WD90C33
High Performance VGA Controller
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. 1 General Description</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. 2 Features</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. 3 Document Scope</td>
<td>2</td>
</tr>
<tr>
<td>2.0</td>
<td>WD90C33 ARCHITECTURE</td>
<td>3</td>
</tr>
<tr>
<td>3.0</td>
<td>WD90C33 INTERFACES</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3. 1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3. 2 CPU (Host) And BIOS ROM Interface</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3. 3 Local Bus Video Subsystem Interface</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>3. 4 AT Compatible Bus Subsystem</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3. 5 AT Compatible Interface (16-bits)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3. 6 AT Compatible Interface (16-bits)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>3. 7 DRAM Interface</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3. 8 Two or Four 64K by 16 DRAM Interface</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>3. 9 Four or Eight 256K by 4 DRAM Interface</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3. 10 Video Interface</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3. 11 External RAMDAC Interface</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3. 12 Clock Interface</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3. 13 Selecting The WD90C33 Operating Interface Configuration</td>
<td>14</td>
</tr>
<tr>
<td>4.0</td>
<td>SIGNAL DESCRIPTIONS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4. 1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4. 2 Pin Assignments</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4. 3 Detailed Signal Descriptions</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4. 4 Host Interface Pin Multiplexing</td>
<td>31</td>
</tr>
<tr>
<td>5.0</td>
<td>VGA/EGA REGISTERS</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>5. 1 EGA Mode Entry</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>5. 2 VGA Register Summary</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>5. 3 EGA Register Summary</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>5. 4 General Registers</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>5. 4.1 Miscellaneous Output Register</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>5. 4.2 Input Status Register 0</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>5. 4.3 Input Status Register 1</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>5. 4.4 Feature Control Register</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>5. 5 Sequencer Registers</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>5. 5.1 Sequencer Index Register</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>5. 5.2 Reset Register</td>
<td>37</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.3</td>
<td>Clocking Mode Register</td>
<td>38</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Map Mask Register</td>
<td>38</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Character Map Select Register</td>
<td>38</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Memory Mode Register</td>
<td>40</td>
</tr>
<tr>
<td>5.6</td>
<td>CRT Controller Registers</td>
<td>40</td>
</tr>
<tr>
<td>5.6.1</td>
<td>CRT Register Index</td>
<td>41</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Horizontal Total Register</td>
<td>41</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Horizontal Display Enable End Register</td>
<td>42</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Start Horizontal Blanking Register</td>
<td>42</td>
</tr>
<tr>
<td>5.6.5</td>
<td>End Horizontal Blanking</td>
<td>42</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Start Horizontal Retrace Pulse Register</td>
<td>42</td>
</tr>
<tr>
<td>5.6.7</td>
<td>End Horizontal Retrace Register</td>
<td>43</td>
</tr>
<tr>
<td>5.6.8</td>
<td>Vertical Total Register</td>
<td>43</td>
</tr>
<tr>
<td>5.6.9</td>
<td>Overflow Vertical Register</td>
<td>43</td>
</tr>
<tr>
<td>5.6.10</td>
<td>Preset Row Scan Register</td>
<td>44</td>
</tr>
<tr>
<td>5.6.11</td>
<td>Maximum Scan Line Register</td>
<td>44</td>
</tr>
<tr>
<td>5.6.12</td>
<td>Block Cursor Start Register</td>
<td>45</td>
</tr>
<tr>
<td>5.6.13</td>
<td>Block Cursor End Register</td>
<td>45</td>
</tr>
<tr>
<td>5.6.14</td>
<td>Start Address High Register</td>
<td>46</td>
</tr>
<tr>
<td>5.6.15</td>
<td>Start Address Low Register</td>
<td>46</td>
</tr>
<tr>
<td>5.6.16</td>
<td>Block Cursor Location High Register</td>
<td>46</td>
</tr>
<tr>
<td>5.6.17</td>
<td>Block Cursor Location Low Register</td>
<td>46</td>
</tr>
<tr>
<td>5.6.18</td>
<td>Vertical Retrace Start Register</td>
<td>46</td>
</tr>
<tr>
<td>5.6.19</td>
<td>Vertical Retrace End Register</td>
<td>47</td>
</tr>
<tr>
<td>5.6.20</td>
<td>Vertical Display Enable End Register</td>
<td>47</td>
</tr>
<tr>
<td>5.6.21</td>
<td>Offset Register</td>
<td>47</td>
</tr>
<tr>
<td>5.6.22</td>
<td>Underline Location Register</td>
<td>48</td>
</tr>
<tr>
<td>5.6.23</td>
<td>Start Vertical Blank Register</td>
<td>48</td>
</tr>
<tr>
<td>5.6.24</td>
<td>End Vertical Blank Register</td>
<td>48</td>
</tr>
<tr>
<td>5.6.25</td>
<td>CRT Mode Control Register</td>
<td>49</td>
</tr>
<tr>
<td>5.6.26</td>
<td>Line Compare Register</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Graphics Controller Registers</td>
<td>50</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Graphics Index Register</td>
<td>50</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Set/Reset Register</td>
<td>50</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Enable Set/Reset Register</td>
<td>51</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Color Compare Register</td>
<td>51</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Data Rotate Register</td>
<td>51</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Read Map Select Register</td>
<td>52</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.7</td>
<td>Graphics Mode Register</td>
<td>52</td>
</tr>
<tr>
<td>5.7.8</td>
<td>Miscellaneous Register</td>
<td>54</td>
</tr>
<tr>
<td>5.7.9</td>
<td>Color Don't Care Register</td>
<td>54</td>
</tr>
<tr>
<td>5.7.10</td>
<td>Bit Mask Register</td>
<td>54</td>
</tr>
<tr>
<td>5.8</td>
<td>Attribute Controller Registers</td>
<td>55</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Attribute Index Register</td>
<td>55</td>
</tr>
<tr>
<td>5.8.2</td>
<td>VGA - Palette Registers</td>
<td>55</td>
</tr>
<tr>
<td>5.8.3</td>
<td>EGA - Dynamic Color Registers</td>
<td>56</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Attribute Mode Control Register</td>
<td>56</td>
</tr>
<tr>
<td>5.8.5</td>
<td>Overscan Color Register</td>
<td>57</td>
</tr>
<tr>
<td>5.8.6</td>
<td>Color Plane Enable Register</td>
<td>57</td>
</tr>
<tr>
<td>5.8.7</td>
<td>Horizontal Pel Panning Register</td>
<td>58</td>
</tr>
<tr>
<td>5.8.8</td>
<td>Color Select Register</td>
<td>59</td>
</tr>
<tr>
<td>5.9</td>
<td>Video RAMDAC Ports</td>
<td>59</td>
</tr>
<tr>
<td>6.0</td>
<td>COMPATIBILITY REGISTERS</td>
<td>60</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>6.2</td>
<td>Hercules/MDA Mode Control Register, MDA Operation</td>
<td>61</td>
</tr>
<tr>
<td>6.3</td>
<td>Hercules Registers</td>
<td>61</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Enable Mode Register</td>
<td>61</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Hercules Compatibility Register</td>
<td>62</td>
</tr>
<tr>
<td>6.4</td>
<td>CGA Registers</td>
<td>62</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Color CGA Operation Register</td>
<td>62</td>
</tr>
<tr>
<td>6.4.2</td>
<td>CGA Color Select Register</td>
<td>62</td>
</tr>
<tr>
<td>6.4.3</td>
<td>CRT Status Register, MDA Operation</td>
<td>63</td>
</tr>
<tr>
<td>6.4.4</td>
<td>CRT Status Register, CGA Operation</td>
<td>64</td>
</tr>
<tr>
<td>6.4.5</td>
<td>AT&T/M24 Register</td>
<td>64</td>
</tr>
<tr>
<td>7.0</td>
<td>PARADISE REGISTERS</td>
<td>65</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>65</td>
</tr>
<tr>
<td>7.2</td>
<td>Address Offset Registers PRO(A) and PR0(B)</td>
<td>67</td>
</tr>
<tr>
<td>7.2.1</td>
<td>PR0(A) - Address Offset Register A</td>
<td>67</td>
</tr>
<tr>
<td>7.2.2</td>
<td>PR0(B) - CPU Address Offset Register B</td>
<td>67</td>
</tr>
<tr>
<td>7.3</td>
<td>Paradise (PR) Register Descriptions</td>
<td>67</td>
</tr>
<tr>
<td>7.3.1</td>
<td>PR1 - Memory Size</td>
<td>67</td>
</tr>
<tr>
<td>7.3.2</td>
<td>PR2 - Video Select Register</td>
<td>72</td>
</tr>
<tr>
<td>7.3.3</td>
<td>PR3 - CRT Lock Control Register</td>
<td>73</td>
</tr>
<tr>
<td>7.3.4</td>
<td>CRT Controller Register Locking</td>
<td>74</td>
</tr>
<tr>
<td>7.3.5</td>
<td>PR4 - Video Control Register</td>
<td>75</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.3.6</td>
<td>PR5 - General Purpose Status Bits</td>
<td>75</td>
</tr>
<tr>
<td>7.3.7</td>
<td>PR10 - Unlock PR1A, PR[17:11]</td>
<td>76</td>
</tr>
<tr>
<td>7.3.8</td>
<td>PR11 - Configuration Switches</td>
<td>76</td>
</tr>
<tr>
<td>7.3.9</td>
<td>PR12 - Scratch Pad</td>
<td>77</td>
</tr>
<tr>
<td>7.3.10</td>
<td>PR13 - Interlace H/2 Start</td>
<td>77</td>
</tr>
<tr>
<td>7.3.11</td>
<td>PR14 - Interlace H/2 End</td>
<td>78</td>
</tr>
<tr>
<td>7.3.12</td>
<td>PR15 - Miscellaneous Control 1</td>
<td>78</td>
</tr>
<tr>
<td>7.3.13</td>
<td>PR16 - Miscellaneous Control 2</td>
<td>80</td>
</tr>
<tr>
<td>7.3.14</td>
<td>PR17 - Miscellaneous Control 3</td>
<td>80</td>
</tr>
<tr>
<td>7.3.15</td>
<td>PR18 - CRTC Vertical Timing Overflow</td>
<td>81</td>
</tr>
<tr>
<td>7.3.16</td>
<td>PR19 - Video Signature Analyzer Control</td>
<td>82</td>
</tr>
<tr>
<td>7.3.17</td>
<td>PR1A - Shadow Register Control</td>
<td>82</td>
</tr>
<tr>
<td>7.3.18</td>
<td>PR20 - Unlock Sequencer Extended Registers</td>
<td>82</td>
</tr>
<tr>
<td>7.3.19</td>
<td>PR21 - Display Configuration Status and Scratch Pad Bits Register</td>
<td>83</td>
</tr>
<tr>
<td>7.3.20</td>
<td>PR22 - Scratch Pad Register</td>
<td>83</td>
</tr>
<tr>
<td>7.3.21</td>
<td>PR23 - Scratch Pad Register</td>
<td>83</td>
</tr>
<tr>
<td>7.3.22</td>
<td>PR30 - Memory Interface, Write Buffer and FIFO Control Register</td>
<td>83</td>
</tr>
<tr>
<td>7.3.23</td>
<td>PR31 - System Interface Control</td>
<td>84</td>
</tr>
<tr>
<td>7.3.24</td>
<td>PR32 - Miscellaneous Control 4</td>
<td>85</td>
</tr>
<tr>
<td>7.3.25</td>
<td>PR33 - DRAM Timing And Zero Wait State Control</td>
<td>86</td>
</tr>
<tr>
<td>7.3.26</td>
<td>PR34 - Video Memory Mapping</td>
<td>87</td>
</tr>
<tr>
<td>7.3.27</td>
<td>PR35 - Reserved</td>
<td>87</td>
</tr>
<tr>
<td>8.0</td>
<td>INTERNAL I/O PORTS</td>
<td>88</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>88</td>
</tr>
<tr>
<td>8.1.1</td>
<td>AT Mode Setup and Enable</td>
<td>88</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Setup Mode Video Enable</td>
<td>88</td>
</tr>
<tr>
<td>9.0</td>
<td>CONFIGURATION REGISTER BITS CNF[31:0]</td>
<td>89</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>10.0</td>
<td>LOCAL BUS INTERFACE REGISTERS AND CONFIGURATION BITS</td>
<td>92</td>
</tr>
<tr>
<td>10.1</td>
<td>Local Bus Register Summary</td>
<td>92</td>
</tr>
<tr>
<td>10.2</td>
<td>Local Bus Internal Commands</td>
<td>94</td>
</tr>
<tr>
<td>10.3</td>
<td>Local Bus Interface Operation</td>
<td>95</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Local Bus Cycle Command Pulse Width</td>
<td>96</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Local Bus BIOS or External BIOS</td>
<td>96</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Local Bus RAMDAC or External RAMDAC</td>
<td>96</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Dual Display</td>
<td>96</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td>HARDWARE CURSOR</td>
<td>97</td>
</tr>
<tr>
<td>11.1</td>
<td>Indexed Registers</td>
<td>97</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Cursor Control Register, Index 0</td>
<td>97</td>
</tr>
<tr>
<td>11.2</td>
<td>Cursor Pattern Address</td>
<td>98</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Cursor Pattern Address Low, Index 1</td>
<td>98</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Cursor Pattern Address High, Index 2</td>
<td>98</td>
</tr>
<tr>
<td>11.3</td>
<td>Cursor Color Registers</td>
<td>98</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Cursor Primary Color, Byte 0, Index 3</td>
<td>98</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Cursor Primary Color, Byte 1, Index 4</td>
<td>99</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Cursor Primary Color, Byte 2, Index 5</td>
<td>99</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Cursor Secondary Color, Byte 0, Index 6</td>
<td>99</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Cursor Secondary Color, Byte 1, Index 7</td>
<td>99</td>
</tr>
<tr>
<td>11.3.6</td>
<td>Cursor Secondary Color, Byte 2, Index 8</td>
<td>99</td>
</tr>
<tr>
<td>11.3.7</td>
<td>Cursor Auxiliary Color, Byte 0, Index 9</td>
<td>99</td>
</tr>
<tr>
<td>11.3.8</td>
<td>Cursor Auxiliary Color, Byte 1, Index A</td>
<td>99</td>
</tr>
<tr>
<td>11.3.9</td>
<td>Cursor Auxiliary Color, Byte 2, Index B</td>
<td>99</td>
</tr>
<tr>
<td>11.4</td>
<td>Cursor Origin, Index C</td>
<td>99</td>
</tr>
<tr>
<td>11.5</td>
<td>Cursor Display Position</td>
<td>100</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Cursor Display Position X, Index D</td>
<td>100</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Cursor Display Position Y, Index E</td>
<td>100</td>
</tr>
<tr>
<td>11.6</td>
<td>Register Block Index, Index F</td>
<td>100</td>
</tr>
<tr>
<td>11.7</td>
<td>Cursor Register Updates</td>
<td>100</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Cursor Address Mapping</td>
<td>100</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Two-Bit Cursor Pattern Format</td>
<td>102</td>
</tr>
<tr>
<td>11.7.2.1</td>
<td>Cursor Pattern - 2-Bit, 64 x 64 Cursors</td>
<td>102</td>
</tr>
<tr>
<td>11.7.2.2</td>
<td>Cursor Pattern - 2-Bit, 32 x 32 Cursors</td>
<td>102</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Loading The Cursor Pattern</td>
<td>103</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Cursor Color Modes</td>
<td>103</td>
</tr>
<tr>
<td>11.7.5</td>
<td>Compatibility Differences Between Hardware And Software Cursor</td>
<td>104</td>
</tr>
<tr>
<td>11.7.6</td>
<td>Cursor Plane Protection</td>
<td>104</td>
</tr>
<tr>
<td>12.0</td>
<td>DRAWING ENGINE</td>
<td>105</td>
</tr>
<tr>
<td>12.1</td>
<td>Drawing Engine Control</td>
<td>105</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Drawing Engine Control Register 1, Index 0</td>
<td>105</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Drawing Engine Control Register 2, Index 1</td>
<td>106</td>
</tr>
<tr>
<td>12.2</td>
<td>Source And Destination</td>
<td>107</td>
</tr>
<tr>
<td>12.3</td>
<td>Dimensions And Row Pitch</td>
<td>108</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Dimension X, Index 6</td>
<td>108</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.2</td>
<td>Dimension Y, Index 7</td>
<td>108</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Row Pitch, Index 1</td>
<td>109</td>
</tr>
<tr>
<td>12.4</td>
<td>Clipping</td>
<td>109</td>
</tr>
<tr>
<td>12.5</td>
<td>Address Mapping</td>
<td>109</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Map Base Address, Index 0</td>
<td>109</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Monochrome and Planar Mode</td>
<td>109</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Packed Modes</td>
<td>110</td>
</tr>
<tr>
<td>12.6</td>
<td>Foreground And Background Colors</td>
<td>110</td>
</tr>
<tr>
<td>12.7</td>
<td>Map And Plane Mask</td>
<td>111</td>
</tr>
<tr>
<td>12.8</td>
<td>Raster Operations</td>
<td>111</td>
</tr>
<tr>
<td>12.9</td>
<td>Patterns</td>
<td>112</td>
</tr>
<tr>
<td>12.9.1</td>
<td>Pattern Storage - Monochrome And Planar Modes</td>
<td>112</td>
</tr>
<tr>
<td>12.9.2</td>
<td>Pattern Storage - Packed Modes</td>
<td>113</td>
</tr>
<tr>
<td>12.10</td>
<td>Monochrome To Color Expansion</td>
<td>113</td>
</tr>
<tr>
<td>12.11</td>
<td>Extracting Monochrome Data</td>
<td>113</td>
</tr>
<tr>
<td>12.12</td>
<td>Color Transparency</td>
<td>114</td>
</tr>
<tr>
<td>12.13</td>
<td>Filled Rectangles</td>
<td>114</td>
</tr>
<tr>
<td>12.14</td>
<td>Host Bit Block Transfer (HBLT)</td>
<td>115</td>
</tr>
<tr>
<td>12.14.1</td>
<td>HBLT Data Access</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>12.14.1.1 HBLT Writes</td>
<td>115</td>
</tr>
<tr>
<td>12.14.2</td>
<td>Programming Sequence for HBLT</td>
<td>115</td>
</tr>
<tr>
<td>12.14.3</td>
<td>Image Transfer</td>
<td>116</td>
</tr>
<tr>
<td>12.14.4</td>
<td>Color Expand Function</td>
<td>117</td>
</tr>
<tr>
<td>12.15</td>
<td>Drawing Modes</td>
<td>119</td>
</tr>
<tr>
<td>12.15.1</td>
<td>Line Strip</td>
<td>119</td>
</tr>
<tr>
<td>12.15.2</td>
<td>Trapezoid Fill Strip</td>
<td>120</td>
</tr>
<tr>
<td>12.15.3</td>
<td>Bresenham Line</td>
<td>121</td>
</tr>
<tr>
<td>12.16</td>
<td>Register Block Index, Index Fh</td>
<td>122</td>
</tr>
<tr>
<td>13.0</td>
<td>EXTENDED REGISTER ACCESS</td>
<td>123</td>
</tr>
<tr>
<td>13.1</td>
<td>Accessing Indexed Registers</td>
<td>123</td>
</tr>
<tr>
<td>13.2</td>
<td>Index Control Register Port 23c0h</td>
<td>123</td>
</tr>
<tr>
<td>13.3</td>
<td>Interrupt Status Register, System Control Registers Block - Index 0</td>
<td>124</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Global Interrupt Map</td>
<td>124</td>
</tr>
<tr>
<td>13.4</td>
<td>Command Buffer And Interrupt Control Register</td>
<td>124</td>
</tr>
<tr>
<td>13.4.1</td>
<td>Command Buffer Description</td>
<td>125</td>
</tr>
<tr>
<td>13.4.2</td>
<td>Command Buffer Operation</td>
<td>125</td>
</tr>
<tr>
<td>14.0</td>
<td>APPLICATION AND PROGRAMMING NOTES</td>
<td>127</td>
</tr>
<tr>
<td>14.1</td>
<td>BITBLT In VGA Modes 4, 5, And 6</td>
<td>127</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
<td>BITBLT Operations In Text Mode</td>
<td>127</td>
</tr>
<tr>
<td>14.3</td>
<td>Use Of BITBLT For Arbitrary Sized Patterns</td>
<td>127</td>
</tr>
<tr>
<td>14.4</td>
<td>Use Of Patterns In Text Mode</td>
<td>128</td>
</tr>
<tr>
<td>14.5</td>
<td>Limited 24-Bit Color Support</td>
<td>128</td>
</tr>
<tr>
<td>15.0</td>
<td>SIGNATURE ANALYZER</td>
<td>129</td>
</tr>
<tr>
<td>15.1</td>
<td>Description</td>
<td>129</td>
</tr>
<tr>
<td>15.2</td>
<td>Operation</td>
<td>129</td>
</tr>
<tr>
<td>16.0</td>
<td>I/O MAPPING</td>
<td>131</td>
</tr>
<tr>
<td>16.1</td>
<td>Description</td>
<td>131</td>
</tr>
<tr>
<td>16.2</td>
<td>Pin Grouping</td>
<td>131</td>
</tr>
<tr>
<td>17.0</td>
<td>OPERATING ENVIRONMENT</td>
<td>134</td>
</tr>
<tr>
<td>18.0</td>
<td>DC ELECTRICAL SPECIFICATIONS</td>
<td>135</td>
</tr>
<tr>
<td>18.1</td>
<td>Standard Operating Conditions</td>
<td>135</td>
</tr>
<tr>
<td>18.2</td>
<td>DC Characteristics</td>
<td>135</td>
</tr>
<tr>
<td>19.0</td>
<td>AC TIMING CHARACTERISTICS</td>
<td>137</td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>19.2</td>
<td>DRAM Timing Adjustment</td>
<td>149</td>
</tr>
<tr>
<td>20.0</td>
<td>PACKAGE DIMENSIONS</td>
<td>151</td>
</tr>
</tbody>
</table>

APPENDIX

- REFERENCE DOCUMENTS ... A-1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Pin Assignments</td>
<td>15</td>
</tr>
<tr>
<td>4-2</td>
<td>Signal Descriptions</td>
<td>19</td>
</tr>
<tr>
<td>4-3</td>
<td>Host Interface Pin Multiplexing</td>
<td>31</td>
</tr>
<tr>
<td>5-1</td>
<td>VGA Registers Summary</td>
<td>33</td>
</tr>
<tr>
<td>5-2</td>
<td>EGA Registers Summary</td>
<td>34</td>
</tr>
<tr>
<td>5-3</td>
<td>CRT Controller Registers</td>
<td>40</td>
</tr>
<tr>
<td>5-4</td>
<td>Graphics Controller Registers</td>
<td>50</td>
</tr>
<tr>
<td>5-5</td>
<td>Write Modes</td>
<td>53</td>
</tr>
<tr>
<td>5-6</td>
<td>Attribute Controller Registers</td>
<td>55</td>
</tr>
<tr>
<td>5-7</td>
<td>Left Shift Pixel Value</td>
<td>58</td>
</tr>
<tr>
<td>5-8</td>
<td>Video RAMDAC Ports</td>
<td>59</td>
</tr>
<tr>
<td>6-1</td>
<td>Compatibility Register Summary</td>
<td>60</td>
</tr>
<tr>
<td>7-1</td>
<td>Paradise (PR) Register Summary</td>
<td>66</td>
</tr>
<tr>
<td>7-2</td>
<td>IBM Compatible VGA Memory Organization, 256K Bytes Total</td>
<td>68</td>
</tr>
<tr>
<td>7-3</td>
<td>WD90C33 Memory Organization, 256K Bytes</td>
<td>69</td>
</tr>
<tr>
<td>7-4</td>
<td>WD90C33 Memory Organization, 512K Bytes, 128K Bytes Per Plane</td>
<td>69</td>
</tr>
<tr>
<td>7-5</td>
<td>WD90C33 Memory Organization, 1 MBytes, 256K Bytes Per Plane</td>
<td>70</td>
</tr>
<tr>
<td>7-6</td>
<td>WD90C33 Memory Organization, 2 MBytes, 256K Bytes Per Plane</td>
<td>70</td>
</tr>
<tr>
<td>9-1</td>
<td>Configuration Register Bits</td>
<td>89</td>
</tr>
<tr>
<td>10-1</td>
<td>Summary Of WD90C33 Local Bus Interface Registers</td>
<td>92</td>
</tr>
<tr>
<td>11-1</td>
<td>Hardware Cursor Indexed Registers</td>
<td>97</td>
</tr>
<tr>
<td>11-2</td>
<td>Planar Modes</td>
<td>101</td>
</tr>
<tr>
<td>11-3</td>
<td>Packed Modes</td>
<td>101</td>
</tr>
<tr>
<td>11-4</td>
<td>Text Modes</td>
<td>101</td>
</tr>
<tr>
<td>11-5</td>
<td>Cursor Color Modes</td>
<td>103</td>
</tr>
<tr>
<td>12-1</td>
<td>Drawing Engine Registers, I/O Port 23C2h, (Block 1 Of 2)</td>
<td>105</td>
</tr>
<tr>
<td>12-2</td>
<td>Drawing Engine Registers, I/O Port 23C2h, (Block 2 Of 2)</td>
<td>105</td>
</tr>
<tr>
<td>12-3</td>
<td>Drawing Engine Control Register 1</td>
<td>106</td>
</tr>
<tr>
<td>12-4</td>
<td>Drawing Engine Control Register 2</td>
<td>107</td>
</tr>
<tr>
<td>12-5</td>
<td>Raster Operation Truth Table</td>
<td>112</td>
</tr>
<tr>
<td>12-6</td>
<td>Raster Operation Code</td>
<td>112</td>
</tr>
<tr>
<td>12-7</td>
<td>Color Expand Limited Modes</td>
<td>118</td>
</tr>
<tr>
<td>13-1</td>
<td>Direct I/O Port Addressing</td>
<td>123</td>
</tr>
<tr>
<td>13-2</td>
<td>Register Block Map</td>
<td>124</td>
</tr>
<tr>
<td>13-3</td>
<td>Command Buffer And Interrupt Control Register</td>
<td>124</td>
</tr>
</tbody>
</table>
List Of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1</td>
<td>Control Register PR19</td>
<td>130</td>
</tr>
<tr>
<td>16-1</td>
<td>I/O Mapping Groups</td>
<td>132</td>
</tr>
<tr>
<td>17-1</td>
<td>Absolute Maximum Ratings</td>
<td>134</td>
</tr>
<tr>
<td>18-1</td>
<td>DC Signal Characteristics</td>
<td>135</td>
</tr>
<tr>
<td>18-2</td>
<td>DC Power Characteristics</td>
<td>136</td>
</tr>
<tr>
<td>19-1</td>
<td>Reset Timing</td>
<td>137</td>
</tr>
<tr>
<td>19-2</td>
<td>Clock Timing</td>
<td>138</td>
</tr>
<tr>
<td>19-3</td>
<td>I/O And Memory Read/write Timing For AT Bus Mode</td>
<td>139</td>
</tr>
<tr>
<td>19-4</td>
<td>VL-Bus Interface Timing</td>
<td>142</td>
</tr>
<tr>
<td>19-5</td>
<td>RAMDAC Timing</td>
<td>144</td>
</tr>
<tr>
<td>19-6</td>
<td>DRAM Timing For 256K by 4 and 256K by 16 DRAMs</td>
<td>145</td>
</tr>
<tr>
<td>19-7</td>
<td>DRAM Timing For 64K by 16 DRAMs</td>
<td>146</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>System Block Diagram</td>
<td>3</td>
</tr>
<tr>
<td>3-1</td>
<td>WD90C33 System Interface</td>
<td>4</td>
</tr>
<tr>
<td>3-2</td>
<td>WD90C33 Block Diagram</td>
<td>6</td>
</tr>
<tr>
<td>3-3</td>
<td>Local Bus Subsystem Interface, 32-bit</td>
<td>7</td>
</tr>
<tr>
<td>3-4</td>
<td>AT Compatible Bus Subsystem</td>
<td>8</td>
</tr>
<tr>
<td>3-5</td>
<td>AT Compatible 16-bit Interface With 8-Bit BIOS</td>
<td>9</td>
</tr>
<tr>
<td>3-6</td>
<td>AT Compatible 16-bit Interface With 16-Bit BIOS</td>
<td>10</td>
</tr>
<tr>
<td>3-7</td>
<td>Two Or Four 64K By 16 DRAM Interface</td>
<td>11</td>
</tr>
<tr>
<td>3-8</td>
<td>Four Or Eight 256K By 4 DRAM Interface</td>
<td>12</td>
</tr>
<tr>
<td>3-9</td>
<td>External RAMDAC Interface</td>
<td>13</td>
</tr>
<tr>
<td>3-10</td>
<td>Clock Interface</td>
<td>14</td>
</tr>
<tr>
<td>4-1</td>
<td>Pin Assignments</td>
<td>17</td>
</tr>
<tr>
<td>10-1</td>
<td>Local Bus Internal Command Width Adjustment</td>
<td>.94</td>
</tr>
<tr>
<td>15-1</td>
<td>Linear Feedback Shift Register</td>
<td>129</td>
</tr>
<tr>
<td>16-1</td>
<td>Typical I/O Mapping Test Circuit</td>
<td>131</td>
</tr>
<tr>
<td>16-2</td>
<td>Multiplexer Input With CAS inverted</td>
<td>133</td>
</tr>
<tr>
<td>16-3</td>
<td>Multiplexer Input With MCLK Inverted</td>
<td>133</td>
</tr>
<tr>
<td>19-1</td>
<td>Reset Timing</td>
<td>137</td>
</tr>
<tr>
<td>19-2</td>
<td>Clock And Video Timing</td>
<td>138</td>
</tr>
<tr>
<td>19-3</td>
<td>AT Bus Mode Timing</td>
<td>141</td>
</tr>
<tr>
<td>19-4</td>
<td>VL-Bus Interface Timing</td>
<td>143</td>
</tr>
<tr>
<td>19-5</td>
<td>RAMDAC Timing</td>
<td>144</td>
</tr>
<tr>
<td>19-6</td>
<td>DRAM Timing</td>
<td>147</td>
</tr>
<tr>
<td>19-7</td>
<td>DRAM Timing Adjustment</td>
<td>148</td>
</tr>
<tr>
<td>19-8</td>
<td>DRAM Timing For 256K by 4 or 16 DRAM</td>
<td>149</td>
</tr>
<tr>
<td>19-9</td>
<td>DRAM Timing For 256K By 4 or 16 DRAM</td>
<td>149</td>
</tr>
<tr>
<td>19-10</td>
<td>DRAM Timing For 64K by 16 DRAM</td>
<td>150</td>
</tr>
<tr>
<td>20-1</td>
<td>208-pin MQFP Package Dimensions</td>
<td>151</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 GENERAL DESCRIPTION

This document introduces and describes the Western Digital® WD90C33 High Performance VGA Controller (hereinafter referred to as the WD90C33).

The WD90C33 is a 0.9 micron CMOS VLSI device that provides a Graphic User Interface (GUI) for Windows. The WD90C33 supports hardware Bit Block Transfers (BITBLT), line draw, cursor, while maintaining backward compatibility with previous standards such as MDA, EGA, CGA, Hercules, and AT&T 6300. Designs that use the WD90C33 controller are able to run applications requiring VGA hardware and BIOS compatibility and also EGA register level compatibility on analog, TTL, or multifrequency monitors, in interface or non-interface mode. The WD90C33 supports high resolution graphics with a dot resolution of up to 1280 by 1024 with 256 colors. The WD90C33 also supports 132-column text mode and 6 by 16 pixel fonts. Features of the WD90C33 are summarized in the following section.

The WD90C33 is supplied in a 208-pin MQFP package under the following order number:

90C33ZZ00

1.2 FEATURES

The WD90C33 provides the following features:

- A full-function VGA controller optimized for Windows
- Built-in interface with 32-Bit 386/486 local bus
- Built-in interface with VESA VL-Bus
- Integrated bus interface for AT with minimum external component support
- True 32-Bit host-to-display memory data transfers in graphics modes
- Hardware BITBLT for 4-Bit, 8-Bit, and 16-Bit color modes
 - Pattern Fill
 - Raster Operations
 - Transparency
 - Color Expansion for Text Support
- Filled Rectangles
- 32-Bit Memory or I/O Port imaging transfers to or from host
- X/Y Addressing
- Hardware-assisted Line Draw for 4-Bit, 8-Bit, and 16-Bit color modes
 - Bresenham Line Algorithm
 - Strip Line Algorithm
 - X/Y Addressing with Clipping
- Hardware-assisted Trapezoidal Fill
- Hardware-assisted rectangular clipping
- Command Buffer eight levels deep
- BITBLT pipeline 4 levels deep
- True 24-Bit color with limited BITBLT hardware support
- Host Bit Block Transfers (HBLT) supports memory-mapped 32-Bit transfers through the write buffer
- Allows the CPU to access the display memory while the drawing engine is active
- Supports up to:
 - 1024 by 768 with 256 color
 - 800 by 600 with 64 colors
 - 640 by 480 by 64K color
 - 640 by 480 with 16 million color
 - 1280 by 1024 with 256 color interlaced
- Hardware Cursor
 - 64 by 64 pixels or 32 by 32 pixels
 - Inversion and transparency
 - Two color and three color modes
- Provides a single chip video graphics solution for IBM AT compatible systems
- Supports two or four 64K by 16 DRAMs
- Supports up to 2 Mbytes of display memory with four, eight, or sixteen 256K by 4 DRAMs; or one, two, or four 256K by 16 DRAMs
- Fully compatible with IBM's VGA and EGA with hidden register support
- Fully compatible with CGA, MDA, Hercules Graphics and AT&T Model 6300 standards
- Supports 132-column text
• Write buffer for zero wait state CPU write performance
• Provides 16-Bit or 32-Bit memory interface with fast page operations
• Up to 80 MHz maximum video clock rate
• Up to 60 MHz maximum memory clock rate
• Up to four simultaneous displayable fonts
• From 6 to 16 pixel-wide fonts
• A maximum of 16 fonts can be loaded
• Provides adapter video BIOS ROM decoding
• Eleven-Bit vertical counter to support scan resolution of up to 2048 scan lines
• Supports 16-Bit I/O register transfer to index/data register pairs
• Adjustable internal display FIFO and fast page memory interface
• 208-pin Metric Quad Flat Package (MQFP)
• Integrated feature connector interface and external RAMDAC support
• Programmable memory mapping register to map WD90C33 into any CPU memory address space
• Separate host address and data to save external glue logic (For AT and CPU local bus)
• Supports 256Kx16 DRAM with four CAS strobes and one write strobe

1.3 DOCUMENT SCOPE
In addition to this introduction to the WD90C33, the following sections of this document provide a description of the WD90C33 architecture and related interfaces, signal descriptions, internal register descriptions, application information for the hardware cursor and drawing engine, specifications, timing information, and package dimensions. Special features of the WD90C33 including the signature analyzer and I/O mapping for test purposes are also described.

Appendix A contains a list of reference documents that may be useful to users of this document.
2.0 WD90C33 ARCHITECTURE

The WD90C33 contains the System Interface and the following six major internal modules (see Figure 2-1):

- CRT Controller
- Clock Controller
- Video Control
- Cursor Control
- DRAM Control
- Drawing Engine

An internal write buffer is used to achieve fast memory write. A zero wait state may be achieved with a 32-Bit video memory interface for most memory write operations.

An internal FIFO is used to achieve the video display bandwidth necessary to interleave CPU accesses and display refresh cycles.

The CRT Controller maintains screen refresh functions for the various display modes defined by the BIOS ROM resident firmware. The CRT Controller also generates a horizontal sync (HSYNC), vertical sync (VSYNC) and blanking signal for the display monitor.

The Clock Controller functions as a timing generator for the display memory cycles. It provides the character clock in the alphanumeric mode and the dot clock in the graphics mode. The Clock Controller arbitrates between video display refresh, Drawing Engine memory cycle, memory refresh, and CPU access of the video memory. This controller also provides write buffer control.

The Video Control serializes the video memory data into video data stream according to different display formats. It controls blinking, underlining, cursor, pixel panning, reverse video and background or foreground color in all display modes.

The Cursor Control reads in each line of the cursor pattern during the horizontal retrace immediately preceding the scan line on which that line of the cursor pattern is to be displayed. It then merges the cursor pattern into the video stream for the scan line.

The DRAM control provides the video memory interface for memory configurations from 256 Kbytes to 2 Mbytes. The WD90C33 supports 45ns, 60 ns, 70 ns, and 80 ns DRAMs with a dedicated clock, and provides a choice of page mode or non-page mode operation to access fonts in text modes.

The Drawing Engine generates memory addresses, data masks, and control signals for BITBLT, Line Draw, pattern fill, and other graphics operations. The Drawing Engine also manipulates the data flow between the CPU and the video memory for both CPU write and CPU read cycles. The engine also manipulates display data by doing color compare, color expansion, and data rotation. It contains a 32-Bit Arithmetic Logic Unit (ALU) for raster operations.

![FIGURE 2-1. SYSTEM BLOCK DIAGRAM](image-url)
3.0 WD90C33 INTERFACES

3.1 INTRODUCTION

This section describes the various interfaces between the WD90C33 Controller and external devices. These include system interfaces such as the CPU (Host) and BIOS ROM, DRAM, video, and clock as indicated in Figure 3-1. In addition this section contains the following figures to show connections between the WD90C33 Controller and the various external devices.

- Figure 3-2. WD90C33 Block Diagram
- Figure 3-3. Local Bus Subsystem Interface
- Figure 3-4. AT Compatible I Bus Subsystem
- Figure 3-5. AT Compatible 16-Bit Interface with 8-Bit BIOS
- Figure 3-6. AT Compatible 16-Bit Interface with 16-Bit BIOS
- Figure 3-7. Two or Four 64K by 16 DRAM Interface
- Figure 3-8. Four or Eight 256K by 4 DRAM Interface
- Figure 3-9. External RAMDAC Interface
- Figure 3-10. Clock Interface

FIGURE 3-1. WD90C33 SYSTEM INTERFACE
3.2 CPU(HOST) AND BIOS ROM INTERFACE

The WD90C33 is designed to interface directly with the 386/486 CPU 32-Bit local bus (see Figures 3-2 and 3-3). It also complies with the VESA VL-Bus standard and provides the signals necessary to interface with the VESA connector.

The WD90C33 also provides the interface for local bus RAMDAC, BIOS, and clock generator without using glue logic. While connected to the CPU local bus, the WD90C33 allows the user to choose whether to connect the RAMDAC to the local bus or to the system (AT) bus. The WD90C33 also supports RAMDAC write shadowing, and interface with the video BIOS. Selection of the 32-Bit local bus interface is determined by the state of Configuration register Bit CNF(11) during power-on or system reset as described in Section 9.

The WD90C33 also operates in the AT Bus architecture configuration (see Figure 3-4). The selection of the bus architecture determines the operating mode, and is selected by the state of Configuration Register Bit CNF(2) during power-on or system reset as described in Section 9.

Whether configured for Local Bus or AT Bus operation, the WD90C33 operates to optimize the selected interface with a minimum of external circuits.

The WD90C33 provides all the signals and decodes all the necessary memory and I/O addresses to interface with the Local bus and AT bus in 8-Bit, 16-Bit, or 32-Bit data paths. It also provides the necessary decoding of the adapter video BIOS ROM.

The WD90C33 has a display memory write buffer that holds the CPU write data until it can be transferred to the display memory, allowing the CPU to continue. This feature greatly reduces CPU wait states while writing to the video memory.

The WD90C33 provides wait states for CPU accesses to the video memory if necessary.

Special I/O ports such as 46E8h for the AT for setup and 102h for VGA enable, have been implemented internally in the WD90C33.
FIGURE 3-2. WD90C33 BLOCK DIAGRAM
3.3 LOCAL BUS VIDEO SUBSYSTEM INTERFACE

Figure 3-3 shows the 32-Bit Local Bus Subsystem Interface (Refer to notes on page 9).
3.4 **AT COMPATIBLE BUS SUBSYSTEM**

Figure 3-4 shows the AT Compatible Bus Subsystem.

FIGURE 3-4. AT COMPATIBLE BUS SUBSYSTEM
NOTES FOR FIGURE 3-3

1. Use of HRQ is optional. If the HRQ input is not used, it should be tied low (inactive).

2. Typically, the video BIOS should be integrated with the system BIOS (External BIOS mode). For the Local bus mode BIOS, an 8-Bit EPROM can be connected to BD[7:0]. In this mode, EBROM is decoded inside the WD90C33 and LDEV is generated to block the BIOS cycle seen by the core logic. Refer to the Local bus Interface, Section 10, for additional information.

3. Typically, VGARDY is connected to the RDY input of the core logic, which in turn generates the final CPU RDY. Refer to the signal descriptions in Section 4 for additional information.

3.5 AT COMPATIBLE INTERFACE (16-BITS) AND 8-BIT BIOS

Figure 3-5 shows the interface between a 16-Bit AT compatible bus, an 8-Bit BIOS, and the WD90C33 Controller. The typical use for this configuration is with 386/486 based systems.
3.6 AT COMPATIBLE INTERFACE (16-BITS) AND 16-BIT BIOS

Figure 3-6 shows the interface between a 16-Bit AT compatible bus, a 16-Bit BIOS, and the WD90C33 Controller. This implementation is limited to slower bus speeds because address lines A16 and A15 are used for the 16-Bit BIOS. The typical use for this configuration is with 386/486 based systems.

FIGURE 3-6. AT COMPATIBLE 16-BIT INTERFACE WITH 16-BIT BIOS
3.7 DRAM INTERFACE

The WD90C33 has a flexible DRAM interface. It works with two or four 64K by 16 DRAMs with a 32-Bit memory interface. It can also work with four 256 Kbyte by 4 DRAMs or one 256 Kbyte by 16 DRAM with a 16-Bit memory interface (see Figures 3-7 and 3-8). Other possible configurations are eight or sixteen 256 Kbyte by 4 DRAMs, and two or four 256 Kbyte by 16 DRAMs with a 32-Bit memory interface. In all cases the WD90C33 uses the DRAM fast page mode to optimize performance.

The WD90C33 supports all standard IBM VGA modes with only one 256K by 16 DRAM. Because it uses a 32-Bit memory interface and has an internal write buffer, the WD90C33 can update the video memory without inserting wait states to the AT bus for most standard IBM VGA modes.

When additional DRAMs are installed the WD90C33 is capable of supporting high resolution color video modes (1024 by 768 with 256 colors, non-interlaced at 72 Hz vertical refresh rate).

The WD90C33 is designed to support 50 ns, 60 ns, 70 ns, and 80 ns DRAMs with the dedicated MCLK, which can operate from 37.5 MHz to 50 MHz maximum.

The WD90C33 generates fast page DRAM timing for all BITBLT, cursor and CPU accesses, graphics display and text display. A choice of page mode and non-page mode operation is provided to access fonts in text modes.

The WD90C33 also generates CAS before RAS DRAM refresh for the display memory.

3.8 TWO OR FOUR 64K BY 16 DRAM INTERFACE

Figure 3-7 shows the interface between two or four 64k by 16 DRAMs and the WD90C33 Controller.
3.9 FOUR OR EIGHT 256K BY 4 DRAM INTERFACE

Figure 3-8 shows the interface between four or eight 256K by 4 DRAMs and the WD90C33 Controller.

NOTES:
1. If only four 256K by 4 DRAMS are installed, use MD[15:0].
2. For 256K by 16 DRAMS, the interface is similar.
3. For DRAM addressing, the WD90C33 can support either of two methods:
 a. Four CAS strobes with one write enable (WE).
 b. Four write enables with one CAS strobe.
 The four CAS strobe method (a) is recommended to reduce loading.
 Selection is controlled by Configuration Register Bit 17 (CNF17). Refer to Section 9.

FIGURE 3-8. FOUR OR EIGHT 256K BY 4 DRAM INTERFACE
3.10 VIDEO INTERFACE

The WD90C33 is optimized to connect to an analog CRT monitor through a RAMDAC but it may also be used to drive other types of displays, such as TTL monitors. In interfacing to an analog monitor through an external RAMDAC, the WD90C33 provides all the necessary signals to interface to the video RAMDAC.

The video interface for a CRT is very dependent on the CRT requirements and the resolution and depth (Bits/pixels) of the image desired. New monitors such as multifrequency monitors, are less stringent because of the many sync frequencies available.

The AT Feature Connector can be connected directly to the WD90C33. The WD90C33 also provides an input for a monitor type detection interface as done on the IBM VGA using comparators.

3.11 EXTERNAL RAMDAC INTERFACE

Figure 3-9 shows the interface between an external RAMDAC and the WD90C33 Controller.
3.12 CLOCK INTERFACE

The WD90C33 has four clock input signals, Memory Clock (MCLK), which drives the DRAM and bus interface timing, and the three Video Clocks, (VCLK0, VCLK1, and VCLK2), which drive the video timing. VCLK1 and VCLK2 can also be programmed as outputs to provide the option to externally control a multiplexer that supplies the video clock. MCLK can also be selected as a memory clock or video clock.

Figure 3-10 shows the clock interface with external oscillators configured as inputs. Clock selection is determined by register 3C2h, Bits 3:2 as listed in the following table.

<table>
<thead>
<tr>
<th>REGISTER 3C2h</th>
<th>BIT 3</th>
<th>BIT 2</th>
<th>CLOCK SELECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>VCLK0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>VCLK1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>X</td>
<td>VCLK2</td>
</tr>
</tbody>
</table>

NOTE

Configuration Bit 3 (CNF3) is pulled down to convert VCLK1 and VCLK2 to inputs. Refer to Section 9 for additional information.

3.13 SELECTING THE WD90C33 OPERATING INTERFACE CONFIGURATION

The WD90C33 uses memory data connector pins to configure an internal configuration register during power-on or system reset as described in Section 9. Configuration Bit CNF(2) determines whether or not the WD90C33 will operate in AT Mode as shown in Figure 3-4. Configuration Bit CNF(11) determines whether the WD90C33 will operate in the Local Bus or AT bus mode.

