PRELIMINARY SPECIFICATION

82C601
SINGLE CHIP PERIPHERAL CONTROLLER

JUNE 12, 1989
CPI055.17-89
Rev 1.3
STK #10055-002

IBM, AT, Micro Channel, Enhanced Graphics Adapter, Color Graphics Adapter, Monochrome Adapter, IBM Color Display, IBM Monochrome Display, and PS/2 are trademarks of International Business Machines.

COPYRIGHT 1989 CHIPS AND TECHNOLOGIES, INC.
CHIPS, CHIPSET are trademarks of CHIPS AND TECHNOLOGIES, INC.
CHIPS makes no warranty for the use of its products and bears no responsibility for any errors which may appear in this document.
The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production.
This databook is provided for the general information of the customers of CHIPS AND TECHNOLOGIES, INC. CHIPS reserves the right to modify this document as necessary and it is the customer's responsibility to ensure he has the most recent version of this datasheet. The customer is on notice that the field of personal computers is filled with patents held by various parties, and that the user must take action to ensure that the use of its products does not infringe on any patents. CHIPS AND TECHNOLOGIES respects the valid patent rights of all parties, and will not infringe or assist others to infringe on such rights.
82C601 Preliminary Data Sheet

84 PLCC PINOUT

82C601
84 PLCC Pinout
TOP VIEW
Features Highlights:
O 100% Compatible to IBM PC-XT/AT
O 2 x 16450 Compatible UARTs
O 1 IBM PC-XT/AT Compatible Enhanced Parallel Port
O ADAPTER mode functions:
 o Game Port Decodes
 o Select Pins for Serial and Parallel ports
O MOTHER-BOARD mode functions:
 o IDE Interface
 o Real Time Clock Chip Select
 o Programmable General Purpose Chip Select
 o Power Saving Features and Power Down Modes
O 16 mA Output Drivers
O Schmitt Trigger Inputs on RESET
O Internal Address Decoders
O EISA Ready (MOTHER-BOARD mode)
 o Relocatable Ports
 o Relocatable IRQ
 o Interrupt Sharing Capability
O Low Power CMOS
O 80 PFP or 84 PLCC packages

Figure 1. 82C601 Block Diagram
Functional Description:
82C601 is the second generation of our Multifunction Controller product line. The chip features 24 mA drivers for the output buffers, such as the host data bus and 16n mA drivers for the parallel port. It incorporates two 16450 compatible UARTs, one enhanced parallel port (with bidirectional capability), an IDE compatible hard disk interface and various chip selects (in the MOTHER-BOARD mode) or select pins and Game port decodes (in the ADAPTER mode). This chip supports 2 modes:

* ADAPTER mode where the base addresses for the ports are determined by the select pins (PSPs, SSPs, ASPs, and PPs); except for game port, it is fixed @ 200H-207H. -GAMERD and -GAMEWR outputs are provided to minimize external gate count.

* MOTHER-BOARD mode where all the ports are relocatable. An Integrated Drive Electronics interface, and various Chip Selects (Floppy Disk, Real Time Clock, and a General Purpose) have been added for this mode. Power management aspects of the 82C601 in the MOTHER-BOARD mode includes modular power down for each port, oscillator disable, and chip power down through the PWRGD pin. When the chip is powered down (i.e. when PWRGD is inactive) the current draw should be minimal, all the inputs are disabled, and all outputs are tri-stated. The contents of all the registers are preserved, as long as power supply to the 82C601 is maintained.

The host interface is PC compatible, i.e. D0-D7, A0-A9, -IOR, -IOW, AEN, INTR1, INTR2, INTR3, INTR4, and RESET, and can be connected directly to the bus. The system bus interface buffers (D0-D7, INTR1-4) are capable of sinking 24 mA @ 0.5 V, the parallel port control signals are capable of sinking 16 mA @ 0.5 V.

Pin Description:

<table>
<thead>
<tr>
<th>PLCC (PFP)</th>
<th>Symbol</th>
<th>Buffer Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Interface (27 pins)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 (79) INTR4 T</td>
<td>Active high Interrupt Request, MOTHER-BOARD function. When the parallel port is assigned to be LPT1 (I/O address 3BCH) or LPT3 (I/O address 378H), INTR4 generates interrupt to the host, normally connected to IRQ7. If I/O address 278H is selected, then the parallel port is assigned to be LPT2, therefore it should use IRQ5. INTR4 originates from either the Secondary Serial Port or the Parallel Port Controller.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ASP1)</td>
<td>I</td>
<td>Alternate Serial Port select 1, ADAPTER mode function.ASP0 (pin 8/78) and ASP1 determines the Serial Port addresses.</td>
<td></td>
</tr>
<tr>
<td>13 (2) INTR3 T</td>
<td>Active high Interrupt Request, MOTHER-BOARD function. In the MOTHER-BOARD mode, INTR3 originates from the Primary Serial Port or the Parallel Port Controller.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PPIRO)</td>
<td>T</td>
<td>Active high Parallel Port Interrupt, ADAPTER mode. In the ADAPTER mode, this pin should be connected to IRQ5 when the parallel port is assigned to be LPT3 (I/O address 278H).</td>
<td></td>
</tr>
</tbody>
</table>
| 14 | INTR2 | T | Active high Interrupt Request, MOTHER-BOARD function.
 | | | In the MOTHER-BOARD mode, INTR2 originates from the Primary Serial Port or the Secondary Serial Port.
 | | | (SP1IRQ) T | Active high Primary Serial Port Interrupt, ADAPTER function.
 | | | In the ADAPTER mode, SP1IRQ is normally connected to IRQ4 for COM1/COM3. |
| 15 | INTR1 | T | Active high Interrupt Request, MOTHER-BOARD function.
 | | | In the MOTHER-BOARD mode, INTR1 originates from the Primary Serial Port or the Secondary Serial Port.
 | | | (SP2IRQ) T | Active high Secondary Serial Port Interrupt, ADAPTER function.
 | | | In the ADAPTER mode, SP2IRQ is normally connected to IRQ3 for COM2/COM4. |
| 17 | DBDIR | O | Host Data Bus Buffer Direction, when low it indicates a read cycle.
 | | | Active low indicates read cycles for 82C601 internal accesses, Serial Ports, Parallel Port, Real Time Clock, Floppy Disk Controller, low byte of IDE, and/or the General Purpose Port if selected. |
| 18-27 | A0-A9 | I | Host Address bit 0-9.
 | | | These address bits are latched internally at the beginning of -IOR or IOW. | |
| 28(17) | AEN | I | Active high Address Enable indicates DMA activities. |
| 29(18) | -IOR | I | Active low I/O Read. |
| 30(19) | -IOW | I | Active low I/O Write. |
| 31 | RESET | IS | Active high Reset, Schmitt-trigger input.
 | | | RESET has to be valid for minimum of 1 microsecond. |
| 33-36, | D0-D7 | I/O1 | Host Data bus, 24 mA drivers.
 | 38-41 (21-24,26-29) | | |

Parallel Port Controller (17 pins):

| 42,43 | PD7-PD0 | I/O2 | Parallel Port data bus.
 | 45-50 (30,31,33-38) | | These outputs are capable of sinking 16 mA @ 0.5 V. | |
| 51(39) | -STROBE | O2 | Active low Data Strobe output, 16 mA driver. |
| 52(40) | -SLCTIN | O2 | Active low Select Control output, 16 mA driver. |
| 54(41) | -INIT | O2 | Active low Initialize output, 16 mA driver. |
| 55(42) | -AUTOFD | O2 | Active low Auto Feed output, 16 mA driver. |
82C601 Preliminary Data Sheet

57(44) -ACK
- **Input.**
 - Active low Acknowledge input.

58(45) BUSY
- **Input.**
 - Active high Busy input.

59(46) PE
- **Input.**
 - Active high Paper End input.

60(47) SLCT
- **Input.**
 - Active high device Selected input.

61(48) -ERROR
- **Input.**
 - Active low Error input.

Serial Port Interface (18 pins)

62,70 (49,57) -CTS1,-CTS2
- **Input.**
 - Active low Clear To Send input.

