

hsearch(3C) hsearch(3C)

main ()
{

/* space to store strings */
char string_space[NUM_EMPL*20);

/* space to store employee info */
struct info info_space[NUM_EMPL);

/* next avail space in string_space */
char *str_ptr = string_space;

/* next avail space in info_space */
struct info *info ptr = info space;
ENTRY item, * found_item, *hsearch();

/* name to look for in table */
char name to find[30);
int i = 0; -

/* create table */
(void) hcreate(NUM EMPL);
while (scanf(lI%s%d%dll , str ptr, &info ptr->age,

&info_ptr->room) != EOF && i++ < NUM_EMPL)

/* put info in structure,
and structure in item */

item. key = str ptr;
item.data = (char *)info_ptr;
str ptr += strlen(str ptr) + 1;
�i�n�f�~�_�p�t�r�+�+�;� -

/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item. key = name to find;
while (scanf("%i",-item.key) != EOF) {

}
}

if «found_item = hsearch(item, FIND)) != NULL) {

/* if item is in the table */
(void)printf(lIfound %5, age = %d, room = %d\n",

found item->key,
«struct info *)found_item->data)->age,
«struct info *)found item->data)->room);

else { -
(void) printf ("no such employee %s\n",

name_to_find)

February, 1990
Revision C

3

hsearch(3C) hsearch(3C)

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X),
string(3C), tsearch(3C).

WARNINGS
hsearch and hcreate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

4 February, 1990
RevisionC

hypot(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
*include <math.h>

double hypot(x, y)
double x, Yi

DESCRIPTION

hypot(3M)

hypot returns the following, taking precautions against unwar­
ranted overflows:

sqrt (x * x + Y * y)

RETURN VALUE
When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

February, 1990
Revision C

1

iargc(3F) iargc(3F)

NAME
iargc - return command line arguments

SYNOPSIS
integer i
i=iargc ()

DESCRIPTION
The iargc function returns the number of command line argu­
ments passed to the program. Thus. if a program were invoked
via

foo argl arg2 arg3

iargc () would return "3".

SEE ALSO
get a rg(3F).

1 February. 1990
RevisionC

index(3F)

NAME
index - return location of Fortran substring

SYNOPSIS
character *Nl chI
character *N2 ch2
integer i

i=index (chI, ch2)

DESCRIPTION

index(3F)

index returns the location of substring ch2 in string chl. The
value returned is either the position at which substring ch2 starts
or 0 if ch2 is not present in string chI.

February, 1990
Revision C

1

inet(3N) inet(3N)

NAME
inet_addr, inet_network, inet_ntoa,
inet makeaddr, inet lnaof, inet netof - Internet
address manipulation routines

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

unsigned long inet_addr (cp)
char *cp;

unsigned long inet_network(cp)
char *cp;

char *inet_ntoa (in)
struct in_addr in;

struct in addr inet_makeaddr (net, Ina)
int net, Ina;

int inet lnaof(~)
struct in_addr in;

int inet_netof (in)
struct in_addr in;

DESCRIPTION

1

The routines inet addr and inet network each interpret
character strings representing numbers expressed in the Internet
standard . notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The rou­
tine inet ntoa takes an Internet address and returns an ASCII
string representing the address in . notation. The routine
inet makeaddr takes an Internet network number and a local
network address and constructs an Internet address from it. The
routines inet_netof and inet_lnaof break apart Internet
host addresses, returning the network number and local network
address part, respecti vel y.

All Internet address are returned in network order (bytes ordered
from left to right). All network numbers and local address parts
are returned as machine format integer values.

February, 1990
RevisionC

inet(3N) inet(3N)

INTERNET ADDRESSES
Values specified using the . notation take one of the following
forms.

a.h.c.d
a.h.c
a.h
a

When four parts are specified, each is interpreted as a byte of data
and assigned, from left to right, to the four bytes of an Internet ad­
dress.

When a three part address is specified, the last part is interpreted
as a 16-bit quantity and placed in the right-most two bytes of the
network address. This makes the three part address format con­
venient for specifying Class B network addresses as
128. net. host.

When a two part address is supplied, the last part is interpreted as
a 24-bit quantity and placed in the right-most three bytes of the
network address. This makes the two part address format con­
venient for specifying Class A network addresses as net. host.

When only one part is given, the value is stored directly in the net­
work address without any byte rearrangement.