Other configuration (CNF) Bits configured by the WD90C33 during power-on or system reset are used as status Bits or for clock source control. For more information the WD90C33 configuration register, refer to Section 9.
4.0 SIGNAL DESCRIPTIONS

4.1 INTRODUCTION
This section contains detailed information concerning signals and pin-outs for the WD90C33 controller 208-pin package. The following information is contained in this section: contains:

- Pin Assignments Table
- Pin Assignments Diagram
- Detailed Signal Descriptions
- Host Interface Pin Multiplexing

4.2 PIN ASSIGNMENTS

<table>
<thead>
<tr>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - RAS2¹</td>
<td>24 - VCC³</td>
<td>47 - ROM¹</td>
<td>70 - A11²</td>
</tr>
<tr>
<td>2 - WE¹/CAS¹</td>
<td>25 - MA8¹</td>
<td>48 - GND³</td>
<td>71 - A12²</td>
</tr>
<tr>
<td>3 - MD15</td>
<td>26 - MA7¹</td>
<td>49 - MEMCS¹/M⁵</td>
<td>72 - A13²</td>
</tr>
<tr>
<td>4 - MD14</td>
<td>27 - MA6¹</td>
<td>50 - IOR²/W/R²</td>
<td>73 - A14²</td>
</tr>
<tr>
<td>5 - MD13</td>
<td>28 - MA5¹</td>
<td>51 - MRD²/M/IO²</td>
<td>74 - A15²</td>
</tr>
<tr>
<td>6 - MD12</td>
<td>29 - MA4¹</td>
<td>52 - MWR²/D/C²</td>
<td>75 - GND³</td>
</tr>
<tr>
<td>7 - GND³</td>
<td>30 - GND³</td>
<td>53 - VCC³</td>
<td>76 - A16²</td>
</tr>
<tr>
<td>8 - MD11</td>
<td>31 - MA3¹</td>
<td>54 - SYSRESET²/RST²</td>
<td>77 - A17²</td>
</tr>
<tr>
<td>9 - MD10</td>
<td>32 - MA2¹</td>
<td>55 - BE³²</td>
<td>78 - A18²</td>
</tr>
<tr>
<td>10 - MD9</td>
<td>33 - MA1¹</td>
<td>56 - A1²/BE²²</td>
<td>79 - A19²</td>
</tr>
<tr>
<td>11 - MD8</td>
<td>34 - MA0¹</td>
<td>57 - BHE²/BET²</td>
<td>80 - VCC³</td>
</tr>
<tr>
<td>12 - WE¹/WE¹</td>
<td>35 - OE¹</td>
<td>58 - A0²/BEO²/BE²²</td>
<td>81 - A20²</td>
</tr>
<tr>
<td>13 - VCC³</td>
<td>36 - GND³</td>
<td>59 - GND³</td>
<td>82 - A21²</td>
</tr>
<tr>
<td>14 - MD7</td>
<td>37 - OWS¹</td>
<td>60 - A2²</td>
<td>83 - A22²</td>
</tr>
<tr>
<td>15 - MD6</td>
<td>38 - EMEM²/CPURESET²</td>
<td>61 - A3²</td>
<td>84 - A23²</td>
</tr>
<tr>
<td>16 - MD5</td>
<td>39 - IOW²/HRQ</td>
<td>62 - A4²</td>
<td>85 - GND³</td>
</tr>
<tr>
<td>17 - MD4</td>
<td>40 - EBROM¹</td>
<td>63 - A5²</td>
<td>86 - A24²</td>
</tr>
<tr>
<td>18 - GND³</td>
<td>41 - IOCS¹/RDYIN/CDSETUP</td>
<td>64 - A6²</td>
<td>87 - A25²</td>
</tr>
<tr>
<td>19 - MD3</td>
<td>42 - VCC³</td>
<td>65 - A7²</td>
<td>88 - A26²</td>
</tr>
<tr>
<td>20 - MD2</td>
<td>43 - EIO²/LCLK²</td>
<td>66 - GND³</td>
<td>89 - A27²</td>
</tr>
<tr>
<td>21 - MD1</td>
<td>44 - IRQ¹</td>
<td>67 - A8²</td>
<td>90 - A28²</td>
</tr>
<tr>
<td>22 - MD0</td>
<td>45 - ALE²/ADS²</td>
<td>68 - A9²</td>
<td>91 - A29²</td>
</tr>
<tr>
<td>23 - CAS/CAS₀</td>
<td>46 - IOCHRDY¹/VGARDY¹</td>
<td>69 - A10²</td>
<td>92 - A30²</td>
</tr>
</tbody>
</table>

NOTE: Refer to notes at the end of this table.

TABLE 4-1. PIN ASSIGNMENTS
<table>
<thead>
<tr>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
<th>PIN - NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>93 - A31²</td>
<td>122 - D9</td>
<td>151 - MDET²</td>
<td>180 - VCLK2</td>
</tr>
<tr>
<td>94 - GND³</td>
<td>123 - D8</td>
<td>152 - EXVID²</td>
<td>181 - VCC³</td>
</tr>
<tr>
<td>95 - D31</td>
<td>124 - GND³</td>
<td>153 - No Connection</td>
<td>182 - EXPCLK²</td>
</tr>
<tr>
<td>96 - D30</td>
<td>125 - D7</td>
<td>154 - No Connection</td>
<td>183 - USR1²</td>
</tr>
<tr>
<td>97 - D29</td>
<td>126 - D6</td>
<td>155 - No Connection</td>
<td>184 - USR0²</td>
</tr>
<tr>
<td>98 - D28</td>
<td>127 - D5</td>
<td>156 - No Connection</td>
<td>185 - VCC³</td>
</tr>
<tr>
<td>99 - GND³</td>
<td>128 - D4</td>
<td>157 - No Connection</td>
<td>186 - WE3¹/CAS3¹</td>
</tr>
<tr>
<td>100 - D27</td>
<td>129 - VCC³</td>
<td>158 - No Connection</td>
<td>187 - MD31</td>
</tr>
<tr>
<td>101 - D26</td>
<td>130 - D3</td>
<td>159 - No Connection</td>
<td>188 - MD30</td>
</tr>
<tr>
<td>102 - D25</td>
<td>131 - D2</td>
<td>160 - GND³</td>
<td>189 - MD29</td>
</tr>
<tr>
<td>103 - D24</td>
<td>132 - D1</td>
<td>161 - PCLK¹</td>
<td>190 - MD28</td>
</tr>
<tr>
<td>104 - VCC³</td>
<td>133 - D0</td>
<td>162 - BLNK¹</td>
<td>191 - GND³</td>
</tr>
<tr>
<td>105 - D23</td>
<td>134 - GND³</td>
<td>163 - VID0¹</td>
<td>192 - MD27</td>
</tr>
<tr>
<td>106 - D22</td>
<td>135 - VSYNC¹</td>
<td>164 - VID1¹</td>
<td>193 - MD26</td>
</tr>
<tr>
<td>107 - D21</td>
<td>136 - HSYNC¹</td>
<td>165 - VID2¹</td>
<td>194 - MD25</td>
</tr>
<tr>
<td>108 - D20</td>
<td>137 - BD0</td>
<td>166 - VID3¹</td>
<td>195 - MD24</td>
</tr>
<tr>
<td>109 - VCC³</td>
<td>138 - BD1</td>
<td>167 - VCC³</td>
<td>196 - WE2¹/CAS2¹</td>
</tr>
<tr>
<td>110 - D19</td>
<td>139 - BD2</td>
<td>168 - VID4¹</td>
<td>197 - VCC³</td>
</tr>
<tr>
<td>111 - D18</td>
<td>140 - BD3</td>
<td>169 - VID5¹</td>
<td>198 - MD23</td>
</tr>
<tr>
<td>112 - D17</td>
<td>141 - VCC³</td>
<td>170 - VID6¹</td>
<td>199 - MD22</td>
</tr>
<tr>
<td>113 - D16</td>
<td>142 - BD4</td>
<td>171 - VID7¹</td>
<td>200 - MD21</td>
</tr>
<tr>
<td>114 - GND³</td>
<td>143 - BD5</td>
<td>172 - GND³</td>
<td>201 - MD20</td>
</tr>
<tr>
<td>115 - D15</td>
<td>144 - BD6</td>
<td>173 - No Connection</td>
<td>202 - GND³</td>
</tr>
<tr>
<td>116 - D14</td>
<td>145 - BD7</td>
<td>174 - No Connection</td>
<td>203 - MD19</td>
</tr>
<tr>
<td>117 - D13</td>
<td>146 - GND³</td>
<td>175 - No Connection</td>
<td>204 - MD18</td>
</tr>
<tr>
<td>118 - D12</td>
<td>147 - BA1¹</td>
<td>176 - MCLK²</td>
<td>205 - MD17</td>
</tr>
<tr>
<td>119 - VCC³</td>
<td>148 - BA0¹</td>
<td>177 - GND³</td>
<td>206 - MD16</td>
</tr>
<tr>
<td>120 - D11</td>
<td>149 - WPLT¹</td>
<td>178 - VCLK0²</td>
<td>207 - RAS¹</td>
</tr>
<tr>
<td>121 - D10</td>
<td>150 - RPLT¹</td>
<td>179 - VCLK1</td>
<td>208 - VCC³</td>
</tr>
</tbody>
</table>

NOTES:
1 Indicates output only signal names.
2 Indicates input only signal names.
3 Indicates power distribution pins.

Signal names not otherwise indicated are input/output.
The direction of signal flow is relative to the WD90C33 controller.

TABLE 4-1. PIN ASSIGNMENTS
FIGURE 4-1. PIN ASSIGNMENTS
4.3 DETAILED SIGNAL DESCRIPTIONS

The following tables provide detailed signal descriptions for the WD90C33 controller 208-pin package. The signal descriptions are listed by the pin number and mnemonic given in Table 4-1. The definitions are listed in functional groups. The functional groups are listed below:

- Display Memory Interface
- RAMDAC Interface
- Clock Selection
- User Program
- Feature Connector
- CRT Control
- Host CPU Bus Interface
- Power Distribution
- Unused Connections

Where more than one signal name is indicated on the same pin, the signal names are separated by a virgule (,) in Table 4-1. The pin usage, as described in Table 4-2, changes for each signal name depending upon which bus interface is used.

1. When the AT bus is indicated, the signal description applies to an Industry Standard Architecture (ISA) bus compatible signal. The terms AT bus and ISA bus are used interchangeably unless otherwise indicated.

2. When the local bus is indicated, the signal description applies to a VESA VL-bus Interface (local bus) compatible signal.

3. Where no specific bus is indicated, the signals are used in both bus modes.

Table 4-2 lists and provides descriptions for the WD90C33 connector pins.
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 207 | RAS | --- | Active Low Output | Row Address Strobe
Strobe for the first 1 Mbyte of DRAM |
| 1 | RAS2 | --- | Active Low Output | Row Address Strobe 2
Strobe for the second 1 Mbyte of DRAM, only if 2M of DRAM memory are used. |
| 186 | WE3 or | --- | Active Low Output | Write Enable 3 or Column Address Strobe 3
If CNF17 = 1, WE3 is the write enable signal for MD[31:24]
If CNF17 = 0, CAS3 is the column address strobe for MD[31:24] |
| | CAS3 | | | |
| 196 | WE2 or | --- | Active Low Output | Write Enable 2 or Column Address Strobe 2
If CNF17 = 1, WE2 is the write enable signal for MD[23:16]
If CNF17 = 0, CAS2 is the column address strobe for MD[23:16] |
| | CAS2 | | | |
| 2 | WE1 or | --- | Active Low Output | Write Enable 1 or Column Address Strobe 1
If CNF17 = 1, WE1 is the write enable signal for MD[15:8]
If CNF17 = 0, CAS1 is the column address strobe for MD[15:8] |
| | CAS1 | | | |
| 12 | WE0 or | --- | Active Low Output | Write Enable 0 or Write Enable
If CNF17 = 1, WE0 is the write enable signal for MD[7:0]
If CNF17 = 0, WE is the write enable signal for MD[31:0] |
| | WE | | | |
| 23 | CAS or | --- | Active Low Input/Output | Column Address Strobe or Column Address Strobe 0
If CNF17 = 1, CAS is the column address strobe for MD[31:0]
If CNF17 = 0, CAS0 is the column address strobe for MD[7:0] |
| | CAS 0 | | | |
| 35 | OE | --- | Active Low Output | Output Enable
Output enable signal |
| 25 | MA8* | --- | Active High Output | Memory Address
Display memory DRAM address. For testing, these pins can be tristated by setting PR4 register Bit 4 to 1. |
| 26 | MA7 | | | |
| 27 | MA6 | | | |
| 28 | MA5 | | | |
| 29 | MA4 | | | |
| 31 | MA3 | | | |
| 32 | MA2 | | | |
| 33 | MA1 | | | |
| 34 | MA0 | | | |

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>187</td>
<td>MD31</td>
<td></td>
<td>Active</td>
<td>Display Memory Data</td>
</tr>
<tr>
<td>188</td>
<td>MD30</td>
<td></td>
<td>High</td>
<td>These lines are the data bus for the video display DRAMs.</td>
</tr>
<tr>
<td>189</td>
<td>MD29</td>
<td></td>
<td>Input/</td>
<td>These data lines are pulled up by internal 50 Kohm resistors, but may be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td>pulled down by external 4.7 Kohm resistors to provide configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>information during power-on and system reset as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[31:30] VIOR/VIOW High/Low Duration CNF[31:30]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[29:28] VMWR/VMRD High Duration CNF[29:28]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[27:26] VMWR/VMRD Low Duration CNF[27:26]</td>
</tr>
<tr>
<td>190</td>
<td>MD28</td>
<td></td>
<td></td>
<td>25 Set BIOS In Local Bus Mode CNF[25]</td>
</tr>
<tr>
<td>191</td>
<td>MD27</td>
<td></td>
<td></td>
<td>24 Connect RAMDAC In Local Bus Mode CNF[24]</td>
</tr>
<tr>
<td>192</td>
<td>MD26</td>
<td></td>
<td></td>
<td>23 Enable Local Bus Interface CNF[23]</td>
</tr>
<tr>
<td>193</td>
<td>MD25</td>
<td></td>
<td></td>
<td>22 Select Pulse Width High/Low Duration CNF[22]</td>
</tr>
<tr>
<td>194</td>
<td>MD24</td>
<td></td>
<td></td>
<td>for IOR/IOW to RAMDAC; also Duration of EBROM MRD</td>
</tr>
<tr>
<td>195</td>
<td>MD23</td>
<td></td>
<td></td>
<td>21 Select 386/486 Local Bus Interface CNF[21]</td>
</tr>
<tr>
<td>196</td>
<td>MD22</td>
<td></td>
<td></td>
<td>20 Reserved CNF[20]</td>
</tr>
<tr>
<td>197</td>
<td>MD21</td>
<td></td>
<td></td>
<td>19 Reserved CNF[19]</td>
</tr>
<tr>
<td>198</td>
<td>MD20</td>
<td></td>
<td></td>
<td>18 Enable ROM16 as EXBLANK CNF[18]</td>
</tr>
<tr>
<td>199</td>
<td>MD19</td>
<td></td>
<td></td>
<td>17 Memory Write Control (CAS or WE) CNF[17]</td>
</tr>
<tr>
<td>200</td>
<td>MD18</td>
<td></td>
<td></td>
<td>16 64K by 16 or 256K by 4 DRAM Select CNF[16]</td>
</tr>
<tr>
<td>204</td>
<td>MD14</td>
<td></td>
<td></td>
<td>12 General Purpose, PR1[11] CNF[12]</td>
</tr>
<tr>
<td>205</td>
<td>MD13</td>
<td></td>
<td></td>
<td>11 Select AT/Local Bus Mode CNF[11]</td>
</tr>
<tr>
<td>206</td>
<td>MD12</td>
<td></td>
<td></td>
<td>10 Set 16-Bit ROM, PR1[10] CNF[10]</td>
</tr>
<tr>
<td>207</td>
<td>MD11</td>
<td></td>
<td></td>
<td>9 Wake-up I/O Port 3C3h or 46E8h CNF[9]</td>
</tr>
<tr>
<td>208</td>
<td>MD10</td>
<td></td>
<td></td>
<td>8 General Purpose, PR5[3] CNF[8]</td>
</tr>
<tr>
<td>209</td>
<td>MD9</td>
<td></td>
<td></td>
<td>7 General Purpose, PR5[7] CNF[7]</td>
</tr>
<tr>
<td>213</td>
<td>MD5</td>
<td></td>
<td></td>
<td>3 VCLK1, VCLK2 I/O CNF[3]</td>
</tr>
<tr>
<td>214</td>
<td>MD4</td>
<td></td>
<td></td>
<td>2 Select AT Bus Mode CNF[2]</td>
</tr>
<tr>
<td>215</td>
<td>MD3</td>
<td></td>
<td></td>
<td>1 Select ROM Configuration CNF[1]</td>
</tr>
<tr>
<td>216</td>
<td>MD2</td>
<td></td>
<td></td>
<td>0 BIOS ROM Mapping, PR1[0] CNF[0]</td>
</tr>
</tbody>
</table>

NOTES:
1. Pulldown resistor sets these Bit to 0.
2. Pulldown resistor sets these Bits to 1.
3. CNF[31:20] have no effect unless Local bus mode is selected. (CNF 11=0)
4. For additional information, refer to the Configuration Register descriptions in Section 9.

TABLE 4-2. SIGNAL DESCRIPTIONS
SIGNAL DESCRIPTIONS

TABLE 4-2. SIGNAL DESCRIPTIONS

<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>BA0</td>
<td>---</td>
<td>Active</td>
<td>RAMDAC Address Bus
A 2-Bit wide address bus to read/write the RAMDAC.</td>
</tr>
<tr>
<td>147</td>
<td>BA1</td>
<td>---</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>BD7</td>
<td>---</td>
<td>Active</td>
<td>RAMDAC Data Bus
An 8-Bit wide data bus to read/write the RAMDAC.</td>
</tr>
<tr>
<td>144</td>
<td>BD6</td>
<td>---</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>BD5</td>
<td>---</td>
<td>Input/Output</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>BD4</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>BD3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>BD2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>BD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>BD0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>VID7</td>
<td>---</td>
<td>Active</td>
<td>Video
Pixel video data output to DAC and to Feature Connector. These lines can drive an up to 10 mA load.</td>
</tr>
<tr>
<td>170</td>
<td>VID6</td>
<td>---</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>VID5</td>
<td>---</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>VID4</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>VID3</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>VID2</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>VID1</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>VID0</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>RPLT</td>
<td>---</td>
<td>Active</td>
<td>Read Palette
Video DAC register and color palette read signal for an external RAMDAC. Active low during I/O read of addresses 3C6h, 3C8h, and 3C9h.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>WPLT</td>
<td>---</td>
<td>Active</td>
<td>Write Palette
Video DAC register and color palette write signal for an external RAMDAC. Active low during I/O write of addresses 3C6h through 3C9h.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>PCLK</td>
<td>---</td>
<td>Active</td>
<td>Pixel Clock
Video pixel clock used by the DAC to latch video signals VID7 through VID0. Its source is one of the video clock inputs (VCLK0, VCLK1, or VCLK2) as selected by the Miscellaneous Output Register.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>BLNK</td>
<td>---</td>
<td>Active</td>
<td>Blank
Active low display monitor blanking pulse to external RAMDAC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>PIN</td>
<td>MNEMONIC</td>
<td>BUS</td>
<td>I/O</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>176</td>
<td>MCLK</td>
<td>---</td>
<td>Active High</td>
<td>Memory Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td>Provides VGA DRAM and system interface control timing.</td>
</tr>
<tr>
<td>178</td>
<td>VCLK0</td>
<td>---</td>
<td>Active High</td>
<td>Video Clock 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td>Provides video display clock for alphanumeric and graphics display modes. Typically, VCLK0 is 25.175 MHz to display 640 pixels per horizontal display line. VCLK0 is selected as the clock when VCLK1 and VCLK2 are used as inputs and Miscellaneous Output register Bits 2 and 3 are both set to 0.</td>
</tr>
<tr>
<td>179</td>
<td>VCLK1</td>
<td>---</td>
<td>Active High</td>
<td>Video Clock 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input/Output</td>
<td>Provides a second video clock input or an output to an external clock selection module. The direction is determined at Reset by a pull-up or pull-down resistor on MD3. Typically, VCLK1 is 28.322 MHz to display 720 pixels per horizontal display line. As an output, VCLK1 is an active low pulse during I/O writes to port 3C2h, or reflects the contents of 3C2h (Miscellaneous Output Register, Bit 2). For additional information, refer to the Configuration Register and PR15 register Bit 5 descriptions.</td>
</tr>
<tr>
<td>180</td>
<td>VCLK2</td>
<td>---</td>
<td>Active High</td>
<td>Video Clock 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input/Output</td>
<td>Provides a third video clock input or an output to an external clock selection module. The direction is programmed simultaneously with VCLK1. VCLK2 performs as a user-defined external clock input, an output reflecting the state of PR2 register Bit 1, or reflects the contents of port 3C2h (Miscellaneous Output Register, Bit 2). For additional information, refer to the Configuration Register and PR15 register Bit 5 descriptions.</td>
</tr>
<tr>
<td>183</td>
<td>USR1</td>
<td>---</td>
<td>Active High</td>
<td>User Programmable Outputs</td>
</tr>
<tr>
<td>184</td>
<td>USR0</td>
<td></td>
<td>Input</td>
<td>Either or both outputs may be used to control a system feature of special device.</td>
</tr>
<tr>
<td>152</td>
<td>EXVID</td>
<td>---</td>
<td>Active Low</td>
<td>Enable External Video Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td>A feature connector input. A low tristates video data lines VID7:0. An internal pullup resistor is provided.</td>
</tr>
<tr>
<td>182</td>
<td>EXPCLK</td>
<td>---</td>
<td>Active Low</td>
<td>Enable External Pixel Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td>A feature connector input. A low tristates the PCLK output. An internal pullup resistor is provided.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>HSYNC</td>
<td>---</td>
<td>Active</td>
<td>Horizontal Sync</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Input/</td>
<td>Display monitor horizontal synchronization pulse. Active</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td>high or low depending upon the Miscellaneous Output Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>programming.</td>
</tr>
<tr>
<td>135</td>
<td>VSYNC</td>
<td>---</td>
<td>Active</td>
<td>Vertical Sync</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Input/</td>
<td>Display monitor vertical synchronization pulse. Active high</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td>or low depending upon the Miscellaneous Output Register</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>programming.</td>
</tr>
<tr>
<td>151</td>
<td>MDET</td>
<td>---</td>
<td>Active</td>
<td>Monitor Detect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Input</td>
<td>When the RAMDAC is external, MDET is used to determine the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>monitor type. MDET can be read at port 3C2h, Bit 4.</td>
</tr>
</tbody>
</table>

Table 4-2. Signal Descriptions

Host CPU Bus Interface (81 Pins)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>A31</td>
<td>LOC</td>
<td>Active</td>
<td>System Address Bus Bits 31 through 24</td>
</tr>
<tr>
<td>92</td>
<td>A30</td>
<td></td>
<td>High Input</td>
<td>Address Bus Bits 31 through 24 for the 32-Bit Local bus</td>
</tr>
<tr>
<td>91</td>
<td>A29</td>
<td></td>
<td></td>
<td>interface. These pins are not connected for AT bus compatible</td>
</tr>
<tr>
<td>90</td>
<td>A28</td>
<td></td>
<td></td>
<td>systems.</td>
</tr>
<tr>
<td>89</td>
<td>A27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>A26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>A25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>A24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>A23</td>
<td>LOC</td>
<td>Active</td>
<td>System Address Bus Bits 23 through 17</td>
</tr>
<tr>
<td>83</td>
<td>A22</td>
<td></td>
<td>High Input</td>
<td>Address Bus Bits 23 through 17 for the 32-Bit Local bus</td>
</tr>
<tr>
<td>82</td>
<td>A21</td>
<td></td>
<td></td>
<td>interface.</td>
</tr>
<tr>
<td>81</td>
<td>A20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>A19</td>
<td>AT</td>
<td></td>
<td>System Address Bus Bits 23 through 17</td>
</tr>
<tr>
<td>78</td>
<td>A18</td>
<td></td>
<td></td>
<td>For the AT bus, A17 through A23 are connected to LA23</td>
</tr>
<tr>
<td>77</td>
<td>A17</td>
<td></td>
<td></td>
<td>through LA17 to provide a 24-Bit AT address bus.</td>
</tr>
<tr>
<td>PIN</td>
<td>MNEMONIC</td>
<td>BUS</td>
<td>I/O</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>76</td>
<td>A16</td>
<td>---</td>
<td>Active</td>
<td>System Address Bus Bits 16 through 2 Address Bus Bits 16 through 2 for all bus operating modes.</td>
</tr>
<tr>
<td>74</td>
<td>A15</td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>A14</td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>A13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>A12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>A11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>A10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>A9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>A8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>A7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>A3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>A1</td>
<td>AT</td>
<td>Active</td>
<td>System Address Bus Bit 1 For AT bus mode operation, A1 provides Address Bus Bit 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BE2</td>
<td>LOC</td>
<td>Active</td>
<td>Byte Enable 2 In Local bus mode, BE2 provides Byte Enable for data Bits D23 through D16.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>A0</td>
<td>AT</td>
<td>Active</td>
<td>System Address Bus Bit 0 For AT bus mode operation, A0 provides Address Bus Bit 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>BL E</td>
<td>LOC</td>
<td></td>
<td>Active</td>
<td>Byte Low Enable In Local bus mode for 386SX only, this line is connected to the BLE line from the CPU to enable the low byte for data transfers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>BE0</td>
<td>LOC</td>
<td></td>
<td>Active</td>
<td>Byte Enable 0 In normal Local bus mode, BE0 provides Byte Enable for data Bits D7 through D0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>BE1</td>
<td>LOC</td>
<td>Active</td>
<td>Byte Enable 1 In Local bus mode, BE1 provides Byte Enable for data Bits D15 through 8.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>BHE</td>
<td>AT</td>
<td></td>
<td></td>
<td>Byte High Enable For AT bus mode operation, this line is connected to the BHE line from the CPU to enable the high byte for data transfers.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>BE3</td>
<td>LOC</td>
<td>Active Low</td>
<td>Byte Enable 3
In Local bus mode, BE3 provides Byte Enable for data Bits D31 through D24. If 386 mode is selected (CNF21 = 0 at power-on or reset): A pullup resistor on pin 55 will set the interface for a 16-Bit CPU (386sx). A pulldown resistor on pin 55 will set the interface for a 32-Bit CPU (386dx) When 486 mode is selected (CNF21 = 1 at power-on or reset), the 32-Bit CPU interface is selected and the state of BE3 has no effect. BE3 Is not used in AT modes.</td>
</tr>
<tr>
<td>45</td>
<td>ADS</td>
<td>LOC</td>
<td>Active Low</td>
<td>Address Data Strobe
Local bus address data strobe connected to the ADS pin on the CPU.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALE</td>
<td>AT</td>
<td>Active High</td>
<td>Address Latch Enable
In AT mode, A23 through A17 [LA23:LA17] are latched internally at the falling edge of ALE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>M/IO</td>
<td>LOC</td>
<td>Active High</td>
<td>Memory or I/O Cycle
Indicator for memory or I/O cycle. Low indicates I/O cycle; high indicates memory cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRD</td>
<td>AT</td>
<td>Active Low</td>
<td>Memory Read
In AT mode, MRD is the memory read strobe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>D/C</td>
<td>LOC</td>
<td>Active High or Low</td>
<td>Data or Command Cycle
Data or command cycle indicator. Low indicates command cycle; high indicates a data cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MWR</td>
<td>AT</td>
<td>Active Low</td>
<td>Memory Write
In AT mode, MWR is the memory write strobe.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>W/R</td>
<td>LOC</td>
<td>Active High or Low</td>
<td>Write or Read Cycle
Write or read cycle indicator. Low indicates a read cycle; high indicates a write cycle.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IOR</td>
<td>AT</td>
<td>Active Low</td>
<td>I/O Read
In AT mode, IOR provides an I/O read strobe.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>HRQ</td>
<td>LOC</td>
<td>Active High Input</td>
<td>Hold Request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicates that a system bus request was received via a REFRESH, DMA, or MASTER signal. The processor responds by asserting a HOLD ACKNOWLEDGE after relinquishing the bus.</td>
</tr>
<tr>
<td>10</td>
<td>LOW</td>
<td>AT</td>
<td>Active Low Input</td>
<td>I/O Write</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In AT mode, LOW provides an I/O write strobe.</td>
</tr>
<tr>
<td>43</td>
<td>LCLK</td>
<td>LOC</td>
<td>Active High Input</td>
<td>Processor Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal clock input from 80486; for 80386, this is CPU-CLK2, which the WD90C33 divides internally to drive other logic.</td>
</tr>
<tr>
<td>10</td>
<td>EIO</td>
<td>AT</td>
<td>Active Low Input</td>
<td>Enable I/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In AT mode, EIO enables address decoding and is connected to AEN (address Enable).</td>
</tr>
<tr>
<td>54</td>
<td>SYSRESET</td>
<td>LOC</td>
<td>Active High Input</td>
<td>System Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For local bus, MCLK and VCLK0 must be connected to initialize the WD90C33 during power-on and reset. Western Digital configuration Bits are initialized at power-on and reset, based on the logic levels of display memory data Bits MD31 through MD0 bus, as determined by pullup and pulldown resistors. The reset pulse width should be at least 10 MCLK clock periods.</td>
</tr>
<tr>
<td></td>
<td>RSET</td>
<td>AT</td>
<td>Active High Input</td>
<td>System Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For AT bus operation, MCLK and VCLK0 must be connected to initialize the WD90C33 during power-on and reset. Western Digital configuration Bits are initialized at power-on and reset, based on the logic levels of display memory data Bits MD31 through MD0 bus, as determined by pullup and pulldown resistors. The reset pulse width should be at least 10 MCLK clock periods.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>D31</td>
<td>LOCL</td>
<td>Active</td>
<td>Data Bus Bits 31 through 16</td>
</tr>
<tr>
<td>96</td>
<td>D30</td>
<td>AT</td>
<td>High</td>
<td>System data lines connect to host CPU data bus $D_{31:16}$. In AT mode, the BIOS EPROM can be connected to this bus. Then, the BIOS data will be sent to the host via $D_{15:0}$</td>
</tr>
<tr>
<td>97</td>
<td>D29</td>
<td></td>
<td>Input/</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>D28</td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>D27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>D26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>D25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>D24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>D23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>D22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>D21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>D20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>D19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>D18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>D17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>D16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>D15</td>
<td>---</td>
<td>Active</td>
<td>Data Bus Bits 15 through 0</td>
</tr>
<tr>
<td>116</td>
<td>D14</td>
<td></td>
<td>High</td>
<td>System data lines connect to the host CPU or system data bus $D_{15:0}$.</td>
</tr>
<tr>
<td>117</td>
<td>D13</td>
<td></td>
<td>Input/</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>D12</td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>D11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>D10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>D9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>D8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>D7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>D6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>D5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>D4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>D2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>D0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>LDEV</td>
<td>LOCL</td>
<td>Active</td>
<td>Local Bus VGA Cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEMCS16</td>
<td>AT</td>
<td>Active</td>
<td>Memory Chip Select, 16 Bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Output</td>
<td>In AT mode, MEMCS16 indicates to the host that the WD90C33 is ready to perform a requested 16-Bit video memory data transfer.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>ROM16 or EXBLANK</td>
<td>AT</td>
<td>Active Low Input/Output</td>
<td>BIOS ROM Select, 16 Bits
In AT mode when CNF18=1, ROM16 decodes ROM address (LA23-LA17) for space 0C0000h through 0DFFFFh. Also, it can be combined externally with A16 and A15 to control MEMCS16 for address space C0000h through C7FFFh. When CNF18=0, this pin becomes input EXBLANK. EXBLANK = 0 will tristate the BLNK, HSYNC, and VSYNC outputs.</td>
</tr>
<tr>
<td>38</td>
<td>CPURESET</td>
<td>LOC</td>
<td>Active High Input</td>
<td>CPU Reset
Provides a synchronous reset to the CPU, and is used to generate an internal CLK to maintain phase of CLK2 in sync with 80386DX and 80386SX CPUs.
This pin is not used for the 80486 interface.</td>
</tr>
<tr>
<td>37</td>
<td>OWS</td>
<td>AT</td>
<td>Active Low Output</td>
<td>Zero Wait State
In AT mode, OWS is asserted to generate a zero wait state. It is controlled by PR33 register Bits 7 and 6. Refer to the PR33 description for additional information.</td>
</tr>
<tr>
<td>46</td>
<td>VGARDY</td>
<td>LOC</td>
<td>Active Low Output</td>
<td>VGA Ready
Ready signal to host CPU. This signal can be connected directly to the ready input of the CPU or connected in combination with other local bus slaves. When not active, this signal is tristated.</td>
</tr>
<tr>
<td>41</td>
<td>RDYIN</td>
<td>LOC</td>
<td>Active High Output</td>
<td>Ready Input
For Local bus mode, RDYIN provides the final CPUURDY feedback to the WD90C33 to terminate its local bus cycle.</td>
</tr>
<tr>
<td>41</td>
<td>IOCS16</td>
<td>AT</td>
<td>Active Low Output</td>
<td>I/O Chip Select, 16 Bits
In AT mode, IOCS16 indicates to the host that the WD90C33 is ready to perform a requested 16-Bit I/O accesses.</td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
SIGNAL DESCRIPTIONS

<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 40 | EBROM | --- | Active Low Output | Enable BIOS ROM
Active low to enable BIOS ROM (C0000h through C7FFFh) if enabled by PR1 register, Bit 0. A write to WD90C33 internal I/O port 46E8h causes EBROM to be used as a write strobe for an external register used in BIOS ROM page mapping. |
| 44 | IRQ | LOC, AT | Active High Output | Interrupt Request
For Local and AT bus modes, IRQ provides a programmable interrupt request to the host CPU. The interrupt request is enable by Vertical Retrace End Register, Bit 5. When the end of vertical display occurs, this signal is active, requesting an Interrupt, and it stays active until cleared by CRTC11 register Bit 4. |

Power Distribution (35 Pins)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| 13 | VCC | --- | --- | +5 VDC
Power supply pins. |
| 24 | | | | |
| 42 | | | | |
| 53 | | | | |
| 80 | | | | |
| 104 | | | | |
| 109 | | | | |
| 119 | | | | |
| 129 | | | | |
| 141 | | | | |
| 167 | | | | |
| 181 | | | | |
| 185 | | | | |
| 197 | | | | |
| 208 | | | | |

TABLE 4-2. SIGNAL DESCRIPTIONS
<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>GND</td>
<td>---</td>
<td>---</td>
<td>Ground</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>Power return pins.</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unused Connections (10 Pins)

<table>
<thead>
<tr>
<th>PIN</th>
<th>MNEMONIC</th>
<th>BUS</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>No</td>
<td>---</td>
<td>---</td>
<td>These pins are not connected to internal circuits of the WD90C33 controller. They are reserved for future use.</td>
</tr>
<tr>
<td>154</td>
<td>Connection</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4-2. SIGNAL DESCRIPTIONS
4.4 HOST INTERFACE PIN MULTIPLEXING

Table 4-3 lists the WD90C33 connector pins that have more than one signal mnemonic depending on the host system bus structure where the video controller is used.

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>SIGNAL MNEMONICS</th>
<th>LOCAL BUS INTERFACE</th>
<th>AT BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>---</td>
<td>0WS</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>CPURESET</td>
<td>EMEM</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>HRQ</td>
<td>IOW</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>EBROM,</td>
<td>EBROM</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>RDYIN</td>
<td>IOCS16</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>LCLK</td>
<td>EIO</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>IRQ</td>
<td>IRQ</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ADS</td>
<td>ALE</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>VGARDY</td>
<td>IOCHRdy</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>---</td>
<td>ROM16</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>LDEV</td>
<td>MEMCS16</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>W/R</td>
<td>IOR</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>M/IO</td>
<td>MRD</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>D/C</td>
<td>MWR</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>SYSRESET</td>
<td>RSET</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>BE3</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>BE2</td>
<td>A[1]</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>BE1</td>
<td>BHE</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>BE0 or BLE*</td>
<td>A[0]</td>
<td></td>
</tr>
<tr>
<td>95-98, 100-103, 105-108, 110-113</td>
<td>D[31:16]</td>
<td>D[31:16] (For BIOS EPROM data input)</td>
<td></td>
</tr>
<tr>
<td>115-118, 120-123, 125-128, 130-133</td>
<td>D[15:0]</td>
<td>D[15:0]</td>
<td></td>
</tr>
</tbody>
</table>

* The signal on pin 58 is BLE for 386SX and BE0 for all others.

TABLE 4-3. HOST INTERFACE PIN MULTIPLEXING
5.0 VGA/EGA REGISTERS

All the standard IBM registers incorporated inside the WD90C33 are functionally equivalent to the VGA implementation, while additional Western Digital registers enhance the video subsystem. Compatibility registers provide functional equivalence for AT&T, Hercules, MDA and CGA standards, which were previously defined for the 6845 CRT Controller. This section describes the VGA/EGA registers.

5.1 EGA MODE ENTRY

A brief description of the procedure for entering EGA mode of operation is provided here. The actual software implementation details are not covered in this procedure.

- Load Configuration Register Bit 8. Select logic 0 for a VGA-compatible PS/2 display or logic 1 for an EGA-compatible TTL monitor by using the appropriate pull-up or pull-down resistor on MD11. A pull-up resistor on MD11 causes CNF(8) to be latched with logic 0 for analog PS/2 compatible displays. This status information signifies the type of monitor attached to the system and is available to the BIOS or application.
- Unlock all the PR registers
- Program PR2(6) to 0 for EGA mode
- Set PR4 Bit 1 to logic 1 for EGA compatibility
- Load PR11[7:4] with EGA Configuration switches by using pull-up or pull-down resistors on Pins MD[15:12] (A pull-up resistor causes logic 1 to be latched after power-on-reset.)
- The EGA switch setting may then be read from PR11[7:4] at I/O Port 3C2h Bit 4
- If EGA mode is to be emulated on an IBM PS/2 analog display, follow the suggested steps listed below:
 - Initialize all the registers
 - Lock CRT controller registers
 - Force clock control rate of the CRT controller
 - Set EGA emulation mode by programming:
 - PR11(3) = 1; Set EGA emulation on PS/2 type display
 - PR14(6) = 1; Vertical double scan
 - PR11(2) = 1; Lock clock select
 - PR11(0) = 1; Lock 8/9 dot timing
 - PR14(7) = 1; Enable IRQ (optional)
 - Lock the PR registers PRO through PR5 and PR10 through PR17
 - Read protect PR registers
 - When EGA is required on a TTL monitor, the suggested steps are:
 - Initialize all the registers
 - Set EGA TTL mode by programming:
 - PR11(3) = 0; EGA TTL
 - PR14(7) = 1; Enable IRQ
 - PR15(6) = 1; Set Low Clock
 - PR14(7) = 1; Enable IRQ
 - Lock PR registers PRO through PR5 and PR10 through PR17
 - Read protect PR registers

Tables 5-1 and 5-2 summarize the VGA and EGA mode registers, respectively. For information about the PR registers, refer to Section 7.

5.2 VGA REGISTER SUMMARY

Table 5-1 lists the VGA registers.
VGA/EGA REGISTERS

Table 5-1. VGA Registers Summary

<table>
<thead>
<tr>
<th>REGISTERS</th>
<th>RW</th>
<th>MONO</th>
<th>COLOR</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Output Register</td>
<td>W</td>
<td>3C2</td>
<td>3C2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3CC</td>
<td>3CC</td>
<td></td>
</tr>
<tr>
<td>Input Status Register 0</td>
<td>RO</td>
<td>3C2</td>
<td>3C2</td>
<td></td>
</tr>
<tr>
<td>Input Status Register 1</td>
<td>RO</td>
<td>3BA</td>
<td>3DA</td>
<td></td>
</tr>
<tr>
<td>Feature Control Register</td>
<td>W</td>
<td>3BA</td>
<td>3DA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3CA</td>
<td>3CA</td>
<td></td>
</tr>
<tr>
<td>Video Subsystem Enable Register</td>
<td>RW</td>
<td>3C3</td>
<td>3C3</td>
<td></td>
</tr>
<tr>
<td>Sequencer Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequencer Index Register</td>
<td>RW</td>
<td>3C4</td>
<td>3C4</td>
<td></td>
</tr>
<tr>
<td>Sequencer Data Register</td>
<td>RW</td>
<td>3C5</td>
<td>3C5</td>
<td></td>
</tr>
<tr>
<td>CRT Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3B4</td>
<td>3D4</td>
<td></td>
</tr>
<tr>
<td>CRT Controller Data Register</td>
<td>RW</td>
<td>3B5</td>
<td>3D5</td>
<td></td>
</tr>
<tr>
<td>Graphics Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3CE</td>
<td>3CE</td>
<td></td>
</tr>
<tr>
<td>Other Graphics Registers</td>
<td>RW</td>
<td>3CF</td>
<td>3CF</td>
<td></td>
</tr>
<tr>
<td>Attribute Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3C0</td>
<td>3C0</td>
<td></td>
</tr>
<tr>
<td>Attribute Controller Data Register</td>
<td>W</td>
<td>3C0</td>
<td>3C0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>3C1</td>
<td>3C1</td>
<td></td>
</tr>
<tr>
<td>Video DAC Palette Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Address</td>
<td>RW</td>
<td>3C8</td>
<td>3C8</td>
<td></td>
</tr>
<tr>
<td>Read Address</td>
<td>W</td>
<td>3C7</td>
<td>3C7</td>
<td></td>
</tr>
<tr>
<td>DAC State</td>
<td>R</td>
<td>3C7</td>
<td>3C7</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>RW</td>
<td>3C9</td>
<td>3C9</td>
<td></td>
</tr>
<tr>
<td>Pel Mask</td>
<td>RW</td>
<td>3C6</td>
<td>3C6</td>
<td></td>
</tr>
<tr>
<td>Drawing Engine Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Control</td>
<td>RW</td>
<td>23C0/23C1</td>
<td>23C0/23C1</td>
<td></td>
</tr>
<tr>
<td>Register Access Port</td>
<td>RW</td>
<td>23C2/23C3</td>
<td>23C2/23C3</td>
<td></td>
</tr>
<tr>
<td>Host Bit Block Transfer (HBLT) Blocks 1 and 2</td>
<td>RW</td>
<td>23C4/23C7</td>
<td>23C4/23C7</td>
<td></td>
</tr>
<tr>
<td>Line Draw Constant Register</td>
<td>RW</td>
<td>23C8/23CC</td>
<td>23C8/23CC</td>
<td></td>
</tr>
<tr>
<td>Command Buffer and Interrupt Control</td>
<td>RW</td>
<td>23CE/23CF</td>
<td>23CE/23CF</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. All Register addresses are in hexadecimal.
2. RO = Read-Only, RW = Read/Write, W = Write, and R = Read.
3. I/O Port 3C3h can be used to replace 46E8h [if CNF(9) = 0] for setup in AT mode.
4. PR16(0) = 1 locks these registers.
5.3 EGA REGISTER SUMMARY

Table 5-2 lists the EGA registers.

<table>
<thead>
<tr>
<th>REGISTERS</th>
<th>RW</th>
<th>MONO</th>
<th>COLOR</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Output Register</td>
<td>WO</td>
<td>3C2</td>
<td>3C2</td>
<td></td>
</tr>
<tr>
<td>Input Status Register 0</td>
<td>RO</td>
<td>3C2</td>
<td>3C2</td>
<td></td>
</tr>
<tr>
<td>Input Status Register 1</td>
<td>RO</td>
<td>3BA</td>
<td>3DA</td>
<td></td>
</tr>
<tr>
<td>Feature Control Register</td>
<td>WO</td>
<td>3BA</td>
<td>3DA</td>
<td></td>
</tr>
<tr>
<td>Sequencer Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequencer Index Register</td>
<td>WO</td>
<td>3C4</td>
<td>3C4</td>
<td>01h, 03h, 04h</td>
</tr>
<tr>
<td>Sequencer Data Register</td>
<td>RW</td>
<td>3C5</td>
<td>3C5</td>
<td>01h, 03h, 04h</td>
</tr>
<tr>
<td>CRT Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3B4</td>
<td>3D4</td>
<td></td>
</tr>
<tr>
<td>CRT Controller Data Register</td>
<td>RW</td>
<td>3B5(^3)</td>
<td>3D5(^3)</td>
<td>00h, 03h, 05h:07h, 09h:0Bh, 10h, 11h, 14h, 16h, 17h</td>
</tr>
<tr>
<td>Graphics Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3CE</td>
<td>3CE</td>
<td></td>
</tr>
<tr>
<td>Other Graphics Registers</td>
<td>RW</td>
<td>3CF</td>
<td>3CF</td>
<td>04h:05h</td>
</tr>
<tr>
<td>Attribute Controller Registers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index Register</td>
<td>RW</td>
<td>3C0</td>
<td>3C0</td>
<td></td>
</tr>
<tr>
<td>Attribute Controller Data Register</td>
<td>W</td>
<td>3C0</td>
<td>3C0</td>
<td>00h:13h</td>
</tr>
<tr>
<td>R</td>
<td>3C1</td>
<td>3C1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. All Register addresses are in hexadecimal.
2. RO = Read-Only, WO = Write Only, RW = Read/Write, W = Write, and R = Read.
3. Miscellaneous Output Register Bit 0 = 0, "B" in Monochrome modes
 Miscellaneous Output Register Bit 0 = 1, "D" in Color modes
4. This table lists the registers that differ from VGA mode. The registers not listed are the same in VGA and EGA modes.

TABLE 5-2. EGA REGISTERS SUMMARY
5.4 GENERAL REGISTERS

<table>
<thead>
<tr>
<th>REGISTER NAME</th>
<th>READ PORT</th>
<th>WRITE PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Output</td>
<td>3CC</td>
<td>3C2</td>
</tr>
<tr>
<td>Input Status Register 0</td>
<td>3C2</td>
<td>--</td>
</tr>
<tr>
<td>Input Status Register 1</td>
<td>3?A</td>
<td>--</td>
</tr>
<tr>
<td>Feature Control</td>
<td>3CA</td>
<td>3?A</td>
</tr>
</tbody>
</table>

NOTES
1. Reserved Bits should be set to zero.
2. "?" Value is controlled by Bit 0 of the Miscellaneous Output Register and is programmed as follows:
 - 0 = B in Monochrome Modes
 - 1 = D in Color Modes
3. Unless specifically identified, the descriptions apply to both VGA and EGA.

5.4.1 Miscellaneous Output Register

VGA - Read Port = 3CCh

VGA/EGA - Write Port = 3C2h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Vertical Sync Polarity Select</td>
</tr>
<tr>
<td>6</td>
<td>Horizontal Sync Polarity Select</td>
</tr>
<tr>
<td>5</td>
<td>Odd/Even Memory Page Select</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3:2</td>
<td>Video Clock Select</td>
</tr>
<tr>
<td>1</td>
<td>Enable Video RAM</td>
</tr>
<tr>
<td>0</td>
<td>I/O Address Select</td>
</tr>
</tbody>
</table>

Bit 7 - Vertical Sync Polarity Selection

This Bit is locked if PR3(7) = 1
- 0 = Positive vertical sync polarity
- 1 = Negative vertical sync polarity

Bit 6 - Horizontal Sync Polarity Selection

This Bit is locked if PR3(6) = 1
- 0 = Positive horizontal sync polarity
- 1 = Negative horizontal sync polarity

The vertical and horizontal sync polarity Bits (Bits 7:6) should be set to conform with the vertical size of the frame used by the monitor.

<table>
<thead>
<tr>
<th>BITS</th>
<th>VERTICAL FRAME SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 5 - Odd or Even Memory Page Select

When in modes 0 through 5, one memory page is selected from the two 64 Kbyte pages.
- 0 = Lower page is selected
- 1 = Upper page is selected

Bit 4

Reserved.

Bits [3:2] - Video Clock Select

These Bits are locked if PR11(2) = 1 or if PR2(1) = 1 and CNF(3) = 0.
- 00 = Selects VCLK0 for VGA/EGA applications. For VGA, can be connected to allow 640 dots/line (25.175 MHz). For EGA, 14.318 MHz is selected.
- 01 = Selects VCLK1 for VGA/EGA applications if Configuration Register Bit 3 = 0. For VGA, can be connected to allow 720 dots/line (28.322 MHz). For EGA, 16.257 MHz clock is selected.
- 10 = Selects VCLK2 (external user defined input) if Configuration Register Bit 3 = 0.
- 11 = Reserved. Also selects VCLK2 (external user defined input) if Configuration Register Bit 3 = 0.

Bit 1 - VGA - System Processor Video RAM Access Enable

- 0 = CPU access disabled
- 1 = CPU access enabled
 - EGA - Reserved

Bit 0 - CRT Controller I/O Address Range Selection

Selection for Monochrome (3B4 and 3B5), or Color (3D4 and 3D5) mode. Bit 0 also maps Input
Status Register 1 at MDA (3BA) or CGA (3DA).

0 = CRTC and status addresses for MDA mode (3BX)
1 = CRTC and status addresses for CGA mode (3DX)

5.4.2 Input Status Register 0
Read Only Port = 3C2h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CRT Interrupt</td>
</tr>
<tr>
<td>6:5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Monitor Detect Bit for Color/Monochrome Display</td>
</tr>
<tr>
<td>3:0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bit 7 - CRT Vertical Retrace Interrupt Pending or Cleared
0 = Vertical retrace interrupt cleared
1 = Vertical retrace interrupt pending

Bits [6:5]
Reserved.