63,71 (50,58) -DSR1,-DSR2
- **Input.**
 - Active low Data Set Ready input.

64,72 (51,59) -DCD1,-DCD2
- **Input.**
 - Active low Data Carrier Detect input.

65,73 (52,60) -RI1,-RI2
- **Input.**
 - Active low Ring Indicator input.

66,75 RXD1,RXD2
- **Input.**
 - Active high Receive Data input.

67,76 (53,61) -RTS1,-RTS2
- **Output.**
 - Active low Request To Send output.

68,77 (55,62) -DTR1,-DTR2
- **Output.**
 - Active low Data Terminal Ready output.

69,78 TXD1,TXD2
- **Output.**
 - Active high Transmit Data output.

67(81) X1
- **Input.**
 - Serial Port crystal input, normally 1.8432 MHz.

68(82) X2
- **Output.**
 - Serial Port crystal output.

IDE Interface and Chip Selects (MOTHER-BOARD mode, 9 pins)

Configuration Selects (ADAPTER mode, 9 pins)

79 PWRGD
- **Input.**
 - Active high Power Good indication, MOTHER-BOARD AT/XT mode.
 - The 82C601s fully functional when PWRGD is active; when PWRGD is inactive and Vcc is still valid, the 82C601 is isolated from the rest of the circuit. All
accesses are ignored, all inputs are disabled, and all outputs are tri-stated. However, register contents are preserved, and the current draw is minimal.

Secondary Serial Port Select 0, ADAPTER mode.

| (SSP0) | I | 80 -IOCS16 | Active low 16 bit I/O indication, MOTHER-BOARD AT mode.
The hard disk interface generates -IOCS16 to inform the host and the 82C601 that 16 bit I/O transfers are about to begin. -IOCS16 is active only when transferring data words in AT mode. Low = 16 bit, high = 8 bit. (AT mode).

- HDACK | I | Active Low HDC DMA Acknowledge, MOTHER-BOARD XT mode.

- (SSP1) | I | Secondary Serial Port Select 1, ADAPTER MODE.
SSP0 and SSP1 select the address assignment for the second serial port.

<table>
<thead>
<tr>
<th>SSP1</th>
<th>SSP0</th>
<th>IRQ</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>IRQ3</td>
<td>2F8H (COM2)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>IRQ4</td>
<td>COM3, the address is assigned by AS1, AS0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>IRQ3</td>
<td>COM4, the address is assigned by AS1, AS0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>--</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

- (PSP0) | I | Primary Serial Port Select 0, ADAPTER MODE.

<table>
<thead>
<tr>
<th>PSP0</th>
<th>PSP1</th>
<th>IRQ</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>IRQ4</td>
<td>3F8H (COM1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>IRQ3</td>
<td>2F8H (COM2)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>IRQ4</td>
<td>COM3, the address is assigned by AS1, AS0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>--</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

- (PSP1) | I | Primary Serial Port Select 1, ADAPTER MODE.

- (RSVD) | N/A | Not Used in MOTHER-BOARD XT mode.

- (IDEENH) | O | Active low High Data Buffer Enable, MOTHER-BOARD AT mode.
-IDEENH is active only when -IOCS16 is active, I/O address 1F0H-1F7H, and AT mode is selected.

- (RSVD) | N/A | Not Used in MOTHER-BOARD XT mode.

- (-GAMEWR) | O | Active low Game Write strobe, ADAPTER mode.
-GAMEWR decodes I/O address range 200H-207H and qualifies it with -lOW.

- (-IDEENL) | O | Active low Low Data Buffer Enable, MOTHER-BOARD AT/XT mode.
-IDEENL is active when accessing I/O address 1F0H-1F7H and 3F6H-3F7H (AT mode) or 320H-323H (XT mode: 8 bit DMA or programmed I/O).
82C601 Preliminary Data Sheet

- **GAMERD** O Active low Game Read strobe, ADAPTER mode.
 - GAMERD decodes I/O address range 200H-207H and qualifies it with -lOR.

1 RTCCS O (71) Active low Real Time Clock Chip Select, MOTHER-BOARD AT/XT mode.
 - RTCCS decodes I/O addresses 70H and 71H for the 146818 compatible RTC.
 - Parallel Port Select 1, ADAPTER mode.
 - PP0 and PP1 determine the base address for the parallel port controller.
 - PP1 PP0 IRQ Address
 - 0 0 IRQ7 3BCH (LPT1)
 - 0 1 IRQ5 378H (LPT2)
 - 1 0 IRQ7 278H (LPT3)
 - 1 1 -- Disabled

3 GPCS O (73) Active low General Purpose Chip Select, MOTHER-BOARD AT/XT mode.
 - GPCS decodes the address specified in the Config. Reg. #09H and #0AH with the mask bit specified in the Config. Reg. 0AH.
 - OUT1 output from the Primary Serial Port, when CR#0BH<0> = 1.
 - Parallel Port Select 0, ADAPTER mode.
 - PP0 and PP1 determine the base address for the parallel port controller.

8 FDCS O1 (78) Active low Floppy Disk Chip Select, MOTHER-BOARD AT/XT mode.
 - FDCS decodes the primary Floppy Disk @ address 3F0H-3F7H.
 - Alternate Serial Port select 0, ADAPTER mode.

9 ASP0 I (ASP1) Alternate Serial Port select 1, ADAPTER mode.
 - ASP0 and ASP1 select the base address pairs for the primary and secondary serial port when they are used as COM3, COM4 pair.
 - ASP1 ASP0 COM3 COM4
 - 0 0 338H 238H
 - 0 1 3E8H 2E8H
 - 1 0 2E8H 2E0H
 - 1 1 220H 228H

Miscellaneous (9 pins)

83 MODE I (69) Mode Select.
 - 0 = MOTHER-BOARD mode.
 - MOTHER-BOARD mode allows you to configure the 82C601 and fully utilize the power management functions.
 - 1 = ADAPTER mode.
 - In the ADAPTER mode the port addresses are determined by the jumper selects, except for the game port, which is fixed at address 200H-207H.

2,10,44 (32,72,80) Vcc (+5V)

12,16,37,56,84 (1,5,25,43,70) Vss (ground)
82C601 Preliminary Data Sheet

Buffer Type:
- I = TTL input
- IS = Schmitt-trigger input
- I/O1 = TTL input and output type 1, 24 mA, -8 mA
- I/O2 = TTL input and output type 2, 16 mA, -200 µA
- OL = Low TTL output, 4 mA, -1 mA
- O = TTL output, 8mA, -1 mA
- T = 3-state TTL output, 24mA, -8 mA

TOP LEVEL LOGIC:

Power Up Conditions

Configuration Register default values
Upon power up the configuration registers are set to the default values, control signals are inactive, status registers reflect the status of the input pins, other registers are cleared to 00H, and unused bits are cleared to "0"s. All the control signals and the register contents are preserved as long as power is maintained.

The default values upon power up:
- CR#00H = 0EH
- CR#01H = 00H
- CR#02H = 08H
- CR#03H = XXH (Not Used)
- CR#04H = FEH
- CR#05H = BEH
- CR#06H = 9EH
- CR#07H = 00H (Not Used)
- CR#08H = ECH
- CR#09H = B0H
- CR#0AH = 00H
- CR#0BH = 00H
- CR#0CH = 00H
- CR#0DH = XXH (Not Used)
- CR#0EH = 00H
- CR#0FH = N/A

Configuration Register Definitions (MOTHER-BOARD mode only):

Configuration Register #00H (R/W)
Chip Selects and Enable.

b7: Valid Configuration indication.
- 0 = Invalid, default upon power up.
 Invalid configuration, because Vcc to the 82C601 was removed; therefore the previous configuration is lost.
- 1 = Valid Configuration.

b6-5: Serial Port Oscillator Enable.

b6-b5
- 0 0 = Oscillator always ON, default.
- 0 1 = Oscillator is ON when PWRGD is active; otherwise it is OFF.
- 1 0 = Oscillator is ON when PWRGD is active; otherwise it is OFF.
- 1 1 = Oscillator always OFF.

b4: Reserved.

b3: Parallel Port Enable.
- 0 = Disabled.
- 1 = Enabled, default upon power up.
82C601 Preliminary Data Sheet

b2: Primary Serial Port Enable.
 0 = Disabled.
 1 = Enabled, default upon power up.

b1: Secondary Serial Port Enable.
 0 = Disabled.
 1 = Enabled, default upon power up.

b0: Reserved.

