. a way of converting an integer into a scalar value.

In TURBO Pascal, a value of a scalar type may be converted into a value of another scalar type, with the same ordinal value, by means of the `Retype` facility. Retyping is achieved by using the type identifier of the desired type as a function designator followed by one parameter enclosed in parentheses. The parameter may be a value of any scalar type except `Real`. Assuming the type definitions in sections 8.1 and 8.2, then:

```pascal
Integer(Heart) = 2
Month(10) = Nov
Hemisphere(2) = East
Upper(14) = 'O'
Degree(3) = Kelv
Char(78) = 'N'
Integer('7') = 55
```

8.4 Range Checking

The generation of code to perform run-time range checks on scalar and subrange variables is controlled with the `R` compiler directive. The default setting is `{R-}`, i.e. no checking is performed. When an assignment is made to a scalar or a subrange variable while this directive is active (`{R+}`), assignment values are checked to be within range. It is recommended to use this setting as long as a program is not fully debugged.
Example:

```pascal
program Rangecheck;
type
  Digit = 0..9;
Var
  Dig1, Dig2, Dig3: digit;
begin
  Dig1 := 5;                      {valid}
  Dig2 := Dig1 + 3;               {valid as Dig1 + 3 <= 9}
  Dig3 := 47;                     {invalid but causes no error}
{§+}  Dig3 := 55;                {invalid and causes a run time error}
{§-}  Dig3 := 167;               {invalid but causes no error}
end.
```
9. STRING TYPE

TURBO Pascal offers the convenience of string types for processing of character strings, i.e. sequences of characters. String types are structured types, and are in many ways similar to array types (see section 10). There is, however, one major difference between these: the number of characters in a string (i.e. the length of the string) may vary dynamically between 0 and a specified upper limit, whereas the number of elements in an array is fixed.

9.1 String Type Definition

The definition of a string type must specify the maximum number of characters it can contain, i.e. the maximum length of strings of that type. The definition consists of the reserved word string followed by the maximum length enclosed in square brackets. The length is specified by an integer constant in the range 1 through 255. Notice that strings do not have a default length; the length must always be specified.

Example:

```pascal
type
  FileName = string[14];
  ScreenLine = string[80];
```

String variables occupy the defined maximum length in memory plus one byte which contains the current length of the variable. The individual characters within a string are indexed from 1 through the length of the string.

9.2 String Expressions

Strings are manipulated by the use of string expressions. String expressions consist of string constants, string variables, function designators, and operators.

The plus-sign may be used to concatenate strings. The Concat function (see section 9.5) performs the same function, but the + operator is often more convenient. If the length of the result is greater than 255, a run-time error occurs.
9.2 String Expressions

Example:

'\text{TURBO}' + 'Pascal' = 'TURBO Pascal'
'123' + '1.2' + '456' = '123.456'
'A' + 'B' + 'C' + 'D' = 'A B C D'

The relational operators \(=, \neq, >, <, \geq, \leq\) and \(<=\) are lower in precedence than the concatenation operator. When applied to string operands, the result is a Boolean value (True or False). When comparing two strings, single characters are compared from the left to the right. If the strings are of different length, but equal up to and including the last character of the shortest string, then the shortest string is considered the smaller. Strings are equal only if their lengths as well as their contents are identical.

Examples:

'A' < 'B' is true
'A' > 'b' is false
'2' < '12' is false
'TURBO' = 'TURBO' is true
'TURBO' = 'TURBO' is false
'Pascal Compiler' < 'Pascal compiler' is true

9.3 String Assignment

The assignment operator is used to assign the value of a string expression to a string variable.

Example:

\[
\begin{align*}
\text{Age} & := \text{'fiftieth'}; \\
\text{Line} & := \text{'Many happy returns on your ' + Age + ' birthday.'};
\end{align*}
\]

If the maximum length of a string variable is exceeded (by assigning too many characters to the variable), the exceeding characters are truncated. E.g., if the variable Age above was declared to be of type \text{string}[5], then after the assignment, the variable will only contain the five leftmost characters: 'fitti'.
9.4 **String Procedures**

The following standard string procedures are available in TURBO Pascal:

9.4.1 Delete

Syntax: `Delete(St, Pos, Num)`

Delete removes a substring containing *Num* characters from *St* starting at position *Pos*. *St* is a string variable and both *Pos* and *Num* are integer expressions. If *Pos* is greater than `Length(St)`, no characters are removed. If an attempt is made to delete characters beyond the end of the string (i.e. *Pos* + *Num* exceeds the length of the string), only characters within the string are deleted. If *Pos* is outside the range 1..255, a run time error occurs.

If *St* has the value 'ABCDEFG' then:
- `Delete(St, 2, 4)` will give *St* the value 'AFG'.
- `Delete(St, 2, 10)` will give *St* the value 'A'.

9.4.2 Insert

Syntax: `Insert(Obj, Target, Pos)`

Insert inserts the string *Obj* into the string *Target* at the position *Pos*. *Obj* is a string expression, *Target* is a string variable, and *Pos* is an integer expression. If *Pos* is greater than `Length(Target)`, then *Obj* is concatenated to *Target*. If the result is longer than the maximum length of *Target*, then excess characters will be truncated and *Target* will only contain the left-most characters. If *Pos* is outside the range 1..255, a run time error occurs.

If *St* has the value 'ABCDEFG' then:
- `Insert('xx', St, 3)` will give *St* the value 'ABXXCDEFG'
9.4.3 Str

Syntax: Str (Value, St)

The Str procedure converts the numeric value of Value into a string and stores the result in St. Value is a write parameter of type integer or of type real, and Str-Var is a string variable. Write parameters are expressions with special formatting commands (see section 14.6.3).

If I has the value 1234 then:
 Str(I:5,St) gives St the value '1234'.

If X has the value 2.5E4 then:
 Str(X:10:0,St) gives St the value '2500'.

8-bit systems only: a function using the Str procedure must never be called by an expression in a Write or Writeln statement.

9.4.4 Val

Syntax: Val (St, Var, Code)

Val converts the string expression St to an integer or a real value (depending on the type of the variable Var) and stores this value in Var. St must be a string expressing a numeric value according to the rules applying to numeric constants (see section 4.2). Neither leading nor trailing spaces are allowed. Var must be an Integer or a Real variable and Code must be an integer variable. If no errors are detected, the variable Code is set to 0. Otherwise Code is set to the position of the first character in error, and the value of Var is undefined.

If St has the value '234' then:
 Val(St,I,Result) gives I the value 234 and Result the value 0

If St has the value '12x' then:
 Val(St,I,Result) gives I an undefined value and Result the value 3

If St has the value '2.5E4', and X is a Real variable, then:
 Val(St,X,Result) gives X the value 2500 and Result the value 0

8-bit systems only: a function using the Var procedure must never be called by an expression in a Write or Writeln statement.
9.5 String Functions

The following standard string functions are available in TURBO Pascal:

9.5.1 Copy

Syntax: Copy (St , Pos , Num)

Copy returns a substring containing Num characters from St starting at position Pos. St is a string expression and both Pos and Num are integer expressions. If Pos exceeds the length of the string, the empty string is returned. If an attempt is made to get characters beyond the end of the string (i.e. Pos + Num exceeds the length of the string), only the characters within the string are returned. If Pos is outside the range 1..255, a run time error occurs.

If St has the value 'ABCDEFG' then:
- Copy(St, 3, 2) returns the value 'CD'
- Copy(St, 4, 10) returns the value 'DEFG'
- Copy(St, 4, 2) returns the value 'DE'

9.5.2 Concat

Syntax: Concat (St1 , St2 {, StN})

The Concat function returns is a string which is the concatenation of its arguments in the order in which they are specified. The arguments may be any number of string expressions separated by commas (St1 , St2 .. StN). If the length of the result is greater than 255, a run-time error occurs. As explained in section 9.3, the + operator can be used to obtain the same result, often more conveniently. Concat is included only to maintain compatibility with other Pascal compilers.

If St1 has the value 'TURBO' and St2 the value 'is fastest' then:

Concat(St1, 'PASCAL', St2)

returns the value 'TURBO PASCAL is fastest'
9.5.3 Length

Syntax: Length (St)

Returns the length of the string expression St, i.e. the number of characters in St. The type of the result is integer.

If St has the value '123456789' then:
 Length(St) returns the value 9

9.5.4 Pos

Syntax: Pos (Obj, Target)

The Pos function scans the string Target to find the first occurrence of Obj within Target. Obj and Target are string expressions, and the type of the result is integer. The result is an integer denoting the position within Target of the first character of the matched pattern. The position of the first character in a string is 1. If the pattern is not found, Pos returns 0.

If St has the value 'ABCDEFG' then
 Pos('DE', St) returns the value 4
 Pos('H', St) returns the value 0
Strings and Characters

9.6 Strings and Characters

String types and the standard scalar type Char are compatible. Thus, whenever a string value is expected, a char value may be specified instead and vice versa. Furthermore, strings and characters may be mixed in expressions. When a character is assigned a string value, the length of the string must be exactly one; otherwise a run-time error occurs.

The characters of a string variable may be accessed individually through string indexing. This is achieved by appending an index expression of type integer, enclosed in square brackets, to the string variable.

Examples:

Buffer[5]
Line[Length(Line)-1]
Ord(Line[0])

As the first character of the string (at index 0) contains the length of the string, Length(String) is the same as Ord(String[0]). If assignment is made to the length indicator, it is the responsibility of the programmer to check that it is less than the maximum length of the string variable. When the range check compiler directive R is active (/$R+$), code is generated which insures that the value of a string index expression does not exceed the maximum length of the string variable. It is, however, still possible to index a string beyond its current dynamic length. The characters thus read are random, and assignments beyond the current length will not affect the actual value of the string variable.
9.6

Strings and Characters

Notes:
10. ARRAY TYPE

An array is a structured type consisting of a fixed number of components which are all of the same type, called the component type or the base type. Each component can be explicitly accessed by indices into the array. Indices are integer expressions within square brackets suffixed to the array identifier, and their type is called the index type.

10.1 Array Definition

The definition of an array consists of the the reserved word array followed by the index type, enclosed in square brackets, followed by the reserved word of, followed by the component type.

Examples:

```plaintext
type
  Day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun)

Var
  WorkHour : array[1..8] of Integer;
  Week : array[1..7] of Day;

type
  Players = (Player1, Player2, Player3, Player4);
  Hand = (One, Two, Pair, TwoPair, Three, Straight,
          Flush, FullHouse, Four, StraightFlush, RBF);
  LegalBid = 1..200;
  Bid = array[Players] of LegalBid;

Var
  Player : array[Players] of Hand;
  Pot : Bid;
```

An array component is accessed by suffixing an index enclosed in square brackets to the array variable identifier:

```plaintext
  Player[Player3] := FullHouse;
  Pot[Player3] := 100;
  Player[Player4] := Flush;
  Pot[Player4] := 50;
```
10.1 Array Definition

As assignment is allowed between any two variables of identical type, entire arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will perform range checks on array index expressions at run-time. The default mode is passive, i.e. \{ $R-$\}, and the \{ $R+$\} setting causes all index expressions to be checked against the limits of their index type.

10.2 Multidimensional Arrays

The component type of an array may be any data type, i.e. the component type may be another array. Such a structure is called a *multidimensional array*.

Example:

```pascal
type
    Card = (Two, Three, Four, Five, Six, Seven, Eight, Nine,
            Ten, Knight, Queen, King, Ace);
    Suit = (Hearts, Spade, Clubs, Diamonds);
    AllCards = array[Suit] of array[1..13] of Card;

var
    Deck: AllCards;
```

A multidimensional array may be defined more conveniently by specifying the multiple indices thus:

```pascal
type
    AllCards = array[Suit, 1..13] of Card;
```

A similar abbreviation may be used when selecting an array component:

```pascal
    Deck[Hearts, 10] is equivalent to Deck[Hearts][10]
```

It is, of course, possible to define multidimensional arrays in terms of previously defined array types.
Example:

```
type
  Pupils  = string[10];
  Class   = array[1..30] of Pupils;
  School  = array[1..100] of Class;

Var
  J, P, Vacant : Integer
  ClassA,
  ClassB      : Class;
  NewTownScool: School;
```

After these definitions, all of the following assignments are legal:

```
ClassA[J] := 'Peter';
NewTownScool[5][21] := 'Peter Brown';
ClassA[Vacant] := ClassB[P];     {pupil no. P changes Class and number}
```

10.3 Character Arrays

Character arrays are arrays with one index and components of the standard scalar type `Char`. Character arrays may be thought of as strings with a constant length.

In TURBO Pascal, character arrays may participate in string expressions, in which case the array is converted into a string of the length of the array. Thus, arrays may be compared and manipulated in the same way as strings, and string constants may be assigned to character arrays, as long as they are of the same length. String variables and values computed from string expressions cannot be assigned to character arrays.

10.4 Predefined Arrays

TURBO Pascal offers two predefined arrays of type `Byte`, called `Mem` and `Port`, which are used to access CPU memory and data ports. These are discussed in appendices A and B.
Notes:
11. RECORD TYPE

A record is a structure consisting of a fixed number of components, called fields. Fields may be of different type and each field is given a name, the field identifier, which is used to select it.

11.1 Record Definition

The definition of a record type consists of the reserved word record succeeded by a field list and terminated by the reserved word end. The field list is a sequence of record sections separated by semi-colons, each consisting of one or more identifiers separated by commas and terminated by a colon and a type identifier. Each record section thus specifies the type and identifier for one or more fields.

Example:

```plaintext
type
  Date = record
    Day: 1..31;
    Month: (Jan, Feb, Mar, Apr, May, Jun,
            July, Aug, Sep, Oct, Nov, Dec);
    Year: 1900..1999;
  end;

Var
  Birth: Date;
  WorkDay: array[1..5] of date;
```

Day, Month, and Year are field identifiers. A field identifier must be unique only within the record in which it is defined. A field is referenced by the variable identifier and the field identifier separated by a period.

Examples:

```plaintext
Birth.Month := Jun;
Birth.Year := 1950;
WorkDay[Current] := WorkDay[Current-1];
```

Note that, similar to array types, assignment is allowed between entire records of identical types. As record components may be of any type, constructs like the following record of records of records are possible:
type
 Name = record
 FamilyName: string[32];
 ChristianNames: array[1..3] of string[16];
 end;
Rate = record
 NormalRate, Overtime,
 NightTime, Weekend: Integer
end;
Date = record
 Day: 1..31;
 Month: (Jan,Feb,Mar,Apr,May,Jun,
 July,Aug,Sep,Oct,Nov,Dec);
 Year: 1900..1999;
end;
Person = record
 ID: Name;
 Time: Date;
end;
Wages = record
 Individual: Person;
 Cost: Rate;
end

Var Salary, Fee: Wages;

Assuming these definitions, the following assignments are legal:

 Salary := Fee;
 Salary.Cost.Overtime := 950;
 Salary.Individual.ID.FamilyName := 'Smith'
11.2 With Statement

The use of records as described above does sometimes result in rather lengthy statements; it would often be easier if we could access individual fields in a record as if they were simple variables. This is the function of the with statement: it 'opens up' a record so that field identifiers may be used as variable identifiers.

A with statement consists of the reserved word with followed by a list of record variables separated by commas followed by the reserved word do and finally a statement.

Within a with statement, a field is designated only by its field identifier, i.e. without the record variable identifier:

```plaintext
with Salary do
begin
  Individual := NewEmployee;
  Cost := StandardRates;
end;
```

Records may be nested within with statements, i.e. records of records may be 'opened' as shown here:

```plaintext
with Salary, Individual, ID do
begin
  FamilyName := 'Smith';
end
```

This is equivalent to:

```plaintext
with Salary do with Individual do with ID do ...
```

The maximum 'depth' of this nesting of with sentences, i.e. the maximum number of records which may be 'opened' within one block, depends on your implementation and is discussed in appendices A and B.
11.3 Variant Records

The syntax of a record type also provides for a variant part, i.e. alternative record structures which allows fields of a record to consist of a different number and different types of components, usually depending on the value of a tag field.

A variant part consists of a tag-field of a previously defined type, whose values determine the variant, followed by labels corresponding to each possible value of the tag field. Each label heads a field list which defines the type of the variant corresponding to the label.

Assuming the existence of the type:

```
Origin = (Citizen, Alien);
```

and of the types Name and Date, the following record allows the field CitizenShip to have different structures depending on whether the value of the field is Citizen or Alien:

```
type
  Person = record
    PersonName: Name;
    BirthDate: Date;
    case CitizenShip: Origin of
      Citizen: (BirthPlace: Name);
      Alien: (CountryOfOrigin: Name;
        DateOfEntry: Date;
        PermittedUntil: Date;
        PortOfEntry: Name)
  end

In this variant record definition, the tag-field is an explicit field which may be selected and updated like any other field. Thus, if Passenger is a variable of type Person, statements like the following are perfectly legal:

```
Passenger.CitizenShip := Citizen;

with Passenger, PersonName do
 if CitizenShip = Alien then writeln(FamilyName);
```
The fixed part of a record, i.e. the part containing the common fields, must always precede the variant part. In the above example, the fields *PersonName* and *BirthDate* are the fixed fields. A record can only have one variant part. In a variant, the parentheses must be present, even if they will enclose nothing.

The maintenance of tag field values is the responsibility of the programmer and not of TURBO Pascal. Thus, in the *Person* type above, the field *DateOfEntry* can be accessed even if the value of the tag field *CitizenShip* is not *Alien*. Actually, the tag field identifier may be omitted altogether, leaving only the type identifier. Such record variants are known as free unions, as opposed to record variants with tag fields which are called discriminated unions. The use of free unions is infrequent and should only be practiced by experienced programmers.
11.3 Variant Records

Notes:
12. SET TYPE

A set is a collection of related objects which may be thought of as a whole. Each object in such a set is called a member or an element of the set. Examples of sets could be:

1) All integers between 0 and 100
2) The letters of the alphabet
3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is no ordering involved, so the sets \([1,3,5]\), \([5,3,1]\) and \([3,5,1]\) are all equal. If the members of one set are also members of another set, then the first set is said to be included in the second. In the examples above, 3) is included in 2).

There are three operations involving sets, similar to the operations addition, multiplication and subtraction operations on numbers:

The union (or sum) of two sets A and B (written A+B) is the set whose members are members of either A or B. For instance, the union of \([1,3,5,7]\) and \([2,3,4]\) is \([1,2,3,4,5,7]\).

The intersection (or product) of two sets A and B (written A*B) is the set whose members are the members of both A and B. Thus, the intersection of \([1,3,4,5,7]\) and \([2,3,4]\) is \([3,4]\).

The relative complement of B with respect to A (written A-B) is the set whose members are members of A but not of B. For instance, \([1,3,5,7]-[2,3,4]\) is \([1,5,7]\).

12.1 Set Type Definition

Although in mathematics there are no restrictions on the objects which may be members of a set, Pascal only offers a restricted form of sets. The members of a set must all be of the same type, called the base type, and the base type must be a simple type, i.e. any scalar type except real. A set type is introduced by the reserved words set of followed by a simple type.
12.1 Set Type Definition

Examples:

```pascal
type
 DaysOfMonth = set of 0..31;
 WorkWeek = set of Mon..Fri;
 Letter = set of 'A'..'Z';
 AdditiveColors = set of (Red,Green,Blue);
 Characters = set of Char;
```

In TURBO Pascal, the maximum number of elements in a set is 256, and the ordinal values of the base type must be within the range 0 through 255.

12.2 Set Expressions

Set values may be computed from other set values through set expressions. Set expressions consist of set constants, set variables, set constructors, and set operators.

12.2.1 Set Constructors

A set constructor consists of one or more element specifications, separated by commas, and enclosed in square brackets. An element specification is an expression of the same type as the base type of the set, or a range expressed as two such expressions separated by two consecutive periods (..).

Examples:

```pascal
 ['T', 'U', 'R', 'B', 'O']
 [X,Y]
 [X..Y]
 [1..5]
 ['A'..'Z', 'a'..'z', '0'..'9']
 [1,3..10,12]
 []
```

The last example shows the empty set, which, as it contains no expressions to indicate its base type, is compatible with all set types. The set [1..5] is equivalent to the set [1,2,3,4,5]. If \(X > Y\) then \([X..Y]\) denotes the empty set.
12.2.2  Set Operators

The rules of composition specify set operator precedences according to the following three classes of operators:

1)  *  Set intersection.

2)  +  Set union.
    -  Set difference.

3)  =  Test on equality.
    <>  Test on inequality.
    >=  True if the second operand is included in the first operand.
    <=  True if the first operand is included in the second operand.
    IN  Test on set membership. The second operand is of a set type, and the first operand is an expression of the same type as the base type of the set. The result is true if the first operand is a member of the second operand, otherwise it is false.

There is no operator for strict unclusion, but it may be programmed as

A * B = [].

Set expressions are often useful to clarify complicated tests. For instance, the test:

if (Ob.:'T') or (Ob.:U') or (Ob.:'R') or (Ob.:'B') or (Ob.:'O')

can be expressed much clearer as:

Ch in ['T', 'U', 'R', 'B', 'O']

And the test:

if (Ch >= 'O') and (Ch <= '9') then

is better expressed as:

if Ch in ['O'..'9'] then

RECORD TYPE

87
12.3 Set Assignments

Values resulting from set expressions are assigned to set variables using the assignment operator :=.

Examples:

```
type
 ASCII = set of 0..127;
Var
 NoPrint, Print, AllChars: ASCII;
begin
 AllChars := [0..127];
 NoPrint := [0..31,127];
 Print := AllChars - NoPrint;
end.
```
13. TYPED CONSTANTS

Typed constants are a TURBO speciality. A typed constant may be used exactly like a variable of the same type. Typed constants may thus be used as 'initialized variables', because the value of a typed constant is defined, whereas the value of a variable is undefined until an assignment is made. Care should be taken, of course, not to assign values to typed constants whose values are actually meant to be constant.

The use of a typed constant saves code if the constant is used often in a program, because a typed constant is included in the program code only once, whereas an untyped constant is included every time it is used.

Typed constants are defined like untyped constants (see section 5.2.2), except that the definition specifies not only the value of the constant but also the type. In the definition the typed constant identifier is succeeded by a colon and a type identifier, which is then followed by an equal sign and the actual constant.

13.1 Unstructured Typed Constants

An unstructured typed constant is a constant defined as one of the scalar types:

```
const
 NumberOfCars: Integer = 1267;
 Interest: Real = 12.67;
 Heading: string[7] = 'SECTION';
 Xon: Char = '~Q';
```

Contrary to untyped constants, a typed constant may be used in place of a variable as a variable parameter to a procedure or a function. As a typed constant is actually a variable with a constant value, it cannot be used in the definition of other constants or types. Thus, as Min and Max are typed constants, the following construct is illegal:

```
const
 Min: Integer = 0;
 Max: Integer = 50;

type
 Range: array[Min..Max] of integer
```
13.2 Structured Typed Constants

Structured constants comprise array constants, record constants, and set constants. They are often used to provide initialized tables and sets for tests, conversions, mapping functions, etc. The following sections describe each type in detail.

13.2.1 Array Constants

The definition of an array constant consists of the constant identifier succeeded by a colon and the type identifier of a previously defined array type followed by an equal sign and the constant value expressed as a set of constants separated by commas and enclosed in parentheses.

Examples:

type
  Status = (Active, Passive, Waiting);
  StringRep = array[Status] of string[7];
const
  Stat: StringRep = ('active', 'passive', 'waiting');

The example defines the array constants Stat, which may be used to convert values of the scalar type Status into their corresponding string representations. The components of Stat are:

Stat[Active] = 'active'
Stat[Passive] = 'passive'
Stat[Waiting] = 'waiting'

The component type of an array constant may be any type except File types and Pointer types. Character array constants may be specified both as single characters and as strings. Thus, the definition:

const
  Digits: array[0..9] of Char =
    ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');

may be expressed more conveniently as:

const
  Digits: array[0..9] of Char = '0123456789';
13.2.2 Multidimensional Array Constants

Multidimensional array constants are defined by enclosing the constants of each dimension in separate sets of parentheses, separated by commas. The innermost constants correspond to the rightmost dimensions.

Example:

```pascal
type
 Cube = array[0..1, 0..1, 0..1] of integer;
const
 Maze: Cube = (((0,1),(2,3)),((4,5),(6,7)));
begin
 Writeln(Maze[0,0,0],',
 Writeln(Maze[0,0,1],',
 Writeln(Maze[0,1,0],',
 Writeln(Maze[0,1,1],',
 Writeln(Maze[1,0,0],',
 Writeln(Maze[1,0,1],',
 Writeln(Maze[1,1,0],',
 Writeln(Maze[1,1,1],'
end.
```

13.2.3 Record Constants

The definition of a record constant consists of the constant identifier succeeded by a colon and the type identifier of a previously defined record type followed by an equal sign and the constant value expressed as a list of field constants separated by semi-colons and enclosed in parentheses.

Examples:

```pascal
type
 Point = record
 X, Y, Z: integer;
 end;
 OS = (CPM80, CPM86, MSIX>), Unix);
 UI = (CCP, SomethingElse, MenuMaster);
 Computer = record
 OperatingSystems: array[1..4] of OS;
 UserInterface: UI;
 end;
```
13.2.3 Record Constants

const
Origo: Point = (X:0; Y:0; Z:0);
SuperComp: Computer =
  (OperatingSystems: (CPM80, CPM86, MSDOS, Unix);
   UserInterface: MenuMaster);
Plane1: array[1..3] of Point =
  ((X:1; Y:4; Z:5), (X:10; Y:-78; Z:45), (X:100; Y:10; Z:-7));

The field constants must be specified in the same order as they appear in the
definition of the record type. If a record contains fields of file types or pointer
types, then constants of that record type cannot be specified. If a record con­
stant contains a variant, then it is the responsibility of the programmer to spe­
cify only the fields of the valid variant. If the variant contains a tag field, then
its value must be specified.

13.2.4 Set Constants

A set constant consists of one or more element specifications separated by
commas, and enclosed in square brackets. An element specification must be
a constant or a range expression consisting of two constants separated by
two consecutive periods (..).

Example:
  type
   Up = set of 'A'..'Z';
   Low = set of 'a'..'z';
  const
   UpperCase: Up    = ['A'..'Z'];
   Vocals : Low    = ['a','e','i','o','u','y'];
   Delimiter: set of Char =
     [' '..'/',': '..'?','[ '..'], '{ '..'}'];
14. FILE TYPES

Computer programs frequently produce large amounts of data which is not required until later in the program or even by some other program. As this data often exceeds the available memory, data can be written to and read from named units placed on magnetic devices such as diskettes or hard disks. These units are called files.

A file consists of a sequence of components of equal type. The number of components in a file (the size of the file) is not determined by the definition of the file; instead the Pascal system keeps track of file accesses through a file pointer, and each time a component is written to or read from a file, the file pointer of that file is advanced to the next component. As all components of a file are of equal length, the position of a specific component can be calculated. Thus, the file pointer can be moved to any component in the file, providing random access to any element of the file.

14.1 File Type Definition

A file type is defined by the reserved words file of followed by the type of the components of the file, and a file identifier is declared by the same words followed by the identifier of a previously defined file type.

Examples:

type  
ProductName = string[80];  
Product = file of record  
  Name: ProductName;  
  ItemNumber: Real;  
  InStock: Real;  
  MinStock: Real;  
  Supplier: Integer;  
end;

Var  
ProductFile: Product;  
ProductNames: file of ProductName;

The component type of a file may be any type, except a file type. (i.e., with reference to the example above, file of Product is not allowed). File variables may appear neither in assignments nor in expressions.
14.2 Operations on Files

The following sections describe the procedures available for file handling. The identifier Filvar used throughout denotes a file variable identifier declared as described above.

14.2.1 Assign

Syntax: Assign( FilVar, Str)

Str is a string expression yielding any legal file name. This file name is assigned to the file variable FilVar, and all further operation on FilVar will operate on the disk file Str. Assign should never be used on a file which is in use.

14.2.2 Rewrite

Syntax: Rewrite( FilVar)

A new disk file of the name assigned to the file variable FilVar is created and prepared for processing, and the file pointer is set to the beginning of the file, i.e. component no. 0. Any previously existing file with the same name is erased. A disk file created by rewrite is initially empty, i.e. it contains no elements.

14.2.3 Reset

Syntax: Reset( FilVar)

The disk file of the name assigned to the file variable FilVar is prepared for processing, and the file pointer is set to the beginning of the file, i.e. component no. 0. FilVar must name an existing file, otherwise an I/O error occurs.
14.2.4 Read

Syntax: Read(FilVar, Var)

Var denotes one or more variables of the component type of FilVar, separated by commas. Each variable is read from the disk file, and following each read operation, the file pointer is advanced to the next component.

14.2.5 Write

Syntax: Write(FilVar, Var)

Var denotes one or more variables of the component type of FilVar, separated by commas. Each variable is written to the disk file, and following each write operation, the file pointer is advanced to the next component.

14.2.6 Seek

Syntax: Seek(FilVar, n)

Seek moves the file pointer is moved to the n'th component of the file denoted by FilVar. n is an integer expression. The position of the first component is 0. Note that in order to expand a file it is possible to seek one component beyond the last component. The statement

Seek(FilVar, FileSize(FilVar));

thus places the file pointer at the end of the file (FileSize returns the number of components in the file, and as the components are numbered from zero, the returned number is one greater than the number of the last component).

14.2.7 Flush

Syntax: Flush(FilVar)

Flush empties the internal sector buffer of the disk file FilVar, and thus assures that the sector buffer is written to the disk if any write operations have taken place since the last disk update. Flush also insures that the next read operation will actually perform a physical read from the disk file. Flush should never be used on a closed file.
14.2.8  Close

**Syntax:** `Close(FilVar)`

The disk file associated with `FilVar` is closed, and the disk directory is updated to reflect the new status of the file. Notice that in multi-user environments it is often necessary to `Close` a file, even if it has only been read from.

14.2.9  Erase

**Syntax:** `Erase(FilVar)`

The disk file associated with `FilVar` is erased. If the file is open, i.e. if the file has been reset or rewritten but not closed, it is good programming practice to `close` the file before erasing it.

14.2.10  Rename

**Syntax:** `Rename(FilVar, Str)`

The disk file associated with `FilVar` is renamed to a new name given by the string expression `Str`. The disk directory is updated to show the new name of the file, and further operations on `FilVar` will operate on the file with the new name. `Rename` should never be used on an open file.

**Notice** that it is the programmer's responsibility to assure that the file named by `Str` does not already exist. If it does, multiple occurrences of the same name may result. The following function returns `True` if the file name passed as a parameter exists, otherwise it returns `False`:

```pascal
function Exist(FileName: Name): boolean;
Var
 Fil: file;
begin
 Assign(Fil, FileName);
 {$I-}
 Reset(Fil);
 {$I+}
 Exist := (IOresult = 0)
end;
```

96  

*TURBO Pascal Language Manual*
14.3 File Standard Functions

The following standard functions are applicable to files:

14.3.1 EOF

Syntax: EOF( FilVar)

A Boolean function which returns True if the file pointer is positioned at the end of the disk file, i.e. beyond the last component of the file. If not, EOF returns False.

14.3.2 FilePos

Syntax: FilePos( FilVar)

An integer function which returns the current position of the file pointer. The first component of a file is 0.

14.3.3 FileSize

Syntax: FileSize( FilVar)

An integer function which returns the size of the disk file expressed as the number of components in the file. If FileSize(FilVar) is zero, the file is empty.

14.4 Using Files

Before using a file, the Assign procedure must be called to assign the file name to a file variable. Before input and/or output operations are performed, the file must be opened with a call to Rewrite or Reset. This call will set the file pointer to point to the first component of the disk file, i.e. FilePos(FilVar) = 0. After Rewrite, FileSize(FilVar) is 0.
A disk file can be expanded only by adding components to the end of the existing file. The file pointer can be moved to the end of the file by executing the following sentence:

```
Seek(FilVar, FileSize(FilVar));
```

When a program has finished its input/output operations on a file, it should always call the `Close` procedure. Failure to do so may result in loss of data, as the disk directory is not properly updated.

The program below creates a disk file called `PRODUCTS.DTA`, and writes 100 records of the type `Product` to the file. This initializes the file for subsequent random access (i.e. records may be read and written anywhere in the file).

```pascal
program InitProductFile;
const
 MaxNumberOfProducts = 100;
type
 ProductName = string[20];
 Product = record
 Name: ProductName;
 ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;
Var
 ProductFile: file of Product;
 ProductRec: Product;
 I: Integer;
begin
 Assign(ProductFile, 'PRODUCT.DTA');
 Rewrite(ProductFile); {open the file and delete any data}
 with ProductRec do begin
 Name := ''; InStock := 0; Supplier := 0;
 for I := 1 to MaxNumberOfProducts do begin
 ItemNumber := I;
 Write(ProductFile, ProductRec);
 end;
 end;
 Close(ProductFile);
end.
```
The following program demonstrates the use of `Seek` on random files. The program is used to update the `ProductFile` created by the program in the previous example.

