






























































































































































































































































(3) 

in which the ajk'S, j = 1, 2, k = 1, 2, are complex-valued quantities used 
to represent the channel attenuation and phase shift. These quantities 
are randomly time variant; however, the time variations are assumed 
to be slow in comparison to the symbol rate of the signals. Such slow 
variations can be tracked and canceled adaptively. The received low
pass equivalent signals can be expressed as 

{
r1(t) = �a�U�~�l�(�t�)� + �a�1�2�~�2�(�t�)� + 1Jl(t) 
r2(t) = a21s1(t) + a22s2(t) + 1J2(t) , 

(4) 

where 1Jl(t) and 1J2(t) are independent, zero-mean, white Gaussian 
processes. The received signals are filtered by receive filters matched 
to the transmit signals and sampled at every symbol period. The 
sampled signals are denoted by xi(k), i = 1, 2, and are expressed as 

{
Xl(k) = �a�U�~�l�(�k�)� + �a�1�2�~�2�(�k�)� + nl(k) 
x2(k) = a21al(k) + a22a2(k) + n2(k). 

(5) 

The colored noise sequences, {nl(k)l and {n2(k)L are independent 
samples of zero-mean, complex-valued Gaussian processes with equal 
variances 

i = 1,2, 

where E { .} denotes the statistical average. The factors au and a22 
represent the in-line attenuation and phase shift; the factors a12 and 
a21 represent the x-pol coupling on the two channels. 

Data calculated by Chu6 show that for linearly polarized waves, the 
behavior of the cross-polarized signal amplitude can be described by 

XPL = I aijl
: , 

laul 
i = 1,2, j = 1, 2, i =t= j, (6) 

where XPL is defined as cross-polarization factor of linearly polarized 
waves6 and 

- 1 (C 2) 2 XPL = 2 D e-4
<1f) [1 - cos(4Te-8<1m)]o, (7) 

where am is the standard deviation of time-varying, mean-canting 
angle 8 m over various rainstorms, a8 is the standard deviation of 
anistropy angle 8, T is the orientation angle of the quasi-vertical 
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polarization, 0 is proportional to in-line attenuation factor, and CID 
is proportional to differential propagation constants. Measured data 
from COMSTAR II follow these calculations closely.6 The comparison 
is shown in Fig. 1 of Ref. 6. We will use these results to introduce an 
average probability of error as a function of in-line attenuation level. 

In the next section we describe a simple structure that can reduce 
the x-pol distortion in such systems. 

III. ADAPTIVE BASEBAND CANCELER MODEL 

The adaptive canceler that attempts to remove the x-pol distortion 
is characterized by 

where wi/s, i = 1, 2,j = 1, 2 are the canceler coefficients. This adaptive 
device, which is a part of the M-ary QAM detector circuit, is studied 
under two adaptation methods. The first method employs a Least 
Mean-Square (LMS) error algorithm and the second applies channel 
matrix diagonalization. Figure 1 shows the LMS canceler structure. 
The samples at the matched filter output of each receiver are inputs 
to a bank of adaptive filters formed by a set of multiplier accumulators 
(MACs). To update the coefficients of the canceler, each MAC con
tains storage elements for storing the result of the multiplication of 
the signal-sample detection error and the complex conjugate of the 
corresponding received signal sample at the matched filter output. 
The calculated coefficients are multiplied by the signal samples at the 
matched filter output and used to cancel the x-pol distortion. The 
detectors shown in Fig. 1 are part of the M -ary QAM demodulators. 

The canceler structure consists of a simple adaptive filter, which 
minimizes the least mean -square error in symbol estimation. The 
theory of this type of filter is well known 7 and is solely based on the 
statistical orthogonality principle. According to this theory, mean
square error is minimum when the error in symbol estimation is 
statistically orthogonal to the variable being observed. In the case at 
hand, we show the signal-sample estimation error by 

i = 1,2, (8) 

where ai(k) is the detector input, as shown in Fig. 1. We now select 
those canceler coefficients for which the mean-square error is mini
mum, i.e., the results of solving min E{ 1 E1 (k) 12 + 1 E2(k) 12}. After 
proceeding with the minimization process, the following set of equa
tions will lead to the optimum determination of the coefficients w~, 
i = 1, 2, j = 1, 2: 

QAM SIGNAL PERFORMANCE 503 



€1 (k) 

1><1 : MULTIPLIER ACCUMULATORS 

Fig. I-Block diagram of adaptive LMS baseband canceler. 