All numbers supplied as "parts" in a . notation may be decimal,
octal, or hexadecimal, as specified in the C language (that is, a
leading Ox. or OX implies hexadecimal; a leading 0 implies octal;
otherwise, the number is interpreted as decimal).

RETURN VALUE
The value -1 is returned by inet addr and inet network
for malformed requests. - -

SEE ALSO
getnetent(3N), hosts(4N), networks(4N).

BUGS
The problem of host byte ordering versus network byte ordering is
confusing. A simple way to specify Class C network addresses in
a manner similar to Class B and Class A is needed. The string re­
turned by inet_ntoa resides in a static memory area.

February, 1990
Revision C

2

ini tgroups (3)

NAME
ini tgroups - initialize group access list

SYNOPSIS
ini tgroups (name, basegid)
ehar * name;
int basegid;

DESCRIPTION

ini tgroups (3)

ini tgroups reads through the group file and sets up, using the
setgroups(2) call, the group access list for the user specified in
name. The basegid is automatically included .in the groups list.
Typically this value is given as the group number from the pass­
word file.

RETURN VALUE
ini tgroups returns -1 if it was not invoked by the superuser.

FILES
fete/group
/ete/passwd

SEE ALSO
setgroups(2).

BUGS
ini tgroups uses the routines based on getgrent(3). If the
invoking program uses any of these routines, the group structure
will be overwritten in the call to ini tgroups.

1 February, 1990
RevisionC

insque(3N) insque(3N)

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
#include <vax/vaxque.h>

int insque (elem,pred)
struct qelem *elem, *pred;

int remque (elem)
struct qelem *elem;

DESCRIPTION
The insque and remque macros manipulate queues built from
doubly-linked lists. Each element in the queue must be in the
form of struct qelem.

struct qelem {

} ;

struct
struct
char

qelem *~forw;
qelem *~back;
~data[];

insque inserts elem in a queue immediately after pred; remque
removes an entry elem from a queue.

FILES
/usr/include/vax/vaxque.h

February, 1990
Revision C

I

kil1pg(3N) killpg(3N)

NAME
ki 11 pg - send signal to a process group

SYNOPSIS
int killpg (pgrp, sig)
int pgrp , sig;

DESCRIPTION
killpg sends the signal sig to the process group pgrp.

The sending process and members of the process group must have
the same effective user ID, otherwise this call is restricted to the
superuser. As a single special case the continue signal SIGCONT
may be sent to any process which is a descendant of the current
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and the global variable errno is set to
indicate the error.

ERRORS
killpg will fail and no signal will be sent if any of the following
occur:

[EINVAL]

[ESRCH]

[EPERM]

sig is not a valid signal number.

No process can be found corresponding to
that specified by pgrp.

The sending process is not the superuser
and one or more of the target processes has
an effective user ID different from that of
the sending process.

SEE ALSO
kill(2), getpid(2).

1 February, 1990
RevisionC

l3tol(3C) l3tol(3C)

NAME
l3tol, 1 to13 - convert between 3-byte integers and long
integers

SYNOPSIS
void l3tol ap, cp, n)
long *lpi
char *CPi
int ni

void lto13 (cp, lp, n)
char *cp;
long *lpi
int n;

DESCRIYfION
l3tol converts a list of n 3-byte integers (packed into a character
string pointed to by cp) into a list of long integers pointed to by
lp.

1 to13 performs the reverse conversion from long integers (lp) to
3-byte integers (cp).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

February, 1990
RevisionC

1

lap(3N) lap(3N)

NAME
lap default AppleTalk Link Access Protocol
(LLAP/ELAP) interface

SYNOPSIS
char *lap_default()

DESCRIPTION
The lap_default routine returns a character pointer to the
LAP interface name of the default interface as defined in
/ etc/ appletalkrc. It returns NULL on error.

ERRORS
If an error occurs, lap default returns NULL, with a detailed
error code in errno. -

[ENOENT] No AppleTalk interface exists.

FILES
/dev/appletalk/lap/*/ ...
/etc/appletalkrc

SEE ALSO

1

atp(3N), ddp(3N), nbp(3N), pap(3N), rtmp(3N), ap­
pletalkrc(4), appletalk(7); Inside AppleTalk; "AppleTalk
Programming Guide," in AIUX Network Applications Program­
ming.