Bit 4 - VGA Mode - Monitor Detection

MDET monitor status is sampled and can be read from this Bit.
0 = Monochrome
1 = Color

- EGA Mode - Configuration Switches SW4-SW1

The Information stored in the four configuration switches in PR11 can be read at this Bit if the EGA compatibility Bit PR4(1) has been set to 1. Selection of the Bit to be read is determined by Bits 3 and 2 of the Miscellaneous Output Register 3C2h as follows.

<table>
<thead>
<tr>
<th>WRITE 3C2h</th>
<th>READ 3C2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 3</td>
<td>Bit 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

PR11(7) = EGA SW4
PR11(6) = EGA SW3
PR11(5) = EGA SW2
PR11(4) = EGA SW1

These Bits may be used as general purpose scratch Bits.

Bits [3:0]
Reserved. In EGA mode they must be set to 1.

5.4.3 Input Status Register 1
Read Only Port = 3?Ah

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5:4</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>3</td>
<td>Vertical Retrace</td>
</tr>
<tr>
<td>2:1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Display Enable</td>
</tr>
</tbody>
</table>

Bits [7:6]
Reserved. In EGA mode, Bit 6 must be set to 1.

Bits [5:4] - Color Plane Diagnostics

These Bits return two of the eight video outputs VID7 through VID0, as selected by Color Plane Enable Register Bits 5 and 4 (refer to Section 5.8.6.)

Bit 3 - Vertical Retrace Status
0 = Vertical frame is displayed
1 = Vertical retrace is active
VGAlEGA REGISTERS

Bits [2:1]
Reserved. In EGA mode Bit 2 must be set to 1.

Bit 0 - Display Enable Status
- 0 = CRT screen display in process
- 1 = CRT screen display disabled for horizontal or vertical retrace interval

5.4.4 Feature Control Register

VGA - Read Port = 3CAh

VGA/EGA - Write Port = 3?Ah

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Vertical Sync Control</td>
</tr>
<tr>
<td>2:0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved

Bit 3 - VGA - Vertical Sync Control
- 0 = VSYNC output enabled
- 1 = VSYNC output is logical "OR" of VSYNC and Vertical Display Enable

- EGA - Reserved

Bits [2:0]
Reserved

5.5 SEQUENCER REGISTERS

<table>
<thead>
<tr>
<th>PORT</th>
<th>INDEX</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C4h</td>
<td>----</td>
<td>Sequencer Index</td>
</tr>
<tr>
<td>3C5h</td>
<td>00</td>
<td>Reset</td>
</tr>
<tr>
<td>3C5h</td>
<td>01</td>
<td>Clocking Mode</td>
</tr>
<tr>
<td>3C5h</td>
<td>02</td>
<td>Map Mask</td>
</tr>
<tr>
<td>3C5h</td>
<td>03</td>
<td>Character Map Select</td>
</tr>
<tr>
<td>3C5h</td>
<td>04</td>
<td>Memory Mode</td>
</tr>
</tbody>
</table>

NOTE
Reserved Bits should be set to zero.

5.5.1 Sequencer Index Register

VGA/EGA - Read/Write Port = 3C4h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4:0</td>
<td>Sequencer Address/Index Bits</td>
</tr>
</tbody>
</table>

Bits [7:5]
Reserved.

Bits [4:0] - Sequencer Address/Index
The Sequencer Address Register is written with the index value (00h-04h) of the Sequencer Register to be accessed. Sequencer extension registers are also indexed by this register.

5.5.2 Reset Register

VGA/EGA - Read/Write Port = 3C5h, Index = 00h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Synchronous Reset</td>
</tr>
<tr>
<td>0</td>
<td>Asynchronous Reset</td>
</tr>
</tbody>
</table>

Bits [7:2]
Reserved.

Bit 1 - Synchronous Reset
- 0 = Sequencer is cleared and halted synchronously
- 1 = Operational mode (Bit 0 = 1)

Bit 0 - Asynchronous Reset
- 0 = Sequencer is cleared and halted asynchronously
- 1 = Operational mode (Bit 1 = 1)

NOTE
Both Bits 1 and 0 must be set to 1 for Operational mode.
5.5.3 Clocking Mode Register

Read/Write Port = 3C5h, Index = 01h

Bits 5:2 are locked if PR11(1) = 1. They appear unlocked during reads.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Screen Off</td>
</tr>
<tr>
<td>4</td>
<td>Shift 4</td>
</tr>
<tr>
<td>3</td>
<td>Dot Clock</td>
</tr>
<tr>
<td>2</td>
<td>Shift Load If Bit 4 = 0</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>8/9 Dot Clocks</td>
</tr>
</tbody>
</table>

Bits [7:6]
Reserved.

Bit 5 - VGA - Screen Off
0 = Normal screen operation
1 = Screen is turned off but SYNC signals remain active. (This Bit may be used to provide maximum display memory bandwidth for quick full screen updates.)

- EGA - Reserved

Bit 4 - VGA - Video Serial Shift Register Loading
0 = Serial shift registers loaded every character or every other character clock depending on Bit 2
1 = Serial shift registers loaded every 4th character clock (32-Bit fetches)

- EGA - Reserved

Bit 3 - Dot Clock Selection
0 = Normal dot clock selected by VCLK input frequency
1 = Dot Clock divided by 2 (320/360 pixels)

Bit 2 - Shift Load (Effective Only If Bit 4 = 0)
0 = Video serializers are loaded every character clock
1 = Video serializers are loaded every other character clock

Bit 1

Reserved. In EGA mode Bit 1 must be set to 0.

Bit 0 - 8/9 Dot Clock

Commands Sequencer to generate an eight or nine dot wide character clock.

This Bit is locked if PR11(0) = 1
0 = Nine dot wide character clock
1 = Eight dot wide character clock

5.5.4 Map Mask Register

VGA/EGA - Read/Write Port = 3C5h, Index = 02h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3:0</td>
<td>Map 3:0 Enable</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved.

Bits [3:0] - Enables Writing to Memory Maps 3 Through 0, Respectively
0 = Writing to respective Memory Map disabled
1 = Writing to respective Memory Map enabled

5.5.5 Character Map Select Register

Read/Write Port = 3C5h, Index = 03h

Bits 5:0 are locked if PR11(1) = 1. They appear unlocked during reads.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5, 3, 2</td>
<td>Character Map Select A Bits 2:0</td>
</tr>
<tr>
<td>4, 1, 0</td>
<td>Character Map Select B Bits 2:0</td>
</tr>
</tbody>
</table>

If Sequencer Register 4, Bit 1 = 1, then the attribute byte Bit 3 in text modes is redefined to control switching between character sets. A "0" selects Character Map B. A "1" selects Character Map A. Character Map selection from either Plane 2 or Plane 3 is determined by PR2(2), PR2(5) and Bit 4 of the attribute code.

Bits [7:6]
Reserved. VGA
Bits [7:4]
Reserved. EGA

Bits 5, 3, 2 - VGA - Character Map A Select
These Bits select the location of Character Map A as follows:

<table>
<thead>
<tr>
<th>BITS</th>
<th>FONT/PLANE 2 OR 3 LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3 2</td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>0 1st 8 KByte Block</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1 3rd 8 KByte Block</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2 5th 8 KByte Block</td>
</tr>
<tr>
<td>0 1 1</td>
<td>3 7th 8 KByte Block</td>
</tr>
<tr>
<td>1 0 0</td>
<td>4 2nd 8 KByte Block</td>
</tr>
<tr>
<td>1 0 1</td>
<td>5 4th 8 KByte Block</td>
</tr>
<tr>
<td>1 1 0</td>
<td>6 6th 8 KByte Block</td>
</tr>
<tr>
<td>1 1 1</td>
<td>7 8th 8 KByte Block</td>
</tr>
</tbody>
</table>

Bits [3:2] - EGA - Character Map A Select
These Bits select the location of Character Map A as shown below:

<table>
<thead>
<tr>
<th>BITS</th>
<th>FONT/PLANE 2 LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2</td>
<td></td>
</tr>
<tr>
<td>0 0 0</td>
<td>1st 8 KByte Block</td>
</tr>
<tr>
<td>0 1 1</td>
<td>2nd 8 KByte Block</td>
</tr>
<tr>
<td>1 0 2</td>
<td>3rd 8 KByte Block</td>
</tr>
<tr>
<td>1 1 3</td>
<td>4th 8 KByte Block</td>
</tr>
</tbody>
</table>

Bits 4, 1, 0 - VGA - Character Map B Select
These Bits select the location of Character Map B as shown below:

<table>
<thead>
<tr>
<th>BITS</th>
<th>MAP</th>
<th>FONT/PLANE 2 OR 3 LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1 0</td>
<td></td>
<td>1st 8 KByte Block</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>1st 8 KByte Block</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1</td>
<td>3rd 8 KByte Block</td>
</tr>
<tr>
<td>0 1 0</td>
<td>2</td>
<td>5th 8 KByte Block</td>
</tr>
<tr>
<td>0 1 1</td>
<td>3</td>
<td>7th 8 KByte Block</td>
</tr>
<tr>
<td>1 0 0</td>
<td>4</td>
<td>2nd 8 KByte Block</td>
</tr>
<tr>
<td>1 0 1</td>
<td>5</td>
<td>4th 8 KByte Block</td>
</tr>
<tr>
<td>1 1 0</td>
<td>6</td>
<td>6th 8 KByte Block</td>
</tr>
<tr>
<td>1 1 1</td>
<td>7</td>
<td>8th 8 KByte Block</td>
</tr>
</tbody>
</table>

Bits [1:0] - EGA - Character Map B Select
These Bits select the location of Character Map B as shown below:

<table>
<thead>
<tr>
<th>BITS</th>
<th>MAP</th>
<th>FONT/PLANE 2 LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0</td>
<td></td>
<td>1st 8 KByte Block</td>
</tr>
<tr>
<td>0 0 0</td>
<td>0</td>
<td>1st 8 KByte Block</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1</td>
<td>2nd 8 KByte Block</td>
</tr>
<tr>
<td>0 1 1</td>
<td>2</td>
<td>3rd 8 KByte Block</td>
</tr>
<tr>
<td>1 1 0</td>
<td>3</td>
<td>4th 8 KByte Block</td>
</tr>
</tbody>
</table>

NOTE
Character Map selection from Plane 2 is determined by Bit 3 of the attribute code.
5.5.6 Memory Mode Register

Read/Write Port = 3C5h, Index = 04h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Chain 4</td>
</tr>
<tr>
<td>2</td>
<td>Odd/Even</td>
</tr>
<tr>
<td>1</td>
<td>Extended Memory</td>
</tr>
<tr>
<td>0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved.

Bit 3 - VGA - Chains Four Maps
0 = Processor sequentially accesses data using Map Mask Register
1 = Directs the two lower order video Memory Address pins (MA1, MA0) to select the map to be addressed. The map selection is given in the following list:

- EGA - Reserved

Bit 2 - VGA/EGA - Odd/Even Map Selection
0 = Even processor addresses to access Maps 0 and 2 (Odd processor addresses to access Maps 1 and 3)
1 = Sequential processor access as defined by Map Mask Register

Bit 1 - VGA/EGA - Extended Video Memory
0 = 64 KB of video memory
1 = Greater than 64 KB of memory for VGA/EGA modes

Bit 0 - VGA - Reserved
EGA - Alpha Mode
0 = Disables Alpha modes and enables non-Alpha modes
1 = Alpha mode is active and character map selection is enabled

5.6 CRT CONTROLLER REGISTERS

Table 5-3 lists the CRT Controller registers and their equivalent 6845 registers, if applicable.

<table>
<thead>
<tr>
<th>PORT¹</th>
<th>INDEX</th>
<th>VGA/EGA REGISTER NAME</th>
<th>6845² REGISTER NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3?4</td>
<td>--</td>
<td>CRT Controller Address Register</td>
<td>CRTC Address Register</td>
</tr>
<tr>
<td>3?5</td>
<td>00³</td>
<td>Horizontal Total</td>
<td>Horizontal Total</td>
</tr>
<tr>
<td>3?5</td>
<td>01</td>
<td>Horizontal Display Enable End</td>
<td>Horizontal Display</td>
</tr>
<tr>
<td>3?5</td>
<td>02</td>
<td>Start Horizontal Blanking</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>03³</td>
<td>End Horizontal Blanking</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>04</td>
<td>Start Horizontal Retrace</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>05³</td>
<td>End Horizontal Retrace</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>06³</td>
<td>Vertical Total</td>
<td>+ Vertical Display</td>
</tr>
<tr>
<td>3?5</td>
<td>07³</td>
<td>Overflow</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>08</td>
<td>Preset Row Scan</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>09³</td>
<td>Maximum Scan Line</td>
<td>Maximum Scan Line Address</td>
</tr>
<tr>
<td>3?5</td>
<td>0A³</td>
<td>Block Cursor Start</td>
<td>Cursor Start</td>
</tr>
</tbody>
</table>

TABLE 5-3. CRT CONTROLLER REGISTERS
<table>
<thead>
<tr>
<th>PORT</th>
<th>INDEX</th>
<th>VGA/EGA REGISTER NAME</th>
<th>6845(^2) REGISTER NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3?5</td>
<td>0B(^3)</td>
<td>Block Cursor End</td>
<td>Cursor End</td>
</tr>
<tr>
<td>3?5</td>
<td>0C</td>
<td>Start Address High</td>
<td>Start Address High</td>
</tr>
<tr>
<td>3?5</td>
<td>0D</td>
<td>Start Address Low</td>
<td>Start Address Low</td>
</tr>
<tr>
<td>3?5</td>
<td>0E</td>
<td>Block Cursor Location High</td>
<td>Cursor Location High</td>
</tr>
<tr>
<td>3?5</td>
<td>0F</td>
<td>Block Cursor Location Low</td>
<td>Cursor Location Low</td>
</tr>
<tr>
<td>3?5</td>
<td>10(^3)</td>
<td>Vertical Retrace Start</td>
<td>Light Pen High Read</td>
</tr>
<tr>
<td>3?5</td>
<td>11(^3)</td>
<td>Vertical Retrace End</td>
<td>Light Pen Low Read</td>
</tr>
<tr>
<td>3?5</td>
<td>12</td>
<td>Vertical Display Enable End</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>13</td>
<td>Offset</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>14(^3)</td>
<td>Underline Location</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>15</td>
<td>Start Vertical Blank</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>16(^3)</td>
<td>End Vertical Blank</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>17(^3)</td>
<td>CRT Controller Mode Control</td>
<td>See note 4</td>
</tr>
<tr>
<td>3?5</td>
<td>18</td>
<td>Line Compare</td>
<td>See note 4</td>
</tr>
</tbody>
</table>

NOTES:

1. The value of \(? \) is controlled by Miscellaneous Output Register, Bit 0. Bit 0 is programmed as follows:
 - When Bit 0 is set to 0, \(? = B \) and is used in Monochrome modes.
 - When Bit 0 is set to 1, \(? = C \) and is used in Color modes.
2. For detailed descriptions of the 6845 Mode Registers refer to the literature listed following the table of contents.
3. Parameters for these registers vary depending on whether they are used in VGA or EGA mode.
4. This register can be programmed in VGA/EGA mode only. It is not applicable in 6845 mode.
5. Reserved Bits should be set to zero.

TABLE 5-3. CRT CONTROLLER REGISTERS

5.6.1 CRT Register Index

Read/Write Port = 3?4h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4:0</td>
<td>Index Bits</td>
</tr>
</tbody>
</table>

Bits [7:5])

Reserved.

Bits [4:0] - CRT Register Index Bits

These Bits specify the CRT Controller register to be addressed. Its value is programmed in hexadecimal.

5.6.2 Horizontal Total Register

Read/Write Port = 3?5h, Index = 00h

This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1. The Bit 8 of horizontal total is located at PR18 Bit 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Horizontal Total Period</td>
</tr>
</tbody>
</table>

Bits [7:0] - VGA - Count Plus Retrace Less Five

- EGA - Count Plus Retrace Less Two

The total character count is the total number of characters including retrace time per horizontal
scan line, less 5 in VGA mode, less 2 in EGA mode.

5.6.3 Horizontal Display Enable End Register

Read/Write Port = 3?5h, Index 01h

This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Displayed Characters per Scan Line</td>
</tr>
</tbody>
</table>

Bits [7:0] - Number of Displayed Characters Less One
This register contains the total number of displayed characters less one.

5.6.4 Start Horizontal Blanking Register

Read/Write Port = 3?5h, Index 02h

This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Horizontal Blanking</td>
</tr>
</tbody>
</table>

Horizontal blanking begins when the horizontal character counter reaches the value written in this register.

5.6.5 End Horizontal Blanking

Read/Write Port = 3?5h, Index 03h

This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Horizontal Retrace Character Count</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BITS</th>
<th>CHARACTER CLOCK SKEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 5</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>2</td>
</tr>
<tr>
<td>1 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Bits [6:5] - Display Enable Signal Skew Control
These Bits define the display enable signal skew time in relation to horizontal synchronization pulses.

- VGA Mode

These five Bits, along with Bit 7 of the End Horizontal Retrace Register (Index 05h), determine when horizontal blanking is to end. Bits 4:0 are the least significant Bits, Bit 7 is the most significant Bit.

When the least significant six Bits of the Horizontal Character Counter matches these six Bits, the horizontal blanking ends.

- EGA Mode

These five Bits, determine when horizontal blanking is to end. When the least significant five Bits of the Horizontal Character Counter matches these five Bits, the horizontal blanking ends.

5.6.6 Start Horizontal Retrace Pulse Register

Read/Write Port = 3?5h, Index 04h

This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Horizontal Retrace Character Count</td>
</tr>
</tbody>
</table>

Bits [7:0] - Start Horizontal Retrace Character Count
The character count at which the horizontal retrace output is to become active is programmed in this register as a hexadecimal value.
5.6.7 End Horizontal Retrace Register

Read/Write Port = 3?5h, Index = 05h
This register is locked if register PR3(5) = 1 or the Vertical Retrace End Register Bit 7 = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>End Horizontal Blank Bit 6</td>
</tr>
<tr>
<td>6:5</td>
<td>Horizontal Retrace Delay</td>
</tr>
<tr>
<td>4:0</td>
<td>End Horizontal Retrace</td>
</tr>
</tbody>
</table>

Bit 7 - VGA - End Horizontal Blank Bit 6
This is the sixth Bit (Bit 5) of the End Horizontal Blanking Value programmed in Bits 4:0 of the End Horizontal Blanking Register at Port 3?5h, Index 03h.

EGA - CRT Counter Memory Address
This Bit defines whether the CRT counter memory address starts at an even or odd address following the horizontal retrace.

0 = Even Address
1 = Odd Address

Bits [6:5] - Horizontal Retrace Delay
These Bits define the horizontal retrace signal delay.

<table>
<thead>
<tr>
<th>BITS</th>
<th>CHARACTER CLOCK DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Bits [4:0] - End Horizontal Retrace
The least significant five Bits are programmed in this register. When the least significant Bits of the Horizontal Character Counter match these five Bits, the Horizontal Retrace signal is turned off.

5.6.8 Vertical Total Register

Read/Write Port = 3?5h, Index = 06h
This register is locked if register PR3(0) = 1, or the Vertical Retrace End Register Bit 7 = 1.

5.6.9 Overflow Vertical Register

Read/Write Port = 3?5h, Index = 07h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7, 2</td>
<td>Start Vertical Retrace Bits 9:8</td>
</tr>
<tr>
<td>6, 1</td>
<td>End Vertical Display Enable Bits 9:8</td>
</tr>
<tr>
<td>5, 0</td>
<td>Vertical Total Bits 9:8</td>
</tr>
<tr>
<td>4</td>
<td>Line Compare Bit 8</td>
</tr>
<tr>
<td>3</td>
<td>Start Vertical Blank Bit 8</td>
</tr>
</tbody>
</table>

Bits [7:5] - EGA
Reserved

Bits 7, 2 - VGA
Start Vertical Retrace - Bits 9:8. (Bits 7:0 are at Index 10h.)
This register is locked if Register PR3(0) = 1 or the End Vertical Retrace Register Bit 7 = 1.
Bits 6, 1 - VGA
End Vertical Display Enable - Bits 9:8. (Bits 7:0 are at Index 12h.)
This register is locked if Register PR3(1) = 0 and the End Vertical Retrace Register Bit 7 = 1.

Bits 5, 0 - VGA
Vertical Total - Bits 9:8. (Bits 7:0 are at Index 06h.)
This register is locked if Register PR3(0) = 1 or the End Vertical Retrace Register Bit 7 = 1.

Bit 4 - VGA/EGA
Line Compare - Bit 8. (Bit 9 is at Bit 6 of Index 09h, Bits 7:0 are at Index = 18h.)

Bit 3 - VGA/EGA
Start Vertical Blank - Bit 8. (Bit 9 is at Bit 5 of Index 09h, Bits 7:0 are at Index = 15h.)
This register is locked if Register PR3(0) = 1 or the End Vertical Retrace Register Bit 7 = 1.

Bits 2 - EGA
Start Vertical Retrace - Bit 8. (Bits 7:0 are at Index 10h.)
This register is locked if Register PR3(0) = 1 or the End Vertical Retrace Register Bit 7 = 1.

Bits 1 - EGA
End Vertical Display Enable - Bit 8. (Bits 7:0 are at Index 12h.)
This register is locked if Register PR3(1) = 0 and the End Vertical Retrace Register Bit 7 = 1.

Bits 0 - EGA
Vertical Total - Bit 8. (Bits 7:0 are at Index 06h.)
This register is locked if Register PR3(0) = 1 or the End Vertical Retrace Register Bit 7 = 1.

5.6.10 Preset Row Scan Register
Read/Write Port = 3?5h, Index = 08h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6:5</td>
<td>Byte Panning Control</td>
</tr>
<tr>
<td>4:0</td>
<td>Preset Row Scan Count</td>
</tr>
</tbody>
</table>

Bit 7
Reserved.

Bits [6:5] - Byte Panning Control
These Bits allow up to three bytes to be panned in modes programmed as multiple shift modes.

OPERATION
0 0 = Normal
0 1 = 1 Byte Left Shift
1 0 = 2 Bytes Left Shift
1 1 = 3 Bytes Left Shift

Bits [4:0] - Preset Row Scan Count
These Bits preset the vertical row scan counter once after each vertical retrace. This counter is advanced by one increment after each horizontal retrace period until the maximum row scan count is reached. When the maximum row scan count is reached, the counter is cleared. This register can be used for smooth vertical scrolling of text.

5.6.11 Maximum Scan Line Register
Read/Write Port = 3?5h, Index = 09h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>200 to 400 Line Conversion</td>
</tr>
<tr>
<td>6</td>
<td>Line Compare Bit 9</td>
</tr>
<tr>
<td>5</td>
<td>Start Vertical Blank Bit 9</td>
</tr>
<tr>
<td>4:0</td>
<td>Maximum Scan Line</td>
</tr>
</tbody>
</table>

In 6845 mode, Bits 7 through 5 are reserved,
Bits [7:5] - EGA
Reserved

Bit 7 - VGA - 200 to 400 Line Conversion
0 = Normal operation
1 = Activate line doubling (The row scan counter is clocked at half the horizontal scan rate to allow 200 line modes to display 400 scan lines. Each line is double scanned.)

Bit 6 - VGA - Line Compare
This is Bit 9 of the Line Compare Register at Port 3?5h, Index 18h.

Bit 5 - VGA - Start Vertical Blank
This is Bit 9 of the Start Vertical Blank Register at Port 3?5h, Index 15h. The Vertical Blank Register is locked if register PR3(0) = 1. or the Vertical Retrace End Register Bit 7 = 1.

Bits [4:0] - VGA/EGA - Maximum Scan Line
These Bits are the maximum number of scanned lines for each row of characters. The value programmed is one less than the maximum number of scanned rows per character.

In 6845 mode, the value programmed is one less than the maximum scan line count for non-interlace mode. Interlaced mode is not supported.

5.6.12 Block Cursor Start Register
Read/Write Port = 3?5h, Index = 0Ah

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Block Cursor Control</td>
</tr>
<tr>
<td>4:0</td>
<td>Block Cursor Start Scan Line</td>
</tr>
</tbody>
</table>

Bits [7:6]
Reserved.

Bit 5 - VGA - Block Cursor Control
0 = Block Cursor on
1 = Block Cursor off
- EGA - Reserved

Bits [4:0] - VGA/EGA - Block Cursor Start Scan Line
These Bits specify the value of the row scan counter within the cursor's starting character box. These Bits are programmed with one less than the value of the character row. If these Bits are programmed with a value greater than the Block Cursor End Register at Port 3?5h, Index 0Bh, no cursor is generated.

For 6845 modes, Bits 7 and 6 are reserved. Bit 5 controls the cursor operation and Bits 4 through 0 contain the cursor start value.

5.6.13 Block Cursor End Register
Read/Write Port = 3?5h, Index = 0Bh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6:5</td>
<td>Block Cursor Skew</td>
</tr>
<tr>
<td>4:0</td>
<td>Block Cursor End Scan Line</td>
</tr>
</tbody>
</table>

In 6845 mode, Bits 7 through 5 are reserved.

Bit 7
Reserved.

Bits [6:5] - Block Cursor Skew Bits
These Bits specify the value of the last row scan counter within the character box in which the cursor is active. If this value is less than the cursor start value, no cursor is displayed.

5.6.14 Block Cursor End Scan Line

<table>
<thead>
<tr>
<th>SKEW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0 Character Clocks</td>
</tr>
<tr>
<td>0 1</td>
<td>1 Character Clocks</td>
</tr>
<tr>
<td>1 0</td>
<td>2 Character Clocks</td>
</tr>
<tr>
<td>1 1</td>
<td>3 Character Clocks</td>
</tr>
</tbody>
</table>

In 6845 mode, Bits 4 through 0 contain the row value of the cursor end.
NOTE
There are three types of cursors generated, depending upon the mode, i.e., VGA, EGA or 6845 (non-VGA). The above description refers to the VGA cursor only.

- EGA - Block Cursor End Scan Line
These Bits specify the Cursor End value of the last row scan address counter. The programmed value is equal to N+1 where N is the last row of the cursor to be displayed.

5.6.14 Start Address High Register
Read/Write Port = 3?5h, Index = 0Ch

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Address High Byte</td>
</tr>
</tbody>
</table>

Bits [7:0] - Display Screen Start Address Upper Byte Bits
These are the high order eight Bits of the 16-Bit video memory address, used for screen refresh. The low order 8-Bit register is at Port 3?5h Index 0Dh. Register PR3 Bits 4 and 3, and PR18 Bit 6 extend this video memory start register to 18 Bits.

In 6845 mode, Bits 7 and 6 are forced to 0 regardless of this register's contents. The lower order eight Bits are at Port 3?5h Index 0Dh.

5.6.15 Start Address Low Register
Read/Write Port = 3?5h, Index = 0Dh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Address Low Byte</td>
</tr>
</tbody>
</table>

Bits [7:0] - Start Address Low Byte
These are the low order eight Bits of the 16-Bit video memory address in VGA/EGA or 6845 modes.

5.6.16 Block Cursor Location High Register
Read/Write Port = 3?5h, Index = 0Eh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Block Cursor Location High Byte</td>
</tr>
</tbody>
</table>

5.6.17 Block Cursor Location Low Register
Read/Write Port = 3?5h, Index = 0Fh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Block Cursor Location Low Byte</td>
</tr>
</tbody>
</table>

Bits [7:0] - Block Cursor Address Upper Byte Bits
In VGA mode, these are the eight high order Bits of the 16-Bit cursor location. For the low order eight Bits, see the Block Cursor Location Low Register at Port 3?5h, Index 0Fh. Register PR3 Bits 4 and 3 extend the cursor location High Register to 18 Bits.

In 6845 mode, Bits 7 and 6 are reserved, while Bits 5 through 0 are the high order Bits of the cursor.

5.6.18 Vertical Retrace Start Register
Read/Write Port = 3?5h, Index = 10h
This register is locked if register PR3(0) = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Vertical Retrace Start (Lower eight Bits)</td>
</tr>
</tbody>
</table>

Bits [7:0] - Vertical Retrace Start Pulse Lower Eight Bits
In VGA mode, these are the lower eight Bits of the 11-Bit Vertical Retrace Start Register. Bit 10 is located in 3?5h, Index 3Eh, Bit 2. Bits 9 and 8 are located in the Overflow Register at Port 3?5h, Index 07h.

In 6845 mode, Bits 7 and 6 are reserved. Bits 5 through 0 are read back as the high order six Bits of the Light Pen Value. The lower order eight Bits of the Light Pen Value are read back at Index 11h.

In EGA mode, this register is read back as the low order eight Bits of the Light Pen Value.
5.6.19 Vertical Retrace End Register
Read/Write Port = 3?5h, Index = 11h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CRTC 0-7 Write Protect</td>
</tr>
<tr>
<td>6</td>
<td>Select 3/5 DRAM Refresh</td>
</tr>
<tr>
<td>5</td>
<td>Enable Vertical Interrupt</td>
</tr>
<tr>
<td>4</td>
<td>Clear Vertical Interrupt</td>
</tr>
<tr>
<td>3:0</td>
<td>Vertical Retrace End</td>
</tr>
</tbody>
</table>

In 6845 mode, this register reads back the value of the lower eight Bits of Light Pen Register.

Bit 7 - VGA - CRTC Registers Write Protect
0 = Enables writing to CRT index registers 00h-07h
1 = Write protects CRT Controller Index registers in the range of index 00h-07h (Line Compare Bit 4 in the Overflow Register (07h) is not protected.)

- EGA - Reserved

Bit 6 - VGA - DRAM Refresh/Horizontal Scan Line
This Bit selects DRAM refresh cycles per horizontal scan line as follows:
0 = Generates three refresh cycles for each horizontal scan line for normal VGA operation
1 = Generates five DRAM refresh cycles per horizontal scan line

- EGA - Reserved

Bit 5 - VGA - Enable Vertical Retrace Interrupt
0 = Enable vertical retrace interrupt
1 = Disable vertical retrace interrupt

- EGA - IRQ Output Buffer
0 = The IRQ output buffer control is enabled (The IRQ latch within the CRT controller determines the logic state of the IRQ output signal.)
1 = The IRQ output buffer is switched to a high impedance state

Bit 4 - VGA - Clear Vertical Retrace Interrupt
0 = Clears the vertical retrace interrupt by writing a 0 to (resetting) an internal flip flop
1 = Vertical retrace interrupt (This allows an interrupt to be generated after the last displayed scan of the frame has occurred, i.e., the start of the bottom border.)

- EGA - IRQ Latch
0 = The IRQ latch is reset if Bit 5 = 0
1 = The IRQ latch is set at the end of the vertical display

Bits [3:0] - VGA/EGA - Vertical Retrace End
These Bits specify the scan count at which vertical sync becomes inactive. When these four Bits match the four low-order Bits of the vertical counter, vertical sync becomes inactive.

Bits [3:0] are locked if register PR3(0) = 1.

5.6.20 Vertical Display Enable End Register
Read/Write Port = 3?5h, Index = 12h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Vertical Display Enable End (Lower eight Bits)</td>
</tr>
</tbody>
</table>

Bits [7:0] - Vertical Display Enable End Lower Eight Bits
These Bits define where the active display frame ends and are the lower eight Bits of an 11-Bit register. The programmed count is in scan lines minus one. Bit 10 is in Port 3?5h, Index 3Eh, Bit 10. Bits 9 and 8 are in the Overflow Register at Port 3?5h, Index 07h, Bits 6 and 1, respectively.

5.6.21 Offset Register
Read/Write Port = 3?5h, Index = 13h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Logical Screen Width</td>
</tr>
</tbody>
</table>
Bits [7:0] - Logical Line Screen Width

This register specifies the width of display memory in terms of an offset from the current row start address to the next character row. The offset value is a word address adjusted for word or double word display memory access. It is calculated as follows:

1. The Next CPU Row Scan Start Address equals the Current Row Scan Start Address, plus the product of the Offset Register multiplied by two in byte mode, four in word mode, or eight in double word mode.

2. The Next CRT Row Scan Address equals the current CRT Row Scan Address plus the product of the offset register multiplied by two.

5.6.22 Underline Location Register

Read/Write Port = 3?5h, Index = 14h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>Doubleword Mode</td>
</tr>
<tr>
<td>5</td>
<td>Count by 4</td>
</tr>
<tr>
<td>4:0</td>
<td>Underline Location</td>
</tr>
</tbody>
</table>

Bit 7 - VGA/EGA

Reserved.

Bit 6 - VGA - Doubleword Mode

0 = Display memory addressed for byte or word access

1 = Display memory addressed for doubleword access (This overrides the state of Port 3?5h, Index 17h, Bit 6 (refer to Section 5.6.25))

- EGA - Reserved

Bit 5 - VGA - Count by Four for Doubleword Access

0 = Memory address counter clocked for byte or word access

1 = Memory address counter is clocked at the character clock rate divided by four

- EGA - Reserved

Bits [4:0] - VGA/EGA - Underline Location

These bits specify the row scan counter value within a character matrix where underline is to be displayed. The value programmed should be one less than the desired scan line number.

5.6.23 Start Vertical Blank Register

Read/Write Port = 3?5h, Index = 15h

This register is locked if register PR3(0) = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Start Vertical Blank (Lower eight Bits)</td>
</tr>
</tbody>
</table>

Bits [7:0] - Start Vertical Blank Lower Eight Bits

These are the lower eight bits of the 11-bit Start Vertical Blank Register. Bit 10 is in register PR18 at Port 3?5h, Index 3Eh, Bit 3. Bit 9 is in the Maximum Scan Line Register at Port 3?5h, Index 09h. Bit 8 is in the Overflow Register at Port 3?5h, Index 07h.

The eleventh bit value is reduced by one from the desired scan line count where the vertical blanking signal starts.

5.6.24 End Vertical Blank Register

Read/Write Port = 3?5h, Index = 16h

This register is locked if register PR3(0) = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>End Vertical Blank</td>
</tr>
</tbody>
</table>

Bits [7:0] - VGA - Vertical Blank Inactive Count

End Vertical Blank is an eight-bit value calculated as follows:

Eight-bit End Vertical Blank value = (value of Start Vertical Blank minus one) + (value of Vertical Blank signal width in scan lines).

Bits [7:5] - EGA

Reserved
Bits [4:0] - EGA

End Vertical Blank is a five-Bit value calculated as follows:

Five-Bit End Vertical Blank value = (value of Start Vertical Blank minus one) + (value of Vertical Blank signal width in scan lines).

5.6.25 CRT Mode Control Register

Read/Write Port = 3?5h, Index = 17h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Hardware Reset</td>
</tr>
<tr>
<td>6</td>
<td>Word or Byte Mode</td>
</tr>
<tr>
<td>5</td>
<td>Address Wrap</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Count by 2</td>
</tr>
<tr>
<td>2</td>
<td>Horizontal Retrace Select</td>
</tr>
<tr>
<td>1</td>
<td>Select Row Scan Counter</td>
</tr>
<tr>
<td>0</td>
<td>CGA Compatibility</td>
</tr>
</tbody>
</table>

Bit 7 - VGA/EGA - Hardware Reset

0 = Horizontal and vertical retrace outputs inactive
1 = Horizontal and vertical retrace outputs enabled

Bit 6 - VGA/EGA - Word or Byte Mode

The state of this Bit is ignored and Doubleword mode selected when Port 3?5h, Index 14h, Bit 6 is set to 1 (refer to Section 5.6.22, Bit 6).

0 = Word address mode (All memory address counter Bits shift down by one Bit and the MSB of the address counter appears on the LSB.)
1 = Byte address mode

<table>
<thead>
<tr>
<th>CRT14h BIT 6</th>
<th>CRT17h BIT 6</th>
<th>ADDRESS MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Word</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Byte</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>Doubleword</td>
</tr>
</tbody>
</table>

Bit 5 - VGA/EGA - Address Wrap

0 = In word address mode, this Bit enables Bit 13 to appear at MA0, otherwise Bit 0 appears on MA0
1 = Select MA15 for odd/even mode when 256 Kbytes of video memory are used on the system board

Bit 4 - VGA/EGA

Reserved.

Bit 3 - VGA/EGA - Count by 2

0 = Character clock increments memory address counter
1 = Character clock divided by two increments the address counter

Bit 2 - VGA/EGA - Horizontal Retrace Clock Rate Select for Vertical Timing Counter

This Bit is locked if register PR3(5) = 1.

0 = Selects horizontal retrace clock rate
1 = Selects horizontal retrace clock rate divided by two

Bit 1 - VGA/EGA - Select Row Scan Counter

0 = Row Scan Counter Bit 1 replaces CRTC when MA14 is selected to drive an address pin
1 = CRTC drives MA14 when MA14 is selected to drive an address pin

Bit 0 - 6845 CRT Controller Compatibility Mode Support for CGA Operation

0 = Row Scan Counter Bit 1 replaces CRTC when MA13 is selected to drive an address pin
1 = CRTC drives MA13 when MA13 is selected to drive an address pin

5.6.26 Line Compare Register

Read/Write Port = 3?5h, Index = 18h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Line Compare (lower eight Bits)</td>
</tr>
</tbody>
</table>

Bits [7:0] - Line Compare Lower Eight Bits

These are the lower eight Bits of the ten-Bit Scan Line Compare Register. Bit 9 is in the Maximum Scan Line Register at Port 3?5h, Index 09h. Bit 8 is in the Overflow Register at Port 3?5h, Index 07h. When the vertical counter reaches the value programmed in the Scan Line Compare Register, the internal start of the line counter is cleared.
5.7 GRAPHICS CONTROLLER REGISTERS

<table>
<thead>
<tr>
<th>PORT (HEX)</th>
<th>INDEX (HEX)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3CE</td>
<td>–</td>
<td>Graphics Index Register</td>
</tr>
<tr>
<td>3CF</td>
<td>00</td>
<td>Set/Reset</td>
</tr>
<tr>
<td>3CF</td>
<td>01</td>
<td>Enable Set/Reset</td>
</tr>
<tr>
<td>3CF</td>
<td>02</td>
<td>Color Compare</td>
</tr>
<tr>
<td>3CF</td>
<td>03</td>
<td>Data Rotate</td>
</tr>
<tr>
<td>3CF</td>
<td>04</td>
<td>Read Map Select</td>
</tr>
<tr>
<td>3CF</td>
<td>05</td>
<td>Graphics Mode</td>
</tr>
<tr>
<td>3CF</td>
<td>06</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>3CF</td>
<td>07</td>
<td>Color Don’t Care</td>
</tr>
<tr>
<td>3CF</td>
<td>08</td>
<td>Bit Mask</td>
</tr>
</tbody>
</table>

TABLE 5-4. GRAPHICS CONTROLLER REGISTERS

NOTE
Reserved Bits should be set to zero.

5.7.1 Graphics Index Register

Read/Write Port = 3CEh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3:0</td>
<td>Graphics Address Bits</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved.

Bits [3:0] - Graphics Controller Register

Index Pointer Bits

NOTE
Some of the PR registers reside with the index pointer extension beyond the standard VGA Graphics Controller registers.

5.7.2 Set/Reset Register

Read/Write Port = CFh, Index = 00h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Set/Reset Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Set/Reset Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Set/Reset Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Set/Reset Map 0</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved.

Bits [3:0] - Set/Reset Map

When the CPU executes display memory write with Write Mode 0* selected, and the Enable Set/Reset Register at Port 3CFh Index 01h activated, the eight Bits of the Bit value in this register, which have been operated on by the Bit Mask Register, are then written to the corresponding display memory map. It is an eight-Bit fill operation.

0 = Reset
1 = Set

<table>
<thead>
<tr>
<th>BIT</th>
<th>SET/RESET</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Map 0</td>
</tr>
</tbody>
</table>

NOTE
*The selection of Write Mode 0 is determined by the Graphics Mode Register (Index = 05h) Bit 1 and Bit 0.
5.7.3 Enable Set/Reset Register

Read/Write Port = 3CFh, Index = 01h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Enable Set/Reset Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Enable Set/Reset Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Enable Set/Reset Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Enable Set/Reset Map 0</td>
</tr>
</tbody>
</table>

Bits [3:0] - Enable Set/Reset Register

Maps 3 through 0, respectively (Index 00h)

0 = In Write Mode 0, each Bit [3:0] when set to 0, disables its corresponding Set/Reset Register (Index = 00h) Bit and the corresponding memory map is written with the rotated 8-Bit data from the system microprocessor, as defined by the Data Rotate Register.
1 = In Write Mode 0, each Bit [3:0] when set to 1, enables memory map access defined by the corresponding Set/Reset Register (Index = 00h) Bit and the respective memory map is written with the Set/Reset Register value.

5.7.4 Color Compare Register

Read/Write Port = 3CFh, Index = 02h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Color Compare Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Color Compare Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Color Compare Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Color Compare Map 0</td>
</tr>
</tbody>
</table>

Bits [3:0] - Color Compare

The Color Compare Bits contain the value to which all eight Bits of the corresponding memory map are compared. This comparison also occurs across all four maps and a 1 is returned for the map positions when the Bits of all four maps equal the Color Compare Register. If a system read is done with Bit 3 = 0 for the Graphics Mode Register at Port 3CFh, Index 05h, data is returned without comparison. Color compare map coding is shown in the following table.

<table>
<thead>
<tr>
<th>BIT</th>
<th>COLOR COMPARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Map 0</td>
</tr>
</tbody>
</table>

5.7.5 Data Rotate Register

Read/Write Port = 3CFh, Index = 03h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Function Select 1</td>
</tr>
<tr>
<td>3</td>
<td>Function Select 0</td>
</tr>
<tr>
<td>2</td>
<td>Rotate Count Bit 2</td>
</tr>
<tr>
<td>1</td>
<td>Rotate Count Bit 1</td>
</tr>
<tr>
<td>0</td>
<td>Rotate Count Bit 0</td>
</tr>
</tbody>
</table>

Bits [7:5] - Reserved.

Bits [4:3] - Function Select

This is the Function Select for any of the write mode operations defined in the Graphics Mode Register at Port 3CFh, Index 05h as defined below.

00 = Video memory data unmodified
01 = Video memory data ANDed with system data in the latches
10 = Video memory data ORed with system data in the latches
11 = Video memory data XORed with system data in the latches
NOTE

"Data" refers to CPU data that has gone through data rotation. The latches contain the data from the last memory read operation.

Bits [2:0] - Rotate Count

These Bits specify the number of Bit positions of rotation to the right. Data written by the CPU is rotated in write mode 0, defined by the Graphics Mode Register at Port 3CFh, Index 05h.

5.7.6 Read Map Select Register

Read/Write Port = 3CFh, Index = 04h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Map Select 1</td>
</tr>
<tr>
<td>0</td>
<td>Map Select 0</td>
</tr>
</tbody>
</table>

Bits [7:3] - VGA/EGA

Reserved.

Bit 2 - VGA

Reserved.

Bits [2:0] - EGA - Map Select

These Bits select the memory map in memory read operations. It has no effect on color compare read mode. In odd/even modes, the value is defined below.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td>Map 0 selected</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Map 1 selected</td>
</tr>
<tr>
<td>0 0 1</td>
<td>Map 2 selected</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Map 3 selected</td>
</tr>
</tbody>
</table>

Bits [1:0] - VGA - Map Select

These Bits select the memory map in memory read operations. It has no effect on color compare read mode. In odd/even modes, the value is defined in the following list.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td>Map 0 selected</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Map 1 selected</td>
</tr>
<tr>
<td>0 0 1</td>
<td>Map 2 selected</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Map 3 selected</td>
</tr>
</tbody>
</table>

5.7.7 Graphics Mode Register

Read/Write Port = 3CFh, Index = 05h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>256 Color Mode</td>
</tr>
<tr>
<td>5</td>
<td>Shift Register</td>
</tr>
<tr>
<td>4</td>
<td>CGA Odd/Even</td>
</tr>
<tr>
<td>3</td>
<td>Read Type</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Write Mode Bit 1</td>
</tr>
<tr>
<td>0</td>
<td>Write Mode Bit 0</td>
</tr>
</tbody>
</table>

Bit 7 - VGA/EGA -

Reserved.

Bit 6 - EGA

Reserved

Bit 6 - VGA - 256 Color Mode

This Bit is locked if PR11(1) = 1. It appears unlocked during reads.

- 0 = Enables Bit 5 of this register to control loading of the shift registers. Four-Bit pixel is expanded to six Bits through internal palette and is sent out on the lower six Bits (VID5 - VID0) pins every dot clock. The remaining two video outputs (VID7, VID6) are determined by Bits 3 and 2 of the Color Select Register located at Port 3C1h/3C0h, Index 14h within the Attribute Controller.

- 1 = Load Video Shift Registers to support 256-color mode
Bit 5 - VGA/EGA - Shift Register
Shift Register Load controls the way in which memory data is formatted in the four Video Shift Registers. MSB is shifted out in all cases.
This Bit is locked if PR11(1) = 1. It appears unlocked during reads.
0 = Map 3 through Map 0 data is placed into shift registers for normal operations.
1 = For CGA graphics mode compatibility, even numbered Bits from all the maps are shifted out of even numbered shift registers, and odd numbered Bits from all the maps are shifted out of odd numbered shift registers.

Bit 4 - VGA/EGA - Odd/Even Mode
0 = Normal
1 = CGA compatible odd/even system access mode. Sequential addressing as defined by

Bit 2 of the Sequencer Memory Mode Register at Port 3CFh, Index 04h. Even system addresses access Maps 2 or 0 and odd system addresses access Maps 3 or 1.

Bit 3 - VGA/EGA - Read Mode
0 = System reads data from memory maps selected by Read Map Select Register at Port 3CFh, Index 04h. This setting has no effect if Bit 3 of the Sequencer Memory Mode Register = 1.
1 = System reads the comparison of the memory maps and the Color Compare Register.

Bit 2 - VGA/EGA
Reserved.

Bits [1:0] - VGA/EGA - Write Mode
Table 5-5 defines the four write modes.

<table>
<thead>
<tr>
<th>BIT 1</th>
<th>BIT 0</th>
<th>WRITE MODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>If the Set/Reset Register function is enabled for any of the maps, the eight Bits of the Bit value in the Set/Reset Register, which have been operated on by the Bit Mask Register, are then written to the corresponding display memory map. If the Set/Reset Register function is disabled, the map is written with the CPU data, which is rotated right by the number of Bits defined in the Data Rotate Register. This results in the previous LSB becoming the current MSB.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>This mode can be used to write the same value to many memory locations. The 32 Bits of data in the system latches are written into each of the four memory maps. The system read operation loads the latches.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>Memory maps 3:0 are filled with the eight-Bit value of the corresponding CPU data Bits 3:0. The 32-Bit output from the four memory maps is then operated on by the Bit Mask register and the resulting data are written to the four memory maps.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>Eight Bits of the value contained in the Set/Reset Register (Index = 00h) are written into the corresponding map, regardless of the Enable Set/Reset Register (index 01h) value. The right rotated CPU data (refer to Write Mode 0) are ANDed with Bit Map Register data to form an 8-Bit mask value that performs the same function as the Bit Mask Register in write modes 0 and 2. In EGA mode, Write Mode 3 is not valid and if selected will default to Write Mode 1.</td>
</tr>
</tbody>
</table>

TABLE 5-5. WRITE MODES
5.7.8 Miscellaneous Register

Read/Write Port = 3CFh, Index = 06h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Memory Map 1</td>
</tr>
<tr>
<td>2</td>
<td>Memory Map 0</td>
</tr>
<tr>
<td>1</td>
<td>Odd/Even</td>
</tr>
<tr>
<td>0</td>
<td>Graphics Mode</td>
</tr>
</tbody>
</table>

Bits [7:4]

Reserved.