[I all 12 + 1 a121 2 + (J~]W~l + [a2lail + ai2a22]W~2 = ail 

[a~lall + a12a~2]wYl + [I a2l1 2 + 1 a221 2 + (J~]W~2 = a~l 

[I all 12 + 1 a121 2 + (J~]Wgl + [a2la il + ai2a22]wg2 = ai2 

[a~lall + a12a~2]wgl + [la2ll2 + la221 2 + (J~]Wg2 = a~2. (9) 

As Fig. 1 shows, the signal samples at the canceler output for each 
channel can be expressed as 

{~l(k) = WllXl(k) + W12X2(k) (10) 
cx2(k) = W2l Xl(k) + W22X2(k), 

where £1,1 and £1,2 are complex quantities. In eq. (10), by substituting 
xm(k),s, m = 1, 2 of eq. (5) and the coefficients wg, i = 1, 2, j = 1, 2 of 

504 TECHNICAL JOURNAL, MARCH 1984 



eq. (9), one can form a decision variable for each channel for the 
derivation of probability of error. 

An alternate solution to this type of optimization problem, which 
uses the steepest descent algorithm and is simple to implement, was 
suggested by Widrow.8 The solution is recursive and states that 

W~~+l) = w~~) + €o(k)x'!'(k) 
l} I] I ] , i = 1,2, j = 1,2, (11) 

where * denotes the complex conjugate and k represents the sampling 
instant. In eq. (11) the noisy estimates of the cross-correlation of the 
observed signal and error signal are used as unbiased estimates to 
update the canceler coefficients at every baud interval. Such algo
rithms are well known in adaptive filtering and equalization. The 
realization of eq. (11) is shown in Fig. 1. The MACs in the figure 
update eq. (11) by storing the result of multiplication of signal samples 
and detection error samples. 

As an alternative adaptation method, we consider a case where the 
canceler coefficients are determined by forcing the x-pol interference 
on each channel to zero.9 This is equivalent to diagonalizing the overall 
channel matrix; i.e., substituting xm(k)'s of eq. (5) into eq. (10) and 
forcing the coefficient of the undesired signal to zero on each channel, 
i.e., by 

(12) 

In this case we refer to the canceler as a diagonalizer. Amitay describes 
the realization of an IF diagonalizer.9 In analogy to intersymbol
interference removal by zero-forcing equalization, this method can 
also be referred to as zero-forcing cancellation. Figure 2 shows a block 
diagram of the diagonalizer. Note that in canceling the interference, 
the diagonalizer neglects the thermal noise completely. 

In the following section we will evaluate the canceler for both cases 
described. 

IV. SYSTEM PERFORMANCE ANALYSIS 

In this section we derive an upper bound on the average probability 
of error for dual-polarized M-ary QAM signals with and without the 
x-pol distortion canceler. Throughout this section it is assumed the 
data sequences on the two polarized channels are independent, equally 
likely, M -ary QAM signals. The channel is characterized by the matrix 
introduced earlier. To simplify the derivation, with no loss of gener
ality, we can assume the phase angles of all and a22 are zero and use 
the normalized notations 
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X1(k) 

1><1: MULTIPLIER ACCUMULATORS 

Fig. 2-Block diagram of adaptive diagonalizer. 

a12 (. ) - = ~1 exp J¢1 , 
an 

a21 (. ) - = ~2 exp J¢2 , 
a22 

and 

(13) 

All the variables introduced in eq. (13) are time variant, but the time 
variations are slow relative to symbol rate so the receiver can obtain 
perfect estimates of the channel matrix components. The phase pa
rameters ¢1 and ¢2 in eq. (13) are uniformly distributed over [-11", 11"]. 
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Also, to further simplify the presentation of the results, we assume 
h = ~2 = ~, and ~o = 1. This model was shown by Chu to be a valid 
model for depolarization of dual-polarized waves due to heavy rain
fall. 1o Furthermore, this simplified model of a x-pol channel still 
provides means of evaluating the canceler performance, and the error 
probability bounds derived should be useful in preliminary system 
planning. 

4.1 Performance in the presence of the canceler 

In this section we first derive an average probability of error applying 
the diagonalizer. Then we proceed with deriving an average error 
probability for the LMS canceler. 