February, 1990
RevisionC

Idahread(3X) Idahread(3X)

NAME
ldahread - read the archive header of a member of an archive
file

SYNOPSIS
iinclude <stdio.h>
iinclude <ar.h>
iinclude <filehdr.h>
iinclude <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE (ldptr) is the archive file magic number, ldahread
reads the archive header of the common object file currently asso­
ciated with ldptr into the area of memory beginning at arhead.

Programs using this routine should be loaded with the object file
access library libld. a.

RETURN VALUE
ldahread returns SUCCESS or FAILURE. ldahread fails if
TYPE (ldptr) does not represent an archive file or if it cannot read
the archive header.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(3X), ar(4).

February, 1990
RevisionC

1

IdcIose(3X) IdcIose(3X)

NAME
Idclose, Idaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include <Idfcn.h>

int Idclose (ldptr)
LDFILE *ldptri

int Idaclose (ldptr)
LDFILE *ldptri

DESCRIPfION
Idopen(3X) and ldclose are designed to provide uniform ac­
cess to both simple object files and object files that are members
of archive files. Thus an archive of common object files can be
processed as if it were a series of simple common object files.

If TYPE (ldptr) does not represent an archive file, Idclose
closes the file and frees the memory allocated to the LDFILE
structure associated with ldptr. If TYPE (ldptr) is the magic
number of an archive file, and if there are any more files in the ar­
chive, ldclose reinitializes OFFSET (ldptr) to the file address of
the next archive member and returns FAILURE. The LDFILE
structure is prepared for a subsequent Idopen(3X). In all other
cases, ldclose returns SUCCESS.

ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). Idaclose always returns SUCCESS. The function
is often used in conjunction with ldaopen.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
fclose(3S), ldfcn(3X), ldopen(3X).

1 February, 1990
RevisionC

Idfen(3X)

NAME
Idf en - common object file access routines

SYNOPSIS
#inelude <stdio.h>
#inelude <filehdr.h>
#inelude <ldfen.h>

DESCRIPTION

Idfen(3X)

The common object file access routines are a collection of func­
tions for reading an object file that is in common object file form.
Although the calling program must know the detailed structure of
the parts of the object file that it processes, the routines effectively
insulate the calling program from knowledge of the overall struc­
ture of the object file.

The interface between the calling program and the object file ac­
cess routines is based on the defined type LD FILE (defined as
struet Idfile), which is declared in the header file
<ldfen. h>. The primary purpose of this structure is to provide
uniform access to both simple object files and object files that are
members of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling pro­
gram. The fields of the LDFILE structure may be accessed indi­
vidually through macros defined in <ldfen. h> and contain the
following information:

LDFILE *ldptr;

TYPE (ldptr) The file magic number, used to distinguish
between archive members and simple object
files.

IOPTR (ldptr) The file pointer returned by fopen(3S) and
used by the standard input/output functions.

OFFSET (ldptr) The file address of the beginning of the object
file; the offset is nonzero if the object file is a
member of an archive file.

HEADER (ldptr) The file header structure of the object file.

The object file access functions may be divided into four
categories:

February, 1990
RevisionC

1

Idfcn(3X) Idfcn(3X)

2

(1) functions that open or close an object file

Idopen(3X) and Idaopen
open a common object file

Idclose(3X) and Idaclose
close a common object file

(2) functions that read header or symbol table information

Idahread(3X) read the archive header of a member
of an archive file

Idfhread(3X) read the file header of a common ob­
ject file

Idshread(3X) and Idnshread

Idtbread(3X)

Idgetname(3X)

read a section header of a common
object file

read a symbol table entry of a com­
mon object file

retrieve a symbol name from a sym­
bol table entry or from the string table

(3) functions that position an object file at (seek to) the start
of the section, relocation, or line number information for a
particular section.

Idohseek(3X) seek to the optional file header of a
common object file

Idsseek(3X) and Idnsseek
seek to a section of a common object
file

Idrseek(3X) and Idnrseek
seek to the relocation information for
a section of a common object file

Idlseek(3X) and Idnlseek
seek to the line number information
for a section of a common object file

Idtbseek(3X) seek to the symbol table of a common
object file

(4) the function Idtbindex(3X) which returns the index of
a particular common object file symbol table entry

February, 1990
RevisionC

Idfcn(3X) Idfcn(3X)

These functions are described in detail in the manual pages
identified for each function.