Configuration Register #01H (R/W)
Parallel Port mode.

b7: Reset Control.
 0 = Normal reset.
 Resets all serial port registers to the default values, except Tx, Rx, and Divisor register.
 1 = Restricted reset.
 None of the serial port registers is cleared.

b6: Extended or Compatible mode.
 0 = Compatible/Printer mode, default.
 1 = Extended/Bidirectional mode.

b5: Force -CTS1 active.

b4: Force -DSR1 active.

b3: Force -DCD1 active.

b2: Force -CTS2 active.

b1: Force -DSR2 active.

b0: Force -DCD2 active.
A "1" in any of bits 0-5 will force the appropriate inputs to active/low. The default is not forced, that is, the output is dependent on the programmed Modem Control register value.

Configuration Register #02H (R/W)
Parallel Port mode.

b7: Reserved =0.

b6: Primary Serial Port clock divider select.
 0 = Divide by 2, default.
 1 = Divide by 4.

b5: Primary Serial Port Receive clock source.
 0 = Baud rate Generator, default.
 1 = Divider output (see bit 6).

b4: Primary Serial Port Transmit clock source.
 0 = Baud rate Generator, default.
 1 = Divider output (see bit 6).

b3: 8250 or 16450 mode.
 0 = 8250 mode.
 1 = 16450 mode, default.
 The difference between 8250 and 16450 mode is when there are multiple interrupts pending. In 8250 mode the 82C601 will bring the INTR line low momentarily, after each read of the interrupt status. Except after the last interrupt, in this case the INTR will remain inactive. In the 16450 mode, no low pulse will be generated. The INTR will become inactive (low), after the last interrupt status is read.

b2: Secondary Serial Port clock divider select.
 0 = Divide by 2, default.
82C601 Preliminary Data Sheet

1 = Divide by 4.

b1: Secondary Serial Port Receive clock source.
0 = Baud rate Generator, default.
1 = Divider output (see bit 2).

b0: Secondary Serial Port Transmit clock source.
0 = Baud rate Generator, default.
1 = Divider output (see bit 2).

Configuration Register #04H (R/W)
Primary Serial Port Address.
 b7-b1: The MSB of the Primary Serial Port address (bits 9-3).
 b0: Reserved = 0.
Default upon power up is FEH: address 3F8H (COM1).

Configuration Register #05H (R/W)
Secondary Serial Port Address.
 b7-b1: The MSB of the Secondary Serial Port address (bits 9-3).
 b0: Reserved = 0.
Default upon power up is BEH: address 2F8H (COM2).

Configuration Register #06H (R/W)
Parallel Port Address.
 b7-b0: The 8 most significant address bits of the Parallel Port.
Default upon power up is 9EH: address 278H (LPT2).

Configuration Register #08H (R/W)
Interrupt Request Source.
 b7-b6: INTR1 Source.
 b7 b6
 0 0 Disabled, tri-stated.
 0 1 Disabled, tri-stated.
 1 0 Primary Serial Port.
 1 1 Secondary Serial Port, default.
 b5-b4: INTR2 Source.
 b5 b4
 0 0 Disabled, tri-stated.
 0 1 Disabled, tri-stated.
 1 0 Primary Serial Port, default.
 1 1 Secondary Serial Port.
 b3-b2: INTR3 Source.
 b3 b2
 0 0 Disabled, tri-stated.
 0 1 Disabled, tri-stated.
 1 0 Primary Serial Port.
 1 1 Parallel Port, default.
82C601 Preliminary Data Sheet

b1-b0: INTR4 Source.
 b1 b0
 0 0 Disabled, tri-stated, default.
 0 1 Disabled, tri-stated.
 1 0 Secondary Serial Port.
 1 1 Parallel Port.

Configuration Register #09H (R/W)
General Purpose Chip Select High Address decode.
 b7-b0 = A9-A2 Address Decode.

Configuration Register #0AH (R/W)
General Purpose Chip Select Low Address decode, Masks, and Enable.
 b7-b5: -GPCS Mask for address bit 3-1.
 0 = No mask.
 1 = Mask (not used in decoding).
 b4: Reserved.
 b3: -GPCS A1 address decode.
 b2: -IDEENL Buffer Enable.
 0 = Disabled, default. -IDEENL does not qualify DBDIR.
 1 = Enabled, -IDEENL qualifies DBDIR.
 b1: -GPCS Enable.
 0 = Disabled, default. -GPCS is disabled (high).
 1 = Enabled Chip Select.
 b0: -GPCS Buffer Enable.
 0 = Disabled, default. -GPCS does not qualify DBDIR.
 1 = Enabled, -GPCS qualifies DBDIR.

Configuration Register #0BH (R/W)
Interrupt Polarity Select and Power Down.
 b7: INTR4 Polarity Select.
 b6: INTR3 Polarity Select.
 b5: INTR2 Polarity Select.
 b4: INTR1 Polarity Select.
 0 = Active High, default.
 1 = Active Low; tri-stated when inactive.
 b3: Primary Serial Port Power Down.
 0 = Normal mode, default.
 1 = Power Down mode.
 All outputs are tri-stated, all inputs are disabled.
 Outputs: TxD, -RTS, -DTR are tri-stated.
 Inputs: RxD, -CTS, -DSR, -DCD, -RI are disabled.
 b1: Parallel Port Power Down.
 0 = Normal mode, default.
 1 = Power Down mode.
 All outputs are tri-stated; all inputs are disabled.
 Outputs: PD0-7, -STROBE, -SLCTIN, -INIT, -AUTOFD tri-stated.
 Inputs: -ACK, BUSY, PE, SLCT, -ERROR are disabled.
b0: -GPCS/-OUT1 Output Select.
0 = -GPCS, default.
1 = -OUT1 of Modem Control Reg. of the Primary Serial Port.

Configuration Register #0CH (R/W)

b7: IDE Enable.
0 = IDE Disabled, default.
1 = IDE Enabled.
-HDCS, -IDEENL, -IDEENH are always disabled/high.

b6: IDE AT/XT Select.
0 = IDE AT Interface, default.
1 = IDE XT Interface.
8/16 bit programmed I/O transfers. -IDEENL is active during I/O 3F6H, 3F7H, 1F0H-1F7H.
-IDEENH is active when -I0CS16 is active and I/O address range 1F0H-1F7H. -HDCS is active during programmed I/O 1F0H-1F7H.

b5: -FDCS Enable.
0 = -FDCS Disabled, default.
1 = -FDCS Enabled. -FDCS is active for I/O address 3F0H-3F7H.

b4: -FDCS Buffer Enable.
0 = -FDCS Buffer Disabled, default.
1 = -FDCS Buffer Enabled. -FDCS qualifies DBDIR.

b3: -RTCCS Enable.
0 = -RTCCS Disabled, default.
1 = -RTCCS Enabled. -RTCCS is active for I/O addresses 70H and 71H.

b2: -RTCCS Buffer Enable.
0 = -RTCCS Buffer Disabled, default.
1 = -RTCCS Buffer Enabled, -RTCCS qualifies DBDIR.

b1,0: Reserved = 0.

Configuration Register #0EH (R/W)

b7: Reserved.

b6: Primary Serial Port Test Enable.
0 = Normal mode, Test Disabled, default.
1 = Test Enabled, TxD1 outputs the baud rate.

b5: Secondary Serial Port Test Enable.
0 = Normal mode, Test Disabled, default.
1 = Test Enabled, TxD2 outputs the baud rate.

b4-0: Reserved = 0.

Configuration Register #0FH (R)

Configuration Register #0FH is the Config. Reg. Index address divided by 4.

Configuration Register #0FH (W)

Writing any value to CR#0FH brings the 82C601 out of the configuration mode.
Configuration Register #03H, #07H, #0DH

Not Used.