To calculate a simple upper bound on the probability of error 
performance when the diagonalizer is present, we use the complex 
valued estimates of the data symbols at the canceler output given in 
eq. (10), along with the constraints in eq. (12) and matched filter 
outputs of eq. (5), to define the following simplified decision variables 
for the two channels: 

{
a1(k) = au[l - eej~tPl+~)]al(k) + nl(k) - n2(k)~ej~1 (14) 
a2(k) = a22[1 - eeJ(tP1+tP2)]a2(k) + n2(k) - nl(k)~eJtP2 • 

As this equation shows, the decision variable for channel i depends on 
the parameters of channel j, i =1= j, i = 1, 2, j = 1, 2, namely, 4>j and nj. 
Now con'sider the in-phase and quadrature-phase components of each 
channel. The decision variable for channel 1 in eq. (14) can be 
expressed in terms of its real and imaginary parts as 

zR(k) = -o(k)eCOS(4>l + 4>2) + (3(k)esin(4>l + 4>2) 

+ ~ nlR(k) + ~ n2I(k)~ sin(4)l) 
au au 

zI(k) = -(3(k)eCOS(4>l + 4>2) - o(k)esin(4>l + 4>2) 

1 1 + - nlI(k) - - n2I(k)~ COS(4)2) 
au au 

(15) 

where niR (k) and ni/(k), i = 1, 2, are the real and imaginary parts of 
Gaussian noise samples at sampling instant k, which are identically 
distributed random variables with the same variance, cr;. Now, an 

QAM SIGNAL PERFORMANCE 507 



error is made on channel 1 if I ZR I > c or I Z1 I > c, where c, as stated 
earlier, is the signal distance from its nearest decision region boundary 
in the signal constellation. Therefore, the probability of error on 
channel 1 can be expressed as 

To derive the error probability, we apply the well-knownll Chernoff 
bound, which states 

Pr{Z > c} ~ exp(-Ac)E{exp(Az)}, A;::: 0, (17) 

where E{.} denotes the statistical average of the random variable z. 
This is valid for any A ;::: O. Using the positive A that minimizes the 
right-hand side of eq. (17) establishes the least upper bound. Hence, 
we apply eq. (17) to eqs. (15) and (16) combined. The actual derivation 
of the upper bound is in Appendix A. 

The resulting probability of error bound is 

i = 1, 2, (18) 

where 

L2 - 1 c2 

l' = --3- 2 = the unfaded sin 
(in 

I au I = the in-line voltage on channel i, i = 1,2. 

We define 

XPD = 20 loglO~, dB (19) 

as a measure of x-pol distortion to represent the cross-coupling be
tween the two channels, and 

v = 20 loglO I au I, dB i = 1, 2 (20) 

as a measure of flat-fade level. When there is no fade, v = 0 dB and 
the only contribution to x-pol distortion is due to the static effects, 
such as antenna imperfections, in which case XPD is denoted by 
XPDo. The fade-induced part of the x-pol distortion is put into effect 
when I au I < 1, i = 1, 2. Now, eq. (7) can be applied to relate the 
average probability of error to in-line attenuation and to remove the 
x-pol factor in eq. (18). That is, 
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i = 1, 2. (21) 

We now proceed with reevaluating the probability of error when the 
LMS canceler is employed. As we stated in Section III, the LMS 
canceler adaptively calculates its coefficients so that the mean-square 
error is minimized. By using the optimum set of coefficients of eq. (9) 
in eq. (10), we can define a new decision variable for each channel; 
that is, 

al = (w~lall + w~2a2dal + (w~lal2 + w~2a22)a2 
+ w~lnl + w~2n2 

(wglall + wg2a2dal + (wglal2 + wg2a22)a2 

+ wglnl + Wg2n2, 

(22) 

where w~'s are the optimum coefficients. As we see again, the decision 
variable for channel i depends on the parameters of channel j, i =1= j, 
i = 1, 2, j = 1, 2. In a manner similar to what was explained for the 
diagonalizer, we can calculate the probability of error for the LMS 
canceler. The actual derivation of the bound is in Appendix B. The 
resulting probability of error is 

Pe,s;/L~ 1 f'( 1-:,..) exp { - 2(LL 1)· 'Y0(:~~~(q,Jdq" (23) 

where 

and V(¢), 0(¢), and £l(¢) are defined in eq. (34) of Appendix B. An 
attempt to solve eq. (23) in a closed form turned out to be inconclusive, 
so it was calculated on a computer numerically. To express eq. (23) 
only in terms of fade level, again we can use eq. (7) to remove ~. 