All the functions except ldopen, Idgetname(3X), ldaopen,
and ldtbindex return either SUCCESS or FAILURE, which
are constants defined in <ldfcn. h>. ldopen and ldaopen
both return pointers to a LDFILE structure.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

MACROS
Additional access to an object file is provided through a set of
macros defined in <ldfcn. h>. These macros parallel the stan­
dard input/output file reading and manipulating functions, translat­
ing a reference of the LDFILE structure into a reference to its file
descriptor field.

The following macros are provided:

GE TC (ldptr)
FGETC (ldptr)
GE TW (ldptr)
UNGETC (c, ldptr)
FGETS (s, n, Idptr)
FREAD (ptr, size, nitems, ldptr)
FSEEK (ldptr, offset, ptrname)
FTELL (ldptr)
REWIND (ldptr)
FEOF (ldptr)
FERROR (ldptr)
FILENO (ldptr)
SETBUF (ldptr, buf>
STROFFSET (ldptr)

The STROFFSET macro calculates the address of the string table
in an object file. See the manual entries for the corresponding
standard input/output library functions for details on the use of
these macros. (The functions are identified as 3S in this manual.)

WARNINGS
The macro FSEEK defined in the header file <ldfcn. h>
translates into a call to the standard input/output function
fseek(3S). FSEEK should not be used to seek from the end of
an archive file since the end of an archive file may not be the same
as the end of one of its object file members.

February, 1990
RevisionC

3

Idfcn(3X) Idfcn(3X)

SEE ALSO

4

fopen(3S), fseek(3S), Idahread(3X), Idclose(3X),
ldfhread(3X), Idgetname(3X), Idlread(3X),
ldlseek(3X), Idohseek(3X), Idopen(3X),
ldrseek(3X), Idlseek(3X), Idshread(3X),
ldtbindex(3X), Idtbread(3X), Idtbseek(3X).
"COFF Reference" and "C Object Library" A/UX Programming
Languages and Tools, Volume 1.

February, 1990
RevisionC

Idfhread(3X) Idfhread(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
ldfhread reads the file header of the common object file
currently associated with ldptr into the area of memory beginning
atfilehead.

ldfhread returns SUCCESS or FAILURE. ldfhread fails if it
cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER (ldptr) defined in <ldfcn. h> (see Idfcn(3)).
The information in any field of the file header may be accessed by
applying the dot operator to the value returned by the HEADER
macro; for example:

HEADER (ldptr) . f_timdat

The program using this routine must be loaded with the object file
access library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), filehdr(4).

February, 1990
Revision C

1

Idgetname(3X) ldgetname (3X)

NAME
ldgetname - retrieve symbol name for object file symbol table
entry

SYNOPSIS
#include <stdio.h>#include <filehdr.h>
#include <syms.h>#include <ldfcn.h>

char *ldgetname (/dptr, symbol)
LDFILE *ldptr;
SYMENT * symbol;

DESCRIPTION
ldgetname returns a pointer to the name associated with symbol
as a string. The string is contained in a static buffer local to
ldgetname. Because the buffer is overwritten by each call to
ldgetname, it must be copied by the caller if the name is to be
saved.

The common object file format has been extended to handle arbi­
trary length symbol names with the addition of a "string table."
ldgetname returns the symbol name associated with a symbol
table entry for either an object file or a preobject file. Thus,
ldgetname can be used to retrieve names from object files
without any backward compatibility problems.

Typically, ldgetname is called immediately after a successful
call to ldtbread to retrieve the name associated with the sym­
bol table entry filled by ldtbread.

Programs using this routine should be loaded with the object file
access library libld. a.

ERRORS

1

ldgetname returns NULL (defined in <stdio. h» for an ob­
ject file if the name cannot be retrieved. This occurs when:

the string table cannot be found.

not enough memory can be allocated for the string table.

the string table appears not to be a string table (e.g., if an
auxiliary entry is handed to ldgetname that looks like a
reference to a name in a nonexistent string table).

the name's offset into the string table is beyond the end of the
string table.

February, 1990
RevisionC

Idgetname(3X) Idgetname(3X)

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idtbseek(3X),
Idtbread(3X).