```pascal
program UpdateProductFile;
const
 MaxNumberOfProducts = 100;
type
 ProductName = string[20];
 Product = record
 Name: ProductName;
 ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;

Var
 ProductFile: file of Product;
 ProductRec: Product;
 I, Pnr: Integer;
begin
Assign(ProductFile,'PRODUCT.DTA'); Reset(ProductFile);
ClrScr;
Write('Enter product number (0= stop) '); Readln(Pnr);
while Pnr in [1..MaxNumberOfProducts] do
begin
 Seek(ProductFile,Pnr-1); Read(ProductFile,ProductRec);
 with ProductRec do
 begin
 Write('Enter name of product (\',Name:20,\') '); Readln(Name);
 Write('Enter number in stock (\',InStock:20:0,\') '); Readln(InStock);
 Write('Enter supplier number (\',Supplier:20,\') '); Readln(Supplier);
 ItemNumber:=Pnr;
 end;
 Seek(ProductFile,Pnr-1);
 Write(ProductFile,ProductRec);
 ClrScr; Writeln;
 Write('Enter product number (0= stop) '); Readln(Pnr);
end;
Close(ProductFile);
end.
```

FILE TYPES
14.5 Text Files

Unlike all other file types, text files are not simply sequences of values of some type. Although the basic components of a text file are characters, they are structured into lines, each line being terminated by an end-of-line marker (a CR/LF sequence). The file is further ended by an end-of-file marker (a Ctrl-Z). As the length of lines may vary, the position of a given line in a file cannot be calculated. Text files can therefore only be processed sequentially. Furthermore, input and output cannot be performed simultaneously to a text file.

14.5.1 Operations on Text Files

A text file variable is declared by referring to the standard type identifier Text. Subsequent file operations must be preceded by a call to Assign and a call to Reset or Rewrite must furthermore precede input or output operations.

Rewrite is used to create a new text file, and the only operation then allowed on the file is the appending of new components to the end of the file. Reset is used to open an existing file for reading, and the only operation allowed on the file is sequential reading. When a new textfile is closed, an end-of-file mark is automatically appended to the file.

Character input and output on text files is made with the standard procedures Read and Write. Lines are processed with the special text file operators Readln, Writeln, and Eoln:

- **Readln( Filvar)** skips to the beginning of the next line, i.e. skips all characters up to and including the next CR/LF sequence.
- **Writeln( Filvar)** writes a line marker, i.e. a CR/LF sequence, to the text-file.
- **Eoln( Filvar)** A Boolean function which returns True if the end of the current line has been reached, i.e. if the file pointer is positioned at the CR character of the CR/LF line marker. If EOF( Filvar) is true, Eoln( Filvar) is also true.
When applied to a text file, the *EOF* function returns the value *True* if the file pointer is positioned at the end-of-file mark (the CTRL/Z character ending the file). The *Seek* and *Flush* procedures and the *FilePos* and *FileSize* functions are not applicable to text files.

The following sample program reads a text file from disk and prints it on the pre-defined device *Lst* which is the printer. Words surrounded by Ctrl-S in the file are printed underlined:

```pascal
program TextFileDemo;
Var
 FilVar: Text;
 Line,
 ExtraLine: string[255];
 I: Integer;
 UnderLine: Boolean;
 FileName: string[14];
begin
 UnderLine := False;
 Write('Enter name of file to list: ',);
 Readln(FileName);
 Assign(FilVar,FileName);
 Reset(FilVar);
 while not Eof(FilVar) do
 begin
 Readln(FilVar,Line);
 I := 1; ExtraLine := '';
 for I := 1 to Length(Line) do
 begin
 if Line[I]<>~S then
 begin
 Write(Lst,Line[I]);
 if UnderLine then ExtraLine := ExtraLine+'__'
 else ExtraLine := ExtraLine+' ';
 end;
 else UnderLine := not UnderLine;
 end;
 Write(Lst,~M); Writeln(Lst,ExtraLine);
 end; {while not Eof}
end.
```

Further extensions of the procedures *Read* and *Write*, which facilitate convenient handling of formatted input and output, are described in section 14.6.
14.5.2 Logical Devices

In TURBO Pascal, external devices such as terminals, printers, and modems are regarded as *logical devices* which are treated like text files. The following logical devices are available:

**CON:** The console device. Output is sent to the operating system's console output device, usually the CRT, and input is obtained from the console input device, usually the keyboard. Contrary to the TRM: device (see below), the CON: device provides buffered input. In short, this means that each *Read* or *Readln* from a textfile assigned to the CON: device will input an entire line into a line buffer, and that the operator is provided with a set of editing facilities during line input. For more details on console input, please refer to sections 14.5.3 and 14.6.1.

**TRM:** The terminal device. Output is sent to the operating system's console output device, usually the CRT, and input is obtained from the console input device, usually the keyboard. Input characters are echoed, unless they are control characters. The only control character echoed is a carriage return (CR), which is echoed as CR/LF.

**KBD:** The keyboard device (input only). Input is obtained from the operating system's console input device, usually the keyboard. Input is not echoed.

**LST:** The list device (output only). Output is sent to the operating system's list device, typically the line printer.

**AUX:** The auxiliary device. Output is sent to the operating system's punch device, and input is obtained from the operating system's reader device. Usually, the punch and reader devices refer to a modem.

**USR:** The user device. Output is sent to the user output routine, and input is obtained from the user input routine. For further details on user input and output, please refer to sections A.13 and B.3.3.

These logical devices may be accessed through the pre-assigned files discussed in section 14.5.3 or they may be assigned to file variables, exactly like a disk file. There is no difference between *Rewrite* and *Reset* on a file assigned to a logical device, *Close* performs no function, and an attempt to *Erase* such a file will cause an I/O error.
The standard functions *Eof* and *Eoln* operate differently on logical devices than on disk files. On a disk file, *Eof* returns *True* when the next character in the file is a Ctrl-Z, or when physical EOF is encountered, and *Eoln* returns *True* when the next character is a CR or a Ctrl-Z. Thus, *Eof* and *Eoln* are in fact "look ahead" routines.

As you cannot look ahead on a logical device, *Eoln* and *Eof* operate on the last character read instead of on the next character. In effect, *Eof* returns *True* when the last character read was a Ctrl-Z, and *Eoln* returns *True* when the last character read was a CR or a Ctrl-Z. The following table provides an overview of the operation of *Eoln* and *Eof*:

<table>
<thead>
<tr>
<th></th>
<th>On Files</th>
<th>On Logical Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Eoln is true</strong></td>
<td>if next character is CR or Ctrl-Z or EOF is true</td>
<td>if current character is CR or Ctrl-Z</td>
</tr>
<tr>
<td><strong>Eof is true</strong></td>
<td>if next character is Ctrl-Z or if physical EOF is met</td>
<td>if current character is Ctrl-Z</td>
</tr>
</tbody>
</table>

Table 14-1: Operation of EOLN and Eof

Similarly, the *Readln* procedure works differently on logical devices than on disk files. On a disk file, *Readln* reads all characters up to and including the CR/LF sequence, whereas on a logical device it only reads up to and including the first CR. The reason for this is again the inability to "look ahead" on logical devices, which means that the system has no way of knowing what character will follow the CR.

### 14.5.3 Standard Files

As an alternative to assigning text files to logical devices as described above, TURBO Pascal offers a number of pre-declared text files which have already been assigned to specific logical devices and prepared for processing. Thus, the programmer is saved the reset/rewrite and close processes, and the use of these standard files further saves code:
Input  The primary input file. This file is assigned to either the CON: device or to the TRM: device (see below for further details).

Output The primary output file. This file is assigned to either the CON: device or to the TRM: device (see below for further details).

Con  Assigned to the console device (CON:).

Trm  Assigned to the terminal device (TRM:).

Kbd  Assigned to the keyboard device (KBD:).

Lst  Assigned to the list device (LST:).

Aux  Assigned to the auxiliary device (AUX:).

Usr  Assigned to the user device (USR:).

Notice that the use of Assign, Reset, Rewrite, and Close on these files is not only unnecessary, but also illegal.

The logical device referred to by the standard files Input and Output is determined by the B compiler directive. The default value \( \$B+ \) causes the console device (CON:) to be used, which provides buffered input with editing facilities (see section 14.6.1), but it does not conform to the standard in all aspects. In the \( \$B- \) mode, input and output will instead refer to the terminal device (TRM:) which offers no editing facilities during input, but entries may follow the formats defined by Standard Pascal. No differences exist between the console device and the terminal device on output operations.

Notice that the B compiler directive must be placed at the start of the program block, and is thus a global directive which cannot be changed throughout the program text. If some input/output operations are to use the CON: device, and others the TRM: device, then set the B directive for the most frequently used device and specify the other device explicitly in the remaining calls to i/o procedures.

Example:

\[
\{
\$B-\}
\]

program ReadAndWrite(input, output);
:
Readln(Var1);  // Reads from the TRM: device
Readln(Con, Var2);  // Reads from the CON: device
:

In situations where input is not to be automatically echoed to the screen, input should be made from the standard file Kbd:

Read(Kbd, Var)
As the standard files Input and Output are used very frequently, they are chosen by default when no file identifier is explicitly stated. The following list shows the abbreviated text file operations and their equivalents:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write(Ch)</td>
<td>Write(Output,Ch)</td>
</tr>
<tr>
<td>Read(Ch)</td>
<td>Read(Input,Ch)</td>
</tr>
<tr>
<td>Writeln</td>
<td>Writeln(Output)</td>
</tr>
<tr>
<td>Readln</td>
<td>Readln(Input)</td>
</tr>
<tr>
<td>Eof</td>
<td>Eof(Input)</td>
</tr>
<tr>
<td>Eoln</td>
<td>Eoln(Input)</td>
</tr>
</tbody>
</table>

The following program shows the use of the standard file Lst to list the file ProductFile (see the example on page 99) on the printer:

```pascal
program ListProductFile;
const
 MaxNumberOfProducts = 100;
type
 ProductName = string[20];
 Product = record
 Name: ProductName; ItemNumber: Integer;
 InStock: Real;
 Supplier: Integer;
 end;
Var
 ProductFile: file of Product;
 ProductRec: Product; I: Integer;
begin
 Assign(ProductFile, 'PRODUCT.DTA'); Reset(ProductFile);
 for I := 1 to MaxNumberOfProducts do
 begin
 Read(ProductFile, ProductRec);
 with ProductRec do
 begin
 if Name>'' then
 begin
 Writeln(Lst, 'Item: ', ItemNumber:5, ', Name:20,
 ' Item Number: ', Supplier:5,
 ' In Stock: ', InStock:0:0);
 end;
 end;
 end;
 Close(ProductFile);
end.
```
14.6 Text File Input and Output

Input and output of data in readable form is done through text files as described in section 14.5. A text file may be assigned to any device, i.e. a disk file or one of the standard I/O devices. Input and output on text files is done with the standard procedures Read, Readln, Write, and Writeln which use a special syntax for their parameter lists to facilitate maximum flexibility of input and output.

In particular, parameters may be of different types, in which case the I/O procedures provide automatic data conversion to and from the basic Char type of text files.

If the first parameter of an I/O procedure is a variable identifier representing a text file, then I/O will act on that file. If not, I/O will act on the standard files Input and Output. See section 14.5.3 for more details.

14.6.1 Read Procedure

The Read procedure provides input of characters, strings, and numeric data. The syntax of the Read statement is:

\[
\text{Read(Var1, Var2,...,VarN)}
\]

or

\[
\text{Read(FilVar, Var1, Var2,...,VarN)}
\]

where Var1, Var2,...,VarN are variables of type Char, String, Integer or Real. In the first case, the variables are input from the standard file Input, usually the keyboard. In the second case, the variables are input from the text file which is previously assigned to FilVar and prepared for reading.

With a variable of type Char, Read reads one character from the file and assigns that character to the variable. If the file is a disk file, Eoln is true if the next character is a CR or a Ctrl-Z, and Eof is true if the next character is a Ctrl-Z, or physical end-of-file is met. If the file is a logical device (including the standard files Input and Output), Eoln is true if the character read was a CR or if Eof is True, and Eof is true if the character read was a Ctrl-Z.
With a variable of type **string**, *Read* reads as many characters as allowed by the defined maximum length of the string, unless *Eoln* or *Eof* is reached first. *Eoln* is true if the character read was a CR or if *Eof* is *True*, and *Eof* is true if the last character read is a Ctrl-Z, or physical end-of-file is met.

With a numeric variable (*Integer* or *Real*), *Read* expects a string of characters which complies with the format of a numeric constant of the relevant type as defined in section 4.2. Any blanks, TABs, CRs, or LFs preceding the string are skipped. The string must be no longer than 30 characters, and it must be followed by a blank, a TAB, a CR, or a Ctrl-Z. If the string does not conform to the expected format, an I/O error occurs. Otherwise the numeric string is converted to a value of the appropriate type and assigned to the variable. When reading from a disk file, and the input string is ended with a blank or a TAB, the next *Read* or *Readln* will start with the character immediately following that blank or TAB. For both disk files and logical devices, *Eoln* is true if the string was ended with a CR or a Ctrl-Z, and *Eof* is true if the string was ended with a Ctrl-Z.

A special case of numeric input is when *Eoln* or *Eof* is true at the beginning of the *Read* (e.g. if input from the keyboard is only a CR). In that case no new value is assigned to the variable, and the variable retains its former value.

If the input file is assigned to the console device (*CON:*) or if the standard file *Input* is used in the `{$B+}` mode (default), special rules apply to the reading of variables. On a call to *Read* or *Readln*, a line is input from the console and stored into a buffer, and the reading of variables then uses this buffer as the input source. This allows for editing during entry. The following editing facilities are available:

**BACKSPACE** and **DEL**.

Backspaces one character position and deletes the character there. **BACKSPACE** is usually generated by pressing the key marked BS or BACKSPACE or by pressing Ctrl-H. **DEL** is usually generated by the key thus marked, or in some cases RUB or RUBOUT.

**Ctrl-X**

Backspaces to the beginning of the line and erases all characters input.

The **RETURN** key is used to terminate the input line. This key may be marked **ENTER** on some keyboards. This terminating CR is **not** echoed to the screen.
14.6.1 Read Procedure

Internally, the input line is stored with a Ctrl-Z appended to the end of it. Thus, if fewer values are specified on the input line than the number of variables in Reads parameter list, any Char variables in excess will be set to Ctrl-Z, Strings will be empty, and numeric variables will remain unchanged.

The maximum number of characters that can be entered on an input line from the console is 127 by default. However, you may lower this limit by assigning an integer in the range 0 through 127 to the predefined variable BufLen.

Example:

Write('File name (max. 14 chars): ');  
BufLen:=14;  
Read(FileNam);  

Notice that assignments to BufLen affect only the immediately following Read. After that, BufLen is restored to 127.

14.6.2 Readln Procedure

The Readln procedure is identical to the Read procedure, except that after the last variable has been read, the remainder of the line is skipped. I.e., all characters up to and including the next CR/LF sequence (or the next CR on a logical device) are skipped. The syntax of the procedure statement is:

Readln(Var1,Var2,...,VarN)  
or  
Readln(FilVar,Var1,Var2,...,VarN)

After a Readln, the following Read or Readln will read from the beginning of the next line. Readln may also be called without parameters:

Readln  
or  
Readln(FilVar)

in which case the remaining of the line is skipped. When Readln is reading from the console (standard file Input or a file assigned to CON:), the terminating CR is echoed to the screen as a CR/LF sequence, as opposed to Read.
Write Procedure

14.6.3 Write Procedure

The Write procedure provides output of characters, strings, boolean values, and numeric values. The syntax of a Write statement is:

\[
\text{Write}(\text{Var1,Var2,...,VarN})
\]

or

\[
\text{Write}(	ext{FilVar,Var1,Var2,...,VarN})
\]

where Var1, Var2,...,VarN (the write parameters) are variables of type Char, String, Boolean, Integer or Real, optionally followed by a colon and an integer expression defining the width of the output field. In the first case, the variables are output to the the standard file Output, usually the screen. In the second case, the variables are output to the text file which is previously assigned to FilVar.

The format of a write parameter depends on the type of the variable. In the following descriptions of the different formats and their effects, the symbols:

\( l, m, n \) denote expressions of type Integer,

\( R \) denotes an expression of type Real,

\( Ch \) denotes an expression of type Char,

\( S \) denotes an expression of type String, and

\( B \) denotes an expression of type Boolean.

\( Ch \) The character \( Ch \) is output.

\( Ch:n \) The character \( Ch \) is output right-adjusted in a field which is \( n \) characters wide, i.e. \( Ch \) is preceded by \( n -1 \) blanks.

\( S \) The string \( S \) is output. Arrays of characters may also be output, as they are compatible with strings.

\( S:n \) The string \( S \) is output right-adjusted in a field which is \( n \) characters wide, i.e. \( S \) is preceded by \( n - \text{length}(S) \) blanks.

\( B \) Depending on the value of \( B \), either the word TRUE or the word FALSE is output.

\( B:n \) Depending on the value of \( B \), either the word TRUE or the word FALSE is output right-adjusted in a field which is \( n \) characters wide.

\( l \) The decimal representation of the value of \( l \) is output.

\( l:n \) The decimal representation of the value of \( l \) is output right-adjusted in a field which is \( n \) characters wide.
14.6.3 Write Procedure

**R**

The decimal representation of the value of \( R \) is output, right adjusted in a field 18 characters wide, using floating point format:

\[
\begin{align*}
R \geq 0.0: & \quad _{-}d.dddddddd\underline{d}tdd \\
R < 0.0: & \quad _{-}d.dddddddd\underline{d}tdd
\end{align*}
\]

where \( _{-} \) represents a blank, \( d \) represents a digit, and \( t \) represents either '+' or '-'.

**R:n**

The decimal representation of the value of \( R \) is output, right adjusted in a field \( n \) characters wide, using floating point format:

\[
\begin{align*}
R \geq 0.0: & \quad \text{blanks}d.d\underline{gl}tsEtdd \\
R < 0.0: & \quad \text{blanks}-d.d\underline{gl}tsEtdd
\end{align*}
\]

where \( \text{blanks} \) represents zero or more blanks, \( \text{digits} \) represents from one to ten digits, \( d \) represents a digit, and \( t \) represents either plus or minus. As at least one digit is output after the decimal point, the field width is minimum 7 characters (8 for \( R < 0.0 \)). When \( n \) is greater than 16 (17 for \( R < 0.0 \)), the number is preceded by \( n-16 \) blanks (\( n-17 \) for \( R < 0.0 \)).

**R:n:m**

The decimal representation of the value of \( R \) is output, right adjusted in a field \( n \) characters wide, using fixed point format with \( m \) digits after the decimal point. No decimal part, and no decimal point, is output if \( m = 0 \). \( m \) must be in the range \( 0 < m \leq 24 \); otherwise floating point format is used. The number is preceded by an appropriate number of blanks to make the field width \( n \).
14.6.4  **Writeln Procedure**

The *Writeln* procedure is identical to the *Write* procedure, except that a CR/LF sequence is output after the last value. The syntax of the *Writeln* statement is:

\[
\text{Writeln(Var1, WP2, \ldots, WPn)} \\
\text{or} \\
\text{Writeln(FileVar, WP1, WP2, \ldots, WPn)}
\]

A *Writeln* with no write parameters outputs an empty line consisting of a CR/LF sequence:

\[
\text{Writeln} \\
\text{or} \\
\text{Writeln(File)}
\]
14.7 Untyped Files

Untyped files are low-level I/O channels primarily used for direct access to any disk file using a record size of 128 bytes.

In input and output operations to untyped files, data is transferred directly between the disk file and the variable, thus saving the space required by the sector buffer required by typed files. An untyped file variable therefore occupies less memory than other file variables. As an untyped file is furthermore compatible with any file, the use of an untyped file is therefore to be preferred if a file variable is required only for Erase, Rename or other non-input/output operations.

An untyped file is declared with the reserved word file:

```
Var
 DataFile: file;
```

14.7.1 BlockRead / BlockWrite

All standard file handling procedures and functions except Read, Write, and Flush are allowed on untyped files. Read and Write are replaced by two special high-speed transfer procedures: BlockRead and BlockWrite. The syntax of a call to these procedures is:

```
BlockRead(FileVar, Var, recs)
BlockWrite(FileVar, Var, recs)
```

where FileVar variable identifier of an untyped file, Var is any variable, and recs is an integer expression defining the number of 128-byte records to be transferred between the disk file and the variable. The transfer starts at the first byte occupied by the variable Var. The programmer must insure the programmer to insure that the variable Var occupies enough space to accommodate the entire data transfer. A call to BlockRead or BlockWrite also advances the file pointer recs records.

A file to be operated on by BlockRead or BlockWrite must first be prepared by Assign and Rewrite or Reset. Rewrite creates and opens a new file, and Reset opens an existing file. After processing, Close should be used to insure proper termination.
The standard function `EOF` works as with typed files. So do standard functions `FilePos` and `FileSize` and standard procedure `Seek`, using a component size of 128 bytes (the record size used by `BlockRead` and `BlockWrite`).

The following program shows the use of an untyped file. It reads any disk file and copies its contents to any other disk file:

```pascal
program FileCopy;
const
 BufSize = 200;
 BufByteSize = 15600;
var
 Source, Destination: File;
 SourceName, DestinationName: string[14];
 Buffer: array[1..BufByteSize] of Byte;
 NoOfRecsToRead,
 Remaining: Integer;

begin
 Write('Enter source file name: '); Readln(SourceName);
 Assign(Source, SourceName); Reset(Source);
 Write('Enter destination file name: '); Readln(DestinationName);
 Assign(Destination, DestinationName); Rewrite(Destination);
 Remaining := FileSize(Source);
 while Remaining > 0 do
 begin
 if BufSize <= Remaining then
 NoOfRecsToRead := BufSize
 else
 NoOfRecsToRead := Remaining;
 BlockRead(Source, Buffer, NoOfRecsToRead);
 BlockWrite(Destination, Buffer, NoOfRecsToRead);
 Remaining := Remaining - NoOfRecsToRead;
 end;
 Close(Destination);
end.
```
14.8 I/O checking

The I compiler directive is used to control generation of runtime I/O error checking code. The default state is active, i.e. {$I+} which causes calls to an I/O check routine after each I/O operation. I/O errors then cause the program to terminate, and an error message indicating the type of error is displayed.

If I/O checking is passive, i.e. {$I-}, no run time checks are performed. An I/O error thus does not cause the program to stop, but suspends any further I/O until the standard function I0result is called. When this is done, the error condition is reset and I/O may be performed again. It is now the programmer's responsibility to take proper action according to the type of I/O error. A zero returned by I0result indicates a successful operation, anything else means that an error occurred during the last I/O operation. Appendix I lists all error messages and their Numbers. Notice that as the error condition is reset when I0result is called, subsequent calls to I0result will return zero until the next I/O error occurs.

The I0result function is very convenient in situations where a program halt is an unacceptable result of an I/O error, like in the following example which continues to ask for a file name until the attempt to reset the file is succesful (i.e. until an existing file name is entered):

```pascal
procedure OpenInFile;
begin
 repeat
 Write('Enter name of input file '); Readln(InFileName);
 Assign(InFile, InFileName); {$I-} Reset(InFile) {$I+};
 OK := (I0result = 0);
 if not OK then Writeln('Cannot find file ',InFileName);
 until OK;
end;
```

When the I directive is passive ({$I-}), the following standard procedures should be followed by a check of I0result to insure proper error handling:

<table>
<thead>
<tr>
<th>Assign</th>
<th>Close</th>
<th>Read</th>
<th>Rewrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlockRead</td>
<td>Erase</td>
<td>Readln</td>
<td>Seek</td>
</tr>
<tr>
<td>BlockWrite</td>
<td>Execute</td>
<td>Rename</td>
<td>Write</td>
</tr>
<tr>
<td>Chain</td>
<td>Flush</td>
<td>Reset</td>
<td>Writeln</td>
</tr>
</tbody>
</table>
15. POINTER TYPES

Variables discussed up to now have been static, i.e. their form and size is pre-determined, and they exist throughout the entire execution of the block in which they are declared. Programs, however, frequently need the use of a data structure which varies in form and size during execution. Dynamic variables serve this purpose as they are generated as the need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declaration like static variables, and they cannot be referenced directly by identifiers. Instead, a special variable containing the memory address of the variable is used to point to the variable. This special variable is called a pointer variable.

15.1 Defining a Pointer Variable

A pointer type is defined by the pointer symbol ~ succeeded by the type identifier of the dynamic variables which may be referenced by pointer variables of this type.

The following shows how to declare a record with associated pointers. The type PersonPointer is is declared as a pointer to variables of type PersonRecord:

```plaintext
type
 PersonPointer = ~PersonRecord;

PersonRecord = record
 Name: string[50];
 Job: string[50];
 Next: PersonPointer;
end;

Var
 FirstPerson, LastPerson, NewPerson: PersonPointer;
```

The variables NextPerson, LastPerson and NewPerson are thus pointer variables which can point at records of type PersonRecord.
As shown above, the type identifier in a pointer type definition may refer to an identifier which is not yet defined.

15.2 Allocating Variables (New)

Before it makes any sense to use any of these pointer variables we must, of course, have some variables to point at. New variables of any type are allocated with the standard procedure New. The procedure has one parameter which must be a pointer to variables of the type we want to create.

A new variable of type PersonRecord can thus be created by the statement:

New(FirstPerson);

which has the effect of having FirstPerson point at a dynamically allocated record of type PersonRecord.

Assignments between pointer variables can be made as long as both pointers are of identical type. Pointers of identical type may also be compared using the relational operators = and <>, returning a Boolean result (True or False).

The pointer value nil is compatible with all pointer types. nil points to no dynamic variable, and may be assigned to pointer variables to indicate the absence of a usable pointer. nil may also be used in comparisons.

Variables created by the standard procedure New are stored in a stack-like structure called the heap. The TURBO Pascal system controls the heap by maintaining a heap pointer which at the beginning of a program is initialized to the address of the first free byte in memory. On each call to New, the heap pointer is moved towards the top of free memory the number of bytes corresponding to the size of the new dynamic variable.

15.3 Mark and Release

When a dynamic variable is no longer required by the program, the standard procedures Mark and Release is used to reclaim the memory allocated to these variables. The Mark procedure assigns the value of the heap pointer to a variable. The syntax of a call to Mark is:

Mark(Var);
Mark and Release

15.3

where \( Var \) is a pointer variable. The \textit{Release} procedure sets the heap pointer to the address contained in its argument. The syntax is:

\[
\text{Release}(Var);
\]

where \( Var \) is a pointer variable, previously set by \textit{Mark}. \textit{Release} thus discards \textit{all} dynamic variables above this address. It is not possible to release the space used by variables in the middle of the heap.

The standard function \textit{MemAvail} is available to determine the available space on the heap at any given time. Further discussion is deferred to appendices A and B.

15.4 Using Pointers

Supposing we have used the \textit{New} procedure to create a series of records of type \textit{PersonRecord} (as in the example on the following page) and that the field \textit{Next} in each record points at the next \textit{PersonRecord} created, then the following statements will go through the list and write the contents of each record (\textit{FirstPerson} points to the first person in the list):

\[
\text{while}
\begin{align*}
&\text{FirstPerson} \neq \text{nil} \\
&\text{with}
\begin{align*}
&\text{FirstPerson}~
\begin{aligned}
&\text{do}
\begin{align*}
&\text{begin}
\end{align*}
\end{aligned}
\end{align*}
\end{aligned}
\begin{align*}
&\text{end;}
\end{align*}
\end{aligned}
\]

\textit{FirstPerson}~.\textit{Name} may be read as \textit{FirstPerson}'s.\textit{Name}, i.e. the field \textit{Name} in the record pointed to by \textit{FirstPerson}.

The following demonstrates the use of pointers to maintain a list of names and related job desires. Names and job desires will be read in until a blank name is entered. Then the entire list is printed. Finally, the memory used by the list is released for other use. The pointer variable \textit{HeapTop} is used only for the purpose of recording and storing the initial value of the heap pointer. Its definition as a \~\texttt{Integer} (pointer to integer) is thus totally arbitrary.

\textit{POINTER TYPES} 117
procedure Jobs;

type
PersonPointer = ^PersonRecord;

PersonRecord = record
  Name: string[50];
  Job: string[50];
  Next: PersonPointer;
end;

Var
  HeapTop: ^Integer;
  FirstPerson, LastPerson, NewPerson: PersonPointer;
  Name: string[50];
begin
  FirstPerson := nil;
  Mark(HeapTop);
  repeat
    Write('Enter name: ', );
    Readln(Name);
    if Name <> '' then
      begin
        New(NewPerson);
        NewPerson^.Name := Name;
        Write('Enter profession: ', );
        Readln(NewPerson^.Job);
        Writeln;
        if FirstPerson = nil then
          FirstPerson := NewPerson
        else
          LastPerson^.Next := NewPerson;
        LastPerson := NewPerson;
        LastPerson^.Next := nil;
      end;
    until Name = '';
  Writeln;
  while FirstPerson <> nil do
    with FirstPerson do
    begin
      Writeln(Name, ' is a ', Job);
      FirstPerson := Next;
    end;
  Release(HeapTop);
end.
15.5 Space Allocation

The standard procedure GetMem is used to allocate space on the heap. Unlike New, which allocates as much space as required by the type pointed to by its argument, GetMem allows the programmer to control the amount of space allocated. GetMem is called with two parameters:

\[
\text{GetMem}(\text{PVar}, \text{I})
\]

where \text{PVar} is any pointer variable, and \text{I} is an integer expression giving the number of bytes to be allocated.
Notes:
A Pascal program consists of one or more blocks, each of which may again consist of blocks, etc. One such block is a procedure, another is a function (in common called subprograms). Thus, a procedure is a separate part of a program, and it is activated from elsewhere in the program by a procedure statement (see section 7.1.2). A function is rather similar, but it computes and returns a value when its identifier, or designator, is encountered during execution (see section 6.2).

16.1 Parameters

Values may be passed to procedures and functions through parameters. Parameters provide a substitution mechanism which allows the logic of the subprogram to be used with different initial values, thus producing different results.

The procedure statement or function designator which invokes the subprogram may contain a list of parameters, called the actual parameters. These are passed to the formal parameters specified in the subprogram heading. The order of parameter passing is the order of appearance in the parameter lists. Pascal supports two different methods of parameter passing: by value and by reference, which determines the effect that changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents a local variable in the subprogram, and changes of the formal parameters have no effect on the actual parameter. The actual parameter may be any expression, including a variable, with the same type as the corresponding formal parameter. Such parameters are called a value parameter and are declared in the subprogram heading as in the following example. (This and the following examples show procedure headings; function headings are slightly different as described in section 16.3.1.)

```pascal
procedure Example(Num1, Num2: Number; Str1, Str2: Txt);
```

*Number* and *Txt* are previously defined types (e.g. *Integer* and *string*[255]), and *Num1, Num2, Str1, and Str2* are the formal parameters to which the value of the actual parameters are passed. The types of the formal and the actual parameters must correspond.
Notice that the type of the parameters in the parameter part must be specified as a previously defined \textit{type identifier}. Thus, the construct:

\begin{verbatim}
procedure Select(Model: array[1..500] of Integer);
\end{verbatim}

is not allowed. Instead, the desired type should be defined in the \textit{type} definition of the block, and the \textit{type identifier} should then be used in the parameter declaration:

\begin{verbatim}
type
  Range = array[1..500] of Integer;

procedure Select(Model: Range);
\end{verbatim}

When a parameter is passed \textit{by reference}, the formal parameter in fact represents the actual parameter throughout the execution of the subprogram. Any changes made to the formal parameter is thus made to the actual parameter, which must therefore be a \textit{variable}. Parameters passed by reference are called a \textit{variable parameters}, and are declared as follows:

\begin{verbatim}
procedure Example(Var Num1,Num2: Number)
\end{verbatim}

Value parameters and variable parameters may be mixed in the same procedure as in the following example:

\begin{verbatim}
procedure Example(Var Num1,Num2: Number; Str1,Str2: Txt);
\end{verbatim}

in which \textit{Num1} and \textit{Num2} are variable parameters and \textit{Str1} and \textit{Str2} are value parameters.

All address calculations are done at the time of the procedure call. Thus, if a variable is a component of an array, its index expression(s) are evaluated when the subprogram is called.

Notice that \textit{file} parameters must always be declared as variable parameters.

When a large data structure, such as an array, is to be passed to a subprogram as a parameter, the use of a variable parameter will save both time and storage space, as the only information then passed on to the subprogram is the address of the actual parameter. A value parameter would require storage for an extra copy of the entire data structure, and the time involved in copying it.
16.1.1 Relaxations on Parameter Type Checking

Normally, when using variable parameters, the formal and the actual parameters must match exactly. This means that subprograms employing variable parameters of type `String` will accept only strings of the exact length defined in the subprogram. This restriction may be overridden by the `V` compiler directive. The default active state `{V+}` indicates strict type checking, whereas the passive state `{V-}` relaxes the type checking and allows actual parameters of any string length to be passed, irrespective of the length of the formal parameters.

Example:

```pascal
program NSA;
{this program must be compiled with the $V- directive}
{$V-}
type
 WorkString = string[255];
Var
 Line1: string[80];
 Line2: string[100];
procedure Encode(Var LineToEncode: WorkString);
Var I: Integer;
begin
 for I := 1 to Length(LineToEncode) do
 LinetoEncode[I] := Chr(Ord(LineToEncode[I])-30);
end;
begin
 Line1 := 'This is a secret message';
 Encode(Line1);
 Line2 := 'Here is another (longer) secret message';
 Encode(Line2);
end.
```

16.1.2 Untyped Variable Parameters

If the type of a formal parameter is not defined, i.e. the type definition is omitted from the parameter section of the subprogram heading, then that parameter is said to be `untyped`. Thus, the corresponding actual parameter may be any type.
16.1.2 Untyped Variable Parameters

The untyped formal parameter itself is incompatible with all types, and it may therefore be used only in contexts where the data type is of no significance, e.g. as a parameter to Addr, BlockRead/Write, FillChar, or Move, or as the address specification of absolute variables.

The SwitchVar procedure in the following example demonstrates the use of untyped parameters. It moves the contents of the variable A1 to A2 and the contents of A2 to A1.

```
procedure SwitchVar(Var Alp, A2p; Size: Integer);
type
 A = array[1..MaxInt] of Byte;
Var
 Al: A absolute Alp;
 A2: A absolute A2p;
 Tmp: Byte;
 Count: Integer;
begin
 for Count := 1 to Size do
 begin
 Tmp := Al[Count];
 Al[Count] := A2[Count];
 A2[Count] := Tmp;
 end;
end;
```

Assuming the declarations:

```
type
 Matrix = array[1..50,1..25] of Real;
Var
 TestMatrix, BestMatrix: Matrix;
```

then SwitchVar may be used to switch values between the two matrices:

```
SwitchVar(TestMatrix, BestMatrix, SizeOf(Matrix));
```
16.2 Procedures

A procedure may be either pre-declared (or 'standard') or user-declared, i.e. declared by the programmer. Pre-declared procedures are parts of the TURBO Pascal system and may be called with no further declaration. A user-declared procedure may be given the name of a standard procedure; but that standard procedure then becomes inaccessible within the scope of the user declared procedure.

16.2.1 Procedure Declaration

A procedure declaration consists of a procedure heading followed by a block which consists of a declaration part and a statement part.

The procedure heading consists of the reserved word procedure followed by an identifier which becomes the name of the procedure, optionally followed by a formal parameter list as described in section 16.1.

Examples:

```pascal
procedure Logon;
procedure Position(X,Y: Integer);
procedure Compute(Var Data: Matrix; Scale: Real);
```

The declaration part of a procedure has the same form as that of a program. All identifiers declared in the formal parameter list and the declaration part are local to that procedure, and to any procedures within it. This is called the scope of an identifier, outside which they are not known. A procedure may reference any constant, type, variable, procedure, or function defined in an outer block.

The statement part specifies the action to be executed when the procedure is invoked, and it takes the form of a compound statement (see section 7.2.1). If the procedure identifier is used within the statement part of the procedure itself, the procedure will execute recursively. (CP/M-80 only: Notice that the A compiler directive must be passive { $A-} when recursion is used, see appendix E.)

The next example shows a program which uses a procedure and passes a parameter to this procedure. As the actual parameter passed to the procedure is in some instances a constant (a simple expression), the formal parameter must be a value parameter.
program Box;
Var
  I: Integer;
procedure DrawBox(X1,Y1,X2,Y2: Integer);
  Var I: Integer;
  begin
    GotoXY(X1,Y1);
    for I := X1 to X2 do write('-');
    GotoXY(X1,Y1+1);
    for I := Y1+1 to Y2 do
      begin
        GotoXY(X1,I); Write('1,');
        GotoXY(X2,I); Write('1,');
      end;
    GotoXY(X1,Y2);
    for I := X1 to X2 do Write('-');
  end; { of procedure DrawBox }
begin
  ClrScr;
  for I := 1 to 5 do DrawBox(I*4,1*2,10*I,4*I);
  DrawBox(I,I,80,23);
end.

Often the changes made to the formal parameters in the procedure should also affect the actual parameters. In such cases variable parameters are used, as in the following example:

    procedure Switch(Var A,B: Integer);
    Var Tmp: Integer;
    begin
      Tmp := A; A := B; B := Tmp;
    end;

When this procedure is called by the statement:

    Switch(I,J);

the values of I and J will be switched. If the procedure heading in Switch was declared as:

    procedure Switch(A,B: Integer);

i.e. with a value parameter, then the statement Switch(I,J) would not change I and J.
16.2.2 **Standard Procedures**

TURBO Pascal contains a number of standard procedures. These are:

1) string handling procedures (described in section 9.5),
2) file handling procedures (described in sections 14.2, 14.5.1, and 14.7.1),
3) procedures for allocation of dynamic variables (described in sections 15.2 and 15.5), and
4) input and output procedures (described in section 14.6).

In addition to these, the following standard procedures are available, provided that the associated commands have been installed for your terminal (see section 1.6):

16.2.2.1 **ClrEol**

**Syntax:** ClrEol

Clears all characters from the cursor position to the end of the line without moving the cursor.

16.2.2.2 **ClrScr**

**Syntax:** ClrScr

Clears the screen and places the cursor in the upper left-hand corner. Beware that some screens also reset the video-attributes when clearing the screen, possibly disturbing any user-set attributes.

16.2.2.3 **CrtInit**

**Syntax:** CrtInit

Sends the *Terminal Initialization String* defined in the installation procedure to the screen.
16.2.2.4  CrtExit

Syntax: CrtExit

Sends the *Terminal Reset String* defined in the installation procedure to the screen.

16.2.2.5  Delay

Syntax: Delay(*Time*)

The *Delay* procedure creates a loop which runs for approx. as many milliseconds as defined by its argument *Time* which must be an integer. The exact time may vary somewhat in different operating environments.

16.2.2.6  DelLine

Syntax: DelLine

Deletes the line containing the cursor and moves all lines below one line up.

16.2.2.7  InsLine

Syntax: InsLine

Inserts an empty line at the cursor position. All lines below are moved one line down and the bottom line scrolls off the screen.

16.2.2.8  GotoXY

Syntax: GotoXY(*Xpos*, *Ypos*)

Moves the cursor to the position on the screen specified by the integer expressions *Xpos* (horizontal value, or *row*) and *Ypos* (vertical value, or *column*). The upper left corner (home position) is (1,1).
16.2.2.9 **LowVideo**

**Syntax:** LowVideo

Sets the screen to the video attribute defined as 'Start of Low Video' in the installation procedure, i.e. 'dim' characters.

16.2.2.10 **NormVideo**

**Syntax:** NormVideo

Sets the screen to the video attribute defined as 'Start of Normal Video' in the installation procedure, i.e. the 'normal' screen mode.

16.2.2.11 **Randomize**

**Syntax:** Randomize

Initializes the random number generator with a random value.

16.2.2.12 **Move**

**Syntax:** Move(var1, var2, Num)

Does a mass copy directly in memory of a specified number of bytes. var1 and var2 are two variables of any type, and Num is an integer expression. The procedure copies a block of Num bytes, starting at the first byte occupied by var1 to the block starting at the first byte occupied by var2. You may notice the absence of explicit 'moveright' and 'moveleft' procedures. This is because Move automatically handles possible overlap during the move process.

16.2.2.13 **FillChar**

**Syntax:** FillChar(Var, Num, Value)

Fills a range of memory with a given value. Var is a variable of any type, Num is an integer expression, and Value is an expression of type Byte or Char. Num bytes, starting at the first byte occupied by Var, are filled with the value Value.
16.3 Functions

Like procedures, functions are either standard (pre-declared) or declared by the programmer.

16.3.1 Function Declaration

A function declaration consists of a function heading and a block which is a declaration part followed by a statement part.

The function heading is equivalent to the procedure heading, except that the heading must define the type of the function result. This is done by adding a colon and a type to the heading as shown here:

```
function KeyHit: Boolean;
function Compute(Var Value: Sample): Real;
function Power(X,Y: Real): Real;
```

The result type of a function must be a scalar type (i.e. `Integer`, `Real`, `Boolean`, `Char`, declared scalar or subrange), a `string` type, or a pointer type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as described in section 7.2.1. Within the statement part at least one statement assigning a value to the function identifier must occur. The last assignment executed determines the result of the function. If the function designator appears in the statement part of the function itself, the function will be invoked recursively. (CP/M-80 only: Notice that the A compiler directive must be passive {\$A-} when recursion is used, see appendix E.)
The following example shows the use of a function to compute the sum of a row of integers from 1 to J.