To make a comparison, we remove the canceler and repeat the 
derivation of the probability of error for a baseline, dual-polarized, 
M-ary QAM system. 

4.2 Performance of baseline, dual-polarized, M-ary QAM system 

In this case the error-bound derivation is simplified because for 
channel i the decision variables are independent of the other channel's 
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parameters, namely, cPj and nj, j =1= i, i = 1, 2, j = 1, 2. Therefore, eq. 
(15) is reduced to 

zR(k) = ~o2(k)cos(cPd - ~{32(k)sin(cPl) + ~ nlR(k) 
all (24) 

Using a similar approach, as for the previous cases, we derive an upper 
bound on the error probability. This derivation is given in Appendix 
C. The result is 

L - 1 f 3 1'1 aii 12 1 
Pe ~ -L- exp 1- 2(L2 - 1) 1 + 'Yel aii 12 f' i = 1, 2. (25) 

This is a simple bound to calculate, and in terms of fade level, it can 
be expressed as 

L - 1 [ 3 
Pe( 1 aii 12) ~ -L- exp - 2(L2 _ 1) 

1'1 aid 2 ] 

·1 + 1'1 aii 12.XPL ' 
i = 1, 2. (26) 

The numerical results in the following section illustrate the perform-
ance. 

V. NUMERICAL PERFORMANCE FOR 16 QAM 

In this section we evaluate the bounds derived in the previous section 
for dual-polarized 16-QAM signals. 

First, we consider 16 QAM with no cancellation. The upper bound 
of eq. (25) is shown in Fig. 3 for three different static x-pol distortion 
(XPDo) values. These curves represent the average error probability 
bound for 16-QAM signals as a function of static x-pol distortion and 
sin when no cancellation is adopted and no fading exists. Figure 3 
also shows the theoretical performance of the 16 QAM and the 
theoretical calculated upper bound, i.e., for the case when there is no 
fade and no x-pol distortion. As we see, the upper bound curve is very 
close to the actual theoretical curve. These results indicate that 
improving the static x-pol can improve the overall performance sub
stantially. Figure 4 demonstrates the bound in eq. (26) for 5-dB flat 
fade, using Fig. 1 of Reference 6, which predicts an XPL of 28 dB for 
a 5-dB flat fade. As we see, the sensitivity of the error probability to 
the fade level is quite high. 

Next, we apply the canceler and the diagonalizer described earlier 
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Fig.3-Probability of error vs. sin for dual 16 QAM without canceler; no fading 
exits. 

and show the bounds in eqs. (18) and (23) in Fig. 5 for different 
XPDos. High values of XPDos could occur in poorly aligned antenna 
systems. As Fig. 5 illustrated, the LMS canceler and the diagonalizer 
behave quite differently. The LMS canceler improves the performance 
significantly even at rather poor XPDs, e.g., XPDo = -5 dB, while the 
diagonalizer is almost useless for such a case. As the XPDo value is 
improved, e.g., for a XPDo = -25 dB, the performance of the two 
cancelers becomes the same. This is because as XPD increases, the 
diagonalizer coefficients grow in a direction to cancel XPD, while 
neglecting the thermal noise completely; consequently, the noise power 
in each channel is increased strongly. The LMS canceler, however, by 
minimizing the combined noise and XPD power, produces an accept
able performance. On the other hand, as XPD is improved, the 
diagonalizer becomes as attractive as the LMS canceler since there is 
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Fig. 4-Probability of error vs. sin for dual 16 QAM without canceler; 5-dB flat fade 
applied. 

not much XPD to cancel; consequently, there is not much noise 
enhancement. However, over fading channels where XPD, dB can 
even be positive, use of the LMS canceler will ensure a more reliable 
system. 

We then apply 5-dB flat fade and draw the average error rate bounds 
for both cancelers as a function of fade level in Fig. 6. As we see, the 
XPD is removed for a practically reasonable static XPD. The horizon-

512 TECHNICAL JOURNAL, MARCH 1984 



10-2 ,---------------------------------------------------, 

>
I-
::::i 
al 
<t 

10-3 

10-4 

~ 10-5 
CC 
Q. 