Bits [3:2] - Memory Map 1, 0

Display memory map control into the CPU address space is shown below:

<table>
<thead>
<tr>
<th>BITS</th>
<th>CPU ADDRESS RANGE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>A000:00h-BFFF:Fh</td>
<td>128KB</td>
</tr>
<tr>
<td>0 1</td>
<td>A000:00h-AFFF:Fh</td>
<td>64KB</td>
</tr>
<tr>
<td>1 0</td>
<td>B000:00h-B7FF:Fh</td>
<td>32KB</td>
</tr>
<tr>
<td>1 1</td>
<td>B800:00h-BFFF:Fh</td>
<td>32KB</td>
</tr>
</tbody>
</table>

Bit 1 - Odd/Even Mode

0 = CPU address Bit A0 is the memory address Bit MA0
1 = CPU address Bit A0 is replaced by higher order address Bit. A0 is then used to select odd or even maps. A0 = 0 selects Map 2 or 0, while A0 = 1 selects Map 3 or 1.

Bit 0 - Graphics/Alphanumeric Mode

This Bit is programmed the same way as Bit 0 of the Attribute Mode Control Register at Port 3C1h/3C0h, Index 10h.

0 = Alphanumeric mode selects
1 = Graphics mode selected

5.7.9 Color Don't Care Register

Read/Write Port = 3CFh, Index = 07h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Memory Map 3</td>
</tr>
<tr>
<td>2</td>
<td>Memory Map 2</td>
</tr>
<tr>
<td>1</td>
<td>Memory Map 1</td>
</tr>
<tr>
<td>0</td>
<td>Memory Map 0</td>
</tr>
</tbody>
</table>

Bits [7:4]

Reserved.

Bits [3:0] - Memory Map Color Compare Operation

0 = Disable color compare operation
1 = Enable color compare operation

5.7.10 Bit Mask Register

Read/Write Port = CFh, Index = 08h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Bit Mask</td>
</tr>
</tbody>
</table>

Bits [7:0] - Bit Mask

Bit Mask operation applies simultaneously to all four maps. In Write Modes 2 and 0, this register provides selective changes to any Bit stored in the system latches during processor writes. Data must be first latched by reading the addressed byte. After setting the Bit Mask Register, new data is written to the same byte in a subsequent operation. Bit mask operation is applicable to any data written by the processor.

0 = Bit position value is masked or is not changeable
1 = Bit position value is unmasked and can be changed in the corresponding map
5.8 ATTRIBUTE CONTROLLER REGISTERS

<table>
<thead>
<tr>
<th>PORT (HEX)</th>
<th>INDEX (HEX)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C0</td>
<td>---</td>
<td>Index Register</td>
</tr>
<tr>
<td>3C0</td>
<td>00-0F</td>
<td>VGA - Palette Pixel Colors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EGA - Dynamic Color Selection</td>
</tr>
<tr>
<td>3C0</td>
<td>10</td>
<td>Attribute Mode Control Register</td>
</tr>
<tr>
<td>3C0</td>
<td>11</td>
<td>Overscan Control Register</td>
</tr>
<tr>
<td>3C0</td>
<td>12</td>
<td>Color Plane Enable Register</td>
</tr>
<tr>
<td>3C0</td>
<td>13</td>
<td>Horizontal PEL Panning Register</td>
</tr>
<tr>
<td>3C0</td>
<td>14</td>
<td>Color Select Register</td>
</tr>
</tbody>
</table>

TABLE 5-6. ATTRIBUTE CONTROLLER REGISTERS

NOTES
1. The Attribute Index Register has an internal flip-flop rather than an input Bit to control the selection of the Address and Data Registers. Reading the Input Status Register 1 (Port 3?Ah) clears the flip-flop and selects the Address Register, which is read at address 3C1h and written at address 3C0h. Once the Address Register has been loaded with an Index, the next write operation to 3C0h loads the Data Register. The flip-flop toggles between the Address and the Data Registers after every write to address 3C0h but does not toggle for reads from address 3C1h.

2. Attribute Register data is written at 3C0h and register data is read from address 3C1h.

3. Reserved Bits should be set to zero.

5.8.1 Attribute Index Register
Read/Write Port = 3C0h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Palette Address Source</td>
</tr>
<tr>
<td>4:0</td>
<td>Attribute Address Bits</td>
</tr>
</tbody>
</table>

Bits [7:6]
Reserved.

Bit 5 - Palette Address Source
0 = Disable internal color palette outputs and video outputs to allow CPU access to Color Palette Registers Port 3C0h, Index 00 - 0Fh
1 = Enable internal color palette and normal video translation

Bits [4:0] - Attribute Controller Index Register Address Bits

5.8.2 VGA - Palette Registers
Read Port = 3C1h,
Write Port = 3C0h,
Index 00-0Fh

These registers are locked if PR4(2) = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>VID5</td>
</tr>
<tr>
<td>4</td>
<td>VID4</td>
</tr>
<tr>
<td>3</td>
<td>VID3</td>
</tr>
<tr>
<td>2</td>
<td>VID2</td>
</tr>
<tr>
<td>1</td>
<td>VID1</td>
</tr>
<tr>
<td>0</td>
<td>VID0</td>
</tr>
</tbody>
</table>

Bits [7:6]
Reserved.
Bits [5:0] - Palette Pixel Colors

Bits 5 through 0 control VID5 through VID0 respectfully.

They are defined as follows:

0 = Current pixel color deselected
1 = Enables the corresponding pixel color

5.8.3 EGA - Dynamic Color Registers

Read Port = 3C1h,
Write Port = 3C0h,
Index 00-0Fh

These registers are locked if PR4(2) = 1.

Bits [7:6]

Reserved.

Bits [5:0] - Dynamic Color Selection

Bits 5 through 0 are defined as follows:

0 = Color deselected
1 = Color selected

<table>
<thead>
<tr>
<th>Bit</th>
<th>Color</th>
<th>Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Secondary Red</td>
<td>VID5</td>
</tr>
<tr>
<td>4</td>
<td>Secondary Green/Intensity</td>
<td>VID4</td>
</tr>
<tr>
<td>3</td>
<td>Secondary Blue/Mono</td>
<td>VID3</td>
</tr>
<tr>
<td>2</td>
<td>Red</td>
<td>VID2</td>
</tr>
<tr>
<td>1</td>
<td>Green</td>
<td>VID1</td>
</tr>
<tr>
<td>0</td>
<td>Blue</td>
<td>VID0</td>
</tr>
</tbody>
</table>

5.8.4 Attribute Mode Control Register

Read Port = 3C1h,
Write Port = 3C0h,
Index = 10h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VID5 and VID4 Select</td>
</tr>
<tr>
<td>6</td>
<td>PEL Width</td>
</tr>
<tr>
<td>5</td>
<td>PEL Panning Compatibility</td>
</tr>
<tr>
<td>4</td>
<td>Character Map Enable</td>
</tr>
<tr>
<td>3</td>
<td>Enable Blink/Select Background Intensity</td>
</tr>
<tr>
<td>2</td>
<td>Enable Line Graphics Character Code</td>
</tr>
<tr>
<td>1</td>
<td>Mono-Emulation</td>
</tr>
<tr>
<td>0</td>
<td>Graphics/Alphanumeric Mode</td>
</tr>
</tbody>
</table>

Bits [7:4] - EGA -

Reserved.

Bit 7 - VGA - VID5, VID4 Select

0 = VID5 and VID4 palette register outputs are selected
1 = Color Select Register Port 3C1h/3C0h,
 Index 14h, Bits 1 and 0 are selected for
 outputs at VID5 and VID4 pins

Bit 6 - VGA - Pixel Width

0 = Disable 256 color mode pixel width (The
 PCLK output is the same as the internal dot
 clock rate.)
1 = Enable pixel width for 256 color mode (The
 PCLK output is the internal dot clock divided
 by two.)*
Bit 5 - VGA - PEL Panning Compatibility
Line Compare in the CRT Controller.
0 = A Line compare will have no effect on the PEL Panning Register
1 = Allows a successful line compare to disable the PEL Panning Register and Bits 6 and 5 of the CRT Controller Register 08 until VSYNC occurs (Allows pixel panning of a selected portion of the screen.)

Bit 4 - VGA - Character Map Enable
Bit 4 of this register is used with Bits 5 and 2 of Video Select Register PR2 to select the Character Map from plane 2 or 3. Refer to Section 7.

Bit 3 - VGA/EGA - Background Intensity/Blink Selection
0 = Selects background intensity from the MSB of the attribute byte
1 = Selects blink attribute

Bit 2 - VGA/EGA - Enable Line Graphics Character Code
This Bit should be set to zero for character fonts that do not utilize line graphics character codes.
0 = Forces the ninth dot to be the same color as the background in line graphics character codes
1 = Used in MDA line graphics modes (The ninth dot character is forced to be identical to the eighth character dot.)

Bit 1 - VGA/EGA - Mono/Color Emulation
0 = Color display attributes
1 = MDA attributes

Bit 0 - VGA/EGA - Graphics/Alphanumeric Mode Enable
0 = Alphanumeric mode
1 = Graphics mode

5.8.5 Overscan Color Register
Read Port = C1h,
Write Port = 3C0h,
Index = 11h
This register is locked if PR4(2) = 1.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VID7</td>
</tr>
<tr>
<td>6</td>
<td>VID6</td>
</tr>
<tr>
<td>5</td>
<td>VID5</td>
</tr>
<tr>
<td>4</td>
<td>VID4</td>
</tr>
<tr>
<td>3</td>
<td>VID3</td>
</tr>
<tr>
<td>2</td>
<td>VID2</td>
</tr>
<tr>
<td>1</td>
<td>VID1</td>
</tr>
<tr>
<td>0</td>
<td>VID0</td>
</tr>
</tbody>
</table>

Bits [7:0] - VGA - Overscan/Border Color
These Bits determine the overscan or border color. For monochrome display, this register is set to 0. Border colors are set as shown above.

Bits [7:6] - EGA
Reserved.

Bits [5:0] - EGA - Overscan/Border Color
For a monochrome display, Bits 5:0 = 0.
For the border color, refer to Bits [5:0] in the Dynamic Color Selection in Section 5.8.3.

5.8.6 Color Plane Enable Register
Read Port = 3C1h,
Write Port = 3C0h,
Index = 12h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5:4</td>
<td>Video Status Multiplexer</td>
</tr>
<tr>
<td>3:0</td>
<td>Color Plane Enable</td>
</tr>
</tbody>
</table>

Bits [7:6] - VGA/EGA -
Reserved.
Bits [5:4] - VGA - Video Status Multiplexer

These Bits select two out of eight color outputs which can be read by the Input Status Register 1 at Port 3?Ah, Bits 5 and 4. Refer to Section 5.4.3.

<table>
<thead>
<tr>
<th>COLOR PLANE REGISTER</th>
<th>INPUT STATUS REGISTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT 5</td>
<td>BIT 4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bits [5:4] - EGA - Video Status Multiplexer

These Bits select two out of six color outputs which can be read by the Input Status Register 1 at Port 3?Ah, Bits 5 and 4. Refer to Section 5.4.3.

<table>
<thead>
<tr>
<th>COLOR PLANE REGISTER</th>
<th>INPUT STATUS REGISTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT 5</td>
<td>BIT 4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bits [3:0] - VGA/EGA - Color Plane Enable

0 = Disables respective color planes (Forces pixel Bit to 0 before it addresses palette.)
1 = Enables the respective display memory color plane

5.8.7 Horizontal Pel Panning Register

Read Port = 3C1h,
Write Port = 3C0h,
Index = 13h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3:0</td>
<td>Horizontal PEL Panning</td>
</tr>
</tbody>
</table>

Bits [3:0] - Horizontal Pel Panning

- VGA

Horizontal Pel Panning is available in text or graphics modes. These Bits select pixel shift to the left. For nine dots/character modes, up to eight pixels can be shifted. Likewise, for eight dots/character modes, up to seven pixels can be shifted. For 256 color, up to three position pixel shifts can occur. The following table defines the shift for different modes.

- EGA -

These four Bits determine the horizontal left shift of the video data in number of pixels. In monochrome alphanumeric modes, (nine dots/character) image can be shifted by nine pixels. For all other graphics or alphanumeric modes, a maximum left shift of eight pixels is permitted.

<table>
<thead>
<tr>
<th>Register Value</th>
<th>9 Dots/Character</th>
<th>8 Dots/Character</th>
<th>256 Color Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE 5-7. LEFT SHIFT PIXEL VALUE
5.8.8 Color Select Register

Read Port = 3C1h,
Write Port = 3Ch,
Index = 14h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>S Color 7</td>
</tr>
<tr>
<td>2</td>
<td>S Color 6</td>
</tr>
<tr>
<td>1</td>
<td>S Color 5</td>
</tr>
<tr>
<td>0</td>
<td>S Color 4</td>
</tr>
</tbody>
</table>

Bits [7:4]
Reserved.

Bits [3:2] - Color Value MSB
These are the two most significant Bits of the eight-digit color value for the video DAC. They are normally used in all modes except 526 color graphics.

Bits [1:0] - Substituted Color Value Bits

These Bits can be substituted for VID5 and VID4 output by the Attribute Controller palette registers, to create eight-bit color value. They are selected by the Attribute Controller Mode Control Register at Port 3C0h, Index 10h.

5.9 VIDEO RAMDAC PORTS

The Video RAMDAC is implemented externally to the WD90C33. However, the WPLT and RPLT signals required by the RAMDAC are provided by the WD90C33. Setting PR16 Bit 0 to 1 de-asserts WPLT disabling I/O writes to the RAMDAC. Normally, the WPLT and RPLT signals to the RAMDAC are generated when selected I/O ports are written to or read from as listed in Table 5-8.

DAC

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>OPERATION</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C8</td>
<td>PEL Address Port (Write)</td>
<td>Read/Write Port</td>
</tr>
<tr>
<td>3C7</td>
<td>PEL Address Port (Read)</td>
<td>Read Only Port</td>
</tr>
</tbody>
</table>
| 3C7\(^1\) | DAC State (Read Only) | If Bits 1:0 are set to 1, DAC is in a read operation
If Bits 1:0 are set to 0, DAC is in a write operation
Bits 7:2 are reserved |
| 3C6 | PEL Mask (Read/Write) | Refer to CAUTION |
| 3C9 | PEL Data Register (Read/Write) | Three successive read/write bytes |

NOTE:
1. This port is internal to the WD90C33.

CAUTION

Do not write to this address with any application code. To do so changes the color look-up table.

TABLE 5-8. VIDEO RAMDAC PORTS
6.0 COMPATIBILITY REGISTERS

6.1 INTRODUCTION

<table>
<thead>
<tr>
<th>NAME</th>
<th>PORT (HEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Control Register</td>
<td>388</td>
</tr>
<tr>
<td>Color Select Register</td>
<td>3D9</td>
</tr>
<tr>
<td>Status Register</td>
<td>38A</td>
</tr>
<tr>
<td>AT&T/M24 Register</td>
<td>3DE</td>
</tr>
<tr>
<td>Hercules Register</td>
<td>3BF</td>
</tr>
<tr>
<td>Preset Light Pen Latch</td>
<td>3B9 (Mono)</td>
</tr>
<tr>
<td></td>
<td>3DC (CGA)</td>
</tr>
<tr>
<td>Clear Light Pen Latch</td>
<td>38B</td>
</tr>
</tbody>
</table>

NOTES:
1. The Compatibility Registers are available only in 6845 mode (non-VGA), which is enabled by setting register PR2(6) = 1.
2. The AT&T/M24 Register also requires that M24 mode be enabled. This is done by setting register PR2(7) = 1.
3. The value indicated by "?" is controlled by Bit 0 of the Miscellaneous Output Register at Port 3CCh/3C2h and is programmed as shown below:
 0 = B in Monochrome Modes
 1 = D in Color Modes

<table>
<thead>
<tr>
<th>REGISTERS</th>
<th>R/W</th>
<th>MDA</th>
<th>CGA</th>
<th>AT&T</th>
<th>HERCULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Control</td>
<td>WO</td>
<td>3B8</td>
<td>3D8</td>
<td>3D8</td>
<td>3B8</td>
</tr>
<tr>
<td>Color Select</td>
<td>WO</td>
<td>---</td>
<td>3D9</td>
<td>3D9</td>
<td>---</td>
</tr>
<tr>
<td>Status</td>
<td>RO</td>
<td>3BA</td>
<td>3DA</td>
<td>3DA</td>
<td>3BA</td>
</tr>
<tr>
<td>Preset Light Pen Latch</td>
<td>WO</td>
<td>3B9</td>
<td>3DC</td>
<td>3DC</td>
<td>---</td>
</tr>
<tr>
<td>Clear Light Pen Latch</td>
<td>WO</td>
<td>3BB</td>
<td>3DB</td>
<td>3DB</td>
<td>---</td>
</tr>
<tr>
<td>AT&T/M24</td>
<td>WO</td>
<td>---</td>
<td>---</td>
<td>3DE</td>
<td>---</td>
</tr>
<tr>
<td>Hercules</td>
<td>WO</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3BF</td>
</tr>
<tr>
<td>CRTC (6845 Mode)</td>
<td>RW</td>
<td>3B0-3B7</td>
<td>3D0-3D7</td>
<td>3D0-3D7</td>
<td>3B0-3B7</td>
</tr>
</tbody>
</table>

NOTES:
1. Addresses are given in hexadecimal notation.
2. WO indicates Write Only, RO indicates Read Only, and RW indicates Read and Write.

TABLE 6-1. COMPATIBILITY REGISTER SUMMARY
6.2 HERCULES/MDA MODE CONTROL REGISTER, MDA OPERATION

Write Only Port = 3B8h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Reserved/Display Memory Page Select</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Enable Blink</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Video Enable</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Reserved/ Port 3BFh Enable</td>
</tr>
<tr>
<td>0</td>
<td>High Resolution Mode</td>
</tr>
</tbody>
</table>

Bit 7 - Select Display Memory Page Address In Hercules Mode

Reserved in MDA mode

In Hercules Graphics mode, this Bit selects the Display Memory Page if Bit 1 of this register is 1 and Bit 0 in Port 3BFh is 0.

0 = Display memory page address starts at B000:0h
1 = Display memory page address starts at B800:0h

Bit 6

Reserved.

Bit 5 - Enable Blink

0 = Disable Blinking
1 = Enable Blinking

Bit 4

Reserved.

Bit 3 - Video Enable

0 = Video Disabled
1 = Video Activated

Bit 2

Reserved.

Bit 1 - Port 3BFh Enabled

0 = Prevents setting of Port 3BFh Bits 1:0, thereby forcing the alpha mode operation
1 = Allows the Port 3BFh Bits 1:0 to switch for the alpha or graphics mode selection

Bit 0 - High Resolution Mode

Should be set to 1.
0 = High resolution disabled
1 = High resolution is enabled

6.3 HERCULES REGISTERS

The Hercules Mode Register is a 2-Bit write only register located at I/O port address 3BFh. It affects the device operation only in the 6845 mode. The Enable Mode Register located at address 3B8h overrides the write port 3BFh functions defined by its Bits 1 and 0.

6.3.1 Enable Mode Register

Port 3B8h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Display Memory Page Address Graphics Mode</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Enable Blink</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Video Enable</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Port 3BF Bit 0 Override</td>
</tr>
<tr>
<td>0</td>
<td>High Resolution Mode = 1</td>
</tr>
</tbody>
</table>

Bit 7 - Select Display Memory Page Address In Graphics Mode

0 = Display memory page address starts at B000:0h
1 = Display memory page address starts at B800:0h

Bits (6:2, 0)

Not applicable in Hercules Mode.

Bit 1 - Port 3BFh, Bit 0 Override

0 = Prevents setting of Port 3BFh, Bit 0, thereby forcing the Alpha Mode operation
1 = Allows the Port 3BFh, Bit 0 to switch for the Alpha or Graphics Mode selection
6.3.2 Hercules Compatibility Register

Write Only Port = 3BFh

This register is locked if PR17(1) = 1

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:2</td>
<td>Reserved</td>
</tr>
<tr>
<td>1</td>
<td>Upper Memory Page Address</td>
</tr>
<tr>
<td>0</td>
<td>Enable Graphics</td>
</tr>
</tbody>
</table>

Bits [7:2]

Reserved.

Bit 1 - Upper Memory Page Address

In graphics mode, Bit 7 of the Enable Mode Control Register at Port 3B8h selects the displayed memory page address. When that Bit is reset, Bit 1 of this register prevents access to the second memory page, located at B800:0h for the 32 Kbyte memory space.

0 = Upper memory page is mapped out
1 = Upper memory page is accessible

Bit 0 - Enable Graphics

Bit 1 of Enable Mode Register at Port 3B8h may prevent setting this Bit, thereby selecting Alpha Mode display.

0 = Alpha mode display
1 = Graphics modes may be displayed

6.4 CGA REGISTERS

6.4.1 Color CGA Operation Register

Write Only Port = 3D8h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Enable Blink</td>
</tr>
<tr>
<td>4</td>
<td>B/W Graphics Mode</td>
</tr>
<tr>
<td>3</td>
<td>Enable Video</td>
</tr>
<tr>
<td>2</td>
<td>B/W/Color Mode Select</td>
</tr>
<tr>
<td>1</td>
<td>Graphics/Alpha Mode Select</td>
</tr>
<tr>
<td>0</td>
<td>(40 by 25) or (80 by 25) Alpha Mode</td>
</tr>
</tbody>
</table>

Bits [7:6]

Reserved.

Bit 5 - Enable Blink Function

0 = Disables blinking function
1 = For normal operation, set this Bit to allow blinking

Bit 4 - B/W Graphics Mode Enable

0 = Deselect 640 by 200 B/W graphics mode
1 = Enable 640 by 200 B/W graphics mode

Bit 3 - Enable Video Signal

0 = Deactivates video signal (This is done during mode changes)
1 = B/W mode enabled

Bit 2 - B/W or Color Display Mode

0 = Color mode selected
1 = B/W mode selected

Bit 1 - Graphics or Alpha Mode Selection

0 = Alpha mode selected
1 = Graphics mode (320 by 200) selected

Bit 0 - Alpha Mode Selection, (40 by 25) or (80 by 25)

0 = 40 by 25 alpha mode selected
1 = 80 by 25 alpha mode selected

6.4.2 CGA Color Select Register

Write Only Port = 3D9h

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Graphics Mode Color Set</td>
</tr>
<tr>
<td>4</td>
<td>Alternate Color Set</td>
</tr>
<tr>
<td>3</td>
<td>High Intensity Component</td>
</tr>
<tr>
<td>2</td>
<td>Red Component</td>
</tr>
<tr>
<td>1</td>
<td>Green Component</td>
</tr>
<tr>
<td>0</td>
<td>Blue Component</td>
</tr>
</tbody>
</table>

Bits [7:6]

Reserved.

Bit 5 - 320 by 200 Color Set Select for the CGA (2-Bits per pixel)

0 = Background, green, red, brown colors
1 = Background, cyan, magenta, white colors
Bit 4 - Alternate Color Set Enable

- 0 = Background color in alpha mode
- 1 = Enable alternate color set in graphics mode

Bit 3 - High Intensity Component

Border color select in text modes and screen background color in 320 by 200 and 640 by 200 graphics mode.

Alphanumeric mode
- 0 = No selection
- 1 = Selects intensified border color

320 by 200 Graphics Mode
- 0 = No selection
- 1 = Selects intensified background and border color

640 by 200 Graphics Mode
- 0 = No selection
- 1 = Selects red foreground color

Bit 2 - Red Component

Border color select in text modes and screen background color in 320 by 200 and 640 by 200 graphics mode.

Alphanumeric Mode
- 0 = No component added
- 1 = Red component added to border color

320 by 200 Graphics Mode
- 0 = No component added
- 1 = Red component added to background and border color

640 by 200 Graphics Mode
- 0 = No component added
- 1 = Red component added to foreground color

Bit 1 - Green Component

Border color select in text modes, and screen background color in 320 by 200 and 640 by 200 graphics mode.

Alphanumeric Mode
- 0 = No component added
- 1 = Green component added to border color

320 by 200 Graphics Mode
- 0 = No component added
- 1 = Green component added to background and border color

640 by 200 Graphics Mode
- 0 = No component added
- 1 = Green component added to foreground color

6.4.3 CRT Status Register, MDA Operation

Read Only Port = 3BAh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>VSYNC Inactive</td>
</tr>
<tr>
<td>6:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>B/W Video Enabled</td>
</tr>
<tr>
<td>2:1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Display Enable Inactive</td>
</tr>
</tbody>
</table>

Bit 7 - Vertical Retrace

- 0 = Indicates that the raster is in vertical retrace mode
- 1 = Indicates vertical retrace is inactive (inverted VSYNC if I/O is mapped into 3BXh)

Bits [6:4]

Reserved.

Bit 3 - B/W Video Status

- 0 = B/W Video disabled
- 1 = B/W Video enabled

Bits [2:1]

Reserved.
6.4.4 CRT Status Register, CGA Operation

Bit 0 - Display Enable
0 = Display Enable is active
1 = Indicates that the screen border or blanking is active, Display Enable is inactive

6.4.5 AT&T/M24 Register

Write Only Port = 3DEh

This is a write only, 8-Bit register located at address 3DEh. It is used to control the 640 by 400 AT&T graphics mode. All Bits are set to zero by reset. This register is enabled by setting Bit 7 in register PR2.
7.0 PARADISE REGISTERS

7.1 INTRODUCTION

The WD90C33 has additional features that enhance the performance and functions of the basic VGA subsystem. To accomplish this, the WD90C33 architecture is optimized with additional I/O registers called Paradise registers.

The Paradise (PR) registers are located at I/O addresses that are not used in IBM compatible computers. All PR registers are read/write, and are set to 0 during power-on and reset unless otherwise noted.

NOTES

1. The designation 3?5h means that the register is mapped into either 3B5h in monochrome mode or 3D5h in color modes.
2. PR Register notation - XXX:YY where XXX is the data port address and YY is the register index. For example, address 3CF:0Fh indicates that the register base address is 3CFh, and 0Fh is the base register index.
3. Registers PR0 through PR4 and PR11 through PR1A are normally locked.

They are write protected at power-up by the hardware reset. In order to load those registers, the appropriate unlock register PR5 or PR10 must be loaded first with binary XXXXXX101. A register remains unlocked until another value is written to the unlocked register. Registers PR0 through PR5 are readable only if PR4 Bit 1 = 0. Registers PR10 through PR17 are read protected at power up by hardware reset. In order to read registers PR10 through PR17, load PR10 with 1XXX0XXX. The register remains readable until any other value is written to PR10. When registers PR10 through PR17 are read protected, reading them would show data to be FFh. Setting PR4 Bit 1 to 1 does not read protect registers PR10 through PR17. PR21-PR23 and PR30-PR35 are R/W protected by PR20. PR20 must be loaded with 48h to make it possible to read or write to PR21-PR23 and PR30-PR35.
PARADISE REGISTERS

<table>
<thead>
<tr>
<th>NO.</th>
<th>NAME</th>
<th>READ/ WRITE</th>
<th>ADDRESS (HEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR0(A)</td>
<td>Address Offset A</td>
<td>R/W</td>
<td>3CF.09</td>
</tr>
<tr>
<td>PR0(B)</td>
<td>Address Offset B (Alternate)</td>
<td>R/W</td>
<td>3CF.0A</td>
</tr>
<tr>
<td>PR1</td>
<td>Memory Size</td>
<td>R/W</td>
<td>3CF.0B</td>
</tr>
<tr>
<td>PR2</td>
<td>Video Select</td>
<td>R/W</td>
<td>3CF.0C</td>
</tr>
<tr>
<td>PR3</td>
<td>CRT Control</td>
<td>R/W</td>
<td>3CF.0D</td>
</tr>
<tr>
<td>PR4</td>
<td>Video Control</td>
<td>R/W</td>
<td>3CF.0E</td>
</tr>
<tr>
<td>PR5</td>
<td>Unlock (PR0 through PR4) Status</td>
<td>R/W</td>
<td>3CF.0F</td>
</tr>
<tr>
<td>PR10</td>
<td>Unlock (PR11 through PR17)</td>
<td>R/W</td>
<td>3B5.29</td>
</tr>
<tr>
<td>PR11</td>
<td>Configuration Switches</td>
<td>R/W</td>
<td>3B5.2A</td>
</tr>
<tr>
<td>PR12</td>
<td>Scratch Pad</td>
<td>R/W</td>
<td>3B5.2B</td>
</tr>
<tr>
<td>PR13</td>
<td>Interface H/2 Start</td>
<td>R/W</td>
<td>3B5.2C</td>
</tr>
<tr>
<td>PR14</td>
<td>Interface H/2 End</td>
<td>R/W</td>
<td>3B5.2D</td>
</tr>
<tr>
<td>PR15</td>
<td>Miscellaneous Control 1</td>
<td>R/W</td>
<td>3B5.2E</td>
</tr>
<tr>
<td>PR16</td>
<td>Miscellaneous Control 2</td>
<td>R/W</td>
<td>3B5.2F</td>
</tr>
<tr>
<td>PR17</td>
<td>Miscellaneous Control 3</td>
<td>R/W</td>
<td>3B5.30</td>
</tr>
<tr>
<td>PR18</td>
<td>CRTC Vertical Timing Overflow</td>
<td>R/W</td>
<td>3B5.3E</td>
</tr>
<tr>
<td>PR19</td>
<td>Signature Analyzer Control</td>
<td>R/W</td>
<td>3B5.3F</td>
</tr>
<tr>
<td>---</td>
<td>Reserved 3X5.31h through 3X5.3Ch</td>
<td>---</td>
<td>3B5.31-3B5.3C</td>
</tr>
<tr>
<td>PR20</td>
<td>Unlock Sequencer Extended Registers</td>
<td>W</td>
<td>3C5.06</td>
</tr>
<tr>
<td>PR21</td>
<td>Display Configuration and Scratch Pad</td>
<td>R/W</td>
<td>3C5.07</td>
</tr>
<tr>
<td>PR22</td>
<td>Scratch Pad</td>
<td>R/W</td>
<td>3C5.08</td>
</tr>
<tr>
<td>PR23</td>
<td>Scratch Pad</td>
<td>R/W</td>
<td>3C5.09</td>
</tr>
<tr>
<td>PR30</td>
<td>Memory Interface Write Buffer and FIFO Control</td>
<td>R/W</td>
<td>3C5.10</td>
</tr>
<tr>
<td>PR31</td>
<td>System Interface Control</td>
<td>R/W</td>
<td>3C5.11</td>
</tr>
<tr>
<td>PR32</td>
<td>Miscellaneous Control 4</td>
<td>R/W</td>
<td>3C5.12</td>
</tr>
<tr>
<td>PR33</td>
<td>DRAM Timing and Zero Wait State Control</td>
<td>R/W</td>
<td>3C5.13</td>
</tr>
<tr>
<td>PR34</td>
<td>Video Memory Mapping</td>
<td>R/W</td>
<td>3C5.14</td>
</tr>
<tr>
<td>PR35</td>
<td>Reserved</td>
<td>R/W</td>
<td>3C5.15</td>
</tr>
</tbody>
</table>

NOTES:
1. All PR register can be read/write protected. Refer to the particular PR register description for additional information.
2. A register description from locations such as 3CF.09h is the value read from, or written to, the location 3CFh, after a value of 09h has been written to the corresponding Index register 3CEh.

TABLE 7-1. PARADISE (PR) REGISTER SUMMARY
7.2 ADDRESS OFFSET REGISTERS
PR0(A) AND PR0(B)

7.2.1 PR0(A) - Address Offset Register A
Read/Write Port = 3CFh, Index = 09h
This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Primary Address Offset Bits</td>
</tr>
</tbody>
</table>

Bit 8 of this register is located at 3C5h, Index 14, Bit 6.

7.2.2 PR0(B) - CPU Address Offset Register B
Read/Write Port = 3CFh, Index = 0Ah
This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Alternate Address Offset Bits</td>
</tr>
</tbody>
</table>

Bit 8 of this register is located at 3C5h, Index 14, Bit 7.

The WD90C33 can control up to 2 Mbytes of display memory. However, DOS only assigns 128 Kbytes total memory space for display memory, which starts at A0000h and ends at BFFFFh. To help VGA reach the memory beyond this range, the WD90C33 has two CPU address offset registers, PR0(A) and PR0(B) which can be used to support more than 128 Kbytes of linear display memory address space.

- **4 Kbyte Address Offset**

 The CPU addresses are offset by the PR0 register setting as follows:

 - **Sequencer Extension Register 3C5h, Index = 11h, Bit 7 = 0**

 When PR1 Bit 3 = 0, PR0(A) is always selected as the CPU address offset register.

 Example 1. PR1 Bit 3 = 1 and the display memory is mapped into A0000 - BFFFF (128 Kbytes). PR0(A) offset CPU address range is B0000 - BFFFF, the PR0(B) offset CPU address range is A0000 - AFFFF. (If CPU address Bit A16 = 1, select PR0(A). Otherwise PR0(B) is selected.)

 Example 2. PR1 Bit 3 = 1 and the display memory is mapped into A0000 - AFFFF (64 Kbytes) or B0000 - B7FFF or B8000 - BFFFF (32 Kbytes). PR0(B) offset CPU address range is A0000 - A7FFF or B0000 - B7FFF. PR0(A) offset CPU address range is A8000 - AFFFF or B8000 - BFFFF. (If CPU address Bit A15 = 1, select PR0(A). Otherwise PR0(B) is selected.)

 - **Sequencer Extension Register 3C5h, Index = 11h, Bit 7 = 1**

 Both PR0(A) and PR0(B) are enabled. A CPU memory write selects PR0(B) as the offset register. During a CPU memory read cycle, PR0(A) is selected as the offset register.

7.3 PARADISE (PR) REGISTER DESCRIPTIONS

7.3.1 PR1 - Memory Size
Read/write Port = 3CFh, Index = 0Bh
This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Memory Size Select</td>
</tr>
<tr>
<td>5:4</td>
<td>Memory Mapping</td>
</tr>
<tr>
<td>3</td>
<td>Enable Alternate Address Offset Register PR0(B)</td>
</tr>
<tr>
<td>2</td>
<td>16-Bit System Interface</td>
</tr>
<tr>
<td>1</td>
<td>16-Bit BIOS ROM</td>
</tr>
<tr>
<td>0</td>
<td>BIOS ROM Map Out</td>
</tr>
</tbody>
</table>

This register is 8-Bits wide. Bits PR1[1:0] are latched internally at power on reset from the corresponding memory data bus pins MD10, MD0,
using either pull-up or pull-down external resistors. Pull-up resistors on MD10, MD0 cause PR1[1:0] Bits to be latched low.

Bits[7:6] - Memory Size

These two Bits control memory size and memory organization. They both must be set to reflect the amount of memory installed. IF PR16(1) is set to 1, the memory mapping will be set identical to the IBM VGA mode, regardless of PR1(7), PR1(6). PR18(7) is used in conjunction with these two Bits to control memory address mapping.

Tables 7-2 through 7-6 list the applicable settings of PR1 Bits 7 and 6 for different memory organizations.

Refer to notes following Table 7-6.

<table>
<thead>
<tr>
<th>PR1(7) = 0, PR1(6) = 0, PR18(7)=0, IBM VGA MODE, 256 KBYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS FROM CPU OR CRTC</td>
</tr>
<tr>
<td>CPU</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>PA(^5)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>A(15)</td>
</tr>
<tr>
<td>A(14)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>A(2)</td>
</tr>
<tr>
<td>A(1)</td>
</tr>
<tr>
<td>A(0)</td>
</tr>
</tbody>
</table>

TABLE 7-2. IBM COMPATIBLE VGA MEMORY ORGANIZATION, 256K BYTES TOTAL
Refer to notes following Table 7-6.

TABLE 7-3. WD90C33 MEMORY ORGANIZATION, 256K BYTES

<table>
<thead>
<tr>
<th>BYTE WIDE</th>
<th>WORD WIDE</th>
<th>DOUBLEWORD WIDE</th>
<th>ADDRESS TO VIDEO MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
<td>CRT/ BITBLT</td>
</tr>
<tr>
<td>PA⁵</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A(15)</td>
<td>CA(15)</td>
<td>A(15)</td>
<td>CA(14)</td>
</tr>
<tr>
<td>A(14)</td>
<td>CA(14)</td>
<td>A(14)</td>
<td>CA(13)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A(2)</td>
<td>CA(2)</td>
<td>A(2)</td>
<td>CA(1)</td>
</tr>
<tr>
<td>A(1)</td>
<td>CA(1)</td>
<td>A(1)</td>
<td>CA(0)</td>
</tr>
<tr>
<td>A(0)</td>
<td>CA(0)</td>
<td>A(16) or³ XRN(5)</td>
<td>CA(15)</td>
</tr>
</tbody>
</table>

TABLE 7-4. WD90C33 MEMORY ORGANIZATION, 512K BYTES, 128K BYTES PER PLANE

Refer to notes following Table 7-6.

<table>
<thead>
<tr>
<th>BYTE WIDE</th>
<th>WORD WIDE</th>
<th>DOUBLEWORD WIDE</th>
<th>ADDRESS TO VIDEO MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
<td>CRT/ BITBLT</td>
</tr>
<tr>
<td>PA⁵</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>A(16)</td>
<td>CA(16)</td>
<td>A(17)</td>
<td>CA(16)</td>
</tr>
<tr>
<td>A(15)</td>
<td>CA(15)</td>
<td>A(15)</td>
<td>CA(14)</td>
</tr>
<tr>
<td>A(14)</td>
<td>CA(14)</td>
<td>A(14)</td>
<td>CA(13)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A(2)</td>
<td>CA(2)</td>
<td>A(2)</td>
<td>CA(1)</td>
</tr>
<tr>
<td>A(1)</td>
<td>CA(1)</td>
<td>A(1)</td>
<td>CA(0)</td>
</tr>
<tr>
<td>A(0)</td>
<td>CA(0)</td>
<td>A(16) or³ XRN(5)</td>
<td>CA(15)</td>
</tr>
</tbody>
</table>
Refer to notes following Table 7-6.

PR1(7) = 1, PR1(6) = 1, PR18(7)=0, WD VGA MODE, 1 MBYTE

<table>
<thead>
<tr>
<th>ADDRESS FROM CPU OR CRTC</th>
<th>BYTE WIDE</th>
<th>WORD WIDE</th>
<th>DOUBLEWORD WIDE</th>
<th>ADDRESS TO VIDEO MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
</tr>
<tr>
<td>A(17)</td>
<td>CA(17)</td>
<td>A(17)</td>
<td>CA(16)</td>
<td>A(19)</td>
</tr>
<tr>
<td>A(16)</td>
<td>CA(16)</td>
<td>A(16)</td>
<td>CA(15)</td>
<td>A(18)</td>
</tr>
<tr>
<td>A(15)</td>
<td>CA(15)</td>
<td>A(15)</td>
<td>CA(14)</td>
<td>A(17)</td>
</tr>
<tr>
<td>A(14)</td>
<td>CA(14)</td>
<td>A(14)</td>
<td>CA(13)</td>
<td>A(16)</td>
</tr>
<tr>
<td>A(13)</td>
<td>CA(13)</td>
<td>A(13)</td>
<td>CA(12)</td>
<td>A(15)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>A(2)</td>
<td>CA(2)</td>
<td>A(2)</td>
<td>CA(1)</td>
<td>A(4)</td>
</tr>
<tr>
<td>A(1)</td>
<td>CA(1)</td>
<td>A(1)</td>
<td>CA(0)</td>
<td>A(3)</td>
</tr>
<tr>
<td>A(0)</td>
<td>CA(0)</td>
<td>A(16) or 3</td>
<td>XRN(5)</td>
<td>CA(15)</td>
</tr>
</tbody>
</table>

TABLE 7-5. WD90C33 MEMORY ORGANIZATION, 1M BYTES, 256K BYTES PER PLANE

Refer to notes following Table 7-6.

PR1(7) = 1, PR1(6) = 1, PR18(7)=1, WD VGA MODE, 2 MBYTE

<table>
<thead>
<tr>
<th>ADDRESS FROM CPU OR CRTC</th>
<th>BYTE WIDE</th>
<th>WORD WIDE</th>
<th>DOUBLEWORD WIDE</th>
<th>ADDRESS TO VIDEO MEMORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
<td>CRT/ BITBLT</td>
<td>CPU</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>A(17)</td>
<td>CA(17)</td>
<td>A(17)</td>
<td>CA(16)</td>
<td>A(19)</td>
</tr>
<tr>
<td>A(16)</td>
<td>CA(16)</td>
<td>A(16)</td>
<td>CA(15)</td>
<td>A(18)</td>
</tr>
<tr>
<td>A(15)</td>
<td>CA(15)</td>
<td>A(15)</td>
<td>CA(14)</td>
<td>A(17)</td>
</tr>
<tr>
<td>A(14)</td>
<td>CA(14)</td>
<td>A(14)</td>
<td>CA(13)</td>
<td>A(16)</td>
</tr>
<tr>
<td>A(13)</td>
<td>CA(13)</td>
<td>A(13)</td>
<td>CA(12)</td>
<td>A(15)</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>A(2)</td>
<td>CA(2)</td>
<td>A(2)</td>
<td>CA(1)</td>
<td>A(4)</td>
</tr>
<tr>
<td>A(1)</td>
<td>CA(1)</td>
<td>A(1)</td>
<td>CA(0)</td>
<td>A(3)</td>
</tr>
<tr>
<td>A(0)</td>
<td>CA(0)</td>
<td>A(16) or 3</td>
<td>XRN(5)</td>
<td>CA(15)</td>
</tr>
</tbody>
</table>

TABLE 7-6. WD90C33 MEMORY ORGANIZATION, 2M BYTES, 256K BYTES PER PLANE
NOTES FOR TABLES 7-2 THROUGH 7-6

1. A[20:0] are WD90C33 internally modified CPU addresses (CPU address plus offset address).

2. CA[18:0] are either CRT Character Address Counter bits or BITBLT generated address bits.

3. XRN(5) represents the inverted Bit 5 or the Miscellaneous Output Register (3C2h). XRN(5) can be used to replace CPU address Bits in order to select memory pages in word mode. For IBM compatible memory mapping, 3C5.4 (1) = 1 selects XRN(5) to replace CPU address Bits.

In other memory mapping schemes, if PR1[7:6] are not set to 00, 3C5.4 (1) = 1 and PR16 (2) = 1 will select XRN(5) to replace address Bits.

4. CA(15) is selected as MA(0) if CRTC Mode Register 17, Bit 5 = 1 in word addressing modes.

5. PA is the memory plane select Bit when the DRAM Interface is set for 16 Bits.
 PA = 0 selects Plane 1, 0
 PA = 1 selects Plane 3, 2

6. MA[17:0] are divided into RAS and CAS addresses as follows:

<table>
<thead>
<tr>
<th>MEMORY CONFIGURATION</th>
<th>MEMORY ADDRESS BITS</th>
<th>RAS OR CAS ADDRESS BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>256K X 4 DRAM</td>
<td>MA(16)-MA(8)</td>
<td>RAS(8)-RAS(0)</td>
</tr>
<tr>
<td></td>
<td>MA(17), MA(7)-MA(0)</td>
<td>CAS(8)-CAS(0)</td>
</tr>
<tr>
<td>256K X 16 DRAM</td>
<td>MA(16)-MA(8)</td>
<td>RAS(8)-RAS(0)</td>
</tr>
<tr>
<td></td>
<td>MA(17), MA(7)-MA(0)</td>
<td>CAS(8)-CAS(0)</td>
</tr>
<tr>
<td>64K X 16 DRAM</td>
<td>MA(15)-MA(8)</td>
<td>RAS(7)-RAS(0)</td>
</tr>
<tr>
<td></td>
<td>MA(7)-MA(0)</td>
<td>CAS(7)-CAS(0)</td>
</tr>
<tr>
<td>MA(17,16)=00</td>
<td>Select first 64K bank</td>
<td></td>
</tr>
<tr>
<td>MA(17,16)=01</td>
<td>Select second 64K bank</td>
<td></td>
</tr>
</tbody>
</table>
These two Bits select the way the display memory is mapped into CPU address space.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>IBM VGA mapping CPU addresses are decoded from 0A0000h - 0BFFFFh from the lowest 1 Mbyte CPU address space (depending on 3CF.06 Bits 2 and 3).</td>
</tr>
<tr>
<td>01</td>
<td>First 256 Kbyte in any 1 Mbyte CPU addressing space (X00000h - X3FFFFh)</td>
</tr>
<tr>
<td>10</td>
<td>First 512 Kbyte in any 1 Mbyte CPU addressing space (X00000h - X7FFFFh)</td>
</tr>
<tr>
<td>11</td>
<td>In any 1 Mbyte CPU address space (X00000h - XFFFFFh)</td>
</tr>
</tbody>
</table>

NOTE:
PR34(3C5.14) Bits [3:0] control which 1 Mbyte of CPU address space the WD90C33 maps (refer to Section 7.3.26).

Bit 3 - Enable Alternate Address Offset
Register PRO(B)
0 = PRO(A) is selected as address offset
1 = PRO(B) is selected as address offset

Bit 2 - Enable 16 Bit system Interface bus
0 = System interface is 8 Bits
1 = System interface is 16 Bits

Bit 1 - 16-Bit BIOS ROM
0 = BIOS ROM access is 8 Bits
1 = BIOS ROM access is 16 Bits

A pull-down resistor on MD10 sets this Bit to 1 after power-on reset.

Bit 0 - BIOS ROM Map Out
0 = The BIOS ROM is available
1 = The BIOS ROM is mapped out

A pull-down resistor on MD0 sets this Bit to 1 at power-on or reset.

7.3.2 PR2 - Video Select Register
Read/write Port = 3CFh, Index = 0Ch
This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>AT&T/M24 Mode Enable</td>
</tr>
<tr>
<td>6</td>
<td>6845 Compatibility</td>
</tr>
<tr>
<td>5</td>
<td>Character Map Select</td>
</tr>
<tr>
<td>4:3</td>
<td>Character Clock Period Control</td>
</tr>
<tr>
<td>2</td>
<td>Underline/Character Map</td>
</tr>
<tr>
<td>1</td>
<td>Third Clock Select Line VCLK2</td>
</tr>
<tr>
<td>0</td>
<td>Force VCLK (overrides SEQ1 Bit 3)</td>
</tr>
</tbody>
</table>

Bit 7 - Enable AT&T/M24 Register and Mode
0 = Disable
1 = Enable

Bit 6 - 6845 Compatibility
0 = VGA or EGA mode
1 = Non-VGA (6845) mode

Bit 5 - Character Map Select
Bits 5 and 2 of this register, and Bit 4 of the Attribute byte, enables character maps from Planes 2 or 3 to be selected as shown in the following list:

<table>
<thead>
<tr>
<th>PR15 (2)</th>
<th>3DE (2)</th>
<th>PR2 (5)</th>
<th>PR2 (2)</th>
<th>ATT (4)</th>
<th>PLANE SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

The above functions are overridden by setting PR15(2) or 3DE(2) to 1 (refer to Section 7.3.12).
Bits [4:3] - Character Clock Period Control

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>IBM VGA character clock (8 or 9 dots)</td>
</tr>
<tr>
<td>0 1</td>
<td>7 dots (used for 132-character text mode only)</td>
</tr>
<tr>
<td>1 0</td>
<td>9 dots</td>
</tr>
</tbody>
</table>
| 1 1 | 6 dots if PR17(5) = 0
 | 10 dots if PR17(5) = 1 |

NOTE:
The character clock period control functions have no effect in graphics modes (Graphics Mode always uses eight dots)

Bit 2 - Underline and Character Map Select

Setting this Bit to 1 enables underline for all odd values of attribute codes, e.g., programming 1 gives blue underline. It overrides the background color function of the Attribute Code Bit 3, which is forced to 0. Therefore, only eight choices of background colors are selectable. This function allows trading background colors for more character maps. In conjunction with PR2(5), this Bit is also decoded to enable character maps from planes 2 or 3. Refer to the PR2, Bit 5 description for additional information.

