ABT Design Considerations for Fault Tolerant Backplanes

INTRODUCTION
National Semiconductor’s high speed Advanced BiCMOS Technology, ABT is a 1.0 µm process product introduced to provide a high speed fault tolerant solution for interface needs. Some of the targeted interface environments include computer servers, mainframes and central office switches. Each of these interface environments suffer from glitching or level degradation on their backplane or bus, generated from either live insertion of a board or a power up and down cycle used when performing maintenance on a system. Board designers need to address live insertion and power cycling requirements when designing a fault tolerant system. Definitions and applications of live insertion and power cycling change based on the product that interfaces with a backplane environment.

Discussion of a fault tolerant benefits from a review of definitions and solutions for fault tolerant interfacing and a review of device specs and how they contribute to a fault tolerant environment.

DEFINITION OF TERMS
— Live Insertion
Boards like those seen in a telephone company’s central office switch are often removed and inserted while the backplane remains active. Insertion and removal generates glitches and voltage level changes on the backplane. The level of isolation that a board mounted interface device provides the backplane can be broken down into three major groups.

— 1st Level of Isolation is defined as the ability of the interface devices to allow insertion of the board to which it is mounted without having to power the system down. Requirements include a method of suspending the bus activity to prevent glitch or level corruption of bus data.

— 2nd Level of Isolation is defined as the ability of the interface devices to allow insertion of the board without the need to power the system down or suspend bus activity. Requirements include a method by which the bus can check for, and correct, faults introduced on the backplane during board insertion or a method for providing proper biasing of the board interface devices with a staggered pin arrangement on the board-backplane connector. Precondition biasing circuitry for the interface device may also provide the required isolation.

— 3rd Level of Isolation is defined as the ability of the interface devices to allow board insertion without any limitations, restrictions or requirements of other circuits on the preservation of bus data.

The level of isolation that an interface device mounted on a board provides for the backplane has a direct impact on system uptime. Increasing levels of isolation allow for increased serviceability without system interruption. Board isolation provided by an interface device gives more freedom to the designer for focusing on purpose built board functions, reducing board design complexity and ultimately, board cost. ABT products reward the board designer and the board user these benefits with a 2nd Level isolation solution.

— Fault Tolerance
Fault tolerance in a backplane environment is the ability of the bus to detect and/or correct errant signals from any source including glitches, level changes, etc., generated from the insertion or extraction of a board into a backplane. A system populated with ABT products minimizes the need for errant signal processing associated with the live insertion and extraction process when biased correctly.

— Power Up/Down TRI-STATE®
When the devices that interface with the backplane power up or down, their connection to the bus will ideally maintain a high impedance state. With respect to the ABT product family, the output enable circuitry has control of the output state of the interface device during power up and down so as to prevent intermittent low impedance loading or glitch generation commonly associated with conventional CMOS and Bipolar devices.

— Partial System Power Down
Partial system power down implies that a system comprised of a combination of hardware and firmware provides power switching control of a backplane slot to allow for insertion, or removal of a board. Partial system power down facilitates system serviceability. Board-mounted ABT interface products enhance serviceability for permitting backplane slot power cycling while maintaining high impedance, glitch free isolation with the board and its backplane.

SOLUTIONS FOR FAULT TOLERANT INTERFACING
The achievement of a fault tolerant system solution with live insertion capabilities begins with a review of some of the bus protection solutions available. Options available to the ABT product family include:

— Staggered Pin Arrangement
For a PC edge connector arrangement, the solution in Figure 1 can be adopted to provide proper biasing of the output enable pin (OE) to ensure high impedance on the backplane. It will satisfy both insert and removal requirements. While this configuration provides an ideal connector, constraints often limit the number of different pin lengths to two. By offsetting the OE pin, we want to ensure that it will either reach a high level of ≥2.0V, before VCC is applied, or that OE will maintain a ≥50% VCC level during the VCC ramp.

TRI-STATE® is a registered trademark of National Semiconductor Corporation.
Isolation Circuitry

Isolation circuitry provides another option for board and backplane isolation. Again, this solution will provide the necessary OE pin biasing to assure a level of 2.0V or to assure OE maintains ≥50% of VCC as VCC powers up or down for guaranteed high impedance interface to the backplane.