CC 
o 
CC 
CC 
W 

c5 10-6 

al 
~ 
>
rJl 

10-7 

10-8 

" 

-- LEAST MEAN-SQUARE 
CANCELER 

- - - DIAGONALIZER 

" XPD o - STATIC CROSS-POLARIZATION 
" DISTORTION 

"-
" '" ' ......... XPD O = -10 dB 

......... 

10-9~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ______ ~~ 
14 22 26 Y 

SIGNAL-TO-NOISE RATIO IN DECIBELS 
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tal translation of the curves reflects the 5-dB signal power loss due to 
fade since we have employed unfaded sin in sketching these figures. 

Note that rain fading increases the system noise temperature as 
follows. If we assume the noise temperature of the receiver and the 
following stages to be To, and in the presence of rain, Tp , the increased 
system noise temperature in rain is 

Tp = To + (1 - v) Train, 

where 

v = I aii I = in -line fade level 

Train = effective temperature of the rain. 

For example, for a flat fade of 5 dB and rain temperature of 280K, the 
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system noise temperature increases by 122.5K. The additional increase 
in noise temperature will further translate the curves in Fig. 6 to the 
right, horizontally. In practice the noise power increase has to be 
factored in system power budget. 

VI. CONCLUSIONS 

In this paper we studied the performance of dual-polarized, M-ary 
QAM signals in terms of average probability of error as a function of 
sIn, x-pol distortion, and fade level. An x-pol cancellation method 
operating at baseband was suggested. Two different adaptation meth
ods were considered in calculating the canceler coefficients. In partic
ular, the performance was evaluated with and without the XPD 
cancellation for 16-QAM signals in dual polarization with or without 
fade. The results indicate that without applying some kind of x-pol 

514 TECHNICAL JOURNAL, MARCH 1984 



cancellation, dual polarization of M -ary QAM signals is not feasible. 
The results also indicate that the adaptive algorithm employed in 
cross-polarization interference cancellation should take into account 
noise power reduction. 
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APPENDIX A 

Derivation of Error Bound for the Diagonalizer 

Consider one of the dual-polarized channels, e.g., channelL Using 
the Chernoff bound for the in-phase rail of the M-ary QAM signal 
and eq. (15) in Section 4.1, 

Pe, = P,llzRI > cl ,.; exp(-Ac) (E{exp [-AbeCOS (4)) + A{3e 

where 

¢ = ¢1 + ¢2. 

Since the terms in the argument of the inner exponential are inde-
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pendent of each other, given that ¢ and ¢1 are known, we can average 
over independent variables first and then take the average of the result 
with respect to phase variables. So, 

P '. ",; exp( - he )E •.•• { E,[ exp( - Mecos <1»]. E~[ exp(hl'lesin <1»] 

. En .. [ exp (L n1R) l En,.[ exp (- ~1~ "'RCOS( <1>1) ) ] 

. En,{ exp C~ ",,,,in (<1>1) ) ]}, (28) 

where 0 and (3 are the real and imaginary parts of a uniformly 
distributed, complex-valued random variable. We now calculate the 
statistical averages in eq. (28): 

r1 = En .. [exp C~l nlR)] = exp [2~~1 u~] 
2 L/2 

r 2 = Eo{exp(-Xoecos ¢)} = L i~l cosh{Xec(2i - l)cos(¢)}. 

And, since 

2 L/2 [L2 - 1 X2] 
L i~l cosh{(2i - l)x} ::::; exp -3-"2' 

then, 

Similarly, 

Therefore, 
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and 

[ 
2 2 (1 L2 - 1 ~4C2 ~2 )] 

Pel ~ exp -AC + A an -2- + --3- -2 + -2- . 
2a n 2a n 2an 

(29) 

If we repeat the derivation for Pe2 = Prll z/I > C}, because of the 
symmetry, we will find out that the result is the same as for Pel; i.e., 

L-1 
Pe = 2L (Pel + P e2 )· 

We now calculate the least upper bound on Pel by minimizing the 
argument of the exponential in eq. (29) with respect to A. The result 
for 

IS 

(L-1) J 3 'YlanI2} 
Pe ~ L exp 1- 2(L2 - 1) 1 + 'Y~41 anl 2+e . (30) 

For channel 2 we find a similar result using 1 a221
2 in eq. (30) instead 

of 1 an 12. 