```pascal
function RowSum(I,J: Integer): Integer;
function SimpleRowSum(S: Integer): Integer;
begin
 SimpleRowSum := S*(S+1) div 2;
end;
begin
 RowSum := SimpleRowSum(J) - SimpleRowSum(I-1);
end;
```

The function `SimpleRowSum` is nested within the function `RowSum`. `SimpleRowSum` is therefore only available within the scope of `RowSum`.

The following program is the classical demonstration of the use of a recursive function to calculate the factorial of an integer number:

```pascal
{$A-}
program Factorial;
Var Number: Integer;
function Factorial(Value: Integer): Real;
begin
 if Value = 0 then Factorial := 1
 else Factorial := Value * Factorial(Value-1);
end;
begin
 Read(Number);
 WriteIn('M,Number,'! = ',',Factorial(Number));
end.
```

Note that the type used in the definition of a function type must be previously specified as a type identifier. Thus, the construct:

```pascal
function LowCase(Line: UserLine): string[80];
```

is not allowed. Instead, a type identifier should be associated with the type `string[80]`, and that type identifier should then be used to define the function result type, e.g.:

```pascal
type
 Str80 = string[80];

function LowCase(Line: UserLine): Str80;
```
16.3.1 Function Declaration

Because of the implementation of the standard procedures `Write` and `Writeln`, a function using any of the standard procedures `Read`, `Readln`, `Write`, or `Writeln`, must **never** be called by an expression within a `Write` or `Writeln` statement. In 8-bit systems this is also true for the standard procedures `Str` and `Val`.

### 16.3.2 Standard Functions

The following standard (pre-declared) functions are implemented in TURBO Pascal:

1) string handling functions (described in section 9.5),
2) file handling functions (described in section 14.2 and 14.5.1), and
3) pointer related functions (described in sections 15.2 and 15.5).

#### 16.3.2.1 Arithmetic Functions

**16.3.2.1.1 Abs**

**Syntax:** `Abs( Num )`

Returns the absolute value of `Num`. The argument `Num` must be either `Real` or `Integer`, and the result is of the same type as the argument.

**16.3.2.1.2 ArcTan**

**Syntax:** `ArcTan( Num )`

Returns the angle, in radians, whose tangent is `Num`. The argument `X` must be either `Real` or `Integer`, and the result is `Real`.

**16.3.2.1.3 Cos**

**Syntax:** `Cos( Num )`

Returns the cosine of `Num`. The argument `Num` is expressed in radians, and its type must be either `Real` or `Integer`. The result is of type `Real`.

132

TURBO Pascal Language Manual
16.3.2.1.4 Exp

Syntax: Exp( Num)

Returns the exponential of Num, i.e. $e^{\text{Num}}$. The argument Num must be either Real or Integer, and the result is Real.

16.3.2.1.5 Frac

Syntax: Frac( Num)

Returns the fractional part of Num, i.e. Frac( Num) = Num - Int( Num). The argument Num must be either Real or Integer, and the result is Real.

16.3.2.1.6 Int

Syntax: Int( Num)

Returns the integer part of Num, i.e. the greatest integer number less than or equal to Num, if Num $\geq 0$, or the smallest integer number greater than or equal to Num, if Num < 0. The argument Num must be either Real or Integer, and the result is Real.

16.3.2.1.7 Ln

Syntax: Ln( Num)

Returns the natural logarithm of Num. The argument Num must be either Real or Integer, and the result is Real.

16.3.2.1.8 Sin

Syntax: Sin( Num)

Returns the sine of Num. The argument Num is expressed in radians, and its type must be either Real or Integer. The result is of type Real.
16.3.2.1.9 Sqr

**Syntax:** Sqr( Num)

Returns the square of *Num*, i.e. *Num* * Num. The argument *Num* must be either *Real* or *Integer*, and the result is of the same type as the argument.

16.3.2.1.10 Sqrt

**Syntax:** Sqrt( Num)

Returns the square root of *Num*. The argument *Num* must be either *Real* or *Integer*, and the result is *Real*.

16.3.2.2 Scalar Functions

16.3.2.2.1 Pred

**Syntax:** Pred( Num)

Returns the predecessor of *Num* (if it exists). *Num* is of any scalar type.

16.3.2.2.2 Succ

**Syntax:** Succ( Num)

Returns the successor of *Num* (if it exists). *Num* is of any scalar type.

16.3.2.2.3 Odd

**Syntax:** Odd( Num)

Returns boolean *True* if *Num* is an odd number, and *False* if *Num* is even. *Num* must be of type *Integer*. 

134 TURBO Pascal Language Manual
16.3.2.3 Transfer Functions

The transfer functions are used to convert values of one scalar type to that of another scalar type. In addition to the following functions, the retype facility described in section 8.3 serves this purpose.

16.3.2.3.1 Chr

**Syntax:** Chr( Num)

Returns the character with the ordinal value given by the integer expression `Num`. Example: `Chr(65)` returns the character 'A'.

16.3.2.3.2 Ord

**Syntax:** Ord( Var)

Returns the ordinal number of the value `Var` in the set defined by the type `Var`. `Ord(Var)` is equivalent to `Integer(Var)` (see Type Conversions in section 8.3). `Var` may be of any scalar type, except `Real`, and the result is of type `Integer`.

16.3.2.3.3 Round

**Syntax:** Round( Num)

Returns the value of `Num` rounded to the nearest integer as follows:

- if `Num \geq 0`, then `Round(Num) = Trunc(Num + 0.5)`, and
- if `Num < 0`, then `Round(Num) = Trunc(Num - 0.5)`

`Num` must be of type `Real`, and the result is of type `Integer`.

16.3.2.3.4 Trunc

**Syntax:** Trunc( Num)

Returns the greatest integer less than or equal to `Num`, if `Num \geq 0`, or the smallest integer greater than or equal to `Num`, if `Num < 0`. `Num` must be of type `Real`, and the result is of type `Integer`. 
16.3.2.4 Miscellaneous Standard Functions

16.3.2.4.1 Hi

Syntax: Hi(J)

The low order byte of the result contains the high order byte of the value of the integer expression \( I \). The high order byte of the result is zero. The type of the result is \( \text{Integer} \).

16.3.2.4.2 KeyPressed

Syntax: KeyPressed

Returns boolean \( \text{True} \) if a key has been pressed at the console, and \( \text{False} \) if no key has been pressed. The result is obtained by calling the operating system console status routine.

16.3.2.4.3 Lo

Syntax: Lo(J)

Returns the low order byte of the value of the integer expression \( I \) with the high order byte forced to zero. The type of the result is \( \text{Integer} \).

16.3.2.4.4 Random

Syntax: Random

Returns a random number greater than or equal to zero and less than one. The type is \( \text{Real} \).

16.3.2.4.5 Random(Num)

Syntax: Random(Num)

Returns a random number greater than or equal to zero and less than \( \text{Num} \). \( \text{Num} \) and the random number are both \( \text{Integers} \).
16.3.2.4.6 SizeOf

Syntax: SizeOf( Name)

Returns the number of bytes occupied in memory by the variable or type. Name. The result is of type Integer.

16.3.2.4.7 Swap

Syntax: Swap( Num)

The Swap function exchanges the high and low order bytes of its integer argument Num and returns the resulting value as an integer.

Example: Swap( $1234) returns $3412 (values in hex for clarity).

16.3.2.4.8 UpCase

Syntax: UpCase( ch)

Returns the uppercase equivalent of its argument ch which must be of type Char. If no uppercase equivalent exists, the argument is returned unchanged.
16.4 Forward References

A subprogram is forward declared by specifying its heading separately from the block. This separate subprogram heading is exactly as the normal heading, except that it is terminated by the reserved word forward. The block follows later within the same declaration part. Notice that the block is initiated by a copy of the heading, specifying only the name and no parameters, types, etc.

Example:

```pascal
program Catch22;
Var
 X: Integer;
function Up(Var I: Integer): Integer; forward;
function Down(Var I: Integer): Integer;
begin
 I := I div 2; Writeln(I);
 if I <> 1 then I := Up(I);
end;
function Up;
begin
 while I mod 2 <> 0 do
 begin
 I := I*3+1; Writeln(I);
 end;
 I := Down(I);
end;
begin
 Write('Enter any integer: ');
 Readln(X);
 X := Up(X);
 Write('Ok. Program stopped again. ');
end.
```

When the program is executed and if you enter e.g. 6 it outputs:
The above program is actually a more complicated version of the following program:

```
program Catch222;
Var
 X: Integer;
begin
 Write('Enter any integer: '); Readln(X);
 while X <> 1 do begin
 if X mod 2 = 0 then X := X div 2 else X := X*3+1;
 Writeln(X);
 end;
 Write('Ok. Program stopped again.' Carriage Return);
end.
```

It may interest you to know that it cannot be proved if this small and very simple program actually will stop for any integer!
Forward References

Notes:
17. INCLUDING FILES

The fact that the TURBO editor performs editing only within memory limits the size of source code handled by the editor. The \( I \) compiler directive can be used to circumvent this restriction, as it provides the ability to split the source code into smaller ‘lumps’ and put it back together at compile-time. The include facility also aids program clarity, as commonly used subprograms, once tested and debugged, may be kept as a ‘library’ of files from which the necessary files can be included in any other program.

The syntax for the \( I \) compiler directive is:

\[
\{ \$I \text{filename} \}
\]

where \text{filename} is any legal file name. Spaces are ignored and lower case letters are translated to upper case. If no file type is specified, the default type \text{.PAS} is assumed. This directive must be specified on a line by itself.

Examples:

\[
\{ \$I \text{first}.pas} \\
\{ \$I \text{StdProc} \} \\
\{ \$I \text{COMP.CRE.MOD} \}
\]

To demonstrate the use of the include facility, let us assume that in your ‘library’ of commonly used procedures and functions you have a file called \text{STUPCASE.FUN}. It contains the function \text{StUpCase} which is called with a character or a string as parameter and returns the value of this parameter with any lower case letters set to upper case.

File \text{STUPCASE.FUN}:

\[
\begin{array}{l}
\text{function StUpCase (St: AnyString): AnyString;}
\text{Var I: Integer;}
\text{begin}
\text{for I := 1 to Length(St) do}
\text{St[I] := UpCase(St[I]);}
\text{StUpCase := St}
\text{end;}
\end{array}
\]

In any future program you write which requires this function to convert strings to upper case letters, you need only include the file at compile-time instead of duplicating it into the source code:
program Include Demo;

type
  InData= string[80];
  AnyString= string[255];

Var
  Answer: InData;

{$I STUPCASE.FUN}

begin
  ReadLn(Answer);
  WriteLn(StUpCase(Answer));
end.

This method not only is easier and saves space; it also makes the task of keeping programs updated quicker and safer, as any change to a 'library' routine will automatically affect all programs including this routine.

Notice that TURBO Pascal allows free ordering, and even multiple occurrences, of the individual sections of the declaration part. You may thus e.g. have a number of files containing various commonly used type definitions in your 'library' and include the ones required by different programs.

All compiler directives except B and C are local to the file in which they appear, i.e. if a compiler directive is set to a different value in an included file, it is reset to its original value upon return to the including file. B and C directives are always global. Compiler directives are described in appendix E.

Include files cannot be nested, i.e. one include file cannot include yet another file and then continue processing.
A. CP/M-80

This appendix describes features of TURBO Pascal specific to the 8-bit implementation. It presents two kinds of information:

1) Things you must know to make efficient use of TURBO Pascal. These are described in section A.1.

2) The remaining sections describe things which are only of interest to experienced programmers, e.g. calling machine language routines, technical aspects of the compiler, etc.

A.1 compiler Options

The O command selects the following menu on which you may view and change some default values of the compiler. It also provides a helpful function to find runtime errors in programs compiled into object code files.

```
compile -> Memory
 Com-file
 cHn-file

Find run-time error Quit
```

Figure A-1: Options Menu

A.1.1 Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where to put the code which results from the compilation.

Memory is the default mode. When active, code is produced in memory and resides there ready to be activated by a Run command.
Com-file is selected by pressing C. The arrow moves to point to this line. When active, code is written to a file with the same name as the Work file (or Main file, if specified) and the file type .COM. This file contains the program code and Pascal runtime library, and may be activated by typing its name at the console. Programs compiled this way may be larger than programs compiled in memory, as the program code itself does not take up memory during compilation, and program code starts at a lower address.

cHain-file is selected by pressing H. The arrow moves to point to this line. When active, code is written to a file with the same name as the Work file (or Main file, if specified) and the file type .CHN. This file contains the program code but no Pascal library and must be activated from another TURBO Pascal program with the Chain procedure (see section A.10).

When Com or cHn mode is selected, the menu is expanded with the following two lines:

Start address: XXXX (min YYY)
End address: XXXX (max YYY)

Figure A-2: Start and End Addresses

The use of these additional commands are explained in sections A.1.2 and A.1.3.

A.1.2 Start Address

The Start address specifies the address (in hexadecimal) of the first byte of the code. This is normally the end address of the Pascal library plus one, but may be changed to a higher address if you want to set space aside e.g. for absolute variables to be shared by a series of chained programs.

When you enter an S, you are prompted to enter a new Start address. If you just hit <RETURN>, the minimum value is assumed. Don’t set the Start address to anything less than the minimum value, as the code will then overwrite part of the Pascal library.
A.1.3 End Address

The End address specifies the highest address available to the program (in hexadecimal). The value in parentheses indicate the top of the TPA on your computer, i.e. BDOS minus one. The default setting is 700 to 1000 bytes less to allow space for the loader which resides just below BDOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End address may be changed to suit the TPA size of that system. If you anticipate your programs to run on a range of different computers, it will be wise to set this value relatively low, e.g. C100 (48K), or even A100 (40K) if the program is to run under MP/M.

When you enter an E, you are prompted to enter a End address. If you just hit <RETURN>, the default value is assumed (i.e. top of TPA less 700 to 1000 bytes). If you set the End address higher than this, the resulting programs cannot be executed from TURBO, as they will overwrite the TURBO loader; and if you set it higher than the TPA top, the resulting programs will overwrite part of BDOS if run on your machine.

A.1.4 Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs, the editor is invoked, and the error is automatically pointed out. This, of course, is not possible if the program is in a .COM file or an .CHN file. Run time errors then print out the error code and the value of the program counter at the time of the error, e.g.:

```
Run-time error 01, PC=1B66
Program aborted
```

Figure A-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the F command on the Options menu. When prompted for the address, enter the address given by the error message:
A.1.4

Find Runtime Error

Enter FC: 1E56.

Figure A-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if the error had occurred while running the program in memory.

A.2 Standard Identifiers

The following standard identifiers are unique to the CP/M-80 implementation:

- Bios
- BiosHL
- Bdos
- BdosHL
- RecurPtr
- StackPtr

A.3 Absolute Variables

Variables may be declared to reside at specific memory addresses, and are then called **absolute**. This is done by adding the reserved word **absolute** and an address expressed by an integer constant to the variable declaration.

**Example:**

```pascal
var
 IObyte: Byte absolute $0003;
 CmdLine: string[127] absolute $80;
```

**Absolute** may also be used to declare a variable "on top" of another variable, i.e. that a variable should start at the same address as another variable. When **absolute** is followed by the variable (or parameter) identifier, the new variable will start at the address of that variable (or parameter).

**Example:**

```pascal
var
 Str: string[32];
 StrLen: Byte absolute Str;
```
The above declaration specifies that the variable StrLen should start at the same address as the variable Str, and since the first byte of a string variable gives the length of the string, StrLen will contain the length of Str. Notice that only one identifier may be specified in an absolute declaration, i.e. the construct

Ident1, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given in sections A.15 and A.16.

A.4 Addr Function

Syntax: Addr(name)

Returns the address in memory of the first byte of the type, variable, procedure, or function with the identifier name. If name is an array, it may be subscribed, and if name is a record, specific fields may be selected. The value returned is of type Integer.

A.5 Predefined Arrays

TURBO Pascal offers two predefined arrays of type Byte, called Mem and Port, which are used to directly access CPU memory and data ports.

A.5.1 Mem Array

The predeclared array Mem is used to access memory. Each component of the array is a Byte, and indexes correspond to addresses in memory. The index type is Integer. When a value is assigned to a component of Mem, it is stored at the address given by the index expression. When the Mem array is used in an expression, the byte at the address specified by the index is used.

Example:

Mem[WsCursor] := 2;
Mem[WsCursor+1] := $1B;
Mem[WsCursor+2] := Ord(' ');
IObyte := Mem[3];
Mem[Addr+Offset] := Mem[Addr];
A.5.2 Port Array

The Port array is used to access the data ports of the Z-80 CPU. Each element of the array represents a data port with indexes corresponding to port numbers. As data ports are selected by 8-bit addresses, the index type is Byte. When a value is assigned to a component of Port, it is output to the port specified. When a component of Port is referenced in an expression, its value is input from the port specified.

The use of the port array is restricted to assignment and reference in expressions only, i.e. components of Port cannot function as variable parameters to procedures and functions. Furthermore, operations referring to the entire Port array (reference without index) are not allowed.

A.6 Array Subscript Optimization

The X compiler directive allows the programmer to select whether array subscription should be optimized with regard to execution speed or to code size. The default mode is active, i.e. {$X+}, which causes execution speed optimization. When passive, i.e. {$X-}, the code size is minimized.

A.7 With Statements

The default 'depth' of nesting of With statements is 2, but the W directive may be used to change this value to between 0 and 9. For each block, With statements require two bytes of storage for each nesting level allowed. Keeping the nesting to a minimum may thus greatly affect the size of the data area in programs with many subprograms.

A.8 Pointer Related Items

A.8.1 MemAvail

The standard function MemAvail is available to determine the available space on the heap at any given time. The result is an Integer, and if more than 32767 bytes is available, MemAvail returns a negative number. The correct number of free bytes is then calculated as 65536.0 + MemAvail. Notice the use of a real constant to generate a Real result, as the result is greater than GMaxInt. Memory management is discussed in further detail in section A.16.
A.8.2 Pointers and Integers

The standard functions *Ord* and *Ptr* provide direct control of the address contained in a pointer. *Ord* returns the address contained in its pointer argument as an *Integer*, and *Ptr* converts its *Integer* argument into a pointer which is compatible with all pointer types.

These functions are extremely valuable in the hands of an experienced programmer as they allow a pointer to point to anywhere in memory. If used carelessly, however, they are very dangerous, as a dynamic variable may be made to overwrite other variables, or even program code.

A.9 External Subprograms

The reserved word *external* is used to declare external procedures and functions, typically procedures and functions written in machine code.

An external subprogram has no *block*, i.e. no declaration part and no statement part. Only the subprogram heading is specified, immediately followed by the reserved word *external* and an integer constant defining the memory address of the subprogram:

```plaintext
procedure DiskReset; external $E00;
function IOstatus: boolean; external $D123
```

Parameters may be passed to external subprograms, and the syntax is exactly the same as that of calls to ordinary procedures and functions:

```plaintext
procedure Plot(X,Y: Integer); external $F003;
procedure QuickSort(var List: PartNo); external $1C00;
```

Parameter passing to external subprograms is discussed further in section A.-15.3.

A.10 Chain and Execute

TURBO Pascal provides two standard procedures: *Chain* and *Execute* which allow you to activate other programs from a TURBO program. The syntax of these procedure calls is:

```plaintext
Chain(F1Var)
Execute(F1Var)
```
where FilVar is a file variable of any type, previously assigned to a disk file with the standard procedure Assign. If the file exists, it is loaded into memory and executed.

The Chain procedure is used only to activate special TURBO Pascal .CHN files, i.e. files compiled with the chn-file option selected on the Options menu (see section A.1.1). Such a file contains only program code; no Pascal library. It is loaded into memory and executed at the start address of the current program, i.e. the address specified when the current program was compiled. It then uses the Pascal library already present in memory. Thus, the current program and the chained program must use the same start address.

The Execute procedure may be used to execute any .COM file, i.e. any file containing executable code. This could be a file created by TURBO Pascal with the Com-option selected on the Options menu (see section A.1.1). The file is loaded and executed at address $100, as specified by the CP/M standard.

If the disk file does not exist, an I/O error occurs. This error is treated as described in section 14.8. If the I compiler directive is passive ({$I-}), program execution continues with the statement following the failed Chain or Execute statement, and the I0result function must be called prior to further I/O.

Data can be transferred from the current program to the chained program either by shared global variables or by absolute address variables.

To insure overlapping, shared global variables should be declared as the very first variables in both programs, and they must be listed in the same order in both declarations. Furthermore, both programs must be compiled to the same memory size (see section A.1.3). When these conditions are satisfied, the variables will be placed at the same address in memory by both programs, and as TURBO Pascal does not automatically initialize its variables, they may be shared.
Example:
Program MAIN.COM:

```pascal
program Main;
var
 Txt: string[80];
 CntPrg: file;
begin
 Write('Enter any text: '); Readln(Txt);
 Assign(CntPrg, 'ChrCount.chn');
 Chain(CntPrg);
end.
```

Program CHRCOUNT.CHN:

```pascal
program ChrCount;
var
 Txt: string[80];
 NoOfChar,
 NoOfUpc,
 I: Integer;
begin
 NoOfUpc := 0;
 NoOfChar := Length(Txt);
 for I := 1 to length(Txt) do
 if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);
 Write('No of characters in entry: ',NoOfChar);
 Writeln('. No of upper case characters: ', NoOfUpc, '.');
end.
```

Note that neither Chain nor Execute can be used in direct mode, i.e. from a program run with the compiler options switch in position Memory (section A.1.1).

A program can determine whether it was invoked by Chain or Execute by examining the value of the byte at address $80$ (which normally contains the length of the CP/M command line). If this byte is $FF$ (255), the program was activated by Chain or Execute, otherwise it was activated from the operating system. Care should be taken if executing non-TURBO programs that they do not use the CP/M command line when invoked, as the $FF$ value in address $80$ may otherwise cause confusion.
A.11 In-line Machine Code

TURBO Pascal features the inline statements as a very convenient way of inserting machine code instructions directly into the program text. An inline statement consists of the reserved word inline followed by one or more constants, variable identifiers, or location counter references, separated by slashes and enclosed in parentheses.

The constants may be either literal constants or constant identifiers, and they must be of type integer. Literals generate one byte of code if within the range 0..255 ($00..$FF), otherwise two bytes in the standard byte reversed format. Constant identifiers always generate two bytes of code.

A variable identifier generates two bytes of code (in byte reversed format) containing the memory address of the variable.

A location counter reference consists of an asterisk, optionally followed by an offset consisting of a plus or a minus sign and an integer constant. An asterisk alone generates two bytes of code (in byte reversed format) containing the current location counter value. If the asterisk is followed by an offset, it is added or subtracted before coding the address.

The following example of an inline statement generates machine code that will convert all characters in its string argument to upper case.

```pascal
procedure UpperCase(var Strg: Str); {Str is type String[255]}
begin
inline ($2A/Strg/ $46/$04/$05/$CA/*+20/ $23/$7E/$FE/$61/$DA/*-9/ $FE/$7B/$D2/*-14/ $D6/$20/$77/$C3/*-20);
end;
```
**Inline** statements may be freely mixed with other statements throughout the statement part of a block, and **inline** statements may use all CPU registers. **Note**, however, that the contents of the stack pointer register (SP) must be the same on exit as on entry.

### A.12 CP/M Function Calls

For the purpose of calling CP/M BDOS and BIOS routines, TURBO Pascal introduces two standard procedures: `Bdos` and `Bios`, and four standard functions: `Bdos`, `BdosHL`, `Bios`, and `BiosHL`.

Details on BDOS and BIOS routines are found in the *CP/M Operating System Manual* published by Digital Research.

#### A.12.1 Bdos procedure and function

**Syntax:** `Bdos(Func {, Param })`

The `Bdos` **procedure** is used to invoke CP/M BDOS routines. `Func` and `Param` are integer expressions. `Func` denotes the number of the called routine and is loaded into the C register. `Param` is optional and denotes a parameter which is loaded into the DE register pair. A call to address 5 then invokes the BDOS.

The `Bdos` **function** is called like the procedure and returns an **Integer** result which is the value returned by the BDOS in the A register.

#### A.12.2 BdosHL function

**Syntax:** `BdosHL(Func {, Param })`

This function is exactly similar to the `Bdos` function above, except that the result is the value returned in the HL register pair.
A.12.3 Bios procedure and function

Syntax: Bios(Func {, Param })

The Bios procedure is used to invoke BIOS routines. Func and Param are integer expressions. Func denotes the number of the called routine, with 0 meaning the WBOOT routine, 1 the CONST routine, etc. i.e. the address of the called routine is Func * 3 plus the WBOOT address contained in addresses 1 and 2. Param is optional and denotes a parameter which is loaded into the BC register pair prior to the call.

The Bios function is called like the procedure and returns an integer result which is the value returned by the BIOS in the A register.

A.12.4 BiosHL function

Syntax: BiosHL(Func {, Param })

This function is exactly similar to the Bios function above, except that the result is the value returned in the HL register pair.
A.13 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input and output drivers, i.e. routines which perform input and output of characters to and from external devices. The following drivers are part of the TURBO environment, and used by the standard I/O drivers (although they are not available as standard procedures or functions):

```plaintext
function ConSt: boolean;
function ConIn: Char;
procedure ConOut(Ch: Char);
procedure LstOut(Ch: Char);
procedure AuxOut(Ch: Char);
function AuxIn: Char;
procedure UsrOut(Ch: Char);
function Usrln: Char;
```

The ConSt routine is called by the function KeyPressed, the ConIn and ConOut routines are used by the CON:, TRM:, and KBD: devices, the LstOut routine is used by the LST: device, the AuxOut and AuxIn routines are used by the AUX: device, and the UsrOut and Usrln routines are used by the USR: device.

By default, these drivers use the corresponding BIOS entry points of the CP/M operating system, i.e. ConSt uses CONST, ConIn uses CONIN, ConOut uses CONOUT, LstOut uses LIST, AuxOut uses PUNCH, AuxIn uses READER, UsrOut uses CONOUT, and Usrln uses CONIN. This, however, may be changed by the programmer by assigning the address of a self-defined driver procedure or a driver function to one of the following standard variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contains the address of the</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConStPtr</td>
<td>ConSt function</td>
</tr>
<tr>
<td>ConInPtr</td>
<td>ConIn function</td>
</tr>
<tr>
<td>ConOutPtr</td>
<td>ConOut procedure</td>
</tr>
<tr>
<td>LstOutPtr</td>
<td>LstOut procedure</td>
</tr>
<tr>
<td>AuxOutPtr</td>
<td>AuxOut procedure</td>
</tr>
<tr>
<td>AuxInPtr</td>
<td>AuxIn function</td>
</tr>
<tr>
<td>UsrOutPtr</td>
<td>UsrOut procedure</td>
</tr>
<tr>
<td>UsrInPtr</td>
<td>UsrIn function</td>
</tr>
</tbody>
</table>

A user defined driver procedure or driver function must match the definitions given above, i.e. a ConSt driver must be a Boolean function, a ConIn driver must be a Char function, etc.
A.14 Interrupt Handling

The TURBO Pascal run time package and the code generated by the compiler are both fully interruptible. Interrupt service routines must preserve all registers used.

If required, interrupt service procedures may be written in Pascal. Such procedures should always be compiled with the A compiler directive active ($A+), they must not have parameters, and they must themselves insure that all registers used are preserved. This is done by placing an inline statement with the necessary PUSH instructions at the very beginning of the procedure, and another inline statement with the corresponding POP instructions at the very end of the procedure. The last instruction of the ending inline statement should be an EI instruction ($FB) to enable further interrupts. If daisy chained interrupts are used, the inline statement may also specify a RETI instruction ($ED,$4D), which will override the RET instruction generated by the compiler.

The general rules for register usage are that integer operations use only the AF, BC, DE, and HL registers, other operations may use IX and IY, and real operations use the alternate registers.

An interrupt service procedure should not employ any I/O operations using the standard procedures and functions of TURBO Pascal, as these routines are not re-entrant. Also note that BDOS calls (and in some instances BIOS calls, depending on the specific CP/M implementation) should not be performed from interrupt handlers, as these routines are not re-entrant.

The programmer may disable and enable interrupts throughout a program using DI and EI instructions generated by inline statements.

If mode 0 (IM 0) or mode 1 (IM 1) interrupts are employed, it is the responsibility of the programmer to initialize the restart locations in the base page (note that RST 0 cannot be used, as CP/M uses locations 0 through 7). If mode 2 (IM 2) interrupts are employed, the programmer should generate an initialized jump table (an array of integers) at an absolute address, and initialize the I register through a inline statement at the beginning of the program.
In the following descriptions, the symbol @ denotes the address of the first byte occupied by a variable of the given type. The standard function Addr may be used to obtain this value for any variable.

**A.15.1 Basic Data Types**

The basic data types may be grouped into structures (arrays, records, and disk files), but this structuring will not affect their internal formats.

**A.15.1.1 Scalars**

The following scalars are all stored in a single byte: Integer subranges with both bounds in the range 0..255, Booleans, Chars, and declared scalars with less than 256 possible values. This byte contains the ordinal value of the variable.

The following scalars are all stored in two bytes: Integers, Integer subranges with one or both bounds not within the range 0..255, and declared scalars with more than 256 possible values. These bytes contain a 2's complement 16-bit value with the least significant byte stored first.

**A.15.1.2 Reals**

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa and an 8-bit 2's exponent. The exponent is stored in the first byte and the mantissa in the next five bytes which the least significant byte first:

\[
\begin{align*}
\@ & : \text{Exponent} \\
\@ +1 & : \text{LSB of mantissa} \\
: & : \\
\@ +5 & : \text{MSB of mantissa}
\end{align*}
\]

The exponent uses binary format with an offset of $80. Hence, an exponent of $84 indicates that the value of the mantissa is to be multiplied by \[2^{(84-80)} = 2^4 = 16.\] If the exponent is zero, the floating point value is considered to be zero.
A.15.1.2 Reals

The value of the mantissa is obtained by dividing the 40-bit unsigned integer by $2^{40}$. The mantissa is always normalized, i.e. the most significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The sign of the mantissa is stored in this bit, a 1 indicating that the number is negative, and a 0 indicating that the number is positive.

A.15.1.3 Strings

A string occupies the number of bytes corresponding to one plus the maximum length of the string. The first byte contains the current length of the string. The following bytes contain the actual characters, with the first character stored at the lowest address. In the table shown below, $L$ denotes the current length of the string, and $\text{Max}$ denotes the maximum length:

<table>
<thead>
<tr>
<th>@</th>
<th>Current length ($L$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ +1</td>
<td>First character</td>
</tr>
<tr>
<td>@ +2</td>
<td>Second character</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>@ +L</td>
<td>Last character</td>
</tr>
<tr>
<td>@ +L+1</td>
<td>Unused</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>@ +Max</td>
<td>Unused</td>
</tr>
</tbody>
</table>

A.15.1.4 Sets

An element in a set occupies one bit, and as the maximum number of elements in a set is 256, a set variable will never occupy more than 32 bytes ($256/8$).

If a set contains less than 256 elements, some of the bits are bound to be zero at all times and need therefore not be stored. In terms of memory efficiency, the best way to store a set variable of a given type would then be to "cut off" all insignificant bits, and rotate the remaining bits so that the first element of the set would occupy the first bit of the first byte. Such rotate operations, however, are quite slow, and TURBO therefore employs a compromise: Only bytes which are statically zero (i.e. bytes of which no bits are used) are not stored. This method of compression is very fast and in most cases as memory efficient as the rotation method.
The number of bytes occupied by a set variable is calculated as \((\text{Max} \div 8) - (\text{Min} \div 8) + 1\), where \text{Max} and \text{Min} are the upper and lower bounds of the base type of that set. The memory address of a specific element \(E\) is:

\[
\text{MemAddress} = @ + (E \div 8) - (\text{Min} \div 8)
\]

and the bit address within the byte at \text{MemAddress} is:

\[
\text{BitAddress} = E \mod 8
\]

where \(E\) denotes the ordinal value of the element.

### A.15.1.5 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). An FIB occupies 176 bytes of memory and is divided into two sections: The control section (the first 48 bytes), and the sector buffer (the last 128 bytes). The control section contains various information on the disk file or device currently assigned to the file. The sector buffer is used to buffer input and output from and to the disk file.

The table below shows the format of an FIB:

<table>
<thead>
<tr>
<th>@</th>
<th>Flags byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>@+1</td>
<td>File type</td>
</tr>
<tr>
<td>@+2</td>
<td>Character buffer</td>
</tr>
<tr>
<td>@+3</td>
<td>Sector buffer pointer</td>
</tr>
<tr>
<td>@+4</td>
<td>Number of records (LSB)</td>
</tr>
<tr>
<td>@+5</td>
<td>Number of records (MSB)</td>
</tr>
<tr>
<td>@+6</td>
<td>Record length in bytes (LSB)</td>
</tr>
<tr>
<td>@+7</td>
<td>Record length in bytes (MSB)</td>
</tr>
<tr>
<td>@+8</td>
<td>Current record number (LSB)</td>
</tr>
<tr>
<td>@+9</td>
<td>Current record number (MSB)</td>
</tr>
<tr>
<td>@+10</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@+11</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@+12</td>
<td>First byte of CP/M FCB</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>@+47</td>
<td>Last byte of CP/M FCB</td>
</tr>
<tr>
<td>@+48</td>
<td>First byte of sector buffer</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>@+175</td>
<td>Last byte of sector buffer</td>
</tr>
</tbody>
</table>
The flags byte at @ contains four one bit flags which indicate the current status of the file:

- bit 0: Input flag. High if input is allowed.
- bit 1: Output flag. High if output is allowed.
- bit 2: Write semaphore. High if data has been written to the sector buffer.
- bit 3: Read semaphore. High if the contents of the sector buffer is undefined.

The file type field at @ +1 specifies the type of device currently assigned to the file variable. The following values can occur:

- 0: The console device (CON:)
- 1: The terminal device (TRM:)
- 2: The keyboard device (KBD:)
- 3: The list device (LST:)
- 4: The auxiliary device (AUX:)
- 5: The user device (USR:)
- 6: A disk file

When a file is assigned to a logical device, only the first three bytes of the FIB are of significance.

The sector buffer pointer at @ +3 contains an offset from the first byte of the sector buffer. The following three fields are used only by random access files (defined files) and untyped files. Each field consists of two bytes in byte reversed format. Bytes @ +10 and @ +11 are currently unused, but reserved for future expansion. Bytes @ +12 through @ +47 contain a CP/M file control block (FCB). The last block of the FIB is the sector buffer used for buffering input and output from and to disk files.

The FIB format described above applies to all defined files and textfiles. The FIB of an untyped file has no sector buffer, as data is transferred directly between a variable and the disk file. Thus, the length of the FIB of an untyped file is only 48 bytes.

### A.15.1.6 Pointers

A pointer consists of two bytes containing a 16-bit memory address, and it is stored in memory using byte reversed format, i.e. the least significant byte is stored first. The value nil corresponds to a zero word.
A.15.2 Data Structures

Data structures are built from the basic data types using various structuring methods. Three different structuring methods exist: arrays, records, and disk files. The structuring of data does not in any way affect the internal formats of the basic data types.

A.15.2.1 Arrays

The components with the lowest index values are stored at the lowest memory address. A multi-dimensional array is stored with the rightmost dimension increasing first, e.g. given the array

\[
\text{Board: } \text{array}[1..8,1..8] \text{ of Square}
\]

you have the following memory layout of its components:

- lowest address: \(\text{Board}[1,1]\)
  \(\text{Board}[1,2]\)
  \(\vdots\)
  \(\text{Board}[1,8]\)
  \(\text{Board}[2,1]\)
  \(\text{Board}[2,2]\)
  \(\vdots\)

- Highest address: \(\text{Board}[8,8]\)

A.15.2.2 Records

The first field of a record is stored at the lowest memory address. If the record contains no variant parts, the length is given by the sum of the lengths of the individual fields. If a record contains a variant, the total number of bytes occupied by the record is given by the length of the fixed part plus the length of largest of its variant parts. Each variant starts at the same memory address.
A.15.2.3 Disk Files

Disk files are different from other data structures in that data is not stored in internal memory but in a file on an external device. A disk file is controlled through a file interface block (FIB) as described in section A.15.1.5. In general there are two different types of disk files: random access files and text files.

A.15.2.3.1 Random Access Files

A random access file consists of a sequence of records, all of the same length and same internal format. To optimize file storage capacity, the records of a file are totally contiguous. The first four bytes of the first sector of a file contains the number of records in the file and the length of each record in bytes. The first record of the file is stored starting at the fourth byte.

- sector 0, byte 0: Number of records (LSB)
- sector 0, byte 1: Number of records (MSB)
- sector 0, byte 2: Record length (LSB)
- sector 0, byte 3: Record length (MSB)

A.15.2.3.2 Text Files

The basic components of a text file are characters, but a text file is subdivided into lines. Each line consists of any number of characters ended by a CR/LF sequence (ASCII $0D/$0A). The file is terminated by a Ctrl-Z (ASCII $1B).

A.15.3 Parameters

Parameters are transferred to procedures and functions via the Z-80 stack. Normally, this is of no interest to the programmer, as the machine code generated by TURBO Pascal will automatically PUSH parameters onto the stack before a call, and POP them at the beginning of the subprogram. However, if the programmer wishes to use external subprograms, these must POP the parameters from the stack themselves.
On entry to an external subroutine, the top of the stack always contains the return address (a word). The parameters, if any, are located below the return address, i.e. at higher addresses on the stack. Therefore, to access the parameters, the subroutine must first POP off the return address, then all the parameters, and finally it must restore the return address by PUSHing it back onto the stack.

A.15.3.1 Variable Parameters

With a variable (VAR) parameter, a word is transferred on the stack giving the absolute memory address of the first byte occupied by the actual parameter.

A.15.3.2 Value Parameters

With value parameters, the data transferred on the stack depends upon the type of the parameter as described in the following sections.

A.15.3.2.1 Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except Reals) are transferred on the stack as a word. If the variable occupies only one byte when it is stored, the most significant byte of the parameter is zero. Normally, a word is POPped off the stack using an instruction like POP HL.

A.15.3.2.2 Reals

A real is transferred on the stack using six bytes. If these bytes are POPped using the instruction sequence:

- POP HL
- POP DE
- POP BC

then L will contain the exponent, H the fifth (least significant) byte of the mantissa, E the fourth byte, D the third byte, C the second byte, and B the first (most significant) byte.
A.15.3.2.3  Strings

When a string is at the top of the stack, the byte pointed to by SP contains the length of the string. The bytes at addresses SP+1 through SP+n (where n is the length of the string) contain the string with the first character stored at the lowest address. The following machine code instructions may be used to POP the string at the top of the stack and store it in StrBuf:

```
LD DE, StrBuf
LD HL, 0
LD B, H
ADD HL, SP
LD C, (HL)
INC BC
LDIR
LD SP, HL
```

A.15.3.2.4  Sets

A set always occupies 32 bytes on the stack (set compression only applies to the loading and storing of sets). The following machine code instructions may be used to POP the set at the top of the stack and store it in SetBuf:

```
LD DE, SetBuf
LD HL, 0
ADD HL, SP
LD BC, 32
LDIR
LD SP, HL
```

This will store the least significant byte of the set at the lowest address in SetBuf.

A.15.3.2.5  Pointers

A pointer value is transferred on the stack as a word containing the memory address of a dynamic variable. The value NIL corresponds to a zero word.
Even when used as value parameters, Array and Record parameters are not actually pushed onto the stack. Instead, a word containing the address of the first byte of the parameter is transferred. It is then the responsibility of the subroutine to POP this word, and use it as the source address in a block copy operation.

User written external functions must return their results exactly as specified in the following:

Values of scalar types, except Reals, must be returned in the HL register pair. If the type of the result is expressed in one byte, then it must be returned in L and H must by zero.

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E, and H must contain the mantissa (most significant byte in B), and L must contain the exponent.

Strings and sets must be returned on the top of the stack on the formats described in sections A.15.3.2.3 and A.15.3.2.4.

Pointer values must be returned in the HL register pair.
A.16 Memory Management

A.16.1 Memory Maps

The following diagrams illustrate the contents of memory at different stages of working with the TURBO system. Solid lines indicate fixed boundaries (i.e. determined by amount of memory, size of your CP/M, version of TURBO, etc.), whereas dotted lines indicate boundaries which are determined at run-time (e.g. by the size of the source text, and by possible user manipulation of various pointers, etc.). The sizes of the segments in the diagrams do not necessarily reflect the amounts of memory actually consumed.

A.16.1.1 Compilation in Memory

During compilation of a program in memory (Memory-mode on compiler Options menu, see section A.1), the memory is mapped as follows:

<table>
<thead>
<tr>
<th></th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CP/M and run-time workspace</td>
</tr>
<tr>
<td></td>
<td>Pascal Library</td>
</tr>
<tr>
<td></td>
<td>Turbo interface, editor, and compiler</td>
</tr>
<tr>
<td></td>
<td>Error messages, optional</td>
</tr>
<tr>
<td></td>
<td>Source text</td>
</tr>
<tr>
<td></td>
<td>Object code <em>growing upward</em></td>
</tr>
<tr>
<td></td>
<td>Symbol table <em>growing downward</em></td>
</tr>
<tr>
<td></td>
<td>CPU stack <em>growing downward</em></td>
</tr>
<tr>
<td></td>
<td>CP/M</td>
</tr>
<tr>
<td></td>
<td><em>HighMem</em></td>
</tr>
</tbody>
</table>

Figure A-5: Memory map during compilation in memory
If the error message file is not loaded when starting TURBO, the source text starts that much lower in memory. When the compiler is invoked, it generates object code working upwards from the end of the source text. The CPU stack works downwards from the logical top of memory, and the compiler's symbol table works downwards from an address 1K ($400 bytes) below the logical top of memory.

A.16.1.2 Compilation To Disk

During compilation to a .COM or .CHN file (Com-mode or cHn-mode on compiler Options menu, see section A.1), the memory looks much as during compilation in memory (see preceding section) except that generated object code does not reside in memory but is written to a disk file. Also, the code starts at a lower address (right after the Pascal library instead of after the source text). Compilation of much larger programs is thus possible in this mode.

Figure A-6: Memory map during compilation to a file
When a program is executed in direct - or memory - mode (i.e. the Memory-mode on compiler Options menu is selected, see section A.1), the memory is mapped as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>CP/M and run-time workspace</td>
</tr>
<tr>
<td></td>
<td>Pascal Library</td>
</tr>
<tr>
<td></td>
<td>Turbo interface, editor, and compiler</td>
</tr>
<tr>
<td></td>
<td>Error messages, optional</td>
</tr>
<tr>
<td></td>
<td>Source text</td>
</tr>
<tr>
<td></td>
<td>Object code</td>
</tr>
<tr>
<td></td>
<td>Default initial value of HeapPtr</td>
</tr>
<tr>
<td></td>
<td>Heap growing upward</td>
</tr>
<tr>
<td></td>
<td>Recursion stack growing downward</td>
</tr>
<tr>
<td></td>
<td>Default initial value of RecurPtr</td>
</tr>
<tr>
<td></td>
<td>CPU stack growing downward</td>
</tr>
<tr>
<td></td>
<td>Default initial state of StackPtr</td>
</tr>
<tr>
<td></td>
<td>Program variables</td>
</tr>
<tr>
<td></td>
<td>CP/M HighMem</td>
</tr>
</tbody>
</table>

Figure A-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known. The heap pointer HeapPtr is set to this value by default, and the heap grows from here and upwards in memory towards the recursion stack. The maximum memory size is BDOS minus one (indicated on the compiler Options menu). Program variables are stored from this address and downwards. The end of the variables is the 'top of free memory' which is the initial value of the CPU stack pointer StackPtr. The CPU stack grows downwards from here towards the position of the recursion stack pointer RecurPtr, $400$ bytes lower than StackPtr. The recursion stack grows from here downward towards the heap.
**A.16.1.4 Execution of A Program File**

When a program file is executed (either by the Run command with the Compile mode on the compiler Options menu selected, by an Execute command, or directly from CP/M), the memory is mapped as follows:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>CP/M and run-time workspace</td>
</tr>
<tr>
<td></td>
<td>Pascal Library</td>
</tr>
<tr>
<td></td>
<td>Default program start address</td>
</tr>
<tr>
<td></td>
<td>Object code</td>
</tr>
<tr>
<td></td>
<td>Default initial value of HeapPtr</td>
</tr>
<tr>
<td></td>
<td>Heap growing upward</td>
</tr>
<tr>
<td></td>
<td>Recursion stack growing downward</td>
</tr>
<tr>
<td></td>
<td>Default initial value of RecurPtr</td>
</tr>
<tr>
<td></td>
<td>CPU stack growing downward</td>
</tr>
<tr>
<td></td>
<td>Default initial state of StackPtr</td>
</tr>
<tr>
<td></td>
<td>Program variables</td>
</tr>
<tr>
<td></td>
<td>Default end address</td>
</tr>
<tr>
<td></td>
<td>Maximum memory size</td>
</tr>
<tr>
<td></td>
<td>CP/M</td>
</tr>
<tr>
<td></td>
<td>HighMem</td>
</tr>
</tbody>
</table>

**Figure A-8: Memory map during execution of a program file**

This map resembles the previous, except for the absence of the TURBO interface, editor, and compiler (and possible error messages) and of the source text. The default program start address (shown on the compiler Options menu) is the first free byte after the Pascal runtime library. This value may be manipulated with the Start address command of the compiler Options menu, e.g. to create space for absolute variables and/or external procedures between the library and the code. The maximum memory size is BDOS minus one, and the default value is determined by the BDOS location on the computer in use.
If programs are to be translated for other systems, care should be taken to avoid collision with the BDOS. The maximum memory may be manipulated with the End address command of the compiler Options menu. Notice that the default end address setting is approx. 700 to 1000 bytes lower than maximum memory. This is to allow space for the loader which resides just below BDOS when .COM files are Run or eXecuted from the TURBO system. This loader restores the TURBO editor, compiler, and possible error messages when the program finishes and thus returns control to the TURBO system.

**A.16.2 The Heap and The Stacks**

As indicated by the memory maps in previous sections, three stack-like structures are maintained during execution of a program: The heap, the CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the standard procedures New, Mark, and Release. At the beginning of a program, the heap pointer HeapPtr is set to the address of the bottom of free memory, i.e. the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation of expressions and to transfer parameters to procedures and functions. An active for statement also uses the CPU stack, and occupies one word. At the beginning of a program, the CPU stack pointer StackPtr is set to the address of the top of free memory.

The recursion stack is used only by recursive procedures and functions, i.e. procedures and functions compiled with the A compiler directive passive (SA-). On entry to a recursive subprogram it copies its workspace onto the recursion stack, and on exit the entire workspace is restored to its original state. The default initial value of RecurPtr at the beginning of a program, is 1K ($400) bytes below the CPU stack pointer.

Because of this technique, variables local to a subprogram must not be used as var parameters in recursive calls.

The pre-defined variables:

- **HeapPtr**: The heap pointer,
- **RecurPtr**: The recursion stack pointer, and
- **StackPtr**: The CPU stack pointer

allow the programmer to control the position of the heap and the stacks.
The type of these variables is `Integer`. Notice that `HeapPtr` and `RecurPtr` may be used in the same context as any other `Integer` variable, whereas `StackPtr` may only be used in assignments and expressions.

When these variables are manipulated, always make sure that they point to addresses within free memory, and that:

\[
\text{HeapPtr} < \text{RecurPtr} < \text{StackPtr}
\]

Failure to adhere to these rules will cause unpredictable, perhaps fatal, results.

Needless to say, assignments to the heap and stack pointers must never occur once the stacks or the heap are in use.

On each call to the procedure `New` and on entering a recursive procedure or function, the system checks for collision between the heap and the recursion stack, i.e. checks if `HeapPtr` is less than `RecurPtr`. If not, a collision has occurred, which results in an execution error.

Note that no checks are made at any time to insure that the CPU stack does not overflow into the bottom of the recursion stack. For this to happen, a recursive subroutine must call itself some 300-400 times, which must be considered a rare situation. If, however, a program requires such nesting, the following statement executed at the beginning of the program block will move the recursion stack pointer downwards to create a larger CPU stack:

\[
\text{RecurPtr} := \text{StackPtr} - 2 \times \text{MaxDepth} - 512;
\]

where `MaxDepth` is the maximum required depth of calls to the recursive subprogram(s). The extra approx. 512 bytes are needed as a margin to make room for parameter transfers and intermediate results during the evaluation of expressions.
A.16.2 The Heap and The Stacks

Notes:
B. MS-DOS/PC-DOS and CP/M-86

This appendix describes features of TURBO pascal specific to the various 16-bit implementations. The appendix has three sub-sections:

**Common features** which deals with information common to the MS-DOS/PC-DOS and the CP/M-86 implementations.

The **MS-DOS/PC-DOS implementation** which deals with information specific to the MS-DOS implementation.

The **CP/M-86 implementation** which deals with information specific to the CP/M-86 implementation.

B.1 Common features

This section presents two kinds of information:

1) Things you must know to make efficient use of TURBO Pascal. These are described in section B.1.1.

2) The remaining sections describe things which are only of interest to experienced programmers, e.g. calling machine language routines, technical aspects of the compiler, etc.

B.1.1 Compiler Options

The 0 command selects the following menu from which you may view and change some default values of the compiler. It also provides a helpful function to find runtime errors in programs compiled into object code files.

```
compile -> Memory
 Com-file
 chFile
 Find run-time error Quit
```

Figure B-1: Options Menu
The only difference between the two implementations is that then command Com-file is called Cmd-file in the CP/M-86 implementation.

### B.1.1.1 Memory / Com file / cHn-file

The three commands M, C, and H select the compiler mode, i.e. where to put the code which results from the compilation. Memory is the default mode. When active, code is produced in memory and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this line. The compiler writes code to a file with the same name as the Work file (or Main file, if specified) and the file type .COM (in CP/M-86 the file type is .CMD). This file contains the program code and Pascal runtime library, and may be activated by typing its name at the console.

cHain-file is selected by pressing H. The arrow moves to point to this line. The compiler writes code to a file with the same name as the Work file (or Main file, if specified) and the file type .CHN. This file contains the program code but no Pascal library and must be activated from another TURBO Pascal program with the Chain procedure (see section B.1.9).

When the Com or cHn mode is selected, four additional lines will appear on the screen:

```
minimum code segment size: XXXX paragraphs (max. YYY)
minimum data segment size: XXXX paragraphs (max. YYY)
minimum free dynamic memory: XXXX paragraphs
maximum free dynamic memory: XXXX paragraphs
```

Figure B-2: Memory Usage Menu

The use of these commands are described in the following sections.
B.1.1.2 Minimum Code Segment Size

The O-command is used to set the minimum size of the code segment for a .COM using Chain or Execute. As discussed in section B.1.9, Chain and Execute do not change the base addresses of the code, data, and stack segments, and a 'root' program using Chain or Execute must therefore allocate segments of sufficient size to accommodate the largest segments in any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of the Minimum Code Segment Size to at least the same value as the largest code segment size of the programs to be chained/executed from that root. The required values are obtained from the status printout terminating any compilation. The values are in hexadecimal and specify number of paragraphs, a paragraph being 16 bytes.

B.1.1.3 Minimum Data Segment Size

The D-command is used to set the minimum size of the data segment for a .COM using Chain or Execute. As discussed above, a 'root' program using these commands must allocate segments of sufficient size to accommodate the largest data of any Chained or Executed program.

Consequently, when compiling a 'root' program, you must set the value of the Minimum Data Segment Size to at least the same value as the largest data segment size of the programs to be chained/executed from that root. The required values are obtained from the status printout terminating any compilation. The values are in hexadecimal and specify number of paragraphs, a paragraph being 16 bytes.

B.1.1.4 Minimum Free Dynamic Memory

This value specifies the minimum memory size required for stack and heap. The value is in hexadecimal and specifies a number of paragraphs, a paragraph being 16 bytes.
B.1.1.5 Maximum Free Dynamic Memory

This value specifies the maximum memory size allocated for stack and heap. It must be used in programs which operate in a multi-user environment like Concurrent CP/M-86 to assure that the program does not allocate the entire free memory. The value is in hexadecimal and specifies a number of paragraphs, a paragraph being 16 bytes.

B.1.1.6 Find Runtime Error

When you run a program compiled in memory, and a runtime error occurs, the editor is invoked, and the error is automatically pointed out. This, of course, is not possible if the program is in a .COM/.CMD file or an .CHN file. Run time errors then print out the error code and the value of the program counter at the time of the error, e.g.:

```
Run-time error 01, PC=1B56
Program aborted
```

Figure B-3: Run-time Error Message

To find the place in the source text where the error occurred, enter the F command. When prompted for the address, enter the address given by the error message:

```
Enter PC: 1B56
```

Figure B-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as if the error had occurred while running the program in memory.
### B.1.2 Standard Identifiers

The following standard identifiers are unique to the 16-bit implementation:

<table>
<thead>
<tr>
<th>CSeg</th>
<th>Intr</th>
<th>Ofs</th>
<th>Seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSeg</td>
<td>MemW</td>
<td>PortW</td>
<td>SSeg</td>
</tr>
</tbody>
</table>

### B.1.3 Absolute Variables

Variables may be declared to reside at specific memory addresses, and are then called **absolute**. This is done by adding to the variable declaration the reserved word **absolute** followed by two **Integer** constants specifying a segment and an offset at which the variable is to be located:

```pascal
var
 Abc: Integer absolute $0000:$00EE;
 Def: Integer absolute $0000:$00FO;
```

The first constant specifies the segment base address, and the second constant specifies the offset within that segment. The standard identifiers **CSeg** and **DSeg** may be used to place variables at absolute addresses within the code segment (**CSeg**) or the data segment (**DSeg**):

```pascal
Special: array[1..CodeSize] absolute CSeg:$05F3;
```

**Absolute** may also be used to declare a variable "on top" of another variable, i.e. that a variable should start at the same address as another variable. When **absolute** is followed by the variable (or parameter) identifier, the new variable will start at the address of that variable (or parameter).

**Example:**

```pascal
var
 Str: string[32];
 StrLen: Byte absolute Str;
```

This declaration specifies that the variable **StrLen** should start at the same address as the variable **Str**, and as the first byte of a string variable contains the length of the string, **StrLen** will contain the length of **Str**. Notice that an **absolute** variable declaration may only specify one identifier.

Further details on space allocation for variables are found in section B.1.12.
8.1.4 Absolute Address Functions

The following functions are provided for obtaining information about program variable addresses and system pointers.

8.1.4.1 Addr

Syntax: Addr(Name)

Returns the address in memory of the first byte of the variable with the identifier Name. If Name is an array, it may be subscribed, and if Name is a record, specific fields may be selected. The value returned is a 32 bit pointer consisting of a segment address and an offset.

8.1.4.2 Ofs

Syntax: Ofs(Name)

Returns the offset in the segment of memory occupied by the first byte of the variable, procedure or function with the identifier Name. If Name is an array, it may be subscribed, and if Name is a record, specific fields may be selected. The value returned is an Integer.

8.1.4.3 Seg

Syntax: Seg(Name)

Returns the address of the segment containing the first byte of the variable, procedure or function with the identifier Name. If Name is an array, it may be subscribed, and if Name is a record, specific fields may be selected. The value returned is an Integer.

8.1.4.4 Cseg

Syntax: Cseg

Returns the base address of the Code segment. The value returned is an Integer.
B.1.4.5  Dseg

Syntax: Dseg

Returns the base address of the Data segment. The value returned is an Integer.

B.1.4.6  Sseg

Syntax: Sseg

Returns the base address of the Stack segment. The value returned is an Integer.

B.1.5  Predefined Arrays

TURBO Pascal offers four predefined arrays of type Byte, called Mem, MemW, Port and PortW which are used to access CPU memory and data ports.

B.1.5.1  Mem Array

The predefined arrays Mem and MemW are used to access memory. Each component of the array Mem is a byte, and each component of the array MemW is a word (two bytes, LSB first). The index must be an address specified as the segment base address and an offset separated by a colon and both of type Integer.

The following statement assigns the value of the byte located in segment 0000 at offset $0081 to the variable Value

\[
\text{Value} := \text{Mem}[0000: \$0081];
\]

While the following statement:

\[
\text{MemW}[\text{Seg(Var)}:\text{Ofs(Var)}] := \text{Value};
\]

places the value of the Integer variable Value in the memory location occupied by the two first bytes of the variable Var.
B.1.5.2 Port Array

The Port and PortW array are used to access the data ports of the 8086/88 CPU. Each element of the array represents a data port, with the index corresponding to port numbers. As data ports are selected by 16-bit addresses the index type is Integer. When a value is assigned to a component of Port or PortW it is output to the port specified. When a component of port is referenced in an expression, its value is input from the port specified. The components of the Port array are of type Byte and the components of PortW are of type Integer.

Example:

Port[56] := 10;

The use of the port array is restricted to assignment and reference in expressions only, i.e. components of Port and PortW cannot be used as variable parameters to procedures and functions. Furthermore, operations referring to the entire port array (reference without index) are not allowed.

B.1.6 With Statements

With statements may be nested to a maximum of 9 levels.

B.1.7 Pointer Related Items

B.1.7.1 MemAvail

The standard function MemAvail is available to determine the available space on the heap at any given time. The result is an Integer specifying the number of available paragraphs on the heap. (a paragraph is 16 bytes).

B.1.7.2 Pointer Values

In very special circumstances it can be of interest to assign a specific value to a pointer variable without using another pointer variable or it can be of interest to obtain the actual value of a pointer variable.
Assigning a Value to a Pointer

B.1.7.2.1 Assigning a Value to a Pointer

The standard function \( \text{Ptr} \) can be used to assign specific values to a pointer variable. The function returns a 32 bit pointer consisting of a segment address and an offset.

Example:

\[ \text{Pointer} := \text{Ptr(Cseg, $80)}; \]

B.1.7.2.2 Obtaining The Value of a Pointer

A pointer value is represented as a 32 bit entity and the standard function \( \text{Ord} \) can therefore not be used to obtain its value. Instead the functions \( \text{Ofs} \) and \( \text{Seg} \) must be used.

The following statement obtains the value of the pointer \( P \) (which is a segment address and an offset):

\[
\text{SegmentPart} := \text{Seg}(P); \\
\text{OffsetPart} := \text{Ofs}(P); 
\]

B.1.8 External Subprograms

The reserved word external is used to declare external procedures and functions, typically procedures and functions written in machine code.

The reserved word external must be followed by a string constant specifying the name of a file in which executable machine code for the external procedure or function must reside.

During compilation of a program containing external functions or procedures the associated files are loaded and placed in the object code. Since it is impossible to know beforehand exactly where in the object code the external code will be placed this code must be relocatable, and no references must be made to the data segment. Furthermore the external code must save the registers BP, CS, DS and SS and restore these before executing the RET instruction.

An external subprogram has no block, i.e. no declaration part and no statement part. Only the subprogram heading is specified, immediately followed by the reserved word external and a filename specifying where to find the executable code for the subprogram.
The type of the filename is .COM in the MS-DOS version and .CMD in the CP/M-86 version. Only the code segment of a .CMD file is loaded.

Example:

```pascal
procedure DiskReset; external 'DSKRESET';
function IOstatus: boolean; external 'IOSTAT';
```

Parameters may be passed to external subprograms, and the syntax is exactly the same as that of calls to ordinary procedures and functions:

```pascal
procedure Plot(X,Y: Integer); external 'PLOT';
procedure QuickSort(var List: PartNo); external 'QS';
```

External subprograms and parameter passing is discussed further in section B.1.12.3.

### B.1.9 Chain and Execute

TURBO Pascal provides two procedures `Chain` and `Execute` which allow you to activate other TURBO programs from a TURBO program. The syntax of the procedure calls are:

```pascal
Chain(File)
Execute(File)
```

where `File` is a file variable of any type, previously assigned to a disk file with the standard procedure `Assign`. If the file exists, it is loaded into memory and executed.

The `Chain` procedure is used only to activate special TURBO Pascal .CHN files, i.e. files compiled with the `ch`n-file option selected on the Options menu (see section B.1.1.1). Such a file contains only program code; no Pascal library, it uses the Pascal library already present in memory.

The `Execute` procedure works exactly as if the program had been activated from the operating system (with the limitation that parameters can not be passed from the command line).
Chaining and execute TURBO programs does not alter the memory allocation state. The base addresses and sizes of the code, data and stack segments are not changed. It is therefore imperative that the first program which executes a Chain statement allocates enough memory for the code, data, and stack segments to accommodate largest .CHN program. This is done by using the Options menu to change the minimum code, data and free memory sizes (see section B.1.1).

If the disk file does not exist, an I/O error occurs. This error is treated as described in section 14.8. When the I compiler directive is passive (S1-), program execution continues with the statement following the failed Chain or Execute statement, and the I0result function must be called prior to further I/O.

Data can be transferred from the current program to the chained program either by shared global variables or by absolute address variables.

To insure overlapping, shared global variables should be declared as the very first variables in both programs, and they must be listed in the same order in both declarations. Furthermore, both programs must be compiled to the same size of code and data segments (see sections B.1.1.2 and B.1.1.3. When these conditions are satisfied, the variables will be placed at the same address in memory by both programs, and as TURBO Pascal does not automatically initialize its variables, they may be shared.

Example:
Program MAIN.COM:

```pascal
program Main;
var
 Txt: string[80];
 CntPrg: file;

begin
 Write('Enter any text: '); Readln(Txt);
 Assign(CntPrg, 'ChrCount.chn');
 Chain(CntPrg);
end.
```

MS-DOS/PC-DOS and CP/M-86 183
Program CHRCOUNT.CHN:

```pascal
program ChrCount;
var
 Txt: string[80];
 NoOfChar, NoOfUpc, I: Integer;
begin
 NoOfUpc := 0;
 NoOfChar := Length(Txt);
 for I := 1 to Length(Txt) do
 if Txt[I] in ['A'..'Z'] then NoOfUpc := Succ(NoOfUpc);
 Write('No of characters in entry:', NoOfChar);
 Writeln('. No of upper case characters: ', NoOfUpc,'.');
end.
```

**Note** that neither *Chain* nor *Execute* can be used in direct mode, i.e. from a program run with the compiler options switch in position Memory (section B.1.1.1).

### B.1.10 In-line Machine Code

TURBO Pascal features the **inline** statements as a very convenient way of inserting machine code instructions directly into the program text. An inline statement consists of the reserved word **inline** followed by one or more constants, variable identifiers, or location counter references, separated by slashes and enclosed in parentheses.

The **constants** may be either literal constants or constant identifiers, and they must be of type *Integer*. Literals generate one byte of code if within the range 0..255 ($00..$FF), otherwise two bytes in the standard byte reversed format. Constant identifiers always generate two bytes of code.

A **variable identifier** generates two bytes of code (in byte reversed format) containing the offset of the variable within its base segment. Global, local and typed constants occupies different segments as follows:

**Global variables** resides in the data segment and the offset generated is relative to the DS register.
Local variables reside in the stack segment and the offset generated is relative to the BP register.

Typed constants reside in the code segment and the offset generated is relative to the CS register.

When an inline statement terminates, the registers BP, SP, DS, and SS must be restored to their original values before the inline statement.

A location counter reference consists of an asterisk, optionally followed by an offset consisting of a plus or a minus sign and an Integer constant. An asterisk alone generates two bytes of code (in byte reversed format) containing the current location counter value. If the asterisk is followed by an offset, it is added or subtracted before coding the address.

The following example of an inline statement generates machine code that will convert all characters in its string argument to upper case.

```
procedureUpperCase(var Strg: Str); {Str is type String[255]} begin
 inline
 ($04/$BE/Strg/ { LES DI,Strg[BP] }
 $26/$8A/$6D/ { MOV CL,ES:[DI] }
 $F8/$C1/ { INC CL }
 $F8/$C9/ { L1: DEC CL }
 $74/$13/ { JZ L2 }
 $47/ { INC DI }
 $26/$80/$3D/$61/ { CMP ES:BYTE PTR [DI], 'a' }
 $72/$F5/ { JB L1 }
 $26/$80/$3D/$7A/ { CMP ES:BYTE PTR [DI], 'z' }
 $77/$EF/ { JA L1 }
 $26/$80/$2D/$28/ { SUB ES:BYTE PTR [DI],26H }
 $EB/$E9); { JMP SHORT L1 }

 end;
```

Inline statements may be freely mixed with other statements throughout the statement part of a block, and inline statements may use all CPU registers. Note, however, that the contents of the registers BP, SP, DS, and SS must be the same on exit as on entry.
B.1.11 Interrupt Handling

The TURBO Pascal run time package and the code generated by the compiler are both fully interruptible. Interrupt service routines must preserve all registers used.

If required, interrupt service procedures may be written in Pascal. Such procedures must not have parameters, and they must themselves insure that all registers used are preserved. This is done by placing the following inline statement in the very beginning of the procedure:

\[
\text{inline } ($50/$53/$51/$52/$57/$56/$06/$FB);\]

and this inline statement at the very end of the procedure:

\[
\text{inline } ($07/$6E/$5F/$6A/$59/$5B/$58/$CF);\]

The last instruction of the terminating inline statement is an IRET instruction ($CF), which will override the RET instruction generated by the compiler.

An interrupt service procedure should not employ any I/O operations using the standard procedures and functions of TURBO Pascal, as the BDOS is not re-entrant. CP/M-86 users should note that BDOS calls should not be performed from interrupt handlers, as these routines are not re-entrant. The programmer must initialize the interrupt vector used to activate the interrupt service routine.

B.1.11.1 Intr procedure

Syntax: \text{Intr( InterruptNo, Result)}

This procedure initializes the registers and flags as specified in the parameter Result which must be of type:

\[
\text{Result } = \text{record} \\
\text{ \quad AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Integer; \text{end;}}
\]

It then makes the software interrupt given by the parameter interruptNo which must be an Integer constant. When the interrupt service routine returns control to your program, Result will contain any values returned from the service routine.
B.1.12  Internal Data Formats

In the following descriptions, the symbol @ denotes the offset of the first byte occupied by a variable of the given type within its segment. The segment base address can be determined by using the standard function Seg.

Global and local variables, and typed constants occupy different segments as follows:

Global variables reside in the data segment and the offset is relative to the DS register.

Local variables reside in the stack segment and the offset is relative to the BP register.

Typed constants reside in the code segment and the offset is relative to the CS register.

All variables are contained within their base segment.

B.1.12.1  Basic Data Types

The basic data types may be grouped into structures (arrays, records, and disk files), but this structuring will not affect their internal formats.

B.1.12.1.1  Scalars

The following scalars are all stored in a single byte: Integer subranges with both bounds in the range 0..255, booleans, chars, and declared scalars with less than 256 possible values. This byte contains the ordinal value of the variable.

The following scalars are all stored in two bytes: Integers, Integer subranges with one or both bounds not within the range 0..255, and declared scalars with more than 256 possible values. These bytes contain a 2's complement 16-bit value with the least significant byte stored first.
B.1.12.1.2 Reals

Reals occupy 6 bytes, giving a floating point value with a 40-bit mantissa and an 8-bit 2's exponent. The exponent is stored in the first byte and the mantissa in the next five bytes which the least significant byte first:

- Exponent
- LSB of mantissa
- MSB of mantissa

The exponent uses binary format with an offset of $80$. Hence, an exponent of $84$ indicates that the value of the mantissa is to be multiplied by $2^{(84-80)} = 2^4 = 16$. If the exponent is zero, the floating point value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned integer by $2^{40}$. The mantissa is always normalized, i.e. the most significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The sign of the mantissa is stored in this bit, however, a 1 indicating that the number is negative, and a 0 indicating that the number is positive.

B.1.12.1.3 Strings

A string occupies as many bytes as its maximum length plus one. The first byte contains the current length of the string. The following bytes contain the string with the first character stored at the lowest address. In the table shown below, $L$ denotes the current length of the string, and $Max$ denotes the maximum length:

- Current length ($L$)
- First character
- Second character
- Last character
- Unused
- Unused

Turbo Pascal Language Manual
B.1.12.1.4 Sets

An element in a Set occupies one bit, and as the maximum number of elements in a set is 256, a set variable will never occupy more than 32 bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to be zero at all times and need therefore not be stored. In terms of memory efficiency, the best way to store a set variable of a given type would then be to “cut off” all insignificant bits, and rotate the remaining bits so that the first element of the set would occupy the first bit of the first byte. Such rotate operations, however, are quite slow, and TURBO therefore employs a compromise: Only bytes which are statically zero (i.e. bytes of which no bits are used) are not stored. This method of compression is very fast and in most cases as memory efficient as the rotation method.

The number of bytes occupied by a set variable is calculated as $(Max \div 8) - (Min \div 8) + 1$, where Max and Min are the upper and lower bounds of the base type of that set. The memory address of a specific element $E$ is:

\[ MemAddress = @ + (E \div 8) - (Min \div 8) \]

and the bit address within the byte at MemAddress is:

\[ BitAddress = E \mod 8 \]

where $E$ denotes the ordinal value of the element.

B.1.12.1.5 Pointers

A pointer consists of four bytes containing a segment base address and an offset. The two least significant bytes contain the offset and the two most significant bytes the base address. Both are stored in memory using byte reversed format, i.e. the least significant byte is stored first. The value nil corresponds to two zero words.

B.1.12.2 Data Structures

Data structures are built from the basic data types using various structuring methods. Three different structuring methods exist: Arrays, records, and disk files. The structuring of data does not in any way affect the internal formats of the basic data types.
B.1.12.2.1 Arrays

The components with the lowest index values are stored at the lowest memory address. A multi-dimensional array is stored with the rightmost dimension increasing first, e.g. given the array

\[ \text{Board: } \text{array}[1..8,1..8] \text{ of Square} \]

you have the following memory layout of its components:

- **lowest address:** \( \text{Board}[1,1] \)
  \( \text{Board}[1,2] \)
  :  
  \( \text{Board}[1,8] \)
  \( \text{Board}[2,1] \)
  \( \text{Board}[2,2] \)
  :  

- **Highest address:** \( \text{Board}[8,8] \)

B.1.12.2.2 Records

The first field of a record is stored at the lowest memory address. If the record contains no variant parts, the length is given by the sum of the lengths of the individual fields. If a record contains a variant, the total number of bytes occupied by the record is given by the length of the fixed part plus the length of largest of its variant parts. Each variant starts at the same memory address.

B.1.12.2.3 Disk Files

Disk files are different from other data structures in that data is not stored in internal memory but in a file on an external device. A disk file is controlled through a file interface block (FIB) as described in sections B.3.4 and B.2.4. In general there are two different types of disk files: random access files and text files.
B.1.12.2.4 Text Files

The basic components of a text file are characters, but a text file is furthermore divided into lines. Each line consists of any number of characters ended by a CR/LF sequence (ASCII $0D/0A). The file is terminated by a Ctrl-Z (ASCII $1B).

B.1.12.3 Parameters

Parameters are transferred to procedures and functions via the stack which is addressed through SS:SP.

On entry to an external subroutine, the top of the stack always contains the return address within the code segment (a word). The parameters, if any, are located below the return address, i.e. at higher addresses on the stack.

If an external function has the following subprogram header:

```
function Magic(var R: Real; S: string5): Integer;
```

then the stack upon entry to Magic would have the following contents:

```
< Function result >
< Segment base address of R >
< Offset address of R >
< Mantissa of R next 5 bytes >
: < First character of S >
: < Last character of S >
< Length of S >
< Return address > SP
```

An external subroutine should save the Base Page register (BP) and then copy the Stack Pointer SP into the Base Page register in order to be able to refer to parameters. Furthermore the subroutine should reserve space on the stack for local workarea. This can be obtained by the following instructions:

```
PUSH BP
MOV BP, SP
SUB SP, WORKAREA
```
The last instruction will have the effect of adding the following to the stack:

- < Return address > BP
- < The saved BP register >
- < First byte of local work area >
- < Last byte of local work area > SP

Parameters are accessed via the BP register.

The following instruction will load length of the string into the AL register:

```
MOV AL, [BP-1]
```

Before executing a RET instruction the subprogram must reset the Stack Pointer and Base Page register to their original values. When executing the RET the parameters may be removed by giving RET a parameter specifying how many bytes to remove. The following instructions should therefore be used when exiting from a subprogram:

```
MOV SP, BP
POP BP
RET NoOfBytesToRemove
```

### B.1.12.3.1 Variable Parameters

With a variable (var) parameter, two words are transferred on the stack giving the base address and offset of the first byte occupied by the actual parameter.

### B.1.12.3.2 Value Parameters

With value parameters, the data transferred on the stack depends upon the type of the parameter as described in the following sections.
B.1.12.3.2.1 Scalars

Integers, Booleans, Chars and declared scalars (i.e. all scalars except Reals) are transferred on the stack as a word. If the variable occupies only one byte when it is stored, the most significant byte of the parameter is zero.

B.1.12.3.2.2 Reals

A real is transferred on the stack using six bytes.

B.1.12.3.2.3 Strings

When a string is at the top of the stack, the topmost byte contains the length of the string followed by the characters of the string.

B.1.12.3.2.4 Sets

A set always occupies 32 bytes on the stack (set compression only applies to the loading and storing of sets).

B.1.12.3.2.5 Pointers

A pointer value is transferred on the stack as two words containing the base address and offset of a dynamic variable. The value NIL corresponds to two zero words.

B.1.12.3.2.6 Arrays and Records

Even when used as value parameters, Array and Record parameters are not actually transferred on the stack. Instead, two words containing the base address and offset of the first byte of the parameter are transferred. It is then the responsibility of the subroutine to use this information to make a local copy of the variable.
B.1.12.4 Function Results

User written external functions must remove all parameters and the function result from the stack when they return.

User written external functions must return their results exactly as specified in the following:

Values of scalar types, except Reals, must be returned in the AX register. If the result is only one byte then AH should be set to zero. Boolean functions must return the function value by setting the Z flag (Z = False, NZ = True).

Reals must be returned on the stack with the exponent at the lowest address. This is done by not removing the function result variable when returning.

Sets must be returned on the top of the stack according to the format described in section B.1.12.3.2.3. On exit SP must point at the byte containing the string length.

Pointer values must be returned in the DX:AX.

B.1.12.5 The Heap and The Stacks

During execution of TURBO Pascal program the following segments are allocated for the program:

- a Code Segment,
- a Data Segment, and
- a Stack Segment

Two stack-like structures are maintained during execution of a program: the heap and the stack.

The heap is used to store dynamic variables, and is controlled with the standard procedures New, Mark, and Release. At the beginning of a program, the heap pointer HeapPtr is set to low memory in the stack segment and the heap grows upwards towards the stack. The pre-defined variable HeapPtr contains the value of the heap pointer and allows the programmer to control the position of the heap.
The stack is used to store local variables, intermediate results during evaluation of expressions and to transfer parameters to procedures and functions. At the beginning of a program, the stack pointer is set to the address of the top of the stack segment.

On each call to the procedure *New* and on entering a procedure or function, the system checks for collision between the heap and the recursion stack. If a collision has occurred, an execution error results, unless the K compiler directive is passive ({$K-$}).
B.2 The MS-DOS / PC-DOS Implementations

This section covers items peculiar to the MS-DOS and PC-DOS versions of TURBO Pascal. For the sake of clarity and ease, these two operating systems will simply be referred to as DOS in the following.

B.2.1 Standard Identifiers

The following standard identifiers are unique to the DOS implementations:

LongFilePos  LongSeek
LongFileSize  MsDos

B.2.2 Function Calls

For the purpose of making DOS system calls, TURBO Pascal introduces a procedure `MsDos`, which has a record as parameter.

Details on DOS system calls and BIOS routines are found in the *MS-DOS Operating System Manual* published by MicroSoft.

The parameter to `MsDos` must be of the type:

```plaintext
record
 AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Integer;
end;
```

Before TURBO makes the DOS system call the registers AX, BX, CX, DX, BP, SI, DI, DS, and ES are loaded with the values specified in the record parameter. When DOS has finished operation the `MsDos` procedure will restore the registers to the record thus making any results from DOS available.

B.2.3 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input and output drivers, i.e. routines which perform input and output of characters to and from an external device. The following drivers are part of the TURBO environment, and used by the standard I/O drivers (although they are not available as standard procedures or functions):
The `ConSt` routine is called by the function `KeyPressed`, the `ConIn` and `ConOut` routines are used by the `CON:`, `TRM:`, and `KBD:` devices, the `LstOut` routine is used by the `LST:` device, the `AuxOut` and `AuxIn` routines are used by the `AUX:` device, and the `UsrOut` and `UsrIn` routines are used by the `USR:` device.

By default, these drivers are assigned to the DOS system calls as showed in curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the address of a self-defined driver procedure or a driver function to one of the following standard variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contains the address of the</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ConStPtr</code></td>
<td><code>ConSt</code> function</td>
</tr>
<tr>
<td><code>ConInPtr</code></td>
<td><code>ConIn</code> function</td>
</tr>
<tr>
<td><code>ConOutPtr</code></td>
<td><code>ConOut</code> procedure</td>
</tr>
<tr>
<td><code>LstOutPtr</code></td>
<td><code>LstOut</code> procedure</td>
</tr>
<tr>
<td><code>AuxOutPtr</code></td>
<td><code>AuxOut</code> procedure</td>
</tr>
<tr>
<td><code>AuxInPtr</code></td>
<td><code>AuxIn</code> function</td>
</tr>
<tr>
<td><code>UsrOutPtr</code></td>
<td><code>UsrOut</code> procedure</td>
</tr>
<tr>
<td><code>UsrInPtr</code></td>
<td><code>UsrIn</code> function</td>
</tr>
</tbody>
</table>

A user defined driver procedure or driver function must match the definitions given above, i.e. a `ConSt` driver must be a boolean function, a `ConIn` driver must be a char function, etc.
B.2.4 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). A FIB occupies 176 bytes of memory and is for files of type text divided into two sections: The control section (the first 48 bytes), and the sector buffer (the last 128 bytes). The control section contains various information on the disk file or device currently assigned to the file. The sector buffer is used to buffer input and output from and to the disk file. Random access file variables and untyped file variables does not have buffer section and therefore occupies only 48 bytes.

The table below shows the format of a FIB:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>Flags byte</td>
</tr>
<tr>
<td>@ +1</td>
<td>File type</td>
</tr>
<tr>
<td>@ +2</td>
<td>iCharacter buffer</td>
</tr>
<tr>
<td>@ +3</td>
<td>Sector buffer pointer</td>
</tr>
<tr>
<td>@ +4</td>
<td>Number of records (LSB)</td>
</tr>
<tr>
<td>@ +5</td>
<td>...</td>
</tr>
<tr>
<td>@ +7</td>
<td>Number of records (MSB)</td>
</tr>
<tr>
<td>@ +8</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@ +10</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@ +11</td>
<td>First byte of DOS FCB</td>
</tr>
<tr>
<td>@ +25</td>
<td>Record length in bytes (LSB)</td>
</tr>
<tr>
<td>@ +26</td>
<td>Record length in bytes (MSB)</td>
</tr>
<tr>
<td>@ +44</td>
<td>Current record number (LSB)</td>
</tr>
<tr>
<td>@ +47</td>
<td>Current record number (MSB)</td>
</tr>
<tr>
<td>@ +48</td>
<td>First byte of sector buffer</td>
</tr>
<tr>
<td>@ +175</td>
<td>Last byte of sector buffer</td>
</tr>
</tbody>
</table>

The flags byte at @ contains two one-bit flags which indicate the current status of the file:

- bit 0: Input flag. High if input is allowed.
- bit 1: Output flag. High if output is allowed.

The file type field at @ +1 specifies the type of device currently assigned to the file variable. The following values can occur:
When a file is assigned to a logical device, only the first three bytes of the FIB are of significance.

The sector buffer pointer at @ +3 contains an offset from the first byte of the sector buffer.

The 'number of records' field starting at @ +4 is a 32-bit number. All DOS file I/O is performed through system functions 39 and 40 (random block read and random block write), and the record length field in the FCB is always set to 1.

The sector buffer starting at @ +48 is included in file variables of type Text only. Random access file variables and untyped file variables occupy only 48 bytes, and data is always transferred directly to or from the variable to be read or written, leaving all blocking and deblocking to DOS.

**B.2.5 Random Access Files**

A random access file consists of a sequence of records, all of the same length and same internal format. To optimize file storage capacity, the records of a file are totally contiguous.

TURBO saves no information about the record length. The programmer must therefore see to it that a random access file is accessed with the correct record length.

The size returned by the standard function Filesize is obtained from the DOS directory.
B.2.6 Operations on Files

B.2.6.1 Extended File Size

The following three additional file routines exist to accommodate the extended range of records in DOS. These are:

LongFileSize function,
LongFilePosition function, and
LongSeek procedure

They correspond to their Integer equivalents FileSize, FilePosition, and Position but operate with Reals. The functions thus return results of type Real, and the second parameter of the LongSeek procedure must be an expression of type Real.

B.2.6.2 File of Byte

In the CP/M implementations, access to non-TURBO files (except text files) must be done through untyped files because the two first bytes of typed TURBO files always contain the number of components in the file. This is not the case in the DOS versions, however, and a non-TURBO file may therefore be declared as a file of byte and accessed randomly with Seek, Read, and Write.

B.2.6.3 Flush Procedure

The Flush procedure has no effect in DOS, as DOS file variables do not employ a sector buffer.
B.3 The CP/M-86 Implementation

B.3.1 Standard Identifiers

The standard identifier Bdos is unique to the CP/M-86 implementation.

B.3.2 Function Calls

For the purpose of calling the CP/M-86 BDOS, TURBO Pascal introduces a procedure Bdos, which has a record as parameter.

Details on BDOS and BIOS routines are found in the CP/M-86 Operating System Manual published by Digital Research.

The parameter to Bdos must be of the type:

```pascal
record
 AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Integer;
end;
```

Before TURBO calls the BDOS the registers AX, BX, CX, DX, BP, SI, DI, DS, and ES are loaded with the values specified in the record parameter. When the BDOS has finished operation the Bdos procedure will restore the registers to the record thus making any results from the BDOS available.

B.3.3 User Written I/O Drivers

For some applications it is practical for a programmer to define his own input and output drivers, i.e. routines which perform input and output of characters to and from an external device. The following drivers are part of the TURBO environment, and used by the standard I/O drivers (although they are not available as standard procedures or functions):

```pascal
function CanSt: boolean; { 6 }
function CanIn: Char; { 6 }
procedure ConOut(Ch: Char); { 6 }
procedure LstOut(Ch: Char); { 5 }
procedure AuxOut(Ch: Char); { 4 }
function AuxIn: Char; { 3 }
procedure UsrOut(Ch: Char); { 6 }
function UsrIn: Char; { 6 }
```
B.3.3 User Written I/O Drivers

The `ConSt` routine is called by the function `KeyPressed`, the `ConIn` and `ConOut` routines are used by the CON:, TRM:, and KBD: devices, the `LstOut` routine is used by the LST: device, the `AuxOut` and `AuxIn` routines are used by the AUX: device, and the `UsrOut` and `UsrIn` routines are used by the USR: device.

By default, these drivers are assigned to the BDOS functions as showed in curly brackets in the above listing of drivers.

This, however, may be changed by the programmer by assigning the address of a self-defined driver procedure or a driver function to one of the following standard variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Contains the address of the</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConStPtr</td>
<td><code>ConSt</code> function</td>
</tr>
<tr>
<td>ConInPtr</td>
<td><code>ConIn</code> function</td>
</tr>
<tr>
<td>ConOutPtr</td>
<td><code>ConOut</code> procedure</td>
</tr>
<tr>
<td>LstOutPtr</td>
<td><code>LstOut</code> procedure</td>
</tr>
<tr>
<td>AuxOutPtr</td>
<td><code>AuxOut</code> procedure</td>
</tr>
<tr>
<td>AuxInPtr</td>
<td><code>AuxIn</code> function</td>
</tr>
<tr>
<td>UsrOutPtr</td>
<td><code>UsrOut</code> procedure</td>
</tr>
<tr>
<td>UsrInPtr</td>
<td><code>UsrIn</code> function</td>
</tr>
</tbody>
</table>

A user defined driver procedure or driver function must match the definitions given above, i.e. a `ConSt` driver must be a boolean function, a `ConIn` driver must be a char function, etc.

B.3.4 File Interface Blocks

Each file variable in a program has an associated file interface block (FIB). A FIB occupies 176 bytes of memory and is divided into two sections: The control section (the first 48 bytes), and the sector buffer (the last 128 bytes). The control section contains various information on the disk file or device currently assigned to the file. The sector buffer is used to buffer input and output from and to the disk file.
The table below shows the format of a FIB:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>Flags byte</td>
</tr>
<tr>
<td>@ +1</td>
<td>File type</td>
</tr>
<tr>
<td>@ +2</td>
<td>Character buffer</td>
</tr>
<tr>
<td>@ +3</td>
<td>Sector buffer pointer</td>
</tr>
<tr>
<td>@ +4</td>
<td>Number of records (LSB)</td>
</tr>
<tr>
<td>@ +5</td>
<td>Number of records (MSB)</td>
</tr>
<tr>
<td>@ +6</td>
<td>Record length in bytes (LSB)</td>
</tr>
<tr>
<td>@ +7</td>
<td>Record length in bytes (MSB)</td>
</tr>
<tr>
<td>@ +8</td>
<td>Current record number (LSB)</td>
</tr>
<tr>
<td>@ +9</td>
<td>Current record number (MSB)</td>
</tr>
<tr>
<td>@ +10</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@ +11</td>
<td>Unused (reserved)</td>
</tr>
<tr>
<td>@ +12</td>
<td>First byte of CP/M FCB</td>
</tr>
<tr>
<td>@ +47</td>
<td>Last byte of CP/M FCB</td>
</tr>
<tr>
<td>@ +48</td>
<td>First byte of sector buffer</td>
</tr>
<tr>
<td>@ +175</td>
<td>Last byte of sector buffer</td>
</tr>
</tbody>
</table>

The flags byte at @ contains four one bit flags which indicate the current status of the file:

- **bit 0**: Input flag. High if input is allowed.
- **bit 1**: Output flag. High if output is allowed.
- **bit 2**: Write semaphore. High if data has been written to the sector buffer.
- **bit 3**: Read semaphore. High if the contents of the sector buffer is undefined.

The file type field at @ +1 specifies the type of device currently assigned to the file variable. The following values can occur:

- **0**: The console device (CON:)
- **1**: The terminal device (TRM:)
- **2**: The keyboard device (KBD:)
- **3**: The list device (LST:)
- **4**: The auxiliary device (AUX:)
- **5**: The user device (USR:)
- **6**: A disk file
B.3.4 File Interface Blocks

The sector buffer pointer at @ +3 contains an offset from the first byte of the sector buffer. The following three fields are used only by random access files (defined files) and untyped files. Each field consists of two bytes in byte reversed format. Bytes @ +10 and @ +11 are currently unused, but reserved for future expansion. Bytes @ +12 through @ +47 contain a CP/M file control block (FCB). The last block of the FIB is the sector buffer used for buffering input and output from and to disk files.

When a file is assigned to a logical device, only the first three bytes of the FIB are of significance.

The FIB format described above applies to all defined files and textfiles. The FIB of an untyped file has no sector buffer, as data is transferred directly between a variable and the disk file. Thus, the length of the FIB of an untyped file is only 48 bytes.

B.3.5 Random Access Files

A random access file consists of a sequence of records, all of the same length and same internal format. To optimize file storage capacity, the records of a file are totally contiguous. The first four bytes of the first sector of a file contains the number of records in the file and the length of each record in bytes. The first record of the file is stored starting at the fourth byte.

- sector 0, byte 0: Number of records (LSB)
- sector 0, byte 1: Number of records (MSB)
- sector 0, byte 2: Record length (LSB)
- sector 0, byte 3: Record length (MSB)
This appendix lists all standard procedures and functions available in TURBO Pascal and describes their syntax, thewir parameters, and their types. The following symbols are used to denote elements of various types:

- **type**: any type
- **string**: any string type
- **file**: any file type
- **scalar**: any scalar type
- **pointer**: any pointer type

Where parameter type specification is not present, it means that the procedure or function accepts variable parameters of any type.

### C.1 Input/Output Procedures and Functions

The following procedures use a non-standard syntax in their parameter lists:

```pascal
procedure
 Read (var F: file of type; var v: type);
 Read (var F: text; var I: Integer);
 Read (var F: text; var R: Real);
 Read (var F: text; var C: Char);
 Read (var F: text; var S: string);
 Readln (var F: text);
 Write (var F: file of type; var v: type);
 Write (var F: text; I: Integer);
 Write (var F: text; R: Real);
 Write (var F: text; B: Boolean);
 Write (var F: text; C: Char);
 Write (var F: text; S: string);
 Writeln (var F: text);
```
C.2 Arithmetic Functions

function
Abs (/: Integer): Integer;
Abs (R: Real): Real;
ArcTan (R: Real): Real;
Cos (R: Real): Real;
Exp (R: Real): Real;
Frac (R: Real): Real;
Int (R: Real): Real;
Ln (R: Real): Real;
Sin (R: Real): Real;
Sqr (/: Integer): Integer;
Sqr (R: Real): Real;
Sqrt (R: Real): Real;

C.3 Scalar Functions

function
Odd (/: Integer): Boolean;
Pred (X: scalar): scalar;
Succ (X: scalar): scalar;

C.4 Transfer Functions

function
Chr (/: Integer): Char;
Ord (X: scalar): Integer;
Round (R: Real): Integer;
Trunc (R: Real): Integer;


C.5 String Procedures and Functions

The `Str` procedure uses a non-standard syntax for its numeric parameter.

**procedure**
- `Delete (var S: string; Pos, Len: Integer);`
- `Insert (S: string; var D: string; Pos: Integer);`
- `Str (l: Integer; var S: string);`
- `Str (R: Real; var S: string);`
- `Val (S: string; var R: Real; var p: Integer);`
- `Val (S: string; var l, P: Integer);`

**function**
- `Concat (S1, S2, ..., Sn: string): string;`
- `Copy (S: string; Pos, Len: Integer): string;`
- `Length (S: string): Integer;`
- `Pos (Pattern, Source: string): Integer;`

C.6 File handling routines

**procedure**
- `Assign (var F: file; name: string);`
- `BlockRead (var F: file; var Dest: Type; Num: Integer);`
- `BlockWrite (var F: file; var Dest: Type; Num: Integer);`
- `Chain (var F: file);`
- `Close (var F: file);`
- `Erase (var F: file);`
- `Execute (var F: file);`
- `Rename (var F: file; Name: string);`
- `Reset (var F: file);`
- `Rewrite (var F: file);`
- `Seek (var F: file of type; Pos: Integer);`

**function**
- `Eof (var F: file): Boolean;`
- `Eoln (var F: Text): Boolean;`
- `FilePos (var F: file of type): Integer;`
- `FileSize (var F: file of type): Integer;`
- `FileSize (var F: file): integer;`
- `Seek (var F: file; pos: Integer);`
C.7 Heap Control Procedures and Functions

procedure
GetMem (var \( P \): pointer; \( I \): Integer);
Mark (var \( P \): pointer);
New (var \( P \): pointer);
Release (var \( P \): pointer);

function
MemAvail : Integer;
Ord (\( P \): pointer): Integer;
Ptr (\( I \): Integer): pointer;

C.8 Screen Related Procedures

procedure
CrtExit;
CrtInit;
ClrEol;
ClrScr;
DelLine;
GotoXY (\( X, Y \): Integer);
InsLine;
LowVideo;
NormVideo;

C.9 Miscellaneous Procedures and Functions

procedure
Bdos (func,param: Integer);
Bios (func,param: Integer);
Delay (\( mS \): Integer);
FillChar (var \( dest \); length: Integer; data: Char);
FillChar (var \( dest \); length: Integer; data: byte);
Halt;
Move (var \( source,dest \); length: Integer);
Randomize;
function
    Addr (var variable): Integer;
    Addr (<function identifier>): Integer;
    Addr (<procedure identifier>): Integer;
    Bdos (Func, Param: Integer): Byte;
    BdosHL (Func, Param: Integer): Integer;
    Bios (Func, Param: Integer): byte;
    BiosHL (Func, Param: Integer): Integer;
    Hi (/: Integer): Integer;
    I0result : Boolean;
    KeyPressed : Boolean;
    Lo (/: Integer): Integer;
    Random (Range: Integer): Integer;
    Random : Real;
    SizeOf (var variable): Integer;
    SizeOf (<type identifier>): Integer;
    Swap (/: Integer): Integer;
    UpCase (Ch: Char): Char;
Notes:
The following table summarizes all operators of TURBO Pascal. The operators are grouped in order of descending precedence. Where Type of operand is indicated as Integer, Real, the result is as follows:

<table>
<thead>
<tr>
<th>Operands</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer, Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>Real, Real</td>
<td>Real</td>
</tr>
<tr>
<td>Real, Integer</td>
<td>Real</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operator</th>
<th>Operation</th>
<th>Type of operand(s)</th>
<th>Type of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ unary</td>
<td>sign identity</td>
<td>Integer, Real</td>
<td>as operand</td>
</tr>
<tr>
<td>- unary</td>
<td>sign inversion</td>
<td>Integer, Real</td>
<td>as operand</td>
</tr>
<tr>
<td>not</td>
<td>negation</td>
<td>Integer, Boolean</td>
<td>as operand</td>
</tr>
<tr>
<td>*</td>
<td>multiplication</td>
<td>Integer, Real</td>
<td>Integer, Real</td>
</tr>
<tr>
<td>/</td>
<td>set intersection</td>
<td>any set type</td>
<td>as operand</td>
</tr>
<tr>
<td>div</td>
<td>Integer division</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>mod</td>
<td>modulus</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>and</td>
<td>arithmetic and</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td></td>
<td>logical and</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
<tr>
<td>shl</td>
<td>shift left</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>shr</td>
<td>shift right</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td>+</td>
<td>addition</td>
<td>Integer, Real</td>
<td>Integer, Real</td>
</tr>
<tr>
<td></td>
<td>concatenation</td>
<td>string</td>
<td>string</td>
</tr>
<tr>
<td>-</td>
<td>set union</td>
<td>any set type</td>
<td>as operand</td>
</tr>
<tr>
<td></td>
<td>subtraction</td>
<td>Integer, Real</td>
<td>Integer, Real</td>
</tr>
<tr>
<td>or</td>
<td>arithmetic or</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td></td>
<td>logical or</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
<tr>
<td>xor</td>
<td>arithmetic xor</td>
<td>Integer</td>
<td>Integer</td>
</tr>
<tr>
<td></td>
<td>logical xor</td>
<td>Boolean</td>
<td>Boolean</td>
</tr>
</tbody>
</table>
### SUMMARY OF OPERATORS

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
<th>First Operand Type</th>
<th>Second Operand Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>equality</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>equality</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>equality</td>
<td>any set type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>equality</td>
<td>any pointer type</td>
<td>Boolean</td>
</tr>
<tr>
<td>&lt;&gt;</td>
<td>inequality</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>inequality</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>inequality</td>
<td>any set type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>inequality</td>
<td>any pointer type</td>
<td>Boolean</td>
</tr>
<tr>
<td>&gt;=</td>
<td>greater or equal</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>greater or equal</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>set inclusion</td>
<td>any set type</td>
<td>Boolean</td>
</tr>
<tr>
<td>&lt;=</td>
<td>less or equal</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>less or equal</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>set inclusion</td>
<td>any set type</td>
<td>Boolean</td>
</tr>
<tr>
<td>&gt;</td>
<td>greater than</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>greater than</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td>&lt;</td>
<td>less than</td>
<td>any scalar type</td>
<td>Boolean</td>
</tr>
<tr>
<td></td>
<td>less than</td>
<td>string</td>
<td>Boolean</td>
</tr>
<tr>
<td>in</td>
<td>set membership</td>
<td>see below</td>
<td>Boolean</td>
</tr>
</tbody>
</table>

The first operand of the in operator may be of any scalar type, and the second operand must be a set of that type.
E. SUMMARY OF COMPILER DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled through compiler directives. A compiler directive is introduced as a comment with a special syntax which means that whenever a comment is allowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately followed by a dollar-sign immediately followed by one compiler directive letter or a list of compiler directive letters separated by commas, ultimately terminated by a closing bracket.

Examples:

{ $I - }  
{ $I INCLUDE.FIL }  
{ $B-,R+,V- }  
( *$X-* )

Notice that no spaces are allowed before or after the dollar-sign. A + sign after a directive indicates that the associated compiler feature is enabled (active), and a minus sign indicates that is disabled (passive).

IMPORTANT NOTICE

All compiler directives have default values. These have been chosen to optimize execution speed and minimize code size. This means that e.g. code generation for recursive procedures (CP/M-80 only) and index checking has been disabled. Check below to make sure that your programs include the required compiler directive settings!
E.1 Common Compiler Directives

E.1.1 B - I/O Mode Selection

Default: B+

The B directive controls input/output mode selection. When active, {$B+}, the CON: device is assigned to the standard files input and output, i.e. the default input/output channel. When passive, {$B-}, the TRm: device is used. This directive is global to an entire program block and cannot be re-defined throughout the program. See sections 14.5.3 and 14.6.1 for further details.

E.1.2 C - Control S and C

Default: C+

The C directive controls control character interpretation during console I/O. When active, {$C+}, a Ctrl-C entered in response to a Read or Readln statement will interrupt program execution, and a Ctrl-S will toggle screen output off and on. When passive, {$C-}, control characters are not interpreted. The active state slows screen output somewhat, so if screen output speed is imperative, you should switch off this directive. This directive is global to an entire program block and cannot be re-defined throughout the program.

E.1.3 I - I/O Error Handling

Default: I+

The I directive controls I/O error handling. When active, {$I+}, all I/O operations are checked for errors. When passive, {$I-}, it is the responsibility of the programmer to check I/O errors through the standard function IOResult. See section 14.8 for further details.

E.1.4 I - Include Files

The I directive succeeded by a file name instructs the compiler to include the file with the specified name in the compilation. Include files are discussed in detail in chapter 17.
E.1.5 R - Index Range Check

Default: R-

The R directive controls run-time index checks. When active, {$R+}$, all array indexing operations are checked to be within the defined bounds, and all assignments to scalar and subrage variables are checked to be within range. When passive, {$R-}$, no checks are performed, and index errors may well cause a program to go haywire. It is a good idea to activate this directive while developing a program. Once debugged, execution will be speeded up by setting it passive (the default state). For further discussion, see sections 8.4 and 10.1.

E.1.6 V - Var-parameter Type Checking

Default: V+

The V compiler directive controls type checking on strings passed as var-parameters. When active, {$V+}$, strict type checking is performed, i.e. the lengths of actual and formal parameters must match. When passive, {$SV-}$, the compiler allows passing of actual parameters which do not match the length of the formal parameter. See sections A.3 and B.1.3 for further details.

E.1.7 U - User Interrupt

Default: U-

The U directive controls user interrupts. When active, {$U+}$, the user may interrupt the program anytime during execution by entering a Ctrl-C. When passive, {$U-}$, this has no effect. Activating this directive will significantly slow down execution speed.
E.2 CP/M-80 Compiler Directives

The following directives are unique to the CP/M-80 implementation.

E.2.1 A — Absolute Code

Default: A+

The A directive controls generation of absolute, i.e. non-recursive, code. When active, [A+], absolute code is generated. When passive, [A-], the compiler generates code which allows recursive calls. This code requires more memory and executes slower. For further information, see sections 8 and 16.

E.2.2 W — Nesting of With Statements

Default: W2

The W directive controls the level of nesting of With statements, i.e. the number of records which may be ‘opened’ within one block. The W must be immediately followed by a digit between 1 and 9. For further details, please refer to section 11.2.

E.2.3 X — Array Optimization

Default: X+

The X directive controls array optimization. When active, [X+], code generation for arrays is optimized for maximum speed. When passive, [X-], the compiler minimizes the code size instead. This is discussed further in section 10.1.
The following directive is unique to the CP/M-86 / MS-DOS implementations:

**E.3.1 K - Stack Checking**

**Default: K+**

The K directive controls the generation of stack check code. When active, $K+$, a check is made to insure that space is available for local variables on the stack before each call to a subprogram. When passive, ($K-$), no checks are made.
Notes:
F. TURBO VS. STANDARD PASCAL

The TURBO Pascal language closely follows the Standard Pascal defined by Jensen & Wirth in their User Manual and Report, with only minor differences introduced for the sheer purpose of efficiency. These differences are described in the following. Notice that the extensions offered by TURBO Pascal are not discussed.

F.1 Dynamic Variables

Dynamic variables and pointers use the standard procedures New, Mark, and Release instead of the New and Dispose procedures suggested by Standard Pascal. Primarily this deviation from the standard is far more efficient in terms of execution speed and required support code, and secondly it offers compatibility with other popular Pascal compilers (e.g. UCSD Pascal).

The procedure New will not accept variant record specifications. This restriction, however, is easily circumvented by using the standard procedure Get-Mem.

F.2 Recursion

CP/M-80 version only: Because of the way local variables are handled during recursion, a variable local to a subprogram must not be passed as a var-parameter in recursive calls.

F.3 Get and Put

The standard procedures Get and Put are not implemented. Instead, the Read and Write procedures have been extended to handle all I/O needs. The reason for this is threefold: Firstly Read and Write gives much faster I/O, secondly variable space overhead is reduced, as file buffer variables are not required, and thirdly the Read and Write procedures are far more versatile and easier to understand than Get and Put.
F.4 Goto Statements

A `goto` statement must not leave the current block.

F.5 Page Procedure

The standard procedure `Page` is not implemented, as the CP/M operating system does not define a form-feed character.

F.6 Packed Variables

The reserved word `packed` has no effect in TURBO Pascal, but it is still allowed. This is because packing occurs automatically whenever possible. For the same reason, standard procedures `Pack` and `Unpack` are not implemented.

F.7 Procedural Parameters

Procedures and functions cannot be passed as parameters.
G. COMPILER ERROR MESSAGES

The following is a listing of error messages you may get from the compiler. When encountering an error, the compiler will always print the error number on the screen. Explanatory texts will only be issued if you have included error messages (answer Y to the first question when you start TURBO).

Many error messages are totally self-explanatory, but some need a little elaboration as provided in the following.

01 ' ; ' expected
02 ' : ' expected
03 ' , ' expected
04 ' ( ' expected
05 ' ) ' expected
06 ' = ' expected
07 ' : = ' expected
08 ' [ ' expected
09 ' ) ' expected
10 ' . ' expected
11 ' . . ' expected
12 BEGIN expected
13 DO expected
14 END expected
15 OF expected
16 THEN expected
17 TO or DOWNTO expected
18 Boolean expression expected
19 File variable expected
20 Integer constant expected
21 Integer expression expected
22 Integer variable expected
23 Integer or real constant expected
24 Integer or real expression expected
25 Integer or real variable expected
26 Pointer variable expected
27 Record variable expected
28 Simple type expected
29 Simple expression expected
30 String constant expected

Simple types are all scalar types, except real.
33 String expression expected
34 String variable expected
35 Textfile expected
36 Type identifier expected
37 Untyped file expected
40 Undefined label
   A statement references an undefined label.
41 Unknown identifier or syntax error
   Unknown label, constant, type, variable, or field identifier, or syntax error in statement.
42 Undefined pointer type in preceding type definitions
   A preceding pointer type definition contains a reference to an unknown type identifier.
43 Duplicate identifier or label
   This identifier or label has already been used within the current block.
44 Type mismatch
   1) Incompatible types of the variable and the expression in an assignment statement
   2) Incompatible types of the actual and the formal parameter in a call to a subprogram.
   3) Expression type incompatible with index type in array assignment.
   4) Types of operands in an expression are not compatible.
45 Constant out of range
46 Constant and CASE selector type does not match
47 Operand type(s) does not match operator
   E.g. ‘A’ div ‘2’
48 Invalid result type
   Valid types are all scalar types, string types, and pointer types.
49 Invalid string length
   The length of a string must be in the range 1..255.
50 String constant length does not match type
51 Invalid subrange base type
   Valid base types are all scalar types, except real.
52 Lower bound > upper bound
   The ordinal value of the upper bound must be greater than or equal to the ordinal value of the lower bound.
53 Reserved word
   These may not be used as identifiers.
54 Illegal assignment
55 String constant exceeds line
   String constants must not span lines.
56 Error in integer constant
   An Integer constant does not conform to the syntax described in
   section 4.2, or it is not within the Integer range -32768..32767.
   Whole Real numbers should be followed by a decimal point and a
   zero, e.g. 123456789.0.

57 Error in real constant
   The syntax of Real constants is defined in section 4.2.

58 Illegal character in identifier

59 Constants are not allowed here

60 Files and pointers are not allowed here

61 Structured variables are not allowed here

62 Textfiles are not allowed here

63 Textfiles and untyped files are not allowed here

64 Untyped files are not allowed here

65 I/O not allowed here
   Variables of this type cannot be input or output.

66 Files must be VAR parameters

67 File components may not be files
   file of file constructs are not allowed.

68 Invalid ordering of fields

69 Set base type out of range
   The base type of a set must be a scalar with no more than 256 pos­
   sible values or a subrange with bounds in the range 0..255.

70 Invalid GOTO
   A GOTO cannot reference a label within a FOR loop from outside
   that FOR loop.

71 Label not within current block
   A GOTO statement cannot reference a label outside the current
   block.

72 Undefined FORWARD procedure(s)
   A subprogram has been forward declared, but the body never
   occurred.

73 INLINE error

74 Illegal use of ABSOLUTE
   1) Only one identifier may appear before the colon in an absolute
      variable declaration. 2) The absolute clause may not be used in a
      record.

75 File not found
   The specified include file does not exist.

76 Unexpected end of source
   Your program cannot end the way it does. The program probably
   has more begins than ends.
97 Too many nested WITHs
    Use the W compiler directive to increase the maximum number of
    nested WITH statements. Default is 2. (CP/M-80 only).

98 Memory overflow
    You are trying to allocate more storage for variables than is avail-
    able.

99 Compiler overflow
    There is not enough memory to compile the program. This error may
    occur even if free memory seems to exist; it is, however, used by the
    stack and the symbol table during compilation. Break your source
    text into smaller segments and use include files.
H. RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the message:

Run-time error NN, PC=addr
Program aborted

where NN is the run-time error number, and addr is the address in the program code where the error occurred. The following contains explanations of all run-time error numbers. Notice that the numbers are hexadecimal!

01 Floating point overflow.
02 Division by zero attempted.
03 Sqrt argument error.
   The argument passed to the Sqrt function was negative.
04 Ln argument error.
   The argument passed to the Ln function was zero or negative.
10 String length error.
   1) A string concatenation resulted in a string of more than 255 characters. 2) Only strings of length 1 can be converted to a character.
11 Invalid string index.
   Index expression is not within 1..255 with Copy, Delete or Insert procedure calls.
90 Index out of range.
   The index expression of an array subscript was out of range.
91 Scalar or subrange out of range.
   The value assigned to a scalar or a subrange variable was out of range.
92 Out of integer range.
   The real value passed to Trunc or Round was not within the Integer range -32767..32767.
FF Heap/stack collision.
   A call was made to the standard procedure New or to a recursive subprogram, and there is insufficient free memory.
I. I/O ERROR MESSAGES

An error in an input or output operation at run-time results in an I/O error. If I/O checking is active (I compiler directive active), an I/O error causes the program to halt and the following error message is displayed:

\[
\text{I/O error NN, PC=addr} \\
\text{Program aborted}
\]

where \(NN\) is the I/O error number, and \(addr\) is the address in the program code where the error occurred.

If I/O error checking is passive (\$I=), an I/O error will not cause the program to halt. Instead, all further I/O is suspended until the result of the I/O operation has been examined with the standard function \(I0result\). If I/O is attempted before \(I0result\) is called after an error, a new error occurs, possibly hanging the program.

The following contains explanations of all run-time error numbers. Notice that the numbers are hexadecimal!

01 **File does not exist.**
   The file name used with \(Reset,\) \(Erase,\) \(Rename,\) \(Execute,\) or \(Chain\) does not specify an existing file.

02 **File not open for input.**
   1) You are trying to read (with \(Read\) or \(Readln\)) from a file without a previous \(Reset\) or \(Rewrite.\) 2) You are trying to read from a text file which was prepared with \(Rewrite\) (and thus is empty). 3) You are trying to read from the logical device \(LST,:\) which is an output-only device.

03 **File not open for output.**
   1) You are trying to write (with \(Write\) or \(WriteIn\)) to a file without a previous \(Reset\) or \(Rewrite.\) 2) You are trying to write to a text file which was prepared with \(Reset.\) 3) You are trying to write to the logical device \(KBD,:\) which is an input-only device.
04 **File not open.**

You are trying to access (with BlockRead or BlockWrite) a file without a previous Reset or Rewrite.

10 **Error in numeric format.**

The string read from a text file into a numeric variable does not conform to the proper numeric format (see section 4.2).

20 **Operation not allowed on a logical device.**

You are trying to Erase, Rename, Execute, or Chain a file assigned to a logical device.

21 **Not allowed in direct mode.**

Programs cannot be Executed or Chained from a program running in direct mode (i.e. a program activated with a Run command while the Memory compiler option is set).

22 **Assign to std files not allowed.**

90 **Record length mismatch.**

The record length of a file variable does not match the file you are trying to associate it with.

91 **Seek beyond end-of-file.**

99 **Unexpected end-of-file.**

1) Physical end-of-file encountered before EOF-character (Ctrl-Z) when reading from a text file. 2) An attempt was made to read beyond end-of-file on a defined file. 3) A Read or BlockRead is unable to read the next sector of a defined file. Something may be wrong with the file, or (in the case of BlockRead) you may be trying to read past physical EOF.

F0 **Disk write error.**

Disk full while attempting to expand a file. This may occur with the output operations Write, WriteLn, BlockWrite, and Flush, but also Read, ReadLn, and Close may cause this error, as they cause the write buffer to be flushed.

F1 **Directory is full.**

You are trying to Rewrite a file, and there is no more room in the disk directory.

F2 **File size overflow.**

You are trying to Write a record beyond 65535 to a defined file.

FF **File disappeared.**

An attempt was made to Close a file which was no longer present in the disk directory, e.g. because of an unexpected disk change.
J. TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO.MSG. These messages are in English but may easily be translated into any other language as described in the following.

The first 24 lines of this file define a number of text constants for subsequent inclusion in the error message lines; a technique which drastically reduces the disk and memory requirements of the error messages. Each constant is identified by a control character, denoted by a ^ character in the following listing. The value of each constant is anything that follows on the same line. All characters are significant, also leading and trailing blanks.

The remaining lines each contain one error message, starting with the error number and immediately followed by the message text. The message text may consist of any characters and may include previously defined constant identifiers (control characters). Appendix G lists the resulting messages in full.

When you translate the error messages, the relation between constants and error messages will probably be quite different from the English version listed here. Start therefore with writing each error message in full, disregarding the use of constants. You may use these error messages, but they will require excessive space. When all messages are translated, you should find as many common denominators as possible. Then define these as constants at the top of the file and include only the constant identifiers in subsequent message texts. You may define as few or as many constants as you need, the restriction being only the number of control characters.

As a good example of the use of constants, consider errors 25, 26, and 27. These are defined exclusively by constant identifiers, 15 in total, but would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Control characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A (^A) into the file, hold down the <CONTROL> key and press first P, then A. Control characters appear dim on the screen (if it has any video attributes).

Notice that the TURBO editor deletes all trailing blanks. The original message therefore does not use trailing blanks in any messages.
J.1  Error Message File Listing

~A are not allowed
~B can not be
~C constant
~D does not
~E expression
~F identifier
~G file
~H here
~KInteger
~LFile
~NILegal
~O or
~PUndefined
~Q match
~R real
~SString
~TTextfile
~U out of range
~V variable
~W overflow
~X expected
~Y type
~Z[Invalid
~] pointer
01'; 'X
02': 'X
03', 'X
04'( 'X
05') 'X
06'= 'X
07':='X
08'[ 'X
09']/ 'X
10', 'X
11...', 'X
12BEGIN' 'X
13DO' 'X
14END' 'X
15OF' 'X
17THEN' 'X
18TO' 'O DOWHTO' 'X
20Boolean' 'E' 'X
Error Message File Listing

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-L-V-X</td>
<td>Error Message File Listing</td>
</tr>
<tr>
<td>22-K-C-X</td>
<td>22-K-C-X</td>
</tr>
<tr>
<td>24-K-V-X</td>
<td>24-K-V-X</td>
</tr>
<tr>
<td>25-K-O-R-C-X</td>
<td>25-K-O-R-C-X</td>
</tr>
<tr>
<td>28-Pointer-V-X</td>
<td>28-Pointer-V-X</td>
</tr>
<tr>
<td>29-Record-V-X</td>
<td>29-Record-V-X</td>
</tr>
<tr>
<td>30-Simple-Y-X</td>
<td>30-Simple-Y-X</td>
</tr>
<tr>
<td>31-Simple-E-X</td>
<td>31-Simple-E-X</td>
</tr>
<tr>
<td>32-S-C-X</td>
<td>32-S-C-X</td>
</tr>
<tr>
<td>33-S-E-X</td>
<td>33-S-E-X</td>
</tr>
<tr>
<td>34-S-V-X</td>
<td>34-S-V-X</td>
</tr>
<tr>
<td>35-T-X</td>
<td>35-T-X</td>
</tr>
<tr>
<td>36-Type-F-X</td>
<td>36-Type-F-X</td>
</tr>
<tr>
<td>37-Untyped-G-X</td>
<td>37-Untyped-G-X</td>
</tr>
<tr>
<td>40-P label</td>
<td>40-P label</td>
</tr>
<tr>
<td>41-Unknown-F-O syntax error</td>
<td>41-Unknown-F-O syntax error</td>
</tr>
<tr>
<td>42-P-[^Y in preceding-Y definitions</td>
<td>42-P-[^Y in preceding-Y definitions</td>
</tr>
<tr>
<td>43-Duplicate-F-O label</td>
<td>43-Duplicate-F-O label</td>
</tr>
<tr>
<td>44-Type mismatch</td>
<td>44-Type mismatch</td>
</tr>
<tr>
<td>45-C-U</td>
<td>45-C-U and CASE selector-Y-D-Q</td>
</tr>
<tr>
<td>47-Operand-Y(s)-D-Q operator</td>
<td>47-Operand-Y(s)-D-Q operator</td>
</tr>
<tr>
<td>48-[ result-Y</td>
<td>48-[ result-Y</td>
</tr>
<tr>
<td>49-[ -S length</td>
<td>49-[ -S length</td>
</tr>
<tr>
<td>50-S-C length-D-Q-Y</td>
<td>50-S-C length-D-Q-Y</td>
</tr>
<tr>
<td>51-[ subrange base-Y</td>
<td>51-[ subrange base-Y</td>
</tr>
<tr>
<td>52-Lower bound &gt; upper bound</td>
<td>52-Lower bound &gt; upper bound</td>
</tr>
<tr>
<td>53-Reserved word</td>
<td>53-Reserved word</td>
</tr>
<tr>
<td>54-N assignment</td>
<td>54-N assignment</td>
</tr>
<tr>
<td>55-S-C exceeds line</td>
<td>55-S-C exceeds line</td>
</tr>
<tr>
<td>56-Error in integer-C</td>
<td>56-Error in integer-C</td>
</tr>
<tr>
<td>57-Error in-R-C</td>
<td>57-Error in-R-C</td>
</tr>
<tr>
<td>58-N character in-F</td>
<td>58-N character in-F</td>
</tr>
<tr>
<td>60-Cs-A-H</td>
<td>60-Cs-A-H</td>
</tr>
<tr>
<td>64-Ts and untyped-Gs-A-H</td>
<td>64-Ts and untyped-Gs-A-H</td>
</tr>
<tr>
<td>66-I/0-A</td>
<td>66-I/0-A</td>
</tr>
<tr>
<td>67-Ls must be-V parameters</td>
<td>67-Ls must be-V parameters</td>
</tr>
</tbody>
</table>

TRANSLATING ERROR MESSAGES 231
68-L components-B-Gs
69-[Ordering of fields
70Set base-Y-U
71-[ GOTO
72Label not within current block
73-P FORWARD procedure(s)
74INLINE error
75-N use of ABSOLUTE
90-L not found
91Unexpected end of source
97Too many nested WITH's
98Memory-W
99Compiler-W
The syntax of the TURBO Pascal language is presented here using the formalism known as the *Backus-Naur Form*. The following symbols are meta-symbols belonging to the BNF formalism, and not symbols of the TURBO Pascal language:

- `::=` Means "is defined as".
- `|` Means "or".
- `{}` Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is printed in *italics*, e.g.: *block* and *case-element*. reserved words are printed in *bold-face*, e.g.: *array* and *for*.

---