Getting into and out of the configuration mode

Getting into the configuration mode requires the correct order of 5 consecutive values and addresses to be written into I/O addresses 2FAH and 3FAH, as shown below. Steps 4 and 5 determine the address for the Configuration Register Index and Data pair. The lower address is the CRI, the higher address is the CRD (CRD = CRI + 1). The CRI, CRD pair should be selected carefully so that they do not interfere with any other addresses in the system. The CRI address can be calculated by multiplying the value written in step 4 by 4. The value written in step 5 is the one's complement of value written in step 4. In the example below, the CRI was chosen to be 390H which corresponds to a value of E4H to be written into step 4. This results to 1BH, one's complement of E4H, to be written to 2FAH in step 5.

To exit the configuration mode, just write any value into Configuration Register #0FH.

To get into configuration mode:
1) Write 55H to 2FAH.
2) Write AAH to 3FAH.
3) Write 36H to 3FAH.
4) Write E4H to 3FAH (see above paragraph).
5) Write 1BH to 2FAH (see above paragraph).

***** In configuration mode *****

To exit from configuration mode:
7) Write 0FH to CR#0FH.

Example:
In this example the CRI will be 390H, and CR#0H will be set to AEH

;step 1
MOV DX,2FAH ; I/O address 2FAH
MOV AL,55H
OUT DX,AL ; write 55H into 2FAH
;step 2
MOV AL,0AAH
MOV BX,3FAH
OUT DX,AL ; write AAH into 3FAH
;step 3
MOV AL,36H
OUT DX,AL ; write 36H into 3FAH
;step 4
MOV AL,0E4H ; 390H divided by 4 = E4H
OUT DX,AL ; write E4H into 3FAH
;step 5
MOV AL,1BH ; 1BH = 1's complement of E4H
MOV DX,2FAH
OUT DX,AL ; write 1BH into 2FAH

;;;;;; Now we are in the configuration mode ;;;;;;

; Set Config. Reg. #0H to AEH
MOV DX,390H ; set CRI to 390H
MOV AL,00H ; CR#0H
OUT DX,AL ; set configuration register 00H
INC DX ; Config. Data Reg. = 391H
MOV AL,0AEH ; Valid Config, Osc ON when PWRGD, Enable all
OUT DX,AL ; write value into CRD

; Exit from configuration mode
DEC DX ; CRI
MOV AL,0FH ; CR#0FH
OUT DX,AL ; Exit from config. mode
INC DX
MOV AL,OFH ; CR#OFH
OUT DX,AL ; Exit from config. mode
INC DX
OUT DX,AL

Configuration Register Summary

<table>
<thead>
<tr>
<th>CR#00</th>
<th>VC</th>
<th>SP OSC ENABLE</th>
<th>RSVD</th>
<th>PP</th>
<th>S1</th>
<th>S2</th>
<th>RSVD</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR#01</td>
<td>RE</td>
<td>PP</td>
<td>S1 CONFIG</td>
<td>S2 CONFIG</td>
<td>R/W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR#02</td>
<td>RSVD=0</td>
<td>S1</td>
<td>R1</td>
<td>T1</td>
<td>MS</td>
<td>S2</td>
<td>R2</td>
<td>T2</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>CR#03</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR#04</td>
<td>PSA9</td>
<td>PSA8</td>
<td>PSA7</td>
<td>PSA6</td>
<td>PSA5</td>
<td>PSA4</td>
<td>PSA3</td>
<td>RSVD=0</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>CR#05</td>
<td>SSA9</td>
<td>SSA8</td>
<td>SSA7</td>
<td>SSA6</td>
<td>SSA5</td>
<td>SSA4</td>
<td>SSA3</td>
<td>RSVD=0</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>CR#06</td>
<td>PPA9</td>
<td>PPA8</td>
<td>PPA7</td>
<td>PPA6</td>
<td>PPA5</td>
<td>PPA4</td>
<td>PPA3</td>
<td>PPA2</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>CR#07</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR#08</td>
<td>INTR1 SOURCE</td>
<td>INTR2 SOURCE</td>
<td>INTR3 SOURCE</td>
<td>INTR4 SOURCE</td>
<td>R/W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR#09</td>
<td>GPA9</td>
<td>GPA8</td>
<td>GPA7</td>
<td>GPA6</td>
<td>GPA5</td>
<td>GPA4</td>
<td>GPA3</td>
<td>GPA2</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>CR#0A</td>
<td>MASK3</td>
<td>MASK2</td>
<td>MASK1</td>
<td>RSVD</td>
<td>GPA1</td>
<td>IDEBEN</td>
<td>GPE</td>
<td>GBEN</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>CR#0B</td>
<td>INT4PS</td>
<td>INT3PS</td>
<td>INT2PS</td>
<td>INT1PS</td>
<td>PSPD</td>
<td>SSPD</td>
<td>PPPD</td>
<td>G/OSEL</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>CR#0C</td>
<td>IDEEN</td>
<td>IDESEL</td>
<td>FDCSEN</td>
<td>FDCBEN</td>
<td>RTCSEN</td>
<td>RTCBEN</td>
<td>RSVD=0</td>
<td>RSVD=0</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CR#0D</td>
<td>NOT USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CR#0E</td>
<td>RSVD</td>
<td>S1TEST</td>
<td>S2TEST</td>
<td>RSVD=0</td>
<td>RSVD=0</td>
<td>RSVD=0</td>
<td>RSVD=0</td>
<td>RSVD=0</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>CR#0F</td>
<td>CONFIGURATION REGISTER INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RO</td>
</tr>
</tbody>
</table>
Power Management

Power management functions are achieved using PWRGD pin and Configuration Register bits. PWRGD is an input to indicate to the 82C601 that the power supply is fully functional, thus the chip should be fully functional, i.e. all read/write commands are accepted. When PWRGD is inactive (low), the chip assumes that the power supply is not functional, the 82C601 isolates itself from the rest of the circuit; that is all inputs are disabled, all outputs are tri-stated, and all commands are ignored until PWRGD is restored to the active state.

Power Management Registers:
Config. Reg. #00H

- **b7:** Valid Configuration bit.
 - 0 = Invalid Configuration, default.
 - 1 = Valid Configuration, Vcc is always present.

- **b6,b5:** Serial Port Oscillator.
 - 00 = Oscillator always ON, regardless of PWRGD, default.
 - 01 = Oscillator is ON when PWRGD is high, otherwise it is OFF (tri-state).
 - 10 = Oscillator is ON when PWRGD is high, otherwise it is OFF (tri-state).
 - For laptop application, 01 or 10 should be used to reduce current draw.
 - 11 = Oscillator is always OFF.

- **b4:** Reserved.

- **b3:** Parallel Port Enable.
 - 0 = Parallel Port Disabled.
 - When disabled, the parallel port appears disconnected from the host.
 - 1 = Parallel Port Enabled, default.

- **b2:** Primary UART Enable.

- **b1:** Secondary UART Enable.
 - 0 = UART Disabled.
 - When disabled, the UART appears disconnected from the host.
 - 1 = UART Enabled, default.

- **b0:** Reserved.

Config. Reg. #08H

- **b3:** Primary Serial Port Power Down.

- **b2:** Secondary Serial Port Power Down.
 - 0 = Normal mode, default.
 - 1 = Power Down mode.
 - All outputs are tri-stated and all inputs are disabled, but all the UART registers are accessible. Reading read only registers produces undetermined data.
 - Outputs: TxD, -RTS, -DTR, -OUT1 are tri-stated.
 - Inputs: RxD, -CTS, -DSR, -DCD, -RI are disabled.

- **b1:** Parallel Port Power Down.
 - 0 = Normal mode, default.
 - 1 = Power Down mode.
 - All outputs are tri-stated and all inputs are disabled, but all registers are accessible. Read only registers produces undetermined data.
 - Outputs: PD0-7, -STROBE, -SLCTIN, -INIT, -AUTOFD are tri-stated.
 - Inputs: -ACK, BUSY, PE, SLCT, -ERROR are disabled.
SERIAL PORT CONTROLLER
The serial ports are fully compatible to the 16450 ACE registers. The programmable features allow data rates ranging from 50 baud to 115.2 Kbaud; 5 to 8 bit character size with 1, 1.5, 2 start or stop bits; even, odd, sticky or no parity; and prioritized interrupts. An Interrupt from each UART is enabled or disabled (tri-stated) using the OUT2 bit. If a "1" is written to OUT2, the UART interrupt is enabled. Writing "0" tri-states the interrupt.