Bit 1 - Third Clock Select Line

This Bit is the third clock select line VCLK2 which is sent to the external clock chip if CNF(3) = 1. When CNF(3) = 0, it locks the internal video clock select multiplexer.

Bit 0 - Force VCLK

This Bit forces horizontal sync timing clock of the CRT Control Register to VCLK.

Uses VCLK when Sequencer Register 1, Bit 3, is set for VCLK/2. This is for compatibility modes that require locking the CRT Control Register timing parameters.

7.3.3 PR3 - CRT Lock Control Register

Read/write Port = 3CFh, Index= 0Dh

This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Lock VSYNC Polarity</td>
</tr>
<tr>
<td>6</td>
<td>Lock HSYNC Polarity</td>
</tr>
<tr>
<td>5</td>
<td>Lock Horizontal Timing</td>
</tr>
<tr>
<td>4</td>
<td>Bit 9 Control</td>
</tr>
<tr>
<td>3</td>
<td>Bit 8 Control</td>
</tr>
<tr>
<td>2</td>
<td>CRT Control</td>
</tr>
<tr>
<td>1</td>
<td>Lock Prevention</td>
</tr>
<tr>
<td>0</td>
<td>Lock Vertical Timing</td>
</tr>
</tbody>
</table>

Bit 7 - Lock VSYNC Polarity

This Bit locks VSYNC polarity as programmed at Port 3C2h, Bit 7.

Bit 6 - Lock HSYNC Polarity

This Bit locks HSYNC polarity as programmed at Port 3C2h, Bit 6.

Bit 5 - Lock Horizontal Timing

This Bit locks CRT Control Registers of Groups 4 and 0. It prevents applications software from unlocking Group 0 registers by setting 3?5.11 Bit 7 = 0.

Bit 4 - Bit 9 Control

Bit 9 of CRT Controller Start Memory Address High Register 3?5.0C and Bit 9 of Cursor Location High 3?5.0E. This Bit corresponds to Character Address CA(17).

Bit 3 - Bit 8 Control

Bit 8 of CRT Controller Start Memory Address High Register 3?5.0C and Bit 8 of Cursor Location High 3?5.0E. This Bit corresponds to Character Address CA(16).

Bit 2 - Cursor Control

Cursor Start, Stop, Preset Row Scan and Maximum Scan Line Address registers value multiplied by two.
Bit 1 - Lock Prevention
When set to 1, this Bit prevents attempts by applications software to lock registers of Group 1 by setting 3?5.11, Bit 7 = 1.

Bit 0 - Lock vertical timing
When set to 1, this Bit locks CRTC registers of Groups 2 and 3 and overrides attempts by applications software to unlock Group 2 registers by setting 3?5.11, Bit 7 = 0.

7.3.4 CRT Controller Register Locking
Register locking is controlled by four Bits. They are PR3(5,1,0) and 3?5.11(7) (i.e. IBM Vertical Retrace End Register Bit 7 controlled by Index register 11). When 3?5.11 Bit 7 = 1, CRT controller registers [R0:7] are write-protected per VGA definition. For more information on the five groups and their locking schemes, refer to the following sections.

- Group 0
These registers are locked if PR3(5) = 1 OR 3?5.11(7) = 1.

<table>
<thead>
<tr>
<th>ADDRESS 3?5h</th>
<th>INDEX</th>
<th>BIT(S)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>7:0</td>
<td>Horizontal Total Characters per Scan</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>7:0</td>
<td>Horizontal Display Enable End</td>
</tr>
<tr>
<td></td>
<td>02</td>
<td>7:0</td>
<td>Start Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>03</td>
<td>7:0</td>
<td>End Horizontal Blanking</td>
</tr>
<tr>
<td></td>
<td>04</td>
<td>7:0</td>
<td>Start Horizontal Retrace</td>
</tr>
<tr>
<td></td>
<td>05</td>
<td>7:0</td>
<td>End Horizontal Retrace</td>
</tr>
</tbody>
</table>

- Group 1
These registers are locked if PR3(1) = 0 AND 3?5.11(7) = 1.

<table>
<thead>
<tr>
<th>ADDRESS 3?5h</th>
<th>INDEX</th>
<th>BIT(S)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>07</td>
<td>6</td>
<td>Vertical Display Enable End Bit 9</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1</td>
<td>Vertical Display Enable End Bit 8</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>1</td>
<td>Vertical Display Enable End Bit 10</td>
</tr>
</tbody>
</table>

- Group 2
These registers are locked if PR3(0) = 1 OR 3?5.11(7) = 1.

<table>
<thead>
<tr>
<th>ADDRESS 3?5h</th>
<th>INDEX</th>
<th>BIT(S)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>06</td>
<td>7:0</td>
<td>Vertical Total</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>7</td>
<td>Vertical Retrace Start Bit 9</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>5</td>
<td>Vertical Total Bit 9</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>3</td>
<td>Start Vertical Blank Bit 8</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>2</td>
<td>Vertical Retrace Start Bit 8</td>
</tr>
<tr>
<td></td>
<td>07</td>
<td>0</td>
<td>Vertical Total Bit 8</td>
</tr>
<tr>
<td></td>
<td>09</td>
<td>5</td>
<td>Start Vertical Blank Bit 9</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>0</td>
<td>Vertical Total Bit 10</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>2</td>
<td>Vertical Retrace Start Bit 10</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>3</td>
<td>Start Vertical Blank Bit 10</td>
</tr>
</tbody>
</table>

- Group 3
These registers are locked if PR3(0) = 1.

<table>
<thead>
<tr>
<th>ADDRESS 3?5h</th>
<th>INDEX</th>
<th>BIT(S)</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>7:0</td>
<td>Vertical Retrace Start</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3:0</td>
<td>Vertical Retrace End</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>7:0</td>
<td>Start Vertical Blanking</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>7:0</td>
<td>End Vertical Blanking</td>
</tr>
</tbody>
</table>
• **Group 4**

This register is locked if PR3(5) = 1.

CRTC Mode Control Register 17 (Bit 2) - Selects divide-by-two vertical timing.

7.3.5 PR4 - Video Control Register

Read/write Port = 3CFh, Index = 0Eh

The video monitor output control register (PR4) can be programmed to tristate the CRT display control outputs, as well as video data for the RAMDAC and memory control outputs.

This register is unlocked if PR5[2:0] = 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>BLANK/Display Enable</td>
</tr>
<tr>
<td>6</td>
<td>PCLK = VCLK</td>
</tr>
<tr>
<td>5</td>
<td>Tristate Video Outputs</td>
</tr>
<tr>
<td>4</td>
<td>Tristate Memory Control Outputs</td>
</tr>
<tr>
<td>3</td>
<td>Override CGA Enable Video Bit</td>
</tr>
<tr>
<td>2</td>
<td>Lock Internal Palette and Overscan Registers</td>
</tr>
<tr>
<td>1</td>
<td>EGA Compatibility</td>
</tr>
<tr>
<td>0</td>
<td>Extended 256-color Shift Register Control</td>
</tr>
</tbody>
</table>

Bit 7 - BLANK/Display Enable

This Bit controls the output signal BLANK. Normally in the VGA mode, BLANK is used by the external video DAC to generate blanking.

With this Bit set to 1, the BLANK output supplies a display enable signal. A choice of two types of display enable timing can be selected and is determined by PR15(1).

Bit 6 - Select PCLK equal to VCLK

- 0 = PCLK is either the inverted internal video dot clock or half the dot clock frequency, depending upon the video mode
- 1 = PCLK is always the non-inverted VCLK input clock

Bit 5 - Tristate Video Outputs

With this Bit set to 1, the video outputs VID[7:0], HSYNC, VSYNC, and BLANK are tristated.

Bit 4 - Tristate Memory Control Outputs

With this Bit set to 1, the memory address bus, MA[8:0], and all ten DRAM control signals are tristated.

Bit 3 - Override CGA Enable Video Bit

Overrides the CGA Enable Video Bit 3 of mode register 3D8h, only in 80 by 25 alpha CGA (Non-VGA) mode. Override effectively forces this Bit to 1. Power-on-reset causes no override.

Bit 2 - Lock Internal Palette and Overscan Registers

With this Bit set to 1, the internal palette and overscan registers are locked.

Bit 1 - EGA compatibility

Setting the Bit to 1 selects the EGA Compatible Mode. Reads are disabled to all registers that are write-only registers in the IBM EGA mode. Also, registers at 3COh/3C1h change to write-only mode. Reading of PR5 through PR0 is disabled. In VGA mode [PR(4) Bit 1 = 0], 3C0h register is read/write while 3C1h register is read only, per the Attribute Controller Register definitions.

Bit 0 - Extended Shift Register Control

With this Bit set to 1, the extended 256-color mode is selected (IBM Mode 13 is not included).

7.3.6 PR5 - General Purpose Status Bits

Read/write Port = 3CFh, Index = 0Fh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Read CNF(7) Status</td>
</tr>
<tr>
<td>6</td>
<td>Read CNF(6) Status</td>
</tr>
<tr>
<td>5</td>
<td>Read CNF(5) Status</td>
</tr>
<tr>
<td>4</td>
<td>Read CNF(4) Status</td>
</tr>
<tr>
<td>3</td>
<td>Read CNF(8) Status</td>
</tr>
<tr>
<td>2</td>
<td>PR4-PR0 Unlock</td>
</tr>
<tr>
<td>1</td>
<td>PR4-PR0 Unlock</td>
</tr>
<tr>
<td>0</td>
<td>PR4-PR0 Unlock</td>
</tr>
</tbody>
</table>

Bits [7:3] - CNF Status

Bits [7:3] provide a means of reading the read only Configuration Register (CNF), Status Bits 8:4]. CNF[8:4] are described in Section 9.
Bits [2:0] - PR4-PR0

These are read/write Bits and are cleared by reset. They provide lock and unlock capability for PR registers PR4 through PR0. The PR4 through PR0 registers are unlocked when "X5h" is written to PR5. They remain unlocked until any other value is written to PR5.

Setting PR4 Bit 1 to 1, read protects registers PR5 through PR0.

<table>
<thead>
<tr>
<th>PR5</th>
<th>PR4-PR0 STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0</td>
<td>Write protected</td>
</tr>
<tr>
<td>0 X X</td>
<td>Write protected</td>
</tr>
<tr>
<td>X 1 X</td>
<td>Write protected</td>
</tr>
<tr>
<td>X X 0</td>
<td>Write protected</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Write enabled</td>
</tr>
</tbody>
</table>

7.3.7 PR10 - Unlock PR1A, PR[17:11]

Read/write Port = 375h, Index = 29h

PR10 is a read/write register and is cleared by reset. PR10 controls access to registers PR1A and PR17 through PR11.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PR1A and PR17 through PR11 Read Enable Bit 1</td>
</tr>
<tr>
<td>6:4</td>
<td>Reserved (Must be set to 0)</td>
</tr>
<tr>
<td>3</td>
<td>PR1A and PR17 through PR11 Read Enable Bit 0</td>
</tr>
<tr>
<td>2:0</td>
<td>PR1A and PR17 through PR11 Write Enable</td>
</tr>
</tbody>
</table>

Bits 7, 3 - PR1A, PR[17:11] Read Enable

Bits (7, 3) enable read operations for PR1A and PR17 through PR11.

<table>
<thead>
<tr>
<th>BIT7</th>
<th>BIT3</th>
<th>PR1A and PR17 - PR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>Read protected (Read back data FFh)</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>Read enabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Read enabled</td>
</tr>
</tbody>
</table>

Bits 6:4 - Reserved

Bits [6:4] are reserved, and must be set to 0.

Bits 2:0 - PR1A, PR[17:11] Write Enable

Bits [2:0] enable write operations for PR1A and PR17 through PR11.

<table>
<thead>
<tr>
<th>PR10</th>
<th>PR1A and PR17 - PR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1 0</td>
<td>PR1A and PR17 - PR11</td>
</tr>
<tr>
<td>0 X X</td>
<td>Write protected</td>
</tr>
<tr>
<td>X 1 X</td>
<td>Write enabled</td>
</tr>
<tr>
<td>X X 0</td>
<td>Write enabled</td>
</tr>
</tbody>
</table>

7.3.8 PR11 - Configuration Switches

Read/write Port = 375h, Index = 2Ah

The configuration switch details are stored in register PR11.

This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>General Purpose</td>
</tr>
<tr>
<td>6</td>
<td>General Purpose</td>
</tr>
<tr>
<td>5</td>
<td>General Purpose</td>
</tr>
<tr>
<td>4</td>
<td>General Purpose</td>
</tr>
<tr>
<td>3</td>
<td>EGA Emulation on Analog Display</td>
</tr>
<tr>
<td>2</td>
<td>Lock Clock Select</td>
</tr>
<tr>
<td>1</td>
<td>Lock Graphics and Sequencer Screen Control</td>
</tr>
<tr>
<td>0</td>
<td>Lock 8/9 Character Clock</td>
</tr>
</tbody>
</table>
Bits [7:4] - Configuration Switches
SW4 through SW1

These read/write Bits from corresponding memory data bus pins MD[15:12] are latched internally at power-on-reset with either pull-up or pull-down external resistors. Pulling-up MD[15:12] causes PR11[7:4] to be latched high. These Bits can be read from Bit 4 of the Input Status Register at Port 3C2h if the EGA compatibility Bit PR4(1) = 1. Selection of the Bit to be read is determined by Bits 3 and 2 of the Miscellaneous Output Register at Port 3C2h, as follows.

<table>
<thead>
<tr>
<th>WRITE 3C2h</th>
<th>READ 3C2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 3</td>
<td>Bit 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

These Bits may be used as general purpose scratch Bits.

Bit 3 - Select EGA Emulation on a PS/2 (VGA-compatible, analog) display

This is a read/write Bit and is set to zero at power-on-reset.

Bit 2 - Lock Clock Select

This Bit locks the internal video clock select multiplexer and disables loading of an external clock chip through VCLK1.

This is a read/write Bit and is set to zero at power-on-reset.

Bit 1 - Lock Graphics Controller/Sequencer Screen Control

Setting this Bit to 1 prevents modification of the following Bits in the Graphics Controller as well as the Sequencer:

Graphics Controller3CF.05 Bits [6:5] Sequencer 3C5.01 Bits [5:2] Sequencer3C5.03 Bits [5:0]

Although the internal functions selected by the graphics controller and sequencer Bits are locked by setting PR11 Bit 1 to 1, they appear unlocked to the system processor during read operation.

This is a read/write Bit and is set to zero at power-on-reset.

Bit 0 - Lock 8/9 Dots

Setting this Bit to 1 prevents modification of the Clocking Mode Sequencer Register 3C.01, Bit 0.

With this Bit set to 1, eight and nine dot wide character timing is locked. Register 3C.01 Bit 0 still appears unlocked to the system processor during read operations.

This is a read/write Bit and is set to zero at power-on-reset.

7.3.9 PR12 - Scratch Pad

Read/write Port = 375h, Index = 2Bh

This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Scratch Pad Bits [7:0]</td>
</tr>
</tbody>
</table>

The data in this register is unaffected by hardware reset and undefined at power-up.

7.3.10 PR13 - Interlace H/2 Start

Read/write Port = 375h, Index = 2Ch

This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:0</td>
<td>Interlaced H/2 Start</td>
</tr>
</tbody>
</table>

The data in this register is unaffected by hardware reset and undefined at power-up.

In interlaced operations, this register defines the starting horizontal character count at which vertical timing is clocked on alternate fields. Interlaced operation is enabled by setting PR14(5) to 1.

All other standard non-interlaced modes are unaffected by the contents of this register. This register must be programmed with a value derived from the values chosen to be programmed into the Horizontal Retrace Start Register (375.04) and Horizontal Total Register (375.00):

PR13[7:0] = [HORIZONTAL RETRACE START] - [(HORIZONTAL TOTAL + 5)/2] + HRD
NOTE
In the preceding expression, HRD = Horizontal Retrace Delay, determined by Bits 6 and 5 of the Horizontal Retrace End Register (3?5.05).

7.3.11 PR14 - Interface H/2 End
Read/write Port = 3?5h, Index = 2Dh
This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Enable IRQ</td>
</tr>
<tr>
<td>6</td>
<td>Vertical Double Scan for EGA on PS/2 Display</td>
</tr>
<tr>
<td>5:0</td>
<td>Enable Interlaced Mode</td>
</tr>
<tr>
<td></td>
<td>Interlaced H/2 End</td>
</tr>
</tbody>
</table>

Bits 7 through 5 are set to 0 by reset.

Bits 4 through 0 are unaffected by hardware reset and undefined at power-up.

Bit 7 - Enable IRQ
This Bit may be set to enable CRT interrupts to be generated when configured for AT BUS operation, allowing EGA compatibility support for interrupt-driven EGA applications. For VGA operation with an AT BUS, interrupts are not used and this Bit should be set to 0. This Bit should not be set to 1 in MicroChannel operation.

0 = IRQ disabled (Used in VGA operations with an AT bus and MicroChannel operations)
1 = IRQ enabled

Bit 6 - Vertical Double Scan
This Bit should be set to 1 when emulating EGA on PS/2 display. Setting this Bit to 1 causes the CRTC's Vertical Displayed Line Counter and Row Scan Counter to be clocked by divide-by-two horizontal timing, if vertical sync polarity (3C2h Bit 7 = 0) is programmed to be positive. Therefore, the relationship between the actual number of lines displayed [N] and the data [n] programmed into the Vertical Display Enable End register is: N = 2(n+1).

Likewise, the relationship between the actual number of scan lines per character row [N] and the data [n] programmed in the maximum Scan Line register holds true.

Bit 7 - Interlaced Mode
The interlaced mode can be used in those video modes in which the data programmed into the Maximum Scan Line Address register [3?5.09] = 0XX00000. Line compare and double scan are not supported.

0 = Interlaced Mode not enabled
1 = Interlaced Mode is enabled

Bits [4:0] - Interlaced H/2 End Bits [4:0]
Add the contents of the Interlaced H/2 Start Register PR13 to the horizontal sync width (same as defined by 3X5.04,05). Program the five LSBs of the sum into these Bit locations.

7.3.12 PR15 - Miscellaneous Control 1
Read/write Port = 3?5h, Index = 2Eh
This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Read 46E8h Enable</td>
</tr>
<tr>
<td>6</td>
<td>High VCLK</td>
</tr>
<tr>
<td>5</td>
<td>VCLK1 and VCLK2 Latched Outputs</td>
</tr>
<tr>
<td>4</td>
<td>VCLK = MCLK</td>
</tr>
<tr>
<td>3</td>
<td>8514/A Interlaced Compatibility</td>
</tr>
<tr>
<td>2</td>
<td>Enable Page Mode</td>
</tr>
<tr>
<td>1</td>
<td>Select Display Enable</td>
</tr>
<tr>
<td>0</td>
<td>Disable Border</td>
</tr>
</tbody>
</table>

Bit 7 - Enable Reading Port 46E8h
This Bit is functional only if AT BUS architecture [CNF(2)-1] is selected.

With this Bit set to 1, I/O Port 46E8h may be read, regardless of the state of its own Bits 4 and 3 and of Port 102h, Bit 0 (sleep Bit). Only Bits[4:0] of Port 46E8h are readable, Bits [7:5] are 0.

Bit 6 - High VCLK
This Bit should be set to 1 when (MCLK in MHz / VCLK in MHz) equals 1.5, or in an extended 256-color mode.

With this Bit set to 1, memory timing is adjusted to allow use of a video clock (VCLK) frequency which is much higher than the memory clock (MCLK) frequency.
Bit 5 - Latched VCLK1 and VCLK2
This Bit is used only if CNF(3) = 1, which configures the VCLK1 and VCLK2 pins as outputs.

With this Bit set to 1, outputs VCLK2 and VCLK1 are equal to Bits 3 and 2 of I/O write register (Miscellaneous Output Register) at Port 3C2h, respectively.

Bit 4 - Select MCLK as Video Clock
With this Bit set to 1, MCLK input is selected for the source of all video timing. The other three VCLK inputs can not be selected when this Bit is set.

Bit 3 - Interlaced Compatibility
This Bit should be set to 1 only if interlaced mode is selected (see PR14) and exact timing emulation of the IBM 8514/A's interlaced video timing is required.

With this Bit set to 1, vertical sync is generated from the trailing edge of non-skewed horizontal sync instead of the leading edge, as generated for VGA timing. Also, two VCLK delays are removed from the default VGA video dot path delay chain.

Bit 2 - Select Page Mode Addressing
Graphics Modes automatically use Page Mode addressing.

Alpha modes require this Bit to be set to 1 for screen refresh memory read cycles to use Page Mode addressing. Setting this Bit to 1 in any Alpha Mode overrides the character map select functions of PR2(2) and PR2(5).

Page Mode addressing requires less time than RAS-CAS addressing, therefore, selecting Page Mode addressing increases the bandwidth for the CPU to access video memory by 30-40%.

PR15(2) should be set to 1 if 132 Character Mode timing is selected (see description of PR2).

When PR15(2) is set to 1, it redefines the Character Map Select Register (3C5.03). One of eight 8K memory segments containing a pair of maps in Plane 3 or Plane 2 is addressed by Bits[2:0] of this register while the map selection is determined by Bits[4:3]. A pair of adjacent 8K character maps in Planes 3 and 2, (adjacent in the sense that they have the same addressing) may be selected by Bit 3 of the Attribute Code.

The Character Attribute Bit 3 (refer to Section 5.8.4), in conjunction with Bits 4 and 3 of the Character Map Select Register (3C5.03), determine a character map from either Plane 3 or Plane 2 as shown by the following table.

The following Character Map Select functions override the functions of PR2(5) and PR2(2).

<table>
<thead>
<tr>
<th>PR15 (2)</th>
<th>3C5.03 (4)</th>
<th>3C5.03 (3)</th>
<th>ATT (3)</th>
<th>PLANE SELECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>3</td>
</tr>
</tbody>
</table>

PR15, Bit 2 must be set to 1 before loading the character maps into the video DRAM, because the addressing of the page mode character maps differs from the addressing of the default, non-page mode. However, setting this Bit to 1, internally redirects all necessary addressing to make loading the character maps the same, whether in page mode or non-page mode.

Bit 1 - Display Enable Timing Select
This Bit is used to select between two types of display enable timings available at output pin BLANK if PR4(7) = 1. If PR4(7) = 0, this Bit has no effect.

0 = BLANK supplies Pre-Display Enable (Pre-Display Enable timing precedes active video by one dot clock)
1 = BLANK supplies Display Enable (The display enable timing coincides with active video timing)

Bit 0 - Disable Border
Setting this Bit to 1 forces the video outputs to 0 during the interval when border (overscan) color would be active.
7.3.13 PR16 - Miscellaneous Control 2
Read/write Port = 3?5h, Index = 2Fh

This register is locked if PR10[2:0] is not set to 5.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>External Register 46E8h Lock</td>
</tr>
<tr>
<td>6</td>
<td>CRT Control Address Count Width Bit 1</td>
</tr>
<tr>
<td>5</td>
<td>CRT Control Address Count Width Bit 0</td>
</tr>
<tr>
<td>4</td>
<td>CRT Control Address Counter Offset Bit 1</td>
</tr>
<tr>
<td>3</td>
<td>CRT Control Address Counter Offset Bit 0</td>
</tr>
<tr>
<td>2</td>
<td>Enable Odd/Even Page Bit</td>
</tr>
<tr>
<td>1</td>
<td>VGA Mapping Enable</td>
</tr>
<tr>
<td>0</td>
<td>Lock RAMDAC Write Strobe</td>
</tr>
</tbody>
</table>

Bit 7 - Lock External 46E8h Register
Setting this Bit to 1 causes EBROM output to be forced high (Inactive) during I/O writes to Port 46E8h.

Bits [6:5] - CRT Control Address Counter Width
Power-on-reset clears these Bits to 0. These two Bits determine the modulus of the CRT Controller’s address counter, allowing its count width to be limited to 64K or 128K locations (Byte, Word, Double word). These Bits may be used in virtual VGA applications containing 512KB or 1024KB of video memory, in which CRT Controller is limited to only 64K or 128K locations. Bit PR16(6) should be set 1 to ensure VGA and EGA compatible operation of the address counter, limited to 64K locations.

<table>
<thead>
<tr>
<th>BITS</th>
<th>COUNTER WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 5</td>
<td></td>
</tr>
<tr>
<td>0 0</td>
<td>256KBytes</td>
</tr>
<tr>
<td>0 1</td>
<td>128K Bytes</td>
</tr>
<tr>
<td>1 X</td>
<td>64K Bytes</td>
</tr>
</tbody>
</table>

Bits [4:3] - CRT Control Address Counter Offset
Bits 4 and 3 are summed with the CRT Controller’s Address Counter Bits CA(17) and CA(16), respectively, and the two-Bit result defines the starting location of the displayed video buffer at one of the four 64K boundaries.

Bit 2 - Enable Page Bit for Odd/Even
This Bit affects addressing of memory by the system processor, if chain 2 (Odd/Even) has been selected by setting 3CF.06(1) to 1, setting 3C5.04(1) to 1, selecting extended memory and setting 3C5.04(3) to 0 to deselect chain 4 addressing. It enables the Page Bit for Odd/Even [3C2(5)] to select between two pages of memory, by controlling video RAM address 0, regardless of the Memory Size Bits PR1[7:6].

Bit 1 - VGA Memory Mapping
Setting this Bit to 1 selects 256 Kbyte IBM VGA Mapping, regardless of the Memory Size Bits PR1[7:6].

Bit 0 - Lock RAMDAC Write Strobe (3C6h - 3C9h)

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Reserved</td>
</tr>
<tr>
<td>5</td>
<td>Character Clock Period Select</td>
</tr>
<tr>
<td>4</td>
<td>PCLK = VCLK/2</td>
</tr>
<tr>
<td>3</td>
<td>Map Out 4K Of BIOS ROM</td>
</tr>
<tr>
<td>2</td>
<td>Enable 64K BIOS ROM</td>
</tr>
<tr>
<td>1</td>
<td>Hercules Compatibility</td>
</tr>
<tr>
<td>0</td>
<td>Map Out 2K Of BIOS ROM</td>
</tr>
</tbody>
</table>
Bits [7:6]
Reserved.

Bit 5 - Character Clock Period Select
To enable PR17 Bit 5, PR2 (3CF.OC) Bits 4:3 must equal 11. When Bit 5 is not enabled, it has no effect.
0 = Six-dot font is selected
1 = Ten-dot font is selected

Bit 4 - PCLK = VCLK/2
With this Bit set to 1 it forces PCLK = VCLK/2. This control is useful for interface with high color RAMDAC as follows:

BIT FUNCTION
7 Enable 2 Mbyte Memory for 1280x1024 mode, 256 colors
6 CRTC Start Memory Address High, Bit 10 (3?5.0Ch)
5 Horizontal Total Bit 8 (Supports 24-Bit color mode)
4 Line Compare Bit 10
3 Start Vertical Blank Bit 10
2 Start Vertical Retrace Bit 10
1 Vertical Display Enable End Bit 10
0 Vertical Total Bit 10

NOTES:
1. This Bit is locked if PR3(0) = 1 OR the 3?5 Index 11 Bit 7 = 1.
2. This Bit is locked if PR3(1) = 0 AND the 3?5 Index 11 Bit 7 = 1.

Bits 7 - Enable 2 Mbyte Memory
This Bit must be set to 1 for support of 1280x1024x256 color interlaced mode. It must be used in conjunction with PR1[7:6].
0 = Disable 2 Mbyte DRAM interface
1 = Enable 2 Mbyte DRAM interface

Bit 6 - CRTC Start Memory Address Upper Byte, Bit 10
This Bit corresponds to character address CA18. This is the CRTC Start Memory Address upper byte Bit 10. CRTC Start Memory Address High Bits 9:8 are contained in PR3 (3CF.0Dh) register, Bits 3 and 4, respectively. Bits 7:0 are located at address 3?5.0Ch
Bit 5 - Horizontal Total Bit 8
This Bit provides Bit 8 of the Horizontal Total Register located at 375.00h.

Bit 4 - Line Compare Bit 10
This is Bit 10 of the line compare count.

Bit 3 - Start Vertical Blank Bit 10
This is Bit 10 of the Start Vertical Blank count.

Bit 2 - Start Vertical Retrace Bit 10
This is Bit 10 of the Start Vertical Retrace count.

Bit 1 - Vertical Enable Display End Bit 10
This is Bit 10 of the Vertical Enable Display End count.

Bit 0 - Vertical Total Bit 10
This is Bit 10 of the Vertical Total count.

7.3.16 PR19 - Video Signature Analyzer Control
Read/write Port = 3?5h, Index = 3Fh

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Signature Read Enable</td>
</tr>
<tr>
<td>2</td>
<td>Enable Video Input</td>
</tr>
<tr>
<td>1</td>
<td>Preload Control</td>
</tr>
<tr>
<td>0</td>
<td>Enable/Status Bits</td>
</tr>
</tbody>
</table>

Bits 7:4
Reserved

Bit 3 - Signature Read Enable
When this Bit is set to 1, signature analyzer results can be read from 3?5h, Index 20 and 21.

Bit 2 - Enable Video Input
This Bit is used for self-test.
0 = Enable video input for signature analyzer
1 = Self-testing (The video input to the signature analyzer is disabled)

Bit 1 - Preload Control
0 = The Signature Analyzer Result Register (3?5, Index 20 and 21) is preloaded with
0001h
1 = Normal operation

Bit 0 - Enable/Status Bits

Writing to this Bit:
Setting this Bit to 1 enables the signature analyzer to collect signature on video input.

Reading this Bit:
Indicates the status of the signature analyzer collecting the signature on video input.
0 = Finished (or not enabled)
1 = Busy

7.3.17 PR1A - Shadow Register Control
Read/write Port = 3?5h, Index = 3Dh
This register is locked if PR10[2:0] is not set to 5.

Bits [7:4]
Reserved.

Bits 3 - I/O Read Select
0 = Select actual CRT Control registers for read
1 = Select shadow CRT Control registers for read

Bits [2:0] - Shadow Lock
When Bits 2:0 are set to 101, all the shadowed register Bits are locked. This lock overrides any other locks. Refer to the Shadow Register description for details.

7.3.18 PR20 - Unlock Sequencer Extended Registers
Read/write Port 3C5h, Index = 6h
This register is locked at power-on or reset.
A value of X1X01XXX must be written to this register to allow Read or Write operations of the Sequencer Extended Registers. When the extended registers are locked, the Sequencer Index is read as three Bits. When unlocked, the Sequencer Index reads as six Bits.
7.3.19 PR21 - Display Configuration Status And Scratch Pad Bits Register

Read Only Port 3C5h, Index = 07h

This register is locked at power-on or reset.
This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

This register provides a convenient location for determining the current state of the VGA configuration. This information is required for many BIOS calls.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:4</td>
<td>Scratch Pad Bits</td>
</tr>
<tr>
<td>3</td>
<td>Status of 3C2 Bit 0, Read/Write Bit</td>
</tr>
<tr>
<td>2</td>
<td>Status of PR2 Bit 6, Read/Write Bit</td>
</tr>
<tr>
<td>1</td>
<td>Status of PR4 Bit 1, Read/Write Bit</td>
</tr>
<tr>
<td>0</td>
<td>Status of PR5 Bit 3, Read/Write Bit</td>
</tr>
</tbody>
</table>

Bits [7:4] - Scratch Pad Bits

These read/write Bits serve as a scratch pad for any BIOS status data that may need to be saved. These Bits are preset to 1111 at reset.

Bit 3 - Status of 3C2h Bit 0

This read only Bit represents the setting of the I/O address select Bit in the Miscellaneous Output Register.

0 = MDA (3Bx) addresses have been selected
1 = CGA (3Dx) addresses have been selected

Bit 2 - Status of PR2 Bit 6

This read only Bit represents the setting of the VGA/6845 select Bit in PR2 (3CFh Index Ch).

0 = VGA or EGA compatibility has been selected
1 = 6845 compatibility has been selected

Bit 1 - Status of PR4 Bit 1

This read only Bit represents the setting of the VGA/EGA select Bit in PR4 (3CFh Index Eh).

0 = VGA was selected
1 = EGA compatibility has been selected

Bit 0 - Status of PR5 Bit 3

This read only Bit represents the setting of the Analog/TTL status Bit in PR5 (3CFh Index Fh).

0 = An analog monitor was selected
1 = A TTL-type monitor was selected

7.3.20 PR22 - Scratch Pad Register

Read/write Port = 3C5h, Index = 8h

Bits [7:0]

Scratch pad Bits.

7.3.21 PR23 - Scratch Pad Register

Read/write Port = 3C5h, Index = 9h

Bits [7:0]

Scratch pad Bits.

7.3.22 PR30 - Memory Interface, Write Buffer And FIFO Control Register

Read/write Port = 3C5h, Index 10h

This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

This register controls display memory data width and its bandwidth. All Bits are reset to zero at power-on-reset.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>Write Buffer Control</td>
</tr>
<tr>
<td>5</td>
<td>32-Bit or 16-Bit Memory Data Path</td>
</tr>
<tr>
<td>4</td>
<td>Disable 16-Bit CPU Interface for Unchain Mode</td>
</tr>
<tr>
<td>3</td>
<td>Twelve-level FIFO</td>
</tr>
<tr>
<td>2</td>
<td>Four or Eight-level FIFO</td>
</tr>
<tr>
<td>1:0</td>
<td>Display FIFO control</td>
</tr>
</tbody>
</table>

Bits [7:6] - Write Buffer Control

Bits 7 and 6 determine the depth of the write buffer.

PR31 Bit 2 must be set to 1 for these two Bits to have any effect.
WD90C33 PARADISE REGISTERS

WRITE BUFFER LEVEL

<table>
<thead>
<tr>
<th>Bits</th>
<th>Write Buffer Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>One level deep</td>
</tr>
<tr>
<td>01</td>
<td>Two levels deep</td>
</tr>
<tr>
<td>10</td>
<td>Three levels deep</td>
</tr>
<tr>
<td>11</td>
<td>Four levels deep</td>
</tr>
</tbody>
</table>

Bit 5 - Memory Data Path
- 0 = The display memory data path is 32-Bits wide
- 1 = The display memory data path is 16-Bits wide

Bit 4 - Disable Unchained Mode
- 0 = Normal conditions
- 1 = 16-Bit Interface, unchained mode is disabled
 (This is used for debug only)

Bit 3 - Twelve-Level FIFO
- 0 = The FIFO is four or eight levels deep, depending on Bit 2 of this register
- 1 = The FIFO is 12 levels deep, regardless of Bit 2

Bit 2 - Four or Eight-Level FIFO
- 0 = FIFO set to eight levels deep
- 1 = FIFO set to four levels deep

Bits [1:0] - Display FIFO Control

These two Bits determine when the display FIFO will make a memory bus request. The Bits can be used to reduce DRAM page breaks and to optimize memory bus arbitration. When the display FIFO makes a memory bus request, the memory controller stops its current operation and starts to serve the display FIFOs request. These Bits have no effect in any text mode. They are locked into 00 internally when a text mode is set.

Depending on whether the FIFO level is four, eight, or 12 levels deep (refer to Bits 3:2), the display FIFO requests a memory cycle according to how Bits 1:0 are set.

THE DISPLAY FIFO IS REQUEST MEMORY BUS WHEN

<table>
<thead>
<tr>
<th>Bits</th>
<th>The Display FIFO Is Request Memory Bus When</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Two levels empty</td>
</tr>
<tr>
<td>01</td>
<td>Four levels empty</td>
</tr>
<tr>
<td>10</td>
<td>Six levels empty</td>
</tr>
<tr>
<td>11</td>
<td>Eight levels empty</td>
</tr>
</tbody>
</table>

7.3.23 PR31 - System Interface Control

Read/write Port = 3C5h, Index = 11h

This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

At power-on or reset this register is set to 00.

This register provides the control Bits for the system interface. This register should be set during the post initialization routines of the VGA BIOS. The reset state is 100% IBM VGA compatible. Bit 7 is used during some of the enhanced display modes.

Bits

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Read/Write Offset Enable</td>
</tr>
<tr>
<td>6</td>
<td>Turbo Mode for Blanked Lines</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>CPU Read RDY Release Control 1</td>
</tr>
<tr>
<td>3</td>
<td>CPU Read RDY Release Control 0</td>
</tr>
<tr>
<td>2</td>
<td>Enable Write Buffer</td>
</tr>
<tr>
<td>1</td>
<td>Enable 16-Bit I/O Attribute Controller</td>
</tr>
<tr>
<td>0</td>
<td>Enable 16-Bit I/O Operation on CRTC, Sequencer and Graphics Controller</td>
</tr>
</tbody>
</table>

Bit 7 - Read/Write Offset Enable
- 0 = Normal (Refer to PROA and PROB definitions)
- 1 = During read cycles, the offset register PROA, is added to the CPU address (During write cycles PROB is added to the CPU address)
Bit 6 - Turbo Mode for Blanked Lines
0 = Normal
1 = System performance is improved by 10% by removing extra screen refresh memory cycles on vertical blank

Bit 5 - Reserved
Reserved

Bits [4:3] - CPU Read IOCHRDY Release Controls 1,0
These two Bits select the IOCHRDY timing for CPU reads. To improve performance of systems with a slower bus clock, IOCHRDY may be asserted earlier. Data will be ready following IOCHRDY no sooner than the time selected by Bits [4:3].

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0 0</td>
<td>40 ns (Default after Power-on-reset)</td>
</tr>
<tr>
<td>0 1</td>
<td>40 ns plus 1 MCLK</td>
</tr>
<tr>
<td>1 0</td>
<td>40 ns plus 2 MCLKs</td>
</tr>
<tr>
<td>1 1</td>
<td>40 ns minus 1 MCLK</td>
</tr>
</tbody>
</table>

NOTE:
For 10 MHz or slower systems, the 01 setting is recommended.
For 12 MHz or faster systems, the 11 setting is recommended.

Bit 2 - Enable Write Buffer
0 = Write buffer disabled
1 = Write buffer is enabled (This greatly reduces the number of wait states for CPU writes to display memory)

Bit 1 - Enable 16-Bit I/O Attribute Controller
If Bit 1 and Bit 0 are both set to 1, the Attribute Controller (3C0h/3C1h) is configured for 16-Bit access. The index is at 3C0h while the data is at 3C1h and the address toggle is disabled for 16-Bit reads or writes. The address toggle functions in the standard way for eight-Bit cycles. IOCS16 is asserted for all cycles to 3C0h or 3C1h.

Bit 0 - Enable 16-Bit I/O Operations
0 = The VGA I/O is eight-Bits
1 = Enables 16-Bit access to the CRTC (3??h/

3?5h), Sequencer (3C4h/3C5h) and Graphics Controller (3CEh/3CFh) (The output IOCS16 will be active for any I/O read or write to these addresses)

7.3.24 PR32 - Miscellaneous Control 4
Read/write Port = 3C5h, Index = 12h
This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

At power-on or reset this register is set to 00h.

This register provides control for several different features. Some of these features help to support Genlock of the WD90C33 to another display controller for overlay.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Enable External Sync Mode</td>
</tr>
<tr>
<td>6</td>
<td>Disable Cursor Blink</td>
</tr>
<tr>
<td>5</td>
<td>USR1 Function Select</td>
</tr>
<tr>
<td>4</td>
<td>USR1 Control</td>
</tr>
<tr>
<td>3</td>
<td>USR0 Function Select</td>
</tr>
<tr>
<td>2</td>
<td>USR0 Control</td>
</tr>
<tr>
<td>1</td>
<td>Allow Read Back in Backward compatible Modes</td>
</tr>
<tr>
<td>0</td>
<td>Force Standard CPU Addressing in 132-column Mode</td>
</tr>
</tbody>
</table>

Bit 7 - Enable External Sync Mode
0 = Normal operation mode
1 = EXVID is configured to input external Horizontal Sync and EXPCLK inputs external Vertical Sync (The external HSYNC signal also synchronizes the character clock timing. In this configuration, EXVID and EXPCLK do not control the VID7:0 and PCLK output buffers, but they are used to Genlock the WD90C33 to another display controller.)

Bit 6 - Disable Cursor Blink
0 = Blink enabled
1 = The text cursor blink is disabled and the cursor remains on (This option can be used when cursor blink is not desired)
Bit 5 - USR1 Function Select
0 = The USR1 output represents the state of Bit 4 (This can be used to control new features added by the system board designer)
1 = Reserved

Bit 4 - USR1 Control
Controls the USR1 output when selected by Bit 5.

Bit 3 - USR0 Function Select
0 = The USR0 output represents the state of Bit 2 (This can be used to control new features added by the system board designer)
1 = Reserved

Bit 2 - USR0 Control
Controls the USR0 output when selected by Bit 3.

Bit 1 - Read In Backward Compatible Modes
0 = Registers that are not normally readable in backward compatibility modes may not be read
1 = Registers that are not normally readable in backward compatibility modes may be read

This option may be used either as a test feature or by the BIOS during mode changes.

Bit 0 - 132-Column Mode
When this Bit is set to 1, the special CPU address mapping for page mode font access in 132-column text is set for standard mapping without disturbing the display. This is used only for special virtual VGA applications.

7.3.25 PR33 - DRAM Timing And Zero Wait State Control

Read/write Port = 3C5h, Index = 13h

This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:6</td>
<td>0WS Control</td>
</tr>
<tr>
<td>5</td>
<td>Memory Refresh Cycle</td>
</tr>
<tr>
<td>4</td>
<td>Memory Read/Write Cycle</td>
</tr>
<tr>
<td>3</td>
<td>CAS Timing</td>
</tr>
<tr>
<td>2</td>
<td>CAS after RAS Timing</td>
</tr>
<tr>
<td>1:0</td>
<td>RAS Precharge</td>
</tr>
</tbody>
</table>

Bits [7:6] - 0WS Control
These two Bits control the operation of the 0WS output pin. In non-Local bus mode, 0WS is disabled if PR31 Bit 2 = 0 (Write Buffer Is off).

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0WS = 0 if the internal write buffer is ready</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Bit 5 - Memory Refresh Cycle
0 = Normal Memory Refresh
1 = Suppress RAS strobe during memory refresh

Bits 4 - Memory Read/Write Cycle Control
This Bit controls CAS cycle duration for read/write cycle.

0 = Normal Memory Read/Write Cycle

86 ADVANCED INFORMATION 5/27/93
1 = Extended Memory Read/Write Cycle

Bit 3 - CAS Timing

0 = CAS cycle is 2 MCLKs
CAS low is 1 MCLK + (1.5 ~ 3.0 ns)
CAS high is 1 MCLK - (1.5 ~ 3.0 ns)

1 = CAS cycle is 2 MCLKs
CAS low is 1 MCLK + (8 ~ 14 ns)
CAS high is 1 MCLK - (8 ~ 4 ns)

Bit 2 - CAS After RAS Timing

If Bit 1,0 of this register = 00 or 11, then:
0 = CAS cycle starts 2.5 MCLKs after RAS low
1 = CAS cycle starts 1.5 MCLKs after RAS low

If Bit 1,0 of this register = 01 or 10, then:
0 = CAS cycle starts 3 MCLKs after RAS low
1 = CAS cycle starts 2 MCLKs after RAS low

Bits [1:0] - RAS Precharge

These two Bits control RAS precharge. Refer to DRAM timing adjustments in Section 19.

7.3.26 PR34 - Video Memory Mapping

Read/write Port = 3C5h, Index = 14h

This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.

7.3.27 PR35 - Reserved

Read/write Port = 3C5h, Index = 15h

This register is locked if PR20 Bits 6, 4, 3 are not set to 101b.
8.0 INTERNAL I/O PORTS

8.1 INTRODUCTION
The following registers function as internal I/O ports.

8.1.1 AT Mode Setup and Enable
Write Only Port 46E8h
(Also At Ports 56E8h, 66E8h, 76E8h)

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:5</td>
<td>Reserved</td>
</tr>
<tr>
<td>4</td>
<td>Setup</td>
</tr>
<tr>
<td>3</td>
<td>Enable I/O and Memory</td>
</tr>
<tr>
<td>2:0</td>
<td>External BIOS ROM Page Select</td>
</tr>
</tbody>
</table>

Bit 4 - Setup
This Bit puts the WD90C33 into Setup mode where only I/O Port 102h is accessible.

Bit 3 - Enable I/O and Memory Accesses
This Bit enables I/O and memory accesses.

Bits [2:0] - BIOS ROM Page Select
On I/O accesses to Port 46E8h, EBROM becomes I/O write strobe for external implementation of BIOS ROM page mapping. Bits [2:0] are latched data Bits and define 4K pages on BIOS ROM. The external mapping logic affects the three most significant Bits of address applied to the BIOS ROM. The ROM therefore, appears to consist of eight, 4K pages. External circuitry is required to implement the BIOS ROM page selection using these Bits [D2:D0]. The WD90C33 also provides Port 3C3h as an alternative to Port 46E8h. If a pull-down resistor is connected to MD9 during power-on-reset [CNF(9) = 0], Port 3C3h is decoded instead of Port 46E8h to support the same functions as described above. Otherwise, Port 46E8h is selected and decoded.

8.1.2 Setup Mode Video Enable
Read/write Port = 102h
(XXXX XXXX XXXX X010B)

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:1</td>
<td>Reserved</td>
</tr>
<tr>
<td>0</td>
<td>Wakeup VGA</td>
</tr>
</tbody>
</table>

Bits [7:1] Unused.

Bit 0 - Wakeup VGA
Wakeup VGA for I/O and Memory Accesses. Only the lower three address Bits are decoded for this port and the WD90C33 must be in Setup mode. VGA Enable Sleep Bit or Programmable Option Select (POS) Register 102h Bit 0 is used to awaken the WD90C33 after power on in the MCA and AT mode. To enter the Setup mode in AT bus applications, Bit 4 of the partially decoded internal I/O Port 46E8h is set to 1 before accessing the I/O Port 102h.
9.0 CONFIGURATION REGISTER BITS CNF[31:0]

9.1 INTRODUCTION

Memory Data Lines MD[31:0] are used to set Configuration Registers CNF[31:0] during power-on and Reset (RST) operations. The Configuration Registers are set by means of pull-up or pull-down resistors, which then establish the operating configuration during power-on and Reset. Memory Data Lines MD[31:0] are all internally pulled up by 50 Kohm resistors so that these lines will be pulled up unless a pull-down resistor is connected between their connector pin and ground.

Other configuration bits are contained in non-writable registers while still others can be modified after start up.

CNF[31:22], CNF[15:12], CNF[10], and CNF[0] are readable and writable, while other configuration bits are not readable nor writable.

Configuration Register Bits [31:19] are used for Local bus mode operation only and have no effect on AT or MicroChannel mode.

Table 9-1 lists the Configuration Register (CNF) Bits and their functions.

<table>
<thead>
<tr>
<th>CNF</th>
<th>VALUE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>[31:30]</td>
<td>11</td>
<td>Setup Local Bus Interface Control Register 2DF1h[5:4] for Power-on and Reset</td>
</tr>
<tr>
<td>[29:28]</td>
<td>11</td>
<td>Setup Local Bus Interface Control Register 2DF1h[3:2] for Power-on and Reset</td>
</tr>
<tr>
<td>[27:26]</td>
<td>11</td>
<td>Setup Local Bus Interface Control Register 2DF1h[1:0] for Power-on and Reset</td>
</tr>
<tr>
<td>[25:22]</td>
<td>1111</td>
<td>Setup Local Bus Interface Control Register 2DF0h[7:4] for Power-on and Reset</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Select 386/486 CPU Bus Interface</td>
</tr>
</tbody>
</table>

TABLE 9-1. CONFIGURATION REGISTER BITS

NOTE: The numbers in VALUE column indicates the following:

A 0 indicates that an external pull-down resistor sets the bit to 1 during power-on and reset.