February, 1990
Revision C

2

Idlread(3X) Idlread(3X)

NAME
Idlread, Idlinit, Idlitern - manipulate line number
entries of a common object file function

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <linenurn.h>
iinclude <ldfcn.h>

int Idlread (/dptr, fcnindx, linenum, linent)
LDFILE *ldptr;
long fcnindx;
unsigned short linenum;
LINENO linent;

int Idlini t (/dptr, fcnindx)
LDFILE *ldptr;
long fcnindx;

int ldli tern (/dptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO linent;

DESCRIPTION

1

ldl read searches the line number entries of the common object
file currently associated with ldptr. Idlread begins its search
with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single
function. The function is identified by fcnindx, the index of its en­
try in the object file symbol table. ldlread reads the entry with
the smallest line number equal to or greater than linenum into
linent.

ldlini t and Idli tern together perform exactly the same func­
tion as ldlread. After an initial call to ldlread or Idlini t,
ldlitern may be used to retrieve a series of line number entries
associated with a single function. Idlini t simply locates the
line number entries for the function identified by fcnindx . Idli­
tern finds and reads the entry with the smallest line number equal
to or greater than linenum into linent.

Programs using this routine should be loaded with the object file
access library libld. a.

February, 1990
RevisionC

Idlread(3X) Idlread(3X)

ERRORS
Idlread, Idlinit, and Idlitern each return either suc­
CESS or FAILURE. Idlread fails if there are no line number
entries in the object file, if fcnindx does not index a function entry
in the symbol table, or if it finds no line number equal to or greater
than linenum.

Idlini t fails if there are no line number entries in the object file
or if fcnindx does not index a function entry in the symbol table.
Idli tern fails if it finds no line number equal to or greater than
linenum.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idthindex(3X).

February, 1990
Revision C

2

Idlseek(3X) Idlseek(3X)

NAME
Idlseek, Idnlseek - seek to line number entries of a
section of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int Idlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Idlseek seeks to the line number entries of the section specified
by sectindx of the common object file currently associated with
Idptr.

Idnlseek seeks to the line number entries of the section
specified by sectname.

Idlseek and Idnlseek return SUCCESS or FAILURE.
Idlseek fails if sectindx is greater than the number of sections
in the object file; Idnlseek fails if there is no section name
corresponding to *sectname. Either function fails if the specified
section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

Idohseek(3X) Idohseek(3X)

NAME
ldohseek - seek to the optional file header of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldohseek (/dptr)
LDFILE *ldptr;

DESCRIPTION
ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

ldohseek returns SUCCESS or FAILURE. ldohseek fails
if the object file has no optional header or if it cannot seek to the
optional header.

Programs using this routine should be loaded with the object file
access routine library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X), Idfhread(3X).

February, 1990
RevisionC

1

Idopen(3X) Idopen(3X)

NAME
Idopen, Idaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>#include <filehdr.h>
#include <ldfcn.h>

LDFILE *ldopen <filename, ldptr)
char *filename;
LDFILE *ldptri

LDFILE *ldaopen <filename, oldptr)
char *filename;
LDFILE *oldptri

DESCRIPTION

1

Idopen and Idclose(3X) are designed to provide uniform ac­
cess to both simple object files and object files that are members
of archive files. Thus, an archive of common object files can be
processed as if it were a series of simple common object files.

If ldptr has the value NULL, Idopen opens filename, allocates
and initializes the LDFILE structure, and returns a pointer to the
structure to the calling program.

If ldptr is valid and TYPE (ldptr) is the archive magic number,
Idopen reinitializes the LDFILE structure for the next archive
member offilename.

Idopen and Idclose are designed to work in concert.
Idclose returns FAILURE only when TYPE (ldptr) is the ar­
chive magic number and there is another file in the archive to be
processed. Only then should Idopen be called with the current
value of ldptr. In all other cases, in particular whenever a new
filename is opened, Idopen should be called with a NULL ldptr
argument.

The following is a prototype for the use of Idopen and
Idclose.

/* for each filename to be processed */

ldptr = NULL;
do

if «ldptr ldopen(filename, ldptr» != NULL)

/* check magic number */

February, 1990
RevisionC

Idopen(3X) Idopen(3X)

/* process the file */

while (ldclose(ldptr) == FAILURE);

If the value of oldptr is not NULL, Ida open opens filename anew
and allocates and initializes a new LD FILE structure, copying the
TYPE, OFF SET, and HEADER fields from oldptr. ldaopen re­
turns a pointer to the new LDFILE structure. This new pointer is
independent of the old pointer, oldptr. The two pointers may be
used concurrently to read separate parts of the object file. For ex­
ample, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed
symbol table entries.