There is a difference between the Primary Serial Port and the Secondary Serial Port. OUT1 of Primary Serial Port can be selected to become an output. -GPCS output can be configured to be either OUT1 of the Primary Serial Port or a General Purpose Chip Select depending upon CR#0BH<0>. If CR#0BH= 0, then it is -GPCS (default); otherwise if CR#0BH= 1, then it becomes the OUT1 pin of the Primary Serial Port.

MOTHER-BOARD mode:
The serial port base addresses are relocated by writing different values to Config. Reg. #04H and/or #05H. Interrupts for Primary Serial Port and Secondary Serial Port depend on the values written to the Interrupt Source Register (Config. Reg. #08H). In this mode the serial port base addresses (CR#04H, CR#05H) and interrupt sources (CR#08H) are programmable.

ADAPTER mode:
The base addresses are determined by PSP0-1, SSP0-1, and ASP0-1 input combinations. ASP0 and ASP1 are used only when Primary Serial Port/Secondary Serial Port are selected to be COM3/COM4 pairs; these pins determine the address pairs. SP1IRQ is the interrupt for the Primary Serial Port, SP2IRQ is for the Secondary Serial Port, and PPIRQ is for the parallel port. Any of these interrupts can be jumpered to the appropriate IRQ lines. Customarily, the Primary Serial Port is assigned as COM1: 3F8H-3FFH with SP1IRQ connected to IRQ4; and the Secondary Serial Port is assigned as COM2: 2F8H-2FFH, SP2IRQ is connected to IRQ3. SP1IRQ can be assigned to IRQ3, IRQ4, or IRQ5 pins; conversely SP2IRQ can be assigned to IRQ3, IRQ4, or IRQ7. But the Primary Serial Port Interrupt can not be the same as the Secondary Serial Port designation, that is, interrupts cannot be shared in the ADAPTER mode.

<table>
<thead>
<tr>
<th>PSP1</th>
<th>PSP0</th>
<th>Address</th>
<th>3F8H</th>
<th>SSP1</th>
<th>SSP0</th>
<th>Address</th>
<th>2F8H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3F8H</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2F8H</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2F8H</td>
<td></td>
<td>0</td>
<td>1</td>
<td>COM3 (*)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>COM3 (*)</td>
<td></td>
<td>1</td>
<td>0</td>
<td>COM4 (*)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Disabled</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Disabled</td>
<td></td>
</tr>
</tbody>
</table>

Note: (*) Addresses are determined by ASP1,ASP0 combination.

Serial Port Register Definition

00H-RO: Receive Buffer (DREN=0)
00H-WO: Transmit Buffer (DREN=0)
01H-R/W: Interrupt Enable (DREN=0)
 b7-4: Not Used = "0"
 b3: Modern Status Interrupt Enable
 b2: Line Status Interrupt Enable
 b1: Transmit Register Empty Interrupt Enable
82C601 Preliminary Data Sheet

b0: Received Data Interrupt Enable
0 = Interrupt Disabled, default
1 = Interrupt Enabled

00H-R/W: Divisor Low Byte (DREN = 1)
01H-R/W: Divisor High Byte (DREN = 1)

1.8432 MHz Xtal

<table>
<thead>
<tr>
<th>Baud</th>
<th>Dec</th>
<th>Hex</th>
<th>% Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>311</td>
<td>0180</td>
<td>--</td>
</tr>
<tr>
<td>1200</td>
<td>95</td>
<td>0060</td>
<td>--</td>
</tr>
<tr>
<td>2400</td>
<td>47</td>
<td>0030</td>
<td>--</td>
</tr>
<tr>
<td>4800</td>
<td>24</td>
<td>0018</td>
<td>--</td>
</tr>
<tr>
<td>9600</td>
<td>12</td>
<td>000C</td>
<td>--</td>
</tr>
<tr>
<td>19.2K</td>
<td>6</td>
<td>0006</td>
<td>--</td>
</tr>
<tr>
<td>38.4K</td>
<td>3</td>
<td>0003</td>
<td>--</td>
</tr>
<tr>
<td>56K</td>
<td>2</td>
<td>0002</td>
<td>2.86</td>
</tr>
<tr>
<td>115.2K</td>
<td>1</td>
<td>0001</td>
<td>--</td>
</tr>
<tr>
<td>192K</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

3.072 MHz Xtal

<table>
<thead>
<tr>
<th>Baud</th>
<th>Dec</th>
<th>Hex</th>
<th>% Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>634</td>
<td>0280</td>
<td>--</td>
</tr>
<tr>
<td>1200</td>
<td>190</td>
<td>00A0</td>
<td>--</td>
</tr>
<tr>
<td>2400</td>
<td>80</td>
<td>0050</td>
<td>--</td>
</tr>
<tr>
<td>4800</td>
<td>40</td>
<td>0028</td>
<td>--</td>
</tr>
<tr>
<td>9600</td>
<td>20</td>
<td>0014</td>
<td>--</td>
</tr>
<tr>
<td>19.2K</td>
<td>10</td>
<td>000A</td>
<td>--</td>
</tr>
<tr>
<td>38.4K</td>
<td>5</td>
<td>0005</td>
<td>--</td>
</tr>
<tr>
<td>56K</td>
<td>3</td>
<td>0003</td>
<td>14.3</td>
</tr>
<tr>
<td>115.2K</td>
<td>2</td>
<td>0002</td>
<td>16.7</td>
</tr>
<tr>
<td>192K</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

02H-RO: Interrupt Code Register

b7-3: Not Used = "0"

b2-1: Interrupt Code

<table>
<thead>
<tr>
<th>b2-1</th>
<th>Priority</th>
<th>Type</th>
<th>Source</th>
<th>Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1st</td>
<td>Receive Status</td>
<td>Errors: Overrun, Parity, Framing, Break</td>
<td>Read Line Status Reg.</td>
</tr>
<tr>
<td>1 0</td>
<td>2nd</td>
<td>Data Available</td>
<td>Rx Buffer Full</td>
<td>Read Rx Buffer</td>
</tr>
<tr>
<td>0 1</td>
<td>3rd</td>
<td>Tx Reg. Empty</td>
<td>Tx Reg. Empty</td>
<td>Read Int. Reg. or Write to Tx Reg.</td>
</tr>
<tr>
<td>0 0</td>
<td>4th</td>
<td>Modern Status</td>
<td>CTS, DSR, RI, DCD</td>
<td>Read Modern Status Reg.</td>
</tr>
</tbody>
</table>

b0: Interrupt Pending
0 = Interrupt Pending
1 = No Pending Interrupt, default

03H-R/W: Line Control Register

b7: Divisor Register Enable Bit
0 = Disable Divisor Register and Enable Rx/Tx Register, default
1 = Enable Divisor Register and Disable Rx/Tx Register

b6: Break Control Enable
0 = Disable Break Control, default
1 = Enable Break Control, TxD is forced to "0"

b5: Sticky Parity Enable
0 = Disable Sticky Parity, default
1 = Enable Sticky Parity
82C601 Preliminary Data Sheet

b4: Parity Select, this bit is meaningless unless parity is enabled (b3 = "1")
0 = Odd Parity, default
1 = Even Parity. Parity bit is "1" when there are even number of "1"s

b3: Parity Enable
0 = Disable Parity, parity bit is not generated nor checked
1 = Enable Parity Logic

<table>
<thead>
<tr>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>No parity generated nor checked</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Odd Parity</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Parity bit is generated and checked as "1"</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Even Parity</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Parity bit is generated and checked as "0"</td>
</tr>
</tbody>
</table>

b2: Stop Bits
0 = One Stop Bit
1 = 1.5 Stop Bit if data length is 5 bits, 2 Stop Bits if data length is 6, 7 or 8 bits