A 1 indicates that an external pull-down resistor sets the bit to 0 during power-on and reset.

ADVANCED INFORMATION 5/27/93
CNF[31:19] - Local Bus Interface Registers

Refer to Section 10 for additional information on the Local Bus configuration.

CNF18 - ROM16 As EXBLANK Input

0 = A 4.7K pull-down resistor on Pin MD18

ROM16 is configured as EXBLANK input (When EXBLANK is low, HSYNC, VSYNC, and BLNK are tristated)

1 = No pull-down resistor, the internal pull-up sets CNF18 to 1 (Normal ROM16 operation, ROM16 is an output)

CNF17 - Select CAS and WE for Memory Interface

0 = CAS becomes CAS0

WE1 becomes CAS1

WE2 becomes CAS2

WE3 becomes CAS3

WE0 becomes WE

1 = Use CAS and WE[3:0]

CNF16 - 64K By 16 Or 256K By 4 DRAM Select

0 = A 4.7K pull-down resistor on pin MD16 sets the WD90C33 to interface with a 64K by 16 DRAM (The MA8 signal becomes RAS for the second DRAM bank)

1 = No pull-down resistor (The internal pull-up sets WD90C33 to interface with a 256K by 4 or 256K by 16 DRAM)

CNF[15:12] - General Purpose Status Bits

PR11[7:4] are writable bits. These bits can be read as Bit 4 of Port 3C2h (as on a standard EGA) if the EGA compatibility Bit [PR4(1)] has been set to 1. Selection of which Bit to read is determined by Bits 3 and 2 of the Miscellaneous Output Register 3C2h, as follows.

<table>
<thead>
<tr>
<th>WRITE 3C2h</th>
<th>READ 3C2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 3</td>
<td>Bit 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

CNF11 - Select Local Bus Interface Mode

0 = When CNF2 is set to 1, setting CNF11 to 0 selects Local Bus Host Interface Mode

1 = Setting CNF11 to 1 selects the AT Bus Interface Mode

In the default state, CNF11 is set to 1. To set CNF11 to 0, MD11 must have a pull-down resistor.

CNF10 - Disable ROM16 Address Decode

0 = The internal pull-up sets CNF(10) = PR1(1) = 0 (To enable the 16-Bit BIOS, PR1(1) must be set to 1 by writing to Port 3CFh, Index 0Bh Bit 1)

1 = A 4.7K pull-down on Pin MD10 sets CNF10 = PR1(1) = 1 (Upon power-up, the pin ROM16 is enabled for 16-Bit BIOS ROM decoding)

This Bit is read/write at PR1(1).

CNF9 - 46E8h/3C3h Select

This Bit has no effect in MicroChannel applications.

0 = A 4.7K pull-down on Pin MD9 (Port 03C3h is selected as the VGA setup and enable register instead of Port 46E8h in the AT interface)

1 = No pull-down resistor (The internal pull-up sets CNF9 = 1, Port 46E8h is selected as VGA setup and enable register)

CNF8 - General Purpose

Whether provided with either a pull-up or pull-down external resistor, CNF8 is latched internally at power-on-reset from memory data bus pin MD8.

Pulling up MD8 causes CNF8 to be latched Low. This Bit controls no internal functions and is read only as Bit 3 of PR5 (3CF.0F). Also, CNF(8) is unaffected by writing to PR5 (3CF.0F).
CNF[7:4] - General Purpose Status Bits

Bits CNF[7:4] are latched internally at power-on or reset from corresponding memory data bus pins MD[7:4], provided with either pull-up or pull-down external resistors.

These are read only Bits at PR5 (3CF.0F) that are unaffected by writing to PR5(3CF.0F). Refer to Table 4-2.

CNF3 - Video Clock Source Control

This Bit cannot be written or read as an I/O port.

Pulling up MD3 causes CNF3 to be latched high. It configures WD90C33 pins VCLK1 and VCLK2 as inputs or outputs.

0 = Inputs
1 = Outputs

When used as inputs, these pins supply alternate video dot clocks. Selection of dot clock is by an internal multiplexer.

When used as outputs, VCLK1 supplies an active low load pulse for an external clock chip during I/O writes to Port 3C2h. This load pulse may be inhibited by setting PR11(2) = 1. VCLK2 becomes a third clock select input to the external clock chip, which supplies multiple dot clock frequencies to the VCLK0 input. Also, VCLK2 and VCLK1 outputs are equal to Bits 3 and 2 of the Miscellaneous Output Register at 3C2h when PR15 Bit 5 = 1.

CNF 2 - AT Bus Architecture Select

This Bit cannot be written or read as I/O. Pulling down MD2 causes CNF2 to be latched low.

0 = AT BUS architecture is NOT selected
1 = AT BUS architecture is selected

CNF1 - ROM Configuration for AT Mode

0 = Selects Internal BIOS Data Path (The BIOS EPROM data can go through D[31:16] to D[15:0], which saves two external data buffers)
1 = Selects External BIOS Data Path (The BIOS EPROM data does not go through the WD90C33. An external buffer is required to connect the BIOS EPROM to the system bus.)

CNF 0 - BIOS ROM Mapping

This Bit may read or written at PR1(0).

0 = No pull-down resistor on MD0 (The internal pullup resistor sets this Bit to 0 at power-on-reset)
1 = The BIOS ROM is mapped out (An external 4.7 Kohm pull-down resistor sets CNF(0) = 1 on power-on-reset)
10.0 LOCAL BUS INTERFACE REGISTERS AND CONFIGURATION BITS

The local bus interface registers (2DF2h through 2DF0h) are summarized in Table 10-1 and the following paragraphs provide register descriptions.

Table 10-1. SUMMARY OF WD90C33 LOCAL BUS INTERFACE REGISTERS

<table>
<thead>
<tr>
<th>I/O PORT</th>
<th>BITS</th>
<th>LOGIC</th>
<th>POWER-ON SETUP BY:</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2DF3</td>
<td>7:0</td>
<td>---</td>
<td>BD[7:0]</td>
<td>Status Register, Read Only</td>
</tr>
<tr>
<td>2DF2</td>
<td>7:0</td>
<td>00</td>
<td>BIOS</td>
<td>Video Memory Mapping Register</td>
</tr>
<tr>
<td>2DF1</td>
<td>7</td>
<td>---</td>
<td>BIOS</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>---</td>
<td>BIOS</td>
<td>Select Zero or One Wait State</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>BIOS</td>
<td>Zero Wait States</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>BIOS</td>
<td>One Wait State (Default)</td>
</tr>
<tr>
<td></td>
<td>5:4</td>
<td>---</td>
<td>CNF[31:30]</td>
<td>VIOR and VIOW High/Low Duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00</td>
<td>CNF[31:30]</td>
<td>2 Clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>CNF[31:30]</td>
<td>3 Clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>CNF[31:30]</td>
<td>4 Clocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>CNF[31:30]</td>
<td>5 Clocks (Default)</td>
</tr>
<tr>
<td>3:2</td>
<td>---</td>
<td>CNF[29:28]</td>
<td>VMWR or VMRD High Duration</td>
<td>2 Clocks</td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>CNF[29:28]</td>
<td>VMWR or VMRD High Duration</td>
<td>3 Clocks</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>CNF[29:28]</td>
<td>VMWR or VMRD High Duration</td>
<td>4 Clocks</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>CNF[29:28]</td>
<td>VMWR or VMRD High Duration</td>
<td>5 Clocks (Default)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>CNF[29:28]</td>
<td>VMWR or VMRD High Duration</td>
<td></td>
</tr>
<tr>
<td>1:0</td>
<td>---</td>
<td>CNF[27:26]</td>
<td>VMWR or VMRD Low Duration</td>
<td>2 Clocks</td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>CNF[27:26]</td>
<td>VMWR or VMRD Low Duration</td>
<td>3 Clocks</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td>CNF[27:26]</td>
<td>VMWR or VMRD Low Duration</td>
<td>4 Clocks</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>CNF[27:26]</td>
<td>VMWR or VMRD Low Duration</td>
<td>5 Clocks (Default)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>CNF[27:26]</td>
<td>VMWR or VMRD Low Duration</td>
<td></td>
</tr>
<tr>
<td>2DF0</td>
<td>7</td>
<td>---</td>
<td>CNF25</td>
<td>Select BIOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>CNF25</td>
<td>External BIOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>CNF25</td>
<td>Local Bus BIOS (Default)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>---</td>
<td>CNF24</td>
<td>Select RAMDAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>CNF24</td>
<td>External RAMDAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>CNF24</td>
<td>Local Bus RAMDAC (Default)</td>
</tr>
<tr>
<td>I/O PORT</td>
<td>BITS</td>
<td>LOGIC</td>
<td>POWER-ON SETUP BY:</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2DF0</td>
<td></td>
<td></td>
<td></td>
<td>Continued</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>CNF23</td>
<td>Local Bus Interface Enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>Disable Local Bus Interface</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>Enable Local Bus Interface (Default)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>CNF22</td>
<td>Select Pulse Width (High and Low) for RAMDAC cycle and EBROM Access</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>9 Clocks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>18 Clocks (Default)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>---</td>
<td>DRIVER</td>
<td>Select VGA Data Path Width</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>16-Bit Data Path (Default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>32-Bit Data Path</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BIOS</td>
<td></td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>1:0</td>
<td>BIOS</td>
<td></td>
<td>Dual Display</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td></td>
<td>CGA Disabled/MDA Disabled (Default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01</td>
<td></td>
<td>CGA Disabled/MDA Disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>CGA Disabled/MDA Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td>CGA Enabled/MDA Disabled</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>CNF21</td>
<td>Select 386/486 Local Bus Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>Local Bus Mode for 386 is selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>Local Bus Mode for 486 is selected</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>CNF[20:19]</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>Must be set to 1 (no pull down on MD[20:19])</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:

CNF[31:21] are controlled by MD[31:21], which have internal pull up resistors. At power-on or reset, the pull up resistors set CNF[31:21] to 1. Connecting an external 4.7K Ohm pull down resistor to any of the MD[31:21] pins will cause the corresponding CNF[31:21] signal to be set to 0.

TABLE 10-1. SUMMARY OF WD90C33 LOCAL BUS INTERFACE REGISTERS
2DF3h[7:0] - Status Register, Read Only
Port 2DF3h[7:0] allows the status of the DB[7:0] lines to be read during power-on or reset. The state of each bit indicates whether the corresponding line is pulled up or pulled down.

2DF2h[7:0] - Video Memory Mapping Register
During Local Bus Mode operation CPU address Bits A[31:24] are compared with local bus interface register Bits 2DF2[7:0], respectively. The resultant address is combined with PR[3:0] to allow the WD90C33 to be mapped into any contiguous 1 Mbyte of CPU linear address space.

2DF1h[7] - Reserved
Register 2DF1h, Bit 7 is reserved for future use.

2DF1h[6] - Select Zero or One Wait State
For local bus mode operation, register 2DF1h, Bit 6 is used to select CPU wait states. If the cycle is a write operation and the internal write buffer is empty, the WD90C33 will return VGARDY as follows:

0 = at zero wait states
1 = at one wait state

10.2 LOCAL BUS INTERNAL COMMANDS
The Local Bus Interface Logic generates four internal commands to the VGA Logic. The four commands are: VIOR, VIOW, VMWR, AND VMRD. For these commands, the high or low pulse width should be at least two MCLK periods (see Figure 10-1). This pulse width can be adjusted by using 2DF1h[5:0] as follows:

2DF1h[5:4] - VIOR/VIOD High/Low Duration
These bits select the Local Bus I/O read and write pulse width in relation to the CPUCLK.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Two Clocks High/Low</td>
</tr>
<tr>
<td>01</td>
<td>Three Clocks High/Low</td>
</tr>
<tr>
<td>10</td>
<td>Four Clocks High/Low</td>
</tr>
<tr>
<td>11</td>
<td>Five Clocks High/Low (Default)</td>
</tr>
</tbody>
</table>

2DF1h[3:2] - VMWR/VMRD High Duration
These bits select the Local Bus memory read and write high pulse width in relation to the CPUCLK.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Two Clocks High</td>
</tr>
<tr>
<td>01</td>
<td>Three Clocks High</td>
</tr>
<tr>
<td>10</td>
<td>Four Clocks High</td>
</tr>
<tr>
<td>11</td>
<td>Five Clocks High (Default)</td>
</tr>
</tbody>
</table>

2DF1h[1:0] - VMWR/VMRD Low Duration
These bits select the Local Bus memory read and write low pulse width in relation to the CPUCLK.

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Two Clocks Low</td>
</tr>
<tr>
<td>01</td>
<td>Three Clocks Low</td>
</tr>
<tr>
<td>10</td>
<td>Four Clocks Low</td>
</tr>
<tr>
<td>11</td>
<td>Five Clocks Low (Default)</td>
</tr>
</tbody>
</table>
2DF0h[7] - Select BIOS in Local Bus Mode
For local bus mode operation, register 2DF0h, Bit 7 is used to select BIOS operation as follows:

0 = BIOS is on the system bus
1 = BIOS is set in Local Bus Mode (Default)

NOTE
Putting the BIOS on the local bus will not work if the system logic shadows the BIOS in system memory.

2DF0h[6] - Connect RAMDAC in Local Bus Mode
Refer to Section 10.3.3.

0 = RAMDAC is on the system bus
1 = RAMDAC is connected in Local Bus Mode (Default)

NOTE
If the RAMDAC is on the system bus, the signal LDEV will not be generated when the CPU reads or writes the RAMDAC.

2DF0h[5] - Enable Local Bus Interface
0 = Local Bus Interface is not enabled (the LDEV signal is not generated)
1 = Local Bus Interface is enabled (Default)

2DF0h[4] - Select Pulse Width (High and Low) for RAMDAC cycle and EBROM Access
For local bus mode operation, register 2DF0h, Bit 4 is used to select the pulse width for RAMDAC cycles and EBROM access as follows:

<table>
<thead>
<tr>
<th>2DF0h</th>
<th>RAMDAC CYCLE, RPLT, WPLT PULSE LOW OR HIGH</th>
<th>EPROM ACCESS (EBROM PULSE LOW OR HIGH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9 CPU Clocks</td>
<td>4 CPU Clocks</td>
</tr>
<tr>
<td>1</td>
<td>18 CPU Clocks</td>
<td>8 CPU Clocks</td>
</tr>
</tbody>
</table>

2DF0h[3] - Select VGA Data Path Width
Bit 3 is used to select the data path width between the Local Bus Interface Logic and the VGA core. However, the data path cannot be set to 32-bits wide except for packed pixel graphics modes.

0 = 16 Bits (Default)
1 = 32 Bits

2DF0h[2] - Reserved
Register 2DF0h, Bit 2 is reserved for future use.

2DF0h[1:0] - Select Dual Display
When the WD90C33 is connected on the local bus, these Bits must be set to reflect the type of display adapter installed on the system bus as follows:

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>No CGA or MDA on the system bus</td>
</tr>
<tr>
<td>0 1</td>
<td>No CGA or MDA on the system bus</td>
</tr>
<tr>
<td>1 0</td>
<td>MDA is connected on the system bus</td>
</tr>
<tr>
<td>1 1</td>
<td>CGA is connected on the system bus</td>
</tr>
</tbody>
</table>

CNF21 - Select 386/486 Local Bus Interface
0 = Local Bus Mode for 386 is selected. The CPU clock is internally divided by 2 and synchronized by the CPURESET signal.
1 = Local Bus Mode for 486 is selected. The CPU clock is not divided or affected by CPURESET.

10.3 LOCAL BUS INTERFACE OPERATION
The WD90C33 controller provides a local bus interface to connect directly to a 32-Bit VESA VL-Bus, 32-Bit 486/386 CPU, or 16-Bit 386sx CPU. The controller has a 32-Bit data interface and can decode 34-Bit CPU addresses (A[30:2] and BE[3:0]). Also, the controller supports 8-, 16-, and 32-Bit data transfers, provides byte alignment and byte swapping internally.
10.3.1 Local Bus Cycle Command Pulse Width

The local bus interface internally generates I/O and memory commands for the VGA logic. The pulse width of these commands is programmable by changing the number of CPU clocks used to complete an operation. In general, a shorter command pulse width will provide the best performance. The actual command pulse width is determined by the CPU clock speed and the MCLK speed. The command pulse width (whether active low or inactive high) should overlap at least two MCLK periods. Local bus interface register 2DF1h[5:0] can be used to adjust the command pulse width (refer to Table 10-1).

10.3.2 Local Bus BIOS or External BIOS

When the Local Bus BIOS is selected (2DF0h[7] = 1), BIOS data goes through BD[7:0] to the local data bus. If the video BIOS address range is detected, EBROM goes active for 4 to 8 CPU clocks. The duration of EBROM is determined by 2DF0h[4]. While in local bus mode, the WD90C33 will generate LDEV to the prevent system logic from responding to a video BIOS cycle.

If the system RAM shadows the BIOS, the BIOS should be connected on the system bus.

When an external BIOS is selected (2DF0h[7] = 0), the BIOS data goes through the system bus, and the WD90C33 does not generate LDEV for video BIOS cycles. If the video BIOS address range is detected, EBROM goes active until the valid address goes away.

10.3.3 Local Bus RAMDAC or External RAMDAC

When the local bus RAMDAC is selected (2DF0h[6] = 1), the VGA RAMDAC is connected to the BD[7:0] bus, and the WD90C33 will generate LDEV to the prevent system logic from responding to the RAMDAC cycle.

When the external RAMDAC is selected (2DF0h[6] = 0), the RAMDAC is connected on the system bus with its own decoding logic, and a second RAMDAC can still be connected on the BD[7:0] bus. Writing to the RAMDAC will update both RAMDACs, but only the system bus RAMDAC will respond to a read command.

With external RAMDAC selected, the WD90C33 does not generate LDEV for each RAMDAC cycle, and the following conditions also occur:

- The system logic is expected to terminate cycles; therefore, the WD90C33 will not generate READY for RAMDAC cycles.
- The WD90C33 will generate RAMDAC cycles on its BD[7:0] bus without returning a READY to the CPU. The duration of a cycle is either 9 or 18 CPU clocks as selected by 2DF0h[4].
- The WD90C33 will not respond to RAMDAC read cycles.

10.3.4 Dual Display

If a second display is installed on the system bus, the setting of register 2DF0h[1:0] indicates to the WD90C33 whether the display adapter is a Monochrome Display Adapter (MDA) or a Color Graphics Adapter (CGA). This allows the WD90C33 to let MDA or CGA cycles to pass through to the system bus.

- If an MDA is installed (2DF0h[1:0] = 10), the LDEV signal is not generated for I/O cycles to ports 03B0h through 03BFh, except 03BCh through 03BEh.
- If an CGA is installed (2DF0h[1:0] = 11), the LDEV signal is not generated for I/O cycles to ports 03D0h through 03DFh.

When either type of video adapter card is installed, it will be detected by the BIOS and set register 2DF0h[1:0] to the proper value.
11.0 HARDWARE CURSOR

11.1 INDEXED REGISTERS

The Hardware Cursor supports a user-defined pattern of up to 64 by 64 pixels, defined at 2 Bits per pixel. The cursor pattern should be stored in a non-visible part of display memory. The cursor operates in all packed and planar VGA graphics modes, as well as VGA text modes.

The Hardware Cursor is accessed at Port 23C2h/23C3h when the register block pointer at Port 23C0h has been set to 02h. For additional information on accessing indexed registers, refer to Section 13.

<table>
<thead>
<tr>
<th>INDEX</th>
<th>BITS</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>0*</td>
<td>11:0</td>
<td>Cursor Control</td>
</tr>
<tr>
<td>1</td>
<td>11:0</td>
<td>Cursor Pattern Address Low</td>
</tr>
<tr>
<td>2</td>
<td>11:0</td>
<td>Cursor Pattern Address High</td>
</tr>
<tr>
<td>3</td>
<td>11:0</td>
<td>Cursor Primary Color, Byte 0</td>
</tr>
<tr>
<td>4</td>
<td>11:0</td>
<td>Cursor Primary Color, Byte 1 (For 16-Bit Color)</td>
</tr>
<tr>
<td>5</td>
<td>11:0</td>
<td>Cursor Primary Color, Byte 2 (For 24-Bit Color)</td>
</tr>
<tr>
<td>6</td>
<td>11:0</td>
<td>Cursor Secondary Color, Byte 0</td>
</tr>
<tr>
<td>7</td>
<td>11:0</td>
<td>Cursor Secondary Color, Byte 1 (For 16-Bit Color)</td>
</tr>
<tr>
<td>8</td>
<td>11:0</td>
<td>Cursor Secondary Color, Byte 2 (For 24-Bit Color)</td>
</tr>
<tr>
<td>9</td>
<td>11:0</td>
<td>Cursor Auxiliary Color, Byte 0</td>
</tr>
<tr>
<td>A</td>
<td>11:0</td>
<td>Cursor Auxiliary Color, Byte 1 (For 16-Bit Color)</td>
</tr>
<tr>
<td>B</td>
<td>11:0</td>
<td>Cursor Auxiliary Color, Byte 2 (For 24-Bit Color)</td>
</tr>
<tr>
<td>C</td>
<td>11:0</td>
<td>Cursor Origin</td>
</tr>
<tr>
<td>D</td>
<td>11:0</td>
<td>Cursor Display Position X</td>
</tr>
<tr>
<td>E</td>
<td>11:0</td>
<td>Cursor Display Position Y</td>
</tr>
<tr>
<td>F</td>
<td>11:0</td>
<td>Register Block/Index</td>
</tr>
</tbody>
</table>

TABLE 11-1. HARDWARE CURSOR INDEXED REGISTERS

11.1.1 Cursor Control Register, Index 0

The Cursor Control register controls operation of the hardware cursor.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0000 (Index)</td>
</tr>
<tr>
<td>11</td>
<td>Cursor Enable</td>
</tr>
<tr>
<td>10:9</td>
<td>Cursor Pattern Type</td>
</tr>
<tr>
<td>8</td>
<td>Cursor Plane Protection</td>
</tr>
<tr>
<td>7:5</td>
<td>Cursor Color Mode</td>
</tr>
<tr>
<td>4</td>
<td>Enhanced Hardware Cursor (24 Bits per pixel)</td>
</tr>
<tr>
<td>3:0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

NOTE

A write to either the Cursor Enable or the Cursor Pattern Type fields does not take effect until the beginning of a video frame following the next write to the Cursor Control Register. (In interlaced mode, it's the next video field.)

Bits [15:12] - Index 0.

Bit 11 - Cursor enable.

0 = Cursor is not displayed.
1 = Cursor is displayed.

Bits [10:9] - Cursor Pattern Type

00 = Cursor is 2 Bits per pixel, 32x32 pixels.
01 = Cursor is 2 Bits per pixel, 64x64 pixels.
10 = Reserved.
11 = Reserved.

Bit 8 - Cursor Plane Protection

0 = Cursor plane protection disabled.
1 = Cursor plane protection enabled.
Bits [7:5] - Cursor Color Mode

<table>
<thead>
<tr>
<th>BITS</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>Software Compatible Cursor.</td>
</tr>
<tr>
<td>0 0 1</td>
<td>Two-color Cursor with Inversion.</td>
</tr>
<tr>
<td>0 1 0</td>
<td>Two-color Cursor with Special Inversion.</td>
</tr>
<tr>
<td>0 1 1</td>
<td>Three-color Cursor.</td>
</tr>
<tr>
<td>1 0 0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>1 0 1</td>
<td>Reserved.</td>
</tr>
<tr>
<td>1 1 0</td>
<td>Reserved.</td>
</tr>
<tr>
<td>1 1 1</td>
<td>Reserved.</td>
</tr>
</tbody>
</table>

Bit 4 - Enhanced Hardware Cursor

(24 Bits per pixel)

0 = Disable enhanced hardware cursor
1 = Enable enhanced hardware cursor (24 Bits per pixel).

NOTE

The standard hardware cursor (16 Bits per pixel) is enabled by Control Register 2 (Register Block 1, Index 1, Bits 11:10 = 10). Refer to Section 12 for additional information.

Bits [3:0]

Reserved.

11.2 CURSOR PATTERN ADDRESS

The two Cursor Pattern Address registers form a 21-Bit address, specifying the location in the display memory where the first byte of the cursor pattern is stored. This value is independent of the cursor origin. The cursor pattern may be stored anywhere in the display memory but is generally stored in a non-visible location.

Generally, this address represents the CPU address at which the pattern begins, minus the CPU address of the top-left corner of the screen, in whichever current VGA mode is in use. Not all addresses are valid in all modes. Refer to the Section 11.6.1 on Cursor Address Mapping.

11.2.1 Cursor Pattern Address Low, Index 1

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0001 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Cursor Pattern Address Bits 11:0.</td>
</tr>
<tr>
<td></td>
<td>Bits 1 and 0 must be set to 0.</td>
</tr>
</tbody>
</table>

11.2.2 Cursor Pattern Address High, Index 2

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0010 (Index)</td>
</tr>
<tr>
<td>11:9</td>
<td>Reserved</td>
</tr>
<tr>
<td>8:0</td>
<td>Cursor Pattern Address Bits 20:12</td>
</tr>
</tbody>
</table>

11.3 CURSOR COLOR REGISTERS

The cursor color registers control the display of 2-Bit per pixel cursor patterns.

The Cursor Primary Color, Cursor Secondary Color and Cursor Auxiliary Color registers specify eight-Bit, 16-Bit, or 24-Bit colors to be displayed for different parts of the cursor pattern.

NOTE

Even in planar mode, in which pixels are four Bits each, these colors are eight Bits per pixel.

11.3.1 Cursor Primary Color, Byte 0, Index 3

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0011 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Primary Color, Byte 0</td>
</tr>
</tbody>
</table>
11.3.2 Cursor Primary Color, Byte 1, Index 4

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0100 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Primary Color, Byte 1</td>
</tr>
<tr>
<td></td>
<td>(For 16-Bit color.)</td>
</tr>
</tbody>
</table>

11.3.3 Cursor Primary Color, Byte 2, Index 5

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0101 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Primary Color, Byte 2</td>
</tr>
<tr>
<td></td>
<td>(For 24-Bit color.)</td>
</tr>
</tbody>
</table>

11.3.4 Cursor Secondary Color, Byte 0, Index 6

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0110 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Secondary Color, Byte 0</td>
</tr>
</tbody>
</table>

11.3.5 Cursor Secondary Color, Byte 1, Index 7

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0111 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Secondary Color, Byte 1</td>
</tr>
<tr>
<td></td>
<td>(For 16-Bit color.)</td>
</tr>
</tbody>
</table>

11.3.6 Cursor Secondary Color, Byte 2, Index 8

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1000 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Secondary Color, Byte 2</td>
</tr>
<tr>
<td></td>
<td>(For 24-Bit color.)</td>
</tr>
</tbody>
</table>

11.3.7 Cursor Auxiliary Color, Byte 0, Index 9

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1001 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Auxiliary Color, Byte 0</td>
</tr>
</tbody>
</table>

11.3.8 Cursor Auxiliary Color, Byte 1, Index A

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1010 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Auxiliary Color, Byte 1</td>
</tr>
<tr>
<td></td>
<td>(For 16-Bit color.)</td>
</tr>
</tbody>
</table>

11.3.9 Cursor Auxiliary Color, Byte 2, Index B

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1011 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Cursor Auxiliary Color, Byte 2</td>
</tr>
<tr>
<td></td>
<td>(For 24-Bit color.)</td>
</tr>
</tbody>
</table>

11.4 CURSOR ORIGIN, INDEX C

The Cursor Origin register specifies the offset in pixels from the top-left corner of the pattern which will be displayed at the cursor display position. This value is often referred to as the cursor's "hot spot".

NOTE

For 32 by 32 cursor patterns each field is restricted to the values 31:0.
11.5 CURSOR DISPLAY POSITION

The Cursor Display Position X and Y registers specify the location on the screen at which the cursor origin is displayed. These values represent a position in pixels, referenced to the top-left corner of the screen, regardless of the display mode.

In text modes, the cursor position still represents pixels not characters. The cursor can be displayed at any position on the screen, including between characters.

NOTE
A write to either Cursor Display Position X or Y register does not take effect until the beginning of the next video frame. (In interlaced mode, it's the next video field.)

11.5.1 Cursor Display Position X, Index D

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1101 (Index)</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
</tr>
<tr>
<td>10:0</td>
<td>Cursor Display Position X</td>
</tr>
</tbody>
</table>

11.5.2 Cursor Display Position Y, Index E

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1110 (Index)</td>
</tr>
<tr>
<td>11:10</td>
<td>Reserved</td>
</tr>
<tr>
<td>9:0</td>
<td>Cursor Display Position Y</td>
</tr>
</tbody>
</table>

11.6 REGISTER BLOCK INDEX, INDEX F

All register blocks have an Index Fh that can be used to switch the block or index. Normally, to change a register block or index requires the user to write to I/O Port 23C0h with the values of the register block or index desired. To speed up block switching or to change the register index, Index F can be used instead.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1111 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Register Index</td>
</tr>
<tr>
<td>7:0</td>
<td>Register Block Pointer</td>
</tr>
</tbody>
</table>

11.7 CURSOR REGISTER UPDATES

When a new cursor pattern is selected, up to four different registers must be updated. If a new video frame were to begin before all registers were updated, a single frame could be displayed with incorrect cursor data. While the display would recover within one video frame, the results would be visually annoying. Therefore, the WD90C33 holds off use of updated register data until all of the associated registers have been updated.

Writing to either the Cursor Pattern Address register or the Cursor Origin register does not take effect until the beginning of a video frame following the next write to the Cursor Control register. Therefore, the Cursor Control register must be written to after updating either of these registers, even if the data in the Cursor Control register is to remain unchanged. However, reading any of these registers always returns the data last written to the register, whether or not such data has already taken effect.

A write to either Cursor Display Position X or Y register does not take effect until the beginning of the next video frame. In interlaced mode, updates occur at the beginning of the next video field.

11.7.1 Cursor Address Mapping

Cursor patterns are always stored in contiguous locations in display memory, usually in a non-visible portion, and always across all four maps. The definition of contiguous locations differs slightly by mode, as defined in Tables 11-2, 3 and 4.

Each mode has restrictions on where a cursor pattern may begin and how such a pattern must be stored. The location where the currently required cursor pattern is stored in display memory is loaded by the host into the Cursor Pattern Address registers, as defined in Tables 11-2, 3, and 4.

The Cursor Pattern Address registers point to the doubleword starting region of the cursor pattern. They are not byte addresses and consecutive register values generally do not point to consecutive memory bytes. However, the cursor pattern must use all of the consecutive memory bytes (1K or 256 bytes) assigned to it starting from the byte pointed to.
Table 11-2. Planar Modes

<table>
<thead>
<tr>
<th>CPU ADDRESS</th>
<th>CURSOR PATTERN ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td></td>
</tr>
<tr>
<td>A0000¹</td>
<td>If pattern starts here...</td>
</tr>
<tr>
<td>Map 0</td>
<td>then the next byte is here...</td>
</tr>
<tr>
<td>Map 1²</td>
<td>then here...</td>
</tr>
<tr>
<td>Map 2²</td>
<td>then here...</td>
</tr>
<tr>
<td>Map 3²</td>
<td>and the fifth byte is here</td>
</tr>
<tr>
<td>A0001</td>
<td></td>
</tr>
<tr>
<td>Map 0¹</td>
<td>and the fifth byte is here</td>
</tr>
<tr>
<td>AFFFC</td>
<td></td>
</tr>
<tr>
<td>Map 0</td>
<td>FFFF</td>
</tr>
<tr>
<td>Bank 1</td>
<td></td>
</tr>
<tr>
<td>A0000</td>
<td>10000</td>
</tr>
<tr>
<td>AFFFF</td>
<td></td>
</tr>
<tr>
<td>Map 3</td>
<td>1FFFF (Theoretical maximum for 1K X 1K display memory.)</td>
</tr>
</tbody>
</table>

Refer to the following notes.

Notes for Tables 11-2 Through 11-4

1. These locations are usually visible. In practice, cursor pattern is usually stored in non-visible memory.
2. Cursor pattern must start in map 0 but pattern is stored on all maps.
3. Some modes and/or boards may not support CPU addresses up to this level. Since up to 1K consecutive locations are required for the pattern, the pattern cannot actually start at the highest locations.
4. In mode 7, CPU addresses are B0000-B7FFE.

Table 11-3. Packed Modes

<table>
<thead>
<tr>
<th>CPU ADDRESS</th>
<th>CURSOR PATTERN ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank 0</td>
<td></td>
</tr>
<tr>
<td>A0000¹</td>
<td>If pattern starts here...</td>
</tr>
<tr>
<td>A0001²</td>
<td>then next byte is here...</td>
</tr>
<tr>
<td>A0002²</td>
<td>then here...</td>
</tr>
<tr>
<td>A0003²</td>
<td>then here...</td>
</tr>
<tr>
<td>A0004¹</td>
<td>and the fifth byte is here</td>
</tr>
<tr>
<td>AFFFC</td>
<td>3FFF</td>
</tr>
<tr>
<td>Bank 1</td>
<td></td>
</tr>
<tr>
<td>A0000</td>
<td>4000</td>
</tr>
<tr>
<td>AFFFC³</td>
<td>3FFFF (Theoretical maximum for 1K X 1K display memory.)</td>
</tr>
</tbody>
</table>

Refer to the previous notes.

Table 11-4. Text Modes

<table>
<thead>
<tr>
<th>CPU ADDRESS</th>
<th>CURSOR PATTERN ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maps 0:1</td>
<td></td>
</tr>
<tr>
<td>B8000¹</td>
<td>If pattern starts here...</td>
</tr>
<tr>
<td>B8001²</td>
<td>then next byte is here...</td>
</tr>
<tr>
<td>Maps 2:3</td>
<td></td>
</tr>
<tr>
<td>B8000²</td>
<td>then here...</td>
</tr>
<tr>
<td>B8001²</td>
<td>then here...</td>
</tr>
<tr>
<td>Maps 0:1</td>
<td></td>
</tr>
<tr>
<td>B8002¹</td>
<td>and the fifth byte is here</td>
</tr>
<tr>
<td>B8003</td>
<td></td>
</tr>
<tr>
<td>BFFFFE</td>
<td>3FFF</td>
</tr>
<tr>
<td>BFFFF</td>
<td></td>
</tr>
</tbody>
</table>

Refer to the previous notes.
11.7.2 Two-Bit Cursor Pattern Format

The cursor pattern pointed to by the Cursor Pattern Address registers for two-Bit cursor patterns is stored in either 1K or 256 consecutive memory byte locations. The cursor pattern data is stored for 64 by 64 and 32 by 32 cursors as follows:

11.7.2.1 Cursor Pattern - 2-Bit, 64 x 64 Cursors

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>MAP</th>
<th>CURSOR PATTERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>AND plane, row 0, col 0-7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 0-7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 8-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 8-15</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>AND plane, row 0, col 16-23</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 16-23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 24-31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 24-31</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>AND plane, row 0, col 32-39</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 32-39</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 40-47</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 40-47</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>AND plane, row 0, col 48-55</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 48-55</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 56-63</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 56-63</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>AND plane, row 1, col 0-7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 1, col 0-7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 1, col 8-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 1, col 8-15</td>
</tr>
</tbody>
</table>

Refer to the following notes.

NOTES
1. Offset is relative to the value in the Cursor Pattern Address register.
2. In packed mode, Map is selected by the two low-order CPU address Bits.
3. Cursor pattern must start in map 0 but pattern is stored on all maps.
4. Within each byte, the high-order Bit represents the left most column.

11.7.2.2 Cursor Pattern - 2-Bit, 32 x 32 Cursors

<table>
<thead>
<tr>
<th>OFFSET</th>
<th>MAP</th>
<th>CURSOR PATTERN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>AND plane, row 0, col 0-7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 0-7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 8-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 8-15</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>AND plane, row 0, col 16-23</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 0, col 16-23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 0, col 24-31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 0, col 24-31</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>AND plane, row 1, col 0-7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 1, col 0-7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 1, col 8-15</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 1, col 8-15</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>AND plane, row 1, col 16-23</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>XOR plane, row 1, col 16-23</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AND plane, row 1, col 24-31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>XOR plane, row 1, col 24-31</td>
</tr>
</tbody>
</table>

Refer to the previous notes.
11.7.3 Loading The Cursor Pattern

Loading a cursor pattern requires writing the pattern to a non-visible portion of display memory, then pointing to the pattern with the Cursor Pattern Address registers (Index 1, 2). A cursor pattern already in display memory can be selected simply by loading these registers.

In some VGA modes, certain maps are not defined but the physical RAM connected to those maps appears at higher memory locations in the maps that are defined. For instance, the first byte of map 2 may appear as the 64th Kbyte in map 0. Therefore a cursor pattern that occupies contiguous locations in one mode may appear fragmented in other modes. It is the responsibility of the software to track these fragments and assure that no part of the pattern will be accidentally overwritten.

11.7.4 Cursor Color Modes

A cursor may be displayed using any of four color modes selected by the Cursor Color Mode field of the Cursor Control Register (Index 0). Depending on the color mode selected, each 2-Bit pixel of the cursor pattern will be displayed against the background as described in Table 11-5.

The "special" color generates the exclusive-NOR (XNOR) of the background and the Auxiliary Color Register (Index 9, A, or B). This retains the "different from background" color property of inversion while adding the ability to specify one preferred "special inversion" from a background color to any desired color.

To use this feature, the Cursor Color Mode field must be set to "special", and the Cursor Auxiliary Color should be loaded with the exclusive NOR (XNOR) of the background color to be translated and the desired color to be displayed. When set in this manner, any screen pixel of the former color covered by an inverting cursor pattern pixel will be "inverted" into the auxiliary color.

<table>
<thead>
<tr>
<th>CURSOR PATTERN</th>
<th>COLOR MODE 0</th>
<th>COLOR MODE 1</th>
<th>COLOR MODE 2</th>
<th>COLOR MODE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>All 0s</td>
<td>Secondary</td>
<td>Secondary</td>
<td>Secondary</td>
</tr>
<tr>
<td>01</td>
<td>All 1s</td>
<td>Primary</td>
<td>Primary</td>
<td>Primary</td>
</tr>
<tr>
<td>10</td>
<td>Transparent</td>
<td>Transparent</td>
<td>Transparent</td>
<td>Transparent</td>
</tr>
<tr>
<td>11</td>
<td>Inverted</td>
<td>Inverted</td>
<td>Special²</td>
<td>Auxiliary</td>
</tr>
</tbody>
</table>

NOTES:
1. The high-order Bit of each 2-Bit pattern is the AND mask, and the low-order Bit is the XOR mask.
2. The result is Background XNORed with the auxiliary color.

TABLE 11-5. CURSOR COLOR MODES
11.7.5 Compatibility Differences Between Hardware And Software Cursor

Some cursor colors may display differently using the hardware cursor than when using a software cursor. This can happen in Planar Modes, because a software cursor modifies memory data that is then passed through the Attribute Controller's Palette registers, while the hardware cursor operates on data at the output of the Attribute Controller's Palette registers. The following section on Cursor Plane Protection explains how to minimize these incompatibilities.

11.7.6 Cursor Plane Protection

In 256-color modes, a background pixel covered by the cursor is either replaced by a specified 8-Bit color or is inverted. For other modes, cursor plane protection is available.

When the Cursor Plane Protection Bit of the Cursor Control register is set, some Bits of the background are handled differently. In these cases the two or four high-order Bits of the background are replaced with the corresponding Bits of the Cursor Auxiliary Color register (Index 9, A, or B).

When Bit 7 of the VGA Attribute Mode Control register (Port 3C0h/3C1h, Index 10h) is reset, cursor plane protection applies to the two high-order Bits of the background. When this Bit is set, protection applies to the four high-order Bits.

This feature is designed to provide as much flexibility and compatibility with a software cursor as possible, due to the processing done by the VGA attribute controller.
12.0 DRAWING ENGINE

The Drawing Engine (DE) supports accelerated data transfers between regions of display memory. A full complement of raster operations are available. Color expansion and transparency, useful for accelerating text modes as well as plane masking, are supported.

This same hardware can be used to accelerate 8 by 8 pattern filled rectangles, solid rectangles, line drawing, and trapezoid fill using trapezoid fill strip.

The Drawing Engine hardware supports text modes and monochrome, 4-Bit and 8-Bit color modes, as well as the 16-Bit color mode.

The Drawing Engine hardware uses two sets of indexed registers, which are listed in Tables 12-1 and 12-2. The registers are accessed at I/O Port 23C2h. For additional information on accessing indexed registers, refer to Section 13.

In the following tables, the REF column refers to the Section containing additional information.

<table>
<thead>
<tr>
<th>INDEX</th>
<th>BITS</th>
<th>NAME</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11:0</td>
<td>Control Register 1</td>
<td>12.1</td>
</tr>
<tr>
<td>1</td>
<td>11:0</td>
<td>Control Register 2</td>
<td>12.1</td>
</tr>
<tr>
<td>2</td>
<td>11:0</td>
<td>Source X</td>
<td>12.2</td>
</tr>
<tr>
<td>3</td>
<td>11:0</td>
<td>Source Y</td>
<td>12.2</td>
</tr>
<tr>
<td>4</td>
<td>11:0</td>
<td>Destination X</td>
<td>12.2</td>
</tr>
<tr>
<td>5</td>
<td>11:0</td>
<td>Destination Y</td>
<td>12.2</td>
</tr>
<tr>
<td>6</td>
<td>11:0</td>
<td>Dimension X</td>
<td>12.3</td>
</tr>
<tr>
<td>7</td>
<td>11:0</td>
<td>Dimension Y</td>
<td>12.3</td>
</tr>
<tr>
<td>8</td>
<td>11:8</td>
<td>Raster Operation</td>
<td>12.8</td>
</tr>
<tr>
<td>9</td>
<td>11:0</td>
<td>Left Clip (X Position for Clipping)</td>
<td>12.4</td>
</tr>
<tr>
<td>A</td>
<td>11:0</td>
<td>Right Clip (X Position for Clipping)</td>
<td>12.4</td>
</tr>
<tr>
<td>B</td>
<td>11:0</td>
<td>Top Clip (Y Position for Clipping)</td>
<td>12.4</td>
</tr>
<tr>
<td>C</td>
<td>11:0</td>
<td>Bottom Clip (Y Position for Clipping)</td>
<td>12.4</td>
</tr>
<tr>
<td>D</td>
<td>11:0</td>
<td>Reserved</td>
<td>--</td>
</tr>
<tr>
<td>E</td>
<td>11:0</td>
<td>Reserved</td>
<td>--</td>
</tr>
<tr>
<td>F</td>
<td>11:0</td>
<td>Register Block Index</td>
<td>12.16</td>
</tr>
</tbody>
</table>

TABLE 12-1. DRAWING ENGINE REGISTERS, I/O PORT 23C2h, (BLOCK 1 OF 2)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>BITS</th>
<th>NAME</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8:0</td>
<td>Map Base Address</td>
<td>12.5</td>
</tr>
<tr>
<td>1</td>
<td>11:0</td>
<td>Row Address Offset</td>
<td>12.3</td>
</tr>
<tr>
<td>2</td>
<td>7:0</td>
<td>Foreground Color Byte 0</td>
<td>12.6</td>
</tr>
<tr>
<td>3</td>
<td>7:0</td>
<td>Foreground Color Byte 1 (For 16-Bit Color)</td>
<td>12.6</td>
</tr>
<tr>
<td>4</td>
<td>7:0</td>
<td>Background Color Byte 0</td>
<td>12.6</td>
</tr>
<tr>
<td>5</td>
<td>7:0</td>
<td>Background Color Byte 1 (For 16-Bit Color)</td>
<td>12.6</td>
</tr>
<tr>
<td>6</td>
<td>7:0</td>
<td>Transparency Color Byte 0</td>
<td>12.12</td>
</tr>
<tr>
<td>7</td>
<td>7:0</td>
<td>Transparency Color Byte 1</td>
<td>12.12</td>
</tr>
<tr>
<td>8</td>
<td>7:0</td>
<td>Transparency Mask Byte 0</td>
<td>12.12</td>
</tr>
<tr>
<td>9</td>
<td>7:0</td>
<td>Transparency Mask Byte 1 (For 16-Bit Color)</td>
<td>12.12</td>
</tr>
<tr>
<td>A</td>
<td>7:0</td>
<td>Mask Byte 0</td>
<td>12.7</td>
</tr>
<tr>
<td>B</td>
<td>7:0</td>
<td>Mask Byte 1 (For 16-Bit Color)</td>
<td>12.7</td>
</tr>
<tr>
<td>C</td>
<td>11:0</td>
<td>Reserved</td>
<td>--</td>
</tr>
<tr>
<td>D</td>
<td>11:0</td>
<td>Reserved</td>
<td>--</td>
</tr>
<tr>
<td>E</td>
<td>11:0</td>
<td>Reserved</td>
<td>--</td>
</tr>
<tr>
<td>F</td>
<td>11:0</td>
<td>Register Block Index</td>
<td>12.16</td>
</tr>
</tbody>
</table>

TABLE 12-2. DRAWING ENGINE REGISTERS, I/O PORT 23C2h, (BLOCK 2 OF 2)

12.1 DRAWING ENGINE CONTROL

The Drawing Engine control uses two 16-Bit registers. Control Register 1 is located at Index 0, and Control Register 2 is located at Index 1. Refer to Table 12-1.

12.1.1 Drawing Engine Control Register 1, Index 0

The functions of Control Register 1 are listed in Table 12-3. Writing to Control Register 1 with any drawing mode other than a "No Operation" will start the Drawing Engine with the specified drawing mode active.
For the functions of Control Register 2, Refer to Table 12-4.

<table>
<thead>
<tr>
<th>Bits 15:12</th>
<th>Logic</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
<td>Index 0</td>
</tr>
<tr>
<td>11:9</td>
<td>Drawing Modes (Section 12.17)</td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>No Operation</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>BITBLT</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Line Strip</td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>Trapezoidal Fill Strip</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Bresenham Line</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X Major</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Y Major</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Source Select</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Screen Memory</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Host I/O or Memory</td>
<td></td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>Color</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Monochrome from Color Comparators</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fixed Color (Rectangle Fill, Line, Line Strip, and Trapezoidal Fill)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Monochrome from Host</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pattern Enable</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Pattern Not Used</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Pattern Used As Source</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Destination Select</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Screen Memory</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Host I/O or Memory</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Last Pixel Off*</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Last Pixel ON</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Last Pixel OFF</td>
<td></td>
</tr>
</tbody>
</table>

* For Bresenham Line

<table>
<thead>
<tr>
<th>TABLE 12-3 DRAWING ENGINE CONTROL REGISTER 1</th>
</tr>
</thead>
</table>

Bits 15:12 - Index 0.

Bits 11:9 - Drawing Mode

These Bits control the Drawing Engine drawing mode as listed in Table 12-3. For descriptions of the drawing modes refer to Section 12.16.

Bits 8:6 - Direction

Bits 8 and 7 control the direction of movement in the X and Y direction, respectively. Bit 6 controls whether the major movement is in the X or Y direction. Bit 6 is not used for BITBLT operations. Refer to Table 12-3.

Bit 5 - Source Select

This Bit selects the source as either the screen memory or the host CPU memory, which can be either the host I/O or system memory. Refer to Table 12-3. This Bit is used only for BITBLT operations.

Bits 4:3 - Source Format

Bits 4 and 3 specify the format of the BITBLT source. The four choices are listed in Table 12-3.

Bit 2 - Pattern Enable

Bit 2 controls pattern enable. With this Bit set to 1, pattern is used as the BITBLT source. Refer to Table 12-3. This Bit is used only for BITBLT operations.