The design of Circuit-1 below provides >50% of VCC for the OE pin throughout the VCC ramp then switches to a voltage level of a logic high once the AC00 reaches its turn-on VCC. After board insertion, the MAINT switch is opened and the LOGIC pin becomes the OE control. Live insertion or removal for this solution requires a technician to manually operate the maintenance switch (MAINT) to ensure proper biasing of OE and board-backplane isolation.

Powered Down Backplane Isolation

The power down leakage characteristics of a bus interface device assist the interface board designer in understanding the effects of loading on his backplane. During live insertion, the board is not powered up and the instantaneous loading upon contact would look like the curves of VID and IZZ in Figure 2 and Figure 3. Typically, loading leakages in the +200 µA range begin to affect the VOH/VOL levels in a backplane application. The VID and IZZ curves illustrate the loading effects on the backplane over a range of backplane voltages from 0.0V to 5.5V.

VID

VID is a voltage that is measured on an input pin at a current loading of 1.9 µA in a power off condition such as when VCC and the non-measurement pins are at 0.0V.

The curve of VID vs IID in Figure 2 shows the current leakage on an input pin at 5.5V during a power off condition. The ABT inputs limit loading leakage to <1.9 µA over an input voltage range from 0V to 5.5V.

IZZ

IZZ is a current that is measured on an output pin at a voltage of 5.5V during a power off condition such as when VCC and the non-measurement pins are at 0.0V.

The curve of VZZ vs IZZ in Figure 3 shows the current leakage on a typical ABT input/output (I/O) pin and how
it loads a bus or backplane over a range of bus voltages from 0.0V to 5.5V. I/O pin configurations exhibit combined current characteristics from components of the input circuitry and output circuitry. ABT I/O pins specify loading leakage at 100 µA max. with a typical loading leakage at 3 µA at room temperature.

— Powered Up Backplane Isolation
During power up operation, the output enable pin, OE, controls backplane isolation. The IOZH/IOZL parameters provide the interface board designer with the leakage characteristics of the interface device during a tri-stated condition.

— IOZL/IOZH
IOZL is a parameter that quantifies the output leakage current while the part is powered up and the output is conditioned low before it was tri-stated (disabled). IOZH is the same as IOZL except that the output was conditioned high before being tri-stated.

The IOZL/H curve in Figure 4 shows an I/O pin leakage characteristic during TRI-STATE operation over a range of bus voltages from 0.0V to 5.5V. ABT devices specify IOZL/H at a maximum of 50 µA while typical leakage is in the vicinity of 12 µA at room temperature.

— Powering Cycling and Backplane Isolation
During the transition of a power up or power down cycle, an interface device output might act erratically by glitching or seeking a voltage level that is disruptive to the backplane. These transition characteristics degrade fault tolerant systems and would increase system down time.

The curves in Figure 5 and Figure 6 demonstrate the capability of the ABT245 to maintain isolation from an active bus and provide a glitch free output while being powered up and down. With the OE pin conditioned high, V_{CC} was cycled between 0.0V and 5.5V to monitor the output voltage levels as they would appear on a bus. Bus loads of 1 kΩ pull-up and pull-down were used. The bus voltage level disruption is in the micro-volts range attesting to the minimal impact ABT interface products would have on the backplane.

— Figure 3.
— Figure 4.
— Figure 5. Bus High Effects
— Figure 6. Bus Low Effects
SUMMARY

ABT interface devices offer glitch free power cycling provided that the OE pin is held at the device specified V_{IH} (2.0V) level. In practice, OE will provide an output high impedance condition if OE maintains a level of $\geq 50\%$ of V_{CC} through the 0V to 5.5V range. In fact, the OE pin circuitry gains control once V_{CC} is $\geq 1.0V$. Interface device output characteristics for V_{CC} levels before 1.0V are controlled through the isolation circuitry discussed earlier.

ABT designs and specifications recognize the need for more fault tolerant interface devices. Live insertion guarantees such as VID/IZZ, IOZL/H and glitch free power cycling all promote better system uptime, especially for telecom switching environments. Together with extended AC specifications that reduce the need for complex performance evaluations, ABT live insertion guarantees allow designers to spend more time on total system performance features and not worry about the logic.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.