<table>
<thead>
<tr>
<th>b2</th>
<th>b1</th>
<th>b0</th>
<th>Stop Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x</td>
<td>x</td>
<td>1 Bit</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.5 Bits</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2 Bits</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>x</td>
<td>2 Bits</td>
</tr>
</tbody>
</table>

b1-0: Data Length

<table>
<thead>
<tr>
<th>b1</th>
<th>b0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>5 Bits</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>6 Bits</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>7 Bits</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8 Bits</td>
</tr>
</tbody>
</table>

04H-R/W: Modem Control Register

b7-5: Not Used = "0"

b4: Internal Loopback
0 = Loopback Disabled
1 = Loopback Enabled
 TxD is set to "1", and the following signals are looped back:
 TxD to RxD, -RTS to -CTS, -DTR to -DSR, -OUT1 to -RI, -OUT2 to -DCD

b3: INTR 3-state control (-OUT2)
0 = 3 stated
1 = Enabled

b2: -OUT1 output, Primary Serial Port only and if CR#0BH<0> = "1"
0 = -OUT1 is "1"
1 = -OUT1 is "0"
82C601 Preliminary Data Sheet

b1: -RTS output
0 = -RTS is "1"
1 = -RTS is "0"

b0: -DTR output
0 = -DTR is "1"
1 = -DTR is "0"

05H-R/W: Line Status Register
b7: Not Used = "0"

b6: Transmit Registers Empty
0 = Either Tx Data Reg. or Tx Shift Reg. is not empty
1 = Both Tx Data Reg. and Tx Shift Reg. are empty

b5: Tx Data Register Empty
0 = Tx Data Reg. contains data
1 = Tx Data Reg. is empty and can be written

b4: Break Indication
0 = No Break Condition
1 = Break Detected
Successive "0"s longer than a full transmission received.

b3: Framing Error
0 = No Framing Error
1 = Framing Error
Invalid Stop bit received.

b2: Parity Error
0 = No Parity Error
1 = Parity Error
Received parity bit differs than calculated parity bit.

b1: Overrun Error
0 = No Overrun Error
1 = Overrun Error
Rx Buffer has not been read before the next character is received, thus overwriting the previous character.

b0: Data Available
0 = Data not Available
1 = Data Available
Rx Buffer contains received data.
82C601 Preliminary Data Sheet

06H-R/W: Modem Status Register
- b7: Complement of -DCD input
- b6: Complement of -RI Input
- b5: Complement of -DSR Input
- b4: Complement of -CTS Input
- b3: Change in -DCD input since the last read command
- b2: -RI input changes from low to high
- b1: Change in -DSR input since the last read command
- b0: Change in -CTS input since the last read command

07H-R/W: Scratch Pad Register

Serial port Connector
The 82C601 receives and transmits TTL level signals. These signals should be buffered to achieve the desired interface. For example for RS232, 1488/1489 or 145406 type buffers can be used. The connector for the serial port is either a male 25 pin D-shell or a male 9 pin D-shell. Typically the signals are connected as shown below.

<table>
<thead>
<tr>
<th>DB9</th>
<th>DB25</th>
<th>I/O</th>
<th>Name</th>
<th>DB9</th>
<th>DB25</th>
<th>I/O</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>N/C</td>
<td>1</td>
<td>8</td>
<td>I</td>
<td>DCD</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>O</td>
<td>-TxD</td>
<td>9-19</td>
<td>9</td>
<td>O</td>
<td>N/C</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>I</td>
<td>-RxD</td>
<td>4</td>
<td>20</td>
<td>O</td>
<td>DTR</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>O</td>
<td>RTS</td>
<td>21</td>
<td>-</td>
<td>1</td>
<td>RI</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>I</td>
<td>CTS</td>
<td>22</td>
<td>I</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>I</td>
<td>DSR</td>
<td>23-25</td>
<td>-</td>
<td>N/C</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PARALLEL PORT CONTROLLER
The Parallel port is compatible to the IBM PC XT/AT Parallel Port, plus PS/2 like extended mode for bidirectional mode. When the parallel port is disabled, all outputs and register contents are preserved. Upon power up the control signals are inactive, the data register is cleared to 00H, and the status register reflects the status signals.

MOTHER-BOARD mode
In this mode, the Parallel Port can be disabled or powered down through the Configuration Register. In power down mode, all registers are accessible, but the input signals are disabled, and the output signals are tri-stated.

ADAPTER mode
In the ADAPTER mode, the parallel port is configured as AT compatible printer mode only. Programmability is not available in this mode; therefore the chip can not be reconfigured. The parallel port base address is determined through PP0 and PP1 select pins.

<table>
<thead>
<tr>
<th>PP1</th>
<th>PP0</th>
<th>Base Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3BCH (LPT1)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>378H (LPT2)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>278H (LPT3)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Parallel Data Port: Base address (R/W)

b7-0: Parallel Port Data.

Parallel Status Port: Base + 01H (R)

b7: -BUSY indicates the status of -BUSY printer signal, inverted.
 0 = Printer is busy and not ready to accept data.
 1 = Ready to accept data.

b6: -ACK indicates the status of -ACK printer signal.
 0 = Printer has received the data and is ready for the next one.
 1 = Data has not been received.

b5: PE (Paper End), indicates that the printer is out of paper.
 0 = Normal condition.
 1 = Printer is out of paper.

b4: SLCT indicates the status of SLCT printer signal. When active, the printer is selected
 0 = Printer not selected.
 1 = Printer is selected

b3: -ERROR indication.
 0 = Error has been detected by the printer.
 1 = No error detected by the printer.

b2-0: Reserved = 0.

Parallel Control Port: Base + 02H (R/W)

b7,6: Reserved.

b5: Parallel Control Direction, valid in extended mode only (CR#2<6> = 1).
 In Printer mode, the direction is always out, regardless of the state of this bit.
 0 = Output/Write.
 1 = Input/Read.

b4: IRQEN, Interrupt Request Enable.
 0 = IRQ disabled.
 1 = IRQ enabled, generates interrupt when -ACK changes from active to inactive

b3: SLCTIN (pin 17, -SLCTIN), Inverted output,
 0 = Printer not selected.
 1 = Printer selected.

b2: -INIT (pin 16, -INIT).
 0 = Initializes the printer.
 1 = Normal mode.

b1: AUTOFD (pin 14, -AUTOFD), inverted output.
 0 = No autofeed.
 1 = Generate line feed after the end of each line

b0: STROBE (pin 1, -STROBE), inverted output.
 0 = No Strobe.
 1 = Generate -STROBE signal.

Parallel Port Connector
The parallel port connector is a female 25 pin D-shell. The parallel port signals can be connected directly from the 82C601 to the connector. Typically the signals are assigned to the pins as shown below.
INTTEGRATED DRIVE ELECTRONICS INTERFACE

The IDE interface allows users to utilize hard disks with embedded controller (AT and XT interface). The 82C601 provides the control signals for the IDE interface and the IDE buffers, as shown below:

- **IDEENL**: Low Byte Buffer Enable (AT and XT).
- **IDEENH**: High Byte Buffer Enable (AT only).
- **HDCS**: Primary Hard Disk Chip Select, decodes 1F0H-1F7H (AT) or 320H-323H (XT).
- **FDCS**: Primary Floppy Disk Chip Select, I/O decode 3F0H-3F7H (AT and XT).
- **IOCS16**: When active it indicates 16 bit I/O transfer (AT only).
- **IDED7**: D7 of the IDE interface should be connected to this pin (AT only).
- **HDACK**: Hard Disk DMA Acknowledge (XT only).

IDEENL becomes active when the 82C601 decodes addresses 1F0H-1F7H, 3F6H, and 3F7H in the AT mode, or 320H-323H and DMA transfers (-HDACK=0) in the XT mode. **IDEENH** becomes active only when -IOCS16 is active and address range 1F0H-1F7H, and in AT mode (CR#0CH<6> = 0). **IOCS16** is generated by the Hard Disk Controller when it requires a 16 bit transfer. **IDED7** should be connected directly to data bit 7 of the IDE interface. The AT mode supports programmed I/O only (8 and 16 bit). XT mode supports only 8 bit DMA and 8 bit programmed I/O. Pin 66 is multiplexed, in the AT mode it is -IOCS16, in the XT mode it is -HDACK signal.