Both ldopen and ldaopen open filename for reading. Both
functions return NULL if filename cannot be opened or if memory
for the LDFILE structure cannot be allocated. A successful open
does not insure that the given file is a common object file or an ar­
chived object file.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
fopen(3S), Idclose(3X), Idfcn(3X).

February, 1990
Revision C

2

Idrseek(3X) Idrseek(3X)

NAME
Idrseek, Idnrseek - seek to relocation entries of a section
of a common object file

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <ldfcn.h>

int Idrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnrseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIYfION
Idrseek seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated with
ldptr.

Idnrseek seeks to the relocation entries of the section specified
by sectname.

The routines Idrseek and Idnrseek return SUCCESS or
FAILURE. Idrseek fails if sectindx is greater than the number
of sections in the object file; Idnrseek fails if there is no section
name corresponding with sectname. Either function fails if the
specified section has no relocation entries or if it cannot seek to
the specified relocation entries.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

Idshread(3X) Idshread(3X)

NAME
ldshread, ldnshread - read an indexed/named section
header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int ldshread (/dptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *sectheadi

int ldnshread (ldptr, sectname, secthead)
LDFILE *ldptri
char *sectname;
SCNHDR * secthead i

DESCRIPTION
ldshread reads the section header specified by sectindx of the
common object file currently associated with ldptr into the area of
memory beginning at secthead.

ldnshread reads the section header specified by sectname into
the area of memory beginning at secthead.

ldshread and ldnshread return SUCCESS or FAILURE.
ldshread fails if sectindx is greater than the number of sec­
tions in the object file; ldnshread fails if there is no section
name corresponding with sectname. Either function fails if it can­
not read the specified section header.

Note that the first section header has an index of one.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), Idopen(3X).

February, 1990
RevisionC

1

Idsseek(3X) Idsseek(3X)

NAME
Ids seek, Idnsseek - seek to an indexed/named section of a
common object file

SYNOPSIS
#include <stdio.h>
#include <fiIehdr.h>
#include <Idfcn.h>

int Idsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int Idnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
Ids seek seeks to the section specified by sectindx of the com­
mon object file currently associated with ldptr.

Idnsseek seeks to the section specified by sectname.

Idsseek and Idnsseek return SUCCESS or FAILURE.
Ids seek fails if sectindx is greater than the number of sections
in the object file; Idnsseek fails if there is no section name
corresponding with sectname. Either function fails if there is no
section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library I ibId. a.

SEE ALSO

1

IdcIose(3X), Idfcn(3X), Idopen(3X), Idshread(3X).

February, 1990
RevisionC

ldtbindex(3X) ldtbindex(3X)

NAME
ldtbindex - compute index of a symbol table entry of a
common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <syms.h>
*include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry
at the current position of the common object file associated with
'ldptr.

The index returned by ldtbindex may be used in subsequent
calls to ldtbread(3X). However, since ldtbindex returns
the index of the symbol table entry that begins at the current posi­
tion of the object file, if ldtbindex is called immediately after a
particular symbol table entry has been read, it returns the the index
of the next entry.

ldtbindex fails if there are no symbols in the object file or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine should be loaded with the object file
access library libld. a.

SEE ALSO
ldclose(3X), ldf cn(3X), ldopen(3X), ldtbread(3X),
ldtbseek(3X).

February, 1990
Revision C

1

Idtbread(3X) Idtbread(3X)

NAME
ldtbread - read an indexed symbol table entry of a common
object file

SYNOPSIS
iinclude <stdio.h>
iinclude <filehdr.h>
iinclude <syms.h>
iinclude <ldfcn.h>

int Idtbread (ldptr, symindex, symbol)
LDFILE *ldptri
long symindexi
SYMENT * symbol i

DESCRIPTION
ldtbread reads the symbol table entry specified by symindex of
the common object file currently associated with ldptr into the
area of memory beginning at symbol.

ldtbread returns SUCCESS or FAILURE. ldtbread fails if
symindex is greater than the number of symbols in the object file
or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO

1

Idclose(3X), Idfcn(3X), Idgetname(3X), Idopen(3X),
Idtbseek(3X).