```
actual-parameter ::= expression | variable
adding-operator ::= + | - | or | xor
array-constant ::= (structured-constant , structured-constant)
array-type ::= array [index-type , index-type] of component-type
array-variable ::= = variable
assignment-statement ::= variable := expression |
 function-identifier ::= = expression
base-type ::= simple-type
block ::= declaration-part statement-part
case-element ::= case-list : statement
case-label ::= constant
case-label-list ::= case-label , case-label
case-list ::= case-list-element , case-list-element
case-list-element ::= constant | constant .. constant
case-statement ::= case expression of case-element , case-element end
 | case expression of case-element , case-element end
 | otherwise statement , statement end
complemented-factor ::= signed-factor | not signed-factor
component-type ::= type
component-variable ::= indexed-variable | field-designator
compound-statement ::= begin statement , statement end
conditional-statement ::= if-statement , case-statement
constant ::= unsigned-number | sign unsigned-number | constant-identifier
 | sign constant-identifier | string
```
constant-definition-part ::= const constant-definition
       { ; constant-definition } ;
constant-definition ::= untyped-constant-definition \ typed-constant-definition
constant-identifier ::= identifier
control-character ::= @ unsigned-integer \^ character
control-variable ::= variable-identifier
declaration-part ::= { declaration-section }
declaration-section ::= label-declaration-part \ constant-definition-part
                  \ type-definition-part \ variable-declaration-part
                  \ procedure-and-function-declaration-part
digit ::= 0 1 2 3 4 5 6 7 8 9
digit-sequence ::= digit { digit }
empty ::= empty-statement ::= empty
entire-variable ::= variable-identifier \ typed-constant-identifier
expression ::= simple-expression \ ( relational-operator simple-expression )
factor ::= variable \ unsigned-constant \ ( expression )
           function-designator \ set
field-designator ::= record-variable . field-identifier
field-identifier ::= identifier
field-list ::= fixed-part \ fixed-part ; variant-part \ variant-part
file-identifier ::= identifier
file-identifier-list ::= empty \ ( file-identifier { , file-identifier } )
file-type ::= file of type
final-value ::= expression
fixed-part ::= record-section { ; record-section }
for-list ::= initial-value to final-value \ initial-value downto final-value
for-statement ::= for control-variable ::= for-list do statement
formal-parameter-section ::= parameter-group \ var parameter-group
function-declaration ::= function-heading block ;
function-designator ::= function-identifier \ function-identifier
           ( actual-parameter { , actual-parameter } )
function-heading ::= function-identifier : result-type ;
function-identifier ( formal-parameter-section { , formal-parameter-section } ) : result-type ;
function-identifier ::= identifier
goto-statement ::= goto label
hexdigit ::= digit A B C D E F
hexdigit-sequence ::= hexdigit { hexdigit }
identifier ::= letter \ ( letter-or-digit )
identifier-list ::= identifier \ ( , identifier )
if-statement ::= if expression then statement \ else statement
index-type ::= simple-type
indexed-variable ::= array-variable { expression { , expression } }

initial-value ::= expression

inline-list-element ::= unsigned-integer | constant-identifier |
variable-identifier | location-counter-reference

inline-statement ::= inline inline-list-element { , inline-list-element }

label ::= letter-or-digit { letter-or-digit }

label-declaration-part ::= label label { , label } ;

letter ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z | _

letter-or-digit ::= letter | digit

location-counter-reference ::= < | > | sign constant

multiplying-operator ::= * | / | div | mod | and | shl | shr

parameter-group ::= identifier-list : type-identifier

pointer-type ::= * type-identifier

pointer-variable ::= variable

procedure-and-function-declaration-part ::= 
{ procedure-or-function-declaration }

procedure-declaration ::= procedure-heading block ;

procedure-heading ::= procedure identifier ; | procedure identifier 
{ formal-parameter-section 
{ , formal-parameter-section } } ;

procedure-or-function-declaration ::= = procedure-declaration | 
function-declaration

procedure-statement ::= = procedure-identifier | procedure-identifier 
{ actual-parameter { , actual-parameter } }

program-heading ::= empty | program program-identifier 
file-identifier-list

program ::= program-heading block .

program-identifier ::= identifier

record-constant ::= = record-constant-element 
{ ; record-constant-element }

record-constant-element ::= field-identifier : structured-constant

record-section ::= empty | field-identifier { , field-identifier } : type

record-type ::= = record field-list end

record-variable ::= variable

record-variable-list ::= record-variable { , record-variable }

referenced-variable ::= pointer-variable *

relational-operator ::= = | < > | < = | > = | < | > | in

repeat-statement ::= = repeat-statement { ; statement } until expression

repetitive-statement ::= = while-statement | repeat-statement | for-statement

result-type ::= = type-identifier

scalar-type ::= ( identifier { , identifier } )
scale-factor ::= digit-sequence \ sign digit-sequence
set ::= \{ set-element \}
set-constant ::= \{ set-constant-element \}
set-constant-element ::= constant \ constant .. constant
set-element ::= expression \ expression .. expression
set-type ::= set of base-type
sign ::= \+ | -
signed-factor ::= factor \ sign factor
simple-expression ::= term \ adding-operator term
simple-statement ::= assignment-statement \ procedure-statement \ goto-statement \ inline-statement \ empty-statement
simple-type ::= scalar-type \ subrange-type \ type-identifier
statement ::= simple-statement \ structured-statement
statement-part ::= compound-statement
string ::= \{ string-element \}
string-element ::= text-string \ control-character
string-type ::= string \ constant
structured-constant ::= constant \ array-constant \ record-constant \ set-constant
structured-constant-definition ::= identifier : type = structured-constant
structured-statement ::= compound-statement \ if-then-else-statement \ repetitive-statement \ with-statement
structured-type ::= unpacked-structured-type \ packed unpacked-structured-type
subrange-type ::= constant .. constant
tag-field ::= empty \ field-identifier :
term ::= complemented-factor \ multiplying-operator complemented-factor
text-string ::= \' \{ character \}'
type-definition ::= identifier = type
type-definition-part ::= \textbf{type} type-definition \ type-definition
\textbf{type-identifier} ::= identifier
type ::= simple-type \ structured-type \ pointer-type
typed-constant-identifier ::= identifier
unpacked-structured-type ::= string-type \ array-type \ record-type \ set-type \ file-type
unsigned-constant ::= unsigned-number \ string \ constant-identifier \ nil
unsigned-integer ::= digit-sequence \$ hexdigit-sequence
unsigned-number ::= unsigned-integer \ unsigned-real
unsigned-real ::= digit-sequence \cdot digit-sequence \ digit-sequence \cdot digit-sequence E scale-factor \ digit-sequence E scale-factor
untyped-constant-definition ::= identifier = constant
variable ::= entire-variable \ component-variable \ referenced-variable
variable-declaration ::= identifier-list : type |
                        identifier-list : type absolute constant

variable-declaration-part ::= var variable-declaration
                            { ; variable-declaration }

variable-identifier ::= identifier

variant ::= empty | case-label list : ( field-list )

variant-part ::= case tag-field type-identifier of variant { ; variant }

while-statement ::= while expression do statement

with-statement ::= with record-variable-list do statement
Notes:
# ASCII TABLE

<table>
<thead>
<tr>
<th>DEC</th>
<th>HEX</th>
<th>CHAR</th>
<th>DEC</th>
<th>HEX</th>
<th>CHAR</th>
<th>DEC</th>
<th>HEX</th>
<th>CHAR</th>
<th>DEC</th>
<th>HEX</th>
<th>CHAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>®</td>
<td>32</td>
<td>20</td>
<td>SPC</td>
<td>64</td>
<td>40</td>
<td>®</td>
<td>96</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>“A”</td>
<td>33</td>
<td>21</td>
<td>!</td>
<td>65</td>
<td>41</td>
<td>A</td>
<td>97</td>
<td>61</td>
<td>a</td>
</tr>
<tr>
<td>02</td>
<td>02</td>
<td>“B”</td>
<td>34</td>
<td>22</td>
<td>”</td>
<td>66</td>
<td>42</td>
<td>B</td>
<td>98</td>
<td>62</td>
<td>b</td>
</tr>
<tr>
<td>03</td>
<td>03</td>
<td>“C”</td>
<td>35</td>
<td>23</td>
<td>#</td>
<td>67</td>
<td>43</td>
<td>C</td>
<td>99</td>
<td>63</td>
<td>c</td>
</tr>
<tr>
<td>04</td>
<td>04</td>
<td>“D”</td>
<td>36</td>
<td>24</td>
<td>$</td>
<td>68</td>
<td>44</td>
<td>D</td>
<td>100</td>
<td>64</td>
<td>d</td>
</tr>
<tr>
<td>05</td>
<td>05</td>
<td>“E”</td>
<td>37</td>
<td>25</td>
<td>%</td>
<td>69</td>
<td>45</td>
<td>E</td>
<td>101</td>
<td>65</td>
<td>e</td>
</tr>
<tr>
<td>06</td>
<td>06</td>
<td>“F”</td>
<td>38</td>
<td>26</td>
<td>&amp;</td>
<td>70</td>
<td>46</td>
<td>F</td>
<td>102</td>
<td>66</td>
<td>f</td>
</tr>
<tr>
<td>07</td>
<td>07</td>
<td>“G”</td>
<td>39</td>
<td>27</td>
<td>’</td>
<td>71</td>
<td>47</td>
<td>G</td>
<td>103</td>
<td>67</td>
<td>g</td>
</tr>
<tr>
<td>08</td>
<td>08</td>
<td>“H”</td>
<td>40</td>
<td>28</td>
<td>(</td>
<td>72</td>
<td>48</td>
<td>H</td>
<td>104</td>
<td>68</td>
<td>h</td>
</tr>
<tr>
<td>09</td>
<td>09</td>
<td>“I”</td>
<td>41</td>
<td>29</td>
<td>)</td>
<td>73</td>
<td>49</td>
<td>I</td>
<td>105</td>
<td>69</td>
<td>i</td>
</tr>
<tr>
<td>0A</td>
<td>0A</td>
<td>“J”</td>
<td>42</td>
<td>2A</td>
<td>*</td>
<td>74</td>
<td>4A</td>
<td>J</td>
<td>106</td>
<td>6A</td>
<td>j</td>
</tr>
<tr>
<td>0B</td>
<td>0B</td>
<td>“K”</td>
<td>43</td>
<td>2B</td>
<td>+</td>
<td>75</td>
<td>4B</td>
<td>K</td>
<td>107</td>
<td>6B</td>
<td>k</td>
</tr>
<tr>
<td>0C</td>
<td>0C</td>
<td>“L”</td>
<td>44</td>
<td>2C</td>
<td>,</td>
<td>76</td>
<td>4C</td>
<td>L</td>
<td>108</td>
<td>6C</td>
<td>l</td>
</tr>
<tr>
<td>0D</td>
<td>0D</td>
<td>“M”</td>
<td>45</td>
<td>2D</td>
<td>-</td>
<td>77</td>
<td>4D</td>
<td>M</td>
<td>109</td>
<td>6D</td>
<td>m</td>
</tr>
<tr>
<td>0E</td>
<td>0E</td>
<td>“N”</td>
<td>46</td>
<td>2E</td>
<td>.</td>
<td>78</td>
<td>4E</td>
<td>N</td>
<td>110</td>
<td>6E</td>
<td>n</td>
</tr>
<tr>
<td>0F</td>
<td>0F</td>
<td>“O”</td>
<td>47</td>
<td>2F</td>
<td>/</td>
<td>79</td>
<td>4F</td>
<td>O</td>
<td>111</td>
<td>6F</td>
<td>o</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>“P”</td>
<td>48</td>
<td>30</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>P</td>
<td>112</td>
<td>70</td>
<td>p</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>“Q”</td>
<td>49</td>
<td>31</td>
<td>1</td>
<td>81</td>
<td>51</td>
<td>Q</td>
<td>113</td>
<td>71</td>
<td>q</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>“R”</td>
<td>50</td>
<td>32</td>
<td>2</td>
<td>82</td>
<td>52</td>
<td>R</td>
<td>114</td>
<td>72</td>
<td>r</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>“S”</td>
<td>51</td>
<td>33</td>
<td>3</td>
<td>83</td>
<td>53</td>
<td>S</td>
<td>115</td>
<td>73</td>
<td>s</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>“T”</td>
<td>52</td>
<td>34</td>
<td>4</td>
<td>84</td>
<td>54</td>
<td>T</td>
<td>116</td>
<td>74</td>
<td>t</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>“U”</td>
<td>53</td>
<td>35</td>
<td>5</td>
<td>85</td>
<td>55</td>
<td>U</td>
<td>117</td>
<td>75</td>
<td>u</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>“V”</td>
<td>54</td>
<td>36</td>
<td>6</td>
<td>86</td>
<td>56</td>
<td>V</td>
<td>118</td>
<td>76</td>
<td>v</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>“W”</td>
<td>55</td>
<td>37</td>
<td>7</td>
<td>87</td>
<td>57</td>
<td>W</td>
<td>119</td>
<td>77</td>
<td>w</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>“X”</td>
<td>56</td>
<td>38</td>
<td>8</td>
<td>88</td>
<td>58</td>
<td>X</td>
<td>120</td>
<td>78</td>
<td>x</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>“Y”</td>
<td>57</td>
<td>39</td>
<td>9</td>
<td>89</td>
<td>59</td>
<td>Y</td>
<td>121</td>
<td>79</td>
<td>y</td>
</tr>
<tr>
<td>1A</td>
<td>1A</td>
<td>“Z”</td>
<td>58</td>
<td>3A</td>
<td>:</td>
<td>90</td>
<td>5A</td>
<td>Z</td>
<td>122</td>
<td>7A</td>
<td>z</td>
</tr>
<tr>
<td>1B</td>
<td>1B</td>
<td>^[</td>
<td>59</td>
<td>3B</td>
<td>;</td>
<td>91</td>
<td>5B</td>
<td>[</td>
<td>123</td>
<td>7B</td>
<td>{</td>
</tr>
<tr>
<td>1C</td>
<td>1C</td>
<td>\</td>
<td>60</td>
<td>3C</td>
<td>&lt;</td>
<td>92</td>
<td>5C</td>
<td>\</td>
<td>124</td>
<td>7C</td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>1D</td>
<td>]</td>
<td>61</td>
<td>3D</td>
<td>=</td>
<td>93</td>
<td>5D</td>
<td>]</td>
<td>125</td>
<td>7D</td>
<td>}</td>
</tr>
<tr>
<td>1E</td>
<td>1E</td>
<td>^&gt;</td>
<td>62</td>
<td>3E</td>
<td>&gt;</td>
<td>94</td>
<td>5E</td>
<td>^&gt;</td>
<td>126</td>
<td>7E</td>
<td>~</td>
</tr>
<tr>
<td>1F</td>
<td>1F</td>
<td>^_</td>
<td>63</td>
<td>3F</td>
<td>?</td>
<td>95</td>
<td>5F</td>
<td>^_</td>
<td>127</td>
<td>7F</td>
<td>DEL</td>
</tr>
</tbody>
</table>
This appendix lists a number of the most commonly asked questions and their answers.

Q: How do I use the system?
A: Please read the manual, specifically chapter 1.

Q: Is TURBO an interpreter like UCSD?
A: No, it generates ultra-fast machine code.

Q: Do I need TURBO to run programs developed in TURBO Pascal?
A: No, you can make a .COM or .CMD file.

Q: How many lines of code can the compiler handle.
A: No limit. The object code, however, cannot exceed 64 KB.

Q: How many significant digits does TURBO support in floating point?
A: 11.

Q: Why do I get garbage on the screen when I start the TURBO editor.
A: You have not installed TURBO for your system.

Q: What do I do when I run out of space using the editor?
A: Split your source code (see chapter 17 on include files).

Q: What do I do when I run out of space while compiling?
A: Use the $I directive and/or generate a .COM or .CMD file.

Q: How do I make a .COM or .CMD file?
A: Type 0 from the main menu, then type C.

Q: What do I do if I run out of space anyway?
A: Use the Chain facility described in sections A.10 and B.1.9.

Q: What do I do when the compiler generates too much code?
A: Read the appendicies about compiler switches and .CHN files.
Q: Why don’t Eof and Eoln work?
A: Set the B compiler directive off: {$B-}.

Q: I don’t want Ctrl-C to stop my program, or Ctrl-S to stop screen output. How do I prevent that?
A: Set the C compiler directive off: {$C-}.

Q: Why do my recursive procedures not work?
A: Set the A compiler directive off: {$A-} (CP/M-80 only).
Before you use TURBO Pascal, it must be installed to your particular terminal, i.e. provided with information regarding control characters required for certain functions. This installation is easily performed using the program TINST which is described in this chapter.

After having made a work-copy, please store your distribution diskette safely away and work only on the copy.

Now start the installation by typing TINST at your terminal. Select Screen installation from the main menu. Depending on your version of TURBO Pascal, the installation proceeds as described in the following two sections.

N.1 IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up will be used. You may override this default by selecting another screen mode from this menu:

Choose one of the following displays:

0) Default display mode
1) Monochrome display
2) Color display 80x25
3) Color display 40x25
4) b/w display 80x25
5) b/w display 40x25

Which display (enter no. or ^X to exit)

Each time TURBO Pascal runs, the selected mode will be used, and you will return to the default mode on exit.
### N.2 Non-IBM PC Installation

A menu listing a number of popular terminals will appear, inviting you to choose one by entering its number:

#### Figure N-2: Terminal Installation Menu

<table>
<thead>
<tr>
<th>Choice</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>ADDS 20/25/30</td>
</tr>
<tr>
<td>2)</td>
<td>ADDS 40/60</td>
</tr>
<tr>
<td>3)</td>
<td>ADDS Viewpoint-1A</td>
</tr>
<tr>
<td>4)</td>
<td>ADM 3A</td>
</tr>
<tr>
<td>5)</td>
<td>Ampex D60</td>
</tr>
<tr>
<td>6)</td>
<td>ANSI</td>
</tr>
<tr>
<td>7)</td>
<td>Apple/graphics</td>
</tr>
<tr>
<td>8)</td>
<td>Hazeltine 1500</td>
</tr>
<tr>
<td>9)</td>
<td>Hazeltine Esprit</td>
</tr>
<tr>
<td>10)</td>
<td>IBM PC CCP/M b/w</td>
</tr>
<tr>
<td>11)</td>
<td>IBM PC CCP/M color</td>
</tr>
<tr>
<td>12)</td>
<td>Kaypro 10</td>
</tr>
<tr>
<td>13)</td>
<td>Kaypro II and 4</td>
</tr>
<tr>
<td>14)</td>
<td>Lear-Siegler ADM-20</td>
</tr>
<tr>
<td>15)</td>
<td>Lear-Siegler ADM-31</td>
</tr>
<tr>
<td>16)</td>
<td>Liberty</td>
</tr>
<tr>
<td>17)</td>
<td>Morrow MDT-20</td>
</tr>
<tr>
<td>18)</td>
<td>Orona Attache</td>
</tr>
<tr>
<td>19)</td>
<td>Qume</td>
</tr>
<tr>
<td>20)</td>
<td>Soroc IQ-120</td>
</tr>
<tr>
<td>21)</td>
<td>Soroc new models</td>
</tr>
<tr>
<td>22)</td>
<td>Teletext 3000</td>
</tr>
<tr>
<td>23)</td>
<td>Televideo 912/920/925</td>
</tr>
<tr>
<td>24)</td>
<td>Visual 200</td>
</tr>
<tr>
<td>25)</td>
<td>Wyse WY-100/200/300</td>
</tr>
<tr>
<td>26)</td>
<td>Zenith</td>
</tr>
<tr>
<td>27)</td>
<td>None of the above</td>
</tr>
<tr>
<td>28)</td>
<td>Delete a definition</td>
</tr>
</tbody>
</table>

Which terminal? (Enter no. or ~X to exit):

If your terminal is mentioned, just enter the corresponding number, and the installation is complete. Before installation is actually performed, you are asked the question:

**Do you want to modify the definition before installation?**

This allows you to modify one or more of the values being installed as described in the following. If you do not want to modify the terminal definition, just type **N**, and the installation completes by asking you the operating frequency of your CPU (see last item in this appendix).

If your terminal is not on the menu, however, you must define the required values yourself. The values can most probably be found in the manual supplied with your terminal.
Enter the number corresponding to **None of the above** and answer the questions one by one as they appear on the screen.

In the following, each command you may install is described in detail. Your terminal may not support all the commands that can be installed. If so, just pass the command not needed by typing RETURN in response to the prompt. If *Delete line, Insert line, or Erase to end of line* is not installed, these functions will be emulated in software, slowing screen performance somewhat.

Commands may be entered either simply by pressing the appropriate keys or by entering the decimal or hexadecimal ASCII value of the command. If a command requires the two characters ‘ESCAPE’ and ‘ =’, may:

- **either** Press first the Esc key, then the =. The entry will be echoed with appropriate labels, i.e. `<ESC> =`.
- **or** Enter the decimal or hexadecimal values separated by spaces. Hexadecimal values must be preceded by a dollar-sign. Enter e.g. 27 61 or $1B 61 or $1B $3D which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-numeric character, the rest of that command must be defined in that mode, and vice versa.

A hyphen entered as the very first character is used to delete a command, and echoes the text *Nothing*.

**Terminal type:**

Enter the name of the terminal you are about to install. When you complete `TINST`, the values will be stored, and the terminal name will appear on the initial list of terminals. If you later need to re-install TURBO Pascal to this terminal, you can do that by choosing it from the list.
Send an initialization string to the terminal?

If you want to initialize your terminal when TURBO Pascal starts (e.g. to download commands to programmable function keys), you answer Y for yes to this question. If not, just hit RETURN.

If you answer Y, you may choose between entering the command directly or defining a file name containing the command string. The latter is a good idea if the initialization string is long, as e.g. a string to program a number of function keys would be.

Send a reset string to the terminal?

Here, you may define a string to be sent to the terminal when TURBO Pascal terminates. The description of the initialization command above applies here.

CURSOR LEAD-IN command:

Cursor Lead-in is a special sequence of characters which tells your terminal that the following characters are an address on the screen on which the cursor should be placed. When you define this command, you are asked the following supplementary questions:

CURSOR POSITIONING COMMAND to send between line and column:

Some terminals need a command between the two numbers defining the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and column:

Some terminals need a command after the two numbers defining the row- and column cursor address.

Column first?

Most terminals require the address on the format: first ROW, then COLUMN. If this is the case on your terminal, answer N. If your terminal wants COLUMN first, then ROW, then answer Y.

OFFSET to add to LINE

Enter the number to add to the LINE (ROW) address.
OFFSET to add to COLUMN

Enter the number to add to the COLUMN address.

Binary address?

Most terminals need the cursor address sent on binary form. If that is true for your terminal, enter Y. If your terminal expects the cursor address as ASCII digits, enter N. If so, you are asked the supplementary question:

2 or 3 ASCII digits?

Enter the number of digits in the cursor address for your terminal.

CLEAR SCREEN command:

Enter the command that will clear the entire contents of your screen, both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?

This is normally the case; if it is not so on your terminal, enter N, and define the cursor HOME command.

DELETE LINE command:

Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:

Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:

Enter the command that erases the line at the cursor position from the cursor position through the right end of the line.
START OF 'LOW VIDEO' command:

If your terminal supports different video intensities, then define the command that initiates the dim video here. If this command is defined, the following question is asked:

START OF 'NORMAL VIDEO' command:

Define the command that sets the screen to show characters in 'normal' video.

Number of rows (lines) on your screen:

Enter the number of horizontal lines on your screen.

Number of columns on your screen:

Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255 ms):

Enter the delay in milliseconds required after the functions specified. RETURN means 0 (no delay).

Is this definition correct?

If you have made any errors in the definitions, enter N. You will then return to the terminal selection menu. The installation data you have just entered will be included in the installation data file and appear on the terminal selection menu, but installation will not be performed.

When you enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz (for delays):

As the delays specified earlier are depending on the operating frequency of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal, and you return to the outer menu (see section 1.6). Installation data is also saved in the installation data file and the new terminal will appear on the terminal selection list when you run TINST in future.
O. SUBJECT INDEX

A
A Note on Control Characters, 21
A-command, 175, 176
A-compiler directive, 170
Abort command, 34
Abs, 132, 206
Absolute Address Functions, 178
Absolute Code, 216
Absolute value, 132
Absolute variables, 144, 146, 177
Adding operators, 51, 53
Addr, 147, 178, 209
Allocating Variables (New), 116
Arcsine tangent, 132
ArcTan, 132, 206
Arithmetic functions, 132, 206
Array component, 75
Array Constants, 90
Array Definition, 75
Array of characters, 109
Array Subscript Optimization, 148
Arrays, 75, 161, 190
Arrays and Records, 165, 193
Assign, 94, 207
Assigning a value to a pointer, 181
Assignment operator, 37
Assignment Statement, 55
Auto Indentation, 35
Auto tab on/off switch, 31

B
Backspace, 107
Backup, 16
BAK files, 16
Basic Data Types, 157, 187
Basic Symbols, 37
BDOS, 145
Bdos function, 153, 209
Bdos procedure, 153, 208
BdosHL function, 153, 209
BEFORE USE, 5
Begin block, 28
Bios function, 154, 209
Bios procedure, 154, 208
BiosHL function, 154, 209
Blanks, 39
Block, 121
Block Commands, 28
Begin block, 28
Copy block, 29
Delete block, 29
End block, 28
Hide/display block, 29
Mark single word, 28
Move block, 29
Read block from disk, 29
Write block to disk, 30
BlockRead, 112, 207
BlockWrite, 112, 207
Boolean, 42
Brackets, 37
Byte, 41
C
C-command, 16, 143, 174
Call by reference, 122
Call by value, 121
Case statement, 58
Chain, 149, 182, 207
Chain and Execute, 149, 182
Char, 42
Character array constants, 90
Character Arrays, 77
Character left, 23
Character right, 23
Characters, 73
Chr, 135, 206
ClrScr, 127, 208
Close, 96, 207
ClrEol, 127, 208
Code segment, 175
Col(umn) indicator in editor, 18
Comment, 37, 39, 45
Common Compiler Directives, 214
Common data, 150, 183
Common features, 173
Compilation in Memory, 166
Compilation To Disk, 167
Compile Command, 16
Compiler Directive Defaults, 5
Compiler Directives, 46
  in include files, 142
    A: Absolute code, 170, 216
    B: I/O device selection, 107, 214
    B: input/output mode selection, 104
    C: control character interpret, 214
    I: I/O error handling, 114, 214
    I: Include, 15, 141
    I: include files, 214
K: stack check, 216
R: Range checking, 65, 73, 76, 215
U: user interrupt, 215
V: Type checking, 123, 215
W: With statement nesting, 216
X: Array optimization, 148, 216
Compiler error messages, 221
compiler Options, 17, 143, 173
Compound Statement, 57
Concat, 71, 207
Concatenation, 67
Concurrent CP/M, 176
Conditional Statements, 57
Constant Definition Part, 48
Constants typed, 89
Control character, 10, 21, 31, 32, 45
Control character prefix, 34
Conversion, 65
Copy, 71, 207
Copy block, 29
Cos, 132, 206
Cosine, 132
CP/M Function Calls, 153
CP/M-80 Compiler Directives, 216
CP/M-86 / MS-DOS / PC-DOS
  Compiler Directives, 216
CPU stack, 170, 195
CR as numeric input, 107
CrtExit, 128, 208
CrtInit, 127, 208
Cseg, 178
Ctrl-A, 23
Ctrl-A in search strings, 31, 32
Ctrl-C, 214, 215
Ctrl-D, 23
Ctrl-E, 23
Ctrl-F, 23
Ctrl-Q Ctrl-B, 25
Ctrl-Q Ctrl-C, 25
Ctrl-Q Ctrl-D, 25
Ctrl-Q Ctrl-E, 25
Ctrl-Q Ctrl-K, 25
Ctrl-Q Ctrl-P, 26
Ctrl-Q Ctrl-R, 25
Ctrl-Q Ctrl-S, 25
Ctrl-Q Ctrl-X, 25
Ctrl-R, 24
Ctrl-S, 23
Ctrl-W, 23
Ctrl-X, 23, 107
Ctrl-Z, 24
Cursor Movement, 34
Cursor Movement Commands, 21
  Character left, 23
  Character right, 23
  Line down, 23
  Line up, 23
  Page down, 24
  Page up, 24
  Scroll down, 24
  Scroll up, 23
  To beginning of block, 25
  To bottom of screen, 25
  To end of block, 25
  To end of file, 25
  To last position, 26
  To left on line, 25
  To right on line, 25
  To top of file, 25
  To top of screen, 25
  Word left, 23
  Word right, 23

D
  D-command, 17, 175
  Data conversion, 106
  Data segment, 175
  Data Structures, 161, 189
  Data transfer between programs, 150, 183
  Declaration Part, 47
  Declared scalar types, 41
  Defining a Pointer Variable, 115
  DEL, 107
  Delay, 128, 208
  Delete, 33, 69, 207
  Delete a command, 245
  Delete block, 29
  Delete character under cursor, 27
  Delete commands, 27
    Delete character under cursor, 27
    Delete left character, 27
    Delete line, 27
    Delete right word, 27
    Delete to end of line, 28
  Delimiters, 39
  DelLine, 128, 208
  Deviations from standard Pascal, 37, 47, 48, 58, 65, 67, 89, 219
  Digits, 37
  Direct memory access, 147, 179
  Direct port access, 148, 180
  Directory Command, 17
  Discriminated unions, 83
  Disk change, 14
  Disk Files, 162, 190
  Disk-reset, 14
  Dseg, 179
  Dynamic variables, 115, 219
E
E-command, 16, 145
Echo, 102, 104
of CR, 107, 108
Edit Command, 16
Edit modes
  Insert, 26
  Overwrite, 26
Editing commands, 9, 19
  Character left, 23
  Character right, 23
  Line down, 23
  Line up, 23
  Page down, 24
  Page up, 24
  Scroll down, 24
  Scroll up, 23
  To beginning of block, 25
  To bottom of screen, 25
  To end of block, 25
  To end of file, 25
  To last position, 26
  To left on line, 25
  To right on line, 25
  To top of file, 25
  To top of screen, 25
  Word left, 23
  Word right, 23
Editing of input, 107
Editor, 18
  Col, 18
  File name, 19
  Indent, 19
  Insert, 19
  Line, 18
Element (of set), 85
Else statement, 58
Empty Statement, 56
End Address, 145
End block, 28
End Edit, 35
End edit command, 30
End of line, 39
EOF, 97, 106, 107, 113, 207
EOF with text files, 101
Eoln, 106, 107, 207
Erase, 96, 207
Error Message File Listing, 230
Error message translation, 229
Error messages
  Compiler, 221
  I/O, 227
  run-time, 225
Execute, 149, 182, 207
eXecute Command, 17
Execution error messages, 225
Execution in Memory, 167
Execution of A Program File, 168
Exist function, 96
Exp, 133, 206
Exponential, 133
Extended File Size, 200
Extensions, 1
External procedures, 162, 191
External Subprograms, 149, 181
SUBJECT INDEX

F
F-command, 145, 176
False, 42
Field constants, 92
Field list, 79
Fields, 79
File handling routines, 207
File identifier, 93
File Interface Blocks, 159, 198, 202
File name indicator in editor, 19
File names, 14
File of Byte, 200
File parameters, 122
File pointer, 93
File Standard Functions, 97
File type, 92, 93
File Type Definition, 93
FilePos, 97, 113, 207
Files On The Distribution Disk, 6
FileSize, 97, 113, 207
FileSize
with text files, 101
FillChar, 129, 208
Find, 31
Find and replace, 32
Find Runtime Error, 145, 176
Flush, 95, 200
Flush
with text files, 101
For statement, 60
Foreign languages, 229
Forward References, 138
Frac, 133, 206
Fractional part, 133
Free memory, 175, 176
Free Unions, 83
Function Calls, 196, 201
Function Declaration, 130
Function Designators, 54
Function Results, 165, 194
Functions, 130

G
Get and Put, 219
GetMem, 119, 208
Goto Statement, 56, 220
GotoXY, 128, 208

H
H-command, 143, 174
Halt procedure, 208
Heap, 116, 170, 175, 194
Heap Control Procedures and Functions, 208
HeapPtr, 168, 170, 194
Hi, 136
Hi function, 209
Hide/display block, 29
Highlighting, 13
Home position, 128

I
I/O, 106
I/O checking, 114
I/O error handling, 114
I/O error messages, 227
I/O mode selection, 104
I/O Procedures and Functions, 205
I/O to textfiles, 106
IBM PC Display Selection, 243
IBM PC Screen Installation, 8
Identifiers, 43
If statement, 57
In-line Machine Code, 152, 184
Include compiler directive, 15
Indent indicator in editor, 19
Indentation, 31
in this manual, 4
Initialized variables, 89
Input without echo, 102, 104
Input
  characters, 106
  editing, 107
  numeric values, 107
  strings, 107
Insert, 69, 207
Insert and Delete Commands, 26
Insert commands, 27
Insert indicator in editor, 19
Insert line, 27
Insert mode on/off switch, 26
InsLine, 128, 208
Installation, 8
Installation of Editing Commands, 9
Int, 133, 206
Integer, 41, 43
Integer overflow, 41
Integer part, 133
Internal Data Formats, 157, 187
Interrupt Handling, 156, 186
Intersection, 85
Intr, 186
Introduction, 1
IOresult, 114, 209

L
L-command, 14
Label Declaration Part, 48
Labels, 56
Large programs, 141
Length, 72, 207
Length of strings, 67
Letters, 37
Limitations on sets, 85
Line break, 31
Line down, 23
Line indicator in editor, 18
Line Restore, 35
Line up, 23
Ln, 133, 206
Lo, 136, 209
Local variables as var-parameters, 219
Location counter reference, 152, 185
Logarithm, 133
Logged Drive Selection, 14
Logical Devices, 102
LongFilePos, 200
LongFileSize, 200
LongSeek, 200
Lower case, 43
LowVideo, 129, 208

K
KeyPressed, 136, 209
M
M-command, 15, 143, 174
Main File Selection, 15
Margins in this manual, 4
Mark and Release, 116
Mark single word, 28, 34
Maximum Free Dynamic Memory, 176
Mem Array, 147, 179
MemAvail, 117, 148, 180, 208
Member (of set), 85
Memory / Com file / cHn-file, 143, 174
Memory access, 147, 179
Memory Management, 166
Memory Maps, 166
Menu
    C-command, 16
    D-command, 17
    E-command, 16
    L-command, 14
    M-command, 15
    O-command, 143, 173
    Q-command, 17
    R-command, 16
    S-command, 16
    W-command, 14
    X-command, 17
Minimum Code Segment Size, 175
Minimum Data Segment Size, 175
Minimum Free Dynamic Memory, 175
Miscellaneous editing commands
    Abort command, 34
    Auto tab on/off, 31
    Control character prefix, 34
    End edit, 30
    Find, 31
    Find and replace, 32
    Repeat last find, 33
    Restore line, 31
    Tab, 30
Miscellaneous Procedures and Functions, 208
Move, 129, 208
Move block, 29
Multi-user system, 95
Multidimensional Array
    Constants, 91
    Multidimensional Arrays, 76
Multiplying operators, 51, 52
N
Natural logarithm, 133
Nesting of With statements, 81, 148
New, 116, 208
Nil, 116
Non-IBM PC Screen
    Installation, 9, 244
    NormVideo, 129, 208
Not, 51, 52
Numbers, 43
Numeric input, 107
O
O-command, 143, 173, 175
Obtaining the value of a pointer, 181
Odd, 134, 206
Ofs, 178
Oops, 31
Operations on Files, 94, 200
Operations on Text Files, 100
Operator precedence, 51
Operators, 51
Options, 143, 173
Options menu
  C-command, 143, 174
  D-command, 175
  E-command, 145
  F-command, 145, 176
  H-command, 143, 174
  I-command, 175, 176
  M-command, 143, 174
  O-command, 175
  S-command, 144
Ord, 135, 149, 180, 206, 208
Ordinal value, 135
Overflow
  integer, 41
  real, 42
Overwrite/insert, 26

P
Packed Variables, 220
Page down, 24
Page Procedure, 220
Page up, 24
Paragraph, 175, 176
Parameters, 121, 162, 191
  value, 121
  variable, 122, 123
Pointer Related Items, 148, 180
Pointer symbol, 115
Pointer types, 92
Pointer Values, 180
Pointers, 115, 160, 164, 189, 193
Pointers and Integers, 149
Port access, 148, 180
Port Array, 148, 180
Pos, 72, 207
Position
  with text files, 101
Pred, 134, 206
Predecessor, 134
Predefined Arrays, 77, 147, 179
Procedural Parameters, 220

Procedure and Function
  Declaration Part, 50
  Procedure Declaration, 125
  Procedure Statement, 56, 121
  Procedures, 125
    Assign, 94
    Close, 96
    Delete, 69
    Erase, 96
    Flush, 95
    Insert, 69
    Read, 95
    recursive, 125
    Rename, 96
    Reset, 94
    Rewrite, 94
    Seek, 95
    Str, 70
    Val, 70
    Write, 95
Program Heading, 47
Program lines, 39
Ptr, 149, 180, 208

Q
Q-command, 17
Quit Command, 17

R
R-command, 16
Random, 136, 208
Random access files, 162, 199, 204
Random(Num), 136
Randomize, 129, 208
Range Checking, 65
Read block from disk, 29
Read Procedure, 95, 106, 132, 205
Read without echo, 102, 104
Readln Procedure, 108, 132, 205
Real overflow, 42
<table>
<thead>
<tr>
<th>Subject</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reals, 42, 44, 157, 163, 188, 193</td>
<td></td>
</tr>
<tr>
<td>Record Constants, 91</td>
<td></td>
</tr>
<tr>
<td>Record Definition, 79</td>
<td></td>
</tr>
<tr>
<td>Record type, 79</td>
<td></td>
</tr>
<tr>
<td>Records, 161, 190</td>
<td></td>
</tr>
<tr>
<td>RecurPtr, 168, 170</td>
<td></td>
</tr>
<tr>
<td>Recursion, 125, 170, 216, 219</td>
<td></td>
</tr>
<tr>
<td>Recursion stack, 170</td>
<td></td>
</tr>
<tr>
<td>Local variables as var-parameters, 219</td>
<td></td>
</tr>
<tr>
<td>Relational operators, 37, 51, 53</td>
<td></td>
</tr>
<tr>
<td>Relative complement, 85</td>
<td></td>
</tr>
<tr>
<td>Relaxations on Parameter Type Checking, 123</td>
<td></td>
</tr>
<tr>
<td>Release procedure, 208</td>
<td></td>
</tr>
<tr>
<td>Rename, 96</td>
<td></td>
</tr>
<tr>
<td>Rename procedure, 207</td>
<td></td>
</tr>
<tr>
<td>Repeat last find, 33</td>
<td></td>
</tr>
<tr>
<td>Repeat Statement, 61</td>
<td></td>
</tr>
<tr>
<td>Repetitive Statements, 59</td>
<td></td>
</tr>
<tr>
<td>Reserved Words, 37</td>
<td></td>
</tr>
<tr>
<td>Reset, 94, 207</td>
<td></td>
</tr>
<tr>
<td>Restore line, 31</td>
<td></td>
</tr>
<tr>
<td>RETURN, 107</td>
<td></td>
</tr>
<tr>
<td>Retype, 65</td>
<td></td>
</tr>
<tr>
<td>Rewrite, 94, 207</td>
<td></td>
</tr>
<tr>
<td>Root program, 175</td>
<td></td>
</tr>
<tr>
<td>Round, 135, 206</td>
<td></td>
</tr>
<tr>
<td>RUBOUT, 107</td>
<td></td>
</tr>
<tr>
<td>Run Command, 16</td>
<td></td>
</tr>
<tr>
<td>Run-time error messages, 225</td>
<td></td>
</tr>
<tr>
<td>Run-time range checking, 65, 73, 76</td>
<td></td>
</tr>
<tr>
<td>S-command, 16, 144</td>
<td></td>
</tr>
<tr>
<td>Save Command, 16</td>
<td></td>
</tr>
<tr>
<td>Scalar functions, 134, 206</td>
<td></td>
</tr>
<tr>
<td>Scalar Type, 63</td>
<td></td>
</tr>
<tr>
<td>Scalars, 157, 163, 187, 193</td>
<td></td>
</tr>
<tr>
<td>Scope, 125</td>
<td></td>
</tr>
<tr>
<td>Scope of identifiers, 49</td>
<td></td>
</tr>
<tr>
<td>of labels, 56</td>
<td></td>
</tr>
<tr>
<td>Screen Related Procedures, 208</td>
<td></td>
</tr>
<tr>
<td>Scroll down, 24</td>
<td></td>
</tr>
<tr>
<td>Scroll up, 23</td>
<td></td>
</tr>
<tr>
<td>Search, 31</td>
<td></td>
</tr>
<tr>
<td>Seek, 95, 113, 207</td>
<td></td>
</tr>
<tr>
<td>with text files, 101</td>
<td></td>
</tr>
<tr>
<td>Seg, 178</td>
<td></td>
</tr>
<tr>
<td>Set 158, 164, 189, 193</td>
<td></td>
</tr>
<tr>
<td>Set Assignments, 88</td>
<td></td>
</tr>
<tr>
<td>Set Constants, 92</td>
<td></td>
</tr>
<tr>
<td>Set Constructors, 86</td>
<td></td>
</tr>
<tr>
<td>Set Expressions, 86</td>
<td></td>
</tr>
<tr>
<td>Set operations, 85</td>
<td></td>
</tr>
<tr>
<td>Set Operators, 87</td>
<td></td>
</tr>
<tr>
<td>Set Type Definition, 85</td>
<td></td>
</tr>
<tr>
<td>Shared data, 150, 183</td>
<td></td>
</tr>
<tr>
<td>Simple Statements, 55</td>
<td></td>
</tr>
<tr>
<td>Sin, 133, 206</td>
<td></td>
</tr>
<tr>
<td>Sine, 133</td>
<td></td>
</tr>
<tr>
<td>SizeOf, 137, 209</td>
<td></td>
</tr>
<tr>
<td>Space Allocation, 119</td>
<td></td>
</tr>
<tr>
<td>Special symbols, 37</td>
<td></td>
</tr>
<tr>
<td>Sqr, 134, 206</td>
<td></td>
</tr>
<tr>
<td>Sqrt, 134, 206</td>
<td></td>
</tr>
<tr>
<td>Square, 134</td>
<td></td>
</tr>
<tr>
<td>Square root, 134</td>
<td></td>
</tr>
<tr>
<td>Sseg, 179</td>
<td></td>
</tr>
<tr>
<td>Stack, 175</td>
<td></td>
</tr>
<tr>
<td>StackPtr, 168, 170</td>
<td></td>
</tr>
<tr>
<td>Standard Files, 103</td>
<td></td>
</tr>
</tbody>
</table>
SUBJECT INDEX

Standard Functions, 132
   Abs, 132
   Addr, 147, 178
   ArcTan, 132
   Bdos, 153
   Bios, 154
   BiosHL, 154
   Chr, 135
   Cos, 132
   Cseg, 178
   Dseg, 179
   EOF, 113
   Exp, 133
   FilePos, 113
   FileSize, 113
   Frac, 133
   Hi, 136
   Int, 133
   IOresult, 114
   KeyPressed, 136
   Ln, 133
   Lo, 136
   MemAvail, 117
   Odd, 134
   Ofs, 178
   Ord, 135, 149, 180
   Pred, 134
   Ptr, 149, 180
   Random, 136
   Random(Num), 136
   Round, 135
   Seg, 178
   Sin, 133
   SizeOf, 137
   Sqr, 134
   Sqrt, 134
   Sseg, 179
   Succ, 134
   Swap, 137
   Trunc, 135
   TruncCase, 137
   Standard Identifiers, 38,
      146, 177, 196, 201

Standard Procedures, 127
   Bdos, 153
   Bios, 154
   Chain, 149, 182
   ClrEol, 127
   ClrScr, 127
   CrtExit, 128
   CrtInit, 127
   Delay, 128
   DelLine, 128
   Execute, 149, 182
   FillChar, 129
   GotoXY, 128
   InsLine, 128
   Intr, 186
   LowVideo, 129
   Move, 129
   New, 116
   NormVideo, 129
   Randomize, 129
   Read, 106
   Seek, 113
   Standard scalar types, 41
   Start Address, 144
   Starting TURBO Pascal, 7
   Statement Part, 50, 55
   Statement-separator, 55
   Static variables, 115
   Str, 70, 207
   String Assignment, 68
   String concatenation, 67
   String Expressions, 67
   String Functions, 71
   String indexing, 73
   String manipulation, 67
   String Procedures, 69
   String Procedures and
      Functions, 207
   String Type Definition, 67
   Strings, 44, 158, 164,
      188, 193
   Strings and Characters, 73
   Structured Statements, 57
   Structured Typed Constants, 90

TURBO Pascal Language Manual
Sub-program, 121
Subrange, 59
Subrange Type, 64
Successor, 134
Swap, 137

T
Tab, 30, 35
Tag field, 82
Terminal installation, 9
Text File Input and Output, 106
Text Files, 100, 162, 191
The empty set, 86
To beginning of block, 25
To bottom of screen, 25
To end of block, 25
To end of file, 25
To last position, 26
To left on line, 25
To right on line, 25
To top of file, 25
To top of screen, 25
TPA, 145
Trailing blanks, 25, 34
Transfer functions, 135, 206
Translation of error messages, 229
True, 42
Trunc, 135, 206
Type checking, 123
Type Conversion, 65
Type Definition Part, 49
Typed constants, 89

U
Unary minus, 51
Unclusion, 87
Unions, 83, 85
Unstructured Typed Constants, 89
Untyped Files, 112
Untyped Variable Parameters, 123
UpCase, 137, 209
Upper case, 43
Upper left corner of screen, 128
User Written I/O Drivers, 155, 196, 201
Using Files, 97
Using Pointers, 117

V
Val, 70, 207
Value Parameters, 121, 163, 192
Variable Declaration Part, 49
219
Variable Parameters, 122,
123, 163, 192
Variables, 49, 115
absolute, 146, 177
Variant Records, 82

W
W-command, 14
While statement, 61
With Statement, 81, 148, 180
Word left, 23
Word right, 23
WordStar compatibility, 9
Work File Selection, 14
Write, 95
Write block to disk, 30
Write parameters, 109
Write Procedure, 109, 132,
205
Writeln Procedure, 111, 132,
205

X
X-command, 17
Copyright Notice

This software package and manual are copyrighted 1983, 1984 by BORLAND INTERNATIONAL Inc. All rights reserved worldwide. No part of this publication may be reproduced, transmitted, transcribed, stored in any retrieval system, or translated into any language by any means without the express written permission of BORLAND INTERNATIONAL Inc., 4113 Scotts Valley Drive, Scotts Valley, CA 95066, USA.

Single CPU License

The price paid for one copy of TURBO Pascal licenses you to use the product on one CPU when and only when you have signed and returned the License Agreement printed in this book.

Disclaimer

Borland International makes no warranties as to the contents of this manual and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Borland International further reserves the right to make changes to the specifications of the program and contents of the manual without obligation to notify any person or organization of such changes.
# ADDENDUM

**TABLE OF CONTENTS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. OVERLAY SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Creating Overlays</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Nested Overlays</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Automatic Overlay Management</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Placing Overlay Files</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Efficient Use of Overlays</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Restrictions Imposed on Overlays</td>
<td>10</td>
</tr>
<tr>
<td>2. DYNAMIC HEAP</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Dispose</td>
<td>13</td>
</tr>
<tr>
<td>2.2 FreeMem</td>
<td>14</td>
</tr>
<tr>
<td>2.3 MaxAvail</td>
<td>14</td>
</tr>
<tr>
<td>3. NEW EDITOR COMMANDS</td>
<td>15</td>
</tr>
<tr>
<td>3.1 IBM PC and Compatibles</td>
<td>16</td>
</tr>
<tr>
<td>4. IBM PC GOODIES</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Text Mode</td>
<td>17</td>
</tr>
<tr>
<td>4.1.1 Colors</td>
<td>18</td>
</tr>
<tr>
<td>4.1.2 Cursor Addressing</td>
<td>19</td>
</tr>
<tr>
<td>4.2 Graphics Modes</td>
<td>20</td>
</tr>
<tr>
<td>4.2.1 GraphColorMode</td>
<td>20</td>
</tr>
<tr>
<td>4.2.2 GraphMode</td>
<td>22</td>
</tr>
<tr>
<td>4.2.3 HiRes</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Windows</td>
<td>25</td>
</tr>
<tr>
<td>4.3.1 Graphics Windows</td>
<td>26</td>
</tr>
<tr>
<td>4.4 Sound</td>
<td>27</td>
</tr>
<tr>
<td>5. SUMMARY OF VERSION 2 ADDITIONS</td>
<td>29</td>
</tr>
<tr>
<td>6. THE TURBO 87 OPTION</td>
<td>31</td>
</tr>
</tbody>
</table>

**Appendices**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. SUBJECT INDEX</td>
<td>32</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1-1 Principle of Overlay System .................................. 3
1-2 Largest Overlay Subprogram Loaded ............................. 4
1-3 Smaller Overlay Subprogram Loaded ............................. 5
1-4 Multiple Overlay Files ........................................ 7
1-5 Nested Overlay Files .......................................... 8
2-1 Using Dispose .................................................. 13
4-1 Text Windows ................................................... 25
4-2 Graphics Windows .............................................. 26

LIST OF TABLES

3-1 IBM PC Keyboard Editing Keys .................................. 16
4-1 Text Mode Color Scale ......................................... 18
4-2 Color Palettes in Color Graphics ............................... 21
4-3 Graphics Background Color Scale ............................... 22
4-4 Color Palettes in B/W Graphics ................................. 22
4-5 High Resolution Graphics Color Scale ......................... 23
INTRODUCTION

This addendum describes the following new features introduced in TURBO Pascal version 2 but not yet included in the Reference Manual:

1) **Overlay system.** The overlay system allows you to write programs which are larger than the memory available for program code. This provides for easy implementation of even very large programs.

2) **Dynamic heap.** Standard Pascal’s *dispose* procedure is fully implemented, supplementing the more restricted *mark* and *release* procedures of the TURBO version 1.

3) **Additional editor commands.**

   **IBM PC and compatibles only:**

   4) **Colors.**

   5) **Graphics.**

   6) **Windows.**

   7) **Sound.**

These new features are described in detail in the following chapters. The TURBO Pascal Reference Manual applies in full to version 2.

8) **Optional 8087 Support**

   Describes the special 16-bit version of TURBO Pascal which uses the optional 8087 coprocessor for *Real* arithmetic. Available now for an additional charge. Call us to order!
Notes:
1. OVERLAY SYSTEM

The overlay system lets you create programs much larger than can be accommodated by the computer's memory. The technique is to collect a number of subprograms (procedures and functions) in one or more files separate from the main program file, which will then at runtime be loaded automatically one at a time into the same area in memory.

The following drawing shows a program using one overlay file with five overlay subprograms collected into one overlay group, thus sharing the same memory space in the main program:

![Diagram of Overlay System]

When one of the overlay procedures is called, it is automatically loaded into the overlay area reserved in the main program. This 'gap' is large enough to accommodate the largest of the overlays in the group. The space required by the main program is thus reduced by roughly the sum of all subprograms in the group less the largest of them.
In the example above, overlay procedure 2 is the largest of the five procedures and thus determines the size of the overlay area in the main code. When it is loaded into memory, it occupies the entire overlay area:

![Diagram showing overlay system](image)

**Figure 1-2: Largest Overlay Subprogram Loaded**
The smaller subprograms are loaded into the same area of memory, each starting at the first address of the overlay area. Obviously they occupy only part of the overlay area; the remainder is unused:

![Diagram showing main program and overlay file with smaller overlay subprogram loaded](image)

**Figure 1-3: Smaller Overlay Subprogram Loaded**

As procedures 1, 3, 4, and 5 execute in the same space as used by procedure 2, it is clear that they require no additional space in the main program. There could be many more overlay procedures in this group of overlays; in fact the total size of the overlay procedures could substantially exceed the size of the main program. And they would still require only the space occupied by the largest of them.

The trade off for this extra room for program code is the addition of disk access time each time a procedure is read in from the disk. With good planning, as discussed in section 1.5, this time is negligible.
1.1 Creating Overlays

Overlay subprograms are created automatically, simply by adding the reserved word overlay to the declaration of any procedure or function, e.g.:

```
overlay procedure Initialize;
and
overlay function TimeOfDay: Time;
```

When the compiler meets such a declaration, code is no longer output to the main program file, but to a separate overlay file. The name of this file will be the same as that of the main program, and the type will be a number designating the overlay group, ranging from 000 through 099.

Consecutive overlay subprograms will be grouped together. In other words, as long as overlay subprograms are not separated by any other declaration, they belong to the same group and are placed in the same overlay file.

Example 1:
```
overlay procedure One;
begin :
end;

overlay procedure Two;
begin :
end;

overlay procedure Three;
begin :
end;
```

These three overlay procedures will be grouped together and placed in the same overlay file. If they are the first group of overlay subprograms in a program, the overlay file will be no. 000.

The three overlay procedures in the following example will be placed in consecutive overlay files, e.g. .000 and .001, because of the declaration of a non-overlay procedure Count separating overlay procedures Two and Three. The separating declaration could be any declaration, e.g. a dummy type declaration, if a separation of overlay areas is to be forced.
Creating Overlays

Example 2:

```pascal
overlay procedure One;
begin
end;

overlay procedure Two;
begin
end;

procedure Count;
begin
end;

overlay procedure Three;
begin
end;
```

A separate overlay area is reserved in the main program code for each group of overlay subprograms. Example 2 would thus create the following files:

<table>
<thead>
<tr>
<th>Main program</th>
<th>Overlay files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main program code</td>
<td>file .000</td>
</tr>
<tr>
<td>Overlay area 0</td>
<td>overlay procedure One</td>
</tr>
<tr>
<td>procedure Count</td>
<td>overlay procedure Two</td>
</tr>
<tr>
<td>Overlay area 1</td>
<td>file .001</td>
</tr>
<tr>
<td>Main program code</td>
<td>overlay procedure Three</td>
</tr>
</tbody>
</table>

*Figure 1-4: Multiple Overlay Files*

Creating an overlay file with only one overlay is meaningless, of course, and is shown here only to illustrate multiple overlay areas.
1.2 Nested Overlays

Overlay subprograms may be nested. This means that an overlay subprogram may itself contain overlay subprograms which may contain overlay subprograms, etc.

Example 3:

```pascal
program OverlayDemo;

overlay procedure One;
begin
end;

overlay procedure Two;
overlay procedure Three;
begin
begin
end;

begin
end;
```

In this example, two overlay files will be created. File .000 contains overlay procedures `One` and `Two`, and an overlay area is reserved in the main program to accommodate the largest of these. Overlay file .001 contains overlay procedure `Three` which is local to overlay procedure `Two`, and an overlay area is created in the code of overlay procedure `Two`:

```
-figure 1-5: Nested Overlay Files
```

8  TURBO Pascal version 2 update

Addendum
1.3 Automatic Overlay Management

An overlay subprogram is loaded into memory only when called. On each call to an overlay subprogram, a check is first made to see if that subprogram is already present in the overlay area. If not, it will automatically be read in from the appropriate overlay file.

1.4 Placing Overlay Files

During compilation, overlay files will be placed on the logged drive, i.e. on the same drive as the main program file (.COM or .CMD file).

During execution, the system normally expects to find its overlay files on the logged drive. The O compiler directive may change this default value. The directive must be followed by a drive letter from A through P indicating specific drives, or an '@', indicating the logged drive. When placed before the first subprogram in a group of subprograms, it affects this and all subsequent overlay groups, until a new O-directive is met.

Example 4:

```{$OL}
overlay function TimeOfYear: Date;
begin
 :
end
:
:
{$O@}
overlay function GetStatus: Stat;
begin
 :
end
```

In this example the first overlay file, starting with the function TimeOfYear, must be placed on the L-drive at run-time, as must possible subsequent overlay files until the {$O@} directive is met. The overlay file starting with the function GetStatus must thus be on the logged drive.

OVERLAY SYSTEM
1.5 Efficient Use of Overlays

The overlay technique, of course, adds overhead to a program by adding some extra code to manage the overlays, and by requiring disk accesses during execution. Overlays, therefore, should be carefully planned.

In order not to slow down execution excessively, an overlay subprogram should not be called too often, or - if one is called often - it should at least be called without intervening calls to other subprograms in the same overlay file in order to keep disk accesses at a minimum. The added time will of course vary greatly, depending on the actual disk configuration. A 5 1/4" floppy will add much to the run-time, a hard disk much less, and a RAM-disk, as used by many, very little.

To save as much space as possible in the main program, one group of overlays should contain as many individual subprograms as possible. From a pure space-saving point of view, the more subprograms you can put into a single overlay file, the better. The overlay space used in the main program need only accommodate the largest of these subprograms - the rest of the subprograms have a free ride in the same area of memory. This must be weighed against the time considerations discussed above.

1.6 Restrictions Imposed on Overlays

Overlays may not be used in Memory compilation mode, i.e. the Com (Cmd) or cHn-option must be selected on the Options menu before compiling a program using overlays.

Overlay subprograms in the same group share the same area in memory and thus cannot be present simultaneously. They must therefore not call each other. Consequently, they may share the same data area which further adds to the space saved when using overlays (CP/M-80 version only).

In example 1 of this chapter, none of the procedures may therefore call each other. In example 2, however, overlay procedures One and Two may call overlay procedure Three, and overlay procedure Three may call each of the other two, because they are in separate files and consequently in separate overlay areas in the main program.

Overlay subprograms may not be forward declared. This restriction is easily circumvented, however, by forward declaring an ordinary subprogram which then in turn calls the overlay subprogram.
Restrictions Imposed on Overlays

Overlay subprograms cannot be recursive. This restriction may be circumvented by declaring an ordinary recursive subprogram which then in turn calls the overlay subprogram.
Restrictions Imposed on Overlays

Notes:
2. DYNAMIC HEAP

2.1 Dispose

Standard Pascal's garbage collection procedure `Dispose` has been introduced to supplement the `Mark` and `Release` procedures of TURBO Pascal version 1.

The syntax is: `Dispose(Var);` where `Var` is a pointer variable.

**NOTICE** that `Dispose` and `Mark/Release` use entirely different approaches to heap management - and never the twain shall meet! Any one program must use either `Dispose` or `Mark/Release` to manage the heap. Mixing them will produce unpredictable results.

`Dispose` allows dynamic memory used by a specific pointer variable to be reclaimed for new use, as opposed to `Mark` and `Release` which releases the entire heap from the specified pointer variable and upward.

Suppose you have a number of variables which have been allocated on the heap. The following figure illustrates the contents of the heap and the effect of `Dispose(Var3)` and `Mark(Var3) / Release(Var3)`: 

<table>
<thead>
<tr>
<th>Heap</th>
<th>After Dispose</th>
<th>After Mark/Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiMem</td>
<td>Var7</td>
<td>Var7</td>
</tr>
<tr>
<td></td>
<td>Var6</td>
<td>Var6</td>
</tr>
<tr>
<td></td>
<td>Var5</td>
<td>Var5</td>
</tr>
<tr>
<td></td>
<td>Var4</td>
<td>Var4</td>
</tr>
<tr>
<td></td>
<td>Var3</td>
<td>Var3</td>
</tr>
<tr>
<td></td>
<td>Var2</td>
<td>Var2</td>
</tr>
<tr>
<td></td>
<td>Var1</td>
<td>Var1</td>
</tr>
<tr>
<td></td>
<td>Var1</td>
<td>Var1</td>
</tr>
</tbody>
</table>

*Figure 2-1: Using Dispose*
After *Disposing* a pointer variable, the heap may thus consist of a number of memory areas in use interspersed by a number of free areas. Subsequent calls to *New* will use these if the new pointer variable fits into the space.

### 2.2 FreeMem

**Syntax:** FreeMem;

The *FreeMem* standard procedure is used to reclaim an entire block of space on the heap. It is thus the counterpart of *GetMem*. *FreeMem* is called with two parameters:

`FreeMem(PVar, I);`

where *PVar* is any pointer variable, and *I* is an integer expression giving the number of bytes to be reclaimed, which must be exactly the number of bytes previously allocated to that variable by *GetMem*:

### 2.3 MaxAvail

**Syntax:** MaxAvail;

The *MaxAvail* standard function returns the size of the largest consecutive block of free space on the heap. On 16-bit systems this space is in number of paragraphs (16 bytes each); on 8-bit systems it is in bytes. The result is an *Integer*, and if more than 32767 paragraphs/bytes are available, *MaxAvail* returns a negative number. The correct number of free paragraphs/bytes is then calculated as `65536.0 + MaxAvail`. Notice the use of a real constant to generate a *Real* result, as the result is greater than *MaxInt*.
3. NEW EDITOR COMMANDS

The TURBO editor has been enhanced by the introduction of the following additional WordStar compatible commands:

**Scroll up**

<table>
<thead>
<tr>
<th>Ctrl-Z</th>
</tr>
</thead>
</table>

Scrolls the entire screen upwards one line at a time. The cursor remains on its line until it reaches the top of the screen.

**Scroll down**

<table>
<thead>
<tr>
<th>Ctrl-W</th>
</tr>
</thead>
</table>

Scrolls the entire screen downwards one line at a time. The cursor remains on its line until it reaches the bottom of the screen.

**To top of screen**

<table>
<thead>
<tr>
<th>Ctrl-Q Ctrl-E</th>
</tr>
</thead>
</table>

Moves the cursor to the top of the screen.

**To bottom of screen**

<table>
<thead>
<tr>
<th>Ctrl-Q Ctrl-X</th>
</tr>
</thead>
</table>

Moves the cursor to the bottom of the screen.

**To beginning of block**

<table>
<thead>
<tr>
<th>Ctrl-Q Ctrl-B</th>
</tr>
</thead>
</table>

Moves the cursor to the beginning of a marked and displayed block, i.e. to the position of the block begin marker set with Ctrl-K Ctrl-B.

**To end of block**

<table>
<thead>
<tr>
<th>Ctrl-Q Ctrl-K</th>
</tr>
</thead>
</table>

Moves the cursor to the end of a marked and displayed block, i.e. to the position of the block end marker set with Ctrl-K Ctrl-K.

**Block hide/display**

<table>
<thead>
<tr>
<th>Ctrl-K Ctrl-H</th>
</tr>
</thead>
</table>

This command causes the visual marking of a block (dim text) to be alternately switched off and on. Block manipulation commands (copy, move, and write to a file) work only when the block is displayed.
### 3.1 IBM PC and Compatibles

In addition to the *WordStar* commands, the editing keys of IBM PC keyboard have been implemented. This means that while Ctrl-E, Ctrl-X, Ctrl-S, and Ctrl-D still move the cursor up, down, left, and right, you may also use the arrows on the numeric keypad. The following table provides an overview of available editing keys, their functions, and their *WordStar*-command equivalents:

<table>
<thead>
<tr>
<th>ACTION</th>
<th>PC-KEY</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character left</td>
<td>Left arrow</td>
<td>Ctrl-S</td>
</tr>
<tr>
<td>Character right</td>
<td>Right arrow</td>
<td>Ctrl-D</td>
</tr>
<tr>
<td>Word left</td>
<td>Ctrl-left arrow</td>
<td>Ctrl-A</td>
</tr>
<tr>
<td>Word right</td>
<td>Ctrl-right arrow</td>
<td>Ctrl-F</td>
</tr>
<tr>
<td>Line up</td>
<td>Up arrow</td>
<td>Ctrl-E</td>
</tr>
<tr>
<td>Line down</td>
<td>Down arrow</td>
<td>Ctrl-X</td>
</tr>
<tr>
<td>Page up</td>
<td>PgUp</td>
<td>Ctrl-R</td>
</tr>
<tr>
<td>Page down</td>
<td>PgDn</td>
<td>Ctrl-C</td>
</tr>
<tr>
<td>To left on line</td>
<td>Home</td>
<td>Ctrl-Q Ctrl-S</td>
</tr>
<tr>
<td>To right on line</td>
<td>End</td>
<td>Ctrl-Q Ctrl-D</td>
</tr>
<tr>
<td>To top of page</td>
<td>Ctrl-Home</td>
<td>Ctrl-Q Ctrl-E</td>
</tr>
<tr>
<td>To bottom of page</td>
<td>Ctrl-End</td>
<td>Ctrl-Q Ctrl-X</td>
</tr>
<tr>
<td>To top of file</td>
<td>Ctrl-PgUp</td>
<td>Ctrl-Q Ctrl-R</td>
</tr>
<tr>
<td>To end of file</td>
<td>Ctrl-PgDn</td>
<td>Ctrl-Q Ctrl-G</td>
</tr>
<tr>
<td>Insert mode on/off</td>
<td>Ins</td>
<td>Ctrl-V</td>
</tr>
<tr>
<td>Delete left character</td>
<td>Del</td>
<td></td>
</tr>
<tr>
<td>Mark block begin</td>
<td>F7</td>
<td>Ctrl-K Ctrl-B</td>
</tr>
<tr>
<td>Mark block end</td>
<td>F8</td>
<td>Ctrl-K Ctrl-K</td>
</tr>
<tr>
<td>Tab</td>
<td>TAB</td>
<td>Ctrl-I</td>
</tr>
</tbody>
</table>

*Table 3-1: IBM PC Keyboard Editing Keys*
This chapter applies to the PC-DOS / MS-DOS versions only, and the functions described can be expected to work on IBM PC and compatibles only! If you have problems on a compatible, it's not as compatible as you thought.

The IBM PC gives you a choice of screen modes, each with its own characteristics. Some display characters, some display graphics, and they all have different capabilities of showing colors. TURBO Pascal v. 2 supports all these screen formats and provides an easy way of using them.

The following screen modes are available:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TextMode</td>
<td>25 lines of 40 or 80 characters</td>
</tr>
<tr>
<td>GraphColorMode</td>
<td>320×200 dots color graphics</td>
</tr>
<tr>
<td>GraphMode</td>
<td>320×200 dots black &amp; white graphics (color on an RGB monitor)</td>
</tr>
<tr>
<td>HiRes</td>
<td>640×200 dots black + one color graphics</td>
</tr>
</tbody>
</table>

TURBO Pascal v. 2 furthermore lets you declare windows anywhere on the screen. When you write in such a window, the window behaves exactly as if you were using the entire screen.

Finally, TURBO Pascal v. 2 contains standard procedures which will let you use the PC's sound capabilities in an easy way.

4.1 Text Mode

In text mode, the PC will display 25 lines of either 40 or 80 characters. The procedure to invoke this mode is named TextMode and is called as follows:

```
TextMode;
TextMode(BW40); BW40 is an integer constant with the value 0
TextMode(BW80) BW80 is an integer constant with the value 2
TextMode(C40) C40 is an integer constant with the value 1
TextMode(C80) C80 is an integer constant with the value 3
```
The first example with no parameters invokes the text mode which was active last, or the one that is currently active. The next two examples activate black and white text modes with 40 and 80 characters on each line. The final two examples activate color text modes with 40 and 80 characters on each line. Calling TextMode will clear the screen.

4.1.1 Colors

In the color text modes, each character may be chosen to be one of 16 colors, and the background may be one of 8 colors. 'Background' here means the cell immediately surrounding each character; the entire screen consists of 40 or 80 by 25 such cells.

The 16 available colors are referred to by numbers. To make things easier, TURBO Pascal v. 2 includes 16 pre-defined integer constants which may be used to identify colors by names:

<table>
<thead>
<tr>
<th>Dark colors</th>
<th>Light colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Black</td>
<td>8: DarkGray</td>
</tr>
<tr>
<td>1: Blue</td>
<td>9: LightBlue</td>
</tr>
<tr>
<td>2: Green</td>
<td>10: LightGreen</td>
</tr>
<tr>
<td>3: Cyan</td>
<td>11: LightCyan</td>
</tr>
<tr>
<td>4: Red</td>
<td>12: LightRed</td>
</tr>
<tr>
<td>5: Magenta</td>
<td>13: LightMagenta</td>
</tr>
<tr>
<td>6: Brown</td>
<td>14: Yellow</td>
</tr>
<tr>
<td>7: LightGray</td>
<td>15: White</td>
</tr>
</tbody>
</table>

Table 4-1: Text Mode Color Scale

Characters may be any of these colors, whereas the background may be any of the dark colors. Some monitors however, do not recognize the intensity signal used to create the eight light colors. On such monitors, the light colors will be displayed as their dark equivalents.

The character color is selected by calling the TextColor standard procedure with one integer parameter specifying the desired color:

```
TextColor(1); // selects blue characters
TextColor(Yellow); // selects yellow characters
```
4.1.1 Colors

The characters may be made to blink by adding 16 to the color number. There is a pre-defined constant `Blink` for this purpose:

```plaintext
TextColor(Red + Blink);
```
selects red, blinking characters

The **background** color is selected by calling the `TextBackground` standard procedure with one integer parameter specifying the desired color:

```plaintext
TextBackground(4);
TextBackground(Magenta);
```
selects red background
selects magenta background

4.1.2 Cursor Addressing

In text mode, two new functions will tell you where the cursor is positioned on the screen:

```plaintext
WhereX;
WhereY;
```

return integers expressing the X and Y coordinates of the current cursor position.
4.2 Graphics Modes

Three graphics modes are supported:

- **GraphColorMode**: 320×200 dots color graphics
- **GraphMode**: 320×200 dots black & white graphics
- **HiRes**: 640×200 dots black + one color graphics

In each of these modes, TURBO Pascal provides standard procedures which will plot points at specified coordinates and draw lines between two coordinates:

\[
\text{Plot}(X,Y,\text{Color}); \\
\text{Draw}(X_1,Y_1,X_2,Y_2,\text{Color});
\]

where \(X\) and \(Y\) are integer expressions specifying screen coordinates and \(\text{Color}\) is an integer expression specifying the color used as explained in the following.

**The upper, left corner of the screen is coordinate 0,0.** \(X\) coordinates stretch to the right, \(Y\) coordinates downward. Plotting outside the screen is ignored, and Drawing outside the screen results in only the part of the line which falls within the screen being displayed (clipping).

Activating one of the graphics modes will clear the screen. The standard procedure `ClrScr` works only in text mode, so the only way to clear a graphics screen is to activate a graphics mode, possibly the one that's already active.

### 4.2.1 GraphColorMode

**GraphColorMode** is a standard procedure which activates the 320×200 dots color graphics screen:

\[
\text{GraphColorMode};
\]

giving you \(X\)-coordinates between 0 and 319 and \(Y\)-coordinates between 0 and 199.

The **Plot** and **Draw** procedures may now be used on this screen, using colors selected from a **Palette**. Four such palettes exist, each containing three colors (1-3) and a fourth color (0) which is always equal to the background color (see later):
GraphColorMode

<table>
<thead>
<tr>
<th>Color number:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palette 0</td>
<td>Background</td>
<td>Green</td>
<td>Red</td>
<td>Brown</td>
</tr>
<tr>
<td>Palette 1</td>
<td>Background</td>
<td>Cyan</td>
<td>Magenta</td>
<td>LightGray</td>
</tr>
<tr>
<td>Palette 2</td>
<td>Background</td>
<td>LightGreen</td>
<td>LightRed</td>
<td>Yellow</td>
</tr>
<tr>
<td>Palette 3</td>
<td>Background</td>
<td>LightCyan</td>
<td>LightMagenta</td>
<td>White</td>
</tr>
</tbody>
</table>

Table 4-2: Color Palettes in Color Graphics

A palette is activated by a call to the standard procedure `Palette` with a parameter specifying the number of the palette:

Palettem(0) activates palette no. 0

Subsequent Plots and Draws must specify one of the color numbers 0 through 3 which will cause points and lines to be drawn in the colors of the active palette:

- Plot(X,Y,2) will plot a red point when palette 0 is active.
- Plot(X,Y,3) will plot a yellow point when palette 2 is active.
- Plot(X,Y,0) will plot a point in the active background color, in effect erasing that point.

Once a drawing is on the screen, a change of palette will cause all colors on the screen to change to the colors of the new palette. Only three colors plus the color of the background may thus be displayed at one time.

The background (i.e. the entire screen) may be set to any of 16 colors by calling the standard procedure `GraphBackground` with an integer parameter in the range 0 through 15:

- GraphBackground(0); sets the screen to black
- GraphBackground(11); sets the screen to light cyan

The following color numbers and pre-defined constants are available:
4.2.1  

**GraphColorMode**

<table>
<thead>
<tr>
<th>Dark colors</th>
<th>Light colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Black</td>
<td>8: DarkGray</td>
</tr>
<tr>
<td>1: Blue</td>
<td>9: LightBlue</td>
</tr>
<tr>
<td>2: Green</td>
<td>10: LightGreen</td>
</tr>
<tr>
<td>3: Cyan</td>
<td>11: LightCyan</td>
</tr>
<tr>
<td>4: Red</td>
<td>12: LightRed</td>
</tr>
<tr>
<td>5: Magenta</td>
<td>13: LightMagenta</td>
</tr>
<tr>
<td>6: Brown</td>
<td>14: Yellow</td>
</tr>
<tr>
<td>7: LightGray</td>
<td>15: White</td>
</tr>
</tbody>
</table>

*Table 4-3: Graphics Background Color Scale*

Some monitors do not recognize the intensity signal used to create the eight light colors. On such monitors, the light colors will be displayed as their dark equivalents.

### 4.2.2 GraphMode

**GraphMode** is a standard procedure which activates the 320X200 dots black and white graphics screen:

```
GraphMode;
```

giving you X-coordinates between 0 and 319 and Y-coordinates between 0 and 199.

On an RGB monitor like the IBM Color Display, however, even this mode displays colors. **GraphBackground** works as discussed above, and **Palette** gives you access to the following palette:

<table>
<thead>
<tr>
<th>Color number:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palette 0</td>
<td>Background Blue Red LightGray</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palette 1</td>
<td>Background LightBlue LightRed White</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Table 4-4: Color Palettes in B/W Graphics*

**Plot** and **Draw** work as discussed above.
4.2.3 HiRes

HiRes is a standard procedure which activates the 640×200 dots high resolution graphics screen:

```plaintext
HiRes;
```

giving you X-coordinates between 0 and 639 and Y-coordinates between 0 and 199.

In high resolutions graphics, the background (screen) is always black, and you Plot or Draw in one color set by the HiResColor standard procedure:

```plaintext
HiResColor(7); selects light gray
HiResColor(Blue); selects blue
```

Changing HiResColor causes anything already on the screen to change to the new color.

The one color may be chosen from the following 16 colors:

<table>
<thead>
<tr>
<th>Dark colors</th>
<th>Light colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Black</td>
<td>8: DarkGray</td>
</tr>
<tr>
<td>1: Blue</td>
<td>9: LightBlue</td>
</tr>
<tr>
<td>2: Green</td>
<td>10: LightGreen</td>
</tr>
<tr>
<td>3: Cyan</td>
<td>11: LightCyan</td>
</tr>
<tr>
<td>4: Red</td>
<td>12: LightRed</td>
</tr>
<tr>
<td>5: Magenta</td>
<td>13: LightMagenta</td>
</tr>
<tr>
<td>6: Brown</td>
<td>14: Yellow</td>
</tr>
<tr>
<td>7: LightGray</td>
<td>15: White</td>
</tr>
</tbody>
</table>

*Table 4-5: High Resolution Graphics Color Scale*

Some monitors do not recognize the intensity signal used to create the eight light colors. On such monitors, the light colors will be displayed as their dark equivalents.
4.2.3

In high resolution graphics, *Plots* and *Draws* must specify color numbers 1 or 0 which will cause points and lines to be drawn in the active color or in the background color:

- `Plot(X,Y,1)` will plot a red point when HiResColor 4 is active, yellow when HiResColor 14 is active, etc.
- `Plot(X,Y,0)` will plot a point in the background color, black, in effect erasing that point.
4.3 Windows

When you are in text mode, the Window procedure allows you to define any area on the screen as the active window:

Window(X1,Y1,X2,Y2);

where X1 and Y1 are the coordinates of the upper left corner of the window, X2 and Y2 are the lower right corner coordinates.

The default window is Window(1,1,80,25); in 80-column modes and Window(1,1,40,25); in 40-column modes, i.e. the entire screen.

Screen coordinates are always relative to the active window. This means that the statement:

Window(20,8,60,17);

defines the center portion of the physical screen to be your entire window - or 'logical screen':

![Figure 4-1: Text Windows](image)

Screen coordinates 1,1 (upper left corner) is now the upper left corner of the window, not of the physical screen. The screen outside the window is simply not available, and the window behaves as it were the entire screen. You may insert, delete, and scroll lines, and lines will wrap around if too long.
4.3.1 Graphics Windows

In any of the graphics modes, the $GraphWindow$ procedure allows you to define any area on the screen as the active window:

$$\text{GraphWindow}(x_1, y_1, x_2, y_2);$$

The graphics windows behave exactly as the text windows described above.

The default graphics window is $GraphWindow(0, 0, 319, 199)$; in 320×200-dot modes and $GraphWindow(0, 0, 639, 199)$; in 640×200-dot mode, i.e. the entire screen.

Graphics is displayed with clipping, i.e. you may $Draw$ between two coordinates outside the window, and only the part of the line that falls within the window will be shown:

![Figure 4-2: Graphics Windows](image)

Plotting outside the window is ignored.
4.4 Sound

The PC's speaker is accessed through the standard procedure *Sound*:

\[ \text{Sound}(I); \]

where \( I \) is an integer expression specifying the frequency in Hertz. The specified frequency will be emitted until the speaker is turned off with a call to the *NoSound* standard procedure:

\[ \text{NoSound} \]

The following example program will emit a 440-Hertz beep for half a second:

```plaintext
begin
 Sound(440);
 Delay(500);
 NoSound;
end.
```
Notes:
5. SUMMARY OF VERSION 2 ADDITIONS

reserved word
overlay

procedure
  Dispose(var P: Pointer);
  Draw(X1,Y1,X2,Y2,Color);
  FreeMem(var P: Pointer, I: Integer);
  GraphBackground(Color:Integer);
  GraphColorMode;
  GraphMode;
  GraphWindow(X1,Y1,X2,Y2,Color:Integer);
  HiRes;
  HiResColor(Color:Integer);
  NoSound;
  Palette(Color:Integer);
  Plot(X,Y,Color:Integer);
  Sound(I: Integer);
  TextBackground(Color:Integer);
  TextColor(Color:Integer);
  TextMode(Color:Integer);
  Window(X1,Y1,X2,Y2 ,Color:Integer);

function
  MaxAvail:Integer;
  WhereX:Integer;
  WhereY:Integer;
SUMMARY OF VERSION 2 ADDITIONS

table of pre-defined constants

BW40:Integer; = 0
C40:Integer; = 1
BW80:Integer; = 2
C80:Integer; = 3
Black:Integer; = 0
Blue:Integer; = 1
Green:Integer; = 2
Cyan:Integer; = 3
Red:Integer; = 4
Magenta:Integer; = 5
Brown:Integer; = 6
LightGray:Integer; = 7
DarkGray:Integer; = 8
LightBlue:Integer; = 9
LightGreen:Integer; = 10
LightCyan:Integer; = 11
LightRed:Integer; = 12
LightMagenta:Integer; = 13
Yellow:Integer; = 14
White:Integer; = 15
Blink:Integer; = 16

Addendum

TURBO Pascal version 2 update
6. TURBO-87 PASCAL

TURBO-87 is a special version of TURBO Pascal which uses the Intel 8087 math-processor for real number arithmetic, providing a significant gain in speed and precision. TURBO-87 will compile and run any program written for standard TURBO Pascal; the only difference being in real number processing and real number format.

The TURBO-87 package includes the standard TURBO Pascal compiler. You are thus free to produce your programs in either format. TURBO-87 programs will not run on a computer without the 8087-chip installed, whereas the opposite will work.

Files On the Distribution Diskette

In addition to the files listed in section 1.4 of the Reference Manual, the distribution diskette contains the file

**TURBO-87.COM**

(TURBO-87.CMD in CP/M-86). This file contains the special TURBO-87 compiler. If you need to install it with TINST, you must temporarily rename it to TURBO.COM (or .CMD).

Internal Data Format

The 8087 chip supports a range of data types. The one used by TURBO-87 is the long real which is a 64-bit real yielding 16 digits accuracy and a range of 4.19E-307 to 1.67E+308.

This 8-byte real is, of course, not compatible with standard TURBO Pascal’s 6-byte real. This, however, should only be a problem if you develop programs in both standard and 87 versions which must interchange data. The trick then is simply to provide an interchange-format between the programs in which you transfer reals e.g. on ASCII format.

If you are interested in purchasing this special version of Turbo Pascal®, you can do so by calling Borland International at (408) 438-8400.

Addendum
SUBJECT INDEX

ADDENDUM

A. SUBJECT INDEX

A
Automatic Overlay Management, 9

B
Background color, 18
Blink, 19
Block Commands
  Hide/display block, 15

C
Character color, 18
Clear screen, 20
Clipping, 20
Colors, 18
Com/Cmd file, 10
Compiler directive, 9
Consecutive subprograms, 6
Creating Overlays, 6
Cursor Addressing, 19
Cursor Movement Commands
  Scroll down, 15
  Scroll up, 15
  To beginning of block, 15
  To bottom of screen, 15
  To end of block, 15
  To top of screen, 15

D
Data area, 10
Default graphics window, 26
Default window, 25
Dispose, 13
Draw, 20
Dynamic heap, 13

E
Editor commands, 15
Efficient Use of Overlays, 10

F
Forward declarations, 10
FreeMem, 14

G
GraphColorMode, 20
Graphics Modes, 20
Graphics Windows, 26
GraphMode, 22

H
Hide/display block, 15
HiRes, 23

I
IBM PC and Compatibles, 16
Intensity signal, 18
Introduction, 1

M
Mark, 13
MaxAvail, 14

N
Nested Overlays, 8

O
O compiler directive, 9
Overlay groups, 6
Overlay system, 3
A

SUBJECT INDEX

P
Palette, 21
Placing Overlay Files, 9
Plot, 20
Pre-declared constant, 19

R
Recursion, 11
Reducing run-time, 10
Release, 13
Restrictions Imposed on
Overlays, 10

S
Saving space, 10
Separating overlays, 6
Sound, 27
Standard functions
  MaxAvail, 14
Standard procedures
  Dispose, 13
  Draw, 20
  FreeMem, 14
  GraphColorMode, 20
  GraphMode, 22
  GraphWindow, 26
  HiRes, 23
  HiResColor, 23
  NoSound, 27
  Palette, 21
  Plot, 20
  Sound, 27
  TextBackground, 19
  TextColor, 18
  TextMode, 17
  Window, 25

T
Text Mode, 17
TextColor, 18
Turbo-87, 31

U
Upper
  left corner, 20

W
WhereX, 19
WhereY, 19
Windows, 25

X
X-coordinate, 20

Y
Y-coordinate, 20
Q. ADDITIONAL
SAMPLE PROGRAMS
This program is designed to demonstrate the windowing procedure for the IBM, PC, XT, jr. or compatibles.

program TestWindow;
{$C-}
const
Windows = 3;
Wtab : array[1 .. Windows, 1 .. 5] of Integer
  = (( 5, 2, 35, 11, 1), { X0,Y0,X1,Y1, LineNo }
  (45, 2, 75, 11, 1),
  ( 5, 15, 75, 23, 1));
type
  String255 = String[255];
var
  i : Integer;
  Ch : Char;
procedure Frame(UpperLeftX, UpperLeftY, LowerRightX, LowerRightY: Integer);
var
  i: Integer;
begi
  GoToXY(UpperLeftX, UpperLeftY); Write(chr(218));
  for i:=UpperLeftX+1 to LowerRightX-1 do Write(chr(196));
  Write(chr(191));
  for i:=UpperLeftY+1 to LowerRightY-1 do
  begin
    GoToXY(UpperLeftX, i); Write(chr(179));
    GoToXY(LowerRightX, i); Write(chr(179));
  end;
  GoToXY(UpperLeftX, LowerRightY);
  Write(chr(192));
  for i:=UpperLeftX+1 to LowerRightX-1 do Write(chr(196));
  Write(chr(217));
end { Frame };
function RanStr(Len: Integer): String255;
var
  S: String255;
  i: Integer;
begi
  S[0]:=Chr(Len);
  for Len:= 1 to Len do
  begin
    repeat i:= to Len do
    begin
      repeat i:=Random(255) until not (Chr(i) in[~@,~G,~H,~J,~M]);
      S[Len]:=Chr(i);
    end;
    RanStr:=S;
  end { RanStr };
procedure SelectWindow(Win: Integer);
begi
  Window(Wtab[Win,1],Wtab[Win,2],Wtab[Win,3],Wtab[Win,4]);
end { SelectWindow };

procedure Window1;
    begin
        LowVideo;
        SelectWindow(1);
        GoToXY(1,1);
        DelLine;
        GoToXY(1,Wtab[1,4]-Wtab[1,2]+1);
        write('Line ', Wtab[1,5], ': S, [', RanStr(1S));
        Wtab[1,5]:=Succ(Wtab[1,5]);
        NormVideo;
    end; { Window1 }

procedure Window2;
    begin
        LowVideo;
        SelectWindow(2);
        GoToXY(1,1);
        DelLine;
        GoToXY(1, Wtab[2,4]-Wtab[2,2]+1);
        Write('Line ', Wtab[2,5], ': S, [', RanStr(1S));
        Wtab[2,5]:=Succ(Wtab[2,5]);
        NormVideo;
    end { Window2 }

procedure Window3;
    begin
        LowVideo;
        SelectWindow(3);
        GoToXY(1,1);
        InsLine;
        WriteLn('Line ', Wtab[3,5], ': S, [', RanStr(55));
        Wtab[3,5]:=Succ(Wtab[3,5]);
        NormVideo;
    end { Window3 }

begin
    GoToXY(15,25);
    Write('TURBO PASCAL Window Demo — Press any key to stop');
    for i:=1 to Windows do
        Frame(Wtab[i,1]-1, Wtab[i,2]-1, Wtab[i,3]+1, Wtab[i,4]+1);
    repeat
        Window1;
        Window2;
        Window3;
    until KeyPressed;
    Read(KBD, Ch);
    Window(1,1,80,25);
    GoToXY(1,24);
end.
This program is designed to demonstrate "real number crunching" using Turbo-87 on 16 bit machines.

program test;
var
  number, sum, temp: real;
  count, index: integer;
  continue: boolean;
  answer: char;
function InvSquare(arg: real): real;
begin
  InvSquare := 1 / Sqr(arg)
end;
begin
  LowVideo;
  continue := true;
  while continue do
    begin
      write('Please tell me how many terms you want to add: '); readln(count);
      sum := 0;
      for index := 1 to count do
        begin
          number := index;
          sum := sum + InvSquare(number)
        end;
      HighVideo;
      writeln('1/1 + 1/4 + ... + 1/',count,'*',count,' = ',sum);
      LowVideo;
      writeln;
      write('Do you wish to continue: '); readln(answer);
      if UpCase(answer) <> 'Y' then continue := false;
    end;
end.
This program demonstrates the use of the sound procedure. (IBM, PC, XT, jr., compatibles)

program SoundDemo;

type
  NoteRecord = record
    C, CF, D, DF, E, F, FF, G, GF, A, AF, B: integer;
  end;

Const
  Notes: NoteRecord =
    (C:1; CF:2; D:3; DF:4; E:5; F:6; FF:7; G:8; GF:9; A:10; AF:11; B:12);

procedure Play(Octave, Note, Duration: integer);
{ Play Note in Octave Duration milliseconds }
{ Frequency computed by first computing C in }
{ Octave then increasing frequency by Note-1 }
{ times the twelfth root of 2. (1.05963994) }
{ }
{ If Duration is zero Note will be played }
{ until you activate procedure NoSound }

var
  Frequency: real;
  I: integer;

begin
  Frequency:=32.625;
  { Compute C in Octave }
  for I:=1 to Octave do Frequency:=Frequency*2;
  { Increase frequency Note-1 times }
  for I:=1 to Note-1 do Frequency:=Frequency*1.059463094;
  if Duration<>0 then
  begin
    Sound(Round(Frequency));
    Delay(Duration);
    NoSound;
  end else Sound(Round(Frequency));
end;
procedure SoftAlarm;
{ Play the notes G and D in octave three 7 times }
{ each with a duration of 70 milliseconds. }  
var
  l: integer;
begin
  for l:= to 7 do with Notes do
  begin
    Play(4,G,70);
    Play(4,D,70);
  end;
  Delay(1000);
end;

procedure Sirene;
var
  Frequency: integer;
begin
  for Frequency:= 500 to 2000 do begin Delay(1); Sound(Frequency); end;
  for Frequency:=2000 down to 500 do begin Delay(1); Sound(Frequency); end;
end;

begin
  writeln('Press any key to Stop');
  repeat SoftAlarm until KeyPressed;
  read(Kbd);
  writeln('Press any key to Stop');
  repeat Sirene until KeyPressed;
  NoSound;
end.
This program demonstrates color and graphics procedures. (IBM, PC, XT, jr., compatibles)

program Art;
const
    Memory = 150;
var
    Line: array [1 .. Memory] of record
        LX1,LY1: integer;
        LX2,LY2: integer;
        LColor: integer;
    end;
    X1,X2,Y1,Y2,
    CurrentLine,
    ColorCount,
    IncrementCount,
    DeltaX1,DeltaY1,DeltaX2,DeltaY2,
    I,Color: integer;
    Ch: char;
procedure Check;
    var
        Ch: char;
    begin
        writeln('This program will only work if you have the color graphics adapter in');
        write('Continue Y/N');
        repeat read (Kbd,Ch) until Upcase(Ch) in ['Y','N'];
        if Upcase(Ch)='N' then Halt;
    end;
procedure Init;
    begin
        for I:=1 to Memory do with Line[I] do
            begin
                LX1:=0; LX2:=0;
                LY1:=0; LY2:=0;
            end;
        X1:=0; Y1:=0; X2:=0; Y2:=0;
        CurrentLine:=1;
        ColorCount:=0;
        IncrementCount:=0;
        Ch:=' ';
    end;
procedure AdjustX(var X,DeltaX: integer);
    var
        TestX: integer;

begin
  TestX:=X+DeltaX;
  if (TestX<1) or (TestX>320) then begin
    TestX:=X;
    DeltaX:=-DeltaX;
  end;
  X:=TestX;
end;

procedure AdjustY(var Y,DeltaY: integer);
var
  TestY: integer;
begin
  TestY:=Y+DeltaY;
  if (TestY<1) or (TestY>190) then begin
    TestY:=Y;
    DeltaY:=-DeltaY;
  end;
  Y:=TestY;
end;

procedure SelectNewColor;
begin
  Color:=Random(3)+1;
  ColorCount:=5*(1+Random(10));
end;

procedure SelectNewDeltaValues;
begin
  DeltaX1:=Random(7)-3;
  DeltaX2:=Random(7)-3;
  DeltaY1:=Random(7)-3;
  DeltaY2:=Random(7)-3;
  IncrementCount:=4*(1+Random(9));
end;

procedure SaveCurrentLine;
begin
  with Line[CurrentLine] do begin
    LX1:=X1;
    LY1:=Y1;
    LX2:=X2;
    LY2:=Y2;
    LColor:=Color;
  end;
end;

procedure Regenerate;
var
  l: integer;
begin
  NoSound;
  GraphColorMode; Palette(2);
  for i:= to Memory do with Line[i] do Draw(LX1,LY1,LX2,LY2,LColor);
  GoToxy(1,25);
  write('Press any key to continue, ESC to stop');
  read(Kbd,Ch);
end;

begin
  Check;
  Init;
  GraphColorMode;
  Palette(2);
  Color:=2;
  GoToxy(1,25);
  write('Press any key to regenerate, ESC to stop');
repeat
  with Line[CurrentLine] do Draw(LX1,LY1,LX2,LY2,0);
  if ColorCount=0 then SelectNewColor;
  if IncrementCount=0 then SelectNewDeltaValues;
  AdjustX(X1,DeltaX1); AdjustX(X2,DeltaX2);
  AdjustY(Y1,DeltaY1); AdjustY(Y2,DeltaY2);
  Draw(X1,Y1,X2,Y2,Color);
  SaveCurrentLine;
  CurrentLine:=Succ(CurrentLine);
  if CurrentLine>Memory then CurrentLine:=1;
  ColorCount:=Pred(ColorCount); IncrementCount:=Pred(IncrementCount);
  if KeyPressed then begin
    read(Kbd,Ch);
    if Ch<> #27 then begin
      Regenerate;
      GoToxy(1,25);
      write('Press any key to regenerate, ESC to stop');
      end;
    end;
  until Ch=#27;
  TextMode;
end.
This demonstrates the use of external assembly language routines (MS DOS, PC DOS)

; * WARNING WARNING WARNING WARNING WARNING WARNING *

; Please do not try to use external procedures
; unless you are familiar with assembly language.

; IMPORTANT: Externals must be written in assembly language.

; The following example translates a string to upper case.

; Place the following code in a file: “STU.ASM”

CODE SEGMENT
ASSUME CS:CODE
STU PROC NEAR
PUSH BP
MOV BP,SP
LES DI,[BP+4]
MOV CL,ES:[DI]
INC CL
L1: DEC CL
JZ L2
INC DI
CMP ES:BYTE PTR[DI], 'a'
JB L1
CMP ES:BYTE PTR[DI], 'z'
JA L1
SUB ES:BYTE PTR[DI], 20H
JMP SHORT L1
L2: MOV SP,BP
POP BP
RET 4
STU ENDP
CODE ENDS
END

; Now exit to PC-DOS and type:

; ASM STU
; LINK STU
; EXE2BIN STU.EXE STU.COM

; IGNORE MINOR ERRORS FROM ASM AND LINK
To use, write the following program:

```pascal
type
 AnyString = string[255];

var
 S: AnyString;
 I: integer;

procedure STU(var S: AnyString); external 'STU.COM';
begin
 readln(S);
 STU(S);
 writeln(S);
end.
```

The above external procedure is only an example. You can achieve the same result in Turbo-Pascal:

```pascal
procedure STU(var S: AnyString);
var
 I: integer;
begin
 for I:=1 to Length(S) do S[I]:=Upcase(S[I]);
end;

So why bother ?????
In order to use the Intr procedure in Turbo Pascal you must be familiar with interrupts and have access to a technical reference manual.

The following program uses the Intr function in Turbo to get the time. Registers have to be set correctly according to the DOS technical reference manual before the function is called.

The program simply returns the time in a string at the top of the screen.

```pascal
program Timelnterrupt;

var
recpack: regpack;
hour, min, sec: string[2];

begin
ah := $2c;
with recpack do begin
ax := ah shl 8 + al;
end;
intr($21, recpack);
with recpack do begin
str(cx shr 8, hour);
str(cx mod 256, min);
str(dx shr 8, sec);
end;
time := hour+':'+min+':'+sec;
begin
writeln(time);
end.
```
Do not try to use the MsDos function call unless you are very familiar with the operating system and have technical information available to you!

The following program uses the MsDos command in Turbo to retrieve the system date. This is achieved via DOS function call 42 (or 2A hex). The function call is placed in the AH register according to the technical reference manual.

Type in the following code. The only output is the date at the top of your screen.*)

```pascal
program GetDate;
type
  DateStr = string[10];

function Date: DateStr:
type
  regpack = record
    ax,bx,cx,dx,bp,si,ds,es,flags: integer;
  end;
var
  recpack: regpack; {record for MsDos call}
  month,day: string[2];
  year: string[4];
  dx,cx: integer;
begin
  with recpack do
  begin
    ax := $2a shl 8;
  end;
  MsDos(recpack); {call function}
  with recpack do
  begin
    str(cx,year); {convert to string}
    str(dx mod 256, day); { " " }{ " " }
    str(dx shr 8, month);
  end;
  date := month+' / '+day+' / '+year;
end;
begin
  writeln(date);
end.
```
TURBO TOOLBOX™
POWERTOOLS FOR TURBO PASCAL

We've crafted some special tools to help you create the best Pascal programs in the least amount of time. Designed to compliment the power and speed of Turbo Pascal, these are functioning modules created to save you from the "rewriting the wheel" syndrome.

TURBO-ISAM Files Using B+ Trees
The TURBO-ISAM system makes it possible to access records in a file using keys (e.g. "Smith" or "Rear Bumper") instead of just a number. Even though you have direct access to individual records in the file you also have easy access to the records in a sorted sequence. A must if you plan to work with direct access files. Source code included in the manual.

Quicksort on Disk
The fastest way to sort your arrays. Preferred by knowledgeable professionals. Available for you now with commented source code.

GINST (General Installation Program)
Now... the programs you write with Turbo Pascal can have a terminal installation module just like Turbo's! Saves hours of work and research, and adds tremendous value to everything you write.

To Order
TURBO TOOLBOX™
Mail check, money order, VISA or MASTERCARD number and expiration date to:

$49.95 (plus $5 shipping and handling for U.S. orders... $15 shipping and handling outside U.S.) (California residents add 6% sales tax).

BORLAND INTERNATIONAL
Borland International
4113 Scotts Valley Drive
Scotts Valley, California 95066