Bit 1 - Destination Select

This Bit selects the destination as either the screen memory or the host CPU memory, which can be either the host I/O or system memory. Refer to Table 12-3. This Bit is used only for BITBLT operations.

Bit 0 - Last Pixel Off

This Bit is used to control the last pixel for Bresenham lines.

12.1.2 Drawing Engine Control Register 2, Index 1

The functions of Control Register 2 are listed in Table 12-4.

For the functions of Control Register 1, Refer to Table 12-3.
<table>
<thead>
<tr>
<th>BITS</th>
<th>LOGIC</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0001</td>
<td>Index 1</td>
</tr>
<tr>
<td>11:10</td>
<td></td>
<td>Pixel Depth</td>
</tr>
<tr>
<td>00</td>
<td></td>
<td>4-Bits/Pixel (Planar)</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>8-Bits/Pixel (Packed)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>16-Bits/Pixel (Packed)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Transparency Enable</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Not Enabled</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Enabled</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Transparency Polarity</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Monochrome Transparency</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>6:5</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Reserved Bits should be set to 1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Data Path FIFO Depth</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>4-Layers Deep</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2-Layers Deep</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>HBLT thru Memory Port</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Data thru I/O Port</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Data thru Memory/not I/O</td>
</tr>
<tr>
<td>2:0</td>
<td></td>
<td>HBLT Color Expand Data Bits/CPU Write*</td>
</tr>
<tr>
<td>000</td>
<td></td>
<td>Not Defined</td>
</tr>
<tr>
<td>001</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>010</td>
<td></td>
<td>2 Bits/CPU Write (16 Bits/Pixel only)</td>
</tr>
<tr>
<td>011</td>
<td></td>
<td>4 Bits/CPU Write (8 or 16 Bits/Pixel only)</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>8 Bits/CPU Write (4, 8, or 16 Bits/Pixel)</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td>8 or 16 Bits/CPU Write (4, 8, or 16 Bits/Pixel)</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>Not Defined</td>
</tr>
</tbody>
</table>

* High density not available for some MCLK Frequencies

TABLE 12-4. DRAWING ENGINE CONTROL REGISTER 2

Bits 15:12 - Index 1.

Bits 11:10 - Pixel Depth

These Bits select the pixel depth. The available addressing modes are 4-Bits per pixel in Planar mode, and 8-Bits or 16-Bits per pixel in Packed mode. Refer to Table 12-4.

Bits 9:7 - Transparency

These Bits are used to control the transparency features. Bit 9 is used to enable transparency, Bit 8 controls the transparency polarity, and Bit 7 controls transparency for monochrome mode operation. Refer to Table 12-4.

Bit 6:5 - Reserved

Reserved Bits should be set to 1.

Bit 4 - Data Path FIFO Depth

This Bit selects the Data Path FIFO depth as either four-levels deep or two-levels deep. Refer to Table 12-4.

Bit 3 - Host BITBLT (HBLT) through Memory Port

This Bit controls which memory port is used by the host BITBLT. The data can be transferred through memory (not I/O) or through the I/O. Refer to Table 12-4.

Bits 2:0 - HBLT Color Expanded Data Bits/CPU Write

These Bits control the number of Bits used to expand HBLT color for CPU writes. Refer to Table 12-4.

NOTE

High density is not available for some MCLK frequencies.

12.2 SOURCE AND DESTINATION

The Source X and Source Y registers specify the source address for BITBLT operations. The Destination X and Destination Y registers specify the destination address. The X and Y fields of each register pair are pointing to a screen memory location. Refer to Table 12-1.

For BITBLT operations, the starting corner for source and destination can be any of the four cor-
ners as specified with the X Direction and Y Direction Bits of the Drawing Engine Control Register 1 as follows:

<table>
<thead>
<tr>
<th>X DIRECTION</th>
<th>Y DIRECTION</th>
<th>STARTING CORNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Top Left</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Bottom Left</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Top Right</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Bottom Right</td>
</tr>
</tbody>
</table>

When the source and destination areas do not overlap, a BITBLT operation can be started in any corner. When these areas overlap, the corner and direction must be selected to prevent parts of the source area from being overwritten by the destination array before they are copied.

For pattern fill (BITBLT operation with pattern enable Bit set), Source X and Source Y are used to point to the starting location of the pattern. Destination X and Destination Y are always updated after the operation is complete.

Source X, Index 2

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0010 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Source X Position Bits 11:0</td>
</tr>
</tbody>
</table>

Source Y, Index 3

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0011 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Source Y Position Bits 11:0</td>
</tr>
</tbody>
</table>

Destination X, Index 4

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0100 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Destination X Position Bits 11:0</td>
</tr>
</tbody>
</table>

Destination Y, Index 5

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0101 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Destination Y Position Bits 11:0</td>
</tr>
</tbody>
</table>

12.3 DIMENSIONS AND ROW PITCH

12.3.1 Dimension X, Index 6

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0110 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Dimension X *</td>
</tr>
</tbody>
</table>

* legal range is 0 to 4K - 1

The Dimension X register is programmed with the desired value minus one as follows:

- For BITBLT operations, this register specifies the width of the rectangular region to be copied.
- For line strip and trapezoidal fill strip operations, this register specifies the length of the strip.
- For Bresenham lines, this register specifies the number of pixels to be drawn.
- In Graphic Modes, this register value is expressed in pixels.
- In Text Modes, this register value is expressed in the number of characters multiplied by eight (even though each character is stored using only two bytes).

12.3.2 Dimension Y, Index 7

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0111 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Dimension Y *</td>
</tr>
</tbody>
</table>

* legal range is 0 to 4K - 1

The Dimension Y register is programmed with the desired value minus one as follows:

- For BITBLT operations, this register specifies the height of the rectangular region to be copied.
- For line strip operations, this register is programmed with the number of line strips with the same length.
- In Graphic Modes, this register value is the height of the region in pixels.
- In Text Modes, this register value is the height of the region in character rows.
• The Dimension Y register is not used for Bresenham line Trapezoid Fill Strip operations.

12.3.3 Row Pitch, Index 1

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1000 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Row Pitch *</td>
</tr>
</tbody>
</table>

* In Packed Mode the two low order Bits of this field must be zero. In Planar Mode the three low order Bits must be zero.

The Row Pitch register specifies the number of pixels offset from any location in a given row to the same location in the next row. This offset is in the same units as the source and destination fields to which it applies.

12.4 CLIPPING

A rectangle clipping function is supported (refer to Table 12-1). The four clipping registers (left, right, top, and bottom) define a rectangular area. Any pixel inside and on the boundary of the rectangular area can be updated during a drawing operation.

Left Clip, Index 9

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1001 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Left Clip (X position for clipping)</td>
</tr>
</tbody>
</table>

Right Clip, Index A

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1010 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Right Clip (X position for clipping)</td>
</tr>
</tbody>
</table>

Top Clip, Index B

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1011 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Top Clip (Y position for clipping)</td>
</tr>
</tbody>
</table>

Bottom Clip, Index C

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1100 (Index)</td>
</tr>
<tr>
<td>11:0</td>
<td>Bottom Clip (Y position for clipping)</td>
</tr>
</tbody>
</table>

12.5 ADDRESS MAPPING

The Source X and Y and the Destination X and Y (refer to Table 12-1) are converted internally to linear addresses that point to pixel locations. The linear address (LA) is defined as:

\[
LA = (Y \cdot \text{ROWPITCH} + X) \cdot S + \text{MAP BASE ADDRESS} \cdot 4K
\]

Where:
- \(S = 1/2 \) for 4 Bits per pixel
- 1 for 8 Bits per pixel
- 2 for 16 Bits per pixel

12.5.1 Map Base Address, Index 0

The Map base Address provides a linear address offset from the start of display memory. Each increment of offset corresponds to a 4 Kbyte increment in display memory. Refer to Table 12-2.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0000 (Index)</td>
</tr>
<tr>
<td>8:0</td>
<td>Map Base Address</td>
</tr>
</tbody>
</table>

12.5.2 Monochrome and Planar Mode

<table>
<thead>
<tr>
<th>CPU ADDRESS</th>
<th>LINEAR ADDRESS</th>
<th>DISPLAY MEMORY LOCATION (ALL MAPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0000</td>
<td>0</td>
<td>Location 0, Bit 7 (left most pixel)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Location 0, Bit 6</td>
</tr>
<tr>
<td>A0001</td>
<td>7</td>
<td>Location 0, Bit 0 (right most pixel)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Location 1, Bit 7</td>
</tr>
<tr>
<td>AFFFF 2</td>
<td>2M-1</td>
<td>Location 512K-1, Bit 0 1</td>
</tr>
</tbody>
</table>

NOTES:
1. Last location in a 2 MB system. Smaller memory configurations have fewer display memory locations.
2. Not in the same memory page as A0001 above.
12.5.3 Packed Modes

<table>
<thead>
<tr>
<th>CPU ADDRESS</th>
<th>LINEAR (8-BIT/PIXEL) ADDRESS</th>
<th>DISPLAY MEMORY LOCATION (ALL MAPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0000</td>
<td>0</td>
<td>Map 0, Location 0 (left most pixel)</td>
</tr>
<tr>
<td>A0001</td>
<td>1</td>
<td>Map 1, Location 0</td>
</tr>
<tr>
<td>A0002</td>
<td>2</td>
<td>Map 2, Location 0</td>
</tr>
<tr>
<td>A0003</td>
<td>3</td>
<td>Map 3, Location 0 (right most pixel)</td>
</tr>
<tr>
<td>A0004</td>
<td>4</td>
<td>Map 0, Location1 (left most pixel)</td>
</tr>
<tr>
<td>A0007</td>
<td>7</td>
<td>Map 3, Location 1</td>
</tr>
<tr>
<td>AFFFF2</td>
<td>2M-1</td>
<td>Map 3, Location 512K-1</td>
</tr>
</tbody>
</table>

NOTES:
1. Last location in a 2 MB system. Smaller memory configurations have fewer display memory locations.
2. Not in the same memory page as A0007 above.

The locations referred to in Sections 12.5.2 and 12.5.3 are the CPU address offset in bytes from the top of the display memory for any given mode. For example, where display memory starts at CPU address A0000h, location 123h would correspond to CPU address A0123h. Where display memory is divided into pages, the location is calculated as if all pages were consecutive. For example, with display memory pages of 64 Kbytes, location 10123h would correspond to CPU address A0123h in the second page of the display memory.

When the source or destination of a BITBLT operation is not a display memory location, the corresponding pair of position registers are unused and may contain any value, except that up to three of the low-order Bits are still used to specify source alignment of the data.

12.6 FOREGROUND AND BACKGROUND COLORS

The Foreground and Background Color registers specify 4-Bit, 8-Bit, or 16-Bit digital colors to be used when expanding monochrome source areas. The foreground color can also be specified as the source of a BITBLT to produce a filled rectangle. Refer to Table 12-2.

Foreground Color, Byte 0, Index 2

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0010 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Foreground Color*</td>
</tr>
</tbody>
</table>

*In Planar modes only Bits 3:0 are used to specify a color.

Foreground Color, Byte 1, Index 3

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0011 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Foreground Color*</td>
</tr>
</tbody>
</table>

*For 16-Bit color.

Background Color, Byte 0, Index 4

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>0100 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Background Color*</td>
</tr>
</tbody>
</table>

*In Planar modes only Bits 3:0 are used to specify a color.

Background Color, Byte 1, Index 5

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1001 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Background Color*</td>
</tr>
</tbody>
</table>

*For 16-Bit color.
12.7 MAP AND PLANE MASK

The Mask registers control both Map and Plane Masks used in drawing operations. Refer to Table 12-2.

The Mask Byte 0 specifies a 4-Bit mask that prevents data in the specified registers from being updated. This mask is needed for BITBLT operations in all text modes to prevent font data from being overwritten in a character-attribute move and vice versa, and VGA mode F. It can also be used in VGA modes 4, 5 and 6 for partial hardware support. Additionally, it can be used in VGA modes D, E, 10, 11 and 12 and extended Planar modes as a Plane Mask if desired.

The Mask Byte 0 and Byte 1 together specify an 8-Bit or 16-Bit mask that prevents data in the specified planes from being updated. This is useful in VGA Mode 13 and extended Packed modes when Plane Masking is desired.

Mask Byte 0, Index A

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1010 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Map/Plane Mask*</td>
</tr>
</tbody>
</table>

* In Planar Modes only Bits 3:0 are used.

Mask Byte 1, Index B

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1011 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Reserved</td>
</tr>
<tr>
<td>7:0</td>
<td>Plane Mask*</td>
</tr>
</tbody>
</table>

* For 16-Bit color.

Plane Mask, Packed Modes for 8-Bit and 16-Bit Color

<table>
<thead>
<tr>
<th>BYTE</th>
<th>PLANE MASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XXXX XXX0 Plane 0 Disabled</td>
</tr>
<tr>
<td></td>
<td>XXXX XXX1 Plane 0 Enabled</td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>7</td>
<td>0XXXX XXXX Plane 7 Disabled</td>
</tr>
<tr>
<td></td>
<td>1XXXX XXXX Plane 7 Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BYTE</th>
<th>PLANE MASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XXXX XXX0 Plane 8 Disabled</td>
</tr>
<tr>
<td></td>
<td>XXXX XXX1 Plane 8 Enabled</td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>7</td>
<td>0XXXX XXXX Plane 15 Disabled</td>
</tr>
<tr>
<td></td>
<td>1XXXX XXXX Plane 15 Enabled</td>
</tr>
</tbody>
</table>

Map Mask, Planar Mode

<table>
<thead>
<tr>
<th>BITS</th>
<th>MAP MASK</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:0</td>
<td>XXX0 Map 0 Disabled</td>
</tr>
<tr>
<td></td>
<td>XXX1 Map 0 Enabled</td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>7:0</td>
<td>0XXX Map 3 Disabled</td>
</tr>
<tr>
<td></td>
<td>1XX Map 3 Enabled</td>
</tr>
</tbody>
</table>

12.8 RASTER OPERATIONS

The Raster Operations register specifies a bitwise logical operation to be performed on the source and destination fields. This field is always active and must be loaded with the appropriate value even when a simple source copy is to be performed. Refer to Table 12-1.

Raster Operations, Index 8

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1000 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Raster Operation CODE (abcd in Table 12-6)</td>
</tr>
<tr>
<td>7:0</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
All operations apply a source color, pattern or area to a destination area. The result written to the destination is a logical function of the source and destination pixels for each location.

The Raster Operation code is defined as follows:

The Source (S) and Destination (D) form a 2-Bit value. The Truth Table (Table 12-5) defines the results of the two operands, Source and Destination, for the desired function.

The four 1-Bit results of the Truth Table for the desired operation (expressed as a, b, c, and d) form the Raster Operation code (abcd) used in Table 12-6. The "a" is defined as the high-order Bit of the code.

While the Raster Operation code represents a 2-input operation, both inputs are not always relevant in the operation. For example, codes 0011 (source copy) and 1100 (inverted source copy) are independent of the destination field.

Arithmetic operations are not supported.

<table>
<thead>
<tr>
<th>S</th>
<th>D</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>d</td>
</tr>
</tbody>
</table>

TABLE 12-5. RASTER OPERATION TRUTH TABLE

<table>
<thead>
<tr>
<th>abcd</th>
<th>FUNCTION</th>
<th>abcd</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Zero</td>
<td>1000</td>
<td>NOR</td>
</tr>
<tr>
<td>0001</td>
<td>AND</td>
<td>1001</td>
<td>XNOR</td>
</tr>
<tr>
<td>0010</td>
<td>S * D</td>
<td>1010</td>
<td>Inv Dest</td>
</tr>
<tr>
<td>0011</td>
<td>Src</td>
<td>1011</td>
<td>S + D</td>
</tr>
<tr>
<td>0100</td>
<td>S * D</td>
<td>1100</td>
<td>Inv Src</td>
</tr>
<tr>
<td>0101</td>
<td>Dest</td>
<td>1101</td>
<td>S + D</td>
</tr>
<tr>
<td>0110</td>
<td>XOR</td>
<td>1110</td>
<td>NAND</td>
</tr>
<tr>
<td>0111</td>
<td>OR</td>
<td>1111</td>
<td>One</td>
</tr>
</tbody>
</table>

TABLE 12-6. RASTER OPERATION CODE

12.9 PATTERNS

The WD90C33 has a special mode to accelerate the copying of 8 by 8 source patterns. In this mode, an 8 by 8 full-color or monochrome pattern can be repetitively applied to a large destination area in an efficient manner.

To perform a pattern copy, the host first writes the 8 by 8 pattern to display memory in a linear fashion, usually to a non-visible location, depending on the current addressing mode, as described in Sections 12.5.2 and 12.5.3. The host then loads the Source registers, with the location of the pixel within the pattern corresponding to the top-left corner of the destination region. The Pattern Enable Bit (Control Register 1, Bit 2) must be set to 1 to enables Patterns to be used as a source.

To specify a monochrome pattern, the host must write a color pattern in the current mode, planar or packed, and then use the control registers to specify a single plane of the source to be used.

12.9.1 Pattern Storage - Monochrome And Planar Modes

In planar mode, the 8 by 8 source pattern must be stored in display memory in a 32-byte aligned area. It is stored as 64 consecutive pixels, not as a rectangular region. When performing the pattern copy, however, the source address may point to any pixel within the 64-pixel region. This pixel is anchored to the top-left corner of the destination region, and the pattern wraps to the right and down from that point. This anchored point is selected by Control Register 1, Bits 8 and 7, as follows:

<table>
<thead>
<tr>
<th>Blt 8 = X, Blt 7 = Y</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DIRECTION</th>
<th>ANCHOR POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y WRAP</td>
<td>ANCHOR POINT</td>
</tr>
<tr>
<td>0 0 Right and Down</td>
<td>Top Left</td>
</tr>
<tr>
<td>0 1 Right and Up</td>
<td>Bottom Left</td>
</tr>
<tr>
<td>1 0 Left and Down</td>
<td>Top Right</td>
</tr>
<tr>
<td>1 1 Left and up</td>
<td>Bottom Right</td>
</tr>
</tbody>
</table>
12.9.2 Pattern Storage - Packed Modes

In packed mode, the 8x8 source pattern must be stored in display memory in a 64-byte aligned area. It is stored as 64 consecutive bytes, not as a rectangular region. When performing the pattern copy, the source address may point to any pixel with the 64-pixel region. This pixel is anchored to the top-left corner of the destination region, and the pattern wraps to the right and down from that point. The anchored point is selected by Control Register 1, Bits 8:7.

### ADDRESS	DISPLAY MEMORY CONTENTS

n - 1	Any data
n* to n+3	All maps, top row of 8x8 pattern
n+4 to n+7	All maps, second row of 8x8 pattern
n+28 to n+31	All maps, bottom row of 8x8 pattern
n+32 to...	Any data

*n must be a multiple of 32

NOTE

For 16-Bits per pixel, the 8 by 8 source pattern must be stored in display memory in a 128 byte aligned area.

12.10 MONOCHROME TO COLOR EXPANSION

When the source of a BITBLT operation is monochrome, each 0 in the source region is replaced with the specified background color, while each 1 is replaced with the foreground color. All other processing options, including masks and raster operations, remain active and operate on the expanded colors.

When the source is specified as a fixed color, the entire destination will be filled with the foreground color, subject to masks, raster operations and destination transparency. Filled rectangles are generated in this manner.

When a monochrome source is generated by the color comparators, color destination transparency is generally not available since the transparency color registers are in use.

12.11 EXTRACTING MONOCHROME DATA

Monochrome data can be extracted from color data read from display memory by the color comparators. Data extracted in this manner is replicated to each plane or map as if it had been read from the memory.

Monochrome data can also be extracted from host data when the BITBLT source is the I/O port. In this case, each 32-Bit word written to the I/O port is treated in the same manner as if it had been read from display memory. Alternately, the host may send monochrome data through the I/O port that does not require extraction (Refer to Section 12.14).

To extract a single plane from a color source field, the Transparency Color register should be loaded with FFh (all ones), while the Transparency Mask register should be loaded with a 0 in the map or plane position to be extracted, and a 1 in all other positions.

Monochrome data is usually extracted as a specific Bit of each 4-Bit, 8-Bit, or 16-Bit pixel. However, the color comparators can be used to extract any color, or any maskable group of colors, into the monochrome color 1, with all other colors returning a monochrome 0.

When the Monochrome Transparency Bit is set to
1(Control Register 2, Bit 7) the monochrome source pixels of 0 do not modify the destination, regardless of any selected raster operation. Refer to Table 12-2.

The Transparency Enable and Polarity Bits (Control Register 2, Bits 9 and 8) have no effect on monochrome data extraction.

12.12 COLOR TRANSPARENCY

Color transparency is the concept that a certain color or range of colors in the source or destination field of a BITBLT operation are actually transparent, with the rest being opaque. Transparent source colors do not overwrite the background. Opaque destination colors cannot be overwritten. A common simplified form of source transparency is the logical OR of source and destination, in which a source field of zero is effectively a transparent color, since when ORed with the destination, it does not change.

Color destination transparency is supported by the WD90C33, in addition to the more limited monochrome transparency described elsewhere.

The Transparency Color registers specify a 4-Bit, 8-Bit, or 16-Bit color to be used as the transparency color. Refer to Table 12-2.

<table>
<thead>
<tr>
<th>BIT FUNCTION</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12 0110 (Index)</td>
<td>6</td>
</tr>
<tr>
<td>11:8 Reserved</td>
<td></td>
</tr>
<tr>
<td>7:0 Transparency Color *</td>
<td></td>
</tr>
</tbody>
</table>

* In Planar Modes only the four low-order Bits are used.

Transparency Color, Byte 0, Index 6

The pixels of the destination are compared against the Transparency Color under control of the Transparency Mask. Each Bit of the Transparency Mask that is a 1 makes the corresponding Bit of the Transparency Color a "don't care".

The Transparency Enable Bit of the Control Register 2 (Table 12-4) specifies whether Color Transparency is enabled or disabled. The Transparency Polarity Bit specifies whether pixels matching the Transparency Color are considered transparent. In this case, only destination pixels matching the transparent color can be overwritten, or transparent, and only non-matching pixels can be overwritten.

12.13 FILLED RECTANGLES

Filled rectangles can be drawn very efficiently by the hardware. A filled rectangle is simply a BITBLT operation with a source of a fixed color. To draw a filled rectangle, the host sets the Source Format field in Control Register 1 to "Fixed Color" and the Foreground Color Registers, Index 2 and 3, (refer to Table 12-2) to the desired fill color. A source X and Y are not required. All other options are available in a normal manner.

<table>
<thead>
<tr>
<th>BIT FUNCTION</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12 1001 (Index)</td>
<td>9</td>
</tr>
<tr>
<td>11:8 Reserved</td>
<td></td>
</tr>
<tr>
<td>7:0 Transparency Mask *</td>
<td></td>
</tr>
</tbody>
</table>

* For 16-Bit color.
12.14 HOST BIT BLOCK TRANSFER (HBLT)

HBLT has two major functions:

- Image Transfer
- Color Expand

Image Transfer:

HBLT Image Transfer is used to transfer a Bitmap from the host to the screen. The Bitmap can contain all colors in a mode. HBLT transfers support 8-Bit, 16-Bit, or 32-Bit memory or I/O access.

Color Expand:

When a Bitmap, such as a font, that needs only one or two colors is transferred, the HBLT Color Expand function provides faster transfers since only one-Bit-per-pixel transfers are performed. That one Bit is then expanded into two colors (foreground and background) or one color (foreground) and transparent. However, HBLT color expand is limited to a maximum of 16-Bit transfers because memory bandwidth would hold IOCHRDY low too long for 32-Bit transfers. Fewer Bits may be required for some situations.

For HBLT to transfer a Bitmap from the host to the screen, set the Control Register 1 "Source Select" Bit to 1. Refer to Table 12-3.

12.14.1 HBLT Data Access

After starting a Bit-Block-Transfer (BITBLT) operation, the host writes lines of the Bitmap to the Read-Back-Latch. This access can be done through memory write or I/O write.

Memory access is normally faster due to shorter AT bus cycles and freedom from the operating system protection of I/O Port.

The selection of memory or I/O access for HBLT data is controlled through the Control Register 2 "HBLT Through Memory" Bit as follows:

- **0** = Screen memory normal (use I/O Port 23C4h for data transfer).
- **1** = All screen memory is decoded for HBLT Image data

During HBLT through memory transfers, the destination address is set with the Destination X and Destination Y registers. The transfer address is used only to align byte and word transfers.

For memory writes (8-Bit, 16-Bit, or 32*-Bit), the memory address depends upon register 3CFh Index 6, Bits 3:2, the same as standard VGA. Bits 3:2 select address ranges as follows:

<table>
<thead>
<tr>
<th>BIT</th>
<th>HOST ADDRESS RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2</td>
<td>0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>A000:0h - AFFF:Fh</td>
</tr>
<tr>
<td>1 0</td>
<td>B000:0h - B7FF:Fh</td>
</tr>
<tr>
<td>1 1</td>
<td>B800:0h - BFFF:Fh</td>
</tr>
</tbody>
</table>

NOTE

Transfers of 32-Bits must be image transfers only. Color expand accommodates 16-Bit transfers maximum.

For I/O transfers, HBLT data access occurs through writes at address:

- **8-Bit I/O accesses at addresses 23C4h, 23C5h, 23C6h*, and 23C7h* in sequence**
- **16-Bit I/O access at addresses 23C4h and 23C6h* in sequence**
- **32-Bit I/O access at address 23C4h**

NOTE

The asterisk (*) indicates these must be image transfers only.

12.14.2 Programming Sequence for HBLT

The sequence of programming for HBLT Bitmap data transfers is given in the following steps:

1. Wait for the Command Buffer locations to be available for parameters (For Command Buffer description, refer to Section 13.)
2. Enter set-up parameters including destination, width, height, FGC, BGC, etc.

3. Use CLI to disable host interrupts that could cause conventional VGA access during an HBLT data transfer.

4. Write Control Register 1.

5. Wait for Command Buffer Locations Available = 0000 (for all eight locations). This allows the Control Register 1 write to reach the Drawing Engine. A previous operation may have the Drawing Engine busy, and hold Control Register 1 in the command buffer until the previous operation is complete.

6. Transfer the image or Bit map to the WD9OC33. This transfer can be done through the 23C4h Register or memory.

7. Wait for Drawing Engine busy to equal 0.

8. Use STI to enable interrupts.

NOTES

1. Steps 3, 6, and 7 are required when host interrupts that access VGA are present in the system. These interrupts could be from a network, communications program, TSR programs, keyboard, etc. Any conventional VGA host access during a HBLT operation will confuse HBLT.

2. This sequence can be used with the command buffer enabled or disabled.

12.14.3 Image Transfer

For Image Transfer every transfer of a line of host data must end on a 32-Bit boundary. Pad Bits can be added before and after the image to complete 32-Bit blocks. Any block contains data for one line only. The least significant Bit (LSB) is displayed on the left for X Direction = 0.

The 32-Bits of image data are accumulated in the Read-Back-Latch. When the host transfers less than 32-Bits in a write, address Bits 0 and 1 determine which bytes to write.

Data Available triggers the Drawing Engine to write data when either:

- X Direction is positive and Byte 3 is loaded (preferred)
- X Direction is negative and Byte 0 is loaded

For an example of an Image transfer, consider the following parameters:

1. Select **Destination** per pixel.
2. X Direction is Positive.
3. Y Direction is Positive.
4. Source X is set to 1. This selects byte 1 of the Read-Back-Latch for the left most pixel of the destination.
5. Destination X is set to 1.
6. Destination Y is set to 2.
7. Dimension X is set to 4 (for 5 pixels).
8. X Direction is Negative and Byte 0 is loaded

Then:

<table>
<thead>
<tr>
<th>TRANSFER ADDRESS</th>
<th>DATA</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B800:0</td>
<td>84</td>
<td>Before Pad (Optional)</td>
</tr>
<tr>
<td>B800:1</td>
<td>85</td>
<td>First Pixel, First Line</td>
</tr>
<tr>
<td>B800:2</td>
<td>86</td>
<td>Second Pixel, First Line</td>
</tr>
<tr>
<td>B800:3</td>
<td>87</td>
<td>Third Pixel, First Line</td>
</tr>
</tbody>
</table>

32-Bit Boundary

B800:4	88	Fourth Pixel, First Line
B800:5	89	Fifth Pixel, First Line
B800:6	8A	After Pad, (Required)
B800:7	8B	After Pad, (Required)

32-Bit Boundary

B800:8	8C	Before Pad, (Optional)
B800:9	8D	First Pixel, Second Line
B800:A	8E	Second Pixel, Second Line
B800:B	8F	Third Pixel, Second Line

32-Bit Boundary

B800:C	90	Fourth Pixel, Second Line
B800:D	91	Fifth Pixel, Second Line
B800:E	92	After Pad, (Required)
B800:F	93	After Pad, (Required)

READ-BACK-LATCH

<table>
<thead>
<tr>
<th>BYTE 3</th>
<th>BYTE 2</th>
<th>BYTE 1</th>
<th>BYTE 0</th>
</tr>
</thead>
</table>

ADVANCED INFORMATION 5/27/93
In the figure above, pad bytes are outside the destination area (white), and do not appear on the screen.

Byte access is shown to clarify pads. In practice, 32-Bit transfers would be faster.

12.14.4 Color Expand Function

For the color expand function, lines of the bitmap are transferred directly. Pad Bits are required only to the next 8-Bit boundary. Any write contains data for one line only. The most significant Bit (MSB) is displayed on the left when X Direction = 0.

For 8-Bits per CPU write, set Control Register 2, Bits 2:0 to 101b. Then, use a byte move instruction such as MOVSB. This works around a problem with odd addresses.

Planar mode HOSTBLIT color expand works for all Source X from 0 through 7.

Packed mode HOSTBLIT color expand works for all Source X from 0 through 3. When Source X is greater than 3, it wraps around the 8-bit register (23C4h or memory) as follows:

Destination

In 16-bits per pixel mode, HOSTBLIT color expand works for Source X = 0 and 1 only. When Source X is greater than 1, it wraps around the 8-bit register (23C4h or memory) as follows:

<table>
<thead>
<tr>
<th>Source X</th>
<th>Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3, 5, 7, 9</td>
</tr>
<tr>
<td>3</td>
<td>0, 2, 4, 6, 8</td>
</tr>
</tbody>
</table>

For an example of the color expand function, consider the following parameters:

1. X Direction is Positive.
2. Y Direction is Positive.
3. Monochrome Transparency is set to 0.
4. Source X is set to 0.
5. Destination X is set to 1.
6. Destination Y is set to 2.
7. Dimension X is set to 4 (for 5 pixels).

Then:

<table>
<thead>
<tr>
<th>TRANSFER ADDRESS</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>B800:0</td>
<td>1000 1000*</td>
</tr>
<tr>
<td>B800:1</td>
<td>1110 0111*</td>
</tr>
</tbody>
</table>

*Bits 2:0 are ignored
In the figure above, pad Bits are outside the destination area (white), and do not appear on the screen.

When a slow MCLK is used, there is less time available for memory access. This limits the number of color expand Bits that can be written to memory while using CHRDY to hold off subsequent writes. Generally, the modes listed in Table 12-7 should use less than 16-Bits per host write operation.

Table 12-7. Color Expand Limited Modes

<table>
<thead>
<tr>
<th>MCLK(^1) (MHz)</th>
<th>VCLK(^2) (MHz)</th>
<th>ROP(^3)</th>
<th>BITS/PIXEL</th>
<th>X RES (PIXELS)</th>
<th>VERTICAL REF (Hz)</th>
<th>VCLK/PIXEL</th>
<th>MAXIMUM CHRDY(^4) (µsec)</th>
<th>MAXIMUM BITS PER HOST WRITE(^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.9</td>
<td>51</td>
<td>ds</td>
<td>16</td>
<td>640</td>
<td>60</td>
<td>2</td>
<td>1.44</td>
<td>8</td>
</tr>
<tr>
<td>44.9</td>
<td>65</td>
<td>s</td>
<td>16</td>
<td>640</td>
<td>70</td>
<td>2</td>
<td>1.61</td>
<td>8</td>
</tr>
<tr>
<td>44.9</td>
<td>65</td>
<td>ds</td>
<td>16</td>
<td>640</td>
<td>70</td>
<td>2</td>
<td>1.61</td>
<td>4</td>
</tr>
<tr>
<td>44.9</td>
<td>65</td>
<td>ds</td>
<td>8</td>
<td>1024</td>
<td>60</td>
<td>1</td>
<td>1.61</td>
<td>8</td>
</tr>
<tr>
<td>44.9</td>
<td>75</td>
<td>s</td>
<td>8</td>
<td>1024</td>
<td>70</td>
<td>1</td>
<td>2.16</td>
<td>8</td>
</tr>
<tr>
<td>44.9</td>
<td>75</td>
<td>ds</td>
<td>8</td>
<td>1024</td>
<td>70</td>
<td>2</td>
<td>2.16</td>
<td>4</td>
</tr>
<tr>
<td>50</td>
<td>65</td>
<td>ds</td>
<td>16</td>
<td>640</td>
<td>70</td>
<td>2</td>
<td>1.83</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
<td>ds</td>
<td>8</td>
<td>1024</td>
<td>70</td>
<td>1</td>
<td>1.60</td>
<td>8</td>
</tr>
</tbody>
</table>

NOTES:

1. The MCLK rate is related to the speed of the DRAMs used and is usually set by the board manufacturer.
2. The VCLK rate is determined by the current display mode. For an external clock generator, the VCLK rate is set with PR32 (3C5h, Index 12, Bit 2) write only, and Miscellaneous Output Register (Write 3C2h, Read 3CCh, Bits 3:2).
3. ROP = s includes single operation ROPs 0, 3, 5, A, C, and F.
 ROP = ds includes destination and source ROPs 1, 2, 4, 6, 7, 8, 9, B, D, and E.
4. More Bits per write can be used if software guarantees enough time between writes to allow the VGA to write memory. The time necessary can be computed from:
 \[\text{wait} = \text{Bits}_\text{written} \times \text{Max CHRDY}^4 / \text{Max Bits/Host Write}^5 \]
5. Where: "wait" is the time in microseconds between host writes.
 Bits_written is the desired number of Bits per host write.
12.15 DRAWING MODES

The WD90C33 supports four drawing modes. The drawing modes are selected by Control Register 1, Bits 11:9 (refer to Table 12-3).

The drawing modes are:

• BITBLT
• Line Strip
• Trapezoidal Fill Strip
• Bresenham Line

12.15.1 Line Strip

The Line Strip drawing mode is supported to satisfy the need for a line draw algorithm other than Bresenham lines. The Bresenham Line drawing mode is described in Section 12.15.3.

Line strip provides flexibility in selecting the pixel to be drawn. Depending on the setting of the Major Bit (Control Register 1, Bit 6), Line Strip will draw a horizontal or vertical strip.

When Control Register 1, Bits 11:9 are set to 010, Line Strip is selected and the hardware will draw one strip with the length specified in Dimension X. At the end of the strip, if the X Direction Bit (Bit 8) is set to 0, the hardware increments Destination X by 1. If the X Direction Bit is set to 1, the hardware decrements Destination X by 1.

The same operation is done to Destination Y depending on Y Direction Bit (Bit 7), and the above operations are then repeated as specified in Dimension Y.

The user may write to Dimension X with a new value, and the hardware will again draw strips with the new length. Dimension Y may be changed also, but it has to be changed before writing to Dimension X. When the drawing mode is set to line strips, writing to Dimension X will start the hardware to draw.

The Line Strip operation may be repeated as many times as required. However, following the last operation, Control Register 1, Bits 11:9 must be set to 000 (No Operation). This ensures that subsequent writes to Dimension X will not start a Drawing Mode operation.

The following example draws a line from (5, 3) to (20, 8) and the pixels to be drawn are:

\[
\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
X = & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
Y = & 3 & o & o & o & \\
4 & & o & o & o & & \\
5 & & o & o & \\
6 & & o & o & o & & \\
7 & & o & o & o & & \\
8 & & o & o & & \\
\end{array}
\]

For this example, the registers are programmed in the following sequence.

I/O Port 23C2h Setup

Destination X	5
Destination Y	3
Dimension Y	1 (2 minus 1)
Dimension X	2 (3 minus 1)

Control Register 1, Index 0, Line Strip Setup

<table>
<thead>
<tr>
<th>BIT S</th>
<th>FUNCTION</th>
<th>LOGIC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:9</td>
<td>Drawing Mode</td>
<td>010</td>
<td>Line Strip</td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td>0</td>
<td>Positive (To the Right)</td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td>0</td>
<td>Positive (Downward)</td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td>0</td>
<td>X Major (Horizontal Strip)</td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td>10</td>
<td>Fixed Color</td>
</tr>
<tr>
<td>-</td>
<td>Other Bits</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
I/O Port 23C2h Writes
Dimension Y = 0 (1 minus 1)
Dimension X = 1 (2 minus 1)
Dimension Y = 1 (2 minus 1)
Dimension X = 2 (3 minus 1)
Dimension Y = 0 (1 minus 1)
Dimension X = 1 (2 minus 1)
During Line Strip writes, if the Command Buffer is disabled, the writes to Dimension X and Dimension Y must wait until the Drawing Engine is not busy. If the Command Buffer is enabled, the buffer should be checked to ensure that enough locations are available. For Command Buffer operation refer to Section 13.

Control Register 1, Index 0, No Operation

<table>
<thead>
<tr>
<th>BIT S</th>
<th>FUNCTION</th>
<th>LOGI C</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:9</td>
<td>Drawing Mode</td>
<td>000</td>
<td>No Operation</td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td>0</td>
<td>Positive (To the Right)</td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td>0</td>
<td>Positive (Downward)</td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td>0</td>
<td>X Major (Horizontal Strip)</td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td>10</td>
<td>Fixed Color</td>
</tr>
<tr>
<td></td>
<td>Other Bits</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This operation prevents subsequent writes to Dimension X from starting a drawing operation.

12.15.2 Trapezoid Fill Strip

The Trapezoid Fill Strip drawing mode is supported to quickly fill arbitrary shaped objects. Operation is similar to Line Strip except that Trapezoid Fill Strip does not use Dimension Y as a count number and it does horizontal strips only.

Following the last Trapezoid Fill Strip operation, Control Register 1, Bits 11:9 must be set to 000 (No Operation). This ensures that subsequent writes to Dimension X will not start a Drawing Mode operation.

The following example can be used to fill a symbol.

```
 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
X = 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
Y = 2 0 0 0 0 0
3     0 0 0 0 0
4     0 0 0 0 0
5     0 0 0 0 0
6     0 0 0 0
7     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```

For this example, the registers are programmed in the following sequence.

I/O Port 23C2h Setup
Destination X = 12
Destination Y = 2
Dimension X = 4 (5 minus 1)

Control Register 1, Index 0, Trapezoid Fill Strip Setup

<table>
<thead>
<tr>
<th>BIT S</th>
<th>FUNCTION</th>
<th>LOGI C</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:9</td>
<td>Drawing Mode</td>
<td>011</td>
<td>Trapezoid Fill Strip</td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td>0</td>
<td>Positive (To the Right)</td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td>0</td>
<td>Positive (Downward)</td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td>0</td>
<td>X Major (Horizontal Strip)</td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td>10</td>
<td>Fixed Color</td>
</tr>
<tr>
<td></td>
<td>Other Bits</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
I/O Port 23C2h Writes

Destination X = 14
Dimension X = 4 (5 minus 1)
Destination X = 16
Dimension X = 3 (4 minus 1)
Destination X = 16
Dimension X = 3 (4 minus 1)
Destination X = 15
Dimension X = 3 (4 minus 1)
Destination X = 13
Dimension X = 14 (15 minus 1)
Destination X = 12
Dimension X = 11 (12 minus 1)

During Trapezoid Fill Strip writes, if the Command Buffer is disabled, the writes to Destination X and Dimension X must wait until the Drawing Engine is not busy. If the Command Buffer is enabled, the buffer should be checked to ensure that enough locations are available. For Command Buffer operation refer to Section 13.

I/O Port 23C2h, Index 0, Control Register 1, No Operation

<table>
<thead>
<tr>
<th>BIT S</th>
<th>FUNCTION</th>
<th>LOGIC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:9</td>
<td>Drawing Mode</td>
<td>000</td>
<td>No Operation</td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td>0</td>
<td>Positive (To the Right)</td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td>0</td>
<td>Positive (Downward)</td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td>0</td>
<td>X Major (Horizontal Strip)</td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td>10</td>
<td>Fixed Color</td>
</tr>
<tr>
<td>-</td>
<td>Other Bits</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This operation prevents subsequent writes to Dimension X from starting a Drawing Mode operation.

12.15.3 Bresenham Line

The WD90C33 supports line drawing using the Bresenham algorithm. In addition to the Drawing Engine registers, three other Direct I/O Port registers need to be programmed.

<table>
<thead>
<tr>
<th>I/O PORT</th>
<th>REGISTER</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>23C8h</td>
<td>K1</td>
<td>Bresenham Constant 1</td>
</tr>
<tr>
<td>23CAh</td>
<td>K2</td>
<td>Bresenham Constant 2</td>
</tr>
<tr>
<td>23CCh</td>
<td>ET</td>
<td>Bresenham Error Term</td>
</tr>
</tbody>
</table>

For an example, the registers are programmed as follows:

I/O Port 23C2h, Index 4 through 7 Setup

Destination X = xs
Destination Y = ys
Dimension X = max

Bresenham Values

K1 = 2 * min
K2 = 2 * (min - max)
ET = (2 * min) - max -1 if xs > xe
ET = (2 * min) - max if xs ≤ xe

Legend for Bresenham Line Register Values

xs = X coordinate of the starting point
ys = Y coordinate of the starting point
xe = X coordinate of the ending point
ye = Y coordinate of the ending point
daXa = abs(xs - xe)
daYa = abs(ys - ye)
min = min (delta x, delta y)
max = max (delta x, delta y)
I/O Port 23C2h, Index 0, Control Register 1, Bresenham Line

<table>
<thead>
<tr>
<th>BITS</th>
<th>NAME</th>
<th>LOGIC</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:9</td>
<td>Drawing Mode</td>
<td>100</td>
<td>Bresenham Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>X Direction</td>
<td>0</td>
<td>If xs is (\leq) xe X Direction is Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>If xs > xe X Direction is Negative</td>
</tr>
<tr>
<td>7</td>
<td>Y Direction</td>
<td>0</td>
<td>If ys is (\leq) ye Y Direction is Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>If ys > ye Y Direction is Negative</td>
</tr>
<tr>
<td>6</td>
<td>Major</td>
<td>0</td>
<td>If delta x (\geq) delta y (X Major)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>If delta x < delta y (Y Major)</td>
</tr>
<tr>
<td>5</td>
<td>Source Select</td>
<td>0</td>
<td>Screen Memory</td>
</tr>
<tr>
<td>4:3</td>
<td>Source Format</td>
<td>10</td>
<td>Fixed Color</td>
</tr>
<tr>
<td>2</td>
<td>Pattern Enable</td>
<td>0</td>
<td>Not Used</td>
</tr>
<tr>
<td>1</td>
<td>Destination Select</td>
<td>0</td>
<td>Screen Memory</td>
</tr>
<tr>
<td>0</td>
<td>Last Pixel Off</td>
<td>0</td>
<td>Pixel ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Pixel OFF</td>
</tr>
</tbody>
</table>

12.16 REGISTER BLOCK INDEX, INDEX Fh

All register blocks have an Index Fh that can be used to switch the block or index. Normally, to change a register block or index requires the user to write to I/O Port 23C0h with the values of the register block or index desired. To speed up block switching or to change the register index, Index F can be used instead.

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:12</td>
<td>1111 (Index)</td>
</tr>
<tr>
<td>11:8</td>
<td>Register Index</td>
</tr>
<tr>
<td>7:0</td>
<td>Register Block Pointer</td>
</tr>
</tbody>
</table>
13.0 EXTENDED REGISTER ACCESS

All of the WD90C33 enhanced functions are controlled by one or more extended registers, most of which are above and beyond standard VGA registers.

Enhanced functions are controlled by indexed register blocks. Each indexed register block can contain up to sixteen 12-Bit indexed registers. The 4-Bit register index is written, along with the 12-Bit data field, to form a 16-Bit word.

Access to VGA-type registers is described in Section 5. This section only describes the access to indexed register blocks.

13.1 ACCESSING INDEXED REGISTERS

To write to one or more indexed registers within any register block, that register block must first be selected by loading its address into the Register Block Pointer field of the Index Control register. This causes the selected register block to appear at the Register Access port.

A 16-Bit word is then written to the Register Access port. The four high-order Bits specify the Index of the individual register being written, while the 12 low-order Bits are the data to be written. Additional registers within the same register block may then be written without re-selecting that register block.

To read one or more indexed registers within a register block, the address of that register block is written to the Register Block Pointer Field, Bits 7:0 of the Index Control Register at Port 23C0h and the desired starting register to be read within the block is written to the Register Index Field, Bits 11:8 of this register. Both fields are set with the same 16-Bit write. This causes the selected register to appear at the Register Access Port located at 23C2h.

A 16-Bit word is then read from the Register Access Port. When reading an indexed register, the value returned contains the index of the register in the four high-order Bits.

If the Auto-Increment Disable Bit in the Index Control register is reset, consecutive reads to the Register Access Port will return consecutively indexed registers within the same register block. Registers are read in ascending order through register F (the 16th register in the block), followed by register 0 and cycling indefinitely as long as reads continue. Addressing a non-existent register results in zeros being returned in the 12-Bit data field.

If the Auto-Increment Disable Bit is set, consecutive reads return the same indexed register.

<table>
<thead>
<tr>
<th>I/O PORT</th>
<th>BITS</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>23C0</td>
<td>----</td>
<td>Index Control</td>
</tr>
<tr>
<td>15:14</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Invalid Register Block (RO)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Auto-Increment Disable</td>
</tr>
<tr>
<td>11:8</td>
<td></td>
<td>Register Index</td>
</tr>
<tr>
<td>7:0</td>
<td></td>
<td>Register Block Pointer</td>
</tr>
<tr>
<td>23C2</td>
<td>15:0</td>
<td>Register Access Port</td>
</tr>
<tr>
<td>23C4</td>
<td>15:0</td>
<td>Host Bit Block Transfer (HBLT) Port 0</td>
</tr>
<tr>
<td>23C6</td>
<td>15:0</td>
<td>Host Bit Block Transfer (HBLT) Port 1</td>
</tr>
<tr>
<td>23C8</td>
<td>13:0</td>
<td>K1 (Line Draw Constant 1)</td>
</tr>
<tr>
<td>23CA</td>
<td>13:0</td>
<td>K2 (Line Draw Constant 2)</td>
</tr>
<tr>
<td>23CC</td>
<td>13:0</td>
<td>ET (Line Draw Error Term)</td>
</tr>
<tr>
<td>23CE</td>
<td>10:0</td>
<td>Command Buffer and Interrupt</td>
</tr>
</tbody>
</table>

TABLE 13-1. DIRECT I/O PORT ADDRESSING

13.2 INDEX CONTROL REGISTER
PORT 23C0h

Except for Bit 13 which is a read only, the Index Control register is a read/write register which controls reads and writes to indexed registers blocks. Refer to Table 13-1.

Bits [15:14] Reserved
Bit 13 - Invalid Register Block (Read Only).
- 0 = Currently addressed register block exists on this device.
- 1 = Currently addressed register block does not exist on this device.

Bit 12 - Auto-Increment Disable.
- 0 = Consecutive reads return consecutive indexed registers.
- 1 = Consecutive reads return the same indexed register.

Bits [11:8] - Register Index
The index of the desired starting register to be read within a block is written to these Bits. When read, these Bits return the index of the next register to be read.

Bits [7:0] - Register Block Pointer
To read one or more indexed registers within a register block, the address of that register block is written to this field.

<table>
<thead>
<tr>
<th>POINTER</th>
<th>REGISTER ACCESS PORT ACCESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>System Control Registers</td>
</tr>
<tr>
<td>01</td>
<td>Drawing Engine Register</td>
</tr>
<tr>
<td>02</td>
<td>Hardware Cursor Registers</td>
</tr>
<tr>
<td>03</td>
<td>Drawing Engine Register</td>
</tr>
</tbody>
</table>

TABLE 13-2. REGISTER BLOCK MAP

13.3 INTERRUPT STATUS REGISTER, SYSTEM CONTROL REGISTERS BLOCK - INDEX 0

Interrupt status information is provided by the Interrupt Status register in the System Control Register block. This register returns information as to which part of the WD90C33 caused an interrupt.

Reading this register does not reset any interrupts. Resetting of each interrupt is handled independently.

Unassigned interrupts are returned as zeroes.

13.4 COMMAND BUFFER AND INTERRUPT CONTROL REGISTER

Address 23CE/23CFh

TABLE 13-3. COMMAND BUFFER AND INTERRUPT CONTROL REGISTER
13.4.1 Command Buffer Description

The Command Buffer (I/O Port Register 23CEh) is a First-In First-Out (FIFO) buffer that can hold up to eight Drawing Engine register writes. When the Drawing Engine is busy, the Command Buffer allows the Host to continue sending commands instead of waiting until the Drawing Engine is finished. When the Drawing Engine completes a current operation, the contents of the Command Buffer are loaded into the Drawing Engine on a first-in first-out basis until the Command Buffer is empty or another command begins.

The Command Buffer stores only Drawing Engine writes. The Hardware Cursor and standard VGA writes do not go through the Command Buffer.

Buffered registers include:
- 23C2h Block 1 Index 0 through E
- 23C2h Block 3 Index 0 through E
- 23C8h
- 23CAh
- 23CCh

Registers 23C0h or 23C2h Index F set the block and index. These registers are buffered as part of the address for each write. Therefore, these registers do not use Command Buffer locations.

13.4.2 Command Buffer Operation

The Command Buffer is enabled by setting I/O Port Register 23CEh, Bit 5 to 1. It should be left in the enabled state at all times.

Some operations can take the Drawing Engine a long time to execute, so the software should check the Command Buffer Locations Available Bits before writing commands (refer to Table 13-3). The software should poll the Locations Available Bits until there are enough locations to hold the Drawing Engine writes.

If the Command Buffer is written to when it is full, the information usually is not stored and the overflow Bit (23CEh, Bit 6) is set to 1. This Bit can be read to determine the Command Buffer status, and is cleared by disabling the Command Buffer (23CEh, Bit 5 is set to 0).

<table>
<thead>
<tr>
<th>BITS</th>
<th>LOGIC</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>--</td>
<td>DE* Busy (w/dynamic Read)</td>
</tr>
<tr>
<td>0 (Read)</td>
<td></td>
<td>Operation from DE Finished</td>
</tr>
<tr>
<td>1 (Read)</td>
<td></td>
<td>Operation from DE in Progress</td>
</tr>
<tr>
<td>0 (Write)</td>
<td></td>
<td>No Effect</td>
</tr>
<tr>
<td>1 (Write)</td>
<td></td>
<td>Abort DE and Dump Command Buffer</td>
</tr>
<tr>
<td>6</td>
<td>---</td>
<td>Command Buffer Overflow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Diagnostic Read Only)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Normal Operation</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Command Buffer Overflow Occurred</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Since Last Enable</td>
</tr>
<tr>
<td>5</td>
<td>---</td>
<td>Command Buffer Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Read/Write)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Command Buffer Disabled</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Command Buffer Enabled</td>
</tr>
<tr>
<td>4</td>
<td>---</td>
<td>Reserved</td>
</tr>
<tr>
<td>3:0</td>
<td>---</td>
<td>Command Buffer Locations Available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Read Only)</td>
</tr>
<tr>
<td>0000</td>
<td></td>
<td>Empty 8 Locations Available</td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td>7 Locations Available</td>
</tr>
<tr>
<td>0010</td>
<td></td>
<td>6 Locations Available</td>
</tr>
<tr>
<td>0011</td>
<td></td>
<td>5 Locations Available</td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td>4 Locations Available</td>
</tr>
<tr>
<td>0101</td>
<td></td>
<td>3 Locations Available</td>
</tr>
<tr>
<td>0110</td>
<td></td>
<td>2 Locations Available</td>
</tr>
<tr>
<td>0111</td>
<td></td>
<td>1 Locations Available</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>Full: No Locations Available</td>
</tr>
</tbody>
</table>

* DE refers to Drawing Engine.

TABLE 13-3. COMMAND BUFFER AND INTERRUPT CONTROL REGISTER
When the Command Buffer is disabled, the Locations Available Bits follow the Drawing Engine Busy, and can be polled to determine if a write operation can be performed. Then, if the Buffered registers are written to, the Locations Available status indicates empty (0000) until the Drawing Engine operation starts. The status then snaps to full (1000). When the Drawing Engine finishes its operation, the Command Buffer Locations Available status returns to empty and another write operation can be performed.

The following program provides an example of Command Buffer initialization and use.

Initialization