February, 1990
Revision C

Idtbseek(3X) Idtbseek(3X)

NAME
Idtbseek - seek to the symbol table of a common object file

SYNOPSIS
*include <stdio.h>
*include <filehdr.h>
*include <ldfcn.h>

int Idtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Idtbseek seeks to the symbol table of the common object file
currently associated with ldptr.

Idtbseek returns SUCCESS or FAILURE. Idtbseek fails
if the symbol table has been stripped from the object file or if it
cannot seek to the symbol table.

Programs using this routine must be loaded with the object file ac­
cess library libld. a.

SEE ALSO
Idclose(3X), Idfcn(3X), ldopen(3X), Idtbread(3X).

February, 1990
RevisionC

1

len(3F)

NAME
len - return length of Fortran string

SYNOPSIS
character *N ch
integer i

i=len (ch)

DESCRIPTION
len returns the length of string ch.

1

len(3F)

February, 1990
Revision C

1ge(3F) 1ge(3F)

NAME
1ge, 19t, lIe, lIt - string comparision intrinsic functions

SYNOPSIS
character *N al, a2
logical I

I=lge (al, a2)
l=lgt (al, a2)
l=lle (al, a2)
1=11 t (al, a2)

DESCRIPTION
These functions return TRUE if the inequality holds and FALSE
otherwise.

February, 1990
Revision C

1

lineyush(3) lineyush(3)

NAME
lineyush - routine used to push streams line disciplines

SYNOPSIS
line yush (ftldes)
int fildes;

DESCRIPTION
line yush will push the streams line discipline "line" onto the
stream referenced by the file descriptor fildes. If fildes does not
reference a stream or it references a stream that already has a line
discipline pushed onto it nothing will happen.

SEE ALSO
line_sane(IM), streams(7).

1 February, 1990
RevisionC

lockf(3C) lockf(3C)

NAME
lockf - record locking on files

SYNOPSIS
finclude <unistd.h>

int lockf <fildes, function, size)
long size;
in t fildes, function;

DESCRIPTION
The lockf call will allow sections of a file to be locked (advisory
write locks). (Mandatory locking is available via locking(2)).
Locking calls from other processes which attempt to lock the
locked file section will either return an error value or be put to
sleep until the resource becomes unlocked. All the locks for a
process are removed when the process terminates. (See
fcntl(2) for more information about record locking.)

fildes is an open file descriptor. The file descriptor must have
o WRONLY or 0 RDWR permission in order to establish lock with
thTs function call:-

function is a control value which specifies the action to be taken.
The permissible values for function are defined in <unistd. h>
as follows:

#define F_ULOCK a /* Unlock a previously

locked section */
#define FLOCK 1 /* Lock a section for

exclusive use */
#define F_TLOCK 2 /* Test and lock a section

for exclusive use */

#define F_TEST 3 /* Test section for other

processes locks */

All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F _ TE S T is used to detect if a lock by another process is present
on the specified section. F LOCK and F TLOCK both lock a sec­
tion of a file if the section is available. F ULOCK removes locks
from a section of the file. -

February, 1990
Revision C

1

lockf(3C) lockf(3C)

size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file and
extends forward for a positive size and backward for a negative
size. If size is zero, the section from the current offset through the
largest file offset is locked (i.e., from the current offset through the
present or any future end-of-file). An area need not be allocated
to the file in order to be locked, as such locks may exist past the
end-of -file.

The sections locked with F LOCK or F TLOCK may, in whole or
in part, contain or be conta'fried by a previously locked section for
the same process. When this occurs, or if adjacent sections occur,
the sections are combined into a single section. If the request re­
quires that a new element be added to the table of active locks and
this table is already full, an error is returned, and the new section
is not locked.

F _LOCK and F _ TLOCK requests differ only by the action taken if
the resource is not available. F LOCK will cause the calling pro­
cess to sleep until the resource IS available. F TLOCK will cause
the function to return a -1 and set errno to [EACCES] error if
the section is already locked by another process.