There are 2 modes of the IDE interface:

AT mode: 8/16 bit programmed I/O only (no DMA). AT mode decodes addresses 1F0H-1F7H, 3F6H and 3F7H. Normal transfer is 8 bit; 16 bit transfer is performed when -IOCS16 is active and on data register (1F0H). Both -IDEENL (low buffer enable) and -IDEENH (high buffer enable) are active during 16 bit transfer. **HDCS** is active whenever the 82C601 decodes programmed I/O address 1F0H-1F7H. **IDEENL** is active on all AT mode addresses. On the low byte buffer, only 7 bits (D0-D6) are connected to the data bus. Bit 7 is a special case; it is sourced from the 82C601. On the IDE interface, **IDED7** is connected directly to the connector. D7 of the 82C601 provides data bit 7 to the host interface. Normally the 82C601 functions as buffer for D7. Except when reading 3F7H, D0-D7 of the 82C601are tri-stated, -IDEENL is enabled to transfer data bits 0-6 from the IDE to the host; D7 should be supplied by the Floppy Disk Interface.

XT mode: 8 bit programmed I/O or DMA (no 16 bit). Normally DMA transfer is done for the data register (320H) only. During a DMA cycle (indicated by active AEN and -HDACK) -IDEENL is active, allowing the data to flow through the low byte buffer. XT mode decodes I/O address range 320H-323H.
Digital Input Register Definition (3F7H, read only)

- **b7**: -Diskette Change, Diskette interface status (FDC).
- **b6**: -Write Gate (HDC).
- **b5**: -Head Select 3/Reduced Write Current (HDC).
- **b4**: -Head Select 2 (HDC).
- **b3**: -Head Select 1 (HDC).
- **b2**: -Head Select 0 (HDC).
- **b1**: -Drive Select 1 (HDC).
- **b0**: -Drive Select 0 (HDC).

Fixed Disk Register (3F6H, write only)

- **b7-4**: Not Used.
- **b3**: HD3EN.
- **b2**: RESET.
 - 0 = Normal operation, default.
 - 1 = Generate reset to HDC.
- **b1**: -IRQEN.
 - 0 = Enabled interrupt.
 - 1 = Disable interrupt, default.
- **b0**: Reserved.

Game Port Interface (ADAPTER mode only)

- GAMEWR and -GAMERD decode I/O address 200H-207H qualified with -IOW and -IOR respectively. The game port decode is not included in PBDIR buffer control, thus it should be connected directly to the SD bus. Register definition:

<table>
<thead>
<tr>
<th>bit #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>BTN7</td>
<td>Fire button 4</td>
</tr>
<tr>
<td>6</td>
<td>BTN6</td>
<td>Fire button 3</td>
</tr>
<tr>
<td>5</td>
<td>BTN5</td>
<td>Fire button 2</td>
</tr>
<tr>
<td>4</td>
<td>BTN4</td>
<td>Fire button 1</td>
</tr>
<tr>
<td>3</td>
<td>POS3</td>
<td>Joystick 4 position</td>
</tr>
<tr>
<td>2</td>
<td>POS3</td>
<td>Joystick 3 position</td>
</tr>
<tr>
<td>1</td>
<td>POS3</td>
<td>Joystick 2 position</td>
</tr>
<tr>
<td>0</td>
<td>POS3</td>
<td>Joystick 1 position</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Vcc)</td>
<td>3.0</td>
<td>7.0</td>
<td>Volts</td>
</tr>
<tr>
<td>Supply Current (Icc)</td>
<td>tbd</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Input Voltage (Vi)</td>
<td>-0.5</td>
<td>5.5</td>
<td>Volts</td>
</tr>
<tr>
<td>Operating Temperature (Ta)</td>
<td>0</td>
<td>70</td>
<td>C</td>
</tr>
<tr>
<td>Storage Temperature (Tstg)</td>
<td>-40</td>
<td>125</td>
<td>C</td>
</tr>
</tbody>
</table>

DC CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Type</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vcc</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>OL</td>
<td>lol</td>
<td>4.0</td>
<td>mA</td>
<td></td>
<td></td>
<td>Vol_max=0.4V</td>
</tr>
<tr>
<td></td>
<td>loh</td>
<td>-1.0</td>
<td>mA</td>
<td></td>
<td></td>
<td>Voh_min=2.4V</td>
</tr>
<tr>
<td>O</td>
<td>lol</td>
<td>8.0</td>
<td>mA</td>
<td></td>
<td></td>
<td>Vol_max=0.4V</td>
</tr>
<tr>
<td></td>
<td>loh</td>
<td>-1.0</td>
<td>mA</td>
<td></td>
<td></td>
<td>Voh_min=2.4V</td>
</tr>
<tr>
<td>O1</td>
<td>lol</td>
<td>16</td>
<td>mA</td>
<td></td>
<td></td>
<td>Vol_max=0.5V</td>
</tr>
<tr>
<td></td>
<td>loh</td>
<td>-200</td>
<td>uA</td>
<td></td>
<td></td>
<td>Voh_min=2.4V</td>
</tr>
<tr>
<td>T,</td>
<td>loh</td>
<td>24</td>
<td>mA</td>
<td></td>
<td></td>
<td>Vol_max=0.5V</td>
</tr>
<tr>
<td>O2</td>
<td>lol</td>
<td>-8</td>
<td>mA</td>
<td></td>
<td></td>
<td>Voh_min=2.4V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lii</td>
<td>-20</td>
<td>uA</td>
<td></td>
<td></td>
<td>Vcc_max, Vi=0.4V, all inputs</td>
</tr>
<tr>
<td></td>
<td>lih</td>
<td>20</td>
<td>uA</td>
<td></td>
<td></td>
<td>Vcc_max, Vi=2.7V, all inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vil</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
<td>All inputs</td>
</tr>
<tr>
<td></td>
<td>Vih</td>
<td>2.0</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vol</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
<td>Iol_max, Vcc_min, Vi=0.5V, Vih=2V</td>
</tr>
<tr>
<td></td>
<td>Voh</td>
<td>2.4</td>
<td>V</td>
<td></td>
<td></td>
<td>Vcc_min, loh_max, Vi=0.5V, Vih=2V</td>
</tr>
<tr>
<td>Istby</td>
<td></td>
<td>tbd</td>
<td>uA</td>
<td></td>
<td></td>
<td>Standby current without clocks, @ Vcc_min, PWRGD active</td>
</tr>
</tbody>
</table>

Note: OL = Low Output buffer
O = Normal Output buffer
T = Tristate High Output buffer
O1 = High Output buffer
O2 = High Output buffer
I = TTL Input buffer
IS = Schmitt Trigger Input buffer
AC CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Sym</th>
<th>Description</th>
<th>min</th>
<th>max</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Host Interface Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1</td>
<td>RESET width</td>
<td>1</td>
<td></td>
<td>us</td>
</tr>
<tr>
<td>t2</td>
<td>-IORS, -IOW width</td>
<td>150</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t3</td>
<td>AEN, -I0CS16 setup time to -IORS, -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t4</td>
<td>AEN, -I0CS16 hold time from -IORS, -IOW</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t26</td>
<td>SA setup time to -IORS, -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t27</td>
<td>SA hold time from -IORS, -IOW</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t5</td>
<td>SD setup time to -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t6</td>
<td>SD hold time from -IORS</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t7</td>
<td>SD delay from -IORS</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t8</td>
<td>SD hold time from -IORS</td>
<td>10</td>
<td>80</td>
<td>ns</td>
</tr>
<tr>
<td>t9</td>
<td>DBDIR active delay from -IORS, -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t10</td>
<td>DBDIR inactive delay from -IORS, -IOW</td>
<td>80</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t11</td>
<td>-CS delays from AEN, SA</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Parallel Port Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t12</td>
<td>PD, -INIT, -STROBE, -AUTOFD, -SLCTIN delay from SD</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t13</td>
<td>INTR delay from ACK</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>IDE Interface Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t14</td>
<td>-IDEENL, -IDEENH delay from AEN, -I0CS16</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t15</td>
<td>-IDEENL, -IDEENH delay from SA</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t16</td>
<td>IDE7 to SD7 delay (read cycle)</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t17</td>
<td>SD7 to IDE7 delay (write cycle)</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>DMA Interface Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t18</td>
<td>-DACK setup time to -IORS, -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t19</td>
<td>-DACK hold time from -IORS, -IOW</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t20</td>
<td>-DACK to -IDEENL, -IDEENH delay</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t21</td>
<td>AEN, -I0CS16 to -IDEENL, -IDEENH delay</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Serial Port Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t21</td>
<td>-IOW to -RTS, -DTR, -OUT1 delay</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t22</td>
<td>-IOW to INTR 3-state delay</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t23</td>
<td>INTR active delay from -CTS, -DSR, -DCD</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t24</td>
<td>INTR inactive delay from -IORS</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t25</td>
<td>INTR inactive delay from -IOW</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
PARALLEL PORT TIMING