```
OUT 23CEh,0020h ; enable command buffer
```

Poll For Command Using Three Writes

```
loop: IN ax,23CEh
AND ax,000Fh ; locations available mask
CMP ax,5 ; locations needed
        ; 5 = (8-3)
JG loop ; buffer full keep polling
OUT 23C2h,6003h ; new Dimension X
OUT 23C2h,7002h ; new Dimension Y
OUT 23C2h,0200h ; new BITBLT command
RET ; on to next task
```
14.0 APPLICATION AND PROGRAMMING NOTES

14.1 BITBLT IN VGA MODES 4, 5, AND 6
VGA modes 4, 5 and 6 are partially supported by the WD90C33. Since these modes are not commonly used in Windows, the additional hardware required to support the even/odd scan line offset technique employed in these modes is not supported.

However, a BITBLT operation in these VGA modes can often be broken up into two or three BLT operations, each of which operates on a contiguous area of memory.

When the vertical offset between source and destination is an even number of rows, the desired operation can be broken into two BITBLTs, one for the even rows and one for the odd rows. This requires careful consideration of the register parameters, especially the BITBLT Dimension Y register.

Where the offset is an odd number of rows, it may still be possible to break up the operation into only two BITBLTs, provided there is no overlap between the source and destination regions. This is because information is being swapped between the even and odd scan line regions.

Where source and destination do overlap, it may be possible to use a scratch space in off-screen memory and break up the operation into three BITBLTs.

Another possibility is to break up a BITBLT into a series of one-line high operations that can be referred to as Line-BITBLTs. In this manner, a BITBLT may be simulated by the driver as a series of Line-BITBLTs.

14.2 BITBLT OPERATIONS IN TEXT MODE
BITBLT acceleration is available in VGA Text Modes. Text Mode BITBLTs generally consist of moving only character and attribute data (in maps 0 and 1), while leaving the font data (in maps 2 and 3) alone. The BITBLT mask is set to prevent update to those maps. For this reason, Planar (not Packed) Mode must be used. Similarly, the BITBLT mask can be set to move only character data, or only font data.

Each display memory location consists of four bytes: one character, one attribute and two font plane bytes that are not part of the character but happen to fall in the same location as the character, but on maps 2 and 3. In planar mode, this is a space of eight pixels. Therefore, the source and destination of a character BLT must be multiples of eight. The X dimension is the number of character columns to be copied times eight but the Y dimension is simply the X number of character rows (not multiplied). The row pitch is set to the number of characters per row times eight.

14.3 USE OF BITBLT FOR ARBITRARY SIZED PATTERNS

While the BITBLT hardware specifically accelerates 8 by 8 patterns, patterns of arbitrary size can be accelerated by use of the BITBLT, although to a lesser degree.

To copy an arbitrary size pattern to a destination region, the pattern should be stored in non-visible memory as a rectangular region, not a linear strip. With destination update enabled, one copy of the pattern should be BITBLTed to the top-left corner of the destination. The BITBLT source is then set to point to the pattern now in the destination region.

A series of BITBLTs are then performed, each doubling the width of the patterned area, simply by adjusting the X Dimensions register. (The last of this series of BITBLTs just fill out the destination region.)

A new series of BITBLTs is then performed, taking the horizontally complete pattern and doubling it in height each time. The destination update should be turned off, and the destination must be set for each new BITBLT. The final BITBLT will probably not be a double of the previous one since it just fills out the region.
14.4 USE OF PATTERNS IN TEXT MODE

Patterns may be in text mode to quickly set character and/or attribute bytes in a rectangular area to a common value. A pattern space must be created containing eight consecutive copies of the four-byte area consisting of the character, the attribute and two Font Map bytes, all aligned to a 64-pixel boundary. The BITBLT map mask is then used to protect the font maps. This pattern should be created in off-screen memory.

If an off-screen pattern space is not available, one may be created on screen by loading an aligned group of eight character/attribute pairs within the destination area, then pointing to that as the pattern source.

If the first character of the destination space happens to be on an 8-byte boundary (such as the conventional top of screen) then, as long as the destination is at least eight characters wide, only the first character/attribute pair must be loaded, and the BITBLT operation creates its own pattern as it goes along. This also works if the destination is less than eight characters wide, but is still wider than it is high.

If this is not possible, then the operation can be performed one character row at a time, loading the first character of each row to be used as an on-screen pattern.

Filled rectangles have a very limited application in text mode, but could be used to clear out a section of a font map or to set a section of a character or attribute map to all zeroes or all ones. Different values are not easily set in this manner because, in order to protect the font maps, planar mode, rather than packed mode, must be used.

14.5 LIMITED 24-BIT COLOR SUPPORT

Acceleration for 24-bit color is possible for BITBLT; however, it is not supported by hardware. In 24-Bit color mode, the hardware is programmed like 8-bit color. The Source X, Destination X, Dimension X, Left Clip, Right Clip, and Row Pitch are multiplied by 3. Transparency and Bit Plane Masking are not supported.

Other drawing functions such as Bresenham line, Line Strip, Trapezoid Fill Strip, Pattern Fill, and Rectangle fill are not supported.
15.0 SIGNATURE ANALYZER

A signature analyzer is designed for use in the WD90C33. The primary purpose of the signature analyzer is to aid in IC test and board level test. The signature analyzer allows the video output path to be included in diagnostics. Signature analysis is a method of compressing large amounts of data to be compared. Each video frame (video data and mode dependent) has a unique signature capable of detecting single Bit errors.

15.1 DESCRIPTION

The basis of the signature analyzer is a Linear Feedback Shift Register (LFSR). The inputs to the LFSR tap onto the VID[7:0] output of the IC. The signal path of the video outputs is not modified by adding the signature analyzer. The primary variables for a signature analyzer are the length of the shift register and the feedback terms to be used. The length affects the probability of masking an error. The chance of masking an error is approximately 1/2^n, where n is the length of the shift register. A 16-Bit signature register is used on the WD90C33. Selection of an optimal feedback polynomial will depend on the type of errors expected. The CRC-CCITT polynomial (x^{16} + x^{12} + x^5 + 1) has been implemented on the WD90C33.

15.2 OPERATION

The signature analyzer is designed to collect signatures of the VID[7:0] outputs over one vertical frame. The signal path of the VID[7:0] has not been altered. The signature analyzer register (LFSR) is enabled at the falling edge of the internal VSYNC (before polarity selection) if the start Bit is high. The following rising edge of the VSYNC signal will disable the LFSR. For interlaced operation, the signature is collected from the beginning of the even field to the end of the odd field. The signature analyzer contains a 4-Bit control register PR19 (address 375.3F). Power-up-reset clears this register to 00H. The register has both read and write locks. The read lock originates from PR10 Bits 7 and 3. The write lock originates from PR10 Bits 2 through 0. PR10 also serves as the lock for other registers.
Table 15-1. Control Register PR19

<table>
<thead>
<tr>
<th>BIT</th>
<th>FUNCTION</th>
<th>READ/WRITE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start/Status</td>
<td>R/W</td>
<td>Writing a 1 to this Bit position enables the signature analyzer to collect a signature at the falling edge of the next vertical sync pulse. This Bit may be read to check status if the read lock is disabled. For status: 1 = Busy, 0 = Finished or not enabled.</td>
</tr>
<tr>
<td>1</td>
<td>Clear</td>
<td>R/W</td>
<td>Writing a 0 to this Bit position preloads the Signal Analyzer Register (LFSR) with 0001h. This Bit must be set to operate the signature analyzer. For operation: 1 = Normal operation, 0 = Preload LFSR.</td>
</tr>
<tr>
<td>2</td>
<td>Disable Video Input</td>
<td>R/W</td>
<td>This Bit is used in a self test mode. A fixed signature will be generated for any given mode (independent of video memory data). To enable self-test: 1 = Disable video inputs, 0 = Enable video inputs.</td>
</tr>
<tr>
<td>3</td>
<td>Lock Read Port</td>
<td>R/W</td>
<td>This Bit must be set to read the video signature and status. To read: 1 = Enable read of LFSR (address 3?5h, Index 20h and 21h), 0 = Disable reads of LFSR.</td>
</tr>
</tbody>
</table>

The following programming procedure summarizes the sequence that will setup, check, and read a video signal signature.

1. Load 85h -> 3?5.29h; Releases the Control Register (PR10) read and write lock
2. Load 00h -> 3?5.3Fh; Clears the signature analyzer
3. Load 03h -> 3?5.3Fh; Enables the signature analyzer to collect data
4. Read 3?5.3Fh; Checks status for busy:
 - if LSB = 1, repeat step 4
 - if LSB = 0, signature is collected, proceed to step 5.
5. Load 0Ah -> 3?5.3Fh; Enables signature analyzer to read port
6. Read 3?5.20h; Reads low byte of signature
7. Read 3?5.21h; Reads high byte of signature
8. Load 00h -> 3?5.3Fh; Clears signature analyzer and locks read port
16.0 I/O MAPPING

The section provides the following information:
- A description of WD90C33 I/O Mapping
- A list of I/O Mapping Groups

16.1 DESCRIPTION

The I/O Mapping allows the WD90C33 to enter a test mode where all of its pins are divided into groups with inputs and outputs. The path for each group goes from the input pin(s), through the WD90C33, and to the output pin. Each group can be treated as a separate resistive path to check for open and shorted circuits within the group and between groups. Table 16-1 lists each group (path) with its corresponding input and output pins.

The WD90C33 must meet the following four requirements in order to enter the I/O Mapping test mode.
- LOW is low
- IOR is low
- CNF(2) is high (MD2 is pulled high)
- RESET is active high then goes low

If both LOW and IOR are low at the same time, it becomes an illegal condition in AT compatible computers and a reserved condition in the PS/2 compatible computers. CNF2 high ensures that WD90C33 is in AT mode.

RESET controls a transparent latch as shown in Figure 16-1. Reset can be dropped low to latch the test mode. All the bidirectional pins are forced to input mode when in the test mode.

16.2 PIN GROUPING

The pin grouping listed in Table 16-1 was selected to minimize routing overhead of I/O pin mapping. Multiple input pins in a row are ORed together to the output shown in the following table. The input column lists the input pin number(s) along with the signal name(s). The output column lists the output pin number along with the signal names.

NOTE

Power and ground pins and pins with no connection (a total of 45 pins) are not included in I/O Mapping.
<table>
<thead>
<tr>
<th>OUTPUT</th>
<th>PIN</th>
<th>NAME</th>
<th>INPUT</th>
<th>PIN</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAS2</td>
<td>4,</td>
<td>MD14,</td>
<td>200,</td>
<td>MD21,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200,</td>
<td></td>
<td>205</td>
<td>MD17</td>
</tr>
<tr>
<td>2</td>
<td>WET</td>
<td>11,</td>
<td>MD8,</td>
<td>201,</td>
<td>MD20,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201,</td>
<td></td>
<td>206</td>
<td>MD16</td>
</tr>
<tr>
<td>12</td>
<td>WE0</td>
<td>5,</td>
<td>MD13,</td>
<td>8</td>
<td>MD11</td>
</tr>
<tr>
<td>25</td>
<td>MA8</td>
<td>45,</td>
<td>ALE,</td>
<td>47,</td>
<td>ROM16,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47,</td>
<td></td>
<td>82</td>
<td>A21</td>
</tr>
<tr>
<td>26</td>
<td>MA7</td>
<td>63,</td>
<td>A5,</td>
<td>76,</td>
<td>A16,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76,</td>
<td></td>
<td>81</td>
<td>A20</td>
</tr>
<tr>
<td>27</td>
<td>MA6</td>
<td>62,</td>
<td>A4,</td>
<td>78,</td>
<td>A18,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78,</td>
<td></td>
<td>83</td>
<td>A22</td>
</tr>
<tr>
<td>28</td>
<td>MA5</td>
<td>57,</td>
<td>BHE,</td>
<td>79,</td>
<td>A19,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79,</td>
<td></td>
<td>84</td>
<td>A23</td>
</tr>
<tr>
<td>29</td>
<td>MA4</td>
<td>21,</td>
<td>MD1,</td>
<td>61,</td>
<td>A3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61,</td>
<td></td>
<td>77</td>
<td>A17</td>
</tr>
<tr>
<td>31</td>
<td>MA3</td>
<td>17,</td>
<td>MD4,</td>
<td>22,</td>
<td>MD0,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22,</td>
<td></td>
<td>60</td>
<td>A2</td>
</tr>
<tr>
<td>32</td>
<td>MA2</td>
<td>16,</td>
<td>MD5,</td>
<td>20,</td>
<td>MD2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,</td>
<td></td>
<td>56</td>
<td>A1</td>
</tr>
<tr>
<td>33</td>
<td>MA1</td>
<td>10,</td>
<td>MD9,</td>
<td>14,</td>
<td>MD7,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14,</td>
<td></td>
<td>19</td>
<td>MD3</td>
</tr>
<tr>
<td>34</td>
<td>MA0</td>
<td>9,</td>
<td>MD10,</td>
<td>23,</td>
<td>CAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23,</td>
<td></td>
<td>58</td>
<td>A0</td>
</tr>
</tbody>
</table>

(See Figure 16-2.)

TABLE 16-1. I/O MAPPING GROUPS
Table 16-1. I/O Mapping Groups

<table>
<thead>
<tr>
<th>Output</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Name</td>
</tr>
<tr>
<td>149</td>
<td>WPLT</td>
</tr>
<tr>
<td>150</td>
<td>RPLT</td>
</tr>
<tr>
<td>161</td>
<td>PCLK</td>
</tr>
<tr>
<td>162</td>
<td>BLNK</td>
</tr>
<tr>
<td>163</td>
<td>VID0</td>
</tr>
<tr>
<td>164</td>
<td>VID1</td>
</tr>
<tr>
<td>165</td>
<td>VID2</td>
</tr>
<tr>
<td>166</td>
<td>VID3</td>
</tr>
<tr>
<td>168</td>
<td>VID4</td>
</tr>
<tr>
<td>169</td>
<td>VID5</td>
</tr>
</tbody>
</table>

Table 16-1. I/O Mapping Groups

<table>
<thead>
<tr>
<th>Output</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Name</td>
</tr>
<tr>
<td>170</td>
<td>VID6</td>
</tr>
<tr>
<td>171</td>
<td>VID7</td>
</tr>
<tr>
<td>183</td>
<td>USR1</td>
</tr>
<tr>
<td>184</td>
<td>USR0</td>
</tr>
<tr>
<td>186</td>
<td>WE3</td>
</tr>
<tr>
<td>196</td>
<td>WE2</td>
</tr>
<tr>
<td>207</td>
<td>RAS</td>
</tr>
</tbody>
</table>

Figure 16-2. Multiplexer Input with CAS Inverted

![Multiplexer Input with CAS Inverted](image1)

Figure 16-3. Multiplexer Input with MCLK Inverted

![Multiplexer Input with MCLK Inverted](image2)
17.0 OPERATING ENVIRONMENT

The following table lists the absolute maximum ratings for the WD90C33 controller.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Operating Temperature Range under Bias</td>
<td>0°C to 70°C, 32°F to 158°F</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>-40°C to 125°C, -40°F to 257°F</td>
</tr>
<tr>
<td>Voltage on any Input or Output Pin with respect to V_{SS}</td>
<td>-0.3 to 7 Volts</td>
</tr>
<tr>
<td>Dynamic Power Dissipation</td>
<td>1.25 Watts</td>
</tr>
<tr>
<td>Static Power Dissipation (with CRTC refresh turned off)</td>
<td>0.66 Watts</td>
</tr>
<tr>
<td>Electrostatic Discharge</td>
<td>2000 Volts</td>
</tr>
</tbody>
</table>

TABLE 17-1 ABSOLUTE MAXIMUM RATINGS

CAUTION

Stresses above those listed in the table may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation section of this data sheet is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.
18.0 DC ELECTRICAL SPECIFICATIONS

18.1 STANDARD OPERATING CONDITIONS

The characteristics listed in the following tables apply to standard operating conditions, unless otherwise noted. All voltages are referenced to VSS (0V Ground). Positive current flows into the referenced pin. The standard operating voltage range is:

4.75 to 5.25 VDC

<table>
<thead>
<tr>
<th>SIGNAL NAMES</th>
<th>SIGNAL TYPE</th>
<th>SOURCE/SINK (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALE, EMEM, IOW, IOR, MRD, MWR, SYSRESET</td>
<td>TTL, Hys</td>
<td>---</td>
</tr>
<tr>
<td>A[31:0], BE3, BHE, EXPCLK, EXVID, MDET,</td>
<td>TTL, Hys, pu</td>
<td>---</td>
</tr>
<tr>
<td>EIO, MCLK, VCLK0</td>
<td>CMOS</td>
<td>---</td>
</tr>
<tr>
<td>MEMCS16, IOCRHDY, IRQ</td>
<td>TTL, Tri</td>
<td>24</td>
</tr>
<tr>
<td>BA[1:0], BLNK, PCLK, RPLT, WPLT, VID[7:0]</td>
<td>TTL, Tri</td>
<td>10</td>
</tr>
<tr>
<td>HSYNC, VSYNC</td>
<td>TTL, Tri</td>
<td>6</td>
</tr>
<tr>
<td>0WS</td>
<td>TTL, oc</td>
<td>24²</td>
</tr>
<tr>
<td>EBROM, USR[1:0]</td>
<td>TTL</td>
<td>6</td>
</tr>
<tr>
<td>MA[8:0]</td>
<td>CMOS, Tri</td>
<td>12</td>
</tr>
<tr>
<td>OE, RAS, RAS2, WE[3:0]</td>
<td>CMOS, Tri</td>
<td>16</td>
</tr>
<tr>
<td>BD[7:0], MD[31:0]</td>
<td>CMOS, pu</td>
<td>4</td>
</tr>
<tr>
<td>D[31:16]</td>
<td>TTL, Hys, pu</td>
<td>10</td>
</tr>
<tr>
<td>D[15:0]</td>
<td>TTL, Hys, pu</td>
<td>24</td>
</tr>
<tr>
<td>VCLK1</td>
<td>TTL, Hys</td>
<td>6</td>
</tr>
<tr>
<td>VCLK2</td>
<td>TTL, Hys, pu</td>
<td>6</td>
</tr>
<tr>
<td>CAS</td>
<td>CMOS</td>
<td>16</td>
</tr>
<tr>
<td>IOCS16</td>
<td>TTL, Hys, oc</td>
<td>24²</td>
</tr>
<tr>
<td>ROM16</td>
<td>TTL</td>
<td>16</td>
</tr>
</tbody>
</table>

NOTES:

1. Signal type lists abbreviations for characteristics that are operational to the particular signal as follows:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td>Transistor-to-Transistor Logic</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>Hys</td>
<td>300 mV Hysteresis</td>
</tr>
<tr>
<td>Tri</td>
<td>Tristate</td>
</tr>
<tr>
<td>oc</td>
<td>Open Collector</td>
</tr>
<tr>
<td>pu</td>
<td>50K to 150K pull up resistor</td>
</tr>
</tbody>
</table>

TABLE 18-1 DC SIGNAL CHARACTERISTICS
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>UNITS</th>
<th>CONDITIONS</th>
<th>APPLIES TO SIGNAL NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL</td>
<td>TTL Input Low</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
<td>VCC = 5V +/- 5%</td>
<td>A[31:0], ALE, BE3, BHE, D[31:0], EMEM, EXPCLK, EXVID, IOCS16, IOR, IOW, MDET, MRD, MWR, ROM16,</td>
</tr>
<tr>
<td>VIH</td>
<td>TTL Input High Voltage</td>
<td>2.0</td>
<td>VCC + 0.3</td>
<td>V</td>
<td>VCC = 5V +/- 5%</td>
<td>ALE, CAS, EIO, EMEM, IOCS16, IOR, IOW, MCLK, MRD, MRW, ROM16, RSET,</td>
</tr>
<tr>
<td>IIL</td>
<td>TTL Input Low</td>
<td>--</td>
<td>+/- 10</td>
<td>μA</td>
<td>VIN = 0.0V</td>
<td>E</td>
</tr>
<tr>
<td>IIH</td>
<td>TTL Input High</td>
<td>--</td>
<td>+/- 10</td>
<td>μA</td>
<td>VIN = VCC</td>
<td>E</td>
</tr>
<tr>
<td>VOL</td>
<td>TTL Output Low</td>
<td>--</td>
<td>0.4</td>
<td>V</td>
<td>IOL = +2.0 mA</td>
<td>E, B</td>
</tr>
<tr>
<td>VOH</td>
<td>TTL Output High Voltage</td>
<td>2.4</td>
<td>--</td>
<td>V</td>
<td>IOH = -2.0 mA</td>
<td>E, B</td>
</tr>
<tr>
<td>VCL</td>
<td>CMOS Input Low</td>
<td>-0.3</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCH</td>
<td>CMOS Input High Voltage</td>
<td>VCC - 1.0</td>
<td>VCC + 0.3</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCOL</td>
<td>CMOS Output Low</td>
<td>--</td>
<td>0.5</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCOH</td>
<td>CMOS Output High</td>
<td>VCC</td>
<td>--</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPL</td>
<td>Pull-up Input Low</td>
<td>-10</td>
<td>-110</td>
<td>μA</td>
<td>50K TO 300K Internal Pull-up Resistor</td>
<td>E, B, W</td>
</tr>
<tr>
<td>IPH</td>
<td>Pull-up Input High</td>
<td>--</td>
<td>+/- 10</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IOZ</td>
<td>High Impedance Leakage</td>
<td>-10.0</td>
<td>10.0</td>
<td>μA</td>
<td>0V < VOUT < VCC</td>
<td>E</td>
</tr>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td>--</td>
<td>10</td>
<td>pF</td>
<td>FC = 1 MHz</td>
<td>E</td>
</tr>
<tr>
<td>COUT</td>
<td>Output Capacitance</td>
<td>--</td>
<td>10</td>
<td>pF</td>
<td>FC = 1 MHz</td>
<td>E</td>
</tr>
<tr>
<td>CVIO</td>
<td>I/O Pin Capacitance</td>
<td>--</td>
<td>12</td>
<td>pF</td>
<td>FC = 1 MHz</td>
<td>E</td>
</tr>
</tbody>
</table>

TABLE 18-2. DC POWER CHARACTERISTICS
19.0 AC TIMING CHARACTERISTICS

19.1 INTRODUCTION

The following information applies to all of the parameters listed in this section:

- $CL = 30 \, \text{pF}$ unless otherwise noted.
- nt implies $n \times t$, (n times the period t). e.g. $1t$, $2t$ etc.
- $\#n$ refers to the number in column 1 of the same table.

- The numbers in the first column of each table are used to locate parameters on the associated diagram.
- Throughout this section, the minimum (MIN) and maximum (MAX) values are given in nanoseconds (ns) unless otherwise specified.

<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MIN VALUE</th>
<th>MAX VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESET Pulse Width</td>
<td>10t</td>
<td>-</td>
<td>$t = 1/MCLK$ (For configuration at Power-On and Reset)</td>
</tr>
<tr>
<td>2</td>
<td>MD setup to RESET Low</td>
<td>50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MD Hold from RESET Low</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RESET Low to First IOW</td>
<td>10t</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 19-1. RESET TIMING

FIGURE 19-1. RESET TIMING
AC TIMING CHARACTERISTICS

<table>
<thead>
<tr>
<th>NO. IN DIAGRAM</th>
<th>PARAMETER</th>
<th>MIN VALUE</th>
<th>MAX VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCLK Clock Period</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VCLK High</td>
<td>5</td>
<td></td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>3</td>
<td>VCLK Low</td>
<td>5</td>
<td></td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>4</td>
<td>Clock Rise Time</td>
<td></td>
<td>2</td>
<td>1V - (VDD - 1V)</td>
</tr>
<tr>
<td>5</td>
<td>Clock Fall Time</td>
<td></td>
<td>2</td>
<td>1V - (VDD - 1V)</td>
</tr>
<tr>
<td>6</td>
<td>VCLK to PCLK Delay</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>VCLK to HSYNC Delay</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>VCLK to VSYNC Delay</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>VCLK to BLNK Delay</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7d</td>
<td>VCLK to VID[7:0] Delay</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MCLK Clock Period</td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MCLK High</td>
<td>8</td>
<td></td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>10</td>
<td>MCLK Low</td>
<td>8</td>
<td></td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>11</td>
<td>VID[7:0] Setup to PCLK</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>VID[7:0] Hold from PCLK</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Applies to VCLK and MCLK.
2. VCLK0 and MCLK use CMOS level input buffers. V(IL) max = 1.5V, V(IH) min = VDD - 1.5V

TABLE 19-2. CLOCK TIMING

Figure 19-2. Clock and Video Timing

*PCLK is derived from the inverted VCLK.
<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MIN VALUE</th>
<th>MAX VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMEM Setup to MRD, MWR Low</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EMEM Hold from MRD, MWR High</td>
<td>10</td>
<td>-</td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>3a</td>
<td>A[23:17] Setup to ALE Low</td>
<td>20</td>
<td>-</td>
<td>At 1/2 VDD</td>
</tr>
<tr>
<td>3b</td>
<td>BHE, A[16:0] Setup to IOR, IOW, MRD, MWR Low</td>
<td>18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>A[23:17] Hold from ALE Low</td>
<td>10</td>
<td>-</td>
<td>1V - (VDD - 1V)</td>
</tr>
<tr>
<td>4b</td>
<td>A[16:0] Hold from IOR, IOW, MRD, MWR Low</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EIO Setup to IOR, IOW Low</td>
<td>20</td>
<td>-</td>
<td>1V - (VDD - 1V)</td>
</tr>
<tr>
<td>6</td>
<td>EIO Hold from IOR, IOW High</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D[15:0] Write Data Setup to IOW, MWR High</td>
<td>20</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12a</td>
<td>D[15:0] Read Data Hold from IOR High or MRD High</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12b</td>
<td>D[15:0] Write Data Hold from IOW, MWR High</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13a</td>
<td>D[15:0] Read Data Valid after IOR, Low</td>
<td>-</td>
<td>t + 50</td>
<td>t = 1/MCLK</td>
</tr>
<tr>
<td>13b</td>
<td>MWR Low to D[15:0] Write Data Valid</td>
<td>-</td>
<td>3t + 10</td>
<td>t = 1/MCLK</td>
</tr>
<tr>
<td>14</td>
<td>RDY High from MRD, MWR Low</td>
<td>10</td>
<td>2.45 µs</td>
<td>Maximum is standard for VGA modes.</td>
</tr>
<tr>
<td>15</td>
<td>Memory Read Data Valid from RDY High</td>
<td>-</td>
<td>40</td>
<td>Note 1</td>
</tr>
<tr>
<td>16a</td>
<td>RDY Low from MRD, MWR Low</td>
<td>10</td>
<td>25</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>16b</td>
<td>RDY Low from IOR, IOW Low</td>
<td>10</td>
<td>25</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>17a</td>
<td>RDY Tristate from MRD, MWR High</td>
<td>10</td>
<td>25</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>17b</td>
<td>RDY Tristate from IOR, IOW High</td>
<td>10</td>
<td>25</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>20a</td>
<td>WPLT Low from IOW Low</td>
<td>-</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>20b</td>
<td>RPLT Low from IOR Low</td>
<td>-</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>21a</td>
<td>WPLT High from IOW High</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>21b</td>
<td>RPLT High from IOR High</td>
<td>9</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 19-3. I/O AND MEMORY READ/WRITE TIMING FOR AT BUS MODE
<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MIN VALUE</th>
<th>MAX VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>EBROM Low from IOW Low (46E8h Port)</td>
<td>-</td>
<td>1t + 20</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>EBROM High from IOW High (46E8h Port)</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>VCLK1 Low from IOW Low (3C2h Port)</td>
<td>-</td>
<td>1t + 25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>VCLK1 High from IOW High (3C2h Port)</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A[15:0] Valid to IOCS16 Low</td>
<td>-</td>
<td>35</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>27</td>
<td>IOCS16 Hold from IOW High</td>
<td>-</td>
<td>20</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>28</td>
<td>A[23:17] Valid to MEMCS16 or ROM16 LOW</td>
<td>-</td>
<td>41</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>29</td>
<td>MEMCS16 Tristate from the Next Active ALE</td>
<td>-</td>
<td>39</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>30a</td>
<td>IOR, IOW, MRD, MWR High</td>
<td>2t + 15</td>
<td>-</td>
<td>t = 1/MCLOCK</td>
</tr>
<tr>
<td>30b</td>
<td>IOR, IOW, MRD, MWR Low</td>
<td>2t</td>
<td>-</td>
<td>t = 1/MCLOCK</td>
</tr>
<tr>
<td>30c</td>
<td>ALE Pulse Width</td>
<td>30</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>OWS Low from MWR Low</td>
<td>-</td>
<td>15</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>32</td>
<td>D[7:0] to BD[7:0] for IOW at 03C2h and 03C6h through 03C9h</td>
<td>-</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>A[1:0] to BA[1:0]</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Value depends on setting of PR31 (3C5h, Index 11h), Bits 4:3. t = 1/MCLOCK
 00 = 40 Max
 01 = 40 + 1t Max
 10 = 40 + 2t Max
 11 = 40 - 1t Max

2. Numbers the first column correspond to numbers on the timing diagram Figure 19-3.

3. The OWS signal is programmable at PR33 (3C5, Index 13h). Parameter 31 Is for PR66, Bits 7:6 set to 10.

TABLE 19-3. I/O AND MEMORY READ/WRITE TIMING FOR AT BUS MODE
FIGURE 19-3. AT BUS MODE TIMING
<table>
<thead>
<tr>
<th>NO. IN DIAGRAM</th>
<th>PARAMETER</th>
<th>MIN (nS)</th>
<th>MAX (nS)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCLK Period</td>
<td>25</td>
<td>--</td>
<td>VCC/2 Threshold</td>
</tr>
<tr>
<td>2</td>
<td>LCLK Low Time</td>
<td>10</td>
<td>--</td>
<td>VCC/2 Threshold</td>
</tr>
<tr>
<td>3</td>
<td>LCLK High Time</td>
<td>10</td>
<td>--</td>
<td>VCC/2 Threshold</td>
</tr>
<tr>
<td>3a</td>
<td>LCLK Fall Time</td>
<td>--</td>
<td>3</td>
<td>3.0V to 1.5V</td>
</tr>
<tr>
<td>3b</td>
<td>LCLK Rise Time</td>
<td>--</td>
<td>3</td>
<td>1.5V to 3.0V</td>
</tr>
<tr>
<td>4</td>
<td>A[31:2], BE[3:0], M/IO, D/C, to LDEV</td>
<td>5</td>
<td>20</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>5</td>
<td>A[31:2], BE[3:0], M/IO, D/C, R/W, ADS</td>
<td>7</td>
<td>--</td>
<td>One Wait State</td>
</tr>
<tr>
<td></td>
<td>Setup to LCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A[31:2], BE[3:0], M/IO, D/C, R/W, ADS</td>
<td>13</td>
<td>--</td>
<td>Zero Wait State</td>
</tr>
<tr>
<td></td>
<td>Hold From LCLK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LCLK to D[31:0] Out</td>
<td>3</td>
<td>14</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>8</td>
<td>LCLK to D[31:0] Tristate</td>
<td>3</td>
<td>14</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>9</td>
<td>LCLK of ADS Low to VGARDY Low</td>
<td>c*t+5</td>
<td>2.5 µs</td>
<td>t = LCLK Period</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c = Setting of 2DF1h, Bit 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>10</td>
<td>VGARDY Low to VGARDY High</td>
<td>t+2</td>
<td>t+10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LCLK to VGARDY Hi-Z</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D[31:0] in Setup before LCLK</td>
<td>11</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>D[31:0] Hold After LCLK</td>
<td>5</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>RDYIN to LCLK before ADS Setup</td>
<td>7</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LCLK to RDYIN hold</td>
<td>3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>LCLK to VGARDY Low</td>
<td>2</td>
<td>20</td>
<td>CL = 100 pF</td>
</tr>
<tr>
<td>17</td>
<td>A[31:2], BE[3:0], M/IO, D/C to EPROM</td>
<td>5</td>
<td>35</td>
<td>2DF0h, Bit 7 = 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>External BIOS</td>
</tr>
</tbody>
</table>

TABLE 19-4. VL-BUS INTERFACE TIMING
FIGURE 19-4. VL-BUS INTERFACE TIMING
<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MINIMUM VALUE</th>
<th>MAXIMUM VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BA[1:0] Valid to RPTL or WPTL Low</td>
<td>t - 4</td>
<td>-</td>
<td>t = LCLK Cycle Time</td>
</tr>
<tr>
<td>2</td>
<td>RPTL or WPTL Low Time</td>
<td>n * t - 15</td>
<td>n * t</td>
<td>t = LCLK Cycle Time n based on 2DF0h, Bit 4 as follows: Bit 4 = 0 then n = 9 Bit 4 = 1 then n = 18</td>
</tr>
<tr>
<td>3</td>
<td>Read BD[7:0] Setup to LCLK</td>
<td>10</td>
<td>-</td>
<td>These times apply to EPROM also.</td>
</tr>
<tr>
<td>4</td>
<td>Read BD[7:0] Hold After LCLK</td>
<td>10</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LCLK rise to RPTL or WPTL</td>
<td>3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WPTL rise to BD[7:0] hold</td>
<td>10</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
</tbody>
</table>

TABLE 19-5. RAMDAC TIMING

![Diagram of RAMDAC Internal Data Path](image)

FIGURE 19-5. RAMDAC TIMING
<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MINIMUM VALUE</th>
<th>MAXIMUM VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAS Cycle Time</td>
<td>6t</td>
<td>-</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>2</td>
<td>RAS Pulse Width Low</td>
<td>3.5t - d</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>3</td>
<td>RAS High Time (Precharge)</td>
<td>2.5t + d</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>4</td>
<td>RAS Low to CAS Low</td>
<td>2.5t - 9</td>
<td>2.5t - d</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>5</td>
<td>CAS Cycle Time</td>
<td>2t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>6</td>
<td>CAS Pulse Width Low</td>
<td>1t + 2</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>7</td>
<td>CAS High Time (Precharge)</td>
<td>1t - 2</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>8</td>
<td>Row Address Setup to RAS Low</td>
<td>1t - 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>9</td>
<td>Row Address Hold Time from RAS Low</td>
<td>1t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>10</td>
<td>Column Address Setup to CAS Low</td>
<td>1t - 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>11</td>
<td>Column Address Hold from CAS Low</td>
<td>1t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>12</td>
<td>Read Data Valid Before CAS High</td>
<td>2</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>13</td>
<td>Read Data Hold After CAS High</td>
<td>0</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>14</td>
<td>Write Data Setup to CAS Low</td>
<td>1t - 15</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>15</td>
<td>Write Data Hold After CAS Low</td>
<td>1t - 5</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>16</td>
<td>WE Low Setup to CAS Low</td>
<td>1t - 5</td>
<td>1t + 5</td>
<td>Note 3</td>
</tr>
<tr>
<td>17</td>
<td>WE Low Hold After CAS High</td>
<td>Same as (16).</td>
<td>Note 5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>OE High Before WE Low</td>
<td>0</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>19</td>
<td>OE Low After WE High</td>
<td>0</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>20</td>
<td>CAS High for CAS Before RAS Refresh</td>
<td>1t - 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>21</td>
<td>RAS Low from CAS Low for CAS before RAS Refresh</td>
<td>1.5t + 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
</tbody>
</table>

NOTES:
1. The timing in this table results from setting PR33 (3C5h, Index 13) to XXX00000b.
2. This timing is adjustable via PR33 (see Figures 19-9 and 19-10.
3. For t = 1/MCLK, the maximum MCLK frequency is:

<table>
<thead>
<tr>
<th>DRAM SPEED</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 ns</td>
<td>37.5 MHz</td>
</tr>
<tr>
<td>80 ns (faster type)</td>
<td>40.0 MHz</td>
</tr>
<tr>
<td>70 ns</td>
<td>44.7 MHz</td>
</tr>
<tr>
<td>60 ns</td>
<td>49.5 MHz</td>
</tr>
<tr>
<td>45 ns</td>
<td>60.0 MHz</td>
</tr>
</tbody>
</table>
4. The "d" indicates a delay of 4 ns to 7 ns.
5. Numbers in parenthesis are numbers on the diagram.
6. Memory write uses fast page early write, while keeping OE equal to 1.
Memory read uses fast page read, while keeping OE equal to 1.

TABLE 19-6. DRAM TIMING FOR 256K BY 4 AND 256K BY 16 DRAMS
<table>
<thead>
<tr>
<th>NO. ON DIAGRAM</th>
<th>PARAMETER</th>
<th>MINIMUM VALUE</th>
<th>MAXIMUM VALUE</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAS Cycle Time</td>
<td>5t</td>
<td>-</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>2</td>
<td>RAS Pulse Width Low</td>
<td>3t - 7</td>
<td>-</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>3</td>
<td>RAS High Time (Precharge)</td>
<td>2t</td>
<td>-</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>RAS Low to CAS Low</td>
<td>1.5t</td>
<td>1.5t</td>
<td>Note 2, 3</td>
</tr>
<tr>
<td>5</td>
<td>CAS Cycle Time</td>
<td>2t</td>
<td>2t</td>
<td>Note 3</td>
</tr>
<tr>
<td>6</td>
<td>CAS Pulse Width Low</td>
<td>1t + 2d</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>7</td>
<td>CAS High Time (Precharge)</td>
<td>1t - 2d</td>
<td>-</td>
<td>Note 2, 3, 4</td>
</tr>
<tr>
<td>8</td>
<td>Row Address Setup to RAS Low</td>
<td>1t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>9</td>
<td>Row Address Hold Time from RAS Low</td>
<td>0.5t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>10</td>
<td>Column Address Setup to CAS Low</td>
<td>1t - 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>11</td>
<td>Column Address Hold from CAS Low</td>
<td>1t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>12</td>
<td>Read Data Valid Before CAS High</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Read Data Hold After CAS High</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Write Data Setup to CAS Low</td>
<td>1t - 15</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>15</td>
<td>Write Data Hold After CAS Low</td>
<td>1t - 5</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>16</td>
<td>WE Low Setup to CAS Low</td>
<td>1t - 10</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>17</td>
<td>WE Low Hold After CAS High</td>
<td>Same as (16).</td>
<td>Note 5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>OE High Before WE Low</td>
<td>0</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>19</td>
<td>OE Low After WE High</td>
<td>0</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>20</td>
<td>CAS High for CAS Before RAS Refresh</td>
<td>0.5t</td>
<td>-</td>
<td>Note 3</td>
</tr>
<tr>
<td>21</td>
<td>RAS Low from CAS Low for CAS before RAS Refresh</td>
<td>1.5t</td>
<td>-</td>
<td>Note 3</td>
</tr>
</tbody>
</table>

NOTES:
1. The timing in this table results from setting PR33 (3C5h, Index 13) to XXX00000b.
2. This timing is adjustable via PR33.
3. For t = 1/MCLK, the maximum MCLK frequency is:
 DRAM
 SPEED FREQUENCY
 80 ns 36 MHz
4. The "d" indicates a delay of 4 ns to 7 ns.
5. Numbers in parenthesis are numbers on the diagram.
6. Memory write uses fast page early write, while keeping OE equal to 1.
 Memory read uses fast page read, while keeping OE equal to 1.
7. The MCLK edge to RAS, CAS, MA[8:0] edge delay may be up to 40 ns.

TABLE 19-7. DRAM TIMING FOR 64K BY 16 DRAMS
Minimum RAS Precharge adjustment

(1) PR33 (3C5 Index 13) Bit 1,0 = 00 \(\overline{\text{RAS}} \) High time (min. Precharge) = 2.5t + d
(2) PR33 (3C5 Index 13) Bit 1,0 = 01 \(\overline{\text{RAS}} \) High time (min. Precharge) = 3t
(3) PR33 (3C5 Index 13) Bit 1,0 = 10 \(\overline{\text{RAS}} \) High time (min. Precharge) = 2t
(4) PR33 (3C5 Index 13) Bit 1,0 = 11 \(\overline{\text{RAS}} \) High time (min. Precharge) = 2.5t

RAS low to CAS low adjustment

(1) PR33 (3C5 Index 13) Bit 2 = 0 \(\text{RAS low to } \overline{\text{CAS}} \text{ low} = 2.5t \)
(2) PR33 (3C5 Index 13) Bit 2 = 1 \(\text{RAS low to } \overline{\text{CAS}} \text{ low} = 1.5t \)

\(t = 1 / \text{MCLK} \)
\(d = (4 \to 8) \text{ } \text{ns} \)
19.2 DRAM TIMING ADJUSTMENT

For DRAM timing adjustments, the RAS, CAS timing can be adjusted by register PR33 (3C5h, Index 3), Bits 4 through 0 (see Figures 19-8 through 19-11).

Tables 19-7 and 19-8 list the parameters (Note 2) that are adjustable via PR33.

For the CAS pulse width adjustment, the CAS cycle time is always equal to 2t (t = 1/MCLK).

Delay “d” is 4 to 7 ns. Therefore, PR33 Bit 3 sets the CAS pulse width as follows:

<table>
<thead>
<tr>
<th>BIT 3</th>
<th>CAS LOW =</th>
<th>CAS HIGH =</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1t + (2 ~ 3) ns</td>
<td>1t - (2 ~ 3) ns</td>
</tr>
<tr>
<td>1</td>
<td>1t + 2d</td>
<td>1t - 2d</td>
</tr>
</tbody>
</table>

FIGURE 19-8. DRAM TIMING FOR 256K BY 4 OR 16 DRAM

FIGURE 19-9. DRAM TIMING FOR 256K BY 4 OR 16 DRAM
FIGURE 19-10. DRAM TIMING FOR 64K BY 16 DRAM
20.0 PACKAGE DIMENSIONS

Figure 20-1 shows the 208-pin MQFP package and gives the dimensions in millimeters and inches.

FIGURE 20-1. 208-PIN MQFP PACKAGE DIMENSIONS
APPENDIX A
REFERENCE DOCUMENTS

For further information on Personal Computer (PC) video display applications, refer to the manuals in the following list.

- IBM PC Hardware User Guide (IBM # 6322510)
- IBM PC XT Hardware User Guide (IBM # 6322511)
- IBM PC AT Hardware User Guide (IBM # 6280066)
- IBM PS/2 Model 30 Hardware User Guide (IBM # 68x2230)
- IBM PC AT Technical Reference Manual (IBM # 6280070)
- IBM PS/2 Model 30 Technical Reference Manual (IBM # 68x2201)
- IBM PC Options & Adapters Technical Reference Manual (IBM # 6322509)
- IBM PS/2 BIOS Reference Manual (IBM # 68x2260)
- IBM PC Reference Manual (IBM # 6025005)
- AT&T Video Display Controller VDC 750 / VDC 600 Installation Guide