F _ ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro­
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lock or fcntl scan for a deadlock prior
to sleeping on a locked resource. An error return is made if sleep­
ing on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

RETURN VALUE

2

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

February, 1990
RevisionC

lockf(3C) lockf(3C)

ERRORS
The lockf utility will fail if one or more of the following are
true:

[EBADF]

[EACCES]

[EDEADLK]

[EREMOTE]

CAVEATS

fildes is not a valid open descriptor.

function is F TLOCK or F TEST and
the section is already locked by another pro­
cess.

function is F LOCK or F TLOCK and a
deadlock would-occur. Also the func­
tion is either of the above or F ULOCK
and the number of entries in the lock table
would exceed the number allocated on the
system.

fildes is a file descriptor referring to a file on
a remotely mounted file system.

Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which
is/was locked. The standard I/O package is the most common
source of unexpected buffering.

SEE ALSO
close(2), creat(2), fcntl(2), intro(2), locking(2),
open(2), read(2), wri te(2).

February,1990
RevisionC

3

log(3F) log(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic
function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex exl, ex2

r2=alog (rl)
r2=log (rl)

dp2=dlog (dpl)
dp2=log (dpl)

ex2=clog (exl)
ex2=log (exl)

DESCRIPfION
alog returns the real natural logarithm of its real argument.
dlog returns the double-precision natural logarithm of its
double-precision argument. clog returns the complex logarithm
of its complex argument. The generic function log becomes a
call to alog, dlog, or clog depending on the type of its argu­
ment.

SEE ALSO
exp(3M).

1 February, 1990
RevisionC

loglO(3F) loglO(3F)

NAME
loglO. aloglO. dloglO - Fortran common logarithm
intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2

r2=aloglO (rl)
r2=loglO (r1)

dp2=dloglO (dp1)
dp2=loglO (dpl)

DESCRIPTION
aloglO returns the real common logarithm of its real argument
dloglO returns the double-precision common logarithm of its
double-precision argument. The generic function loglO be­
comes a call to aloglO or dlogl 0 depending on the type of its
argument.

SEE ALSO
exp(3M).

February. 1990
Revision C

1

logname(3X) logname(3X)

NAME
logname - return login name of user

SYNOPSIS
ehar *logname ()

DESCRIPTION
logname returns a pointer to the null-terminated login name; it
extracts the $ LOGNAME variable from the user's environment

This routine is kept in / lib/ libPW. a.

FILES
fete/profile

SEE ALSO
env(1), login(l), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwritten
by each call.

1

This method of determining a login name is subject to forgery.

February, 1990
RevisionC

lsearch(3C) lsearch(3C)

NAME
lsearch. Ifind -linear search and update

SYNOPSIS
iinclude <stdio.h>
iinclude <search.h>

char *lsearch (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned *width;
int (*compar) () ;

char *lfind(key, base, neip, width, compar)
char *key;
char *base;
unsigned *neip;
unsigned *width;
int (*compar) () ;

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a
datum may be found. If the datum does not occur. it is added at
the end of the table. key points to the datum to be sought in the
table. base points to the first element in the table. nelp points to
an integer containing the current number of elements in the table.
The integer at * nelp is incremented if the datum is added to the
table. width is the width of an element in bytes. compar is the
name of the comparison function which the user must supply
(strcmp. for example). It is called with two arguments that point
to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.

Ifind is the same as lsearch except that if the datum is not
found. it is not added to the table. Instead. a -1 pointer is returned.

RETURN VALUE
If the searched for datum is found. both lsearch and Ifind re­
turn a pointer to it. Otherwise. Ifind returns NULL and
lsearch returns a pointer to the newly added element

February, 1990
Revision C

1

lsearch(3C) lsearch(3C)

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLES
This fragment will read in ~ TAB S I Z E strings of length ~ EL­

S1 ZE and store them in a table, eliminating duplicates.

#include <stdio. h>

#include <search.h>

#define TABSIZE 50

#define ELSIZE 120

char line [ELSIZE], tab [TABSIZE] [ELSIZE], *lsearch ();

unsigned nel = 0;

int strcmp ();

while (fgets (line, ELSIZE, stdin) ! = NULL &&

nel < TABSIZE)

(void) lsearch (line, (char *) tab, &nel,

ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

BUGS

2

Undefined results can occur if there is not enough room in the
table to add a new item.

February, 1990
RevisionC

THE ApPLE PUBUSHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh® computers and troff running on A/UX.
Proof and fmal pages were created on Apple
LaserWriter® printers. POSTSCRIPT®, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0784

\ 0