(PDO-7, INIT
STROBE AUTOFD)

ACK

INTR

IDE INTERFACE TIMING

I0CS18
AEN

SA0-9

IDEENL
IDEENR

IDED7

IOR

SD7

SD7

IOW

IDED7
DMA TIMING

SERIAL PORT TIMING

Page 29 of 31
84 PLCC Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-RTCCS(PP1)</td>
<td>22</td>
<td>A4</td>
</tr>
<tr>
<td>2</td>
<td>Vcc</td>
<td>23</td>
<td>A5</td>
</tr>
<tr>
<td>3</td>
<td>-GPCS(PP0)</td>
<td>24</td>
<td>A6</td>
</tr>
<tr>
<td>4</td>
<td>-IDED7(PSP1)</td>
<td>25</td>
<td>A7</td>
</tr>
<tr>
<td>5</td>
<td>-HDCS(PSP0)</td>
<td>26</td>
<td>A8</td>
</tr>
<tr>
<td>6</td>
<td>-IDEENH(-GAMEWR)</td>
<td>27</td>
<td>A9</td>
</tr>
<tr>
<td>7</td>
<td>-IDEENL(-GAMERD)</td>
<td>28</td>
<td>AEN</td>
</tr>
<tr>
<td>8</td>
<td>-FDCS(ASP0)</td>
<td>29</td>
<td>-IOR</td>
</tr>
<tr>
<td>9</td>
<td>INTR4(ASP1)</td>
<td>30</td>
<td>-IOW</td>
</tr>
<tr>
<td>10</td>
<td>Vcc</td>
<td>31</td>
<td>RESET</td>
</tr>
<tr>
<td>11</td>
<td>N/C</td>
<td>32</td>
<td>N/C</td>
</tr>
<tr>
<td>12</td>
<td>Vss</td>
<td>33</td>
<td>D0</td>
</tr>
<tr>
<td>13</td>
<td>INTR3(PP1RO)</td>
<td>34</td>
<td>D1</td>
</tr>
<tr>
<td>14</td>
<td>INTR2(SP1IRQ)</td>
<td>35</td>
<td>D2</td>
</tr>
<tr>
<td>15</td>
<td>INTR1(SP2IRQ)</td>
<td>36</td>
<td>D3</td>
</tr>
<tr>
<td>16</td>
<td>Vss</td>
<td>37</td>
<td>Vss</td>
</tr>
<tr>
<td>17</td>
<td>DBDIR</td>
<td>38</td>
<td>D4</td>
</tr>
<tr>
<td>18</td>
<td>A0</td>
<td>39</td>
<td>D5</td>
</tr>
<tr>
<td>19</td>
<td>A1</td>
<td>40</td>
<td>D6</td>
</tr>
<tr>
<td>20</td>
<td>A2</td>
<td>41</td>
<td>D7</td>
</tr>
<tr>
<td>21</td>
<td>A3</td>
<td>42</td>
<td>PD7</td>
</tr>
<tr>
<td>22</td>
<td>-RTCCS(PP1)</td>
<td>23</td>
<td>A5</td>
</tr>
<tr>
<td>24</td>
<td>-GPCS(PP0)</td>
<td>25</td>
<td>A7</td>
</tr>
<tr>
<td>26</td>
<td>-HDCS(PSP0)</td>
<td>27</td>
<td>A9</td>
</tr>
<tr>
<td>28</td>
<td>-IDEENL(-GAMERD)</td>
<td>29</td>
<td>-IOR</td>
</tr>
<tr>
<td>30</td>
<td>INTR4(ASP1)</td>
<td>31</td>
<td>RESET</td>
</tr>
<tr>
<td>32</td>
<td>N/C</td>
<td>33</td>
<td>D0</td>
</tr>
<tr>
<td>34</td>
<td>INTR3(PP1RO)</td>
<td>35</td>
<td>D2</td>
</tr>
<tr>
<td>36</td>
<td>INTR1(SP2IRQ)</td>
<td>37</td>
<td>Vss</td>
</tr>
<tr>
<td>38</td>
<td>DBDIR</td>
<td>39</td>
<td>D5</td>
</tr>
<tr>
<td>40</td>
<td>A1</td>
<td>41</td>
<td>D7</td>
</tr>
<tr>
<td>42</td>
<td>PD7</td>
<td>43</td>
<td>PD6</td>
</tr>
<tr>
<td>44</td>
<td>Vcc</td>
<td>45</td>
<td>PD5</td>
</tr>
<tr>
<td>46</td>
<td>PD4</td>
<td>47</td>
<td>PD3</td>
</tr>
<tr>
<td>48</td>
<td>-IOW</td>
<td>49</td>
<td>N/C</td>
</tr>
<tr>
<td>50</td>
<td>-IOR</td>
<td>51</td>
<td>-SROBE</td>
</tr>
<tr>
<td>52</td>
<td>-RESET</td>
<td>53</td>
<td>N/C</td>
</tr>
<tr>
<td>54</td>
<td>-DTR1</td>
<td>55</td>
<td>-ACK</td>
</tr>
<tr>
<td>56</td>
<td>-DSR1</td>
<td>57</td>
<td>-IOCS16(SSP1)</td>
</tr>
<tr>
<td>58</td>
<td>Vss</td>
<td>59</td>
<td>PE</td>
</tr>
<tr>
<td>60</td>
<td>SLCT</td>
<td>61</td>
<td>-ERROR</td>
</tr>
<tr>
<td>62</td>
<td>-CTS1</td>
<td>63</td>
<td>-DSR1</td>
</tr>
<tr>
<td>64</td>
<td>-DCD1</td>
<td>65</td>
<td>-R11</td>
</tr>
<tr>
<td>66</td>
<td>RxD1</td>
<td>67</td>
<td>-RTS1</td>
</tr>
<tr>
<td>68</td>
<td>-DTR1</td>
<td>69</td>
<td>-TxD1</td>
</tr>
<tr>
<td>70</td>
<td>-CTS2</td>
<td>71</td>
<td>-DSR2</td>
</tr>
<tr>
<td>72</td>
<td>-DCD2</td>
<td>73</td>
<td>-R12</td>
</tr>
<tr>
<td>74</td>
<td>N/C</td>
<td>75</td>
<td>RxD2</td>
</tr>
<tr>
<td>76</td>
<td>-RTS2</td>
<td>77</td>
<td>-DTR2</td>
</tr>
<tr>
<td>78</td>
<td>-TxD2</td>
<td>79</td>
<td>PWRGD(SSP0)</td>
</tr>
<tr>
<td>80</td>
<td>-IOCS16(SSP1)</td>
<td>81</td>
<td>X1</td>
</tr>
<tr>
<td>82</td>
<td>X2</td>
<td>83</td>
<td>MODE</td>
</tr>
<tr>
<td>84</td>
<td>Vss</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>
Index:
Pinout Diagram
Features Highlights
Functional Description
Pin Description
Top Level Logic:
 - Configuration Registers
 - Power Management
Serial Port Controller
 - UART Registers
 - Serial Port Connector
Parallel Port Controller
 - Parallel Port Registers
 - Parallel Port Connector
IDE Interface
Electrical Specifications
 - DC Specifications
 - AC Specifications
Pinout List
1 BUFFER: RTC+GP+IDE+FDC
FDC @ DMA

CHIPS AND TECHNOLOGIES

1 BUFFER: RTC+GP