APPENDIX B 

Derivation of Error Bound For the LMS Canceler 

The derivation of error bound is somewhat tedious in this case. We 
employ the decision variables of eq. (22) of Section 4.1 and after some 
mathematical manipulations, find their real and imaginary parts. For 
example, for channell, by introducing 

v = 1 an 1 and ¢ = ¢l + ¢2 (31) 

ZlR = Relal - ad = ~ [A·(h + B·o2 - C·{32 + D·nlR 
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where 

A = _(V2<T~ + V2e<T~ + <T~) 

B = ~V2<T~[COS 4>1 + cos 4>2] 

c = ~v2<T~[sin 4>1 - sin 4>2] 

D = v3 + V<T~ - v3ecos 4> 

E = v3esin 4> 

F = _v3~ cos 4>1 + [V3~3 + V~<T~]cos 4>2 

G = _V3~ sin 4>1 - [v3e + v~<T~]sin 4>2 

H = [v2e + v2 + <T~]2 - 2v4e[1 + cos 4>]. (32) 

In a similar manner as in Appendix A, we find an upper bound on 
Pel = Pr( I ZlR I > c} using the Chernoff bound. 

Following the method used in Appendix A, we define 

ro = E" {exp (~ (!) o.)} = ~ ~: cosh {~ (!) (2i - l)C} 

~ [A2
C

2 ~ (A)2] -..;; exp 2 3 H' 

Similarly, 

and 

Also, 

Similarly, 

so 

r. = exp [~ ~ (~y] 
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and 

r. = exp [~ ~ (~)']. 

where E4>{.} is the expectation with respect to ¢. We can minimize the 
argument of the exp{.} with respect to A. The least upper bound 
corresponds to 

(33) 

This bound is conditioned on ¢1 and ¢2, so by taking the average over 
¢1 and ¢2, the actual bound can be obtained. In eq. (33) 

Hence, 

8(¢) = A 2 + B2 + C2 

L).(¢) = D2 + E2 + F2 + G2 

\l(¢) = H2. 

8(¢) = (v20"~ + v2eO"~ + 0"~)2 + 2ev40"~(1 + cos ¢) 

L).(¢) = V2(V4 + O"~ + 2V20"~ + V4~4 + v4e + V4~6 

+ 2v2eO"~ + eO"~) - 2v4e[v2e + 20"~ + v2]cos ¢ 

\l(¢) = {(v2 + v2e + 0"~)2 - 2v4e(1 + cos ¢)}2. 

(34) 

Since ¢1 and 1>2 are two independent random variables that are 
uniformly distributed over (-7r, 7r) and ¢ = ¢1 + ¢2, the probability 
density function of q) is 

o :;:;; I ¢ I :;:;; 2 7r. (35) 

By using {.I'( (p), we can calculate the statistical average of the right
hand side of the bound in eq. (33) and find the least upper bound on 
Pel. Again, by symmetry 

Pe2 = Pr{IZlIl > c} = Pel' 
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so 

and 

L - 11211" 1 ( cp) Pe =::;;-- - 1--
L 0 7r 27r 

{ 
3 ,,(\1(CP)} 

·exp - 2(L2 _ 1)· "(0(cp) + ~(cp) dcp, (36) 

in which "( = L
2

3
- 1 c: and \1(cp), 0(cp), and ~(cp) are defined in eq. 

an 
(34). 

APPENDIX C 

Derivation of Error Bound for the Baseline System 

If we use a similar approach, 

L-1 
Pe =::;; -L- exp(-Xc) 

. E {exp {A~52COS( <P,) - A~{J2sin (<P,) + I a~d nlR}}. (37) 

Following what was done in Appendices A and B, 

[ { XnlR}] { X2a; } 
fl = EnlR exp I ani = exp 21 anl 2 

ra = Ep, [exp {-A~{J2Sin(<pI)}] 
2 L/2 

= - L cosh[ (2j - l)cX~ sin(cpd] 
L j=l 
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Therefore, 

or 

(L - 1) [ 1 A? 2 1 L2 - 1 2 2 2] ( ) 
Pe =::;; L exp -AC + 2 1 anl 2 (In + 2 -3- A C ~. 39 

By minimizing the argument of exp [ .] with respect to A and substi
tuting Amin in eq. (37), the corresponding least upper bound is 

(L - 1) [ 3 1'1 anl
2 

] 
Pe =::;; L exp - 2(L2 - 1) 1 + 'Yel anl2 ' (40) 

where 

and, similarly, the probability of error for channel 2 can be obtained 
by substituting 1 a22 12 instead of 1 an 12 in eq. (40). 
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